
5>llw UVW*#

v

r >,

<
I
D
<

©
UCrCIMOu V/V./IVIIVIWi *ivsr i i ivxt *w nuulIU!

DDN PROTOCOL HANDBOOK

Volume Two

DARPA INTERNET PROTOCOLS

DECEMBER 1985

DTIC
ELECTE
APR 0 7 ©86

D

HoRO

46 7 /*. u39

...

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLYe

rrmmrm
2: sfcuiMTY fiÄss^icA^iuTHÖkrry

REPORT DOCUMENTATION vmt

HJZ 5tKJC4

M NAME of PCRFöSSSTSEESJAV^T
SRI International
DDK Network Infornaiicc Ctr

(if *j®Mcäbte)

±
Oc ADDRESS (ör/, Stift, «no* JlPCocteJ

Menlo Park, CA 94025

distribution Statement A
Approved Cot public release

Defense Data Rct^ork
Pr&graa lianagottent Office

Ca rw,M£ Of ►UfiClNWi/SPONSORING Ob OFFta SYMSOL

5*o ADORCSS(Gfty, Staff, *** 2*POxftr)
f

McLean, VA 22102

9 i>floam£M€NT msTwmm mmwaxm HUMS**

V. AODRESSfOiy, Stit«.«* fPCOfiYj c SOüRCI or nstmy Hsjmm
PROGRAM
SUMIN? MO.

r.,1 Trie (J3C5* Hfcur*ty 52X59E3'

PROJECT
NO.

TAJ
MO.

KOäC'W"

DPN Protocol Handbook (1 *O!H.) (lncU;sH if led)

J tTwtfOfiAl AUTHCntS) I
* uj wrt OF REJOR1 lUb TtMl COVWD

I FROM __„ __ '0 I
i!ft tv*« Of . vKMT (Y»*f.«one\C*y: hi PAGE COUNT

1 Biizfltt,,,,, ;; fifli am
tft »P»UMCWTARY NOTATION

COSATlCOOfS
ftkO ! CROUP SUS^GRDUP

THl. sysita TERMS ft»**«* on wtat 0 sects»? ef* SB» sy MM» mttftstff
' riefenso Data Network; DON; DDH protocols; Network

protocols; TCP/IP; Transmission Control Protocol/

ATTRACT {C&ntkiy on rwtftt tf fttctSfy **»d toVitffr by Wcc* nmrb*)
1%<> i)DN (E-fena* Data Network) nrcircDl !.iidUvk U « tbree voius» wurk which gathers
'jjitraof many djeuaaeni« af tr.tvrest to M^ue wishing U* la»*l>>iwat the DepartiR^nt ^f
C.-fvTi*.. jiaitt wt lHatoccI* ua v.,.*-a>v« ...'»v*uti*r;i tc be utcach'C to ;na DDK The
ct*iit;.ii Mllicarv Htanäaii * aflsrua"-.ac 13 a prt tCw 1^ in ««■* on the DDN lire ineludsdj
a;* au- *.-vercl ARPANET (Aiva»n.ed Reist*?*-J< P*vjett* agency Network) research protocols
which art curtcatly in use, anc! t.o^«? nmt.ocola currently undergoing review. Tutorial
Uxxjncacior, and auxiliary tWueient* art also ncluced. £n addMion to its use as a sou
guide ior prnUol Laplenentation pruposea, th • handbook can be used by vendors
wi-V;,' to maki* iiwfr protiicts cos^iatible wita DoD ne^ds» by researchers wishing to
ii^rvvi liw |*iut tvo!««t ami by ifnpi**a**nt"rH t I local area notwor%» (LANs) wishing
tn.-i- -aetw^jtks to interact with the DDH.

*TM AtCTftUf XI
Mb «r - «*"■»«

K 0»S:RI:J JOWiAVAiwaattiTY OF AfiSTSACr liV A&$lÄ^liiryüW.fU\iSlf»CATJON
lfc«lAW«t>UiM>lsnO D SAWI Ai RPT a Diiu USJfi §

>.> ■ N^VE 0# SfSPONSlSU WlDtVtOuAL

MUM
DOFC^MU73.S4MA)t

T?2% iur«i'iw-SSSSTTvu^ceS) 1 • *c ofna >..!iot

S3 APS tditicA may be used untU etaavi;td
 Aiiot^ifed»tsns*t> cbnrt»:t ,

. StCyw<TY f'Mv ?I:AT;3>J CjjHiS fACS

B

I
3

■CLASS,
UMTY ClAStIP! W TM* PJ10&

f . i mi in mi - ammmam—mttm 11 ww

2. »cd field
SRi International
Setwork Information Center
„ ■ "i Ravennwood Ave.
b^r.lo Park/ CA 94U£>

r ««assrjiüs» ^-1 »at «*»* *

liit.Si^

■■/^jS.

^ ft

y*

'; :" * I

.4 A4 k

»C. jUiTT *!*»'.■■ L»':», '*TH*?*itC

BJU&mm
"V +; myrr

-4** ■ >
»if*» ^

f^t&"

DEFENSE COMMUNICATIONS AGENCY

DDN PROTOCOL HANDBOOK

Volume TWo

DARPA INTERNET PROTOCOLS

DECEMBER 1985

Editors:

Elizabeth J. Feinler
01« J Jacobaen
Mary K. Stahl
Carol A. Ward

AjSwunai mfmmmm^mmmm mmmmmmmmm
Mßmmmmmm

mm

> from the Defense Technical Information Center (OTIC). Cameron
Station. Alexandria. VA 22314.

ACKNOWLEDGEMENTS

The DDN Protocol Handbook was compiled by the DDN Network Information Center (NIC) for the
Defense Data Network Program Management Office (DDN PMO) of the Defense Communications Agency
(DCA) under contract number DCA-200-83-0025.

L%

The editors are indebted to the authors of the many RFC» included in the body of this document. Special
thanks goes to the following people for their invaluable support and contributions toward the production
of the Handbook: Jonathan B. Postel from the University o(Southern California Information Sciences
Institute; Michael L. Corrigan, John Ciaitor, and John R. Walker from the DDN PMO; Edward Brady,
Philip S. Selvaggi, Edward A. Cain from the Defense Communications Engineering Center; Chris J. Perry
and Michael A. Padlipsky from the Mitre Corporation; and Diane Fountaine from the Office of the
Assistant Secretary of Defense for Command, Control, Communications and Intelligence (C3!).

I

Acceston For

NTIS CRAW
OTIC TA8
Unannounced
Justification

i
a
a

By _
Distibuttonf

Availability Codes
i

Dirt

H

Avail and i or
Special

ui

i»_. ** .*. /. .•.

• • •

TABLE OF CONTENTS - VOLUME TWO

fa
[\
IS I

ll

P

ACKNOWLEDGEMENTS

SECTION li INTRODUCTION TO VOLUME TWO

SECTION 2: BACKGROUND

2.1 A Brief History of the ARPANET
2.2 Management of the ARPANET
2.2.1 DARPA/IPTO
2.3 The Catenet Model for Internetworking
2.4 The DARPA Internet Protocol Suite

SECTION 3: PROTOCOL REVIEW AND ACCEPTANCE FOR
THE DARPA INTERNET

3.1 Request for Comments {RFC»)
3.2 Special Interest Group Discussions
3.3 The Internet Advisory Board

SECTION 4t OBTAINING PROTOCOL INFORMATION

4.1 Military Standards
4.2 The DDN Protocol Handbook
4.3 Requests for Comments (RFC»)
4.4 DDN Management Bulletins and Newsletters
4.5 NIC Services
4.6 Other Protocol Information Sources

SECTION 5« CURRENT OFFICIAL ARPANET PROTOCOLS

5.1 Summary of All Current Official Protocols

SECTION 6t NETWORK LEVEL PROTOCOLS

6.1 Internet Protocol
6.2 Internet Control Message Protocol

SECTION 7i HOST LEVEL PROTOCOLS

7.1 Major Hoat Protocols
7.1.1 User Datagram Protocol
7.1.2 Transmission Control Protocol
7.2 Minor Hoat Protocols
7.2.1 Host Monitoring Protocol
7.2.2 Cross Net Debugger
7.2.3 Multiplexing Protocol
7 2 4 Stream Protocol
7.2.5 Network Voice Protocol
7.2.6 Reliable Data Protocol
7.3 GaUway Protocols
7.3.1 •Stub* Exterior Gateway Protocol
7.3.2 Gateway-Gateway Protocol

[EN 43]
[RS-85-153]

(RFC 961)

ui

2-1

2-3

2-3
2-4
2-4
2-5

2-27

2-51

2-51
2-51
2-51

2-53

2*53
2-53
2-53
2*53
2-54
2-55

2-57

2-59

2-97

(IP) (RFC 791] 2*99
(ICMP) [RFC 792) 2*151

2-173

2-173
(UDP) (RFC 76«] 2-175
(TCP) (RFC 793] 2-179

2-271
(HMP) [RFC 969] 2-271
(XNET) (EN 1581 2-345
(MUX) (EN 90] 2-349
(ST) (EN 119] »-357
(NVP-fl) [RFC 741) 2-395
(RDP) [RFC 906) 2-431

2-4«
(EGP) [RFC 904) 2-495
(GGP) [RFC 823] 2-525

•v >;£>::. : ♦ •V. . ,>

SECTION 8: APPLICATION LEVEL PROTOCOLS 2-573

8.1 Major Applications (Implemented by almost all hosts) 2-575
8.1.1 Telnet Protocol (TELNET) [RFC 854] 2-575

8.1.2 Telnet Options (TLNT-OP3) [RFC 8551 2-591
8.1.2.0 Binary Transmission [RFC 856] 2-595
8.1.2.1 Echo [RFC 857] 2-599
8.1.2.2 Reconnection [NIC 15391] 2-605
8.1.2.3 Suppress Go Ahead [RFC 858] 2-615
8.1.2.4 Approx Message Size Negotiation [NIC 15393) 2-617
8.1.2.5 Status [RFC 859] 2-621
8.1.2.6 Timing Mark [RFC 880] 2-625
8.1.2.7 Remote Controlled Trans and Echo [RFC 726] 2-829
8.1.2.8 Output Line Width [NIC 20196] 2-645
8.1.2.9 Output Page Size [NIC 20197] 2-649
8.1.2.10 Output Carriage-Return Disposition (RFC 652) 2-653
8.1.2.11 Output Horizontal Tabstops [RFC 653] 2-657
8.1.2.12 Output Horizontal Tab Disposition [RFC 654] 2-659
8.1.2.13 Output Formfeed Disposition [RFC 655] 2-661
8.1.2.14 Output Vertical Tabstops [RFC 656] 2-663
8.1.2.15 Output Vertical Tab Disposition [RFC 657] 2-665
8.1.2.16 Output Linefeed Disposition [RFC 658] 2-667
8.1.2.17 Extended ASCII [RFC 698] 2-671
8.1.2.18 Logout [RFC 727] 2-875
8.1.219 Byte Macro [RFC 735] 2-679
8.1.2.20 Data Entry Terminal [RFC 732] 2-685
8.1.2.21 SUPDUP [RFC 736] 2-715
8.1.2.22 SUPDUP Output [RFC 749] 2-717
8.1.2.23 Send Location (RFC 779] 2-721
8.1.2.24 Terminal Type [RFC 930] 2-723
8.1.2.25 End of Record [RFC 885] 2-727
8.1.2.26 TACACS User Identification (RFC 927] 2-729
8.1.2.27 Output Marking |RFC 933] 2-733
8.1.2.28 Extended-Options-List [RFC 861] 2-737

8.1.3 File Transfer Protocol (FTP) [RFC 959] 2-739
8 11 Simple Mail Transfer Protocol (SMTP) [RFC 821) 2-809
8.1 5 Domain Name Protocol (DOMAIN) [RFC 883] 2-885
8 16 HOSTNAME Protocol (HOSTNAME) (RFC 953] 2-959
82 Minor Application« (Implemented by many hosts) 2-965
821 Trivial File Transfer Protocol (TFT!*) 11EN 133| 2-965
8.2.2 Simple File Transfer Protocol (SPTP) jRFC 913j 2-985
823 Echo Protocol (ECHO) [RFC 862! 2-1001
8.2.4 Discard Protocol (DISCARD) [RFC 863! 2-1003
8.25 Daytime Protocol (DAYTIME) jRFC 8671 2-1005
8.2.6 Time Server Protocol (TIME) RFC 868] 2-1007
827 Character Generator Protocol (CHARGEN) RFC mr 2-IÜÖ9
828 Quote of the Day Protocol (QUOTE) RFC 86* 2-1013
829 Active I'aer» Protocol (I'SERS) RFC m 2-101$
82 10 Finger Protocol (FINGER) HFC 742: 2-1017
82 11 WHOIS Protocol (NICNAME) RFC 954 2-1025

VI

■ W\ * \\. V,

I

8.2.12 Network Sundard Text Editor (NETED) [RFC 569] 2-1029
8.3 Miscellaneous Application« (Implemented by few hosts) 2-1037
8.3.1 Resource Location Protocol (RLP) [RFC 887] 2-1037
8.3.2 Remote Job Entry (RJE) (RFC 407] 2-1055
8.3.3 Remote Job Service (NETRJS) [RFC 740] 2-1075
8.3.4 Remote Telnet Service " (RTELNET) [RFC 818] 2-1095
8.3.5 Graphics Protocol (GRAPHICS) [RFC 493] 2-1097
8.3.6 Authentication Service (AUTH) [RFC 931] 2-1153
8.3.7 DCNET Time Server Protocol (CLOCK) [RFC 778] 2-1159
8.3.8 SUPDUP Protocol (SUPDUP) [RFC 734] 2-1165

L *
Vtl

^ '•»••• • '—

INTRODUCTION

i

SECTION 1. INTRODUCTION TO VOLUME TWO

Volume Two, of the three-volume DDN Protocol Handbook, contains protocol
information pertaining to the DARPA Internet community. It includes specifications
for all current official DARPA Internet protocols plus auxiliary information needed to
implement the protocols. The review process for acceptance of a new protocol for use
by the DARPA Internet research community is described, as is the administrative
structure of the DARPA Internet Research program.

Some of the protocols in this volume have now been adopted as DoD Military Standards
(MIL STDs). The MIL STD versions can be found in Volume One. Note that the
specification style is different for the two versions of protocols, with more emphasis
being put on descriptive detail in the case of the DARPA Internet documents. This
makes the DARPA documents helpful for researchers who are interested in the
development of the protocol, or who are planning to write protocol implementation
programs.

Information included in this volume of the Protocol Handbook was supplied to the DDN
Network Information Center (NIC) by the Deputy Chairman of the Internet Advisory
Board (IAB), on behalf of the Defense Advanced Research Projects Agency (DARPA).
The post of Deputy Chairman is currently held by Dr. Jonathan B. Postel. University of
Southern California, Information Sciences Institute (POSTELÖUSC-ISIF.ARPA).

Please note that many of the protocols and RFCs that make up the various sections of
this Handbook have previously been printed as separate documents. Consequently,
some of them have their own separate page numbering. So that the reader can easily
distinguish between the two sets of paging* the page numbering for the Handbook as a
whole is centered below the footer line, whereas any page numbering specific to an
individual document is printed above the footer line.

2-1

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-2

• * • * I

.••"V, j* j ^ • _-* ~\

BACKGROUND

LV

[-'

SECTION 2. BACKGROUND

2.1 A Brief History of the ARPANET

The ARPANET was the first packet-switched store-and-forward host-to-host digital
computer network. It originated as a purely experimental network in late I960 under a
research and development program sponsored by the U.S. Department of Defense. The
network was designed to provide efficient communication between heterogeneous
computers so that hardware, software, and data resources could be conveniently shared
by a wide community of users. Today the ARPANET provides support for a large
number of government projects with an operational network of several hundred nodes
and host computers. The three main services offered by the network are MAIL, FILE
TRANSFER, and TELNET (the ability to remotely log in lo one computer from
another). A number of other services are offered by special purpose programs which
allow the implementation of "distributed computer systems".

The ARPANET has evolved from a single, packet-switched network» using Interface
Message Processors (IMPs) and leased telephone circuits as the network "backbone", to
an "internet", a collection of many different kinds of networks tied together by means
of "gateways". The DARPA Internet today provides access to several hundred Local
Area Networks (LANs) as well as other public and private data networks in many parts
of the world. Interoperation of different types of networks ts now a major part of the
research activity in the DARPA Internet Community. This fact is reflected in the
DARPA Internet protocols.

In 10S3, the existing ARPANET was administratively divided into two unclassified
networks, ARPANET and M1LNET, to meet the growing need for an unclassified
operational military network as well as the need for a research and development
network. The physical split into separate network» was completed in September ISS4.
Each network now has its own backbone, and b interconnected through controlled
gateways to th? other. The ARPANET serves primarily as an experimental research
and development network, while the MILNET functions as an operational military
network for non-classified traffic. Communication and resource sharing between them
continue, but are subject to administrative restrictions.

2-3

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

2.2 Management of the ARPANET

The DDN, Including ARPANET, is operated for the DoD by the Defense
Communications Agency. For an overview of the management structure for
ARPANET» see Figure 2-1.

£
OCA

IE
oo* mo

OffUYtOMAl
HUMAOtMfNT.

ttemtrrv

o»o

OA**A

mo

AOWtWiSTHATiON.
OLtCV. eONttOUAATtO.
ACCISS

AlVAKftT

Figure 2-1: Maaaf ement of the ARPANET

Individuals who have a requirement to attach equipment to the ARPANET should also
consult the ARPANET Information Brethur* which is available from the NIC or from
DTIC.

2.2.1 DARPA/IPTO

DARPAs Information Processing Techniques Office (IPTO) is dedicated to developing
advanced information processing and computer communications technologies for critical
military and national security applications. The building of the ARPANET and
development of its protocols was an IPTO program, which has evolved into what b now
known as the Internet Research Program.

Through IPTO. DARPA sets policy for. and manag«* «*« «f. the ARPANET. This is
done within broad guidelines established for all DDN networks by the DDN PMO. It
also funds the ARPANET, and funds research carried out on the ARPANET. It is
important to emphasize that the DDN PMO operates and manages the ARPANET,
including the node software and hardware, while DARPA pays the backbone operating
costs, sets policy for the ARPANET, and approves access for DARPA-sponsored
subscriber*.

2-4

BACKGROUND BEN 48

IEN 48

THE CATENET MODEL FOR
INTERNETWORKING

Vint Cmrt
DARPA/IPTO

Juiy X978

2-5

t:,-v--,'V''.s'-v-'.-','.< '.■•;• .•:
■. . •. \ % % .

a * * it t ■ i't'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

1

i

!

2-6

•'^-■*--V-V-'-.'*■/--•'.-"■'•■'■•V'-\»y-•''-''»--••-'■ * ■ v, .,"■■,

BACKGROUND IEN48

The Catenet Model for Internetworking

Introduction

The term "catenet" was introduced by L. Pouzin in 1974 in his
early paper on packet network interconnection [1]. The U.S.
DARPA research project on this subject has adopted the term to
mean roughly "the collection of packet networks which are
connected together." This is, however, not a sufficiently
explicit definition to determine, for instance, whether a new
network is in conformance with the rules for network
interconnection which make the catenet function as confederation
of co-operating networks. This paper attempts to define the
objectives and limitations of the ARPA-internetworking project
and to make explicit the catenet model on which the
internetworking strategy is based.

Objectives

The basic objective of this project is to establish a model and a
set of rules which will allow data networks of widely varying
internal operation to be interconnected, permitting users to
access remote resources and to permit intercomputer communication
across the connected networks.

One motivation for this objective is to permit the internal
technology of a data network to be optimized for local operation
but also permit these locally optimized nets to be readily
interconnected into an organized catenet. The term "local" is
used in a loose sense, here, since it means "peculiar to the
particular network" rather than "a network of limited geographic
extent." A satellite-based network such as the ARPA packet
satellite network therefore has "local" characteristics (e.g.,
broadcast operation) even thouojh it spanr many thousands of
square miles geographically speaking.

A second motivation is to allow new networking technology to be
introduced into the existing catenet while remaining functionally
compatible with existing systems. This allows for the phased
introduction of new and obsolescence of old networks without
requiring a global simultaneous change.

Assumptions

One of the first questions which must be settled in a project of
this sort is "what types of data networks should be Included in
the catenet model?" The answer to this question is rooted in the
basic functionality of each candidate network. Each network is
assumed to support the attachment of a collection of programmable
computers. Our essential assumption is that any participating
data network can carry a datagram containing no less than 1000

2-7

^^^•"^•^

m

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

bits of data not including a local network header containing
local control information. Furthermore, it is assumed that the
participating network allows switched access so that any source
computer can quickly enter datagrams for successive and different
destination computers with little or no delay (i.e., on the order
of tens of milliseconds or less switching time).

Under these assumptions, we can readily include networks which
offer "datagram" interfaces to subscribing host computers. That
is, the switching is done by the network based on a destination
address contained in each datagram passing across the host to
network interface.

The assumptions do not rule our virtual circuit interface
networks, nor do they rule out very fast digital circuit
switching networks. In these cases, the important functionality
is still that a datagram can be carried over a real or virtual
circuit from source to destination computer, and that the
switching delay is below a few tens of milliseconds.

An important administrative assumption is that the format of an
internet datagram can be commonly agreed, along with a common
internet addressing plan. The basic assumption regarding
datagram transport within any particular network is that the
datagram will be carried, embedded in one or more packets, or
frames, across the network. If fragmentation and reassembly of
datagrams occurs within a network it is invisible for purposes of
the catenet model. Provision is also made in the datagram format
for the fragmentation of datagrams into smaller, but identically
structured datagrams which can be carried independently across
any particular network. No a priori position is taken regarding
the choice between internal (invisible) fragmentation and
reassembly or external (visible) fraojaentation. Ihis is left to
each network to decide. We will return to the topic of datagram
format and addressing later.

It is very important to note that it is explicitly assumed that
datagrams are not necessarily kept in the same sequence on
exiting a network as when they entered. Furthermore, it is
assumed that datagrams may be lost or even duplicated within the
network. It is left up to hiojher level protocols in the catenet
model to recover from any problems these assumptions may
introduce. These assumptions do not rule out data networks which
happen to keep datagrams in sequence.

It is also assumed that networks are interconnected to each other
by means of a logical "gateway." As the definition of the
gateway concept unfolds, we will see that certain types of
network interconnections are "invisible" with respect to the
catenet model. All gateways which are visible to the catenet
model have the characteristic that they can Interpret the address

2-8

**.' ,*.-.'-»*

BACKGROUND IEN 48

fields of internet datagrams so as to route them to other
gateways or to destinations within the networks directly attached
to (or associated with) the gateway. To send a datagram to a
destination, a gateway may have to map an internet address into a
local network address and embed the datagram in one or more local
network packets before injecting it into the local network for
transport.

The set of catenet gateways are assumed to exchange with each
other at least a certain minimum amount of information to enable
routing decisions to be made, to isolate failures and identify
errors, and to exercise internet flow and congestion control.
Furthermore, it is assumed that each catenet gateway can report a
certain minimum amount of status information to an internetwork
monitoring center for the purpose of identifying and isolating
catenet failures, collecting minimal performance statistics and
so on.

A subset of catenet gateways may provide access control
enforcement services. It is assumed that a common access control
enforcement mechanism is present in any catenet gateway which
provides this service. This does not rule out local access
control imposed by a particular network. But to provide globally
consistent access control, commonality of mechanism is essential.

Access control is defined, at the catenet gateway, to
"permitting traffic to enter or leave a particular network." The
criteria by which entrance and exit permission are decided are
the responsibility of network "access controllers" which
establish access control policy, it is assumed that catenet
gateways simply enforce the policy of the access controllers.

The Catenet Modal

It is now possible to offer a basic catenet model of operation.
Figure 1 illustrates the main components of the model. Hosts are
computers which are attached to data networks. The host/network
interfaces are assumed to be unique to each network. Thus, no
assumptions about common network interfaces are made. A host may
be connected to more than one network ana it may have mere than
one connection to the same network, for reliability.

Gateways are shown as if they were composed of two or more
"halves." Each half-gateway has two interfaces:

1. A interface to a local network.

a. An interface to another gateway-half.

2-0

* »* «" *P .* V V **v*\

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

One exampla is given of a gateway with three "halves" connecting
networks A, B, and C. For modelling purposes, it is appropriate
to treat this case as three pairs of gateway halves, each pair
bilaterally joining a pair of networks.

The model does not rule out the implementation of monolithic
gateways joining two or more nets, but all gateway functions and
interactions are defined as if the gateways consisted of halves,
each of which is associated with a specific network.

A very important aspect of this model is that no a priori
distinction is made between a host/network interface and a
gateway/network interface. Such distinctions are not ruled out,
but they are not relevant to the basic catenet model.

As a consequence, the difference between a host which is
connected to two networks and a monolithic gateway between
networks is entirely a matter of whether table entries in other
gateways identify the host as a gateway, and whether the standard
gateway functionality exists in the host. If no othor gateway or
host recognizes the dual net host as a gateway or if the host
cannot pass datagrams transparently from one net to the next,
then it is not considered a catenet gateway.

The model does not rule out the possibility of implementing a
gateway-half entirely as part of a network switching node (e.g.,
as software in an ARPANET IMP). The important aspect of
gateway-halves is the procedure and protocol by which the
half-gateways exchange datagrams and control information.

The physical interface between directly connected gateway halves
is of no special importance. For monolithic gateways, it is
typically shared memory or an interprocess communication
mechanism of some kind; for distinct gateway halves, it miojht be
HDLC, VDH, any other line control procedure, or inter-computer

Hidden Gateways

Ho explicit network hierarchy is assumed in this model. Every
network is known to all catenet gateways and each catenet gateway
knows how to route internet datagrams so they will eventually
reach a gateway connected to the destination network.

2-10

■V'Vä^V^>!''O\:A"V>V^.' ^/sV

BACKGROUND IEN 48

The absence of an explicit hierarchical structure means that some
ratwork substructures may be hidden from the view of the catenet
gateways. If a network is composed of a hierarchy of internal
networks connected together with gateways, these "hidden
gateways" will not be visible to the catenet gateways unless the
internal networks are assigned global network addresses and their
interconnecting gateways co-operate in the global routing and
network flow control procedures.

Figure 2 illustrates a simple network hierarchy. For purposes
of, identification, the three catenet gateways have been labelled
G(AX), G(BX) and G(CX) to indicate that these gateways join
networks AandX, B and X and C and X, respectively. Only G(AX),
G(BX) , and G(CX) are considered catenet gateways. Thus they
each are aware of networks A, B, C and X and they each exchange
routing and flow-control information in a uniform way between
directly connected halves.

Network X is composed of three internal networks labelled u, v
and w. To distinguish them from the catenet gateways, the
"hidden gateways" of net X are labelled HG(nm) where "nat"
indicate which nets the hidden gateways join. For example,
HG(vw) join«» r*«ts v and w. The notation for HG is symmetric,
i.e., HC(vw)*HG(wv).

Gateways G(AX), G(BX), G(CX) exchange connectivity and other flow
control information among themselves, via network X. To do this«
each gateway Hilf must know an address, local to network X, which
will allow network X to route datagrams from G(AX) to G(BX), for
example.

From the fiqure. it is plain that G(BX) is really a host on
network P and network v. But network v is not one of the
globally recognized networks. Furthermore, traffic from G(AX) to
G(BX) ray travel from net u to net v or via nets u and w to net
v. Tc- maintain the fiction of a uniform network X, the gateway
halves of G(AX), G(BX) and G(CX) attached to net X must be aware
of the appropriate address strings to use to cause traffic to be
routed to each catenet gateway on net X. In the next section, we
outline a basic internet addressing philosophy which permits such
configurations to work.

Local Gateways

Another element of the catenet model is a "local gateway"
associated with each host. The local gateway is capable of
reassembling fragmented internet datagrams, if necessary, and Is
responsible for encapsulation of internet datagrams in local
network packets. The local gateway also selects internet
gateways through which to route internet traffic, and responds to

2-11

'*■••"■■- ■;■• ■■■■ '■ ■ '" - - ■■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

routing and flow control advice from the local network and
attached catenet gateways.

For example, a local gateway might encapsulate and send an
Internet datagram to a particular gateway on its way to a distant
network. The catenet gateway might forward the packet to another
gateway and send an advisory message to the local gateway
recommending a change in its catenet gateway routing table.
Local gateways do not participate in the general routing
algorithm executed among the catenet gateways.

Internet Addressing

The basic internet datagram format is shown in Figure 3. By
assumption, every network in the catenet which is recognized by
the catenet gateways has a unique network number. Every host in
each network is identified by a 24 bit address which is prefixed
by the network number. The same host may have several addresses
depending on how many nets it is connected to or how many network
access lines connect it to a particular network.

For the present, it is assumed that internet addresses have the
form: Net.Host. •'Net" is an 8 bit network number. "Host" is a
24 bit string identifying a host on the "Net," which can be
understood by catenet and possibly hidden gateways.

The catenet gateways maintain tables which allow internet
addresses to be mapped into local net addresses. Local gateways
do likewise, at least to the extent of mapping an
"out-of-network" address into the local net address of a catenet
gateway.

In general, catenet gateways maintain a table entry for each
"Net" which indicates to which gateway (s) datagrams destined for
that net should be sent. For each "Net" to which the gateway Is
attached, the gateway maintains tables, if necessary, to permit
mapping from internet host addresses to local net host addresses.
The typical case is that a gateway half is connected to only one
network and therefore only needs to maintain local address
information for a single network.

It is assumed that each network has its own locally specific
addressing conventions. To simplify the translation from
internet address to local address, it is advantageous, if
possible, to simply concatenate a network identifier with the
local "host" addresses to create an Internet address. This
strategy makes it potentially trivial to translate from internet
to local net addresses.

2-12

BACKGROUND IEN 48

Mora elaborate translations ara posslbla. For example. In the
case of a network with a "hidden1' infrastructure, the "host"
portion of the internet address could include additional
structure which is understood only by catanet or hidden gateways
attached to that net.

In order to limit the overhead of address fields in the header,
it was decided to restrict the maximum length of the host portion
of the internet address to 24 bits. The possibility of true,
variable-length addressing was seriously considered. At one
point, it appeared t'iat addresses might be as long as 120 bits
each for source and destination. The overhead in the higher
level protocols for maintaining tables capable of dealing with
the maximum possible address sizes was considered excessive.

For all the networks presently expected to be a part of the
experiment, 24 bit host addressee are sufficient, even in cases
where a transformation other than the trivial concatenation of
local host address with network address is needed to form the 32
bit internet host address.

One of the major arguments in favor of variable length
"addressing" is to support what is called "source-routing." The
structure of the information in the "address" really Identifies a
route (e.g., through a particular sequence of networks and
gateways). Such a capability could support ad hoc network
interconnections in which a host on two nets could serve as a
private gateway. Though it would not participate in catenet
routing or flow control procedures, any host which knows of this
private gateway could send "source*routed" internet datagrams to
that host.

To support experiments with source routing, the internet datagram
includes a special option which allows a source to specify a
route. The option format is illustrated in Figure 4. The option
coda identifies the option and the length determines its extent.
The pointer field indicates which intermediate destination
address should be reached next in the source-selected route.

Source routing can be used to allow ad hoc network
interconnections to occur before a new net has been assigned a
global network identifier.

In general, catenet gateways can only interpret Internet
addresses of the form Net .Host. Private gateways could interpret
other. Ideal addresses for desired destinations. If a source
knew the local addressee of each Intermediate private gateway, it
could construct a source*route which is the concatenation of the
local addressee of each intermediate host.

2-13

«*^.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

Local and internet addresses could be Inter-mixed in a single
source route as long as catenet gateways only h»d to interpret
full internet addresses when the source-routed datagram appeared
for servicing. Private gateways could Interpret local and
internet addresses, as desired.

Since the source or destination of a source*routed datagram may
not have an internet address, it may be necessary to provide a
return route for replies. This might be done by modifying the
content of the original route to contain >fback Pointer to
intermediate destinations. Note that the local address of a
private gateway in one network is usually different from its
local address in the adjacent network.

Typically, a source would create a route which contains first the
internet address of the host or gateway nearest to the desired
destination. The next address in the route would be the local
address of the destination. Figure 5 illustrates this notion.
Host A.a wants to communicate with host Z. But Z is not attached
to a formally recognized network.

To achieve its goal, host A.a can emit source-routed packet« with
the route: "B.y, Z." B.y identifies the host (private gateway)
between net B and the new network as the first intermediate stop.
The private gateway uses the "Z" information to deliver the
datagram to the destination. When the datagram arrives, its
route should contain "y,A.a" if the private gateway knows how to
Interpret A.a or "y. W. A.a" if the private gateway only knows
about addresses local to network B.

Other Issues

The catenet model should provide for error messages originating
within a network to be carried usefully back to the source. A
global encoding of error meatigas or status messages is needed.

It is assumed that the gateway halves of a given network have a
common status reporting, flow and congestion control mechanism.
However, the halves on different nets may operate differently.
There should be a defined interface between gateway halves which
permits internet flow, congestion and error control to be
exercised.

2-H

-.* ~ * - I \

BACKGROUND IEN48

A gateway monitoring center [3] is postulated which can collect,
correlate and display current gateway status. Such a center
should not be required for the internet protocols to function,
but could be used to manage an internet environment.

Accounting, accountability and access control procedures should
be defined for the global catenet.

2-15

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

K

References

1. Pouzin, L., "A Proposal for Interconnecting Packet Switching
Network»." Proceedings of EUROCOMP, Bronel university. May 1974,
pp. 1023-36.

2. Postal, J. "Internetwork Datagram Protocol Specification,"
Version 4, Internetwork Experiment Note No. 41, Section 2.3.2.1,
Internet Experiment Notebook, June 1978.

3. Davidson, John, "CATENET MONITORING AND CONTROL: A model for
the Gateway Component," IEN #32, Section 2.3.3.12, Internet
Notebook, April 1978.

NOTE: The figures are not included in the online version. They
may be obtained from:

Jon Postel
USC - Information Sciences Institute
Suite 1100
4676 Admlrsly Way
Marina del Rey, California 90291

Phone: (213) 822-1511

ARPANET Mailbox: POSTELflSIF

10

2-16

BACKGROUND IEN48

ACCESS
CONTROLLER

HOST
HOST

LOCAL
GATEWAY

INTERNET

OATAGRAMS
LOCAL

GATEWAY

HOST
INTERNET

DATAGRAMS
LG - LOCAL GATEWAY

BASIC CATENET MODEL
Figur* 1

2-17

.yy-'ww:» .v-.v

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-18

BACKGROUND IEN48

G - CATENET GATEWAY
HG m HIDDEN GATEWAY

H m HOST

HIDDEN GATEWAYS IN HIERARCHICAL NETWORKS
Figure 2

2-19

&:&fe._ ,>:^.yi: v *- -*-. *- *.-. *«. *^ -'-. -".» *.» -*-. -^ _•» *« -^ _N _*» _*» _"* _*; J

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-20

v v v *.* *-■ *■* *.* "•• *J* v'

BACKGROUND IEN48

8 16

VER IHL TOS

IDENTIFIER

TTL

SOURCE
NET

DEST.
NET

PROT.

TOTAL LENGTH

FLAG
(3)

FRAGMENT
OFFSET (13)

CHECKSUM

SOURCE HOST

DESTINATION HOST

OPTIONS PADDING

IHL
32 bit

WORDS

INTERNET
DATAGRAM

TEXT

VER - VERSION TYPE

IHL - INTERNET HEADER LENGTH IN 32 bit WORDS

TOS m TYPE OF INTERNET SERVICE DESIRED
•.Q. "LOW DELAY", "LOW COST", "HIGH BANDWIDTH".
"HIGH RELIABILITY". "DONT DISCARD".

FLAG - CONTROL INDICATIONS SUCH AS
"OPTIONS PRESENTV'MORE FRAGMENTS".

PROT - PROTOCOL IDENTIFIER (t.g. TCP, REALTIME)

INTERNET DATAGRAM FORMAT
FIGURE 3

2-21

/ *>>V-\V.*- >\v >yj»\»x*\^lvviv"v**l*vl*% *** »v".vv« V1**. **'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

2-22

,%w • .-• A." • •*■'
*." -\." -."

>V •*.*•*."»".*-■ A*.*-*

BACKGROUND IEN 48

SOURCE ROUTE
OPTION CODE

OPTION
LENGTH POINTER

b
SOURCE ROUTE OPTION FORMAT

FIGURE 4

r •

K.

m

b

l»v'
2-23

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

I
I

r

i
►.

2-24

.*».% v* > v» ■*£*> »*:*.>!•. *yv.

BACKGROUND IEN48

HOST

PRIVATE GATEWAYS AND SOUrtCE ROUTING
FIGURE 5

2-25

'"*.* .* *.%v^*'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

2-26

Fvw.v v v.v.y.v.v* **.■">.' ,-N •

!*>'/>*y."iv/.'i'"*i'<i"»v-j-".'-'i'-'i*-j1

BACKGROUND RS-85-153

The DARPA Internet Protocol Suite

Dr. Barry M. Leiner

Mr. Robert Cole

Dr. Jon Postel

Dr. David Mills

Dr. Leiner b with the Defense Advanced Research Projects Agency, Arlington, VA
22209. Mr. Cole is with University College, London. Dr. Postel b with University of
Southern California, Information Sciences Institute, Los Angeles, CA. Dr. Mills b with
M/A-COM Linkabit, McLean, VA.

The views represented in this paper are those of the authors and do not necessarily
represent those of DARPA, DoD or the US Government. This research has been
supported under a number of DARPA contracts.

2-27

■ .*• .*■ .*• A* '« .».v*

1*: lv>_Cvlv>!v\ *>! ■> •A\c\^;./.;.^ JC._*.-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

2-28

^5

^*>>:.*y:> '.<

BACKGROUND RS-85-153

DARPA Protocols April 1085

Table of Contents
Abstract
1. Introduction
2. Architectural Overview
3. The Internet Protocol Suite

3.1. Network Layer Protocols
3.2. Internet Protocol
3.3. Service Protocols

3.3.1. Transmission Control Protocol
3.3.2. User Datagram Protocol
3.3.3. Internet Control Message Protocol

3.4. Application Protocols
3.4.1. Remote Terminal Protocol
3.4.2. File Transfer Protocol
3.4.3. Mail Transfer Protocol
3.4.4. Other Application Protocols

3.5. Gateway Protocols
4. Summary of Experiences
5. Summary and Conclusions
Acknowledgment
References

1
2
3
7
7
0
0
10
10
11
11
U
12
12
12
13
14
17
18
18

2-29

v^vC'v'vvv: >.'^.v.v?>:> ^V/A^v :<^^:^>>:c^^^>>:^>:::v;

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Protocols April 1985

List of Figures
Figure 2-1: An Internet System
Figure 2-2: The Layered Protocol Architecture
Figure 3-1: The Internet Protocol Suite
Figure 4-1: The DARPA Experimental Internet System

4
6
8

15

2-30

BACKGROUND RS-85-153

DARPA Protocob April 1085

Abstract

The military requirement for computer Communications between heterogeneous

computers on heterogeneous networks has driven the development of a standard suite of

protocols to permit such communications to take place in a robust and flexible manner.

These protocob support an architecture consisting of multiple packet switched networks

interconnected by gateways. The DARPA experimental internet system consists of

satellite, terrestrial, radio and local networks, all interconnected through a system of

gateways and a set of common protocob.

In this paper, the suite of protocob supporting thb internet system b described.

2-31

•*«_-; *_Ä£lÄy !>%>«!• ■>*!.•**_-.■ !>£•*._< ■ •_ •_*. '_*_ ■ '»«f, »V *f% ** •t»_'%-/V-"* >. ■"..«' •_»«_•*/**/•'•l^-l»*._•*«"■'.***/ '*•*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Protocob April 1985

1. Introduction
The rapid proliferation of computers and other signal processing elements throughout

the military coupled with their need for reliable and efficient exchange of information

has driven the development of a number of computer networking technologies. The

differences in both requirements and environments for these networks has resulted in

different network designs. Furthermore, differences in requirements coupled with

changing technologies has resulted in many different computer types being fielded.

These different computers, although located on different networks, still have a

requirement to communicate with each other.

Beginning with the ARPANET (the Hirst packet-switched network) (5|, DARPA

(Defense Advanced Research Projects Agency) has sponsored the development of a

number of packet switched networking technologies designed to provide robust and

reliable computer communications. These networks have included the primarily land*

line tased ARPANET, packet radio networks (11, 12j, and satellite networks [10, 16].

In addition, the use of other available technologies such as local area networks and

public data networks has also been investigated.

As mentioned above, there is a significant need to be able to interconnect these

various packet-switched networks so that computers on the various networks can

communicate. Furthermore, tab communication must be reliable and robust, making

use of whatever communication facilities are available to accomplish end-to-end

connectivity. To this end, DARPA initiated a program to investigate the issues in

interconnection of different packet-switched networks. This effort has resulted in an

architecture and set of protocols to accomplish this robust system of interconnected

networks.

In this paper, the current status of the DARPA Experimental Internet System (the

Internet for short) in terms of the architecture and set of protocols b described. The

first section gives an overview of the internet architecture, describing the key elements

of tbe system and their relation to each other. Following thai, the set of protocob U

232

BACKGROUND RS-85-153

DARPA Protocols April 1985

described. Next, experiences in the test and development of the internet system are

discussed. Finally, a summary and conclusions is given.

Throughout the reading of this paper, one should keep in mind that the internet

system is still under development. Although a number of protocols have been

standardized within the research community and are either currently Defense

Department standards [6, 7] or in the process of becoming standards, the internet

system is constantly evolving with new functions and new protocols being developed to

meet the ever-changing military requirements.

2. Architectural Overview

The DARPA Internet protocol suite is designed to support communication between

heterogeneous hosts on heterogeneous networks as shown in Figure 2-1. A number of

packet-switched networks are interconnected with gateways. Each of these networks

are assumed to be designed separately in accordance with some specific requirements

and environmental considerations (e.g. radio line-of-sight, local cable netvorks, etc.).

However, it is assumed that each network is capable of accepting a packet of

information (data with appropriate network headers) and delivering it to a specified

destination on that particular network. It is specifically not assumed that the network

guarantees delivery of the packet. Specific networks may or may not have end-to-end

reliability built into them.

Thus, two hosts connected to the same network are capable of sending packets of

information between them. Should two hosts on different networks wish to

communicate, the source host would send packets to the appropriate gateway, which

then would route each packet through the system of gateways and networks until it

reaches a gateway connected to the same network ns the final host. At this point, the

gateway sends the packet to the destination host.

The internet system can therefore be viewed as a set of hosts and gateways

interconnected by networks. Each network can act as a link between the gateways and

hosts residing on it, and a gateway looks like a typical host to any network. Packets

2-33

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Protocols April 1985

„ *

H * Ho» Computers
G ■ Gateways

Figure t-U An Internet System

2-34

>1>^^>I»>2»1^£&^^^

BACKGROUND RS-85-153

DARPA Protocols April 1985

are suitably routed between the hosts and gateways so as to use the correct networks to

traverse the system from source to destination.

Taking this view, it is clear that the service required from each network is simply the

ability to carry packets between attached hosts. Gateways attach to networks as hosts.

Since mechanisms must be built into the system to provide end-to-end reliability even in

the face of network failures (by, for example, routing packets through alternate

networks), the only service required from the network is a datagram delivery service.

This means that, given a packet with a destination address on the network, the network

will attempt to deliver the packet to that destination.

The overall internet architecture can therefore be described as four layers. At the

bottom layer, individual networks and mechanisms for connecting hosts to those

networks are present. At the next layer, the internet layer, are the mechanisms for

connecting the various networks and gateways into a system capable of delivering

packets from source to destination. At the next layer, end-to-end communication

services are built in, including mechanisms such as end-to-end reliability and network

control. Finally, at the upper layer, applications services are provided such as file

transfer, virtual terminal and mail.

To describe the internet architecture, it is useful to trace a typical packet as it

traverses the system from source host to destination host. Figure 2-2 shows the flow of

a packet through the internet system. Data originates at an application layer and needs

to be transported to the corresponding layer at the other end. Using the appropriate

utility protocol and transport protocol, it packages the data into internet packets.

These packets are treated as data in the transmission through each of the individual

networks, so that internet packets move from host to gateway, from gateway to

gateway, and from final gateway to destination host, in each case looking like just a

normal network packet on each network. The interface between the network and the

hosts and gateways are defined hy the individual networks, and the hotifci and gateways

are responsible for packaging the internet packets into network packets.

2-35

'^jl^{mr:mi^f{**m<»{*'\\^2+:L<^'{£ß<^. _A.1^ .a-* fc-t*. L'i.' .^-W «■'. ^« ■■'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Protocols April 1985

A

s

I

N - N ■ ■ N - * 4 - N - N - >

I

4 - N ■ - N -

!

N

4 mmm %mmm m
H

\ /' •\ /« >\ /
H

Net Net Net

N • Network Protocols
I ■ Interact Protocol
S • Service Protocols
A ■ Application Protocols

H • Host computer
G « Gateway

Figur« %>%\ The Layered Proiocyi Architecture

2-36

»

BACKGROUND RS-85-153

DARPA Protocols April 1985

It should be noted at this point that this approach, known as encapsulation, has some

distinct advantages in the interconnection of networks. It is never necessary to build a

"translation" device mapping one network protocol into another. The internet layer

provides a common language for communication between hosts and gateways, and can

be treated as simple data by each network. This eliminates the "N x N" problem of

building translating devices for each possible pair of networks, as it is only necessary to

build the interface between the internet layer and each individual network. Thus, hosts

only need know about their local network and the internet protocols.

3. The Internet Protocol Suite
To implement the above architecture, a set of protocols has been developed within the

DARPA research community. These protocols have been developed with the above

architecture in mind (namely a layered architecture with certain functionalities in the

host-host protocols, and others in the gateways and networks). As additional

functionalities have been required, either new protocols or modifications to existing ones

were developed. It is anticipated that this will continue and therefore the description of

the protocol suite given here represents the current state rather than a permanent set of

"standards".

Figure 3-1 shows the various protocols currently being used and their relation to one

another.

3.1. Network Layer Protocol»

At the lowest levels are the Physical, Link and Network protocols. These correspond

to the Network layer mentioned above and provide the means for a host accessing the

network. (Note that these normally describe the protocol for a host to connect to a

network and not the protocol used in the network itself, i.e. between the switches of the

network. That is of concern only to the network designer.) The key point to be

remembered here is that the internet system accepts networks as they are and utilizes

them in an interconnected system of networks to achieve the required end-to-end

communication capability. Thus, the primary areas of concern to the internet system

2-37

i&i^ - ^-«^V^«AC^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Protocols April 1G85

Applications

Service
Protocols

Internet

Networks püyüm I f SMSM

Figure 3-It The Internet Protocol Suite

2-38

"•;;;:>>>:

^I*2^1*>1* VlrV^rZic^**--^^:^-: ^.^yK^fe^.C-^v^ ^C-"^r; ,^~r r> „r v -r> ^' -■ ^-»"r r.^r, -«rr ^7 7>*>^ ^r"«" J«' ^T» i^r v -i' • '-* m m '* >A*A«

BACKGROUND RS-85-153

DARPA Protocols April 1985

are the Interface to the network and the performance (e.g. throughput and delay)

offered by the network.

3.2. Internet Protocol

The Internet Protocol [2, 6] is the lynch pin of the internet system. It is this protocol

that insulates applications programs from needing to know specifics about the networks.

The Internet Protocol (IP) unifies the available network services into a uniform internet

datagram service. The IP includes such functions as a global addressing structure,

provision for type of service requests (to allow selection of appropriate network level

services where required), and provision for fragmentation of packets and reassembly at

the destination host in the event that a packet's size is larger than the maximum packet

size of the network through which the packet is about to traverse. The decision on

what to put into IP and what to leave out was made on the basis of the question "Do

gateways need to know it?H. The key feature of IP is the Internet Address, a address

scheme independent of the addresses used in the particular networks used to create the

Internet.

As can be seen from Figure 2-2, the IP is used for communication between hosts and

gateways, between gateways themselves, and between hosts on an end-to-end basis. It

allows hosts to send packets through the internet system without regard to the network

on which the destination host resides, by having the host send the packet to a gateway

on the same network as the source host and letting the gateways take responsibility for

determining how to deliver the packet to the final destination network and thereby

destination host. Thus, the IP is critical to the proper operation of the internet system

and the gateways in particular.

3.3. Service Protocols

The internet protocol and layer provides an end-to-end datagram delivery service,

permitting a host to inject a packet into the internet system and have it delivered with

some degree of confidence to the desired destination. The ciwtomer application,

however, typically requires a specific level of service. This may involve specification of

2-30

, \ v\I%'«**.*, v** I'v'v^l*'"'.*•'/•"/• \"«V*V«
.** -** -V*% lALWmlv» * V* •* «V»V v»\»'wü,iV»l'il^\l\Vi^'AiJ/^i^VtV^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Protocols April 1985

reliability, error rate, delay, etc. or some combination of those characteristics. Rather

than have each application develop its own end-to-end service protocols, it is desirable

to have a number of standard services available upon which applications can build»

Currently, the DARPA experimental internet system has two standard service

protocols, the Transmission Control Protocol (TCP) [7] and the User Datagram Protocol

(UDP) [17]. Other protocols are likely to be developed at this level.

In addition to end-to-end service protocols, there is a requirement for control of the

internet system. An adjunct to the IP has been developed called the Internet Control

Message Protocol (ICMP) [19] to serve this need.

3.3.1. Transmission Control Protocol

One of the prime uses for computer communication networks is the ability to reliably

transmit and receive files and electronic mail. The characteristics of such use is the

necessity to pass a fairly large amount of data (typically more than would fit into a

single network packet) reliably and be able to reconstruct the data in sequence. To

support such internet services, the TCP was developed.

TCP provides an end-to-end reliable data stream service. It contains mechanisms to

provide reliable transmission of data. These mechanisms include sequence numbers,

checksums, timers, acknowledgments, and retransmission procedures. The intent of TCP

is to allow the design of applications that can assume reliable, sequenced delivery of

data.

3.3.2. User Datagram Protocol

Many applications do not require a reliable stream service. Sometimes, the basic

datagram service of the internet is sufficient for applications if enhanced by such

services as multiplexing different addresses onto the same IP address and checksumming

for data integrity. The UDP provides these services and permits individual datagrams

to be sent between hosts. This supports applications requiring such a transaction-

oriented service.

10

2-40

fc^*.^-'>^

BACKGROUND RS-85-lSo

DARPA Protocols April 1985

3.3.3. Internet Control Message Protocol

In systems as large and complex as the Internet, it is necessary to have monitoring and

control capabilities, permitting hosts to interact with gateways, as well as both

interacting with internet monitoring and control centers. The ICMP provides the

facility to carry out this control activity. It includes functions such as redirect messages

to permit gateways to notify hosts that they should send packets to a different gateway

as well as error reporting.

3.4. Application Protocols

Clearly, the purpose of the Internet system is to provide host to host and user to host

computer communications service, thereby supporting the required applications. To

accomplish this, the communicating hosts must agree on the protocol to be used for

each application. A number of application protocols have beeti agreed upon in the

DARPA Experimental Internet System, ranging from the very basic terminal access

protocol to permit timesharing over the internet through the provision of such services

as name servers and time servers.

3.4.1. Remote Terminal Protocol

TELNET [21] is the remote terminal access protocol in the DARPA Protocol Suite.

TELNET allows the use of a terminal on one host with a program on another host.

TELNET is based on three ideas: a network virtual terminal, negotiated options, and

the symmetry of processes. TELNET is built on the services provided by TCP.

The network virtual terminal idea is used to define an imaginary terminal as the

standard terminal. Then all real terminals are mapped by the TELNET

implementations into or out of this imaginary standard. All the data traversing the

Internet in TELNET applications is in terms of the imaginary standard terminal.

The negotiated options idea calls for a base level of capability as the default

operation. Thea enhancements may be negotiated via the exchange of request; between

the two hosts. One nice feature of this mechanism is that a request can be rejected

with out needing to know the semantics of the request.

1!

2-41

^^^v^^i^^i: JL '^•-ilVsl"^«f'I*JL.,!-al _ *Afj*.'^k -ml**JL -»'' jTV».'.'^''^^^'.1

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Protocols April 1985

The symmetry of processes suggests that the TELNET protocol should work the same

both ways. That the protocol is mostly used for connecting Terminals to remote

programs should not drive the protocol to be too specialized to that. It should also

work to link two terminals, or to support process to process communication.

3.4.2. File Transfer Protocol

The File Transfer Protocol (FTP) (18) is based on a model of files having a few

attributes, and a mechanism of commands and replies. The command and reply

mechanism is used to establish the parameters for a file transfer and then to actually

invoke the transfer. Like TELNET, FTP runs over TCP and thus assumes the service

level provided by TCP.

3.4.3. Mall Transfer Protocol

An important use of computer networks is the support of electronic mail. In fact, one

could attribute the success of the DARPA packet-switching research in large part to the

availability of electronic mail facilities (first over the ARPANET and then over the

Internet) to the researchers involved in the effort.

The Simple Mail Transfer Protocol (SMTP) (20) is similar to the FTP protocol in that

it uses the same mechanism of commands and replies. The SMTP U simpler than the

FTP though, in that the data exchanged is restricted to just one of the many possible

combination of attributes allowed under FTP. The main concerns in the SMTP

protocol are the provision for negotiating the recipients of a message, and confirming

that the receiving host has taken full responsibility for the message. Like FTP. SMTP

is built on TCP services.

3.4.4. Other Application Protocols

To illustrate some of the other application protocols that are available as part of the

Internet, we describe two simple applications; a time server and a name servt?.

The time server [22| provides a very simple service that returns the time of day when

ever it receives a request. This service may be implemented either on TCP or on UDP.

On TCP, if a TCP connection is opened to the server, ihe server sends the time of day

12

2-42 ■

BACKGROUND RS-85-153

DARPA Protocols April 1985

and closed the connection. On UDP, if the server received a datagram, the server sends

back a datagram carrying the time of day.

In order that users not be required to know the address of each internet host and to

facilitate the movement of hosts to different addresses as part of normal network

operations, a host name server [15] is part of the Internet. The host name to address

lookup service is a transaction style service implemented on UDP. It expects to receive

datagrams containing the name of an Internet host (e.g., USC-ISIF). When such a

datagram arrives it adds the Internet address to the information and sends back a

datagram carrying all that information (e.g., USC-ISIF » 10.2.0.52).

3.5. Gateway Protocol«

As mentioned in the architectural overview, packets flow through the system through

the use of gateways located between the networks. Thus, it is necessary that the

gateways communicate with each other, both for passing data packets and for

accomplishing the control of the internet, as such control is fully distributed to the

gateways.

Datagrams are exchanged between networks via gateways, each of which belongs to

one of several Autonomous Systems (AS). The gateways of each AS operate an Interior

Gateway Protocol (IGP) in order to exchange network reachability and routing

information within the AS; however, each AS may operate a different IGP suited to its

architecture and operating requirements. The Gateway-Gateway Protocol (GGP), used

for some lime in the present Internet system, is an example of an IGP. The Exterior

Gateway Protocol (EGP) is operated between selected gateways in each AS in order to

exchange network reachability and routing information. Each gateway operating EGP

or an IGP maintains a data base that selects the next gateway hop on the path to each

destination network, of which there are now over 55 In the Internet system.

All gateways support the Internet Protccol (IP) and ihe Internet Control Message

Protocol (ICMP), which are datagram protocols requiring only minimal stale storage in

the gateway itself. IP support includes fragmentation, for those networks that require it,

13

2-43

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Protocols April 1985

along with several options including an explicit gateway routing override for special

applications. ICMP support provides notification messages to the sender in cases of

misrouted traffic, excessive flows and special maintenance messages.

4. Summary of Experiences
It cannot be over emphasized that the system described in this paper is not merely a

set of standards but rather has been in operation and used on a daily basis supporting

research in networking, command and control and other areas of computer science for

over a decade. Figure 4-1 shows a sample indicating the breadth and heterogeneity of

the Internet system. The system consists of land-line networks such as the ARPANET

and X.25 public networks, several phases of packet radio networks, a number of local

area networks and two different satellite packet switched networks. There are currently

roughly 100 networks and 60 gateways, all interconnected into a unified system to

provide the robust and reliable computer communications service required by both

military and commercial users.

The Internet has been used to support a number of applications and experiments.

Interestingly enough, due to its experimental nature, perhaps its most important use in

the past decade has been the support of research into networking and other computer

science areas.. By permitting the easy and rapid exchange of information (through both

electronic mail and file transfers) as well as permitting the distributed development of

software, rapid progress in these fields has been encouraged and facilitated.

The Internet has also been used to explore the implications of advanced computer

com muni cat tens technologies on military concepts and doctrine. In cooperation with

the L'S Army, a testbed Has been established at Ft Bragg, NC, which is investigating

the application of advanced communications and distributed processing technologies in

the support of Army concepts in distributed command and control \&\. In cooperation

with the Strategic Air Command (SAC), the Defense Communications Agency (DCA)

and Rome Air Development Center (RADC) of the Air Force, a testbed has been

established st Öffutt AFB, NE. to investigate the use of the Internet technology to

H

2-44 I

L» - » • - • * • • . - - - - - . »->-.-»-»■- , - . * . . - » » • - » - . • . - » t .• .« • • .*.•■,•»*.*,*,»,* c'
T *.* •-" ■»* *.* *.* *.* *."•*" ■." '».*,-*.*. , . • •'*"*'■ . * • ' * *.***."■'■ ." ■. -,* * .' .." •, ',* * j,* *." ■-" *- \ *. . " *.'*« '• *i . « .*- "-
L *' ' •• / * V < -• V V V »' • .' .',,"_•".," - V **,-.*'.*. „•.«•* V .■ V ■_."'»- -' .*.,".«.«. . * • * ■". •'

BACKGROUND RS-85-153

DARPA Protocols April 1085

jfcx t*ttMMt ait

Figur« 4-1: The DARPA Experiment*! Internet System

IS

2-45

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Protocols April 1085

support strategic reconstittition efforts j8|. The Internet system provides the

communications heart of a joint activity between the United States, United Kingdom,

Germany, Norway and Canada investigating command and control interoperability. In

addition, a number of experiments have been carried out with the US Navy using the

Internet to demonstrate distributed command and control technologies. Clearly, noae

of these activities could have been performed with such effectiveness if it were not for

the Internet system providing a unified and interoperable communication structure.

At present the International Standards Organisation (ISO) is discussing a proposal to

use datagrams as the main mechanism for inter-networking. The internetwork

protocols will fit into a sublayer at the top of the network layer, just below the

transport layer.

Transport layer
^^-- internet sublayer

Network layer <
^^^ network sublayer

ISO have adopted X.25 as their main network sublayer protocol and have proposed

their own protocol for the transport layer [23, 0|. The DARPA TCP is functionally

similar to the ISO proposal for a transport protocol and can be considered equivalent.

Two groups are currently using the TCP as a transport protocol, the IP as an internet

protocol, and X.2S as the network protocol in a manner which mirrors the ISO

proposals. Both groups use the X.2S network as only one component of the path

between the hosts, other network* include various loeal area networks and the other

constituent networks of the DARPA Internet.

The CS.VET group uses TELENET to provide connection» bei wer n a number of ho«is

in Computer Science Depart menu throughout the US j*j. The second group b a

number of European research sites, the main user being University College London

(t'CL).

16

2*46

- *.**.' ' \VV ".• ".■

BACKGROUND RS-85-153

DARPA Protocols April 1985

UCL provides a relay service for mail and remote login that enables US and UK

research workers to access each others facilities [l]. A single international X.25

connection is used to connect hosts at UCL, in England, to various Internet hosts in the

US [3]. The primary protocols used on the international and US sides are TCP and IP.

These are carried on the international public X.25 services.

Another effective use of the Internet system has turned out to be the measurement of

network performance. TCP and IP can be used in network and inter-network

measurements in a particularly effective manner. The protocols give two advantages:

1. The äame protocols can be used over a number of networks and therefore
different types of networks. This can allow comparison of network media.

2. The datagram nature of the IP layer enables network saturation
measurements, while the controlled TCP allows measurement of a more
conventional nature.

By using a single system to carry out measurements on very different networks the

bias due to implementation can be eliminated. For instance in a study to compare the

response to overloading in two different satellite systems [13),

The datagram based IP enables measurements to be made of the maximum

throughput a network can provide to a user. Then using the TCP protocol it is possible

to determine how much of that throughput can be utilized by an end user, and what

techniques can be used to optimize the throughput [14].

5. Summary and Conclusions
An experimental system and set of protocols has been described which permits

communications between heterogeneous host computers on heterogeneous networks.

The Internet has evolved over the past fifteen years and has resulted in a set of proven

and tested protocols to support the military requirements for robust and reliable

computer communications. As those requirements evolve through ihtr development of

both new technologies and new military concepts and doctrine, it is anticipated that the

Internet system will also continue to evolve, developing new protocols and technologies

2-47

,.. 1 Aii'i/t .r«.r,, .^ ■>. i.«'>a>;i;*>jVi.V.V.:i Vjw..~.^V^.\jk-:i>V,frV.>-^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Protocols April 1985

to meet those ever-changing requirements.

Acknowledgment

The Internet System has evolved over the years through the dedication and hard work

of a large number of researchers. Knpwn as the Internet Research Group, it is their

efforts that made the program a success. The authors would also like to thank the

members of the Internet Configuration Control Board for their many helpful comments

through the preparation of the paper. Finally, we would like to acknowledge Dr.

Robert E. Kahn and Dr. Vinton G. Cerf for their vision and guidance in the carrying

out of the Internet research activity.

References

1. R. Braden and R. Cole. Some problems in the Interconnection of Computer
Networks. Proc ICCC 82, Sept., 1082, pp. 969-974.

2. V.G. Cerf and R.E. Kahn. "A protocol for packet network intercommunication".
IEEE Transactions on Communications COM-22 (May 1974).

3. R.H. Cole. User Experience and Evaluation of International X.25 Services. Proc.
Business Telecom Conf., March, 1984.

4. D. Comer. "A computer science research network CSNET: a history and status
report". Communications ACM 26.10 (October 1983), 747-753.

5. DARPA. A History of the Arpanet: The First Decade. Defense Advanced Research
Projects Agency, April, 1981. (Defense Tech. Info. Center AD Al 15440).

0. Defense Communications Agency. MIL STD 1777: Internet Protocol. 1983.

7. Defense Communications Agency. MIL STD 1778: Transmission Control Protocol.
1983.

8. M. Frankel. Advanced technology testbeds for distributed, survivable command ,
control and communications (C3). Proc. MILCOM82, 1982. paper 10.2.

0. ISO/TC97/SC16/WG6. "Transport protocol specification (N1169)". Computer
Communication Review (October 1982).

18

2-48

^ *-*'-» V '-> *-A W..*J*..V-%«!-*. ^■:.^yV'^y/i^^J^/r^.j'>y^

BACKGROUND RS-85-153

DARPA Protocols April 1985

10. I.M. Jacobs, et. al. "General purpose satellite networks". Proc, IEEE (Nov.
1978), 1448-1467.

11. R.E. Kahn et. al. "Advances in packet radio technology". Proc, IEEE
(November 1978), 1468-1496.

12. K. Klemba et. al. Packet Radio Network Executive Summary. DARPA, 1983.

13. P. Lloyd and R. Cole. Transport Protocol Performance over Concatenated Local
Area and Satellite Networks. Proc. Conf. Data Networks with Satellites, Sept., 1982.

14. P. Lloyd and R. Cole, A Comparative Study of Protocol Performance On the
UNIVERSE and SATNET Satellite Systems. Proc Conf on Satellite and Computer
Communications, April, 1983, pp. 353-368.

15. P. Mockapetris. Domain Names - Concepts and Facilities. USC Information
Sciences Institute, 1983. RFC-882.

16. L. Palmer, et. al. "SATNET packet data transmission". COMSAT Technical
Review (Spring 1982), 395-404.

17. J. Postel. User Datagram Protocol. USC Information Sciences Institute, 1980.
RFCxxx.

18. J. Postel. File Transfer Protocol. USC Information Sciences Institute, 1980.
RFC-765.

10. J. Postel. Internet Control Message Protocol. USC Information Sciences Institute,
1981. RFC-792.

20. J. Postel. Simple Mail Transfer Protocol. USC Information Sciences Institute,
1982. RFC-821.

21. J. Postel and J. Reynolds. Telnet Protocol Specification. USC Information
Sciences Institute, 1983. RFC-854.

22. J. Postel and K. Harrenstien. Time Protocol. USC Information Sciences Institute,
1983. RFC-868.

23. H. Zimmerman. "OSI reference model - the ISO model of architecture for open
systems interconnection". IEEE Transactions on Communications (April 1980),
425-432.

19

2-49

^A^j^ü^^i,

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-50

' *.* * *»• *«* */■ ".* *** *.* *** "'f *»• *'J* ' - j" *rf* *«* *J» j* *^»"

PROTOCOL REVIEW AND ACCEPTANCE

SECTION 3. PROTOCOL REVIEW AND ACCEPTANCE FOR THE
DARPA INTERNET

3.1 Request for Comments (RFCs)

Before a proposed protocol is accepted for use on the DARPA Internet, it is discussed,
reviewed, and often revised by members of the Internet Advisory Board, its Task
Forces, and other interested parties. This dialogue is captured in a set of technical notes
known as Requests for Comments or RFCs. RFCs may be submitted online to the
Editor-in-Chief, currently Dr. Jonathan B. Postel (POSTEL@USC-ISIF.ARPA).
Contributors are requested to follow the format guidelines outlined in Instructions for
Authors of RFCs, available online at the NIC in the file RFC:AUTHOR-
INSTRUCT.TXT.

RFCs are available online or in hardcopy from the NIC. See Section 4 below for
instructions on how to obtain copies of the RFCs and other online NIC files.

3.2 Special Interest Group Discussions

The DARPA Internet also provides a forum for online discussions in several special
fields of interest (SIGs). Many of these discussions take place among impiementors of
the network protocols. One such discussion addresses TCP/IP protocol development.
Users of the network can take part in this SIG by joining an online mailing list, called
TCP/IP, which is maintained by the NIC. To become a subscriber send a message to
TCP-IP-REQUE3TGSRI-NIC.ARPA.

For a list of other SIGs, FTP the file NETINF0:INTERE3T-GR0UPS.TXT from the
SRI-NIC host.

3.3 The Internet Advisory Board

The DARPA Internet Research Program is directed by DARPA IPTO with the
assistance of an Internet Advisory Board (IAB) and a set of IPTO-appointed Task
Forces (technicai working committees). The IAB consists of the chairmen of the Task
Forces, the DARPA Program Manager, the Chairman of the IAB (the Internet
Architect), the Deputy Chairman, and the Secretary of the IAB.

The IAB guides and reviews the work of the Task Forces, and ensures proper cross
communication among them. The IAB may from time to time create new, or disband
existing, Task Forces.

The Task Forces arc expected to generate and develop new ideas, to monitor ihe

2-51

^^■jf^iVl^ii.^^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

technical work of the Internet program, and to recommend additional research activity.
The roie of the Task Forces is seminal and advisory, and very important to the
advancement of the research goala of the Internet program.

Members of each Task Force are chosen by its chairman, and they are expected to make
a moderate commitment of time to the work of the Task Force. Most Task Forces also
have mailing lists for persons interested in following the work of a given Task Force.
Current Task Forces and chairmen are:

Tsak Force Chairman Organization

Applications Bob Thomas BBNCC
Gateway Algorithms and Dave Mills M/A-COM
Data Structures
Interoperability and Robert Cole UCL
Autonomous Systems
New End to End Services Bob Braden UCLA
Privacy Steve Kent BBNCC
Robustness and Survivability Jim Mathis SRI
Security Ray McFarland DOD
Tactical Internetting David Hartmann MITRE
Testing Ed Cain DCEC

IAB officers are:

Position Occupant Organisation
Internet Architect Dave Clark MIT
Deputy internet Architect Jon Posts! ISI
DARPA Program Manag" Dennis Perry DARPA
IAB Secretary Chris Perry MITRE

BBNCC - BBN Communications Corporation
DARPA - Defense Advanced Research Projects Agency
DCEC * Defense Communications Engineering Center
DOD - Department of Defense
ISI - University of Southern California, Information Sciences Institute
M/A-COM * Linkabit Coporation
MIT * Massachusetts Institut« of Technology
MITRE - Mitre Corporation
SRI • SRI International
UCL - University College London
UCLA - University of California at Los Angeles

Phone numbers for IAB members are available from DARPA or through the NIC
WHOIS server.

2-52

aA&s£Vfc SfefcLv v A _v *» > *» -Ai^ ^J* -V..

OBTAINING PROTOCOL INFORMATION

SECTION 4. OBTAINING PROTOCOL INFORMATION

4.1 Military Standards

MIL STD protocols can be ordered from:

Naval Publications and Forms Center, Code 3015
5801 Tabor Drive
Philadelphia, PA 19120

4.2 The DDN Protocol Handbook

Additional copies of this 1985 DDN Protocol Handbook can be ordered from:

DDN Network Information Center
SRI International, Room EJ291
333 Ravenswood Avenue
Menlo Park, CA 64025
Telephone: (800) 235-3155

The price for the three-volume set is $110.00, prepaid, to cover the cost of reproduction
and handling. Checks should be made payable to SRI International. Copies of the
handbook will also be deposited at DTIC.

4.3 Requests for Comments (RFCs)

RFCs are available online or in hardcopy from the NIC. For network users, the online
versions can be obtained via FTP from the SRI-NIC host computer (26.0.0.73 on
MILNET and 10.0.0.51 on ARPANET) using usemame "anonymous" and password
"guest" and the pathrame of RFC:RFCxxx.TXT, where "xxx" equals the number of
the RFC desired. An online index is also available with pathname RFC:RFC-
INDEX.TXT. Individuals who wish to be added to the RFC notification list should
send a message to NIC@SRI-NIC.ARP A requesting that their name be added to the
online distribution list. Hardcopies of RFCs may be obtained from the DDN Network
Information Center by sending a check or purchase order made payable to SRI
International in the amount of $5.00 for each copy under 100 pages, or $10.00 for 100
pages and above.

4.4 DDN Management Bulletins and Newsletters

The DDN Management Bulletins and informal DDN Newsletters are available for FTP
from the SRI-NIC machine using username "anonymous" and password "guest" and
pathnames of the type DDN-NEWS:DDN-MGT-BULLETIN-xx.TXT and DDN-
NEWS:DDN-NEVVS-xx.TXT, where "xx" is the number of the bulletin or newsletter
desired. All of the newsletters that are still current are online on the NIC machine.

2-53

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

i»

Special quarterly Issues of the DDN Newsletter are published both online and in
hardeopy. The frardcöpy versions are distributed to appropriate military agencies by
the DDN PMO. Additional copies are available from the NIC.

Both DDN Management Bulletins and DDN Newsletters can also be read using the
TACNEWS service described above.

4.5 NIC Services

The DDN Network Information Center (NIC) assists users in obtaining information
pertaining to DoD protocols. The NIC publishes the DDN Protocol Handbook and
maintains a NIC Repository of DoD and related protocol documents. It houses the
DDN Management Bulletins, the DDN Newsletters, the Requests for Comments (RFC)
technical note series, and also produces the TCP/IP Protocol Implementation and
Vendors Guide. The NIC Is a good place to start if you need information.

(800) 235-3155

is the toll-free telephone number to call for user assistance. Service is available Monday
through Friday, 7 am to 4 pm, Pacific time.

The NIC host computer is a DEC-2065 running the TOPS-20 operating system with the
hostname SRI-NIC and host addresses, 26.0.0.73 (MILNET) and 10.0.0.51 (ARPANET).
NIC online services are available 24 hours a day, 7 days a week. Operations personnel
are in attendance from 4 am - 11 pm weekdays, and 8 am - 12 pm weekends, Pacific
time.

Send online mail to:

NICQSRI-NIC.ARPA

Send U.S. mail to:

DDN Network Information Center
SRI International, Room EJ291
333 Ravenswood Avenue
Menlo Park, CA 94025

2-54

i/v V V V \ • *• V •'."•*. A •*- •"■•'■ * \' ■•• •/ * *•* ••' *-" v •" V%' •.* "-' V* •.* * *.' .' ••* ■/%"s"•.* V ."-." V ■/•„*'•/• 'V- ***"V-".*»*.'

OBTAINING PROTOCOL INFORMATION

4.6 Other Protocol Information Sources

A subscription to the DoD Index of Specifications and Standards (DODISS) can be
ordered from:

Naval Publications and Printing Service Office
Fourth Naval District
700 Robbins Avenue
Philadelphia, PA 19111

FIPS Standards can be ordered from:

National Technical Information Service (NTIS)
U.S. Dept. of Commerce
5285 Port Royal Road
Springfield, VA 22161
Telephone: (703) 487*4630

ANSI Standards can be ordered from:

American National Standards Institute (ANSI)
Sales Department
1430 Broadway
New York, NY 10018
Telephone: (212) 354-3300

IEEE documents are available from:

Institution of Electrical and Electronic Engineers
445 Hoes Lane
Piscataway, NJ 08854

CCITT documents can be ordered from:

International Telecommunications Union
General Secretariat, Sales Section
Place des Nations
CH-1211 Geneva 20
SWITZERLAND

2-55
V 9

hjjJLa^MJlPL^MJL -*-'"-■ *-^ **-* «■ '.^»t.<.i> ».. a ., t -. i., <f > « ^ %'- ^ «*~ »*- i* - f- A» £, «V C^JUM «,'- >•- »*- j^ m- >*- CM ** *-'JL »*- ■■''- Jt~ -.*- « -«- j? -« .»^>» .« j* .» -• w.-y_*-» >->>iV»>>VvN

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

2-56

•• * .- .- .' v v v v v* * . . :wX\v'
%Xc:v^-:fc-*:

Vk^>-> *.> £_* .^. -^ * «Vi r^»\» *_» *-»>.» *^. >^_--> .v» •-> ' « * * " • " %A • * ^" • *V* V ••" *.* *.' "." v*

CURRENT OFFICIAL ARPANET PROTOCOLS

SECTION 5. CURRENT OFFICIAL ARPANET PROTOCOLS

This section contains RFC 944, "Official ARPA-Internet Protocols", which identifies
the documents specifying the official protocols used in the internet.

2-57

^•~l/-\'i^Jj^ jJJh»\;C, ju* W- *^' v* a-* i>* O •S*S'*J?*y*-mm*-.'* ±£*~'\S ^ w' 'J V* ''

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-58

^^kv>^^^v:^^sAr^f:^ -»VV\£J-»"•.**'.*'•-*>■»'• -' -' -• -' ^ -'- -* -* -' -• -> J>-'.'.<'^t..-A>j»j!l»?.jVi^üi

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Network Working Group J. Reynolds i
Request for Comments: 961 J. Postel |

ISI *t
K\ Obsoletes: RFCs 944, 924, 901, 880, 840 December 1985 *

<

OFFICIAL ARPA-INTERNET PROTOCOLS J
1

STATUS OF THIS MEMO \

This memo is an official status report on the protocols used in the J
ARPA-Internet community. Distribution of this memo is unlimited.

i»

INTRODUCTION \

This RFC identifies the documents specifying the official protocols I
used in the Internet. Comments indicate any revisions or changes

rv planned. »
[••' ?
[v To first order, the official protocols are those in the "Internet
K Protocol Transition Workbook" (IPTW) dated March 1982. There are

several protocols in use that are not in the IPTW. A few of the j
protocols in the IPTW have been revised. Notably, the mail protocols |
have been revised and issued as a volume titled ''Internet Mall !
Protocols" dated November 1982. Telnet and the most useful Telnet
options have been revised and Issued as a volume titled "Internet
Telnet Protocol and Options" (ITP) dated June 1983. The File
Transfer Protocol has been revised most recently as RFC 959 which is
not yet included in any collection. Some protocols have not bean
revised for many years, these are found in the old "ARPANET Protocol
Handbook" (APH) dated January 1978. There is also a volume of I
protocol related information called the "Internet Protocol
Implementers Guide" (IP1C) dated August 1982.

I

i%

This document is organized as a sketchy outline. The entries are
protocols (e.g.. Transmission Control Protocol). In each entry there
are notes on status, specification, comments, other references,
dependencies, and contact.

The STATUS is one of: required, recommended, elective, or
experimental.

The SPECIFICATION identifies the protocol defining documents.

The COWENTS describe any differences from the specification or
problems with the protocol.

The OTHER REFERENCES identify documents that comment on or expend
on the protocol.

Reynolds & Postel [Pags 1]

I 2-59

- &*Z*£^£*&&^2^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ARPA-Internet Protocols RFC 961

The DEPENDENCIES indicate what otter protocols are called upon by
this protocol.

Ths CONTACT indicates a parson who can answer questions about the
protocol.

In particular, the status nay be:

required

- all hosts aust implement the required protocol.

* all hosts are encouraged to implement the recommended
protocol,

elective

- hosts may implement or not the elective protocol,

experimental

- hosts should not implement the experimental protocol
unless they are participating in the experiment and have
coordinated their use of this protocol with the contact
person, and

none

- this is not a protocol.

For further information about protocols in general, pi
contact:

Joyce Reynolds
Information Sciences Institute

4676 Admiralty way
Msrina del Key, California 90292-6695

Phone: (213) 822-1511

ARPAmall: JWUttNOLDSiUSC-ISIB.AltPA

Reynolds a Postal CF*9* a)

2-60

1A/^*^*!V*-V**»^ Vlv*V »*-'>*■■.' V*. V * * '.'A'Ank'V k m\

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ÄRPA- Internet Protocols RFC 961

OVERVIEW

Catenet Model —

STATUS: None

SPECIFICATION: IEN 48 (in IPTW)

COMMENTS:

Gives an overview of the organization and principles of the
Internet.

Could be revised and expanded.

OTHER REFERENCES:

Leiner, B., ColeR., Postel, J., and D. Mills, "The DARPA
Protocol Suite", IEEE INFOCOM 85, Washington, D.C., March 1985.
Also in IEEE Communications Magazine, and as ISI/RS-85-153,
March 1985.

Postel, J., "Internetwork Applications Using the DARPA Protocol
Suite", IEEE INFOCOM 85, Washington, D.C., March 1985. Also in
IEEE Communications Magazine, and as ISI/RS-85-151, April 1985.

Padlipsky, M.A., "The Elements of Networking Style and. other
Essays and Animadversions on the Art of Intercomputer
Networking", Prentice-Hall, New Jersey, 1985.

RFC 871 - A Perspective on the ARPANET Reference Model

DEPENDENCIES:

CONTACT: PostelQUSC-ISIB.ARPA

Reynolds & Postel [Page 3]

2-61

■ v -.-,-.•.

-•'■*- - ^^'-—-^^•■1'*'^^^'^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ARPA-Internet Protocols RFC 961

NETWORK LEVEL

Internet Protocol (IP)

STATUS: Required

SPECIFICATION: RFC 791 (in IPTW)

COMMENTS:

This is the universal protocol of the Internet. This datagram
protocol provides the universal addressing of hosts in the
Internet.

A few minor problems have been noted in this document.

The most serious is a bit of confusion in the route options.
The route options have a pointer that Indicates which octet of
the route is the next to be used. The confusion is between the
phrases "the pointer is relative to this option" and "the
smallest legal value for the pointer is 4". If you are
confused, forget about the relative part, the pointer begins
at 4.

Another important point is the alternate reassembly procedure
suggested in RFC 815.

Some changes are in the works for the security option.

Note that ICMP is defined to be an integral part of IP. You
have not completed an implementation of IP if it does not
include ICMP.

OTHER REFERENCES:

RFC 815 (in IPIG) - IP Datagram Reassembly Algorithms

RFC 814 (in IPIG) - Names, Addresses, Ports, and Routes

RFC 816 (in IPIG) - Fault Isolation and Recovery-

RFC 817 (in IPIG) - Modularity and Efficiency in Protocol
Implementation

MIL-STD-1777 - Military Standard Internet Protocol

RFC 963 - Some Problems with the Specification of the Military
Standard Internet Protocol

Reynolds & Postel [Page 4]

2-62

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 961

DEPENDENCIES:

CONTACT: Postel@USC-ISIB.ARPA

Internet Control Message Protocol (ICMP)

STATUS: Required

SPECIFICATION: RFC 792 (in IPW)

COMMENTS:

The control messages and error reports that go with the
Internet Protocol.

A few minor errors in the document have been noted.
Suggestions have been made for additional types of redirect
message and additional destination unreachable messages.

A proposal for two additional ICMP message types is made in
RFC 950 "Internet Subnets", Address Mask Request (Al=17), and
Address Mask Reply (A2=18) . The details of these ICMP types
are subject to change. Use of these ICMP types is
experimental.

Note that ICMP is defined to be an integral part of IP. You
have not completed an implementation of IP if it does not
include ICMP.

OTHER REFERENCES: RFC 950

DEPENDENCIES: Internet Protocol

CONTACT: PosteKgUSC-ISIB.ARPA

Reynolds « Postel [Page 5]

2-63

y^i^'yi^i^i^ '-* ".* *«• * * *
1 -V-N-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ARPA-Internet Protocols RFC 961

HOST LEVEL

User Datagram Protocol (UDP)

STATUS: Recommended

SPECIFICATION: RFC 768 (in IPTW)

COMMENTS:

Provides a datagram sen/ice to applications. Adds port
addressing to the IP services.

The only change noted for the UDP specification is a minor
clarification that if in computing the checksum a padding octet
is used for the computation it is not transmitted or counted in
the length.

OTHER REFERENCES:

DEPENDENCIES: Internet Protocol

CONTACT: Postel@USC-ISIB.ARPA

Transmission Control Protocol (TCP)

STATUS: Recommended

SPECIFICATION: RFC 793 (in IPTW)

COMMENTS:

Provides reliable end-to-end data stream service.

Many comments and corrections have been received for the TCP
specification document. These are primarily document bugs
rather than protocol bugs.

Event Processing Section: There are many minor corrections and
clarifications needed in this section.

Push: There are still some phrases in the document that give a
"record mark" flavor to the push. These should be further
clarified. The push is not a record mark.

Urgent: Page 17 is wrong. The urgent pointer points to the
last octet of urgent data (not to the first octet of non-urgent
data).

Reynolds & Postel [Page 6]

2-64

• .*• .-^ *> -"«• »v s» • >.'-\v;.\ .-.«

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 961

Listening Servers: Several comments have been received on
difficulties with contacting listening servers. There should
be some discussion of implementation issues for servers, and
some notes on alternative models of system and process
organization for servers.

Maximum Segment Size: The maximum segment size option should
be generalized and clarified. It can be used to either
increase or decrease the maximum segment size from the default.
The TCP Maximum Segment Size is the IP Maximum Datagram Size
minus forty. The default IP Maximum Datagram Size is 576. The
default TCP Maximum Segment Size is 536. For further
discussion, see RFC 879.

Idle Connections: There have been questions about
automatically closing idle connections. Idle connections are
ok, and should not be closed. There are several cases where
idle connections arise, for example, in Telnet when a user is
thinking for a long time following a message from the server
computer before his next input. There is no TCP "probe'1

mechanism, and none is needed.

Queued Receive Data on Closing: There are several points where
it is not clear from the description what to do about data
received by the TCP but not yet passed to the user,
particularly when the connection is being closed. In general,
the data is to be kept to give to the user if he does a RECV
call.

Out of Order Segments: The description says that segments that
arrive out of order, that is, are not exactly the next segment
to be processed, may be kept on hand. It should also point out
that there is a very large performance penalty for not doing
so.

User Time Out: This is the time out started on an open or send
cali. If this user time out occurs the user should be
notified, but the connection should not be closed or the TCB
deleted. The user should explicitly ABORT the connection if he
wants to give up.

OTHER REFERENCES:

RFC 813 (in IPIG) - Window and Acknowledgement Strategy in TCP

RFC 814 (in IPIG) - Names, Addresses, Ports, and Routes

RFC 816 (in IPIG) - Fault Isolation and Recovery

Reynolds & Postel [Page 7]

2-65

^ftftS^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ÄRPA-Internet Protocols RFC 961

RFC 817 (in IPIG) - Modularity and Efficiency in Protocol
Implementation

RFC 879 - TCP Maximum Segment Size

RFC 889 - Internet Delay Experiments

RFC 896 - TCP/IP Congestion Control

MIL-STD-1778 - Military Standard Transmission Control Protocol

RFC 964 - Some Problems with the Specification of the Military
Standard Transmission Control Protocol

DEPENDENCIES: Internet Protocol

CONTACT: Postel@USC-ISIB.ARPA

Host Monitoring Protocol (HMP)

STATUS: Elective

SPECIFICATION: RFC 869

COMMENTS:

This is a good tool for debugging protocol implementations in
remotely located computers.

Shis protocol is used to monitor Internet gateways and the
TACs.

OTHER REFERENCES:

DEPENDENCIES: Internet Protocol

CONTACT: Hinden@BBN-UNIX.ARPA

Reynolds 6 Postei [Page 8]

2-66

L «V AA •*- »W- ift- -J~ A. A A. Ai >v^ £^£*£^£±£ji*Lü^j£^

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 961

Cross Net Debugger — — (XNET)

STATUS: Elective

SPECIFICATION: IEN 158

COMMENTS:

A debugging protocol, allows debugger like access to remote
systems.

This specification should be updated and reissued as an RFC.

OTHER REFERENCES: REC 643

DEPENDENCIES: Internet Protocol

CONTACT: Postel@USC-ISIB.ARPA

"Stub" Exterior Gateway Protocol — -- (EGP)

STATUS: Recommended for Gateways

SPECIFICATION: RFC 888, RFC 904

COMMENTS:

The protocol used between gateways of different administrations
to exchange routing information.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES: RFC 827, RFC 890

DEPENDENCIES: Internet Protocol

CONTACT: Mills@USC-ISID.ARPA

Reynolds & Postel [Page 9]

2-67

■SA=1£JL££-£,£^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ARPA-Internet Protocols RFC 961

Gateway Gateway Protocol (GG3P)

STATUS: Experimental

SPECIFICATION: RFC 823

COMMENTS:

The gateway protocol now used in the core gateways.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES:

DEPENDENCIES: Internet Protocol

CONTACT: Brescia@BBN-UNIX.ARPA

Multiplexing Protocol - (MUX)

STATUS: Experimental

SPECIFICATION: IEN 90

COMMENTS:

Defines a capability to combine several segments from different
higher level protocols in one IP datagram.

No current experiment in progress. lThere is some question as
to the extent to which the sharing this protocol envisions can
actually take place. Also, there are some issues about the
information captured in the multiplexing header being (a)
insufficient, or (b) over specific.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES:

DEPENDENCIES: Internet Protocol

CONTACT: PostelQUSC-ISIB.ARPA

Reynolds & Postel [Page 10]

2-68

•". **. •' •*. <m -"V-*- "** •"• •"V-« *"<*"• "V» *"•"„•'• Vv' ».* •/ VW %* * "•* *." '.' *-> . \. *»*V #w\. v \- *.•«.* *v * V. v V V V ** ." V -* «* V .„v.v -■.
.>" ..*■ W*> V-W *•>".*■

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 961

Stream Protocol (ST)

STATUS: Experimental

SPECIFICATION: IEN 119

COMMENTS:

A gateway resource allocation protocol designed for use in
multihost real time applications.

The implementation of this protocol has evolved and may no
longer be consistent with this specification. The document
should be updated and issued as an RFC.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES:

DEPENDENCIES: Internet Protocol

CONTACT: jwfflLL-EN.ARPA

Network Voice Protocol (NVP-II)

STATUS: Experimental

SPECIFICATION: ISI Internal Memo

COMMENTS:

Defines the procedures for real time voice conferencing.

The specification is an ISI Internal Memo which should be
updated and issued as an RFC.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES: RFC 741

DEPENDENCIES: Internet Protocol, Stream Protocol

CONTACT: CasnertfUSC-ISIB.ARPA

Reynolds & Postel [P*9* U]

2-69

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ARPA-internet Protocols RFC 961

Reliable Data Protocol - - (RDP)

STATUS: Experimental

SPECIFICATION: RFC 908

COtWENTS:

This protocol is designed to efficiently support the bulk
transfer of data for such host monitoring and control
applications as loading/dumping and remote debugging. The
protocol is intended to be simple to implement but still be
efficient in environments where there may be long transmission
delays and loss or non-sequential delivery of message segments.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES:

DEPENDENCIES: Internet Protocol

CONTACT: CWellesQBBN-UNIX.ARPA

Internet Reliable Transaction Protocol - (IRTP)

STATUS: Experimental

SPECIFICATION: RFC 938

COfWENTS:

This protocol is a transport level host to host protocol
designed for an internet environment. While the issues
discussed may not be directly relevant to the research problems
of the DARPA community, they may be Interesting to a number of
researchers and implementors.

OTHER REFERENCES:

DEPENDENCIES: Internet Protocol

i

CONTACT: TrudyfACC.ARPA

Reynolds 6 Postel [Page 12]

i

2-70

A A A A A A A>N A A . A A »
Asls^y^^VA^VAV^^y^^^ .*tV-V.«Lr '-*\jt 'J'VV'J ^'.'''J-'/-V. rf.VAL*A»Y-*

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 961

APPLICATION LEVEL

Telnet Protocol (TELNET)

STATUS: Recommended

SPECIFICATION: RFC 854 (in "Internet Telnet Protocol and
Options")

COMMENTS:

The protocol for remote terminal access.

This has been revised since the IPTW. RFC 764 in IPTW is now
obsolete.

OTHER REFERENCES:

MIL-SID-1782 - Telnet Protocol

DEPENDENCIES: Transmission Control Protocol

CONTACT: PostelfUSC-ISIB.ARPA

Reynolds 6 Postal [Pa9e 13]

2-71

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

Official ARPA-Internet Protocols RFC 961

Telnet Options

STATUS: Elective

(TELNET-OPTIONS)

SPECIFICATION: General description of options: RFC 855
(in "Internet Telnet Protocol and Options")

Number Name RFC NIC IIP APH USE

0 Binary Transmission 856 yes obs yes
1 Echo 857 yes obs yes
2 Reconnection ... 15391 no yes no
3 Suppress Go Ahead 858 yes obs yes
4 Approx Message Size Negotiation ... 15393 no yes no
5 Status 859 yes obs yes
6 Timing Mark 860 yes obs yes
7 Remote Controlled Trans and Echo 726 39237 no yes no
8 Output Line Width .». 20196 no yes no
9 Output Page Size .. ♦ 20197 no yes no

10 Output Carriage-Return Disposition 652 31155 no yes no
11 Output Horizontal Tabstops 653 31156 no yes no
12 Output Horizontal Tab Disposition 654 31157 no yes no
13 Output Formfeed Disposition 655 31158 no yes no
14 Output Vertical Tabstops 656 31159 no yes no
15 Output Vertical Tab Disposition 657 31160 no yes no
16 Output Linefeed Disposition 658 31161 no yes no
17 Extended ASCII 698 32964 no yes no
18 Logout 727 40025 no yes no
19 Byte Macro 735 42083 no yes no
20 Data Entry Terminal 732 41762 no yes no
21 SUPDUP 734 736 42213 no yes no
22 SUPDUP Output 749 45449 no no no
23 Send Location 779 no no no
24 Terminal Type 930 no no no
25 End of Record 885 no no no
26 TACACS User Identification 927 no no no
27 Output Marking 933 no no no
28 Terminal Location Number 946 no no no

255 Extended-Options-List 861 yes obs yes

(obs = obsolete)

The IIP column Indicates if the specification Is Included in the
Internet Telnet Protocol and Options. The APH column indicates if
the specification is included in the ARPANET Protocol Karctoook.
The USE column of the table above indicates which options are in
general use.

Reynolds k Postel (Page 14}

2-72

_ »' - *"_ ! >/>•

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 961

CC**4ENTS:

The Binary Transmission, Echo, Suppress Go Ahead, Status,
Timing Mark, and Extended Options List options have been
recently updated and reissued. These are the most frequently
implemented options.

The remaining options should be reviewed and the useful ones
should be revised and reissued. The others should be
eliminated.

The following are recommended: Binary Transmission, Echo,
Suppress Go Ahead, Status, Timing Mark, and Extended Options
List.

OTHER REFERENCES:

DEPENDENCIES: Telnet

CONTACT: PosteKgXJSC-ISIB.ARPA

File Transfer Protocol - (FTP)

STATUS: Recommended

SPECIFICATION: RFC 959

COMMENTS:

The protocol for moving files between Internet hosts. Provides
for access control and negotiation of file parameters.

The following new optional commands are included in this
edition of the specification: Change to Parent Directory
(CDUP). Structure Mount (SWT), Store Unique (STOU), Remove
Directory (RMD), Make Directory (MKD), Print Directory (PWD),
and System (SYST) . Note that this specification is compatible
with the previous edition (RFC 765).

OTHER REFERENCES:

RFC 678 - Document File Format Standards

MIL-STD-1780 - File Transfer Protocol

DEPENDENCIES: Transmission Control Protocol

CONTACT: PostelfUSC-ISIB.ARPA

Reynolds 6 PostsI CPage 15]

2-73

.*.».• *> »> „>»%. . *»», * *. •, •. •.*.-»

/fcftav: »*•>>-. ^*>>!A>i"'>>S>>>i*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ARPA-Internet Protocols RFC 961

Trivial File Transfer Protocol (TFTP)

STATUS: Elective

SPECIFICATION: RFC 783 (in IPTW)

COMMENTS:

A very simple file moving protocol, no access control is
provided.

This is in use in several local networks.

Ambiguities in the interpretation of several of the transfer
modes should be clarified, and additional transfer modes could
be defined. Additional error codes could be defined to more
clearly identify problc

OTHER REFERENCES:

DEPENDENCIES: User Datagram Protocol

CONTACT: PostelflUSC-ISIB.ARPA

Simple File Transfer Protocol *— (SFTP)

STATUS: Experimental

SPECIFICATION: RFC 913

COMMENTS:

SFTP is a simple file transfer protocol. It fills the need of
people wanting a protocol that is more useful than TFTP but
easier to implement (and less powerful) than FTP. SFTP
supports user access control, file transfers, directory
listing, directory changing, file renaming and deleting.

SFTP can be implemented with any reliable 8-blt byte stream
oriented protocol, this document describes its TCP
specification. SFTP uses only one TCP connection; whereas TFTP
implements a connection over UDP. and FTP uses two TCP
connections (one using the TELNET protocol).

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES:

Reynolds k Posts1 [Page 16]

2-74

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 961

DEPENDENCIES: Transmission Control Protocol

CONTACT: MKL@SRI-NIC. ARPA

Single Mail Transfer Protocol - (SMTP)

STATUS: Recommended

SPECIFICATION: RFC 821 (in "Internet Mall Protocols")

a*MENTS:

The procedure for transmitting computer mail between hosts.

This has been revised since the IPTW, it is in the "Internet
Mail Protocols" volume of November 1982. RFC 788 (in IPTW) is
obsolete.

There have been many misunderstandings and errors in the early
implementations. Some documentation of these problems can be
found in the file [ISIB]<SWTP>MAIL.ERRORS.

Some minor differences between RFC 821 and RFC 822 should be
resolved.

OTHER REFERENCES:

RFC 822 - Mail Header Format Standards

This has been revised since the IPTW, it is in the "Internet
Mail Protocols" volume of November 1982. RFC 733 (in IPTW)
is obsolete. Further revision of RFC 822 is needed to
correct some minor errors in the details of the
specification.

MTL-STD-1781 - Simple Mall Transfer Protocol (SMTP)

DEPENDENCIES: Transmission Control Protocol

CONTACT: PosteKgHJSC-ISIB.ARPA

Reynolds & Postal [Page 17]

2-75

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ARPA-Internet Protocols RFC 961

Resource Location Protocol (RLP)

STATUS: Elective

SPECIFICATION: RFC 887

COMMENTS:

A resource location protocol for use in the ARPA-Internet.
Ihis protocol utilizes the User Datagram Protocol (UDP) which
in turn calls on the Internet Protocol to deliver its
datagrams.

OTHER REFERENCES:

DEPENDENCIES: User Datagram Protocol

CONTACT: Accetta@CMU-CS-A.ARPA

Loader Debugger Protocol (LDP)

STATUS: Experimental

SPECIFICATION: RFC 909

0*MENTS:

Specifies a protocol for loading, dumping and debugging target
machines from hosts in a network environment. It is also
designed to accommodate a variety of target CPU types. It
provides a powerful set of debugging services, while at the
same time, it is structured so that a simple subset may be
implemented in applications like boot loading where efficiency
and space are at a premium.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER RETERENCES:

DEPENDENCIES: Relieve Data Protocol

CONTACT: Hinden@BBN-UNIX.ARPA

Reynolds & Postel [Page 18]

2-76

.v.

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 961

Remote Job Entry (RJE)

STATUS: Elective

SPECIFICATION: RFC 407 (in APH)

COfflENTS:

The general protocol for submitting batch jobs and retrieving
the results.

Some changes needed for use with TCP,

No known active implementations.

OTHER REFERENCES:

DEPENDENCIES: File Transfer Protocol
Transmission Control Protocol

CONTACT: PostelQUSC-ISIB.ARPA

Remote Job Service * (NETRJS)

STATUS: Elective

SPECIFICATION: RFC 740 (in APH)

COMMENTS:

A special protocol for submitting batch jobs and retrieving the
results used with the UCLA IBM OS system.

Please discuss any plans for implementation or use of this
protocol with the contact.

Revision in progress.

OTHER REFERENCES:

DEPENDENCIES: Transmission Control Protocol

CONTACT: BradenQUCLA-CCN.ARPA

Reynolds & Postal [Page 19]

2-77

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ARPA-Internet Protocols RFC 961

Remote Telnet Service (RTELNET)

STATUS: Elective

SPECIFICATION: RFC 818

COMMENTS:

Provides special access to user Telnet on a remote system.

OTHER REFERENCES:

DEPENDENCIES: Telnet, Transmission Control Protocol

CONTACT: Postel@USC-ISIB.ARPA

Graphics Protocol (GRAPHICS)

STATUS: Elective

SPECIFICATION: NIC 24308 (in APH)

COMMENTS:

The protocol for vector graphics.

Very minor changes needed for use with TCP.

No known active implementations.

OTHER REFERENCES:

DEPENDENCIES: Telnet, Transmission Control Protocol

CONTACT: Postel$USC-ISIB.ARPA

Reynolds £ Postel [Page 20]

2-78

-•v • ~s. -", - -J* - - -' - **

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 961

Echo Protocol - — - (ECHO)

STATUS: Recommended

SPECIFICATION: RFC 862

COMMENTS:

Debugging protocol, sends back whatever you send it.

OTHER REFERENCES:

DEPENDENCIES: Transmission Control Protocol
or User Datagram Protocol

CONTACT: Postel@USC-ISIB.ARPA

Discard Protocol — - -- (DISCARD)

STATUS: Elective

SPECIFICATION: RFC 863

COMMENTS:

Debugging protocol, throws away whatever you send it.

OTHER REFERENCES:

DEPENDENCIES: Transmission Control Protocol
or User Datagram Protocol

CONTACT: PostelfUSC-ISIB.ARPA

Character Generator '*\ *»tocol (CHARGEN)

STATUS: Elective

SPECIFICATION: RFC 864

COMMENTS:

Debugging protocol, sends you ASCII data.

CTCHER REFERENCES:

DEPENDENCIES: Transmission Control Protocol
or User Datagras Protocol

Reynolds 6 Postel [Page 21]

2-79

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ARPA-Internet Protocols RFC 961

(QUOTE)

(USERS)

CONTACT: PostelJUSC-JSIB.ARPA

Quote of the Day Protocol

STATUS: Elective

SPECIFICATION: RFC 865

COMMENTS:

Debugging protocol, sends you a short ASCII message.

OTHER REFERENCES:

DEPENDENCIES: Transmission Control Protocol
or User Datagram Protocol

CONTACT: PostelflUSC-ISIB.ARPA

Active Users Protocol

STATUS: Elective

SPECIFICATION: RFC 866

Lists the currently active users.

OTHER REFERENCES:

DEPENDENCIES: Transmission Control Protocol
or User Datagram Protocol

CONTACT: PostelQUSC-ISIB.ARPA

Finger Protocol

STATUS: Elective

SPECIFICATION: RFC 742 (in APH)

COWENTS:

Provides information on the current or most recent activity of
a user.

Some extension* have been suggested.

(FINGER)

Reynolds £ Postel [Page 22]

2-80

* ■ * * * »*v" ***• **• •*• i.

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 961

Some changes are are needed for TCP.

OTHER REFERENCES:

DEPENDENCIES: Transmission Control Protocol

CONTACT: Postel@USC-ISIB.ARPA

Whols Protocol — — (NICNAME)

STATUS: Elective

SPECIFICATION: RFC 954

0**4ENTS:

Accesses the ARPANET Directory database. Provides a way to
find out about people, their addresses, phone numbers,
organizations, and mailboxes.

OTHER REFERENCES:

DEPENDENCIES: Transmission Control Protocol

CONTACT: Feinler$6RI-NIC.ARPA

Domain Name Protocol ------- - (DOMAIN)

STATUS: Recommended

SPECIFICATION: RFC 881, 882, 883

C0W4ENTS:

OTHER REFERENCES:

RFC 920 - Domain Requirements

RFC 921 - Domain Name Implementation Schedule - Revised

DEPENDENCIES: Transmission Control Protocol
or User Datagram Protocol

CONTACT: Mockapetris®USC-ISIB.ARPA

Reynolds 6 Postal [Page 23]

2-81

EM*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ARPA-Internet Protocols RFC 961

HOSTNAME Protocol (HOSTNAME)

STATUS: Elective

SPECIFICATION: RFC 953

COMMENTS:

Accesses the Registered Internet Hosts database (HOSTS.TXT) .
Provides a way to find out about a host in the Internet, its
Internet Address, and the protocols it implements.

OTHER REFERENCES:

RFC 952 - Host Table Specification

DEPENDENCIES: Transmission Control Protocol

CONTACT: FeinlerQSRI-NIC.ARPA

Host Name Server Protocol — — (NAMESERVER)

STATUS: Experimental

SPECIFICATION: IEN 116 (in IPTW)

OXWENTS:

Provides machine oriented procedure for translating a host name
to «n Internet Address.

This specification has significant problems: 1) The name
syntax is out of date. 2) The protocol details are ambiguous,
in particular, the length octet either does or doesn't include
itself and the op code. 3) The extensions are not supported by
any known implementation.

This protocol is now abandoned in favor of the DOMAIN protocol.
Further implementations of this protocol are not advised.

Please discuss a«y plaas for implementation or use of this
protocol with the contact.

OTHER REFERENCES:

DEPENDENCIES: User Datagram Protocol

CONTACT: PostelGUSC-ISIB.ARPA

Reynolds & Postel [Page 24]

2-82

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 961

CSNET Mailbox Name Server Protocol —■ (CSNET-NS)

STATUS: Experimental

SPECIFICATION: CS-DN-2

COMMENTS:

Provides access to the CSNET data base of users to give
information about users names, affiliations, and mailboxes.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES:

DEPENDENCIES: Transmission Control Protocol

CONTACT: SolomonQUWISC.ARPA

Daytime Protocol (DAYTIME)

STATUS: Elective

SPECIFICATION: RFC 867

COMMENTS:

Provides the day and time in ASCII character string.

ÜIHER REFEPt**;£S:

DEPENDENCIES: Transmission Control Protocol
or User Datagram Protocol

CONTACT: PostelGUSC-ISIB.ARPA

Network Time Protocol (NTP)

STATUS: Experimental

SPECIFICATION: RFC 958

CC&WENTS:

A proposed protocol for synchronizing a set of network clocks
usinq n set of distributed clients* ?nd servers.

Reynolds & Postel (Page 25]

2-83

*•«-•'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

.V

Official ARPA-Internet Protocols RFC 961

Please discuss any plans for implementation or use of this
protocol with the contact.

OIHER REFERENCES: RFC 778, RFC 891, RFC 956, and RFC 957.

DEPENDENCIES: User Datagram Protocol

CONTACT: MillsQUSC-ISID.ARPA

Time Server Protocol (TIME)

STATUS: Elective

SPECIFICATION: RFC 868

COMMENTS:

Provides the time as the number of seconds from a specified
reference time.

OTHER REFERENCES:

DEPENDENCIES: Transmission Control Protocol
or User Datagram Protocol

CONTACT: PostelfUSC-ISIB.ARPA

DCNET Time Server Protocol - (CLOCK)

STATUS: Experimental

SPECIFICATION: RFC 778

COMMENTS:

Frovldes a mechanism for keeping synchronized clocks.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES:

DEPENDENCIES: Internet Control Massage Protocol

CONTACT: MilIsfUSC-ISID.ARPA

Reynolds 6 Postel [Page 26)

2-84

"' *-• •-••-*--••■• - '- •■■■->■■»*-.'■ *>,"• ».'• /•

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internot Protocols RFC 961

SUPDUP Protocol - (SUPDUP)

STATUS: Elective

SPECIFICATION: RFC 734 (in APH)

COWENTS:

A special Telnet like protocol for display terminals.

OTHER REFERENCES:

DEPENDENCIES: Transmission Control Protocol

CONTACT: CrispinfSU-SCORE.ARPA

Internet Massage Protocol (MPM)

STATUS: Experimental

SPECIFICATION: RFC 759

COMMENTS:

This is an experimental multim&dia mall transfer protocol. The
implementation is called a Message Processing Module or MPM.

Please discuss any plans for lap 1 «mentation or use of this
protocol with the contact.

OTHER R£FE££NLES:

RFC 767 - Structured Document Formats

DEPENDENCIES: Transmission Control Protocol

CONTACT: PostelfUSC-ISIB.ARPA

A

Reynolds 6 Postel [Page 27]

2-85

* *■* •.* V -.* * V v" */ -.* -.* *" -,' .* * *.* -.* •," V %* *.* V .""/•/%*«••"• v«" • **« *V#". •*• "r. •**.•" *". •. •' •'. * •* •• •V'" "•" " ' ♦

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ARPA-Internet Protocols RFC 961

Post Office Protocol - Version 2 (P0P2)

STATUS: Experimental

SPECIFICATION: RFC 937

COMMENTS:

The intent of the Post Office Protocol - Version 2 (P0P2) is to
allow a user's workstation to access mall from a mailbox
server. It is expected that mail will be posted from the
workstation to the mailbox server via the Simple Mail Transfer
Protocol (SMTP) .

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES: Obsoletes RFC 918

DEPENDENCIES: Transmission Control Protocol

CONTACT: JKReynoldefUSC-ISIB.ARPA

Network Standard Text Editor - (NETED)

STATUS: Elective

SPECIFICATION: RFC 569

COMMENTS:

Describes a simple line editor which could be provided by every

OTHER REFERENCES:

DEPENDENCIES:

CONTACT: PostelfUSC-ISIB.ARPA

Reynolds 6 Postal [Page 28}

2-86

,*- .'- -v

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ARPA- Internet Protocols RFC 961

APPENDICES

Assigned Numbers

STATUS: None

SPECIFICATION: RFC 960

COJtffiNTS:

Describes the fields of various protocols that are assigned
specific values for actual use, and lists the currently
assigned values.

Issued November 1985, replaces RFC 943, RiTC 790 in IPTW, and
RFC 923.

OTHER REFERENCES:

CONTACT: JKReynoldsfUSC-ISIÖ.ARPA

Pre-emption - - -

STATUS: Elective

SPECIFICATION: RFC 794 (in IPTW)

COWENIS:

Describes how to do pre-emption of TCP connections.

OTHER REFERENCES:

CONTACT: Postel*USC-ISIB.ARPA

Reynold 6 Postal [Page 30]

'-1 s>! '*-* '-"*■v'*- -

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 961

Authentication Service - (AUTH)

STATUS: Experimental

SPECIFICATION: RFC 931

COTflENTS:

This server provides a means to determine the identity of a
user of a particular TCP connection. Given a TOP port number
pair, it returns a character string which identifies the owner
of that connection on the server's system.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES: Supercedes RFC 912

DEPENDENCIES: Transmission Control Protocol

CONTACT: SUohnsfMIT-Multics.ARPA

Bootstrap Protocol (BOOSP)

STATUS: Experimental

SPECIFICATION: RFC 951

COMMENTS:

This proposed protocol provides an IP/UDP bootstrap protocol
which allows a diskless client machine to discover its own IP
address, the address of a »mrvmr host, and the name of a file
to be loaded Into memory and executed.

Please discuss any plans for Implementation or use of this
protocol with the contact.

OTHER REFERENCES:

DEPENDENCIES: Internet Protocol, User Datagram Protocol

CONTACT: CroftfSUMEX-AIM. ARPA

Reynolds 4 Postal [P*9* 2*}

2-87

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA- Internet Protocols RFC 961

Service Mappings V\

STATUS: None jj

SPECIFICATION: RFC 795 (in IPTW) ^

CONMENTS: £.;

Describes the mapping of the IP type of service field onto the >>;
parameters of some specific networks. *~ i
Out of date, needs revision. *

OTHER REFERENCES: >

CONTACT: Postel@USC-ISIB.ARPA '.'-''

Address Mappings *«-.-.-..., &»

STATUS: None !•;

SPECIFICATION: RFC 796 (in IPTW) £

COMMENTS: vj

Describes the mapping between Internet Addresses and the j^
addresses of some specific networks. '•'.

V"
Out of date, needs revision. »/

OTHER REFERENCES: £

CONTACT: Postel^USC-ISIB.ARPA M

Document Formats — - ■■ •>*

STATUS: None *V

£ ""IFICATION: RFC 678 t<

COMMENTS: P

Describes standard format rules for several types of documents.

OTHER REFERENCES:

CONTACT: PosteKgUSC-ISIB.ARPA Ll

Reynolds & Postel [Page 31]

2-89

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ARPA-Internet Protocols RFC 961

Bitmap Formats

STATUS: None

SPECIFICATION: RFC 797

COMMENTS:

Describes a standard format for bitmap data.

OTHER REFERENCES:

CONTACT: Postel@USC-ISIB.ARPA

Facsimile Formats

STATUS: None

SPECIFICATION: RFC 804

COWIENTS:

Describes a standard format for facsimile data.

OTHER REFERENCES:

CONTACT: Postel@USC-ISIB.ARPA

Host-Front End Protocol — — -

STATUS: Experimental

SPECIFICATION: RFC 929

COHENTS:

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES: RFC 928

DEPENDENCIES:

CONTACT: Padlipsky@USC-ISI.ARPA

(HFEP)

Reynolds & Postel [Page 32]

2-90

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 961

Internet Protocol on X.25 Networks --- — - (IP-X25)

STATUS: Recommended

SPECIFICATION: RFC 877

COMMENTS:

Describes a standard for the transmission of IP Datagrams over
Public Data Networks.

OTHER REFERENCES:

CONTACT: Jtk@PURDUE.ARPA

Internet Protocol on DC Networks (IP-DC)

STATUS: Elective

SPECIFICATION: RFC 891

COTWENTS:

OTHER REFERENCES:

RFC 778 - DCNET Internet Clock Service

CONTACT: MillsfUSC-ISID.ARPA

Internet Protocol on Ethernet Networks - (IP*E)

STATUS: Recommended

SPECIFICATION: RFC 894

COMMENTS:

OTHER REFERENCES: RFC 893

CONTACT: Postel@U3C-ISIB.ARPA

Reynolds 6 Postel [?ago 33]

2-91

."» .* ."• A '« .*• N*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Official ÄRPA-Internet Protocols RFC 961

Internet Protocol on Experimental Ethernet Networks (IP-EE)

STATUS: Recommended

SPECIFICATION: RFC 895

COMMENTS:

OTHER REFERENCES:

CONTACT: Postel@USC-ISIB.ARPA

Internet Protocol on IEEE 802.3 (IP-IEEE)

STATUS: Recommended

SPECIFICATION: RFC 948

CCM4ENIS: A proposed protocol of two methods of encapsulating
Internet Protocol (IP) datagrams on an IEEE 802.3 network.

OTHER REFERENCES:

CONTACT: IraQUPENN.CSNET

Internet Subnet Protocol (IP-SUB)

STATUS: Recommended

SPECIFICATION: RFC 950

COMMENTS:

Specifies procedures for the use of subnets. Including the
ultility of "subnets" of Internet networks, which are logically
visible sub-sections of a single Internet. Recommended in the
sense of "if you do subnetting at all do it this way".

OTHER REFERENCES: RFC 940, RFC 917, RFC 925. RJFC 932. RFC 936,
RFC 922

DEPENDENCIES:

CONTACT: MogulfSU-SCORE. ARPA

Reynolds k Postel [Page 34]

2-92

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official ARPA-Internet Protocols RFC 963

Broadcasting Internet Datagrams - (IP-BROAD)

STATUS: Experimental

SPECIFICATION: RFC 919

CO*f*ENTS:

A proposed protocol of simple rules for broadcasting Internet
datagrams on local networks that support broadcast, for
addressing broadcasts, and for how gateways should handle them. ■

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES: RFC 922

DEPENDENCIES: £jj

CONTACT: MogulflSU-SCORE.ARPA *?.

Address Resolution Protocol -— (ARP)

STATUS: Recommended

SPECIFICATION: RFC 826 H

COWCOTS: ;\
This is a procedure for finding the network hardware address "j
corresponding to an Internet Address.

OTHER REFERENCES: ■

CONTACT: PostelfUSC-ISIB.ARPA

A Reverse Address Resolution Protocol (RARP)

STATUS: Elective

SPECIFICATION: RFC 903 ™

COMMENTS:

This is a procedure for workstations to dynamically find their
protocol address (e.g.. their Internet Address), when they only
only know their hardware address (e.g., their attached physical "
network address). f|

Reynolds & Postel [Page 35]

v V

2-03

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

Official ARPA-Internet Frotocols RFC 961

OTHER REFERENCES:

CONTACT: Mogul@SU-SCORE. ARPA

Multi-LAN Address Resolution Protocol -■■ (MARP)

STATUS: Experimental

SPECIFICATION: RFC 925

C0^f1ENTS:

Discussion of the various problems and potential solutions of
"transparent subnets'1 in a multi-LAN environment:.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES: RFC 917. RFC 826

DEPENDENCIES:

CONTACT: PostelflUSC-ISIB.ARPA

Broadcasting Internet Datagrams with Subnets

STATUS: Experimental

SPECIFICATION: RFC 922

C0W4ENTS:

A proposed protocol of simple rules for broadcasting Internet
datagrams on local networks that support broadcast, for
addressing broadcasts, and for how gateways should handle them.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES:

DEPENDENCIES:

CONTACT: MogulQSU-SCORE.ARPA

(IP-SUB-BROAD)

Reynolds & Postal [Page 36]

2-94

'."• ."* ."•.■♦ .■

CURRENT OFFICIAL ARPANET PROTOCOLS RFC 961

Official APPA-Internet Protocols RFC 961

Host Access Protocol - - (HAP)

STATUS: Recommended

SPECIFICATION: RFC 907

C<*MENTS:

This protocol specifies the network-access level communication
between an arbitrary computer, called a host, and a
packet-switched satellite network, e.g., SATNET or WBNET.

Note: Implementations of HAP should be performed in
coordination with satellite network development and operations
personnel.

OTHER REFERENCES:

DEPENDENCIES:

CONTACT: SchoenflBBN-UNIX.ARPA

Reliable Asynchronous Transfer Protocol (RATP)

STATUS: Exper imenta1

SPECIFICATION: RFC 916

C0H1ENTS:

This paper specifies a protocol which allows two programs to
reliably communicate over a communication link. It ensures
that the data entering one end of the link if received arrives
at the other end Intact and unaltered. This proposed protocol
is designed to operate over a full duplex point-to-point
connection. It contains some features which tailor it to the
RS-232 links now in current use.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES:

DEPENDENCIES: Transmission Control Protocol

CONTACT: FlnnfUSC-ISIB.ARPA

Reynolds 6 Postal [Page 371

2-95

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

Official ARPA- Internet Protocols RFC 961

Thinvire Protocol (THINWIRT:)

STATUS: Experimental

SPECIFICATION: RFC 914

COWCNTS:

This paper discusses a Thinvire Protocol for connecting
personal computers to the ARPA-Internet. It primarily focuses
on the particular problems in the ARPA-Internet of low speed
network interconnection with personal computers, and possible
methods of solution.

Please discuss any plans for implementation or use of this
protocol with the contact.

OTHER REFERENCES:

DEPENDENCIES:

CONTACT: FarberflROCHESTER.ARPA

Reynolds & Postal [Page 38]

2-06

■\> _- *_■

:%•:%•

NETWORK LEVEL PROTOCOLS

SECTION 6. NETWORK LEVEL PROTOCOLS

This section contains the Internet Protocol (IP) and the Internet Control Message
Protocol (ICMP).

2-97

-L_ • • • -r-tv»^v>v.-.-v'' .v

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

2-08

/•/*%'/ ">V-V \ -V»"

*v^

NETWORK LEVEL: IP RFC 791

RFC: 791

INTERNET PROTOCOL

DARPA INTERNET PROGRAM

PROTOCOL SPECIFICATION

September 1961

vr

prepared for

Defense Advanced Research Project« Agency
Information Processing Techniques Office

1400 Wilson Boulevard
Arlington. Virginia 22209

I
by

P

Information Sciences Institute
University of Southern California

4*76 Admiralty Way
Marina del Rey. California 90291

1+

m

2-M

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

i

>

> *

<

\

2100

v.
■ i .i •■»--• •'■•■'-•'

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

TABLE OF CONTENTS

PREFACE iii

1. INTRODUCTION 1

1.1 Motivation 1
1.2 Scope 1
1.3 Interfaces 1
1.4 Operation 2

2. OVERVIEW 5

2.1 Relation to Other Protocols 9
2.2 Model of Operacion 5
2.3 Function Description 7
2-4 Gateways 9

3. SPECIFICATION 11

3.1 Internet Header Format 11
3.2 Discussion • 23
3.3 Interfaces * 31

APPENDIX A: Examples & Scenarios 34
APPENDIX B: Data Transmission Order 39

GLOSSARY 41

REFERENCES . 45

...»

[Page i]

2-101

V ^Vji\>WL>V.. -V.v --." •/ .•

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Internet Protocol
September 1981

[Page 11]

2-102

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

S PREFACE

This document specifies the DoD Standard Internet Protocol. This
document is based on six earlier editions of the ARPA Internet Protocol
Specification, and the present text draws heavily from them. There have
been many contributors to this work both in terms of concepts and in
terms of text. This edition revises aspects of addressing, error
handling, option codes, and the security, precedence, compartments, and
handling restriction features of the internet protocol.

Jon Postel

Editor

h*.

s

i [Page iii]

2-103

.> >■ .*» *"». ■ vw

>

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-104

NETWORK LEVEL: IP RFC 791

September 1981

RFC: 791
Replaces: RFC 760
IENs 128, 123. Ill,
80, 54, 44, 41, 28, 26

INTERNET PROTOCOL

DARPA INTERNET PROGRAM
PROTOCOL SPECIFICATION

1. INTRODUCTION

1.1. Motivation

The Internet Protocol is designed for use in interconnected systems of
packet-switched computer communication networks. Such a system has
been called a "catenet" [1] . The internet protocol provides for
transmitting blocks of data called datagrams from sources to
destinations, where sources and destinations are hosts identified by
fixed length addresses. The internet protocol also provides for
fragmentation and reassembly of long datagrams, if necessary, for
transmission through 'small packet" networks.

1.2. Scope

The internet protocol is specifically limited in scope to provide the
functions necessary to deliver a package of bits (an internet
datagram) from a source to a destination over an interconnected system
of networks. There are no mechanisms to augment end-to-end data
reliability, flow control, sequencing, or other services commonly
found in host-to-host protocols. The internet protocol can capitalize
on the services of its supporting networks to provide various types
arid qualities of service.

1.3. Interfaces

This protocol is called on by host-to-host protocols in an internet
environment. Ihis protocol calls on local network protocols to carry
the Internet datagram to the next gateway or destination host.

For example, a TCP module would call on the internet module to take a
TCP segment (including the TCP header and user data) as the data
portion of an internet datagram. The TCP module would provide the
addresses and other parameters in the internet header to the internet
module as arguments of the call. The internet module would then
create an internet datagram and call on the local network interface to
transmit the internet datagram.

In the ARPANET case, for example, the internet modele would call on a

[Page I]

2-10S

^>

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Internet Protocol
Introduction

local net module which would add the 1822 leader [2] to the internet
datagram creating an ARPANET message to transmit to the IMP. The
ARPANET address would be derived from the internet address by the
local network interface and would be the address of some host in the
ARPANET, that host migfrit be a gateway to other networks.

1.4. Operation

The internet protocol implements two basic functions: addressing and
fragmentation.

The internet modules use the addresses carried in the internet header
to transmit internet datagrams toward their destinations. The
selection of a path for transmission is called routing.

The internet modules use fields in the internet header to fragment and
reassemble internet datagrams when necessary for transmission through
"small packet" networks.

The model of operation is that an internet module resides in each host
engaged in Internet communication and in each gateway that
interconnects networks. These modules share coca&on rules for
interpreting address fields and for fragmenting and assembling
internet datagrams. In addition, these modules (especially in
gateways) have procedures for making routing decisions and other
functions.

The Internet protocol treats each Internet datagram as an independent
entity unrelated to any other internet datagram. There are no
connections or logical circuits (virtual or otherwise).

The internet protocol uses four key mechanisms in providing its
service: Type of Service, Time to Live, Options, and Header Checksum.

The Typ« of Service is used to indicate the quality of the service
desired. The type of service is an abstract or generalized set of
parameters which characterize the service choices provided in the
networks that make up the Internet. This type of service Indication
is to be used by gateways to select the actual transmission parameters
for a particular network, the network to be used for the next hop, or
the next gateway when routing an internet datagram.

The Time to Live is an indication of an upper bound on the lifetime of
an internet datagram. It Is set by the sender of the datagram and
reduced at the points along the route where it is processed. If the
time to live reaches zero before the Internet datagram reaches its
destination, the internet datagram Is destroyed. The timt to live can
be thought of as a self destruct time limit.

[Page 2]

2-106

'i V.••-■V.V ' •'VtViVtVMV.'-V'.' I'I'' vvV

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

Introduction

ES The Options provide for control functions needed or useful in sorae
situations but unnecessary for the most common communications. The
options include provisions for tlmestamps, security, and special
routing.

The Header Checksum provides a verification that the Information used
in processing internet datagram has been transmitted correctly. The
data may contain errors. If the header checksum fails, the internet
datagram is discarded at once by the entity which detects the error.

The internet protocol does not provide a reliable communication
facility. There are no acknowledgements either end-to-end or
hop-by-hop. There is no error control for data, only a header
checksum. There are no retransmissions. There is no flow control.

Errors detected may be reported via the Internet Control Message
Protocol (ICMP) [3] which is implemented in the internet protocol
module.

[Page 3]

2-107

'^•-^-V-V-V-V-V '.•-*■»*->-*•

% •%". *"-«

»:J>.>.'»\'**«\ -•» ♦•-> .'■•.'••.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Internet Protocol
September 1981

[P«9* «3

2-108

.%.••/ • . *

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

2. OVERVIEW

2.1. Relation to Other Protocols

The following diagram illustrates the place of the internet protocol
in the protocol hierarchy:

+ + + + + + + +
|Telnet| | FTP 1 | TFTP| ... | ... |
+ + + + + + + +

ii i i
+ 4 + + + +

| TCP | | WP | ... | ... |

I I I
j Internet Protocol & ICMP |

I
| Local Network Protocol |
+ +

Protocol Relationships

Figure 1.

Internet protocol interfaces on one side to the higher level
host-to-host protocols and on the other side to the local network
protocol. In this context a "local network" may be a small network in
a building or a large network such as the ARPANET.

2.2. Model of Operation

The model of operation for transmitting a datagram from one
application program to another is illustrated by the following
scenario:

We suppose that this transmission will involve one intermediate
gateway.

The sending application program prepares its data and calls on its
local internet module to send that data as a datagram and passes the
destination address and other parameters as arguments of the call.

The internet module prmpmrmm a datagram header and attaches the data
to it. The internet module determines a local network address for
this Internet address, in this case it is the address of a gateway.

[Page 5]

2-10Ö

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Internet Protocol
Overview

September 1981

It sends this datagram and the local network address to the local
network interface.

The local network interface creates a local network header, and
attaches the datagram to it, then sends the result via the local
network.

The datagram arrives at a gateway host wrapped in the local network
header, the local network interface strips off this header, and
turns the datagram over to the internet module. The internet module
determines from the internet address that the datagram is to be
forwarded to another host in a second network. The internet module
determines a local net address for the destination host. It calls
on the local network interface for that network to send the
datagram.

This local network interface creates a local network header and
attaches the datagram sending the result to the destination host.

At this destination host the datagram is stripped of the local net
header by the local network interface and handed to the Internet
module.

The internet module determines that the datagram is for an
application program in this host. It passes the data to the
application program in response to a system call, passing the source
address and other parameters as results of the call.

Application
Program

\
Internet Module

\
LNI-1

\
Local Network 1

Internet Module
/ \

LNI-1 LNI-2
/ \

Local Network 2

Application
Program
/

Internet Module
/

LNI-2
/

Transmission Path

Figure 2

[Page 6]

2-110

^XK<\%> % •A"
^>>ÄXÄvSÄX:>;:^>:^Ä:

NETWORK LEVEL: IP RFC 791

m*

September 1981
Internet Protocol

Overview

2.3. Function Description

Tlie function or purpose of Internet Protocol is to move datagrams
through an interconnected set of networks. This is done by passing
the datagrams from one internet module to another until the
destination is reached. The internet modules reside in hosts and
gateways in the internet system. The datagrams are routed from one
internet module to another through individual networks based on the
interpretation of an internet address. Thus, one important mechanism
of the internet protocol is the internet address.

In tlie routing of messages from one internet module to another,
datagrams may need to traverse a network whose maximum packet size is
smaller than the size of the datagram. To overcome this difficulty, a
fragmentation mechanism is provided in the internet protocol.

Addressing

A distinction is made between names, addresses, and routes [4]. A
name indicates what we seek. An address indicates where it is. A
route indicates how to get there. The internet protocol deals
primarily with addresses. It is the task of higher level (i.e.,
host-to-host or application) protocols to make the mapping frcra
names to addresses. The internet module maps Internet addresses to
local net addresses. It is the task of lower level (i.e., local net
or gateways) procedures to make the mapping from local net addresses
to routes.

Addresses are fixed length of four octets (32 bits). An address
begins with a network number, followed by local address (called the
'Vest" field). There are three formats or classes of internet
addresses: in class a, the high order bit is zero, the next 7 bits
are the network, and the last 24 bits are the local address; in
class b, the hioji order two bits are one-zero, the next 14 bits are
the network and the last 16 bits are the local address; in class c,
the high order three bits are one-one-zero, the next 21 bits are the
network and the last 8 bits are the local address.

Care must be taken in mapping internet addresses to local net
addresses; a single physical host must be able to act as If it were
several distinct hosts to the extent of using several distinct
Internet addresses. Some hosts will also have several physical
interfaces (multi-homing).

That is, provision must be made for a host to have several physical
interfaces to the network with each having several logical internet
addresses.

[Page 7]

2-111

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Internet Protocol
Overview

September 1981

Examples of address mappings may be found in "Address Mappings" [5].

Fragmentation

Fragmentation of an internet datagram is necessary when it
originates in i local net that allows a large packet size and must
traverse a local net that limits packets to a smaller size to reach
its destinatio: .

An Internet datagram can be marked "don't fragment." Any internet
datagram so marked is not to be internet fragmented under any
circumstances. If internet datagram marked don't fragment cannot be
delivered to its destination without fragmenting it, it is to be
discarded Instead.

Fragmentation, transmission and reassembly across a local network
which is invisible to the Internet protocol module is called
Intranet fragmentation and may be used [6].

Ihe internet fragmentation and reassembly procedure needs to be able
to break a datagram into an almost arbitrary number of pieces that
can be later reassembled. The receiver of the fragments uses the
Identification field to ensure that fragments of different datagrams
are not mixed. The fragment offset field tells the receiver the
position of a fragment in the original datagram. The fragment
offset and length determine the portion of the original datagram
covered by this fragment. The more-fragments flag Indicates (by
being reset) the last fragment. These fields provide sufficient
information to reassemble datagrams.

The Identification field is used to distinguish the fragments of one
datagram from those of another. The originating protocol module of
an internet datagram sets the identification field to a vnlue that
must be unique for that source-destination pair and protocol for the
time the datagram will be active in the internet system. The
originating protocol module of a complete datagram sets the
more-fragments flag to zero and the fragment offset to zero.

To fragment a long internet datagram, an Internet protocol module
(for example, in a gateway), creates two new internet datagrams and
copies the contents of the internet header fields from the long
datagram into both new internet headers. The data of the long
datagram is divided into two portions on a 8 octet (64 bit) boundary
(the second portion might not be an Integral multiple of 8 octets,
but the first must be). Call the number of 8 octet blocks in the
first portion NFB (for Nu»ber of Fragment Blocks). The first
portion of the datu is placed in the first new internet datagram,
and the total length field is set to the length of the first

hVfi

[Page 8]

2-112

\v.v
^1L „V

• ' •* ■-*-*-' '•-'

ft«

NETWORK LEVEL: IP RFC 791

i

September 1981
Internet Protocol

Overview

datagram. The more-fragments flag Is set to one. The second
portion of the data is placed in the second new internet datagram,
and the total length field is set to the length of the second
datagram. The more-fragnents flag carries the same value as the
long datagram. The fragment offset field of the second new internet
datagram is set to the value of that field in the long datagram plus
NFB.

This procedure can be generalized for an n-way split, rather than
the two-way split described.

To assemble the fragments of an internet datagram, an Internet
protocol module (for example at a destination host) combines

fS internet datagrams that all have the same value for the four fields:
identification, source, destination, and protocol. The combination
is done by placing the data portion of each fragment in the relative
position indicated by the fragment offset in that fragaent's
internet header. The first fragment will have the fragment offset
zero, and the last fragment will have the more-fragments flag reset
to zero.

2.4. Gateways

Gateways impiemer internet protocol to forward datagrams between
networks. Gate* v* also implement the Gateway to Gateway Protocol

|V (OOP) [7] to coordinate routing and other Internet control
information.

In a gateway the higher level protocols need not be implemented and
the GGP functions are added to the IP module.

♦ -

> | Internet Protocol 6 IC» 6 GGPj
> ♦ - ♦

9
I i

 . - *» ^ ... - * + ♦ -. - ». - — .♦-.--•«4

Local Net i | Local Net j
». «.. + ♦ —... +

Gateway Protocols

Figure 3.

i [Page 91

2-113

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

Internet Protocol
September 1981

[Page 10]

2-114

,-. • * .**, • .'• •.

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

3. SPECIFICATION

3.1. Internet Header Format

A summary of the contents of the Internet header follows:

0 12 3
01234567890123456789012345678901

| Version | 1HL I Type of Service | Total Length |
+-♦-+-+-+-+-+-+-+
| Identification |Flags| Fragment Offset |

| Time to Live | Protocol | Header Checksum j
+-+.+-+-+.. ♦-+_+-+-+-+-+-+«+-+..+-+-.♦-+-+-+-+-+-+-+-+-+-+-+-+-+-•+-+

| Source Addrrss I

| Destination Address I

| Options j Padding |

Example Internet Datagram Header

Figure 4.

Note that each tick mark represents one bit position.

Version: 4 bits

The Version field indicates the format of the internet header. This
document describes version 4.

IHL: 4 bits

Internet Header Length is the length of the internet header in 32
bit words, and thus points to the beginning of the data. Note that
the minimum value for a correct header is 5.

[Page 11]

2-115

_ _ />^^i^i:^VvSÄ

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Internet Protocol
Spec!fication

September 1981

Type of Service: 8 bits

The Type of Service provides an indication of the abstract
parameters of the quality of service desired. These parameters are
to be used to guide the selection of the actual service parameters
when transmitting a datagram through a particular network. Several
networks offer service precedence, which somehow treats higfh
precedence traffic as more important than other traffic (generally
by accepting only traffic above a certain precedence at time of high
load) . The major choice is a three way tradeoff between low-delay,
high-reliability, and high-throughput.

Bits 0-2: Precedence.
Bit 3: 0 = Normal Delay, 1 = Low Delay.
Bits 4: 0 - Normal Throughput, 1 * Higji Throuofcput.
Bits 5: 0 = Normal Relibility, 1 = Hi^h Relibility.
Bit 6-7: Reserved for Future Use.

01234567
+ + + + + + + + +

i i i i i i i
| PRECEDENCE | D | T | R | 0 | 0 |
I I I I I I I

Precedence

111 - Network Control
110 - Internetwork Control
101 - CRITIC/ECP
100 - Flash Override
Oil - Flash
010 - Immediate
001 - Priority
000 - Routine

The use of the Delay, Throughput, and Reliability indications may
increase the cost (in some sense) of the service In many networks
better performance for one of these parameters is coupled with worse
performance on another. Except for very unusual cases at most two
of these three indications should be set.

The type of service is used to specify dre treatment of the datagram
during its transmission through the internet system. Exacple
mappings of the internet type of service to the actual service
provided on networks such as AUTODItf II, ARPANET, SATNET, and PRNET
is given in "Service Mappings" [8].

[Page 12]

2-116

VV-y»^L->:*^v-'Sv-v ->>>v^»>:!viS:> ->.y. • 'k 'VJ v*«-v it Av.." V.1V-'» J^V- jg ^'J.VAVAVA'-^I:

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

Specification

The Network Control precedence designation is intended to be used
within a network only. The actual use and control of that
designation is up to each network. The Internetwork Control
designation is intended for use by gateway control originators only.
If the actual use of these precedence designations is of concern to
a particular network, it is the responsibility of that network to
control the access to, and use of, those precedence designations.

Total Length: 16 bits

Total Length is the length of the datagram, measured in octets,
including internet header and data. This field allows the length of
a datagram to be up to 85,535 octets. Such long datagrams are
impractical for most, hosts and networks. All hosts must be prepared
to accept datagrams of up to 576 octets (whether they arrive whole
or in fragments) . It is recommended that hosts only send datagrams
larger than 576'octets if they have assurance that the destination
is prepared to accept the larger datagrams.

The number 576 is selected to allow a reasonable sized data block to
be transmitted in addition to the required header information. For
example, this size allows a data block of 512 octets plus 64 header
octets to fit in a datagram. The maximal internet header is 60
octets, and a typical internet header is 20 octets, allowing a
margin for headers of higher level protocols.

Identification: 16 bits

An identifying value assigned by the sender to aid in assembling the
fragments of a datagram.

Flags: 3 bits

Various Control Flags.

Bit 0: reserved, must be zero
Bit 1: (DF) 0 = May Fragment, 1 = Don't Fragment.
Bit 2: (MF) 0 ■ Last Fra^aent, 1 = More Fra^oents.

0 12

I I D | M |
| 0 j F | F |
+ + + _--♦

Fragment Offset: 13 bits

This field indicates where in the datagram this fragment belongs.

[Page 13]

2-117

,v«r*"<

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Internet Protocol
Specification

The fragment offset is measured in units of 8 octets (64 bits). The
first fragment has offset zero.

Time to Live: 8 bits

This field indicates the maximum time the datagram is allowed to
remain in the internet system. If this field contains the value
zero, then the datagram must be destroyed. This field is modified
In internet header processing. The time is measured in units of
seconds, but since every module that processes a datagram must
decrease the TTL by at least one even if it process the datagram in
less than a second, the TIL must be thought of only as an upper
bound on the time a datagram may exist. The intention is to cause
undeliverable datagrams to be discarded, and to bound the maximum
datagram lifetime.

Protocol: 8 bits

This field indicates the next level protocol used in the data
portion of the internet datagram. The values for various protocols
are specified in "Assigned Numbers" {>].

Header Checksum: 16 bits

A checksum on the header only. Since some header fields change
(e.g., time to live), this is recomputed and verified at each point
that the internet header is processed.

The checksum algorithm is:

The checksum field is the 16 bit one's complement of the one's
complement sua of all 16 bit words in the header. For purposes of
computing the checksum, the value of the checksum field is zero.

This is a simple to compute checksum and experimental evidence
indicates it is adequate, but it is provisional and may be replaced
by a CRC procedure, depending on further experience.

Source Address: 32 bits

The source address. See section 3.2.

Destination Address: 32 bits

The destination address. See section 3.2.

[Page 14]

2-118

[VAIVV

NETWORK LEVEL: IP RFC 791

Internet Protocol
Specification

Options: variable

The options may appear or not in datagrams. They must be
implemented by all IP modules (host and gateways) . What is optional
is their transmission in any particular datagram, not their
implementation.

In some environments the security option may be required in all
datagrams.

The option field is variable in length. There may be zero or more
options. There are two cases for the format of an option:

Case 1: A single octet of option-type.

Case 2: An option-type octet, an option-length octet, and the
actual option-data octets.

The option-length octet counts the option-type octet and the
option*length octet as well as the option-data octets.

The option-type octet is viewed as having 3 fields:

1 bit copied flag,
2 bits option class,
5 bits option number.

The copied flag indicates that this option is copied into all
fragments on fragmentation.

0 = not copied
1 = copied

The option classes are:

0 - control
1 ■ reserved tor future use
2 = debugging and measurement
3 = reserved for future use

[Page 15]

2-no

Cs^.^'^vÄ,lvl\'vV2%-'a'] sV.,-,.V*\N'_**'.%*AV.*_v*.-/_-.Vi'_***_%'_%\",

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

Internet Protocol
Specification

September 1981

K

I
r *

I

The following internet options are defined:

CLASS NUMBER LENGTH DESCRIPTION

8

End of Option list. This option occupies only
1 octet; it has no length octet,
No Operation, This option occupies only 1
octet; it has no length octet.

11 Security. Used to carry Security,
Compartmentation, User Group (TCC), and
Handling Restriction Codes compatible with DOD
requirements.

var. Loose Source Routing. Used to route the
internet datagram based on information
supplied by the source,

var. Strict Source Routing. Used to route the
internet datagram based on information
supplied by the source.

var. Record Route. Used to trace the route an
internet datagram takes.

4 Stream ID. Used to carry the stream
identifier,

var. Internet Timestamp.

Specific Option Definitions

End of Option List

+ +

|00000000|
+--- ♦
Type=0

This option indicates the end of the option list. This might
not coincide with the end of the internet header according to
the internet header length. This is used at the end of all
options, not the end of each option, and need only be used If
the end of the options would not otherwise coincide with the end
of the internet header.

May be copied, introduced, or deleted on fragmentation, or
any other reason.

for

[Page 16]

2-120

r.V*.VaV,»V. •_ *_ •- * *-.-. • '

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

Specification

No Operation

♦ ♦
|00000001|
+ +
Type=l

This option may be used between options, for example, to align
the beginning of a subsequent option on a 32 bit boundary.

May be copied, introduced, or deleted on fragmentation, or for
any other reason.

Security

This option provides a way for hosts to send security,
compartmentation, handling restrictions, and TCC (closed user
group) parameters. The format for this option is as follows:

TCC j 1100000101000010111SSS SSS|CCC CCCjHHH HHH|
4-.-.—+ ♦-.//—♦-..//—♦—//—♦-
Type=l30 Lengthen

Security (S field): 16 bits

Specifies one of 16 levels of security (ei^ht of which are
reserved for future use) .

00000000
11110001
01111000
10111100
01011110
10101111
11010111
01101011
00110101
10011010
01001101
00100100
00010011
10001001
11000100
11100010

00000000
00110101
10011010
01001101
00100110
00010011
10001000
11000101
11100010
11110001
01111000
10111101
01011110
10101111
11010110
01101011

Unclassified
Confidential
EFTO
piTn
PROG
Restricted
Secret
Top Secret
(Reserved for
(Reserved for
(Reserved for
(Reserved for
(Reserved for
(Reserved for
(Reserved for
(Reserved for

future
future
future
future
future
future
fut*ire
future

use)
use)
use)
use)
use)
use)
use)
use)

8

2-121

[Page 17]

. «\ \ *.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

Internet Protocol
Specification

September 1981

Compartments (C field): 16 bits

An all zero value is used when the information transmitted is
not compartmented. Other values for the compartments field
may be obtained from the Defense Intelligence Agency.

Handling Restrictions (H field) : 16 bits

The values for the control and release markings are
alphanumeric digraphs and are defined in the Defense
Intelligence Agency Manual DIAM 65-19, "Standard Security
Markings".

Transmission Control Code (TCC field): 24 bits

Provides a means to segregate traffic and define controlled
communities of interest among subscribers. The TCC values are
trigraphs, and are available from HQ DCA Code 530.

Must be copied on fragmentation. This option appears at most
once in a datagram.

Loose Source and Record Route

+_ + + -.—+•

|10000011| length | pointer|
+ +—. +-».. — .+.

Type=131

 //
route data
 //

I

The loose source and record route (LSRR) option provides a means
for the source of an internet datagram to supply routing
information to be used by the gateways in forwarding the
datagram to the destination, and to record the route
information.

The option begins with the option type code. The second octet
is the option length which includes the option type code and the
length octet, the pointer octet, and length-3 octets of route
data. The third octet is the pointer into the route data
indicating the octet which begins the next source address to be
processed. The pointer is relative to this option, and th«
smallest legal value for the pointer is 4.

A route data is composed of a series of internet addresses.
Each internet address is 32 bits or 4 octets. If the pointer is
greater than the length, the source route is empty (and the
recorded route full) and the routing is to be based on the
destination address field.

[Page 18]

2*122

V V V*_"v \ \ %~ *- V" V* •_' «^ • £ »_* «_" *>_* «J» O •_*._* !^*-*J* «_» «_«

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

Specification

If the address in destination address field has been reached and
the pointer is not greater than the length, the next address in
the source route replaces the address in the destination address
field, and the recorded route address replaces the source
address just used, and pointer is increased by four.

The recorded route address is the internet module's own internet
address as known in the environment into which this datagram is
being forwarded.

This procedure of replacing the source route with the recorded
route (though it is in the reverse of the order it must be in to
be used as a source route) means the option (and the IP header
as a whole) remains a constant length as the datagram progresses
through the internet.

This option is a loose source route because the gateway or host
IP is allowed to use any route of any number of other
intermediate gateways to reach the next address in the route.

Must be copied on fragmentation,
datagram.

Strict Source and Record Route

Appears at most once in a

 // *
route data |
 // *

+ ^,+ + ♦-.

|10001001| length | pointer!
♦ + + ♦-.

Type=137

The strict source and record route (SSRR) option provides a
means for the source of an internet datagram to supply routing
information to be used by the gateways in forwarding the
datagram to the destination, and to record the route
information.

The option begins with the option type code. The second octet
is the option length which includes the option type code and the
length octet, the pointer octet, and length-3 octets of route
data. The third octet is the pointer into the route data
indicating the octet which begins the next source address to be
processed. The pointer is relative to this option, and the
smallest legal value for the pointer is 4.

A route data is composed of a series of internet addresses.
Each internet address is 32 bits or 4 octets. If the pointer is
greater than the length, the source route is empty (and ehe

w *

v

[Page 19]

2-123

Kv .*» ."> .*• ."« .*■ .*» .*• ,"■'..".

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Internet Protocol
Specification

recorded route full) and the routing is to be based on the
destination address field.

If the address in destination address field has been reached and
the pointer is not greater than the length, the next address in
the source route replaces the address in the destination address
field, and the recorded route address replaces the source
address just used, and pointer is increased by four.

The recorded route address is the internet module's own internet
address as known in the environment into which this datagram is
being forwarded.

This procedure of replacing the source route with the recorded
route (though it is in the reverse of the order it must be in to
be used as a source route) means the option (and the IP header
as a whole) remains a constant length as the datagram progresses
through the internet.

This option is a strict source route because the gateway or host
IP must send the datagram directly to the next address in the
source route through only the directly connected network
indicated in the next address to reach the next gateway or host
specified in the route.

Must be copied on fragmentation. Appears at most once in a
datagram.

Record Route

♦ ♦ ♦ + // "♦
|00000111| length | pointer| route data |
♦ ♦ ♦ ♦ // ♦

The record route option provides a means to record the route of
an internet datagram.

The option begins with the option type code. The second octet
is the option length which includes the option type code and the
length octet, the pointer octet, and length*3 octets of route
data. The third octet is the pointer into the route data
indicating the octet which begins the next area to store a route
address. The pointer is relative to this option, and the
smallest legal value for the pointer is 4.

A recorded route is composed of a series of internet addresses.
Each internet address is 32 bits or 4 octets. If the pointer is

[Page 20]

2-124

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

Specification

greater than the length, the recorded route data area is full.
The originating host must compose this option with a large
enough route data area to hold all the address expected. The
size of the option does not change due to adding addresses. The
intitial contents of the route data area must be zero.

When an internet module routes a datagram it checks to see if
the record route option is present. If it is, it inserts its
own internet address as known in the environment into which this
datagram is being forwarded into the recorded route begining at
the octet indicated by the pointer, and increments the pointer
by four.

If the route data area is already full (the pointer exceeds the
length) the datagram is forwarded without inserting the address
into the recorded route. If there is some room but not enough
room for a full address to be inserted, the original datagram is
considered to be in error and is discarded. In either case an
ICMP parameter problem message may be sent to the source
host [3].

Not copied on fragmentation, goes in first fragment only.
Appears at most once in a datagram.

Stream Identifier

|10001000|00000010| Stream ID |
♦ 4 ♦ +••«.»—♦
Type=136 Length**

This option provides a way for the 16-bit SATNET stream
identifier to be carried through networks that do not support
the stream concept.

Must be copied on fragmentation. Appears at most once in a
datagram.

(Tage 21]

2-125

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Internet Protocol «f
Specification Sj,

Internet Timestamp

+ +--w-«—+ + +

j01000100| length | pointer|oflw|fig|
+. „+ .+ + +

; internet address |
♦ •♦■ ♦ ♦ +

| timestamp |
+ - +_.._,.....+_ + +

Type » 68

The Option Length is the number of octets in the option counting
the type, length, pointer, and over flow/ flag octets (maximum
length 40) .

The Pointer is the number of octets from' the beginning of this
option to the end of timestamps plus one (i.e., it points to the
octet beginning the space for next timestamp) . The smallest
legal value is 5. The timestamp area is full when the pointer
is greater than the length.

The Overflow (oflw) [4 bits] is the number of IP modules that
cannot register timestamps due to lack of space.

The Flag (fig) [4 bits] values are

0 -- time stamps only, stored in consecutive 32-bit words,

1 — each timestamp is preceded with internet address of the
registering entity,

3 -- the internet address fields are prespeci fled. An IP
module only registers its timestamp if it matches its own
address with the next specified internet address.

The Timestamp is a right-justified, 32-bit timestamp in
milliseconds since midnight UT. If the time is not available in
milliseconds or cannot be provided with respect to midni^it UT
then any time may be inserted as a timestamp provided the high
order bit of the timestamp field is set to one to indicate the
use of a non-standard value.

The originating host must compose this option with a large
enough timestamp data area to hold all the timestamp information
expected. The size of the option does not change due to adding

[Page 22]

2-126

V» A'A ' ** ' '••'!•• I'-'*. * V.'.sV'_ ,"1% A~ *_V A*A!-,*_•/_ *A\S'L%

NETWORK LEVEL: IP RFC 791

September 1981

u
a

Internet Protocol
Spec!fication

r -

EN

r» *

tlmestamps. The lntltlal contents of the timestamp data area
must be zero or Internet address/zero pairs.

If the timestamp data area is already full (the pointer exceeds
the length) the datagram is forwarded without inserting the
timestamp, but the overflow count is incremented by one.

If there is some room but not enough room for a full timestamp
to be Inserted, or the overflow count itself overflows, the
original datagram is considered to be in error and is discarded.
In either case an ICMP parameter problem message may be sent to
the source host [3].

The timestamp option is not copied upon fragmentation. It is
carried in the first fragment. Appears at most once in a
datagram.

Padding: var lable

The internet header padding is used to ensure that the internet
header ends on a 32 bit boundary. The padding is zero.

3.2. Discussion

The implementation of a protocol must be robust. Each implamentation
must expect to interoperate with others created by different
individuals. While the goal of this specification is to be explicit
about the protocol there is the possibility of differing
interpretations. In general, an implementation must be conservative
in its sending behavior, and liberal in its receiving behavior. That
is, it must be careful to send well-formed datagrams, but must accept
any datagram that it can interpret (e.g., not object to technical
errors where the meaning is still clear)-

The basic internet service is datagram oriented and provides for the
fragmentation of datagrams at gateways, with reassembly taking place
at the destination internet protocol module in the destination host.
Of course, fragmentation and reassembly of datagrams within a network
or by private agreement between the gateways of a network is also
allowed since this is transparent to the internet protocols and the
hiojher-level protocols. This transparent type of fragmentation and
reassembly is termed "network-dependenc" (or intranet) fracsaentation
and is not discussed further here.

Internet addresses distinguish sources and destinations to the host
level and provide a protocol field ^m well. It is assumed that each
protocol will provide for whatever multiplexing is necessary within a
host.

[Page 23]

r *

,*■"• -V '* '. Y.Y>Y*\V,V"

2-12:

..* >. V .-.V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Internet Protocol
Specification

Addressing

To provide for flexibility in assigning address to networks and
allow for the large number of small to intermediate sized networks
the interpretation of the address field is coded to specif/ a small j>j,i
number of networks with a large number of host, a moderate number of £y^
networks with a moderate number of hosts, and a large number of f%£,
networks with a small number of hosts. In addition there is an &±*
escape code for extended addressing mode. Bfe

Address Formats: -,v,

Higfi Order Bits Format Class Jj£>

0 7 bits of net, 24 bits of host a ££
10 14 bits of net, 16 bits of host b ■
110 21 bits of net, 8 bits of host c 7^
111 escape to extended addressing mode "./!•

A value of zero in the network field means this network. This is :W
only used in certain I CMP messages. The extended addressing mode v^-
is undefined. Both of these features are reserved for future use. ^

The actual values assigned for network addresses is given in
"Assigned Numbers" [9].

the local address, assigned by the local network, must allow for a
single physical host to act as several distinct internet hosts.
That is, there must be a mapping between internet host addresses and
network/host interfaces that allows several internet addresses to
correspond to one interface. It must also be allowed for a host to
have several physical interfaces and to treat the datagrams from
several of them as if they were all addressed to a single host.

Address mappings between internet addresses and addresses for
ARPANET, SATNET. PRNET, and other networks are described in "Address
Mappings" [5].

Fragmentation and Reassembly.

The internet identification field (ID) is used together with ehe
source and destination address, and the protocol fields, to identify
datagram fragment* for re. assembly.

The More Fragments flee ©it (MF) is set if the datagram is not the
last fragment. The Fragment Offset field identifies the fragment
location, relative to the beginning of the original unfragmmnted
datagram. Fra?Mnta are counted in units of 8 octets. The

[Page 24}

2-128

*1V>1^/VA*V!*VI^

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

Specification

fragmentation strategy is designed so than an unfragmented datagram
has all zero fragmentation information (MF = 0, fragment offset =
0) . If an internet datagram is fragmented, its data portion must be
broken on 8 octet boundaries.

This format allows 2**13 = 8192 fragments of 8 octets each for a
total of 65,536 octets. Note that this is consistent with the the
datagram total length field (of course, the header is counted in the
total length and not in the fragments) .

When fragmentation occurs, some options are copied, but others
remain with the first fragment only.

Every internet module must be able to forward a datagram of 68
octets without further fragmentation. This is because an internet
header may be up to 60 octets, and the minimum fragment is 8 octets.

Every internet destination must be able to receive a datagram of 576
octets either in one piece or in fragments to be reassembled.

The fields which may be affected by fragmentation include:

(1) options field
(2) more fragments flag
(3) rragment offset
(4) internet header length field

total length field
header checksum s

If the Don't Fragnent flag (DF) bit is set, then internet
fragmentation of this datagram is NOT permitted, although it may be
discarded. This can be used to prohibit fragmentation in cases
where the receiving host does not have sufficient resources to
reassemble internet fragnents.

One example of use of the Don't Fragment feature is to down line
load a small host. A small host could have a boot strap program
that accepts a datagram stores it in memory and then executes it.

The fragmentation and reassembly procedures are most easily
described by examples. The following procedures are example
implementations.

General notation in the following pseudo programs: "«<" means "less
than or equal", M#M means "not equal", "=" means "equal", "<-" means
"is set to". Also, "x to y" includes x and excludes y; for example,
"4 to 7M would include 4, 5, and 6 (but not 7).

[Page 25]

2-129

fcft£>£s&£^^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Internet Protocol
Spec! f ication

September 1981

An Example Fragmentation Procedure

The maximum sized datagram that can be transmitted through the
next network is called the maximum transmission unit (MTU) .

If the total length is less than or equal the maximum transmission
unit then submit this datagram to the next step in datagram
processing; otherwise cut the datagram into two fragments, the
first fragment being the maximum size, and the second fragment
being the rest of the datagram. The first fragment is submitted
to the next step in datagram processing, while the second fragment
is submitted to this procedure in case it is still too large.

v

Notation:

FO Fragment Offset
IHL Internet Header Length
DF Don't Fragment flag
MF More Fragments flag
TL Total Length
0F0 Old Fragment Offset
OIHL - Old Internet Header Length
OMF - Old More Fragments flag
OTL Old Total Length
NFB - Number of Fragment Blocks
MTU Maximum Transmission Unit

Procedure:

IF TL =< MTU THEN Submit this datagram to the next step
in datagram processing ELSE IF DF = 1 THEN discard the

datagram ELSE
To produce the first fragment:
(1)
(2)
(3)
(4)
(5)

(6)

'8)
(9)

Copy the original internet header;
OIHL <- IHL; OTL <- TL; 0F0 <- FO; OMF <- MF;
NFB <- (MTU-IHL*4)/8;
Attach the first HFB*8 data octets;
Correct the header:
MF <- 1; TL <- (IHL*4)+(NFB*8);
Recompute Checksum;
Submit this fragment to the next step in
datagram processing;

To produce the second fragment:
(7) Selectively copy the internet header (some options

are not copied, see option definitions);
Append the remaining data;
Correct the header:
IHL <- (((0IHL*4)-(length of options noc copied))♦3)/4;

'~\

[Page 26]

2-130

VVVI< .*-VJ A'^'.CLVJ^. Y\ mX .;„A,A. A^. . . ^ -.---- -- ^'•>>>>>>>>J

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

Specification

TL <- OTL - NFB*8 - (OIHL-IHL)*4);
FO <- 0F0 + NFB; MF <- OMF; Recompute Checksum;

(10) Submit this fragment to the fragmentation test; DONE.

In the above procedure each fragment (except the last) was made
the maximum allowable size. An alternative might produce less
than the maximum size datagrams. For example, one could implement
a fragmentation procedure that repeatly divided large datagrams in
half until the resulting fragments were less than the maximum
transmission unit size.

An Example Reassembly Procedure

For each datagram the buffer identifier is computed as the
concatenation of the source, destination, protocol, and
identification fields. If this is a whole datagram (that is both
the fragment offset and the more fragments fields are zero), then
any reassembly resources associated with this buffer identifier
are released and the datagram is forwarded to the next step in
datagram processing.

If no other fragment with this buffer identifier is on hand then
reassembly resources are allocated. The reassembly resources
consist of a data buffer, a header buffer, a fragment block bit
table, a total data length field, and a timer. The data from the
fragment is placed in the data buffer according to its fragment
offset and length, and bits are set in the fragment block bit
table corresponding to the fra^oent blocks received.

If this is the first fragment (that is the fragment offset is
zero) this header is placed in the header buffer. If this is the
last fragment (that is the more fragments field is zero) the
total data length is computed. If this fragment completes the
datagram (tested by checking the bits set in the fragment block
table), then the datagram is sent to the next step in datagram
processing; otherwise the timer is set to the maximum of the
current timer value and the value of the time to live field from
this fraojnent; and the reassembly routine gives up control.

If the timer runs out, the all reassembly resources for this
buffer identifier are released. The initial setting of the* timer
is a lower bound on the reassembly waiting time. This is because
the waiting time will be increased if the Time to Live in the
arriving fragment Is greater than the current timer value but will
not be decreased if it is less. The maximum this timer value
could reach is the maximum time to live (approximately 4.25
minutes). Tt» current recommendation for the initial timer
setting is 15 seconds. This may be changed as experience with

[Page 27]

2-131

^£^^ _ , ...

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Internet Protocol
Specification

September 1981

this protocol accumulates. Note that the choice of this parameter
value is related to the buffer capacity available and the data
rate of the transmission medium; that is, data rate times timer
value equals buffer size (e.g., 10Kb/s X 15s = 150Kb).

Notation:

FO
IHL
MF
TTL
NFB -
TL
TDL -
BUFID -
RCVBT -
TLB -

Procedure:

Fragment Offset
Internet Header Length
More Fragments flag
Time To Live
Number of Fragment Blocks
Total Length
Total Data Length
Buffer Identifier
Fragment Received Bit Table
Timer Lower Bound

(1)
(2)
(3)
(4)
(5)

(7)

(8)

(9)

(10)
(11)
(12)
(13)

(14)
(15)
(16)

(1?)
(18)
(19)

BUFID <
IF FO =

THEN

source|destination|protocoljIdentification;
0 AND MF = 0
IF buffer with BUFID is allocated

THEN flush all reassembly for this BUFID;
Submit datagram to next step; DONE.

ELSE IF no buffer with BUFID is allocated
THEN allocate reassembly resources

with BUFID;
TIMER <- TLB; TDL <- 0;

put data from fragment into data buffer with
BUFID from octet F0*8 to

octet (TL-(IHL*4))+F0*8;
set RCVBT bits from FO

to F0+ ((TL- (IHL*4) +7) /8) ;
IF MF = 0 THEN TDL <- TL- (IHL*4) ♦ (F0*6)
IF FO = 0 THEN put header in header buffer
IF TDL # ö
AND all RCVBT bits from 0

to (TDL+7J/8 are set
THEN TL <- TDL*(IHL*4)

Submit datagram to next step;
tree all reassembly resources
for this BUFID; DONE.

TIMER <- MAX (TIMER, TTL);
give up until next fragment or timer expires;

timer expires: flush all reassembly with this BUFID; DONE.

In the case that two or more fragments contain the same data

[Page 28]

LT.

2-132

CM -"-** A*- *■"- -'"^ «*- ■■*- Jm »*- «*- Cm * - *^- **- £m

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

Specification

either identically or through a partial overlap, this procedure
will use the more recently arrived copy in the data buffer and
datagram delivered.

Identification

The choice of the Identifier for a datagram is based on the need to
provide a way to uniquely identify the fragments of a particular
datagram. The protocol module assembling fragments judges fragments
to belong to the same datagram if they have the same source,
destination, protocol, and Identifier. Thus, the sender must choose
the Identifier to be unique for this source, destination pair and
protocol for the time the datagram (or any fragment of it) could be
alive in the internet.

It seems then that a sending protocol module needs to keep a table
of Identifiers, one entry for each destination it has communicated
with in the last maximum packet lifetime for the internet.

However, since the Identifier field allows 65,536 different values,
some host may be able to simply use unique identifiers independent
of destination.

It is appropriate for some higher level protocols to choose the
Identifier. For example, TCP protocol modules may retransmit an
identical TCP segment, and the probability for correct reception
would be enhanced if the retransmission carried the same identifier
as the original transmission since fragments of either datagram
could be used to construct a correct TCP segment.

Type of Service

The type of service (TOS) is for internet service quality selection.
The type of service is specified along the abstract parameters
precedence, delay, throughput, and reliability. These abstract
parameters are to be mapped into the actual service parameters of
the particular networks the datagram traverses.

Precedence. An independent measure of the importance of this
datagram.

Delay. Prompt delivery is important for datagrams with this
indication.

Throughput.
indication.

High data rate is important for datagrams with this

[Page 29]

2-133

■:^::^:L*All3^:'^vCl■^'^.• -.•' ... --^^ ...»-»-■ , A-A^., -.' V•_.»,• V-V ^.*. «k» *.".;_' •»,*.■.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Internet Protocol
Specification

September 1981

Reliability. A higher level of effort to ensure delivery is
important for datagrams with this indication.

For example, the ARPANET has a priority bit, and a choice between
"standard" messages (type 0) and "uncontrolled" messages (type 3),
(the choice between single packet and multipacket messages can also
be considered a service parameter) . The uncontrolled messages tend
to be less reliably delivered and suffer less delay. Suppose an
internet datagram is to be sent through the ARPANET. Let the
internet type of service be given as:

Precedence: 5
Delay: 0
Throughput: 1
Reliability: 1

In this example, the mapping of these parameters to those available
for the ARPANET would be to set the ARPANET priority bit on since
the Internet precedence is in the upper half of its range, to select
standard messages since the throughput and reliability requirements
are indicated and delay is not. More details are given on service
mappings in "Service Mappings" [8].

Time to Live

The time to live is set by the sender to the maximum time the
datagram is allowed to be in the internet system. If the datagram
is in the internet system longer than the time to live, then the
datagram must be destroyed.

This field must be decreased at each point that the internet header
is processed to reflect the time spent processing the datagram.
Even if no local information is available on the time actually
spent, the field must be decremented by 1. The time is measured in
units of seconds (i.e. the value 1 means one second). Thus, the
maximum time to live is 255 seconds or 4.25 minutes. Since every
module that processes a datagram must decrease the TTL by at least
one even if it process the datagram in less than a second, the TTL
must be thought of only as an upper bound on the time a datagram may
exist. The intention is to cause undeliverable datagrams to be
discarded, and to bound the maxlm'«im datagram lifetime.

Some higher level reliable connection protocols are based on
assumptions that old duplicate datagrams will not arrive after a
certain time elapses. The TTL is a way for such protocols to have
an assurance that their assumption is met.

[Page 30}

2-134

'.\\\\V W.V

M^MUU
•'.sV.'.V.

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

Specification

Options

The options are optional in each datagram, but required in
implementations. That is, the presence or absence of an option is
the choice of the sender, but each internet module must be able to
parse every option. There can be several options present in the
option field.

The options might not end on a 32-bit boundary. The internet header
must be filled out with octets of zeros. The first of these would
be interpreted as the end-of-options option, and the remainder as
internet header padding,

Every internet module must be able to act on every option. The
Security Option is required if classified, restricted, or
compartmented traffic is to be passed.

Checksum

The internet header checksum is recomputed if the internet header is
changed. For example, a reduction of the time to live, additions or
changes to internet options, or due to fragoaentation. This checksum
at the internet level is intended to protect the internet header
fields from transmission errors.

There are some applications where a few data bit errors are
acceptable while retransmission delays are not. If the internet
protocol enforced data correctness such applications could not be
supported.

Errors

Internet protocol errors may be reported via the ICMP messages [3].

3.3. Interfaces

The functional description of user interfaces to the IP is, at best,
fictional, since every operating system will have different
facilities. Consequently, we must warn readers that different IP
implementations may have different user interfaces. However, all IPs
must provide a certain minimum set of services to guarantee that all
IP implementations can support the same protocol hierarchy. This
section specifies the functional interfaces required of all IP
implementations.

Internet protocol interface» on one side to the local network and on
the other side to either a higher level protocol or an applicstl^
program. In the following, the higher level protocol or application

[Page 31]

2-135

':*^:l'£ä&^^ .v.v

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Internet Protocol
Specification

program (or even a gateway program) will be called the "user" since it
is using the internet module. Since internet protocol is a datagram
protocol, there is minimal memory or state maintained between datagram
transmissions, and each call on the internet protocol module by the
user supplies all information necessary for the IP to perform the
service requested.

An Example Upper Level Interface

The following two example calls satisfy the requirements for the user
to internet protocol module communication ("=>" means returns):

SEND (src, dst, prot, TOS, TTL, BufPTR, len. Id, DF, opt => result)

where:

src ■ source address
dst = destination address
prot = protocol
TOS * type of service
TTL» time to live
BufPTR = buffer pointer
len = length of buffer
Id - Identifier
DF ■ Don't Fragpnent
opt = option data
result * response
OK = datagram sent ok
Error ■ error in arguments or local network error

Note that the precedence is Included in the TOS and the
security/compartment is passed as an option.

RECV (BufPTR. prot, «> result, src, dst, TOS, len, opt)

where:

BufPIR * buffer pointer
prot * protocol
result = response
OK * datagram received ok
Error = error in arguments

len « length of buffer
src = »cure« address
dst ■ destination address
TOS * type of service
opt * option data

[Page 32]

2-136

.y.y '-t'AVA'.'.-.v*j. -s»*-.VL'AV,y.y,y,>>.v-v aü--* --*»*--*- -*-**--y^'^y-y^-vy*^^-• -•■»Mit^ü^Ai^äAi

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

Specification

When the user sends a datagram, it executes the SEND call supplying
all the arguments. The internet protocol module, on receiving this
call, checks the arguments and prepares and sends the message. If the
arguments are good and the datagram is accepted by the local network,
the call returns successfully. If either the arguments are bad, or
the datagram is not accepted by the local network, the call returns
unsuccessfully. On unsuccessful returns, a reasonable report must be
made as to the cause of the problem, but the details of such reports
are up to individual implementations.

When a datagram arrives at the internet protocol module from the local
network, either there is a pending RECV call from the user addressed
or there is not. In the first case, the pending call is satisfied by
passing the information from the datagram to the user. In the second
case, the user addressed is notified of a pending datagram. If the
user addressed does not exist, an I CMP error message is returned to
the sender, and the data is discarded.

The notification of a user may be via a pseudo interrupt or similar
mechanism, as appropriate in the particular operating system
environment of the implementation.

A user's RECV call may then either be immediately satisfied by a
pending datagram, or the call may be pending until a datagram arrives.

The source address is included in the send call in case the sending
host has several addresses (multiple physical connections or logical
addresses) . The internet module must check to see that the source
address is one of the legal address for this host.

An implementation may also allow or require a call to the internet
module to indicate interest in or r^amrvm exclusive use of a class of
datagrams (e.g., all those with a certain value in the protocol
field).

This section functionally characterizes a USER/IP interface. The
notation used is similar to most procedure of function calls in high
level languages, but this usage is not meant to rule out trap type
service calls (e.g., SVCs, UUOs, EMTs), or any other form of
interprocess communication.

[Page 33]

2-13;

.v vv

vV

L^v*».>"'>Li-/»>:. »v»>y«vv-—.,.. +.. ■>£v>iCv:v:v?/viviY^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Internet Protocol
September 1981

APPENDIX A: Examples & Scenarios

Example 1:

This Is an example of the minimal data carrying internet datagram:

0 12 3
0123 4 567890123456789012345678901

+-+-■f -♦-+-♦-+-♦-+-+-♦-♦-♦-+-+-♦-+--♦■ -+-♦-+-♦-+-♦-+-♦ -+-+-+-+-+-+- +

|Ver= 4 |IHL= 5 |Type of Service | Total Length = 21 |
+ -+ -4—4.- + - +-+- + - + - + - + -+ - + - + - + -«f- + - + - + -^- + --f- + —f- + -4>-"f-"f- + - + - + - + - +

I Identification = 111 |Flg=0| Fragment Offset = 0 j
+ » + -♦- + -+-♦-♦-♦--►- + - + - + -♦-♦-♦—♦.-♦-.*-♦-♦-♦-<f- + -«f -♦-♦-+-♦- ♦-♦-♦-+-+
| Time = 123 | Protocol = 1 | header checksum |
+-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-+-+-+-+-*-+-+-♦-♦-♦ -♦-+-•*•

| source address |

| destination address |
♦-♦ -♦-♦-♦-+-♦-+-+-♦-♦-♦- ♦-+-♦-♦-♦-♦-♦-♦-+-♦-♦-♦-♦-♦ -♦-+-♦-♦-♦-♦-♦

I data |

Example Internet Datagram

Figure 5.

Note that each tick mark represents one bit position.

This is a internet datagram in version 4 of internet protocol; the
internet header consists of five 32 bit words, and the total length of
the datagram is 21 octets. This datagram is a complete datagram (not
a fragment).

[Page 34)

2-138

V»

„%' * *. .*» . .*• v '•

/»I« 'J ->>VvNl>^>/ 2*' 1- :.»'v». ->l»'^S^>>>I»rI»>l»%A\.^«V^ ^.V»» *iAV»-> a A* * ■.V^V*'A^^-*^^^^Vt^VJt'^jfc'^,i^VVA'..

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

Example 2:

In this example, we show first a moderate size internet datagram (452
data octets), then two internet fragments that miojht result from the
fragmentation of this datagram if the maximum sized transmission
allowed were 280 octets.

0 12 3
01234567890123456789012345678901

+_+_+_+.+.+_+-+.+-+-+_+.+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-♦-+
|Ver= 4 |IHL= 5 JType of Service| Total Length * 472 |
4-4-4-4_4-4-4-4-4-4-+-+-+-+-+-+-+-+=+-+-+-+-+-+-+-+~+-+-+-+-+-+-+

| Identification ■ 111 |Flg=0| Fragment Offset ■ 0 |
4-4-4-4-4-4.4-4-4-4-4-4-4-4-4-+-+-+-*-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time » 123 | Protocol * 6 | header checksum |
4-4.4-4.4-4-4.4-4.4-4-4-4.4-4- + - + - + - + - + - + - + -+- + - + - + --f- + - + - + - + - + - +

| source address I
4-4-4_4-4.4-4-4-4-4-4-4-4-4-4-4-+-♦-♦-♦-+-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦
| destination address I
4-4.4.4.4.4.4.4-4-4-4-4-4-4-4-4.4-4«+-+-+-+-+-+-+-+-+-+—♦•-♦-♦-♦-♦
| data I
4-4-4-4.4-4-4-4-4-4-4.4-4- + - + - + - + -+- + - + - + - +-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-■♦■
I d«t« I

I data I
4-4-4.4.4-4.4.4.,*.4-4-4-4-4-4-4-4-4-*- + -*- + - + -«'- + -«f- + -'t'-*-'*>- + -*- +

I d*ta I
4-4.4.4-4-4-4.4.4.4-4-4-4-4.4.4-4

Example Internet Datagram

Figure 6.

[Page 35]

2-130

>>5*:k£>^:^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Internet Protocol

Now the first fragment that results from splitting the datagram after
256 data octets.

0 12 3
01234567890123456789012345678901

♦-♦-♦- ♦-♦-♦-♦-♦-♦-♦-+- ♦-♦•-♦-+-+-+-♦-♦-■♦'-♦-♦ -♦-♦-♦-♦«• ♦ -♦-♦ -+-+-♦-♦
|Ver= 4 |IHL= 5 |Type of Service! Total Length = 276 |

| Identification = 111 |Flg=l| Fragment Offset = 0 |

| Time ■ 119 | Protocol = 6 | Header Checksum |
+-*-♦-♦-♦
| source address |
♦-♦-♦-♦-♦-+-♦-♦-♦-♦-♦-♦-♦-.<►-♦..♦. -♦-♦-.♦-♦-♦-.♦.-♦-♦-■♦--♦«.♦-♦- ♦-♦-♦-♦-♦
| destination address |

I data |
+-+-+-+-+-+-+-+-+-+-+-+-+.+-+-+-+-+-+-+-+*.+-+-+-+-+-+-+-+-+-+~+-+
I d«t« I
\ \
\ \

+-+~+-+-+-+-+~+-+-+-+-+
I <Uta I
♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-•♦•-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦«-♦-•♦•«•♦-♦-♦-♦-♦-♦-♦-♦

Example Internet Fra<*nent

Figure 7.

[Page 36]

2-140

.'■/•/*.. v*/".•>/ .* '.v.v/.'.v \%v.-*v \v,v vv .%-;.*. , v.y v.Vv.v. ".v.v/.-.v.v/.;.*.//;.• vvvvV; * . *\ * '/•/•-•'

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

And the second fragment.

0 12 3
01234567890123456789012345678901

+ - + - + _ + - + - + - + - + - + - + - + - + - + -.f -+-+-+-+-+-+-+-+-+- + -+-+_+_+-+-+- + - + - 4

|Ver= 4 |IHL= 5 |Type of Service! Total Length ■ 216 |
+-+-+-+-+-+-+_♦-+-+-+-+-+-+-+-+-+«+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification = 111 |Flg=0| Fragment Offset - 32 |
+-+-+_+„+-+-+-+-+-+-+-+-+_+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-♦-+-+-+
| Time Ä 119 { Protocol * 6 j Header Qiecksum |
+-+-+-+«,+-♦-+-+-+-4-+
| source address I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-♦-+-+-+-♦-+-♦-+-+-+-+-+-+-♦-4-4
| destination address |
4-+-♦
| data I
+-+_+-+_+-♦-+-♦-+-+-♦-+-+-♦
, a.*. ,

\ \
; data I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-♦-♦-+-+-♦-+-+-+-♦-+-♦-♦-♦-+-+-♦-♦-♦
1 data |
+-+-+-+-+-+-♦-+-♦-♦-+-♦-♦-♦-+-+-+

Example Internet Fragment

Figure 8.

[Page 37)

2-141

,.«. *. „*_ fc.» •. \:£V&; fjmJLm. «f-^fc*^A .t^iAikiki*j—*- iLfc ».-V- ^- .»- »*- «r - «r^»!^ j

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Internet Protocol
September 1981

Example 3:

Here, we show an example of a datagram containing options:

0 12 3
01234567890123456789012345678901

♦-♦-♦-♦-+-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-*-♦-♦-♦-♦-♦- •♦-♦-♦•
Ver= 4 |IHL* 8 |Type of Service| Total Length ■ 576 |

Identification * 111 |Flg*0| Fragment Offset » 0 |

Time * 123 | Protocol * 6 | Header Checksum |

source address I
^.-♦-♦-.♦-♦-*.-♦-+-♦-.♦-♦•♦-♦-♦-♦-♦-♦, •♦•♦• .♦-♦-♦-♦-♦-♦•-♦-♦•♦*♦-♦-•♦

destination address

Opt, Code » x J Opt. Len.» 3 | option value | Opt. Code * x |

Opt. Len. = 4 | option value
♦-♦-♦-♦-▼-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦«

j Opt. Code 3 1 I
•♦-♦-♦- -♦-♦-♦-♦

Opt. Code » y j opt. Len. * 3 | option value | Opt. Code * 0
♦-♦-♦-♦-♦~

data

data

-♦«♦-♦-♦-♦-♦•♦..♦-♦-♦«♦-♦-♦-♦*♦

1
\
\

1
data j

Example Internet Datagram

figure 9.

[Page 38]

2-142

p*>L>'£\<**^y^^

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

APPENDIX B: Data Transmission Order

The order of transmission of the header and data described in this
document is resolved to the octet level. Whenever a diagram shows a
group of octets, the order of transmission of those octets is the normal
order in which they are read in English. For example, in the following
diagram the octets are transmitted in the order they are numbered.

0 12 3
01234567890123456789012345678901

| 1 | 2 | 3 | 4 |
+_+_+-+_+..+-+_+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+--+-+-+-+-+-■+-+-+-+-+

| 5 | 6 | 7 j 8 |
+_+-+-+-+..+_+-+-+-+..+-+-+-+-+.+„+- + -+-+-+-+-+-+-+-+- + -+-+-+-+-+-+

| 9 | 10 | 11 | 12 |

Transmission Order of Bytes

Figure 10.

Whenever an octet represents a numeric quantity the left most bit in the
ditjpram is the hioji order or most significant bit. That is, the bit
labeled 0 is the most significant bit. For example, the following
diagram represents the value 170 (decimal).

01234567
+-♦-«♦■- +-+-+-+-+-+

jl 0 1 0 1 0 1 0|

Significance of Bits

Figure 11.

Similarly, whenever a multi-octet field represents a numeric quantity
the left most bit of the whole field is the most significant bit= When
a multi-octet quantity is transmitted the most significant octet is
transmitted first.

«'

[Page 39]

2-143

K>i>Z>j&*^ '.«^...V_i_ "_.J?WtjL^ k. LSJ" oJ^xJ VLs^LJk. . J. ^^ ^-k, - ,'., \^1

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Internet Protocol
September 1981

I

[Page 40]

2-144

LJC^L*1^^L>J£>I^AL^^

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

GLOSSARY

1822
BBN Report 1822, "The Specification of the Interconnection of
a Host and an IMP". The specification of interface between a
host and the ARPANET.

ARPANET leader
The control information on an ARPANET message at the host-IMP
interface.

ARPANET message
The unit of transmission between a host and an IMP in the
ARPANET. The maximum size is about 1012 octets (8096 bits) .

ARPANET packet
A unit of transmission used internally in the ARPANET between
IMPs. The maximum size is about 126 octets (1008 bits) .

Destination
The destination address, an internet header field.

DF

Flags

The Don't Fragment bit carried in the flags field.

An internet header field carrying various control flags.

Fragment Offset
This internet header field indicates where in the internet
datagram a fragment belongs.

OGP
Gateway to Gateway Protocol, the protocol used primarily
between gateways to control routing and other gateway
functions.

header

ICMP

Control information at the beginning of a message, segment,
datagram, packet or block of data.

Internet Control Message Protocol, implemented in the internet
module, the ICMP is used from gateways to hosts and between
hosts to report errors and make routing suggestions.

[Page 41]

2-145

** • ■ /• .*• ."• A,N .'• .** .*• .*■•■-*« /-v V-'.."•

'.V.-vVvV-V-V-,-',
VAA»Y*A_*^; AA* *-*» '*» \M «*- » - «■'- it« \m t'i tx±>U'.t,l m.^,.. .*-. * -1

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

> ■*

IT-*

IMP

September 1981
Internet Protocol
Glossary-

Identification
An internet header field carrying the identifying value
assigned by the sender to aid in assembling the fragments of a
datagram.

IHL
The internet header field Internet Header Length is the length
of the internet header measured in 32 bit words.

The Interface Message Processor, the packet switch of the
ARPANET.

Internet Address
A four octet (32 bit) source or destination address consisting
of a Network field and a Local Addreiss field.

internet datagram
Ihe unit of data exchanged between a pair of internet modules
(includes the internet header).

internet fragment
A portion of the data of an internet datagram with an internet
header.

Local Address
Ihe address of a host within a network. The actual mapping of
an internet local address on to the host addresses in a
network is quite general, allowing for many to one mappings.

module

MF
The More-Fraaments Flacr carried in the internet header flags
field.

An implementation, usually in software, of a protocol or other
procedure.

more-fragments flag
A flag indicating whether or not this internet datagram
contains the end of an internet datagram, carried in the
internet header Flags field.

NFB
The Number of Fragment Blocks in a the data portion of an
internet fragment. That is, the length of a portion of data
measured in 8 octet units.

[Page 42]

2-146

.v.-.CvSN-.'

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

Glossary

octet

Options

Padding

Protocol

Rest

Source

TCP

An eight bit byte.

The internet header Options field may contain several options,
and each option may be several octets in length.

The internet header Padding field is used to ensure that the
data begins on 32 bit word boundary. The padding is zero.

In this document, the next higher level protocol identifier,
an internet header field.

The local address portion of an Internet Address.

The source address, an internet header field.

Transmission Control Protocol: A host-to-host protocol for
reliable communication in internet environments.

TCP Segment
The unit of data exchanged between TCP modules (including the
TCP header) .

TFTP
Trivial File Transfer Protocol: A simple file transfer
protocol built on UDP.

Time to Live
An internet header field which indicates the upper bound on
how long this internet datagram may exist.

TOS
Type of Service

Total Length
The internet header field Total Length is the length of the
datagram in octets including internet header and data.

TTL
Time to Live

[Page 43]

2-147

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Internet Protocol
Glossary

September 1981

Type of Service
An internet header field which indicates the type (or quality)
of service for this internet datagram.

UDP

User

Version

User Datagram Protocol: A user level protocol for transaction
oriented applications.

The user of the internet protocol. This may be a higher level
protocol module, an application program, or a gateway program.

The Version field indicates the format of the internet header.

[Page 44]

2-148

.'•.*• A.** > : ".•-*• ."• .• .'.■•*/• /.*..'.%>\
I ifc« £MLjfi -* J ! 7-: ■'j -^.-j wr V ^ '-» ^tV-»'•-.» -A '.» •-» ^> -» •-» -^ ■

NETWORK LEVEL: IP RFC 791

September 1981
Internet Protocol

REFERENCES

[1] Cerf, V., "The Catenet Model for Internetworking," Information
Processing Techniques Office, Defense Advanced Research Projects
Agency, IEN 48, July 1978.

[2] Bolt Beranek and Newman, "Specification for the Interconnection of
a Host and an IMP," BBN Technical Report 1822, Revised May 1978.

[3] Postel, J., "Internet Control Message Protocol - DARPA Internet
Program Protocol Specification," RFC 792, USC/Information Sciences
Institute, September 1981.

[4] Shoch, J., "Inter-Network Naming, Addressing, and Routing,"
COMPCON, IEEE Computer Society, Fall 1978.

[5] Postel, J., "Address Mappings," RFC 796, USC/Information Sciences
Institute, September 1981.

[6] Shoch, J., "Packet Fragmentation in Inter-Network Protocols,"
Computer Networks, v. 3, n. 1, February 1979.

[7] Strazisar, V., "How to Build a Gateway", IEN 109, Bolt Beranek and
Newman, August 1979.

[8] Postel, J., "Service Mappings," RFC 795, USC/Information Sciences
Institute, September 1981.

[9] Postel, J., "Assigned Numbers," RFC 790, USC/Information Sciences
Institute, September 1981.

[Page 45]

2-149

j'v/-/\^./^*^%>S''j\>j,ji>jV-y,jxj>A»V,^j^VvVv'/-,t!,AtA '^^e^V^i^E^tJAl^^Li^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-150

.-•/. >V*

NETWORK LEVEL: ICMP RFC 792

Network Working Group
Request for Comments: 792

Updates: RFCs 777, 760
Updates: IENs 109, 128

INTERNET CONTROL MESSAGE PROTOCOL

OÄRPA INTERNET PROGRAM
PROTOCOL SPECIFICATION

J. Postel
ISI

September 1981

Introduction

The Internet Protocol (IP) [1] is used for host-to-host datagram
service in a system of interconnected networks called the
Catenet [2]. The network connecting devices are called Gateways.
These gateways communicate between themselves for control purposes
via a Gateway to Gateway Protocol (GGP) [3,4]. Occasionally a
gateway or destination host will communicate with a source host, for
example, to report an error in datagram processing. For such
purposes this protocol, the Internet Control Message Protocol (ICMP),
is used. ICMP, uses the basic support of IP as if it were a higher
level protocol, however, ICMP is actually an integral part of IP, and
must be implemented by every IP module.

ICMP messages are sent in several situations: for example, when a
datagram cannot reach its destination, when the gateway does not have
the buffering capacity to forward a datagram, and when the gateway
can direct the host to send traffic on a shorter route.

the Internet Protocol is not designed to be absolutely reliable. The
purpose of these control messages is to provide feedback about
problems in the communication environment, not to make IP reliable.
There are still no guarantees that a datagram will be delivered or a
control message will be returned. Some datagrams may still be
undelivered without any report of their loss. The higher level
protocols that use IP must implement their own reliability procedures
if reliable communication is required.

The ICMP messages typically report errors in the processing of
datagrams. To avoid the infinite regress of messages about messages
etc., no ICMP messages are sent about ICMP messages. Also ICMP
messages are only sent about errors in handling fragnent zero of
fragemented datagrams. (Fragment zero has the fragment offeset equal
zero).

►/■

[Page 1]

2-151

^ifcJ*A* *'^ «*- a* •'*■ LMJLM t-*-^ «^ **^ <*~ <£- «*- **- *'- £m *- «"-V- **-V -V-V »*_ »*- »^ »*, w^%*_.«

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 792
September 1981

Message Formats

I CMP messages are sent using the basic IP header. The first octet of
the data portion of the datagram is a I CMP type field; the value of
this field determines the format of the remaining data. Any field
labeled "unused" is reserved for later extensions and must be zero
when sent, but receivers should not use these fields (except to
include them in the checksum) . Unless otherwise noted under the
individual format descriptions, the values of the internet header
fields are as follows:

Version

IHL

Internet header length in 32-bit words.

Type of Service

0

Total Length

Length of internet header and data in octets.

Identification. Flags, Fragnent Offset

Used in fragmentation, see [1].

Time to Live

Time to live in seconds; as this field is decremented at each
machine in which the datagram is processed, the value in this
field should be at least as great as the number of gateways which
this datagram will traverse.

Protocol

ICMP ■ 1

Header Checksum

The 16 bit one's complement of the one's complement sum of all 16
bit words in the header. For computing the checksum, the checksum
field should be zero. This checksum may be replaced in the
future.

[Page 2]

2-152

"." V* " .*

fc'-"X"^Cv^>'vl%i%v-i^ oV v *%*/*."*. V* W" •.•"%'• .*'•.* VV*'.*"V\"*\ ■*•

NETWORK LEVEL: ICMP RFC 792

September 1981
RFC 792

Source Address

The address of the gateway or host that composes the ICMP message.
Unless otherwise noted, this can be any of a gateway's addresses.

Destination Address

The address of the gateway or host to which the message should be
sent.

[Page 3]

2*153

. ■•...» *_a.'-ji *^ *^» l_a '*r V- *-.* V-V:..*^ n^ti^iAi^.A-.^»

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
RFC 792

Destination Unreachable Message

0 12 3
01234567890123456789012345678901

♦ -♦-♦-♦-•*>-♦-♦-+-♦-+-+-•♦-♦-+-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦ -♦-♦-♦-♦-♦-♦-♦-♦-*
| Type | Code | Checksum |
♦-♦-♦-♦-♦-♦- ♦-♦-+-♦-+-♦-♦-■♦•-♦-♦ -♦-♦-♦ -♦-♦-♦-♦ -♦-♦-+-♦-■♦■-♦-♦-■♦■-♦-♦
I unused |

| Internet Header ♦ 64 bits of Original Data Datagram |
+ - + -4 -♦-♦-♦ —♦-♦-♦-4-+- + -+- + - + - + - + - + - + - + -♦-■♦■- ♦-♦-.♦- + •♦- + -♦- + -♦-♦->

IP Fields:

Destination Addrmms

The source network and address from the original datagram's data.

ICMP Fields:

Typ«

3

Code

0 * net unreachable;

1 * host unreachable;

2 = protocol unreachable;

3 » port unreachable;

4 » fragmentation needed and DF set;

5 = source route failed.

Checksum

The checksum is the 16-bit onas's complement of the one's
complement sum of the I CMP message starting with the ICMP Type.
For computing the checksum , the checksum field should be zero.
This checksum may be replaced in the future.

Internet Header ♦ 64 bits of Data Datagram

The internet header plus the first 64 bits of the original

2-154 m

NETWORK LEVEL: ICMP RFC 792

September 1981
RFC 792

datagram's data. This data is used by the host to match the
message to the appropriate process. If a higjher level protocol
uses port numbers, they are assumed to be in the first 64 data
bits of the original datagram's data.

Description

If, according to the information in the gateway's routing tables,
the network specified in the Internet destination field of a

IB; datagram is unreachable, e.g., the distance to the network is
P infinity, the gateway may send a destination unreachable message
K' to the internet source host of the datagram. In addition, in some
K networks, the gateway may be able to determine if the internet
£-• destination host is unreachable. Gateways in these networks may
»\ send destination unreachable messages to the source host when the
r-, destination host is unreachable.

i If, in the destination host, the IP module cannot deliver the
datagram because the indicated protocol module or process port is
not active« the destination host may send a destination

t% unreachable message to the source host.
K" k* Another case is when a datagram must be fra^aented to be forwarded
Pby a gateway yet the Don't Fragment flag is on. In this case the

gateway must discard the datagram and may return a destination
k\ unreachable message.
w
h* Codes 0. 1, 4, and 5 may be received from a gateway. Codes 2 and
k\ 3 r-sy be received from a host.

i»**

[«

h% [Page 5]

I

2-155

\

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
RFC 792

Time Exceeded Message

0 12 3
01234567890123456789012345678901

| Type | Code | Checksum |

| unused j
+-♦-♦-+-+-+-♦-♦-♦-♦-+-♦-♦-♦..♦-♦-♦-♦-+-♦-♦-♦ -♦-♦-♦-♦-♦-♦- >-♦-+-♦-♦
| Internet Header + 64 bits of Original Data Datagram j

IP Fields:

Destination Address

The source network and address from the original datagram's data.

I CMP Fields:

Type

11

Code

0 m time to live exceeded in transit;

1 * fragment reassembly time exceeded.

The checksum is the 16-bit ones'» complement of the one's
complement sum of the ICMP message starting with the ICMP Type.
For computing the checksum , the checksum field should be zero.
This checksum may be replaced in the future.

Internet Header ♦ 64 bits of Data Datagram

The Internet header plus the first 64 bits of the original
datagram's data. This data is used by the host to match the
message to the appropriate process. If a higher level protocol
uses port numbers, they are assumed to be in the first 64 data
bits of the origin«! datagram's data.

Description

If the gateway processing a datagram finds the time to live field

[Pase 6)

2-156

Lalvv ,--. vA^V J-:J.^VJ.:;*\~{2*^s^£.*s^.<2.<^?*.*»S*SmS*-<^faA'V'kWv".c .w'~.:-^l~'..%\>-i.u\--'.'*J. -* V.V.>J~J~ '...i-m^...^^.^ ±''

NETWORK LEVEL: ICMP RFC 792

September 1981
RFC 792

is zero it must discard the datagram. The gateway may also notify
the source host via the time exceeded message.

If a host reassembling a fragmented datagram cannot complete the
reassembly due to missing fragments within its time limit it
discards the datagram, and it may send a time exceeded message.

If fragment zero is not available then no time exceeded need be
sent at all.

Code 0 may be received from a gateway,
from a host.

Code 1 may be received

[Page 7]

2-157

fe^*v^^>^^^^'^Iv &C> i -&\v;% ■; ._*.-; :%.~\\\'J± .:.J k^i .'A^'AV^'J.V^VA'.'A' v -.v..'A'A'A'^V»'.V.iVi'.\Vi

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 792
September 1981

Parameter Problem Message

0 12 3
01234567890123456789012345678901

| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+- -!— + - + - + - + - + - + - + - + -+ - + - + - + - + - + -+'- + - + - +
J Pointer j unused |
+-+-+-+-+-+-+-+-+-+-■+-+

| Internet Header + 64 bits of Original Data Datagram |

IP Fields:

Destination Address

The source network and address from the original datagram's data.

ICMP Fields:

Type

12

Code

0 = pointer indicates the error.

Checksum

The checksum is the 16-bit ones's complement of the one's
complement sum of the ICMP message starting with the ICMP Type,
For computing the checksum , the checksum field should be zero.
This checksum may be replaced in the future.

Pointer

If code ■ 0, identifies the octet where an error was detected.

Internet Header + 64 bits of Data Datagram

The internet header plus the first 64 bits of the original
datagram's data. This data is used by the host to match the
message to the appropriate process. If a higher level protocol
uses port numbers, they are assumed to be in the first 64 data
bits of the original datagram's data.

[Page 8]

2-158

'%J..%.\:^ >/.--''--'.iJL^^*?*.'' 'L"'%r'iSx.m"mJr».\i > , »\ s*„ i'- >*- *_ tmJL^£m »*- **- **- aim ■£■ *"- »'-

NETWORK LEVEL: ICMP RFC 792

September 1981
RFC 792

Description

If the gateway or host processing a datagram finds a problem with
the header parameters such that it cannot complete processing the
datagram it must discard the datagram. One potential source of
such a problem is with incorrect arguments in an option. The
gateway or host may also notify the source host via the parameter
problem message. This message is only sent if the error caused
the datagram to be discarded.

The pointer identifies the octet of the original datagram's header
where the error was detected (it may be in the middle of an
option) . For example, 1 indicates something is wrong with the
Type of Service, and (if there are options present) 20 indicates
something is wrong with the type code of the first option.

Code 0 may be received from a gateway or a host.

[Page 9]

2-159

^^>-^
mm

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 792
September 1981

Source Quench Message

0 12 3
01234567890123456789012345678901

| Type | Code j Checksum |
+- + -+--f-+-+-+-+-+-+-+-+--i--+

| unused |

| Internet Header + 64 bits of Original Data Datagram J

IP Fields:

Destination Address

Ihe source network and address of the original datagram's data.

ICMP Fields:

Type

4

Code

0

Checksum

Ihe checksum is the 16-bit ones's complement of the one's
complement sum of the ICMP message starting with the ICMP Type.
For computing the checksum , the checksum field should be zero.
This checksum may be replaced in the future.

Internet Header ♦ 64 bits of Data Datagram

Ihe internet header plus the first 64 bits of the original
datagram's data. This data is used by the host to match the
message to the appropriate process. If a higher level protocol
uses port numbers, they are assumed to be in the first 6-i data
bits of the original datagram's data.

Description

A gateway may discard internet datagrams if it docs not have the
buffer space needed to queue the datagrams for output to the next
network on the route to the destination network. If a gateway

[Page 10]

2-160

jj&i i'A'sivv A^ . \^l%"lVlvl^ ^1^-^ViiVJvVl^" j

NETWORK LEVEL: ICMP RFC 792

September 1981
RFC 792

i

discards a datagram, it may send a source quench message to the
internet source host of the datagram. A destination host may also
send a source quench message if datagrams arrive too fast to be
processed. The source quench message is a request to the host to
cut back the rate at which it is sending traffic to the internet
destination. The gateway may send a source quench message for
every message that it discards. On receipt of a source quencn
message, the source host should cut back the rate at which it is
sending traffic to the specified destination until it no longer
receives source quench messages from the gateway. The source host
can then gradually increase the rate at which it sends traffic to
the destination until it again receives source quench messages.

The gateway or host may send the source quench message when it
approaches its capacity limit rather than waiting until the
capacity is exceeded. This means that the data datagram which
triggered the source quench message may be delivered.

Code 0 may be received from a gateway or a host.

m

f /

*«

i»\

[Page 11]

2-161

"v"V>yvlvLv*>rflV-tf_VJÄVJ*^^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 792
September 1981

Redirect Message

0 12 3
012 3 4567890123456789012345678901

! Type | Code | Checksum |

| Gateway Internet Address |

| Internet Header + 64 bits of Original Data Datagram |

IP Fields:

Destination Address

The source network and address of the original datagram's data.

ICMP Fields:

Type

5

Code

0 = Redirect datagrams for the Network.

1 ■ Redirect datagrams for the Host.

2 = Redirect datagrams for the Type of Service and Network.

3 = Redirect datagrams for the Type of Service and Host.

Checksum

The checksum is the 16-bit ones's complement of the one's
complement sum of the ICMP message starting with the ICMP Type.
For computing the checksum , the checksum field should be zero,
this checksum may be replaced in the future.

Gateway Internet Address

Address of the gateway to which traffic for the network specified
in the internet destination network field of the original
datagram's data should be sent.

[Page 12]

2-162

r--v A"."-*.*-'

i* •ji*»^*«J*»-»v_t**jt''X-^ ~\\V"*AS1**_* '-ii'^.

NETWORK LEVEL: ICMP RFC 792

September 1981
RFC 792

Internet Header + 64 bits of Data Datagram

Ine internet header plus the first 64 bits of the original
datagram's data. This data is used by the host to match the
message to the appropriate process. If a higher level protocol
uses port numbers, they are assumed to be in the first 64 data
bits of the original datagram's data.

Description

The gateway sends a redirect message to a host in the following
situation. A gateway, Gl, receives an internet datagram from a
host on a network to which the gateway is attached. The gateway,
Gl, checks its routing table and obtains the address of the next
gateway, G2, on the route to the datagram's Internet destination
network, X. If G2 and the host Identified by the internet source
address of the datagram are on the same network, a redirect
message is sent to the host. The redirect message advises the
host to send its traffic for network X directly to gateway G2 as
this is a shorter path to the destination. The gateway forwards
the original datagram's data to its internet destination.

For datagrams with the IP source route options and the gateway
address in the destination address field, a redirect message is
not sent even if there is a better route to the ultimate
destination than the next address in the source route.

Codes 0, 1, 2, and 3 may be received from a gateway.

[Page 13]

2-163

•**■ "<*« t~jL^.t\.t.'m ILMJL* I'*J- <*> Cm**~ V-■*.. »**»'-V-V-V^y V-V-'H^VJVJT»V'AV-1 V-VJ.\-.\>\:.>\^ J^V>>^ 1* U^JLfijLhjUt

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 792
September 1981

Echo or Echo Reply Message

0 12 3
01234567890123456789012345678901

| Type | Code j Checksum |

| Identifier | Sequence Number |

| Data ...

IP Fields:

Addresses

The address of the source in an echo message will be the
destination of the echo reply message. To form an echo reply
message, the source and destination addresses are simply reversed,

' the type code changed to 0, and the checksum recomputed.

IP Fields:

Type

8 for echo message;

0 for echo reply message.

Code

0

Checksum

The checksum is the 16-bit ones's complement of the one's
complement sum of the I CMP message starting with the I CMP Type.
For computing the checksum , the checksum field should be zero.
If the total length is odd, the received data is padded with one
octet of zeros for computing the checksum. This checksum may be
replaced in the future.

Identifier

If code = 0, an identifier to aid in matching echos and replies,
may be zero.

Sequence Number

[Fäye 14]

2-164

^:*>v^. ^>i\y •>;.'.. \,

NETWORK LEVEL: ICMP RFC 792

September 1981
RFC 792

I

I

If code = 0, a sequence number to aid in matching echos and
replies, may be zero.

Description

The data received in the echo message must be returned in the echo
reply message.

The identifier and sequence number may be used by the echo sender
to aid in matching the replies with the echo requests. For
example, the identifier might be used like a port in TCP or UDP to
identify a session, and the sequence number might be incremented
on each echo request sent. The echoer returns these same values
in the echo reply.

Code 0 may be received from a gateway or a host.

K\

Lv

m
[Page 15]

W

2-165

[■^«J^Mbf L'VU'V*V »-•' v' '_V.T *-'. *-* >-•%-* J.!*-^. Jj -*M , ^ .-. -•/■•»...•»* -J :> ■- ».* V* i* »,• -ft*.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 792
September 1981

Timestamp or Timestamp Reply Message

0 12 3
0123456789012345678°012345678901

j Type | Code j Checksum |
+_+-.♦■ _+-+_+-+-+-+-+-+-+-+

| Identifier j Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-■♦■-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Originate Timestamp I

| Receive Timestamp I

| Transmit Timestamp |
+_+-+-+-+-+-+ _ + _ + - + _ + _ + - + _ + - + - + - + _>_ + _ + , + - + - + - + - + - + -. + - + - + - + - + _ + -.+

IP Fields:

Addresses

The address of the source in a timestamp message will be the
destination of the timestamp reply message. To form a timestamp
reply message, the source and destination addresses are simply
reversed, the type code changed to 14, and the checksum
recomputed.

IP Fields:

Type

13 for timestamp message;

14 for timestamp reply message.

Code

0

Checksum

The checksum is the 16-bit ones's complement of the one's
complement sum of the I CMP message starting with the I CMP Type.
For computing the checksum , the checksum field should be zero.
This checksum may be replaced in the future.

Identifier

[Page 16]

2-166

* j» • • *. *»• •'

. « - »- m - -* > » —• , rf*„ »., all m - * * - * yV."AV»A.' MJJkJL^ *** -% A»S-.W«V* /»-» >'»*-'t'. V-V-iT-V1'.

NETWORK LEVEL: ICMP RFC 792

September 1981
RFC 792

If code = 0, an identifier to aid in matching timestamp and
replies, may be zero.

Sequence Number

If code = 0, a sequence number to aid in matching timestamp and
replies, may be zero.

Description

ihe data received (a timestamp) in the message is returned in the
reply together with an additional timestamp. The timestamp is 32
bits of milliseconds since midnight UT. One use of these
timestamps is described by Mills [5] .

The Originate Timestamp is the time the sender last touched the
message before sending it, the Receive Timestamp is the time the
echoer first touched it on receipt, and the Transmit Timestamp is
the time the echoer last touched the message on sending it.

If the time is not available in miliseconds or cannot be provided
with respect to midnight UT then any time can be inserted in a
timestamp provided the higjh order bit of the timestamp is also set
to indicate this non-standard value.

The identifier and sequence number may be usad by the echo sender
to aid in matching the replies with the requests. For example,
the identifier might be used like a port in TCP or UDP to Identify
a session, and the sequence number might be incremented on each
request sent. The destination returns these same values in the
reply.

Code 0 may be received from a gateway or a host.

[Page 17]

2-167

>;\>
'** *-*» »*- **- *-*» f*'-.«."-! i ."*'-* »\"V a"..V-JtJ s? Jtf_!*V »JALT t **L."t_J «?_V_^ „.^_ «P.-*-•--JJl'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 792
September 1981

Information Request or Information Reply Message

0 12 3
012345 67890123456789012345678901

! Type | Code | Checksum |
+-♦-+-+-+-+-+-+-+-+-+-+-+
| Identifier | Sequence Number |
+-+-+-+-+- ■+-+_+_+-+-+

IP Fields:

Addresses

The address of the source in a information request message will be
the destination of the information reply message. To form a
information reply message, the source and destination addresses
are simply reversed, the type code changed to 16, and the checksum
recomputed.

IP Fields:

Type

15 for information request message;

16 for information reply message.

Code

0

Checksum

The checksum is the 16-bit ones's complement of the one's
complement sum of the ICMP message starting with the ICMP Type.
For computing the checksum , the checksum field should be zero.
Tliis checksum may be replaced in the future.

Identifier

If code = 0, an identifier to aid in matching request and replies,
may be zero.

Sequence Number

If code » 0, a sequence number to aid in matching request and
replies, may be zero.

[Page 18]

2-168

työ#*L'.jv*vri **• •*vv.-WvL'-i*.;_V"'-*'*.* -.«y^'r-^y■■-•'».• ■ •»twvy,-- -•* .• .•. ■ ^ _• •.*•-* AV.* • .-%T^

•>;

'AV

NETWORK LEVEL: ICMP RFC 792

September 1981
RFC 792

Description

This message may be sent with the source network in the IP header
source and destination address fields zero (which means "this"
network) . The replying IP module should send the reply with the
addresses fully specified. This message is a way for a host to
find out the number of the network it is on.

The identifier and sequence number may be used by the echo sender
to aid in matching the replies with the requests. For example,
the identifier migfat be used like a port in TCP or UDP to identify
a session, and the sequence number might be incremented on each
request sent. The destination returns these same values in the
reply.

Code 0 may be received from a gateway or a host.

>\

M
[Page 19]

2-169

»*ftV l*\-«i_»^L» t-M.±^.'l^f^^m!s^.\^Ll *^£&J^.

■•„y.y.v y ;.•/.-.

v'.V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 792
September 1981

Summary of Message Types

0 Echo Reply

3 Destination unreachable

4 Source Quench

5 Redirect

8 Echo

11 Tiiae Exceeded

12 Parameter Problem

13 Times tamp

14 Timestamp Reply

15 Information Request

16 Information Reply

[Page 20]

2-170

■ ■'A. ,-■ . JL .»*. ■V ^ o>-»:^

NETWORK LEVEL: ICM*> RFC 792

September 1981
RFC 792

References

[1] Postel, J. (ed.), "Internet Protocol - DARPA Internet Program
Protocol Specification/' RFC 791, USC/Information Sciences
Institute, September 1981.

[2] Cerf, V., "The Catenet Model for Internetworking/* IEN 48,
Information Processing Techniques Office, Defense Advanced
Research Projects Agency, July 1978.

[3] Strazisar, V., "Gateway Routing: An Implementation
Specification", IEN 30, Bolt Beranek and Newman, April 1979.

[4] Strazisar, V., "How to Build a Gateway", IEN 109, Bolt Beranek
and Newman, August 1979.

[5] Mills, D., "DCNET Internet Clock Service," RFC 778, COMSAT
Laboratories, April 1981.

8

[Page 21]

2-171 m

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-172

V.- .'S",

HOST LEVEL PROTOCOLS

SECTION 7. HOST LEVEL PROTOCOLS

This section contains RFCs pertaining to major host protocols, minor host protocols,
and gateway protocols.

m

2-173

.*• AV« .*• '■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

%y?_

2-174

HOST LEVEL: MAJOR RFC 768

RFC 768 J. Postel
ISI

28 August 1980

User Datagram Protocol

Introduction

This User Datagram Protocol (UDP) is defined to make available a
datagram mode of packet-switched computer communication in the
environment of an interconnected set of computer networks. This
protocol assumes that the Internet Protocol (IP) [1] is used as the
underlying protocol.

This protocol provides a procedure for application programs to send
messages to other programs with a minimum of protocol mechanism. The
protocol is transaction oriented, and delivery "and duplicate protection
are not guaranteed. Applications requiring ordered reliable delivery of
streams of data should use the Transmission Control Protocol (TCP) [2] .

Format

0 7 8 15 16 23 24 31
+ + + + +

] Source | Destination |
I Port | Port j

III
j Length j Checksum j
+ + + + +

I
| data octets ...

User Datagram Header Format

Fields

Source Port is an optional field, when meaningful, it indicates the port
of the sending process, and may be assumed to be the port to which a
reply should be addressed in the absence of any other information. If
not used, a value of zero is inserted.

JLUL.

Postel [page 1]

2-175
w

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

User Datagram Protocol
Fields

28 Aug 1980
RFC 768

Destination Port has a meaning within the context of a particular
internet destination address.

Length is the length in octets of this user datagram including this
header and the daca. (This means the minimum value of the length is
eight.)

Checksum is the 16-bit one's complement of the one's complement sum of a
pseudo header of information from the IP header, the UDP header, and the
data, padded with zero octets at the end (if necessary) to make a
multiple of two octets.

The pseudo header conceptually prefixed to the UDP header contains the
source address, the destination address., the protocol r and the UDP
length. This information gives protection against misrouted datagrams.
This checksum procedure is the same as is used in TCP.

0 7 8 15 16 23 24 31
+ + + + +

| source address |
+—„ + + ; + +

| destination address |
+ + + .+ +

| zero |protocol| UDP length |
+ + + + +

If the computed checksum is zero, it is transmitted as all ones (the
equivalent in one's complement arithmetic). An all zero transmitted
checksum value means that the transmitter generated no checksum (for
debugging or for higher level protocols that don't care).

User Interface

A user interface should allow

the creation of new receive ports,

receive operations on the receive ports that return the data octets
and an indication of source port and source address,

and an operation that allows a datagram to be sent, specifying the
data, source and destination ports and addresses to be sent.

b^£

[page 2] Postel

2-176

m^^^<^

HOST LEVEL: MAJOR RFC 768

28 Aug 1980
RFC 768 User Datagram Protocol

IP Interface

IP Interface
jM

The UDP module must be able to determine the source and destination
internet addresses and the protocol field from the internet header. One
possible UDP/IP interface would return the whole internet datagram
including all of the internet header in response to a receive operation.
Such an interface would also allow the UDP to pass a full internet
datagram complete with header to the IP to send. The IP would verify
certain fields for consistency and compute the internet header checksum.

Protocol Application

The major uses of this protocol is the Internet Name Server [3], and the
Trivial File Transfer [4].

Protocol Number W.

This is protocol 17 (21 octal) when used in the Internet Protocol.
Other protocol numbers are listed in [5].

References

[1] Postel, J., "Internet Protocol," RFC 760, USC/Information
Sciences Institute, January 1980.

[2] Postel, J., "Transmission Control Protocol," RFC 761,
USC/Information Sciences Institute. January 1980.

[3] Postel, J., "Internet Name Server," USC/Information Sciences
Institute, IEN X16, August 1979.

[4] Sollins, K., "The TFTP Protocol," Massachusetts Institute of
Technology, IEN 133, January 1980.

[5] Postal, J., "Assigned Numbers," USC/Information Sciences
Institute, RFC 762, January 1980.

^

Postel [pas- 3]

o.i 7

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

*v

l _s_

2-178

»*uy*j<v

HOST LEVEL: MAJOR RFC 793

RFC: 793

TRANSMISSION CONTROL PROTOCOL

by

Information Sciences Institute
University of Southern California

4676 Admiralty Way
Marina del Rey, California 90291

DARPA INTERNET PROGRAM

PROTOCOL SPECIFICATION ^u m.
September 1981

prepared for

Defense Advp^.ced Research Projects Agency
Information Processing Techniques Office

1400 Wilson Boulevard
Arlington, Virginia 22209

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

>.

2-180

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

%%
$

TABLE OF CONTENTS

PREFACE iii

1. INTRODUCTION 1

1.1 Motivation 1
1.2 Scope 2
i. 3 About This Document . 2
1.4 Inter faces 3
1.5 Operation 3

2. PHILOSOPHY 7

2.1 Elements of the Internetwork System 7
2.2 Model of Operation 7
2.3 The Host Environment 8
2.4 Inter faces 9
2.5 Relation to Other Protocols 9
2.6 Reliable Communication 9
2.7 Connection Establishment and Clearing 10
2.8 Data Communication 12
2.9 Precedence and Security 13
2.10 Robustness Principle 13

3. FUNCTIONAL SPECIFICATION 15

3.1 Header Format 15
3.2 Terminology 19
3.3 Sequence Numbers 24
3.4 Establishing a connection 30
3.5 Closing a Connection 37
3.6 Precedence and Security 40
3.7 Data Communication 40
3.8 Interfaces 44
3.9 Event Processing 52

GLOSSARY 79

REFERENCES 35

.v?

Pa^ l"

2-181

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
September 1981

tmWmt »1,

n m

c.y.

I

►

[P.ge 11J

P*

W

2-182

September 1981
Transmission Control Protocol

PREFACE

P*
hi [Pago Hi]

2-183

s»
HOST LEVEL: MAJOR RFC 793 Wj

i

This document describes the DoD Standard Transmission Control Protocol
(TCP) . There have been nine earlier editions of the ARPA TCP
specification on which this standard is based, and the present text
draws heavily from them. There have been many contributors to this work
both in terms of concepts and in terms of text. This edition clarifies
several details and removes the end-of-letter buffer-size adjustments,
and redescribes the letter mechanism as a push function.

Jon Po. .el

Editor

's"

ft

9Ki

^.-\

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

r'

v.

^5w

•N

*rf.

2-181

HOST LEVEL: MAJOR RFC 793

RFC: 793
Replaces: RFC 761
IENs: 129, 124, 112, 81,
55, 44, 40, 27, 21, 5

TRANSMISSION CONTROL PROTOCOL

DARPA INTERNET PROGRAM
PROTOCOL SPECIFICATION

1. INTRODUCTION

The Transmission Control Protocol (TCP) is intended for use as a highly
reliable host-to-host protocol between hosts in packet-switched computer
communication networks, and in interconnected systems of such networks.

This document describes the functions to be performed by the
Transmission Control Protocol, the program that implements it, and its
interface to programs or users that require its services.

1.1. Motivation

Computer communication systems are playing an increasingly important
role in military, government, and civilian environments. This
document focuses its attention primarily on military computer
communication requirements, especially robustness in the presence of
communication unreliability and availability in the presence of
congestion, but many of these problems are found in the civilian and
government sector as well.

As strategic and tactical computer communication networks are
developed and deployed, it is essential to provide means of
interconnecting them and to provide standard Interprocess
communication protocols which can support a broad range of
applications. In anticipation of the need for such standards, the
Deputy Undersecretary of Defense for Research and Engineering has
declared the Transmission Control Protocol (TCP) described herein to
be a basis for DoD-wlde inter-process communication protocol
standardization.

TCP is a connection-oriented, end-to-end reliable protocol designed to
fit into a layered hierarchy of protocols which support multi-network
applications. The TCP provides for reliable inter-process
communication between pairs of processes in host computers attached to
distinct but interconnected computer communication networks. Very few
assumptions are made as to the reliability of the communication
protocols below the TCP layer. TCP assumes it can obtain a simple.
potentially unreliable datagram service from the lower level
protocols. In principle, the TCP should be able to operate above a
wide spectrum of communication systems ranging from hard-wired
connections to packet-switched or circuit-switched networks.

[Page 1]

2-185

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Introduction

TCP is based on concepts first described by Cerf and Kahm in [1] . The
TCP fits into a layered protocol architecture just above a basic
Internet Protocol [2] which provides a way for the TCP to send and
receive variable-length segments of information enclosed in internet
datagram "envelopes". The internet datagram provides a means for
addressing source and destination TCPs in different networks. The
internet protocol also deals with any fragmentation or reassembly of
the TCP segments required to achieve transport and delivery through
multiple networks and interconnecting gateways. The internet protocol
also carries information on tre precedence, security classification
and compartmentation of the TCP segments, so this information can be
communicated end-to-end across multiple networks.

Protocol Layering

+ . +

| higher-level |
+ +

| TCP |
+ . +

J internet protocol |
+.» . +

|communication network)
^.-.- +

Figure 1

Much of this document is written in the context of TCP implementations
which are co-resident with higher level protocols in the host
computer. Some computer systems will be connected to networks via
front-end computers which house the TCP and internet protocol layers,
as well as network specific software. The TCP specification describes
an interface to the higher level protocols which appears to be
implementable even for the front-end case, as long as a suitable
host-to-front end protocol is implemented.

1.2. Scope

The TCP is intended to provide a reliable process-to-process
communication service in a multinetwork environment. The TCP is
intended to be a host-to-host protocol in common use in multiple
networks.

1.3. About this Document

This document represents a specification of the behavior required of
any TCP implementation, both in its interactions with higher level
protocols and in its interactions with other TCPs. The rest of this

[Page 2]

K \

2-186

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Introduction

section offers a very brief view of the protocol interfaces and
operation. Section 2 summarizes the philosophical basis for the TCP
design. Section 3 offers both a detailed description of the actions
required of TCP when various events occur (arrival of new segments,
user calls, errors, etc.) and the details of the formats of TCP
segments.

1.4. Interfaces

The TCP interfaces on one side to user or application processes and on
the other side to a lower level protocol such as Internet Protocol.

The interface between an application process and the TCP is
illustrated in reasonable detail. This interface consists of a set of
calls much like the calls an operating system provides to an
application process for manipulating files. For example, there are
calls to open and close connections and to send and receive data on
established connections. It is also expected that the TCP can
asynchronously communicate with application programs. Althouoji
considerable freedom is permitted to TCP implementors to design
interfaces which are appropriate to a particular operating system
environment, a minimum functionality is required at the TCP/user
interface for any valid implementation.

The interface between TCP and lower level protocol is essentially
unspecified except that it is assumed there is a mechanism whereby the
two levels can asynchronously pass information to each other.
Typically, one expects the lower level protocol to specify this
interface. TCP is designed to work in a very general environment of
interconnected networks. The lower level protocol which is assumed
throughout this document is the Internet Protocol [2] .

1.5. Operation

As noted above, the primary purpose of the TCP is to provide reliable,
securable logical circuit or connection service between pairs of
processes. To provide this service on top of a less reliable internet
communication system requires facilities in the following areas:

Basic Data TV ms f er
Reliability
Flow Cortrol
Multiplexing
Connections
Precedence and Security

The basic operation of the TCP in each of these areas is described in
the following paragraphs.

[Page 3]

2-187

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Introduction

Basic Data Transfer:

The TCP is able to transfer a continuous stream of octets in each
direction between its users by packaging some number of octets into
segments for transmission through the internet system. In general,
the TCPs decide when to block and forward data at their own
convenience.

Sometimes users need to be sure that all the data they have
submitted to the TCP has been transmitted. For this purpose a push
function is defined. To assure that data submitted to a TCP is
actually transmitted the sending user indicates that it should be
pushed through to the receiving user. A push causes the TCPs to
promptly forward and deliver data up to that point to the receiver.
The exact push point might not be visible to the receiving user and
the push function does not supply a record boundary marker.

Reliability;

The TCP must recover from data that is damaged, lost, duplicated, or
delivered out of order by the internet communication system. This
is achieved by assigning a sequence number to each octet
transmitted, and requiring a positive acknowledgment (ACK) from the
receiving TCP. If the ACK is not received within a timeout
interval, the data is retransmitted. At the receiver, the sequence
numbers are used to correctly order segments that may be received
out of order and to eliminate duplicates. Damage is handled by
adding a checksum to each segment transmitted, checking it at the
receiver, and discarding damaged segments.

As long as the TCPs continue to function properly and the internet
system does not become completely partitioned, no transmission
errors will affect the correct delivery of data. TCP recovers from
internet communication system errors.

Flow Control;

TCP provides a means for the receiver to govern the amount of data
sent by the sender. This is achieved by returning a "window" with
every ACK indicating a range of acceptable sequence numbers beyond
the last segment successfully received. The window indicates an
allowed number of octets that the sender may transmit before
receiving further permission.

[Page 4]

2-188

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Introduction

Multiplexing:

To allow for many processes within a single Host to use TCP
communication facilities simultaneously, the TCP provides a set of
addresses or ports within each host. Concatenated with the network
and host addresses from the internet communication layer, this forms
a socket. A pair of sockets uniquely identifies each connection.
That is, a socket may be simultaneously used in multiple
connections.

The binding of ports to processes is handled independently by each
Host. However, it proves useful to attach frequently used processes
(e.g., a "logger" or timesharing service) to fixed sockets which are
made known to the public. These services can then be accessed
through the known addresses. Establishing and learning the port
addresses of other processes may involve more dynamic mechanisms.

Connections:

The reliability and flow control mechanisms described above require
that TCPs initialize and maintain certain status information for
each data stream. The combination of this information, including
sockets, sequence numbers, and window sizes, is called a connection.
Each connection is uniquely specified by a pair of sockets
identifying its two sides.

When two processes wish to communicate, their TCP's must first
establish a connection (initialize the status information on each
side). When their communication is complete, the connection is
terminated or closed to free the resources for other uses.

Since connections must be established between unreliable hosts and
over the unreliable internet communication system, a handshake
mechanism with clock-based sequence numbers is used to avoid
erroneous initialization of connections.

Precedence and Security:

The users of TCP may indicate the security and precedence of their
communication. Provision is made for default values to be used when
these features are not needed.

^V

[Page 5]

2-189

'Xv «v*X* • 'S'N'V/'S'Sv*"/. /.. "■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
September 1981

i •,

i

i
&

^

[P«9* 6]

2-190

■ ■ -■ ■

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

2. PHILOSOPHY

2.1. Elements of the Internetwork System

The internetwork environment consists of hosts connected to networks
which are in turn interconnected via gateways. It is assumed here
that the networks may be either local networks (e.g., the ETHERNET) or
large networks (e.g., the ARPANET), but in any case are based on
packet switching technology. The active agents that produce and
consume messages are processes. Various levels of protocols in the
networks, the gateways, and the hosts support an interprocess
communication system that provides two-way data flow on logical
connections between process ports.

The term packet is used generically here to mean the data of one
transaction between a host and its network. The format of data blocks
exchanged within the a network will generally not be of concern to us.

Hosts are computers attached to a network, and from the communication
network's point of view, are the sources and destinations of packets.
Processes are viewed as the active elements in host computers (in
accordance with the fairly common definition of a process as a program
in execution). Even terminals and files or other I/O devices are
viewed as communicating with each other through the use of processes.
Thus, all communication is viewed as inter-process communication.

Since a process may need to distinguish among several communication
streams between itself and another process (or processes), we Imagine
that each process may have a number of ports through which it
communicates with the ports of ether processes.

2.2. Model of deration

Processes transmit data by calling on the TCP and passing buffers of
data as arguments. The TCP packages the data from these buffers into
segments and calls on the internet module to transmit each segment to
the destination TCP. The receiving TCP places the data from « segment
into the receiving user's buffer and notifies the receiving user. The
TCPs include control information in the segments which they use to
ensure reliable ordered data transmission.

The model of internet communication is that there is an internet
protocol module associated with each TCP which provides an interface
to the local network. This internet module packages TCP segments
inside internet datagrams and routes these datagrams to a destination
internet module or intermediate gateway. To transmit the datagram
through the local network, it is embedded In a local network packet.

The packet switches may perform further packaging, fragmentation, or

[Page 7;

2-191

,v.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Philosophy

other operations to achieve the delivery of the local packet to the
destination internet module.

At a gateway between networks, the internet datagram is "unwrapped"
from its local packet and examined to determine through which network
the internet datagram should travel next. The internet datagram is
then "wrapped" in a local packet suitable to the next network and
routed to the next gateway, or to the final destination.

A gateway is permitted to break up an internet datagram into smaller
internet datagram fragments if this is necessary for transmission
through the next network. To do this, the gateway produces a set of
internet datagrams; each carrying a fragment. Fragments may be
further broken into smaller fragments at subsequent gateways. Ihe
internet datagram fragment format is designed so that the destination
internet module can reassemble fraqments into internet datagr*««.

A destination internet module unwraps the segment from the datagram
(after reassembling the datagram, if necessary) and passes it to the
destination TCP.

This simple model of the operrtion glosses over many details. One
important feature is the type of service. This provides information
to the gateway (or internet module) to guide it in selecting the
service parameters to be used in traversing the next network.
Included in the type of service Information is the precedence of the
datagram. Datagrams may also carry security information to permit
host and gateways that operate in multilevel secure environments to
properly segregate datagrams for security considerations.

2.3. The Host Environment

[Page 8]

The TCP is assumed to be a module in an operating system. The users l-*-,-
access the TCP much like they would access the file system. The TCP *'W
may call on other operating system functions, for example, to manage v!-S
data structures. The actual interface to the network is assumed to be £•£•
controlled by a device driver module. The TCP does not call on the M
network device driver directly, but rather calls on the internet ™
datagram protocol module which may 'n turn call on the device driver. .*;%'

The mechanisms of TCP do not preclude implementation of the TCP in a
front-end processor. However, in such an implementation, a !k
host-to-front-end protocol must provide th« functionality to support •/',
the type of TCP-user interface describca in this document. j^jj

2-192

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Philosophy

2.4. Interfaces

The TCP/user interface provides for calls made by the user on the TCP
to OPEN or CLOSE a connection, to SEND or RECEIVE data, or to obtain
STATUS about a connection. These calls are like other calls from user
programs on the operating system, for example, the calls to open, read
from, and close a file.

The TCP/internet interface provides calls to send and receive
datagrams addressed to TCP modules in hosts anywhere in the internet
system. These calls have parameters for passing the address, type of
service, precedence, security, and other control information.

2.5. Relation to Other Protocols

The following diagram illustrates the place of the TCP in the protocol
hierarchy:

|Telnet| | FTP | |Voice | Application Level

I TCP |
♦ ♦

| RTP j
♦---»-♦

Host Level

Internet Protocol k XQ& | Gateway Level

i

| Local Network Protocol Network Level

Protocol Relationships

Figure 2.

It is expected that the TCP will be able to support higher level
protocols efficiently. It should be easy to interface higher lev«!
protocols like the ARPANET Telnet or AUTODIN II TOP to the TCP.

2.6. Reliable Communication

A strear« of data sent on a TCP connection is delivered reliably ana in
order at the destination.

'Page 9;

2-193

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Philosophy

2-134

ft.

Transmission is made reliable via the use of sequence numbers and
acknowledgments. Conceptually, each octet of data is assigned a
sequence number. The sequence number of the first octet of data in a £*?
segment is transmitted with that segment and is called the segment v"*'
sequence number. Segments also carry an acknowledgment number which ;%*•!
is the sequence number of the next expected data octet of v\
transmissions in tha reverse direction. When the TCP transmits a [•:/*
segment containing data, it puts a copy on a retransmission queue and ^J
starts a timer; when the acknowledgment for that data is received, the amm
segpnert is deleted from the queue. If the acknowledgment is not P?55
received before the timer runs out, the segment is retransmitted. -V ;

An acknowledgment by TCP does not guarantee that the data has been
delivered to the end user, but only that the receiving TCP has taken
the responsibility to do so.

To govern the flow of data between TCPs, a flow control mechanism is
employed. The receiving TCP reports a "window" to the sending TCP.
This window specifies the number of octets, starting with the
acknowledgment number, that the receiving TCP is currently prepared to
receive.

2.7. Connection Establishment and Clearing

To identify the separate data streams that a TCP may handle, the TCP 55^
provides a port identifier. Since port identifiers are selected
independently by each TCP they migfrt not be unique. To provide for
unique addresses within each TCP. we concatenate an internet address
identifying the TCP with a port identifier to create a socket which
will be unique throu^iout all networks connected together.

A connection is fully specified by the pair of sockets at the ends. A
local socket may participate in many connections to different foreign
sockets. A connection can be used to carry data in both directions,
that is, it is "full duplex".

TCPs a^e free to associate ports with processes however they choose.
However, several basic concepts are necessary in any implementation.
There must be well-known sockets which the TCP associates only with
the "appropriate" processes by some memns. We envision that processes
may "own" ports, and that processes can initiate connections only on
the ports they own. (Means for implementing ownership is a local
issue, but we envision a Request Port user command, or a method of
uniquely allocating a ^roup of ports to a given process, e.g., by
associating the high crOer bits of a port name with a given process.)

A connection *s specified in the OPEN rail by the local port and
foreign socket ar^jaents In return, the TCP supplies a (short) local

Tage *<r

?*-'-.»*■■* »'••"•■'*' *' ..'.*•' .'•^■■.v/-./ -••■*•.* -j -.*»_' , . .-..*-- • _^ _ '^ •-.. • ..* ■... •-_• - - .' . •* •- ' -' '-^ •-.'/■

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Philosophy

connection name by which the user refers to the connection in
subsequent calls. There are several thin<js that must be remembered
about a connection. To store this information we imagine that there
is a data structure called a Transmission Control Block (TCB) . One
implementation strategy would have the local connection name be a
pointer to the TCB for this connection. The GPEN call also specifies
whether the connection establishment is to be actively pursued, or to
be passively waited for.

A passive OPEN request means that the process wants to accept incoming
connection requests rather than attempting to initiate a connection.
Often the process requesting a passive OPEN will accept a connection
request from any caller. In this case a foreign socket of all y.eros
is used to denote an unspecified socket. Unspecified foreign sockets
are allowed only on passive OPEN*.

A service process that wished to provide services for unknown other
processes would issue a passive OPEN request with an unspecified
foreign socket. Then a connection could bo made with any process that
requested a com »action to this local socket. It would help if this
local socket were known to be associated with this service.

Well-known sockets are a convenient mechanism for a priori associating
a socket address with a standard service. For instance, the
"Telnet-Server" process is permanently assigned to a particular
socket, and other sockets are reserved for File Transfer. Remote Job
Entry. Text Generator, Echoer, and Sink processes (the last three
being for test purposes) . A socket address mi^xt be reserved for
access to a "Look-Up" service which would return the specific socket
at which a newly created service would be provided. The concept of a
well-known socket is part of tm TCP specification, but the assignment
of sockets to services is outside this specification. (See [4].)

Processes can issue passive QPENs and wait for matching active OPENs
from other processes and be informed by the TCP when connections have
been established. Two processes which issue active QPENs to each
other at the same time will be correctly connected. This flexibility
is critical for the support of distributed computing in whiih
components est asynchronously with respect to each other.

There are two principal cesos for matching the sockets in the local
passive OPENs and an foreign active OPENs. In the first case, the
local passive OPEN* has fully specified the foreign socket. In this
case, the match must be exact. In the second case, the local passive
OPENs .nas left the foreign socket unspecified. In this case, any
foreign rocket is acceptable as long as the local sockets match.
Other possibilities include partially restricted matches.

[Page 11]

2-10*

t ■»■ r

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

Transmission Control Protocol
Philosophy

September 1961

If there are several pending passive OPENs (recorded in TCBs) with the
same local socket, an foreign active OPEN will be matched to a TCB
with the specific foreign socket in the foreign active OPEN, if such a
TCB exists, before selecting a TCB with an unspecified foroign socket.

The procedures to establish connections utilize the synchronize (SYN)
control flag and involves an exchange of three messages. This
exchange has been termed a three-way hand shake [3] .

A connection is initiated by the rendezvous of an arriving ^«^nent
containing a SYN and a waiting TCB entry each created by a user OPEN
command. The matching of local and foreign sockets determines when a
connection has been initiated. The connection becomes "established"
when sequence numbers have been synchronized in both directions.

The clearing of a connection also involves the exchange of segments,
in this case carrying the FIN control flag.

2.8. Data Coanunicatlon

The data that flows on a connection may be thought of as a stream of
octets. The sending user indicates in each SEND call whether the data
In that call (and any preceedlng calls) should be immediately pushed
through to the recr vving user by the setting of the PUSH flag.

A sending TCP is allowed to collect data from the sending user and to
send that data in segments at its own convenience, until the push
function is signaled, then it must send all unsent data. When a
receiving TCP sees the PUSH flag, it must not wait for more data from
the sending TCP before passing the data to the receiving process.

there is no necessary relationship between push functions and sequent
boundaries. The data in any particular segment may be the result of a
single SEND call, in whole or part, or of multiple S'tiiD calls.

The purpose of push function and the PUSH flag Is to push data through
from the sending user to the receiving user. It does not provide a
record service.

There is a coupling between the push function and the use of buffers
of data that cross the TCP/user interface. Each time a PUSH flag is
associated with data placed into the receiving user's buffer. the
buffer is returned to the user for processing even if the buffer is
not filled. If data arriv*» that fills the user's buffer before a
PUSH is ***nt the data is passed to the user in buffer s.ze units.

TCP also provides a rwans to communicate to the receiver of data that
at some point further along in the data stream then the receiver is

rpage 12^

2-196

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Philosophy

r
r.

currently reading there is urgent data. TCP does not attempt to
define what the user specifically does upon being notified of pending
urgent data, but the general notion is that the receiving process will
take action to process the urgent data quickly.

2.9. Precedence and Security

The TCP makes use of the internet protocol type of service field and
security option to provide precedence and security on a per connection
basis to TCP users. Not all TCP modules will necessarily function in
a multilevel secure environment; some may be limited to unclassified
use only, and others may operate at only one security level and
compartment. Consequently, some TCP implementations and services to
users may be limited to a subset of the multilevel secure case.

TCP modules which operate in a multilevel secure environment must
properly mark outgoing segments with the security, compartment, and
precedence. Such TCP modules must also provide to their users or
higher level protocols such as Telnet or THP an interface to allow
them to specify the desired security level, compartment, and
precedence of connections.

2.10. Robustness Principle

TCP implementations will follow a general principle of robustness:
conservative in what you do, be liberal in what you accept from
others.

be

k"

[Page 13]

2-197

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
September 1981

[Page 14]

2-1Q8

.^* AV*"^*»**
."• ."' .% .*• N ."■

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

3. FUNCTIONAL SPECIFICATION

3.1. Header Format

TCP segments are sent as internet datagrams. The Internet Protocol
header carries several information fields, including the source and
destination host addresses [2]. A TCP header follows the internet
header, supplying information specific to the TCP protocol. This
division allows for the existence of host level protocols other than
TCP.

TCP Header Format

0 12 3
01234567890123456789012345678901

+ - + -+-+- + -+-+ - + -+-+.- + -+-+-+-+- + -+- + - + -+- + -+-+- + -+-+-+-+-+-+-+-+- +
| Source Port | Destination Port |
+ - + - + - + - + - + - + -♦-♦- + - + - + - + - + - + - + - + -■♦■- + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

| * Saquence Number I
+.+-+-+-+-+-+-+-+-+- + -+-+-+-+-+«+-+-+-+--*■-+-+-+-+-+-+-+-+-+-+-+-+

; Acknowledgment Number j
+.. + -.+ -+-+-+-.+- f -+_+-♦_+-+-+_+_+..+-+-+-.+-.+-+-+-+-+..+.-+_+-♦_+-.+-.+-+

I Data ! |U|A|P|R|S|F| I
| Offsetl Reserved |R|C|S|S|Y|I| Window |
| | |C|K|H|T|N|N| I

| Checksum \ Urgent Pointer |

| Options | Padding |
+ - + _ + - + - + -+ - + -+- + - + - + - + -4- + - + -.4- + - + -4-4- + -4.---f-4-- + - + - + -*-♦- + - + - + -♦
| data |

TCP Header Format

Note that one tick murk represents one bit position.

Figure 3.

Source Port: 16 bits

The source port number.

Destination Port: 16 bits

The destination port number.

[Page 15]

2-109

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981

Sequence Number: 32 bits

The sequence number of the first data octet in this segment (except
when SYN is present). If SYN is present the sequence number is the
initial sequence number (ISN) and the first data octet is ISN+1.

Acknowledgment Number: 32 bits

If the ACK control bit is set this field contains the value of the
next sequence number the sender of the segment is expecting to
receive. Once a connection is established this is always sent.

Data Offset: 4 bits

The number of 32 bit words in the TCP Header. This indicates where
the data begins. The TCP header (even one including options) is an
integral number of 32 bits long.

Reserved: 6 bits

Reserved for future use. Must be zero.

Control Bits: 6 bits (from left to right):

URC
ACK
PSH
RST
SYN
FIN

Urgent Pointer field significant
Acknowledgment field significant
Push Function
Reset the connection
Synchronise sequence numbers
No more data from sender

Window: 16 bits

The number of data octets beginning with the one indicated in the
acknowledgment field which the sender of this segment is willing to
accept.

Checksum: 16 bits

The checksum field Is the 16 bit one's complement of the one's
complement sum of all 16 bit words In the header and text. If a
sequent contains an odd number of header and text octets to be
checksummed, the last octet Is padded on the right with zeros to
form a 16 bit word for checksum purposes. The pad is not
transmitted as part of the segment. While computing the checksum,
the checksum field itself is replaced with zeros.

The checksum also covers a 96 bit pseudo header conceptually

[Page 16]

2-200

v;<>V.

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

prefixed to the TCP header. This pseudo header contains the Source
Address, the Destination Address, the Protocol, and TCP length.
This gives the TCP protection against misrouted segments. This
information is carried in the Internet Protocol and is transferred
across the TCP/Network interface in the arguments or results of
calls by the TCP on the IP.

+ + + + +

| Source Address |
+ + + + +

i Destination Address |

j zero | PTCL | TCP Length |
+ + + + +

% i

The TCP Length is the TCP header length plus the data length in
octets (this is not an explicitly transmitted quantity, but is
computed), and it does not count the 12 octets of the pseudo
header.

Urgent Pointer: 16 bits

This field communicates the current value of the urgent pointer as a
positive offset from the sequence number in this segment. The
urgent pointer points to the sequence number of the octet following
the urgent data. This field is only be interpreted in segments with
the URG control bit set.

Options: variable

Captions may occupy space at the end of the TCP header and are a
multiple of 8 bits in length. All options are Included in the
checksum. An option may begin on any octet boundary. There are two
cases for the format of an option:

Case 1: A single octet of option-kind.

Case 2: An octet of option-kind, an octet of option-length, and
the actual option-data octets.

The option-length counts the two octets of option-kind and
option-length as well as the option-data octets.

Note that the list of options may be shorter than the data offset
field might imply. The content of the header beyond the
End-of-Option option must be header padding (i.e.. zero).

A TCP must implement all options.

[Page 171

2-201

■ "- .> > .

M»2

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

Currently defined options include (kind indicated in octal):

Kind Length Meaning

0 - End of option list.
1 - No-Operation.
2 4 Maximum Segment Size.

Specific Option Definitions

End of Option List

+ +

|00000000|
+ +

Kind=0

This option code indicates the end of the option list. This
might not coincide with the end of the TCP header according to
the Data Offset field. This is used at the end of all options,
not the end of each option, and need only be used if the end of
the options would not otherwise coincide with the end of the TCP
header.

No-Operation

|00000001|
♦ ♦
Kind=l

This option code may be used between options, for example, to
align the beginning of a subsequent option on a word boundary.
There is no guarantee that senders will use this option, so
receivers must be prepared to process options even If they do
not begin on a word boundary.

Maximum Segment Size

^.----.-^»♦--.-«-»--♦--------- + --------*

|00000010|00000100| max seg size |
+ + — + — * ♦

Kind=2 Length~4

[Page 18]

2-202

.** A »*» .*• A .

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

Maximum Segment Size Option Data: 16 bits

If this option is present, then it communicates the maximum
receive segment size at the TCP which sends this segment.
This field must only be sent in the initial connection request
(i.e., in segments with the SYN control bit set) . If this
option is not used, any segment size is allowed.

Padding: variable

The TCP header padding is used to ensure that the TCP r aader ends
and data begins on a 32 bit boundary. The padding is composed of
zeros.

3.2. Terminology

Before we can discuss very much about the operation of the TCP we need
to introduce some detailed terminology. The maintenance of a TCP
connection requires the remembering of several variables. We conceive
of these variables being stored in a connection record called a
Transmission Control Block or TCB. Among the variables stored in the
TCB are the local and remote socket numbers, the security and
precedence of the connection, pointers to the user's send and receive
buffers, pointers to the retransmit queue and to the current segment.
In addition several variables relating to the send and receive
sequence numbers are stored in the TCB.

Send Sequence Variables

SNDUHA - send unacknowledged
SND.NXT - send next
SND.WND - send window
SMD.UP * send urgent pointer
SND.WL1 - segment sequence number used for last window update
SND.WL2 * segment acknowledgment number used for last window

update
ISS - initial send sequence number

Receive Sequence Variables

RCV.NXT - receive next
RCV.WMD - receive window
RCV.UP - receive urgent pointer
IRS - initial receive sequence number

i^£

i

[Page 19]

2-203

." *." •.* %* v • **• *%.*\ ■»". <• »v*.

i*- *'\-**_■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

t*4

September 1981
Transmission Control Protocol
Functional Specification

The following diagrams may help to relate some of these variables to
the sequence space.

Send Sequence Space

12 3 4
 , | ,

SND.UNA SND.NXT SND.UNA
♦SND.WND

1 * old sequence numbers which have been acknowledged
2 - sequence numbers of unacknowledged data
3 - sequence numbers allowed for new data transmission
4 - future sequence numbers which are not yet allowed

Send Sequence Space

Figure 4.

The send window is the portion of the sequence space labeled 3 in
figure 4.

Receive Sequence Space

12 3

RCV.NXT RCV.NXT
♦RCV.WND

1 - old sequence numbers which have been acknowledged
2 - sequence numbers allowed for new reception
3 - future sequence numbers which are not yet allowed

Receive Sequence Space

figure 5.

The receive window is the portion of the sequence spaoa labeled 2 In
figure 5.

There are also sotee variables used frequently in the discussion that
take their values from the fields of the current segment.

Tage 20]

2-2CM

;%

ÄV»

-.v

► *

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

Current Segment Variables

SEC.SEQ - segment sequence number
SEG.ACK - segment acknowledgment number
SEG.LEN - segment length
SEG.WND - secnent window
SEG.UP - segment urgent pointer
SEG.PRC - segment precedence value

A connection progresses through a series of states during its
lifetime. The states are: LISTEN, SYN-SENT, SYN-RECEIVED,
ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK,
TIME-WAIT, and the fictional state CLOSED. CLOSED is fictional
because it represents the state when there Is no TCB, and therefore,
no connection. Briefly the meanings of the states are:

LISTEN - represents waiting for a connection request from any remote
TCP and port.

SYN-SENT - represents waiting for a matching connection request
after having sent a connection request.

SYN-RECEIVED - represents waiting for a confirming connection
request acknowledgment after having both received and sent a
connection request.

ESTABLISHED - represents in open connection, data received can be
delivered to the user. The normal state for the data transfer phase
of the connection.

FIN-WAIT-1 - represents waiting for a connection termination request
from the remote TCP, or an acknowledgment of the connection
termination request previously sent.

FIN-WAIT-2 * represents waiting for a connection termination request
from the remote TCP.

CLOSE-WAIT - represents waiting for a connection termination request
from the local user.

CLOSING - represents waiting for a connection termination request
acknowledgment from the remote TCP.

LAST-ACK - represents waiting for an ackr.owledernent of the
connection termination request previously sent to the remote TCP
(which includes an acknowledgment of its connection termination
request).

Lv}

[Page 21]

2-205 . ■ V'

m\ **«*'• **"* *.

iilwi iiiiifoxiii(A»fr»*l'r>;dim!■!■ \Miiiiji lAnfrfr y.y i> i» v i ■»V v>fe»yy>Vij*>j<yjiji^yi'jv'XV.'i>i"'/■:■■;

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

Transmission Control Protocol
Functional Specification

September 1981

TIME-WAIT - represents waiting for enough time to pass to be sure
the remotes TCP received the acknowledgment of its connection
termination request.

CLOSED - represents no connection state at all.

A TCP connection progresses from one state to another in response to
events. The events are the user calls, OPEN, SEND, RECEIVE, CLOSE,
ABORT, and STATUS; the incoming segments, particularly those
containing the SYN, ACK, RST and FIN flags; and timeouts.

The state diagram in figure 6 illustrates only state changes, together
with the causing events and resulting actions, but addresses neither
error conditions nor actions which are not connected with state
changes. In a later section, more detail is offered with respect to
the reaction of the TCP to events.

NOTE BENE: this diagram is only a summary and must not be taken as
the total specification.

i\

[Page 22}

2-206
r.

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

+ +

| CLOSED |
+ +<

"\
\

active OPEN

passive OPEN |

create TCB |
V I

+ +

j LISTEN j
+ +

rev SYN | i SEND

\ \ create TCB
\ \ snd SYN

CLOSE \ \
" ~~ \ \
delete TCB \ \

\ \
CLOSE

delete TCB

I

\

I
V

♦ + snd SYN,ACK / \ snd SYN
<

SYN j rev SYN
RCVD |< - -

snd ACK

 * rev ACK of SYN \

x

CLOSE

snd FIN
I

CLOSE

snd FIN /
I FIN 1<
| WAIT-1 | -
♦ ♦ rev FIN \

| rev ACK of FIN
| - snd ACK
V x V

♦ «. ♦ ♦

1FINWAIT-2I | CLOSING |
♦ ♦ ♦ +

I rev ACK of FIN 1

/ rev SYN, ACK

snd ACK

SYN
SENT

ESTAB

rev FIN

\ snd ACK ♦ --— ----♦
->j CLOSE |

| WAIT |
♦ ---...---» +

CLOSE 1

snd FIN V
+ „ — ••..•+

I LÄST-ACK!
♦ --*«•+

rev ACK of FIN I
rev FIN Timeout=2MSL

i
\ snd ACK ♦delete TCB

•>|TIME WAITI ->{ CLOSED |

i

TCP Connection State Diagram
Figure 6.

2-207

[Page 23,

1£ i'a'it ~ ' * - * ' - ' ' •'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

3.3. Sequence Numbers

A fundamental notion in the design is that every octet of data sent
over a TCP connection has a sequence number. Since every octet is
sequenced, each of them can be acknowledged. The acknowledgment
mechanism employed is cumulative so that an acknowledgment of sequence
number X indicates that all octets up to but not including X have been
received. This mechanism allows for straight-forward duplicate
detection in the presence of retransmission. Numbering of octets
within a segment is that the first data octet immediately following
the header Is the lowest numbered, and the following octets are
numbered consecutively.

It is essential to remember that the actual sequence number space is
finite, though very large. This space ranges from 0 to 2**32 * 1.
Since the space is finite, all arithmetic dealing with sequence
numbers must be performed modulo 2**32, This unsigned arithmetic
preserves the relationship of sequence numbers as they cycle from
2**32 - l to 0 again. There are some subtleties to computer modulo
arithmetic, so great carcj should be taken in programming the
comparison of such values. The symbol "»<" means "less than or equal**
(modulo 2**32).

The typical kinds of sequence number comparisons which the TCT must
perform include:

(a) Determining that an acknowledgment refers to some sequence
number sent but not yet acknowledged.

(b) Determining tha? all sequence numbers occupied by a segment
have been acknowledged (e.g.. to remove the sequent from a
retransmission queue).

(c) Determining that an Incoming segment contains sequence numbers
which are expected (i.e., that the segment "overlaps" the
receive window).

'Page 24]

2-20S

f%X*

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

In response to sending data the TCP will receive acknowledgments. The
following comparisons are needed to process the acknowledgments.

SND.UNA - oldest unacknowledged sequence number

SND.NXT = next sequence number to be sent

SEG.ACK = acknowledgment from the receiving TCP (next sequence
number expected by the receiving TCP)

SEG.SEQ - first sequence number of a segment

SEG.LEN * the number of octets occupied by the data in the segment
(counting SYN and FIN)

SEG.SEQ+SEG.LEN-1 « last sequence number of a segment

A new acknowledgment (called an "acceptable ack"), is one for which
the inequality below holds:

SND.UNA < SEG.ACK *< SND.NXT

A segmr "it oh the retransmission queue is fully acknowledged if the sum
of it* sequence number and length is less or equal than the
acknowledgment value in the incoming segment.

When data is received the following cr sparisons are needed:

RCV.NXT * next sequence number expected on an incoming segments, and
is the left or lower edge of the receive window

RCV.NXT*RCV.WND-l * last sequence number expected on an incoming
segment, and is ehe right or upper edge of the receive window

SEG.SEQ * first sequence number occupied by the incoming segment

SEG.SEQ*5EG.LEN«1 « last se<^ience number occupied by the incoming
segment

A segment is judged to occupy a portion of valid receive sequence
space if

RCV.NXT *< SEG.SEQ < RCV.NXT*RCV.WND

cr

RCV.NXT »< SEG.SEQ*SEG.LEN-^ RCV.NXT»RCV.WND

[Page 2S]

2-2ÖÖ

.,-. %v
** ■-> *-* i~* •_• *^ •_« •_• \? \- V.••_ *.-_V_V_ A. /ÜfcV-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981

The first part of this test checks to see if the beginning of the
segment falls in the window, the second part of the test checks to see
if the end of the segment falls in the window; if the segment passes
either part of the test it contains data in the window.

Actually, it is a little more complicated than this. Due to zero
windows and zero length segments, we have four cases for the
acceptability of an incoming segment:

Segment Receive Test
Length Window

0 0 SEG.SEQ * RCV.NXT

0 >0 RCV.NXT ~< SEG.SEQ < RCV.NXT+RCV.WND

>0 0 not accept; ble

>0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
or RCV.NXT »< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

Note that when the receive window is zero no se^pnents should be
acceptable except ACK segments. Thus, it is be possible for a TCP to
maintain a zero receive window while transmitting data ard receiving
ACKs. However, even when the receive window is zero, a TCP must
process the RST and URG fields of all incoming segments.

We have taken advantage of the numbering scheme to protect certain
control information as well. This is achieved by implicitly including
some control flags in the sequence space so they can be retransmitted
and acknowledged without confusion (i.e.. one and only one copy of the
control will be acted upon). Control information is not physically
carried in the segment data space. Consequently, we must adopt rules
for implicitly assigning sequence numbers to control. The SYN and FIN
are the only controls requiring this protection, and these controls
are used only at connection opening and closing. For sequence number
purposes, the SYN is considered to occur before the first actual data
octet of the segment in which it occurs, while the FIN is considered
to occur after the last actual data octet in a segment in which it
occurs. The segment length (SEG.LEN) includes both data and sequence
space occupying controls. When a SYN is present then SEG.SEQ is the
sequence number of the SYN.

[Page 26}

2-210

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

Initial Sequence Number Selection

The protocol places no restriction on a particular connection being
used over and over again. A connection is defined by a pair of
sockets. New instances of a connection will be referred to as
incarnations of the connection. The problem that arises from this is
-- "how does the TCP identify duplicate segments from previous
incarnations of the connection?" This problem becomes apparent if the
connection is being opened and closed in quick succession, or if the
connection breaks with loss of memory and is then reestablished.

To avoid confusion we must prevent segments from one incarnation of a
connection from being used while the same sequence numbers may still
be present in the network from an earlier incarnation. We want to
assure this, even if a TCP crashes and loses all knowledge of the
sequence numbers it has been using. When new connections are created,
an initial sequence numtjr (ISN) generator is employed which selects a
new 32 bit ISN. The generator is bound to a (possibly fictitious) 32
bit clock whose low order bit is incremented roughly every 4
microseconds. Thus, the ISN cycles approximately every 4.55 hours.
Since we assume that segments will stay in the network no more than
the Maximum Segment Lifetime (MSL) and that the MSL is less than 4.55
hours we can reasonably assume that ISN*s will be unique.

For each connection there is a send sequence number and a receive
sequence number. The initial send sequence number (ISS) is chosen by
the data sending TCP, and the initial receive sequence number (IRS) is
learned during the connection establishing procedure.

For a connection to be established or initialized, the two TCPs must
synchronize on each other's initial sequence numbers. This is done in
an exchange of connection establishing segments carrying a control bit
called "SYN" (for synchronize) and the initial sequence numbers. As a
shorthand, segments carrying the SYN bit are also called "SYNs".
Hence, the solution requires a suitable mechanism for picking an
initial sequence number and a slightly involved handshake to exchange
the ISN's.

The synchronization requires each side to send it's own initial
sequence number and to receive a confirmation of it in acknowledgment
from the other side. Each side must also receive the other side's
initial sequence number and send a confirming acknowledgment.

1) A --> B SYN my sequence number is X
2) A <-- B ACK your sequence number is X
3) A <-- B SYN my sequence number is Y
4) A --> B ACK your sequence number is Y

[Page 27]

2-211

.^ijjL^ifr^aiLalaL^j^l^l^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981
*tfs

Because steps 2 and 3 can be combined in a single message this is
called the three way (or three message) handshake.

A three way handshake is necessary because sequence numbers are not
tied to a global clock in the network, and TCPs may have different
mechanisms for picking the ISN's. The receiver of the first SYN has
no way of knowing whether the segment was an old delayed one or not,
unless it remembers the last sequence number used on the connection
(which is not always possible), and so it must ask the sender to
verify this SYN. The three way handshake and the advantages of a
clock-driven scheme are discussed in [3].

Knowing When to Keep Quiet

To be sure that a TCP does not create a segment that carries a
sequence number which may be duplicated by an old segment remaining in
the network, the TCP must keep quiet for a maximum segment lifetime
(MSL) before assigning any sequence numbers upon starting up or
recovering from a crash in which memory of sequence numbers in use was
lost. For this specification the MSL is taken to be 2 minutes. This
is an engineering choice, and may be changed if experience indicates
it is desirable to do so. Note that if a TCP is reinitialized in some
sense, yet retains its memory of sequence numbers in use, then it need
not wait at all; it must only be sure to use sequence numbers larger
than those recently used.

The TCP Quiet Time Concept

This specification provides that hosts which "crash" without
retaining any knowledge of the last sequence numbers transmitted on
each active (i.e., not closed) connection shall delay emitting any
TCP segments for at least the agreed Maximum Segment Lifetime (MSL)
in the internet system of which the ho^t is a part. In the
paragraphs below, an explanation for this specification is given.
TCP implementors may violate the "quiet time" restriction, but only
at the risk of causing some old data to be accepted as new or new
data rejected as old duplicated by some receivers in the internet
system.

TCPs consume sequence number space each time a segment is formed and
entered into the network output queue at a source host. The
duplicate detection and sequencing algorithm in the TCP protocol
relies on the unique binding of segment data to sequence space to
the extent that sequence numbers will not cycle through all 2**32
values before the segment data bound to those sequence numbers has
been delivered and acknowledged by the receiver and all duplicate
copies of the segments have "drained" from the internet. Without
such an assumption, two distinct TCP segments could conceivably be

[Page 28]

2-212

• - f. -*. *\ •

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

assigned the same or overlapping sequence numbers, causing confusion
at the receiver as to which data is new and which is old. Remember
that each segment is bound to as many consecutive sequence numbers
as there are octets of data in the segment.

Under normal conditions, TCPs keep track of the next sequence number
to emit and the oldest awaiting acknowledgment so as to avoid
mistakenly using a sequence number over before its first use has
been acknowledged. This alone does not guarantee that old duplicate
data is drained from the net, so the sequence space has been made
very large to reduce the probability that a wandering duplicate will
cause trouble upon arrival. At 3 megabits/sec. it takes 4.5 hours
to use up 2**32 octets of sequence space. Since the maximum segment
lifetime in the net is not likely to exceed a few tens of seconds,
this is deemed ample protection for foreseeable nets, even if data
rates sscalate to 10•s of megabits/sec. At 100 megabits/sec, the
cycle time is 5.4 minutes which may be a little short, but still
within reason.

The basic duplicate detection and sequencing algorithm in TCP can be
defeated, however, if a source TCP does not have any memory of the
sequence numbers it last used on a given connection. For example, if
the TCP were to start all connections with sequence number 0, then
upon crashing and restarting, a TCP might re-form an earlier
connection (possibly after half-open connection resolution) and emit
packets with sequence numbers identical to or overlapping with
packets still in the network which were emitted on an earlier
incarnation of the same connection. In the absence of knowledge
about the sequence numbers used on a particular connection, the TCP
specification recommends that the source delay for MSL seconds
before emitting segments on the connection, to allow time for
segments from the earlier connection incarnation to drain from the
system.

Even hosts which can remember the time of day and used it to select
initial sequence number values are not immune from this problem
(i.e., even if time of day is used to select an initial sequence
number for each new connection incarnation).

Suppose, for example, that a connection is opened starting with
sequence number S. Suppose that this connection is not used much
and that eventually the initial sequence number function (ISN(t))
takes on a value iqual to the sequence number, say SI, of the last
segment sent by this TCP on a particular connection. Now suppose,
at this instant, the host crashes, recovers, and establishes a new
incarnation of the connection. The initial sequence number chosen is
SI ■ ISN(t) — l:ist used sequence number on old incarnation of
connection! If the recovery occurs quickly enough, any old

[Page 29]

2-213

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

duplicates in the net bearing sequence numbers in the neighborhood
of SI may arrive and be treated as new packets by the receiver of
the new incarnation of the connection.

The problem is that the recovering host may not know for how long it
crashed nor does it know whether there are still old duplicates in
the system from earlier connection incarnations.

One way to deal with this problem is to deliberately delay emitting
segments for one MSL after recovery from a crash- this is the "quite
time" specification. Hosts which prefer to avoid waiting are
willing to risk possible confusion of old and new packets at a given
destination may choose not to wait for the "quite time".
Implementors may provide TCP users with the ability to select on a
connection by connection basis whether to wait after a crash, or may
informally implement the "quite time" for all connections.
Obviously, even where a user selects to "wait," this is not
necessary after the host has been "up" for at least MSL seconds.

To summarize: every segment emitted occupies one or more sequence
numbers in the sequence space, the numbers occupied by a segment are
"busy" or "in use" until MSL seconds have passed, upon crashing a
block of space-time is occupied by the octets of the last emitted
segment, if a new connection is started too soon and uses any of the
sequence numbers in the space-time footprint of the last segment of
the previous connection incarnation, there is a potential sequence
number overlap area which could cause confusion at the receiver.

3.4. Establishing a connection

The "three-way handshake" is the procedure used to establish a
connection. This procedure normally is initiated by one TCP and
responded to by another TCP. The procedure also works if two TCP
simultaneously initiate the procedure. When simultaneous attempt
occurs, each TCP receives a ^SYN" segment which carries no
acknowledgment after it has sent a "SYN". Of course, the arrival of
an old duplicate "SYN" segment can potentially make it appear, to the
recipient, that a simultaneous connection initiation is in progress.
Proper use of "reset" segments can dlsambiguate these cases.

Several examples of connection initiation follow. Although these
examples do not show connection synchronization using data-carrying^
segments, this is perfectly legitimate, so long as the receiving TCP
doesn't deliver the data to the user until it is clear the data is
valid (i.e., the data must be buffered at the receiver until the
connection reaches the ESTABLISHED state). The three-way handshaka
reduces the possibility of false connections. It is the

[Page 30]

2-214

•fc

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

implementation of a trade-off between memory and messages to provide
information for this checking.

The simplest three-way handshake is shown in figure 7 below. The
figures should be interpreted in the following way. Each line is
numbered for reference purposes. Right arrows (-->) indicate
departure of a TCP segment from TCP A to TCP B, or arrival of a
segment at B from A. Left arrows (<--), indicate the reverse.
Ellipsis (.••) indicates a segment which is still in the network
(delayed). An "XXX" indicates a segment which is lost or rejected.
Comments appear in parentheses. TCP states represent the state AFTER
the departure or arrival of the segment (whose contents are shown in
the center of each line). Segment contents are shown in abbreviated
form, with sequence number, control flags, and ACK field. Other
fields such as window, addresses, lengths, and text have been left out
in the interest of clarity.

TCP A

1. CLOSED

2. SYN-SENT —> <SEQ=100><CTL=SYN>

TCP B

LISTEN

--> SYN-RECEIVED

3. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <— SYN-RECEIVED

4. ESTABLISHED --> <SEQ»101><ACK=301><CTL=ACK> --> ESTABLISHED

5. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED

Basic 3-Way Handshake for Connection Synchronization

Figure 7.

In line 2 of figure 7, TCP A begins by sending a SYN segment
indicating that it will use sequence numbers starting with sequence
number 100. In line 3, TCP B sends a SYN and acknowledges the SYN it
received Zrzm TCP A. Note that the acknowledgment field indicates TCP
B is now expecting to hear sequence 101, acknowledging the SYN which
occupied sequence 100.

At line 4, TCP A responds with an empty segment containing an ACK for
TCP B's SYN; and in "line 5, TCP A sends some data. Note that the
sequence number of the segment in line 5 is the* same as in line 4
because the ACK does not occupy sequence number space (if it did, we
would wind up ACKlng ACK's!).

[Page 31]

2-215

y%y>.i<-
V V *•" Vv.,**.,>"* *"" •"■ »*■ •"• '** *"* ■"* •'• •"* •"*"•**•*•*•*•* •*.**" •-" ••* • * v •.•"♦

^^^v.^/%vN^.;v;*Vv/%Vt^.v.v-^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981

Simultaneous initiation is only slightly more complex, as is shown in
figure 8. Each TCP cycles from CLOSED to SYN-SENT to SYN-RECEIVED to
ESTABLISHED.

TCP A

1. CLOSED

2. SYN-SENT

TCP B

CLOSED

--> <SEQ=100><CTL=SYN>

3. SYN-RECEIVED <-- <SEQ=300><CTL=SYN>

4. ... <SEQ=100><CTL=SYN>

<-- SYN-SENT

--> SYN-RECEIVED

5. SYN-RECEIVED ~-> <SEQ=100><ACK=301><CTL=SYN,ACK> ...

6. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

7. ... <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED

Simultaneous Connection Synchronization

Figure 8.

The principle reason for the three-way handshake is to prevent old
duplicate connection initiations from causing confusion. To deal with
this, a special control message, reset, has been devised. If the
receiving TCP is in a non-synchronized state (i.e., SYN-SENT,
SYN-RECEIVED), it returns to LISTEN on receiving an acceptable reset.
If the TCP is in one of the synchronized states (ESTABLISHED,
FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT), it
aborts the connection and informs its user. We discuss this latter
case lander "half-open" connections below.

[Page 32]

2-216

:viv>.-

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

TCP A TCP B

1. CLOSED LISTEN

2. SYN-SENT —> <SEQ=100><CTL=SYN>

3. (duplicate) ... <SEQ=90><CTL=SYN> --> SYN-RECEIVED

4. SYN-SENT <-- <S£Q=300><ACK=91><CTL=SYN,ACK> <-- SYN-RECEIVED

5. SYN-SENT --> <SEQ=91><CIL=RST> —> LISTEN

6. ... <SEQ=100><CTL=SYN> --> SYN-RECEIVED

7. SYN-SENT <-- <SEQ=400><ACK==101><CTL=SYN,ACK> <-- SYN-RECEIVED

8. ESTABLISHED --> <SEQ*101><ACK=401><CTL=ACK> --> ESTABLISHED

Recovery from Old Duplicate SYN

Figure 9.

As a simple example of recovery from old duplicates, consider
figure 9. At line 3, an old duplicate SYN arrives at TCP B. TCP B
cannot tell that this is an old duplicate, so it responds normally
(line 4) . TCP A detects that the ACK field is incorrect and returns a
R5T (reset) with its SEQ field selected to make the segment
believable. TCP B, on receiving the RST, returns to the LISTEN state.
When the original SYN (pun intended) finally arrives at line 6, the
synchronization proceeds normally. If the SYN at line 6 had arrived
before the RST, a more complex exchange might have occurred with RST's
sent in both directions.

Half-Open Connections and Other Anomalies

An established connection is said to be "half-open" if one of the
TCPs has closed or aborted the connection at its end without the
knowledge of the other, or if the two ends of the connection have
become desynchronized owing to a crash that resulted in loss of
memory. Such connections will automatically become reset if an
attempt is made to send data in either direction. However, half-open
connections are expected to be unusual, and the recovery procedure is
mildly involved.

If at site A the connection no longer exists, then an attempt by the

[Page 33]

2-217 V

A.
"l%\v>i /&X>v.^^*Nv-V'wl*i

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981

user at site B to send any data on it will result in the site B TCP
receiving a reset control message. Such a message indicates to the
site B TCP that something is wrong, and it is expected to abort the
connection.

Assume that two user processes A and B are communicating with one
another when a crash occurs causing loss of memory to A's TCP.
Depending on the operating system supporting A's TCP, it is likely
that some error recovery mechanism exists. When the TCP is up again,
A is likely to start again from the beginning or from a recovery
point. As a result, A will probably try to OPEN the connection again
or try to SEND on the connection it believes open. In the latter
case, it receives the error message "connection not open" from the
local (A's) TCP. In an attempt to establish the connection, A's TCP
will send a segment containing SYN. Ihis scenario leads to the
example shown in figure 10. After TCP A crashes, the user attempts to
re-open the connection. TCP B, in the meantime, thinks the connection
is open.

TCP A TCP B

1. (CRASH) (send 300,receive 100)

2. CLOSED ESTABLISHED

3. SYN-SENT — > <SEQ=400><CTL=SYN> --> (??)

4. (!!) <-- <SEQ==300><ACK=100><CTL=ACK> <-- ESTABLISHED

5. SYN-SENT --> <SEQ=100><CTL=RST> --> (Abort!!)

6. SYN-SENT CLOSED

7. SYN-SENT --> <SEQ=400><CTL=SYN> -->

Half-Qpen Connection Discovery

Figure 10.

When the SYN arrives at line 3, TCP B, being in a synchronized state,
and the Incoming segment outside the window, responds with an
acknowledgment indicating what sequence it next expects to hear (ACK
100) . TCP A sees that this segment does not acknowledge anything it
sent and, being unsynchronized, sends a reset (RST) because it has
detected a naif-open connection. TCP B aborts at line 5. TCP A will

[Page 34]

2-218

lw&W:<w:tt.<<5 V'IVI^IN^IN'INL- *•■.«%

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

continue to try to establish the connection; the problem is now
reduced to the basic 3-way handshake of figure 7.

An interesting alternative case occurs when TCP A crashes and TCP B
tries to send data on what it thinks is a synchronized connection.
This is illustrated in figure 11. In this case, the data arriving at
TCP A from TCP B (line 2) is unacceptable because no such connection
exists, so TCP A sends a RST. The RST is acceptable so TCP B
processes it and aborts the connection.

TCP A TCP B

1. (CRASH) (send 300,receive 100)

2. (??) <--■ <SEQ=300><AOC=100><DATA=10><CTL=ACK> <-- ESTABLISHED

3. — > <SEQ=100><CTL=RST> —> (ABORT!!)

Active Side Causes Half-Open Connection Discovery

Figure 11.

In figure 12, we find the two TCP« A and B with passive connections
waiting for SYN. An old duplicate arriving at TCP B (line 2) stirs B
into action. A SYN-ACK is returned (line 3) and causes TCP A to
generate a RST (the ACK in line 3 is not acceptable). TCP B accepts
the reset and returns to its passive LISTEN state.

-*.

TCP A

1. LISTEN

2. ... <SEQ=Z><CTL=SYN>

3. (??) <-- <SEQ=X><ACK=Zn><CnL=SYN,ACK>

4. --> <SEQ=Z*1><CTL=RST>

5. LISTEN

Old Duplicate SYN Initiates a Reset on two Passive Sockets

Figure 12.

TCP B

LISTEN

--> SYN-RECEIVED

<-- SYN-RECEIVED

--> (return to LISTEN!)

LISTEN

[Page 35]

2-219

•JW*_V-\"-VAV.'.»:\.\ y.>*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981

A variety of other cases are possible, all of which are accounted for
by the following rules for RST generation and processing.

Reset Generation

As a general rule, reset (RST) must be sent whenever a segment arrives
which apparently is not intended for the current connection. A reset
must not be sent if it is not clear that this is the case.

There are three groups of states:

1. If the connection does not exist (CLOSED) then a reset is sent
in response to any incoming segment except another reset. In
particular, SYNs addressed to a non-existent connection are rejected
by this means.

If the incoming segment has an ACK field, the reset takes its
sequence number from the ACK field of the segment, otherwise the
reset has sequence number zero and the ACK field is set to the sum
of the sequence number and segment length of the incoming segment.
The connection remains in the CLOSED state.

2. If the connection is in any non-synchronized state (LISTEN,
SYN-SENT, SYN-RECEIVED), and the incoming segment acknowledges
something not yet sent (the segment carries an unacceptable ACK), or
if an incoming segment has a security level or compartment which
does not exactly match the level and compartment requested for the
connection, a reset is sent.

If our SYN has not been acknowledged and the precedence level of the
incoming segment is higher than the precedence level requested then
either raise the local precedence level (if allowed by the user and
the system) or send a reset; or if the precedence level of the
incoming segment is lower than the precedence level requested then
continue as if the precedence matched exactly (if the remote TCP
cannot raise the precedence level to match ours this will be
detected in the next segment it sends, and the connection will be
terminated then) . If our SYN has been acknowledged (perhaps in this
incoming segment) the precedence level of the incoming segment must
match the local precedence level exactly, if it does not a reset
must be sent.

If the incoming segment has an ACK field, the reset takes its
sequence number from the ACK field of the segment, otherwise the
reset has sequence number zero and the ACK field is set to the sum
of the sequence number and segment length of the incoming segment.
The connection remains in the same state.

v\

[Page 36]

2-220

*»■ *• .*♦ .*»^"»,

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

L"*"

3. If the connection is in a synchronized state (ESTABLISHED,
FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT),
any unacceptable segment (out of window sequence number or
unacceptible acknowledgment number) must elicit only an empty
acknowledgment segment containing the current send-sequence number
and an acknowledgment indicating the next sequence number expected
to be received, and the connection remains in the same state.

If an incoming segment has a security level, or compartment, or
precedence which does not exactly match the level, and compartment,
and precedence requested for the connections reset is sent and
connection goes to the CLOSED state. The reset takes its sequence
number from the ACK field of the incoming segment.

Reset Processing

In all states except SYN-SENT, all reset (RST) segments are validated
by checking their SEQ-fields. A reset is valid if its sequence number
is in the window. In the SYN-SENT state (a RST received in response
to an initial SYN), the RST is acceptable i f the ACK field
acknowledges the SYN.

The receiver of a RST first validates it. then changes state. If the
receiver was in the LISTEN state, it ignores it. If the receiver was
in SYN-RECEIVED state and had previously been in the LISTEN state,
then the receiver returns to the LISTEN state, otherwise the receiver
aborts the connection and goes to the CLOSED state. If the receiver
was in any other state, it aborts the connection ard advises the user
and goes to the CLOSED state.

3.5. Closing a Connection

CLOSE is an operation meaning "I have no more data to send." The
notion of closing a full-duplex connection is subject to ambiguous
interpretation, of course, since it may not be obvious how to treat
the receiving side of the connection. We have chosen to treat CLOSE
in a simplex fashion. The user who CLOSES may continue to RECEIVE
until he is told that the other side has CLOSED also. Thus, a program
could initiate several SENDs followed by a CLOSE, and then continue to
RECEIVE until signaled that a RECEIVE failed becau&e the other side
has CLOSED. We assume that the TCP will signal a user, even if no
RECEIVES are outstanding, that the other side has closed, so the user
can terminate his side gracefully. A TCP will reliably deliver all
buffers SENT before the connection was CLOSED so a user who expects no
data in return need only wait to hear the connection was CLOSED
successfully to know that all his data was received at the destination
TCP. Users must keep reading connections they close for sending until
the TCP says no more data.

&

[Page 37:

2-221

\ •'.

;.:^.y>^>:v..-. .
***** ****«*;

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981

There are essentially three cases:

1) The user initiates by telling the TCP to CLOSE the connection

2) The remote TCP initiates by sending a FIN control signal

3) Both users CLOSE simultaneously

Case 1: Local user initiates the close

In this case, a FIN segment can be constructed and placed on the
outgoing segment queue. No further SENDs from the user will be
accepted by the TCP, and it enters the FIN-WAIT-1 state. RECEIVES
are allowed in this state. All segments preceding and including FIN
will be retransmitted until acknowledged. When the other TCP has
both acknowledged the FIN and sent a FIN of its own, the first TCP
can AOC this FIN. Note that a TCP receiving a FIN will ACK but not
send its own FIN until its user has CLOSED the connection also.

Case 2: TCP receives a FIN from the network

If an unsolicited FIN arrives from the network, the receiving TCP
can ACK it and tell the user that the connection is closing. The
user will respond with a CLOSE, upon which the TCP can send a FIN to
the other TCP after sending any remaining data. The TCP then waits
until its own FIN is acknowledged whereupon it deletes the
connection. If an ACK is not forthcoming, after the user timeout
the connection is aborted and the user is told.

Case 3: both users close simultaneously

A simultaneous CLOSE by users at both ends of a connection causes
FIN segments to be exchanged. When all segments preceding the FINs
have been processed and acknowledged, each TCP can ACK the FIN it
has received. Both will, upon receiving these ACJCs, delete the
connection.

[Page 38]

2-2*2*2

. , - »•> »*»■• .^. •. /«.«..'».*•*

>>>y^>>>>> .\. >>:>'>:/■>>>'>>"/»> >^-'IV1VA*S*S
,
I»V> *iv!%v>s%: ^l%v^•:v:vlN^»^A^v:v:v:C'^>l^ V:

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

TCP A

1, ESTABLISHED

TCP B

ESTABLISHED

2. (Close)
FIN-WAIT-1 --> <SEQ=100><ACK=300><CTL=FIN,ACK> --> CLOSE-WAIT

3. FIN-WAIT-2 <-- <SEQ=300><ACK=101><CTL=ACK>

4.

<-- CLOSE-WAIT

(Close)
TIME-WAIT <-- <SEQ=300><ACK=101><CTL=FIN,ACK> <-- LAST-ACK

5. TIME-WAIT --> <SEQ=101><ACK=301><CTL=ACK>

6. (2 MSL)
CLOSED

Normal Close Sequence

Fi^re 13.

TCP A

1. ESTABLISHED

2. (Close)
FIN-WAIT-1 --> <SEQ=100><ACK=300><CTL=FIN,ACK>

<-- <SEQ»300><ACKn00><CTL»FIN,ACK>
... <SEQ*100><ACK*300><CTL=FIN.ACK>

3. CLOSING

TIME-WAIT
(2 MSL)
CLOSED

--> <SEQal01><ACK*301><CTL«ACK>
<-- <SEQ*301><ACK=101><CTL=ACK>
... <SEQ*101><ACK=3Q1><CTL*ACK>

Simultaneous Close Sequence

Figure 14.

2-223

--> CLOSED

TCP B

ESTABLISHED

(Close)
FIN-WAIT-1

CLOSING

- ->

TIME-WAIT
(2 MSL)
CLOSED

[Page 39;

>S

1 .*» .>»"- *•
•- -- ^" ^' »-* ^* a^ i laJ! * * •-• *.»..». -\ ■". «*.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

3.6. Precedence and Security

The intent is that connection be allowed only between ports operating
with exactly the same security and compartment values and at the
higher of the precedence level requested by the two ports.

The precedence and security parameters used in TCP are exactly those
defined in the Internet Protocol (IP) [2]. Throughout this TCP
specification the term "security/compartment" is intended to indicate
the security parameters used in IP including security, compartment,
user group, and handling restriction.

A connection attempt with mismatched security/compartment values or a
lower precedence value must be rejected by sending a reset. Rejecting
a connection due to too low a precedence only occurs after an
acknowledgment of the SYN has been received.

Note that TCP modules which operate only at the default value of
precedence will still have to check the precedence of incoming /.'
seoj&ents and possibly raise the precedence level they use on the
connection.

2-2Ü«!

■>•.<•■•:>:■-:•.-.:-.-Xv:-or>:>:-.-:y.v.-• -. >.••: ••: ::•■ -.• ■ ■-.••■. - -.■■■■ :•-. .--.■

The security parameters may be used even in a non-secure environment
(the values would indicate unclassified data). thus hosts in
non-secure environments must be prepared to receive the security
parameters, though they need not send them.

3.7. Data Communication

Once the connection is established data is communicated by the
•vchange of segments. Because segments may be lost due to errors
(checksum test failure), or network congestion. TCP uses
retransmission (after a timeout) to ensure delivery of every segment.
Duplicate segments may arrive due to network or TCP retransmission.
As discussed in the section on sequence numbers the TCP performs

X* certain tests on the sequence and acknowledgment numbers in the
segments to verify their acceptability. £

The sender of data keeps track of the next sequence number to us«* in t
the variable SND.NXT. The receiver of data keeps track of the next
sequence number to expect in the variable RCV.NXT. The sender of data ;
keeps track of the oldest unacknowledged sequence number in the ,?.\
variable SND.UNA. If the data flow is momentarily idle ana all data V
sent has been acknowledged then the three variables will be equal. *■'• ■
When the sender creates a segment and transmits it the sender advances
SND.NXT. When the receiver accepts a segment it advances RCV.NXT and
sends an acknowledgment. Vlhen the data sender receives an

[Page 40}

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

acknowledgment it advances SND.UNA. The extent to which the values of
these variables differ is a measure of the delay in the communication.
The amount by which the variables are advanced is the length of the
data in the segment. Note that once in the ESTABLISHED state all
segments must carry current acknowledgment information.

The CLOSE user call implies a push function, as does the FIN control
flag in an incoming segment.

Retransmission Timeout

Because of the variability of the networks that compose an
internetwork system and the wide range of uses of TCP connections the
retransmission timeout must be dynamically determined. One procedure
for determining a retransmission time out is given here as an
illustration.

An Example Retransmission Timeout Procedure

Measure the elapsed time between sending a data octet with a
particular sequence number and receiving an acknowledgment that
covers that sequence number (segments sent do not have to match
segments received). This measured elapsed time is the Round Trip
Time (RTT) . Next compute a Smoothed Round Trip Time (SRTT) as:

SRTT = (ALPHA * SRTT) + ((1-ALPHA) * RTT)

and based on this, compute the retransmission timeout (RTO) as:

RTO * min[UBOUND,max[LBOUND, (BETA*SRTT)]]

where UBOUND is an upper bound on the timeout (e.g., 1 minute),
LBOUND is a lower bound on the timeout (e.g., 1 second), ALPHA is
a smoothing factor (e.g., .8 to .9), and BETA is a delay variance
factor (e.g., 1.3 to 2.0).

The Communication of Urgent Information

The objective of the TCP urgent mechanism is to allow the sending user
to stimulate the receiving user to accept some urgent data and to
permit the receiving TCP to indicate to the receiving user when all
the currently known urgent data has been received by the user.

This mechanism permits a point in the data stream to be designated as
the end of urgent information. Whenever this point is in advance of
the receive sequence number (RCV.NXT) at the receiving TCP, that TCP
must teii the user vo go into "urgent mode"; when the receive sequence
number catches up to the urgent pointer, the TCP must tell user to go

[Page 41]

2-225 'O
■

P. *-.-,. v ■•■-....■._... *»" *
L •• *' .* «r * .•*.*". ".•'•*•"■*■> *.-.*.•»*• » ■■»-.- . .*. -.-.•„•»"*»> A . »fc*,*.«h*.-,'«-,»,»»'.«^'fcw*.»»*H*«i,*«'***%**« ■****•»'•
P. *. * •. *.%».*.••* » ■ •"•*.*." ••.•».*♦*.*.-.•,•.•.*. .•.•.».*-•. »»•-'•.-.>.•. •,»„♦. . • » " . "«« «r .. » « * « " • ••»«•.«.•.». • .
L .". ■ -" *. .* »* ." .* •* V '. ".* ,'• ,« ".-'.•.> ,*'«• * *■••*.• '.- .' \ .*.•*. ".*"•*-**'." *.*.'»*.-«•.-."»•,■.*.•*• A* . » «A «•»•.•»••• h - . • . • » *

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981

into "normal mode". If the urgent pointer is updated while the user
is in "urgent mode", the update will be invisible to the user.

The method employs a urgent field which is carried in all segments
transmitted. The ÜRG control flag indicates that the urgent field is
meaningful and must be added to the segment sequence number to yield
the urgent pointer. The absence of this flag indicates that there is
no urgent data outstanding.

To send an urgent indication the user must also send at least one data
octet. If the sending user also indicates a push, timely delivery of
the urgent information to the destination process is enhanced.

Managing the Window

The window sent in each segment indicates the range of sequence
numbers the sender of the window (the data receiver) is currently
prepared to accept. There is an assumption that this is related to
the currently available data buffer space available for this
connection.

Indicating a large window encourages transmissions. If more data
arrives than can be accepted, it will be discarded. This will result
in excessive retransmissions, adding unnecessarily to the load on the
network and the TCPs. Indicating a small window may restrict the
transmission of data to the point of introducing a round trip delay
between each new segment transmitted.

The mechanisms provided allow a TCP to advertise a large window and to
subsequently advertise a much smaller window without having accepted
that much data. This, so called "shrinking the window," is strongly
discouraged. The robustness principle dictates that TCPs will not
shrink the window themselves, but will be prepared for such behavior
on the part of other TCPs.

The sending TCP must be prepared to accept from the user and send at
least one octet of new data even if the send window is zero. The
sending TCP must regularly retransmit to the receiving TCP even when
the window is zero. Two minutes is recommended for the retransmission
interval when the window is zero. This retransmission is essential to
guarantee that when either TCP has a zero window the ^e-opening of the
window will be reliably reported to the other.

When the receiving TCP has a zero window and a segrjent arri\es it must
still send an acknowledgment showing its next expected sequence number
and current window (zero).

The sending TCP packages the data to be transmitted into segments

[Page 42]

2-226

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

which fit the current window, and may repackage segments on the
retransmission queue. Such repackaging is not required, but may be
helpful.

In a connection with a one-way data flow, the window information will
be carried in acknowledgment segments that all have the same sequence
number so ther<3 will be no way to reorder them if they arrive out of
order. This is not a serious problem, but it will allow the window
information to be on occasion temporarily based on old reports from
the data receiver. A refinement to avoid this problem is to act on
the window information from segments that carry the highest
acknowledgment number (that is segments with acknowledgment number
equal or greater than the highest previously received).

The window management procedure has significant influence on the
communication performance. The following comments are suggestions to
implementers.

Window Management Suggestions

Allocating a very small window causes data to be transmitted in
many small segments when better performance is achieved using
fewer large segments.

One suggestion for avoiding small windows is for the receiver to
defer updating a window until the additional allocation is at
least X percent of the maximum allocation possible for the
connection (where X might be 20 to 40).

Another suggestion is for the sender to avoid sending small
segments by waiting until the window is large enough before
sending data. If the the user signals a push function then the
data must be sent even if it is a small setjumnt,

Note that the acknowledgments should not be delayed or unnecessary
retransmissions will result. One strategy would be to send an
acknowledgment when a small segment arrives (with out updating the
window Information), and then to send another acknowledgment with
new window information when the window is larger.

The segment sent to probe a zero window may also begin a break up
of transmitted data into smaller and smaller segments. If a
segment containing a single data octet sent to probe a zero window
is accepted, it consumes one octet of the window now available.
If the sending TCP simply sends as much as it can whenever the
window is non zero, the transmitted data will be broken into
alternating! big and small segments. As tisse goes on, occasional
pauses in the receiver making window allocation available will

[Page 43]

2-227

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

result in breaking the big segments into a small and not quite so
big pair. And after a while the data transmission will be in
mostly small segments.

The suggestion here is that the TCP implementations need to
actively attempt to combine small window allocations into larger
windows, since the mechanisms for managing the window tend to lead
to many small windows in the simplest minded implementations.

3.8. Interfaces

There are of course two interfaces of concern: the user/TCP interface
and the TCP/lower-level interface. We have a fairly elaborate model
of the user/TCP interface, but the interface to the lower level
protocol module is left unspecified here., since it will be specified
in detail by the specification of the lowel level protocol. For the
case that the lower level is IP we note some of the parameter values
that TCPs might use.

User/TCP Interface

The following functional description of user commands to the TCP is,
at best, fictional, since every operating system will have different
facilities. Consequently, we must warn readers that different TCP
implementations may have different tser interfaces. However, all
TCPs must provide a certain minimum set of services to guarantee
that all TCP implementations can support the same protocol
hierarchy. This section specifies the functional interfaces
required of all TCP implementations.

TCP User Commands

The following sections functionally characterize a USER/TCP
interface. The notation used is similar to most procedure or
function calls in high level languages, but this usage is not
meant to rule out trap type service calls (e.g., SVCs, UUOs,
EMTs).

The user commands described below specify the basic functions the
TCP must perform to support interprocess communication.
Individual implementation* must define their own exact format, and
may provide combinations or subsets of the basic functions in
single calls. In particular, some implementations may wish to
automatically OPEN a connection on the first SEND or RECEIVE
issued by the user for a given connection.

[Page 44]

2-228

Lr,'l-i.'lAt^N'Üv'lv"'^ * V«1-A%V AvJw^.v\%*. v'A'AV./tJ»V ^/>B^^AVAVAkVLVJkVwVilV^ ^i^ViV»ViüVVf *NV« m\ V» ■ k

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

In providing interprocess communication facilities, the TCP must
not only accept commands, but must also return information to the
processes it serves. The latter consists of:

(a) general information about a connection (e.g., interrupts,
remote close, binding of unspecified foreign socket).

(b) replies to specific user commands indicating success or
various types of failure.

Open

Format: OPEN (local port, foreign socket, active/passive
[, timeout] [, precedence] [, security/compartment] [, options])
-> local connection name

We assume that the local TCP is aware of the identity of the
processes it serves and will check the authority of the process
to use the connection specified. Depending upon the
implementation of the TCP, the local network and TCP identifiers
for the source address will either be supplied by the TCP or the
lower level protocol (e.g., IP). These considerations are the
result of concern about security, to the extent that no TCP be
able to masquerade as another one, and so on. Similarly, no
process can masquerade as another without the collusion of the
TCP.

If the active/passive flag is set to passive, then this is a
call to LISTEN for an incoming connection. A passive open may
have either a fully specified foreign socket to wait for a
particular connection or an unspecified foreign socket to wait
for any call. A fully specified passive call can be made active
by the subsequent execution of a SEND.

A transmission control block (TCB) is created and partially
filled in with data from the OPEN command parameters.

On an active OPEN command, the TCP will begin the procedure to
synchronize (i.e., establish) the connection at once.

The timeout, if present, permits the caller to set up a timeout
for all data submitted to TCP. If data is not successfully
delivered to the destination within the timeout period, the TCP
will «bort the connection. The present global default Is five
minutes.

The TCP or some component of the operating system will v-rify
the users authority to open a connection with the specified

[Page 45]

2-229 £
■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981

£

precedence or security/compartment. The absence of precedence
or security/compartment specification in the OPEN call indicates
the default values must be used.

TCP wi: 1 accept incoming requests as matching only if the
security/compartment information is exactly the same and only if
the precedence is equal to or higher than the precedence
requested in the OPEN call.

The precedence for the connection is the higher of the values
requested in the OPEN call and received from the incoming
request, and fixed at that value for the life of the
connection.Implementers may want to give the user control of
this precedence negotiation. For example, the user might be
allowed to specify that the precedence must be exactly matched,
or that any attempt to raise the precedence be confirmed by the
user.

A local connection name will be returned to the user by the TCP.
The local connection name can then be used as a short hand term
for the connection defined by the <local socket, foreign socket>
pair.

Send

Format: SEND (local connection name, buffer address, byte
count, PUSH flag, URGENT flag [,timeout})

This call causes the data contained in the Indicated user buffer
to be sent on the indicated connection. If the connection ha»
not been opened, the SEND is considered an error. Some
implementations may allow users to SEND first; in which case, an
automatic OPEN would be done. If the calling process is not
authorized to use this connection, an error is returned.

If the PUSH flag is set, the data must be transmitted promptly
to the receiver, and the PUSH bit will be set in the last TCP
segment created from the buffer. If the PUSH flag is not set,
the data may be combined with data from subsequent SENDs for
transmission efficiency»

If the URGENT flag is set. segments sent to the destination TCP
will have the urgent pointer set. The receiving TCP will signal
the urgent condition to tho receiving process if the urgent
pointer indicates that data preceding the urgent pointer has not
been consumed by the receiving process. The purpose of urgent
is to 5ti«iuiät€ trus receiver to proems tr*s urgsnt oata and to
indicate to the receiver when all the currently known urgent

[Page 46]

2-230

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

data has been received. The number of times the sending user's
TCP signals urgent will not necessarily be equal to the number
of times the receiving user will be notified of the presence of
urgent data.

If no foreign socket was specified in the OPEN, but the
connection is established (e.g., because a LISTENing connection
has become specific due to a foreign segment arriving for the
local socket), then the designated buffer is sent to the implied
foreign socket. Users who make use of OPEN with an unspecified
foreign socket can make use of SEND without ever explicitly
knowing the foreign socket address.

However, if a SEND is attempted before the foreign socket
becomes specified, an error will be returned. Users can use the
STATUS call to determine the status of the connection. In some
implementations the TCP may notify the user whan an unspecified
socket is bound.

If a timeout is specified, the current user timeout for this
connection is changed to the new one.

In the simplest implementation, SEND would not return control to
the sending process until either the transmission was complete
or the timeout had been exceeded. However, this simple method
is both subject to deadlocks (for example, both sides of the
connection miojit try to do SENDs before doing any RECEIVES) and
offers poor performance, so it is not recommended. A more
sophisticated implementation would return immediately to allow
the process to run concurrently with network I/O, and«
furthermore, to allow multiple SENDs to be in progress.
Multiple SENDs are served in first come, first served order, so
the TCP will queue those it cannot service immediately.

We have implicitly assumed an asynchronous user interface in
which a SEND later elicits some kind of SIGNAL or
pseudo-interrupt from the serving TCP. An alternative is to
return a response immediately. For instance. SENDs mig£it return
immediate local acknowledgment, even if the segment sent had not
been acknowledged by the distant TCP- We could optimistically
assume eventual success. If we are wrong, the connection will
close anyway due to the timeout. In implementations of this
kind (synchronous), there will still be some asynchronous
signals, but these will deal with the connection itself, and not
with specific segments or buffers.

In order for the process to distinguish *;iu!:y «si i MI ö** »UCCüJ
indications for aifferent SENDs. it might be appropriate for the

[Page 47]

2-231

*&&^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

buffer address to be returned along with the coded response to
the SEND request. TCP-to-user signals are discussed below,
indicating the information which should be returned to the
calling process.

Receive

Format: RECEIVE (local connection name, buffer address, byte
count) -> byte count, urgent flag, push flag

This command allocates a receiving buffer associated with the
specified connection. If no OPEN precedes this command or the
calling process is not authorized to use this connection, an
error is returned.

In the simplest implementation, control would not return to the
calling program until either the buffer was filled, or some
error occurred, but this scheme is highly subject to deadlocks.
A more sophisticated Implementation would permit several
RECEIVES to be outstanding at once. These would be filled as
segments arrive. This strategy permits increased throughput at
the cost of a more elaborate scheme (possibly asynchronous) to
notify the calling program that a PUSH has been seen or a buffer
filled.

If enough data arrive to fill the buffer before a PUSH is seen,
the PUSH flag will not be set in the response to the RECEIVE.
The buffer will be filled with as much data as it can hold. If
a PUSH is seen before the buffer is filled the buffer will be
returned partially filled and PUSH indicated.

If there is urgent data the user will have been infonaed as soon
as it arrived via a TCP-to-user signal. The receiving user
should thus be in "urgent mode". If the URGENT flag is on,
additional urgent data remains. If the URGENT flag is off, this
call to RECEIVE has returned all the urgent data, and the user
may now leave "urgent mode". Note that data following the
urgent pointer (non-urgent data) cannot be delivered to the user
in the same buffer with preceeding urgent data unless the
boundary is clearly marked for the user.

To distinguish among several outstanding RECEIVES and to take
care of the case that a buffer is not completely filled, the
return code is accompanied by both a buffer pointer and a byte
count indicating the actual length of the data received.

Alternativ*» imol«?*»nrations of RECEIVE *if*»t have the TCP

[Page 48]

2-232

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

allocate buffer storage, or the TCP might share a ring buffer
with the user.

Close

Format: CLOSE (local connection name)

This command causes the connection specified to be closed. If
the connection is not open or the calling process is not
authorized to use this connection, an error is returned.
Closing connections is intended to be a graceful operation in
the sense that outstanding SENDs will be transmitted (and
retransmitted), as flow control permits, until all have been
serviced. Thus, it should be acceptable to make several SEND
calls, followed by a CLOSE, and expect all the data to be sent
to the destination. It should also be clear that users should
continue to RECEIVE on CLOSING connections, since the other side
may be trying to transmit the last of its data. Thus, CLOSE
means "I have no more to send" but does not mean "I will not
receive any more." It may happen (if the user level protocol is
not well thought out) that the closing side is unable to get rid
of all its data before timing out. In this event, CLOSE turns
into ABORT, and the closing TCP gives up.

The user may CLOSE the connection at any time on his own
initiative, or in response to various prompts from the TCP
(e.g., remote close executed, transmission timeout exceeded,
destination inaccessible).

Because closing a connection requires communication with the
foreign TCP, connections may remain in the closing state for a
short time. Attempts to reopen the connection before the TCP
replies to the CLOSE command will result in error responses.

Close also implies push function.

Status

Format: STATUS (local connection name) -> status data

This is an implementation dependent user command and could be
excluded without adverse effect. Information returned would
typically come from the TCB associated with the connection.

This command returns a data block containing the following
information:

local socket,

[Page 49]

2-233

k\AV»'.;/.V.. . ». . >', ... '.Ii'. ViV ",i".V.-/j/j,'lVjk'j/.Vj/,-t\sV.'J»'jW,2VA'-V^J-^'--.> /lvl%:l'V.:

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

foreign socket,
local connection name,
receive window,
send window,
connection state,
number of buffers awaiting acknowledgment,
number of buffers pending receipt,
urgent state,
precedence,
security/compartment,
and transmission timeout.

Depending on the state of the connection, or on the
implementation itself, some of this information may not be
available or meaningful. If the calling process is not
authorized to use this connection, an error is returned. This
prevents unauthorized processes from gaining information about a
connection.

Abort

Format: ABORT (local connection name)

This command causes all pending SENDs arid RECEIVES to be
aborted, the TCB to be removed, and a special RESET message to
be sent to the TCP on the other side of the connection.
Depending on the Implementation, users may receive abort
indications for each outstanding SEND or RECEIVE, or may simply
receive an ABORT-acknowledgment.

TCP-to-User Messages

It is assumed that the operating system environment provides a
means for the TCP to asynchronously signal the user program. When
the TCP does signal a user program, certain information is passed
to the user. Often in the specification the information will be
an error message. In other cases there will be information
relating to the completion of processing a SEND or RECEIVE or
other user call.

The following information is provided:

Local Connection Name Always
Response String Always
Buffer Address Send £ Receive
Byte count (counts bytes received) Receive
Push flag Receive
Urgent flag Receive

[Page 50]

2-234

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

TCP/Lower-Level Interface

The TCP calls on a lower level protocol module to actually send and
receive information over a network. One case is that of the ARPA
internetwork system where the lower level module is the Internet
Protocol (IP) [2].

If the lower level protocol is IP it provides arguments for a type
of service and for a time to live. TCP uses the following settings
for these parameters:

Type of Service - Precedence: routine, Delay: normal, Throughput:
normal. Reliability: normal; or 00000000.

Time to Live » one minute, or 00111100.

Note that the assumed maximum segment lifetime is two minutes.
Here we explicitly ask that a sequent be destroyed if it cannot
be delivered by the internet system within one minute.

If the lower level is IP (or other protocol that provides this
feature) and source routing is used, the interface must allow the
route information to be communicated. This is especially important
so that the source and destination addresses used in the TCP
checksum be the originating source and ultimate destination. It is
also important to preserve the return route to answer connection
requests.

Any lower level protocol will have to provide the source address,
destination address, and protocol fields, and some way to determine
the "TCP length", both to provide the functional equivlent service
of IP and to be used in the TCP checksum.

[Page 51]

2-235

r_.. *_ «*_ «r_ *v «•_ «!.^ «*. w_. *•_* »*Jv_ V* _VL »I'^lV- :A'.J^J^:^:. ^.v . .•.•^ :.• M /•J'^A\«'.«'-.\\>\.% :st^- --\■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional SDecification

3.9. Event Processing

The processing depicted in this section is an example of one possible
implementation. Other implementations may have slightly different
processing sequences, but they should differ from those in this
section only in detail, not in substance.

The activity of the TCP can be characterized as responding to events.
The events that occur can be cast into three categories: user calls,
arriving seojnents, and timeouts. This section describes the
processing the TCP does in response to each of the events. In many
cases the processing required depends on the state of the connection.

Events that occur:

User Calls

OPEN
SEND
RECEIVE
CLOSE
ABORT
STATUS

Arriving Segments

SEGMENT ARRIVES

Timeouts

USER TIMEOUT
RETRANSMISSION TIMEOUT
TIME-WAIT TIMEOUT

The model of the TCP/user interface is that user commands receive an
Immediate return and possibly a delayed response via an event or
pseudo interrupt. In the following descriptions, the term "signal"
means cause a delayed response.

Error responses are given as character strings. For example, user
commands referencing connections that do not exist receive "error:
connection not open".

Please note in the following that all arithmetic on sequence numbers,
acknowledgment numbers, windows, et cetera, is modulo 2**32 the size
of the sequence number space. Also note that "»<" means less than or
equal to (modulo 2**J2) . :%\i

•Si

[Page 52]

2-236

-.' .-..-'.. V. . . .'-•» -, -^ ^\ -'.« _♦."--. - .'AV.'A _T» *.,- .. * _>^ «.■»'-•.-'«_•« ^» -» '. -•« ^^ - »~ « -^- V-V^^^V-^^^ -^

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification

A natural way to think about processing incoming segments is to
imagine that they are first tested for proper sequence number (i.e.,
that their contents lie in the range of the expected "receive window"
in the sequence number space) and then that they are generally queued
and processed in sequence number order.

When a segment overlaps other already received segments we reconstruct
the segment to contain just the new data, and adjust the header fields
to be consistent.

Note that if no state change is mentioned the TCP stays in the same
state.

[Page 53]

2-237

»*• «"* %> •** »** »*• *** ***.' »** * * ■.'• >«►*• .*' »"* ."• 1 »•«*** O OTO K.* » * « * • * v* v'« * O•'••••«

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

OPEN Call

OPEN Call

CLOSED STATE (i.e., TCB does not exist)

Create a new transmission control block (TCB) to hold connection
state information. Fill in local socket identifier, foreign
socket, precedence, security/compartment, and user timeout
information. Note that some parts of the foreign socket may be
unspecified in a passive OPEN and are to be filled in by the
parameters of the incoming SYN segment. Verify the security and
precedence requested are allowed for this user, if not return
"error: precedence not allowed" or "error: security/compartment
not allowed." If passive enter the LISTEN state and return. If
active and the foreign socket is unspecified, return "error:
foreign socket unspecifled"; if active and the foreign socket is
specified. Issue a SYN segment. An initial send sequence number
(ISS) is selected. A SYN seojnent of the form <SEQ»ISS><CTL«SYN>
is sent. Set SND.UNA to ISS, SND.NXT to ISS+1, enter SYN-SENT
state, and return.

If the caller does not have access to the local socket specified,
return "error: connection illegal for this process". If there is
no room to create a new connection, return "error: insufficient
resources".

LISTEN STATE

If active and the foreign socket is specified, then change the
connection from passive to active, select an ISS. Send a SYN
sequent, set SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT
state. Data associated with SEND may be sent with SYN sequent or
queued for transmission after entering ESTABLISHED state. The
urgent bit if requested in the command must be sent with the data
segments sent as a result of this command. If there is no room to
queue the request, respond with "error: insufficient resources".
If Foreign socket was not specified, th*n return "error: foreign
socket unspecified".

[Page 54]

2-238

-V«

.%
'*V*J>-,'\-''A\»*"^"'I« •/*-.»''A-V'J'.V^A-^.'VV •-*'•-« >%V*1>-A^>J»'-*»V^%^|^ >>V jtk -**-'»- «VAV.v -Vw _».,> Ji^v*_^u'^

HOST LEVEL: MAJOR RFC 793

September 1981

OPEN Call

Transmission Control Protocol
Functional Specification

SYN-SENT STATE
SYN-RECEIVED STATE
ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE
CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Return "error: connection already exists".

[Page 55]

2-239

>.-
'.* *.* •." *.* fc-* "w" "w ■ *-" •_* •-" ■-."' V J^£>:^:>C;-->^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981

SEND Call

SEND Call

CLOSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, then return
"error: connection illegal for this process".

Otherwise, return "error: connection does not exist".

LISTEN STATE

If the foreign socket is specified, then change the connection
from passive to active, select an ISS. Send a SYN segment, set
SND.UNA to ISS, SND.NXT to ISS+1. Enter SYN-SENT state. Data
associated with SEND may be sent with SYN segment or queued for
transmission after entering ESTABLISHED state. The urgent bit if
requested in the command must be sent with the data segments sent
as a result of this command. If there is no room to queue the
request, respond with "error: insufficient resources". If
Foreign socket was not specified, then return "error: foreign
socket unspecified".

SYN-SENT STATE
SYN-RECEIVED STATE

Queue the data for transmission after entering ESTABLISHED state.
If no space to queue, respond with "error: insufficient
resources".

ESTABLISHED STATE
CLOSE-WAIT STATE

Segmentize the buffer and send it with a piggybacked
acknowledgment (acknowledgment value = RCV.NXT). If there is
insufficient space to remember this buffer, simply return "error:
insufficient resources".

If the urgent flag is set, then SND.UP <- SND.NXT-1 and set the
urgent pointer in the outgoing segments.

[Page 56]

2-240

,'•*."•*«'
?* V

HOST LEVEL: MAJOR RFC 793

September 1981

SEND Call

Transmission Control Protocol
Functional Specification

FIN-WAIT-1 STATE
FIN-WAIT-2 STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Return "error: connection closing" and do not service request.

[Page 57]

2-241

» • » * . <VS M. €* 'Cm. \ «A . * ...»
V *» V -. V *.

■*^'-^LV>.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

RECEIVE Call

RECEIVE Call

CLOSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, return
"error: connection illegal for this process".

Otherwise return "error: connection does not exist".

LISTEN STATE
SYN-SENT STATE
SYN-RECEIVED STATE

Queue for processing after entering ESTABLISHED state. If there
is no room to queue this request, respond with "error:
insufficient resources".

ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE

If insufficient incoming segments are queued to satisfy the
request, queue the request. If there is no queue space to
remember the RECEIVE, respond with "error: insufficient
resources".

Reassemble queued incoming segments into receive buffer and return
to user. Mark "push seen" (PUSH) if this is the case.

If RCV.UP is in advance of the data currently being passed to the
user notify the user of the presence of urgent data.

When the TCP takes responsibility for delivering data to the user
that fact must be communicated to the sender via an
acknowledgment. The formation of such an acknowledgment is
described below in the discussion of processing an incoming
segment.

[Page 58]

2-242

HOST LEVEL: MAJOR RFC 793

ä
September 1981

CLOSE Call

Transmission Control Protocol
Functional Specification

CLOSE-WAIT STATE

Queue this request until all preceding SENDs have been
segmentized; then send a FIN segment, enter CLOSING state.

CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Respond with "error: connection closing".

[Page 61]

2-245

■V.^VJ .-.V.'im.rf-*rfiV.Vv*.<*£^£M£MSiSMÄ^LLi^LLiäSi A\V.''L'V ^ ^ -.'**.*. a.-..

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

ABORT Call

ABORT Call

CLOSED STATE (i.e., TCB does not exist)

If the user should not have access to such a connection, return
"error: connection illegal for this process".

Otherwise return "error: connection does not exist".

LISTEN STATE

Any outstanding RECEIVES should be returned with "error:
connection reset" responses. Delete TCB, enter CLOSED state, and
return.

SYN-SENT STATE

All queued SENDs and RECEIVES should be given "connection reset"
notification, delete the TCB, enter CLOSED state, and return.

SYN-RECEIVED STATE
ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE
CLOSE-WAIT STATE

Send a reset segment:

<SEQ=SND. NXT><CTL-RST>

All queued SENDs and RECEIVES should be given "connection reset"
notification; all segments queued for transmission (except for the
RST formed above) or retransmission should be flushed, delete the
TCB, enter CLOSED state, and return.

CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Respond with "ok" and delete the TCB, enter CLOSED state, and
return.

[Page 62]

2-246

■^^L>^lJ«Af^uV.'A'L.V-VJ» ,*rf-V.Y.V.VJ'A.«f.'.». .-/«•.V_y\ir_ VLV-V^XV J.'AV.V-VA' V..'y*y'y.'-t%,*\n*%jL>,A v\C'y*-£>-»>-/*.

HOST LEVEL: MAJOR RFC 793

September 1981

RECEIVE Call

Transmission Control Protocol
Functional Specification

CLOSE-WAIT STATE

Since the remote side has already sent FIN, RECEIVES must be
satisfied by text already on hand, but not yet delivered to the
user. If no text is awaiting delivery, the RECEIVE will get a
"error: connection closing" response, Otherwise, any remaining
text can be used to satisfy the RECEIVE.

CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Return "error: connection closing".

■* « I

i [Page 59]

2-243

- -^* -*« *2jL~Zm -*» -*»■ -*» -' ^>» ^VLA^». :^: v-c-^o *\ » . x~ >'. «\

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

CLOSE Call

CLOSE Call

CLOSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, return
"error: connection illegal for this process".

Otherwise, return "error: connection does not exist".

LISTEN STATE

Any outstanding RECEIVES are returned with "error: closing"
responses. Delete TCB, enter CLOSED state, and return.

SYN-SENT STATE

Delete the TCB and return "error: closing" responses to any
queued SENDs, or RECEIVES.

SYN-RECEIVED STATE

If no SENDs have been issued and there is no pending data to send,
then form a FIN segment and send it, and enter FIN-WAIT-1 state;
otherwise queue for processing after entering ESTABLISHED state.

ESTABLISHED STATE

Queue this until all preceding SENDs have been segmentized, then
form a FIN segnent and send it. In any case, enter FIN-WAIT-1
state.

FIN-WAIT-1 STATE
*IN-WAIT-2 STATE

Strictly speaking, this is an error and should receive a "error:
connection closing" response. An "ok" response would be
acceptable, too, as long as a second FIN is not emitted (the first
FIN may be retransmitted though) .

[Page 60]

2-244

^»_jk

HOST LEVEL: MAJOR RFC 793

September 1981

STATUS Call

Transmission Control Protocol
Functional Specification

STATUS Call

CLOSED STATE (i.e., TCB does not exist)

If the user should not have access to such a connection, return
"error: connection illegal for this process".

Otherwise return "error: connection does not exist".

LISTEN STATE

Return "state = LISTEN", and the TCB pointer.

SYN-SENT STATE

Return "state « SYN-SENT", and the TCB pointer.

SYN-RECEIVED STATE

Return "state = SYN-RECEIVED", and the TCB pointer.

ESTABLISHED STATE

Return "state = ESTABLISHED", and the TCB pointer.

FIN-WAIT-1 STATE

Return "state « FIN-WAIT-1", and the TCB pointer.

FIN-WAIT-2 STATE

Return "state = FIN-WAIT-2", and the TCB pointer.

CLOSE-WAIT STATE

Return "state = CLOSE-WAIT", and the TCB pointer.

CLOSING STATE

Return "state = CLOSING", and the TCB pointer.

LAST-ACK STATE

Return "state = LAST-ACK", and the TCB pointer.

[Page 63]

2-247

' '- ■ *-" -* '• " ^.'jJj-j^^ji.i v. \>l':lV
,,'^i.'A'^\J all».» 1 il'i'.V.'!iVt'.j'A/.'ii\'u:\'iVf '-'»yv,y'i'/.V.V -^'-fr'.'AVA "AV»Va*.'A * V* >*A%*.- «WJVI

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981

STATUS Call

TIME-WAIT ÖTATE

Return "state = TIME-WAIT", and the TCB pointer.

[Page 64]

2-248

<:;L>^::^c •-^"J^JL!.

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification
SEGMENT ARRIVES

SEGMENT ARRIVES

If the state is CLOSED (i.e., TCB does not exist) then

all data in the incoming segment is discarded. An incoming
segment containing a RST is discarded. An incoming seojnent not
containing a RST causes a RST to be sent in response. The
acknowledgment and sequence field values are selected to make the
reset sequence acceptable to the TCP that sent the offending
segment.

If the ACK bit is off, sequence number zero is used,

<SEQ=0><ACK=SEG. SEQ+SEG. LEN><CTL=RST, ACK>

If the ACK bit is on,

<SEQ=SEG. ACK><CTL=RST>

Return.

If the state is LISTEN then

first check for an RST

An incoming RST should be ignored. Return.

second check for an ACK

Any acknowledgment is bad if it arrives on a connection still in
the LISTEN state. An acceptable reset segment should be formed
for any arriving ACK-bearing seojnent. The RST should be
formatted as follows:

<SEQ=SEO. ACK><CTL«RSr>

Return.

third check for a SYN

If the SYN bit is set, check the security. If the
security/compartment on the incoming segment does not exactly
match the security/compertment in the TCB then send a reset and
return.

<SEQ=SEC. ACK><CTL=RST>

[Page 65]

2-249

EvlvS&fr^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

SEGMENT ARRIVES

If the SEG.PRC is greater than the TCB.PRC then if allowed by
the user and the system set TCB.PRC<-SEG.PRC, if not allowed
send a reset and return.

<SEQ=SEG. ACK><CTL=RST>

If the SEG.PRC is less than the TCB.PRC then continue.

Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any other
control or text should be queued for processing later. ISS
should be selected and a SYN segment sent of the form:

<SEQ*ISS><ACK*RCV .NXT><CTL=SYN, ACK>

SND.NXT is set to ISS+1 and SND.UNA to ISS. The connection
state should be changed to SYN-RECEIVED. Note that any other
incoming control or data (combined with SYN) will be processed
in the SYN-RECEIVED state, but processing of SYN and ACK should
not be repeated. If the listen was not fully specified (i.e.,
the foreign socket was not fully specified), then the
unspecified fields should be filled in now.

fourth other text or control

Any other control or text-bearing segment (not containing SYN)
must have an ACK and thus would be discarded by the ACK
processing. An Incoming RST segment could not be valid, since
it could not have been sent in response to anything sent by this
incarnation of the connection. So you are unlikely to get here,
but if you do, drop the segment, and return.

If the state is SYN-SENT then

first check the ACK bit *

If the ACK bit is set

If SEC.ACK =< ISS, or SEC.ACK > SND.NXT, send a reset (unless
the RST bit is set, if so drop the segment and return)

<SEQ=SEG. ACK><CTL=RST>

and discard the segment. Return.

If SND.UNA *< SEC.ACK »< SND.NXT then the ACK is acceptable.

second check the RST bit .

[Page 66]

2-250 V>

HOST LEVEL: MAJOR RFC 793

September 1981

SEGMENT ARRIVES

Transmission Control Protocol
Functional Specification

^

If the RST bit is set

If the ACK was acceptable then signal the user "error:
connection reset", drop the segment, enter CLOSED state,
delete TCB, and return. Otherwise (no ACK) drop the segment
and return.

third check the security and precedence

If the security/compartment in the segment does not exactly
match the security/compartment in the TCB, send a reset

If there is an ACK

<SE^EG.ACK><CTL=RST>

Otherwise

<SEQ»0><ACK*SEG. SEQ+SEC. LEN><CTL=RST, ACK>

If there is an ACK

The precedence in the segment must match the precedence in the
TCB, if not, send a reset

<SEQ«SEG. ACK><CTL*RST>

If there is no ACK

If the precedence In the segment is higher than the precedence
in the TCB then if allowed by the user and the system raise
the precedence in the TCB to that in the segment, if not
allowed to raise the prec then send a reset.

<SEQ*0><ACK»SEG. SEQ+SEG. LENxCTL^RST. ACK>

If the precedence in the segment is lower than the precedence
in the TCB continue.

If a reset was sent, discard the segment and return.

fourth check the SYN bit

This step should be reached only if the ACK is ok, or there Is
no ACK, and it the segment did not contain a RST.

If the SYN bit is on and the security/compartment and precedence

[Page 67]

2-251

b££&££^^ V..^-^. ^^-»'-^ ^*W->\ iVui'.f. ,*^£^£*^£*jUjLM^JL*£mj£äj£±.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981

SEGMENT ARRIVE«
or*

are acceptable then, RCV.NXT is set to SEG.SEQ+1, IRS is set to
SEC.SEQ. SND.UNA should be advanced to equal SEC.ACK (if there
is an ACK), and any segments on the retransmission queue which
are thereby acknowledged should be removed.

If SND.UNA > ISS (our SYN has been ACKed), change the connection
state to ESTABLISHED, form an ACK segment

<SEQ*SND.NXT><ACK=RCV.NXT><CTL=ACK>

and send it. Data or controls which were queued for
transmission may be included. If there are other controls or
text in the segment then continue processing at the sixth step
below where the URG bit is checked, otherwise return.

Otherwise enter SYN-RECEIVED, form a SYN,ACK segment

<SEQ=ISS><AOC*RCV. NXT><CTI>SYN, ACK>

and send it. If there are other controls or text in the
segment, queue them for processing after the ESTABLISHED state
has been reached, return.

fifth, if neither of the SYN or RST bits is set then drop the
seqpnent and return.

[Page *8]

2-252

HOST LEVEL: MAJOR RFC 793

September 1981

SEGMENT ARRIVES

Transmission Control Protocol
Functional Specification

Otherwise,

first check sequence number

SYN-RECEIVED STATE
ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE
CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

Segments are processed in sequence. Initial tests on arrival
are used to discard old duplicates, but further processing is
done in SEG.SEQ order. If a segment's contents straddle the
boundary between old and new, only the new parts should be
processed.

Ihere are four cases for the acceptability test for an incoming
segment::

Segment Receive Test
Length Window

0 0

0 >0

>0 0

>0 >0

SEG.SEQ = RCV.NXT

RCV.NXT =< SEG.SEQ < RCV. NXT+RCV. WND

not acceptable

RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

If the RCV.WND is zero, no segments will be acceptable, but
special allowance should be made to accept valid ACKs, URGs and
RSTs.

If an incoming segment is not acceptable, an acknowledgment
should be sent in reply (unless the RST bit is set, if so drop
the segment and return):

<SEQ=SND .NXT><ACK^RC7/.NXT><CTL=ACK>

After sending the acknowledgment, drop the unacceptable segment
and return.

[Page 69]

2-253

*:v:v!v>.: !->lel^^^iv>i*i: Vv>^; vo^:-i->:k^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

SEGMENT ARRIVES

In the following it is assumed that the segment is the idealized
segment that begins at RCV.NXT and does not exceed the window.
One could tailor actual segments to fit this assumption by
trimming off any portions that lie outside the window (including
SYN and FIN), and only processing further if the segment then
begins at RCV.NXT. Segments with higher begining sequence
numbers may be held for later processing,

second check the RST bit,

SYN-RECEIVED STATE

If the RST bit is sec

If this connection was initiated with a passive OPEN (i.e.,
came from the LISTEN state), then return this connection to
LISTEN state and return. The user need not be informed. If
this connection was initiated with an active OPEN (i.e., came
from SYN-SENT state) then the connection was refused, signal
the user "connection refused". In either case, all segments
on the retransmission queue should be removed. And in the
active OPEN case, enter the CLOSED state and delete the TCB,
and return.

*'l ESTABLISHED
p: FIN-WAIT-1

FIN-WAIT-2
CLOSE-WAIT

If the RST bit is set then, any outstanding RECEIVES and SEND
should receive "reset" responses. All segment queues should be
flushed. Users should also receive an unsolicited general
"connection reset" signal. Enter the CLOSED state, delete the
TCB, and return.

La CLOSING STATE
i LAST-ACK STATE

TIME-WAIT

If the RST bit is set then, enter the CLOSLD state, delete the
TCB, and return.

i

,.',

[Page 70]

H 2-254

bi^y^'^

HOST LEVEL: MAJOR RFC 793

September 1981

SEGMENT ARRIVES

Transmission Control Protocol
Functional Specification

iy.

is*

third check security and precedence

SYN-RECEIVED

If the security/compartment and precedence in the segment do not
exactly match the security/compartment and precedence in the TCB
then send a reset, and return.

ESTABLISHED STATE

If the security/compartment and precedence in the segment do not
exactly match the security/compartment and precedence in the TCB
then send a reset, any outstanding RECEIVES and SEND should
receive "reset" responses. All segment queues should be
flushed. Users should also receive an unsolicited general
"connection reset" signal. Enter the CLOSED state, delete the
TCB, and return.

Note this check is placed following the sequence check to prevent
a segment from an old connection between these ports with a
different security or precedence from causing an abort of the
current connection.

fourth, check the SYN bit,

SYN-RECEIVED
ESTABLISHED STATE
FIN-WAIT STATE-1
FIN-WAIT STATE-2
CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

If the SYN is in the window it is an error, send a reset, any
outstanding RECEIVES and SEND should receive "reset" responses,
all segment queues should be flushed, the user should also
receive an unsolicited general "connection reset" signal, enter
the CLOSED state, delete the TCB, ard return.

If the SYN is not in the window this step would not be reached
and an ack would have been sent in the first step (sequence
number check).

iv

Lv

[Page 71?

2-255

LfnWSt" *.\ %*• w_* *J" *_• *_ . /^^•%uv^^*^:^: ..' A-IAJIAI ik,' %.'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Functional Specification

SEGMENT ARRIVES

fifth check the ACK field,

if the ACK bit is off drop the segment and return

if the ACK bit is on

SYN-RECEIVED STATE

If SND.UNA =< SEG.ACK =< SND.NXT then enter ESTABLISHED state
and continue processing.

If the segment acknowledgment is not acceptable, form a
reset segment,

<SEQ=SEG. ACK><CTL=RST>

and send it.

ESTABLISHED STATE

If SND.UNA < SEG.ACK =< SND.NXT then, set SND.UNA <- SEG.ACK.
Any segments on the retransmission queue which are thereby
entirely acknowledged are removed. Users should receive
positive acknowledgments for buffers which have been S&^ and
fully acknowledged (i.e., SEND buffer should be returned with
"ok" response). If the ACK is a duplicate
(SEG.ACK < SND.UNA), it can be ignored. If the ACK acks
something not yet sent (SEG.ACK > SND.NXT) then send an ACK,
drop the segment, and return.

If SND.UNA < SEG.ACK =< SND.NXT, the send window should be
updated. If (SND.WL1 < SEG.SEQ or (SND.WL1 = SEG.SEQ and
SND.WL2 =< SEG.ACK)), set SND.WND <- SEG.WND, set
SND.WL1 <- SEG.SEQ, and set SND.WL2 <- SEG.ACK.

Note that SND.WND is an offset from SND.UNA, that SND.WL1
records the sequence number of the last segment used to update
SND.WND, and that SND.WL2 records the acknowledgment number of
the last segment used to update SND.WND. The check here
prevents using old segments to update the window.

[Page 72]

2-256

>iv^!Lx^>>>^

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Specification
SEGMENT ARRIVES

FIN-WAIT-1 STATE

In addition to the processing for the ESTABLISHED state, if
our FIN is now acknowledged then enter FIN-WAIT-2 and continue
processing in that state.

FIN-WAIT-2 STATE

In addition to the processing for the ESTABLISHED state, if
the retransmission queue is empty, the user's CLOSE can be
acknowledged ("ok") but do not delete the TCB.

CLOSE-WAIT STATE

Do the same processing as for the ESTABLISHED state.

CLOSING STATE

In addition to the processing for the ESTABLISHED state, if
the ACK acknowledges our FIN then enter the TIME-WAIT state,
otherwise ignore the segment.

LAST-ACK STATE

The only thing that can arrive in this state is an
acknowledgment of our FIN. If our FIN is now acknowledged,
delete the TCB, enter the CLOSED state, and return.

TIME-WAIT STATE

The only thing that can arrive in this state is a
retransmission of the remote FIN. Acknowledge it, and restart
the 2 MSL timeout.

sixth, check the URG bit,

ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE

If the URG bit is set, RCV.UP <- max (RCV.UP, SEG.UP) , and signal
the user that the remote side has urgent data if the urgent
pointer (RCV.UP) is in advance of the data consumed. If the
user has already been signaled (or is still in the "urgent
mode") for 'his continuous sequence of urgent data, do not
signal the user again.

[Page 73]

2-257

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981

SEGMENT ARRIVES

CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT

This should not occur, since a FIN has been received from the
remote side. Ignore the URG.

seventh, process the segment text,

ESTABLISHED STATE
FIN-WAIT-1 STATE
FIN-WAIT-2 STATE

Once in the ESTABLISHED state, it is possible to deliver segment
text to user RECEIVE buffers. Text from segments can be moved
into buffers until either the buffer is full or the segment is
empty. If the segment empties and carries an PUSH flag, then
the user is informed, when the buffer is returned, that a PUSH
has been received.

When the TCP takes responsibility for delivering the data to the
user it must also acknowledge the receipt of the data.

Once the TCP takes responsibility for the data it advances
RCV.NXT over the data accepted, and adjusts RCV.WND as
apporopriate to the current buffer availability. The total of
RCV.NXT and RCV.WND should not be reduced.

Please note the window management suggestions in section 3.7.

Send an acknowledgment of the form:

<SEQ=SND .NXT><ACK=RCV. NXT><CTL=ACK>

This acknowledgment should be piggybacked on a segment being
transmitted if possible without incurring undue delay.

[Page 74]

2-258

, v.:-. VVI^AAI.".».' ^ZLU^M.

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Functional Speci fication
SEGMENT ARRIVES

CLOSE-WAIT STATE
CLOSING STATE
LAST-ACK STATE
TIME-WAIT STATE

This should not occur, since a FIN has been received from the
remote side. Ignore the segment text.

eighth, check the FIN bit,

Do not process the FIN if the state is CLOSED, LISTEN or SYN-SENT
since the SEG.SEQ cannot be validated; drop the segment and
return.

If the FIN bit is set, signal the user "connection closing" and
return any pending RECEIVES with same message, advance RCV.NXT
over the FIN, and send an acknowledgment for the FIN. Note that
FIN implies PUSH for any segment text not yet delivered to the
user.

SYN-RECEIVED STATE
ESTABLISHED STATE

Enter the CLOSE-WAIT state.

FIN-WAIT-1 STATE

I f our FIN has been ACKed (perhaps in this segment), then
enter TIME-WAIT, start the time-wait timer, turn off the other
timers; otherwise enter the CLOSING state.

FIN-WAIT-2 STATE

Enter the TIME-WAIT state. Start the time-wait timer, turn
off the other timers.

CLOSE-WAIT STATE

Remain in the CLOSE-WAIT state.

CLOSING STATE

Remain in the CLOSING state.

LAST-ACK STATE

Remain in the LAST-ACK state.

[Page 75]

2-259

Vlv^v^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Functional Specification

September 1981

SEGMENT ARRIVES

TIME-WAIT STATE

Remain in the TIME-WAIT state. Restart the 2 MSL time-wait
timeout.

and return.

[Page 76]

2-260

.t'4 .I-JL^IJ. **- »*■» tP- ■"- ♦'^.*T- «V_.»^_«*-^J .. »v 1.. >- -,■» .-f ^» AJ. ,■ -* .? —» -a. ■* :

HOST LEVEL: MAJOR RFC 793

September 1981

USER TIMEOUT

Transmission Control Protocol
Functional Specification

USER TIMEOUT

For any state if the user timeout expires, flush all queues, signal
the user "error: connection aborted due to user timeout" in general
and for any outstanding calls, delete the TCB, enter the CLOSED
state and return.

3

RETRANSMISSION TIMEOUT

For any state if the retransmission timeout expires on a segment in
the retransmission queue, send the segment at the front of the
retransmission queue again, reinitialize the retransmission timer,
and return.

TIME-WAIT TIMEOUT

If the time-wait timeout expires on a connection delete the TCB,
enter the CLOSED state and return.

[Page 77]

2-261

iiii :JL^^L'*. ^V^^?-^» \£Y^:**-*y ■'/■'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
September 1981

[Page 78]

2-262

.*: .ivlv*lv!clvl ivL*lv>i 1% 1.;!■1 lvlvlvv/lv2v'lvivL^»i,»'l iis*l>i\
•♦ '* /• .'• *• .'• .'■ »"* .**

c* ♦ * • * • * • ■ * * * o • ■ \"

ACK

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

GLOSSARY

1822
BBN Report 1822, "The Specification of the Interconnection of
a Host and an IMP", The specification of interface between a
host and the ARPANET.

A control bit (acknowledge) occupying no sequence space, which
indicates that the acknowledgment field of this segment
specifies the next sequence number the sender of this segment
is expecting to receive, hence acknowledging receipt of all
previous sequence numbers.

ARPANET message
The unit of transmission between a host and an IMP in the
ARPANET. The maximum size is about 1012 octets (8096 bits) .

ARPANET packet
A unit of transmission used internally in the ARPANET between
IMPs. The maximum size is about 126 octets (1008 bits) .

connection
A logical communication path identified by a pair of sockets.

datagram
A message sent in a packet switched computer communications
network.

Destination Address
The destination address, usually the network and host
identifiers.

FIN
A control bit (finis) occupying one sequence number, which
indicates that the sender will send no more data or control
occupying sequence space.

fragment
A portion of a logical unit of data, in particular an internet
fragment is a portion of an internet datagram.

FTP
A file transfer protocol.

[Page 79]

2-283

[•V .* V ".* V V *> .*• V V V V .* V » -» V v *-* v ■.*„-.*> .•»*.* • .* - • -* * * ■ - • ■ • • ♦ • • * • **■ *"*. • •. .*./«, -V-" •- *.* *. *."

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Glossary

header
Control information at the beginning of a message, segment,
fragment, packet or block of data.

host
A computer. In particular a source or destination of messages
from the point of view of the communication network.

Identification
An Internet Protocol field. This identifying value assigned
by the sender aids in assembling the fragments of a datagram.

IMP
The Interface Message Processor, the packet switch of the
ARPANET.

internet address
A source or destination address specific to the host level.

internet datagram
The unit of data exchanged between an internet module and the
higher level protocol together with the internet header.

internet fragment
A portion of the data of an internet datagram with an internet

IP

IRS

ISN

ISS

leader

header.

Internet Protocol.

The Initial Receive Sequence number. The first sequence
number used by the sender on a connection.

The Initial Sequence Number. The first sequence number used
on a connection, (either ISS or IRS). Selected on a clock
based procedure.

"Hie Initial Send Sequence number. The first sequence number
used by the sender on a connection.

Control information at the beginning of a message or block of
data. In particular, in the ARPANET, the control Information
on an ARPANET message at the host-IMP interface.

[Page 801

2-264

.v. *:.'
* • v

•V- i>

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

Glossary

left sequence
This is the next sequence number to be acknowledged by the
data receiving TCP (or the lowest currently unacknowledged
sequence number) and is sometimes referred to as the left edge
of the send window.

local packet
The unit of transmission within a local network.

module

MSL

octet

Options

packet

port

An implementation, usually in software, of a protocol or other
procedure.

Maximum Segment Lifetime, the time a TCP segment can exist in
the internetwork system. Arbitrarily defined to be 2 minutes.

An eiojit bit byte.

An Option field may contain several options, and each cption
may be several octets in length. The options are used
primarily in testing situations; for example, to carry
timestamps. Both the Internet Protocol and TCP provide for
options fields.

A package of data with a header which may or may not be
logically complete. More often a physical packaging than a
logical packaging of data.

The portion of a socket that specifies which logical input or
output channel of a process is associated with the data.

\v;

process

PUSH

RCV.NXT

A program in execution. A source or destination of data from
the point of view of the TCP or other host-to-host protocol.

A control bit occupying no sequence space, indicating that
this segment contains data that must be pushed through to the
receiving user.

receive next sequence number

[Page 81]

2-265

&&£ä£l y;/v>>iS-*vv
li'^T-vlv: .«..«—».'■*,:.* .•-**«« '* ^..^JL/-vV^^VJ^'JVJrfArJ^A^V.V..V.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1981
Transmission Control Protocol
Glossary

RCV.UP
receive urgent pointer

RCV.WND
receive window

receive next sequence number
This is the next sequence number the local TCP is expecting to
receive.

receive window
This represents the sequence numbers the local (receiving) TCP
is willing to receive. Thus, the local TCP considers that
se^nents overlapping the range RCV.NXT to
RCV.NXT ♦ RCV.WND - 1 carry acceptable data or control.
Segments containing sequence numbers entirely outside of this
range are considered duplicates and discarded.

RST

RTP

SEG.ACK

SEG.LEN

SEG.PRC

SEC.SEQ

SEC.UP

A control bit (reset), occupying no sequence space, indicating
that the receiver should delete the connection without further
interaction. The receiver can determine, based on the
sequence number and acknowledgment fields of the incoming
segment, whether it should honor the reset command or ignore
it. In no case does receipt of a segment containing RST give
rise to a RST in response.

Real Time Protocol: A host-to-host protocol for communication
of time critical information.

segment acknowledgment

segment length

segment precedence value

segment sequence

segment urgent pointer field

[Page 82 j

2-266

% /?

L • • • • *.% < • - *»% • v V v v .* V ".* V V '.- v . V V V * V * .* - - * * -- .• V . • V * ' ■ , ' V * - * .►..--■>■■. - .

HOST LEVEL- MAJOR RFC 793

September 1981
Transmission Control Protocol

Glossary

■TV

SEG.WND

segirant

segment window field

A logical unit of data, in particular a TCP segment is the
unit of data transfered between a pair of TCP modules.

segment acknowledgment
The sequence number in the acknowledgment field of the
arriving segment.

segment length
The amount of sequence number space occupied by a segment,
including any controls which occupy sequence space.

segment sequence
Hie number in the sequence field of the arriving segment.

send sequence
This is the next sequence number tr.*» local (sending) TCP will
use on the connection. It is initially selected from an
initial sequence number curve (ISN) and is incremented for
each octet of data or sequenced control transmitted.

send window
This represents the sequence numbers which the remote
(receiving) TCP is willing to receive. It is the value of the
window field specified in segments from the remote (data
receiving) TCP. The range of new sequence numbers which may
be emitted by a TCP lies between SND.NXT and
SND.UNA + SND.WND - 1. (Retransmissions of sequence numbers
between SND.ÜNA and 5ND.NXT are expected, of course.)

SND.NXT

SND.UNA

SND.UP

SND.WLi

send sequence

left sequence

send urgent pointer

segment sequence number at last window update

^■::

oiHU. nu*.
segment acknowledgment number at last window update

[Page 83]

2-267

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Transmission Control Protocol
Glossary-

September 1981

SND.WND
send window

socket
An address which specifically includes a port identifier, that
is, the concatenation of an Internet Address with a TCP port.

Source Address
The scarce address, usually the network and host identifiers.

SYN

TCB

TCB.PRC

TCP

A control bit in the incoming segment, occupying one sequence
number, used at the initiation of a connection, to indicate
where the sequence numbering will start.

Transmission control block, the data structure that records
the state of a connection.

The precedence of the connection.

Transmission Control Protocol: A host-to-host protocol for
reliable communication in internetwork environments.

TOS
Type of Service, an Internet Protocol field.

Type of Service
An Internet Protocol field which indicates the type of service
for this internet fragment.

URG
A control bit (urgent), occupying no sequence space, used to
indicate that the receiving user should be notified to do
urgent processing as long as there is data to be consumed with
sequence numbers less than the value indicated in the urgent
pointer.

urgent pointer
A control field meaningful only when the URG bit is on. This
field commun..cates the value of the urgent pointer which
Indicates the data octet associated with the sending user's
urgent call.

vT-

[Page 84]

2-268

HOST LEVEL: MAJOR RFC 793

September 1981
Transmission Control Protocol

REFERENCES

[1] Cerf, V., and R. Kahn, "A Protocol for Packet Network
Intercommunication", IEEE Transactions on Communications,
Vol. COM-22, No. 5, pp 637-648, May 1974.

[2] Postel, J. (ed.), "Internet Protocol - DARPA Internet Program
Protocol Specification", RFC 791, USC/Information Sciences
Institute, September 1981.

[3] Dalai, Y. and C. Sunshine, "Connection Management in Transport
Protocols", Computer Networks, Vol. 2, No. 6, pp. 454-473,
December 1978.

[4] Postel, J., "Assigned Numbers", RFC 790, USC/Information Sciences
Institute, September 1981.

i

[Page 85}

2-269

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

m

m

2-270 "»*

HOST LEVEL: MINOR RFC 869

RFC - 869

A Host Monitoring Protocol

Robert M. Hinden

BBN Communications Corporation

December 1983

2-271

**-'*■ ^'V'.'-.' • '•■'''"

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985 s

y

i

hL

V.
V ,v

:v:

2-272

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

Table of Contents

1 Introduction 1

2 General Description 3

3 Relationship to Other Protocols 6

4 Protocol Operation 7

5 Header Formats 12
5.1 IP Headers 12
5.2 HMP Header 13

6 HMP Monitoring Center Message Formats 16
6.1 Message Type 100: Polling Message 16
6.2 Message Type 101: Error in Poll 18
6.3 Message Type 102: Control acknowledgment 20

A Appendix A - IMP Monitoring 21
A. 1 Message Type 1: IMP Trap 21
A. 2 Message Type 2: IMP status 24
A. 3 Message Type 3: IMP Modem Throughput 29
A.4 Message Type 4: IMP Host Throu^iput 32

B Appendix B - TAG Monitoring 35 *y
B. 1 Message Type 1: TAC Trap Message 35 >v
B. 2 Message Type 2: TAC Status 38 r,%
B. 3 Message Type 3: TAC throughput 42 ^

C Appendix C - Gateway Monitoring 47
C. 1 Gateway Parameters 47
C. 2 Message Type 1: Gateway Trap 48 • *1,
C. 3 Message Type 2: Gateway Status 51 v
C.4 Message Type 3: Gateway Throughput 58 1>\
C.5 Message Type 4: Gateway Host Traffic Matrix 64 «
C.6 Message Type 6: Gateway Routing. 67 fB

i-

2-273

" ^ ■--■-'■■-* ' • >

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-274

v'AV . ■*"-.*■ *

HOST LEVEL: MINOR RFC 869

RFC-869
Replaces IEN-197

December 1983

A Host Monitoring Protocol

m.
$Xi

1 Introduction

The Host Monitoring Protocol (HMP) is used to collect

information from hosts in various networks. A host is

defined as an addressable Internet entity that can send and

receive messages; this includes hosts such as server hosts,

personal work stations, terminal concentrators, packet switches,

and gateways. At present the Host Monitoring Protocol is being

*-»ed to collect information from Internet Gateways and TACs, and

implementations are being designed for other hosts. It is

designed to monitor hosts spread over the internet as well as

hosts in a single network.

This document is organized into three parts. Section 2 and

3 contains a general description of the Host Monitoring protocol

and its relationship to other protocols. Section 4 describes

how it operates. Section 5 and 6 contain the descriptions and

formats of the HMP messages. The^e are followed by appendices

containing the formats of messa »ent by some of the hosts that

use the HMP to collect their monitoring Information. These

appendlcies included as examples only and are not part of the HMP

protocol.

'Sv.

>■»?,

a*

-i-

2-275

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985
ft*

RFC-869 December 1983

This document replaces the previous HMP document "IEN-197, A

Host Monitoring Protocol."

-2-

2-276

■^.^^—^—h.

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

*P

2 General Description

The Host Monitoring Protocol is a transact!on-oriented

(i.e., connection-less) transport protocol. It was designed to

facilitate certain simple interactions between two internet

entities, one of which may be considered to be "monitoring" the

other. (In discussing the protocol we will sometimes speak of a

"monitoring host" and a "monitored entity".) BMP was intended to

be a useful transport protocol for applications that involve any

or all of the following three different kinds of interactions:

- The monitored entity sometimes needs to send unsolicited
datagrams to the monitoring host. The monitoring host
should be able to tell when messages from the monitored
entity have been lost in transit, and it should be able to
determine the order in which the messages were sent, but the
application does not require :iiat all messages be received
or that they be received strictly in the aaiac sequence in
which they werr> sent.

- The monitoring host needs to gather data from the monitored
entity by using a query-response protocol at the application
level. It is Important to be able to determine which query
is being answered by a particular response, and to determine
whether successive responses are duplicates of previous
ones.

- The monitoring host must be able to initiate certain control
functions in the monitored entity, possibly including the
setting of parameters in the monitored entity. The
monitoring host needs to know if the control function has
been carried out.

In addition, we assume that a given monitoring host may b«

monitoring several different types of entitles simultaneously,

and may be gathering several different types of data from a given

-3-

2-277
m

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985 ^™

RFC- 59 December 1983

type of nonitored entity- Several different monitoring hosts may

be monitoring a given entity, and several processes on the same

host may even be monitoring the same entity.

Messages from the monitoring host to the monitored entity

are called "polls". They need to contain enough information to

allow the monitored entity to make the following determinations:

- The monitored entity must be able to determine that this
message is in fact a poll from a monitoring host. The
"system type," "message type," and "password" fields in the
HMP header have been defined to meet this need.

- The monitored entity may need to be able to Identify the
particular process on the monitoring host that sent this
poll, so it can send its response back to the right process.
The "port number" field in the HMP header has been defined
to meet this need.

- The monitored entity must be able to indicate to the
monitoring host, in its response, precisely which query is
being answered by a particular response. The "sequence
number field" has been defined to meet this nmrnd.

The monitored entity must be able to determine just what
kind of action the monitoring host is requesting. That is,
the HMP transport protocol must provide some way of
multiplexing and demultiplexing the various higher-level
applications which use it. The "R-message type" and "R-
subtype" fields of the polling message have been de fir id to
meet this need.

Messages from the monitored entity to the monitoring host

need to contain enough information to enable the monitoring host

to make the following determination:

- The monitoring host must be able to route this message to
the correct process. The "port number" field meets this
need.

!§Pv

m * UII.P

2-278

HOST LEVEL: MINOR RFC 869 $m

RFC-869 December 1983

m

The monitoring host must be able to match up received
messages with the polls, if any, that elicited them. The
"returned sequence number" field in the HMP header has been
defined to meet this need.

The monitoring host must be able to determine which higher
level application should receive a particular message. The
"system type" and "message type" fields are used for this
purpose.

The monitoring host must be able to determine whether some
messages of a given type were lost in transit, and whether
messages have arrived out of sequence. Although this
function, strictly speaking, belongs to the application and
not to the transport layer, the HMP header contains a
"sequence number" for this purpose.

*

^K&

In addition, a simple one's complement checksum is provided

in the HMP header to detect data corruption during transmission.

-5-

* >
2-279

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

3 Relationship to Other Protocols

The Host Monitoring Protocol is a transport protocol

designed to fit into the layered internet protocol environment.

It operates on top of the Intemet/ICMP protocol and under

applications that require its services. TTiis relationship is

illustrated in the following diagram:

+ +

|TELNET|

 + + +

FTP I IGATEWAYI I TAC j

+ +

I TCP |
♦ ♦

+ +

| HMP |
+ ♦

Application Layer

Transport Layer

■MM

Internet Protocol k ICMP Internetwork Layer

♦ „ . +

j Local Network Protocol | Hetwork Layer

If internetwork services are not required it should be possible

to run the J*5> without an Internetwork layer. As long as HMPs*

service requimments (addressing, protocol demultiplexing, and

occasional delivery) are met it should run over a variety of

protocols.

v •• •",

-6-

2-280

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

4 Protocol Operation

The HMP Is built around the idea that most of the

intelligence needed to monitor a host should reside In a

monitoring center, not in the host. The host should be required

only to collect data and send it to the monitoring center, either

spontaneously or on request from the monitoring center. The host

Is not responsible for insuring that the data arrives reliably

(except that it checksums the data); instead, the monitoring

center is responsible for ensuring that the data it requests is

received correctly.

Consequently, the HMP is based on polling hosts for

messages. When the monitoring center requires a particular type

o? data (e.g., throughput data), it sends a poll to the host

requesting that type of report. The host, upon receiving the

poll, responds with its latest set of collected data. If the

host finds that the poll is incorrect (e.g., if the poll was for

throuojhput data and the host is not collecting throughput data),

It responds with an error message. The monitoring center waits a

reasonable length of time for the host to answer its poll. If no

response is received, it sends another poll for the same data.

In this way, if either a pell or the response is lost, the

correct data is still collected.

-7-

2-281

v;

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

The HMP is used to collect three different classes of data:

o Spontaneous Events (or Traps)

o Current status

o Statistical data collected over time

These classes of data allow a host to send data in a manner best

suited to the data. For instance, the host may quickly inform

the monitoring center that a particular event has happened by

sending a trap message, while the monitoring center is reliably

collecting the host's throughput and accounting data.

Traps report spontaneous events, as they occur, to the

monitoring center. In order to insure their prompt delivery, the

traps are sent as datagrams with no reliability mechanisms

(except checksums) such as acknowledgments and retransmissions.

Trap messages usually contain an identifier to indicate which

event is being reported, the local time in the host that the

event occured, and data pertinent to the event. The data portion

is intended to be host and event specific.

Status information, the second type of data collected by the

Host Mon -oring Protocol describes the current state of the host.

Status information is useful at one point, but it does not have

to be collected cumulatively over a certain period of time. Only

the latest status is of interest; old status provides no useful

information. The monitoring center collects status information

-8-

2-282

■_V '. «. • / •- -. v •. ».■•■■

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

by sending a poll for status to a host. Upon receiving the poll,

the host responds with its latest status information, always

creating a new status message. If the monitoring center does not

receive a response to its poll, it sends another poll. The

monitoring center can decide if the host is up or down based on

whether the host responds to its polls.

The third type of data collected by the HMP is statistical

data. These are measurements taken over time, such as the number

of packets sent or received by a host and the count of packets

dropped for a particular reason. It is important that none of

this type of data be lost. Statistical data is collected in a

host over a time interval. When the collection time interval

expires, the current data is copied to another area, and the

counters are cleared. The copied data is sent to the monitoring

center when the host receives a poll requesting statistical

information. If another poll is received before the collection

time interval has expired, the data in the buffer is sent again.

The monitoring center can detect duplicate messages by using the

sequence number in the header of the message, since each type of

statistical data has its own sequence number counter.

The collection frequency for statistics messages from a

particular host must be relatively long compared to the average

round trip message time between the monitoring center and that

host inorder to allow the monitoring center to re-poll if it does

-9-

2-283

' i *"■ •-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

not receive an answer. With this restriction, it should be

possible to avoid missing any statistics messages. Each

statistics message contains a field giving the local time when

the data was collected and the time at which the message was

sent. This information allows the monitoring center to schedule

when it sends a poll so that the poll arrives near the beginning

of each collection period. This ensures that if a message is

lost, the monitoring center will have sufficient time to poll

again for the statistics message for that period.

The HMP also includes a provision to send data to and read

parameters in hosts. The data may be used to set switches or

interval timers used to control measurements in a host, or to

control the host itself (e.g. a restart switch). The format of

the data and parameters is host specific.

To send data to a host, the monitoring center sends the host

a poll for a control-acknowledgment message. This poll message

includes the type of the data and the data being sent. When the

host receives this poll, it processes the data and responds with

a control-acknowledgment message.

To read parameters in a host, the monitoring center will

send a poll for parameters to the host. This poll Includes the

type of the parameters being read. When the host receives this

poll, it will send the parameters of the requested rype to the

-10-

hi

2-284

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

monitoring center in a parameters message.

-11-

2-285

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

PJFC-869 December 1983

5 Header Formats

Host Monitor Protocol messages have the following format:

+ +

| Local Network
| Header(s)
+

| IP header
+

| HMP
Header

+ -

I

j
♦ «

| Padding
+- - =

I
-+

5.1 IP Headers

HMP messages are sent using the version 4 IP header as described
in RFC-791 "Internet Protocol," The HMP protocol number is 20
(decimal) . The time to live field should be set to a reasonable
value for the hosts being monitored.

All other fields should be set as specified in RFC-791.

-12-

2-286

••\>\"0 V* \W.

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

5.2 HMP Header

The HMP header format is:

0 0 0 1
0123456789012345

+ + +

0 | System Type j Message Type
+ +

1 | Port Number | Control Flag
+ +

2 | Sequence Number
+ +

3 | Password or Returned Seq. #

One's Complement Checksum

HMP FIELDS:

System Type
Message Type

The combination of system type and message type determines
the format of the data in the monitoring message.

The system types which have been defined are:

System Type Meaning

1 Monitoring Host
2 IMP
3 TAC
4 Gateway
5 SIMP
6 BBN VAX/C70 TCP
7 PAD
8 Reserved
9 TIU
10 FEP
11 Cronus Host
12 Crcnus MCS

-13-

>y«

2-287

> .*• .*• .*•.*• ,"•. ■. - j .V,
v* -.' -.*

R EU

i
DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

Message types are defined and used for each system type
according to the needs of that system. The message types
currently defined are:

Type Description

1 Trap
2 Status
3 Ihruput
4 HIM - Host Traffic Matrix
5 Parameters
6 Routing
7 Call Accounting

100 Poll
101 Error
102 Control Acknowledgment

i

i

Port Number

This field can be used to multiplex similar messages to/from
different processes in one host. It is currently unused.

Control Flag

This field is used to pass control information. Currently
Bit 15 is defined as the "More bit" which is used in a
message in responce to a poll to Indicate that there is more
data to poll for.

Sequence Number

Evary message contains a sequence number. The sequence
number is incremented when each new message of that type is
sent.

Password or Returned Sequence Number

The Password field of a polling message from an monitoring
center contains a password to verify that the monitoring
center is allowed to gather information. Responses to
polling messages copy the Sequence Number from the
polling message and return It in this field for

-14-

Km

2-288

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

identification and round-trip time calculations.

Checksum

The Checksum field is the one's complement of the one's
complement sum of all the 16-bit words in the header and
data area.

-15-

2-289

■ * -■* i* * • ■; i

.v ,*..%

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

6 HMP Monitoring Center Message Formats

6.1 Message Type 100: Polling Message

Description

The monitoring center will send polls to the hosts it is
monitoring to collect their monitoring data. When the host
receives a poll it will return a message of the type
requested. It will only answer a poll with the correct
system type and password and will return an error message
(Message Type 101) if it receives a poll for the wrong
system type or an unsupported message type.

The Poll message includes a facility to send data to a
monitored host. The poll message to send data consists of a
pell for a Control Acknowledgment message (type 102)
followed by the data. The R-Subtype specifies the type of
the data that is being sent. When the monitored host
receives a Poll for a Control acknowledgment« it processes
the data, and then responds with an Control acknowledgment
message. If the monitored host can not process the data, it
should respond with an error message.

A poll to read parameters consists a poll for a Parameters
message. The R-Subtype specifies the type of parameters
being read. When the monitored host receives a poll for a
Parameters message, it responds with a Parameters message
containing the requested information.

A polling message has the following form:

0 0 0 1
0123456789012345

+ ,. +.„,.*.„„„.-., „-.... »,.4,

0 | R-Message Typ«I R-Subtype 1
♦ „ ,«♦-,-- .,„..,«.

f - + ■- ♦ - + - + - ♦ - ♦ - + - ♦ - ■♦ - ♦ <* ♦ - ♦ » ♦ - -♦ --♦ - ♦

1 I Data]

i i i

®

n

-16-

2-290

S *, N ". % *- % .
• > »* v* -* -" -*,«\

HOST LEVEL: MINOR RFC 868

RFC-869 December 1983

H4P FIELDS

System Typo

The type of machine being polled.

Message Type

Polling Message = 100

Port Number

Unused

Control Flag

Unused

Sequence Number

The sequence number identifies the polling request. The
Monitoring Center will maintain separate sequence numbers
for each host it monitors. This sequence number is returned
in the response to a poll and the monitoring center will use
this information to associate polls with their responses and
to determine round trip times.

Password

The monitoring password.

POLL FIELDS

R -Message Type

The message type requested.

R-Subtype

This
and
par

Data

field is used when sending data and reading parameters
it specifies the type of the data being sent or
ters being read.

When the poll is requesting a Control Acknowledgaent
message, data is included in the poll message. A poll for
any other type of message does not include any data The
contents of the data is host specific.

-17-

2-291

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1933

6.2 Message Type 101: Error in Poll

Description

This message is sent in response to a faulty poll and
specifies the nature of the error.

An error message has the following form:

0 0 0 1
0123456789012345

♦ ♦—..„., ♦
0 | Error Type j

+•••• --»••- .+._._. -*•--• ♦
1 | R-Message Type| R-Subtype |

♦—...•.---.----». -♦

»4P FIELDS

System Type

The type of machine sending message.

Message Type

Error Message »101

Port Number

Unused

Control Flag

Unused

Sequence Number

A 16 bit number incremented each time mr. error message» is
it.

Returned Se<juence Number

The Sequence Number of the polling message which caused the
error.

-18-

2-202

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

ERROR MESSAGE FIELDS

Error Type

This field specifies the nature of the error
The following error types have been defined.

in the poll,

r »

1 = Reason unspecified.
2 * Bad R-Message Type.
3 = Bad R-Subtype.
4 = unknown parameter
5 - Invalid parameter value
6 * Invalid parameter/value format
7 = Machine "in Loader

R-Message Type
R-Subtype

These fields identify the poll request in error.

E
-19-

2-293

\»v'»:.v;
y*v v '•/v*\>">>

AV- £^ »"•'.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

6.3 Message Type 102: Control acknowledgment

Description

This message is sent in response to a poll for this type of
message. It is used to acknowledge poll messages that are
used to set parameters in the monitored host.

The Control acknowledgment has no fields other than the HMP
header.

HMP FIELDS

System Type

The type of the system sending the message.

Message Type

Control acknowledgment = 102

Port Number

Unused

Control Flag

unused

Sequence Number

A 16 bit number incremented each time a Control
acknowledgment message is sent.

Returned Sequence Number

The Sequence Number of the polling message which requested
this message.

-20-

2-294

L<O*O>J**«'!*J.*>J
,
N^%'*!^VV'!V'!V""\'1

,
V"A*1V*V %*

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

A Appendix A - IMP Monitoring

A.l Message Type 1: IMP Trap

Description

When a trap occurs, it is buffered in the IMP and sent as
soon as possible. Trap messages are unsolicited. If traps
happen in close sequence, several traps may be sent in one
message.

Through the use of sequence numbers, it will be possible to
determine how many traps are being lost. If it is
discovered that mk^y are lost, a polling scheme might be
implemented for traps; ,

A IMP trap message has the following form:

0 0 0 1
0123456789012345

+ + +

0 j # of traps lost |
+ ... + +

first
trap

data

additional
trap

data

HMP Fields

System Type

IMP= 2

Message Type

IMP Trap Message

Port Number

Unused

= 1

-21-

2-295

\ .■»<:■

Vl

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

 $
RFC-869 December 1983 V?

Control Flag

Unused

Password

unused

Sequence Number

A 16 bit number incremented each time a trap message is sent
so that the HM can order the received trap messages and £jjg
detect missed messages. pP

IMP TRAP FIELDS >/:

of traps lost

Under certain conditions, an IMP may overflow its internal
trap buffers and be unable to save traps to send. This
counter keeps track of such occurrences.

Trap Reports

There can be several blocks of trap data in each message.
The format for each such block is below.

+ + +

I Size |
+ + +

I Time |
+ + +

| Trap ID |
+ +„ +

Trap
Data

+ 4.. +

Size

Size is the number of 16 bit words in the trap, not counting
the size field.

Time

The time (in 640 ms. units) at which the trap occurred.

22-

2-296

JL'^V 'J. JL. W_ V_ i"_ 1_ *.-

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

This field is used to sequence the traps in a message and
associate groups of traps.

Trap ID

This is usually the program counter at the trap. The ID
identifies the trap, and does not have to be a program
counter, provided it uniquely identifies the trap.

Trap Data

The IMP returns data giving more information about the trap.
There are usually two entries: the values in the accumulator
and the index register at the occurrence of the trap.

-23-

2-297

' i • i
"■• * i ' ' ' ^ * - ' •'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

A.2 Message Type 2: IMP status

Description

The status message gives a quick summary of the state of the
IMP. Status of the most important features of the IMP are
reported as well as the current configuration c?f tho
machine.

The format of the status message is as fellows:

0 0 0 1
0123456789012345

+ , + ._+

0 | Software Version Number |
+ + +

| Last Trap Message j
+ + +

I Max # Hosts | Max # Modems |
+—. , + +
S Max # Channels! Max # IMPs |
+ .+ . +

| Package bits 0-15. j
4 + ,. +

5 j Package bits 16.-31. |
4-..---...---....4... ---4

i i
+ Crash ♦
I I
+ Data ♦
I I
+-....-.....-....-....... .4........ -,.„-4

I Anomalies |
4 ++

10 I Free Pool | S+F Pool j
♦4..............-4

I Reassembly Pool) Allocated Pool j
4-..............4...............4

I HIHD0 I HIHD1 I HIHD2 j HIHD3 {
< 4,.. ., ...4.4

. : HIHD4 I
> ♦ .-.4...-......-...- +

(cont.)

-24-

2-298

+2

.*•'. * v,
-+.

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

Imp Status (cont.)

+

+

I

Modem
State

Data

Modem State
Data
 +.

p „

HMP FIELDS

System Type

IMP = 2

Message Type

IMP .status message = i

Port '.dumber

Unused

Control Flag

Unused

Sequence Number

A 16 bit number incremented each time a status message is
sent.

Password

The password contains the sequence number of the polling
message to which this message responds.

IMP STATUS FIELDS

Software Version Number

The IMP version number.

-25-

2-299

1 ** V V* V v V V V V V V V %

r "V V <•* V V V V * V ".* V ".* ' 1^*^
'• .*• JS V*"

±&&&&

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

Last Trap Message

Contains the sequence number of the last trap message sent
to the HM. this will allow the HM to detect how many trap
messages are being lost.

Hosts

The number of configured hosts in this system.

Modems

The number of configured modems in this system.

Channels

The maximum possible number of IMP-IMP channels in this
system.

IMPs

The maximum possible number of IMPs in this systam.

Package Bits

This is a bit encoded word that reports the set of packages
currently loaded in the system. The table below defines the
bits.

-26-

2-300

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

N

Bit
(octal)

(1st Word)
1
2
4

10
20
40

100
200
400
1000
2000
4000
10000
20000
40000
100000

(2nd Word)
1
2

Package

VDH
Logical address tables
Mezxnode
Cumulative Statistics
Trice
m
DDT
HDLC
HDH
Cassette Writer
Propagation Delay Measurement
X25
Profile Measurements
Self Authenticating Password
Host traffic Matrix
Experimental/Special

End-to-end Statistics
Store and Forward statistics

Crash Data

Crash data reports the circumstances surrounding an
unexpected crash. The first word reports the location of
the crash and the following two are the contents of the
accumulator and index registers.

Anomalies

Anomalies is a collection of bit flags that indicate the
state of various switches or processes in the IMP. These
are very machine dependent and only a representative
sampling of bits is listed below.

Bit Meaning
(octal)

20 Override ON
200 Trace ON

1000 Statistics ON
2000 Message Generator ON
4000 Packet Trace ON
10000 Host Data Checksum is BAD
20000 Reload Location SET

-27-

2-30!

\V

VN _ _» _• _-s '_•

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

Buffer Pool Counts

These are four bytes of counters indicating the current
usage of buffers in the IMP. The four counters are: free
buffers, store-and-forward buffers, reassembly buffers and
allocated buffers.

HIHDO - HIHDn

Each four bit HIHD field gives
corresponding host.

the state of the *\v.

Value Meaning
0 UP
1 ready line down
2 tardy
3 non-existent

Modem State Data

Modem state data contains six fields of data distributed
over four words. The first field (4 bits) indicates the
line speed; the second field (4 bits) is the number of the
modem that is used by the neighboring IMP on this line; the
third field (8 bits) is the number of line protocol ticks
covered by this report; the fourth (1 bit) Indicates line
down(l) or up(0); the fifth (7 bits) is the IMP number of
neighbor IMP on the line; and the sixth (8 bits) is a count
of missed protocol packets over the interval specified in
the third field.

r. -\

i
• * #*

m
yv

m
v.v

• M'J

-28-

m
2-302

•O .'■ "■ .'• . . -•■ *-. .-_ .•- ,'. v. ,*. .A. .•_ ..-.. «*_ .-•_ »» .•_ A. ."_ »'_ ,»_'«» V,

C'.v.v.vV

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

k. *«.
K
[**■
r *
k „'
I* ,
¥ - I
r'.'

A. 3 Message Type 3: IMP Modem Throughput

Description

The modem throughput message reports traffic statistics for
each modem in the system. The IMP will collect these data at
regular intervals and save them awaiting a poll from the HM.
If a period is missed by the HM, the new results simply
overwrite the old. Two time stamps bracket the collection
interval (data-time and prev-time) and are an indicator of
missed reports. In addition, mess-time indicates the time
at which the message was sent.

The modem throughput message will accommodate up to fourteen
modems in one packet. A provision is made to split this
into multiple packets by including a modem number for the
first entry in the packet. This field is not immediately
useful, but if machine sizes grow beyond fourteen modems or
if modem statistics become more detailed and use more than
three words per modem, this can be used to keep the message
within a single ARPANET packet.

The format of the modem throughput message is as follows:

0
0 12 3

0 0 1
456789012345

1 Mess-Time |

| Software Version Number |

1
- — — — — '- — — T-— — - — -r

Data-Time j

1
- — — ->■ — '<»'■••<►— — — '» — » — «••«•«* — — -^

Prev-Time |

| Total
♦---

Modems [This Modem j

modem

throughput
I

modem

throughput

♦ ■

-29-

2-303

• .'■ .*• .* "♦ "■ . * v ■. ".

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

HMP FIELDS

System Type

IMP = 2

Message Type

IMP Modem Throughput message - 3

Port Number

Unused

Control Flag

Unused

Sequence Number

A 16 bit number Incremented at each collection interval
(i.e. when a new throughput message is assembled) . The HM
will be able to detect lost or duplicate messages by
checking the sequence numbers.

Password

The password contains the sequence number of the polling
message to which this message responds.

II* MODEM THROUGHPUT FIEUDS

Mess-time

The time (in 640ms. units) at which the message was sent to
the »1.

Software Version Number

The IMP version number.

Data-Time

Data-time is the time (In 640ms. units) when this set of
data was collected. (See Description.)

-30-

2-304

HOST LEVEL: MINOR RFC 869

kFC-869 December 1983

Prev-Time

Prev-time is the time (in 640 ms. units) of the previous
collection of data (and therefore, is the time when the data
in this message began accumulating.)

Total Modems

This is the number of modems in the system.

This Modem

This Modem is the number of the first modem reported in this
message. Large systems that are unable to fit all their
modem reports into a single packet may use this field to
separate their message into smaller chunks to take advantage
of single packet message efficiencies.

Modem Throughput

Modem throughput consists of three words of data
p* reporting packets and words output on each modem. The

first word* counts packets output and the following two
count word throughput. The double precision words are
arranged high order first. (Note also that messages from
Honeywell tyi > machines (316s. 516s and C30s) use a fifteen
bit low order *ord.) The first block reports output on the
modem speciU&d by 'This Modem". The following blocks
report on consecutive modems.

tf

I K

f 2-305

^^•>l^^%**V*V»>j*-V*l*!ivv*v>^ \?_\«jfc*

I

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

A.4 Message Type 4: IMP Host Throughput

Description

The host throughput message reports traffic statistics for
each host in the system. Ihe IMP will collect these data at
regular intervals and save them awaiting a poll from the HM.
If a period is missed by the HM, the new results simply
overwrite the old. Two time stamps bracket the collection
interval (data-time and prev-time) and are an indicator of
missed reports. In addition, mess-time indicates the time
at which the message was sent.

The host throughput format will hold only three hosts if
packet boundaries are to be respected. A provision is made
to split this into multiple packets by including a host
number for the first entry in the: packet.

The format of the host thro aojiput message is as follows:

C 0 0 1
01231567890] 2345

+ .., . ■ .~---..»4.-_-l »-.....4

0 I Mast-Tin» j
♦ + ..^

I Software Version Tiumber |
+ . + • - . ♦

I Data-Time j
+•_.„,,«,-.-- ♦_ ♦

I Prev-Tlme |
♦ - ... »-....-♦«.... *

I Total Hosts I This Host |
♦--...-.-...-...4....... — ^

5 : host
throu^put

♦ -.— . + .*

»IP FIELDS

System Type

IM> « 2

Message Type

IMP host Throughput message » 4

-32-

2-3Ö6

JTvf

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

Port Number

Unused

Control Flag

unused

Sequence Number

A 16 bit number incremented at each collection interval
(i.e. when a new throughput message is assembled) . The HM
will be able to detect lost or duplicate messages by
checking the sequence numbers.

Password

The password contains the sequence number of the polling
message to which this message responds.

IMP HOST THROUGHPUT FIELDS

Mess-time

The time (in 640ms. units) at which the message was sent to
the HM.

Software Version Number

The IMF version number.

Data-Time

Data-time is the time (in 640ms. units) when this set of
data was collected. (See Description.)

Prev-Time

Prev-time is the time (in 640 ms. units) of the previous
collection of data (and therefore, is the time when the data
in thl«s message began accumulating.)

Total Hosts

The total number of hosts in this system.

This Host

This host is the number of the first host reported in this

-33-

2-307

>i^
— ^ * "-* ^-" '-* i^ *-* •*-* '-* ■*-"• «-* '-"*«•'. i*. **» 3La <". <.. V- V. V,.V.*«.'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

message. Large systems that are unable to fit all their
host reports into a single packet may use this field to
separate their message into smaller chunks to take advantage
of single packet message efficiencies.

Host Throughput

Each host throughput block consists of eight words in the
following format:

+ + +

| messages to network |
+ + +

| messages from network |
+ + +

| packets to net |
+ -+ +

| packets from net |
+ + +

| messages to local |
+ + +

j messages from local |
+ + +

| packets to local |
+ + .»+

I packets from local |
+ + +

Each host throughput message will contain several blocks of
data. The first block will contain data for the host
specified in First Host Number. Following blocks will
contain data for consecutive hosts. All counters are single
precision.

yv -i4-

2-308

;.:>>^:>:^ i ^ ^ ». i ^ i...

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

B Appendix B - TAC Monitoring

B.l Message Type 1: TAC Trap Message

Description

When a trap occurs, it is buffered in the TAC and sent as
soon as possible. Trap messages are unsolicited. If traps
happen in close sequence, several traps may be sent in one
message.

Through the use of sequence numbers, it will be possible to
determine how many traps are being lost. If it is
discovered that many are lost, a polling scheme might be
implemented for traps.

A TAC trap message has the following form:

0 0 0 1
0123456789012345

-+

i c
1

>

h-------- --------r- —-------------

Version #

]
T — — — —

L : first
trap

data
-•• — —

additional
trap

data

HMP FIELDS

T— — —

System Typ«

TAC = 3

Message Type

TAC Trap Mi Bssage = 1

Port Number

Unused

-35-

2-309

^>>s^>:>S>>>;->: >,&:•-> >&:>>; > ••;■'/* /&&&; ^ .• ■***Vw'r VWf ^T-V-a.«T:A*iVf t^L^läil^ -•»LVj^lvVg.V^tL'x.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

Control Flag

Unused

Password or Returned Sequence Number

Unused

Sequence Number

A 16 bit number Incremented each time a trap message Is sent
so that the HM can order the received trap messages and
detect missed messages.

TAG TRAP FIELDS

Version #

The version # of the TAC Software.

Trap Reports

There can be several blocks of trap data In each message.

The format of the trap data Is as follows:

+ + +

| Size |
+ + +

| Time |
♦ + +

| Trap ID |
+ + +

Trap
Data

+ + +

| Count |
+ +

öiZw

Size Is the number of 16 bit words In the trap, not counting
the size field.

Time

The time (in 640ms. units) at which the trap occurred. This
field is used to sequence the traps in a message and

-36-

2-310

.■ .».*• »> /* ."• ."•".*■

•*»*•.* •* j» * * " • # * # ""jfc *» *(****« " ■>"■* • •** *** fc*^ %** »"** ib** *** *"■ *•■ *• *» % *» "• *** '* *. *. * "%* *»* *„* , * % **" ~ • *fc~ * *

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

if.

associate groups of traps.

Trap ID

This is (usually) the program counter at the trap. The ID
identifies the trap, and does not have to be a program
counter, provided that it uniquely identifies the trap.

Trap Data

The TAC returns data giving more information about the trap.
There are usually two entries: the values in the accumulator
and the index register at the occurrence of the trap.

Count

The TAC Counts repetitions of the same trap ID
this count here.

and reports

-37-

2-311

"*•• *\vIvL .-I./vlv >'»'**/■.*
W\.\

kvS£&^ VLvlVlvlvlWwv^EL^^V'lX

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

B.2 Message Type 2: TAC Status

Description

The status message gives a quick summary of the state of the
TAC. Status of the iaost important features of the TAC are
reported as well as the current configuration of the
machine.

A TAC status message has the following form:

0 0 0 1
0123456789012345
 + +

0 | Version Number |
+ + +.

| Last Trap Message |
+ , +_«... +

j Bit Flags |
+ + +

| Free PDB count |
+ + +

| Free MBLK count |
+ + +

5 j # of TCP connections |
+ + +

| # of NCP connections |
+ + +
| INA A Register |
+ + +

| INA X Register |
+ + +

| INA B Register j
+ + +

10 I restart/reload |
+ + +

I I
♦ Crash +

I I
+ Data ♦

13 I I
+ -..-. + .- +

-38-

2-312

.*• .'. .*. .A

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

i •

HMP FIELDS

System Type

TAG = 3

Message Type

TAG Status Message = 2

Port Number

Unused

Control Flag

Unused

Sequence Number

A 16 bit number Incremented each time a status message Is
sent.

Returned Sequence Number

Contains the sequence number from the polling message
requesting this report.

TAC STATUS FIELDS

Version Number

The TAC's software version number.

Last Trap Message

Contains the sequence number of the last trap message sent
to the HM. This will allow the HM to detect how many trap
messages are being lost.

-39-

2-313

.'• .*• .**.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

Bit Flags

There are sixteen bit flags available for reporting the
state of various switches (hardware and software) In the
TAG. The bits are numbered as follows for purposes of the
discussion below.

0 0 0 1
0123456789012345

I I I I I I I I I I I I I I ! I I
+ « + - + - + -.<.- + .+ -4- + . + _ + _ + .+ - + - + . + « +

The bit flags report the status of the following:

Bit Meaning
15 0 *> DDT override off; 1 => override on.
11-14 0 »> Sense Switch n is off; 1 *> SSn on.
10 0 *> Traps to remote monitor;

1 => Traps to console.
9 1 => Message generator on.
0-8 unused

Free PDB count

The number of PDBs on the free queue.

Free MBLK count

The number of MBLKs on the free queue.

of TCP connections
of NOP connections

Th* number of open connections for each protocol.

INA Report

These three fields report the values retained by an INA 1011
instruction in a C/30. This instruction returns micro-
machine status and errors. In a #316, the fields are
meaningless.

-40-

2-314

•* ••* *.* * *." •»" •-" *." • *"K." 'S* *«*%.•
VV.V.V.VV AV . *Z^l£Lll&ll*aJjdl^&. -*-*'.♦ ■?'v,,A^ 'J

HOST LEVEL: MINOR RFC SÖ9

RFC-869 December 1983

Restart/Reload

This word reports a restart or reload of the TAC

Value
1
2

Meaning
restarted
reloaded

Crash Data

Crash data reports the circumstances surrounding an
unexpected crash. The first word reports the location of
the crash and the following two are the contents of the
accumulator and index registers.

-41-

2-315

fit

* m "

I»>I-:v\» >^/^»^ ^ A m*. m «*. ■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-369 December 1983

B.'i Message Type 3: TAC Throughput

Description

The TAC throughput message reports statistics for the
various modules of the TAC. The TAC will collect these data
at regular intervals and save them awaiting a poll from the
HM. If a period is missed by the HM, the new results simply
overwrite the old. Two time stamps bracket the collection
interval (data-time and prev-time) and are an indicator of
missed reports. In addition, mess-time indicates the time
at which the message was sent.

A TAC throughput message has the following form:

0 0 0 1
0123456789012345

♦--.---—•---.--+•--- +

Mess-Time
 +

Data-Time
.............-4,-... ...

Prev-Time
...—......—+.....—.—...

Version Number

10

Last Trap Message

Bit Flags

Free PDB count
-..-..-_...+.-.........

Free MBLK count
.... + ...

* of TCP connections

of NCP connections

Host Input Throughput

Host Input Abort Count

Host Input Garbled Count

Host Output Throughput
——+.

(continued)

1822 info.

-42-

2-316

•_* •_" vT. %J ■-* --• V •JVV.v-.-^W rJ"*-AVAV»'.v*_?k*_VLV\.*_-»*_v* v*

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

TAC throughput (cont.)

» —_> | ▼— ___________ _.

Host Output Abort Count
•-♦

1822 info
i +——

15 |
«.-__-__-•_-___---_» -» W--4p_» _»._■ 4» «--»_• «ft« *»_»_■ *»«

Host Down Count
1
V

+—— »_»_--»__-_ _»-_-»-_P_-«P «»-^ _»_»_■_>_*«*_----»---»-» _»-

of datagrams sent
i ♦• "■

of datagrams received
1
1

IP info.
1
i

"♦,<" •* _»-_.__-__._•_-_•_» *» _»*» _» _>^ _•___■__»*_■-_ _» _» _»_»_•_»•

of datagrams discarded
▼"•* _._._»_»-»--._-._._--»_._»«e*_.--«._» _»•_»-»-»-»-»•> — — <

of fragment» received
1
V

i

20 | # of fragments discarded
1
V

+™"
of se^aents sent

1 +_—

of se^ftents received
«-♦

1
1
1 ▼"***

of «eqpnents discarded
1
1

TCP info
1
i

T* "*

* of octets sent
m —*

25 | # of octets received
1
1

♦ •• _»_»_»«P_»«»*»_ft<»W*»-»«-^_ft«»_»4»«---0«--»«»«»W«P
of retransmissions

1
V

♦• —

»4P FIELDS

__________ ___^__«_ K____*__«

System Type

TAC * 3

Message Type

TAC Throughput Message * 3

Port Number

Unused

Control Flag

Unused

-43-

2-317

'* V ■\ -_ V -V .,_ ■ »—^ . *.\ . *.» .'.'-.' _*.«.. V • '...A'-A'.'.'/-'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

Sequence Number

A 16 bit number incremented at each collection interval
(i.e. vhen a new throughput message is assembled) . The HM
will be able to detect lost or duplicate messages by
checking the sequence numbers.

Returned Sequence Number

Contains the sequence number from the polling message
requesting this report.

TAG THROUGHPUT FIELDS

Mess-time

The time (in 640ms. units) at which the message was sent to
the »1.

Data-Time

Data-time is the time (in 640ms. units) when this set of
data was collected. (See Description.)

Prev-Time

Prev-tiae is the time (in 640 ms. units) of the previous
collection of data (and therefore« is the time when the data
in this message began accumulating.)

Version Number

the TAC's software version number.

Last Trap Message

Contains the sequence number of the last trap message sent
to the St4. This will allow the IM to detect how many trap
messages are being lost.

Bit Flags

There are sixteen bit flags available for reporting the
state of various switches (hardware and software) in the
TAG. The bits are numbered as follows for purposes of the
discussion below.

-44-

2-318

.* %V»~* "*
^SA>:>>>>^AV*> >£»^

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

0 0 0 1
0123456789012345

♦-♦-♦-♦-♦-+-+-♦-♦-+-+-+-♦-♦-♦-+-♦
i i i i i i i i i i i i i i i i i

The bit flags report the status of the following:

Bit Meaning
15 0 => DDT override off; 1 «> override on.
11-14 0 *> Sense Switch n is off; 1 =*> SSn on.
10 0 »> Traps to remote monitor;

1 *> Traps to console.
9 1 => Message generator on.
0-8 unused

Free PDB count

The number of PDBs on the free queue.

Free MBLK count

The number of MBLKs on the free queue.

of TCP connections
• of NOP connections

The number of open connections for each protocol.

1822 info.

These six fields report statistics which concern the
operation of the 1822 protocol module« i.e. the interface
between the TAC and its IMP.

IP info.

These five fields report statistics which concern Internet
Protocol in the TAC.

TCP info.

-45-

2-319

f^iVi''«'^','»•^-'.VA'2«^i:^vI\\v.'tl'w':«/.'>-S* v\l>..-: *v v vv >!*•»! •> .> /^ . ^ ^:>y L >:•»>:. ;.•»•.'.•;

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

EFC-869 December 1983

These six fields report statistics which concern TCP
protocol in the TAC.

-46-

2-320

>

v1». ^. i.' i^

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

C Appendix C - Gateway Monitoring

C.l Gateway Parameters

The gateway supports parameters to set Throughput and Host
traffic matrix measurements. The type of parameters and the
parameter and data pairs are as follows:

Throughput - Type = 3

Parm. Description Control Data Word

1 Start/Stop
2 Collection Interval

0=Stop,l=Start
Time in 1 minute
ticks

Host Traffic Matrix - Type = 4

Parm. Description Control Data Word

1 Start/Stop
2 Collection Interval

3 HIM Switch Control

0=Stop,l=Start
Time in 1 minute
ticks
Include Control
Protocols

-47-

2-321

^Al^r^'^'^Nil^w**!^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

C.2 Message Type 1: Gateway Trap

Description

When traps occur in the gateway they are buffered. At a
fixed time interval (currently 10 seconds) the gateway will
send any traps that are in the buffer to the monitoring
center. The traps are sent as unsolicited messages.

A Gateway trap message has the following format:

0 0 0 1
0123456789012345

j Gateway Version # |

+-+-+-+-+-+-+-+-+-♦-+-■•■-+-+-+-+-+

| Size of Trap Entry |

| Time of Trap |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-4
| Trap ID |

| Process ID |

+-+-+-+-+-+-+-+-+-+-♦-+-+-+-+-+-+
I Rl I
+-+-+-+-+-+-+-+•-+-+-+-+-♦-+-.+»+-+

I R2 I

I R3 I
+-+-+-+-+-+-♦-♦-♦-♦-+-+-♦-+-♦-+-+

(continued)

;First Trap

-48-

2-322

."A. -r..,, «ft., mU '*--i A-V^'v>-!»*:^f>-"'S*! V-»**-»'-*--» ^ V^V.»L'.»\»>.h*:.»:

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

GATEWAY TRAP FIELDS

Gateway Version #

The software version number of the gateway sending the trap.

Trap Reports

The remainder of the trap message consists of the trap
reports. Each consists of the following fields:

Size of Trap Entry

The size in 16-bit words of the trap entry, not
including the size field.

Time of Trap

The time in (in 1/60 sec. ticks) at which the trap
occurred.

Trap ID

The number of the trap which is used to Identify the
trap.

Process ID

The identifier of the process that executed the trap.

R0-R6

The registers of the machine at the occurrence of the
trap.

Count of this Trap

The number of times that this trap occurred.

-50-

2-324

^vS^iS^ &i£ iv->: •■•---••• >^'-a>-l*.^ JL'J^JL >'- -■•>\^^\E\j-.y.:

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

Gateway Trap Message (cont'd.)
&

I R4 |

I R5 I

I R6 I

j Count of this Trap J

+ - + - + - + -.4.- + -+ - + - + - + - + - +- + - + - + - + - +

I I
j Additional Trap reports |

I I

HMP FIELDS

System Type

Gateway = 4

Message Type

Gateway Trap Mossage = X

Port Number

Unused

Control Flag

Unused

Password or Returned Sequence Number

Unused

Sequence Number

A 16 bit number incremented each time a trap message is sent
so that, the monitoring center can order the received trap
messages and detect missed messages.

:s\:

-49-

2-323

V •»** »V* »** »*• •** •** »^ • * • " . " « " *V *"* «. * " ' »*" »"* ■4*' *» * »* » ' » " • ** * »"* •■"* «"" •"* -** •** «"* » * »"*.-.
•.* •.* ■•* '•' *»',

■ t.i.tll.,-

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

C.3 Message Type 2: Gateway Status

Description

The gateway status message gives a summary of the status of
the gateway. It reports information such as version number
of the gateway, buffer memory usage, interface status and
neighbor gateway status.

A Gateway Status message has the following format:

I

r-

-51-

I

2-325

* ^3 i '■ » ».»*.■ fc i -•— fcl m

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

I

0 11
01234567890123456

4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4

| Version Number |
4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4

| Patch Version Number |
4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4

i Time Since Gateway Restart j
4-4-4-4-4—«»-4-4-4-4-4-4-4-4-4-4-4

| Measurement Flags |
4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4

| Routing Sequence No.
4-4-4-4-4-4-4-4-4-4-4-4-4-4-4

| Access Table Version #
4-4-4-4-4-4-4-4-4-4-4-4-4-4-4

| Load Sharing Table Ver. #
4-4-4-4-4-4-4-4-4-4-4-4-4-4-4

| Memory in Use
♦-♦-♦-♦-+-+-♦-♦-+-♦-♦-♦-♦-+-♦

| Memory Idle
♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-+-+-♦
| Memory Free

| # of Blks |
4-4—f -4 -4-4 -4-4-4-4-4-4-4-4-4

| Size of 1st Block (in bytes) |
4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4

| # Allocated |

I « Idle |
♦-+-♦-4-♦-♦-*-4-4

2 3 3
89012345678901

-4-4

I
■4-4

I
•4-4

I
•♦-+

I

I
•4-4

•4-4

;in minutes

Bit flags to indicate which
measurements are on, 1= On
Sequence # of last routing
update sent

; Memory Allocation Info

IV

4-4-4- 4-4>-4-4-4-4-4- 4-4-4-4-4-4-4

| Size of n'th Block (in bytes) j
4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4
| # Allocated |
4-4-4-4-♦-4-4-4-4

I # Idle |

(continued)

-52-

2-326

^\^ i W^. JUVJ -rf r J "-a ma irf.

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

Gateway Status Message (cont'd.)

| # of Ints. j

! Int 1 Flags | ;Interface 1 Status Flags
; Bit 0 - l=Up, 0=Down

1 - l=Looped, 0=Not

; # of buffers on write Queue

;Time since last up/dvn change

| Buffers |

| Time since last Status Change |

| # of Buffers Allocated |

| Data Size for Interface |

| Interface 1 Address I

;Interface n Status Flags
+ +

J Int n Flags |

| Buffers 1
+-+-+-+-♦-+-+-+-+-+-+-+-+-+-+-+-+
| Time since last Status Change |

| # of Buffers Allocated |
+-+«♦-+-+-+-+-+-♦-♦-+-+-♦-+-+-+-♦
| Data Size for Interface |

| Interface n Address !

| # Neighbors j
♦-+-♦-♦-♦-+-♦-♦-♦
| UP/DN Flags | ;Bit flags for Up or Down
+-+-♦-+-♦-«►-+-♦-♦ ; 0 - Dwn, 1 * Up

; MSB is neighbor 1
; (as many bytes as necessary)

+_ +»+-+.+-4.4-^. ..+.«+_+-♦-♦ .+_+-+-+_+_.►-♦-♦-♦- ♦ -♦-♦-+-♦-+-♦- ♦-♦-♦-♦
I Neighbor 1 Address 1
♦ -♦-+-+-♦- ♦ -+-♦-+-♦-♦-♦-♦-.♦■-♦-♦-♦-«♦.-+-♦-♦-♦-♦ -♦-♦-+-♦-♦-+-♦-♦«♦-+

I Neighbor n Address I

-53-

2-327

bi£^^ •VV -%V-.v ■.*'.
'str'Jk 'j-^V-VJ^-C'/^-V-rf-V.» «•- A. ,

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

HMP FIELDS

System Type

Gateway = 4

Message Type

Gateway Status Message = 2

Port Number

Unused

Control Flag

Unused

Password or Returned Sequence Number

Unused

Sequence Number

A 16 bit number incremented each time a trap message is sent
so that the monitoring center can order the received trap
messages and detect missed messages.

GATEWAY STATUS FIELDS

Version Number

The version number of the gateway sending the Status
message.

Patch Version Number

The patch version number of the gateway.

Time Since Gateway Restart

The time in minutes since the gateway was last restarted or
reloaded.

-54-

2-328

., v.. .\ \~ i*. i*_ »*> £a Cm »"- lit ■'- « ■ *-rf-V-'«?- MT*.1L*A*..«?-*-« ,1V-V-V

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

Measurement Flags

Flags that, if set, indicate which measurements are turned
on. Current values are:

Bit 0 = Message Generator
1 = Throughput
2 = Host Traffic Matrix
3 = Access Control 1
4 = Access Control 2
5 = Load Sharing
6 = EGP in Gateway

Routing Sequence Number

The sequence number of the last routing update sent by this
gateway.

Access Control Table Version #

The version number of the access control table.

Load Sharing Table Version $

The version number of the load sharing table.

Memory In Use

The number of bytes of buffer memory that are currently in
use.

Memory Idle

The number of bytes of buffer memory that have been
allocated but are currently idle.

Memory Free

The number of bytes of buffer memory that has not been
allocated.

MEMORY ALLOCATION INFORMATION

The next part of the status message contains information on
the buffer pools in the gateway. The fields are:

of Blocks

-55-

2-329

-* - -i^L^^^j
.V /.

>-**^*.A^r>-,>-**J^-^^'«^:.'-!»'*-
,^,V.t«'-*. ^.A'V' ».*. s

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

The number of different buffer pools.

Size of Block

The size of this block in bytes.

Allocated

The number of blocks of this size that have been
allocated.

Idle

The number of blocks of this size that are idle.

GATEWAY INTERFACE FIELDS

The next part of the status message are fields that provide
information about the gateway's interfaces. The fields are:

of Interfaces

The number of network interfaces that the gateway has.

Interface Flags

Flags that indicate the status of this interface. The
current values are:

Bit 0 - l*Up/0=Down
1 - l=Looped/0=Not Looped

Buffers

The numbers on this interfaces write queue.

Time Since Last Status Change

The time in minutes since this interface changed status
(Up/Down).

of Buffers Allocated

The number of buffers allocated for this interface.

Data Size for Interface

The buffer size required for this interface.

-56-

2-330

i»> .*•. • /♦ .v »••.*•, •.-. .v. y.- .v .* *.
/JL^.V-V-'*^'. ."1*»'SmmS*^d-£~tL^£n^Jl£^mAm.'m* i"*m*m?(».$iLfi

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

Interface Address

The Internet address of this interface.

NEIGHBOR GATEWAY FIELDS

The final part of the status message consists of information
about this gateway's neighbor gateways. The fields are:

of Neighbors

The number of gateways that are neighbor gateways to
this gateway.

UP/DN Flags

Bit flags to indicate if the neighbor is up or down.

Neighbor Address

The Internet address of the neighbor gateway.

•J.V.

-57-

2-331

*w *, ■. -

^^-^J «T-VJ^-^g-.r-'ji ^ ^>>.\»\A\J>A>.^'.»*«J»>.»
,
J «:\>^ ^VlV-V ^ ._\;±J \ AW»*.V^-_iA

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

C.4 Message Type 3: Gateway Throughput

Description

The gateway collects throughput statistics for the gateway,
its interfaces, and its neighbor gateways. It collects them
for regular intervals and will save them for collection via
a Poll message from the Monitoring host. If they are not
collected by the end of the next interval, they will be lost
because another copy will be put into the saved area.

A Gateway Throughput message has the following format:

0 112 3 3
01234567890123456789012345678901

+-♦-♦- 4-+-♦-■ ♦-+-+-4 -4-4.4-4.4.4-4

I Gateway Version Number |
♦-♦-♦-+-+-♦-♦-♦-+-♦-+-♦-♦-■♦•-♦-♦-♦

I Collection Time in Min |
♦-♦-+-+-+-♦-+-+-+-♦-♦-♦-♦-♦-♦-♦-+
I Number of Interfaces J
+.4.4.4-+-+-4.+-+- ♦-+-+-+.+-*-+-+

I Number of Neighbors |
♦-♦-+-♦-♦-♦-♦-♦-+-♦-♦-+-+-+-+-♦-+
I Number of Host Unreachable |
4.4-4.4.4.4-4-4-4-4.4.4.4.4-4-4-4

I Number of Net Unreachable (

of packets dropped because
Host was Unreachable

Net was Unreachable

; Interface Counters

♦-♦-+-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-+-♦-♦-♦-♦-+-♦-♦-♦-4.4.4-4-4-4.4.4.4.4.4

I Interface Address I
4-.4-4-4-4-4-4-4-4-4-4-4.4_4-4-4-4-4.4.4.4.4-4.4-4. 4.-4.. + - 4.4.4.4.4

I Packets Dropped on Input |
4-4-4.4.4.4.4.4-4.4.4.4-4-4-4-4.4

I Count of IP Errors |
4-4-4.4-4-4.4-4-4.4-4.4-4.4.4.4.4

I Count of Datagrams for Us |
4. 4.-4,4.. 4.4.4.4.4.4. 4.4.4.4.4.4-4

j Datagrams to be Forwarded |
4-4.4-4.4...4.4-4-4-4-4.4.4-4-4-4

I Count of Datagrams Looped |
♦-♦-4.4.4-4.+.4.4.4.4.4.4.4.4-4.4

(continued)

-58-

2-332

L» _'. ^W^L. ^*. _?■:_•_:. WA\- JV-i. ..i» .!ifc-V—IM _*^, -*» -'* ^"» -*w . •.-.». ,1» V....W ♦_'-,-.•, v\ ^ v'^ ^ *-' *-* «-*

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

Gateway Throughput Message (cont'd.)

| Count of Bytes Input I

| Count of Datagrams From Us |
+-+_+_+-+-+-+-+-+-+_+-.f.+.+_+_+-+.

| Count that were Forwarded |
+-+-♦-♦-♦-+-+-■♦■-♦-♦-♦-♦-+-♦—♦•-♦-♦
| Count of Local Net Dropped |

| Count of Queue full Dropped |
♦-♦-♦-+-♦-♦-♦-♦-+-+-♦-♦-+-♦-♦-+-♦-♦-+-♦-♦-♦-♦-♦-♦-♦-♦-♦-+-+-+-+-+
| Count of Bytes Output !

I I
I Counters For Additional Interfaces |
t I

; Neighbor counters

| Neiojrtbor Address
♦-♦-♦- *+.+-+.+-+^+-+.+-4-+-+-*-♦-♦-+*♦-♦-+-+-♦-+-+-+«♦-♦-♦
| Count of Routing Updates TO |
♦-♦-*-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦
{Count of Routing Updates FROM |

(continued)

-59-

2*333

«. '***• *• '•*'•*'• **».* ».* -." v" *.* * " N" * * %

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

Gateway Throughput Message (cont'd.)

+-♦-♦-♦-+-♦-♦-♦-♦-'■♦•-♦-♦-♦-♦-♦-♦-+
| Pkts from US sent to/via Neig |
♦-+-♦-♦-♦-♦-♦-+-♦-♦-♦-♦-♦-♦-♦-♦-♦
j Pkts forwarded to/via Neigfrb |
♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-+-♦-♦-♦-♦
| Datagrams Local Net Dropped |
♦-+-+-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-•♦••+-♦-♦
| Datagrams Queue full Dropped |

| Count of Bytes send to Neighbor j
♦ -♦-♦-♦-♦-♦-♦ -♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-«♦'-♦-♦-♦- ♦-♦-♦-♦

I I
| Count«-* for Additional Neitfibor Gateways |
! I
+ -+- + - + - + -+ - + - + - + - + ~ +- + - + - + - + •- + - + - + <- +- + - + ~ + - + ~ + - + - + - + - + - + -+ - + - + - +

IMP FIELDS

System Type

Gateway * 4

Message Type

Gateway Throughput Massage « 3

Port Number

Unused

Control Flag

Unused

Password or Returned Sequence Number

Unused

Sequence Number

A 16 bit number incremented each time a trap message Is sent
so that the It* can order the received trap messages and

-60-

2-334

!<*-wNv*>>v»>^v->v^^ . ,*'. .•! A*sA9'*'j_L\ />1<CVAV'.*1-V^1-%'-;-

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

detect missed messages.

GATEWAY THROUGHPUT FIELDS

Gateway Version Number

The software version number of the gateway sending the trap. yP

Collection Time in Min.

The time period in minutes in which the throughput data is
to be collected.

Number of Interfaces

The number of interfaces this gateway has.

Number of Neighbors

The number of neighbor gateways this gateway has.

Number oi Host unreachable

Hie number of packets dropped because the Host was
unreachable.

Number of Net Unreachable

The number of packets dropped because the Network was
unreachable.

INTERFACE COUNTERS

Th*i next part of the Throughput message contains counters
fo'* the gateways interfaces. Each interface has the
following fields:

Interface Address

The Internet address of this interface.

Packets Dropped on Input

The number of packets on input to this interface
because there were not enough buffers.

Count of IP Errors

The number of packets received with bad IP headers.

-61-

2-335

&&:>>^^^ -?. --», :«&-,*. :J.-.«'W -J-'J*'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

Count of Datagrams for Us

The number of datagrams received addressed to this
gateway.

Datagrams to be Forwarded

The number of datagrams were not for this gateway and
should be sent out another interface.

Count of Datagrams Looped

The number of datagrams that were received on and sent
out of this interface.

Count of Bytes Input

The number of bytes received on this interface.

Count of Datagrams From Us

The number of datagrams that originated at this
gateway.

Count that were Forwarded

The number of datagrams that were forwarded to another
gateway.

Count of Local Net Dropped

The number of packets that were dropped because of
local network flow control restrictions.

Count of Queue full Dropped

The number of packets that were dropped because the
output queue was full.

Count of Bytes Output

The number of bytes sent out on this interface.

-62-

2-336

i\

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

NEIGHBOR COUNTERS

The last part of the Throughput message are counts for each
neighbor gateway. The fields are:

Neighbor Address

The Internet address of this neighbor gateway.

Count of Routing update* TO

The number of routing updates sent to this neighbor
gateway.

Count of Routing Updates FROM

the number of routing updates received from this
neighbor gateway.

Pkts from US sent to/via Neig

The. number of packets from this gateway sent to or via
this neighbor gateway.

Pkts forwarded to/via Neighb

The number of packets forwarded to or via this neighbor
gateway.

Datagrams Local Net Dropped

The number of datagrams dropped to this neighbor
gateway because of local network flow control
restrictions.

Datagrams Queue full Dropped

The number of datagrams dropped to this neighbor
because the output queue was full.

Count of Bytes send to Neighbor

The number of bytes sent to this neighbor gateway.

-63-

2-337

r.A. i v'.A.'. hi tA U'. %?* V. fc' hi ■■' ■>*.•> >*."«. '■ •■* *■'■ ^ - A-t »:. «■ *■ fc3 a-?. ±.\ » ?"* ±M * e'~ JU *<* *- »*- L+ k - *- Lm *^ *"- jm Cm 1*1 ■*■»'**- * ^''<f'>'V: «.V. '.•A'.i'J.'. A.V-\

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985
■■■

RFC-869 December 1983

C.5 Message Type 4: Gateway Host Traffic Matrix

Description

The Host Traffic Matrix (HIM) message contains information
about the traffic that flows through the gateway. Each
entry consists of the number of datagrams sent and received
for a particular source/destination pair.

A Gateway HIM message has the following format:

0 112 3 3
01234567890123456789012345678901

j Gateway Version Number |

j Overflow counter |

| Collection Time in Min |
+-+-+-+-+«+-+-+-+-+-+-+-+-+-+-♦-+
| Number of HIM entries |

j IP Source Address |

| IP Destination Address |
+-+-+-+-+-♦-+-+-+-+-+-+-+-+-♦-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-■+-+
| IP Protocol | (unused) j

| Counter for SRC -> DST datagrams I
+ - + - + ~ + - + - + - + - + - + - + -~r- + -+ - +
| Counter for DST -> SRC datagrams |

i. V\

+-+_+_+_+_+-+

Additional HIM Reports

+-+-+-+-♦-♦-+-♦-+-+-+-+-+- + - + - + -4-- + - + - + -♦-♦- + - +-4-+-+-4- +-+-+-+-+

-64-

2-338

' '.'•*.*'A* *. •* • w*_ «*. -*. •*. ■* *

**. •*» "•*«-",v■»"-•*« *"» **. *K. •*.»". *". -'. '"«-r» "*» -"»"•*. v»1\ '*. \ ^i^^^i-v-i

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

HMP FIELDS

S/stem Type

Gateway = 4

Message Type

Gateway HIM Message = 4

Port Number

Unused

Control Flag

Unused

Password or Returned Sequence Number

Unused

Sequence Number

A 16 bit number incremented each time a trap message is sent
so that the HM can order the received trap messages and
detect missed messages.

GATEWAY HIM FIELDS

Gateway Version Number

The software version number of this gateway.

Overflow counter

The number of HIM entries lost because the HIM buffer was
full.

Collection Time in Min

The time period in minutes in which the HIM data is being
collected.

Number of HIM entries

The number of HIM reports included in this message.

-65-

2-339

_*-*LJ_I2A_JL__V_^_
'•.""*.' S* •«" S* *■«* *•* "»*'»" *«" *•' "•"»**" ** .*» '* ■*»'-"«*£»*-*. »**• .' «*• ."• ."■'."•.■• . - .' .

:J". -.\aJ.juT !L-\ A-* x-T i-' vV%J,JiJ

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

HIM ENTRIES

The remainder of the HIM message consists of the actual HIM
entries. Each entry consists of the following fields:

IP Source Address

The source Internet address of the datagrams being
counted,

IP Destination Address

The destination Internet address of the datagrams being
counted.

IP Protocol

The protocol number of the datagrams.

Counter for SRC -> DST datagrams

The number of datagrams sent in the Source to
Destination address direction.

Counter for DST -> SRC datagrams

The number of datagrams sent in the Destination to
Source address direction.

-66-

2-340

::!£&: '.*_1 -._■-._* «Jl^i Ä_» m. .1 m. *„».<I ^JL^_ »».1» %*-. iT«. i" ». ft.'«. *_'_.*!«. »V »*-. «*- •*-»* V

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

C.6 Message Type 6: Gateway Routing

Description

The Routing message contains information about routes the
gateway has to the networks that make up the Internet. It
includes information about its- interfaces and its neighbor
gateways.

A Gateway Routing message has the following format:

0 112 3 3
01234567890123456789012345678901

| Version Number |

| # of Ints. |

| UP/DN Flags | ;Bit flags for Up or Down
+-+-+-+-♦-+-+-+-+ ; 0 = Dwn, 1 = Up

MSB is interface 1
(as many bytes as necessary)

| Interface 1 Address I

+-+-+-+-+-+-♦-+
| Interface n Address I
♦-+
| # Neighbors |
♦-+--♦■-+-+-+-+-+-+

| UP/DN Flags | ;Bit flags for Up or Down
+-+_+-+_+.+-+_+-+ ; o = Dwn, 1 = Up

; MSB is neighbor 1
; (as many bytes as necessary)

+-+-+-+-+-+-+-+- ♦—f-+-*--f-+—f-+-+-+-+-«f-+—f—♦--+-+-+-+-♦-♦ -+•♦-■♦-+

| Neighbor 1 Address I
♦ -♦-+-+-+-+-+- + -+-♦- + - + - + -+- + - + -♦-•♦■- + -♦- ■:-♦-♦ - + - + - + -♦•-♦-■► -♦-+-♦ -+

| Neighbor n Address I

(continued)

-67-

2-341

^** _:» ^V-V^l:*^» ^V^-.V^_!*_V", .»--. •»•-v.* aJV v* *-* «>-•\.\ »J* «^* «-•'*-•.*»■•.'i_".V*">-Vt. i * t «. t. % - «^ i .. 1 _ i.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

RFC-869 December 1983

Gateway Routing Message (cont'd.)

| # of Networks

| | ; 1, 2, or 3 bytes

| Distance
+-+-+-+-+-+-+-+-♦
| Neighbor #

+-+-+-♦-+-♦-+-+-+-+-+-+-+-+-+-+-+-♦-+-+-+-+-+-+-+
| Network n # | | | ; 1, 2, or 3 bytes
+-+-♦-+-♦-♦-+-+-+-+-+-+-+-+-+-+-+-+-+-+-♦-+-+-+-+
i Distance
+-+-♦-+-+-+-+-♦-+
| Neighbor #
+-+-+-+-+-+-♦-+-+

HMP FIELDS

System Type

Gateway = 4

Message Type

Gateway Trap Message » 6

Port Number

Unused

Control Flag

Unused

Password or Returned Sequence Number

Unused

Sequence Number

A 16 bit number incremented each time a trap message is sent
so that the W can order the received trap «oessages and
detect missed messages.

-68-

2-342

.-!•-•!• -•>/vlvlvlvlvlvL* r^m^i^^ji^2iäK^^^^^lL li _vl^l^L^La^

HOST LEVEL: MINOR RFC 869

RFC-869 December 1983

GATEWAY ROUTING FIELDS

Gateway Version #

The software version number of the gateway sending the" trap.

INTERFACE FIELDS

The first part of the routing message contains information
about the gateway's interfaces. There is data for each
interface. The fields are:

of Interfaces

The number of interfaces that this gateway has.

UP/DN Flags

Bit flags to indicate if the Interface is up or down.

Interface Address

The Internet address of the Interface.

NEIGHBOR FIELDS

The next part of the routing message contains information
about this gateway's neighbor gateways. The fields are:

of Neighbors

The number of gateways that are neighbor gateways to
this gateway.

UP AW Flags

Bit flags to indicate if the neiojibor is up or down.

Neighbor Address

The Internet address of the neighbor gateway.

NETWORK ROOTING FIELDS

The last part of the routing message contains information
about this gateway's routes to other networks. This
includes the distance to each network and which neio^ibor
gateway is the route to the network. The fields are:

\v.

-69-

2-343

K>>^i>:SS>^^:^-;iii. i: .vi^: L Jj », * ..1 . > »V V vW '■■ -*■ -'* «La~kla -*-' l!.« ^*/-***-'»'J'« ,*- ^*» i

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-869 December 1983

of Networks

The number of networks that
gateway.

are reachable from this

Network #

The network number of this networK. ihis is the
network part of the Internet address and may be one,
two, or three bytes in length depending on whether it
is a Class A, B, or C address.

Distance

The distance in hops to this network. Zero hops means
that the network is directly connected to this gateway.
A negative number means that the network is currently
unreachable.

Neiojibor #

The neighbor gateway that is the next hop to reach this
network. This is an index into the previous
information on this gateway's neighbor gateways. This
field is only valid if the Distance is greater than
zero.

-70-

2-344

."»/

k-^SL ^-s ~ m.^M^.1

HOST LEVEL: MINOR IEN 158

IEN 158 Jack Haverty
Bolt Beranek and Newman

1 October 1980

XNET Formats for Internet Protocol Version 4
Jack Haverty

Bolt Beranek and Newman Inc.
October 1,1980

This IEN is intended to capture in print the formats used

currently in the version 4 XNET protocol; most of the data is

courtesy of Ray Tomlinson.

Version 4 XNET is identical with version 2.5 XNET with the

exceptions listed below. The version 2.5 format is described in

RFC 643. It should be noted that the manner in which the

protocol is used by a user program (such as the PDP10 XNET

program), and by the various target-machine XNET servers, is not

defined herein. In particular there are several problems and

heuristics in dealing with the operation of the protocol in the

internet environment, where individual packets may be duplicated,

lost, and reordered.

Changes from the version 2 formats include the following:

1) XNET deader and data is embedded in a IN V4 packet instead of
i V; 5 packet.

2) Packet format changed to add Port, Sequence number, and
Checksum fields.

3) Change in asynchronous reply codes.

4) Addition of ACK bit to opcode field.

5) Positive acknowledgement of all messages.

2-345

r

'_v_V- *«*lv!vjv4v- jLvl'iu-tlvl J! iiu

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 158 Jack Haverty
Bolt Beranek and Newman

1 October 1980

Packet Format

w«

+-• • -+-• ._+-. ._ + +-. --♦-• ■ -+-
Port

-+-. ._+_. .^ + -f.- - + -- -- +

♦ — • • - + — . «"• + »• ■ —+ - — — *►**«

LSB
-—+—• .—+— • • + — — «• + — — -»T~-

Sequence MSB
m + m •

Checksum
♦ —" - —+ — .

PID
»•+«»« • ■*▼ —

!CNT!ACK! Opcode

LSB
•♦•■ ■••▼"

Argument 1 MSB

LSB Argument 2 MSB

♦-' .« + -. .-.+_. --♦ ♦ -« --*... • -+*-

Data

-♦-• ._ + _« *-♦---+-- - + ... »*+•*•

V *n

The IN protocol is set to the XNET protocol number (17 octal) .

Host to target opcodes

No operation.
Start debugging a process or address space.
End debugging a process or address space.
Halt the process.
Deposit in memory.
Resume execution of a process.
Examine memory.
Deposit state vector (r0-r5,sp,pc,ps).
Set breakpoint.
Remove breakpoint.
Single step process (using trace trap).
Proceed from breakpoint.
Create a new process (or address space).
Destroy (delete) a process or address space.
Reply to XI0 output (not used anymore).
Reply to XIO input.
Define and allocate memory to an address space.
Start all processes.
Save on disk.
Get from disk.
Enter address space into restart table.

NOP 0
DEBUG 1
ENDBUG 2
HALT 3
DPOSIT 4
RESUME 5
EXAM 6
DSV 7
SETBPT 10
REMBPT 11
ONESTP 12
PROCD 13
CREAP 14
DSTROY 15
XIOREP 16
XINREP 17
DEEALL 20
SAP 21
SAVDSK 22
GETDSK 23
ENTRST 24

2-346

i.&AvS ■- A' ^CJSJS^ k _*» v^w't V* JA _" *i.'_»*_j * -.ji. -JA. JV -V^*«.«"».^!^^ A-^jfc^! .»_»..*_» ..ljh. S^»i . ,*.

HOST LEVEL: MINOR IEN 158

IEN 158 Jack Haverty
Bolt Beranek and Newman

1 October 1980

Opcodes from target to host machine.

HALTED 77
TRAPPED 76
TTRAP 75
BPT 74
XIOIN 73
XIOOUT 72

Process halted (FREEP with arguments of 0)
Process trapped due to error.
Trace trap.
Breakpoint hit.
XIO Input request.
XIO output request.

Checksum

The checksum Is the same as that for the IN header; ones

complement of ones complement sum of words In the packet from

Port field to last data word Inclusive. In case of an odd number

of data bytes, an additional byte of zeroes Is assumed for

checksum purposes.

Port number

The port number Is a unique number relative to the host

machine which appears in every packet for a particular debugging

session. It Is suggested that this number be derived from the

time of day so that each session will be unique over a long

period of time.

Sequence number

The first packet of a session (first use of a particular

port number) Is numbered 0. Subsequent packets Increment by 1

modulo 2**16. Packets Initiated by the target machine (opcodes

2-347

^^^:^:av:vfe^^;

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 158 Jack Havorty
Bolt Beranek and Newman

1 October 1980

72-77) are also numbered starting from 0. The target machine is

allowed to execute packets out of order but must rmrmr execute a

packet twice unless the effect is harmless. For example, an

examine packet should be re-executed so that the data may be

returned to the sender. Deposit or resume should not be re-

executed. The host machine is responsible for correct ordering

of critical functions. For example, it must not send a RESUME

command until all prior deposits have been acknowledged.

Acknowledgements

Each packet must be acknowledged by the receiver. An

acknowledgement consists of the original header plus any

requested data (e.g. EXAM) with the AOC bit set.

Acknowledgements are not cumulative; an acknowledgement

acknowledges only the one packet with the matching sequence

number. If the target debugger is incapable of performing the

recfljested function, it should set the OTT (can't) bit instead of

the AOC bit. Both bits may be set meaning that the function is

available but the data required is no longer available. This

might be the result of a duplicate packet.

2-348

P' * *

HOST LEVEL: MINOR IEN 90

s

2 May 1979

IEN 90

Multiplexing Protocol

Danny Cohen

Jon Postel

2 May 1979

Information Sciences Institute
University of Southern California

4676 Admiralty Way
Marina del Rey, California 90291

(213) 822-1511

2-349

. • - *"L »"A*. ■"_'■*.'.*A*J*J

r» v*
{<

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

V
V

2-350

•..—i .-..Ti.2*.

. v* s";
>1:'>^:->>Iä->1>1^ ^yj^j^j>^v^vjMVAVJ,>f/>j>^^.\VA"-V-»'tr1f,v,V-\--v >v«.

HOST LEVEL: MINOR IEN 90

IEN-90 D. Cohen
J. Pcstel

ISI
2 May 1979

e

Multiplexing Protocol

Introduction

This Multiplexing Protocol is defined to allow the combining of
transmission units of different higher level protocols in one
transmission unit of a lower level protocol. Only messages with the
same Internet Protocol (IN) [1] header, with the possible exception of
the protocol field may bo combined. For example, the msg (Hl, Bl) and
the message (H2, B2), where Hi and Bi are the headers and the bodies of
the messages, respectively, may be combined (multiplexed) only if
H=H1=H2. The combined messages are either (H, Bl, B2) or (H, B2, Bl) .

Since (H,D1) + (H,D2) = (H,D1+D2) resembles the notion
sometime refer to this process as "factoring".

of factoring, we

The receiver of this combined message should treat it as if the two
original messages, (H,D1), and (H,D2) , arrived separately, in either
order.

The multiplexing is achieved by combining the individual messages,
(H, Bl) through (H, Bn), into a single message. This single message has
an IN header which is equal to H, but having in the PROTOCOL field the
value 18 which is the protocol number of the multiplexing protocol.
This IN header is followed by all the message bodies, Bl through Bn.
Each message body, Bi, is proceeded by a 4 octet multiplexing link.
This link contain the number of the protocol to which this body is
addressed. It also contain the total length of this portion (message
body), including this multiplexing link. Since this link is not
otherwise protected by a checksum, it also includes a checksum field
which covers this multiplexing link.

If an error is discovered in a checksum of some multiplexing header, the
rest of the message, starting there, is ignored.

If an unknown PROTOCOL field is discovered in any multiplexing header,
this section, and only this one, is ignored.

Cohen & Postel [page 1]

V.

2-351

•♦.

^ L^A^LA. AAJ.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Multiplexing Protocol
Introduction

2 May 1979
IEN-90

The demultiplexing routine should be able to handle recursively
multiplexed messages. This is to allow higher level protocol to
demultiplex their own messages if they can be combined. Since such a
multiplexed message may be multiplexed again by the IN level, a
multi-level multiplexing results.

This protocol assumes that the
underlying protocol.

Format

Internet Protocol is used as the

7 8 15 16 31

I
| CS
I
+

i i
|Protocol I
I I

- + + -

Length

Fields

Multiplexing Header Format

CS is a checksum covering only this 32 bit multiplexing header. Until
further notice, it is the exclusive OR of the other three octets in this
header.

Protocol is the number of the following protocol.

Length is the length in octets of this header and the following protocol
block. Hence, it must be at least 4.

[page 2] Cohen & Postel

2-352

'-iO£x^!*>i/vyy->^^ ! ,N * » A*A W -\ -** Jfc Jk =f» w

HOST LEVEL: MINOR IEN 90

2 May 1979
IEN-90 Multiplexing Protocol

Example

Example

0 15 16 31
+ + +~ + +

I CS | Protocol | Length |
+ + + + +

| a transmission unit |
j of some protocol |
+ + + + +

| CS | Protocol | Length |
+ + + + +

| a transmission unit |
1 of some protocol |
+ + + + +

| CS |Protocol| Length |
+ + + + +

| a transmission unit |
| of some protocol |
+ + + + +

Multiplexing Protocol Concept

Cohen & Postel [page 3]

2-353

' * ~- ' *■* *■* ^■"' fc' ^V^'- •-''■ ■a>*.a-Ai ' *■ 1» CM IM im.£iV.'.'- .'. V, i» -A »'« •'- i*.* £-*«!.'**. £^X- *"-*« -*» ■ ■ UL^jk^m^i aU •- £ > - V-V *-"'.

DDN PROTOCOL HANDBOOK - VOLUME TWO

Multiplexing Protocol
Example

1985

2 May 1979
IEN-90

mi

0 15 16 31

| CS | datagram | Length =20 | +
+ + , + + +

| source socket | dest. socket |

| length = 8 j checksum |

| data]

| data |
+ + + + + < +

; CS | TCP | Length = 32 | +
+ + + + +

| source port | destination port|

| sequence number |
+ + + +-_•__..—+

| acknowledgment number |
+ + + + +

|offset control| window J
+ + + + +

| checksum | urgent pointer |
+ + + + +

| data |
+ + + + +

| data |
+ + + + + <— +
| CS |datagram| Length = 16 \ +
+ + + + +

| source socket | dest. socket |
+ + + + +
| length = 4 | checksum |
+ + + + +

| data |
+ + + + + <_._+

Multiplexing Protocol Example

Protocol Application

The major use of this protocol is to allow several transmission units
from differing (or the same) higher level protocols to be combined into
one transmission unit of a lower level protocol.

[page 4] Cohen & Postel

2-354

HOST LEVEL: MINOR IEN 90

2 May 1979
IEN-90 Multiplexing Protocol

Protocol Number

Protocol Number

This is protocol 18 (22 octal) when used in the Internet Protocol.
Other protocol numbers are listed in [2].

Notes

If so desired, one has the option of applying this multiplexing
protocol recursively.

The receiving process should never be able to tell if its messages
were multiplexed or not. The multiplexing is totally transparent to
the higher lever protocols.

Information from the external header (e.g., the IN header) is
available to each protocol in the multiplexed message.

Cohen £ Postel [page 5]

2-355

.'• *• "V *

CWVJ»"V '»VA'ViV* A. VLVV.-V.V . iv*-^!AV "^ jvlv*Lvlvlvlvv.vl'l 1*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Multiplexing Protocol
References

2 May 1979
IEN-90

References

[1] Postel, J,, "Internet Datagram Protocol -- Version 4," IEN-80,
USC-Information Sciences Institute, February 1979.

[2] Postel, J., "Assigned Numbers," USC-Information Sciences
Institute, RFC-755, IEN 93, May 1979.

-•>;.

[page 6] Cohen & Postel

2-356

?-<*J'*+-*?'£a-*-*.*J* '\ ji U'tiuifcAaUa^' '- %•-, 1 - t,"- »*- «l-.«!- »*- if- *■", »'- *■- «"- al~»i- ' - "■*-'-»- V ■■"-- -^ «T-V-«:.. *\

HOST LEVEL: MINOR IEN 119

IEN 119

ST - A Proposed Internet Stream Protocol

by

James W. Forgle

M. I. T. Lincoln Laboratory

7 September 1979

2-357

f*V"_V>j>Ir!']Lv^' "lv _.*!#j -'^^-'»- ..^-V■■*-*>■ --* *^'-: "".* -&>_** *_/ -f •,» "*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

2-358

»•-■-'♦'-*'' v^W.*w*. "**-•/- »'^.V.V/- «V«' -%'.V. *>*-*■'- •■V.L\'-•«'.•> ./. t J» J. JV .1 Ji .VAU k'fc J».'I \I>'I >'I >'f A.'f »'* .V >V>'> AÖ .\ .'» .. — ... t —-..^'^

HOST LEVEL: MINOR IEN 119

IEN 119 ST.DOC 7 September 1979

1.0 INTRODUCTION

Tue internet stream protocol (ST) described in this
document has been developed to support efficient delivery of
streams of packets to either single or multiple destinations in
applications requiring guaranteed data rates and controlled delay
characteristics. The principal applications with these
requirements are point-to-point speech communication and voice
conferencing. While ST has been developed as a part of the ARPA
Internet Program and has been formulated as an extension to the
presently defined Internet Protocol (IP), it is not likely to
find useful application in the current ARPA internet environment
where the networks and gateways lack the capacity to handle
significant speech communication. Instead, ST is aimed at
application in wideband networks, in particular those intended to
carry a large fraction of packet voice in their traffic mixes.
Work is currently underway on such networks both for local access
and long haul use. These networks will serve as vehicles for
research on techniques for flow and traffic control and as
testbeds for evaluating the potential of packet technology for
providing economical speech communication. The design of the ST
protocol represents a compromise among the sometimes conflicting
requirements of compatibility with the existing IP and the
gateways which handle it, the need for flexibility in supporting
flow and traffic control research, and transmission efficiency.

The concepts in this protocol originated in the
deliberations of a working group consisting of Danny Cohen, Estil
Hoversten, and the author. They have been Influenced by
interactions with many other people. In order to examine the
cost and feasibility of the protocol, the author has fleshed out
some aspects of the protocol in detail. The other working group
participants have not had an opportunity to approve or modify
these detailed aspects of the protocol, and consequently all
responsibility for them lies with the author.

The state of the protocol is such that, while there are
still details to be worked out, implementation could begin if the
protocol were acceptable to those interested.

-2-

2-359

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 119 ST.DOC 7 September 1979 H*

2.0 MOTIVATION AND GENERAL DESCRIPTION ///

It is reasonable to ask why a new protocol is required to
har.dle applications such as point-to-point speech and voice
conferencing. This section addresses that question and begins
with a brief statement of the requirements for packet speech
communication. They are:

1. The network must be able to keep up with the data rate >"
requirements of the speech terminal. Because no bits
need be transmitted during silent intervals, the ^:
average data rate for conversational speech can be M
expected to be between 40 and 50% of the peak data rate "
for commonly used constant-rate encoding techniques. \
Experimental variable-rate encoding techniques have !\
exhibited higher peak-to-average ratios. The network V
must be able to sustain the peak rate for the duration
of talkspurt that can be as long as 20 seconds.

2. The stream of packets containing a talkspurt (a
continuous segment of speech between silent intervals)
must be delivered with a delay dispersion whose spread
does not exceed some value that can be estimated with a
hioji probability of success prior to the start of the
talkspurt. Since the individual packets of the spurt
will experience different delays as they pass through
the net, delay must be added at the receiver to allow
continuous speech to be played out for the listener.
It is necessary to predict the value of this smoothing
delay before starting to play out the talkspurt.
Packets that are delayed more than the predicted
worst-case value will arrive too late to be used, and
gaps will occur in the output speech.

3. Overall delay should be kept low. If the overall
round-trip delay is less than about 1/4 second,
conversations are carried out in a "normal" fashion
with considerable feedback from "listener" to "talker"
taking place. When greater delay is experienced,
people switch to a more formal mode in which feedback
utterances are mostly suppressed, and the listener
generally wait? until the talker indicates that he has
finished before saying anything. User satisfaction
declines with increasing delay, but systems remain
usable for delays as long as several seconds.

4. The amount of speech for any one talker contained In a
packet (the basic unit subject to transmission loss)
should be kept small. The loss of small (50 msec or
less) chunks of speech produces a degradation of
quality, but sentence intelligibility tends to be

-3-

2-360

\ ■
«.

,0^Vlvlv!^O^-^l^.*,^-.V.l'J^>Jl"..!L.vl'^ »■'\\\,\:':.:i\'l'm:/^^:^\^mL'm^^^2^m\'^w:mm'^Am\V'A«^\\.m'ldm'ä;.'^a

HOST LEVEL: MINOR IEN 119

IEN 119 ST.DOC 7 September 1979

r *
r -
r **

I

i

preserved up to fairly high percentage losses. Larger
chunks of speech represent whole syllables or words,
and their loss can change the meaning of sentences.

5. Listeners will tolerate some packet loss without
downgrading the acceptability of the system, but the
probability of loss due to either failed or late
delivery must be kept in the order of 1% or less to be
considered acceptable for everyday (non-crisis) use.

6. As a network approaches its load limit it should reject
(or hold off) new offered load on a call basis not on
an individual packet basis. Continuing to accept new
calls beyond capacity can result in unsatisfactory
communication for many users.

7. If packet-switched speech transmission is to becone
economically competitive with circuit-switched
transmission, a further requirement must be met. The
product of packet efficiency and average link
utilization must equal or exceed the efficiency of
circuit switching. That efficiency is defined as one
minus the fraction of the time that silence occurs in
conversational situations. Estimates of this fraction
for real-world conversations give values for efficiency
between 40 and 50%. We will use 45% as a convenient
figure for comparative purposes. Packet switching can
easily take advantage of the silent intervals in a
conversation by not transmitting packets, but that
advantage may be lost through the combination of
overhead bits in packet headers (packet efficiency) and
the difficulty of operating comm»Plication links at high
average utilization while keeping queueing delays
within reasonable bounds.

Conventional datagram networks are unsatisfactory for
speech communication except under conditions of light overall
load or where speech constitutes a small fraction of the overall
load and can be given priority service. The difficulty with
datagram nets comes from their inabilit/ to provide the
controlled delay and guaranteed data rate required for speech.
Delay increases with offered load, slowly at light load, but
dramatically as average load approaches capacity. Flow control
strategies tend to be aimed at buffer management and fairness
goals, both of which will operate to restrict the effective data
rate available to an individual user as load increases. Traffic
control strategies are mainly concerned with congestion control
and are primarily defensive, resulting in offered datagrams being
held off or refused when difficulties are detected.
Unfortunately for the speech user, by the time congestion is
detected, it is already too late. For satisfactory speech

-4-

2-3G1

» .'.. > -V.V_v- '-* ■-* --* -*■ £. »»■ft.*«

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

I EN 119 ST. DOC 7 September 1979

service, congestion due to overload must be pre/ented. Since a
datagram net has no knowledge of the a priori requirements of
users, it cannot develop traffic control strategies to meet these
requirements.

Another disadvantage of datagrams for speech is their
packet efficiency. The speech content of an individual user
packet can be anything from 50 or so bits up to 1200 or 1300 bits
depending upon the speech digitization technique in use. The
need to carry full source and destination addresses as well as
other packet-handling information in each packet penalizes
datagrams relative to other packet and circuit switching
techniques. In the internet case the penalty is worse since two
sets of header information have to be carried.

For example, IP datagrams on SATNET carrying 40-msec
chunks of 16-kbps speech (a reasonaable chunk size and popular
data rate) would have a packet efficiency of about 56% and would
require utilization factors of about 80% to break even with
respect to circuit switching. It is unlikely that delay
characteristics would be satisfactory at this level of load.

The goal of the ST design effort has been to attempt to
overcome both of the difficulties associated with datagrams. ST
uses abbreviated internet headers and also allows speech from
many talkers to be aggregated into single packets for
transmission on wide-band networks where such aggregation is
possible. For the case of ST messages on a wide-band SATNET each
carrying ten 40-msec chunks of 16-kbps speech for ten different
talkers, packet efficiency would be about 86% allowing break-even
link utilization to occur at 52%, a much more comfortable level
for assuring desirable delay characteristics.

Overcoming the inability of datagram nets to maintain
data rates and delay characteristics as offered load increases is
more difficult to achieve than improving packet efficiency.
Circuit switching solves the problem by dedicating communication
capacity to Individual streams. The goal of ST is to support
traffic control policies that match stated user requirements to
available resources taking into account the statistical
properties of these requirements rather than the peak
requirements used in circuit switching. ST does not itself
specify the traffic control algorithms to be used. The
development of such algorithms is an area of research that tht
protocol is intended to support. Some algorithms may need only
rough statistical knowledge of user requirements and network
behavior. Others may vant more detailed knowledge and need to
monitor the behavior of individual streams. The protocol is
intended to be general enough to support both extremes. A
successful traffic control algorithm would retain much of the
statistical multiplexing advantages of datagram nets while at the

-5-

2-302

^VAV^I- *Nv> .Y-\vy

HOST LEVEL: MINOR IEN 119

IEN 119 ST.DOC 7 September 1979

same time gaining much of the guaranteed data rate and controlled
delay capabilities of circuit switched nets. A packet net using
ST also has the ability of a circuit switched network to deny
access to, or negotiate lower rates with, users whose demands
would exceed capability.

The ST protocol requires users to state the data rate and
delay requirements for a data stream before accepting any stream
data. These requirements are used by ST agents (host processes
and gateways) to determine whether or not resources are available
in the catenet to support the offered stream load. The
determination is based on knowledge of the stated requirements of
other users, negotiation with networks such as SATNET which have
built-in resource allocation mechanisms, and statistical load
estimates of traffic on networks that lack such mechanisms. In
order to accept the offered stream load, the cooperating agents
must find a route through networks with sufficient uncommitted
capacity to handle the new stream. In the process of routing the
stream, intermediate agents retain information about the stream.
The existence of this information allows the use of abbreviated
headers on stream data packets and the efficient distribution of
the multi-addressed packets required for conferencing.

The process used by ST agents in finding a route with
sufficient capacity between source and destination is assumed to
use a distributed routing algorithm to take advantage of the
robustness and flexibility characteristic of distributed packet
routing techniques. In the simplest case, the result would be a
fixed-path internet route (a fixed set of intermediate agents
(gateways)) for the stream packets. In the event of gateway or
network failure, rerouting would be required. This can be
undertaken automatically, but success is not guaranteed, since
loss of the failed element or elements is likely to result in
inadequate capacity to carry the original load. Eixed-path
routing is not required by the protocol. If desired, dynamic
alternate routing of stream packets can be used at the discretion
of individual agsnts, but gateway implementation and the routing
process will before complex if that option is chosen. The
protocol described in this document assumes fixed-path routing.

The goal toward which the cooperating ST agents in a
catenet work is the maintenance of a controlled delay, guaranteed
data rate environment in which packet speech communications can
take place in a satisfactory fashion. Obviously, other non-
cooperating users of the networks involved in the catenet can
make it impossible to achieve that goal. Some independence of
other users can be obtained tn some networks such as SATNET by
the use of dedicated resources. Gateways can be programmed to
throttle non-cooperating internet traffic. To some extent,
networks with poor delay characteristics can be avoided in the
routing process. Priority service can be used in some nets to

-6-

2-363

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 119 ST.DOC 7 September 1979

allow small quantities (proportionately) of ST traffic to be
handled satisfactorily in spite of the activities of other users.
However, the success of ST or any other approach to handling
packet speech will require either the cooperation of all network
users or the involvement of the networks themselves in providing
the required controlled delay, guaranteed data rate services.

3.0 RELATIONSHIP TO IP

ST is intended to operate as an extension of the
presently defined internet protocol (IP). ST provides a
different kind of service than the datagram service offered by
IP. ST must operate on the same level as IP in order to access
local net resources such as SATNET streams and to be able to take
advantage of any available local net multi-address delivery
capabilities to support conferencing applications. If an ST
agent shares a local net port with an IP datagram handler, the
two must cooperate in the use of the port to regulate traffic
flow through the port.

In order to get the advantage of abbreviated headers on vS\"
stream packets, ST uses a different header format than that used ;
for IP datagrams. Packets with this format (see Section 5.0 for X* V
details) are called ST packets in this document. They pass from v'/V
one ST agent to another, and the abbreviated header information "-'./'.
changes on a hop-to-hop basis. However, ST packets cannot be ^L
transmitted until a route for the stream has been found and jjfBk.
intermediate agents have built routing tables to translate the .\".-!\
abbreviated headers. Since end-to-end negotiation between ST ■;>>
users is often desirable before stream routing takes place, for
example to agree on vocoder type and data rate, and it is \;!
convenient cor a user to interface to only one protocol handler, '•„*;>
ST provides a second type of service. This service uses IP ^jV
datagrams with an "ST" value in the IP Protocol Field. These fP>.
packets are called "IP.ST" packets. They pass through datagram
handlers in gateways and reach ST agents only at their
destination hosts.

A third type of packet is allowed by the protocol. This
type is realized by embedding an ST packet in an I P. ST packet.
This method of sending an ST packet allows it to pass through
gateways that do not support th»; ST protocol but do support IP
datagrams. Of course, the packet efficiency and traffic control
benefits of ST are lost in such a case, but the use of this
artifice could be justified on the grounds that any communication
is better than none.

-7-

2-364

m

HOST LEVEL: MINOR IEN 119

IEN 119 ST.DOC 7 September 1979

4.0 CONCEPTS

The key concept in ST is that of a connection.
Connections are supported by entities called agents which are
made aware of the connection during a setup process that precedes
use of the connection for data transfer.

4.1 Agents

There are four types of agents that may be involved in
supporting ST connections. They are:

4.1.: ST Hosts

The users of connections are processes that run in host
computers and communicate over connections through other
processes or software modules that adhere to the ST protocol.
Hosts having these processes or modules are called "ST hosts" (or
"hosts," when the context permits) . ST hosts perform the
functions of gateway halves in interacting with gateways for
internet traffic. ST hosts share the management of local net ST
resources with the other agents on the local net and are capable
of routing connections to other agents as may bo required. In
networks with local multi-addressing capability, ST hosts make
use of this capability in routing conference connections. In
networks lacking such capability, ST hosts may need to replicate
messages for conference connections unless a special agent called
a "replicator" is available in the local net. In some local nets
it may be desirable for hosts to forward traffic for conference
connections. The protocol allows but does not require the latter
capability.

4.1.2 ST Gateways

ST gateways perform routing and forwarding functions very
similar to those performed by IP gateways. Unlike IP gateways,
they store information about the connections they support and
share the management of resources in the nets to which they are
conn'*-ted with the other agents in those nets. Like hosts, ST
gateways may have to replicate packets for conference
connections.

4.1.3 Replicators

In networks that lack multi-addressing or broadcast
capability it may be desirable to provide special server hosts to
handle the replication required for conferences. Replicators are
needed in situations where the load caused by replication would
produce congestion at a gateway port. Use of a replicator adds
delay and is probably not warranted unless the number of copies
needed in a particular net exceeds some threshold that depends

-8-

*>/•

&

m.

2-365

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 119 ST.DOC 7 September 1979

upon network port capacity. In worst-case situations a daisy-
chain type of replication might be required because the peak rate
could not be sustained at any network site. The existence of a
replicator does not eliminate the need for replication in hosts
and gateways. For example, a host in a conference with some
participants on the same net but others on other nets may need to
send packets to one or more gateways for speedy internet delivery
as well as to a replicator for automatic distribution to other
local net participants.

4.1.4 Access Controllers

The management of ST conference connections involves the
services of an access controller. The functions of an access
controller are to control conference participation and provide a
central source for information about the data rate requirements
of a conference connection. Ideally, access control services
would be provided by a set of hosts distributed throughout the
catenet that shared information about the connections being
controlled. The addresses of these public access controllers
would be known to all other agents, and a query to any one
controller would provide information about any connection. In
the absence of public access controllers, the protocol allows any
host to serve as a private access controller. It is proposed to
use a bit in the conference connection name to allow agents to
determine whether a public or private access controller is
responsible for a particular conference. The name identifies the
"owner" of the conference. The owner is also the access
controller in the private case.

4.2 Connections

Most applications for ST connections require full-duplex
(bi-directional) communication between the parties in a point-
to-point connection and omni-directional communication among the
participants in a conference connection. In the design of the
protocol two different approaches to realizing the desired
capability have haen considered. The first, called the simplex
approach, uses a combination of simplex (one-way) connections.
For example, in the simplex approach the caller requests a
simplex connection to the called party, who, after accepting the
connection, requests another simplex connection for the return
path to the caller. In the second, called the full-duplex
approach, the caller requests a full-duplex connection at the
outset, and as soon as the called party has accepted the
connection, data can flow in both directions.

For conference connections, the simplex approach requires
each participant to request a simplex connection to all the
others. The full-duplex approach requires that a participant
request connection only to those that have not already requested

I

-9-

2-366

&

HOST LEVEL: MINOR IEN 119

IEN 119

connection to him.

ST.DOC 7 September 1979

ES

N".

1

r"

Both approaches can provide workable bases for the
required capabilities. The pros and cons for both may be
summarized as follows:

1. Simplex connections can take maximum advantage of
available resources by using different routes for the
forward and return paths. The routing of a full-duplex
connection is more likely to fail since a path with the
desired capacity in both directions must be found.
This advantage for simplex connections is most
pronounced in networks where load is assymetrical, a
situation to be expected in nets carrying relatively
heavy data loads.

2. Full-duplex connections c*n, ^vcspt perhaps under
conditions of heavy load, be set up more rapidly and
with less control message traffic. The difference is
most pronounced for conference connections. With
full-duplex components of a conference connection, m-1
connection requests are required for an m-participant
conference, since each new participant must connect to
all those already in the conference. In the case of
simplex components each new participant must also
connect to all those already in the conference; but, in
addition, those already in must connect to each
newcomer. This activity adds sigma (m-1) connection
requests (and responses) to the setup procedure.

3. Simplex connections have an advantage in situations in
which two parties attempt to call each other at the
same time. The two simplex connections can easily be
combined into the required full-duplex connection. If
the two parties start out with full-duplex connections,
one of them must be refused or disconnected, a somewhat
more conplex task for the hi^ier level protocol
requesting the connection.

This document proposes a full-duplex basis for ST
connections because the author believes that the advantage of
relative sinpllcity and efficiency in satt Inn up conference
connections outweighs the advantages of the simplex basts. To
allow connec.Lons with assymetrical flow requirements, the
protocol allows users to specify different data rates in the two
directions.

Even though traffic can flow in both directions on an ST
connection, the connection has an orientation, and packets are
said to move in either the "forward" or "backward" direction
depending on whether they are moving away from or toward the

-10-

2-3G7

;->".»'■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

{*#

IEN 119 ST.DOC 7 September 1979

ft PJ originator of the connection.

ST provides two types of connections: Point-to-Point
(PTP) and Conference (COOT). PTP connections use different
packet header formats and setup procedures to reduce overhead and
allow faster setup for that more frequently used type.

4.2.1 Point-to-Point (PTP) Connections

PTP connections are set up in response to a CONNECT
command from an originating process to an ST agent. The CONNECT
specifies the following:

1. The NAME of the connection. The NAME is obtained by
concatenating the ST address of the originating process
(ORIGIN) with an arbiträr/ number. The ST address is
the internet host address (ala IP) concatenated with an
"extension" field (32 bits) to specify a process in the
host (a telephone for NVP applications) . It is the
responsibility of the originating process to provide
arbitrary numbers that keep the names of all
outstanding connections unique.

2. The internet address of the process to which the
H connection is desired. This address is called the

"TARGET." The terms "ORIGIN" and "TARGET" are used
instead of "SOURCE" and "DESTINATION" because the
latter terms will be used to refer to the senders and
receivers of packets travelling on the connection.
Thus the ORIGIN process can be both SOURCE and a
DESTINATION for packets on the full-duplex connection.

W 3. A flow specification (FLOW-SPEC) that tells ST agents
f\, about the desired characteristics of the connection.

In addition to information about the data rate
requirements for both directions of the full-duplex
connection, the ELOW-SPEC has a PRECEDENCE value that

f^ agents can use as a basis for the preemption of this or
other connections as part of the traffic control
strategy. The FLOW-SPEC is discussed in more detail in
Section 4.5.

4. An arbitrary 16-bit number that the agent is to use to
identify all ST packets that it will send to the
originator on the connection (the backward direction).
This identifier is called the "CID.B." If the
connection request is accepted, the originator will be
given a CID.F to be used to identify all packets it
sends in the forward direction on the connection.
These CID's allow abbreviated headers to be used on ST

-11-

M

2-3GK

HOST LEVEL: MINOR IEN 119

IEN 119 ST.DOC 7 September 1979

packets and provide a means for agents to rapidly
locate the stored forwarding table involved in handling
a received packet. CID's are assigned by the agents
receiving packets and need be only locally unique since
they are reassigned on a hop-by-hop basis. The CID to
be used on the next hop is stored in the agent's
forwarding table.

During the setup procedure the CONNECT command propagates
from agent to agent until it reaches the TARGET process. This
propagation differs from ordinary packet forwarding in that the
intermediate agents inspect the command, take appropriate action,
and retain information about the requested connection. If the
TARGET process agrees to the connection, it sends an ACCEPT
command that is propagated back through the same intermediate
agents that handled the CONNECT. The agents take appropriate
action as they process the ACCEPT. If the TARGET process is not
willing to accept the connection, it issues a REFUSE command
which propagates back in the same fashion as the ACCEPT.
REFUSE'S are generated by intermediate agents if they find
themselves unable to support a requested connection. An agent
receiving such a REFUSE tries alternate routes and passes the
REFUSE back another hop only when it has exhausted its routing
alternativ«s. Appropriate REASON codes are included in the REFUSE
commands.

After a connection has become established (an ACCEPT has
reached the ORIGIN), changes to the FLOW-SPEC can be accomplished
by the ORIGIN issuing a new CONNECT or the TARGET issuing a new
ACCEPT command. (Actually, the TARGET can issue a new ACCEPT at
any time after issuing the first ACCEPT, and it can also at that
time begin sending packets on the connection although there is
some hazard in doing so since they may pass the ACCEPT enroute
and be discarded.) For the case where the FLOW-SPEC calls for a
connection whose rate can be varied at the discretion of the
catenet, intermediate agents issue CONNECT's and ACCEPT's to
inform other agents and the end users about rate changes. These
commands are marked to distinguish them from end user commands.

The ACCENT command contains the same kinds of information
as the CONNECT except that the backward connection identifier
(CID.B) i~ replied by a forward identifier (CID.F) . In
addition, the FLOW-SPEC will generally be different and will
indicate the data rates and delay characteristics accepted by the
agents. The CONNECT that arrives at the TARGET will be similarly
modified from the CONNECT that was issued by the ORIGIN and will
match the ACCEPT received by the ORIGIN. See Section 4.5 for a
discussion of the changes that can occur to the FLOW-SPEC.

-12-

*l^fc

V - •* '

2-369

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 119 ST.DOC 7 September 1979

4.2.2 Conference (CONE) Connections

The type of connection required for voice conferencing is
one in which any participant can send messages to all the others.
Connections of this type have been called "omniplex" connections.
ST realizes a conference connection by means of a superposition
of tree-like components that start from an origin process (the
root) and extend to a set of targets (the leaves). The set of
participants in a conference is represented by a bit map. Each
participant has a location in the conference bit map that is
assigned by the access controller (AC). When a conference
CONNECT command is given, a TARGET-BIT-MAP (TBM) is used to
specify the set of targets to which connection is requested. The
TBM is supplied by the AC when a participant joins a conference.
The tree-like components all have the same NAME, and intermediate
agents combine branches from the components whenever possible to
minimize resources committed to the conference. Because of this
combining, an ORIGIN-BIT-MAP (OBM) is needed to represent the set
of originators that have requested connection to a particular
participant.

The list of participating processes in a CONF connection
is not carried in the CONNECT request but is is maintained by the
AC and provided to agents and participants when needed. Another
function of the AC is to provide the FLOW-SPEC for the connection
to any agent on request. The reason for assigning these tasks to
an access controller is to prevent unauthorized connection to a
conference and to assure that all components of the connection
use the same FLOW-SPEC.

/ *

The first step in establishing a conference is to install
a list of participants and a FLOW-SPEC in an AC. The list of
participants may be fixed at the outset or be allowed to grow
during the course o: the conference. A participant may depart
from a conference, but his position in the list and the bit maps
is not reused. The method by which the list of participants is
made known to the AC is not of concern to ST Itself and is not
specified in this document. Higher level protocols such as a
network voice protocol (NVP) engage in communications between
participant processes and the AC in the process of setting up a
conference. For example, an NVP issues a JOIN command to
request access tc a conference. If the NVP process Is on the
participant list or is otherwise acceptable, the AC responds with
a WELCOME command that among other things tells the participating
NVP its location in the CONF bit map. The NVP then sends TELL-ME
messages to the AC to obtain the participant list and FLOW-SPEC
for the CONF connection. This information is provided in INFO
mes'iages from the AC Several of these messages may be required
to transmit all the information about a large conference. The
messages exchanged between participants and the AC are IP.ST
datagrams. They cannot be ST packets because no ST connection

P"*W">

-13*

2-370

**:

HOST LEVEL: MINOR IEN 119

IEN 119 ST.DOC 7 September 1979

exists between the participants and the AC.

Once a participant has received a WELCOME message from
the AC, it can issue a CONNECT.CONF command to its ST host agent.
It uses a TARGET-BIT-MAP (TBM) that it received as part of the
data in the WELCOME message. This TBM has bits set for all the
previous joiners of the conference. The CONNECT.CONF will thus
attempt to establish a full-duplex path to each of the previous
joiners. These paths will make use of common links where
possible and will result in a connection resembling a tree rooted
at the site of the process originating the connection. When the
CONNECT.CONF is issued by the originator it contains an ORIGIN-
BIT-MAP (OBM) with a single bit set corresponding to the
originating participant. If the CONNECT.CONF is successful
(i.e., some subset of the targets are reached), an ACCEPT.CONF
will be returned with bits set in the TBM indicating the
participants to which connection has been achieved. In a CONF
connection attempt, success may not be achieved with the entire
set of targets specified by TBM. Some may be unreachable for any
of a number of reasons. REFUSE.CONF messages will be returned
for all such failures with bits in the TBM identifying the
unrear^-ble participants. If the failures in a particular
attempt are due to more than one REASON, at least one REFUSE.CONF
will be returned for each reason.

The technique for setting up conference connections
proposed for ST results in each participant actively connecting
to some subset of the others while accepting connections from the
rest. The first participant does not issue a CONNECT and accepts
all the others. The last connects to all the others and accepts
none. Each participant can maintain up-to-date information about
participation in the conference by utilizing the information in
the CONNECT and ACCEPT messages it receives.

The CONNECT.CONF messages received by agents during the
setup procedure do not contain information about the identity of
the participants. In order to route the connection, the agents
must acquire this information, and thr do so by sending TELL-ME
messages to the AC and getting INFO v ^es in response. They
need to retain this information only ^ring the routing phase of
connection setup. Once the connection is established, bit map
information in forwarding tables combined with a FORWARDINC-BIT-
MAP (FBM) in the ST packet is sufficient to handle the forwarding
of packets on the connection. The FBM is used to specify the set
of destinations for the packet. Thus a packet can be sent to all
or any subset of the connection participants. The source- of the
packet is identified by a number representing the position of the
source participant in the conference bit map.

»j».j»i".

-14-

2-371

m

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 119 ST.DOC 7 September 1979

In the case of a voice conference, no useful purpose is
accomplished when many people speak at the same time. It is
expected that a higher level protocol (part of NVP) would
regulate the activity of the conference and would normally allow
one or perhaps two persons to transmit speech at the same time.
ST is not involved in this aspect of conference control except to
the extent that if there are too many simultaneous talkers, the
traffic-handling capability of the connection could be exceeded,
and ST might discard some of the packets. The higher level
control protocol should set the FLOW-SPEC for the connection to
accommodate the expected traffic flow. Thus, for -a simple one-
at-a-time conference, ST would be a»>ked for a data rate
corresponding to a single speech stream.

The above discussion has described a connection
arrangement suitable for supporting voice conferences in which
any participant can transmit and be heard by ail others. ST also
provides another kind of multi-address message delivery
capability« It only one participant issues a CONNECT.CONF
command with a TBM specifying connection to all the others, a
tree-like connection will be set up that allows the ORIGIN to
send packets to all the others and receive from any of the
others, but packets sent by the others will be received only by
the ORIGIN.

WWI

.Aw,
%JÜL

"1

..*. -\v

4.2.3 Taking Connections Down

The process of taking a connection down is initiated
either by an ORIGIN Issuing a DISCONNECT message or a TARGET
issuing a REFUSE. These messages propagate from agent to agent
along the connection path so that intermediate aqents can take
appropriate action to clean up their stored information about the
connection.

Connections can also be taken down as a result of
Intermediate agents detecting a faulty link or gateway or
deciding to preempt the connection. In this case the agent or
agents involved issue a DISCONNECT/ REFUSE pair that propagate in
the appropriate directions. A REASON code in the messages
informs the users as to the cause of the disconnection.

in the case of conference connections, bit maps allow
selective disconnection and refusal.

4.3 Types of Service

ST offers two types of service for packets travelling on
connections. Neither type ha» any üeiiv*»iy yuan ai'ttc* s. I.e.,
th-sre are no acknowledgements or retransmissions on either a
hop-by-hop or an end-to-end basis. Neither type guarantees
packet integrity; i.e.. if local nets offer a type of service

-15-

- i

A

2-372

HOST LEVEL: MINOR IEN 119 5wS

IEN 119 ST.DOC 7 September 1979

I» •'

that can deliver packets with bits in error, ST may use that type
of service. The headers of ST packets are sum-checked by ST
agents, but the data portions are not.

The two types of service differ in whether or not they
use the channel capacity nominally allocated to the connection
and also in the strategy used by intermediate agents in buffering
them. The two types are:

1. Stream Packets (called ST.ST packets). These packets
use the allocated resources and are buffered for a
short time only, since they are intended for
applications such as speech communication where a late
packet is not worth delivering. They are discarded by
intermediate agents if queue conditions indicate that
they cannot De delivered in a timely fashion.

2. Datagrams (called ST.DG packets). These packets have
the same form as ST.ST packets except for a flag bit in
the header and travel over the same connection path.
They use allocated resources only when spare capacity
exists, e.g., when the ST.ST flow drops below the
allocated value. Otherwise they share local net
resources with other IP datagram traffic. They are
buffered with a queueing strategy appropriate for
datagram traffic and are discarded only when agent
buffer resources approach exhaustion, They are
intended for use by higher level protocols such as NVP
in applications such as dynamic control of the "floor"
in a conference. They are also used by ST itself for
connection management.

4.4 Packet Aggregation

ST allows any ST packets, stream or datagram, to be
aggregated together that have the same next-agent local-net
destination. "Aggregation" is a form of multiplexing, but is
given a different name to distinguish it from the multiplexing
done in the IP Multiplexing protocol that allows multiplexing
only for packets with the same end-to-end source and destination.
The term ^envelope" is used to refer to any ST message sent from
on« agent tö another. An envelop© may contain one or more ST
packets and is limited in size by the maximum size of packet that
the local net can carry. The envelope has a short header in
addition to the header of the individual aggregated packets. See
Section 5,0 for a description of header formats.

The ST aggregation technique requires agents to took
inside of received envelopes and handle the packets as individual
entities. This procedure adds to the computing load of gateways,
but can achieve significant cooaunication savings in *etworks

§

m.

L*>-**.*

-16-

r
•J-373

m

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

IEN 119 ST.DOC 7 September 1979

with high per-packet overhead such as SATNET, particularly when
many short packets must be handled.

4.5 Flow Specifications

The FLOW-SPEC that is carried by CONNECT and ACCEPT
messages contains several fields. Some are specified by the
originator of the CONNECT. Others are produced either during the
process of setting up the connection or changing its allowed flow
characteristics. Some apply in common to both directions of the
full-duplex connection. Others apply individually to allow
different flows in the two directions and appear in pairs in the
control messages.

Data rate, the basic quantity used in traffic control
computations, is specified by means of three parameters; a stream
interval (SI), a packet length (PL), and a duty factor (DF) . The
average expected data rate can be computed by taking the product
of PL, DF, and the reciprocol of SI. The FLOW SPEC allows for
one value each for SI and DF for each direction. However, as
many as four values of PL can be provided as options, allowing
the ST agents flexibility in allocating resources for some types
of traffic flow.

The flow type (TYPE) parameter is Intended to allow ST to
take into account a variety of different user load
char actor ist ics. The set of possible types can be expected to
grow with experience, but a relatively few types seem to be
adequate to deal with presently contemplated voice encoding
techniques. These are:

**,

1. Fixed Rate. The data rate is held fixed for the life
of the connection. A simple speech encoder that can
run at only one rate would use this type value with all
four PL's set to the same value. A somewhat more
complex encoder that could run at more than one rate
but could not change rates on the fly would use the
fixed-rate type but could offer a choice of up to four
values for PL. A variable-rate vocoder such as the
LPC2 vocoder used in the ARPANET that has a rate that
varies depending on the short time behavior of the
speech si^al would also use the fixed-rate type but
would set the duty factor to a lower value than the 0.5
or so used by a simple encoder.

2. Multiple Rate. The data rate allowed can be of any of
the four specified by the four PL's and the agents are
free to change rates at any tise to 9ccymvy**r* rn
network load changes. Whenever an agent changes the
rate, it sends appropriate CONNECT and ACCEPT messages
to tell other agents and the users about the change.

-17-

2-374

HOST LEVEL: MINOR IEN 119

IEN 119 ST.DOC 7 September 1979

f

Since such rate changes require extra communication and
processing in the catenet, agents would have to avoid
frequent changes. This flow type would be used by
enoders that run at a variety of rates and can switch
rates rapidly but need to do so explicitly either
because packet formats must change with rate changes or
because some parameter such as sampling rate must be
changed at sender and receiver. This flow typs could
also be useful for sending data rather than voice over
ST connections.

3. Prioritized Variable Rate. This flow type is intended
for use by certain advanced encoders of a kind called
"embedded" where subsets of the coded bit stream can be
stripped en route without loss of intelligibility.
There is, of course, some loss of quality and/or
ability to withstand acoustical background noise when
stripping occurs. For this flow type each of the four
PL's corresponds to one of the four packet priorities
that can be attached to ST.ST packets. The encoder
would place the bits needed for its lowest rate in the
highest priority packet, the next lowest in the second
highest, etc. When pressed for channel capacity,
agents would be free to discard the lower priority
packets for this flow type. The overall precedence of
the connection would also affect the probability of
packet discard. It is not anticipated that agents
would send explicit messages to announce that
discarding was taking place.

Another set of parameters in the FLOW-SPEC is concerned
with transmission delay'. ST does not allow the user to specify a
delay requirement, but it does allow some control over the
tradeoff between oelay and data rate options during tt*e routing
process. A ROUTING-STRATEGY parameter is provided for this
purpose. Currently, two strategy options for PTP connections are
envisioned, but others could be added if desired. One gives
preference to minimizing delay at the expense of data rate. The
other gives preference to data rate over delay. The ROUTING-
STRATEGY options are meaningful only when data rate options are
available. Otherwise data rate is as absolute requirement in
routing.

While a user cannot specify a delay requirement to ST, ST
does provide the user with an estimate of both minimum delay and
delay dispersion in fields of the FLOW-SPEC. The estimates are
based on a priori statistics relating delays to average network
loads. When an agent propagates a CONNECr packet, it adds values
from tables indexed on the current load estimate to the MIN-DELAY
and DISPERSION fields of the FLOW-SPEC for the forward direction.
It performs the same function for the backward direction as it

II ill -r,i» ■

i>VVW

-18-

2-375

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 119 ST.DOC 7 September 1979

K
19-

..V.fc,,

propagates the ACCEPT. The MIN-DELAY is the simple sum of the
hop-to-hop contributions, but the DISPERSION is a sum of squares.
The receiver can compute an estimate of overall delay by adding
the MIN-DELAY to the square root of the DISPERSION. The
DISPERSION estimate by itself can be useful in setting the : ,
reconstitution delay value needed to play cut satisfactory speech W^~
for listeners. The proper value can vary over a wide range
depending on the path through a catenet of networks with very
different delay characteristics. '"•»•"S".

Another parameter set by agents during the routing *V\-'V"*,%J
process is the ACCEPTED-RATE field. This field informs the users
as to which of the four possible data rate options (PL's) have
been accepted for each of the two directions of the connection.
Of course, if none were acceptable, a REFUSE would be returned
with a REASON code indicating unavailability of resources at the
requested precedence level. Another flow-related reason for
refusal could be an inability of the networks to handle a too- ^
short stream Interval. g~«^V^

All FLOW-SPEC parameters except PRECEDENCE and ROUTING-
STRATEGY can be independently specified or are reported
separately for each of the two directions of the full-duplex
connection. Ttie exceptions are required to apply to the entire
connection tc simplify the task of gateways in handling
connections.

The ROUTING-S1RATEGY field has other control functions in
addition to weighting the tradeoff between data rate and delay.
For CONF connections it indicates whether or not data rate
options must match in both directions (a requirement for voice
conferencing) or can be negotiated independently. If ST agents
support split routing, (a capability to divide the traffic on a
connection among two or more paths) the ROUTING-STRATEGY field
will indicate whether or not this technique is to be applied to
the connection. Split routing also requires additional fields to
Indicate the fraction of the nominal traffic that has been
accepted or is requested to be handled. This document does not
propose the implementations of split routing in the first version
of ST.

2-376

HOST LEVEL: MINOR IEN 119

IEN 119 ST.DOC 7 September 1979

5.0 PACKET FORMATS

The messages sent between ST agents on connections are
envelopes containing one or more ST packets. The envelope
consists of an envelope header (EH) followed by one or more
packet headers (PH's) followed by the data portions of the
packets in the same order. The envelope thus has the form:

EH, PHI, PK2, . . .PHn, DATA1, DATA2, . . . DATAn

The reason for aggregating the headers separately from the data
is that doing so allows the header region to be checksummed
easily as a unit before attempting to parse the envelope. It is
expected that ST will be used in networks that can deliver
messages with bits in error and that some non-negligible fraction
of the messages will have such errors. To require the entire
envelope to be error-free in order to use any of it would result
in an excessive rate of lost packets.

Since ST operates as an extension of IP, the envelope
arrives at the same network port that IP uses to receive IP
datagrams. It is proposed to use a unique code in the first
field of the message to identify it as an ST envelope. The first
four bits of an IP datagram are defined to be the Version Number
field. It is therefore proposed to use one of the 16 possible IP
versions to distinguish ST envelopes from IP datagrams. With
this convention an envelope header will have the following
format:

-20-

2-377

'»'**■*•■"*■* ■' **■*■* ■ •■*•■ ■'•■'-■ f ■"> ■' ii'ft ■ *t

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 119 ST.DOC 7 September 1979

ENVELOPE HEADER

0 1
0123456789012345

! ST »VERSION! HEADER-LENGTH !

! TOTAL-LENGTH !

! CKSUM !

ST is the particular IP Version Number assigned to
identify ST envelopes.

VERSION is the ST version number. This document is a
proposal for VERSION 1.

HEADER-LENGOH* is the length in words of the envelope
header (3) plus the sum of the header lengths of the
aggregated packets.

TOTAL-LENGTCH is the length of the entire envelope. It
does not include any local net headers or trailers.

CKSUM covers the envelope header and all packet
headers.

++♦♦+♦♦+♦♦♦♦++
*A11 ST communications use the 16-bit word as a basic unit. All
lengths are in word units.
+♦+++▼♦++♦♦♦♦♦

-21-

2-378

•i. ■' -

HOST LEVEL: MINOR IEN 119

&

IEN 119 ST.DOC 7 September 1979

The individual packet headers have one of two formats
depending on whether they are for PTP or CONF connections. These
formats are:

PTP PACKET HEADER

0 1
012345678901234 5

+-+-+-+-♦-♦-+-♦-+-+-+-+-+-+..+-+-.+

! CID S

!0! BITS ! DATA-LENGTH !
+-+-+-+-♦-♦-.+- + -+-+-+- + -+-♦-♦-+-♦

CONF PACKET HEADER

0 1
0123456789012345

♦-♦-♦-♦-♦-♦-♦-♦-+-+-♦-+-+-♦-+-♦-♦
! CID !
♦- ♦-♦-♦-♦-♦-♦-♦-•f-♦-♦-♦-♦ -+-♦-♦-♦
!1! BITS ! DATA-LENGTH !
♦-♦-♦-♦-+-+-♦-♦-♦-♦-♦-♦-♦-♦-♦-+-♦
! Spare ! FBML! ! SID !
♦-♦-+-.♦-♦-♦-♦-♦-♦«♦-♦-♦-♦-♦-♦-♦-♦
! FBM - 1st word !
♦-♦«.♦-♦-♦-♦-♦-♦-♦-♦-«.--♦■-+-♦-♦-♦-♦

! FBM - nth word !
♦-♦«♦-♦-♦-♦«♦-.♦-♦-♦-■♦'-♦-♦-♦-♦«♦-♦

CID Is an arbitrary identifier assigned by the agent
receiving the packet for the purpose of identifying the
connection on which the packet is travelling. Since
the CID is unique only to the agent that assigned it,
it will generally have a different value on each hop of
the connection path.

BITS are defined as follows:
Bit 1 distinguishes stream packets (ST.ST) from
datagrams (ST.DO) (1 = DC).

Bits 2 and 3 define the packet priority (00 » highest
priority).

Bits 4 and 5 are spares.

Bits 6 and 7 are unused (may be used by higher level
protocols if desired).

-22-

2-379

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Mi

■ IEN 119 ST.DOC 7 September 1979

p* DATA-LENGTH is the length of the data field in words.

R FBML (3 bits) is one less than the length of the
h Forwarding Bit Map (FBM) in words.

W SID (7 bits) identifies the source of the packet on a
P CONF connection (the source is implicit for a PIP
[\ connection packet) . The value of SID corresponds to
P the bit position of the source in the conference bit
K; map. Bit numbers start with zero, and positions start
L% with the left-most (most significant) bit of the first
■ word of the bit map.

FBM is the Forwarding Bit Map. It can be at most 128
bits (8 words) long, and thus it limits conferences to
128 participants (a generous number) . Ones in the FBM
indicate that the packet is to be delivered to the

[C\ corresponding participants. The FBM is allowed to
B Increase in one word increments to allow new
PJP participants to enter during the course of a
|K conference, but it does not shrink when participants

leave, and bit positions are not reused.

l

As pointed out in Section 3.0, ST supports a second type
of communication called IP.ST datagrams. These are ordinary IP
datagrams with an "ST" value in the protocol field. They are
used to allow hiojiar level protocols to communicate prior to the
setting up of an ST connection, and they are also used for
communication between access controllers and other ST agents
during the satup of CONF connections. They are strictly point-
to-point communications since they are IP datagrams. According
to the conventions for IP datagrams, these messages would have
the form:

IP Header, IP.ST Header, Data

m

23-

[^ 2-380

iii.t.tn 11

HOST LEVEL: MINOR IEN 119

IEN 119 ST.DOC 7 September 1979

The IP.ST Header has the following form:

IP.ST PAOQErr HEADER

V.

I

I* •

i

0123456789012345
+-♦-♦-♦-♦-♦-♦- + -+-•♦■-♦-♦-♦-♦-■►-♦-♦
! IP.ST IVERSION! LENGOH !
+ - + -■♦•-4 -+•+-+- + -♦-+-♦-+ - + -♦- + - + -+

! SOURCE- !
+-♦- + ♦-♦-♦
! EXTENSION !
♦-+-+-+-♦-♦-«♦•—►-♦-♦-♦-+-+-+-♦-♦-+
! DESTINATION- !
♦-♦-♦ +-+-♦
! EXTENSION !
*- ♦-♦-+-♦ -+«♦-+-♦-♦-♦ -+«♦-♦-+-♦- ♦

IP.ST 1» a value chosen to be different from the MST"
value used In the first four bits of the ST envelope.
This field allows IP.ST datagrams to be distinguished
from ST envelopes embedded in IP.ST packets, a
technique that can be used to get ST envelopes through
gateways that do not support ST.

VERSION is the ST version number.

LENGTH is the total length of the IP.ST packet
excluding IP and local net headers, etc.

SOURCE- and DESTINATION-EXIENSION's are 32-bit fields
used to identify the source and destination processes.
Like ARPANET NCP process identifiers, they are not
specified by the protocol. The source and destination
host addresses are carried in the IP header.

6.0 CONTROL MESSAGES

With the exception of communications with access
controllers, ST control messages are sent from agent to agent as
ST.DG packets with the CID set to zero. This convention is
similar to the ARPANET NCP use of Link 0 for control.
Communication with AC's uses IP.ST packets. The form is
otherwise the same. The control protocol follows a reediest -
response model with all requests expecting responses and all
responses expecting acknowledgements. Retransmission after
timeout is used to allow for lost or ignored massages. A packet
may contain more than one control message. Control messages do
not extend across packet boundaries.

-24-

2-381

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 119 ST.DOC 7 September 1979

Control message headers have the following format:

CONTROL MESSAGE FORMAT

0 1
0123456789012345

♦ -♦-♦-+-+-♦- + -+-♦-♦-♦-♦-■♦■-♦-♦-♦-+

! OP-CODE ! LENGTH !
♦-♦-♦-♦-♦- + --♦■-♦-"♦•-♦-♦-♦-♦ -■♦-♦-♦-♦

! CKSUM !

! REFERENCE !
♦-♦-♦-♦-•♦-♦-♦-■♦■-•♦-■♦■-♦-•♦■-♦-♦-•♦•-"♦•-♦

OP-CODE specifies the request or response.

LENGTH Is the length of the control message In words.

Ijj CKSUM Is the checksum of the control message. Because
J the control messages travel In envelope? that may be
£• delivered with bits In error« each control message must

be checked before It Is acted upon. i«

REFERENCE Is an arbitrary reference number used to
associate requests with responses and acknowledgements.

The header Is followed by parameters as required for the
particular OP-CODE. Each parameter is Identified with a P-CODE
byte that Is followed by a P-LENCTH byte Indicating the length of
the parameter (Including the P-CODE. P-LENGIH word) In words.
Parameters can be sent in any order. The format of Individual
parameters is specified In the following sections In connection
with the OP-CODE'S with which they are used.

Control messages fall into two categories according to
whether they deal with PTP or CONF connections. There are four
messages that are independent of connection type. These are:

N 6.0.1 [ACK]
u

AOC (OP-CODE « 1) has no parameters, the REFERENCE in
the header is the REFERENCE number of the message being
acknowledged. AOC's are used to *<knowledge responses to
requests and in some cases constitute responses or partial
responses themselves.

I

£ -25-

2-3**2

■Wt ■*• ■'■■"/ taViVi'i i ii'tiV VI\IV

&

%

HOST LEVEL: MlNOR IEN 119

IEN 119 ST.DOC 7 September 1979

6.0.2 [HELLO]

HELLO (OP-CODE = 2) is used to determine whether or not
another agent is alive and well. It has no parameters and
expects an ACK in response.

6.0.3 [ERROR-IN-REQUEST] <REF> <ERRQR-TYPE>

ERROR-IN-REQUEST (OP-CODE = 3) is sent in response to a
request in which an error is detected. An ACK is expected. No
action is taken on the erroneous request.

REF (P-CODE = 7, P-LENGIH =2) is the REFERENCE number
of the erroneous request.

ERROR-TYPE is not yet specified.

k\ £ 6.0.4 [ERROR-IN-RESPONSE] <REF> <ERRCR-TYPE>

This message (OP-CODE = 4) is sent in lieu of an ACK for
a response in which an error is detected. No ACK is expected.
Action taken by the requester and responder will vary with the
nature of the request.

REF identifies the erroneous response.

ERROR-TYPE is not yet specified.

6.1 Control Messages for PIP Connections

PTP connections are set up and taken down with the
following messages:

6.1.1 [CONNECT.PTP] <NAME> <TARCET> <FL0W-SPEC> <CID.B>

[>; CONNECT.PTP (0P-C0OE ■ 5) requests the set up (routing)
C of a PTP connection or asks for a change in the flow

specification of a connection already routed. Its parameters
*** are:

NAME (P-CODE * 1. P-LDK7IH = 6) is the SV address of
the process that originated the CONNECT.PTP (the
ORIGIN) concatenated with a 16-blt number chosen to
make the name unique. An ST address is a 12-bit IP
host address concatenated with a 32-bit ETiTNSION
identifier chosen to Identify a particular process In
the host. The EXTENSION is provided by some higher-
level protocol and is assumed by ST to be unique to the
host. For NVP use the EXTENSION Identifies a
particular telephone and Is presumably a wall-known

N
-26-

2-3K3

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 119 ST.DOC 7 September 1979

quantity.

TARGET (P-CODE = 2, P-LENCHH =5) Is the ST address of
the targot process.

FLOW-SPEC (P-CODE ■ 3, P-LENC7IH ■ 18) is a complex
parameter that both specifies and reports on the flow
requirements and expected delay characteristics of the
full-duplex connection. See Section 4.5 for further
information.

CID.B (P-CODE = 4, P-LENCTH = 2) is the connection
identifier to be used on packets moving in the backward
direction on the connection.

CONNECT.PTP expects a response. There are four response
possibilities: ACCEPT.PTP, REFUSE.PTP, AOC, and ERROR-IN-REQUEST.
Receipt of an AOC means that the agent receiving the request is
working on it, >nd the requester should wait for a futur« ACCEPT
or REFUSE. ERROR-IN-REQUEST will be returned only when a format
error is detected in the CONNECT.PTP. Other errors, if detected,
will elicit REFUSE messages.

The processing of CONNECT messages requires ^are to avoid
routing loop« that could result from delays in propagating
routing information among gateways. The example in Section 7.0
describes in some detail the actions of agents in handling
CONNECT requests while routing a connection.

6.1.2 [ACCEPT.PTP] <NAME> <TARCET> <FL0W-SPEC> <CID.F)

ACCEPT.PTP (0P-C0OE * 6) is returned to indicate that the
requirements of a CONNECT.PTP hive been met or that a change in
flow specifications has occured. Parameters are the same as for
CONNECT.PTP except that a CID.F (P-COOE « 5, P-LENCTO » 2) is
returned for use on packets travelling in the forward direction.
The FLOW-SPEC will be modified to show the accepted rate and
accumulated delay information (See Section 4.5).

ACCEPT messages expect AOC's or ERROR- IN-RESPONSE' s.
ERROR- IN-RESPONSE will be returned if an ACCEPT is sent to an
agent that has no knowledge of the connection. This may occur If
an ACCEPT is generated at the same time that a DISCONNECT is
being propagated.

6.1.3 [REFUSE.PTP] <NAME> <REAS0N>

REFUSE.PTP (OP-COOE ■ 7} is returned to indicate that agents have
failed to set up a requested connection or that a previously
established connection has been lost. REFUSE'S are also returned
to indicate routing failure, and in such a case msy not end up

«27-

2-384

i
p\ REFUSE*« are AOC'ed and are propagated by Intermediate
K] agent* if meaningful (i.e., the agents had tables for the
p\ connection) . The backward propagation of a refuse uay be halted
[v at an intermediate agent if an alternate route exists that has
£.' not been tried, and the REASON indicates that it is reasonable to
[y try the alternate route. (I.e., it does not indicate that the
I target refuses or does not respond).

!•; 6.i.4 [DISCONNECT.PTP] <NAME> <REASCN>

L-; DISCONNECT.PIP (OP-CODE « 8) is sent to request that a
r.; previously requested connection be taken down. It can be
L> generated either by the originator of the CONNECT or by an
P intermediate agent that executes a preemption or detects a fault.

REASON uses the same codes as REFUSE although not all
codes apply.

DISCONNECT expects an ACK and is propagated in the
forward direction so long as agents are encountered that know
about the connection.

A connection can be taken down either by a REFUSE or a
DISCONNECT (or both) depending upon which end first decides to
Initiate the process. If both start within a propagation time of
each other, neither message will reach the opposite end.

i» *

1
r • b

s
HOST LEVEL: MINOR IEN 119

IEN 119 ST.DOC 7 September 1979

propagating back to the origin. TARGET'S also issue REFUSE'S to
take down connections intentionally.

REASON (P-CODE = 6, P-LENGTH = 2) indicates the reason for
connection refusal. REASON codes apply also to DISCONNECT
messages and include the following:

CODE EXPLANATION

0 No explanation
1 Target refuses connection
2 Target does not respond
3 Target cannot be reached
4 Connection preempted
5 STREAM INTERVAL too short
6 Requested data rate cannot be handled
7 Connection broken due to network fault
8 Connection broken by ORIGIN
9 Conflicting FLOW-SPECs in CONF connections

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

I EN 119 ST. DOC 7 September 1979

6.2 Control Messages for CONF Connections

 CONF connections are set up and taken down with CONNECT,
ACCEPT, REFUSE, and DISCONNECT messages, but the CONF versions of
these messages have somewhat different parameters. In addition,
CONF connection setup requires that agents communicate with
access controllers by means of TELL-ME and INFO messages. These
latter messages are sent as IP.ST datagrams. The former are sent
as ST.DO packets with CID = 0.

6.2.1 [CONNECT.CONF] <NAME> <OBM> <TBM> <CID.B>

CONNECT.CONF (OP-CODE - 9) requests the setup (routing)
of a CONF connection or asks for a change in flow specifications
of a connection already routed. The parameters NAME and CID.B
have the same form and interpretation as they do for CONNECT.PTP
except that NAME is the name of the owner of the conference, not
the originator of the CONNECT message. The new parameters OBM
and TBM allow the message to deal with multiple ORIGIN and TARGET
processes. The FLOW-SPEC for the connection is obtained from the
access controller.

OBM (P-CODE » 8, P-LENGTO * 2-9) is the ORIGIN-BIT-MAP.
Bits set in the map identify originating processes. When a
CONNECT.CONF is first Issued by a user process only one bit is
set in OBM identifying the Issuer. However, as the message
propagates, intermediate agents may find that they have other
CONNECT.CONF messages for the same connection on hand at the same £■
time. In that case, they can merge the requests so that more -\
bits become set as the message approaches its targets. 'y

TBM (P-CODE * 9, P-LENCTH » 2-9) is the TARCCT-BIT-MAP. j£ij
Bits set in the map identify the target processes. In general,
the user process will have set many bits in TBM when it first y<
Issues a CONNECT.CONF. As the message propagates it will split K
many times, each split reducing the number of bits left set in
TBM. When the CONNECT.CONF's reach their targets only one bit
will be left set in each.

Since the CONNECT.CONF message does not tell its receiver
anything about the actual Identities of the target processes,
intermediate agents must got this information, as well as the
FL0W-3PEC. from the access controller by sending TELL-ME messages
and receiving INFO messages in response. The agents use the NAME
to locate the AC. using a bit in the name to distinguish between
a public or private AC. The NAME is the ST tklremn of a process
concatenated with a 16-bit number to make the NAME unique. It is
proposed that the most slgnifleant bit of that 16-bit number be
used to distinguish public from private ACs. A zero in that bit
would indicate a private AC and in that case, agents would send

-29-

2-3H6

HOST LEVEL: MINOR IEN 119

IEN 119 ST.DOC 7 September 1979

TELL-ME messages to the process address in the KÄME. In the
public case, the agent would communicate with an AC whose address
was known a priori to the agent.

6.2.2 [ACCEPT. CONF] <NAME> <OBM> <TEM> <FLOW-SPEC> <CID.F>

ACCEPT.COKF (OP-CODE ■ 10) is similar in function to
ACCEPT.PTP. NAME, FLOW-SPEC, and CID.F have the same form and
interpretation. OBM specifies the set of originators to which
the ACCEPT is to be propagated. TBM specifies the set of targets
that have accepted the connection, this set may be a sub-set of
the targets requested in the CONNECT to which an ACCEPT responds.
The FLOW-SPEC is included in the ACCEPT because it reflects the
actual resources granted to the connection.

6.2.3 [REFUSE.CONF] <NAME> <OBM> <TBM> <REAS0N>

REFUSE.CONF ((»-CODE « 11) is similar in function to
REFUSE.PIP. As for ACCEPT.CONF, OBM specifies the set of
originators to which the REFUSE is to be propagated. T9M
specifies the set of targets that cannot be reached, have
refused, etc. A single REASON applies to all the targets in the
TBM. If more than one REASON applies to a set of targets, as
many REFUSE'S as REASON'S will be sent.

6.2.4 [DISCONNECT.CONF] <NAME> <OBM> <TBM> <REAS0N>

DISCOWIECr.CONF (0P-C0OE ■ 12) is similar in function to
DISCONNECT.PIP. As for REFUSE.CONF, OBM and TBM specify the sets
of originators and targets to which the DISCONNECT applies.

6.2.5 [TELL-KE] <NAME> <PART-NUM> <FLOW-SPEC-REQ>

TELL-ME (QP-COOE ■ 13) is sent from an agent or a
participant process to an access controller . The AC is expected
to return an INFO message with the requested information. Either
of the latter two parameters may be omitted.

PART-NUM (P-COOC * 10. P-LENCriH » 2) specifies the number
of the first participant about which information is requested.
The response will be a participant list starting with the
specified participant and continuing until the maximum packet
size is reached or the list is exhausted.

FLOW-SPEC-REQ (P-COOE • 11. P-LENCrm * 2) requests the AC
to send the FLOW-SPEC for the connection.

-30-

2-3$:

-.•>:

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

&:

I EN 119 ST.DOC 7 September 1979

6.2.6 [INFO] <NAME> <STATUS> <PART-LIST> <FL0W-SPEO

INFO (OP-CODE * 14) Is sent fron an AC to an agent or
participant process in response to a TELL-ME. It provides the
requested information. STATUS is always present, PART-LIST and
FLOW-SPEC are present only when requested by the TELL-ME.

STATUS (P-CODE = 12, P-LENG3H * 2) carries 2 bytes of
information. Byte 1 is the CQNF-TYPE. Byte 2 gives the length
of the participant list. The following values for CQNF-TYPE are
defined:

Type Meaning

0 No conference defined with this NAME

1 Conference with closed participant list

2 Conference with open list and password

3 Conference with completely open list (no
password needed).

PART-LIST (P-COOE « 13. P-LEMGTCH - (4m ♦ 2)) provides a
section of the participant list starting at the location (PART-
NUM) requested in the TELL-ME and continuing until either the mnd ^
of the list or packet capacity is reached. The items in the E|
PART-LIST are the ST addresses (64 bits) of the participating ~
processes. The addressee are present whether or not the
participants are active. The addresses are preceded by a word \W
giving the number of the first participant on the list. [\\[-

FLOW-SPEC is the nominal FLOW-SPEC for the conference. \£]
£j

7.0 AN EXAMPLE OF COIeT CONNECTION SETUP

This section is a rather detailed example of the actions
called for by ST in setting up a connection for a conference with VI»
four participants. In addition to showing the control message
flow, it also indicates the information used and retained by
gateways in supporting the connection. For the sake of
simplicity, it Is assumed that the flow requirements are always
met. The M.C0NF" suffix is omitted from 0fP-C0O£*s. and
parameters such as NAME and FLOW-SPEC that are always the same
are also omitted. In addition. AOC's are not shown but are /.\
assumed to occur where required. mm I

-31- £;
m

2-3SS

HOST LEVEL: MINOR TEN 119

I EN 119 ST. DOC 7 September 1979

The example uses the following network configuration:

+ + + + + +
!P3 ! !P2 ! !P1 !
+ + + + +---+
!ST3! !ST2! !ST1!
+ + + + +---+

j

i

+ ■ • + + + +

j

1
•+ 4. + +

I
1
 +

! Net A !--! G.AB !--! Net B !--! G.BC !--! Net C !
+.,.„ + + + + + + + + +

i !
i !

+ + + +
!ST4! !AC !
+ + + +
!P4 !
f +

Each participant (Pi) communicates through a host agent
called "STi." The communications between the P's and their local
ST's are written out as control messages to show the logical flow
even though in actual implementations they night be handled very
differently.

The actions involving ST start after the participants
have joined the conference by communicating with the access
controller (AC) and have received TARGET-BIT-MAPs (TBMs) telling
each Pi to which other Pi's connections are to be set up. Thm
notation "{ A, B, C }M is used to indicate a bit map with bits
set for A, B, and C. The participants are assumed to h*sve joined
in the order of their numbers. Thus PI got an empty TBM « }),
and P4 got TBM ■ { PI, P2, P3 }. According to the rules, PI
issues no CONNECT messages, but waits for the others to connect
to it. The action thus begins with P2 sending:

P2->ST2: [CONNECT] <OBM » { P2 >> <TBM * { PI >> <CID.B - 3>

ST2->AC: [TELL-ME] <PART-NUM = 1> <FLOW-SPEC-REQ>

AC->ST2: [INFO] <PART-UST ■ ADDR.P1, ADDR.P2, ADDR.P3. ADDR.P4>
<FLOW~SPEC> <STA*DJS>

2-389

■\ J"**-

V»»

These last two commands are executed independently by all S3
agents when they first receive a CONNECT. They will be replaced
by the phrase "X gets info" in the following.

-32-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 119 ST.DOC 7 September 1979

ST2 observes that ADDR.P1 is not in its local net and
lacking routing knowledge decides to try G.AB (the wrong
direction).

ST2->G.AB: [CONNECT] <OBM = { P2 }> <TBM = < PI }> <CID.B = 17>
S3

G.AB gets info and decides that net C is unreachable '•//
except through net B from whence the CONNECT came. /«V.

G.AB->ST2: [REFUSE] <OBM = { P2 }> <TBM = { PI }> >^-
<REASON = 3 (Target cannot be reached) > |> >J;

ST2 decides to try another gateway.

ST2->G.BC: [CONNECT] <OBM = { P2 >> <TBM = { PI >> <CID.B = 17>

G.BC gets info, builds a connection entry, and sends:

G.BC->ST1: [CONNECT] <OBM ■ { P2 }> <TBM - < PI >> <CID.B = 1001>

ST1 gets info and sends:

ST1->P1: [CONNECT] <03M ' { P2 }> <TBM = { PI }> <CID.B » 1>

Since PI has already joined the conference and recognizes
P2 as another participant, it sends:

P1->ST1: [ACCEPT] <0BM * < P2 }> <TBM » { PI }> <CID.F = 1>

ST1->G.BC: [ACCEPT] <0BM = { P2 }> <TBM = { PI }> <CID.F = 32>

At this point G.BC would have the following stored
information (neglecting bookkeeping items such as pointers).

1. A connection block with NAME, FLOW-SPEC, and CID.IN =
1001 (the same CID can be used for all inputs for the
connection). This information is retained for the life
cf the connection. The PART-LIST used in processing
may be discarded once an ACCEPT (or REFUSE) has been
received and the forwarding tables have been created.
However, since there are likely to be other CONNECT's
to be processed, it would be efficient to keep the
PART-LIST for a time (say several minutes) .

-33-

2-390

r_vA"_-, .\ _-,'■• .v_»»v_-s*_-,v»_ ■'_-•'_, _v_ '_

HOST LEVEL: MINOR IEN 119

IEN 119 ST.DOC 7 September 1979

2. Two forwarding tables, one for each packet that might
be sent in response to an input.

ITEMS

NET-PORT

ADDRESS

MASK.OBM

MASK.TBM

CID.OOT

#1

B

ST2

{ P2 }

{ >

17

#2

C

ST1

{ >

{ PI >

32

The principal function of the masks is to facilitate
packet forwarding. When a packet arrives, the following
computation is made for each forwarding table to compute the
output FORWARDING-BIT-MAP (FBM) :

FBM.OUT ■ FBM.IN & (MASK.OBM U MASK.TBM)

If FBM.OUT has no bits set, it is not necessary to send a packet
to the address in the table. Otherwise a packet is sent using
the NET-PORT, ADDRESS, and CID.OUT from the table.

Having built its tables, G.BC sends:

G.BC->ST2: [ACCEPT] <OBM « { P2 }> <TBM = { PI }> <CID.F = 1001>

ST2->P2: [ACCEPT] <OBM = { P2 }> <TBM = < PI >> <CID.F - 10>

At this point P2 and PI are connected and could begin
talking, if permitted by the higher level protocol.

In connecting P3 and P4 we will assume that both initiate
requests at essentially the same time so that they propagate
concurrently.

P3->ST3: [CONNECT] <OBM « { P3 }> <TBM = { PI, P2 }> <CID.B ■ 5>

P4->ST4: [CONNECT] <OBM = < P4 >> <TBM ■ { PI, P2, P3 >>
<CID.B ■ 1>

ST3 and ST4 get info. ST3 notices that PI, P2 both are
outside the local net, but ST4 notices as well that P3 is on the
same net as P4.

They send:

-34-

2-391

^X^^*^^>>^^>;yo^v«%>*'

1 »v. ■'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 119 ST.DOC 7 September 1979

ST3->G.AB: [CONNECT] <OBM = { P3 }> <TBM = { PI, P2 }>
<CID.B = 135>

ST4->ST3: [CONNECT] <OBM = { P4 }> <TBM = { P3 }> <CID.B = 27>

ST4->G.AB: [CONNECT] <OBM = { P4 }> <TBM = { PI, P2 }>
<CID.B = 27>

>'.
\v ST3 forwards the CONNECT to P3, which accepts, and ST3
•<g responds to ST4 with?

jjj ST3->ST4: [ACCEPT] <OBM = { P4 }> <TBM = { P3 }> <CID.F ■ 135>

™ Meanwhile G.AB gets info and notices that it has two
£ CONNECT's for the same NAME. It decides to merge them and sends:
jv

G.AB->ST2: [CONNECT] <OBM = { P3, P4 >> <TBM = { P2 }>
%; <CID.B = 2356>

fe and

V G.AB->G.BC: [CONNECT] <OBM = < P3, P4 }> <TBM = { PI }>
V <CID.B = 2356>

> ST2 forwards the CONNECT to P2, which accepts, ©nd ST2
jy sends:

ST2->G.AB: [ACCEPT] <OBM ■ { P3, P4 >> <TBM » { P2 >>
<CID.F ■ 17>

Now G.AB will not continue to propagate the ACCEPT
because the CONNECT on which it Is working asked for connection
to PI as well as P2. It will wait for an ACCEPT or REFUSE from
PI.

G.BC already knows about the connection to PI, but it
does not assume that PI will accept P3 and P4, so it propagates
the CONNECT.

G.BC->ST1: [CONNECT] <OBM = { P3, P4 >> <TBM = { Pi }>
<CID.B = 1001>

ST1 forwards to PI, which accepts, and ST1 responds:

ST1-XJ.BC: [ACCEPT] <OBM = { P3. P4 }> <TBM « { PI }> <CID.F =
32>

In the latter exchange G.BC and ST1 used the same CID's
they had used before for this connection. If either had chosen
to use a different CID, the newer value would supercede the
earlier one in the forwarding table.

-35-

2-392

HOST LEVEL: MINOR IEN 119

IEN 119 ST.DOC 7 September 1979

It should be noted that the protocol could allow G.BC to
accept the connection from P3 and P4 without forwarding the jjj
CONNECT to ST1 because G.BC already knows it has a connection to Rj
PI. This shortcut is not taken because it denies PI the jSy
information about the connection requests from P3 and P4 and the a£
opportunity to refuse those connections if desired. IJI

To finish the setup we have: ;-y

G.BC->G.AB: [ACCEPT] <OBM = { P3, P4 }> <TBM - { PI }> /><
<CID.F = 1001> f^ m

G.AB will now accept for PI and P2. VN

G.AB->ST3: [ACCEPT] <OBM = { P3 >> <TBM = { Pi, P2 }> >*?
<CID.F = 2356> *>

G.AB->ST4: [ACCEPT] <OBM = { P4 }> <TBM = < PI, P2 }> &1
<CID.F = 2356> p

When ST3 and ST4 propagate the ACCEPT's to P3 and P4 the ->;
conference connection is complete. >V

\»*
At this point the forwarding tables in G.BC are the '*/•

following: iv

ITEM #1 #2 #3

NET-PORT B C B

ADDRESS ST2 ST1 G.AB

MASK.OBM < P2 > < } { P3, P4 }

MASK.TBM < > { PI > { >

CID.OUT 17 32 2356

If at some later time G.BC should decide to preempt the
connection, it would issue one message for each forwarding table
jntry:

G.BC->ST2: [REFUSE] <OBM ■ { P2 >> <TBM ■ < PI >>
<REASON ■ 4 (Connection preempted)>

C.BC->ST1: [DISCONNECT] <OBM = { P2. P3. P4 >> <TBM » { PI >>
<REASON - 4 (Connection preempted)>

-36-

2-393

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

IEN 119 ST.DOC 7 September 1979

G.BC->G.AB: [REFUSE] <OBM = { P3, P4 >> <TBM = { PI }>
<REASON = 4 (Connection preempted)>

Having issued these messages and received ACXs in
response (or timed out in the absence of an ACK), the gateway can
delete the table entries and reclaim the CID for future use. The
REFUSE sent to G.AB would, of course, be prcpogated to ST3 and
ST4.

i
8.0 AREAS NEEDING FURTHER WORK

This document does not completely specify the protocol.
Further work is needed to specify error conditions and their
handling. The FLOW-SPEC parameter is not yet laid out in detail.
Rerouting has not been thought through sufficiently. The whole
area of routing strategies and the information to be exchanged
among gateways has not been given much consideration. There is
also a need for agents to exchange Information (not yet
specified) about local net resources. For example, if agents are
to make use of local net multi-addressing capability, the
selection of a CID for a connection is no longer at the
discretion of an individual agent. A convention is needed to
avoid conflicting use of CID's as well as requesting duplicate
resources to serve a CONF connection. The CONNECT control
message needs to be extended to allow agents to indicate local
net resources that are already committed to a CONF connection.

-37-

2-394

v .• ***** v -• ' *-* * • *-■

HOST LEVEL: MINOR RFC 741

NWG/RFC 741 DC 22 Nov 77 42444

SPECIFICATIONS FOR THE

NETWORK VOICE PROTOCOL (NVP)

and

Appendix 1: The Definition of Tables-Set-#1 (for LPC)

Appendix 2: Implementation Recommendations

K

NSC NOTE 68

(Revision of NSC Notes 26. 40. and 43)

Danny Cohen. IS!

January 29. 1976

2-395

•"".' v-y-'l v•;.••;, ■'" '.* ;".*. "• .*•**>; ^•';\,,,.;,'/yy;'!"

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985
8

2-396

■ J ^' ~ ■ -*' • ^' • - •. **• J*« _ ■ _>_,/* ^' _"- _ > -" _' ■ J"?

HOST LEVEL: MINOR RFC 741

NWG/RFC 741 DC 22 Nov 77 42444
Specifications for the Network Voice Protocol (NVP)

CONTENTS

PREFACE iii

ACKNOWLEDGMENTS iv

INTRODUCTION 2

THE CONTROL PROTOCOL 2
Summary of the CONTROL Messages 3
Definition of the CONTROL Messages 4
Definition of the <WHAT> and <HOW>

Negotiation Tables 8
On RENEGOTIATION 10
The Header of Data Messages 10

THE LPC DATA PROTOCOL 13

EXAMPLES FOR THE CONIROL PROTOCOL 15

APPENDIX 1: THE DEFINITION OF TABLES-SET-#1 18
General Comments 20
Comments on the PITCH Table 20
Comments on the GAIN Table 21
Comments on the INDEX7 Table 21
Comments on the INDEX6 Table 21
Comments on the INDEX5 Table 21
The PITCH Table 22
The GAIN Table 24
The INDEX7 Table 25
The INDEX6 Table 26
The INDEX5 Table 27

APPENDIX 2: IMPLEMENTATION RECOMMENDATIONS 28

REFERENCES 30

Cohen [Page 11]

2-397

t* W V V -' V V.V.V V V V *-■ V *V V V V * • '

Lm\\~***\^:-\'*;*\'W>»7»>YV»' -.y.y *' v r\'t%

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-398

HOST LEVEL: MINOR RFC 741

if.

6

NWG/RFC 741 DC 22 Nov 77 42444
Specifications for the Network Voice Protocol (NVP)

PREFACE

The major objective of ARPA's Network Secure Communications (NSC)
project is to develop and demonstrate the feasibility of secure,
high-quality, low-bandwidth, real-time, full-duplex (two-way) digital
voice communications over packet-switched computer communications
networks. This kind of communication is a very high priority
military goal for all levels of command and control activities.
ARPA's NSC projrct will supply digitized speech which can be secured
by existing encryption devices. The major goal of this research is
to demonstrate a digital high-quality, low-bandwidth, secure voice
handling capability as part of the general military requirement for
worldwide secure voice communication. The development at ISI of the
Network Voice Protocol described herein is an important part of the
total effort.

I* i
f»\

IN

Cohen [Page iii]

2-399

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC 741 DC 22 Nov 77 42444
Specifications for the Network Voice Protocol (NVP)

ACKNOWLEDGMENTS

The Network Voice Protocol (NVP), implemented first in December 1973,
and has been in use since then for local and transnet real-time voice
communication over the ARPANET at the following sites:

o Information Sciences Instit-ite, for LPC and CVSD, with a
PDP-11/45 and an SPS-41.

o Lincoln Laboratory, for LPC and CVSD, with a TX2 and the
Lincoln FDP, and with a PDP-il/45 and the LDVT.

o Culler-Harrison, Inc., for LPC, with the Culler-Harrison
MP32A and AP-90.

o Stanford Research Institute, for LPC, with a PDP-11/40 and an
SPS-41.

The NVP's success in bridging the differences between the above
systems is due mainly to the cooperation of many people in the
ARPA-NSC community, including Jim Forgie (Lincoln Laboratory). Mike
McCammon (Culler-Harrison), Steve Casner (ISI) and Paul Raveling
(ISI), who participated heavily in the definition of the control
protocol; and John Merkel (Speech Communications Research
Laboratory), John Makhoul (Bolt Beranek 6 Newman, Inc.) and Randy
Cole (ISI), who participated in the definition of the data protocol.
Many other people have contributed to the NVP-based effort, in both
software and hardware support.

Cohen [Page iv]

2-400

HOST LEVEL: MINOR RFC 741

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

1. INTRODUCTION

Currently, computer communication network« are designed for data
transfer. Since there is a growing need for communication of
real-time interactive voice over computer networks, new communication
discipline must be developed. The current HOST-to-HQST protocol of
the ARPANET, which was designed (and optimized) for data transfer,
was found unsuitable for real-time network voice communication.
Therefore this Network Voice Protocol (NVP) was designed and
implemented.

Important design objectives of the NVP are:

- Recovery of loss of any message without catastrophic effects.
Therefore all answers have to be unambiguous, in the sense that
it must be clear to which inquiry a reply refers.

- Design such that no syst«
systera unnecessarily.

can tie up the resources of another

- Avoidance of end-to-end retransmission.

- Separation of control signals from data traffic.

- Separation r^ vocoding-dependent parts from vocoding-independent
parts.

- Adaptation to the dynamic network performance.

- Optimal performance, i.e. guaranteed required bandwidth, and
minimized maximum delay.

- Independence from lower level protocols.

The protocol consists of two parts:

(1) The control protocol.

(2) The data protocol.

Control messages are sent as controlled (TYPE 0/0) messages, and data
messages may be sent as either controlled (TYPE 0/0) or uncontrolled
(TYPE 0/3) messages (see BBN Report 1822 for definition of
MESSAGE-TYPE) .

Throughout this document a "word" mean: a "16-bit quantity".

•*V.

Cohen [Page 1]

2-401

H fc ' *' fc' w ' a*"i

DDN PROTOCOL HANDBOOK - VOLUME TWO 198S

NWG/RFC 741 DC 22 Nov 77 42444
Specifications for the Network Voice Protocol (NVP)

2. THE CONIROL PROTOCOL

Throuqhout this document the 12-bit MESSAGE-ID (see BÖN Report 1822)
is referred to as LINK (its 8 MSBs) and SUB-LINK (its 4 LSBs).

The control protocol starts with an initial connection phase on link
377 and continues on other links assigned at run time.

Four links are used for each voice communication:

Link L will be used for control, from CALLER to ANSWERER.
Link K will be used for control, from ANSWERER to CALLER.
Link L+l will be used for data, from CALLER to ANSWERER.
Link K+l will be used for data, from ANSWERER to CALLER.

Both L and K should be between 340 and 375 (octal) . L and K need not
differ.

the first message (CALLER to ANSWERER) on link 377 indicates which
user wants to talk to whom and specifies K. As a response (on K). the
ANSWERER either refuses the call or accepts it and assigns L.

The CALLER then calls again (this time on link L) . The ANSWERER
initiates a negotiation session to verify the compatibility of the
two parties.

The negotiation consists of suggestions put forth by one of U»e
parties, which *re either accepted or rejected by the other party.
The suggesting party in the negotiation is called the NEGOTIATION
MASTER. The other party is called the NEGOTIATION SLAVE. Usually the
ANSWERER is the negotiation master, unless agreed otherwise by the
method described later.

If the negotiation fails, either party may terminate the call by
sending a 'GOODBYE". If the negotiation is successfully ended, the
ANSWERER rings bells to draw human attention and sends ''RINGING" to
the CALLER. When the call is answered (by a human), a "READY" Is sent
to the CALLER and the data starts flowing (on L*\ and K*l) . However,
a "READY" can be sent without a preceeding "RINGING".

This bell ringing occurs only after the initial call (not after
renegotiation).

The assignment of L and K cannot he changed after *he Initial
connection phase.

Only one control message can be sent in a network-message. Extra bits
needed to fill the network-message are ignored.

Cohen nPage i]

2- A&?

nt •

HOST LEVEL: MINOR RFC 741

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

The length of control messages should never exceed a single-packet
(i.e., 1,007 data bits).

Control messages not recognized by their receiver should be ignored
and should not cause any error condition resuting in termination of
the connection. These messages may result from differences in
implementation level between systems.

SUMMARY OF THE CONTROL MESSAGES

#1 " 1, <WHO>, <WHDM>, K"

#2 "2.<QODZ>" or only "2"

#3 "3, <WHAT>, <N>, <H0W(1) HDW(N) >M

#4 "4,<WHAT>,<H0W>"

#5 "5,<WHAX>,<HDW>" or only "5,<WHAT>"

#6 "6,LM or only "6"

#7 ,,7"

#8 H8"

#9 "9"

#10 "10,<ID>M

#11 M11,<ID>"

#12 M12,<IM>"

#13 nxJ,<YM>,<0K>"

ft

Cohen [Page 3]

2-403

.-••J. -• W .\.-^///>\'«.\-J.\\\\\V.VJ»\jf/"\^/,»\^Vr'^V'V^Vy>^r^l^x.-*^\'--\-V- ^-*-. --•. • ■,•'-.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

DEFINITION OF THE CONTROL MESSAGES

#1 CALLING (on 377 and L)

This call is issued first on link 377 and later on link L. Its
format is "1,<WH0>,<WH0M>,K", where <WHO> and <WHOM> are words
which identify respectively the calling party and the party
that is being called, and K is as defined above. The format of
the <WHD> and <WHOM> is:

(HHIIIIIIXXXXXXXX)

where HH are 2 bits identifying the HOST, followed by 6 bits
identifying the IMP, followed by 8 bits identifying the
extension (needed because there may be more than one
communication unit on the same HOST) .

The system which sends this message is defined as the CALLER,
and the other system is defined as the ANSWERER.

#2 GOODBYE (TERMINATION, on L or K)

This message has the purpose of terminating calls at any stag«.

ICP can be terminated (on K) either negatively by sending
eicher a single word "2M ("GOODBYE") or the two words
"2,<C0DE>", or positively by sending the two words "6,L", as
described later.

After the initial connection phase, calls can be terminated by
either the CALLER (on L) or the ANSWERER (on K) . This
termination has two words: "2,<C0DE>", where <CODE> is the
reason for the termination, as specified t)»re:

0. Other than the following.

1. I am busy.

2. I am not authorized to talk with you.

3. Request of my user.

4. We believe you are down.

5. Systems incompatibility (NEGOTIATION failure).

6. We have problems.

7. I am in a conference now.

Cohen [Page 4]

2-404

', ft. . t, : X\ m \ aJ ^.r'fc.C» L» \ *■<» fm V^jT«.?* ■■«.V*» UJLMJLILZM J-V/»-V JV- «.'-V-.V.VA* .V. V-V.VJ J

HOST LEVEL: MINOR RFC 741

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

8. You made a protocol error.

#3 NEGOTIATION INQUIRY (on L or K)

Sent by the NEGOTIATION MASTER for compatibility verification.
The format is:

"3, <WHAT>, <LIST-LENGIH>, <HOW-LIST>", meaning

"CAN-YOU-DO, <WHAT>, <LIST-LENG?IH>, <HOW-LIST>" .

The <HOW-LIST> is a list of pointers into agreed-upon tables,
as shown below.

#4 POSITIVE NEGOTIATION RESPONSE (on L or K)

Sent by the NEGOTIATION SLAVE in response to a NEGOTIATION
INQUIRY. The format is:

,,4,<WHAT>,<H0W>,\ meaning: "I-CAN-DO, <WHAT>, <HOW>" .

#5 NEGATIVE NEGOTIATION RESPONSE (on L or K)

Sent by the NEGOTIATION SLAVE in response to a NEGOTIATION
INQUIRY. The format is either:

"5,<WHAT>,0'\ meaning "I-C^'T-DO^WHAT^IN-ANY-OF-THESE-WAYS",

or: "5,<WHAT>,N,\ meaning inability to accept any of the
options offered in the INQUIRY, but using "N" as a suggestion
to the ANSWERER about another possibility. Examples are
presented later in this report.

#€ READY (on L or K)

Sent by either party to indicate readiness to accept data. Its
format is "6,LM in the reply to the Initial call, and "6"
thereafter.

#7 NOT READY (on L or X)

Sent by either party to indicate unreadiness to accept data. It
is always a single word: ',7,,.

#8 INQUIRY (on L or K)

Sent by either party to inquire about the status of the other.
It is always a single word: "8". It is answered by #6, #7, or
#9.

Cohen [Page 5]

2-405

•J-"* - » - * - » -■ - » ■ » ■ ■* i --■ - '■ - * - • - . j » A. .. j fc, i -* ^jk..-.M. - * . -'«.-X - . -V .^ -^ -V ^m". I. •-,., -^ . fri ^v^v^.w. aJ*. %»A". vAaJ"

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC 741 DC 22 Nov 77 42444
Specifications for the Network Voice Protocol (NVP)

#9 RINGING (on K)

Sent by the ANSWERER after the negotiations have been
successfully terminated and human permission is needed to
proceed further. The ringing will continue for 10 seconds, and
then stop, UNLESS a #8 is received, this message is always a
single word: "9".

#10 ECHO REQUEST (on L or K)

Sent by whichever party is interested in measuring the network
delays. Its only purpose is to be echoed immediately. The
format is "10,<ID>M, where <ID> is any word used to identify
the ECHO.

#11 ECHO (on LorK)

Sent in response to ECHO REQUEST. The format is "11,<ID>",
where <ID> is the word specified by #10, The implementation of
this feature is not compulsory, and no connection 'should be
terminated due to lack of response to ECHO-REQUEST.

#12 RENEGOTIATION REQUEST (on LorK)

Can be sent by either party at ANY stage after LINKS are agreed
upon. This message consists of the two words "12,<IM>". If the
word <IM> (for I MASTER) is non-zero, the sender of this
message requests to be the NEGOTIATION MASTER. If it is zero,
the receiver of this message is requested to be the NEGOTIATION
MASTER, Renegotiation is described later.

#13 RENEGOTIATION APPROVAL (on LorK)

This message may be sent by either party in response to
RENEGOTIATION REQUEST. It consists of the three words
"13,<YM>,<0K>". If <OK> is non-zero, this is a positive
acknowledgment (approval) . If it is zero, this is a negative
acknowledgment (I.e., refusal). <YM> is set to be equal to the
<IM> of #12, for identification purposes.

Messages #7, #8, and #9 are always a single word. Messages #1, #3,
#4, and #5 are several words long. Messages #2 and #6 are either a
single word or two words long. #10, #11 and #12 are always 2 words
long. Message #13 is always 3 words long. Message #1 is always 4
words long.

Message #1 is sent only by the CALLER, #3 only by the NEGOTIATION
MASTER, and #4 and #5 only by the NEGOTIATION SLAVE. Message #9 Is

Cohen [Page 6]

2-406

"^^^* '** ■-^ V-l:. V.V-'«^'vJ . -V .V JV .V,»"»'«^ ?\ iV&V J»_t MJL+A *.?'*.*£ *J*f49k£*j£aSt-\ '.^'. *J K.' fr A.j».',.y'. La-'WyP--'*

HOST LEVEL: MINOR RFC 741

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

sent only by the ANSWERER. All the other control messages may be
sent by either party.

The last <HOW> which was both suggested by the NEGOTIATION MASTER
(in #3) and accepted by the NEGOTIATION SLAVE (in #4) for each
<WHAT> is assumed to be in use.

Cohen [Page 7]

2-407

DDN PROTOCOL HANDBOOK - VOLUME TWO 19S5

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

DEFINITION OF THE <WHAT> AND <HOW> NEGOTIATION TABLES:

<WHAT>

1. VOCODING

2. SAMPLE PERIOD

(in microseconds)

3. VERSION

4. MAX MSG LENC7IH (in bits)

<HOW>

* 1. LPC
+ 2. CVSD

3. RELP
4. DELCO

N. N (*150) (+62)

* 1. VI (see definition below)
+ 2. V2 (see definition below)

NVP header included
(32 bits) but not HOST/IMP
leader and not HOST/IMP padding

N. N (*976 and +976)

5. If LPC:

Degree

If CVSD:

Time Constant
(in milliseconds)

6. Samples per Parcel

7. If LPC:

Acoustic Coding

8. If LPC:

Info Coding

N. For N coefficients (*10)

N. N (+50)

N. N (*128) (+224)

* 1. SIMPLE (see below)
2. OPTIMIZED

* 1. SIMPLE (see below)
2. OPTIMIZED

Cohen [Page 8]

2-408

HOST LEVEL: MINOR RFC 741

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

N. N (*58, for
mu ■ 58/64 - 0.90625)

9. If LPC:

Pre-emphasis
1 - mu x [Z**-l]
N = 64 x mu

10. If LPC:

Table-set N. N (U)
See definition of Set #1
in Appendix 1

(* indicates recommended options for LPC)
(+ indicates recommended options for CVSD)

No parameter (<WHAT>) should be inquired about by the NEGOTIATION
MASTER if some option (<H0W>) for it has been previously accepted
by the NEGOTIATION SLAVE implicitly in the "VERSION". The purpose
of this restriction is to avoid a possible conflict between
individual parameters and the VERS I ON-opt ion.

Version 1 (VI) is defined as:

1-1 U>C
2-150 150 microseconds sampling
3-1 VI
5-10 10 coefficients
6-128 128 samples per parcel
7-1 SIMPLE acoustic coding
8-1 SIMPLE information coding
9-58 mu « 58/64 = 0.90625
10-1 Tables set #1

Version 2 (V2) is defined as:

1-2 CVSD
2-62 62 microseconds sampling (16 KHz sampling)
3-2 V2
5-50 50 msec time constant
6-192 192 samples per parcel

Note that this defines every negotiated parameter, except MAX
MSG LENGTH.

SIMPLE and OPTIMIZED codings will be described below in Section
3.

All the negotiation is managed by the NEGOTIATION MASTER, who
decides how much negotiation is needed, and what to do in case

Cohen [Page 9]

2-409

>.>^:^:\v>>>>.^>>: *>::
-" V* ." V V V -* -• V '.* ". V V *.• V •• V * •

••iSi^^si^^^i^i^v-i^Ätf

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC 741 DC 22 Nov 77 42444
Specifications for the Network Voice Protocol (NVP)

some discrepancy (incompatibility) is discovered: either to try
alternative options or to abort the connection. Upon completion
of successful neaotiation, the NEGOTIATION MASTER sends either
#9 (RINGING) only if it is the ANSWERER and if this is an
initial connection, else it sends #6 (READY-FOR-DATA), and
probably inquires with #8 about the readiness of the other
party. The inquiries (#8) before the successful completion of
the negotiation are ignored. However, these inquiries after the
first RINGING (#9) and before the first READY (#6) are needed
to keep the ANSWERER ringing.

Note that the negotiation process can be shortened by using the
VERSION option, as shown in the examples that follow.

ON RENEGOTIATION

At any stage after links are agreed upon, either party might
request a RENEGOTIATION. If the request is approved by the other
party, either party migfrt become the NEGOTIATION MASTER, depending
on the type of renegotiation request. When renegotiation starts,
no previously negotiated agreements (except LINK numbers) hold,
and all items have to be renegotiated from scratch. Note that
renegotiation may entirely replace the negotiation phase and
allows the CALLER to be the NEGOTIATION MASTER.

Upon Issuance (or reception) of RENEGOTIATION REQUEST, all data
messages are ignored until the positive Indication of the
successful completion of the renegotiation (#6).

After the completion of renegotiation, the frame-count (see *e
section on MESSAGE-HEADER) may be reset to zero.

THE HEADER OF DATA MESSAGES

Data messages are the messages which contain vocoded speech. The
first 32 bits of each data message is the MESSAGE-HEADER, which
carries sequence and timing information as described below.

for each vocoding scheme a "FRAME" is defined as the transmission
interval (as agreed upon at the negotiation stage in <WHAT#6>) .
Since this interval is defined by the number of samples, its
duration can be found by multiplying the sampling period <WHAT#2>
by the interval length (in samples) <WHAT#6>. For example, in VI
the sampling period is 150 microseconds and the transmission
interval is 128 samples, which yields:

128*150 microseconds =19.2 milliseconds.

The data describing a FRAME is called a PARCEL. Each parcel has a

Cohen (?ag© 10]

2-410

HOST LEVEL: MINOR RFC 741

I

NWG/RFC 741 DC 22 Nov 77 42444
Specifications for the Network Voice Protocol (NVP)

serial number. The first parcel created after the completion of
the negotiation (or every RENEGOTIATION) has the serial number
zero. Each message contains an integral number of parcels.

The serial number of the first parcel in the message is put in the
first 16 bits of the message and is referred to as the
MESSAGE-TIME-STAMP. Note that this time stamp is synchronized with
the data stream. Note also that these 16 bits are actually the
third word of the message, following the 2 words used as
IMP-to-HDST leader (see BBN Report 1822).

I * I
F> The next bit in the header is the WE-SKIPPED-PARCELS bit, which is

described later. The next 7 bits tell how many parcels there are
in the message; this number is called the COUNT, or the
PARCEL-COUNT.

Note that if message number N has the time stamp T(N) and the
count C (N), then T (N+l) must be greater than or equal to
T(N)+C(N) . Usually T(N+1) ■ T(N)+C(N), unless the XMIR decided not
to send some parcels due to silence. If this happens then the
WE-SKIPPED-PARCELS bit is set to ONE, else it is set to ZERO.
Hence, if T(N+1) is found by the RCVR to be greater than T(N)+C(N)
and the WE-SKIPPED-PARCELS is zero, some message must be lost.

Note that by definition the time stamps on messages monotonically
increase, except for wrap-around.

The message header structure is illustrated by the following
diagram:

WORD 1 WORD 2 WORD 3 WORD 4
i j i i ! . , .

i PoooTTrrag iiiui iiiiiiiiizzzizzz i TTTTmTrriTrnT 1 wxcccccssssssss 1 pro
I i i t- ! . . .

! <- -HOST/IMP-OR-ir^/HCOT-LE/^ra-->!<^

WE-SKIPPED-PARCELS

P « PRIORITY (one bit * 1)
T » MESSAGE TYPE (4 bits » 0011)
L * link ("L" OR "K". 8 bits, greater than 337 octal)
D * data bits (from here to the end of the message)

ZZ2ZZ22Z « 8 ZERO bits
HHIIIIII - HOST (8 bits, destination or source)
CCCCCCC * parcel COUNT (7 bits)
SSSSSSSS ■ 8 bits saved for future applications
TnTrrnTrnTrrr » TIME STAMP (ie bits)

Cohen [Page 11]

2-411

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RJFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

The first parcel sent by either party after the NEGOTIATION or
RENEGOTIATION should have the serial number set to zero.

During silence periods, the XMIR mi^it send a "6" or "7"
message periodically. If it does not do so, the RCVR might
interrogate the livelihood of the XMIR by sending periodically
"8" ("ARE-YOU-THERE?") or #10 (ECHO-REQUEST) messages.

Cohen [Page 12]

2-412

>y vv"*v*l .*•*-*•/ *.*•'*" //.'V'././

:\\.\\' *_%*_' VA-X •"•/_% iv>/%vi :%vl *> ** V1^VV^->!NL*, A■>>:•/:%■!%•:v_-.

HOST LEVEL: MINOR RFC 741

NWG/RFC 741 DC 22 Nov 77 42444
Specifications for the Network Voice Protocol (NVP)

3. THE LPC DATA PROTOCOL

The DATA sent at each transmission interval is called a PARCEL.

Network messages always contain an integral number of PARCELS.

There are two independent issues in the coding. One is, obviously,
the acoustic coding, i.e., which parameters have to be transmitted.
SIMPLE acoustic coding is sending all the parameters at every
transmission Interval. OPTIMIZED acoustic coding sends only as little
as acoustically needed. DELCO is an example of OPTIMIZED acoustic
coding.

In this document only the format of the SIMPLE acoustic coding is
defined.

All the transmitted parameters are sent as pointers into agreed-upon
tables. These tables are defined as two lists of values. The
transmitter table <X(J)} is used in the following way: The value V is
coded as the code J if X(J-l) < V =< X(J) . The receiver table <R(J)
is used to retrieve the value R(J) if the code J was received. X(-l)
is implicitly defined as minus-infinity, and X(Jmax) is explicitly
defined as plus-infinity.

For each parameter, <X(J)} and {R(J)> may be defined independently.

The second coding issue is the Information coding technique. The
SIMPLE (information-wise) way of sending the information is to use
binary coding for the codes representing the parameters. The
OPTIMIZED way is to compute distributions for each parameter and to
define the appropriate coding. It is very probable that the PITCH and
GAIN will be decoded absolutely in the first PARCEL of each message,
and incrementally thereafter.

At present, only the SIMPLE (in formation-wise) coding is used.

The details of the LPC data protocol and its Tables-Set-#1 can be
found in Appendix 1.

Cohen [Page 13]

2-413

"* *A*AVS*_V!.\V. "ivlvlvl»!

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

Following is the definition for the
coding, according to Tables-Set-#1:

format of the SIMPLE-SIMPLE

For each parcel:

PITCH 6 bits

GAIN 5 bits

1(1) 7 bits

1(2) 7 bits

1(3) 6 bits

1(4) 6 bits

1(5) 5 bits

1(6) S bits

1(7) 5 bits

1(0) 5 bits

1(9) 5 bits

1(10) 5 bits

(PITCH=0 for UNVOICED)

where each of the I (J) is an index for inverse sine coding. If
K(j)«arcsln(Theta(1)) and N bits are assigned for its transmission,
then I(j)»(Theta(j)/Pi)*2*m.

Hence at each transmission interval (128 samples times 150
microseconds) 67 bits are sent, which results in a data rate of 3490
tops. Since this bandwidth is well within the capabilities of the
network, SIMPLE-SIMPLE coding is used, which requires the least
computation by the hosts. Note that this data rate is a peak rate,
without the use of silence.

Cohen [Page 14)

2-414

■:>:V'N"*-SSVV"\; ;/

^"•.vv-:v-?v_«^^**^:v_^N*v_sv/^j^v.*jfcV

HOST LEVEL: MINOR RFC 741

NWG/RFC 741
Specifications for t**e Network Voice Protocol (NVP)

DC 22 Nov 77 42444

4. EXAMPLES FOR THE CONTROL PROTOCOL

Here is an example for a connection:

r
p

(377) C: 1,<WHO>,<WHDM>,340

(340) A: 2,1

Another example:

(377) C: 1,<WHD>,<WHQM>,360

(360) A: 6,350

(350) C: 1,<WH0>,<WH0M>

(360) A: 3,1,1,2

(350) C: 12,1

(360) A: 13,1

(350) C: 3,1,1,2

(360) A: 5,1,1

(350) C: 3,1,1,3

(360) A: 5,1,1

(350) C: 3,1,1,1

(360) A: 4,1,1

(350) C: 3,2.1,150

(360) A: 4.2.150

(350) C: 3.4.3,976.1040.2016

(360) A: 4.4.976

(350) C: 3.5.1.10

(360) A: 4.5.10

Cohen

Please talk to me on 340/341.

I refuse, since I'm busy.

Please talk to me on 360/361.

OK. You talk to me on 350/351.

I want to talk to you.

Can you do CVSD? (ANSWERER tries
to be the NEGOTIATION MASTER)

I want to be.it.

That's OK with me.

Can you do CVSD?

No. but I can do LPC.

Can you do RELP?

No. but I can do LPC.

How about LPC?

LPC is fine with me.

Can you use 150 microseconds
sampling?

I can use 150 microseconds.

Can you use 976, 1040. or 2016
bits/msg?

I can use 976.

Can you send 10 coefficients?

I can send 10.

[Page 15]

2-4 IS

/VV1\V/>ANV%'>/V>V O^l.'^Ä^VA

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWC/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

(350) C: 3,6,1,64

(360) A: 4,6,64

(350) C: 3,7,2,1,2

(360) A: 4,7,2

(350) C: 3,8,1,1

(360) A: 4,8,1

(350) C: 3,9,1,58

(360) A: 4,9,58

(350) C: 3,10,1

(360) A: 4,10,1

(350) C: 6

(350) C: 8

(360) A: 6

(350) C: 10,1234

(360) A: 11,1234

(360) A: 10,3333

(350) C: 11.3333

Can you use a 64 sample
transmission?

I can use 64.

SIMPLE or OPTIMIZED acoustic
coding?

OPTIMIZED!

Can you do SIMPLE info coding?

I can do SIMPLE.

BU ■ 0.90625?

Fine with me.

Table set «1?

Of course!

I am ready. (Note: No "RINGING"
it)

And you?

I am ready, too.

Data is exchanged now,

on 351 and 361.

Echo it, pi«

Her« it cc

(???) X: 2.3

Now ANSWERER wants to measure

...the delays, too.

Termination by either user.

Cohen [Page 16]

2-416

% .'• .*- .*• .*- .'■

.^'JI''»'-^J>'S>

HOST LEVEL: MINOR RFC 741

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

Another example:

(377) C: 1,<WHO>,<WHOM>,360

(360) A: 6,340

(340) C: 1,<WH0>,<WH0M>

(360) A: 3,3,1,1

(340) C: 4,3,1

(360) A: 3,4,1,1984

(340) C: 5,4,976

(360) A: 3,4,1,976

(340) C: 4,4,976

(360) A: 9

(340) C: 8

(360) A: 9

(340) C: 8

(360) A: 9

(340) C: 8

(360) A: 9

(340) C: 2

Please talk to me on 360/361.

Fine. You send on 340/341.

I want to talk to you.

Can you use VI?

Yes, Vi is OK.

Can you use up to 1984 bits/msg?

No, but I can use 976.

Can you use up to 976 bits/msg?

I can use 976.

Ringing (note how short this
negotiation is M).

Still there?

Still ringing.

Still there?

Still ringing.

How about it?

Still ringing.

Forget it! (No reason given.)

Cohen [Page 17]

2-417

-■« ."• »A A .

^1:^^^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC 741 DC 22 Nov 77 42444
Specifications for the Network Voice Protocol (NVP)

APPENDIX 1

THE DEFINITION OF:

TABLES-SET-#1

by

John D. Markel

Speech Communication Research Laboratory

Santa Barbara, California

18

Cohen [Page 18]

2-418

■>*0*^*'"0*'*1«'0".1*>-*v^'sJ i'i■-!!*r"±-LsJ"! » , *.-^<L- *.. , <- t_

HOST LEVEL: MINOR RFC 741

NWG/RFC 741 DC 22 Nov 77 42444
Specifications for the Network Voice Protocol (NVP)

TABLES-SET-#1

This set includes tables for:

PITCH
GAIN
I(1)
I«
I(
I(
I
I(
I(
I(
I(

2)
3)
4)
5)
6)
7)
8)
9)

I(1C) -

64 values,
32 values,

128 values,
128 values,
64 values,
64 values,
32 values,
32 values,
32 values,
32 values,
32 values,
32 values.

PITCH table
GAIN table
INDEX7 table
INDEX7 table
INDEX6 table
INDEX6 table
INDEX5 table
INDEX5 table
INDEX5 table
INDEX5 table
INDEX5 table
INDEX5 table

These tables are defined
microseconds.

specifically for a sampling period of 150

Cohen [Page 19]

2-419

L>i i» Äk . A\,\ Atj.j k > JtVsVW.v J/LS'.%V.'.,.'.S\-J'.-J'.'/. V'A'.V.V.',

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC 741 DC 22 Nov 77 42444
Specifications for the Network Voice Protocol (NVP)

[•) GENERAL COWENTS

The following tables are arranged in three columns, {X(j)>, {j},
and {R(j)>. Note that the entries in the {X(j)> column are half a
step off the other columns. This is to indicate that INTERVALS
from X-domain (pitch, gain, and the Ks) are mapped into CODES {j},
which are transmitted over the network, to be translated by the
receiver into the {R(j)>. These intervals are defined as
OPEN-CLOSE intervals. For example, the PITCH value (at the
transmitter) of 4131 belongs to the interval "(4024,4131]", hence
it is coded as j=6 which is mapped by the receiver to the value
21. Similarly, the value of 2400 for INDEX7 is found to belong to
the interval "(3009,2811]", coded into the CODE 3 and mapped back
into 2411.

Note that if N bits are used by a certain CODE, then there are
2**N+1 entries in the X-table, but only 2**N entries in the
R-table.

The transformation values used for PITCH, GAIN, and the
K-parameters (in the X- and R-tables) are as defined in NSC Note
42.

Values above and below the range of the X-table are mapped into
the maximum and minimum table indices, respectively.

Note that R(J) of INDEX5 is identical to R(2J) of INDEX6, and that
R(J) of INDEX6 is Identical to R(2J) of INDEX?. Therefore, it is
possible to store only the R-table of INDEX7, without the R-tables
of INDEX5 and INDEX6.

In the SPS-41 implementation there is no need to store any R-table
for the K-parameters. Hie transmitted index can be used directly
(with the appropriate scaling) as an index into the SPS built-in
TRIG tables.

CC**ENTS ON THE PITCH TABLE

The level J=0 defines the UNVOICED condition. The receiver maps it
Into the number of samples per frame (here 126).

This PITCH table differs significantly from previous tables and
supersedes the table published in NSC Note 36. Details of the
calculation of the table can be found in NSC Note 42. Immediate
questions should be referred to John Markel.

Cohen [Pago 20]

2-420

,.^,,V.lV.Jk'.JW.fc,*fcJ'. IZJUJLI *.\ W ih.1 *■'■ %J\m.\M^.M*\±.3r* '.lull l»»»t> l'il'ilTi Ü » i Ci t'i L fc'i l'il'i %* ■*■ tL £. ■!«■.■ fc,. ^JLJLÄ. ft rfi »«ft. !>i

HOST LEVEL: MINOR RFC 741

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

COMMENTS ON THE GAIN TABLE

Hie level J=0 defines absolute silence.

This table is designed for a maximum of 12-bit A/D input, and
allows for a dynamic range of 43.b dB.

NSC Notes 36, 45, 56 and 58 supply background for the GAIN table.
Gain is the energy of the pre-emphasized, windowed signal.

This table is the NEW GAIN table. NSC Notes 56 and 58 explain the
reasoning behind the NEW GAIN.

COMMENTS ON THE INDEX7 TABLE

Positive values are coded into the range [0-63, decimal]. Negative
values are coded into the 7-bits two's complement of the codes of
their absolute value [65-127, decimal].

Note that all values -403 < V < 403 are coded as (and mapped into)
0. Note also that the code -64 (100 octal) is never used.

In SPS-41 implementation, the R-table is not needed, since
TRIG (2J) is the needed value R(J) .

COMMENTS ON THE INDEX6 TABLE

Positive values are coded into the range [0-31, decimal]. Negative
values are coded into the 6-bits two's complement of the codes of
their absolute values [33-63, decimal].

Note that all values -805 < V < 805 are coded as (and mapped into)
0. Note also that the code -32 (40 octal) is never used.

In SPS-41 implementation, the R-table is not needed, since
TRIG(4J) is the needed value R(J) .

co^WE^^^s ON THE INDEXS TABLE

Positive numbers are coded into the range [0-15, decimal].
Negative numbers are coded into the 5-bits two's complement of
their absolute values, i.e., [17-31, decimal].

Note that all values -1609 < V < 1609 are coded as (and mapped
into) 0, Not« also that the code -16 (20 octal) is never used.

In SPS-41 implementation, the R-table is not needed, since
TRIG(8J) is the needed value R(J) .

Cohen [Page 21]

2-421

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

THE PITCH TABLE (as of 10-29-74)

X(J) J R(J) X(J) J R(J) X(J) J R(J)

0 6002 10770
0 128* 21 33 42 61

0 6168 11080
1 18 22 34 43 63

3630 6338 11399
2 19 23 35 44 65

3724 6515 11728
3 19 24 36 45 67

3821 6696 12067
4 20 25 37 46 69

3921 6883 12417
5 20 26 38 47 71

4024 7075 12776
6 21 27 39 48 73

4131 7274 13147
7 22 28 40 49 75

4240 7478 13529
8 22 29 41 50 77

4353 7689 13922
9 23 30 43 51 80

4469 7905 14327
10 24 31 44 52 82

4588 8129 14745
11 24 32 45 53 85

4711 8359 15175
12 25 33 47 54 87

4838 8596 15618
13 26 34 48 55 90

4969 8840 16075
14 27 35 50 56 93

5104 9092 16545
15 27 36 51 57 95

5242 9351 17029
16 28 37 53 58 98

5385 9618 17529
17 29 38 54 59 101

5533 9894 18043
18 30 39 56 60 104

5684 10177 18572
19 31 40 57 61 107

5841 10469 19118
20 32 41 59 62 111

6002 10770 19681
63 114

infinity

Cohen [Page 22]

2-422

HOST LEVEL: MINOR RFC 741

NWG/ttFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

Note: This table has only 58 different intervals defined, since 5
values are repeated in the R(j) table.

* This value is the "Transmission Interval" (measured in samples)
as defined in item #6 of the NEGOTIATION.

Cohen [Page 23]

2-423

>v v> •. v,
v- - *

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

THE GAIN TABLE (as Of 9-17-75)

X(J) J R(J) X(J) J R(J)

0 225
0 0 16 245

20 266
1 20 17 289

22 315
2 24 18 342

26 372
3 28 19 404

30 439
4 33 20 478

36 519
5 39 21 565

42 614
6 46 22 66*7

50 725
7 54 23 789

59 857
8 64 24 932

70 1013
9 76 25 1101

83 1197
10 90 26 1301

98 1415
11 106 27 1538

116 1672
12 126 28 1818

137 1976
13 148 29 2148

161 2335
14 175 30 2539

191 2760
15 207 31 3000

255 infinity

Cohen [Page 24]

2-424

.„V
>^**'Ä>i:*X^'*iil>l

HOST LEVEL: MINOR RFC 741

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

INDEX7 TABLE (as of 9-23-74)

X(J) J R(J) X(J) J R(J) X(J) J R(J)

0 15800 27897
0 0 21 16151 42 28106

402 16500 28311
1 804 22 16846 43 28511

1206 17190 28707
2 1608 23 17531 44 28899

2009 17869 29086
3 2411 24 18205 45 29269

2811 18538 29448
4 3212 25 18868 46 29622

3612 19195 29792
5 4011 26 19520 47 29957

4410 19841 30118
6 4808 27 20160 48 30274

5205 20475 30425
7 5602 28 20788 49 30572

5998 21097 30715
8 6393 29 21403 50 30853

6787 21706 30986
9 7180 30 22006 51 31114

7571 22302 31238
10 7962 31 22595 52 31357

8351 22884 31471
11 8740 32 23170 53 31581

9127 23453 31686
12 9512 33 23732 54 31786

9896 24008 31881
13 10279 34 24279 55 31972

10660 24548 32058
14 11039 35 24812 56 32138

11417 25073 32214
15 11793 36 25330 57 32286

12167 25583 32352
16 12540 37 25833 58 32413

12910 26078 32470
17 13279 38 26320 59 32522

13646 26557 32568
18 14010 39 26791 60 32610

14373 27020 32647
19 14733 40 27246 61 32679

15091 27467 32706
20 15447 41 27684 62 32729

15800 27897 32746
63 32758

mrir.ity

w

Cohen [Page 25]

2-425

•>>>^:>v\> ." *»* >»* N* »«* V' * •"• *«!**»•*•• » •*« ^. ***
WV_«VAV ->_*. *1 J* A_"V .JAJ^JL,

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

INDEXb TABLE (as of 9-23-74)

X(J) J R(J) X(J) J R(J)

0 22595
0 0 16 23170

804 23732
1 1608 17 24279

2411 24812
2 3212 18 25330

4011 25833
3 4808 19 26320

5602 26791
4 6393 20 27246

7180 27684
5 7962 21 28106

8740 28511
6 9512 22 28899

10279 29269
7 11039 23 29622

11793 29957
8 12540 24 30274

13279 30572
9 14010 25 30853

14733 31114
10 15447 26 31357

16151 31581
11 16846 27 31786

17531 31972
12 18205 28 32138

18868 32286
13 19520 29 32413

20160 32522
14 20788 30 32610

21403 32679
15 22006 31 32729

22595 infinity

Cohen [Page 26]

2-426

^''-'Vv>>>.'\\Vv>V'/:/-v\'?/-V)/- A.V&*..».iA.V^tf-V-^> Vi«v.vw-**. «*-^.V.«. »•_V-Y>V.V- >\ -z*Y,V«V-V-w»V>:AvV>VAV^V_V.

HOST LEVEL: MINOR RFC 741

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

INDEX5 TABLE (as of 9-23-74)

X(J) J R(J) X(J) J R(J)

0 22006
0 0 8 23170

1608 24279
1 3212 9 25330

4808 26320
2 6393 10 27246

7962 28106
3 9512 11 28899

11039 29622
4 12540 12 30274

14010 30853
5 15447 13 31357

16846 31786
6 18205 14 32138

19520 32413
7 20788 • 15 32610

22006 infinity

Cohen [Pegs 27}

2-427

.«.^w.V.v.- -*- »- * ~.«- «-»-« - *. -^'^w\%r^c i: *■#. i mhm *m* mMm Uli mäul^t -.V»^. .v'-V. -J.'J. i'"»- .'_^.«-• v* i.' * o v

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

NWG/RJFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

APPENDIX 2

IMPLEMENTATION RECOMMENDATIONS

(1) It is recommended that the priority-bit be turned ON in the
HOST/IMP header.

(2) It is recommended that in all abbreviations, "RM be used for
Receiver and "X" for Transmitter.

(3) The following identifiers and values are recommended for
implementations:

SLNCIH 30 SILENCE-THRESHOLD.

Used for LONG-SILENCE definition. See below. Measured in the
same units as GAIN, in its X-table.

TBS 1.000 sec TIME-BEGIN-SILENCE.

LONG-SILENCE is declared if GAIN<SLNCTH for more than TBS.

TAS 0.S00 sec TIME-AFTER-SILENCE.

A delay introduced by the receiver after the end of
LONG-SILENCE, before restarting the playback.

TES 0.150 sec TIME-END-SILENCE.

The amount of time the transmitter backs up at the end of a
LONG-SILENCE tn order to ensure a smooth transition back to
speech.

TRI 2.000 sec TIME-RESPONSE-INITIAL.

Time for waiting for response for an initial call (#1 and #3) .
The initial call is repeated every TRI until an answer arrives,
or until TRIGU expires.

TRIGU 20.000 sec TIME-RESPONSE- INITIAL-GIVEUP.

If no response to an Initial call is received within TRIGU
after the FIRST initial call, the system gives up, assuming the
other system is down.

TRQ 1.000 sec TIME-RESPONSE-INQUIRY.

If no response to an inquiry (#8) is received within TRQ. the
inquiry is repeated.

Cohen [Page 28]

2-428

." «*«:« V*^*_,*1V*LV*^.LJ^ I i-m U 1^1* -A '-* *-a *-* V V.

HOST LEVEL: MINOR RFC 741

NWG/RFC 741 DC 22 Nov 77 42444
Specifications for the Network Voice Protocol (NVP)

TRQGU 10.000 sec TIME -RESPONSE -INQUIRY-GIVEUP.

If no response to an inquiry is received within TRQGU from the
FIRST inquiry, the system glv*s up, assuming the other system
is down.

TBDA 3.000 sec TIME-BETWEEN-DATA-ARRIVAL.

If no data arrives within TBDA, an INQUIRY (#8) is sent. This
repeats every TBDA.

TNR 2.000 sec TIME-NCT-READY.

If the other system is in the NOT-READY (#7) state for more
than TNR, an INQUIRY (#8) is sent. This repeats every TNR.

TNRGU 10.000 sec TIME-NOT-READY-CIVEUP.

If the other system is in the NOT-READY (#7) state for more
than TNRGU, then the system gives up, assuming the other
system is down.

TBIN 3.000 sec TIME-BUFFER-IN.

The input buffer size is equivalent to the time period TBIN
(and its size is the DATA-RATE multiplied by the period
TBIN) . If the INPUT QUEUE ever gets to be longer than TBIN,
data Is discarded.

TBOUT 3.000 sec TIME-BUFFER-OUT.

The output buffer size is equivalent to the time period TBOUT
(and its size is the DATA-RATE multiplied by the period c\\
TBOUT) . If the OUTPUT QUEUE ever gets to be longer than
TBOUT, data is discarded.

Cohen [Page 29]

2-42$

~^.*. fc-.fri t <**\\ im*;"»\mi■ *»i> »'a'-V. %-^V, tV>,i!>VJj:»'> wlv_ .-^V-V-V VA-J^.:^.^ JL . lv'jJ^^'jj^y^'v^'^*-.\

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC 741
Specifications for the Network Voice Protocol (NVP)

DC 22 Nov 77 42444

REFERENCES

Bolt Beranek 6 Newman, Inc., Report No. 1822, Interface Message
Processor: Specifications for the Interconnection of a Host and an
IMP.

NSC Note 42 (in progress).

NSC Note 36, Proposal for NSC-LPC Coding/Decoding Tables, by J. D.
Markel, Speech Communications Research Laboratory, Inc., July 20,
1974.

NSC Note 45, Everything You Always Wanted to Know about Gain, by E.
Randolph Cole, USC/Information Sciences Institute, October 11, 1974.

NSC Note 56, Nothing to Lose, but Lots to Gain, by John Makhoul and
Lynn Cosell, Bolt Beranek & Newman, Inc., March 10, 1975.

NSC Note 58, Gain Again, by Randy Cole, USC/Information Sciences
Institute. March 12, 1975.

v. -

Cohen [Page 30]

2-430

---*- "*■ '«■■'. "- - ■ *- j-v A fail '- .•*,... i _ -1 - *^ ._ j _». -•* -* :;:■ .A -V .i.i. jbaSfcua Saaii^tefeaA^tA^h

HOST LEVEL: MINOR RFC 908

Reliable Data Protocol

RFC-908

David Veiten

Robert Hinden

Jack Sax

k
BBN Communications Corporation

I

July 1984

Status of This Memo

Inis RFC specifies a proposed protocol for the ARPA Internet
community, and requests discussion and suggestions for
improvements. Distribution of this memo is unlimited.

i w
< * x." o »J

t-W. JWL^.VIV.V' 1 *. • V ,'Ls Y»\>ivVf£^i\VWJ>i

2-431

► *,» *»* V V* V V v v"v*v *«**.**",

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-432

• VA •>>;r:l:'r^Sk\^:A:^

HOST LEVEL: MINOR RFC 908

:;

RDP Specification

Table of Contents

1 Introduction 1

2 General Description 3
2.1 Motivation 3
2.2 Relation to Other Protocols 5

3 Protocol Operation 7

3.1 Protocol Service Objectives 7
3.2 RDP Connection Management 7
3.2.1 Opening a Connection 3
3.2.2 Ports , • 8
3.2.3 Connection States 8
3.2.4 Connection Record 11
3.2.5 Closing a Connection 13
3.2.6 Detecting an Half-Open Connection 14
3.3 Data Communication 14
3.4 Reliable Communication 15
3.4.1 Segment Sequence Numbers 15
3.4.2 Checksums 16
3.4.3 Positive Acknowledgement of Segments 16
3.4.4 Retransmission Timeout 17
3.5 Flow Control and Window Management 17
3.6 User Interface 19
3.7 Event Processing 20
3.7.1 User Request Events 21
3.7.2 Seojoent Arrival Events 24
3.7.3 Timeout Events 29

4 RDP Segments and formats 31
4.1 IP Header Format 31
4.2 RDP Header Format 32
4.2.1 RDP Header Fields 33
4.3 SYN Segment 36
4.3.1 SYN Segment Format ••■• 36
4.3.2 SYN Segment Fields 37
4.4 ACK Seg&ent 38
4.4.1 ACK Segment Format 38
4.4.2 ACK Segment Fields 39
4.5 Extended ACK Seojnent 40
4.5.1 EACK Segment Format 40
4.5.2 EACK Seojnent Fields 40

Page i

2-433

■ v.
-.... ..y^JL.» j.J.^v-:.

iv...'-.'.-^'.--'^-V.-*v-V...'^-'^ J--»--^. »t-*».^ ^„.y. ,v ^y^v^y/A.VLVjy^A^ w^ J^ •3£j^_-ai

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

4.6 RST Segment 42
4.6.1 RST Segment Format 42
4.7 NUL Segment 43
4.7.1 NUL segment format 43

5 Examples of Operation = , , . , , , , , . = *. . 45
5.1 Connection Establishment * 45
5.2 Simultaneous Connection Establishment 46
5.3 Lost Segments. 47
5.4 Segments Received Out of Order 48
5.5 Communication Over Long Delay Path 49
5.6 Communication Over Long Delay Path With Lost
Segments
 50

5.7 Detecting a Half-Open Connection on Crash
Recovery
 51

5.8 Detecting a Half-Open Connection from the
Active Side
 52

A Implementing a Minimal RDP 53

Page 11

2-434

IN •."► •."• -"'•» » „. * - '" ■ M -'..

' "A*.\ V V * .■ \

»*» »*» »"'• »"*• **• -** ta • » • * * »*.*»*«*■.**»*•*•,*»". •****• - "J* *.* */ V " t -" «' •* •'■ * . "'» • ■• * - *»*"• • <* *. * •

Cm £■ £a "*- £jjL *"- La £■ £

HOST LEVEL: MINOR RFC 908

RDP Specification

FIGURES

1
2
3
4
5
6
7
8
9
10

Relation to Other Protocols. . . * 5
Form of Data Exchange Between Layers 6
RDP Connection State Diagram 10
Segment Format 31
RDP Header Format 32
SYN Segment Format 37
ACK Segment Format 38
EACK Segment Format 41
RST Segment Format 42
NUL Segment Format 43

Page ill

2-435

<V sV S «XVA »J». m£m£A2LM 5L. '- - • - m, » 1 > « 5 » 1 fcS ^ * * _\ mA * -1 *-\ *_*. «-1 «.A «J: a~\ >Jt * 1 » . J.'i-l*Ai v «;>V> A.V.V. *V i.V-V. »*. til£^m £i!

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-436

>l«V>Cr^\j.'-lVV*V-^!> A^^ällA^^LikL^^LLä^tLl^^^

HOST LEVEL: MINOR RFC 908

CHAPTER 1

Introduction

The Reliable Data Protocol (RDP) is designed to provide a
reliable data transport service for packet-based applications
such as remote loading and debugging. The protocol is intended
to be simple to implement but still be efficient in environments
where there may be long transmission delays and loss or non-
sequential delivery of message segments.

Although this protocol was designed with applications such
as remote loading and debugging in mind, it may be suitable for
other applications that require reliable message services, such
as computer mail, file transfer, transaction processing, etc.

Some of the concepts used come from a variety of sources.
The authors wish credit to be given to Eric Rosen, Rob Gurwitz,
Jack Haverty, and to acknowledge material adapted from "RFC-793,
The Transmission Control Protocol", edited by Jon Postel. Thanks
to John L.'nn for the checksum algorithm.

1

Page 1

2-437

,\ \- _.v p:^>>S ;••:•■;:•:•::-
L\A*JL*. A * A«. » »A -.JL _ » A ..V- JL ^,y»yAVf»y> % .y«y» u CxS^iÄs^s». *rüfc' »^Vw.v -

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

RFC-908 July 1984

P»9» 2

2-438

LV v v V '.* V v ■ • v .• V "•'.•"■
-'*?-*-V-V- «r/.f .\VV.V:>» -»_\?-V >* V «»-'-*-? V'A'-J**-!»',»

HOST LEVEL: MINOR RFC 90011

RDP Specification General Description

CHAPTER 2

General Description

2.1 Motivation

RDP is a transport protocol designed to efficiently support
the bulk transfer of data for such host monitoring and control
applications as loading/dumping and remote debugging. It
attempts to provide only those services necessary, in order to be
efficient in operation and small in size. Before designing the
protocol, it was necessary to consider what minimum set of
transport functions would satisfy the requirements of the
intended applications.

The following is a list of requirements for such a transport
protocol:

o Reliable delivery of packets is required. When loading
or dumping a memory image, it is necessary that all
memory segments be delivered. A 'hole' left in the
memory image is not acceptable. However, the internet
environment is a lossy one in which packets can get
damaged or lost. So a positive acknowledgement and
retransmission mechanism is a necessary component of the
protocol.

o Since loading and dumping of memory images over the
internet involves the bulk transfer of large amounts of
data over a lossy network with potentially long delays,
it is necessary that the protocol move data efficiently.
In particular, unnecessary retransmission of segments
should be avoided. If a single segment has been lost but
succeeding segments correctly received, the protocol
should not require the retransmission of all of the
seojnents.

o Loading and dumping are applications that do not
necessarily require sequenced delivery of segments, as
long as all segments eventually are delivered. So the
protocol need not force sequenced delivery. For these
types of applications, segments may be delivered in the

R order in which they arrive.
i • ** *%>

K> Pag* 3

»

lS
fo 2-439

\

*'^^V-^:Av\vV/^A^^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

o However, some applications may need to know that a
particular piece of data has been delivered before
sending the next. For example, a debugger will want to
know that a command inserting a breakpoint into a host
memory image has been delivered before sending a
"proceed" command. If those segments arrived out of

^ sequence, the intended results would not be achieved.
The protocol should allow a user to optionally specify
that a connection must deliver segments in sequence-
number order. I

I

f

o The loading/dumping and debugging applications are well-
defined and lend themselves to easy packetization of the
transferred data. They do not require a complex byte-
stream transfer mechanism.

In order to combine the requirements for bulk transfers of
data and reliable delivery, it is necessary to design a
connection-oriented protocol using a three-way handshake to
synchronize sequence numbers. The protocol seems to be
approaching TCP in complexity, so why was TCP not, in fact,
chosen? The answer is that TCP has some disadvantages for these
applications. In particular:

o TCP is oriented toward a more general environment,
supporting the transfer of a stream of bytes between two
communicating parties. TCP is best suited to an
environment where there is no obvious demarcation of data
in a communications exchange. Much of the difficulty in
developing a TCP implementation stems from the complexity
of supporting this genoral byte-stream transfer, and thus
a significant amount of complexity can be avoided by
using another protocol. This is not just an
implementation consideration, but also one of efficiency.

o Since TCP does not allow a byte to be acknowledged until
all prior bytes have been acknowledged, it often forces
unnecessary retransmission of data. Therefore, it does
not meet another of the requirements stated above.

o TCP provides sequenced delivery of data to the
application. If the application does not require such
sequenced delivery, a large amount of resources are
wasted in providing it. For example, buffers may be tied
up buffering data until a segment: with an earlier
sequence number arrives. The protocol should not force
its segment-sequencing desires on the application.

> Page 4

2-440

>-»'•-%''./•./ -•. -•---V-V-.-vj..v.v.v.>.v.v.y»-sv«*»y*.t"«A^>v-..i/»-->iPfc.w%.v-^-«_ •*-• ■'-'-■•■^-*' '.-^v^-.-u-- v. ■rf »■■*■■

HOST LEVEL: MINOR RFC 908

RDP Specification General Description

RDP supports a much simpler set of functions than TCP. The
flow control, buffering, and connection management schemes of RDP
are considerably simpler and less complex. The goal is a
protocol that can be easily and efficiently implemented and that
will serve a range of applications.

RDP functions can also be subset to further reduce the size
of a particular implementation. For example, a target processor
requiring down-loading from another host might implement an RDP
module supporting only the passive Open function and a single
connection. The module might also choose not to implement out-
of-sequence acknowledgements.

2.2 Relation to Other Protocols

RDP is a transport protocol that fits into the layered
Internet protocol environment. Figure 1 illustrates the place of
RDP in the protocol hierarchy:

+ + + ♦

|TELNET| | FTP |
 ♦ ♦

I I

I
♦ - ♦
I TCP |

+ * + ♦

(DebugI ... |Loader| Application Layer
+ + ♦ ♦

I I
+. + ♦

♦--- ♦
| RDP |

Internet Protocol 6 ICMP

+ „- *

] Hetwork Access Protocol |
+ f

Transport Layer

Internetwork Layer

Network Layer

w„

Relation to Other Protocols
Figure 1

Page S

2-441

• *.* *«*.*»• .*«• >j»'L«l*^_iAi^'-j^j-^VJ'^^^'.'s^-t-^.JL^^kJL^v «*iV; .'-VJ-JJ,k",/-jj*»y.**»,'«.'.'.^«^'.V^V^'itV**-ü'ii'ut«i

Ud joap

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

I
L »

BM

RFC-908 July 19e4

RDP provides the application layer with a reliable message
transport service. The Interface between users and RDP transfers
data in units of messages. When implemented in the internet
environment, RDP is layered on the Internet Protocol (IP), which
provides an unreliable datagram service to RDP. Data is passed
across the RDP/IP interface in the form of segments. RDP uses
the standard IP interface primitives to send and receive RDP
segments as IP datagrams. At the Internet level, IP exchanges
datagrams with the network layer. An internet packet may contain
an entire datagram or a fragment of a datagram.

X
•? * i

)

"> Internet
I I Messages j [Segments j | Datagrams *
I User |< >| RDP |< >| IP j<
II II II . ?
+ + ♦_-—+ + + 1 j

* % $

fin

Form of Data Exchange Between Layers
Figure 2

If internetwork services are not required, it should be
possible to use the RDP without the IP layer. As long as the
encapsulating protocol provides the RDP with such necessary
information as addressing and protocol demultiplexing, it should
be possible to run RDP layered on a variety of different
protocols.

*-•"

!

ü
Page 6

2-442

jJ-J*^^.lAs» *.*- - _iA aJ". «-' v* wl sJ. *J* «-I <_•.. «-• i--. aj; «-• «^ «-■ «-■■ ^' >_£t,ü ». «_.' i'„ *-a *■'■ *..,?.j» ^tlitlil »fa >«<■!,■>■>.

HOST LEVEL: MINOR RFC 908

SDP Specification Protocol Operation

CHAPTER 3

Protocol Operation

3.1 Protocol Service Objectives

The RDP protocol has the following goals:

o RDP will provide a full-duplex communications channel
between the two ports of each transport connection.

o RDP will attenpt to reliably deliver all user messages
and will report a failure to the user if it cannot
deliver a message. RDP extends the datagram service of
IP to include reliable delivery.

o RDP will attempt to detect and discard all damaged and
duplicate segments. It will use a checksum and sequence
number in each segment header to achieve this goal.

o RDP will optionally provide sequenced delivery of
segnents. Sequenced delivery of segments must be
specified when the connection is established.

o RDP will acknowledge segments received out of sequence,
|> as they arrive. This will free up resources on the

sending side.

3.2 RDP Connection Management

RDP is a connection-oriented protocol in which each
connection acts as a full-duplex communication channel between
two processes. Segments from a sender are directed to a port on

t: the destination host. The two 8-blt source and destination port
R identifiers in the RDP header are used in conjunction with the
K network source and destination addresses to uniquely identify
L- each connection.

i

I
Page 7

2-443

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

3.2.1 Opening a Connection

Connections are opened by issuing the Open request« which
can be either active or passive. A passive Open request puts RDP
into the Listen state, during which it passively listens for a
request to open a connection from a remote site. The active Open
request attempts to establish a connection with a specified port
at a remote site.

The active Open request requires that a specific remote port
and host address be specified with the request. The passive C*>en
may optionally specify a specific remote port and network
address, or it may specify that an open be accepted from anyone.
If a specific remote port and host address were specified, an
arriving request to open a connection must exactly match the
specified remote port and address.

3.2.2 Ports

Valid port numbers range from 1 to 255 (decimal) . There are
two types of ports: "well known" ports and "allocable" ports.
Well-known ports have numbers in the range 1 to 63 (decimal) and
allnrahl« nrnrt-« ar« n1u«n mimhAr-« in t-Yvm ranns A4 fr% 2S*i

two ports and "allocable" ports.
iwsxx-wiown port« raw nuowsra in u» range 1 to 63 (decimr'*
allocable ports are given numbers in the range 64 to 255.

The user, when Issuing an active Open request, must specify
both the remote host and port and may optionally specify the
local port. If the local port was not specified, RDP will select
an unused port from the range of allocable ports. When issuing a
passive Open request, the user must specify the local port
number. Generally, in this case the local port will be a well-
known port.

3.2.3 Connection States

An RDP connection will progress through a series of states
during its lifetime. The states are shown in Figure 3 and are
individually described below. In Figure 3, the boxes represent
the states of the RDP FSM and the arcs represent changes in
state. Each arc is annotated with the event causing the state
change and the resulting output.

Page 8

2-444

LWAV» ^ A.L'i'j'jL Ji _!» ^^i^'ikiki

HOST LEVEL: MINOR RFC 908

RDP Specification Protocol Operation

CLOSED

The CLOSED state exists when no connection exists and there
is no connection record allocated.

LISTEN

I
The LISTEN state is entered after a passive Open request is
processed. A connection record is allocated and RDP waits
for an active request to establish a connection cVom a
remote site.

ft SYN-SENT

fc< The SYN-SENT state is entered after processing an active
■ Open request. A connection record is allocated, an initial
P sequence number is generated, and a SYN segment is sent to

the remote site. RDP then waits in the SYN-SENT state for
acknowledgement of its Open request.

SYN-RCVD

The SYN-RCVD state may be reached from either the LISTEN
state or from the SYN-SENT state. SYN-RCVD is reached from
the LISTEN state when a SYN segment requesting a connection
is received from a remote host. In reply, the local RDP
generates an initial sequence number for its side of the
connection, and then sends the sequence number and an
acknowledgement of the SYN segment to the remote site. It
th£«n waits for an acknowledgement.

The SYN-RCVD state is reached from the SYN-SENT state when a
SYN segment is received from the remote host without an
accompanying acknowledgement of the SYN segment sent tc that
remote host by the local RDP. This situation is caused by
simultaneous attempts to open a connection, with the SYN
segments passing each other in transit. The action is to
repeat the SYN segment with the same sequence number, but
now including an ACK of the remote host's SYN segment to
indicate acceptance of the qpen request.

»X

%'. Page 9

k"

2-445

*!d£/v ;>.:/> V^,A^: .T^;/^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

+ -

I
V

Passive Open

Request

 +

I
LISTEN |

I
 +

j rev SYN

I snd SYN,ACK

-+

I
SYN-RCVD j<—

I
 +

I rev ACK

XXX

CLOSED

rev SYN

snd SYN, ACK

l<"

I-
- +

Active
Open Request

snd SYN

I 1
 1 SYN-SENT |

I I
+ +

rev SYN, ACK |

snd ACK

OPEN

I
I
I

-+

rev RST

XXX

+

Close request

snd RST

CLOSE-WAIT |
After a Delay

RDP Connection State Diagram
Figure 3

Page 10

2-446

■.«T-V-VLV-V^

HOST LEVEL: MINOR RFC 908

RDP Specification Protocol Operation

OPEN

The OPEN state exists when a connection has been established
by the successful exchange of state information between the
two sides of the connection. Each side has exchanged and
received such data as initial sequence number, maximum
segment size, and maximum number of unacknowledged segments
that may be outstanding. In the Open state data may be sent
between the two parties of the connection.

CLOSE-WAIT

The CLOSE-WAIT state is entered from either a Close request
or from the receipt of an RST segment from the remote site.
RDP has sent an RST segment and is waiting a delay period
for activity on the connection to complete.

3.2,4 Connection Record

The variables that define the state of a connection are
stored in a connection record maintained for each connection.
The following describes some of the variables that would be
stored in a typical RDP connection record. It is not intended to
be an implementation specification nor is it a complete
description. The purpose of naming and describing some of the
connection record fields is to simplify the description of RDP
protocol operation, particularly event processing.

The connection record fields and their descriptions follow:

STATE

The current state of the connection. Legal values are OPEN,
LISTEN, CLOSED, SYN-SENT, SYN-RCVD, and CLOSE-WAIT.

Send Sequence Number Variables:

SND.NXT

The sequence number of the next segment that is to be sent.

Page 11

2-447

.♦.V-VlVlVlV..--VlvlvlV. £^ />.--V?VLvIVJ-v"*J_ilY*lv /^Ivlvli^^L^^^ -*J!A.LJ

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

SND.UNA

The sequence number of the oldest unacknowledged segment.

SND.MAX

The maximum number of outstanding (unacknowledged) segments
that can be sent. The sender should not send more than this
number of segments without getting an acknowledgement.

SND.ISS

The initial send sequence number. This is the sequence
number that was sent in the SYN segment.

Receive Sequence Number Variables:

RCV.CUR

The sequence number of the last segment received correctly
and in sequence.

RCV.MAX

The maximum number of segments that can be buffered for this
connection.

RCV.IRS

The initial receive sequence number. This is the sequence
number of the SYN segment that established this connection.

RCVDSEQNO[n]

The array of sequence numbers of segments that have been
received and acknowledged out of sequence.

Other Variables:

CLOSEWAIT

A timer used to time out the CLOSE-WAIT state.

SBUF.MAX

The largest possible segment (in octets) that can legally be
sent. This variable is specified by the foreign host in the

Page 12

2-448

^>i>>>^>>S-->>:'^

B HOST LEVEL: MINOR RFC 908

i

RDP Specification Protocol Operation

SYN segment during connection establishment.

RBUF.MAX

The largest possible segment (in octets) that can be
received. This variable is specified by the user when the
connection is opened. The variable is sent to the foreign
host in the SYN segment.

Variables from Current Segment:

SEG.SEQ

The sequence number of the segment currently being
processed.

SEG.ACK

The acknowledgement sequence number in the segment currently
being processed.

SEG.MAX

The maximum number of outstanding segments the receiver is
willing to hold, as specified in the SYN segment that
established the connection.

r. SEG.BMAX

The maximum segment size (in octets) accepted by the foreign
host on a connection, as specified in the SYN segment that
established the connection.

3.2.5 Closing a Connection

The closing of a connection can be initiated by a Close
request from the user process or by receipt of an RST segment
from the other end of the connection. In the case of the Close
request, RDP will send an RST segment to Che other side of the
connection and then enter the CLOSE-WAIT state for a period of
time. While in the CLOSE-WAIT state, RDP will discard segments
received from the other side of the connection. When the time-
out period expires, the connection record is deallocated and the
connection ceases to exist. This simple connection closing
facility requires that users determine that all data has been

Page 13

It

2-449

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

reliably delivered before requesting a close of the connection.

3.2.6 Detecting an Half-Open Connection

If one side of a connection crashes, the connection may be
left with the other side still active. This situation is termed
to be an half-open connection. For many cases, the active RDP
will eventually detect the half-open connection and reset. Two
examples of recovery from half-open connections are provided in
sections 5,7 and 5.8. Recovery is usually achieved by user
activity or by the crashed host's attempts to re-establish the
connection.

However, there are cases where recovery is not possible
without action by the RDP itself. For example, if all connection
blocks are in use, attempts to re-establish a broken connection
will be rejected. In this case, the RDP may attempt to free
resources by verifying that connections are fully open. It does
this by sending a NUL segment to each of the other RDPs. An
acknowledgement indicates the connection is still open and valid.

To minimize network overhead, verification of connections
should only be done when necessary to prevent a deadlock
situation. Only inactive connections should be verified. An
inactive connection is defined to be a connection that has no
outstanding unacknowledged segments, has no segments in the user
input or output queues, and that has not had any traffic for some
period of time.

3.3 Data Communication

Data flows through an RDP connection in the form of
segments. Each user message submitted with a Send request is
packaged for transport as a single RDP segment. Each RDP segment
is packaged as an RDP header and one or more octets of data. RDP
will not attempt to fragment a large user message into smaller
segments and re-assemble the message on the receiving end. This
differs from a byte-stream protocol such as TCP which supports
the transfer of an indeterminate length stream of data between
ports, buffering data until it is requested by the receiver.

Page 14

2-450

sssys^sjji^sjtj

HOST LEVEL: MINOR RFC 908

RDP Specification Protocol Operation

At the RDP level, outgoing segments, as they are created,
are queued as input to the IP layer. Each segment is held by the
sending RDP until it is acknowledged by the foreign host.
Incoming segments *e queued as input to the user process through
the user interface. Segments are acknowledged when they have
been accepted by the receiving RDP.

The receiving end of each connection specifies the maximum
segment size it will accept. Any attempt by the sender to
transmit a larger segment is an error. If RDP determines that a
buffer submitted with a Send request exceeds the maximum size
segment permitted on the connection, RDP will return an error to
the user. In addition, RDP will abort a connection with an RST
segment if an incoming segment contains more data than the
maximum acceptable segment size. No attempt will be made to
recover from or otherwise overcome this error condition.

If sequenced delivery of segments is necessary for a
connection, the requirement must be stated when the connection is
established. Sequenced delivery is specified when the Open
request is made. Sequenced delivery of segments will then be the
mode of delivery for the life of the connection.

3.4 Reliable Communication

RDP implements a reliable message service through a number
of mechanisms. These include the insertion of sequence numbers
and checksums into segments, the positive acknowledgement of
segment receipt, and timeout and retransmission of missing
segments.

3.4.1 Segment Sequence Numbers

Each segment transporting data has a sequence number that
uniquely identifies it among all other segments in the same
connection. The initial sequence number is chosen when the
connection is opened and is selected by reading a value from a
monotonically increasing clock. Each time a segment containing
data is transmitted, the sequence number is incremented.
Segments containing no data do not increment the sequence number.
However, the SYN and NUL segments, which cannot contain data, are
exceptions. The SYN segment is always sent with a unique
sequence number, the initial sequence number. The NUL segment is

Page 15

2-451

•'-'1 ■•■*-'■ *-" *■" «-"- --* «--* *-* ■.*■-• *.""»' .""«.•'. *'. -*.V» f*. uu a"~ *"_«*^".'". *'_ *_ a*. aT«T ;«iA'-\"A\ »-Tw/t/fcJ'i

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

sent with the next valid sequence number.

3.4.2 Checksums

Each RDP segment contains a checksum to allow the receiver
to detect damaged segments. RDP uses a non-linear checksum
algorithm to compute a checksum that is 32-bits wide and operates
on data in units of four octets (32 bits) . The area that is
covered by the checksum includes both the RDP header and the RDP
data area.

If a segment contains a number of header and data octets
that is not an integral multiple of 4 octets, the last octet is
padded on the right with zeros to form a 32-bit quantity for
computation purposes. The padding zeros are not transmitted as
part of the segment. While computing the checksum, the checksum
field itself is replaced with zeros. The actual algorithm is
described in Section 4.2.1.

3.4.3 Positive Acknowledgement of Segments

RDP assumes it has only an unreliable datagram service to
deliver segments. To guarantee delivery of segments in this
environment, RDP uses positive acknowledgement and retransmission
of segments. Each segment containing data and the SYN and NUL
segments are acknowledged when they are correctly received and
accepted by the destination host. Segments containing only an
acknowledgement are not acknowledged. Damaged segments are
discarded and are not acknowledged. Segments are retransmitted
when there is no timely acknowledgement of the segment by the
destination host.

RDP allows two types of acknowledgement. A cumulative
acknowledgement is used to acknowledge all segments up to a
specified sequence number. This type of acknowledgement can be
sent using fixed length fields within the RDP header.
Specifically, the ACK control flag is set and the last
acknowledged sequence number is placed in the Acknowledgement
Number field.

The extended or non-cumulative acknowledgement allows the
receiver to acknowledge segments out of sequence. This type of
acknowledgement is sent using the EACK control flag and the

Page 16

2-452

J±-^*I •-v'^. .V..u-.^

HOST LEVEL: MINOR RFC 908

RDP Specification Protocol Operation

variable length fields in the RDP segment header. The variable
length header fields are used to hold the sequence numbers of the
acknowledged out-of-sequence segments.

The type of acknowledgement used is simply a function of the
order in which segments arrive. Whenever possible, segments are
acknowledged using the cumulative acknowledgement segment. Only
out-of-sequence segments are acknowledged using the extended
acknowledgement option.

The user process, when initiating the connection, cannot
restrict the type of acknowledgement used on the connection. The
receiver may choose not to implement out-of-sequence
acknowledgements. On the other hand, the sender may choose to
ignore out-of-sequence acknowledgements.

3.4.4 Retransmission Timeout

Segments may be lost in transmission for two reasons: they
may be lost or damaged due to the effects of the lossy
transmission media; or they may be discarded by the receiving
RDP. The positive acknowledgement policy requires the receiver
to acknowledge a segment only when the segment has been correctly
received and accepted.

To detect missing segments, the sending RDP must use a
retransmission timer for each segment transmitted. The timer is
set to a value approximating the transmission time of the segment
in the network. When an acknowledgement is received for a
segment, the timer is cancelled for that serpent. If the timer
expires before an acknowledgement is received for a scgpnent, that
segment is retransmitted and the timer is restarted.

3.5 Flow Control and Window Management

* RDP employs a simple flow control mechanism that is based on
the number of unacknowledged segments sent and the maximum
allowed number of outstanding (unacknowledged) segnents. Each
RDP connection has an associated set of flow control parameters

V:. that include the maximum number of outstanding serpents for each
side of a connection. These parameters are specified when the
connection is opened with the Open request, with each side of the
connection specifying its own parameters. The parameters are

Page 17

[V.

7\ ,—■

t% 2-453

* ^ - - -^'-•~^-^*-^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

passed from one host to another in the initial connection
segments.

The values specified for these parameters should be based on
the amount and size of buffers thnt the RDP is willing to
allocate to a connection. The particular RDP implementation can
set the parameters to values that are optimal for its buffering
scheme. Once these parameters are set they remain unchanged
throughout the life of the connection.

RDP employs the concept of a sequence number window for
acceptable segment sequence numbers. The left edge of the window
is the number of the last in-sequence acknowledged sequence
number plus one. The right edge of the window is equal to the
left edge plus twice the allowed maximum number of outstanding
segments. The allowed maximum number of outstanding segments is
the number of segments the transmitting RDP software is allowed
to send without receiving any acknowledgement.

The flow control and window management parameters are used
as follows. The RDP module in the transmitting host sends
segments until it reaches the connection's segaaent limit
specified by the receiving process. Once this limit is reached,
the transmitting RDP module may only send a new segment for each
acknowledged segment.

When a received segment has a sequence number that falls
within the acceptance window, it is acknowledged. If the
sequence number is equal to the left-hand edoe (i.e., it is the
next sequence number expected), the sequent is acknowledged with
a cumulative acknowledgement (ACK) . The acceptance window is
adjusted by adding one to the value of the edges. If the
sequence number is within the acceptance window but is out of
sequence, it is acknowledged with a non-cumulative
acknowledgement (EAGK) . The window is not adjusted, but the
receipt of the out-of-sequence sequent is recorded.

When serpents are acknowledged out of order, the
transmitting RDP module must not transmit beyond the acceptance
window. This could occur if one segment is not acknowledged but
all subsequent segments are received and acknowledged. This
condition will fix the left edge of the window at the sequence
number of the unacknowledged se^nent. As additional serpents are
transmitted, the next segment to be sent will approach and
eventually overtake the right window edge. At this point all
transmission of new segments will cease until the unacknowledged
segment is acknowledged.

Page 18

2-454

^v/\:^ J .i J .w .•.£ .-'•.* -»'^ v -&*»- •-*'-'y'^'A^'ji.'j ^tt\-:«>, •-•■\^J><

HOST LEVEL: MINOR RFC 908

RDP Specification Protocol Operation

3.6 User Interface

The user interface to RDP is implementation dependent and
may use system calls, function calls or some other mechanism.
The list of requests that follows is not intended to suggest a
particular implementation.

OPEN Request

Opens a connection. Parameters include type (active or
passive), local port, remote port, remote host address,
maximum segment size, maximum number of unacknowledged
segments, delivery mode (sequenced or non-sequenced) . The
connection id, including any allocated port number, is
returned to the user.

SEND Request

Sends a user message. Parameters Include connection
identifier, buffer address and data count.

RECEIVE Request

Receives a user message. Parameters include connection
identifier, buffer address and data count.

CLOSE Request

Closes a specified connection. The single parameter is the
connection identifier.

STATUS Request

Returns the status of a connection. The parameters include
the connection identifier and the address of the status
buffer.

Page 19

2-455

^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

3.7 Event Processing £*.

This section describes one possible sequence for processing
events. It is not intended to suggest a particular
implementation, but any actual implementation should vary from
this description only in detail and not significantly in
substance. The following are the kinds of events that may occur:

USER REQUESTS

Open
Send
Receive
Close
Status

ARRIVING SEGMENT

Sequent Arrives

TIMEOUTS

Retransmission Timeout
Close-Wait Timeout

User request processing always terminates with a return to
the caller, with a possible error indication. Error responses
are given as a character string. A delayed response is also
possible in some situations and is returned to the user by
whatever event or pseudo interrupt mechanism is available. The
term "signal" is used to refer to delayed responses.

Processing of arriving segments usually follows this general
sequence: the sequence number is checked for validity and, if
valid, the segment is queued and. processed In sequence-number
order. For all events, unless a state change is specified, RDP
remains in the same state.

Page 20

2-456

■\.'»V.'. .•.*.-% *.'»'■•. .-.'> % -% . » JV -* ,j .VAUA.^'I ^ WWWA,A J» >» *K~m *'*\\\\ JL .» - ,

.VS

HOST LEVEL: MINOR RFC 908

RDP Specification Protocol Operation

3.7.1 User Request Events

The following scenarios demonstrate the processing of events
caused by the issuance of user requests:

Open Request

CLOSED STATE

Create a connection record
If none available
Return "Error - insufficient resources"

Endif

If passive Open
If local port not specified
Return "Error - local port not specified"

Endif
Generate SND.ISS
Set SND.NXT = SND.ISS + 1

SND.UNA = SND.ISS
Fill in SND.MAX, RMAX.BUF from Open parameters
Set State ■ LISTEN
Return

Endif

If active Open
If remote port not specified
Return "Error - remote port not specified"

Endif
Generate SND.ISS
Set SND.NXT = SND.ISS + 1

SND.UNA ■ SND.ISS
Fill in SND.MAX, RMAX.BUF from Open parameters
If local port not specified
Allocate a local port

Endif
Send <SEQ=SND.ISS><MAX*SND.MAX><MAXBUF*RMAX.BUF><SYN>
Set State = SYN-SENT
Return flocal port, connection Identifier)

Endif

Page 21

2-457

fiiir:-A

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1964

LISTEN STATE
SYN-SENT STATE
SYN-RCVD STATE
OPEN STATE
CLOSE-WAIT STATE

Return "Error - connection already opon"

Close Request

OPEN STATE

Send <SEQ=SND.NXT><RST>
Set State ■ CLOSE-WAIT
Start TIMWAIT Timer
Return

LISTEN STATE

Set State = CLOSED
Deallocate connection record
Return

SYN-RCVD STATE
SYN-SENT STATE

Send <SEG*SND.NXT><RST>
Set State = CLOSED
Return

CLOSE-WAIT STATE

Return "Error - connection closing"

CLOSE STATE

Return "Error - connection not open"

Page 22

2-458

&?}-iS^ä:J 'C.>:S:l-££-^--V•>. ^vl>l':^-1 ' I':»-V{* - •*-'*'■/£*j±*ZJL£J^.^•/i>lrTVi^riVv,/iV.^'i.

HOST LEVEL: MINOR RFC 908

RDP Specification Protocol Operation

Receive Request

OPEN STATE

If Data is pending
Return with data
else
Return with "no data" indication

Endif

LISTEN STATE
SYN-RCVD STATE
SYN-SENT STATE

Return with "no data" indication

CLOSE STATE
CLOSE-WAIT STATE

Return "Error - connection not open"

Send Request

OPEN STATE

If SND.NXT < SND.UNA + SND.MAX
Send <SEQ=SND.NXT><ACK=RCV,CUR><ACK><Data>
Set SND.NXT = SND.NXT + 1
Return
else
Return "Error - insufficient resources to send data"

Endif

LISTEN STATE
SYN-RCVD STATE
SYN-SENT STATE
CLOSE STATE
CLOSE-WAIT STATE

Return "Error - connection not open"

Status Request

Return with:

Page 23

2-459

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

State of connection (OPEN, LISTEN, etc.)
Number of segments unacknowledged
Number of segments received not given to user
Maximum segment size for the send side of the connection
Maximum segment size for the receive side of the connection

"1
m
&

3.7.2 Segment Arrival Events

The following scenarios describe the processing of the event
caused by the arrival of a RDP segment from a remote host. The
assumption is made that the segment was addressed to the local
port associated v/ith the connection record.

If State = CLOSED

If RST set
Discard segment
Return

Endif

If ACK or NUL set
Send <SEQ=SEG.ACK + 1><RST>
Discard segment
Return

else
Send <SEQ=0XRST><ACK=RCV.CUR><ACK>
Discard segment
Return

Endif

Endif

If State = CLOSE-WAIT
If RST set

Set State = CLOSED
Discard segment
Cancel TIMWAIT timer
Deallocate connection record

else
Discard segment

Endif
Return

Endif

Page 24

2-460

HOST LEVEL: MINOR RFC 908

«AV

RDP Specification Protocol Operation

If State = LISTEN

If EST set
Discard the segment
Return

Endif

If ACK or NUL set
Send <SEQ=SEG.ACK + 1><RST>
Return

Endif

If SYN set
Sot RCV.CUR = SEG.SEQ

RCV.IRS = SEG.SEQ
SND.MAX ■ SEG.MAX
SBUF.MAX = SEG.BMAX

Send <SEQ=SND. ISS><ACK=RCV. CUR><MAX=RCV.MAX><BUFMAX=RBUF. MAX>
<ACK><SYN>

Set State = SYN-RCVD
Return

Endif

If anything else (should never get here)
Discard segment
Return

Endif
Endif

If State = SYN-SENT

If ACK set
If RST clear and SEG.ACK != SND.ISS
Send <SEQ=SEG.ACK + 1><RST>

Endif
Discard segment; Return

Endif

I f RST set
If ACK set
Signal "Connection Refused"
Set State = CLOSED
Deallocate connection record

Endif
Discard segment
Return

Endif

jage zb

2-461

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

If SYN set
Set RCV.CUR = SEG.SEQ

RCV.IRS = SEG.SEQ
SND.MAX = SEG.MAX
RBUF.MAX = SEG.BMAX

If ACK set
Set SND.UNA = SEG.ACK
State = OPEN
Send <SEQ=SND.NXT><ACK=RCV.CUR><ACK>

else
Set State = SYN-RCVD
Send <SEQ=SND. ISS><ACK=RCV. CUR><MAX=RCV.MAX><BUFMAX=RBUF.MAX>

<SYN><ACK>
Endif
Return

Endif

4&kl

If anything else
Discard segment
Return

Endif
Endif

If State = SYN-RCVD

If RCV.IRS < SEG.SEQ =< RCV.CUR + (RCV.MAX *
Segment sequence number acceptable
else
Send <SEQ=SND.NXT><ACK=RCV!aiP><ACK>
Discard segment
Return

Endif

2)

If RST set
If passive Opai

Set State * LISTEN
else

Set State = CLOSED
Signal "Connection Refused"
Discard segment
Deallocate connection record

Endif
Return

Endif

Page 26

2-1Ö2

.%
■db

HOST LEVEL: MINOR RFC 908

RDP Specification Protocol Operation

If SYN set
Send <SEQ=SEG.ACK + 1><RST>
Set State = CLOSED
Signal "Connection Reset"
Discard segment
Deallocate connection record
Return

Endif

If EACK set
Send <SEQ=SEG.ACK + 1><RST>
Discard segment
Return

Endif

If ACK set
If SEG.ACK = SND.ISS

Set State = OPEN
else

Send <SEQ=SEG.ACK + 1><RST>
Discard segment
Return

Endif
else
Discard segment
Return

Endif

If Data in segment or NUL set
If thö received ssgaent is in sequence

Copy the data (if any) to user buffers
Set RCV.CUR=SEG.SEQ
Send <SEQ^SND.NXT><ACK=RCV.CUR><ACK>

else
If out-of-sequence delivery permitted

Copy the data (if any) to user buffers
Endif
Send <SEQ=SND.NXT><ACK=RCV.CUR><ACK><EACK><RCVDSEQN01>

...<RCVDSEQNOn>
Endif

Lnaif

Endif

Page 27

2-463

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

REC-908 July 1984

If State = OPEN

If RCV.CUR < SEG.SEQ =< RCV.CUR + (RCV.MAX * 2)
Segment sequence number acceptable

else
Send <SEQ=SND.NXT><ACK=RCV.CUR><ACK>
Discard segment and return

Endif

If RST set
Set State = CLOSE-WAIT
Signal "Connection Reset"
Return

Endif

If NUL set
Set RCV.CUR=SEG.SEQ
Send <SEQ=SND.NXT> *ACK=RCV.CUR><ACK>
Discard segment
Return

Endif

»,

>

If SYN set
Send <SEQ=SEG.ACK + 1><RST>
Set State ■ CLOSED
Signal "Connection Reset"
Discard segment
Deallocate connection record
Return

Endif

If ACK set
If SND.UNA =< SEC.ACK < SND.NXT
Set SND.UNA = SEG.ACK
Flush acknowledged segments

Endif
Endif

If EACK set
Flush acknowledged segments

Page 28

2-464

HOST LEVEL: MINOR RFC 908

RDP Specification Protocol Operation

If Data in segment
If the received segment is in sequence
Copy the data to user buffers
Set RCV.CUR=SEG.SEQ
Send <SEQ=SND.NXT><ACK=RCV.CUR><ACK>

else
If out-of-sequence delivery permitted

Copy the data to user buffers
Endif
Send <SEQ=SND.NXT><ACK=RCV.CURXACK><EACK><RCVDSEQN01>

...<RCVDSEQNOn>
Endif
Endif

Endif

3.7.3 Timeout Events

Timeout events occur when a timer expires and signals the
RDP. Two types of timeout events can occur, as described below:

RETRANSMISSION TIMEOUTS

If timeout on segnent at head of retransmission queue
Resend the segment at head of queue
Restart the retransmission timer for the seojuent
Requeue the segment on retransmission queue
Return

Endif

UJWOL ruru. x X X ru,vw x ±*

Set State = CLOSED
Deallocate connection record
Return

Page 29

m

2-465

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

Page 30

ftT*

2-466

HOST LEVEL: MINOR RFC 908

RDP Specification RDP Segments and Formats

CHAPTER 4

RDP Segments and Formats

The segments sent by the application layer are encapsulated
in headers by the transport, internet and network layers, as
follows:

j Network Access |
| Header j
+ +

| IP Header |
+ +
I RDP Header I

Segment Format
Figure 4

o.-.

4.1 IP Header Format

When used in the internet environment, RDP »events are sent
using the version 4 IP header a« described in RFC791, "Internet
Protocol." The RDP protocol number is ??? (decimal). The time-
to-live field should be set co a «asonable value for the
network.

Ail other fields should be set as specified in RFC-791.

Page 31

2-467

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

4.2 RDP Header Format

Every FDP segment is prefaced with an FDP header. The
format of the header is shown in Figure 5 below. The FDP header
is variable in length and its size is indicated by a field in a
fixed location within the header.

0 0 0 1 1
0123456789012345

+-+-♦-+-+-♦-♦ + +

|S|A|£|R|N| |Ver| Header j
0 |Y|C|A|S|U|0|No.| Length

|N|K|K|T|L| 1| |
+_+_+-+.+-+-♦—♦ *

1 | Source Port | Dest. Port |
+ + +

2 | Data Length |
+-_ ..«-+ ... +

3 I I
+ Sequence Number +

« I I

5 I I
♦— Acknowledgement Number —♦

6 I I
+_.«►.-.--.- «+

7 1 1
♦— Checksum —♦

8 I I
♦ -„• .•«..+•„_ ~ +

9 j Variable Header Area |

i i +...—.—..---+.„.-...--.......+

FDP Header Format
Figure 5

Page 32

2-458

'.".* .".*• \V/.* ••.*«*.'

k
HOST LEVEL: MINOR RFC 908

>;*v

RDP Specification RDP Segments and Formats

4.2.1 RDP Header Fields

Control Flags

This 8-bit field occupies the first octet of word one in the
header. It is bit encoded with the following bits currently
defined:

Bit # Bit Name Description

0 SYN Establish connection and
synchronize sequence numbers.

1 ACK Acknowledge field significant.
2 EACK Non-cumulative (Extended) acknowledgement.
3 RST Reset the connection.
4 NUL This is a null (zero data length) segment.
5 Unused.

I
p-

r-" K -

I

w\

Note that the SYN and RST are sent as separate segments and
may not contain any data. The ACK may accompany any
message. The NUL serpent must have a zero data length, but
may be accompanied by ACK and EACK information. The other
control bit is currently unused and is defined to be zero.

Version Number

This field occupies bits 6-7 of the first octet. It
contains the versi in number of the protocol described by
this document. Current value is one (1).

Header Length

The length of the RDP header in units of two (2) octets,
including this field. This field allows RDP to find the
start of the Data field, given a pointer to the head of the
sequent. This field is 8 bits in length. For i segment
with no variable header section, th« header length field
will have the value 9.

Source and Destination Ports

The Source tnd Destination Ports are used to identify the
processes in the two hosts that are communicating with each
other. The combination of the port identifiers with the
source and c*ostl nation addresses in thn network access

Page 3:

2-169

Si

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

RFC-908 July 1984

protocol header serves to fully qualify the connection and
constitutes the connection identifier, this permits RDP to
distinguish multiple connections between two hosts. Each
field is 8 bits in length, allowing port numbers from 0 to
255 (decimal).

Data Length

The length in octets of the data in this segment. The data
length does not include the RDP header. This field is 16
bits in length.

Sequence Number

Hie sequence nussber of this segment. This field is 32 bits
in length.

Acknowledgement Number

If the ACK bit is set in the header, this is the sequence
number of the se<jo*nt that the sender of this segment last
received correctly and in sequence. Once a connection is
established this should always be sent. This field is 32
bits in length.

Checksum

m

This field is a 32-bit checksum of the
data. The algorithm description
variables, the checksum accumulator-
pointer. The checksum accumulator

segment header and
below includes two
and the checksum

is an actual 32-bit
register in which the checksum is formed. The checksum
pointer is included for purposes of description, to
represent the operation of advancing through the data four
octets (32-bits) at a time. It need not be maintained in a
register by an implementation.

1) Tne checksum pointer is set to zero, to correspond to the
beginning of the area to be checksummed. The checksum
accumulator is also initialized to zero before beginning the
computation of the cnecksum.

2) The 32-bit memory word located at the address referenced
by the checksum pointer Is added arithmetically to the
checksum accumulator. Any carry propagated out of the
checksum accumulator is Ignored. The checksum field itself
is replaced with zeros when being added to the checksum

Page 34

2-470

HOST LEVEL: MINOR RFC 908

RDP Specification RDP Segments and Formats

accumulator.

3) The checksum accumulator is rotated left on<3 bit
position. The checksum pointer is advanced to correspond to
the address of the next 32-bit word in the segment.

4) Steps 2 and 3 are repeated until the entire sagnent has
been summed. If a seo^aent contains a number of header and
data octets that is not an integral multiple of 4 octets,
the last octet is padded on the riojit with zeros to form a
32-bit quantity for computation purposes.

Variable Header Area

This area is used to transmit parameters for the SYN and
EACK seo/nents.

':>'.

Page 35

2-471

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

&£££

•JJW w
4.3 SYN Segment

The SYN is used to establish a connection and synchronize
sequence numbers between two hosts. The SYN segment £lso
contains information to inform the remote host of the maximum
number of segments the local RDP is willing to accept and the
maximum segment size it can accept. The SYN may be combined with
an ACK in a segment but is never combined with user data.

S?w

4.3.1 SYN Segment Format

Page 36

0 0 0 X 1
0123456789012345

+ -♦-♦-♦-♦-•♦■-♦ ♦ ♦

0 |1|0|0|0|0|0|0 1| Header Length |
+ -+--»•->♦•-♦-+-♦ ♦ ♦

1 | Source Port j Dest. Port |
+ + ... +

2 S Data Length « 0 |
+.... „•,—+..— , +

'<> I I
♦ — Sequence Number —♦

4[I
4.. .„.«._, „ + . m +

51 1
* Acknowledgeaent Number +

6 I I

7 I I
♦— Checksum —♦

8 I I

9 { MAX. # of Outstanding Segments}
,,_ „«,...„„ .•+*.... ***- 4

10 (Max. Segment Size |

11 I Options Flag field |
+ + •.....•.»4,

SYN Segment Format
Figure 6

AY*

2-472

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

4.4 ACK Segment

The ACK segment Is used to acknowledge in-sequence segments.
It contains both the next send sequence number and the
acknowledgement sequence number in the RDP header. The ACK
segment may be sent as a separate segment, but it should be
combined with data whenever possible. Data segments must always
include? the ACK bit and Acknowledgement Number field.

4,4.1 ACK Segment Format

0 0 0 1 1
0123456789012345

+ -+-+-+-♦-•*-♦ + ♦
0 |0!1|0|0|0|0|0 1J Header Length |

♦-+-+-+-+-+-♦—+ +

1 | Source Port | Dest. Port |
+ + +

2 1 Data Length |
+—_ +-•- +

3 I I
♦— Sequence Number —+

4 | " |
+ + +

5 I I
♦— Acknowledgement Number —♦

6 1 I
+ . +. ,—+

7 I I
♦— Checksum —♦

8 I 1
+— ,_«+_-. ,— „,—+

I I
I Data |

♦ «.-♦ . — +

ACK Segment Format
Figure 7

Page 38

2-474

. «• ,v

HOST LEVEL: MINOR RFC 908

RDP Specification RDP Segments and Formats

4.3.2 SYN Segment Fields

Sequence Number

Contains the initial sequence number selected for this
connection.

Acknowledgement Number

This field is valid only if the ACK flag is set. In that
case, this field will contain the sequence number of the SYN
segment received from the other RDP.

Maximum Number of Outstanding Segments

The w^viwwnti number of segments that should be sent without
ü*j getting an acknowledgement. This is used by the receiver as
L a means of flow control. The number is selected during
5 connection initiation and may not be changed later in the

life of the connection.

I
Maximum Segnent Size

The max 1 mum size sequent in octets that the sender should
send. It informs the sender how big the receiver's buffers
are. The specified size includes the length of the IP
header, RDP header, and data. It does not include the
network access layer's header length.

// Options Flag Field

,v"

S*"*

i

i

This field of two octets contains a set of options flags
that specify the set of optional functions that are desired
for this connection. The flags are defined as follows:

Bit # Bit Name Description

0 SDM Sequenced delivery mode.

The sequenced delivery mode flag specifies whether delivery
of segments to the user is sequenced (delivered in
sequence-number order) or non-sequenced (delivered in
arrival order, regardless of sequence number). A value of 0
specifies non-sequenced delivery of seojnents, and a value of
1 specifies sequenced delivery.

Page 37

2-473

% .••V ••".•.•-">V-V>>\"-V'■*.'•*.
- ■ ■- ■ 1 ~ >■ - ^ > ^ - - *

HOST LEVEL: MINOR RFC 908

RDP Specification RDP Segments and Formats

4.4.2 ACK Segment Fields

Data Length

A non-zero Data Length field indicates that there is data
present in the segment.

Sequence Number

The value of the Sequence Number field is advanced to the
next sequence number only if there is data present in the
sequent. An ACK segment without data does not use sequence
number space.

Acknowledgement Number

The Acknowledgement Number field contains the sequence
number of the last segment received in sequential order.

9

Page 39

2-475

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

4.5 Extended ACK Segment

The EACK segment is used to acknowledge segments received
out of sequencer It contains the sequence numbers of one or more
segnents received with a correct checksum, but out of sequence.
The EACK is always combined with an ACK in the segment, giving
the sequence number of the last segment received in sequence.
The HACK segment may also include user data.

4.5.1 EACK Segment Format

The EACK sequent has the format shown in Figure 8.

4.5.2 EACK Ssgaent Fields

Data Length

A non-zero Data Length field Indicates that there is data
present in the segnent.

Sequence Number

The value of the Sequence Number field is advanced to the
next sequence number only if there is data present in the
segnent. An EACK segnent without data does not use sequence
number space.

Acknowledgement Number

The Acknowledgement Number field contains the sequence
number of the last segnent received in sequential order.

Sequence # Received OK

Each entry is the sequence number of a segnent that was
received with a correct checksum, but out of sequence.

Page 40

2-476

HOST LEVEL: MINOR RFC 908

RDP Specification RDP Segments and Formats

0 0 0 1 1
01234567890X2345

+„+-♦.+-♦-«.-♦ ♦ ♦
0 |0|l|l|0|0|0|0 1| Header Length |

♦ -+-♦-♦-♦-♦-♦—♦ ♦
1 | Source Port | Dest. Port |

♦ ♦ ♦
2 | Data Length |

♦ ♦ ♦

3 I I
♦— Sequence Number —|

4| I
♦_ ♦ ♦

5 I I
♦ Acknowledgement Number —♦

6 I I
♦ ♦-« ♦, ♦

7 I I
♦— Checksum —♦

8 I I

9 I I
♦— Sequence # Received CMC ---♦

10 | |
4 ♦ ♦

11 I I
♦— Sequence • Received OK —♦

12 | I
♦_•. ♦ ♦

«. ♦— ♦

I I
I Data |
I I
+ ♦„-. • ••♦

EAOC Segment Format
Figure 8

2-477

Page 41

\^«: •'"*•'•'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

4.6 RST Segnent

The RST sequent is used to close or reset a connection.
Upon receipt of an RST segnent, the sender must stop sending and
must abort any unserviced requests. The RST is sent as a
separate segnent and does not include any data.

4.6.1 RST Serpent Format

0 0 0 1 1
0123456789012345

♦-♦-♦-♦-♦-♦-♦---♦------- +
0 |0|0|0|1|0|0|0 1| Header Length |

♦-<►-♦-♦-♦-♦-♦—♦--- ♦
1 j Source Port | Dest. Port j

2 | Data Length * 0 |
+—. — ••••,„•.+•••..«*._•...«•—•..+

3 I I
♦— Sequence Number —♦

4 I I
+<»•....••..••••••.,••+..••• , +

5 i I
♦— Acknowledgement Number —♦

* I I
+ ._........«...»,. •+.,»,»•....•..•••..•* +

f I I
♦ — Checksum —♦

» I I

RST Segtnent Format
Figure 9

P*ge 42

2-478

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

5.2 Simultaneous Connection Establishment

This is an example of two hosts trying to establishing
connections to each other at the same time. Host A sends a SYN
request to Host B at the same time Host B sends a SYN request to
Host A.

Host A

Time State

Host B

1.

2.

3.

CLOSED

SYN-SENT <SEQ=100><SYN> - -->
<--- <SEQ=200><SYN>

State

CLOSED

SYN-SENT

SYN-RCVD SYN-RCVD
<SEQ*10Q><ACK*200><SYN.ACK> ™>

<--- <SEQ*200><ACK=100><SYN,ACK>

4. OPEN OPEN

A

Page 46

2-482

v

HOST LEVEL: MINOR RFC 908

RDP Specification Examples of Operation

CHAPTER 5

Exanples of Operation

5.1 Connection Establishment

This is an example of a connection being established between
Host A and Host B. Host B has done a passive Opmn and is in
LISTEN state. Hose A does an active Qpen to establish the
connection.

Host A Host B

Time State State

1. CLOSED LISTEN

2. SYN-SENT <SEQ*100><SYN> *-->

3. < <SEQ»200><AOC«100><SYN. AOC>
SYN-RCVD

4. OPEN <SEQ*101><ACIC»20<» .--> OPEN

5. <SEO «101><AOC*200><Oata> — >

6. <--- <SEQ»201><ACK*101>

Pao» 45

2-481

> »*. ."* .^ **• .* ,'-.-».».*»
'.•-\%*,>V-"«V v.* v.v.v. V.*>" "»* v.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

P»9* 44

2-480

i'.S' v v »>**»; *;/;>..; vv;

HOST LEVEL: MINOR RFC 908

RDP Specification RDP Seqpuents and Formats

4.7 NUL Segment

The NUL segment is used to determine if the other side of a
connection is still active. When a NUL sequent is received, an
RDP implementation must acknowledge the segment if a valid
connection exists and the segment sequence number falls within
the acceptance window. The sequent is then discarded. The NUL
may be combined with an ACK in a segment but is never combined
with user data.

4.7.1 NUL segment format

0 0 0 1 1
0123456789012345

0 j0|0|0|0|l|0|0 l| Header Length
.♦-♦-♦-♦•

1 | Source Port Dest. Port

2 I Data Length * 0

3 I
♦•■«- •

4 I
♦ _...

5 I

Sequence Number

•- Acknowledgement Number

7 I
+ .- , -

S I
♦ - - ..

Checksum

NUL Se^aent format
Figure 10

Page 43

2-479

HOST LEVEL: MINOR RFC 908

RDP Specification Examples of Operation

i

5.3 Lost Segmente

Thia ia an example of what happens whan a sequent ia loat.
It above how serpents can be acknowledged out of aequence and
that only the missing segment need be retransmitted. Mote that
in thia and the following examples "EA" etande for "Out of
Sequence Acknowledgement."

Time Boat A Hoat B

1. <3EQ««100><AaC»200><Data> — >

2. <— <SEQ»201><ACK*100>

3. <S£Q»10I><ACiC«200><Data> (segment lost)

4.

5. <SEQ»102><ACIC«200><Oata> — >

6. <"- <SE$»201><AOC»100><EA*102>

7. <3£$n03><AClC»200><Data> --->

8. <— <SEQ»201><AOC*100>
<EA»lQ2.103>

9. <SEQ-l01><AOC*200><Deta> —>

10. <— <SEQ"201><AOC*1«3>

11. <SEQ"104><AOC»200><Oata>

12.

—>

<--- <«5EQ*201><AC1C»104>

Pegs 4?

2-483

•™ .* «" „%

• ."■ . - ."• .V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

RFC-908 July 1984

5.4 Segments Received Out of Order

Ihis an example of wgwnti received out of order. It
further illustrates the use of acknowledging segments out of
order to prevent needless retransmissions.

Time Host A Host B

1. <SEQ-100><AOC*200><Data> — >

<--- <SEQ»201><ACK»100>

<SEQ-101><AOC»200><Data> (delayed)

2

3

4

5

6

7

8.

9.

10.

<SEQ*102><ACX-200><Data> —>

<--- <SEQ"201><AOCW100><EAP102>

<S£Q»103><ACIC«200><Data> - - - >
—> (delayed segment 101 arrives)

<--- <SEQ»201><AOC»103>

<3EQ«104><ACJM00><Data> — ->

<— <SEQ»201><AC**104>

P*gm 4S

2-484

HOST LEVEL: MINOR RFC 908

RDP Specification Examples of Operation

5.5 Communication Over Long Delay Path

This is an example of a data transfer over a long delay
path. In this example, Host A is permitted to have as many as
five unacknowledged segments. The example shows that it is not
necessary to wait for an acknowledgement in order to send
additional data.

Time Host A Host B

1. <SEQ=100><ACK=200><Data> -l->
2. <SEQ=101><ACK=200><Data> -2->
3. <SEQ=102><ACK=200><Data> -3->

-l-> (received)
4. <-4- <SEQ=201><ACK=100>
5. <SEQ=lC3><ACK=200><Data> -5->

-2-> (received)
6. <-6- <SEQ=201><ACK=101>
7. <SEQ=a04><ACK=200><Data> -7->

-3-> (received)
8. <-8- <SEQ=20lxAOC=102>

(received) <-4-
9 <SEQ=105><ACK=200><Data> -9->

-5-> (received)
10. <-10- <SEQ=201><ACK=103>

(received) <-6-
11. <3EQ=106><ACK=200><Data> -ll->

-7-> (received)
12. <-12- <SEQ=201><ACK=104>

(received) <-8-
13. -9-> (received)
14. <-13- <SEQ=201><AC3C=105>

(received) <-10-
15. -U-> (received)
16. <-14- <SEC*-201><ACK=106>

(received) <-12-
17. (received) <-13-
18. (received) <-14-

Page 49

2-485

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

5.6 Communication Over Long Delay Path With Lost Segments

This is an example of communication over a long delay path
with a lost segment. It shows that by acknowledging segments out
of sequence, only the lost segment need be retransmitted.

Time Host A Host B

1. <SEQ=100><ACK=200><Data> -l->
2. <SEQ=101><ACK=200><Data> -2->
3. <SEQ=102><ACK=200><Data> -3->

-l-> (received)
4. <-4- <SEQ=201><ACK=100>
5. <3EQ=103><ACK=200><Data> (segment lost)

-2-> (received)
6. <-5- <SEQ=201><ACK=101>
7. <SEQ=104><ACK=200><Data> -6->

-3-> (received)
8. <-7- <SEQ=201><ACK=102>

(received) <-4-
9. <SEQ=105><ACK=200><Data> -8->
10.

(received) <-5-
11. <SEQ=106><ACK=200><Data> -10->

-6-> (received)
12. <-ll- <SEQ=201><ACK=102><EA=104>

(received) <-7-
-8-> (received)

li. <-12- <SEQ«201><ACK=102><EA=104,105>
-10-> (received)

14. <-13- <SEQ=201><ACK-102><EA=a04-106>
(received) <-ll-

15. <SEQ=103><ACK=200><Data> -14->
(received) <-12-

16. (received) <-13-
-14-> (received)

17. <-15- <SEQ=201><ACK=106>
18.
19. (received) <-15-

Page 50

2-486

HOST LEVEL: MINOR RFC 908

RIV Specification Examples of Operation

5.7 Detecting a Half-Open Connection on Crash Recovery

This is an example of a host detecting a half-open
connection due to the crash and subsequent restart of the host.
In this example, Host A crashes during a communication session,
then recovers and tries to reopen the connection. During the
reopen attempt, it discovers that a half-open connection still
exists and it then resets the other side. Both sides were in the
OPEN state prior to the crash.

Host A

Time

1.

2.

4.

OPEN
(crash!)

CLOSED
(recover)

Host B

OPEN
<--- <SEQ=200><ACK=100><ACK>

OPEN

3. SYN-SENT
<SEQ=400><SYN> —>

OPEN
(?)

SYN-SENT
(!)

OPEN
<--- <SEQ=200><ACK=100><ACK>

5. SYN-SENT
<SEQ=101><RST> --->

6. SYN-SENT

7. SYN-SENT <SEQ=400><SYN> — ->

OPEN
(abort)

CLOSED

Page 51

2-487

«".*.*. *w" *.*.*•*»*•*.^V* .** /■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

5.8 Detecting a Half-Open Connection from the Active Side

This is another example of detecting a half-open connection
due to the crash and restart of a host involved in a connection.
In this example, host A again crashes and restarts. Host B is
still active and tries to send data to host A. Since host A has
no knowledge of the connection, it rejects the data with an RST
segment, causing host B to reset the connection.

Host A Host B

Time

1. (crash!) OPEN f.-

2. CLOSED <--- <SEQ=200><ACK=100><Data> OPEN <\

3. CLOSED <SEQ=101><RST> ---> (abort)

4. CLOSED CLOSED

Page 52

2-488

► '

£*:-, >v^vv :> :\

HOST LEVEL: MINOR RFC 908

RDP Specification Examples of Operation

APPENDIX A

Implementing a Minimal RDP

It is not necessary to implement the entire RDP
specification to be able to use RDP. For simple applications
such as a loader, where size of the protocol module may be
important, a subset of RDP may be used. For example, an
implementation of RDP for loading may employ the following
restrictions:

o Only one connection and connection record is supported.
This is the connection used to load the device.

A single, well-known port is used
Allocable ports are not implemented.

as the loader port.

Only the passive Open request is implemented.
are not supported.

Active Qpens

The sequenced delivery option is not supported. Messages
arriving out of order are delivered in the order they
arrive.

If efficiency is less important than protocol size,
extended acknowledgement feature need not be supported.

the

Page 53

2-489

* •-*' »-* vA O ■^*. '. »\V. /. ^ä^^&i

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

INDEX

ACK 16, 33, 34, 38
ACK segment format 38
acknowledgement number field 16, 34, 37, 38, 39, 40
byte-stream protocols 4, 14
checksum 16
checksum field 34
Close request 13
Closed state 9, 10
CLOSEWAIT 12
Close-Wait state , 10, 11, 13
CLOSE-WAIT timeouts 29
connection, closing of 13, 42
connection, establishment of 8, 11, 45
connection identifier 7, 33
connection management 7
connection record 9, 11
connection state diagram 1C
connection states 8
control flags field 33
cumulative acknowledgement 16
data communication 14
data length field 34, 39, 40
datagrams 6
debugging 1. 3
dumping.. 3
EACK 16, 33, 35, 40
EACK segment format 40
event processing 20
extended acknowledgement 16
flow control 17
half-open connection, detection of 14, 51, 52
initial sequence number 9, 11, 12, 15
internet protocols 5
IP 6. 15, 31
IP header 31, 37
Listen state 8. 9. 10, 45
loading 1, 3
maximum segment size 11, 12. 13, 15, 37
maximum unacknowledged segments 11. 12. 17. 37
message fragmentation 14
non-cumulative acknowledgement 16

Page 54

2-490

HOST LEVEL: MINOR RFC 908

RDP Specification Examples of Operation

NUL
NUL segment format...
Open request
Open request, active.
Open request, passive
Open state

 32 43
 43
 8, 17
 8, 9
 8, 9
 10, 11, 45

options flag field 37
out-of-sequence acknowledgement 12, 16, 18
ports 7 > 33
ports, well-known 8
positive acknowledgement 15, 16
RBUF.MAX 13
RCV.CUR 12
RCVDSE^IO 12
RCV.IRS 12
RCV.MAX 12
RDP connection 14
RDP header 14, 16, 32, 37
RDP header length 33
RDP segment format 31
reliable communication 15
retransmission of segments 15, 16, 17
retransmission timeout 17, 29
 33, 42 RST.

RST segment 13, 52
RST s*<3rasnt format 42
SBUF.MAX.. 12
SDM 37
SEG.AOC 13
SEG.BMAX 13
 13 SEG.MAX

segnent arrival events,
segments
 20, 24
 14

SEC.SEQ 13
Send request 14. 15
sequence number 12, 15
sequence number acceptance window 18
sequence number field 34. 37. 39. 40
sequenced delivery 3, 4, 37
sequential acknowledgement 4
SND. ISS 12
SND.MAX 12
SND.NXT 11
 12 SND.UNA.

11 STATE
SYN...1Ü W \\\\\ WWW '..'//.'.'.*.'/....>. 12. 13. 15, 33. 35. 36
SYN segment 9. 36

Page 55

2-491

*. . -. •„ *v-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC-908 July 1984

Syn-Rcvd state 9, 10
Syn-Sent state 9, 10
TCP 4, 14
three-way handshake 4
user request events 20, 21
version number field 33

Pago 56

2492

%%
*>>»;.\ *'.**••■ -*.

£.

ur.

HOST LEVEL: MINOR RFC 908

I
1

RDP Specification Exanqples of Operation

f.
r.

r.

F»

i»V

i
Page 57

2-403

,% ,*..-..%

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-494

HOST LEVEL: GATEWAY RFC 904

Network Working Group D.L. Mills
Request for Comments: 904 April 1984

Exterior Gateway Protocol Formal Specification

0. Status of this Memo

This RFC is the specification of the Exterior Gateway Protocol
(EGP) . This document updates RFCs 827 and 888. This RFC specifies a
standard for the DARPA community- Interactions between gateways of
different autonomous systems in the ARPA-Internet must follow this
protocol.

1. Introduction

This document is a formal specification of the Exterior Gateway
Protocol (EGP), which is used to exchange net-reachability information
between Internet gateways belonging to the same or different autonomous
systems. The specification is intended as a reference guide for
implementation, testing and verification and includes suggested
algorithmic parameters suitable for operation over a wide set of
configurations, including the ARPANET and many local-network
technologies now part of the Internet system.

Specifically excluded in this document is discussion on the
background, application and limitations of EGP, which have been
discussed elsewhere (RFC-827, RFC-888). If, as expected, EGP evolves to
include topologies not restricted to tree-structures and to incorporate
full routing capabilities, this specification will be amended or
obsoleted accordingly. However, it is expected that, as new features
are added to EGP, the basic protocol mechanisms described here will
remain substantially unchanged, with only the format and interpretation
of the Update message (see below) changed.

Section 2 of this document describes the nomenclature used, while
Section 3 describes the state-machine model, including events, actions,
parameters and state transitions. Section 4 contains a functional
description of the operation of the machine, together with specific
procedures and algorithms. Appendix A describes the EGP message
formats, while Appendix B contains a summary of the minor differences
between these and the formats described in RFC-888. Appendix C presents
a reachability analysis Including a table of composite state transitions
for a system of two communicating EGP gateways.

1.1. Summary and Overview

EGP exists In order to convey net-reachability information between
neighboring gateways, possibly in different autonomous systems. The
protocol includes mechanisms tc acquire neighbors, monitor neighbor
reachability and exchange net-reachability information in the fom of
Update messages. The protocol is based on periodic polling using
Hello/I-Heard-You (I-H-U) message exchanges to monitor neighbo-
reachability and Poll commands to solicit Update responses.

Specification of EGP is based on a formal model consisting of a

v".'

2-495

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 2

finite-state automaton with defined events, state transitions and
actions. The following diagram shows a simplified graphical
representation of this machine (see Section 3.4 for a detailed state
transition table).

+ >| Idle
I I

I"
A

i *

| j A Request j
| Start | | Cease |
| V | Refuse V
j + + Confirm +

I I I >l
| { Aqsn | | Down
I I h—* i

Cease Cease

Up ♦ ♦
——>| |
Down | Up i

I
Stop
Cease-ack Stop j Stop

Ce*se |<—♦-
I

V
!
v

Stop

Following is a brief summary and overview of gateway operations by
state as determined by this model.

Idle State (0)

In the Idle state the natew^y has no resources (table space)
assigned to the neioJ>bor and no protocol activity of any kind Is in
progress. It responds only to a Request command or a Start event
(system or operator initiated) and ignores all other commands and
responses. The gateway may optionally return a Cease-ack response
to a Cease command in this state.

Upon receipt of a Request command the gateway initializes the state
variables as described in Section 3.1, sends a Confirm response and
transitions to the Down state, if resource committments permit, or
sends a Refuse response and returns to the Idle state if not. Upon
receipt of a Start event It sends a Request command and transitions
to the Acquistion state.

Acquisition State (1)

In the Acquisition stare the gateway periodically retransmits
Request commands. Upon receiving a Confirm response It initializes

2-496

HOST LEVEL: GATEWAY RFC 904

Exterior Gateway Protocol Formal Specification Page 3
D.L. Mill»

EV the state variables and transitions to the Down state. Upon
i£« receiving a Refuse response it returns to tim Idle state. The
|c gateway does not send any other commands or responses in this state,

since not all state variables have yet been initialized. I L*4 Down State (2)
If
K In the Down state the gateway has received a Request command or a
K* Confirm response has been received for a previously sent Request.
K\ The neighbor -reachability protocol has declared the neighbor to be
y down. In this state the gateway processes Request, Cease and Hello
■ commands and responds as required. It periodically retransmits
fZ Hello commands if enabled. It does not process Poll commands and
K does not send them, but may optionally process an unsolicited Update

indication.

Up State (3)

■ In the Up state the nei^bor-reachabillty protocol has declared the
P neighbor to be up. In this state the gateway processes and responds

to all commands. It periodically retransmits Hallo commands, if
t»' enabled, and Poll commands.
fi\

Cease State (4)

A Stop event cause a Cease command to be sent and a transition to
the Cease state. i this state the gateway periodically retransmits
the Cease command »rid returns to the Idle state upon receiving a
Cease*eck response or a another Stop event. Th» defined state
transitions are designed to ensure that the neighbor does with higjh
probability receive the Cease command and stop the protocol.

In following sections of this document document a state machine
which can serve as a model for implementation is described. It may
happen that implementators may deviate from this model while conforming
to the protocol specification; however, in order to verify conformance
to the specification, the state-machir* model is intended as the
reference model.

| Although not mentioned specifically In this document. It should be
™ understood that all Internet gateways must include support for the

Internet Control Hessage Protocol (ICMP), specifically IO*> Redirect and
ICMP Destination Unreachable messages.

2. Nomenclature

£ The following ECP message types are recognized in this document.
! The format of each of these messages is described in Appendix A.

I
IS
¥•**' _____
V ' ^ "*" ~~ "" ~ " rT JJ'n" "*"*" ' '" '"""" ■"""■•■'""■-—r'r-"--- —r '■■■'■■■■ — ■'" :

> 2-497

' .*>_»>_'•_*.'* _»' _- •_- *_ ■_■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 4

Name

Request

Confirm

Refuse
Cease
Cease-ack
Hello
I-H-U
Poll
Update
Error

Function

request acquisition of neighbor and/or
initialize polling variables
confirm acquisition of neighbor and/or
initialize polling variables
refuse acquisition of neighbor
request de*acquisition of neighbor
confirm de-acquisition of nei^ibor
request neigbor reachability
confirm neigbor reachability
request net-reachability update
net-reachability update
error

EGP messages are classed as commands which request some action,
responses, which are sent to indicate the status of that action, and
indications, which are similar to responses, but may be sent at any
time. Following is a list of commands along with their possible
responses.

Command Corresponding Responses

Request
Cease
Hallo
Poll

Confirm, Refuse, Error
Cease-ack. Error
I-H-U, Error
Update, Error

The Update and Error messages are classed both as responses and
indications. When sent in reply to a previous command, either of these
messages is classed as a response. In some circumstances an unsolicited
Update message can be sent, in which case it is classed as an
indication. The use of the Error message other than as a response to a
previous command is a topic for further study.

3. State Machine

This section describes the state-machine model for EGP, including
the variables and constants which establish the state at any time, the
events which cause the state transitions, the actions which result frcm
these transitions and the state-transition table which defines the
behavior.

3.1. State Variables

The state-machine model includes a nu»ber of state variables which
establish the state of the protocol between the gateway and each of its
neighbors. Thus, a gateway maintaining EGP with a number of neighbors
must maintain a separate set of these state variables for each neighbor.
The current state, events and actions of the state raachir;» apply to each

2-^s

t =-, m" 'm ' *■" ■' *m ' V '■*■*» *■*■*» ■ - ■'* ■* * *lS*1

HOST LEVEL: GATEWAY RFC 904

Exterior Gateway Protocol Formal Specification Page 5
D.L. Mills

neighbor separately.

The model assumes that system resources, including the set of state
variables, are allocated when the state machine leaves the Idle state,
either because of the arrival of a Request specifying a new neighbor
addreess, or because of a Start event specifying a new neighbor address.
When either of these events occur the values of the state variables are
initialized as indicated below. Upon return to the Idle state all
resources, including the set of state variables, are deallocated and
returned to the system. Implementators may, of course, elect to
dedicate resources and state variables permananently.

Included among the set of state variables are the following which
determine the state transitions of the model. Initial values for all of
the variables except the send sequence number S are set during the
initial Request/Confirm exchange. The initial value for S is arbitrary.

Name Function

R receive sequence number
S send sequence number
Tl interval between Hello command retransmissions
T2 interval between Poll command retransmissions
T3 interval during which neighbor-reachability

indications are counted
M hello polling mode
ti timer 1 (used to control Request, Hello and Cease

command retransmissions)
t2 timer 2 (used to control Poll command retransmissions)
t3 timer 3 (abort timer)

Additional state variables may be necessary to support various timer and
similar internal housekeeping functions. The function and management of
the cited variables are discussed in Section 4.

3.2. Fixed Parameters

This section defines several fixed parameters which characterize
the gateway functions. Included is a suggested value for each parameter
based on experimental implementations in the Internet system. These
values may or may not be appropriate for the individual configuration.

Following is a list of time-interval parameters which control
retransmissions and other time-dependent functions.

2-499

K J\. >V* ,*• .s .'•'.**'.**' "-»*—• %'-v-*-* ' •*VV>N>-«'V'.»**/».«,'.* «*.'»*•> ■/.-,.:«>/■ . -V.v *' \/i\V^v*^\:g^\'V'\NV»\V/rj/LS*VA%^V-\'^.'.v'-Vi>\''A*.

r.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 6

Name Value Description

PI 30 sec minimum interval acceptable between successive
Hello commands received

P2 2 min minimum interval acceptable between successive
Poll commands recieved

P3 30 sec interval between Request or Cease command
retransmissions

P4 1 hr interval during which state variables are
maintained in the absence of commands or
responses in the Down and Up states.

P5 2 min interval during which state" variables are
maintained in the absence of responses in the
Acquisition and Cease states

Parameters P4 and P5 are used only if the abort-timer option is
implemented. Parameter P4 establishes how long the machine will remain
in the Down and Up states in the absence of commands or responses and
would ordinarily be set to sustain state information while the neighbor
is dumped and restarted, for example. Parameter P5 establishes how long
the machine will remain in the Acquisition or Cease states in the
absence of responses and would ordinarily be set in the same order as
the expected value of T3 variables.

Following is a list of other parameters of interest.

Name Active Passive Description

J 3 1 neiojhb;:r-up threshold
k 1 4 neighbor-down threshold

the j and k parameters establish the "noise immunity" of the
neiojhbor-reachability protocol described later. The values in the
Active column are suggested if the gateway elects to do hello polling,
while the values in the Passive column are suggested otherwise.

3.3. Events

Following is a list of events that can cause state transitions <n
the model,

K

i
2-500

'« .N ■'■ v*...1 *.'. '.w.v* ^L^lfcL v* v* *.-. ^-'V 1*L*L±±^.W*-'■'«-^,'■_•*>' » *'- Vfci^&i K*J*JL* «'-*'

HOST LEVEL: GATEWAY RFC 904

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 7

Name Event

Up At least j neighbor-reachability indications have been
received within the last T3 seconds.

Down At most k neighbor -reachabil itiy indications have been
received within the last T3 seconds.

Request Request command has been received.
Confirm Confirm command has been received.
Refuse Refuse response has been received.
Cease Cease command has been received.
Cease-ack Cease-ack response has been received.
Hello Hello command has been received.
I-H-U I-H-U response has been received.
Poll Poll command has been received.
Update Update response has been received.
Start Start event has been recognized due to system or

operator intervention.
Stop/t3 Stop ©vent has been recognized due to (a) system or

operator intervention or (b) expiration of the abort
timer t3.

tl Timer tl has counted down to zero.
t2 Timer t2 has counted down to zero.

There is one special event, called a neighbor-reachability
indication, which occurs when:

1. The gateway is operating in the active mode (hello polling enabled)
and either a Confirm, I-H-U or Update response is received.

2. The gateway is operating in the passive mode (hello polling
disabled) and either a Hello or Poll command is received with the
"Up state" code in the Status field.

3.4. State Transition Table

The following table summarizes the state transitions that can occur
in response to the events listed above. Transitions are shown in the
form n/a, where n is the next state and a represents the action.

2-501

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 8

0 Idle 1 Aqsn 2 Down 3 Up 4 Cease

Up |0 |1 |3/Poll |3 |4
Down |0 jl |2 |2 |4
Request J2/Confirm *J2/Conflrm |2/Confirm j2/Confirm |4/Cease
Confirm |0/Cease **|2 |2 |3 |4
Refuse |O/Cease **|0 |2 |3 |4
Cease |O/Cease-ackjO/Cease-ack|O/Cease-ackjO/Cease-ackj O/Cease-
Cease-ack |0 |1 |2 |3 |0
Hello | O/Cease **|1 J2/I-H-U |3/I-H-U |4
I-H-U |0/Cease **|1 |2/Process |3/Process |4
Poll |O/Cease **jl |2 |3/Update |4
Update jO/Cease **|1 |2 j3/Process |4
Start 11/Request j 1/Request j 1/Request 11/Request j 4
Stop/t3 JO JO J4/Cease |4/Cease JO
tl |0 j 1/Request |2/Hello |3/Hello |4/Cease
t2 JO |1 |2 |3/Poll |4

+ + + + + ,

Note *: The transition shown applies to the case where the
neighbor-acquisition request is accepted, the transition "O/Refuse"
applies to the case where the request is rejected.

Note **: The Cease action shown is optional.

3.5. State Transitions and Actions

The following table describes in detail the transitions of the
state machine and the actions evoked.

Event
Nexc Message
State Sent Actions

Idle State (0)
•
• Request
»

2 Confirm
Hello

\ (or)
1 Cease

Start

0
0
1

Refuse
Cease-ack
Request

Acquisition State (1)

Request 2

Confirm 2

Confirm
Hallo

Hello

Initialize state variables and
reset timer tl to Tl seconds and
reset timer t3 to P5 seconds.
Return resources.
Return resources.
Reset timer tl to P3 seconds and
reset timer t3 to P5 seconds.

Initialize state variables and
reset timer tl to Tl seconds and
reset timer t3 to P5 seconds.
Initialize state variables and

2-502

. Ali :>V-^_ä, AV'J j AV-V^V-^I/I^'J^VVVA^V»*-!.»*^ Ja -*'■» —U -*k A A ^ V .

HOST LEVEL: GATEWAY I FC 904

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 9

Refuse

Cease

Start

Stop/t3

tl

0

0

1

0

1

Cease-ack

Request

Request

reset timer
reset timer
Stop timers
resources.
Stop timers
resources.
Reset timer
reset timer
Stop timers
resources.
Reset timer

tl to Tl seconds and
t3 to P5 seconds,
and return

and return

tl to P3 seconds and
t3 to P5 seconds,
and return

tl to P3 seconds.

Up
Request

3
2

Poll
Confirm
Hello

Cease 0 Cease-ack

Hallo
I-H-U

2
2

I-H-U

Start 1 Request

Stop/t3 4 Cease

tl 2 Hello

Down State (2)
Note: Reset timer t3 to P4 seconds on receipt of a reachability
indication.

Reset timer t2 to T2 seconds.
Reinitialize state variables and
reset timer tl to Tl seconds and
reset timer t3 to P5 seconds.
Stop timers and return
resources.

Process neighbor-reachability
info.
Reset timer tl to P3 seconds and
reset timer t3 to P5 seconds.
Reset timer tl to P3 seconds and
reset timer t3 to P5 seconds.
Reset timer tl to Tl seconds.

Up State (3)
Note: Reset timer t3 to P4 seconds on receipt of a reachability
indication.

Stop timer t2.
Renitialize state variables and
reset timer tl to Tl seconds and
reset timer t3 to P5 seconds.
Stop timers and return
resources.

Process neighbor-reachability
info.

Process net-reachability info.
Reset timer tl to P3 seconds and
reset timer t3 to P5 seconds.
Re&et timer tl to P3 seconds and
reset timer t3 to P5 seconds.

Down
Request

2
2 Confirm

Hello

Cease 0 Cease-ack

Hello
I -H-U

3
3

I-H-U

Poll
Update
Start

Stop/t3

3
3
1

4

Update

Request

Cease

2-503

v "«■ v_

•.--• '* \r v* -.-.•.- *i •-- v o.^v_~.rvv

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification Page 10
D.L. Mills

Reset timer tl to Tl seconds.
Reset timer t2 to T2 seconds.

Stop timers and return
resources.
Stop timers and return
resources.
Stop timers and return
resources.
Reset timer tl to P3 seconds.

tl
t2

3
3

Hello
Poll

Cease State (4)

Request
Cease

4
0

Cease
Cease-ack

Cease-ack 0

Stop/t3 0

tl 4 Cease

4. Functional Description

i

r

This section contains detailed descriptions of the various
procedures and algorithms used to manage the protocol.

4.1. Managing the State Variables

The state variables which characterize the protocol are summarized
in Section 3.1. This section describes the detailed management of these
variables, including sequence numbers, polling intervals and timers.

4.1.1. Sequence Numbers

All EGP commands and replies carry a sequence number. The state
variable R records the last sequence number received in a command from
that neighbor. The current value of R is used as the sequence number
for all replies and indications sent to the neighbor until a command
with a different sequence number is received from that neighbor.

Implementors are free to manage the sequence numbers of the
commands sent; however, it is suggested that a separate send state

f[variable S be maintained for each EGP neighbor and that its value be
incremented just before the time an Poll command is sent and at no other
times. The actions upon receipt of a response or indication with
sequence number not equal to S is not specified; however, it is
recommended these be discarded.

4.1.1. Polling Intervals

As part of the Request/Confirm exchange a set of polling intervals
are established including Tl, which establishes the interval between
Hello command retransmissions, and T2, which establishes the interval
between Poll retransmissions.

I
r**
r *

Each gateway configuration is characterized by a set of fixed
parameters, including PI, which specifies the minimum polling interval

2-504

i -*. _s /• _' ''"•'IN'IVä -*•"!*• "Sv-i vl*.i',*"\ *>. '1V1^*1V*V2V*1NL*. v«v. V/>.*1\->.-1\ ->* v^v.0vv/*',\ %*ivl-, v

HOST LEVEL: GATEWAY RFC 904

Exterior Gateway Protocol Formal Specification Page 11
D.L. Mills

at which it will respond to Hello commands, and P2, which specifies the
minimum polling interval at which it will respond to Poll commands. PI
and P2 are inserted in the Hello Interval (SI) and Poll Interval (S2)
fields, respectively, of Request commands and Confirm responses.

A gateway receiving a Request command or Confirm response uses the
SI and S2 fields in the message to calculate its own Tl and T2 state
variables, respectively. Implementors are free to perform this
calculation in arbitrary ways; however, the following constraints must
be observed:

1. If Tl < SI the neighbor may discard Hello commands. If T2 < S2 the
neighbor may discard Poll commands.

2. The time window T3 in which neighbor-reachability indications are
counted is dependent on Tl. In the case where two neighbors select
widely differing values for their T3 state variables, the
neighbor-reachability algorithm may not work properly. This can be
avoided if Tl > max (PI, SI).

3. If either SI or S2 or both are unacceptable for some reason (e.g.
exceed useful limits), the neighbor may either send a Refuse
response or declare a Stop event, depending on state.

It is suggested that T3 be computed as four times the value of Tl,
giving a window of four neighbor-reachability indications, which has
been found appropriate in the experimental implementations.
Implementors may choose to make T3 a fixed parameter in those cases
where the path between the neighbors has well-known characteristics.

Note that, if a gateway attempts to send Hello commands near the
rate max (PI, SI) or Poll commands near the rate max(P2, S2), the
neighbor may observe their succeeding arrivals to violate the polling
restrictions due to bunching in the net. For this reason the gateway
should send at rates somewhat below these. Just how much below these
rates is appropriate depends on many factors beyond the scope of this
specification.

4.1.3. Hello Polling Mode

The neighbor-reachability algorithm can be used in either the
active or passive mode. In the active mode Hello commands are sent
periodically along with Poll commands, with reachability determined by
the corresponding I-H-U and Update responses. In the passive mode Hello
commands are not sent and I-H-U responses are not expected.
Reachability is then determined from the Status field of received Hello
or Poll commands or Update responses.

The M state variable specifies whether the gateway operates in the
active or passive mode. At least one of the two neighbors sharing the

2-505

^ .> ••" v.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 12

IN

protocol must operate in the active mode; however, the
neighbor-reachability protocol is designed to work even if both
neighbors operate in the active mode. The value of M is determined from
the Status field of a Request command or Confirm response. The sender
sets this field according to whether the implementation supports the
active mode, passive mode or both:

Status Sender capabilities

0 either active or passive
1 active only
2 passive only

The receiver inspects this field and sets the value of M according
to its own capabilities as follows:

Status Receiver capabilites
field 0 12

0 * active passive
1 passive active passive
2 active active **

In the case of "*" the mode is determined by comparing the
autonomous system numbers of the neigbors. The neighbor with the
smallest such number assumes active mode, while the other neighbor
assumes passive mode. In the case of "**" the neighbor may either send
a Refuse response or declare a Stop event, depending on state.

4.1.4. Timers

There are three timers defined in the state machine: tl, used to
control retransmission of Request, Hello and Cease messages, t2, used to
control retransmission of Poll commands, and t3, which serves as an
abort-timer mechanism should the protocol hang indefinately. The timers
are set to specified values upon entry to each state and count down to
zero.

In the case of tl and t2 state-dependent events are declared when
the timer counts down to zero, after which the timer is reset to the
specified value and counts down again. In the case of t3 a Stop event
is declared when the timer counts down to zero. Implementors may choose
not to implement t3 or, if so, may choose to implement it only in
certain states, with the effect that Request, Hello and/or Cease
commands may be retransmitted Indefinately.

The following table shows the Initial values for each of the timers
in each state. A missing value indicates the timer is not used in that
state. Note that timer t3 is set to P4 upon receipt of a
neighbor-reachability indication when in either the Down or Up states.

2-506

N -. % ' ' «^ ft • » * k

•>'•>:•!:•>%> -1 -:->!Ä*isv.*lvlvv>lvlvv/lv\v^

HOST LEVEL: GATEWAY RFC 904

Exterior Gateway Protocol Formal Specification Page 13
D.L. Mills

Idle Aqsn Down Up Cease
Timer 0 12 3 4

tl P3 Tl P3
t2 T2
t3 P5 P5 P5

4.2. Starting and Stopping the Protocol

The Start and Stop events are intrinsic to the system environment
of the gateway. They can be declared as the result of the gateway
process being started and stopped by the operator, for example. A Start
event has meaning only in some states; however, a Stop event has
meaning in all states.

In all except the Idle state the abort timer t3 is presumed
running. This timer is initialized at P5 seconds upon entry to any
state and at P4 seconds upon receipt of a neighbor-reachability
indication in the Down and Up states. If it expires a Stop event is
declared. A Stop event can also be declared by an intrinsic system
action such as a resource problem or operator command.

If the abort timer is not implemented a manually-initiated Stop
event can be used to stop the protocol. If this is done in the Down or
Up states, the machine will transition to the Cease state and emit a
Cease command. If the neighbor does not respond to this command the
machine will stay in the Cease state indefinitely; however, a second
Stop event can be used in this state to force a transition to the Idle
state.

A Cease command received in any state will cause the gateway to
immediately send the Cease-ack response and transition to the Idle
state. This causes the protocol to be stopped and all system resources
committed to the gateway process to be released. The interval between
the time the gateway enters the Idle state as the result of receiving a
Cease command and the time when it next sends a Request command to
resume the protocol is not specified; however, it is recommended this
interval be at least P5 seconds.

It may happen that the Cease-ack response is lost in the network,
causing the neighbor to retransmit the Cease reaponse indefinitely, at
least if it has not implemented the abort-timer option. In order to
reduce the likelihood of this happening, it is suggested that a gateway
in the Idle state be prepared to reply to a Cease command with a
Cerse-ack response whenever possible.

4.3. Determining Neighbor Reachability

The purpose of the nei^bor-reachability algorithm is to confirm
that the neighbor can safely be considered operational and capable of

2-507

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 14

providing reliable net-reachability information. An equally important
purpose is to filter noisy reachability information before sending it on
to the remainder of the Internet gateway system, thus avoiding
unneccesary reachability changes.

As described above, a gateway operating in the active mode sends
periodic Hello commands and listens for 3>H-U responses in order to
determine neighbor-reachability indications. A gateway operating in the
passive mode determines reachability indications by means of the Status
field in received Hello commands. Poll commands and Update responses
can be used in lieu of Hello commands and I-H-U responses respectively,
since they contain the same Status-field information.

The neighbor-reachability algorithm runs continuously while the
gateway is in the Down and Up states and operates as follows. Define a
moving window in time starting at the present and extending backwards
for t seconds. Then count the number n of neighbor-reachability
indications which have occured in that window. If n increases to j,
then declare a Up event. If n decreases to k, then declare a Down
event. The number n is set to zero upon entering the Down state from
any state other than the Up state.

The window t in this algorithm is defined as T3 seconds, the value
of which is suggested as four times Tl, which itself is determined
during the Request/Confirm exchange. For proper operation of the
algorithm only one nei^ibor-reachability indication is significant in
any window of Tl seconds and additional ones are ignored. Note that the
only way n can increase is as the result of a new neic^bor-reachability
indication and the only way it can decrease is as the result of an old
neighbor-reachability indication moving out of the window.

The behavior of the algorithm described above and using the
suggested fixed parameters J and k differs depending on whether the
gateway is operating in the active or passive mode. In the active mode
(J * 3. k * 1 and T3/T1 « 4), once the neiojhbor has been declared down
it will be forced down for at least two TX intervals and, once it has
been declared up it will be forced up for at least two Tl intervals. It
will not change state unless at least three of the last four
determinations of reachability have Indicated that change.

In the passive mode (J * I. k ■ 4 and T3/T1 * 4), the neighbor will
be considered up from the first time the Status field of a Hello or Poll
command or Update response indicates "Up state" until four successive Tl
Intervals have passed without such indication. This design, suggested
by similar designs used In the ARPANET, has proven effective in the
experimental implementations, but may need to be adjusted tor other
configurations.

It is convenient for the active gateway to send Hello commands at a
rate of one every Tl seconds and substitute a Poll command for a Hello

2-508

^£>^&^,£^

HOST LEVEL: GATEWAY RFC 904

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 15

command approximately once every T2 seconds, with the
neighbor-reachability indication generated by the corresponding I-H-U or
Update responses. Its passive neighbor generates neighbor-reachability
indications from the Status field of received Hello and Poll commands
and Update responses.

Implementsrs may find the following model useful in the
understanding and implementation of this algorithm. Consider an n-bit
shift register that shifts on© bit to the right each Tl-second interval.
If a neighbor-reachability indication was received during the proceeding
Tl-second interval a one bit is shifted into the register at the end of
the interval; otherwise, a zero bit is shifted. A table of 2**n
entries indexed by the contents of the register can be used to calculate
the number of one bits, which can then be used to declare the
appropriate event to the state machine. A value of n equal co four has
been found useful in the experimental implementations.

4.4. Determining Network Reachability

Network reachability information is encoded into Update messages in
the form of lists of nets and gateways. The IP Source Address field of
the Poll command is used to specify a network common to the autonomous
systems of each of the nei^bors, which is usually, but not necessarily,
the one common to the neighbors themselves. The Update response
includes a list of gateways on the common net. Associated with each
gateway is a list of the networks reachable via that gateway together
with corresponding hop counts.

It is important to understand that, at the present state of
development as described in RFC-827 and RFC-888, the EGP architectural
model restricts the interpretation of "reachable" in this context. This
consideration, as well as the implied topological restrictions, are
beyond the scope of discussion here. The reader is referred to the RFCs
for further discussion.

Two types of gateway lists can be Included in the Update response,
the format of which is described in Appendix A. Both lists include only
those gateways directly connected to the net specified in the IP Source
Network field of the last-received Poll command. The internal list
includes some or all of the gateways in the same autonomous system as
the sender, together with the nets which are reachable via these
gateways, with the sending gateway listed first. A net is reachable in
this context if a path exists to that net including only gateways in the
system. The external list includes those gateways in other autonomous
systems known to the sender. It is important to realize that the hop
counts do not represent a routing metric and are comparable between
different gateways only if those gateways belong to the same autonomous
system; that is, are in the internal list.

2-509

■ «■^•.v.v.v.\VfVA'A'v '.>,'>,.Ci>A>V\'\(i;Vu<'c\,'^V.Lr\ ''»u'ui'JuW^'-,•-\\V.\,*. •-.•;.v.'jr.VJV. «J^/.vlV-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 16

According to the current system architectural model, only gateways
belonging to a designated system, called the core system, may include
the external list in their Update responses. All other gateways may
include only those gateways belonging to the same system and can claim
reachability for a particular net only if that net is reachable in the
same system.

The interval between successive Poll commands T2 is determined
during the Request/Confirm exchange. However, the specification permits
at most one unsolicited Update indication between succeeding Poll
commands received from the neighbor. It is the intent of the model here
that an Update indication is sent (a) upon entry to the Up state and (b)
when a change in the reachability data base is detected, subject to this
limitation.

Occasionally it may happen that a Poll command or Update response
is lost in the network, with the effect that net-reachability
information may not be available until after another T2 interval. As sn
implementation option, the gateway sending a Poll command and not
receiving an Update response after Tl seconds may send another Poll.
The gateway receiving this Poll may either (a) send an Update response
if it never received the original Poll for that interval, (b) send a
second Update response (which counts as the unsolicited Update
indication mentioned in the preceeding paragraph) or (c) send an Error
response or not respond at all in other cases.

4.5. Error Messages

Error messages can be used to report problems such as described in
Appendix A in connection with the Error Response/Indication message
format. In general, an Error message is sent upon receipt of another
command or response with bad format, content or ordering, but never in
response to another Error message. Receipt of an Error message should
b* considered advisory and not result in change of state, except
possibly to evoke a Stop event.

2-SlO

CvSämWSrVvVv v IA *+ V *»*.*«***■' W*i VfJk ViV ~in.frMI ■^^•■A.^.J.'.

HOST LEVEL: GATEWAY RFC 904

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 17

Appendix A. EGP Message Formats

The formats for the various EGP messages are described in this
section. All EGP messages include a ten-octet header of six fields,
which may be followed by additional fields depending on message type.
The format of the header is shown below along with a description of its
fields.

0 12 3
01234567890123456789012345678901

+«+-+_+-♦-+_+_+- + .♦_+-.♦-,+-♦-+-♦-♦-♦-♦- + -+-+.+-♦- + -1,-+«4. + _+- + .+-4.

| EGP Version # 1 Type | Code \ Status |
+„+„+.+~+-+-+-+-+-+-+-+~+-+-+-+-*-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+>+
| Checksum I Autonomous System # i
+_♦ -♦ -♦-♦-♦ «+.+_♦_+-♦ »+_+_+_ + _►.♦_+.♦-♦-♦-+-♦-<..♦,♦«♦-+-♦- «.-♦-♦-♦

| Sequence # |

EGP version #

Type

Code

Status

Checksum

Autonomous System •

Sequence #

assigned number identifying the EGP version
(currently 2)

identifies the message type

Identifies the message code (subtype)

contains messago-dapendent status Information

The EGP checksum is the 16-bit one's complement
of the one's complement sum of the EGP message
starting with the EGP version number field. When
computing the checksum the checksum field Itself
should be zero.

assigned number identifying the particular
autonomous system

send state variable (commands) or receive state
variable (responses and indications)

Following is a description of each of the message formats. Note
that the above description applies to all formats and will not be
repeated.

2-511

b/\ ^'>^v>^^

■ .• *sy* »** * * *> %\.'

* V V .* ♦' V V *,* V« v '•* .* **" *•* "-* * • V * * V * *
*i *fcJ *J m » «J

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

:j

Exterior Gateway Protocol Formal Specification Page IB
D.L. Mills

A.l. Neighbor Acquisition Messages

0 12 3
01234567890123456789012345678901

| EGP Version * | Type | Code | Status |

| Checksun | Autonomous System # |
♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦--♦■-•♦'-♦-■♦•-'♦'-♦-♦-♦-♦-♦-•♦-♦-■♦•♦-♦-♦-♦-♦-*

| Sequence # | Hello Interval |

I Poll Interval j
♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-♦-'♦•-'♦-♦-♦-•♦•-♦

Note: the Hello Interval and Poll Interval fields are present only in
Request and Confirm messages.

Type 3

Code 0 Request command
1 Confirm response
2 Refuse response
3 Cease command
4 Cease-ack response

Status (see below) 0 unspecified
1 active mode
2 passive mode
3 Insufficient resources
4 adainlstratively prohibited
5 going down
6 parameter problem
7 protocol violation

Hello Interval minimum Hello command polling interval (secv«vds)

Poll Interval minumum Poll command polling interval (seconds)

Following is a summary of the assigned Status codes along with a list of
scenarios in which they miqjht be used.

2-M2

jV*v/**_'i'*«-*>_'»'.y«**«^*\?***.■•/«*.>»/"*.%. «\ **..y»"i*jv.'i-t .yjy.v.y.'i—«•.«*.\ .v.v-v.v. <t.*.vv*. *.» ,.- '.• ■«-*-« ^ •«?'»a.«

HOST LEVEL: GATEWAY RFC 904

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 19

Code

0

1

2

3

4

5

6

7

Status

unspecified

active mode

passive mode

insufficient resources

administratively
prohibited

Scenarios

when nothing else fit«

Request/Confirm only

Request/Con firm only

1. out of table space
2. out of system resources

1. unknown Autonomous System
2. use another gateway

1. operator initiated Stop
2. abort timeout

1. nonsense polling parameters
2. unable to assume compatible mode

1. Invalid command or response
received in this state

going down

parameter problem

protocol violation

2-513

•\ «r i>y* >> vN»*- >v. v«>\ «•• ■;
'j!s?J"i£ .V.«'.*«'.V» t ■ -* -*• ^-- --• —* ■-* ■ Ü1 H «■idV.t* Al fcii ^ -^•^_^_V*'.r>,

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 20

A. 2. Neighbor Reachability Messages

0 12 3
01234567890123456789012345678901

| EGP Version # | Type | Code | Status |
+-+•-+- + -+- + -+-+-+-+-+-+-+-+-+-+- + -+-+- + -+-+-+-+--»--+-+- + -+-+- + - + -+

| Checksum | Autonomous System # |

| Sequence #]

Type

Code 0 Hello command
1 I-H-U response

Status 0 indeterminate
1 Up state
2 Down state

•V» *» *»
•-••*v<^-:

'. . * \ v

A »/_• -•* v lv** v_o!vl •»*1VJV"1***! -» -**. » _ » - » «».iw.iAAklkk«j(ii»i».i»iAi.»i»rtj..

HOST LEVEL: GATEWAY RFG P04

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 21

A. 3. Poll Command

0 12 3
01234567890123456789012345678901

| EGP Version # | Type | Code | Status |

| Checksum | Autonomous System # |

| Sequence # | Reserved |
+-+-+-+-+_+-+—♦•-+-+
| IP Source Network I

Type

Code

Status

IP Source Network

2

0

0
1
2

indeterminate
Up state
Down state

IP network number of the network about which
reachability information is being requested
(coded as 1, 2 or 3 octets, left justified with
trailing zeros)

2-515

is^^:^>>i^>i*>:^>
........... „.,.„ . >"

. ..^_»^^ AA_ A .v«^^j, ^v. fm»„ ^. t* /. fm rfUrf^Aj^^jf^iVA«y V>A & V-jr^ m~.•_ a». .•,.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification Page 22
D.L. Mills

A.4. Update Response/Indication

0 12 3
01234567890123456789012345678901

+-+-+-+-+_+-+-+_+_+_+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+■-+-+-+-+-+

| EGP Version # | Type | Code | Status j

| Checksum | Autonomous System # j

1 Sequence # | # of Int Gwys | # of Ext Gwys |

| IP Source Network |
+--♦.-+-+-+-+-+-+-+-+-+-+-+-+

| Gateway 1 IP address (without network #) | (1-3 octets)

| # Distances |

] Distance 1 | # Nets |

| net 1,1,1 | | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 1 | (1-3 octets)

| net 1,1,2 ||||||||||i||||||||||||||||||I I!| (1-3 octets)

| Distance 2 | # Nets |
+ - + - + - + - + - + - + - + - + - + - + - 4 -4-+-+-+-+-+-+-+-+- + --t -4-4-

1 net 1,2,1 |||||||| i|| j|||||||Ii|||i||i i i!; I (1-3 octets)

| net 1,2,2 | Ml I I I I I I I I I i I ! I I I ! 11 I I I I I I I II I I (1-3 octets)
+ - + - + - + - + - + - + - + - + - + - + - + - 4 - + - + - + - + - + - + - + - + - + - + .- + - +

| Gateway n IP address (without network #) |

| # Distances |
♦-♦-+-+-+-♦-+-♦-+-+..♦-♦-.+-+-+-+-♦
| Distance 1 | # Nets |
«.- + - + - ► - + - + - + - + -.4.- + - + - + - + -♦-. + _ + - >, + -4.. + .^- +.+.+„+-+ .. + _ + - + .. + .. + , + ..+

| net n,i,l II I I I I I!I I MI M ;'iI I III I I I I I I!I I I (1-3 octets)

| net n,l,2 iI IiI I I I I I I I!!I 11 I I IiI 11 I I I I I 11SI (1-3 octets)

| Distance 2 | # Nets |
+ -♦- + - + - + -♦- + -■♦■-♦-♦-♦- + - + -*-v -♦-♦-♦-♦-♦-♦-♦- + -♦-♦- + -.♦- + - + - + -♦-♦- +

I net n, 2,1 I I I I 111 I 11!!I I I 111 I I I I I I I I I I I I I I I (1"3 octets)

| net n,2,2 11!|111 I Ii iI!M11 I 11 I I111 I I 11!I 11 (1-3 octets)

2-516

t&&^

HOST LEVEL: GATEWAY RFC 904

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 23

Type

Code

Status

of Int Gwys

of Ext Gwys

IP Source Network

Gateway IP addresses

of Distances

Distances

of Nets

Nets

1

0

0 indeterminate
1 Up state
2 Down state
128 unsolicited message bit

number of interior gateways appearing in this
message

number of exterior gateways appearing in this
message

IP network number of the network about which
reachability information is being supplied
(coded as 1, 2 or 3 octets, left justified with
trailing zeros)

IP address (without network number) of the
gateway block (coded as 1, 2 or 3 octets)

number of distances in the gateway block

numbers depending on autonomous system
architecture

number of nets at each distance

IP network number reachable via the gateway

2-517

>>>>:.>>>:> *%i»'*o*» "*t'*V*V"V"*"»«*»»'«V *•* V *-* V V V V V *.**%.-W*">N •** * * •*' •** *v * * »"■ • * .*• .^ ." **" "• V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification
D,L. Mills

Page 24

A.5. Error Response/Indication

0 12 3
01234567890123456789012345678901

+--»■-+-+

| EGP Version # \ Type j Code | Status |

| Checksum | Autonomous System # |

| Sequence # | Reason |

I

Error Message Header
(first three 32-bit words of EGP header)

I

+-+

Type

Code

Status

Reason (see below)

8

0

0
1
2
128

0
1
2
3
4
5

indeterminate
Up state
Down state
unsolicited message bit

unspecified
bad EGP header format
bad EGP data field format
reachability info unavailable
excessive polling rate
no response

Error Message Header first three 32-bit words of EGP header

Following is a summary of the assigned Reason codes along with a list of
scenarios in which they mi#it be used.

2-518

fc>&&&££^^

HOST LEVEL: GATEWAY RFC 904

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 25

Code

0

1

Reason Scenarios

unspecified

bad EGP header format

bad EGP data field
format

3

4

reachability info
unavailable

no response

when nothing else fits

1. bad message length
2. invalid Type, Code or Status fields

Notes: The recipient can determine which
of the above hold by inspecting the EGP
header included in the message. An
instance of a wrong EGP version or bad
checksum should not be reported, since
the original recipient can not trust the
header format. An instance of an unknown
autonomous system should be caught at
acquistion time.

1. nonsense polling rates
(Request/Confirm)

2. invalid Update message format
3. response IP Net Address field does

not match command (Update)

Notes: An instance of nonsense polling
intervals (e.g. too long to be useful)
specified in a Request or Confirm should
result in a Refuse or Cease with this
cause specified.

1. no info available on net specified in
IP Net Address field (Poll)

excessive polling rate 1.

2.

3.

two or more Hello commands received
within minimum specified polling
interval
two or more Poll commands received
within minimum specified polling
interval
two or more Request commands received
within some (reasonably short)
interval

Notes: The recipient can determine which
of the above hold by inspecting the EGP
header included in the message.

1. no Update received for Poll within
some (reasonably long) interval

2-519

-*l3
-** v *' '"*-^I'MI"^* WI tk fcfcfcl fcka

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 26

Appendix B. Comparison with RFC-888

Minor functional enhancements are necessary in the RFC-888 message
formats to support certain features assumed of the state-machine model,
in particular the capability to request a neighbor to suppress Hello
commands. In addition, the model suggests a mapping between its states
and certain status and error indications which clarifies and generalizes
the interpretation.

All of the header fields except the Status field (called the
Information field at some places in RFC-888) remain unchanged. The
following table summarizes the suggested format changes in the Status
field for the various messages by (Type, Code) class.

Class Messages Status Codes

3,0
3,1
3,2
3,3
3,4

5,0
5,1
2,0
1,0
8,0

Request
Confirm
Refuse
Cease
Cease-ack

Hello
I-H-U
Poll
Update
Error

0 unspecified
1 active mode
2 passive mode
3 insufficient resources
4 administratively prohibited
5 going down
6 parameter problem

0 indeterminate
1 Up state
2 Down state
128 unsolicited message bit

The changes from RFC-888 are as follows:

1. The status codes have been combined in two classes, one for those
messages involved in starting and stopping the protocol and the
other for those messages involved in maintaining the protocol and
exchanging reachability information. Some messages of either class
may not use all the status codes assigned.

2. The status codes for the Request and Confirm indicate whether the
sender can operate in active or passive mode. In RFC-888 this field
must be zero; however, RFC-888 does not specify any mechanism to
decide how the neighbors poll each other.

3. The status codes for the Cease, Refuse and Cease-ack have the same
interpretation. This provides a clear and unambiguous indication
when the protocol is terminated due to an unusual situation, for
instance if the NOC dynamically repartitions the ARPANET. The
assigned codes are not consistent with RFC-888, since the codes for
the Refuse and Cease were assigned conflicting values; however, the
differences are minor and should cause no significant problems.

2-520

DLAAVAYJSA kV..W» »V*i m\Mi AA» A A A A A A .A A •>_» . * -.* -* -!» - » . »'•-»" * *-» "-*•-* '

HOST LEVEL: GATEWAY RFC 904

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 27

4. The status codes for the Hello, I-H-U, Poll, update and Error have
the same interpretation. Codes 0 through 2 are mutually exclusive
and are chosen solely on the basis of the state of the sender. In
the case of the update (and possibly Error) one of these codes can
be combined with the "unsolicited bit," which corresponds to code
128. In RFC-888 this field is unused for the Poll and Error and may
contain only zero or 128 for the Update, so that the default case is
to assume that reciprocal reachability cannot be determined by these
messages.

5. Some of the reachability codes defined in RFC-888 have been removed
as not applicable.

I

j

2-521

.*-*_%.» ^vlvlvl ^L^cjl>i:Z l^l^-^l^-Z^l%lA>l'-Li>>^lN:l

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 28

Appendix C. Reachability Analysis

The following table shows the state transitions which can occur in
a system of two neighboring EGP gateways. Besides being useful in the
design and verification of the protocol, the table is useful for
implementation and testing.

The system of two neighboring EGP gateways is modelled as a
finite-state automaton constructed as the cartesian product of two state
machines as defined above. Each state of this machine is represented as
[i,j], where i and j are states of the original machine. Each line of
the table shows one state transition of the machine in the form:

[11,31] -> [12,j2] E A

which specifies the machine in state [11, jl] presented with event E
transitions to state [12,j2] and generates action A. Multiple actions
are separated by the /" symbol. The special symbol "*" represents the
set of lines where all M*"s in the line take on the (same) values 0-4
in turn.

The table shows only those transitions which can occur as the
result of events arriving at one of the two neighbors. The full table
includes a duplicate set of lines for the other neighbor as well, with
each line derived from a line of the table below using the
trans formation:

State

[11,31] -> [12,j2]

State Event

E A => [31.11] -> [J2,12] E A

Actions

[*.4] -> [0.4] Cease Cease-ack

[0.1]
[0.1]
[0.*]

->
->
->

[2.1]
[0.1]
[!♦*]

Request
Request
Start

Con fina/Hel lo/Up/tl
Refuse
Request/tl

[1.1]
[1.2]
[1.3]
[1.0]
[1.*]
[1.*]
[!.']

->
->
->
->
->
->
->

[2.1]
[2.2]
[2.3]
[0.0]

[0.*]
[1.*]

Request
Confirm
Confirm
Refuse
Start
Stop
tl

Confirm/Hello/Up/tl
Hello/Up/tl
Hello/Up/tl
Null
Request/rl
Null
Request/tl

[2.1]
[2.1]
[2.2]
[2.3]
[2.2]

->
->
->
->
->

[3.1]
[2.1]
[2.2]
[2.3]
[2.2]

Up
Request
Hello
Hello
I-H-U

Down/Hello/Poll/tl/t2
Confirm/Hel1o/Up/tl
I-H-U
I-H-U
Process

2-522

■*-•■*-■*»*-'^ *-•.U '-V-'vV.A*.*-V-y*-v'-:«'-*'.• /-V-*»"-*.'J»'-V-v'j'k*-S^A-kV.»"^■.'-j^^^m,»*»*L-*«-*• V*-*&*a>-jfcaä*^»*^*-5»-

HOST LEVEL: GATEWAY RFC 904

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 29

[2,3] -> [2,3] I-H-U Process
[2,*] -> [1,*] Start Request/rl
[2,*] -> [4,*] Stop Cease/tl
[2,1] -> [2,1] tl Hello/tl
[2,2] -> [2,2] tl Hello/tl
[2,3] -> [2,3] tl Hello/tl

[3,1] -> [2,1] Down Null
[3,2] -> [2,2] Down Null
[3,3] -> [2,3] Down Null
[3,1] -> [2,1] Request Confirm/Hello/Up/tl
[3,2] -> [3,2] Hello I-H-U
[3,3] -> [3,3] Hello I-H-U
[3,2] -> [3,2] I-H-U Process
[3,3] -> [3,3] I-H-U Process
[3,3] -> [3,3] Poll Update
[3,3] -> [3,3] Update Process
[3,*] -> [1.*] Start Request/rl
[3,*] - > [4,*] Stop Cease/tl
[3,1] ■#» [3,1] tl H»llo/tl
[3,2] -> [3,2] tl Hello/tl
[3,3] -> [3,3] tl Hello/tl
[3,1] -> [3,1] t2 Poll/t2
[3,2] -> [3,2] t2 Poll/t2
[3,3] -> [3,3] t2 Poll/t2

[4,1] -> [4,1] Request Cease
[4,*] -> [0,*] Cease Cease-ack
[4,0] -> [0,0] Cease-ack Null
[4,*] -> [0,*] Stop Null
[4,*] -> [4,*] tl Cease/tl

In the state-machine model defined in this document all states of
the above machine are reachable; however, some are reachable only in
extreme cases when one neiojibor crashes, for example. In the common
case where only one of the neighbors initiates and terminates the
protocol and neither one crashes, for example, not all states are
reachable. Following is a matrix showing the states which can be
reached in this case, where the neighbor that initiates and terminates
the protocol is called the active gateway and the other the passive
gateway.

2-523

Cv.v.%*r%y»v \y.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Exterior Gateway Protocol Formal Specification
D.L. Mills

Page 30

Active
Gateway
0 Idle
1 Aqsn
2 Down
3 Up
4 Cease

Passive Gateway
0 Idle 1 Aqsn 2 Down 3 Up

|stable
junstable

{unstable
+

j unstable
I
I
|unstable

I
]unstable
I stable
junstable
j unstable

4 Cease

I
|unstable
j unstable
jstable
unstable

|unstable
junstable
I
I
|unstable

In the above matrix the blank entries represent unreachable states,
while those marked unstable represent transient states which cannot
persist for long, due to retransmission of Request and Hello messages,
for example.

2-524

\Zjm^L*eSlm JL, ^.V.-V - «,'-,» *JL*j£*. *t 1*. 1 fcVfc Jit ^^■\-^/; ^±2A* »A»''-i'..''ji^XtV^'A'^ ^ ■> £A j*iJ^Ja ■ — iiäaä

HOST LEVEL: GATEWAY RFC 823

Request for Comments: 823
Obsoletes IEN-30 and IEN-109

THE DARPA INTERNET GATEWAY

RFC 823

Robert Hlnden
Alan Sheltzer

Bolt Beranek end Newman Inc.
10 Moulton St.

Cambridge, Massachusetts 02238

September 1982

Prepared for

Defense Advanced Research Projects Agency
Information Processing Techniques Office

1400 Wilson Boulevard
Arlington, Virginia 22209

p

This RFC is a status report on the Internet Gateway developed by B8N. It
describes the Internet Gateway as of September 1982. This memo presents
detailed descriptions of message formats and gateway procedures, however
this is not an implementation specification, and such details are
subject tc change.

2-525

v.*-*!

'^v ^:*^v>.'V%^'^^1>I>,
C.^J ^ ^-j»^ ^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-526

^i^iii* ._-_-♦„*'_ V. fc. *- tf-jf-.^jf^J&U^* tiLUJi Calf. EtltAjLliX

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway September 1982
RFC 823

Table of Contents

1 INTRODUCTION 1
2 BACKGROUND 2
3 FORWARDING INTERNET DATAGRAMS 5
3.1 Input 5
3.2 IP Header Checks 6
3.3 Routing 7
3.4 Redirects 9
3.5 Fragmentation 9
3.6 Header Rebuild 10
3.7 Output 10
4 PROTOCOLS SUPPORTED BY THE GATEWAY 12
4.1 Cross-Net Debugging Protocol , 12
4.2 Host Monitoring Protocol 12
4.3 ICMP 14
4.4 Gateway-to-Gateway Protocol 14
4.4.1 Determining Connectivity to Networks 14
4.4.2 Determining Connectivity to Neighbors 16
4.4.3 Exchanging Routing Information 17
4.4.4 Computing Routes 19
4.4.5 Non-Routing Gateways 22
4.4.6 Adding New Neighbors and Networks 23
4.5 Exterior Gateway Protocol 24
5 GATEWAY SOFTWARE 26
5.1 Software Structure 26
5.1.1 Device Drivers 27
5.1.2 Network Software 27
5.1.3 Shared Gateway Software 29
5.2 Gateway Processes 29
5.2.1 Network Processes 29
5.2.2 QGP Process 30
5.2.3 HMP Process, . 31
APPENDIX A. GOP Message Formats 32
APPENDIX B. Information Maintained by Gateways 39
APPENDIX C. GGP Events and Responses 41
REFERENCES 43

-i-

2-52;

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-528

.' -< •--■ '^ '-f **?- V ~J-*.- "-ft '-a>-t'-g^ -g *J» ■ *• .N ' "• *- . *J\X^^''^S?-Sy~^~^:j>.J*S^-j?T-i>j?i^ ■-> ■ * -■> :,» •_> -^ ■., :^-^^ •,.;j^ •_. -^-^ •■> •_.._. -^ >„'•-> . * ■

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway
RFC 823

September 1982

1 INTRODUCTION

This document explains the design of the Internet gateway

used in the Defense Advanced Research Project Agency (DARPA)

Internet program. The gateway design was originally documented

in IEN-30, "Gateway Routing: An Implementation Specification"

[2], and was later updated in IEN-109, "How to Build a Gateway"

[3] . This document reflects changes made both in the internet

protocols and in the gateway design since these documents were

released. It supersedes both IEN-30 and IEN-109.

The Internet gateway described in this document is based on

the work of many people; in particular, special credit is given

to V. Strazisar, M. Brescia, E. Rosen, and J. Haverty.

The gateway's primary purpose is to route internet datagrams

to their destination networks. These datagrams are generated and

processed as described in RFC 791, ,N Internet Protocol - DARPA

Internet Program Protocol Specification" [1]. This document

describes how the gateway forwards datagrams, the routing

algorithm and protocol used* to route them, and the software

structure of the current gateway. The current gateway

implementation is written in macro-11 assembly language and runs

in the DEC PDP-11 or LSI-11 16-bit processor.

-1-

2-52U

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DA3PA Internet Gateway
RFC 823

September 1982

2 BACKGROUND

The gateway system has undergone a series of changes since

its inception, and it is continuing to evolve as research

proceeds in the Internet community. Tnis document describes the

implementation as of mid-1982.

Early versions of gateway software were implemented using

the BCPL language and the ELF operating system. This

implementation evolved into one which used the MOS operating

system for increased performance. In late 1981, we began an

effort to produce a totally new gateway implementation. The

primary motivation for this was the need for a system oriented

towards the requirements of an operational communications

facility, rather than the research testbed environment which was

associated with the BCPL implementation. In addition, it was

generally recognized that the complexity and buffering

requirements of future gateway configurations were beyond the

capabilities of the PDP-ll/LSI-11 and BCPL architecture. The new

gateway implementation therefore had a second goal of producing a

highly space-efficient implementation In order to provide space

for buffers and for the extra mechanisms, such as monitoring,

which are needed for an operational 'snvironment.

-2-

2-530

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway September 1982
RFC 823

This document describes the implementation of this new

gateway which incorporates several mechanisms for operations

activities, is coded in assembly language for maximum space-

efficiency, but otherwise is fundamentally the same architecture

as the older, research-oriented, implementations.

One of the results of recent research is the thesis that

gateways should be viewed as elements of a gateway system, where

the gateways act as a loosely-coupled packet-switching

communications system. For reasons of maintainability and

operability, it is easiest to build such a system in an

homogeneous fashion where all gateways are under a single

authority and control, as is the practice in other network

implementations.

In order to create a system architecture that permitted

multiple sets of gateways with each set under single control but

acting together to implement a composite single Internet System,

new protocols needed to be developed. These protocols, such as

the "Exterior Gateway Protocol," will be introduced in the later

releases of the gateway implementation.

We also anticipate further changes to the gateway

architecture and implementation to introduce support for new

-3-

2-531

> ■ *■"-*»' V-^-*«*»*** ***—L^jl^A,^jlJ^l^^LJal^^ %j*mJ..±.\ ^r. t..w. «^ ^r o «-"-«j'yw'^y-.'^.-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Cateway
RFC 823

September 1982

capabilities, such as large numbers of networks, access control,

and other requirements which have been proposed by the Internet

research community. This document represents a snapshot of the

current implementation, rather than a specification.

-4-

2-532

:JL^L1^^J^ :iü • "•*■**"** ***** \ ♦ %p. ****!** * **" * ■

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway September 1982
RFC 823

3 FORWARDING INTERNET DATAGRAMS

This section describes how the gateway forwards datagrams

between networks. A host computer that wants an IP datagram to

reach a host on another network must send the datagram to a

gateway to be forwarded. Before it is sent into the network, the

host attaches to the datagram a local network header containing

the address of the gateway

3.1 Input

When a gateway receives a message, the gateway checks the

message's local network header for possible errors and performs

any actions required by the host-to-network protocol. This

processing involves functions such as verifying the local network

header checksum or generating a local network acknowledgment

message. If the header indicates that the message contains an

Internet datagram, the datagram is passed to the Internet header

check routine. All other messages received that do not pass

these tests are discarded.

2-533

-v.--*■ V- .;..>^.CAlaaLk^kLL.laJLlll«^ .-- „.- «' -aJJl«\ J^ «J-la..^A-\k\k'-.> Wi ^»ÜL'JI.^.irAu'.V-V j/J*A * ■V-VVAA'Am V.'.'AV. «*.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway
RFC 823

September 1982

3.2 IP Header Checks

The Internet header check routine performs a number of

validity tests on the IP header. Datagrams that fail these tests

are discarded causing an HMP trap to be sent to the Internet

Network Operations Center (INOC) [7]. The following checks are

currently performed:

o Proper IP Version Number
o Valid IP Header Length (>= 20 bytes)
o Valid IP Message Length
o Valid IP Header Checksum
o Non-Zero Time to Live field

After a datagram passes these checks, its Internet destination

address is examined to determine if the datagram is addressed to

the gateway. Each of the gateway's internet addresses (one for

each network interface) is checked against the destination

address in the datagram. If a match is not found, the datagram

is passed to the forwarding routine.

If the datagram is addressed to the gateway itself, the IP

options in the IP header are processed. Currently, the gateway

supports the following IP options:

-6-

2-534

l"**.*y Lfcil * fcl^jC* JM£M. *"' ''- **- **- JLa « - «*- Cm £m «■*• **- «•- fc - »- *- «*- »'- « - to «"- i— ■£■■ «?— ■£■

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway September 1982
RFC 823

o NOP
o End of Option List
o Loose Source and Record Route
o Strict Source and Record Route

The datagram is next processed according to the protocol in the

IP header. If the protocol is not supported by the gateway, it

replies with an ICMP error message and discards the datagram.

The gateway does not support IP reassembly, so fragmented

datagrams which are addressed to the gateway are discarded.

3.3 Routing

The gateway must make a routing decision for all datagrams

that are to be to forwarded. The routing algorithm provides two

pieces of information for the gateway: 1) the network interface

that should be used to send this datagram and 2) the destination

address that should be put in the local network header of the

datagram.

The gateway maintains a dynamic Routing Table which contains

an entry for each reachable network. The entry consists of a

network number and the address of the neighbor gateway on the

shortest route to the network, or else an indication that the

-7-

2-535

ES^Vlv^lvlv^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway
RFC 823

September 1982

gateway is directly connected to the network. A neighbor gateway

is one which shares a common network with this gateway. The

distance metric that is used to determine which neighbor is

closest is defined as the "number of hops/' where a gateway is

considered to be zero hops from its directly connected networks,

one hop from a network that is reachable via one other gateway,

etc. The Gateway-to-Gateway Protocol (GGP) is used to update the

Routing Table (see Section 4.4 describing the Gateway-to-Gateway

Protocol).

The gateway tries to match the destination network address

in the IP header of the datagram to be forwarded, with a network

in its Routing Table. If no match is found, the gateway drops

the datagram and sends an I CMP Destination Unreachable message to

the IP source. If the gateway does find an entry for the network

in its table, it will use the network address of the neighbor

gateway entry as the local network destination address of the

datagram. However, if the final destination network is one that

the gateway is directly connected to, the destination address in

the local network header is created from the destination address

in the IP header of the datagram.

2-S36

tül^i isA^iv^A^A.. .^m..l* k.« -VAAAJ* i »fcV*lAVhViV»*.V.

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway
RFC 823

September 1982

3.4 Redirects

If the routing procedure decides that an IP datagram is to

be sent back out the same network interface that it was read in,

then this gateway is not on the shortest path to the IP final

destination. Nevertheless, the datagram will still be forwarded

to the next address chosen by the routing procedure. If the

datagram is not using the IP Source Route Option, and the IP

source network of the datagram is the same as the network of the

next gateway chosen by the routing procedure, an I CMP Redirect

message will be sent to the IP source host indicating that

another gateway should be used to send traffic to the final IP

destination.

3,5 Fragmentation

The datagram is passed to the fragmentation routine after

the routing decision has been made. If the next network through

which the datagram must pass has a maximum message size that Is

smaller than the size of the datagram, the datagram must be

fragmented. Fragmentation is performed according to the

algorithm described in the Internet Protocol Specification [1].

Certain IP options must be copied into the IP header of all

.9-

2-537

jLV^^iiJifel^tJ^e^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA In cornet Gateway September 1982
RFC 823

fragments, and others appear only in the first fragment according

to the IP specification. If a datagram must be fragmented, but

the Don't fragment bit is set, the datagram is discarded and an

I CMP error message is sent to the IP source of the data gram.

3.6 Header Rebuild

The datagram (or the fragments of the original datagram if

fragmentation was needed) is next passed to a routine that

rebuilds the Internet header. The Time to Live field is

decremented by one and the IP checksum is recomputed.

The local network header is now built. Using the

information obtained from its routing procedure, the gateway

chooses the network interface it considers proper to mmnd the

datagram and to build the destination address in the local

network header.

3.7 Output

The datagram is now enqueued on an output queue for delivery

towards its destination. A limit is enforced on the size of the

output queue for each network interface so that a slow network

-10-

2-538

HOST LEVEL: GATEWAY RFC 823

■i
DARPA Internet Gateway
RFC 823

September 1982

does not unfairly use up all of the gateway's buffers. If a

datagram cannot be enqueued due to the limit on the output queue

length, it is dropped and an HMP trap is sent to the INOC. These

traps, and others of a similar nature, are used by operational

personnel to monitor the operations of the gateways.

-11

2-539

..",.>.-».**.'•.' .v .*• .'•'. .*•*. «v* ,'*v .*'.'-*. .*'■'.*-. *.*•'■■'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway September 1982
RFC 823

4 PROTOCOLS SUPPORTED BY THE GATEWAY

A number of protocols are supported by the gateway to

provide dynamic routing, monitoring, debugging, and error

reporting. These protocols are described below.

4.1 Cross-Net Debugging Protocol

The Cross-Net Debugging Protocol (XNET) [8] is used to load

the gateway and to examine and deposit data. The gateway

supports the following XNET op-codes:

o NOP
o Debug
o End Debug
o Deposit
o Examine
o Create Process

4.2 Host Monitoring Protocol

The Host Monitoring Protocol (ItF) [6] is used to collect

measurements and status information from the gateways.

Exceptional conditions in the gateways are reported in HMP traps.

The status of a gateway's inter faces, neighbors, and the networks

which it can reach are reported in the HMP status message.

-12-

2-S40

>::S>iv>Ä

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway
RFC 823

September 1982

Two types of gateway statistics, the Host Traffic Matrix and

the gateway throughput, are currently defined by the HMP. The

Host Traffic Matrix records the number of datagrams that pass

through the gateway with a given IP source, destination, and

protocol number. The gateway throughput message collects a

number of important counters that are kept by the gateway. The

current gateway reports the following values:

o Datagrams dropped because destination net unreachable

o Datagrams dropped because destination host unreachable

o Per Interface:
Datagrams received with IP errors
Datagrams received for this gateway
Datagrams received to be forwarded
Datagrams looped
Bytes received
Datagrams sent, originating at this gateway
Datagrams sent to destination hosts
Datagrams dropped due to flow control limitations
Datagrams dropped due to full queue
Bytes sent

o Per Neighbor:
Routing updates sent to
Routing updates received from
Datagrams sent, originating here
Datagrams forwarded to
Datagrams dropped due to flow control limitations
Datagrams dropped due to full queue
Bytes sent

-13-

2-541

■» i -- .V,..-» ■"■^'» .:..—V. ^ .% ..- ...^r« _vV.« .•» -.'■-. *-' .:.*A*I-4.' v* v* ! .i«:...*...^'.!..^.'»-^/ _;« J>^...-. ..-»JV-V. _:. .v. •.*,-.' •-'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway September 1982
RFC 823

4.3 ICMP

The gateway will generate the following ICMP messages under

appropriate circumstances as defined by the ICMP specification

[4]:

o Echo Reply
o Destination Unreachable
o Source Quench
o Redirect
o Time Exceeded
o Parameter Problem
o Information Reply

4.4 Gateway-to-Gateway Protocol

The gateway uses the Gateway-to-Gateway Protocol (GGP) to

determine connectivity to networks and neighbor gateways; it is

also used in the implementation of a dynamic, shortest-path

routing algorithm. The current GGP message formats (for release

1003 of the gateway software) are presented in Appendix A.

4.4.1 Determining Connectivity to Networks

When a gateway starts running it assumes that all its

neighbor gateways are "down," that it is disconnected from

-14-

2-542

,%w.-. w

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway September 1982
RFC 823

networks to which it is attached, and that the distance reported

in routing updates from each neighbor to each network is

"infinity."

The gateway first determines the state of its connectivity

to networks to which it is physically attached. The gateway's

connection to a network is declared up if it can send and receive

internet datagrams on its interface to that network. Note that

the method that the gateway uses to determine its connectivity to

a network is network-dependent. In some networks, the host-to-

network protocol determines whether or not datagrams can be sent

and received on the host interface. In these networks, the

gateway simply checks-status information provided by the protocol

in order to determine if it can communicate with the network. In

other networks, where the host-to-network protocols are less

sophisticated, it may be necessary for the gateway to send

datagrams to itself to determine if it can communicate with the

network. In these networks, the gateways periodically poll the

network using QGP network interface status messages [Appendix A]

to determine if the network interface is operational.

The gateway has two rules relevant to computing distances to

networks: 1) if the gateway can send and receive traffic on its

-15-

2-543

l*3LMf*j£*,%m\mfm<*lm\m.\mCm.£m*:*£S\'m%m.fm g-^jLlll^Ij^IjL^lLaJ^fcliü^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARP/. Internet Gateway
RFC 823

September 1982

K"

network interface, its distance to the network is zero; 2) if it

cannot send and receive traffic on the interface, its distance to

the network is "infinity." Note that if a gateway's network

interface is not working, it may still be able to send traffic to

the network on an alternate route via one of its neighbor

gateways.

4.4.2 Determining Connectivity to Neighbors

The gateway determines connectivity to neighbors using a "K

out of N" algorithm. Every 15 seconds, the gateway sends OGP

Echo messages [Appendix A] to each of its neighbors. The

neighbors respond by sending OGP echo replies. If there is no

reply to K out of N (current values are K=3 and N=4) echo

messages sent to a neighbor, the neighbor is declared down. If a

neighbor is down and J out of M (current values are J=2 and M=4)

echo replies are received, the neighbor is declared to be up.

The values of J,K,M,N and the time interval are operational

parameters which can be adjusted as required.

-16-

2-544

v LA «..v L. i ii 'l, „ A.'»^,!,. ' ■ !■"■> '< ■•-* JJ1
. ;_•_•,', V.J.' Vji» - *-. -1 *■- - :- - fr -v -'- - v Ja■

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway September 1982
RFC 823

4.4.3 Exchanging Routing Information

The gateway sends routing information in GGP Routing update

messages. The gateway receives and transmits routing information

reliably using sequence-numbered messages and a retransmission

and acknowledgment scheme as explained below. For each neighbor,

the gateway remembers the Receive Sequence Number, R, that it

received in the most recent routing update from that neighbor.

This value is initialized with the sequence number in the first

Routing Update received from a neighbor after that neighbor's

status is set to "up." On receipt of a routing update from a

neighbor, the gateway subtracts the Receive Sequence Number, R,

from the sequence number in the routing update, S. If this value

(S-R) is greater than or equal to zero, then the gateway accepts

the routing update, sends an acknowledgment (see Appendix A) to

the neighbor containing the sequence number S, and replaces the

Receive Sequence Number, R, with S. If this value (S-R) is less

than zero, the gateway rejects the routing update and sends a

negative acknowledgment [Appendix A] to the neighbor with

sequence number R.

The gateway has a Send Sequence Number, N, for sending

routing updates to all of its neighbors. This sequence number

-17-

2-545

^ vV^l^lV^^ _ t 1^>>K,; y;-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway September 1982
RFC 823

can be initialized to any value. The Send Sequence Number is

incremented each time a new routing update is created. On

receiving an acknowledgment for a routing update, the gateway

subtracts the sequence number acknowledged, A, from the Send

Sequence Number, N. If the value (N-A) is non-zero, then an old

routing update is being acknowledged. The gateway continues to

retransmit the most recent routing update to the neighbor that

sent the acknowledgment. If (N-A) is zero, the routing update

has been acknowledged. Note that only the most recent routing

update must be acknowledged; if a second routing update is

generated before the first routing update is acknowledged, only

the second routing update must be acknowledged.

If a negative acknowledgment is received, the gateway

subtracts the sequence number negatively acknowledged. A, from

its Send Sequence Number, N. If this value (N-A) is less than

zero, then the gateway replaces its Send Sequence Number, N, with

the sequence number negatively acknowledged plus one, A+l, and

retransmits the routing update to all of its neighbors. If (N-A)

is greater than or equal to zero, then the gateway continues to

retransmit the routing update using sequence number N. In order

to maintain the correct sequence numbers at all gateways, routing

updates must be retransmitted to all neighbors if the Send

-18-

2-546

■IV^V^.^^XvlVJji'^V:* V'^'"J^ t\V\k\im,

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway September 1982
RFC 823

Sequence Number chan s, even if the routing information does not

change.

The gateway retransmits routing updates periodically until

they are acknowledged and whenever its Send Sequence Number

changes. The gateway sends routing updates only to neighbors

that are in the "up" state.

4.4.4 Computing Routes

A routing update contains a list of networks that are

reachable through this gateway, and the distance in "number of

hops" to each network mentioned. The routing update only

contains information about a network if the gateway believes that

it is as close or closer to that network then the neighbor which

is to receive the routing update. The network address may be an

internet class A, B, or C address.

The information inside a routing update is processed as

follows. The gateway contains an N x K distance matrix, where N

is the number of networks and K is the number of neighbor

gateways. An entry in this matrix, represented as dm(I,J), is

the distance to network I from neighbor J as reported in the most

-19-

2-547

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway
RFC 823

September 1982

recent routing update from neighbor J. The gateway also contains

a vector indicating the connectivity between itself and its

neighbor gateways. The values in this vector are computed as

discussed above (see Section 4.4.2, Determining Connectivity to

Neighbors) . The value of the Jth entry of this vector, which is

the connectivity between the gateway and the Jth neighbor, is

represented as d(J) .

The gateway copies the routing update received from the Jth

neighbor into the appropriate row of the distance matrix, then

updates its routes as follows. The gateway calculates a minimum

distance vector which contains the minimum distance to each

network from the gateway. The Ith entry of this vector,

represented as MinD(I) is:

MinD(I) = minimum over all neighbors of d(J) + dm(I,J)

where d(J) is the distance between the gateway and the Jth

neighbor, and dm(I,J) is the distance from the Jth neighbor to

the Ith network. If the Ith network is attached to the gateway

and the gateway can send and receive traffic on its network

interface (see Section 4.4.2), then the gateway sets the Ith

entry of the minimum distance vector to zero.

-20-

2-548

HOST LEVEL: GATEWAY RFC 823

m.
DARPA Internet Gateway
RFC 823

September 1982

Using the minimum distance vector, the gateway computes a

list of neighbor gateways through which to send traffic to each

network. The entry for a given network contains one of the

neighbors that is the minimum distance away from that network.

After updating its routes to the networks, the gateway

computes the new routing updates to be sent to its neighbors.

The gateway reports a network to a neighbor only if it is as

close to or closer to that network than its neighbor. For each

network I, tlvs routing update contains the address of the network

and the minimum distance to that network which is MinD(I) .

Finally, the gateway must determine whether it should send

routing updates to its neighbors. The gateway sends new updates

to its neighbors if every one of the following three conditions

occurs: 1) one of the gateway's interfaces changes state, 2)

one of the gateway's neighbor gateways changes state, and 3) the

gateway receives a routing update from a neighbor that is

different from the update that it had previously received from

that neighbor. The gateway sends routing updates only to

neighbors that are currently in the "up" state.

The gateway requests a routing update from neighbors that

are in the "up" state, but from which it has yet received a

-21-

2-549

•v*• \>-*■ >»%■>•"• -v;•*•% ..•-.**

* * •-*•■"*■■ •**"** *~V». iV_<*_r*«I^£*l-\Ti*JL\"^T\r_' JV»x 21\",*vVAvV-VJV-Y^V.VJä*.VIA'IL^J '•* '** J

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway
RFC 823

September 1982

routing update. Routing updates are requested by setting the

appropriate bit in the routing update being sent [Appendix A] .

Similarly, if a gateway receives from a neighbor a routing update

in which the bit requesting a routing update is set, the gateway

sends the neighbor the most recent routing update.

4.4.5 Non-Routing Gateways

A Non-routing Gateway is a gateway that forwards internet

traffic, but does not implement the GGP routing algorithm.

Networks that are behind a Non-routing Gateway are known a-priori

co Routing Gateways. There can be one or more of these networks

which are considered to be directly connected to the Non-routing

Gateway. A Routing Gateway will forward a datagram to a Non-

routing Gateway if it is addressed to a network behind the Ncn-

routing Gateway. Routing Gateways currently do not send

Redirects for Non-routing Gateways. A Routing Gateway will

always use another Routing Gateway as a path instead of a Non-

routing Gateways if both exist and are the same number of hops

away from the destination network. The Non-routing Gateways path

will be used only when the Routing Gateway path is down; when the

Routing Gateway path comes back up, it will be used again.

-22-

2-550

L. *•'."*". V*lV«*\J>"•*-*.* • 1*' •'-»**V-V*V*_V.-!» \M>l»%l*%i^*l*°*' l.**-.vI»V^_i i**VA "-*T:L*£ • A> . *^»> .*. -.. frj M ; i; a • --* e •*■■"* **»-»»•»»-»*»

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway September 1982
RFC 823

4.4.6 Adding New Neighbors and Networks

Gateways dynamically add routing information about new

neighbors and new networks to their tables. The gateway

maintains a list of neighbor gateway addresses. When a routing

update is received, the gateway searches this list of addresses

for the Internet source address of the routing update message.

If the Internet source address of the routing update is not

contained in the list of neiojibor addresses, the gateway adds

this address to the list of neighbor addresses and sets the

neighbor's connectivity status to "down." Routing updates are

not accepted from neighbors until the GGP polling mechanism has

determined that the neighbor is up.

This strategy of adding new neighbors requires that one

gateway in each pair of neighbor gateways must have the

neighbor's address configured in its tables. The newest gateway

can be given a complete list of neiojhbors, thus avoiding the need

to re-configure older gateways when new gateways are installed.

Gateways obtain routing information about new networks in

several steps. The gateway has a list of all the network? for

which it currently maintains routing information. When a routing

update is received, if the routing update contains information

-23-

2-551

.. %\\
•-• • ■-■ :.>t'»v.^A'.^.-«. ,„...-„■,..,..„„ i,.,,.r'M„-.A;.rf > „a ^'^j^j^^'^j^:^:^^:^,\'^^^\\fj*^\^t^^^M^<^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway September 1982
RFC 823

about a new network, the gateway adds this network to the list of

networks for which it maintains routing information. Next, the

gateway adds the new network to its distance matrix. The

distance matrix comprises the is the matrix of distances (number

of hops) to networks as reported in routing updates from the

neighbor gateways. Hie gateway sets the distance to all new

networks to "infinity," and then computes new routes and new

routing updates as outlined above.

4.5 Exterior Gateway Protocol

The Exterior Gateway Protocol (EGP) is used to permit other

gateways and gateway systems to pass routing information to the

DARPA Internet gateways. The use of the EGP permits the user to

perceive all of the networks and gateways as part of one total

Internet system, even though the "exterior" gateways are disjoint

and may use a routing algorithm that is different and not

compatible with that used in the "interior" gateways. The

important elements of the EGP are:

o Neiqftbor Acquisition

The procedure by which a gateway requests that it become a
neighbor of another gateway. This is used when a gateway
wants to become a neighbor of another In order to pass

-24-

2-552

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway September 1982
RFC 823

routing information. This includes the capability to accept
or refuse the request.

o Neiojhbor Up/Down

The procedure by which a gateway decides if another gateway
is up or down.

o Network Reachability Information

The facility used to pass routing and neighbor information
between gateways.

o Gateway Going Down

The ability of a gateway to inform other gateways that it is
going down and no longer has any routes to any other
networks. This permits a gateway to go down in an orderly
way without disrupting the rest of the Internet system.

A complete description of the EGP can be found in I EN- 209, the

"Exterior Gateway Protocol" [10].

-25-

2-553

.'^-„■^^■ViiVi'.V.V.VAVi.V Vll/i.V>/.V.VrV^\;«V«Vi;.V;.V.;/v^^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway September 1982
RFC 823

5 GATEWAY SOFTWARE

The DARPA Internet Gateway runs under the MOS operating

system [9] which provides facilities for:

o Multiple processes
o Interprocess communication
o Buffer management
o Asynchronous input/output
o Shareable real-time clock

Ther*» is a MOS process for each network that the gateway is

directly connected to. A data structure called a NETBLOCJC

contains variables of interest for each network and pointers to

local network routines. Network processes run common gateway

code while network-specific functions are dispatched to the

routines pointed to in the NETBLOCX. there are also processes

for gateway functions which require their own timing, such as GCP

and HMP.

5.1 Software Structure

The gateway software can be divided conceptually into three

parts: MOS Device Drivers, Network software, and Shared Gateway

software.

-26-

2-S54

. * V*--''j'v \yy:.\\':j-*~*-sJ*S«*^3LMjE^*j?^tS*£AJ^f£te*J!±\iim'*z: *L^Ww-W A'■^■.wi.^fk.

HOST LEVEL: GATEWAY RFC 823

DAEPA Internet Gateway September 1982
RFC 823

5.1.1 Device Drivers

The gateway has a set of routines to handle sending and

receiving data for each type of hardware interface. There are

routines for initialization, initiation, and interruption for

both the transmit and receive sides of a device. The gateway

supports the following types of devices:

a) ACC LSI-11 1822
b) DEC IMPlla 1822
c) ACC LHDH 1822
d) ACC VDH11E
e) ACC VDH11C
f) Proteon Ring Network
g) RSRE HDLC
h) Interlan Ethernet
i) BBN Fibernet
j) ACC XQ/CP X.25 **
k) ACC XQ/CP HDH **

5.1.2 Network Software

For each connected network, the gateway has a set of eight

routines which handle local network functions. The network

routines and their functions are described briefly below.

** Planned, not yet supported.

-27-

2-555

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway September 1982
RFC 823

op.net Perform local network initialization such as
flapping the 1822 ready line.

Sg.net Handle specific local network timing functions
such as timing out 1822 Destination Deads.

Rc.net A. message has been received from the network
interface. Check for any input errors.

Wc.net A message has been transmitted to the network
interface. Check for any output errors.

Rs.net Set up a buffer (or buffers) to receive messages
on the network interface.

Ws.net Transmit a message to the network interface.

Hc.net Check the local network header of the received
message. Perform any local network protocol
tasks.

Hb.net Rebuild the local network header.

There are network routines for the following types of

networks:

o Arpanet (a,b,c,k)
o Satnet (d,e,k)
o Proteon Ring Nc -■■ ;f)
o Packet Radio Ne . '- (a,b#c)
o Rsre HDLC Null N^w^. k (g)
o Ethernet (h)
o Fibernet (i)
o Telenet X.25 (j) **

Note: The letters in parentheses refer to the device drivers used

Planned, not yet supported.

-28-

2-556

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway September 1982
RFC 823

for each type of network as described in the previous section.

5.1.3 Shared Gateway Software

The internet processing of a datagram is performed by a body

of codu which is shared by the network processes. This code

includes routines to check the IP header, perform IP

fragmentation, calculate the IP checksum, forward a datagram, and

implement the routing, monitoring, and error reporting protocols.

5.2 Gateway Processes

5.2.1 Network Processes

When the gateway starts up, each network process calls its

local network initialization routine and read start routine. The

read start routine sets up two maximum network size buffers for

receiving datagrams. The network process then waits for an input

complete signal from tne network device driver.

When a message has been received, the MOS operating System

signals the appropriate network process with an input complete

signal. The network process wakes up and executes the net read

-29-

2-557

' ■' i i *1

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway September 1982
RFC 823

complete routine. After the message has been processed, the

network process waits for more input.

The net read complete routine is the major message

processing loop in the gateway. The following actions are

performed when a message has been received:

o Call Local Network Read Complete Routine
o Start more reads
o Check local Network Header
o Check Internet header
o Check if datagram is for the gateway
o Forward the datagram if necessary
o Send I CMP error message if necessary.

5.2.2 GGP Process

The GGP process periodically sends GGP echos to each of the

gateway's neighbors to determine neighbor connectivity, and sends

interface status messages addressed to itself to determine

network connectivity. The GGP process also sends out routing

updates when necessary. The details of the algorithms currently

implemented by the GGP process are given in Section 4.4,

Gateway-to-Gateway Protocol, anci in Appendix C.

-30-

2-558

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway
RFC 823

September 1982

5.2.3 HMP Process

The HMP process handles timer-based gateway statistics

collection and the periodic transmission of traps.

-31-

2-559

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway
RFC 823

September 1982

APPENDIX A. GGP Message Formats

Note that the GGP protocol is currently undergoing extensive

changes to introduce the Exterior Gateway Protocol facility; this

is the vehicle needed to permit gateways in other systems to

exchange routing information with the gateways described in this

document.

Each GGP message consists of an Internet header followed by

one of the messages explained below. The values (in decimal) in

the Internet header used in a GGP message are as follows.

Version

IHL

Type of Service

Total Length

ID, Flags,
Fragment Offset

Time to Live

Protocol

Header Checksum

4.

Internet header length in 32-bit words.

0.

Length of Internet header and data in
octets.

0.

Time to live in seconds. This field is
decremented at least once by each
machine that processes the datagram.

Gateway Protocol = 3.

The 16 bit one's complement of the one's
complement sum of all 16-bit words in
the header. For computing the checksum,
the checksum field should be zero.

-32-

2-560

■\ •*. **. -\ **. * •".. V-W-*_"*"" -"'*X\

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway-
RFC 823

September 1982

Source Address

Destination Address

The address of the gateway's interface
from which the message is sent.

The address of the gateway to which the
message is sent.

-33-

2-561

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

September 1982

ROUTING UPDATE

0 1
0123456789012345

! Gateway Type ! unused (0) !
+- + -+- + -+-+-+-+- + ~-f-+- + - + ~ + -+- + - +

! Sequence Number !
+ - + -+- + -+-+-+- + -+-+- + -+- + -.+- + -+- +

! need-update ! n-dlstances !

! distance 1 ! nl-dist !
+-+-+-+-+-+-+-+-+-+-+-+-+-♦-+-+-+-♦-+-+-♦-+-+-+-+

! netll ! M ! 1 tu!!!!!!!)!!! i!!!!!!! I! M !!
+-+-+-+-+-+ -+-+- + -+- + -+- + -+-+-+- + -+-+-«►-+-+-+-+- +

! netl2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+ - + - + - + - + - + - + - + -4- + - + - + - + - + - + - + - + '- + - + -- + - + - + - + - + - +

2 bytes

2 bytes

2 bytes

2 bytes

1, 2 or 3
bytes

1, 2 or 3
bytes

! netlnl MM!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ; nl nets at
♦-+-+-+-+-+-+-♦-+-+-+-+-♦-+-+-♦-♦-+-+-+-♦-♦-♦-♦-♦ ; dlSt 1

+ _ + - + - + - + -♦- + - + .♦.. + - + .. + .. + - + _ + _.►- +

! distance n ! nn-dist !

! netnl !!!!!!!!!!!!!!!!)!!!!!!!!!!{!!!!!

I netn2 !!!!!! !!!! t!!!!!!!!!!!!!!!!!!!!!1

; ndist groups
of nets

; 2 bytes

; 1, 2 or 3
bytes

; 1, 2 or 3
bytes

♦ -♦-♦-♦-+-♦-♦-♦-♦-♦-♦- + -♦-♦-4—♦-♦-♦■-♦-♦-♦-•■►-+-♦-♦

! netnnn !!!!!!!!!!! ! !!!!!!!! ?! !!!!!!!!!! !
+ _ + _ + _ + _ + _+_ + _ + _ + « + - + .+ _4» + _ + _ + . + .. + .4._ + .+ ,. + ..4... + -+

Gateway Type

Sequence Number

need-update

12 (decimal)

nn nets at
dist n

The 16-bit sequence number used
Identify routing updates.

to

An 8-bit field. This byte is set to 1

4
-34-

2-562

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway-
RFC 823

September 1982

M
h >

K

r

I

n-distances

I

distance 1

nl-dist

netll

netl2

netlnl

if the source gateway requests a routing
update from the destination gateway, and
set to 0 if not.

An 8-bit field. The number of
distance-groups reported in this update.
Each distance-group consists of a
distance value and a number of nets,
followed by the actual net numbers which
are reachable at that distance. Not all
distances need be reported.

hop count (or other distance measure)
which applies to this distance-group.

number of net?« which
this distance-group.

are reported in

1, 2, or 3 bytes for the first net at
distance "distance 1".

second net

etc.

i *

i *

-35-

2-563

".*.' -••■/• \V.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway
RFC 823

September 1982

ACKNOWLEDGMENT or NEGATIVE ACKNOWLEDGMENT

0 12 3
01234567890123456789012345678901

+-♦-+-+-•»■-+-+-•»■- + -+-«♦■-+-♦-♦-♦-•f -♦-♦-+-+-+-♦-♦-♦-♦-+-+-+-♦-♦- + -+-+

| Gateway Type j Unused | Sequence number j

Gateway Type

Sequence Number

Acknowledgments are type 2. Negative
acknowledgments are type 10.

The 16-bit sequence number that the
gateway is acknowledging or negatively
acknowledging.

-36-

2-564 .* v

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway
RFC 823

September 1982

GGP ECHO and ECHO REPLY

0 12 3
01234567890123456789012345678901

| Gateway Type | unused I

Gateway Type

Source Address

C for echo message; 0 for echo reply.

In an echo message, this is the address
of the gateway on the same network as
the nei^ibor to which it is sending the
echo message. In an echo reply message,
the source and destination addresses are
simply reversed, and the remainder is
returned unchanged.

-37*

2-565

•i T

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway September 1982
RFC 823

NETWORK INTERFACE STATUS

0 12 3
01234567890123456789012345678901

+- + - + - + -+- + -+- + - + - + - + - + - + - + - + - + -T.- + - + - + - + - + - + - + - + -+- + - + - + - + - + - + - + "."!%*!*

! Gateway Type ! unused ! /V->;

Gateway Type 9

Source Address
Destination Address The address of the gateway's network

interface. The gateway can send Net
Interface Status messages to itself to
determine if it is able to send and
receive traffic on its network
interface.

-38-

2-566

■v , •»

o •

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway September 1982
RFC 823

APPENDIX B. Information Maintained by Gateways

In order to implement the shortest-path routing algorithm,

gateways must maintain information about their connectivity to

networks and other gateways. This section explains the

information maintained by each gateway; this information can be

organized into the following tables and variables.

o Number of Networks

The number of networks for which the gateway maintains
routing information and to which it can forward traffic.

o Number of Neighbors

The number of neiqfribor gateways with which the gateway
exchanges routing information.

o Gateway Addresses

The addresses of the gateway's network interfaces.

o Neighbor Gateway Addresses

The adurass of each neighbor ga-eway's network interface
that is on the same network as this gateway.

o Neighbor Connectivity Vector

A vector of the connectivity between this gateway and each
of its neighbors.

o Distance Matrix

A matrix of the routing updates received frcm the neighbor
gateways.

-39-

'2-S67

"*'."* •*• .*• .*» •• .*• /* •'« .*•

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985 R?

DARPA Internet Gateway September 1982
RFC 823

o Minimum Distance Vector

A vector containing the minimum distance to each network.

o Routing Updates from Non-Routing Gateways

The routing updates that would have been received from each
non-routing neighbor gateway which does not participate in
this routing strategy.

o Routing Table

A table containing, for each network, a list of the neighbor
gateways on a minimum-distance route to the network.

o Send Sequence Number

the sequence number that will be used to send the next
routing update.

o Receive Sequence Numbers

The sequence numbers that the gateway received in the last
routing update from each of its neighbors.

o Received Acknowledgment Vector

A vector indicating whether or not each neighbor has
acknowledged the sequence number in the most recent routing
update sent.

-40-

2-568

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway September 1982
RFC 823

APPENDIX C. QGP Events and Responses

The following list shows the OGP events that occur at a

gateway and the gateway's responses. The variables and tables

referred to are listed above.

o Connectivity to an attached network changes.

a. Update the Minimum Distance Vector.
b. Recompute the Routing updates,
c. Recompute the Routing Table.
d. If any routing update has changed, send the new routing

updates to the neighbors.

o Connectivity to a neighbor gateway changes.

a. Update the Neighbor Connectivity Vector.
b. Recompute the Minimum Distance Vector.
c. Recompute the Routing Updates.
d. Recompute the Routing Table. v"_
e. If any routing update has changed, send the new routing X^X

updates to the neighbors. L*t*«w*
■ m\ „*«j

o A Routing Update message is received.

a. Compare the Internet source address of the Routing Update
message to the Neighbor Addresses. If the address is not
on the list, add it to the list of Neighbor Addresses,
increment the Number of Neighbors, and set the Receive
Sequence Number for this neighbor to the sequence number
in the Routing Update message.

b. Compare the Receive Sequence Number for this neighbor to
the sequence number in the Routing Update message to
determine whether or not to accept this message. If the
message is rejected, send a Negative Acknowledgment
message. If the message Is accepted, send an
Acknowledgment message and proceed with the following
steps.

-41-

2-509

*.V,

« ,

-L.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DARPA Internet Gateway
RFC 823

September 1982

I.*

c. Compare the networks reported in the Routing update
message to the Number of Networks. If new networks are
reported, enter them in the network vectors, increase the
number of networks, and expand the Distance Matrix to
account for the new networks.

d. Copy the routing update received into the appropriate row
of the Distance Matrix.

e. Recompute the Minimum Distance Vector.

f. Recompute the Routing Updates.

g. Recompute the Routing Table.

h. If any routing update has changed, send the new routing
updates to the neighbors.

o An Acknowledgment message is received.

Compare the sequence number in the message to the Send
Sequence Number. If the Send Sequence Number is
acknowledged, update the entry in the Received
Acknowledgment Vector for the neighbor that sent the
acknowledgment.

o A Negative Acknowledgment message is received.

Compare the sequence number in the message to the Send
Sequence Number. If necessary, replace the Send Sequence
Number, and retransmit the routing updates.

i
-42-

A>

2-570

HOST LEVEL: GATEWAY RFC 823

DARPA Internet Gateway
RFC 823

September 1982

REFERENCES

[1] Postel, J. (ed.), "Internet Protocol - DARPA Internet
Program Protocol Specification," RFC 791, USC/Information
Sciences Institute, September 1981.

[2] Strazisar, V., "Gateway Routing: An Implementation
Specification," IEN-30, Bolt Beranek and Newman Inc., August
1979.

[3] Strazisar, V., "How to Build a Gateway," IEN-109, Bolt
Beranek and Newman Inc., August 1979.

[4] Postel, J., "Internet Control Message Protocol - DARPA
Internet Program Protocol Specification," RFC 792,
USC/Information Sciences Institute, September 1981.

[5] Postel, J., "Assigned Numbers," RFC 790, USC/Information
Sciences Institute, September 1981.

[6] Littauer, B., Huang, A., Hinden, R., "A Host Monitoring
Protocol," IEN-197, Bolt Beranek and Newman Inc., September
1981.

[7] Santos, P., Chalstrom, H., Linn, J., Herman, J..
"Architecture of a Network Monitoring, Control and
Management System," Proc. of the 5th Int. Conference on
Computer Communication, October 1980.

[8] Haverty, J., "XNET Formats for Internet Protocol Version 4,"
IEN-158. Bolt Beranek and Newman Inc., October 1980.

[9] Mathis, J., Klemba. K., Poggio, "TIU Notebook- Volume 2.
Software Documentation," SRI, May 1979.

[10] Rosen, E., "Exterior Gateway Protocol," IEN-209.
Beranek and Newman Inc.. August 1982.

Bolt

-43-

• - ■ ■

2-571

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-572

m

w5

LviV.

fc
j®

„\
i m ■■ 'i 'i ;»j»/i

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

•V
&5>

K

r

I

V V.«

b

2-574

?*.**-.*• .'•.',i,'j'-.''^/ /' .*» .'■ .•-.•« .•■. .••'.'» j. _\'.- •.-.'■■-* *.

APPLICATION LEVEL PROTOCOLS

SECTION 8. APPLICATION LEVEL PROTOCOLS

This section includes RFCs pertaining to major applications (implemented by most
hosts), minor applications (implemented by many hosts), and miscellaneous applications
(implemented by few hosts).

»!»'"■■»■«

2-571

APPLICATION LEVEL: TELNET MC 854

Network Working Group i-ostcl
Request for Comments: 854 »! ;/nolds

ISI
Obsoletes: NIC 18639 " 'V 19B3

TELNET PROTOCOL SPECIFICATION

This RFC specifies a standard for the ARPA Internet community. V. -..-its en
the ARPA Internet are expected to adopt and implement this standard.

INTRODUCTION

tThe purpose of the TELNET Protocol is to provide a fairly qcnoral,
bi-directional, eight-bit byte oriented communications facility. Its
primary goal is to allow a standard method of Interfacing tcrr.iir.al
"devices and terminal-oriented processes to each other. It !:;
envisioned that the protocol may also be used for terminal-to. mtnal
communication ("linking") and process-process communication
(distributed computation).

GENERAL CONSIDERATIONS

A TELNET connection Is a Transmission Control Protoo ° (TCP)
connection used to transmit data with interspersed TELNET conttol
information.

The TELNET PretocoX is built upon three main ideas: first, the
concept of a "Network Virtual Terminal"; second, the principle of
negotiated options; and third, a symmetric view of terminals and
processes.

1. When a TEILET connection is first established, each end ir.
assumed to originate «and terminate at a "Network Virtual iVjrminiL"
or NVT. An NVT is an imaginary device which provides a standard
network-wide, intermediate representation of a canonical tenain.il.
This eliminates the need for "server" and "user" hosts to keep
Information about the characteristics of each other's terminals and
terminal handling conventions. Ail hosts, both user and server. rrup
their local device characteristics and conventions so as to arp**.f o
be dealing with an NVT over the network, and each «an assume a
similar napping by the other party. the NVT is intended to str ;;--«■ ;,
balance between being overly restricted (not providing hosts a ruh
enough vocabulary for mapping into their U*'*al character :;<;! •:) . .<:\i
l-einfj overly inclusive (penai 1 ziruj users rfith ahxi^st. io:^nuis) .

SOT?.: 'Hie "aser" host is t.he ho.-;t to v,hi<h i].*- physical \ <-r.-\.-..i.
l*j riOiTn.il ly .irr.ithoül. -rvl u>« "server " l-v ■ is LJ»

1
 'uv;» ~v...-j: ,;,

normally pravidtr.-i some s«»rv:co-. As .m .»I?• srn-ito r ,:-*. ■: v *'..;,

ur,*£j

ERRATA

Insert this page following 2-575.

RFC 854 May 1983

applicable even in terminal-to-terminal or process-to-process
communications, the "user" host is the host which Initiated the
communication.

2. The principle of negotiated options takes cognizance of the fact
that many hosts will wish to provide additional services over and
above those available within an NVT, and many users will have
sophisticated terminals and would like to have elegant, rather than
minimal, services. Independent of, but structured within the TELNET
Protocol are various "options" that will be sanctioned and may b*
used with the "DO, DON'T, WILL, WON'T" structure (discussed below) to
allow a user and server to agree to use a more elaborate (or perhaps
Just different) set of conventions for their TELNET connection. Such
options could include changing the character set, the echo mode, etc.

The basic strategy for setting up the use of options is to have
either party (or both) initiate a request that some option take
effect. The other party may then either accept or reject th-.i
request. If the request is accepted the option Immediately takes
effect; if it is rejected the associated aspect of the connection
remains as specified for an NVT. Clearly, a party may always refuse
a request to enable, and must never refuse a request to disable some
option since all parties must be prepared to support the NVT.

The syntax of option negotiation has been set up so that if both
parties request an option simultaneously, each will see the other's
request as the positive acknowledgasnt of its own.

3. The symmetry of the negotiation syntax can potentially lead to
nonterminating acknowledgaent loops -- each party seeing the incoming
commands not as acknowledgments but as new requests which must be
acknowledged. To prevent such loops, the following rules prevail:

a. Parties may only request a change in option status; i.e., a
party may not send out a "request" merely to announce what mode it
ia in.

b. If a party receives what appears to be a request to enter some
mode it is already in, the request should not be acknowledged.
This non-response is essential to prevent endless loops in the
negotiation. It is required that a response be sent to requests
for a change of mode -- even if the mode is not changed.

c. Whenever one party sends an option command to a second party,
whether as a request or an ecknowled^nent. and use of th* option
will have any effect on the processing of the data being sent from
the first party to the second, then the command must be inserted
in the data stream at the po: nt where it is desired that it take

LV
Postal 6 Reynolds [Page 2}

2-576

^

APPLICATION LEVEL: TELNET RFC 854

RFC 854 May 1983 f&

effect. (It should be noted that some time will elapse between
the transmission of a request and the recerot of an
acknowledcjaent, which may be negative. Thus, a host may wish to
buffer data, after requesting an option, until it learns whether
the request is accepted or rejected, in order to hide the
"uncertainty period" from the user.)

Option requests are likely to flurry back and forth when a TELNET
connection is first established, as each party attempts to get the
best possible service from the other party. Beyond that, however, .*y>;
options can be used to dynamically modify the characteristics of the Jjf1

connection to suit changing local conditions. For example, the NVT, P».
as will be explained later, uses a transmission discipline well \->
suited to the many "line at a time" applications such as BASIC, but y>
poorly suited to the many "character at a time" applications such as y\
NLS. A server might elect to devote the extra processor overhead
required for a "character at a time" discipline when it was suitable
for the local process and would negotiate an appropriate option.
However, rather than then being permanently burdened with the extra
processing overhead, it could switch (i.e., negotiate) back to NVT
when the detailed control was no longer necessary.

It is possible for requests initiated by processes to stimulate a
nontermlnating request loop if the process responds to a rejection by
merely re*requesting the option. To prevent such loops from
occurring, rejected requests should not be repeated until something
changes. Operationally, this can mean the process is running a
different program, or the user has given another command, or whatever
makes sense in the context of the given process and the given option.
A good rule of thumb is that a re-request should only occur as a
result of subsequent information from the other end of the connection
or when demanded by local human Intervention.

Option designers should not feel constrained by the somewhat limited
syntax available for option negotiation. The intent of the simple
syntax is to make it easy to have options - since it is
correspondingly easy to profess ignorance about them. If some
particular option requires a richer negotiation structure than >
possible within "DO, DON'T. WILL. WON'T", the proper tack is to use
"DO, DON'T. WILL. WON'T* to establish that both parties understand
the option, and one«, this is accomplished a more exotic syntax can be
used freely. For example, a party might send a request to alter
(establish) line length. If it is accepted, then a different syntax
can be used for actually negotiating the line length •- such a
"sub-negotiation" might include fields for minimum allowable, maximum
allowable and desired line lengths. The important concept is that

Postel £ Reynolds [Page 3]

%

2-577

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

K<

RFC 854 May 1983

such expanded negotiations should never begin until some prior
(standard) negotiation has established that both parties are capable
of parsing the expanded syntax.

In summary, WILL XXX is sent, by either party, to indicate that
party's desire (offer) to begin performing option XXX, DO XXX and
DON'T XXX being its positive and negative acknowledgments; similarly,
DO XXX is sent to indicate a desire (request) that the other party
(i.e., the recipient of the DO) begin performing option XXX, WILL XXX
and WON'T XXX being the positive and negative acknowledgments. Since
the NVT is what is left when no options are enabled, the DON'T and
WON'T responses are guaranteed to leave the connection in a state
which both ends can handle. Thus, all hosts may implement their
TELNET processes to be totally unaware of options that are not
supported, simply returning a rejection to (i.e., refusing) any
option request that cannot be understood.

As much as possible, the TELNET protocol has been mart* server*user
symmetrical so that it easily and naturally covers the user-user
(linking) and server-server (cooperating processes) cases. It is
hoped, but not absolutely required, that options will further this
intent. In any case, it is explicitly acknowledged that symmetry is
an operating principle rather than an ironclad rule.

A companion document, "TELNET qprion Specifications," should be
consulted for information about t e procedure for establishing new
options.

THE NETWORK VIRTUAL TERMINAL

The Network Virtual Terminal (NVT) is a bi-directional character
device. The NVT has a printer and a keyboard. The printer responds
to Incoming data and the keyboard produces outgoing data which is
sent over the TELNET connection and, if "echoes" are d#sired, to the
NVT's printer as well. "Echoes" will not be expected to traverse the
network (although options exist to enable a "remote" echoing mode of
operation, no host is required to implement this option). The code
set is seven-bit USASC1I in an eight-bit field, except as modified
herein. Any code conversion and timing considerations are local
problems and do not affect the NVT.

TRANSMISSION OF DATA

Although a TELNET connection through the network is intrinsically
full duplex, the NVT is to be viewed as a half-duplex device
operating in a line-buffered mode. That is. unless and until

Postel 6 Reynolds [Page 4]

■T

•.•-:»:*

APPLICATION LEVEL: TELNET RFC 854 Ü

RFC 854 May 1983

options are negotiated to the contrary, the following default
conditions pertain to the transmission of data over the TELNET
connection:

1) Insofar as the availability of local buffer space permits,
data should be accumulated in the host where it is generated
until a complete line of data is ready for transmission, or
until some locally-defined explicit signal to transmit occurs.
This signal could be generated either by a process or by a
human user.

The motivation for this rule is the high cost, to some hosts,
of processing network input interrupts, coupled with the
default NVT specification that ••echoes" do not traverse the
network. Thus, it is reasonable to buffer some amount of data
at its source. Many systems take some processing action at the
end of each input line (even line printers or card punches
frequently tend to work this way). so the transmission should
be triggered at the end of a line. On the other hand, a user
or process may sometimes find it necessary or desirable to
provide data which does not terminate at the end of a line;
therefore implementers are cautioned to provide methods of
locally signaling that all buffered data should be transmitted
immediately.

2) When a process has completed sending data to an NVT printer
and has no queued input from the NVT keyboard for further
processing (i.e., when a process at one end of a TELNET
connection cannot proceed without input from the other mnd).
the process must transmit the TELNET Co Ahead (GA) command.

This rule is not intended to require that the TELNET GA command
be sent from a terminal at the end of each line, since server
hosts do not normally require a special signal (in addition to
end-of-Une or other locally-defined characters) in order to
commence processing. Rather, the TELNET GA is designed to help
a user's local host operate a physically half duplex terminal
which has a "lockable** keyboard such as the IBM 2741. A
description of this type of terminal may help to explain the
proper use of the GA command.

The terminal-computer connection la always under control of
either the user or the computer. Neither can unilaterally
seize control from the other; rather the controlling end must
relinquish its control explicitly. At the terminal end. the
hardware is constructed so as to relinquish control each time
that a -Una" is terminated (i.e.. when the "New Line" key is
typed by ehe user). When this occurs, the attached (local)

P*

Postal 6 Reynolds [Page 5)

2-579

•-rt.lLJ.ll iLl'L« *•* ■ - /•;■ ■-■'^'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 854 May 1983

computer processes the input data, decides if output should be
generated, and if not returns control to the terminal. If
output should be generated, control is retained by the computer
until all output has been transmitted.

Die difficulties of using this type of terminal tfcrougn the
network should be obvious, the "local" computer is no longer
able to decide whether to retain control after seeing an
end-of-llne signal or not; this decision can only be mada by
the "remote" computer which is processing the data. Therefore,
the TELNET GA coomand provides a mechanism whereby the "remote"
(server) computer can signal the "local" (user) computer that
it is time to pass control to the user of the terminal. It
should be transmitted at those times, and only at those times,
when the user should be given control of the terminal. Note
that premature transmission of the GA command may result in the
blocking of output, since the user is likely to assume that the
transmitting system has paused, and therefore he will fall to
turn the lino around manually.

The foregoing, of course, does not apply to the user «to «server
direction of communication. In this direction. GAs may be sent at
any time, but need not ever be sent. Also, if the TELNET
connection is being used for process-to-process communication. GAs
need not be sent in either direction. Finally, for
terminal-to-terminal communication. GAs may be required in
neither, one. or both directions. If a host plans to support
terminal-to-terminal communication it is suggested that the host
provide the user with a means of manually signaling that it is
time for a GA to be sent over the TELNET connection; this.
however, is not a requirement on the implementer of a TELNET
process.

Note that the symmetry of the TELNET model requires that there is
an NVT at each end of the TELNET connection, at least
conceptually.

STANDARD REPRESENTATION OF CONTROL FUNCTIONS

As stated in the Introduction to this document, the primary goal
of the TELNET protocol Is the provision of a standard Interfacing
of terminal devices and terminal-oriented processes through the
network. Early experiences with this type of Interconnection have
shown that certain functions are implemented by most servers, bvt
that the methods of Invoking t*mmm functions differ widely. For a
human user who interacts with several mmrvwr systems, these
differences are highly frustrating. TELNET, therefore, defines -#
standard representation for five of these functions, as described

Postal k Reynolds [Page 61

2-S80

■«■■■ * w^mmfm m*m- m*++?m ¥[#JI' !■»■!■»■ MI*'*■!_"»",»%<M'[mI

»VV\

APPLICATION LEVEL: TELNET RFC 854

RFC 854 May 1983

below. These standard representations have standard, but not
required, meanings (with the exception that the Interrupt Process
(IP) function may be required by other protocols which use
TELNET); that is, a system which does not provide the function to
local users need not provide it to network users and may treat the
standard representation for the function as a No-operation. On
the other hand, a system which does provide the function to a
local user is obliged to provide the same function to a network
user who transmits the standard representation for the function.

Interrupt Process (IP)

Many systems provide a function which suspends, interrupts,
aborts, or terminates the operation of a user process. This
function is frequently used when a user believes his process is
in an unending loop, or when an unwanted process has been
inadvertently activated. IP is the standard representation for
invoking this function. It should be noted by implementers
that IP may be required by other protocols which use TELNET,
and therefore should be implemented if these other protocols
are to be supported.

Abort Output (AO)

Many systems provide a function which allows a process, which
is generating output, to run to completion (or to reach the
same stopping point it would reach if running to completion)
but without sending the output to the user's terminal.
Further, this function typically clears any output already
produced but not yet actually printed (or displayed) on the
user's terminal. AO is the standard representation for
invoking this function. For example, some subsystem might
normally accept a user's command, send a long text string to
the user's terminal in response, and finally signal readiness
to accept the next command by sending a "prompt" character
(preceded by <CR><I >) to the user's terminal. If the AO were
received during the transmission of ths text string, a
reasonable implementation would be to suppress the remainder of
the text string, but transmit the prompt character and the
preceding <CR><LF>. (This is possibly in distinction to the
action which might be taken if an IP were received; the IP
might cause suppression of the text string and an exit from the
subsystem.)

It should be noted, by server systems which provide this
function, that there may be buffers external to the system (in

I

Postal & Reynolds [Page 7]

2-581

Si*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 854 May 1983

the network and the user's local host) which should be cleared;
the appropriate way to do this is to transmit the "Synch"
signal (described beio*) to the user system.

Are You There (AYT)

Many systems provide a function which provides the user with
some visible (e.g., printable) evidence that the system is
still up and running. This function may be invoked by the user
when the system is unexpectedly "silent" for a long time,
because of the unanticipated (by the user) length of a
computation, an unusually heavy system load, etc. AYT is the
standard representation for invoking this function.

Erase Character (EC)

Many systems provide a function which deletes the last
preceding undeleted character or "print position"* from the
stream of data being supplied by the user. This function is
typically used to edit keyboard input when typing mistakes are
made. EC is the standard representation for Invoking this
function.

*NOTE: A "print position" may contain several characters
which are the result of overstrikes, or of sequences such as
<charl> BS <char2>...

Erase Line (EL)

Many systems provide a function which deletes all the data in
the current "line" of input. This function is typically used
to edit keyboard input. EL is the standard representation for
invoking this function.

THE TELNET "SYNCH" SIGNAL

Most time-sharing systems provide mechanisms which allow a
terminal user to regain control of a "runaway" process; the IP and
AO functions described above are examples of these mechanisms.
Such systems, when used locally, have access to all of the signals
supplied by the user, whether these are normal characters or
special "out of band" signals such as those supplied by the
teletype "BREAK" key or the IBM 2741 "ATTN" key. This is not
necessarily true when terminals are connected to the system
throu#* the network; the network's flow control mechanisms may
cause such a signal to be buffered elsewhere, for example in the
user's host.

Postel & Reynolds [Page 8]

2-582

X*Xvlv>Xv>I XvlVl^ • 'VO'^y.iv.'lv .*lvi/."l «>v ir lX>>V^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 854 May 1983

By convention the sequence [IP, Synch] is to be used as such a
signal. For example, suppose that some other protocol, which uses
TELNET, defines the character string STOP analogously to the
TELNET command AO. Imagine that a user of this protocol wishes a
server to process the STOP string, but the connection is blocked
because the server is processing other commands. The user should
instruct his system to:

1. Send the TELNET IP character;

2. Send the TELNET SYNC sequence, that is*

Send the Data Mark (DM) as the only character
in a TCP urgent mode send operation.

3. Send the character string STOP; and

4. Send the other protocol's analog of the TELNET DM, if any.

The user (or process acting on his behalf) must transmit tie
TELNET SYNCH sequence of step 2 above to ensure that the TELNET IP
gets through to the server's TELNET interpreter.

The Urgent should wake up the TELNET process; the IP should
wake up the next higher level process.

THE NVT PRINTER AND KEYBOARD

The NVT printer has an unspecified carriage width and page length
and can produce ^presentations of all 95 USASCII graphics (codes
32 through 126) . Of the 33 USASCII control codes (0 through 31
and 127), and the 128 uncovered codes (128 through 255), the
following have specified meaning to the NVT printer:

NAME

NULL (NUL)
Line Feed (LF)

CODE

0
10

Carriage Return (CR) 13

MEANING

No Operation
Moves the printer to the
next print line, keeping the
same horizontal position.
Moves the printer to the left
margin of the current line.

Postel 6 Reynolds [Page 10]

2-584

— - » » -1 -» ' - * ■

m
APPLICATION LEVEL: TELNET RFC 854

RFC 854 May 1983

To counter this problem, the TELNET "Synch" mechanism is
introduced. A Synch signal consists of a TCP Urgent notification,
coupled with the TELNET command DATA MARK. The Urgent
notification, which is not subject to the flow control pertaining
to the TELNET connection, is used to invoke special handling of
the data stream by the process which receives it. In this mode,
the data stream is immediately scanned for "interesting" signals
as defined below, discarding intervening data. The TELNET command
DATA MARK (DM) is the synchronizing mark in the data stream which
indicates that any special signal has already occurred and the
recipient can return to normal processing of the data stream.

The Synch is sent via the TCP send operation with the Urgent
flag set and the DM as the last (or only) data octet.

When several Synchs are sent in rapid succession, the Urgent
notifications may be merged. It is not possible to count Urgents
since the number received will be less than or equal the number
sent. When in normal mode, a DM is a no operation; when in urgent
mode, it signals the end of the urgent processing.

If TCP indicates the end of Urgent data before the DM is found,
TELNET should continue the special handling of the data stream
until the DM is found.

If TCP indicates more Urgent data after the DM is found, it can
only be because of a subsequent Synch. TELNET should continue
the special handling of the data stream until another DM is
found.

"Interesting" signals are defined to be: the TELNET standard
representations of IP, AO, and AYT (but not EC or EL); the local
analogs of these standard representations (if any); all other
TELNET commands; other site-defined signals which can be acted on
without delaying the scan of the data stream.

Since one effect of the SYNCH mechanism is the discarding of
essentially all characters (except TELNET coanands) between the
sender of the Synch and its recipient, this mechanism is specified
as the standard way to clear the data path when that is desired.
Eor exanple, if a user at a terminal causes an AO to be
transmitted, the server which receives the AO (if it provides chat
function at all) should return a Synch to the user.

Finally, just as the TCP Urgent notification is needed at the
TELNET level as an out-of-band signal, so other protocols which
make use of TELNET may require a TELNET command which can be
viewed as an out-of-band signal at a different level.

Postel & Reynolds [Page 9]

2-583

_ • J% _ _

APPLICATION LEVEL: TELNET RFC 854

RFC 854 May 1983

In addition, the following codes shall have defined, but not
required, effects on the NVT printer. Neither end of a TELNET
connection may assume that the other party will, take, or will
have taken, any particular action upon receipt or transmission
of these:

BELL (BEL)

Bad: Space (BS)

Horizontal Tab (HT)

Vertical Tab (VT)

Form Feed (FF)

7 Produces an audible or
visible signal (which does
NOT move the print head) .

8 Moves the print head one
character position towards
the left margin.

9 Moves the printer to the
next horizontal tab stop.
It remains unspecified how
either party determines or
establishes where such tab
stops are located.

il Moves the printer to the
next vertical tab stop. It
remains unspecified how
either party determines or
establishes where such tab
stops arc located.

12 Moves the printer to the top
of trie next page, keeping
the same horizontal position.

All remaining codes do not cause the NVT printer to take any
action.

The sequence "CR LF", as defined, will cause the NVT to be
positioned at the left margin of the next print line (as would,
for example, the sequence "LF CR"). However, many systems and
terminals do not treat CR and LF independently, and will have to
go to some effort to simulate their effect. (For example, some
terminals do not have a CR independent of the LF, but on such
terminals it may be possible to simulate a CR by backspacing.)
Therefore, the sequence "CR LF" must be treated as a single "new
line" character and used whenever their combined action is
intended; the sequence "CR NUL" must be used where a carriage
return alone is actually desired; and the CR character must be
avoided in other contexts. This rule gives assurance to systems
which must decide whether to perform a "new line" function or a
multiple-backspace that the TELNET stream contains a character
following a CR that will allow a rational decision.

Note that "CR LF" or "CR NUL" is required in both directions

Postel & Reynolds [Page 11]

±'>*:>

m

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985 :$m

RFC 854 May 1983

(in the default ASCII mode) , to preserve the symmetry of the
NVT model. Even though it may be known in some situations
(e.g., with remote echo and suppress go ahead options in
effect) that characters are not being sent to an actual
printer, nonetheless, for the sake of consistency, the protocol
requires that a NUL be inserted following a CR not followed by
a LF in the data stream. The converse of this is that a NUL
received in the data stream after a CR (in the absence of
options negotiations which explicitly specify otherwise) should
be stripped out prior to applying the NVT to local character
set mapping.

The NVT keyboard has keys, or key combinations, or key sequences,
for generating all 128 USASCII codes. Note that although many
have no effect on the NVT printer, the NVT keyboard is capable of
generating them.

In addition to these codes, the NVT keyboard shall be capable of
generating the following additional codes which, except as noted,
have defined, but not r«spired, meanings. The actual code
assignments for these "characters" are in the TELNET Command
section, because they are viewed as being, in some sense, generic
and should be available even when the data stream is interpreted
as being some other character set.

Synch

This key allows the user to clear his data path to the other
party. The activation of this key causes a DM (see command
section) to be sent in the data stream and a TCP Urgent
notification is associated with it. The pair DM-Urgent is to
have required meaning as defined previously.

Break (BRK)

This code is provided because it Is a signal outside the
USASCII set which is currently given local meaning within many
systems. It is intended to indicate that the Break Key or the
Attention Key was hit. Note, however, that this is intended to
provide a 129th code for systems which require It. not as a
synonym for the IP standard representation.

Int~-rupt Process (IP)

Suspend, interrupt, abort or terminate the process to which the
NVT is connected. Also, part of the out-of-band signal for
other protocols which use TELNET.

m*

£HJ

v.v

Postel & Reynolds [Page 12]

2-5SG

*' *"" l~*-L^-1J^j^r^nr^:^V^^-rnr V r ".*'.- '*/ / y y sj IL"i> 1*1 v '."\ii»C»

r,
VW

APPLICATION LEVEL: TELNET RFC 854

RFC 854 May 1983

j>i Abort Output (AO)

i

h\

Allow the current process to (appear to) run to completion, but
do not send Its output to the user. Also, send a Synch to the
user.

Are You There (AYT)

Send back to the NVT some visible (i.e.. printable) evidence
that the AYT was received.

Erase Character (EC)

The recipient should delete 4A*B last preceding undeleted
character or "print position" from the data stream.

Erase Line (EL)

The recipient should delete characters from the data stream
back to, but not including, the last "CR LF" serjence sent over
the TELNET connection.

The spirit of these "extra" keys, and also the printer format
te effectors, is that they should represent a natural extension of \'-\
■ the mapping that already must be done from "NVT" into "local". mr
W Just as the NVT data byte 68 (104 octal) should be mapped into W?
[>. whatever the local code for "uppercase D" is, so the EC character -y.'
FV should be mapped into whatever the local "Erase Character" *v/l
LN* function is. Further, just as the mapping for 124 (174 octal) is •>/.
B somewhat arbitrary in an environment that has no "vertical bar" >lj%;

character, the EL character may have a somewhat arbitrary mapping :•/•[
(or none at all) if there is no local "Erase Line" facility. »
Similarly for format effectors: if the terminal actually does J^
have a "Vertical Tab", then the mapping for VT is obvious, and Sh-
ortly when the terminal does not have a vertical tab should the
effect of VT be unpredictable. £>.

»** »"•

TELNET COMMAND STRUCTURE \V>
1 K p All TELNET commands consist of at least a two byte sec^xence: the ^P*
JV "Interpret as Command" (IAC) escape character followed by the code

for the command. The commands dealing with option negotiation are \\'/m
three byte sequences, the third byte haing the code for the option ;% .
referenced. This format was chosen so that as more comprehensive use
of the "data space'* is made -- by negotiations from the basic NVT. of S\j
course -- collisions of data bytes with r^smrvmd command values will ^j
be minimized, all such collisions requiring the inconvenience, and P£.

»*• »*»

Postal 6 Reynolds [Page 13]

s.'

k",

fcl 2-587

■>V- ■ v •*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 854 May 1983

inefficiency, of "escaping" the data bytes into the stream. With the
current set-up, only the IAC need be doubled to be sent as data, and
the other 255 codes may be passed transparently.

The following are the defined TELNET commands. Note that these codes
and code sequences have the indicated meaning only when immediately
preceded by an IAC.

NAME CODE

SE 240
NOP 241
Data Mark 242

Break 243
Interrupt Process 244
Abort output 245
Are You There 246
Erase character 247
Erase Line' 248
Go ahead 249
SB 250

WILL (option code) 251

WON'T (option code) 252

DO (option code) 253

DON'T (option code) 254

IAC

MEANING

End of subnegotiation parameters.
No operation.
The data stream portion of a Synch.
This should always be accompanied
by a TCP Urgent notification.
NVT character BRK.
The function IP.
The function AO.
The function AYT.
The function EC.
The function EL.
The GA signal.
Indicates that what follows is
subnegotiation of the indicated
option.
Indicates the desire to begin
performing, or confirmation that
you are now performing, the
Indicated option.
Indicates the refusal to perform,
or continue performing, the
indicated optio: .
Indicates the request that the
other party perform, or
confirmation that you are expecting
the other party to perform, the
indicated option.
Indicates the demand that the
other party stop performing,
or confirmation that you are no
longer expecting the other party
to perform, the indicated option.

255 Data Byte 255.

;>. \h
.*> • « H

V." ! *
ttx, ■ V* r

p*

Postal 6 Reynolds [Page 14]

2-588

•fW^a* fii in *i *n- ■»,»».*

APPLICATION LEVEL: TELNET RFC 854

RFC 854 May 1983

CONNECTION ESTABLISHMENT

The TELNET TCP connection is established between the user's port U
and the server's port L. The server listens on its well known port L
for such connections. Since a TCP connection is full duplex and
identified by the pair of ports, the server can engage in many
simultaneous connections involving its port L and different user
ports U.

Port Assignment

When used for remote user access to service hosts (i.e., remote
terminal access) this protocol is assigned server port 23
(27 octal). That is L*23.

Postal & Reynolds [Pagy 1.5]

2-589

\ % ■.

V V - *
•s > ■ ■

.*.
• .« . .«
* 1

k,
V* .%' •

■

l v .' ■« * n i *mmmmmm+*+^ "I ■'*«»■ J ■> 1 ".'*■■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-590

r.V*.

*■--■•- ■ a

APPLICATION LEVEL: TLNT-OPS RFC 855

Network Working Group
Reouest for Comments: 855

Obsoletes: NIC 18640

J. Postel
J. Reynolds

ISI
May 198a

TELNET OPTION SPECIFICATIONS

This RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet are expected to adopt and implement this standard.

The intent of providing for options in the TELNET Protocol is to permit
hosts to obtain more elegant solutions to the problems of communication
between dissimilar devices than is possible within the framework
provided by the Network Virtual Terminal (NVT) . It should be possible
for hosts to invent, test, or discard options at will. Nevertheless, it
is envisioned that options which prove to be generally useful will
eventually be supported by many hosts; therefore it is desirable that
options should be carefully documented and well publicized. In
addition, it is nec*5ssary to insure that a single option code is not
used for several different options.

This document specifies a method of option code assignment and standards
for documentation of options. The individual responsible for assignment
of option codes may waive the requirement for complete documentation for
some cases of experimentation, but in general documentation will be
required prior to code assignment. Options will be publicized by
publishing their documentation as RFCs, inventors of options may, of
course, publicize them in other ways as well.

Option codes will be assigned by:

Jonathan B. Postel
University of Southern California
Information Sciences Institute (USC-ISI)
4676 Admiralty Way
Marina Del Rey, California 90291
(213) 822-1511

Mailbox « POSTELGUSC-ISIF

Documentation of options should contain at least the following sections:

Section 1 * Command Name and Option Cede

Section 2 - Command Meanings

The meaning of each possible TELNET command relevant to this
option should be described. Note that for complex options, where

Postel £ Reynolds [Page 1)

2-591

f,' ■, tKiv i9'nm ■> 1 y.+ J*.*J* l'i'.'i'MillWi>i I« >y*jM>i |«.V '# |li J«'j»»» Wl'^1 # l' ^iV^fl I ■!■■ iti^^li^iliHf Htlwui

DDN PROTOCOL HANDBOOK - VOLUME TWO 1935

RFC 855 May 1983

"subnegotiation" is required, there may be a larger number of
possible commands. The concept of "subnegotiation" is described
in more detail below.

Section 3 - Default Specification

The default assumptions for hosts which do not implement, or use,
the option aust be described.

Section 4 ■• Motivation

A detailed explanation of the irjtivation for inventing a
particular option, or for choosing a particular form for the
option, is extremely helpful to those who are not faced (or don't
realize that they are faced) by the problea that the option is
designed to solve.

Section 5 - Description (or Implementation " les)

Merely defining the command meanings and providing a statement of
motivation are not always sufficient, to Insure thai two
implementations of an option will be able to communicate.
Therefore, a more complete description should be furnished in most
cases. This description might take the form of text, a sample
implementation, hints to implementers, etc.

A Note on "Subnegotiation"

Some options will require more information to be passed between hosts
than a single option code. For example, any option which requires a
parameter is such a case. The strategy to be used consists of two
steps: first, both parties agree to "discuss" the parameter(s) and,
second, the "discussion" takes place.

The first step, agreeing to discuss the parameters, takes place in
the normal manner; one party proposes use of the option by sending a
DO (or WILL) followed by the option code, and the other party accepts
by returning a WILL (or DO) followed by the option code. Once both
parties have agreed to use the option, subnegotiation takes place by
using the command SB, followed by the option code, followed by the
parameter (s), followed by the command SE. Each party is presumed to
be able to parse the parameter (s). since each has indicated that the
option is supported (via the initial exchange of WILL and DO) . On
the other hand, the receiver may locate the end of a parameter string
by searching for the SE command (i.e.. the string IAC SE), even if
the receiver Is unable to parse the parameters. Of course, either
party may refuse to pursue further subnegotiation at any time by
sending a WON'T or DON'T to the other party.

£ ■•▼■»^r

Postal 6 Reynolds [Page 2]

2-502

f'Mf +rm "u—i _u m0+0bemmt>+l>m**0m

APPLICATION LEVEL: TLNT-OPS RFC 855

RFC 855 May 1983

Thus, for option "ABC", which requires subnegotiation, the formats of
the TELNET commands are:

IAC WILL ABC

Offer to use option ABC (or favorable acknowledgment of other
party's request)

IAC DO ABC

Request for other party to use option ABC (or favorable
acknowled^cent of other party's offer)

IAC SB ABC <parameters> IAC SE

One step of subnegotiation, used by either party.

Designers of options requiring "subnegotiation** must take great care
to avoid unending loops in the subnegotiation process. For example,
if each party can accept any value of a parameter, and both parties
suggest parameters with different values, then one is likely to have
an infinite oscillation of "acknowledgments" (where each receiver
believes it is only acknowledging the new proposals of the other).
Finally, if parameters in an option "subnegotiation" include a byte
with i value of 255, it is necessary to double this byte in
accor^nce the general TELNET rules.

Postel & Reynolds [Page 3]

2-SÖ3
m

-.v.* %••-■•/.•.' ■- +-'**. * -

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

i

I
öS

5vv

SS;,

2-591

V V .;;-.y>^>:/%>;;
L^Vlyl¥f^^LVl^V.^»^VV*M'4"^'-tf^iV»yM^F

APPLICATION LEVEL: TLNT-OPS RFC 856 £<K

i

Network Working Group
Request for Comments: 856

Obsoletes: NIC 15389

J. Postel
J. Reynolds

ISI
May 1983

TELNET BINARY TRANSMISSION

This RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet are expected to adopt and implement this standard.

1. Command Name and Code

TRANSMIT-BINARY 0

i

p.m.

m

>

2. Command Meanings

IAC WILL TRANSMIT-BINARY

The sender of this command REQUESTS permission to begin
transmitting, or confirms that it will now begin transmitting
characters which are to be interpreted as 8 bits of binary data by
the receiver of the data.

IAC WON'T TRANSMIT-BINARY

If the connection is already being operated in binary transmission
mode, the sender of this command DEMANDS to begin transmitting
data characters vhich are to be interpreted as standard NVT ASCII
characters by the receiver of the data. If the connection is not
already being operated in binary transmission mode, the sender of
this command REFUSES to begin transmitting characters which are to
be interpreted as binary characters by the receiver of the data
(i.e., the snnder of the data demands to continue transmitting
characters in its present mode),

A connection is being operated in binar/ transmission mode only
when one party has requested it and the other has acknowledged it.

IAC DO TRANSMIT-BINARY

The sender of this command REQUESTS that the sender of the data
start transmitting, or confirms that the sender of data is
expected to transmit, cnaracters which are to be interpreted as 8
bits of binary data (i.e., by the party sending this command) .

IAC DON'T TRANSMIT-BINARY

If the connection is already being operated in binary transmission
mode, the sender of this command DEMANDS that the sender of the
data start transmitting characters which are to be interpreted as

Postel £ Reynolds [Page 11

2-595

/'/V-CVA-. ..',.. V -V^'« - V .'«V. *. ^'m Jt.'iA .

SS

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 856 May 1983

standard NVT ASCII characters by the receiver of the data (i.e.,
the party sending this command) . If the connection is not P1 ready
being operated in binary transmission mode, the sender of diis
command DEMANDS that the sender of data continue transmitting
characters which are to be interpreted in the present mode.

A connection is being operated in binary transmission mode only
when one party has requested it and the other has acknowledged it.

3. Default

WON'T TRANSMIT-BINARY

DON'T TRANSMIT-BINARY

The connection is not operated in binary mode.

4. Motivation for the Option

It is sometimes useful to have available a binary transmission path
within TELNET without having to utilize one of the more efficient,
higher level protocols providing binary transmission (such as the
File Transfer Protocol) . The use of the IAC prefix within the basic
TELNET* protocol provides the option of binary transmission in a
natural way, requiring only the addition of a mechanism by which the
parties involved can agree to INTERPRET the characters transmitted
over a TELNET connection as binary data.

5. Description of the Option

With the binary transmission option in effect, the receiver should
interpret characters received from the transmitter which are not
preceded with IAC as 8 bit binary data, with the exception of IAC
followed by IAC which stands for the 8 bit binary data with the
decimal value 255. IAC followed by an effective TELNET command (plus
any additional characters required to complete the command) is still
the command even with the binary transmission option in effect. IAC
followed by a character which is not a defined TELNET command has the
same meaning as IAC followed by NOP, although an IAC followed by an
undefined command should not normally be sent in this mode.

6. Implementation Suggestions

It is foreseen that implement?!tions of the binary transmission option
will choose to refuse some other options (such as the EBCDIC
transmission option) while the binary transmission option is in

r&

Postel & Reynolds [Page 2]

2-596

'.V.V^'.
■ " * * " *•' ".""'"->" "» * * - •*.'**• •"•**• *"■**• *"• *'• **» *"• "'• * ". ".* ■» \ • ' * •»%* *• **" »

B*

APPLICATION LEVEL: TLNT-OPS RFC 856

RFC 856 May 1983

effect. However, if a pair of hosts can understand being in binary j?
transmission mode simultaneous with being in, for example, echo mode,
then it is all right if they negotiate that combination.

It should be mentioned that the meanings of WON'T and DON'T are
dependent upon whether the connection is presently being operated in
binary mode or not. Consider a connection operating in, say, EBCDIC
mode which involves a system which has chosen not to implement any
knowledge of the binary command. If this system were to receive a DO
TRANSMIT-BINARY, it would not recognize the TRANSMIT-BINARY option
and therefore would return a WON'T TRANSMIT-BINARY. If the default
for the WON'T TRANSMIT-BINARY were always NVT ASCII, the sender of
the DO TRANSMIT-BINARY would expect the recipient to have switched to
NVT ASCII, whereas the receiver of the DO TRANSMIT-BINARY would not
make this interpretation.

Thus, we have the rule that when a connection is not presently
operating in binary mode, the default (i.e., the interpretation of
WON'T and DON'T) is to continue operating in the current mode,
whether that is NVT ASCII, EBCDIC, or some other mode. This rule,
however, is not applied once a connection is operating in a binary
mode (as agreed to by both ends); this would require each end of the
connection to maintain a stack, containing all of the encoding-method
transitions which had previously occurred on the connection, in order
to properly interpret a WON'T or DON'T. Thus, a WON'T or DON'T
received after the connection is operating in binary mode causes the
encoding method to revert to NVT ASCII.

It should be remembered that a TELNET connection is a two way
communication channel. The binary transmission mode must be
negotiated separately for each direction of data flow, if that is
desired.

j implementation of the binary transmission option, as is the case with
*. plementations of all other TELNET options, must follow the loop
pi wenting rules given in the General Considerations section of the
TE.NET Protocol Specification.

Consider now some issues of binary transmission both to and from
both a process and a terminal:

a. Binary transmission from a terminal.

The implementer of the binary transmission option should
consider how (or whether) a terminal transmitting over a TELNET
connection with binary transmission in effect is allowed to
generate all eight bit characters, ignoring parity
considerations, etc., on input from the terminal.

Postal & Reynolds [Page 3]

2-597

in ■ infiii i vm i ü^j^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Postel & Reynolds [Page 4]

LvV

RFC 856 May 1983

b. Binary transmission to a process.

The implementer of the binary transmission option should
consider how (or whether) all characters are passed to a
process receiving over a connection with binary transmission in
effect. As an example of the possible problem, TOPS-20
intercepts certain characters (e.g., ETX, the terminal
control-C) at monitor level and does not pass them to the fj£
process. £\W

c. Binary transmission from a process. Mf,
' W

The implementer of the binary transmission option should £«>>
consider how (or whether) a process transmitting over a V„**-*
connection with binary transmission in effect is allowed to '"v'v
send all eight bit characters with no characters intercepted by *!>£*
the monitor and changed to other characters. An example of
such a conversion may be found in the TOPS-20 system where
certain non-printing characters are normally converted to a
Circumflex (up-arrow) followed by a printing character.

d. Binary transmission to a terminal.

The implementer of the binary transmission option should
coiisider how (or whether) all characters received over a
connection with binary transmission in effect are sent to a
local terminal. At issue may be the addition of timing
characters normally inserted locally, parity calculations, and
any normal code conversion.

2-598

APPLICATION LEVEL: TLNT-OPS RFC 857

Network Working Group

Obsoletes: NIC 15390

J. Postel
. Reynolds

ISI
May 1983

TELNET ECHO OPTION

This RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet are expected to adopt and implement this standard.

1. Command Name and Code

ECHO 1

2. Command Meanings

IAC WILL ECHO

The sender of this command REQUESTS to begin, or confirms that it
will now begin, echoing data characters it receives over the
TELNET connection back to the sender of the data characters.

IAC WON'T ECHO

The sender of this command DEMANDS to stop, or refuses to start,
echoing the data characters it receives over the TELNET connection
back to the sender of the data characters.

IAC DO ECHO

The sender of this command REQUESTS that the receiver of this
command begin echoing, or confirms that the receiver of this
command is expected to echo, data characters it receives over the
TELNET connection back to the sender.

IAC DON'T ECHO

The sender of this command DEMANDS the receiver of this command
stop, or not start, echoing data characters it receives over the
TELNET connection.

3. Default

WON'T ECHO

DON'T ECHO

No echoing is done over the TELNET connection.

4. Motivation for the Option

m

Postel 6 Reynolds [Page 1]

2-599

£^j^^^i^^^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 857 May 1983

The NVT has a printer and a keyboard which are nominally
interconnected* so that "echoes" need never traverse the network; that
is to say, the NVT nominally operates in a mode where characters
typed on the keyboard are (by some means) locally turned around and
printed on the printer. In highly interactive situations it is
appropriate for the remote process (command language interpreter,
etc.) to which the characters are being sent to control the way they
are echoed on the printer. In order to support such interactive
situations, it is necessary that there be a TELNET option to allow
the parties at the two ends of the TELNET connection to agree that
characters typed on an NVT keyboard are to be echoed by the party at
the other end of the TELNET connection.

.*>*

5. Description of the Option

When the echoing option is in effect, the party at the end performing
the echoing is expected to transmit (echo) data characters it
receives back to the sender of the data characters. The option does
not require that the characters echoed be exactly the characters
received (for example, a number of systems echo the ASCII ESC
character with something other than the ESC character) . When the
echoing option is not in effect, the receiver of data characters
should not echo them back to the sender; this, of course, does not
prevent the receiver from responding to data characters received.

The normal TELNET connection is two way. That is, data flows in each
direction on the connection independently; and neither, either, or
both directions may be operating simultaneously in echo mode. There
are five reasonable modes of operation for echoing on a connection
pair:

Process 1 Process 2

Neither end echoes

Process 1
\
/ Process 2

One end echoes for itself

Postel & Reynolds [Page 2]

2-6M

Kf-"'

APPLICATION LEVEL: TLNT-OPS RFC 857

RFC 857 May 1983

<

\
Process 1 / Process 2
 >

One end echoes for the other

<

\ /
Process 1 / \ Process 2
 >

Both ends echo for themselves

<

\ /
Process 1 / \ Prooass 2
 >

One end echoes for both ends

This option provides the capability to decide on whether or not
either end will echo for the other. It does not, however, provide
any control over whether or not an end echoes for itself; this
decision must be left to the sole discretion of the systems at each
end (although they may use information regarding the state of
"remote" echoing negotiations in making this decision).

It should be noted that if BOTH hosts enter the mode of echoing
characters transmitted by the other host, then any character
transmitted in either direction will be "echoed" oack and forth
indefinitely. Therefore, care should be taken in each implementation
that if one site is echoing, echoing is not permitted to be turned on
at the other.

As discussed in the TELNET Protocol Specification, both parties to a
full-duplex TELNET connection initially assume each direction of the
connection is being operated in the default mode which is non-echo
(non-echo is not using this option, and the same as DON'T ECHO, WON'T
ECHO) .

If either party desires himself to echo characters to the other party
or for the other party to echo characters to him, that party gives
the appropriate command (WILL ECHO or DO ECHO) and waits (and hopes)
for acceptance of the option. If the request to operate the
connection in echo mode is refused, «-hen the connection continues to
operate in non-echo mode. If the request to operate the connection
in echo mode is accepted, the connection is operated in echo mode.

Postel & Reynolds [Page 3]

2-601

V v v v \- •.*• V V V V - .- V > V V
U 'l"!' 'f A4>tLii*wiw*AB ■eae^emeü At*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 857 May 1983

After a connection has been changed to echo mode, either party may
demand that it revert to non-echo mode by giving the appropriate
DON'T ECHO or WON'T ECHO command (which the other party must confirm
thereby allowing the connection to operate in non-echo mode). Just
as each direction of the TELNET connection may be put in remote
echoing mode independently, each direction of the TELNET connection
must be removed from remote echoing mode separately.

Implementations of the echo option, as implementations of all other
TELNET options, must follow the loop preventing rules given in the
General Considerations section of the TELNET Protocol Specification.
Also, so that switches between echo and non-echo mode can be made
with minimal confusion (momentary double echoing, etc.), switches in
mode of operation should be made at times precisely coordinated with
the reception and transmission of echo requests and demands. For
instance, if one party responds to a DO ECHO with a WILL ECHO, all
data characters received after the DO ECHO should be echoed and the
WILL ECHO should immediately precede the first of the echoed
characters.

The echoing option alone will normally not be sufficient to effect
what is commonly understood to be remote computer echoing of
characters typed on a terminal keyboard--the SUPPRESS-00 AHEAD option
will normally have to be invoked in conjunction with the ECHO option
to effect character-at-a-time remote echoing.

6. A Sample Implementation of the Option

The following is a description of a possible implementation for a
simple user system called "UHOST".

A possible implementation could be that for each user terminal, the
UHOST would keep three state bits: whether the terminal echoes for
itself (UHOST ECHO always) or not (ECHO mode possible), whether the
(human) user prefers to operate in ECHO mode or in non-ECHD mode, and
whether the connection from this terminal to the server is in ECHO or
non-ECHO mode. We will call these three bits P(hyslcal), D(esired),
and A(ctual) .

When a terminal dials up the UHOST the P-bit is set appropriately,
the D-bit is set equal to it, and the A-bit is set to non-ECHO. The
P-bit and D-bit may be manually reset by direct coamands if the user
so äntslres. For example, a user in Hawaii on a "full-duplex"
terminal, would choose not to operate in ECHO mode, regardless of the
preference of a mainland »mr^er. He should direct the UHOST to
change his D-bit from ECHO to non-ECHO.

When a connection is opened from the UHOST terminal to a server, the

Postel & Reynolds [Page 4]

2-602

"-V*V

4-5

■ ■J Verirr'^

•:■>:

APPLICATION LEVEL: TLNT-OPS RFC 857

RFC 857 May 1983 W*B

UHOST would send the server a DO ECHO command if the MIN (with
non-ECHD less than ECHO) of the P- and D-bits is different from the
A-bit. If a WON'T ECHO or WILL ECHO arrives from the server, the
UHOST will set the A-bit to the MIN of the received request, the
P-bit, and the D-bit. If this changes the state of the A-bit, the
UHOST will send off the appropriate acknowledgment; if it does not,
then the UHOST will send off the appropriate refusal if not changing
meant that it had to deny the request (i.e., the MIN of the P-and
D-bits was less than the received A-request) .

If while a connection is open, the UHOST terminal user changes either
the P-bit or D-bit, the UHOST will repeat the above tests and send
off a DO ECHO or DON'T ECHO, if necessary. When the connection is
closed, the UHOST would reset the A-bit to indicate UHOST echoing.

While the UHOST's implementation would not involve DO ECHO or DON'T
ECHO commands being sent to the server except when the connection is
opened or the user explicitly changes his echoing mode, bigger hosts
miojit invoke such mode switches quite frequently. ?or instance,
while a line-at-a-time system were running, the server miojit attempt
to put the user in local echo mode by sending the WON'T ECHO command
to the user; but while a character-at-a-time system were running, the
server might attempt to invoke remote echoing for the user by sending
the WILL ECHO command to the user. Furthermore, while the UHOST will
never send a WILL ECHO command and will only send a WON'T ECHO to
refuse a server sent DO ECHO command, a server host might often send
the WILL and WON'T ECHO commands.

Postal 6 Reynolds [Page 5]
N > ,

2-603

■. % -. *.

^>-:v^:-:-->y->:>
mm^mmää^^^mi^ät^M

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

St

i

i

•*.>.

i

»'« •• '* *'«. '» * • ""•L*"*«^*'« * *.*'

2-604

^^A^i^W^^^^j^^J^^^^^

APPLICATION LEVEL: TLNT-OPS NIC 15391

TELNET Reconnection Option
NIC 15391 (Aug. 1973)

TELNET RECONNECTION OPTION

1. Command name and code

RCP 2 (prepare to reconnect)

2. Command meanings.

IAC DO RCP

The sender of this command requests the receiver of the command to
be prepared to break the TELNET connection with the sender of the
command and to re-establish the TELNET connection with some other
party (to be specified later).

IAC WILL RCP

The receiver of this command agrees to break its TELNET connection
to the sender of the DO RCP command and to re-establish the
connection with the party to be specified by the sender of the DO
RCP command.

IAC WON'T RCP

The receiver of this command refuses to take part in a
reconnection.

IAC DON'T RCP

The sender of this command demands the cancellation of its
previous DO RCP command.

IAC SB RCP RCS <host> <socket>

The sender of this command instructs the receiver of the command
to transfer this TELNET connection to the place specified by
<host> <socket>. The code for RCS is 0.

IAC SB RCP RCW <host> <socket>

The sender of this command instructs the receiver of the command
to break the TELNET connection and to await a new TELNET
connection from the place specified by <host> <socket>. The code
for RCW is 1.

2-605

>'y<>>s*>V^ vvvvv semeaasi vvYYiYiVyYiYYiY:

DDN PROTOCOL HANDBOOK - VOLUME TV/O 1985

TELNET Reconnection Option
NIC 15391 (Aug. 1973) SS;

3. Default.

WON'T RCP

i.e., no reconnection is allowed.

4. Motivation for the option.

There are situations in which it is desirable to move one or both
ends of a communication path from one Host to another.

A. Consider the case of an executive program which TIP users could
use to get network status information, send messages, link to
other users, etc. Due to the TIP'S limited resources the
executive program would probably not run on the TIP itself but
rather would run on one or more larger Hcsts who would be willing
to share some of their resources with the TIP (see Figure 1) .

The TIP user could access the executive by typing a command such
as "QEXEC"; the TIP should then ICP to Hostl1* executive port.
After obtaining the latest network news and perhaps sending a few
messages, theuser would be ready to log into Host2 (in general not
the same as Hostl) and do some work. At that point he would like
to tell the executive program that he Is ready to use Kost2 and
have the executive hand him off to Host 2. To do this the executive
program would first interact with Host2, telling it to expect a
call from the TIP, and then would instruct the TIP to reconnect to
Host2. When the user logs off Host2 he could be passed back to
the executive at Hostl preparatory to doing more elsewhere. The
reconnection activity would be invisible to the TIP user.

•\ *

„,*..*.* J

! EXEC •<•
/

Host 1 ! /
! /

reconnection V /
/

/

I i

Host 2

FIGURE 1

•>• USER !

TIP

2-606

. \ •.**\ ••. .\ -*. -\ .'. .•. •'. ••. ••„
^yyjA'*M* 'i>> i^j^^L^y^^-^j^'jfay^Wi* j^j^^Wiwft»

APPLICATION LEVEL: TLNT-OPS NIC 15391

TELNET Reconnect!on Option
NIC 15391 (Aug. 1973)

B. Imagine a scenario in which a user could use the same name and
password (and perhaps account) to log into any server on the
network. For reasons of security and economy it would be
undersirable to have every name and password stored at every site.
A user wanting to use a Host that doesn't have his name or
password locally would connect to it and attempt to log in as
usual (see Figure 2). The Host, discovering that it doesn't know
the user, would hand him off to a network authentication service
which can determine whether the user is who he claims to be. If
the user passes the authentication test he can be handed back to
the Host which can then provide him service.

If the user doesn't trust the Host and is afraid that it might
read his password rather than pass him off to the Authenticator
he could connect directly to the authentication service. After
authentication, the Authenticator can pass him off to the Host.

The idea is that the shuffling of the user back and forth between
Kost and Authenticator should be invisible to the user.

!< >! USER \
 /
Host ! /

/ i

reconnection V /
for /

authentication /

i

Authenticator

FIGURE 2a

•J-607

!*^*^*'^^^e**,!^*'g^|g'*»^ 'll M>t *L *l_ »L "t 'iLi»lW!«iL«i* fn+ ;■ >■»! j! ,n; VMjt jtjA; t j,,^

Wtt

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

TELNET Reconnoction Option
NIC 15391 (Aug. 1973)

!<-

Host

authentication
complete

/
/

Authsnt i.cator

->! USER !

FIGURE 2b

C. The McROSS air traffic simulation system (see 1972 SJCC paper
by Thomas) already supports reconnect ion. It permits an on -
going simulation to reconfigure itself by allowing parts to move
from computer to computer. For example, in a simulation ot air
traffic in the Northeast, the program frappant simulating the New
York Enroute air spacecould move from Host2 to Hosts (see figure
3) . As part of the reconfiguration process the New York Terminal
area simulator and Boston Enroute area simulators break their
connections with the New York Enroute simulator at Host2 and
reconnect to It at Host5.

Host 1 Host 2 Host 3
) — (
! NY ! / ! NY ! \ ! BOS !
! Term •<--/-->• Enrt »<--\-->» Enrt !<•
 \ / —

/ \ move / \
/ \ ! / \

reconnect \ ' / reconnect
\ v /
\ /

Host 4

! BOS !
>* Term !

! NY !
• Enrt !

Host 5

FIGURE 3

v

2-60$

^^^^^g^^^^^^sg^s^^^
asamae

APPLICATION LEVEL: TLNT-OPS NIC 15391

TELNET Reconnection Option
NIC 15391 (Aug. 1973)

5. An abstract description of a reconnection mechanism.

The reconnection mechanism includes four (abstract) commands:

Reconnect Request: RRQ <path>
Reconnect OK: ROK <path>
Reconnect No: RNO <path>
Reconnect Do: RDO <path> <destination>

where <path> is a communication path to be redirected to
<destination>.

Assume that HI wants to move its end of communication path A-C from
itself to port D at H3 (Figure 4) .

1 C ! ! D !

H2 \ H3
\
\
\

! A !

C !<- ->! D

H2 H3

! A

HI

(b) desired situation

HI

(a) situation

FIGURE 4

The reconnection proceeds by steps:

a. HI arranges for the reconnection by sending RRQ to H2:

H1->H2: RRQ (path A-C)

b. H2 agrees to reconnect and acknowledges with ROK:

H2->H1: ROK (path C-A)

c. HI notes that H2 has agreed to reconnect and instructs H2 to
perform the reconnection;

H1->H2: RDO (path A-C) (Host H3, PortD)

2-609

..-. *. A % % •,

l£Z^„vu»•■ »•„ ■.I«, »\.V, t^A'/:±,:jt;im\r*,:jf^Lä ,..-,«\ A«\ ->:«^k^VAw'^Wjt.-A'.*;tC':/.V.i'..V-!\'i'J.VAAVftVAAVJA'AA »^yV^'A'AA

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Hu
ZffT''

TELNET Reconnection Option
NIC 15391 (Aug. 1973)

d. HI breaks paths A-C.

H2 breaks path C-A and initiates path C-D.

In order for the reconnection to succeed HI must, of course, have
arranged for H3's cooperation. One way HI could do this would be
to establish the path B-D and then proceed through the
reconnection protocol exchange with H3 concurrently with its
exchange with H2 (See Figure 5) :

H1->H3:
H3->H1:
H1->H3:

RRQ (path B-D)
ROK (path D-B)
RDO (path B-D) (Host H2, Port C)

C !
/

H2 \../.
V
A

/ \
reconnect -

\
! D

■AB!

.\../ H3
V
A

/ \
reconnect

HI '"-!•

FIGURE 5

Either of the parties may use the RNO command to refuse or abort
reconnection. H2 could respond to Hi's RRQ with RNO; HI can abort the
reconnection by responding to ROK with RNO rather than RDO.

It is easy to insure that messages in transit are not lost during the
reconnection. Receipt of the ROK message by HI is taken to mean that no
further messages are coming from H2; similarly receipt of RDO from HI by
H2 is taken to mean that no further messages are coming from HI.

To complete the specification of the reconnection mechanism consider the
situation in which two "adjacent" entities initiate reconnections:

2-610

' ->v« • - r • • * - * %> • * .*>" . - ► * . • .* . * . * .'- . .'
.». *.. ».»..,».. _*_.^>. t- .*■ imä*

APPLICATION LEVEL: TLNT-OPS NIC 15391

TELNET Reconnection Option
NIC 15391 (Aug. 1973)

C !

Hl

! E

H4

C ! ! E

Hl H4
==>

i B j i n !

H2 H3

(a) situation

! B ! ! D !

H2 H3

(b) desired situation

FIGURE 6

H2 and H3 "simultaneously" try to arrange for reconnection:

H2->H3: RRQ (path B-D)

H3->H2: RRQ (path D-B)

Thus. H2 sees an RRQ from H3 rather than an ROK or RNO in response to
its RRQ to H3. This "race" situation can be resolved by having the
reconnections proceed in series rather than in parallel: first one
entity (say H2) performs its reconnect and then the other (H3) performs
its reconnect. There are several means that could be used to decide
which gets to go first. Perhaps the simplest is to base the decision on
sockets and site addresses: the entity for which the 40 bit number
formed by concatenating the 32 bit socket number with the 8 bit site
address is largest gets to go first. Using this mechanism the rule is
the following:

If H2 receives an RRQ from H3 in response to an RRQ of its own:

(let NH2, NH3 = the 40 bit numbers corresponding to H2 and H3)

a. if NII2>NH3 then both H2 and H3 interpret H3's RRQ as an ROK in
response to H2's RRQ.

b. if NH2<NH3 then both interpret H3*s RRQ as an RNO in response
to H2's RRQ. This would be the only case in which it makes
sense to "ignore" the refusal and try again - of course,
waiting until completion of the first reconnect before doing
so.

2-611

p:>^/:-:y:::c;';y>;-:;;-:v.\vv^;;;:>^ rV^-VV<v-VV*V^yo%'V,VAyo*oV',V

s*>>^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

TELNET Reconnection Option
NIC 15391 (Aug. 1973)

Once an ordering has been determined the reconnection proceeds as though
there was no conflict.

The following diagram describes the legal protocol command/response
exchange sequences for a reconnection initiated by P:

! P ! ! Q !

! P->Q !! RRQ !

I
V

! Q->P M ROK ! RNO e! RRQ !

j

V

-yes ! NP > NQ? ! no-
....... ;

V V V

!P->Q!!RDO eiRNO e! !Q->P!!RDO e!RNO a!

NP and NQ are the 40 bit numbers for P and Q; e indicates end of
sequence.

6. A description of the option.

The reconnection mechanism described abstractly in the previous
section can be effected as a TELNET option by use of the command RCP.
Using this command and the TELNET DO, DON'T, WILL, WON'T, and SB
prefixes, the four command» used in the previous abstract description
become

RRQ => DO RCP

ROK => WILL RCP

2-612

II I Ullfl lliliililili

•. v

■>^'-»»;V;>:AA:>:1 .-ii-üi- mm ***

APPLICATION LEVEL: TLNT-OPS NIC 15391

TELNET Reconnection Option
NIC 15391 (Aug. 1973)

RNO => WON'T RCP ; for responses to DO RCP

DON'T RCP ;for responses to WILL RCP

;i.e. used to cancel an RCP.

RDO <host> <socket> => SB RCP RCS <host> <socket>

A fifth command is also introduced

ÜWT <host> <socket> => SB RCP RCW <host> <socket>

The first three commands require no parameters since they refer to
the connections they are received on. For RDO and RWT, <host> is an
8 bit (= 1 TELNET character) Host address and <socket> is a 32 bit (=
4 TELNET characters) number that specifies a TELNET receive socket at
the specified Host (the associated transmit socket is always one
higher than the receive socket.

A pending reconnection can be activiated with either RDO or RWT. Thm
response to either is to first break the TELNET connection with the
sender and then reopen the TELNET connection to the Host and sockets
specified. For RDO, the connection is to be reopened by sending two
RFC'c: for RWT. by waiting for two RFC's.

The RWT command is introduced to avoid requiring Hosts to queue
RFC's.

As an example, the reconnnection

H2 H3 H2 H3

! Y ! Z !
i

! Y
1

i ——

m -~
Z !

i !<-

n\ \
\ \
\ \m
\ "

j

j
X

p//
/ /

/ /
- /q —>
l

I

as follows:

~~ n

1
I

X \
1

HI

could be accomplished

HI

2-613

bW^VV/*' *-• •-•\i»*_\ •*%.■-•* ^* '.»vA

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

TELNET Reconnection Option
NIC 15391 (Aug. 1973)

X->Y
X->Z
Y->X
Z->X
X->Y

(=IAC DO RCP)
(=IAC DO RCP)
(=IAC WILL RCP)
(=IAC WILL RCP)
(=IAC SB RCP RCW H3 P)

RRQ
RRQ
ROK
ROK
RWT H3 P

X closes connections to Y
Y closes connections to X
Y waits for SIR and RTS from H3
X->Z: RDO H2 N (=IAC SB RCP RCS H2 N)
X closes connections to Z
Z closes connections to X
Z sends SIR and RTS to H2 which Y answers with matching RTS
and STR to compete reconnection

The RCS and RCW sub-commands should never be sent until a DO RCP has
been acknowledged by a WILL RCP. Thus a Host not choosing to
implement the reconnection option does not have to know what RCP
means--all the Host need do in response to DO RCP is to transmit
WON'T RCP. The WILL RCP and WON'T RCP commands should never be
volunteered. If an unsolicited WILL RCP is ever received, a DON'T
RCP should be fired back, which should be answered bya WON'T RCP
command. If an unsolicited WON'T RCP command is received, it should
be treated as a No-operation.

7. A word about SECURITY.

It should be clear that the decision to accept or reject a particular
reconnection request is the responsibility of :he entity (person at
the terminal or process) using the connection. In many cases the
entity may chose to delegate that responsibility to its TELNET (e.g.,
Example A, Section 4) . However, the interface a Host provides to the
reconnection mechanism would best include means for local entities to
exercise control over response to remotely intitiated reconnection
requests. For example, a user-TELNET might support several modes of
operation with respect to remotely initiated reconnections:

1. transparent: all requested reconnections are to be performed
in a way that is invisible to the user;

2. visible: all requested reconnections are to be performed and
the user is to be informed whenever a reconnection occurs;

3. confirmation: the user is to be informed of each reconnection
request which he may accept or reject;

4. rejection: all requested reconnects are to be rejected.

10

2-6M

.*..»v.,. >^:-^>AV:V:^

APPLICATION LEVEL: TLNT-OPS RFC 858

Network Working Group
Request for Comments: 858

Obsoletes: NIC 15392

J. Postel
J. Reynolds

ISI
May 1983

TELNET SUPPRESS GO AHEAD OPTION

This RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet are expected to adopt and implement this standard.

1. Command Name and Code

SUPPRESS-GO-AHEAD 3

2. Command Meanings

IAC WILL SUPPRESS-GO-AHEAD

The sender of this command requests permission to begin
suppressing transmission of the TELNET GO AHEAD (GA) character
when transmitting data characters, or the sender of this command
confirms it will now begin suppressing transmission of GAs with
transmitted data characters.

IAC WON'T SUPPRESS-GO-AHEAD

The sender of this command demands to begin transmitting, or to
continue transmitting, the GA character when transmitting data
characters.

IAC DO SUPPRESS-GO-AHEAD

The sender of this commannd requests that the sender of data start
suppressing GA when transmitting data, or the sender of this
command confirms that the sender of data is expected to suppress
transmission of GAs.

IAC DON'T SUPPRESSS-GO-AHEAD

The sender of this command demands that the receiver of the
command start or continue transmitting GAs when transmitting data.

3. Default

WON'T SUPPRESS-GO-AHEAD

DON'T SUPPRESS-GO-AHEAD

Go aheads are transmitted.

Postel & Reynolds [Page lj

2-615

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Postal & Reynolds [Page 2]

2-616

RFC 858 May 1983

4. Motivation for the Option

While the NVT nominally follows a half duplex protocol complete with
a GO AHEAD signal, there is no reason why a full duplex connection
between a full duplex terminal and a host optimized to handle full
duplex terminals should be burdened with the GO AHEAD signal.
Therefore, it is desirable to have a TELNET option with which parties
involved can agree that one or the other or both should suppress
transmission of GO AHEADS.

5. Description of the Option jfc

When the SUPPRESS-GO-AHEAD option is in effect on the connection
between a sender of data and the receiver of the data, the sender
need not transmit GAs.

It seems probable that the parties to the TELNET connection will
suppress GO AHEAD in both directions of the TELNET connection if GO
AHEAD is suppressed at all; but, nonetheless, it must be suppressed
in both directions independently.

With the SUPPRESS-GO-AHEAD option in effect, the IAC GA command
should be treated as a NOP if received, although IAC GA should not
normally be sent in this mode.

6. Implementation Considerations

As the SUPRESS-GO-AHEAD option is sort of the opposite of a line at a
time mode, the sender of data which is suppressing GO AHEADs should
attempt to actually transmit characters as soon as possible (i.e.,
with minimal buffering) consistent with any other agreements which
are in effect.

In many TELNET implementations it will be desirable to couple the
SUPPRESS-GO-AHEAD option to the echo option so that when the echo
option is in effect, the SUPPRESS-GO-AHEAD option is in effect
simultaneously: both of these options will normally have to be in
effect simultaneously to effect what is commonly understood to be
character at a time echoing by the remote computer.

■r

APPLICATION LEVEL: TLNT-OPS NIC 15393

m
TELNET Approximate Message Size Negotiation Option

NIC 15393 (Aug. 1973)

TELNET APPROXIMATE MESSAGE SIZE NEGOTIATION OPTION

1. Command name and code.

NAMS 4

(Negotiate Approximate Message Size)

2. Command meanings.

IAC WILL NAMS

The sender of this command requests, or agrees, to negotiate the
approximate size for messages of data characters it sends.

IAC WON'T NAMS

The sender of this command refuses to negotiate the approximate
size Cor messages of data characters it sends.

IAC DO NAMS

The sender of this command requests the receiver of this command
to negotiate the approximate size for messages of data characters
transmitted by the command receiver.

IAC DON'T NAMS

The sender of this command refuses to negotiate the approximate
size for
messages of data characters transmitted by the command receiver.

IAC SB NAMS DR <16 bit value>

The sender of this command requests the receiver of this command
to set its approximate message size for data the ccnsnand receiver
transmits to the value specified in the 16 bit parameter, a data
character count. Thecode for DR (Data Receiver) is 0.

IAC SB NAMS DS <16 bit value>

The sender of this command requests or agrees to set its
approximate message size for data it transmits to the value
specified in the 16 bit parameter, a data character count. The
code for DS (Data Sender) is 1.

2-61',

L.1 » .\ aJLmÄ aJU i*>S - *"■ i i^tA< 1 * v^^> *- iLi«"- aim • >.»t»Ul ■ ft ■ :>.i.>. .»..,-. ».„ > - ■», *. .'- »-- ■?- -•-'»•- ■? - ."~ .-■-.». V_ w-V.' fc.

DPN PROTOCOL HANDBOOK - VOLUME TWO 1985

TELNET Approximate Message Size Negotiation Option
NIC 15393 (Aug. 1973)

3. Default

WON'T NAMS SSfe

DON'T NAMS

i.e., no attempt will be made to agree on a message size.

4. Motivation for the option.

The TELNET protocol does not specify how many characters the
transmitter of data should attempt to pack into messages it sends.
However, 1) some receivers may prefer received messages to generally
have some minimum size, for example, to lessen the burden of
processing input interrupts; 2) some receivers may prefer received
data messages to generally have some maximum size, for example,
because the maximum data message size could be used in conjunction
with the Host/Host protocol message and bit allocates to more
efficiently utilize input buffer space; 3) some transmitters may have
maximum sizes for transmitted data messages, information which could
be used in conjunction with the Host/Host protocol message and bit
allocates to more efficiently utilize the receiver's input buffer
space; and 4) some transmitters may desire to transmit some minimum
size message, for example, to lessen the burden of processing output
interrupts.

Therefore, it is desirable to have some mechanism whereby the parties
involved can attempt to agree on the approximate size of messages
transmitted over the connection. (It might be even more powerful to
be able to negotiate approximate or even exact upper and lower bounds
on message size. However, fixed bounds would sometimes be hard to
manage and sometimes even in conflict with Host/Host protocol
allocates; and specifying both upper and lower bounds, even
approximately, seems overly complicated considering the expected
payoff.)

5. Description of the option.

With the option which specifies the approximate size of messages
transmittea over the connection, the transmitter attempts to send
messages of the specified size unless some other constraint (for
instance, an end of line) requires the message to be sent sooner, or
characters for transmission arrive so fast that the message has to be
bigger than the specified size. The option is to be used strictly to
improve the STATISTICS (e.g.. timing and buffering) of message
reception and transmission -- the option does NOT specify any
absolutes.

'*>;

2-618

APPLICATION LEVEL: TLNT-OPS NIC 15393

TELNET Approximate Message Size Negotiation Option
NIC 15393 (Aug. 1973)

With this option not in effect, message size is completely (even
statistically) undefined as per the NVT specification.

Once the data transmitter and receiver have agreed to negotiate the
approximate message size, they must actually do this negotiation.
This is done using the DS and DR SB commands. The transmitter of
data messages may give the SB NAMS DS command and the receiver may
give the SB NAMS DR command. The rules for negotiation of the acutal
aproximate message size are as follows:

a.

b.

c.

d.

Either party may at any time send a SB command specifying a
value less than any previously sent or received and
immediately assume that that value has been agreed upon.

If either party receives a SB command, the party should assume
the value specified in the received command is in effect if
the party has not previously sent a SB command specifying a
lover value.

Before any SB command is sent, the approximate message size is
undefined.

At any time either party may quit the whole thing by sending a
DON'T or WON'T NAMS command which must be acknowledged and the
approximate message length becomes undefined.

e. An approximate message size value may not be less than one.

As the receiver and transmitter may have conflicting requirements for
the approximate message size, neither should be cavalier about
requesting a specified approximate message size, each "bending over
backward" to let the other party (who should be presumed to have a
greater need) specify the approximate message size.

Host/Host protocol allocate considerations, of course, always
dominate negotiated message size considerations.

2-610

V*\V>.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-620

iiäiyiäi^^
• . .■«. • .% .'• »*-. - • ,'•.'» ■■ *•.

"\"V ^MüMl

APPLICATION LEVEL: TLNT-OPS RFC 859

Network Working Group J. Postal
Request for Comments: 859 J. Reynolds
^ ISI
Obsoletes: RFC 651 (NIC 31154) May 1983

TELNET STATUS OPTION

This RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet are expected to adopt and implement this standard.

1. Command Name and Code

STATUS 5

2. Command Meanings

This option applies separately to each direction of data flow.

IAC DON'T STAIUS

Sender refuses to carry on any further discussion of the current
status of options.

IAC WON'T STATUS

Sender refuses to carry on any further discussion of the current
status of options.

IAC SB STATUS SEND IAC SE

Sender requests receiver to transmit his (the receiver's)
perception of the current status of Telnet options. The code for
SEND is 1. (See below.)

IAC SB STATUS IS ... IAC SE

Sender is stating his perception of the current status of Telnet
options. The code for IS is 0. (See below.)

3. Default

DON'T STATUS, WON'T STATUS

The current status of options will not be discussed.

4. Motivation for the Option

This option allows a user/process to verify the current status of
TELNET options (e.g., echoing) as viewed by the person/process on the
other end of the TELNET connection. Simply renegotiating options

Postal * Reynolds [Page 1]

$

2-621

*•"• *•#&•*:-::•:• Ä•• tt>i•>:-;->>;>a^^^a^tt^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

*i%i

PFC 859 May 1983

could lead to the nonterminatlng request loop problem discussed in
the General Consideration section of tho TELNET Specification. This
option fits into the normal structure of TELNET options by deferring
the actual transfer of status information to the SB command.

5. Description of the Option

WILL and DO are used only to obtain and grant permission for future
discussion. The actual exchange of status information occurs within
option subcommands (IAC SB STATUS...).

Once tne two hosts have exchanged a WILL and a DO, the sender of the
WILL STATUS is free to transmit status information, spontaneously or
in response to a request from the sender of the DO. At worst, this
may lead to transmitting the information twice. Only the sender of
the DO may send requests (IAC SB STATUS SEND IAC SE) and only the
sender of the WILL may transmit actual status information (within an
IAC SB STATUS IS ... IAC SE command).

IS has the subcommands WILL, DO and SB. They are used EXACTLY as used
during the actual negotiation of TELNET options, except that SB is
terminated with SE, rather than IAC SE. Transmission of SE, as a
regular data byte, is accomplished by doubling the byte (SE SE).
Options that are not explicitly described are assumed to be in their
default states. A single IAC SB STATUS IS ... IAC SE describes the
condition of ALL options.

>;>

Postal it Reynolds [Page 2]

2-622

;.: -;v>:v;yv;v>>:>;vv: !*Av.vV-*.

IliieiiiailiaMMiiieiMiiiaea i

APPLICATION LEVEL: TLNT-OPS RFC 859

RFC 859 May 1983

The following is an example of use of the option:

Hostl: IAC DO STATUS

Host2: IAC WILL STATUS

(Host2 is now free to send status information at any time.
Solicitations from Hostl are NOT necessary. This should not
produce any dangerous race conditions. At worst, two IS's will
be sent.)

Hostl (perhaps): IAC SB STATUS SEND IAC SE

Host2 (the following stream is broken into multiple lines only for
readability. No carriage returns are implied.):

IAC SB STATUS IS

WILL ECHO

DO SUPPRESS-GO-AHEAD

WILL STATUS

DO STATUS

IAC SE

Explanation of Host2's perceptions: It is responsible for echoing
back the data characters it receives over the TELNET connection;
it will not send Go-Ahead signals; it will both issue and request
Status information.

th

**.>>

Postel & Reynolds [Page 3]

2-623

^'"-iM^MBtalgtifctaaBUi^^^lfc MMM^MIMMIIMHMI

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-624

•••./.•.•• VAV. ■•/-% »-.V*.-» .--V^jy .'. ■'-•'>■ ~v >'»'■ -m- >*"V* ^ •-%»•• .V -^ kVWi J*.> ■'■ -'• JV *> ^ .'.- .*• >> -V»'^•-J
%^VV»^>.i'«_»>^\/

APPLICATION LEVEL: TLNT-OPS RFC 860

(VT

RFC 860 May 1983

Suppose that Process A of Figure 1 wishes to synchronize with B. The
DO TIMING-MARK is sent from A to B. B can refuse by replying WON'T
TIMING-MARK, or agree by permitting the timing mark to flow through
his "outgoing" buffer, BUF2. Then, instead of delivering it to the
terminal, B will enter the mark into his "incoming" buffer BUF1, to
flow through toward A. When the mark has propagated through B's
incoming buffer, B returns the WILL TIMING-MARK over the TELNET
connection to A.

PROCESS A
+

PROCESS B Terminal
+ Timing*-- +

I
I

Mark I

TELNETconnection
+ +

| WILL TIMING MARK | BUF 1
 - 1--I-I-H-I-I

I l-l-H-l-1
| BUF 2

- »I--H-I-I-I-I
DO TIMING MARK | | - | -1 -1 - | - |

+ + + +
(NVT process) .ME;

Figure 1

When A receives the WILL TIMING-MARK, he knows that all the
information he sent to B before sending the timing mark been
delivered, and all the information sent from B to A before turnaround
of the timing mark has been delivered.

Three typical applications are:

A. Measure round-trip delay between a process and a terminal or
another process.

B. Resynchronizing an interaction as described in section 4 above.
A is a process interpreting commands forwarded from a terminal
by B. Wien A sees an Illegal command it:

i. Sends <carriage retum>, <line feed>, <question mark>.

ii. Sends DO TIMING-MARK.

lii. Sends an error message.

iv. Starts reading input and throwing it away until it
receives a WILL TIMING-MARK.

v. Resumes interpretation of input.

Postel & Reynolds [Page 3]

2-62'«

■.»>■> LM *.* La -\ «r V V-VJ',^,j-J>-/.'lV.V-VJ>«*.V«"A"i",rt\ ^ iVsYAV»V^ViV«riMb< ^"^VV»V *?'L »j-*^- »/ r-V-Zo *->%j'V-V»V_'V-'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 860 May 1983

This achieves the effect of flushing all "type ahead" after the
erroneous command, up to the point when the user actually saw
the question mark.

C. The dual of B above. The terminal user wants to throw away
unwanted output from A.

i. B sends DO TIMING-MARK, followed by some new command.

ii. B starts reading output from A and throwing it away until
it receives WILL TIMING-MARK.

■>X

lii. B resumes forwarding A's output to the terminal.

This achieves the effect of flushing all output from A, up to
the point where A saw the timing mark, but not output generated
in response to the following command.

Postel & Reynolds [Page 4]

2-628

>.\ + <Cm.A»JLml 1 * ■ »*«- £M 1 - * - £M XM fc-fc •*-«*- ^~ »"- »*- ■'- **-*'- »'- «.*- **- HL« «"- «"- «* ■*-. ■»*- «L^. ■Z ~-*- -~ M* 1 ii r* -" -* -■*-■ ■£ *-^- Ml*Jte *-* -»

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-626

»;

RFC 860 May 1983 K

It is sometimes useful for a user or process at one end of a TELNET
connection to be sure that previously transmitted data has been
completely processed, printed, discarded, or otherwise disposed of.
This option provides a mechanism for doing this. In addition, even W?
if the option request (DO TIMING-MARK) is refused (by WON'T
TIMING-MARK) the requester is at least assured that the refuser has
received (if not processed) all previous data.

As an example of a particular application, imagine a TELNET
connection between a physically full duplex terminal and a "full
duplex" server system which permits the user to "type ahead" while
the server is processing previous user input. Suppose that both
sides have agreed to Suppress Go Ahead and that the server has agreed
to provide echoes. The server now discovers a command which it
cannot parse, perhaps because of a user typing error. It would like
to throw away all of the user's "type-ahead" (since failure of the
parsing of one command is likely to lead to incorrect results if
subsequent commands are executed), send the user an error message,
and resume interpretation of commands which the user typed after
seeing the error message. If the user were local, the system would
be able to discard the buffered input; but input may be buffered in
the user's host or elsewhere. Therefore, the servmr might »end a 00
TIMING-MARK and hope to receive a WILL TIMING-MARK from the user at
the "appropriate place" in the data stream.

The "appropriate place", therefore (in absence of other information)
is clearly just before the first character which the user typed after
seeing the error message. That is, it should appear that the timing
mark was "printed" on the user's terminal and that, in response, the
user typed an answering timing mark.

Next, suppose that the user in the example above realized that he had
misspelled a command, realized that the server would send a DO
TIMING-MARK, and wanted to start "typing ahead" again without waiting
for this to occur. He might then instruct his own system to send a
WILL TIMING-MARK to the server and then begin "typing ahead" again.
(Implementers should remember that the user's own system must
remember that it sent the WILL TIMING-MARK so as to discard the
DO/DON'T TIMING-MARK when it eventually arrives.) Thus, in this case
the "appropriate place" for the insertion of the WILL TIMING-MARK is
the place defined by the user.

It should be noted, in both of the examples above, that it is the
responsibility of the system which transmits the DO TIMING-MARK to
discard any unwanted characters; the WILL TIMING-MARK only provides
help in deciding which characters are "unwanted".

5. Description of the Option

Postel & Reynolds [Page 2}

^MM^aMMMMfttaMtttittltflllll

APPLICATION LEVEL: TLNT-OPS RFC 060

Network Working Group J- Postel
Request for Comments: 860 J. Reynolds
H ISI

Obsoletes: NIC 16238 May 1983

TELNET TIMING MARK OPTION

This RFC specifies a Standard for the ARPA community. Hosts on the ARPA
Internet are expected to adopt and implement this standard.

1. Command Name and Code

TIMING-MARK 6

2. Command Meanings

IAC DO TIMING-MARK

The sender of this command REQUESTS that the receiver of this
command return a WILL TIMING-MARK in the data stream at the
"appropriate place" as defined in section 4 below.

IAC WILL TIMING-MARK

The sender of this command ASSURES the receiver of this command
that it is inserted in. the data stream at the "appropriate place"
to insure synchronization with a DO TIMING-MARK transmitted by the
receiver of this command.

IAC WON'T TIMING-MARK

The sender of this command REFUSES to insure that tills command is
inserted in the data stream at the "appropriate place" to insure
synchronization.

IAC DON'T TIMING-MARK

The sender of this command notifies the receiver of this command
that a WILL TIMING-MARK (previously transmitted by the receiver of
this command) has been IGNORED.

3. Default

WON'T TIMING-MARK, DON'T TIMING-MARK

i.e.. No explicit attempt is made to synchronize the activities at
the two ends of the TELNET connection.

4. Motivation for the Option

Postel 6 Reynolds [P»g* 1]

2-625

.*- -'- »*~ /- r~ A.» ^ A. f> .« ^ «. mJtx !»?ilt' JL5 LAI-'IHHFI «-* *^ */. ^' »J' *.*. _'. •-' «^ v* ?- . v.--". >- ♦-* a-.*. O ».' tJ v, •-. «^ «- . ^ . -. . v . - », ^

APPLICATION LEVEL: TLNT-OPS RFC 726=

NWG/RFC# 726 JBP DHC 8-MAR-77 08:29 39237
Remote Controlled Transmission & Echoing Telnet Option

[page 1]

2-629

sr
Network Working Group Jon Postel & Dave Crocker HA
Request for Comments: 726 SRI-ARC UC Irvine j/\£j
NIC: 39237 8 March 1977 £*

Remote Controlled Transmssion and Echoing Telnet Cation

1

1. Command name and code: 2

RCTE 7 2a

2. Command meanings: 3

IAC WILL RCTE 3a

The sender of this command REQUESTS or AGREES to use
the RCTE option, and will send instructions for
controlling the other side's terminal printer. 3al

IAC WON'T RCTE 3b

The sender of this option REFUSES to send instructions
for controlling the other side's terminal printer. 3bl

IAC DO RCTE 3c

The sender REQUEST or AGREES to have the other side
(sender of WILL RCTE) issue commands which will control
his (sender of the DO) output to the terminal printer. 3cl

IAC DON'T RCTE 3d

The sender of this command REFUSES to allow the other
side to control his (sender of DON'T) terminal printer. 3dl

IAC SB RCTE <cmd> [BC1 BC2] [TCI TC2] IAC SE 3e

where: 3el

<cmd> is one 8-bit byte having the following flags
(bits are counted from the right): 3ela

■• *» N ** „*-

.OJ!?J iL'l~^ '- i -**-N -N -* —• ^ i -*> k!kkJ -V-% -'« J.'» -% i*. -*> -*» _j -.'M -'.- -*»^% _S^'» ^'» -', - . ^'m .". .*« . i -• -%,-%..*■ aJLmJL*JL*k

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 726 JBP DHC 8-MAR-77 08:29
Remote Controlled Transmission & Echoing Telnet Option

39237

Bit Meaning

0 0 = Ignore all other bits in this byte and
repeat the last <cmd> that was sent. Equals
a 'continue what you have been doing'.

1 *= Perform actions as indicated by other bits
in this byte.

1 0 = Print (echo) break character
1 = Skip (don't echo) break character

2 0 = Print (echo) text up to break character
1 = Skip (don't echo) text up to break character

3 0 = Continue using same classes of break
characters.

1 = The two 8-bit bytes following this byte
contain flags for the new break classes.

4 0 = Continue using same classes of transmit
characters.

1 = Reset transmit classes according to the two
bytes following 1) the break classes bytes,
if the break classes are also being reset,
or 2) this byte, if the break classes are
NOT also being reset.

Value (decimal) of the <cmd> byte and its meaning:

0 = Continue what you have been doing

Even numbers greater than zero (i.e. numbers with the
right most bit off) are in error and should be
interpreted as equal to zero. When the <cmd> is an
even number greater than zero, classes bytes TCI &
TC2 and/or BC1 & BC2 must not be sent.

1 « Print (echo) up to AND INCLUDING break character

3elb

3 = Print up to break character
break character

d SKIP (don't echo)

5 =! Skip text (don't echo) up to «reak character, but
PRINT break character

7 = Skip up to and including break character

Add one of the previous non-zero values to one of the
following values, to get the total decimal value for

3elc

3eld

3ele

3elf

3elg

3elh

3eli

3elj

3elk

3ell

3elm

3eln

SÜ

[page 2]

2-630

iiiltfiiii^^

APPLICATION LEVEL: TLNT-OPS RFC 726
•>i

NWG/RFC# 726 JEP DHC 8-MAR-77 08:29
Remote Controlled Transmission & Echoing Telnet Option

39237

the byte (Note that classes may not be reset without
also resetting the printing action; so an odd number
is guaranteed):

8 = Set break classes (using the next two bytes [BC1
BC2])

16 = Set transmission classes (using the next two
bytes [TCI TC2])

24 = Set break classes (using the next two bytes [BC1
BC2]) and the transmission classes (using the two
bytes after that [TCI TC2]).

Sub-commands (IAC SB RCTE...) are only sent by the
controlling host and, in addition to other functions,
functionally replace the Go-Ahead (IAC GA) Telnet
feature. RCTE also functionally replaces the Echo (IAC
ECHO) Telnet option. That is the Suppress Go-Ahead
option should be in force and the Echo option should
not be in force while the RCTE option is in use. The
echo mode on terminating use of the RCTE option should
be the default state, that is DON'T ECHO, WON'T ECHO.

Classes for break and transmission (the right-most bit
of the second byte (TC2 or BC2) represents class 1; the
left-most bit of the first byte (TCI or BC1) represents
the currently undefined class 16:

1: Upper-Case Letter (A-Z)

2: Lower-case Letters (a-z)

3: Numbers (0-9)

4: Format Effectors (<BS> <CR> <LF> <FF> <HT> <VT>)

The sequence <cr><lf> counts as one character when
processed as the Telnet end of line, and is a
single break character when class 4 is set. The
sequence <cr><nul> counts as one character and
is a break character if and only if <cr> is a
break character (i.e. class 4 is set).

5: Non-format Effector Control Characters including
 and <ESC>

3elo

3elp

3elq

3elr

3e2

3e3

3e3a

3e3b

3e3c

3e3d

j&z

3e3e

3e3f

>i<}<2 3]

2-c>:u

■ '"- W>- M*- «*- *-*"-*- *•-'-»- -1 ***.'-£. •>*■'*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 726 JBP DHC 8-MAR-77 08:29
Remote Controlled Transmission & Echoing Telnet Option

39237

7: {[(<>)] }

8: ' " /\%@$<Sc# + -* = ~_|~

9: <Space>

And Telnet commands (IAC . . .) sent by the user are
always to have the effect of a break character. That
is, every instance of an IAC is to be treated as a
break character, except the sequence IAC IAC

The representation to be displayed when printing is
called for is the obvious one for the visible
characters (classes 1, 2, 3, 6, 7, and 8) . Space (class
9) is represented by a blank space. The format
effectors (class 4) by their format effect. The
non-format effector controls (class 5) print nothing
(no space).

Initially no break classes or transmission classes are
in effect.

Please note that if all the bits are set in a Telnet
subcommand argument byte such as TC2 or BC2 then that
byte must be proceeded by an <IAC> flag byte. This is
the common convention of doubling the escape character
to use its value as data.

Sub-commands (IAC SB RCTE...) are refered to as "break
reset commands".

3. Default:

WON'T RCTE -- DON'T RCTE

Neither host asserts special control over the other
host's terminal printer.

4. Motivation for the option:

RFC's 1, 5 and 51 discuss Network and process efficiency
and smoothness.

RFC 357, by John Davidson, introduces the problem of
echoing delay that occurs when a remote user accesses- a
full-duplex host, thru a satellite link. In order to save
the many thousands of miles of transit time for each
echoed character, while still permitting full server
responsiveness and clean terminal output, an echo control

3e3g

3e3h

3e3i

3e3j

3e4

3e5

3e6

3e7

4

4a

4al

5

5a

[page 4] 9£

2-632

•gUTÄlT^m

APPLICATION LEVEL: TLNT-OPS RFC 726

NWG/RFC* 726 JBP DHC 8-MAR-77 08:29 39237
Remote Controlled Transmission & Echoing Telnet Option

similar to that used by some time-sharing systems is
suggested for the entire Network. 5b

In effect, the option described in this document
involves making a using host carefully regulate the
local terminal printer according to explicit
instructions from the remote (serving) host. 5bl

An important additional issue is efficient Network
transmission. Implementation of the Davidson Echoing
Scheme will eliminate almost all server-to-user echoing. 5c

Hie option described in this document also requests
using hosts to buffer a terminal*s input to the serving
host until it forms a useful unit (with "useful unit"
delimited by break or transmission characters as
described below). Therefor®, fewer messages are sent on
the user-to-server path. 5cl

N.B. : This option is only intended for use with
full-duplex hosts. The Go-Ahead Telnet feature is
completely adequate for half-duplex server hosts. Also,
RCTE should be used in place of the ECHO Telnet option.
That is the Suppress Go-Ahead option should be in force
and the Echo option should not be in force while the RCTE
option is in use. 5d

^YIJSJ

[page 5] mj

:>:■

2 633
W 1

iiäiMiiäiäil^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC* 726 JBP DHC 8-MAR-77 08:29 39237
Remote Controlled Transmission & Echoing Telnet Option

5. Explicit description of control mechanism: 6

User Terminal Printing Action & Control Procedure 6a

Negotiate the use of the RCTE option. Once the option
is in force the user Telnet follows the following
procedure. 6al

1) Read an item from the network. 6a2

If the item is data, then print it and go to 1. 6a2a

If the item is a command, then set the classes and go
to 2. 6a2b

2) If the terminal input buffer is empty, then go to 3,
else go to 4. 6a3

3) Wait for an item to appear either from the terminal
or from the network. 6a4

If an item appears from the terminal, then go to 4. 6a4a

If a data item appears from the network, then print
it and go to 3. 6a4b

If a command appears from the network, then an error
has occured. 6a4c

4) Read an item from the terminal input buffer. 6a5

If the item is not a break, then print/skip it and go
to 2. 6aSa

If the item is a break, then print/skip it and go to
1. 6a5b

Note: Output from the server host may occur at any
time, such "spontaneous output" Is printed in step 3. 6a6

[page 6]

VSVV

2-634

^>y*\%v
VV'V. \ V... \V" '."..*'■. /*•■/

äitiä^^

APPLICATION LEVEL: TLNT-OPS RFC 726

N*WG/RFC# 726 JBP DHC 8-MAR-77 08:29 39237
Remote Controlled Transmission & Echoing Telnet Option

Explanation: 6b

Both Hosts agree to use the RCTE option. After that,
the using host (IAC DO RCTE) merely acts upon the
controlling (serving) host's commands and does not
issue any RCTE commands unless and until it (using
host) decides to stop allowing use of the option (by
sending I AC DON'T RCTE) . 6bl

1) The using host is synchronized with the server by
initially and when ever it returns to step 1 suspending
terminal echo printing until it receives a command from
the server. 6b2

The server may send either output to the terminal
printer or a command, and usually sends a both. 6b3

The server may send output to the terminal printer
either in response to user input or spontaneously. In
the former case, the output is processed in step 1. In
the latter case, the output is processed in step 3. 6b4

Server sends an RCTE command. The command may redefine
break and transmission clashes, action to be performed
on break characters, and action to be performed on
text. Each of these independent functions is controlled
by separate bits in the <cmd> byte. 6b5

A transmission character is on«* which RECOfWENDS that
the using host transmit all text accumulated up to
and including its occurrence. (For network
efficiency, using hosts are DISCOURAGED (but not
prohibited) from sending before the occurrence of a
transmission character, as defined at the moment the
character is typed). 6b5a

If the transmission classes bit (bit 4) is on, the
two bytes following the two break classes bytes (or
immediately following the <cmd> byte, if the break
classes bit is not on) will indicate what classes
are to be enabled.

If the bit is OFF, the transmission classes remain
unchanged. When the RCTE option is first initiated,
NO CLASSES are in effect. That is, no character
will be considered a transmission character. (As if
both TCI and TC2 are zero.)

A break character REQUIRES that the using host

[page 7]

2-635

»in» T—

mtitmtttmM^^^ma^ltt^^^^m^^^^^m

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

NWG/FPC# 726 JBP DHC 8-MAR-77 08:29
Remote Controlled Transmission & Echoing Telnet Option

39237

$

transmit all text accumulated up to and including its
occurrence and also causes the using host to stop its
print/discard action upon the user's input text,
until directed to do otherwise by another I AC SB RCTE
<cmd> IAC SE command from the serving host. Break
characters therefore define printing units. "Break
character" as used in this document does NOT mean
Telnet Break character. 6b5b

If the break classes bit (bit 3) is on, the two
bytes following <cmd> will indicate what classes
are to be enabled. There are currently nine (9)
classes defined, with room for expansion.

If the bit is OFF, the break classes remain
unchanged. When the RCTE option is initiated, NO
CLASSES are to be in effect. That is, no
transmission will take place in the user to server
direction until the first break reset command is
received by the user from the server.

The list of character classes, used to define break
and transmission classes are listed at the end of
this document, in the Tables Section. 6b5c

Because break characters are special, the
print/discard action that should be performed upon
them is not always the same as should be performed
upon the rest of the input text. *b5d

For example, while typing a filename to TCNEX, I
want the text of the filename to be printed
(echoed); but I do not want the <escape> (if I use
the name completion feature) to be printed.

If bit 1 is ON the break character is NOT to be
printed.

A separate bit (bit 2) signals whether or not the
text itself should be printed (echoed) to the
terminal. If bit 2 * 0, then the text IS to be
printed. 6b5*

Yet another bit (bit 0 - right-most bit) signals
whether or not any of the other bits of the command
should be checked. If this bit is OFF. then the
command should be interpreted to mean "continue
whatever echoing strategy you have been following,
using the same break and transmission classes/' bb5f

&&

Cpage 8}

2-636

t^i^^Btttttee^ee^e^etttMm^tfe^mm^mttei

APPLICATION LEVEL: TLNT-OPC RFC 726

NWG/RFC# 726 JBP DHC 8-MAR-77 08:29
Remote Controlled Transmission & Echoing Telnet Option

39237

2) The user Telnet now checks the terminal input
buffer, if it contains data it is processed in step 4,
otherwise the user Telnet waits in step 3 for further
developments. 6b6

3) The user Telnet waits until either the human user
enters some data in which case Telnet proceeeds to step
4, or an item is received from the network. If the item
from the network is data it is spontaneous output and
is printed, Telnet then continues to wait. If the item
from the network is a command then an error has
occured. In this case the user Telnet may attempt to
resynchronize the use of RCTE as indicated below. 6b7

4) Items from the terminal are processed with printing
controlled by the settings of the latest break reset
command. When a break character is processed, the cycle
of control is complete and action re-commences at step
1. 6b8

Input from the terminal is (hopefully) buffered into
units ending with a transmission or break character;
and echoing of input text is suspended after the
occurrence of a break character and until receipt of a
break reset command from the serving host. The most
recent break reset command determines the break
actions. 6b9

In summary, what is required is that for every break
character sent in the user to server direction there be
a break reset command sent in the server to user
direction. The user host initially hes no knowledge of
which characters are break character!» and so starts in
a state that assumes that there are no break characters
and also that no echoing is to be provided. The server
host is expected to send a break reset command to
establish the break classes and the echoing mode before
it receives any data from the user. 6bl0

Synchronization and Resynchronization: 6c

The serving and using hosts must carefully synchronize
break reset commands with the transmission of break
characters. Except at the beginning of an interaction,
the serving host may only send a break reset command in
response to the Using host's having sent a break
character as defined at that time. This should
establish a one-to-one correspondence between them. (A
<cmd> value of zero, in this context, is interpreted as

$

[page 9]

2-637
Mr

-v J» -~ •>--

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 726 _ JBP DHC 8-MAR-77 08:29
Remote Controlled Transmission <& Echoing Telnet Option

39237

a break classes reset to the same class (es) as before.)
The break reset command may be preceded by terminal
output. 6cl

The re-synchronization of the break characters and the
break reset commands is done via the exchange of the
Telnet signal Abort Output (AO) in the server to user
direction and the SYNCH in the user to server
direction. 6c2

Suppose the server wants to resynchronize the break
characters and the break reset commands. 6c3

a. The server should be sure all output to the
terminal has been printed by using, for example, the
Timing Mark Option. 6c3a

b. The server sends the AO signal. 6c3b

c. The user receives the AO signal. The user flushes
all user to server data wheather it has been echoed
or not. The user sends a SYNCH to the server. [The
SYNCH consists of the Telnet Data Mark (DM) and the
host-to-host interrupt (INS).] The user now enters
the initial state at step 1. 6c3c

d. The server receives the SYNCH and flushes any
data proceeding the DM (as always). The server now
sends a break reset command. (Actually the break
reset command could be sent at any time following the
AO.) 6c3d

Suppose the user wants to resynchronize the break
characters and the break reset commands. 6c4

a. The user should discard all user to server data
wheather it has been echoed or not. 6c4a

b. The user sends the AO signal. The user now enters
the algorithm at step 1. 6c4b

c. The server receives the AO signal. The server
discards all data buffered but not yet sent to the
user. The server sends a SYNCH to the user. The
server sends a break reset command to the user. 6c4c

[page 10]

2-638

-'» -» -"•V-'-'w* v* AJ. »_•■ s. >-„.-. .'«l./l.'j'j -A 'j- jfl -" -fe .A -.>..

APPLICATION LEVEL: TLNT-OPS RFC 726

NWG/RFC# 726 JBP DHC 8-MAR-77 08:29 39237
Remote Controlled Transmission & Echoing Telnet Option

Notes and Comments: 6d

Even-numbered commands, greater than zero, are in
error, since they will have the low-order bit off. The
command should be interpreted as equal to zero, which
means that any classes reset bytes ([TCI TC2] [BC1
BC2]) will be in error. (The IAC SE, at the end of the
command, eliminates any parsing problems due to this
error.) 6dl

Serving hosts will generally instruct using hosts not
to echo break characters, even though it might be
alright to echo most break characters. For example,
<cr> is usually a safe character to echo but <esc> is
not. TENEX Exec is willing to accept either, during
filename specification. Therefore, the using host must
be instructed not to echo any break characters. 6d2

This is generally a tolerable problem, since the
serving host has to send an RCTE command at this
point, anyhow. Adding an echo for the break character
to the message will not cause any extra network
traffic. 6d2a

The RCTE Option entails a rather large overhead. In a
true character-at-a-time situation, this overhead is
not justified. But on the average, it should result in
significant savings, both in network traffic and host
wake-ups. 6d3

Buffering Problems and Transmission vs. Printing
Constraints: 6d4

There are NO mandatory transmission constraints. The
using host is allowed to send a character a time,
though this would be a waste of RCTE. The
transmission classes commands are GUIDELINES, so
deviating from them, as when the user's buffer gets
full, is allowed. 6d4a

Additionally, the using host may send a break class
character, without knowing that it is one (as with
type-ahead). 6d4b

If the user implementation is clever it may send
the user entered data to the server before it is
actually needed. This type ahead data may contain
break characters.

[page 11]

2-639

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 726 JBP DHC 8-MAR-77 08:29
Remote Controlled Transmission & Echoing Telnet Option

39237

Assume that only space is a break character (that
is the last break reset command specified print up
to and including the break characters and set the
break classes to class 9). Suppose the user had
typed "abc<space>def<esc>ghi<cr>". The user side
RCTE could send it all to the server, but it could
print only "abc<3pace>", and would have to buffer
"def<esc>ghi<cr>" at least until a break reset
command was received from the server. That break
reset command could change the break ckasses
requiring rescanning the buffered string.

For example suppose the break reset command set the
break characters to class 5 and the action to print
up to but not including the break character. The
user RCTE could then print "def" and discard the
<esc>, but whould have to continue to buffer the
"ghi<cr>'\

The problem with buffering occurs when printing on
the user's terminal must be suspended, after the user
has typed a currently valid break character and until
a break reset command is received from the serving
host. During this time, the user may be typing
merrily along. The text being typed may be SENT, but
may not yet be PRINTED.

The more common problem of filling the transmission
buffer, while awaiting a host to host allocate from
the serving host, may also occur, but this problem is
well known to implementors and in no way special to
RCTE.

In any case, when the buffer does fill and further
text typed by the user will be lost, the user should
be notified (perhaps by ringing the terminal bell).

Text should be buffered by the using host until the
user types a character which belongs to the
transmission class in force at the moment the character
is typed.

Transmission class reset commands may be sent by the
serving host at any time. If they are frequently sent
separate from break class reset commands, it will
probably be better to exit from RCTE and enter regular
character at a time transmission«

bd4c

6d4d

6d4e

6d5

6d6

It is not immediately clear what the using host should

vS

[page 12]

2-640

^■■V-k". ■S- - -:~'-^» ■

APPLICATION LEVEL: TLNT-OPS RFC 726

NWG/RFC# 726 JBP DHC 8-MAR-77 08:29
Remote Controlled Transmission & Echoing Telnet Option

39237

do with currently buffered text, when a transmission
classes reset command is received. The buffering is
according to the previous transmission classes scheme. 6d7

The using host clearly should not simply wait until a
transmission character (according to the new scheme)
is typed. 6d7a

Either the buffered text should be rescanned, under
the new scheme; Gd7b

Or the buffered text should simply be sent as a
group. This is the simpler approach, and probably
quite adequate. 6d7c

It is possible to define NO BREAK CHARACTERS except
Telnet commands (LAC ,.,) . This seems undesirable and
should not be done. 6d8

If this situation were to occur the using host should
send a Telnet command to allow the server to know
when he may reset the break classes, but the
mechanism is awkward and this case should be avoided. 6d8a

6. Sample Interaction: 7

"S:" is sent from serving (WILL RCTE) host to using host.
"U:" is sent from using (DO RCTE) host to serving host.
"T:" is entered by the terminal user.
"P:" is printed on the terminal.

Text surrounded by square brackets ([]) is commentary.
Text surrounded by angle brackets (<>) is to be taken as
a single unit. E.g., carriage return is <cr>, and the
decimal value 27 is represented <27>. 7a

The following interaction shows a logon to a Tenex,
initiation of the DED editor, insertion of some text and
the return to the Exec level. 7b

An attempt has been made to give some flavor of the
asynchrony of network I/O and the user's terminal
input. Many other possible combinations, using the same
set of actions listed below, could be devised. The
actual order of events will depend upon network and
hosts' load and the user's typing speed. 7bl

We assume that the user's Telnet is also in an "insert
linefeed" mode. That is, whenever the user types carriage

[page 13]

2-641

^ViA« W&ALV/ Li"u> LJ .NV»V-: •vvvw . .-_VA^ IVA*> ifcjjJLa.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 726 JBP DHC 8-MAR-77 08:29 39237
Remote Controlled Transmission & Echoing Telnet Option

return <cr> the user Telnet sends both carriage return
and linefeed <cr><lf> (the Telnet end of line signal).
When space character occurs at the end of a line in the
example description it is shown explicitly by <sp> to
avoid confusion. Other uses of the space character are
not so marked to avoid destroying the readability of the
example. 7c

A Telnet connection has already been opened, but the
TENEX prompt has not yet been issued. The hosts first
discuss using the RCTE option: 7d

S: <IAC><WILLXRCTE> 7dl

U: <IAO<DO><RCTE> 7d2

S: TENEX 1.31.18, TENEX EXEC 1.50.2<cr><lf>@
<IAC><SB><RCTE><11><1><24><IAC><SE> 7d3

[Print the herald and echo input text up to a break
character, but do not echo the break character.
Classes 4 (Format Effectors), 5 (Non-format Effector
Controls and), and 9 (<sp>) act as break
characters.] 7d3a

P: TENEX 1.31.18, TENEX EXEC 1.50.2<cr><lf>@ 7d4

T: LOGIN ARPA<cr> 7d5

P: LOGIN 7d6

U: L0GIN<sp> 7d7

U: ARPA<cr><lf> 7d8

S: <sp><IAC><SB><RCTE><0><IAC>SE> 7d9

P: <sp>ARPA 7dl0

S: <cr><lf>(PASSWORD): <IAC><SB><RCTE><7><IAC><SE> 7dll

P: <cr><lf>(PASSWORD):<sp> 7dl2

T: WASHINGTON 1000<cr> 7dl3

[The password "WASHINGTON" is not echoed. Printing of
"1000<cr>" is withheld] 7dl3a

U: WASHINGTON sp^ 7dl4

[page 14]

2-642

r •*"«% ." '>'>"«%/•.'■»•.'•.■■.'• ."• *-" "-V ^._.-^-s^^_ .V_VL'w_■ V_*-EJ^^^-S^^IJC:^*:** -->.«'-^':...'• j. •Je'
,-*'r^^**.*>^V..r"..'»^>!L>-^ /»Vv^ ':A> k w\

APPLICATION LEVEL: TLNT-OPS RFC 726

NWG/RFC# 726 JBP DHC 8-MAR-77 08:29 39237
Remote Controlled Transmission & Echoing Telnet Option

1000<cr><lf> 7dl5

S: <sp><IAC><SB><RCTE><3><IAC><SE> 7dl6

S: <cr><lf>JOB 17 ON TTY41 7-JUN-73 14:13<cr><lf>@
<IAC><SB><RCTE><0><IAC><SE> 7dl7

P: <sp>1000 7dl8

[Printing is slow at this point; so the account
number is not printed as soon as the server's command
for it is received.] 7dl8a

P: <cr><lf>JOB 17 ON TTY41 7-JUN-73 14:13<cr><lf>G 7dl9

T: DED<esc><cr> 7d20

P: DED 7d2I

U: DED<esc> 7d22

S: .SAV;KIAC><SB><RCTE><0><IAC><SE> 7d23

P: .SAV;1 7d24

U: <cr><lf> 7d25

S: <cr><lf><lf>DED 3/14/73 DRO.KRK<crxlf>:
<IAC><SB><RCTEX15><1><IACX255XIACXSE> 7d26

[The program is started and the DED prompt ":" is
sent. At the command level, DED responds to every
character. The server sets the break classes to all
classes.] 7d26a

P: <cr><lf><lf>DED 3/14/73 DRO,KRK<crxlf>: 7d27

T: IThis is a test line.<cr>This is another test
line.<~Z>Q 7d28

["I" means Insert Text. The text follows, terminated
by a Control-Z. The "Q" instructs DED to Quit.] 7d28a

U: I 7d29

U: This is a test line.<cr><lf> 7d30

S: I<crxlf>*<IAC><SBxRCTExil><0x24><IAC><SE> 7d31

[page 15]

2-643
MT

. „\.
[/► *• ■/v,v '«v * *• - LV '■ * * ' " *• *- *• "*" v-*' '^-'-'"■g-'^ ai^m'■*-'-'■- A j ■i^AV^^^^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 726 JBP DHC 8-MAR-77 08:29 39237
Remote Controlled Transmission & Echoing Telnet Option

t * J» \m

[DED prompts the user, during text input, with an
asterisk at the beginning of every line. The server
sets the break classes to classes 4 and 5, the format
effectors and the non-format effector controls.] 7d31a

P: Kcr><lf>*This is a test line. 7d32

S: <cr><lf>*<IAC><SB><RCTE><0><IAC><SE> 7d33

P: <cr><lf>*This is another test line. 7d34

U: This is another test line.<~Z> 7d35

U: Q 7d36

[Note that the "Q" will not immediately be printed on
the terminal, since it must wait for authorization.] 7d36a

S: *Z<cr><lf>:<IAC><SB><RCTE><15><l><IAC><255><IAC><SE> 7d37

[The returned "~Z" is two characters, not the ASCII
Control-Z or <sub>.] 7d37a

S: Q<cr><lf>@<IAC><SB><RCTE><ll><l><24><IAC><SE> 7d38

P: Q<cr><lf>@ 7d39

And the user is returned to the Exec level. 7d40

H*

[page 16]

2-644

bV»"«%V/JV\^Y1LVM\L»"S!*% V«VSLAV*!S_»A«VA!*JVAA'*^'^ *»> ZJUJL^. ~* '1^1MZ2JZ2*L1£2JL1±* *'» ü JMJL*£* v*. t\ tÄ*A+£±.iA<* *\m<

APPLICATION LEVEL: TLNT-OPS NIC 20196

TELNET Output Line Width Option

NIC 20196 (Nov. 13, 1973)
■HL

TELNET OUTPUT LINE WIDTH OPTION

1. Command name and code.

NAOL 8 (Negotiate About Output Line-width)

2. Command meanings

In the following, we are discussing a simplex connection, one half
of a full duplex TELNET connection. On the simplex connection under
discussion, by definition data passes from the data sender to the
data receiver. If we consider the example of a computer transmitting
data over a connection to a terminal where the data is printed, then
the computer is the data sender and the terminal is the data
receiver. Continuing to use this example, the NAOL option could be
used to negotiate the line width to be used when printing lines from
the computer on the terminal. To negotiate line width on the other
half of the TELNET connection the parties involved reverse their data
sender and data receiver roles; this can be done unambiguously as the
sender of a DO or DON'T NAOL command can only be the data sender,
thus defining the half of the TELNET connection under discussion, and
the sender of a WILL or WON'T NAOL command can only be the data
receiver.

IAC DO NAOL

The data sender requests or agrees to negotiate about output line
width with the data receiver. In the case where agreement has
been reached and in the absence of further subnegotiations, the
data receiver alone is assumed to be handling output line width
considerations.

IAC DON'T NAOL

The data sender refused to negotiate about output line width with
the data receiver, or demands a return to the urnegotiated default
mode.

IAC WILL NAOL

The data receiver requests or agrees to negotiate about output
line width with the data sender. In the case where agreement has
been reached and in the absence of further subnegotiations, the
data receiver alone is assumed to be handling output line width
considerations.

&

ass

2-645

• .*• -** AV» «"* AV» .*• '• .'•

■r

it*»* i *JI *A t^i'.» *MMM • •I.» ^d,,« _ <

itiitoJiiiMt

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

I AC WON'T NAOL

The data receiver refuses to negotiate about output line width, or
demands a return to the unnegotiated default mode.

IAC SB NAOL DS <8 bit value> 1/J SE

The data sender specifies, with the 8 bit value, which party
should handle output line width considerations and how. The code
for DS is 1.

IAC SB NAOL DR <8 bit value> IAC SE

The data receiver specifies, with the 8 bit value, which party
should handle output line width considerations and how. The code
for DR is 0.

3. Default

DON'T NAOL

In the default absence of

WON'T NAOL

negotiation concerning which party, data sender or data receiver,
is handling output line width considerations, neither party is
required to handle line width consideration and neither party is
prohibited from handling line width consideration but it is
appropriate if at least the data receiver handles line width
considerations albeit primitively.

4. Motivation for the Option

There appear to be four cases in which it is useful for the party at
one end of a TELNET connection to communicate with the other party
about the output line width:

a) The sender may wish the receiver to use its local knowledge of
the printer width to properly handle the line width;

b) The receiver may wish the sender to use its local knowledge of
the data being sent to properly handle the line width;

c) The sender may wish to use its local knowledge of the data
being sent to instruct the receiver in the proper handling of
the line width; and

2-616

'1^^**>^-1-*V>J/J*^*^*>^^^

APPLICATION LEVEL: TLNT-OPS NIC 20196

■v

K'

i *.

d) The receiver may wish to use its local knowledge of the printer
width to instruct the sender in the proper handling of the line
width.

An example of proper handling of the line length is for the receiver
to "fold" lines sent by the sender so that the lines fit on the
printer page. Another example of proper handling of the line length
might be notfolding lines even though they overflow the printer page,
as that is whatthe user desires.

5. Description of the Option

The data sender and data receiver use the 8 bit value along with the
DS and DR SB commands as follows:

8 bit value

0

1 to 253

254

255

Meaning

command sender suggests he alone will handle
output line-width considerations for the
connection.

command sender suggests other party alone
should handle output line-width
considerations but suggests line width should
be value given, in characters.

command sender suggests other party alone
should handle output line-width
considerations but suggests line width should
be considered infinity.

command sender suggests other party alone
should handle output line-width
considerations and suggests nothing about how
it should be done.

The guiding rules are that

1) if neither data receiver or data sender wants to handle output
line-width considerations, the data receiver must do it, and

2) if both data receiver or data sender want to handle output
line-width considerations, the data sender gets to do it.

2-GI7

L\AJLV* ,.*.*,•.'« ^^.. i^l^^^ V«i' ^«*.\« -* ^:i'^\l-/^^ *W fc^A ih..wV.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

The reasoning for the former rule is that if neither want to do it, then
the default in the NAOL option dominates. If both want to do it, the
sender, who is presumed to have special knowledge about the data, should
be allowed to do it, taking into account any suggestions the receiver
makes.

6. Some sample negotiations are:

no subnecotiations data receiver handles output
line-width considerations

* */

IAC SB NAOL DS 132 IAC SE
IAC SB NAOL DR 0 IAC SE

IAC SB NAOL DR 255 IAC SE
IAC SB NAOL DS 0 IAC SE

IAC SB NAOL DS 0 IAC SE
IAC SB NAOL DR 72 IAC SE

data sender suggests data
receiver handle output line-width
consideration data with suggested
line width of 132; receiver agrees.

data receiver suggests data
sender handle line-width
considerations; sender refuses.

data sender wants to handle
line-width considerations; receiver
agrees but notifies the sender the
line printer only has 72 columns.

As with all option negotiation, neither party should suggest a state
already in effect except to refuse to negotiate; changes should be
acknowledged; and once refused, an option should not be resuggested
until "something changes" (e.g., another process starts).

At any time either party can disable further negotiation by giving the
appropriate WON'T NAOL or DON'T NAOL command.

2-618

^ LAa/'Vlfc,'.! SMJLJL» «*« ia *'■■«'-1- *'- «r-\'JV_V-V-V-lv-V-V.' ■ t*»»i> ha! •*■ mk i

APPLICATION LEVEL: TLNT-OPS NIC 20197

TELNET Output Page Size Option

NIC 20197 (Nov. 13, 1973) I

i

1. Command name and code.

NAOP 9 (Negotiate About Output Page-size)

(By page size we mean number of lines per page.)

2. Command meanings.

In the following, we are discussing a simplex connection,one half of
a full duplex TELNET connection. On the simplex connection under
discussion, by definition data passes fromthe data sender to the data
receiver. If we consider the example of a computer transmitting data
over a connection to a terminal where the data is printed, then the
computer is the data sender and the the terminal is th* data
receiver. Continuing to use this example, the NAOP option could be
used to negotiate the page size to be used when printing pages from
the computer on the terminal. To negotiate page size on the other
half of the TELNET connection the parties involved reverse their data
sender and data receiver roles; this can be done unambiguously as the
sender of a DO or DON'T NAOP command can only be the data sender,
thus defining the half of the TELNET connection under discussion, and
the sender of a WILL or WON'T NAOP command can only be the data
receiver.

IAC DO NAOP

IAC DON'T NAOP

IAC WILL NAOP

The data sender requests or agrees to
negotiate about output page size with the
data receiver. In the case where agreement
has been reached and in the absence of
further subnegotiations, the data receiver
alone is assumed to be handling output page
size considerations.

The data sender refuses to negotiate about
output page size with the data receiver, or
demands a return to the unnegotiated default
mode.

The data receiver requests or agrees to
negotiate about output page size with the
data sender. In the case where agreement has
been reached and in the absence of further
subnegotiations, the data receiver alone is
assumed to be handling output page size
considerations.

K*

2-649

m^mmi ÜI

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

IAC WON'T NAOP The data receiver refuses to negotiate about
output page size, or demands a return to the
unnegotiated default mode.

IAC SB NAOP DS <8 bit value> IAC SE
The data sender specifies, with the 8 bit
value, which party should handle output page
size considerations and how. The code for DS
is 1.

IAC SB NAOP DR <8 bit value> IAC SE
The data receiver specifies, with the 8 bit
value, which party s lould handle output page
size considerations *nd how. The code for DR
is 0.

v.

I

3. Default

DON'T NAOP In the default absence of
WON'T NAOP negotiation concerning which party, data

sender cr data receiver, is handling output
page size considerations, neither party is
required to handle page size consideration
and neither party is prohibited fro» handling
page size consideration, but it is
appropriate if at least the data receiver
handles page size considerations albeit
primitively.

4. Motivation for the Option

There appear to be four cases in which it is useful for the party at
one end of a TELNET connection to communicate with the other party
about the output page size:

(a) the sender may wish the receiver to use its local knowledge
of the printer page size to properly handle the page size;

(b) the receiver may wish the sender to use its local knowledge
to the data being sent to properly handle the page size;

(c) the sender may wish to use its local knowledge of the data
being sent to instruct the receiver in the proper handling of
the page size; and

2-650

iSmSjLljSiS^S^LL^S^jjl VnrV* V* '-*' "-* ätLäL *-* *-*■ *- I ?-*■*-' —-.-*.-*■ *~ -•■»-. '--■ '■* | W-.,,^.^« r „ „,-■- -r^j«

APPLICATION LEVEL: TLNT-OPS NIC 20197

-Al

m-
(d) the receiver may wish to use its local knowledge of the

printer size to instruct the sender in the proper handling of
the page size.

An example of proper handling of the page size is for the receiver to
hold off further output until instructed to continue when the lines
being printed are about to overflow the scope face.

5. Description of the Option.

The data sender and data receiver use the 8 bit value along
with the DS and DR SB commands as follows.

8 bit value

0

1 to 253

254

255

Meaning

command senaer suggests he alone
will handle output page size
considerations for the connection.

command sender suggests other party
alone should handle output
page-size considerations but
suggests page size should be value
given, in lines.

command sender suggests other party
alone should handle output page
size considerations but suggests
page size should be considered
infinity.

command sender suggests other party
alone should handle output page
size considerations and suggests
nothing about how it should be
done.

Wk

The guiding rules are that

(1) if neither data receiver or data sender wants to handle
output page size considerations, the data receiver must do
it, and

(2) if both data receiver or data sender want to handle
output page size, the data sender gets to do it.

2-651

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

The reasoning for the former rule is that if neither want to
do it, then the default in the NAOP option dominates. If both
want to do it, the sender, who is presumed to have special
knowledge about the data, should be allowed to do it, taking
into account any suggestions the receiver makes.

Some sample negotiations are:

no subnegotiations data receiver handles
output page size
considerations

data sender suggests data
receiver handle output page
size consideration data
with suggested page size of
66 lines; receiver agrees.

data receiver suggests
data sender handle page
size condiseration; sender
refuses.

data sender wants to handle page
size considerations;
receiver agrees but
notifies the sender the
scope only has 30 IAC SE
lines.

As with all option negotiation, neither party should suggest a
state already in effect except to refuse to negotiate; changes
should be acknowledged; and once refused, an option should not
be resuggested until "something changes" (e.g., another
process starts).

At any time either party can disable further negotiation by
giving the appropriate WON'T NAOP or DON'T NAOP command.

IAC SB NAOP DS 66 IAC SE
IAC SB NAOP DR 0 IAC SE

IAC SB NAOP DR 255 IAC SE
IAC SB NAOP DS 0 IAC SE

IAC SB NAOP DS 0 IAC SE
IAC SB NAOP DR 30 IAC SE

ft

K-

2-652 m

APPLICATION LEVEL: TLNT-OPS RFC 652

Request for Comments: 652

[ISI] <DCROCKER>NAOCRD .TXT

D. Crocker (UCLA-NMC)
25 Oct. 74

NIC #31155
Online file:

Telnet Output Carriage-Return Disposition Option

1. Command name and code

NAOCRD 10 (Negotiate About Output Carriage-Return Disposition)

2* Command meanings

In the following, we are discussing a simplex
described in the NAOL and NAOP Telnet options.

connection, as

IAC DO NAOCRD

IAC DON'T NAOCRD

IAC WILL NAOCRD

IAC WON'T NAOCRD

The data sender requests or agrees to negotiate
about output carriage-return character
disposition with the data receiver. In the
case where agreement has been reached and in
the absence of further subnegotiations, the
data receiver is assumed to be handling output
carriage-returns.

The data sender refuses to negotiate about
output carriage-return disposition with the
data receiver, or demands a return to the
unnegotiated default mode.

The data receiver requests or agrees to
negotiate about output carriage-return
disposition with the sender. In the case where
agreement has been reached and in the absence
of further subnegotiations, the data receiver
alone is assumed to be handling output
carriage-returns.

The data receiver refuses tc negotiate about
output carriage-return disposition, or demands
a return to the unnegotiated default mode.

IAC SB NAOCRD DS <8-bit value> IAC SE
The data sender specifies, with the 8-bit
value, which party should handle
carriage-returns and what their disposition
should be. The code for DS Is 1

0£T

:*3

AS

■ i. • *

*v«

2-653

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

Telnet NAOCRD Option Page

I AC SB NAOCRD DR <8-bit value> I AC SE The data receiver
specifies, with the 8-bit value, which party
should handle carriage-returns and what their
disposition should be. The code for DR is 0.

3. Default

DON'T NAOCRD/WON'T NAOCRD. In the default absence of
negotiations concerning which party, data sender or data receiver,
is handling output carriage-returns, neither party is required to
handle carriage-returns and neither party is prohibited from
handling them; but it is appropriate if at least the data receiver
handles carriage-returns, albeit primitively.

4. Motivation for the Option

Please refer to section 4 of the NAOL and of the NAOP Telnet
option descriptions.

zm

5. Description of the Option

The data sender and the data receiver use the 8-bit value
with the NAOCRD SB commands as follows:

along

8-bit value

0

1 to 250

251

252

253

Meaning

Command sender suggests that he alone will
handle carriage-returns, for the connection.

Command sender suggests that the other party
alone should handle carriage-returns, but
suggests that a delay of the indicated value be
used. The value is the number of
character-times to wait or number of NULs to
insert in the data stream before sending the
next data character- (s<=*« qualification,
below.)

Not allowed, in orde. to
ralated Telnet options.

be compatible with

Command sender suggests that the other party
alone handle carriage-returns, but suggests
that they be discarded.

Not allowed, in order to be compatible with
related Telnet options.

\V-

2-65-1 m

APPLICATION LEVEL: TLNT-OPS RFC 652

Telnet MAOCRD Option Page

254

255

Command sender suggests that the other party
alone should handle carriage-returns but
suggests waiting for a character to be
transmitted (on the other simplex connection)
before sending more data. (See qualification,
below.) Note that, due to the assynchrony of
the two simplex connections, phase problems can
occur with this option.

Command senier suggests that the other party
alone should handle carriage-returns and
suggests nothing about how it should be done.

The guiding rules are that:

(1) if neither data receiver nor data sender wants
carriage-returns, the data receiver must do it, and

to handle

(2) if both data receiver and data sender want to handle
carriage-returns, the data sender gets to do it.

The reasoning for the former rule is that if neither wants to do
it, then the default in the NAOORD option dominates. If both want
to do it, the sender, who is presumed to have special knowledge
about the data, should be allowed to do it, taking into account any
suggestions the receiver may make.

Note that carriage-return delays, controlled by the data sender,
must consist of NUL characters inserted immediately after the
character in question. Ulis is necessary due to the assynchrony of
network transmission«. Due to the Telnet end-of-line convention,
with carriage-returns followed by a linefeed, any NULs that would
otherwise be placed after the carriage-return must be placed after
the linefeed, regardless of any modifications that may additionally
be made to the line feed (see NAOLFD Telnet option).

As with all option negotiations, neither party should suggest a
state already in effect except to refuse to negotiate; changes
should be acknowledged; and once refused, an option should not be
resuggested until "something changes" (e.g... another process
starts).

At any time, either party can disable further negotiation by
giving the appropriate WON'T NAOCRD or DON'T NAOCRD command.

2-6*5

t

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

►,•

S2&

aajju

•\V-VJ

2-656

APPLICATION LEVEL: TLNT-OPS RFC 653 Nr**« w

TELNET OUTPUT HORIZONTAL TABSTOPS OPTION
RFC 653, NIC 31156 (Oct. 25, 1974)
D. Crocker (UCLA-NMC)
Online file: [ISI] <DCROCKER>NAOHTS.TXT

TELNET OUTPUT HORIZONTAL TABSTOPS OPTION

1. Command name and code
NAOHTS 11 (Negotiate About Output Horizontal Tabstops)

2. Command meanings
In the following, we are discussing a simplex connection, as described in
the NAOL and NAOP Telnet options.

IAC DO NAOHTS
The data sender requests or agrees to negotiate about output
horizontal tabstops with the data receiver. In the case where
agreement has been reached and in the absence of further
subnegotiations, the data receiver is assumed to be handling output
horizontal tabstops.

IAC DON'T NAOHTS
The data sender refuses to negotiate about output horizontal tabstop:
with the data receiver, or demands a return to the unnegotiated
default mode.

IAC WILL NAOHTS
The data receiver requests or agrees to negotiate about output
horizontal tabstops with the sender. In the case where agreement ha:
been reached and in the absence of further subnegotiations, the data
receiver alone is assumed to be handling output horizontal tabstops.

IAC WON'T NAOHTS
The data receiver refuses to negotiate about output horizontal
tabstops, or demands a return to the unnegotiated default mode.

IAC SB NAOHTS DS <8-bit value> . .. <8-bit value> IAC SE
The data sender specifies, with the 8-bit value (s), which party shou
handle output horizontal tabstop considerations and what the stops
should be, The code for DS is 1.

IAC SB NAOHTS DR <8-bit value> ... <8-blt value> IAC SE
The data receiver specifies, with the 8-bit value(s), which party
should handle output horizontal tabstop considerations and what the
stops should be. The code for DR is 0.

3. Default
DON'T NAOHTS/WON'T NAOHTS.

In the default absence of negotiations concerning which party, data
sender or data receiver, is handling output horizontal tabstops, neithe:
party is required to handle them and neither party is prohibited from
handling them; but it is appropriate if at least the data receiver
handles horizontal tabstops, albeit primitively.

4. Motivation for the Option
Please refer to section 4 of the NAOL and of the NAOP Telnet option
descriptions.

>j

U^JL.

2-657

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

5. Description of the Option
The data sender and the data receiver use the 8-bit value (s) along with th<
DS and DR SB subcommands as follows (multiple 8-bit values are allowed cnl]
if each is greater than zero and less than 251):

8-bit value : Meaning :

0 Command sender suggests that he alone will handle
tabstops, for the connection.

1 to 250 Command sender suggests that the other party alone
should handle tabstop considerations, but suggests
that the indicated value(s) be used. The value(s)
are the column numbers, relative to the physical
left side of the printer page or terminal screen,
that are to be set.

251 to 254 Not allowed, in order to be compatible with
related Telnet options.

255 Command sender suggests that the other party alone
should handle output tabstops and suggests nothing
about how it should be done.

The guiding rules are that:
(1) if neither data receiver nor data sender wants to handle output
horizontal tabstops, the data receiver must do it, and
(2) if both data receiver and data sender want to handle output
horizontal tabstops, the data sender gets to do it.

The reasoning for the former rule is that if neither wants to do it, then
the default in the NAOHTS option dominates. If both want to do it, the
sender, who is presumed to have special knowledge about the data, should b«
allowed to do it, taking into account any suggestions the receiver may mak«
As with all option negotiations, neither party should suggest a state
already in effect except to refuse to negotiate; changes should be
acknowledged; and once refused, an option should not be resuggested until
"something changes" (e.g., another process starts).
At any time, either party can disab?.e further negotiation by giving the
appropriate WON'T NAOHTS or DON'T NACHTS command.

ftKSMI'

raw

'.\OL

.'• .*• U\ ,

2-658

W

•*-»»■■- • ^•*■ -%■ M.-.. - -' «_• ■/■■• i •'«.•»'• ■*. •*- ; ♦*.*'-•

APPLICATION LEVEL: TLNT-OPS RFC 654 w

TELNET OUTPUT HORIZONTAL TAB DISPOSITION OPTION
RFC 654, NIC 31157 (Oct. 25, 1974)
D. Crocker (UCLA-NMC)
Online file: [ISI]<DCROCKER>NAOHTD.TXT

TELNET OUTPUT HORIZONTAL TAB DISPOSITION OPTION

1. Command name and code
NAOHTD 12

(Negotiate About Output Horizontal Tab Disposition)

2. Command meanings
In the following, we are discussing a simplex connection, as described in
the NAOL and NAOP Telnet options.

IAC DO NAOHID
The data sender requests or agrees to negotiate about output
horizontal tab character disposition with the data receiver. In the
case where agreement has been reached and in the absence of further
subnegotiations, the data receiver is assumed to be handling output
horizontal tab character considerations.

IAC DON'T NAOHID
The data sender refuses to negotiate about output horizontal tab
characters with the data receiver, or demands a return to the
unnegotiated default mode.

IAC WILL NAOHTD
The data receiver requests or agrees to negotiate about output
horizontal tab characters with the sender. In the case where
agreement has been reached and in the absence of further
subnegotiations, the data receiver alone is assumed to be handling
output horizontal tab character considerations.

IAC WON'T NAOHTD
The data receiver refusos to negotiate about output horizontal tab
characters, or demands a return to the unnegotiated default mode.

IAC SB NACITTD DS <S-bit value> IAC SE
The data sender specifies, with the 8-bit value, which party should
handle output horizontal tab characters and what their disposition
should be. Th^ code for D5? is 1.

IAC SB NAOHTD DR <8-bit value> IAC SE
The data receiver specifies, with the 8-bit value, which party
should handle output horizontal tab characters and what their
disposition should be. The code for DR is 0.

3. Default
DON'T NAOHTD/WON'T NAOHTD.

In the default absence of t.■_$ *tiatiuns concerning which party, data
sender or data receiver, is handling output horizontal tab character
considerations, neither party is required to handle horizontal tab
characters and neither party is prohibited from handling them; but it
is appropriate if at least the data receiver handles horizontal tab
character considerations, albeit primitively.

4. Motivation for the Caption
Please refer to section 4 of the NAOL and of the NAOP Telnet option
descriptions.

\3

W

£&

•;«

m

3-650

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

5. Description of the Option
The data sender and the data receiver use the 8-bit value along with the
DS and DR SB commands as follows:

8-bit value

1 to 250

251

252

253

254

255

Meaning

Command sender suggests that he alone will handle
horizontal tab characters, for the connection.
Command sender suggests that the other party alone
should handle horizontal tab characters, but
suggests that a delay of the indicated value be
used. The value is the number of character-times
to wait or number of NULs to insert in the data
stream before sending the next data character.
Command sender suggests that the other party alone
handle horizontal tabs, but suggests that each
occurrence of the character be replaced by a space.
Command sender suggests that the other party alone
handle horizontal tabs, but suggests that they be
discarded.
Command sender suggests that the other party alone
should handle horizontal tab characters, but
suggests that tabbing be simulated.
Command sender suggests that the other party alone
should handle horizontal tab characters, but
suggests that waiting for a character to be
transmitted (on the other simplex connection)
before sending more data. Note that, due to the
assynchrony of the two simplex connections, phase
problems can occur with this option.
Command sender suggests that the other party alone
should handle output horizontal tabs and suggests
nothing about how it should be done.

The guiding rules are that:

1) if neither data receiver nor data sender wants to handle output
horizontal tab characters, the data receiver must do it, and
2) if both data receiver and data sender wants to handle output
horizontal tab characters, the data sender gets to do it.

The reasoning for the former rule is that if neither wants to do it, then
the default in the NAÖHTD option dominates. If both want to do it, the
sender, who is presumed to have special knowledge about the data, should
be allowed tc do it, taking into account any suggestions the receiver may
Hum«. Simulation is defined as the replacement of the horizontal tab
character by enough spaces to move the printer head (or line-pointer) to
the next horizontal tab stop
Note that delays, controlled by th«* data sender, must consist of NUL
characters inserted immediately after the horizontal tab character. This
is necessary due to the assynchrony of network transmissions. As with
all option negotiations, neither p«*r i.y should ä*.-jgest «* State already in
effect except to refuse to negotiate; changes should be acknowled9ed; and
once refused, an option should not be resuggested until "something
changes" (e.g.. another process starts). At any time, either party can
disable further negotiation by giving the appropriate WON'T NAOHTTD or
DON'T NAOHTD command.

^

V, ' v'

> -1

m

K

2-660

APPLICATION LEVEL; TLNT-OPS RFC 655 Sk

i

i. -

k

TELNET OUTPUT FORMFEED DISPOSITION OPTION
RFC 655, NIC 31158 (Oct. 25, 1974}
D. Crocker (UCLA-NMC)
Online file: [ISI]<DCROCKER>NAOFFD.TXT

TELNET OUTPUT FORMFEED DISPOSITION OPTION

1. Command name and code
NAOFFD - 13

(Negotiate About Output Formfeed Disposition)

2. Command meanings
In the following, we are discussing a simplex connection, as described in
the NAOL and NAOP Telnet Options specifications.

IAC DO NAOFFD
The data sender requests or agrees to negotiate about output
formfeed disposition with the data receiver. In the case
where agreement has been reached and in the absence of
further subnegotiations, the data receiver is assumed to be
handling output formfeeds.

IAC DON'T NAOFFD
The data sender refuses to negotiate about output formfeed
disposition with the data receiver, or demands a return to
the unnegotiated default mode.

IAC WILL NAOFFD
The data receiver requests or agrees to negotiate about
output formfeed disposition with the sender. In the case
where agreement has been reached and in the absence of
further subnegotiations, the dsta receiver alone is assumed
to be handling output formfeeds.

IAC WON'T NAOFFD
The data receiver refuses to negotiate about output formfeed
disposition, or demands a return to the unnegotiated default
mode.

IAC SB NAOFFD DS <8-bit value> IAC SE
The data sender specifies, with the 8-bit value, which party-
should handle formfeeds and what *;heir disposition should be.
The code for DS is 1.

IAC SB NAOFFD DR <8-bit value> IAC SE
The data receiver specifies, with the R-bit value, which
party should handle formfeeds and what their disposition
should be. The code for DR is 0.

3. Default
DON'T NAOFFD/WON'T NAOFFD

In the default absence of negotiations concerning which party, data
sender or data receiver, is handling output formfeeds, neither party
Is required to handla formfeeds and neither party is prohibited from
handling them; but it is appropriate if at least the data receiver
handles formfeed considerations, albeit primitively.

4. Motivation for the Option
Please refer to section 4 of the NAOL and of the NAOFFD Telnet option
descriptions.

b

!^^>

V

2-661

it

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

5. Description of the Option
The data sender and the data receiver use the 8-bit value along with the
DS and DR SB commands as follows:

8-bit value Meaning

The guiding rules are that:

1) if neither data receiver nor data sender wants to handle output
formfeeds, the data receiver must do it. and
2) if both data receiver and data sender want to handle output
formfeeds, the data sender gets to do it.

The reasoning for the former rule is that if neither wants to do
it. then the default in the NAOFFD option dominates. If both want
to do it. the sender, who is presumed to have special knowledge
about the data, should be allowed to do it. taking into account any
suggestions the receiver may make. Simulation is defined as the
replacement of the formfeed character by enough line-feeds (only)
to advance the paper (or line-pointer) to the top of the next page
(or to tl»e top of the terminal screen) . Note that delays,
controlled by the data sender, must consist of NUL characters
inserted immediately after the formfeed character. This is
necessary due to the assynchrony of network transmission. As with
all option negotiations, neither party should suggest a state
already in effect except to refuse to negotiate; changes should be
acknowledged; and once refused, an option should not be resuggested
until "something changes" (e.g.. another process starts). At any
time, either party nan disable further negotiation by giving the
appropriate WON'T NAOFFD or DON'T NAOFFD command.

\ft

0 Conmand sender suggests that he alone will handle
formfeeds, for the connection.

1 to 250 Command sender suggests that the other party alone
should handle formfeeds, but suggests that the
indicated value be used. The value is the number
of character-times to wait or number of NULs to
insert in the data stream before sendir g the next
data character.

251 Command sender suggests that the other party alone
handle formfeeds, but suggests that each
occurrence of the character be replaced by
carriage-return/line-feed.

252 Command sender suggests that the other party alone
handle formfeeds, but suggest« that they be
discarded.

25."> Command sender suggests that the other party alone
should handle formfeeds, but suggests that
formfeeds be simulated.

254 Command sender suggests that the other party alone
should handle output formfeeds but suggests
waiting for a character to be transmitted (on the
other simplex connection) before sending more
data. Note that, due to the assynchrony of the two
simplex connections, phase problems can occur with
this option.

255 Command sender suggests that the other party alone
should handle output formfeeds and suggests b*V«*i*
nothing about how it should be done. >!*'*>'

.%.

2-682
m

APPLICATION LEVEL: TLNT-OPS RFC 656

TELNET OUTPUT VERTICAL TABSTOPS OPTION
RFC 656, NIC 31159 (Oct. 25, 1974)"
D. Crocker (UCLA-NMC)
Online file: [ISI]<DCROCKER>NAOVTS.TXT

TELNET OUTPUT VERTICAL TABSTOPS OPTION

1. Commejnd name and code
NAOVTS 14

(Negotiate About Vertcial Tabstops)

2. Command meanings
In the following, we are discussing a simplex connection, as described in
the NAOL and NAOP Telnet Options specifications.

IAC DO NAOVTS
The data sender requests or agrees to negotiate about output
vertical tabstops with the data receiver. In the case where
agreement has been reached and in the absence of further
subnegotiations, the data receiver is assumed to be handling output
vertical tabstop considerations.

IAC DON'T NAOVTS
The data sender refuses to negotiate about output vertical tabstops
with the data receiver, or demands a return to the unnegotiated
default mode.

IAC WILL NAOVTS
The data receiver requests or agrees to negotiate about output
vertical tabstops with the sender. In the case where agreement has
been reached and in the absence of further subnegotiations, the data
receiver alone is assumed to be handling output vertical tabstop
considerations.

IAC WON'T NAOVTS
The data receiver refuses to negotiate about output vertical
tabstops, or demands a return to the unnegotiated default mode.

IAC SB NAOVTS DS <8-bit value> ... <8-bit value> IAC SE
The data sender specifies, with the 8-blt value(s), which party
should handle output vertical tabstop considerations and what the
stops should be. The code for DS is I.

IAC SB NAOVTS DR <8-bit value> . . , <8~bit value> IAC SE
The data receiver specifies, with the 8-bit value(s), which party
should handle output vertical tabstop considerations and what the
stops should be. The code for DR is 0.

3. Default
DON'T NAOVTS/WON'T NAOVTS.

lit the default absence of negotiations concerning which party, data
sender or data receiver, is handling output vertical tabstop
considerations, neither parry ** r#*rrutr<*xi to handle verrtral rnhsrr/ps
and neither party is prohibited from handling them; but it is
appropriate if at least the data receiver handles vertical tabstop
considerations, albeit primitively.

4. Motivation for the Option
Please refer to section 4 of the NAOL and of the NAOVTS Telnet option
descriptions.

^1

2-Ü63

fc

V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

5. Description of the Option
The data sender and the data receiver use the 8-bit value(s) along with
the DS and DR SB commands as follows (nultiple 8-bit values are allowed
only if each is greater than zero and less than 251):

8-bit value» Meaning

0 Command sender suggests that he alone will handle
the vertical tabstops, for the connection.

1 to 250 Command sender suggests that the other party alone
should handle the stops, but suggests that the
indicated value (s) be used. Each value is the line
number, relative to the top of the printer page or
terminal screen, that is to be set as a vertical
tabstop.

251 to 254 Not allowed, in order to be compatible with
related Telnet options.

255 Command sender suggests that the other oarty alone
should handle output vertical t*ostops -*nd
suggests nothing about how it should be done.

The guiding rules are that:

1) if neither* data receiver nor data sender wants to handle output
vertical tabstops, the data receiver must do it, and
2) if both data receiver and data sender want to handle output vertical
tabstops, the data sender gets to do it.

the reasoning for the former rule is that if neither wants to do it, then
the default in the NAQVTS option dominates. If both want to do it. the
sender, who is presumed to have special knowledge about the data, should be
allowed to do it, taking into account any suggestions the receiver may make.
This is necessary du& to the assynchrony of network transmissions.
As with all option n*»gotiations, neither party should suggest a state
already in effect «xctsut tu refuse to negotiate; changes should be
acknowledged; and once refused, an option should not be resuggested until
"something changes" (e.g., another process starts).
At «ny tisie, either party can disable further negotiation by giving the
appropriate WON'T NAÖVTS or DON'T NAOVTS command.

iA\V,

Wz

ffr

A.\

m *

* •• *-

2-661

APPLICATION LEVEL: TLNT-OPS RFC 657

D. Crocker (UCLA-NMC)
RFC 657, NIC 31160 (Oct. 25, 1974)
Online file: [ISI] <DCROCKER>NAOVTD. TXT

TELNET OUTPUT VERTICAL TAB DISPOSITION OPTION

1. Command name and code
NAOVTD 15

(Negotiate About Output Vertcial Tab Disposition)

2. Command meanings
In the following, we are discussing a simplex connection, as
described in the NAOL and NAOP Telnet Options specifications.

IAC DO NAOVTD
The data sender requests or agrees to negotiate about output
vertical tab character disposition with the data receiver.
In the case where agreement has been reached and in the
absence of further subnegotiations, the data receiver is
assumed to be handling output vertical tab character considerations.

IAC DON'T NAOVTD
The data sender refuses to negotiate about output vertical tab
character disposition with the data receiver, or demands a
return to the unnegotiated default mode.

IAC WILL NAOVTD
The data receiver requests or agrees to negotiate about output
vertical tab character disposition with the sender. In the
case where agreement has been reached and in the absence of further
subnegotiations, the data receiver alone is assumed to be
handling output vertical tab character considerations.

IAC WON'T NAOVTD
The data receiver refuses to negotiate about output vertical
tab character disposition, or demands a return to the unnegotiated
default mode.

IAC SB NAOVTD DS <8-bit value> IAC SE
The data sender specifies, with the 8-bit value, which party
should handle output vertical tab characters and what their
disposition should be. The code for DS is 1.

IAC SB NAOVTD DR <8-bit value> IAC SE
The data receiver specifies, with the 8-bit value, which party
should handle output vertical tab characters and what their
disposition should be. The code for DR is 0.

3. Default
DON'T NAOVTD/WON'T NAOVTD

In the default absence of negotiations concerning which party,
data sender or data receiver, is handling output vertical tab character
considerations, neither party is required to handle vertical tab
characters and neither party is prohibited from handling mem; but
it is appropriate if at least the data receiver handles vertical tab
character considerations, albeit primitively.

4. Motivation for the Option
Please refer to section 4 of the NAOL and of the NAOVTD Telnet option
descriptions.

2-665

m**mm ,.,.>,*,f,«, if'l ■■■■ m■■MM ^ -i. >■ M, ■ i, 11 ii \p_'wßm_'v

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

5. Description of the Option
The data sender and the data receiver use the 8-bit value along with
the DS and DR SB commands as follows:

8 bit value Meaning

0 Command sender suggests that he alone will handle
vertical tab characters, for the connection.

1 to 250 Command sender suggests that the other party alone
should handle tab characters, but suggests that a
delay of the indicated value be used. The value is

v^ the number of character-times to wait or number of
NULs to insert in the data stream before sending the
next data character.

251 Command sender suggests that the other party alone
handle vertical tabs, but suggests that each
occurrence of the character be replaced by
carriage-return/linefeed.

252 Command sender suggests that the other party alone
handle vertical tabs, but suggests that they be discarded

253 Command sender suggests that the other party alone
should handle tab characters, but suggests that
tabbing be simulated.

254 Command sender suggests that the other party alone
should handle the output disposition but suggests
waiting for a character to be transmitted (on the
other simplex connection) before sending more data.
Note that, due to the assynchrony of the two
simplex connections, phase problems can occur with
this option.

255 Command sender suggests that the other party alone
should handle the output disposition and suggests
nothing about how it should be done.

The guiding rules are that:

1. if neither data receiver nor data sender wants to handle the
output vertical tab characters, the data receiver must do it. and
2. if both data receiver and data sender w*nt to handle the output
vertical tab characters, the data sender gets to do it.

The reasoning for the former rule is that if neither want to do it. then
the default in the NAOVTD option dominate». If both want to do it, the
sender, who is presumed to have special knowledge about the data, should
be allowed to do it, taking into account any suggestions the receiver may
make. Simulation is defined as the replacement of the character by
enough line-feeds (only) to advance the paper (or line-pointer) to the
next vertical tab stop.
Note that delays, controlled by the data sender, must consist of NUL
characters, inserted immediately after the line-feed character. This is
necessary due to the assynchrony of network transmissions. As with all
option negotiations, neither party should suggest a state already in
effect except to refuse to negotiate; changes should be acknowledged; and
once refused, an option should not be resuggested until "something
changes" (e.g., another process starts). At any time, either party can
disable further negotiation by giving the appropriate WON'T NAOVTD or
DON'T NAOVTD command.

2-666

■*. **- *-*•* *' '''-V '•* '■' - •' *» ** ■* v *•' ■' . . fi ' -

APPLICATION LEVEL: TLNT-OPS RFC 658

D. Crocker (UCLA-NMC)
RFC 658, NIC 31161 (Oct. 25, 1974)
Online file: [ISI]<DGROCKER>KAOLFD.TXT

TELNET OUTPUT LINEFEED DISPOSITION

1. Command name and code
NAOLFD 16

(Negotiate About Output Linefeed Disposition)

2. Command meanings
In the following, we are discussing a simplex connection, as described in
the NAOL and NAOP Telnet Options.

IAC DO NAOLFD
The data sender requests or agrees to negotiate about output
linefeed disposition with the data receiver. In the case where
agreement has been reached and in the absence of further
subnegotlations, the data receiver is assumed to be handling output
linefeed considerations.

IAC DON'T NAOLFD
The data sender refuses co negotiate about output linefeed
disposition with the data receiver, or demands a return to the
unnegotiated default mode.

IAC WILL NAOLFD
The data receiver requests or agrees to negotiate about output
linefeed disposition with the sender. In the case where agreement
has been reached and in the absence of further subnegotlations, the
data receiver alone is assumed to be handling output linefeed
considerations.

IAC WON'T NAOLFD
The data receiver refuses to negotiate about output linefeed
disposition, or demands a return to the unnegotiated default mode.

IAC SB NAOLFD DS <8-bit value> IAC SE
The data sender specifies, with the 8-bit value, which party should
handle output linefeeds and what their disposition should be. The
code for DS is 1.

IAC SB NAOLFD DR <8-blt value> IAC SE
The data receiver specifies, with the 8-bit value, which party
should handle output linefeeds and what their disposition should
be. The code for DR is 0.

3. Default
DON'T NAOLFD/WON'T NAOLFD.

In the default absence of negotiations concerning which party, data
under or data receiver, is handling output linefeed considerations,
neither party is required nor prohibited from handling linefeeds; but
it is appropriate if at least the data receiver handles them, albeit
primitively.

4. Motivation for the Option
Please refer to section 4 of the NAOL and of the NAOLFD Telnet option
descriptions.

2-667

>y. ,>.,-.... , ♦. y/ -. .-.y.y.y.y. >y.y.\VAy^.y->y.y y.y.y -v.-.-.*.y.y.- • / / -.-..--.- -.- -.- •/

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

5. Description of the Option
The data sender and the data receiver use the 8-bit value along with DS
and DR SB commands as follows:

8-bit value

1 to 250

251

252

253

254

255

Meaning

Command sender suggests that he alone will handle
linefeeds, for the connection.
Command sender suggests that the other party alone
should handle linefeeds, but suggests that a delay
of the indicated value be used. The value is the
number of character-times to wait or number of
NULs to insert in the data stream before sending
the next data character. (See qualifications, below.)
Not allowed, in order to be compatible with
related Telnet options.
Command sender suggests that the other party alone
handle linefeeds, but suggests that they be discarded.
Command sender suggests that the other party alone
should handle linefeeds, but suggests that
linefeeds be simulated.
Command sender suggests that the other party alone
should handle output linefeeds but suggests
waiting for a character to be transmitted (on the
other simplex connection) before sending more
data. (See qualifications, below.) Note that, due
to the assynchrony of the two simplex connections,
phase problems can occur with this option.
Command sender suggests that the other party alone
should handle output linefeeds and suggests
nothing about how it should be done.

The guiding rules are that:

1) if neither data receiver nor data sender wants to handle output
linefeeds, the data receiver must do it, and
2) if both data receiver and data sender want to handle output linefeed
disposition, the data sender gets to do it.

The reasoning for the former rule is that if neither wants to do it, then
the default in the NAOLFD option dominates. If both want to do it, the
sender, who is presumed to have special knowledge about the data, should
be allowed to do it. taking into account any suggestions the receiver may
make. Simulation is defined as the replacement of the linefeed character
by new-line (see following) and enough blanks to move the print head (or
line pointer) to the same lateral position it occupied just prior to
receiving the linefeed. To avoid infinite recursion, such simulation is
allowed only for linefeed characters that are not immediately preceded by
carriage-returns (that is, part of a Telnet new-line combination). It is
assumed that linefeed simulation will be necessary for printers that do
not have a separate linefeed (like the IBM 2741); in this case.
end-of-line character padding can be specified through NAOCRD. Any
padding (0 < <8-bit-value> < 251) of linefeed characters is to be done
for ALL linefeed characters.

2-668

-■*• .'■

klA!

APPLICATION LEVEL: TLNT-OPS RFC 658

NOTE: Delays, controlled by the data sender, must consist of NUL
characters inserted immediately after the character. This is necessary
due to the assynchrony of network transmissions. Additionally, due to
the presence of the Telnet end-of-line convention, it may be necessary to
add carriage-return padding or delay after the associated linefeed (see
NAOCRD Telnet option). As with all option negotiations, neither party
should suggest a state already in effect except to refuse to negotiate;
changes should be acknowledged; and once refused, an option should not be
resuggested until "something changes" (e.g., another process starts). At
any time, either party can disable further negotiation by giving the
appropriate WON'T NAOLFD or DON'T NAOLFD command. i

i»;

k\

r
K
r.

f.

*

2-669

~ -
■ .^ ."■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-670

r.".

■ 1. I'l.'W^ |1" » «■ n

APPLICATION LEVEL: TLNT-OPS RFC 698

TELNET EXTENDED ASCII OPTION
RFC 696, NIC 32964 (July 23, 1975)

TELNET EXTENDED ASCII OPTICN

1. Command Name and code.

EXTEND-ASCII 17

2. Command Meanings.

IAC WILL EXTEND-ASCII

The sender of this command requests permission to begin
transmitting, or confirms that it may now begin transmitting
extended ASCII, where additional *control1 bits are added to K£v
normal ASCII, which are treated specially by certain programs on £Ui
the host computer. ■£

IAC WON'T EXTEND-ASCII /-\V ******
* * m *

If the connection is already being operated in extended ASCII •Jv$
mode, the sender of this command demands that the reclever begin *$jjj
transmitting data characters in standard NVT ASCII. If the *&T
connection is not already being operated in extended ASCII mode, fljj^
The sender of this command refuses to begin transmitting extended *'/ .•
ASCII. V./ «•„v

IAC IX) EXTEND-ASCII >*v
v'v The sender of this command requests that the receiver begin gs||

transmitting,or confirms that the receiver of this command is ^^
allowed to begin transmitting extended ASCII. V-V

IAC DON'T EXTEND-ASCII />>;•
*.».

The sender of this command demands that the receiver of this **ö%
command stop or not start transmitting data in extended ASCII M|
mode. T^T*

IAC SB EXTASC -\V?

<high order bits (bits 15-8) xlow order bits (bits 7-0) > IAC SE l\y:

This command transmits an extended ASCII character in the form of WBi
two 8-bit bytes. Each 8-bit byte contains 8 data bits. ?>/£

2-671

JKLSLagJft-JL:j.':^<.Jw.!Oil!feL.itE!ft:fl" imjfViio'iWrfi ■». * li »IM ^<|>M.i*>l»,^^i.¥.'P>^i^i>>i^iVN"l»'t'V»F HL.'IW ■*■ ft ■»■•■■. "i.

m
DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

TELNET EXTENDED ASCII OPTION
RFC 698, NIC 32964 (July 23. 1975}

3. Default

>3

DON'T EXTEND-ASCII

WON'T EXTEND-ASCII

i.e., only use standard NVT ASCII

4. Motivation.

Several sites on the net, for example, SU-AX and MIT-AI, use
keyboards which use almost all 128 characters as printable
characters, and use one or more additional bits as 'control* bits as
command modifiers or to separate textual input from command input to
programs. Without these additional bits, several characters cannot
be entered as text because they are used for control purposes, such
as the greek letter 'bets' which on a TELNET connection is CONTROL-C
and is used for stopping ones Job. In addition there are several
commonly used programs at these sites which require these additional
bits to be run effectively. Hence it is necessary to provide some
means of sending characters larger than 8 bits wide.

5. Description of the option.

This option is to allow the transmission of extended ASCII.

Experience has shown that most of the time, 7-bit ASCII is typed,
with an occasional 'control' character used. Hence, it is expected
normal NVT ASCII would be used for 7-bit ASCII and that
extended-ASCII be sent as sn escape character sequence.

The exact meaning of these additional bits depends on the user
program. At SU-AI and at MIT-AI, the first two bits beyond the
normal 7-bit ASCII are passed on to the user program and are denoted
as follows.

Bit 8 (or 200 octal) is the CONTROL bit
Bit 9 (or 400 octal) is the META bit

(NOTE: 'CONTROL* is used in a non-standard way here; that is. it
usually refers to codes 0-37 in NVT ASCII. CONTROL and META are
echoed by prefixing the normal character with 013 (Integral symbol)
for CONTROL and 014 (plus-minus) for META. If both are present, it
is known as CONTROL-META and echoed as 013 014 7-bit character.)

2-672

■ *vv W-V
V/w;V.

LT! Vl J* IJ If I */!*!.*-'- ' ' '* ' ''' f|,,t' 1' I ftI *l ?+f

APPLICATION LEVEL: TLNT-OPS RFC 698

TELNET EXTENDED ASCII OPTION
RFC 698, NIC 32964 (July 23, 1975)

6. Description of Stanford Extended ASCII Characters

In this section, the extended graphic character set used at SU-AI is
described for reference, although this specific character set is not
required as part of the extended ASCII Telnet option. Characters
described as "hidden" are alternate graphic Interpretations of codes
normally used as format effectors, used by cert*in typesetting
programs.

Code Graphic represented

000 null (hidden vertically centered dot)
001 downward arrow
002 alpha (all Creek letters are lowercase)
003 beta
004 logical and (caret)
005 logical not (dash with downward extension)
006 epsilon
007 pi
010 lambda
Oil tab (hidden gamma)
012 linefeed (hidden delta)
013 vertical tab (hidden integral)
014 formfeed (hidden plus-minus)
015 carriage return (hidden circled-plus)
016 infinity
017 del (partial differential)
020 proper subset (right-opening horseshoe)
021 proper superset (left-opening horseshoe)
022 intersection (down-opening horseshoe)
023 union (up-opening horseshoe)
024 universal quantifier (upside-down A)
025 existential quantifier (backwards E)
026 circled-times
027 laft-right double headed arrow
030 underbar
031 right pointing arrow
032 tilde
033 not-equal
034 less-than-or-equal
035 greater-than-or-equal
036 equivalence (column of 3 horizontal bars)
037 logical or (V shape)
040-135 as in standard ASCII

<*A

2-673

■\in\inifii wifwi niiimirti mi» mm m ■> yi ■;« »g UIMI n_i ^i ■■' ■■ m m ■ « i « ■ ■■ _ ■ nwi m ilj i^ '»■■ ii^imyi i»;

Ifctt

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

TELNET EXTENDED ASCII OPTION
RFC 698, NIC 32964 (July 23, 1975)

136 upward pointing arrow
13? loft pointing arrow
140-174 as in standard ASCII
175 altaode (prints as lozenge;
176 right brace
177 rubout (hidden circumflex)

2-674

■»■.^;»i:i»»w^ f f* »■ r<

APPLICATION LEVEL: TLNT-OPS RFC 727

NWC/RFC# 727
Talnet Logout Option

mC 26-APR-77 18:24 40025

Network Working Croup
Request for Comments 727
NIC 40025

Hark Crispin
HIT-AI

27 April 1977

TELNET Logout Option

1. Command name and code.

LOGOUT 18

2. Command meanings.

IAC WILL LOGOUT

The sender of this command REQUESTS permission to. or confl
that it will, forcibly log off the user process at its end.

IAC WON'T LOGOUT

The sender of this command REFUSES to forcibly log off the user
process at its end.

IAC DO LOGOUT

The sender of this command REQUESTS that the receiver forcibly log
off the user process at the receiver's end. or confirms that the
receiver has its permission to do so.

DEMANDS that the receiver not forcibly
at the receiver's end.

3. Default.

WON'T LOGOUT

DON'T LOGOUT

I.e.. no forcible logging off of the server's user process.

4. Motivation for the option.

Often, a runaway user process could be hung in such a state that it
cannot be interrupted by normal means. Conversely, the system Itself
could be bottlenecked so that response delays are intolerable. A
user (human or otherwise) eventually win time out out of frustration

IAC DON'T LOGOUT

The sender of this
log off the user pr

ÜP*v* I]

. •.». v •. •. • „ • • •, <

■I»*!■*! +f+i****** * "*.' ■ ■ » !■*! ■■■%■'» 'I '

2-675

■ .!■» 'PV.'*L* >/■■/■'. *i*i*i^<a ,»LT»J"

m

■p *t

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 727 MRC 26-APR-77 18:24 40025
Telnet Logout Option

and take the drastic means of closing the connection to free itself
from the hung process. In some situations, even the simple operation
of logging out can take a long time.

Some systems treat a close to mean that it should log out its user
process under it. However, many hosts merely "detach" the process so
that an accidental close due to a user or temporary hardware error
will not cause all work done on that job to be lost; when the
connection is re-established, the user may "attach" back to its
process. While this protection is often valuable, if the user is
giving up completely on the host, it can cause this hung job to
continue to load the system.

this option allows a process to instruct the server that the user
process at the server's end should be forcibly logged out instead of
detached. A secondary usage of this option migfrit be for a server to
warn of impending auto-logout of its user process due to inactivity.

5. Description of the option.

When a user decides that it no longer wants its process on the server
host and decides that it does not want to wait until the host's
normal log out protocol has been gone through, it sends IAC DO
LOGOUT. The receiver of the command may respond with IAC WILL
LOQOUT, in which case it will then forcibly log off the user process
at its end. If it responds with IAC WON'T LOGOUT, then it indicates
that it has not logged off the user process at its end, and if the
connection is broken, the process very possibly will be detached.

A truly impatient user that feels that it must break away from the
s^rvmr immediately could even send IAC DO LOGOUT and then close. At
the worst, the server would only ignore the request and detach the
user process. A server that implements the LOGOUT option should know
to log out the user process despite the sudden close and even an
inability to confirm the LOGOUT request!

6. A sample implementation of the option.

The server implements the LOGOUT option both for accepting LOGOUT
requests and for auto-logout warning.

Case 1:

The user connects to the server, and starts interacting with the
server. For some reason, the user wishes to terminate interaction
with the server, and is reluctant to go through the normal log out
procedure, or perhaps the user is unable to go through the normal

[page 2]

2-676

■ ■ Hi H l|i il l !■-■ . «■ '' ' ■•I«!' • '«I'i*v"Hifii>"".''. '-'". t'.*■'

APPLICATION LEVEL: TLNT-OPS RFC 727

s

NWG/RFC# 727 MRC 26-APR-77 18:24 40025
a Telnet Logout Option

log out procedure. It does not want the process at the server any
more, so it sends I AC DO LOGOUT. The server verifies the request
with IAC WILL LOGOUT, and then forcibly logs off the user process
(perhaps by using a system call that causes another process to be
logged out) . It does not have to close the connection unless the
user closes or it wants to close. Neither does it wait until the
user has received its confirmation--it starts the log out
immediately so if the user has in the mean time closed the
connection without waiting for confirmation, its logout request
still is performed.

Case 2:

The user connects to the server, and after logging in, is idle for
a while, long enough to approach the server's autologout time.
The server shortly before the autologout sends IAC WILL LOGOUT;
the user sees this and sends IAC DON'T LOGOUT, and continues work
on the host. Nothing prevents the server from logging out the K"*?
user process if inactivity continues; this can be used to prevent JvVv
a malicious user from locking up a process on the server host by *V-\V
the simple expedient of sending IAC DON'T LOGOUT every time it V•*/«'
sees IAC WILL LOGOUT but doing nothing else. ;!*.*>/

i

[page 3]

2-677

■''J "'*"' ■ ,>s n * *"**' **••*•«' *'• .VA.'--•-.'•V--'-.'»V .•-.•-',-. ■'> :■ .!-'. 1
%
".'-':>'-V-", ■'■'■'■•

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-678

'•'<'-"'.'fV-v^"'-v-' y*-\' \'t;

APPLICATION LEVEL: TLNT-OPS RFC 735

RFC 735
Telnet Byte Macro Option

DHC RHG 3 Nov 77 42083

Network Working Group
RFC: #735
NIC: #42083

Obsoletes: RFC #729 (NIC #40306)

David H. Crocker
Rand-ISD

(Dcrocker at Rand-Unix)
Richard H. Gumpertz

Carnegie-Mellon University
(Gumpertz at CMU-10A)

3 November 1977

Revised TELNET Byte Macro Option

1. Command name and code:

BM 19

2. Command Meanings:

IAC WILL BM

The sender of this command REQUESTS or AGREES to use the BM
option, and will send single data characters which are to be
interpreted as if replacement data strings had been sent.

IAC WON'T BM

The sender of this option REFUSES to send single data characters
which are to be interpreted as if replacement data strings had
been sent. Any existing BM <macro byte> definitions are discarded
(i.e., reset to their original data interpretations).

IAC DO BM

The sender REQUESTS or AGREES to have the other side (sender of
WILL BM) send single data characters which are to be interpreted
as if replacement data strings had been sent.

IAC DON'T BM

The sender REFUSES to allow the other side to send single data
characters which are to be interpreted as if replacement data
strings had been sent. Any existing BM <macro byte> definitions
are to be discarded.

2-679

<>. L . I - « -. .

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 735 DHC RHG 3 Nov 77 42083
Telnet Byte Macro Option

I AC SB BM <DEFINE> <raacro byte> <count>
<replacement string> IAC SE

where:

<macro byte> is the data byte actually to be sent across the
network; it may NOT be Telnet IAC (decimal 255, but may be any
other 8-bit character.

<count> is one 8-bit byte binary number, indicating how many
Replacement string> characters follow, up to the ending IAC
SE, but not including it. Note that doubled IACs in the
definition should only be counted as one character per pair.

Replacement string> is a string of zero or more Telnet ASCII
characters and/or commands, which the <macro byte> is to
represent; any character may occur within a Replacement
string>. Note, however, that an IAC in the string must be
doubled, to be interpreted later as an IAC; to be interpreted
later as data byte 255, it must be quadrupled in the original
Replacement string> specification.

tlhe indicated <macro byte> will be sent instead of the indicated
Replacement string>. The receiver of the <macro byte> (the sender
of the DO BM) is to behave EXACTLY as if the Replacement string>
string of bytes had instead been received from the network. This

£ interpretation is to occur before any other Telnet
'A interpretations, unless the <macro byte> occurs as part of a
£ Telnet command; in this case no special interpretation is to be

made. In particular, an entire Telnet subnegotiation (i.e. from
IAC SB through IAC SE) is to be considered a Telnet command in
which NO replacement should be done.

The effect of a particular <macro byte> may be negated by reseting
it to "expand" into itself.

IAC SB BM <DEFINE> X <0> IAC SE may be used to cause X to be
ignored in the data stream.

<DEFINE> is decimal 1.

IAC SB BM <ACCEPT> <macro byte> IAC SE

The receiver of the <DEFINE> for <macro byte> accepts the
requested definition and will perform the indicated replacement
whenever a <macro byte> Is received and is not part of any IAC
Telnet command sequence.

IN J%
r% ,, , ■,.„■ ,,.,-,■■■ ■-

2-680

APPLICATION LEVEL: TLNT-OPS RFC 735

RFC 735
Telnet Byte Macro Option

DHC RHG 3 Nov 77 42083

<ACCEPT> is decimal 2.

IAC SB BM <REFUSE> <macro byte> <REASON> IAC SE

The receiver of the <DEFINE> for <macro byte> refuses to perform
the indicated translation from <macro byte> to <replacement
string> because the particular <macro byte> is not an acceptable
choice, the length of the replacement string> exceeds available
storage, liio length of the actual <replacement string> did not
match the length predicted in the <count>, or for some unspecified
reason.

<REFUSE> is decimal 3.

<REAS0N> may be

<BAD-CHOICE>

<T00~L0NG>

<WRONG-LENGTH>

<0THER-REASON>

which is decimal 1;

(for receiver's storage) which is decimal
2;

(of actual string compared with promised
length in <count>) which is decimal 3; or

(intended for use only until this document
can be updated to include reasons not
anticipated by the authors) which is
decimal zero (0).

IAC SB BM <LITERAL> <macro byte> IAC SE

The <macro byte> is to be treated as real data, rather than as
representative of the replacement string>

Note that this subcommand cannot be used during Telnet
subcommands, since subcommands are defined to end with the next
occurrence of "IAC SE". Including this BM subcommand within any
Telnet subcommand would therefore prematurely terminate the
containing subcommand.

<LITERAL> is decimal 4.

IAC SB BM <PLEASE CANCEL> <macro byte> <REAS0N> IAC SE

The RECEIVER of the defined <macro byte> (i.e., the sender of IAC
DO DM) requests the sender of <macro byte> to cancel its
definition. <REASON> is the same as for the <R£FUSr> subcommand.

;* t'

2-681

■v.v,,vv

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985 i
RFC 735
Telnet Byte Macro Option

DHC RHG 3 Nov 77 42083

The <macro byte> sender should (but is not required to) respond by
resetting <macro byte> (i.e., sending an IAC SB BM <DEFINE> <macro
byte> <1> <macro byte> IAC SE).

If the receiver absolutely insists on cancelling a given macro,
the best it can do is to turn off the entire option, with IAC DONT
BM, wait for an acknowledging IAC WONT BM and then restart tne
option, with IAC DO BM. This will reset all other macroes as well
but it will allow the receiver to REFUSE with code BAD CHOICE
if/when the foreign site attempts to redefine the macro in
question.

3. Default:

WON'T BM -- DON'T BM

No reinterpretation of data bytes is done.

4. Motivation for the option:

Subcommands for Telnet options currently require a minimum of five
characters to be sent over the network (i.e., IAC SB <0ptlon name>
IAC SE) . For subcommands which are employed infrequently, in absolute
numbers and in relation to normal data, this overhead is tolerable.
In other cases, however, it is not. For example, data which is sent
in a block- oriented fashion may need a "block separator" mark. If
blocks are commonly as small as five or ten bytes, then most of the
cross-net data will be control information. The BM option is intended
as a simple data compression technique, to remove this overhead from
the communication channel.

5. Description of the option

The option is enabled throu#* the standard Telnet Option negotiation
process. Afterwards, the SENDER of daca (the side which sends the IAC
WILL BM) is free to define and use mappings between single and
replacement NVT characters. Except for the ability to refuse
particular definitions, the receiver of data has no control over the
definition and use of mappings.

The sender (of the WILL BM) is prohibited from using or redefining a
<macro byte> until it has received an <ACCEPT> <REFUSE>, or DONT BM,
in reply to a <DEFINE>.

NOTE: The Telnet command character IAC (deciraal 255) may be a member
of a Replacement string> but is the ONLY character which may NOT be
defined as a <macro byte>.

2-682

APPLICATION LEVEL: TLNT-OPS RFC 735

RFC 735
Telnet Byte Macro Option

DHC RHG 3 Nov 77 42083

Within any Telnet command (i.e., any sequence beginning with I AC)
macro replacement may NOT take place. Data are to be interpreted only
as their normal character values. This avoids the problem of
distinguishing between a character which is to be taken as a <macro
byte>, and interpreted as its corresponding replacement string>, and
one which is to be taken as its usual Telnet NVT value. In all other
cases, however, <macro byte>s are to be interpreted Immediately, as
if their corresponding replacement string>s had actually been sent
across the network. Expanded strings are not subject to
reinterpretation, so that recursive definitions cannot be made.
Telnet commands may be included in replacement strings>; however,
they must be totally contained within the macro or must begin within
the macro and terminate outside of it. In particular, they may NOT
begin outside a macro and continue or terminate inside one, since no
macro replacement takes place while processing any Telnet command.

Note that when skipping data due to Telnet SYNCH (INS/DM) processing,
BM macro replacement should still take place, since (for example)
"IAC DM" would be a valid replacement string>.

The <count> in the <DEFINE> subcommand is intended to allow tie
receiver to allocate storage. IAC interpretation is not over-ridden
during BM subcommands so that IAC SE will continue to safely
terminate malformed subcommands.

The BM option is notably inefficient with regard to problems during
<macro byte> definition and use of <macro byte>s as real data It is
expected that relatively few <macro byte>s will be defined and that
they will represent relatively short strings. Since the Telnet data
space between decimal 128 and decimal 254 is not normally used,
except by implementations employing the original (obsolete) Telnet
protocol, it is recommended that <macro byte>s normally be drawn from
that pool.

2-683

.*. .*, „\

APPLICATION LEVEL: TLNT-OPS RFC 735

2-684

' / '.*- « ^ **. ^ «'- '\-\-\ ' i- ;■ * A - «■

2-6S5

m

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/RFC# 732 DAY 13-Sep-77 18:38 41762
Data Entry Terminal Caption

Network Working Group John Day
Request for Comments: 732
NIC: 41762 12 September 1977

Obsoletes: 731

Telnet Data Entry Terminal Option

1. Command Name and Code:

DET 20

2. Command Meanings

IAC WILL DET

The sender of this command REQUESTS or AGREES to send and receive
subcommands to control the Data Entry Terminal.

IAC WONT DET

The sender of this command REFUSES to send and receive subcommands $>y
to control the Data Entry Terminal.

IAC DO DET

The sender of this command R£QUESTS or AGREES to send and receive
subcommands to control the Data Entry Terminal.

IAC DOmr DET

The sender of this command REFUSES to send and receive subcommands
to control the Data Entry Terminal.

The DET option uses five classes of subcommands 1) to establish the
requirements and capabilities of the application and the terminal. 2)
to format the screen, and to control the 3) edit, 4) erasure, and 5) ivi
transmission functions. The subcommands chat perform these functions |
are described below. ^

* * *

The Network Virtual Data Entry Terminal (NVDET) >I

The NVDET consists of a keyboard and a rectangular display. The J%
keyboard is capable of generating all of the characters of the ASCII
character set. In addition, the keyboard may possess a number of
function keys which when pressed cause a FN subcommand to be sent.

John Day [page 1]

\\

.%,'■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

NWG/KFC# 732
Data Entry Terminal Option

DAY 13-S«p-77 18:38 41762

(Although most DET's will support on« or more peripheral devices
such as a paper tape reader or a printer, this option does not
consider their support. Support of peripheral devices should be
treated by a is a separate option).

The screen of the data entry terminal is a rectangle M characters by
N lines. The values of M and N are set by negotiating the Output
Line Width and Output Page Size options, respectively. The next
writing position (x,y) on the screen (where x is the character
position and y is the position of the line on the screen) is
indicated by a special display character called the cursor. The
cursor may be moved to any position on the screen without disturbing
any characters already on the screen. Cursor addressing in existing
terminals utilizes several topologies and addressing methods. In
order to make the burden of implementaton as easy as possible this
protocol supports two topologies (the finite plane and the helical
torus) and three addressing methods ((x, y); x and y, and relative
increments) . Since the finite plane with absolute addressing is the
least ambiguous and the easiest to translate to and from the others,
it is the default scheme used by the NVDET. The torodial form with
either relative or absolute addressing is provided for convience.

Also the NVDET provides a mechanism for defining on the screen
fields with special attributes. For example, characters entered into
these fields may be displayed with brighter intensity, highlighted
by reverse video or blinking, or protected from modification by the
user. This latter feature is one of the most heavily used for
applications where the DET displays a form to be filled out by the
user.

The definition of the NVDET uses Telnet option subnegotlations to
accomplish all of its functions. Since none of the ASCII characters
sent in the data stream have been used to define these functions,
the DET option can be used in a MrawM or even "rare" mode. In
circumstances where the application program knows what kind of
terminal is on the other end, it can send the ASCII characters
reo^iired to control functions not supported by the option or an
iasplementation. In general keeping all NVDET functions out of the
data stream provides better flexibility.

Facility Functions (for detailed semantics see Section 5.)

IAC SB DET <DE7 facility subcommandxfacility map> IAC SE

where <DET facility subcommand> is one 8-bit byte indicating the
class of the facilities to be described, and <facility map> is a
field of one or two 8-bit bytes containing flags describing the

i%

John Day lp*<* 2}

JM

2-686

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/RFC# 732
Data Entry Terminal qption

DAY 13-Sep-77 18:38 41762

facilities required or desired by the sender. Ihe bits of the
facility maps are numbered from the riojit starting at zero. Thus,
if bit 2 is set the field will have a decimal value of 4. The
values of the field are as follows:

facility cmd: EDIT FACILITIES

facility map:

Toroidal Cursor Addressing
Incremental Cursor Addressing
Read Cursor Address
Line Insert/Delete
Char Insert/Delete
Back Tab
Positive Addressing only

subcommand code: 1

bit numbers

6
5
4
3
2
1
0

where:

If the Toroidal Cursor Addressing bit is set, the sender requests or
provides that the SKIP TO LINE and SKIP TO CHAR subcommands be
supported.

If the Incremental Cursor Addressing bit is sat, the sender requests
or provides that the UP, DOWN, LEFT, and RIGHT subcommands be
supported.

If the Read Cursor bit is set, the sender requests or provides the
READ CURSOR subcommand.

If the Line Insert/Delete bit is set, the sender requests or
provides that the LINE INSEKT and LINE DELETE subcommands be
supported.

If the Char Insert/Delete bit is set, the sender requests or
provides that the CHAR INSERT and CHAR DELETE subcommands be
supported.

If the Back Tab bit is set. the sender requests or provides that the
BACK TAB subcommand be supported.

If the Positive Addressing bit is set. then the sender is informing
the receiver that it can only move the cursor in the positive
direction. (Note: Terminals that have this property also have a Home
function to get back to the beginning.)

£

.v.

John Day iP*<* 3]

2-6S7

".' v .* •• •• •*.-.•.*.•.*."*,*'**.* -.• •.*K* *%* */ •»* »•**•*.♦*" *.*♦.*»/ *."•-■s.*•/•.* *•.* •/*■ *'■ •"■ •*• **• **• •\»**</"*v."<\v«y,\ v.\ /v.v,\

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

NWG/RFC* 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

K:

facility cmd: ERASE FACILITIES

facility map:

Erase Field
Erase Line
Erase Rest of Screen
Erase Rest of Line
Erase Rest of Field

subcomnand code:

bit numbers

4
3
2
1
0

where:

If a bit of the facility map for this facility conmand is set, the
sender requests or provides the facility Indicated by the bit. For a
more complete description of each of these functions see the Erase
Functions section below.

facility cmd: TRANSMIT FACILITIES subcoanand code: 3

facility map: bit numbers

Data Transmit
Transmit Line
Transmit Field
Transmit Rest of Screen
Transmit Rest of Line
Transmit Rest of Field

5
4
3
2
1
0

wher*:

If a bit of the facility map for this facility coranand is set, the
sender requests or provides the facility indicated by the bit. For a
more cotsplete description of each of these functions see the
Transmit Functions section below.

facility cmd: FORMAT FACILITIES

facility map:

FN
Modified
tight Pm\
Repeat
Blinking
Reverse Video
Right Justification
Overstrike

subcommand code: 4

bit numbers

byte 0 7
6
c

4
3
2
I
0

,v,

John D*> [page 41

2-GSS

■ri'.;t ■*.' *
* *

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/RFCS 732
Data Entry Terminal Caption

DAY 13-Sep-77 18:38 41762

Protection On/Off
Protection
Alphabetic-only Protection
Numeric-only Protection
Intensity

byte 1 6
5
4
3
0-2

where:

If the FN bit is set, the sender requests or provides the FN
subcommand.

If the Modified bit is set. the sender requests or provides the
ability to indicate fields that are modified and supports the
TRANSMIT MODIFIED subcommand.

If the Lii^ht Pen bit is set, the sender requests or provides the
support of a ligfrit pen, including the Pen Selectable attribute of
the DATA FORMAT subcommand.

I f the Repeat bit is set the sender requests or provides the REPEAT
subcommand.

If the Blinking bit is set, the sender requests or provides the
ability to ighlight a string of characters by causing them to
blink.

If the Reverse Video bit is set, the sender requests or provides the
ability to highlight a string of characters by "reversing the video
image/' i.e., if the characters are normally displayed as black
characters on a white background, this is reversed to be white
characters on a black background, or vice versa.

If the Right Justification bit is set, the sender requests or
provides the ability to cause entries of data to be right justified
in the field.

If the Overstrike bit is set. the sender requests or provides the
ability to superimpose one character over another on the screen much
like a hard copy terminal would do if the print mechanism struck the

position on the paper with different characters.

If the Protection On/Off bit is set. the sender requests or provides
the ability to turn on and off field protection.

If the Protection bit is set. the sender requests or provides the
ability to protect certain string of

AS

John Day ;p«9« si

2-680

. v *.* •.* %• v •.•
«MM ■^■„■■»..■IL.II, iH, iM, «MM ̂ ■lL^i ■■«.■I.HIML« •4—m

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC* 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

characters displayed on the screen from being altered by the user of
the terminal. Setting this bit also implies that ERASE UNPROTECTED,
DATA TRANSMIT, FIELD SEPARATOR, and TRANSMIT UNPROTECTED subcommands
(see below) are supported.

If the Alphabetic-only Protection bit is set, the sender requests or
provides the ability to constrain the user of the terminal such that
he may only enter alphabetic data into certain areas of the screen.

If the Numeric-only Protection bit is set, the sender requests or
provides the ability to constrain the user of the terminal such that
he may only enter numerical data into certain areas of the screen.

The three bits of the Intensity field will contain a positive binary
integer indicating the number of levels of Intensity that the sender
requests or provides for displaying the data. The value of the 3 bit
field should be interpreted in the following way:

1 one visible intensity
2 two intensities; normal and bright
3 three intensities; off, normal, and bright
>3 >3 intensities; off, and the remaining levels
proportioned from dimmest to brightest intensity.

For the all of the above commands, if the appropriate bit in
<facillty map- is not set, then the sender does not request or
provide that facility.

Editing Functions

IAC SB DET MOVE CURSOR <x><y> IAC SE subcommand code:

where <x> is an 8-bit byte containing a positive binary integer
representing the character position of the cursor, <y> is an 8-bit
byte containing a positive binary integer representing the line
position of the cursor.

This subcommand moves the cursor to the absolute screen address
(x.y) with the following boundary conditions:

if x>M-l, set x^M-l and send an ERROR subcommand

if y>N-l, set y*N-l and send an ERROR subcommand

This describes a finite plane topology on the screen.

John Day [peg© 6]

2-6ÖO

/••.rv •t*^

'«■W'V^
v, / ,*VVW .• vs :%*AV

m M M me**&lm*mm^**i**^*l+&rm*r*^**im '1*1 *l«*1^ &. ■ Uli i ■mfrii

:*\

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/RFC# 732
Data Entry Terminal Cfction

DAY 13-Sep-77 18:38 41762

IAC SB DET SKIP TO LINE <y> IAC SE

»«here <y> is a positive 8-bit binary number.

subcommand code: 6

Ihis subcommand moves the cursor to the absolute screen line y. x
remains constant. For values of y>N-l

y = y mod N.

IAC SB DET SKIP TO CHAR <x> IAC SE

where <x> is a positive 8-bit binary number.

subcommand code: 7

This subcommand moves the cursor to the absolute character position
x. y remains constant, unless x>M-l in which case:

x' = (x mod M)
y» = (y+(X DIV N))
where x* and y' are the new values of the cursor.

These last two subcommands define a toroidal topology on the screen.

IAC SB DET UP IAC SE subcommand code: 8

IAC SB DET DOWN IAC SE subcommand code: 9

IAC SB DET LEFT IAC SE subcommand code: 10

IAC SB DET RIGHT IAC SE subcommand code: 11

These subcommands are provided as a convenience for some terminals.
The commands UP, DOWN, LEFT, and RIGHT are defined as

UP:
DOWN
LEFT

(x,y) = (x, y-1 mod M)
(x,y) = (x, y+1 mod N)
(x,y) = (x-l, /); if x=0 then x-1 « 0

RIGHT: (x,y) = (x+l mod M, y) and y = y+1 if x+l>M-l

Note: DOWN, LEFT, and RIGHT cannot always be replaced by the ASCII
codes for linefeed, backspace, and space respectively. The latter
are format effectors while the former are cursor controls.

IAC SB DET HOME IAC SE subcommand code: 12

This subcommand positions the cursor to (0,0) . This is equivalent to
a MOVE CURSOR 0,0 or the sequence SKIP TO LINE 0, SKIP TO CHAR 0.

John Day [page 7]

k^^^^^K-^i^^^^^i^i:,

2-691

N." v* *.* •-' *.' ^>;;^^^^>^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/ftFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

iv

This subcommand is provided for convenience, since most terminals
have it as a separate control.

IAC SB DET LINE INSERT IAC SE subcommand code: 13

This subcommand inserts a line of spaces between lines y (the
current line, determined by the position of the cursor) and line
y-1. Lines y through N-2 move down one line, i.e. line y becomes
line y+1; y+1 becomes y+2, ...; N-2 becomes N-l. Line N-l is lost
off the bottom of the screen. The position of the cursor remains
unchanged.

IAC SB DET LINE DELETE IAC SE subcommand code: 14

This subcommand deletes line y where y is the current line position
of the cursor. Lines y+1 through N-l move up one line, i.e. line y+1
becomes line y; y+2 becomes y+1; ...; N-l becomes N-2. The N-lst
line position is set to all spaces. The cursor position remains
unchanged.

IAC SB DET CHAR INSERT IAC SE subcommand code: 15

This subcommand inserts the next character in the data stream
between the xth and x-lst characters, where x is the current
character position of the cursor. The xth through M-2nd characters
on the line are shifted ore character positon to the right. The new
character is inserted at üie vacated xth position. The M-lst
character is lost. The position of the cursor remains unchanged.

IAC SB DET CHAR DELETE IAC SE subcommand code: 16

This subcommand deletes the character on the screen at the x-th
position. The x-th character is removed and the characters x+1
through M-l are shifted one character position to the left to become
the x-th through M-2nd characters. The M-lst character position is
left empty. (For most terminals it will be set to a NUL or space.)
The cursor position remains unchanged.

IAC SB DET READ CURSOR IAC SE subcommand code: 17

This subcommand requests the receiver to send the present position
of the cursor to the sender.

IAC SB DET CURSOR POSITION <x><y> IAC SE subcommand code: 18

where <x> and <y> are positive 8-bit binary integers.

John Day [page 8]

2-692

-1 J S_ - «_

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/RFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

This subcommand is sent by a Telnet implementation in response to a
READ CURSOR subcommand to convey the coordinates of the cursor to
the other side. Note: x is less than M and y is less than N.

IAC SB DET REVERSE TAB IAC SE subcommand code: 19

This subcommand causes the cursor to move to the previous tab
position. If none exists on the present line, the cursor moves to
the previous line and so on until a tab is found or the address
(0,0) is encountered. When field protection is in effect the cursor
moves to the beginning of the preceding unprotected field.

Transmit Functions (For detailed semantics see Section 5.)

IAC SB DET TRANSMIT SCREEN IAC SE subcommand code: 20

This subcommand causes the terminal to transmit all characters on
the screen from position (0,0) to (M-1,N-1) . The cursor will be at
(0,0) after the operation is complete.

IAC SB DET TRANSMIT UNPROTECTED IAC SE subcommand code: 21

This subcommand causes the terminal to transmit all characters in
unprotected fields from position (0,0) to (M-1,N-1). The unprotected
fields are separated by the field separator subcommand. The cursor
will be at (0,0) or at the beginning of the first unprotected field
after the operation is complete.

IAC SB DET TRANSMIT LINE IAC SE subcommand code: 22

This subcommand causes the terminal to transmit all data on the yth
line where y is determined by the present position of the cursor.
Data is sent from character position (0,y) to the end-of-line or
position (M-l,y) whichever comes first. The cursor position after
the transmission is one character position after the end of line
condition or the beginning of the next line, (0,y+l) .

IAC SB DET TRANSMIT FIELD IAC SE subcommand code: 23

This subcommand causes the terminal to transmit all data in the
field presently occupied by the cursor. The cursor position after
the operation is complete is one character position after the end of
the field or, if that

position is protected, at the beginning of the next unprotected
field.

John Day [page 9]

2-693

._• ./'•A,A,A,AVA»/A'A,'A'.,tV*V» L*. JV

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

IAC SB DET TRANSMIT REST OF SCREEN IAC SE subcommand code: 24

This subcommand causes the terminal to transmit all characters on
the screen from position (x,y) to (M-1,N-1) or until the end of
text, (x,y) is the current cursor position. The cursor position
after the operation is one character position after the last text
character, or (0,0) if the last filled character position is
(M-1,N-1) .

IAC SB DET TRANSMIT REST OF LINE IAC SE subcommand code: 25

This subcommand causes the terminal to transmit all characters on
the yth line from position (x,y) to the end of line or (M-l,y)
whichever comes first. (x,y) is the current cursor position. The
cursor position after the operation is one character position after
the last character of the line or the first character of the next
line.

IAC SB DET TRANSMIT REST OF FIELD IAC SE subcommand code: 26

This subcommand causes the receiver to transmit the rest of the
characters in the field currently occupied by the cursor. The cursor
position after the operation is at the beginning of the next field.

IAC SB DET TRANSMIT MODIFIED IAC SE subcommand code: 27

This subcommand causes the receiver to transmit only those fields
which have the modified attribute set. The cursor position after the
operation is unchanged.

IAC SB DET DATA TRANSMIT <x><y> IAC SE subcommand code: 28

This subcommand is used to preface data sent from the terminal in
response to a user action or a TRANSMIT command. The parameters <x>
and <y> indicate the initial position of the cursor. See the
Transmit Subcommands subsection in Section 5 for more details. A
DATA TRANSMIT subcommand may precede an entire transmission with
each field being delineated by the FIELD SEPARATOR subcommand as
would be the case in a response toa

TRANSMIT UNPROTECTED. Or. it may precede each field as would be the
case in a response to a TRANSMIT MODIFIED.

Erase Functions

•^

IAC SB DET ERASE SCREEN IAC SE subcommand code: 29

John Day [page 10]

2-69-1

•>.■*>> > .V.*-' v *.'

W*B 'w'*Vr

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/RFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

ii

This subcommand causes all characters to be removed from the screen.
All fields regardless of their attributes are deleted. The cursor
position after the operation will be (0,0) . Most terminals set the
erased characters to either NUL or space characters.

IAC SB DET ERASE LINE IAC SE subcommand code: 30

This subcommand causes all characters on the yth line to be removed
from the screen, where y is the line of the current cursor position.
All fields regardless of their attributes are deleted. The cursor
position after this operation will be (0,y) . Note: This operation
can be easily simulated by the sequence: LINE DELETS, LINE INSERT.
However, the order is important to insure that no data is lost off
the bottom of the screen.

IAC SB DET ERASE FIEID IAC SE subcommand code: 31

Ulis subcommand causes all characters in the field occupied by the
cursor to be removed. The cursor position after the operation is at
the beginning of the field.

IAC SB DET ERASE REST OF SCREEN IAC SE subcommand code: 32

This subcommand causes all characters from position (x,y) to
(M-1,N-1) to be removed from the screen. All fields regardless of
their attributes are deleted. The cursor position after the
operation is unchanged. This is equivalent to doing an ERASE REST OF
LINE plus a LINE DELETE for lines greater than y.

IAC SB DET ERASE REST OF LINE IAC SE subcommand code: 33

This subcommand causes all characters from position (x,y) to (M-l,y)
to be removed from the screen All fields regardless of their
attributes are deleted. The cursor position after the operation is
unchanged.

IAC SB DET ERASE REST OF FIELD IAC SE subcommand code: 34

This subcommand causes all characters from position (x,y) to the end
of the current field to be removed from the screen. The cursor
position after the operation is unchanged.

IAC SB DET ERASE UNPROTECTED IAC SE subcommand code: 35

This subcommand causes all characters on the screen in unprotected
fields to be removed from the screen. The cursor position after the

John Day [page 11]

2-605

■ "L"*V-v«>>"L ■"!*• **v*'1%'ls*!* -V-V'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 732 DAY 13-Sep-77 18:38 41762
Data Entry Terminal Option

operation is at (0,0) or, if that position is protected, at the
beginning of the first unprotected field.

Format Functions

IAC SB DET FORMAT DATA < format map><count> IAC SE
subcommand code: 36

where <format map> is a two byte field containing the following
flags:

Byte 0
Blinking 7
Reverse Video 6
Right Justification 5
Protection 3-4
Intensity 0-2

Byte 1
Modified 1
Pen Selectable 0

where:

If the Blinking bit is set, the following field of <count>
characters should have the Blinking attribute applied to it by the
receiver.

If the Reverse Video bit is set, the following field of <count>
characters should be displayed by the receiver with video reversed.

If the Riojht Justification bit is set, the input entered into the
field of <count> characters should be riojht justified.

The Protection field is two bits wide and may take on the

following values:

0 no protection
1 protected
2 alphabetic only
3 numeric only

the protection attribute specifies that the other side may modify
any character (no protection), modify no characters (protected),
enter only alphabetical characters (A-2, and a-z) (alphabetic only),
or enter only numerical characters (0-9,*,.,and -) (numeric only) in
the following field of <count> bytes.

John Day [page 12]

2-696

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/RFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

The Intensity field is 3 bits wide and should be interpreted in the
following way:

The values 0-6 should be used as an indication of the relative
brightness to be used when displaying the characters in or entered
into the following field <count> characters wide. The number of
levels of brightness available should have been obtained
previously by the Format Facility subcommand. The exact algorithm
for mapping these values to the available levels of intensity is
left to the implementors. A value of 7 in the intensity field
indicates that the brightness should be off, and any characters in
or entered into the field should not be displayed.

If the Modified bit is set, the field is considered to have been
modified and will be transmitted in response to a TRANSMIT MODIFIED
subcommand.

If the Pen Selectable bit is set, the field can be selected with the
light pen. Note: Use of the light pen should be the subject of
another Telnet option.

<count> is 2 bytes that should be interpreted as a positive 16-bit
binary integer representing the number of characters following this
command which are affected by it.

Data sent to the terminal or the Using Host for unwritten areas of
the screen not in the scope of the count should be displayed with
the default values of the format map. The default values are No
Blinking, Normal Video, No Justification, No Protection and Normal
Intensity. For example, suppose a FORMAT DATA subcommand was sent to
the terminal with attributes Blinking and Protected and a

count of 5 followed by the string "Name: John Doe". The string
"Name:" would be protected and blinking, but the string "John Doe"
would not be.

This subcommand is used to format data to be displayed on the screen
of the terminal. The <format map> describes the attributes that the
field <count> bytes wide should have. This field is to start at the
position of the cursor when the command is acted upon. The next
<count> displayable characters in the data stream are used to fill
the field. Subsequent REPEAT subcommands may be used to specify the
contents of this field. If the sender specifies attributes that have
not been agreed upon by the use of the Format Facility subcommand,
the Telnet process should send an Error Subcommand to the sender,
but format the screen as if the bit had not been set.

ss

John Day [page 13]

2-697

.'•."• .*- •> "w .

!v>^X\^v!v^ V>^VV/^VA\V!

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

IAC SB DET REPEAT <count><char> IAC SE subcommand code: 37

where <count> is a positive 8-bit binary integer. <char> is an 8-bit
byte containing an ASCII character.

Hiis subcommand is used to perform data compression on data being
transferred to the terminal by encoding strings of identical
characters as the character and a count. The repeated characters may
be part of a field specified

IAC SB DET SUPPRESS PROTECTION <negotiation> IAC SE
subcommand code: 38

where <negotiation> may have the values of the Telnet option
negotiation:

251
252
253
254

WILL
WONT
DO
DONT

This subcommand is used to suppress the field protection in a
non-destructive manner. Many data entry terminals provide the means
by which protection may be turned on and off without modifying the
contents of the screen or the terminal's memory. Thus, the
protection may be turned off and back on without retransmitting the
form.

The default setting of the option is that protection is on, in other
words

IAC SB DET SUPPRESS PROTECTION WONT IAC SE
IAC SB DET SUPPRESS PROTECTION DONT IAC SE

Negotiation of this subcommand follows the same rules as
negotiations of the Telnet options.

IAC SB DET FIELD SEPARATOR IAC SE subcommand code: 39

It is necessary when transmitting only the unprotected portion of
the screen to provide a means for delimiting the fields. Existing
DET's use a variety of ASCII characters such as Tab, Group
Separator, Unit Separato-, etc. In order to maintain transparency of
the NVDET this subcommand is used to separate the fields. Clearly,
this incurs rather high overhead. This overhead can be avoided by
using the Byte Macro Option (see Appendix 3) .

£

>:

John Day [page 14]

2-698

."•VVAV-V-" -•
' O O • * k * . * « ■-V-V-VAW-N '_V ."»*_ *_V. ■»*_*» "!*v* V*- --%/ •-*'

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/KFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

Miscellaneous Commands

IAC SB DET FN <code> IAC SE

where: <code> is one byte.

subcommand code: 40

Many data-entry terminals provide a set of "function*' keys which
when pressed send a one-character command to the server. This
subcommand describes such a facility. The values of the <code> field
are defined by the user and server. The option merely provides the
means to transfer the information.

IAC SB DET ERROR <cmd> <error code> IAC SE

where:

subcommand code: 41

<cmd> is a byte containing the subcommand code of the subcommand
in error.

<error code> is a byte containing an error code.

(For a list of the defined error codes see Appendix 2.)

This subcommand is provided to allow DET option implementations to
report errors they detect to the corresponding Telnet process. At
this point it is worth reiterating that the philosophy of this
option is that when an error is detected it should be reported;
however, the implementation should attempt its best effort to carry
out the Intent of the subcommand or data in error.

MS

John Day [page 15]

2-69Ö

■ i I'I. i.i«Ai -^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

3. Default and Minimal Implementation Specifications

Default

WON'T DET — DON'T DET

Neither host wishes to use the Data Entry Terminal option.

Minimal Implementation

DET EDIT FACILITIES
DET ERASE FACILITIES
DET TRANSMIT FACILITIES
DET FORMAT FACILITIES
DET MOVE CURSOR <x><y>
DET HOME
DET ERASE SCREEN
DET TRANSMIT SCREEN
DET FORMAT DATA
DET ERROR <cmd> <error code>

In the case of formatting the data, the minimal implementation
should be able to support a low and high level of intensity and
protection for all or no characters in a field. These functions,
however, are not required.

The minimal implementation also requires that the Output Line Width
and Output Page Size Telnet options be supported.

John Day [page 16]

2-700

>:.;V-^^

A WA .% ■•• „N "« ."• »*».*• ,*- .•- .*■.

,*.••«*•*■.* * Y V V V V \ *.'
" •"• »** **• «** %""*■ •*■_•**« * »"*> * »*• *** <

\V.V.\\V

%^*~ ■ *_

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/BFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

4. Motivation

The Telnet protocol was originally designed to provide a means for
scroll-mode terminals« such as the standard teletype, to coanunlcate
with processes through the network. This was suitable for the vast
majority of terminals and users at that time. However, as use of the
network has increased into other areas, especially areas where the
network is considered to provide a production environment for other
work, the desires and requirements of the user community have changed.
Therefore, it Is necessary to consider supporting facilities that were
not Initially supported. This Telnet option attempts to do that for
applications that require data entry terminals.

This option in effect defines the Network Virtual Data Entry Terminal.
Although the description of this option is quite long, this does not
imply that the Telnet protocol is a poor vehicle for this facility.
Data Entry Terminals are rather complex and varied in their abilities.
This option attenpts to support both the minimal set of useful
functions that are either common to all or can be easily simulated and
the more sophisticated functions supplied in some terminals.

Unlike most real data entry terminals where the terminal functions are
encoded into one or more characters of the native character set, this
option performs all such controls within the Telnet subnegotiation
mechanism. This allows programs that are intimately familiar with the
kind of terminal they are communicating with to send commands that may
not be supported by either the option or the implementation. In other
words, it is possible to operate in a "raw" or at least HrareM mode
using as much of the option as necessary.

Although many data entry terminals support a variety of peripheral
devices such as printers, cassettes, etc. it is beyond the scope of
this option to entertain such considerations. A separate option should
be defined to handle this aspect of these devices*

John Day [page 17]

2-701

,VL •* •VV->V-»V-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC* 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762
^€i

5. Description

General Notes

All implementations of this option are required to support a certain
minimal set of the subcommands for this option. Section 3 contains a
complete list of the subcommands in this minimal set. In keeping
with the Telnet protocol philosophy that an implementation should
not have to be able to parse commands it does not implement« every
subcommand of this option is either in the minimal set or is covered
by one of the facility subcommands. An implementation must
"negotiate" with its correspondent for permission to use subcommands
not in the minimal set before using them. For details of this
negotiation process see the section below on facility subcommands.

Most data entry terminals are used in a half duplex mode. (Although
most DET's ou the market can be used either as data entry terminals
or as standard interactive terminals, we are only concerned here
with their use as DET's.) When this option is used, it is suggested
that the following Telnet options be refused: Echo. Remote
Controlled Transmission and Echoing, and Suppress Go*Ahead. However,
this option could be used to support a simple full duplex CRT based
application using the basic cursor control functions provided here.
For these cases, one or more of the above list of options might be
required. (Support of sophisticated interactive calligraphic
applications is beyond the scope of this option and should be done
by another optlen or the Network Graphics Protocol.)

In RFC 728. it was noted that a synch sequence can cause undeslred
interactions between Telnet Control functions and the data stream. A
synch sequence causes data but not control functions to be flushed.
If a control function which has an effect on the data immediately
following It Is present in the data stream when a synch sequence
occurs, the control function will have its effect not on the
intended data but on the data immediately following the Data Mark,
the following DET subcommands are susceptible to this pitfall:

CHAR INSERT
DATA TRANSMIT
FORMAT DATA

The undeslred interactions are best avoided by the receiver

of the synch sequence deleting these subcommands and all data
associated with them before continuing to process the control
functions. This implies that the Data Mark should not occur in the
middle of the data associated with these subcommands.

John Day [page 18]

2-702

' •*."**/ ■"AV

mi > V ifi£*S&ii&*^ A [UjAuift jua* .fei« i> ;*■ Vi' iri' > V > ^

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/RFC# 732 DAY 13-Sep-77 18:38 41762
Data Entry Terminal Caption

Facility Subcommands

These four subcommands are used by the User and Server
implementations to negotiate the subcommands and attributes of the
terminal that may be utilized. This negotiation can be viewed as the
terminal (User Host) indicating what facilities are provided and the
Server Host (or application program) indicating what facilities are
desired.

When Sent: A Server Telnet implementation using the DET option must
send a facility subcommand requesting the use of a particular
subcommand or terminal attribute not in the minimal implementation
before the first use of that subcommand or attribute. The User
Telnet implementation should respond as quickly as possible with its
reply. Neither the User nor Server are required to negotiate one
subcommand at a time. Also, a Telnet implementation responding to a
facility subcommand is not required to give permission only for that
subcommand. It may send a format map indicating all facilities of
that class which it supports. However, a Telnet implementation
requesting facilities must send a facility subcommand before its
first use of the subcommand regardless of whether earlier
negotiations have Indicated the facility is provided. The facility
cannot be used until a corresponding facility subcommand has been
received. There are no other constraints on when the facility
subcommands may be sent. In particular, it is not necessary for an
application to know at the beginning of a session all facilities
that it will use.

Action When Recleved: There are two possible actions that may be
taken when a facility subcommand is received depending on whether
the receiver is a requestor or a provider (User) .

Requestor: When a facility subcommand is received by a requestor and
it is in the state of Waiting for a Reply, it should go into the
state of Not Waiting. It should then take the facility map it had
sent and form the logical Intersection with the facility map
received. (For the Intensity attribute, one should take the minimum
of the number received and the number requested.) The result
indicates Ute facilities successfully negotiated. Note: if

the receiver is not In the Waiting for Reply state, then this is the
provider case described next.

Provider: When a facility subcommand is received, it should send a
facility subcommand with a facility map of the facilities it
provides as soon as possible. It should then determine what new

John Day [P*g* 19]

2-703

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

->i

facilities It Is providing for the Requestor by forming the logical
Intersection of the facility map received and the one sent.

Note: Although in most cases the requestor will be the Server Host
and the provider will be the User Host supporting the terminal, this
distinction may not always be true.

Transmit Subcommands

There are two kinds of transmit subcommands: those used to request
that data be sent to the requestor, and one to preface data sent to
the requestor. The first kind allow the requestor to control when,
from where and to some degree how much data is transmitted from the
terminal. Their explanation is straightforward and may be found in
Section 2.

Data may be sent from the terminal as a result of two events: the
user of the terminal caused the transmission or in response to a
transmit subcommand. Some programs may wish to know from where on
the screen the transmission began. (This is reasonable, since the
terminal user may move the cursor around considerably before
transmitting.) Other programs may not need such information. The
DATA TRANSMIT subcommand is provided in case this function is
needed. When used this subcommand prefaces data coming from the
terminal. The parameters <x> and <y> give the screen coordinates of
the beginning of the transmission. <x> must be less than or equal to
M~l and <y> must be less than or equal to N~l. It is assumed that
all data between this DATA TRANSMIT *nd the next one starts at the
coordinates given by the first subcommand and continues filling each
line thereafter according to the constraints of the screen and the
format effectors in the data. Thus an intelligent or sloppy
user-host DET implementation (depending on your point of view) need
only include a DATA TRANSMIT subcommand when the new starting point
is different from the last ending point.

m

:«

John Day [page 20]

2-7CH

* v v>>/S>;«>rvv y

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/RFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

6. Sample Interaction

The nomenclature of RFC 726 will be used to describe this example. To
quote that RFC:

"S:" is sent from serving host to using host.
"U:" is sent from using host to serving host.
"T:" is entered by the terminal user.
"P:M is printed on the terminal.

Text surrounded by square brackets([]) is commentary. Text
surrounded by angle brackets (<>) is to be taken as a single unit.
E.g, carriage return is <cr>, and the decimal value 27 is
represented <27>.

We assume that the user has established the Telnet connection,
logged on, and an application program has just been started either
by the user directly or throuoji a canned start up procedure. The
presentation on the page is meant to merely group entities together
and does not imply the position of message boundaries. One should
assume that any part of the dialogue may be sent as one or many
messages. The first action of the program or Telnet is to negotiate
the DET option:

S: <IAC><DO><DET>

U: <IAO<WILL><DET>

S:<IAC><DO><OUTPUT PACE SIZE> [First negotiate the screen
size. In this case we are
asking the user the size of
the terminal. This could
have been done before the
DET option was negotiated.]

Ü:<IAC><WILL><KAOP>

Ü:<IAC><SB><NAOP><DR><25><IAC><SE>

S:<IAC><SB><NAOP><DS><0><IAC><SE>

S:<IAC><DO><OUTPUT LINE WIDTH>

John Day [page 21]

2-705

.^liJ.sJLviiLilaJii* _*.■_♦» .'. -V..!...%.* .y.-r,, ,,,3» ._;.,•,

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/REC* 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

U: <IAC><SB><NAOL><DR><80XIAC><SE>

S: <IAC><SB><NAOL><DSXO><IAC><SE>

S:<IAO<SB><DET><F0RMAT FACILITIES>
<Repeat><Protection, 3 Levels
Intensity><IAO<SE>

U:<IACXSB><DET><F0RMAT FACILITIES>
<Repeat, BlinkingxProtection, 3
Levels Intensity><IAO<SE>

S:<IAC><SB><DET><ERASE SCREEN><IAC><SE>

[Defines the screen to be
25 lines by 80 characters.
The server may use this
information when formatting
the screen.]

[Now set the terminal
attributes.]

[Erase the screen and start
sending the form.]

<IACxSB><DET><FORMAT DATA>
<Protection=l, lntensity=l><0>
<5><IAC><SE>Name:

<IAC><SB><DET><MOVE CURSORx0><l><IAC><SE>

<IAC><SB><DET><FORMAT DATA>
<Protection=l, lntensity=l><0>
<8><IAC><SE>Address:

<IAO<SB><M0VE CURSQRX0X4><IAC><SE>

<IACXSB><DET><F0RMAT DATA>
<Protection=l, lntensity=i><0>
<17><IAC><SE>Telephone number:

<IAC><SB><DET><MOVE CURS0RX32><4><IAC><SE>

<IAC><SB><DETXF0RMAT DATA>
<Protection=l, lntensity=l><0>
<24><IAO<SE>Social Security Number:

<IAC><SB><DET><FORMAT DATA>
<Protection=l, Intensity=7>
<0><11><IAC><SE> [Establish a field that

doesn't display what is
typed into it.]

1

John Day [page 2\

2-706

*»V- V*V»V- .-.*•.*- >\>\V.«.*%*. ."..-»,'•/.V-V '• •■' *'; ' V '
^ -• * "^",--11* LA ^* V *■£ ,'J* 'm'.'^Jm'Jm'^ «g V-V- mtm 1km £m £m £fc £» Ck JLi

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/RFC# 732 DAY 13-Sep-77 18:38 41762
Data Entry Terminal Option

<IAC><SB><DET><MOVE CURS0R><32><5><IAC><SE>

<IAC><SB><DET><FORMAT FACILITIES>
<Blinking><0><IAO<SE> [Get permission to use

Blinking Attribute.]

U:<IAO<SB><DETXF0RMAT FACILITIES>
<Repeat, BlinkingxProtection,
3 Levels Intensity><IAO<SE>

S:<IAO<SB><DET><F0RMAT DATA>
<B1 inking=l, Pro\ ection=l,
Intensity=l><0><29><IAC><SE>

Your SSN will not be printed.

< IACXSBXDETXHOMEXI AO<SE>
<IAC><GA>

The previous exchange has placed a form on the screen that looks like:

Name:
Address:
Telephone Number: Social Security Number:

"Your SSN will not be printed."

where the quoted string is blinking.

The terminal user is now free to fill in the form provided. He
positions the cursor at the beginning of the first field (this usually
is done by hitting the tab key) and begins typing. We do not show this
interaction since it does not generate any interaction with the User
Telnet program or the neti/ork. After the terminal user has completed
filling in the form, he strikes the transmit key to send the
unprotected part of the form, but first the User Telnet program
negotiates the Byte Macro Option to condense the Field Separator
subcommand:

U:<IAC><DO><BM> [Negotiate Byte Macro
Option.]

S:<IAO<WILL><BM> [Define decimal 166 to be
the Field Separator
subcommand (see Appendix
3)]

John Day [page 23]

2-707

iX^ i - ■-!. «- i-.*V *_%^. *"■_ ■*_«L_ A^ » ̂ 2±:^^^I^^L^^ >^v ^X^>1J>- ::»:■ •> v ^ ^^^^8^^NJN>^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

U: <IAO<SB><BM><DEFINE>
<166><6XIAC SB DET FIELD
SEPARATOR IAC SE><IAO<SE>

S: <IAC><SB><BM><ACCEPT><166><IAC><SE> [The server accepts the
macro.]

U: <IAC><SB><DET><DATA TRANSMITX0><6><IAC><SE>
John Doe <166> 1515 Elm St., Urbana, II 61801
<166> 217-333-9999 <166> 123-45-6789 <166>

S:<IAC><SB><DETXERASE SCREENXIAC><SE>
Thank you.

And so on.

John Day [page 24]

2-708

ItA/lA^A&.-LiJ. -■ —»- '*■'• * - -vVJl.*^ .C*m,^>' -V-L^-^^v'w^ - j£i£ä*äL*i '-•■

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/RFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

111

Appendix 1 - Subcommands, opcode: s and syntax

1 EDIT FACILITIES <Faciity map>
2 ERASE FACILITIES <Facility map>
3 TRANSMIT FACILITIES <Facility map>
4 FORMAT FACILITIES <Facility map 1> <Facility map 2>
5 MOVE CURSOR <x> <y>
6 SKIP TO LINE <y>
7 SKIP TO CHAR <x>
8 UP
9 DOWN
10 LEFT
11 RIGHT
12 HOME
13 LINE INSERT
14 LINE DELETE
15 CHAR INSERT
16 CHAR DELETE
17 READ CURSOR
18 CURSOR POSITION <x><y>
19 REVERSE TAB
20 TRANSMIT SCREEN
21 TRANSMIT UNPROTECTED
22 TRANSMIT LINE
23 TRANSMIT FIELD
24 TRANSMIT REST OF SCREEN
25 TRANSMIT REST OF LINE
26 TRANSMIT REST OF FIELD
27 TRANSMIT MODIFIED
28 DATA TRANSMIT <x><y>
29 ERASE SCREEN
30 ERASE LINE
31 ERASE FIELD
32 ERASE REST OF SCREEN
33 ERASE REST OF LINE
34 ERASE REST OF FIELD
35 ERASE UNPROTECTED
36 FORMAT DATA < format map>
37 REPEAT <count><ch«r>
38 SUPPRESS PROTECTION <ne90tiation>
39 FIELD SEPARATOR
40 FN <code>
41 ERROR <cmd><error code>

John Day [page 25]

2-709

&£fov&&;fc^ &i* iäiäiiitiäääik £ fatted

•'••:>

££&&&&:
:->•,

^äa^a

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

Appendix 2 - Error Codes

1

2

3

4

5

6

7

8

9

10

11

12

Facility not previously negotiated.

Illegal subcommand code.

Cursor Address Out of Bounds.

Undefined EN value.

Can't negotiate acceptable line width.

Can't negotiate acceptable page length.

Illegal parameter in subcommand.

Syntax error in parsing subcommand.

Too many parameters in subcommand.

Too few parameters in subcommand.

Undefined parameter value

Unsupported combination of Format Attributes

John Day [page 26]

2-710

y-A-vvvvvv.

»Vjj

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/RFC# 732 DAY 13-Sep-77 18:38 41762
Data Entry Terminal Option

Appendix 3 - Use of the Byte Macro Option

One of the major drawbacks of the BET option is that because the
functions are encoded as Telnet option subnegotiations a fairly high
overhead is incurred. A function like Character Insert which is
encoded as a single byte in most terminals requires six bytes in the
DET option. Originally the only other solution that would have
accomplished the same transparency that the use of subcommands
provides would have been to define additional Telnet control
functions. However, since this would entail modification of the Telnet
protocol itself, it was felt that this was not a wise solution. Since
then the Telnet Byte Macro Option (RFC 729) has been defined. This
option allows the user and server Telnets to map an arbitrary
character string into a single byte which is then transferred over the
net. Thus the Byte Macro Option provides the means for implementations
to avoid the overhead for heavily used subcommands. The rest of this
appendix suggests how the Byte Macro Option should be applied to the
DET option.

In keeping with the specification of the Byte Macro Option, macro
bytes will be chosen from the range 128 to 239. For the DET option, it
is suggested that macro bytes be chosen by adding the subcommand code
to 128. In addition, an unofficial DET subcommand mi^ht be defined
indicating that each side was willing to support macro bytes for all
subcommands (but not necessarily support all of the subcommands
themselves) according to this algorithm. This subcommand would be:

I AC SB DET DET-MACRO <negotiation> I AC SE subcommand code: 254

251 WILL
252 WONT
253 DO
254 DONT

This subcommand is sent by a Telnet implementation to indicate its
willingness to adopt byte macros for all of the DET subcommands
according to the following algorithm:

The macro byte for subcommand 1 will be i+128 and will represent the
following string for parameterless subcommands:

IAC SB DET subcommand ccde> IAC SE

and the following string for subcommands with parameters:

John Day [page 27]

2-711

'%
where <negotiation> may have the values of the Telnet option ;.v
negotiation:

&r&£^<^^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

IAC SB DET <subcommand code>

The default setting for this subcommand is that the macros are not
in effect, in other words,

IAC SB DET DET-MACRO WONT IAC SE
IAC SB DET DET-MACRO DONT IAC SE

Negotiation of this subcommand follows the same rules as
negotiations of the Telnet options.

John Day [page 28]

2-712

**. •*• **.

v. -' ^Äv>Äv:.>®>:«a.
m^>-

' « ""* **«L*** "'• *% *"• ""• ^«L*"» '• '*. •'•.*". *". *"• **\ " . * . -. -. i. • , .^^S^A*.!^

APPLICATION LEVEL: TLNT-OPS RFC 732

NWG/RFC# 732 DAY 13-Sep-77 18:38 41762
Data Entry Terminal qption

References

1. ADM-1 Interactive Display Terminal Operator's Handbook
Lear-Siegler, Inc. 7410-31.

2. ADM-Interactive Display Terminal Operator's Handbook
Lear-Siegler, Inc. EID, 1974.

3. Burrougtis TD 700/800 Reference Manual, Burroughs Corp., 1973

4 Burroucjis TD 820 Reference Manual, Burroughs Corp. 1975.

5. CC-40 Communications Station: General Information Manual.
Computer Communication, Inc. Pub. No. MI-1100, 1974.

6. Crocker, David. "Telnet Byte Macro Option," RFC 729, 1977.

7. Data Entry Virtual Terminal Protocol for Euronet, DRAFT, 1977.

8. Day, John. "A Minor Pitfall in the Telnet Protocol," RFC 728,
1977.

9. Hazeltine 2000 Desk Top Display Operating Instructions. Hazeltine
IB-1866A, 1870.

10. How to Use the Consul 980: A Terminal Operator's Guide and
Interface Manual. Applied Digital Data Systems, Inc. 98-3000.

11. How to Use the Consul 520: A Terminal Operator's Guide and
Interface Manual. Applied Digital Data Systems, Inc. 52-3000.

12. Honeywell 7700 Series Visual Information Projection (VIP)
Systems: Preliminary Edition. 1973.

13. An Introduction to the IBM 3270 Information Display System. IBM
GA27-2739-4. 1973.

14. Naffah, N. "Protocole Appareil Virtual type Ecran" Reseau
Cyclades. TER 536. 1976.

15. Postel, Jon and Crocker, David. "Remote Controlled Transmission
and Echoing Telnet Option", RFC 726 NIC 39237, Mar. 1977.

16. Schicker, Peter. "Virtual Terminal Protocol (Proposal 2). INWG
Protocol Note #32., 1976.

John Day [p*9* 291

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 732
Data Entry Terminal Option

DAY 13-Sep-77 18:38 41762

17. UNISCOPE Display Terminal : Programmer Reference . Sperry- Univac
ÜP-7807 Rev. 2, 1975.

18. universal Terminal System 400: System Description. Sperry- Univac
UP-8357, 1976.

19. Waiden, David C. "Telnet Output Line Width Option." NIC # 20196,
1973, also in ARPANET Protocol Handbook, 1976.

20. Waiden, David C. "Telnet Output Page Size" NIC # 20197, 1973,
also in ARPANET Protocol Handbook, 1976.

John Day [page 301

2-714

X^^^^lV^^

APPLICATION LEVEL: TLNT-OPS RFC 736

NWG/REC# 736 MRC 31-0CT-77 23:28 42213
Telnet SUPDÜP Option

Network Working Group Mark Crispin
Request for Comnents 736 SU-AI
NIC 42213 31 October 1977

TELNET SUPDÜP Option

1. Command name and code.

SUPDÜP 21

2. Command meanings.

XAC WILL SUPDÜP

The sender of this command REQUESTS permission to, or confirms
that it will, use the SUPDUP display protocol

IAC WON'T SUPDÜP

The sender of this command REFUSES to use the SUPDUP protoco? .

IAC DO SUPDUP

The sender of this command REQUESTS that the receiver use, or
grants the receiver permission to use, the SUPDUP protocol.

IAC DON'T

The sender of this command DEMANDS that the receiver not use the
SUPDUP protocol.

3. Default.

WON'T SUPDUP

DON'T SUPDUP

i.e.. the SUPDUP display protocol is not in use.

Mark Crispin £?•$• 1)

2-715

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC* 736 MRC 31-0CT-77 23:28 42213
Telnet SUPDUP Option

4. Motivation for the option.

Since the publication of RFC 734, I have been requested to design
an option to the TELNET protocol to provide for SUPDUP service.
This option allows a host to provide SUPDUP service on the normal
TELNET socket (27 octal) Instead of 137 (octal) which is the normal
SUPDUP ICP socket.

5. Description of the option.

A user TELNET program which wishes to use the SUPDUP display
protocol instead of the NVT terminal service should send an I AC DO
SUPDUP. If the server is willing to use the SUPDUP display
protocol, it should respond with I AC WILL SUPDUP; otherwise it
should refuse with IAC WOWT SUPDUP.

For hosts which normally provide SUPDUP terminal services, the
*mrv*r can send IAC WILL SUPDUP upon ICP which the user may then
accept or refuse.

If the SUPDUP option is in effect, no further TELNET negotiations
are allowed. They are meaningless, since SUPDUP has its own
facilities to perform the functions that are needed. Hence, octal
377 will become an ordinary transmitted character (in this case an
Invalid %TD code) instead of an IAC.

Following the mutual acceptance of the SUPDUP option, the SUPDUP
negotiation proceeds as described in RFC 734.

Mark Crispin {pmgm 2]

2-716 i-^

IP

APPLICATION LEVEL: TLNT-OPS RFC 749

NWG/RFC 749 BSG 26-Sep-78 13:13 45499
Network Working Group Bernard Greenberg
Request for Comments 749 MIT-Multics
NIC 45499 18 September 1978

Telnet SUPDUP-OUTPUT Option

1. Command name and code.

SUPDUP-OUTPOT 22

2. Command meanings.

IAC WILL SUPDUP-OUTPUT

The sender of this command REQUESTS permission to transmit
SUPDUP-OUTPUT format messages over the TELNET connection.

IAC WON'T SUPDUP-OUTPUT

The sender of this command STATES that he will no longer send
SUPDUP-OUTPUT format messages over the TELNET connection.

IAC DO SUPDUP-OUTPUT

The sender of this command grants the receiver permission to send
SUPDUP-OUTPUT format messages over the TELNET connection.

IAC DON'T SUPDUP-OUTPUT

The sender of this command DEMANDS that the receiver not send
SUPDUP-OUIPUT format messages over the TELNET connection.

IAC SB SUPDUP-OUTPUT 1 <termlnal -parameters> IAC SE

The sender of this command (which must be the TELNET user process) is
supplying information describing the capabilities of the user
process1 terminal.

IAC SB SUPDuT-OUTPUT 2 n TD1 TD2 .. TDn SCx SCy IAC SE

The sender of this coamand, which must be the TELNET server process,
is sending explicit screen control information to be carried out by
the user TELNET process.

3. Default.

WON'T SUPDUP-OUTPUT

DON'T SUPDUP-OUTPUT

i.e., the SUPDuP-OUTPUT format messages may not be transmitted.

Greenberg [page 1]

2-717

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

NWG/RFC 749
Telnet SUPDUP-OUTPUT Option

BSG 26-Sep-78 13:13 45499

4. Motivation for the option.

The SUPDUP-OUTPUT protocol provides a means to access the virtual
display support provided by the SUPDUP protocol (see RFC 734) within
the context of a standard TELNET connection. This allows occasional
display-oriented programs at non-display-oriented servers to take
advantage of the standardized display support provided by SUPDUP.
This cannot be done with the standard SUPDUP protocol or the TELNET
SUPDUP option (RFC 736), for they both require that all communication
after the negotiation to use SUPDUP has been completed proceed
according to the protocol of RFC 734. This places upon the server
total responsibility for screen management for the duration of the
connection, which, by hypothesis, the non-display oriented server is
not willing to accept.

User TELNET programs at display-oriented user hosts provide local
screen management by mapping the NVT commands of TELNET into local
screen management commands; often, tills involves scrolling,
end-of-page processing, line clearing etc. The SUPDUP-OUTPUT option
allows a display-oriented application program at the server side to
take over screen management explicitly, via the SUPDUP display
control repertoire. TELNET remains in effect thr^ugnout. the I AC IP
and other TELNET commands are still valid.

By means of the SUPDUP-OUTPUT option, display-oriented programs can
run on the s^rwmr host, and control the user host's screen
explicitly. The user TELNET process sends a description of the user
terminal (as specified in RFC 734) to the smrvmr TELNET process as a
subneglotiatlon block when the SUPDUP-OUTPUT negotiation has been
successfully consisted. The server TELNET process sends explicit
screen control commands via subnegotiatlon blocks to the user TELNET
process.

5. Description of the option.

The SUPDUP-OUTPUT protocol may only be initiated by the smrvmr TELNET
process. A server TELNET process wishing to take advantage of the
SUPDUP-OtflPUT protocol will initiate a negotiation for it by sending
I AC WILL SUPDUP-OUTPUT. The user TELNET process must accept or
refuse the offer by sending IAC DO SUPDUP-OUTWT or IAC DON'T
supDup-oumrr.

I f the user TELNET process agrees to support the SUPOUP-OUTPUT
option, it must follow the sending of IAC DO SUPDUP-OUTPUT
immediately with a description of the user's terminal. This
information Is described in RFC '34 as the "terminal parameters." It
is to be sent as a series of six-bit bytes, cnc byte $&r eight bit

Creenberg [P*9* 2]

2-7 IK

L<+**, eeMseeaeäüi esessfl teaeieiittesesem **'

APPLICATION LEVEL: TLNT-OPS RFC 749

NWG/RFC 749
Telnet SUPDUP-OUTPUT Option

BSG 26-Sep-78 13:13 45499

TELNET data byte. These words may or may not contain the optional
line speed and graphics capabilities parameters described by RFC 747;
the first six bytes specify the count of 36-bit words to follow as
described by RFC 734.

The terminal parameter block will be sent as a subnegotiation of the
SUPDUP-OUTPUT option:

IAC SB SUPTJP-OUTPUT 1 bytel byte2 byten IAC SE

The byte of "1" is a command code, for compatibility with future
extensions. Upon receipt of the terminal parameter block from the
user TELNET process, the server TELNET process may send SUPDUP-OUTPUT
blocks as described below.

Hie server TELNET process can specify explicit control of the user
hos^s screen by the sending of subnegotiation blocks of the
SUPDUP-OUTPUT option. The format of such a block, as seen in
eigfrvt-bit TELNET data bytes, is:

IAC SB SUPDUP-OUTPUT' 2 N TD1 TD2 TD3 TDn SCx SCy IAC SE

The byte of "2" is a command code, for compatibility with future
extensions. The TDm bytes are the "%TDCODEs" and printing characters
of SUPDUP output of RFC 734. N is a byte containing a count of the
number of TDm's in this transmission. N may be zero, and may not be
greater than 254 (decimal) . SCx and SCy are two bytes specifying the
anticipated horizontal and vertical (respectively) coordinates of the
cursor of the user host's screen after the latter has interpreted all
the JfTDCODEs in this transmission.

The motivation for the SCx SCy screen position specification is to
allow hosts running the ITS operating system, which will transmit the
TDCODEs directly into the local output system, to assert the "main
program level" screen position without any interpretation of the
transmitted TDCODE sequence by the user TELNET program.

The user TELNET process must manage the position of the local cursor
with respect to standard TELNET NVT commands and output, and SUPDUP
OUTPUT transmissions. The user TELNET process may assume that the
server TELNET process is managing both NVT and SUPDUP-OUTPUT output
in an Integrated way.

The SUPDUP-OUTPUT option makes no statement about how input is sent;
this may be negotiated via other options. By default, NVT input will
be used. The user-to-server screen management commands of RFC 734
are NOT implicitly handled by IAC WILL SUPDUP-OUTPUT.

Creenberg [page 3]

2-719

* . . % \ "V % *«

^ii.*:-JV -«--. » - J ^ * JL.T» -Ti ». * .. » _ js _ * _ * L * _ % .. \ ». T.^ «U» ■ M. I » * -

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC 749
Telnet SUPDUP-OUTPUT Option

BSG 26-Sep-78 13:13 45499

In the absence of the transmission of SUPDUP-OUTPUT subnegotiation
blocks, a TELNET connection operating with the SUPDUP-OUTPUT option
in effect is indistinguishable from a normal TELNET connection. Thus
IAC WON'T SUPDUP-OUTPUT is highly optional, and if received by the
user TELNET process, should only be used to cause a diagnostic if
SUPDUP-OUTPUT subnegotiation blocks are subsequently received. If
received, the user TELNET process should respond with IAC DON'T
SUPDUP OUTPUT.

Because of the optional nature of IAC WON'T SUPDUP-OUTPUT, the user
TELNET process should be prepared to send the terminal parameter
subnegotiation block each time IAC WILL SUPDUP-OUTPUT is received,
i.e., even if the user TELNET process believes SUPDUP-OUTPUT to be in
effect.

The JfTOQRS (output reset) code may not be sent in a SUPDUP-OUTPUT
transmission. The user TELNET program may assume that no byte in a
subnegotiation block will be 255 (decimal).

No multi-byte TDCODE sequence (e.g., £IDMOV, %TDILP) may be split
across SUPDUP-OUTPUT subnegotiation blocks.

References:

Crispin, Mark:

"SUPDUP Display Protocol", RFC 734, 7 October 1977, NIC 44213.

Crispin, Mark:

"TELNET SUPDUP Option", RFC 736, 31 October 1977, NIC 44213.

Crispin, Mark:

"Recent Extensions to the SUPDUP Protocol", RFC 747, 21 March
1978, NIC 44015.

Greenberg [page 4]

2-720

.•-V-V-T/.' ZV _* .-.V.VlVA -lv.\ .% ." .V A _". '-:. -- *.jAr .'-SL'-*_**• '-e.'j "._ V^'^.". .'i'-:..>"^'^ *-s. -»*'^.*«L'J '>',,-!Lrji^tjL^

APPLICATION LEVEL: TLNT-OPS RFC 779

Network Working Group E. Killian
Request for Comments: 779 LLL

April 1981

TELNET SEND-LOCATION Option

1. Command name and code.

SEND-LOCATION 23

2. Command meanings.

IAC WILL SEND-LOCATION

The sender REQUESTS or AGREES to use the SEND-LOCATION option to
send the user's location.

IAC WON'T SEND-LOCATION

The sender REFUSES to use the SEND-LOCATION option.

IAC DO SEND-LOCATION

The sender REQUESTS that, or AGREES to have, the other side use
SEND-LOCATION commands send the user's location.

IAC DON'T SEND-LOCATION

The sender DEMANDS the other side not use the SEND-LOCATION
option.

IAC SB SEND-LOCATION <location> IAC SE

The sender specifies the user's location to the other side via a
SEND-LOCATION subnegotiation. <location> is a sequence of ASCII
printable characters; it is terminated by the IAC SE.

3. Default.

WON'T SEND-LOCATION

DON'T SEND-LOCATION

Killian [page 1]

2-721

.v. *

*-^**'*^*'»*'-^«»-•-'—•^^^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 779 April 1981
TELNET SEND-LOCATION Option

4. Motivation for the option.

Many network sites now provide a listing of the users currently
logged in giving their names and locations (see the NAME/FINGER
protocol, RFC 742). The location is useful for physically locating
the user if he or she is nearby, or for calling them (a nearby phone
number is often included). However, for users logged in via the
network, the location printed is often no more than the originating
site name. This TELNET option allows the user's TELNET program to
send the user's location to the server TELNET so that it can be
displayed in addition to the site name. This functionality is
already present in the SUPDUP protocol (REC 734).

5. Description of the option.

When the user TELNET program knows the user's location, it should
offer to transmit this information to the server TELNET by sending
IAC WILL SEND-LOCATION. If the server's system is able to make use
of this information (as can the ITS sites), then the server will
reply with IAC DO SEND-LOCATION. The user TELNET is then free to
send the location in a subnegotiation at any time.

Killian [page 2]

2-722

."• -% »WA-VA^V • . *. i v VV;AV'\«*;*?'^.,*,"V'*.VJr.V ""•*.' •' '•
vraWv\vA .r,\:,,'-i<-.

APPLICATION LEVEL: TLNT-OPS RFC 930

Network Working Group Marvin Solomon
Request for Comments: 930 Edward Wimmers
Supersedes: RFC 884 University of Wisconsin - Madison

January 1985

TELNET TERMINAL TYPE OPTION

Status of This Memo

This RFC specifies a standard for the ARPA Internet community. Hosts
on the ARPA Internet that exchange terminal type information within
the Telnet protocol are expected to adopt and implement this
standard. Distribution of this memo is unlimited.

This standard supersedes RFC 884. The only change is to specify that
the TERMINAL-TYPE IS sub-negotiation should be sent only in response
to the TERMINAL-TYPE SEND sub-negotiation. See below for further
explanation.

1. Command Name and Code

TERMINAL-TYPE 24

2. Command Meanings

IAC WILL TERMINAL-TYPE

Sender is willing to send terminal type information in a
subsequent sub-negotiation

IAC WON'T TERMINAL-TYPE

Sender rafuses to send terminal type information

IAC DO TERMINAL-TYPE

Sender is willing to receive terminal type information in a
subsequent sub-negotiation

IAC DON'T TERMINAL-TYPE

Sender refuses to accept terminal type information

IAC SB TERMINAL-TYPE SEND IAC SE

Sender requests receiver to transmit his (the receiver's) terminal
type. The code for SEND is 1. (See below.)

Solomon & Wimmers [Page 1]

2-723

EvX!ÄvSi£>iiW S*>*/v-v-*l V-NY-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 930 January 1985
Telnet Terminal Type Option

IAC SB TERMINAL-TYPE IS . . . IAC SE

Sender is stating the name of his terminal type. The code for IS
is 0. (See below.)

3. Default

WON'T TERMINAL-TYPE

Terminal type information will net be exchanged.

DON'T TERMINAL-TYPE

Terminal type information will not be exchanged.

4. Motivation for the Option

This option allows a telnet server to determine the type of terminal
connected to a user telnet prograw. The transmission of such
information does not immediately imply any change of processing.
However, the information may be passed to a process, which may alter
the data it sends to suit the particular characteristics of the
terminal. For example, some operating systems have a terminal driver
that accepts a code indicating the type of terminal being driven.
Using the TERMINAL TYPE and BINARY options, a telnet smrvmr program
on such a system could arrange to have terminals driven as if they
were directly connected, including such special functions as cursor
addressing, multiple colors, etc., not included in the Network
Virtual Terminal specification. This option fits into the normal
structure of TELNET options by deferring the actual transfer of
status information to the SB command.

5. Description of the Option

WILL and DO are used only to obtain and grant permission for future
discussion. The actual exchange of status information occurs within
option subcommands (IAC SB TERMINAL-TYPE...) .

Once the two hosts have exchanged a WILL and a DO, the sender of the
DO TERMINAL-TYPE is free to request type information. Only the
sender of the DO may send requests (IAC SB TERMINAL-TYPE SEND IAC SE)
and only the sender of the WILL may transmit actual type information
(within an IAC SB TERMINAL-TYPE IS ... IAC SE command) . Terminal
type information may not be sent spontaneously, but only in response
to a request.

The terminal type information is an NVT ASCII string. Within this

Solomon & Wimmers [Page 2]

2-724 m

APPLICATION LEVEL: TLNT-OPS RFC 930

RFC 930 January 1985
Telnet Terminal Type Option

string, upper and lower case are considered equivalent. The complete
list of valid terminal type names can be found in the latest
"Assigned Numbers" RFC.

The following is an example of use of the option:

Hostl: IAC DO TERMINAL-TYPE

Host2: IAC WILL TERMINAL-TYPE

(Hostl is now free to request status information at any time.)

Hostl: IAC SB TERMINAL-TYPE SEND IAC SE

Host2: IAC SB TERMINAL-TYPE IS IBM-3278-2 IAC SE

6. Implementation Suggestions

The "terminal type" information may be any NVT ASCII string
meaningful to both ends of the negotiation. The list of terminal
type names in "Assigned Numbers" is intended to minimize confusion
caused by alternative "spellings" of the terminal type. For example,
confusion would arise if one party were to call a terminal
"IBM3278-2" while the other called it "IBM-3278/2". There is no
negative acknowledgement for a terminal type that is not understood,
but certain other options (such as switching to BINARY mode) may be
refused if a valid terminal type name has not been specified. In
some cases, a particular terminal may be known by more than one name,
for example a specific type and a more generic type. In such cases,
the sender of the TERMINAL-TYPE IS command should reply to successive
TERMINAL-TYPE SEND commands with the various names, from most to
least specific. In this way, a telnet server that does not
understand the first response can prompt for alternatives. However,
it should cease sending TERMINAL-TYPE SEND commands after receiving
the same response two consecutive times. Similarly, a sender should
indicate it has sent all available names by repeating the last one
sent. Note that TERMINAL-TYPE IS must only be sent in response to a
request (TERMINAL-TYPE SEND), because a host that sent TERMINAL-TYPE
IS and then received TERMINAL-TYPE SEND couldn't determine whether
the other host was requesting a second option or the TERMINAL-TYPE
SEND and the TERMINAL-TYPE IS crossed in midstream.

The type "UNKNOWN" should be used if the type of the terminal is
unknown or unlikely to be -ecocprUzed by the other party.

Solomon & Wimmers [Page 3]

2-725

i^e^eMk^eMiisesieM^e^se^seseiBsess^B^feeMs^s^U

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 930
Telnet Terminal Type Option

January 1985

The complete and up-to-date list of terminal type names will be
maintained in the ''Assigned Numbers". The maximum length of a
terminal typo name is 40 characters.

i

v.

u:

*>:

Solomon & Winners [Page 4]

2-726

&>:< V-.'V

• A ***•.** »*••**• A •** •"• •** •** •** »**."• ."• • * ."* .** ".""»".^V*" i?-VJ^_V_V '.''.'-V 'J-'A'-t

APPLICATION LEVEL: TLNT-OPS RFC 885

Network Working Group
Request for Comments: 885

J. Postel
ISI

December 1983

TELNET END OF RECORD OPTION

This RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet that need to mark record boundaries within Telnet
protocol data are expected to adopt and implement this standard.

1. Command Name and Code

END-OF-RECORD 25

2. Command Meanings

IAC WILL EMD-OF-RECORD

The sender of this command requests permission to begin
transmission of the Telnet END-OF-RECORD (EOR) code when
transmitting data characters« or the sender of this command
confirms it will now begin transmission of EORs with transmitted
data characters.

IAC WON'T END-OF-RECORD

The sender of this command demands to stop transmitting, or to
refuses to begin transmitting, the EOR code when transmitting data
characters.

IAC DO END-OF-RECORD

The sender of this command requests that the sender of data start
transmitting the EQR code when transmitting data, or the sender of
this command confirms that the sender of data is expected to
transmit EORs.

IAC DON'T END-OF-RECORD

The sender of this command demands that the receiver of the
command stop or not start transmitting EORs when transmitting
data.

3. Default

WON'T END-OF-RECORD

DON'T END-OF-RECORD

END-OF-RECORD is not transmitted.

Postel [Page 1]

2-727

i-i^^i ^A.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 885 December 1983

4. Motivation for the Option

Many interactive systems use one (or more) of the normal data
characters to indicate the end of an effective unit of data (i.e., a
record), for example, carriage-return (or line-feed, or escape).
Some Systems, however, have some special means of indicating the end
of an effective data unit, for example, a special key. This Telnet
option provides a means of communicating the end of data unit in a
standard way.

5. Description of the Option

When the END-OF-RECORD option is in effect on the connection between
a sender of data and the receiver of the data, the sender transmits
EORs.

It seems probable that the parties to the Telnet connection will
transmit EORs in both directions of the Telnet connection if EORs are
used at all; however, the use of EORs must be negotiated
independently for each direction.

When the END-OF -RECORD option is not in effect, the I AC EOR command
should be treated as a NOP if received, although I AC EOR should not
normally be sent in this mode,

6. Implementation Considerations

As the EOR code indicates the end of an effective data unit. Telnet
should attempt to send the data up to and including the EOR code
together to promote communication efficiency.

The end of record is Indicated by the I AC EOR 2-octet sequence,
code for EOR is 239 (decimal).

The

<u>i

PosteX [Page 2)

2-728

*>". >V-"v'■..

APPLICATION LEVEL: TLNT-OPS RFC 927

Network Working Group
Request for Comments: 927

Brian A. Anderson
BBN

December 1984

TACACS üser Identification Telnet Option

Status of this Memo

This RFC suggests a proposed protocol for the ARPA- Internet
community, and requests discussion and suggestions for improvements.
Distribution of this memo is unlimited.

Introduction

The following is the description of a TELNET option designed to
facilitate double login avoidance. It is intended primarily for TAG
connections to target hosts on behalf of TAC users, but it can be
used between any two consenting hosts. For example, all hosts at one
site (e.g., BBN) can use this option to avoid double login when
TELNETing to one another.

1. Command name and code

TUID 26

2. Command Meanings

IAC WILL TUID

The sender (the TELNET user) proposes to authenticate the user and
send the identifing UÜID; or, the sender (the TELNET user) agrees
to authenticate the user on whose behalf the connection is
Initiated.

IAC WON'T TUID

The sender (the TELNET user) refuses to authenticate the user on
whose behalf the connection Is Initiated.

IAC DO TLT1D

The sender (the TELNET server) proposes that the recipient (the
TELNET user) authenticate the user and send the identifing UUID;
or, the sender (the TELNET server) agrees to accept the
recipient's (the TELNET user's) authentication of the user
identified by his UUID.

&

Anderson [Pag* 1]

2-729

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

RFC 927
TUID Telnet Option

December 1984

IAC DON'T TUID

The sender (the TELNET server) refuses to accept the recipient's
(the TELNET user) authentication of the user.

IAC SB TUID <uuid> IAC SE

The sender (the TELNET user) sends the UUID <uuid> of the user on
whose behalf the connection is established to the host to which he
is connected. The <uuid> is a 32 bit binary number.

3. Default

WON'T TUID

A TELNET user host (the initiator of a TELNET connection) not
implementing or using the TUID option will reply WON'T TUID to a
DO TUID.

DON'T TUID

A TELNET »er^/^r host (the recipient of a TELNET connection) not
implementing or using the TUID option reply DON'T TUID to a WILL
TUID.

4. Motivation for the Option

Under TACACS (the TAC Access Control System) a user must be
authenticated (give a correct name/password pair) to a TAC before he
en connect to a host via the TAC. To avoid a second authentication
by the target host, the TAC can pass along the user's proven identity
(fas UUID) to the that host. Hosts may accept the TAC's
authentication of the us*r or not, at their option.

The same option can be used between any pair of cooperating hosts for
the purpose of double login avoidance.

5. Description for the Option

At the time that a host establishes a TELNET connection for a user to
another host, if the latter supports the TUID option and wants to
receive the user's UUID, it sends an IAC DO TUID to the the user's
host. If the user's host supports the TUID option and wants to
authenticate the user by sending the user's UUID, it responds IAC
WILL TUID; otherwise it responds with IAC WON'T TUID. If both the
user and smr^mr TELNETs agree, the user TELNET will then send the
UUID to the 9mrvmr TELNET by sub-negotiation.

Anderson [Page 2]

2-730

• ."■.».* .** - *• *- *■

APPLICATION LEVEL: TLNT-OPS RFC 927

RFC 927
TUID Telnet Option

December 1984

6. Examples

There ere two possible negotiations that result in the double login
avoidance authentication of a user. Both the server and the user
TELNET support the TUID option.

S * Server, Ü - User

Case 1:

S-> IAC DO TUID
U-> IAC WILL TUID
U-> IAC SB TUID <32-bit UUID> IAC SE

Case 2:

U-> IAC WILL TUID
S-> IAC DO TUID
U-> IAC SB TUID <32-bit UUID> IAC SE

There are also two possible negotiations that do not result in the
authentication of a user. In the first example the server supports
TUID and the user TELNET doesn*t. In the second example the user
TELNET supports TUID but the server TELNET doesn't.

S * Server, U * User

Case 3:

S-> IAC DO TUID
U-> IAC WOWT TUID

Case 4:

U-> IAC WILL TUID
S-> IAC DONT TUID

The TUID is transmitted with the subnegotlatlon command. For
example, if the UUID had the value 1 the following string of octets
would be transmitted:

IAC SB TUID 0 0 0 1 IAC SE

If the UUID had the value 255 the following string of octets would be
transmitted:

IAC SB TUID 0 0 0 IAC IAC IAC SE

■i»V

Anderson [Page 3]

\\

2-731

. >'•*-♦*.** •*. -v . *v* •/•."•/ • *•.**.*--• •*v*•.**/%* -.*• *-.j•.• •/*.* /-.*v%• ♦.*-.* •'." •.'"/• •*• •".•*• *• •*••*.«v»v.vS\'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 927
TUID Telnet Option

December 1984

If the UUID had the value of all ones the following string of octets
would be transmitted:

IAC SB TUID IAC IAC IAC IAC XAC IAC IAC IAC IAC SE

Anderson [Page 4]

2-732

>vv ^>v-^^v»^ K%\v N A . A .«:-:««: .•■*\..'»i« v^ Jl lajt AI.;A^V.^.^'-'.'A A'A'AVJ,

APPLICATION LEVEL: TLNT-OPS RFC 933

Network Working Group
Request for Comments: 933

S. Silverman
MITRE-Washington

January 1985

OUTPUT MARKING TELNET OPTION

Status of this Memo

This RFC proposes a new option for Telnet for the ARPA-Internet
community, and requests discussion and suggestions for improvements.
Distribution of this memo is unlimited.

Overview

This proposed option would allow a Server-Telnet to send a banner to
a User-Telnet so that this banner would be displayed on the
workstation screen independently of the application software running
in the Server-Telnet.

1. Command Name and Code

OUTMRK 27

2. Command Meanings

IAC WILL OUTMRK

Sender is willing to send output marking information in a
subsequent sub-negotiation.

IAC WON'T OUTMRK

Sender refuses to send output marking information.

TAC DO OUTMRK

Sender is willing to receive output marking information in a
subsequent sub-negotiation.

IAC DON'T OUTMRK

Sender refuses to accept output marking information.

IAC SB OUTMRK CNTL data IAC SE

The sender requests receiver to use the data in this
subnegotiation as a marking for the normally transmitted Telnet
data until further notice. The CNTL octet indicates the position
of the marking (see below) .

Silverman [Page 1]

2-733

LA^^VV^A^JV^»^'^'.!»''^-. ?*.:*:*:*'* ^J^L^J. ^V-A'l^/^ZO^A-.^vlvrv.'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 933 January 1985
Output Marking Telnet Option

IAC SB OÜIMRK ACK IAC SE

The sender acknowledges the data and agrees to use it to perform
output marking (see below).

IAC SB OUTMRK NAK IAC SE

The sender objects to using the data to perform output marking
(see below).

3. Default

WON'T OUTMRK

Output marking information will not be exchanged.

DON'T OUTMRK

Output marking information will not be exchanged.

4. Motivation for the Option

The security architecture of some military systems identifies a
security level with each Telnet connection. There is a corresponding
need to display a security banner on visual display devices.
(Reference: Department of Defense Trusted Computer System Evaluation
Criteria, Section 3.1.1.3.2.3, Labeling Human-Readable Output.)

The output marking is currently done by transmitting the banner as
data within each screen of data. It would be more efficient to
transmit the data once with instructions and have User-Telnet
maintain the banner automatically without any additional
Server-Telnet action. This frees Server-Telnet from needing to know
the output device page size.

Under this proposal Server-Telnet would send an option sequence with
the command, a control flag, and the banner to be used. While
current systems use the top of the screen, it is conceivable other
systems would want to put the banner at the bottom or perhaps even
the side of the screen. This is the reason for the control flag.

5. Description of the Option

Either side of the session can initiate the option; however, normally
it will be the server side that initiates the request to perform
output marking. Either the Server-Telnet sends "WILL OUTMRK" or the
User-Telnet sends a "DO OUTfRK". The party receiving the initial

Silverman [Page 2]

2-734

' ■ * . " . " • • •L • * . * *' - " »* t * - • •" . * r * • " « « iN , ■ ft■ .'• . • . " » • • • .*• .*» . • . • % . '» \ S •„ '. *, ".. '. ". ■. •. . *. ■ ."*.**" '.'

1 ."" »** »** »\ a™** ■"• •*• »^ ."■.*» ."» »*► «*• ■"* «"»»^ ■% »V toV hVi *. ."• .*» *» •• _\ % ". /»' ~n *.'w J\'^~* -»* -«,* S* *»" •»* *." "." *»* *»" V* *»* %" *«,* *.'\»w'* " * -

APPLICATION LEVEL: TLNT-OPS RFC 933

RFC 933 January 1985
Output Marking Telnet Option

"WILL" (or "DO") would respond with "DO" (or "WILL") to accept the
option. Then Server-Telnet responds with the marking data. The
format of this is:

"IAC SB OUTMRK CNTL data IAC SE"

CNTL is the Control Flag described below,
the data is in ASCII.

If this is satisfactory, User-Telnet responds:

"IAC SB OUTMRK ACK IAC SE"

ACK is the ASCII ACK (6) .

From this point, User-Telnet will have to translate any command which
uses cursor controls so that the application data is mapped to the
application part of the screen.

If th3 data passed in the subnegotiation field is unacceptable to
User-Telnet, then it responds with:

"IAC SB OUTMRK NAK IAC SE"

NAK is the ASCII NAK (21).

It is now up to Server-Telnet to start the sequence over again and
use "more acceptable" data (or possibly take other action such as
connection termination).

To terminate output marking. Server-Telnet transmits "WON'T OUTMRK".

If necessary, User-Telnet would notify Server-Telnet about the new
effective page size. User-Telnet would then map the output data to
the allowed usable space on the screen.

User-Telnet may request OUTMRK data or initiate setup of this
convention at anytime by transmitting "DO OUTMRK". If a WILL, DO
OUTMRK exchange is not followed by the OUTMRK subnegotiation of the
marking data, the User-Telnet may terminate the output marking option
by sending a "DON'T OUTMRK".

Silverman [Pago 3]

2-735

m

f-W\

DON PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 933
Output Marking Telnet Option

January 1985

Control Flag

The CNTL flag is defined as:

D = Default, the placement of the markings is up to
User-Telnet. This is the expected mode for most
interactions.

T = Top, this banner is to be used as the top of the screen.
If multiple output markings are desired, then T and B (or R
& L) are to be used.

B = Bottom, this banner is to be used at the bottom of the
screen.

L = Left, markings on the left. (The precise meaning of this
is to be defined.)

R = Right, marking on right. (The precise meaning of this is
to be defined.)

Banner Data

The use of Carriage Return and Line Feed (CRLF) will be
interpreted as a end of line in the marking banner text. If the
user wants a multiline banner, CRLF will be used between each
line. No CRLF is needed at the end of the marking data.

To use multiple banners, all of the banners will be included in
one subnegotiation command of the form:

"I AC SB OUTMRK CNTL data GS CNTL data I AC SE"

where GS is the ASCII Group Separator (29) character.

User-Telnet will be responsible for positioning the marking banner
data on the screen.

Silverman [Page 4]

2-736

'^^St^^sMsiArA:^ Sitii,-l.jJL^JL _-»..* -» <<■■■: 'jL'-a-V-VL'jjJ-r. ÜÜ

APPLICATION LEVEL: TLNT-OPS RFC 861

Network Working Group J. Postel
Request for Comments: 861 J. Reynolds

ISI
Obsoletes: NIC 16239 May 1983

TELNET EXTENDED OPTIONS - LIST OPTION

This RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet are expected to adopt and implement this standard.

1. Command Name and Code

EXTENDED-OPTIONS-LIST (EXOPL) 255

2. Command Meanings

IAC DO EXOPL

The sender of this command REQUESTS that the receiver of this
command begin negotiating, or confirms that the receiver of this
command is expected to begin negotiating, TELNET options which are
on the "Extended Options List".

IAC WILL EXOPL

The sender of this command requests permission to begin
negotiating, or confirms that it will begin negotiating, TELNET
options which are on the "Extended Options List".

IAC WON'T EXOPL

The sender of this command REFUSES to negotiate, or to continue
negotiating, options on the "Extended Options List".

IAC DON'T EXOPL

The sender of this command DEMANDS that the receiver conduct no
further negotiation of options on the "Extended Options List".

IAC SB EXOPL <subcommand>

The subcommand contains information required for the negotiation
of an option of the "Extended Options List". The format of the
subcommand is discussed in section 5 below.

3. Default

WON'T EXOPL, DON'T EXOPL

Postel & Reynolds [Page 1]

2-737

••W,

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 861 May 1983

Negotiation of options on the "Extended Options List" is not
permitted.

4. Motivation for the Option

Eventually, a 257th TELNET option will be needed. This option will
extend the option list for another 256 options in a manner which is
easy to implement. The option is proposed now, rather than later
(probably much later), in order to reserve the option number (255) .

5. An Abstract Description of the Option

The EXOPL option has five subcommand codes: WILL, WON'T, DO, DON'T,
and SB. They have exactly the same meanings as the TELNET commands
with the same names, and are used in exactly the same way. For
consistency, these subcommand codes will have the same values as the
TELNET command codes (250-254). Thus, the format for negotiating a
specific option on the "Extended Options List" (once both parties
have agreed to use it) is:

IAC SB EXOPL DO/DON'T/WILL/WON'T/<option code> IAC SE

Once both sides have agreed to use the specific option specified by
<option code>, subnegotiation may be required. In this case the
format to be used is:

IAC SB EXOPL SB <option code> <parameters> SE IAC SE

Postel & Reynolds [Page 2]

2-738

>:/ !>>>>;Sivs*-::-.>v.: ^el^WL^^a*^^^

*•• o-.-'

* » •- * *** » *■■».■*■.#* %

APPLICATION LEVEL: FTP RFC 959

Postel & Reynolds [Page 1]

2-739

Network Working Group J. Postel
Request for Comments: 959 J. Reynolds

ISI
Obsoletes RFC: 765 (IEN 149) October 1985

FILE TRANSFER PROTOCOL (FTP)

Status of this Memo

This memo is the official specification of the File Transfer
Protocol (FTP). Distribution of this memo is unlimited.

The following new optional commands are included in this edition of
the specification:

CDUP (Change to Parent Directory) , SMNT (Structure Mount) , STOU
(Store Unique), RMD (Remove Directory), MKD (Make Directory), PWD
(Print Directory), and SYST (System) .

Note that this specification is compatible with the previous edition.

1. INTRODUCTION

The objectives of FTP are 1) to promote sharing of files (computer
programs and/or data), 2) to encourage indirect or implicit (via
programs) use of remote computers, 3) to shield a user from
variations in file storage systems among hosts, and 4) to transfer
data reliably and efficiently. FTP, though usable directly by a user
at a terminal, is designed mainly for use by programs.

The attempt in this specification is to satisfy the diverse needs of
users of maxi-hosts, mini-hosts, personal workstations, and TACs,
with a simple, and easily implemented protocol design.

This paper assumes knowledge of the Transmission Control Protocol
(TCP) [2] and the Telnet Protocol [3]. These documents are contained
in the ARPA-Internet protocol handbook [1] .

2. OVERVIEW V;

In this section, the history, the terminology, and the FTP model are £L
discussed. The terms defined in this section are only those that H
have special significance in FTP. Some of the terminology is very ;>>
specific to the FTP model; some readers may wish to turn to the V\
section on the FTP model while reviewing the terminology. y.\-

* -"-» -*^ *■* *■■ fc" *SmLm£ a.* AA».', I_* >j:«_aV \ *V» \+ %*. xm.£m ?'»&•. f.V. *- C JT. .*;_ a^V-T^-V. »*_ .«i.V.V -V. -*-■» -*.*-•_ mc.'^ - *±.'JS^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959 October 1985
File Transfer Protocol

2.1. HISTORY

FTP has had a long evolution over the years. Appendix III is a
chronological compilation of Request for Comments documents
relating to FTP. These include the first proposed file transfer
mechanisms in 1971 that were developed for implementation on hosts
at M.I.T. (RFC 114), plus comments and discussion in RFC 141.

RFC 172 provided a user-level oriented protocol for file transfer
between host computers (including terminal IMPs). A revision of
this as RFC 265, restated FTP for additional review, while RFC 281
suggested further changes. The use of a "Set Data Type"
transaction was proposed in RFC 294 in January 1982.

RFC 354 obsoleted RFCs 264 and 265. The File Transfer Protocol
was now defined as a protocol for file transfer between HOSTs on
the ARPANET, with the primary function of FTP defined as
transfering files efficiently and reliably among hosts and
allowing the convenient use of remote file storage capabilities.
RFC 385 further commented on errors, emphasis points, and
additions to the protocol, while RFC 414 provided a status report
on the working server and user FTPs. RFC 430, issued in 1973,
(among other RFCs too numerous to mention) presented further
comments on FTP. Finally, an "official" FTP document was
published as RFC 454.

By July 1973, considerable changes from the last versions of FTP
were made, but the general structure remained the same. RFC 542
was published as a new "official" specification to reflect these
changes. However, many implementations based on the older
specification were not updated.

In 1974, RFCs 607 and 614 continued comments on FTP. RFC 624
proposed further design changes and minor modifications. In 1975,
RFC 686 entitled, "Leaving Well Enough Alone", discussed the
differences between all of the early and later versions of FTP.
RFC 691 presented a minor revision of RFC 686, regarding the
subject of print files.

Motivated by the transition from the NCP to the TCP as the
underlying protocol, a phoenix was born out of all of the above
efforts in RFC 765 as the specification of FTP for use on TCP.

This current edition of the FTP specification is intended to
correct some minor documentation errors, to improve the
explanation of some protocol features, and to add some new
optional commands.

Postel & Reynolds [Page 2]

2-740

/»Jf»-',Vjlt»J**'-'>-,*'wl»-'*^''*-'. v* '-'- ^■■•^'■.'-•-•^'■•^•-•-^.^•.■^•".^-. ?J ,«-' \.'. fcllMJ^. i." ♦.•, ,-•—l^il ^■^.wV:,..''..-.". »,.,',,.»* .Jk*.

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

In particular, the following new optional commands are included in
this edition of the specification:

CDUP - Change to Parent Directory

SMNT - Structure Mount

STOU - Store Unique

RMD - Remove Directory

MKD - Make Directory

PWD - Print Directory

SYST - System

This specification is compatible with the previous edition. A
program implemented in conformance to the previous specification
should automatically be in conformance to this specification.

2.2. TERMINOLOGY

ASCII

The ASCII character set is as defined in the ARPA-Internet
Protocol Handbook. In FTP, ASCII characters are defined to be
the lower half of an eight-bit code set (i.e., the most
significant bit is zero).

access controls

Access controls define users' access privileges to the use of a
system, and to the files in that system. Access controls are
necessary to prevent unauthorized or accidental use of files.
It is the prerogative of a server-FTP process to invoke access
controls.

byte size

There are two byte sizes of interest in FTP: the logical byte
size of the file, and the transfer byte size used for the
transmission of the data. The transfer byte size is always 8
bits. The transfer byte size is not necessarily the byte size
in which data is to be stored in a system, nor the logical byte
size for interpretation of the structure of the data.

Postal & Reynolds [Page 3]

2-741

a i** ^aLsLziLi* .'HL>\ fcV.VAViV/. *.1*A J\V«V Jv«*t m\ »'it M*\ »JLMJLIIJL V-? M\ »*» mi *9 »V »V\>V^E „"» ^'<_*\ ^VfcVm\ *T til ■.yy*V»*^V«,l^ V« . ,

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

w

RFC 959
File Transfer Protocol

October 1985

control connection

The communication path between the USER-PI and SERVER-PI for
the exchange of commands and replies. This connection follows
the Telnet Protocol.

data connection

A full duplex connection over which data is transferred, in a
specified mode and type. The data transferred may be a part of
a file, an entire file or a number of files. The path may be
between a server-DIP and a user-DTP, or between two
server-DTPs.

data port

The passive data transfer process "listens" on the data port
for a connection from the active transfer process» in order to
open the data connection.

DTP

The data transfer process establishes and manages the data
connection. The DTP can be passive or active.

End-of-Line

The end-of-line sequence defines the separation of printing
lines. The sequence is Carriage Return, followed by Line Feed.

EOF

The end-of-file condition that defines the end of a file being
transferred.

EOR

The end-of-record condition that defines the end of a record
being transferred.

error recovery

A procedure that allows a user to recover from certain errors
such as failure of either host system or transfer process. In
FTP, error recovery may involve restarting a file transfer at a
given checkpoint.

Postel & Reynolds [Page 4]

2-742

^£^^1 *^A*l^x»j» -Jt m. i3» »,-.*- *^^^. *^:« ml^mL^a, ,1^_ ,■£.,, „&. -*. * ,4. '-* -*'-*t «1 ^..jk^m.^t .-*.** -fc

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

FTP commands

A set of commands that comprise the control information flowing
from the user-FTP to the server-FTP process.

file

An ordered set of computer data (including programs),
arbitrary length, uniquely identified by a pathname.

of

mode

The mode in which data is to be transferred via the data
connection. The mode defines the data format during transfer
including EQR and EOF. The transfer modes defined in FTP are
described in the Section on Transmission Modes.

NVT

The Network Virtual Terminal as defined in the Telnet Protocol.

NVFS

The Network Virtual File System. A concept which defines a
standard network file system with standard commands and
pathname conventions.

page

A file may be structured as a set of independent parts called
pages. FTP supports the transmission of discontinuous files as
independent indexed pages.

pathname

Pathname is defined to be the character string which must be
input to a file system by a user in order to identify a file.
Pathname normally contains device and/or directory names, and
file name specification. FTP does not yet specify a standard
pathname convention. Each user must follow the file naming
conventions of the file systems involved in the transfer.

PI

The protocol interpreter. The user and server sides of the
protocol have distinct roles implemented in a user-PI and a
server-PI.

Postel 6 Reynolds [Page 5]

2-743 m

Lv.vi .v.v.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959 October 1985
File Transfer Protocol

record

A sequential file may be structured as a number of contiguous
parts called records. Record structures are supported by FTP
but a file need not have record structure.

reply

A reply is an acknowledgment (positive or negative) sent from
server to user via the control connection in response to FTP
commands. The general form of a reply is a completion code
(including error codes) followed by a text string. The codes
are for use by programs and the text is usually intended for
human users.

server-DIP

The data transfer process, in its normal "active" state,
establishes the data connection with the "listening" data port.
It sets up parameters for transfer and storage, and transfers
data on command from its PI. The DTP can be placed in a
"passive" state to listen for, rather than initiate a
connection on the data port.

server-FTP process

A process or set of processes which perform the function of
file transfer in cooperation with a user-FTP process and,
possibly, another server. The functions consist of a protocol
interpreter (PI) and a data transfer process (DTP).

server-PI

The server protocol interpreter "listens" on Port L for a
connection from a user-PI and establishes a control
communication connection. It receives standard FTP commands
from the user-PI, sends replies, and governs the server-DTP.

type

The data representation type used for data transfer and
storage. Type implies certain transformattons between the time
of data storage and data transfer. The representation types
defined in FTP are described In the Section on Establishing
Data Connections.

Postal & Reynolds [Page 6]

2-744

*1'> >>-•

.v. , ■*, ^ v *1- *^ v v *>k* v v .* *.* v * v'v'.'VV'.'*!•',• * \ •.'-%•" ^y* *•* •"'«," •***.'-.* '.'*."/

./»VA«JA^VVAVLV\A\VL.,
WJ'A.'« ^ * *.V ~w« A -* -'• -V -% > VJSA ANA* ^._,..^—^»'L* :^

%
A 'J*. 1M .*-y.V-V.. *, *\m\ ■'.

APPLICATION LEVEL: FTP RFC 959

RFC 959 October 1985
File Transfer Protocol

user

A person or a process on behalf of a person wishing to obtain
file transfer service. The human user may interact directly
with a server-FTP process, but use of a user-FTP process is
preferred since the protocol design is weigihted towards
automata.

user-DT?

The data transfer process "listens" on the data port for a
connection from a server-FTP process. If two servers are
♦•Transferring data between them, the user-DTP is inactive.

user-rTP process

A set of functions including a protocol interpreter, a data
transfer process and a user interface which together perform
the function of file transfer in cooperation with one or more
server-FTP processes. The user interface allows a local
language to be used in the command-reply dialogue with the
user.

user-PI

The user protocol interpreter initiates the control connection
from its port U to the server-FTP process, initiates FTP
commands, and governs the user-DTP if that process is part of
the file transfer.

Postel & Reynolds [Page 71

2-745

"-.**."\.

^^S^^^y^^i**^^^^^^^^^'^*^ «V*% S\>\\\K\ -Y-YV-Y >YY»Y»Y->Y-Y-".N '• "•*. ** '•':"' *►**« *• Vv' 'V *' •

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

2.3. THE FTP MODEL

With the above definitions in mind, the following model (show.i in
Figure 1) may be diagrammed for an FTP service.

I/" "Al
II User ||
I I Interface!<--->| User |
iv—-—-/i
i I I
I/-—V—-\l

•>| User ||
II PI II

I I I
!/ v \| -

->(User |<--->| File |
|| DTP || |System|
l\ /I

| File |<--
j System j

1/ \l
||Server|<-
II PI II
IV--—/I
I I I
I/--V--AI

• >|Server|< -
II DTP ||
l\ /I

FTP Commands

FTP Replies

Data

Connection

Server-FTP USER-FTP

NOTES: 1. The data connection may be used in either direction.
2. The data connection need not exist all of the time.

Figure 1 Model for FTP Use

In the model described in Figure 1. the user-protocol interpreter
initiates the control connection. The control connection follows
the Telnet protocol. At the initiation of the user, standard FTP
commands are generated by the user-PI and transmitted to the
server process via the control connection. (The user may
establish a direct control connection to the server-FTP. from a
TAG terminal for example, and generate standard FTP commands
independently, bypassing the user-FTP process.) Standard replies
are sent from the server-PI to the user-PI over t*«e control
connection in response to the commands.

The FTP commands specify the parameters for the data connection
(data port, transfer mode, representation type, and structure) and
the nature of file system operation (store, retrieve, append,
delete, etc.). The user-DTP or its designate should "listen" on
the specified data port, and the server initiate the data
connection and data transfer in accordance with the specified
parameters. It should be noted that ttw. data port need not be in

Postel it Reynolds [Page 8}

2-746

>.
A.^Ain AW. A.t .^ .1 J rf ^,«ft Jl„ rf, aft, ^^^s^s*^*-^^^^*^^ -s - -*•-** -'*-»*■■?

APPLICATION I Z TEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

the same host that initiates the FTP commands via the control
connection, but the user or the user-FTP process must ensure a
"listen" on the specified data port. It ought to also be noted
that the data connection may be used for simultaneous sending and
receiving.

In another situation a user might wish to transfer files batween
two hosts, neither of which is a local host. The user sets up
control connections to the two servers and then arranges for a
data connection between them. In this manner, control information
is passed to the user-PI but data is transferred between the
server data transfer processes. Following is a model of this
server-server interaction.

Control

V

->| User-FTP |<-
| User-PI j
I "C" I

Control

Server-FTP | Data Connection |
"A" |< --- >|
 Port (A) Port (B) -

I
I
V

Server-FTP
"B"

*y>

Figure 2

The protocol requires that the control connections be open while
data transfer is in progress. It is the responsibility of the
user to request the closing of the control connections when
finished using the FTP service, while it is the server who takes
the action. The server may abort data transfer if the control
connections are closed without command.

The Relationship between FTP and Telnet:

The FTP uses the Telnet protocol on the control connection.
Ihis can be achieved in two ways: first, the user-PI or the
server-PI may implement nhe rules of the Telnet Protocol
directly in their own procedures; or, second, the user-PI or
the server-PI may make use of the existing Telnet module in tfcj
system.

Ease of implement a ion, sharing code, and modular programming
arcme for the second approach. Efficiency and independence

Postel & Reynolds [Page 9]

2-747

.V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

argue for the first approach. In practice, FTP relies on very-
little of the Telnet Protocol, so the first approach does not
necessarily involve a large amount of code.

3. DATA TRANSFER FUNCTIONS

Files are transferred only via the data connection. The control
connection is used for the transfer of commands, which describe the
functions to be performed, and the replies to these commands (see the
Section on FTP Replies) . Several commands: are concerned with the
transfer of data between hosts. These data transfer commands include
the MODE command which specify how the bits of the data are to be
transmitted, and the STRUcture and TYPE commands, which are used to
define the way in which the data are to be represented. The
transmission and representation are basically independent but the
"Stream" transmission mode is dependent on the file structure
attribute and if "Compressed" transmission mode is used, the nature
of the filler byte depends on the representation type.

3.1. DATA REPRESENTATION AND STORAGE

Data is transferred from a storage device in the sending host to a
storage device in the receiving host. Often it is necessary to
perform certain transformations on the data because data storage
representations in the two systems are different. Eor example,
NVT-ASCII has different data storage representations in different
systems. DEC TOPS-20s's generally store NVT-ASCII as five 7-bit
ASCII characters, left-justified in a 36-bit word. IBM Mainframe's
store NVT-ASCII as 8-bit EBCDIC codes. Multics stores NVT-ASCII
as four 9-bit characters in a 36-bit word. It is desirable to
convert characters into the standard NVT-ASCII representation when
transmitting text between dissimilar systems. The sending and
receiving sites would have to perform the necessary
transformations between the standard representation and their
internal representations.

A different problem in representation arises when transmitting
binary data (not character codes) between host systems with
different word length • It is not always clear how the sender
should send data, and the receiver store it. For example, when
transmitting 32-bit bytes from a 32-bit word-length system to a
36-bit word-length system, it may be desirable (for reasons of
efficiency and usefulness) to store the 32-bit bytes
right-justified in a 36-bit word in the lattar system. In any
case, the user should have the option of specifying data
representation and transformation tunctions. It should be noted

..NV

Postel & Reynolds [Page 10]

2-748

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

S

that FTP provides for very limited data type representations.
Transformations desired beyond this limited capability should be
performed by the user directly.

3.1.1. DATA TYPES

Data representations are handled in FTP by a user specifying a
representation type. This type may implicitly (as in ASCII or
EBCDIC) or explicitly (as in Local byte) define a byte size for
interpretation which is referred to as the "logical byte size."
Note that this has nothing to do with the byte size used for
transmission over the data connection, called the "transfer
byte size", and the two should not be confused. For example,
NVT-ASCII has a logical byte size of 8 bits. If the type is
Local byte, then the TYPE command has an obligatory second
parameter specifying the logical byte size. The transfer byte
size is always 8 bits.

3.1.1.1. ASCII TYPE

This is the default type and must be accepted by all FTP
implementations. It is intended primarily for the transfer
of text files, except when both nosts would find the EBCDIC
type more convenient.

The sender converts the data from an internal character
representation to the standard 8-bit NVT-ASCII
representation (see the Telnet specification). The receiver
will convert the data from the standard form to his own
internal form.

In accordance with the NVT standard, the <CRLF> sequence
should be used where necessary to denote the end of a line
of text. (See the discussion of file structure at the end
of the Section on Data Representation and Storage.)

Using the standard NVT-ASCII representation means that data
must be interpreted as 8-bit bytes.

The Format parameter for ASCII and EBCDIC types is discussed
below.

JA:

V.v.

L *»

r ■ K,
K

Postel & Reynolds [Page 11]

2-749

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985
JCJ.

m.
RFC 959
File Transfer Protocol

October 1985

3.1.1.2. EBCDIC TYPE

This type is intended for efficient transfer between hosts
which use EBCDIC for their internal character
representation.

For transmission, the data are represented as 8-bit EBCDIC
characters. The character coda is the only difference
between the functional specifications of EBCDIC and ASCII
types.

End-of-line (as opposed to end-of-record---.«see the discussion
of structure) will probably be rarely used with EBCDIC type
for purposes of denoting structure, but where it is
necessary the <NL> character should be used.

3.1.1.3. IMAGE TYPE

Hie data are sent as contiguous bits which, for transfer,
are packed into the 8-bit transfer bytes. The receiving
site must store the data as contiguous bits. The structure
of the storage system might necessitate the padding of the
file (or of each record, for a record-structured file) to
some convenient boundary (byte, word or block) . This
padding, which must be all zeros, may occur only at the end
of the file (or at the end of each record) and there must be
a way of identifying the padding bits so that they may be
stripped off if the file is retrieved. The padding
transformation should be well publicized to enable a user to
process a file at the storage site.

Image type is intended for the efficient storage and
retrieval of files and for the transfer of binary data. It
is recommended that this type be accepted by all FTP
implementations.

3.1.1.4. LOCAL TYPE

The data is transferred In logical bytes of the size
specified by the obligatory second parameter. Byte size.
Tne value of Byte size must be a decimal integer; there is
no default value. The logical byte size is not necessarily
the same as the transfer byte size. If there is a
difference in byte sizes, then the logical bytes should be
packed contiguously, disregarding transfer byte boundaries
and with any necessary padding at the end.

ft' Vv

.*- %

Postel & Reynolds [Page 12]

2-750

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985 RSSS

When the data reaches the receiving host, it will be
transformed in a manner dependent on the logical byte size
and the particular host. This transformation must be
invertible (i.e., an identical file can be retrieved if the
same parameters are used) and should be well publicized by
the FTP implementors.

For example, a user sending 36-bit floating-point numbers to
a host with a 32-bit word could send that data as Local byte
with a logical byte size of 36. The receiving host would
then be expected to store the logical bytes so that they
could be easily manipulated; in this example putting the
36-bit logical bytes into 64-bit double words should
suffice.

In another example, a pair of hosts with a 36-bit word size
may send data to one another in words by using TYPE L 36.
The data would be sent in the 8-bit transmission bytes
packed so that 9 transmission bytes carried two host words.

3.1.1.5. FORMAT CONTROL

The types ASCII and EBCDIC also take a second (optional)
parameter; this is to indicate what kind of vertical format
control, if any, is associated with a file. The following
data representation types are defined in FTP:

A character file may be transferred to a host for one of
three purposes: for printing, for storage and later
retrieval, or for processing. If a file is sent for
printing, the receiving host must know how the vertical
format control is represented. In the second case, it must
be possible to store a file at a host and then retrieve it
later in exactly the same form. Finally, it should be
possible to move a file from one host to another and process
the file at the second host without undue trouble. A single
ASCII or EBCDIC format does not satisfy all these
conditions. Therefore, these types have a second parameter
specifying one of the following three formats:

3.1.1.5.1. NON PRINT

This is the default format to be used if the second
(format) parameter is omitted. Non-print format must be
accepted by all FTP implementations.

m

Postel & Reynolds [Page 131

2-751
„ «■*.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

The file need contain no vertical format information. If
it is passed to a printer process, this process may
assume standard values for spacing and margins.

Normally, this format will be used with files destined
for processing or just storage.

3.1.1.5.2. TELNET FORMAT CONTROLS

The file contains ASCII/EBCDIC vertical format controls
(i.e., <CR>, <LF>, <NL>, <VT>, <FF>) which the printer
process will interpret appropriately. <CRLF>, in exactly
this sequence, also denotes end-of-line.

3.1.1.5,2. CARRIAGE CONTROL (ASA)

The file contains ASA (FORTRAN) vertical format control
characters. (See RFC 740 Appendix C; and Communications
of the ACM, Vol. 7, No. 10, p. 606, October 1964.) In a
line or a record formatted according to the ASA Standard,
the first character is not to be printed. Instead, it
should be used to determine the vertical movement of the
paper which should take place before the rest of the
record is printed.

The ASA Standard specifies the following control
characters:

Character Vertical Spacing

blank Move paper up one line
0 Move paper up two lines
1 Move paper to top of next page
+ No movement, i.e., overprint

Clearly there must be some way for a printer process to
distinguish the end of the structural entity. If a file
has record structure (see below) this is no problem;
records will be explicitly marked during transfer and
storage. If the file has no record structure, the <CRLF>
end-of-line sequence is used to separate printing lines,
but these format effectors are overridden by the ASA
controls.

Pos eel it Reynolds (Page 14]

2-752

APPLICATION LEVEL: FTP RFC 959

^ W 9
RFC 959
File Transfer Protocol

October 1985

3.1.2. DATA STRUCTURES

In addition to different representation types, FTP allows the
structure of a file to be specified. Three file structures are
defined in FTP:

file-structure,

record-structure,

where there is no internal structure and
the file is considered to be a
continuous sequence of data bytes,

where the file is made up of sequential
records,

and page-structure, where the file is made up of independent
indexed pages.

File-structure is the default to be assumed if the STRUcture
command has not been used but both file and record structures
must be accepted for "text" files (i.e., files with TYPE ASCII
or EBCDIC) by ail FTP implementations. The structure of a file
will affect both the transfer mode of a file (see the Section
on Transmission Modes) and the interpretation and storage of
the file.

The "natural" structure of a file will depend on which host
stores the file. A source-code file will usually be stored on
an IBM Mainframe in fixed length records but on a DEC TOPS-20
as a stream of characters partitioned into lines, for example
by <CRLF>. If the transfer of files between such disparate
sites is to be useful, there must be some way for one site to
recognize the other's assumptions about the file.

With some sites being naturally file-oriented and others
naturally record-oriented there may be problems if a file with
one structure is sent to a host oriented to the other. If a
text file is sent with record-structure to a host which is file
oriented, then that host should apply an internal
transformation to the file based on the record structure.
Obviously, this transformation should be useful, but it must
also be invertible so that an identical file may be retrieved
using record structure.

In the case of a file being sent with file-structure to a
record-oriented host, there exists the question of what
criteria the host should use to divide the file into records
which can be processed locally. If this division is necessary,
the FTP implementation should use the end-of-line sequence.

Postel & Reynolds [Page 15]

2-753 m.
i * i

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959 October 1985
File Transfer Protocol

<CRLF> for ASCII, or <NL> for EBCDIC text files, as the
delimiter. If an FTP implementation adopts this technique, it
must be prepared to reverse the transformation if the file is
retrieved with file-structure.

3.1.2.1. FILE STRUCTURE

File structure is the default to be assumed if the STRUcture
command has not been used.

In file-structure there is no internal structure and the
file is considered to be a continuous sequence of data
bytes.

3.1.2.2. RECORD STRUCTURE

Record structures must be accepted for "text" files (i.e.,
files with TYPE ASCII or EBCDIC) by all FTP implementations.

In record-structure the file is made up of sequential
records.

3.1.2.3. PAGE STRUCTURE

To transmit files that are discontinuous, FTP defines a page
structure. Files of this type are sometimes known as
"random access files" or even as "holey files". In these
files there is sometimes other information associated with
the file as a whole (e.g., a file descriptor), or with a
section of the file (e.g., page access controls), or both.
In FTP, the sections of the file are called pages.

To provide for various page sizes and associated
information, each page is sent with a page header. The page
header has the following defined fields:

Header Length

The number of logical bytes In the page header
Including this byte. The minimum header length is 4.

Page Index

The logical page number of this section of the file.
This is not: the transmission sequence number of this
page, but the index used to identify this page of the
file.

Postel & Reynolds [Pago 16]

2-754

APPLICATION LEVEL: FTP RFC 959

RFC 959 October 1985
File Transfer Protocol

Data Length

The number of logical bytes in the page data. The
minimum data length is 0.

Page Type

The type of page this is. The following page types
are defined:

0 ■ Last Page

This is used to indicate the end of a paged
structured transmission. The header length must
be 4, and the data length must be 0.

1 a Simple Page

This is the normal type for simple paged files
with no page level associated control
information. The header length must be 4.

2 A Descriptor Page

This type is used to transmit the descriptive
information for the file as a whole.

3 = Access Controlled Page

This type Includes an additional header field
for paged files with page level access control
information. The header length must be 5-

Optional fields

Further header fields may be used to supply per page
control information, for example, per page access
control.

All fields are one logical byte In length. The logieal byte
size is specified by the TYPE command. Sea Appendix I for
further details and a specific case at the page structure.

A note of caution about parameters: a file must be stored and
retrieved with the same parameters if the retrieved version is to

Postal & Reynolds [Page it 7]

2-755

-^ - .. •..*».». , . . _ - - ^r - _•-■...-■' .. - • . '

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959 October 1985
File Transfer Protocol

be identical to the version originally transmitted. Conversely,
FTP implementations must return a file identical to the original
if the parameters used to store and retrieve a file are the same.

3.2. ESTABLISHING DATA CONNECTIONS

The mechanics of transferring data consists of setting up the data
connection to the appropriate ports and choosing the parameters
for transfer. Both the user and the server-DTPs have a default
data port. The user-process default data port is the same as the
control connection port (i.e., U). The server-process default
data port is the port adjacent to the control connection port
(i.e., L-l).

The transfer byte size is 8-bit bytes. This byte size is relevant
only for the actual transfer of the data; it has no bearing on
representation of the data within a host's file system.

The passive data transfer process (this may be a user -DTP or a
second server-DTP) shall "listen" on the data port prior to
sending a transfer request command. The FTP request command
determines the direction of the data transfer. The mmrvGr. upon
receiving the transfer request, will initiate the data connection
to the port. When the connection is established, the data
transfer begins between DTP's, and the *erver-PI sends a
confirming reply to the user-PI.

Every FTP implementation must support the use of the default data
ports, and only the USER-PI can initiate a change to non-default
ports.

It is possible for the user to specify an alternate data port by
use of the PORT command. The user may want a file dumped on a TAC
line printer or retrieved from a third party host. In the latter
case, the user-PI sets up control connections with both
server-Pi's. One server is then told (by an FTP command) to
"listen" for a connection which the other will initiate. The
user-PI sends one server-PI a PORT command indicating the d*ta
port of the other. Finally, both are sent the appropriate
transfer commands. The exact sequence of commands and replies
sent between the user-controller and the servers is defined in the
Section on FTP Replies.

In general, it Is the server 's responsibility to maintain the data
connection--to initiate it end to close it. The exception to this

Postel St Reynolds [Page 181

*«s-*oc

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

is when the user-DTP is sending the data in a transfer mode that
requires the connection to be closed to indicate EOF. The server
MUST close the data connection under the following conditions:

1. The server has completed sending data in a transfer mode
that requires a close to indicate EOF.

2. The server receives an ABORT command from the user.

3. The port specification is changed by a command from the
user.

4. The control connection is closed legally or otherwise.

5. An irrecoverable error condition occurs.

Otherwise the close is a server option, the exercise of which the
server must indicate to the user-process by either a 250 or 226
reply only.

3.3. DATA CONNECTION MANAGEMENT

Default Data Connection Ports: All FTP implementations must
support use of the default data connection ports, and only the
User-PI may initiate the use of non-default ports.

Negotiating Non-Default Data Ports: The User-PI may specify a
non-default user side data port with the PORT command. The
User-PI may request the server side to identify a non-default
server side data port with the PASV comwand. Since a connection
is defined by the pair of addresses, either of these actions is
enough to get a different data connection, sei11 it is permitted
to do both commands to us* new ports on both ends of the data
connection.

Reuse of the Data Connection: When usJng the stream mode of data
transfer the end of the file must be indicated by closing the
connection. This causes a problem if multiple files are to be
transfered in the session, due to need for TCP to hold the
connection record for a time out period to guarantee the reliable
communication. Thus the connection can not be reopened at once.

There are two solutions to this problem. The first is to
negotiate a non-default port. The second is to use another
transfer mode.

A comment on transfer modes. The stream cransfer mode is

Postel it Reynolds [Page 19]

2-757

iifc

££>-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

inherently unreliable, since one can not determine if the
connection closed prematurely or not. The other transfer modes
(Block, Compressed) do not close the connection to indicate the
end of file. They have enough FTP encoding that the data
connection can be parsed to determine the end of the file.
Thus using these modes one can leave the data connection open
for multiple file transfers.

3.4. TRANSMISSION MODES

The next consideration in transferring data is choosing the
appropriate transmission mode. There are three modes: one which
formats the data and allows for restart procedures; one which also
compresses the data for efficient transfer; and one which passes
the data with little or no processing. In this last case the mode
interacts with the structure attribute to determine the type of
processing. In the compressed mode, the representation type
determines the filler byte.

All data transfers must be completed with an end-of-file (EOF)
which may be explicitly stated or implied by the closing of the
data connection. For files with record structure, all the
end-of-record markers (ECR) are explicit, including the final one.
For files transmitted in page structure a "last-page" page type is
used.

NOTE: In the rest of this section, byte means "transfer byte"
except where explicitly stated otherwise.

For the purpose of standardized transfer, the sending host will
translate its internal end of line or end of record denotation
into the representation prescribed by the transfer mode and file
structure, and the receiving host will perform the inverse
translation to its internal denotation. An IBM Mainframe record
count field may not be recognized at another host, so the
end-of-record information may be transferred as a two byte control
code in Stream mode or as a flagged bit in a Block or Compressed
mode descriptor. End-of-line in an ASCII or EBCDIC file with no
record structure should be indicated by <CRLF> or <NL>,
respectively. Since these transformations imply extra work for
some systems, identical systems transferring non-record structured
text files might wish to use a binary representation and stream
mode for the transfer.

Postel & Reynolds [Page 201

2-758

V

»/- .*« .*»
" •■' ■"•■■' ** v *V '■" 'i'W \"

APPLICATION LEVEL: FTP RFC 959

RFC 959 October 1985
File Transfer Protocol

The following transmission modes are defined in FTP:

3.4.1. STREAM MODE

The data is transmitted as a stream of bytes. There is no
restriction on the representation type used; record structures
are allowed.

In a record structured file EOR and EOF will each be indicated
by a two-byte control code. The first byte of the control code
will be all ones, the escape character. The second byte will
have the low order bit on and zeros elsewhere fr*- EOR and the
second low order bit on for EOF; that is, the by^e will have
value 1 for EOR and value 2 for EOF. EOR and EOF may be
indicated together on the last byte transmitted by turning both
low order bits on (i.e., the value 3). If a byte of all ones
was intended to be sent as data, it should be repeated in the
second byte of the control code.

If the structure is a file structure, the EOF is indicated by
the sending host closing the data connection and all bytes are
data bytes.

3.4.2. BLOCK MODE

the file is transmitted as a series of data blocks preceded by
one or more header bytes. The header bytes contain a count
field, and descriptor code. The count field indicates the
total length of the data block in bytes, thus marking the
beginning of the next data block (there are no filler bits).
The descriptor code defines: last block in the file (EOF) last
bl<>ck in Uie record (ECR). restart marker (see the Section on
Error Recovery and Restart) or suspect data (i.e., the data
being transferred is suspected of errors and is not reliable).
This last code is NOT Interned for error control within FTP.
It is motivated by the desire of sites exchanging certain types
of data (e.g., seismic or weather data) to send and receive all
the data despite local errors (such as "magnetic tape read
errors**), but to indicate in the transmission that certain
portions are suspect). Record structures are allowed in this
mode, and any representation uype may be used.

The header consists of the three bytes. Of the 24 bits of
header information, the 16 low order bits shall represent byte
count, and the 8 high order bits shall represent descriptor
codes as shown below.

Postal k Reynolds [Page 21;

2-750

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

t$
AY*

RFC 959
File Transfer Protocol

Block Header

October 1985 *-3 v]
S3
V]

Descriptor |
8 bits |
 + .

Byte Count
16 bits

The descriptor codes are indicated by bit flags in the
descriptor byte. Four codes have been assigned, where each
code number is the decimal value of the corresponding bit in
the byte.

Code Meaning

128 End .of data block is EOR
64 End of data block is EOF
32 Suspected errors in data block
16 Data block is a restart marker

AW-

?Jv&

With this encoding, more than one descriptor coded condition
may exist for a particular block. As many bits as necessarv
may be flagged.

the restart marker is embedded in the data stream as an
integral number of 8-bit bytes representing printable
characters in the language being used over the control
connection (e.g.. default--NVT-ASCXI) . <SP> (Space, in the
appropriate language) must not be used WITHIN a restart marker.

For example, to transmit a six-character marker, the following
would be sent:

IDescrptr|
|code« 16|

Byte count
3 6

| Marker | Marker j Marker
| 8 bits | 8 bits | 8 bits

8 bits I 8 bits ! 8 bits

Postel it Reynolds [Page 22]

2-75(i

APPLICATION LEVEL: FTP RFC 959

§>.

RfC 959 October 1985
File Transfer Protocol

3.4.3. COMPRESSED MODE

There are three kinds of information to be sent: regular data,
sent in a byte string; compressea data, consisting of
replications or filler; and control information, sent in a
two-byte escape sequence. If n>0 bytes (up to 127) of regular
data are sent, these n bytes are preceded by a byte with the
left-most bit set to 0 and the right-most 7 bits containing the
number n.

Byte string:

17 8 8

|0| n | | d(l) | ... | d(n) |

| —n bytes— 1
of data

String of n data bytes d(l), d(n)
Count n must be positive.

To compress a string of n replications of the data byte d, the
following 2 bytes are sent:

Replicated Byte:

2 6 8

11 01 n || d |
.♦■-.♦■-■♦.-+-♦-♦«+-+-♦ ♦-♦-♦-+-+-♦-♦-♦-♦

A string of n filler bytes can be compressed into a single
byte, where the filler byte varies with the representation
type. If the type is ASCII or EBCDIC the filler byte is <SP>
'Space, ASCII code 32, EBCDIC code 64) . If the type is Image
. Local byte the filler is a zero byte.

Filler String:

2 6
♦ -♦-■♦•-♦->♦■-.♦-•♦.-•*-♦

|1 1| n |
♦ -♦-♦-•♦■-•♦■-♦-■♦•-1 -<♦

The escape sequence is a double byte, the first of which is the

Postel 6 Reynolds [Page 23]

2-761

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959 October 1985
File Transfer Protocol

escape byte (all zeros) and the second of which contains
descriptor codes as defined in Block mode. The descriptor
codes have the same meaning as in Block mode and apply to the
succeeding string of bytes.

Compressed mode is useful for obtaining ircreased bandwidth on
very large network transmissions at a little extra CPU cost.
It can be most effectively used to reduce the size of printer
files such as those generated by RJE hosts.

3.5. ERROR RECOVERY AND RESTART

There is no provision for detecting bits lost or scrambled in data
transfer; this level of error control is handled by the TCP.
However, a restart procedure is provided to protect users from
gross system failures (including failures of a host, an
FTP-process, or the underlying network).

The restart procedure is defined only for the block and compressed
modes of data transfer. It requires the sender of data to insert
a special marker code in the data stream with some marker
information. The marker information has meaning only to the
sender, but must consist of printable characters in the default or
negotiated language of the control connection (ASCII or EBCDIC).
The marker could represent a bit-count, a record-count, or any
other information by which a system may identify a data
checkpoint. The receiver of data, if it implements the restart
procedure, would then mark the corresponding position of this
icarker in the receiving system, and return this information to the
user.

In the event of a system failure, the user can restart the data
transfer by identifying the marker point with the FTP restart
procedure. The following example illustrates the use of the
restart procedure.

The sender of the data inserts an appropriate marker block in the
data stream at a convenient point. The receiving host marks the
corresponding data point in its file system anci conveys the last
known sender and receiver marker information to the user, either
directly or over the control connection in a 110 reply (depending
on who is the sender). In the event of a system failure, the user
or controller process restarts the server at the last server
marker by sending a restart command with server's marker code as
its argument. The restart command is transmitted over the control

Postel 6 Reynolds [Page 24]

2-762

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

connection and is immediately followed by the command (such as
RETR, STOR or LIST) which was being executed when the system
failure occurred.

4. FILE TRANSFER FUNCTIONS

The communication channel from the user-PI to the server-PI is
established as a TCP connection from the user to the standard server
port. The user protocol interpreter is responsible for sending FTP
commands and interpreting the replies received; the server-PI
interprets commands, sends replies and directs its DTP to set up the
data connection and transfer the data. If the second party to the
data transfer (the passive transfer process) is the user-DTP, then it
is governed through tha internal protocol of the user-FTP host; if it
is a second server-DTP, then it is governed by its PI on command from
the user-PI. The FTP replies are discussed in the next section. In
the description of a few of the commands in this section, it is
helpful to be explicit about the possible replies.

4.1. FTP C0W4ANDS

4.1.1. ACCESS CONTIROL CC*MANDS

The following commands specify access control identifiers
(command codes are shown in parentheses).

USER NAME (USER)

The argument field is a Telnet string identifying the user.
The user identification is that which is required by the
server for access to its file system. This command will
normally be the first command transmitted by the user after
the control connections are made (some servers may require
this) . Additional Identification information in the form of
a password and/or an account command may also be required by
some servers. Servers may allow a new USER command to be
entered at any point in order to change the access control
and/or accounting information. This has the effect of
flushing any user, password, and account information already
supplied and beginning the login sequence again. Al)
transfer parameters are unchanged and any file transfer in
progress is completed under the old access control
parameters.

Postel 6 Reynolds [Page 25]

2-763

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959 October 1985
File Transfer Protocol

PASSWORD (PASS)

The argument field is a Telnet string specifying the user's
password. This command must be immediately preceded by the
user name command, and, for some sites, completes the user's
identification for access control. Since password
information is quite sensitive, it is desirable in general
to "mask" it or suppress typeout. It appears that the
server has no foolproof way to achieve this. It is
therefore the responsibility of the user-FTP process to hide
the sensitive password information.

ACCOUNT (ACCT)

Ihe argument field is a Telnet string identifying the user's
account. The command is not necessarily related to the USER
command, as some sites may require an account for login and
others only for specific access, such as storing files. In
the latter case the command may arrive at any time.

There are reply codes to differentiate these cases for the
automation: when account information is required for login,
the response to a successful PASSword command is reply code
332. On the other hand, if account information is NOT
required for login, the reply to a successful PASSword
command is 230; and if the account information is needed for
a command issued later in the dialogue, the server should
return a 332 or 532 reply depending on whether it stores
(pending receipt of the ACCounT command) or discards the
command, respectively.

CHANCE WORKING DIRECTORY (CWD)

This command allows the user to work with a different
directory or dataset for file storage or retrieval without
altering his login or accounting information. Transfer
parameters are similarly unchanged. The argument is a
pathname specifying a directory or other system dependent
file group designator.

CHANCE TO PARENT DIRECTORY (CDUP)

This command is a special case of CWD, and is included to
simplify the implementation of programs for transferring
directory trees between operating systems having different

Postel & Reynolds [P*9e 26}

2-764

APPLICATION LEVEL: FTP RFC 959

S

R£C 959 October 1985
File Transfer Protocol

syntaxes for naming the parent directory. The reply codes
shall be identical to the reply codes of CWD. See
Appendix II for further details.

STRUCTURE MOUNT (SMNT)

This command allows the user to mount a different file
system data structure without altering his login or
accounting information. Transfer parameters are similarly
unchanged. The argument is a pathname specifying a
directory or other system dependent file group designator.

REINITIALIZE (REIN)

This command terminates a USER, flushing all I/O and account
information, except to allow any transfer in progress to be
completed. All parameters are reset to the default settings

W and the control connection is left open. This is Identical
f\ to the state in which a user finds himself immediately after
£%• the control connection is opened. A USER command may be

expected to follow.

9 ". LOGOUT (QUIT)

This command terminates a USER and if file transfer is not
in progress, the server closes the control connection. If
file transfer is in progress, the connection will remain
open for result response and the server will then close it.
If the user-process is transferring files for several USERs
but doen not wish tc close and then reopen connections for
each, then the REIN command should be used Instead of QUIT.

An unexpected close on the control connection will cause the
9mr^mr to take the effective action of an abort (ABOR) and a
logout (QUIT).

4.1.2. TRANSFER PARAMETER C(*MANDS

All data transfer parameters have default values, and the
commands specifying data transfer parameters are required only
If the default parameter values are to be changed. The default
value is the last specified value, or If no value has been
specified, the standard default value is as stated here. This
implies that the server must "remember" the applicable default
values. The commands may be in any order except that they must
precede the FTP service request- The following commands
specify data transfer parameters:

Postel & Reynolds [Page 27]

2-765

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

DATA PORT (PORT)

The argument is a HOST-PORT specification for the data port
to be used in data connection. There are defaults for both
the user and server data ports, and under normal
circumstances this command and its reply are not neeied. If
this command is used, the argument is the concatenation of a
32-bit internet host address and a 16-bit TCP port address.
This address information is broken into 8-bit fields and the
value of each field is transmitted as a decimal number (in
character string representation). The fields are separated
by commas. A port command would be:

PORT hl,h2,h3,h4,pl,p2

where hi is the high order 8 bits of the internet host
address.

PASSIVE (PASV)

This command requests the server-DTP to "listen" on a data
port {which is not its default data port) and to wait for a
connection rather than initiate one upon receipt of a
transfer command. The response to this command Includes the
host and port address this server is listening on.

REPRESENTATION T¥P£ (TYPE)

The argument specifies the representation type as described
in the Section on Data Representation and Storage. Several
types take a second parameter. The first parameter is
denoted by a single Telnet character, as is the second
Format parameter'for ASCII and EBCDIC; the second parameter
for local byte is a decimal integer to indicate Ryteslze.
The parameters are separated by a <SP> (Space, ASCII code
32) .

The following codes are assigned for type:

\ /
A - ASCII | j N - Non-print

j-x-j T - Telnet format effectors
E * FBCDICI | C - Carriage Control (ASA)

/ \
I - Image

L <byte size> - Local byte Byte size

Postel & Reynolds [Page 28^

2-766

'AV-V«*.

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Trans fc*r Protocol

October 1985

The default representation type is ASCII Non-print. If the
Format parameter is changed, and later just the first
argument is changed, Format then returns to the Non-print
default.

FILE STRUCTURE (STOU)

The argument is a single Telnet character code specifying
file structure described in the Section on Data
Representation and Storage.

The following codes are assigned for svvucture:

F - File (no record structure)
R - Record structure
P - Page structure

The default structure is File.

TRANSFER MODE (MODE)

The argument is a single Telnet character code specifying
the data transfer modes described in the Section on
Transmission Modes.

The following codes are assigned for transfer modes:

S
B
C

Stream
Bio*
Compressed

The default transfer mode is Stream.

4.1.3. FTP SERVICE CO**lANDS

The FTP service commands define the file transfer or the file
system function requested by the user. The argument of an FTP
service command will normally be a pathname. The syntax of
pathnames must conform to server site conventions (with
standard defaults applicable), and the language conventions of
the control connection. The suggested default handling Is to
use the last specified device, directory or file name, or the
standard default defined for local users. The commands may be
in any order except that a "rename from" command must be
followed by a "rename to" command and the restart command must
be followed by the interrupted sen/ice command (e.g.. STOR or
RETR). The data, when transferred In response to FTP service

Postel & Reynolds 'Page 29]

2-767

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959 October 1985
File Transfer Protocol

commands, shall always be sent over the data connection, except
for certain informative replies, the following commands
specify FTP service requests:

RETRIEVE (RETR)

This command causes the server-DTP to transfer a copy of the
file, specified in the pathname, to the server* or user-DTP
at the other end of the data connection. The status and
contents of the file at the server site shall be unaffected.

STORE (STOR)

This command causes the server-DTP to accept the data
transferred via the data connection and to store the data as
a file at the server site. If the file specified in the
pathname exists at the 9mrvw site, then its contents shall
be replaced by the data being transferred. A new file is
created at the smrvr site if the file specified in the
pathname does not already exist.

STORE UNIQUE (STOU)

This command behaves like STOR except that the resultant
file is to be created in the current directory under a name
unique to that directory. The 250 Transfer Started rmmponsm
must Include the name generated.

APPEND (with create) (APPE)

This command causes the server-DTP to accept the data
transferred via the data connection and to store the data in
a file at the 9mr^fr site. If the file specified in the
pathname exists at the mmrvmr site, then the data shall be
appended to that file; otherwise the file specified in the
pathname shall be created at the server site.

ALLOCATE (ALLO)

This command may be required by some servers to rmmarv*
sufficient storage to accommodate the new file to be
transferred. The argument shall be a decimal Integer
representing the number of bytes (using the logical byte
size) of storage to be reserved for the file, for files
sent with record or page structure a saximum record or page
size (in logical bytes) might also be necessary; this is
indicated by a decimal Integer in a second argument field of

Posts1 6 Reynolds [Page 30*

2-76$

1 N"

APPLICATION LEVEL: FTP RFC 959

RFC 959 October 1985
File Transfer Protocol

the command. This second argument is optional, but when
present should be separated from the first by the three
Telnet characters <SP> R <SP>. This command shall be
followed by a STORe or APPEnd command. The ALLO command
should be treated as a NOOP (no operation) by those servers
which do not require that the maximum size of the file be
declared beforehand, and those servers interested in only
the cuaximum record or page size should accept a dummy value
in the first argument and ignore it.

RESTART (REST)

The argument field represents the server marker at which
file transfer is to be restarted. This command does not
caus* file transfer but skips over the file to the specified
data checkpoint. This command shall be immediately followed
by the appropriate FTP service command which shall cause
file transfer to resume.

RENAME FROM (RNFR)

This command specifies the old pathname of the file which is
to be renamed. This command must be immediately followed by
a "rename to" command specifying the new file pathname.

RENAME TO (RKTO)

This command specifies the new pathname of the file
specified in the immediately preceding "rename from"
command. Together the two commands cause a file to be
renamed.

ABORT (ABOR)

This command tells the server to abort the previous FTP
service command and any associated transfer of data. The
abcrt command may require "special action", as discussed in
the Section on FTP Commands, to force recognition by the
server. No action is tc be taken if the previous command
has been completed (including data transfer). The control
connection is not to be closed by the server, but the o>ta
connection must be closed.

there are two cases for the server upon receipt of this
command: (1) the FTP service command was already completed,
or (2) the FTP service command is still in progress.

Postel k Reynolds [Page 31]

2-769

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959 October 1985
File Transfer Protocol

In the first case, the server closes the data connection
(if it is open) and responds with a 226 reply, indicating
that the abort conroarid was successfully processed.

In the second case, the server aborts the FTP service in
progress and closes the data connection, returning a 426
reply to indicate that the service request terminated
abnormally. The smrv^r then sends a 226 reply,
indicating that the abort command was successfully
processed.

DELETE (DELE)

This command causes the file specified in the pathname to be
deleted at the server site. If an extra level of protection
is desired (such as the query. "Do you really wish to
delete?"), it should be provided by the user-FTP process.

REMOVE DIRECTORY (RMÖ)

This command causes the directory specified in the pathname
tv be removed as a directory (if the pathname is absolute)
or as a subdirectory of the current working directory (if
the pathname is relative) . See Appendix II.

MAKT, DIRECTORS (*«D)

This command causes the directory specified in the pathname
to be created as a directory (if the pathname is absolute)
or as a subdirectory of the current working directory (if
the pathname is relative) . See Appendix II.

PRIKT WORKING DIRECTORY (PWD)

This command causes the nase of the current working
directory to be returned in the reply. See Appendix II.

LIST (LIST)

This command causes a list to be sent from the m&rvmr to the
pmnniv* DTP. If the pathname specifies a directory or other
group of flies, the server should transfer a list of files
in the specified directory. If the pathname specifies a
file then the smrver should send current information on the
file. A null argument implies the user's current working or
default d;r<sctory. The data transfer is over the data
connection in type ASCII or type EBCDIC. (The user must

Postel k Reynolds "Page 3-*

2-770

APPLICATION LEVEL: FTP RFC 950

RFC 959 October 1985
File Transfer Protocol

ensure that the TYPE is appropriately ASCII or EBCDIC) .
Since the information on a file may vary vilely from system
to system, this information may be hard to use automatically
in a program, but may be quite useful to a human user.

NAME LIST (NLST)

This command causes a directory listing to be sent from
server to user site. The pathname should specify a
directory or other system-specific file group descriptor; a
null argument implies the current directory. The server
will return a stream of names of files and no other
information. The data will be transferred in ASCII or
EBCDIC type over the data connection as valid pathname
strings separated by <CRLF> or <NL>. (Again the user must
ensure that the TYFE is correct.) This command is intended
to return information that can be used by a program to
further process the files automatically. For example, in
the implementation of a "multiple get" function.

SITE PARAMETERS (SITE)

This command is used by the server to provide services
specific to his system that are essential to file transfer
but not sufficiently universal to b* included as commands in
the protocol. The nature of these services and the
specification of their syntax can be stated in a reply to
the KELP SITE command.

SYSTEM (SYST)

This command is used to find out the type of operating
system at the server. The reply shall have as its first
word one of the system names listed in the current version
of the Assigned Numbers document [4j.

STATUS (STAT)

This command shall cause a status response to be sent over
the control connection in the form of a reply. The command
may be sent during a file transfer (along vitä the Telnet IP
and Synch signals—see the Section on FTP Cremands) In which
case the server will respond with the status of the
operation In progress, or It may be sent between file
transfers. In the latter case, the command may have an
argument field. If the argument is a pathname, the command
is analogous to the "list" command except that data shall be

Post«I * Reynolds T*9* 33]

2-TT1

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

I

i

RFC 959 October 1985
File Transfer Protocol

transferred over the control connection. If a partial
pathname is given, the server may respond with a list of
file names or attributes associated with that specification.
If no argument is given, the server should return general
status information about the server FTP process. This
should include current values of all transfer parameters and
the status of connections.

HELP (HELP)

This command shall cause the server co send helpful
Information regarding its implementation status over the
control connection to the user. The command may take an
argument (e.g., any command name) and return more specific
Information as a response. The reply i* type 211 or 214.
It is suggested that HELP be allowed before entering a USER
command, the mttrwwr may use this reply to specify
site-dependent parameters, e.g., in response to HELP SITE.

HOOP (NOOP)

This command does not affect any parameters or previously
entered commands. It specifies no action other than that the
server send an OK reply.

The FUe Transfer Protocol follows the specifications of the Telnet
protocol for all communications over the control connection. Since
the language used for Telnet communication may be a negotiated
option, all references in the next two sections will be to the
"Telnet language" and the corresponding "Telnet end-of-line code".
Currently, one may take these to mean NVT-ASCII and <CRLF>. No other
specifications o< the Telnet protocol will be cited.

FTP commands are "Telnet strings** terminated by the 'Telnet end of
line code**. The coerv** codes themselves are alphabetic characters
terminate«; by the character <SP> (Space) if parameters follow end
Telnet-EOL otherwise. The command codes and the semantics of
commands are described In this section; the detailed syntax of
commands is specified ir the Section on Commands, the reply sequences
are discussed in the Section on Sequencing of Commands and Replies,
«nd scenarios Illustrating the use of commands are provided in the
Section on Typical FTP Scenarios.

FTP commands may be partitioned as those specifying access-control
Identifiers, data transfer parameters, or FTP service requests.
Certain commands (such as ABOR. STAT QUIT) may be sent over the
control connection while a data transfer is In progress. Some

Postel * Reynolds C?*g» 34]

■

2-772

-k^fa.

APPLICATION LEVEL: FTP RFC 959

RFC 959 October 1985
File Transfer Protocol

servers may not be able to monitor the control and data connections
simultaneously, in which case some special action will be necessary
to get the server's attention. The following ordered format is
tentatively recommended:

1. User system inserts the Telnet "Interrupt Process" (IP) signal
in the Telnet stream.

2. User system sends the Telnet "Synch" signal.

3. User system inserts the command (e.g., ABOR) in the Telnet
stream.

4. Server PI, after receiving "IP", scans the Telnet stream for
EXACTLY ONE FTP command.

(For other servers this may not be necessary but the actions listed
above should have no unusual effect.)

4.2. FTP REPLIES

Replies to File Transfer Protocol commands are devised to ensure
the synchronization of requests and actions in the process of file
transfer, and to guarantee that the user process always knows the
state of the Server. Every command must generate at least one
reply, although there may be more than one; in the latter case,
the multiple replies must be easily distinguished. In addition,
some commands occur in sequential groups, such as USER, PASS and
ACCT, or RNFR and RNTO. The replies show the existence of an
intermediate state if all preceding commands have been successful.
A failure at any point in the sequence necessitates the repetition
of the entire sequence from the beginning.

The details of the command-reply sequence are made explicit in
a set of state diagrams below.

An FTP reply consists of a three digit number (transmitted as
three alphanumeric characters) fcllowed by some text. The number
is intended for use by automata to determine what state to encer
next; the text is intended for the human user. It is intended
that the three digits contain enougjh encoded information that the
user-process (the User-PI) will not need to examine the text and
may either discard it or pass it on to the user, as appropriate.
In particular, the text may be server-dependent, so there are
likely to be varying texts for each reply code.

A reply is det.'ned to contain the 3-digit code, followed by Space

Postel & Reynolds [Page 35]

2-773

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

<SP>, followed by one line of text (where some maximum line length
has been specified), and terminated by the Telnet end-of-line
code. There will be cases however, where the text is longer than
a single line. In these cases the complete text must be bracketed
so the User-process knows when it may stop reading the reply (i.e.
stop processing input on the control connection) and go do other
things. This requires a special format on the first line to
indicate that more than one line is coming, and another on the
last line to designate it as the last. At least one of these must
contain the appropriate reply code to indicate the state of the
transaction. To satisfy all factions, it was decided that both
the first and last line codes should be the same.

Thus the format for multi-line replies is that the first line
will begin with the exact required reply code, followed
immediately by a Hyphen, "-" (also known as Minus), followed by
text:. The last line will begin with the same code, followed
immediately by Space <SP>, optionally some text, and the Telnet
end-of-line code.

For example:
123-First line
Second line

234 A line beginning with numbers
123 The last line

The user-process then simply needs to search for the second
occurrence of the same reply code, followed by <SP> (Space), at
the beginning of a line, and ignore all intermediary lines. If
an intermediary line begins with a 3-digit number, the Server
must pad the front to avoid confusion.

This scheme allows standard system routines to be used for
reply information (such as for the STAT reply), with
"artificial" first- and last lines tacked on. In rare cases
where these routines are able to generate three digits and a
Space at the beginning of any line, the beginning of each
text line should be offset by some neutral text, like Space.

This scheme assumes that multi-line replies may not be nested.

The three digits of the reply each have a special significance.
This is Intended to allow a range of very simple to very
sophisticated responses by the user-process. The first digit
denotes whether the response is good, bad or incomplete.
(Referring to the state diagram), an unsophisticated user-process
will be able to determine its next action (proceed as planned.

Postel 6 Reynolds [Page 36]

2-774

-■-» - -

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

redo, retrench, etc.) by simply examining this first digit. A
user-process that wants to know approximately what kind of error
occurred (e,g. file system error, command syntax error) may
examine the second digit, reserving the third digit for the finest
gradation of information (e.g., RNTO conjaand without a preceding
RNFR) .

There are five values for the first digit of the reply code:

lyz Positive Preliminary reply

The requested action is being initiated; expect another
reply before proceeding with a new command. (The
user-process sending another command before the
completion reply would be in violation of protocol; but
server-FTP processes should queue any commands that
arrive while a preceding command is in progress.) This
type of reply can be used to indicate that the command
was accepted and the user-process may now pay attention
to the data connections, for implementations where
simultaneous monitoring is difficult. The server-FTP
process may send at most, one lyz reply per command.

2yz Positive Completion reply

The requested action has been successfully completed. A
new request may be initiated.

3yz Positive Intermediate reply

The command has been accepted, but the requested action
is being held in abeyance, pending receipt of further
information. The user should send another command
specifying this information. This reply is used in
command sequence groups.

4yz Transient Negative Completion reply

The command was not accepted and the requested action did
not take place, but the error condition is temporary and
the action may be requested again. The user should
return to the beginning of the command sequence, if any.
It is difficult to assign a meaning to "transient",
particularly when two distinct sites (Server- and
User-processes) have to agree on the interpretation.
Each reply in the 4yz category might have a slightly
different time value, but the intent Is that the

Postel 6 Reynolds [Page 371

2*775

,vV>^l'v%>^''%'','/ •* "* V« /."! ■'>-*'.•-*/.*>-' /-*. *\V. v. .* v. „* .y.; ■• ,.\ /%»\«*V *'<»V»\

>»>

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

user-process is encouraged to try again. A rule of thumb
in determining if a reply fits into the 4yz or the 5yz
(Permanent Negative) category is that replies are 4yz if
the commands can be repeated without any change in
command form or in properties of the User or Server
(e.g., the command is spelled the same with the same
arguments used; the user does not change his file access
or user name; the server does not put up a new
implementation.)

5yz Permanent Negative Completion reply

The command was not accepted and the requested action did
not take place. The User-process is discouraged from
repeating the exact request (in the same sequence). Even
some "permanent" error conditions can be corrected, so
the human user may want to direct his User-process to
reinitiate the command sequence by direct action at some
point in the future (e.g., after the spelling has been
changed, or the user has altered his directory status.)

The following function groupings are encoded in the second
digit:

xOz Syntax - These replies refer to syntax errors,
syntactically correct commands that don't fit any
functional category, unimplemented or superfluous
commands.

xlz Information - These are replies to requests for
information, such as status or help.

x2z Connections - Replies referring to the control and
data connections.

x3z "juthentication and accounting - Replies for the login
process and accounting procedures.

x4z Unspecified as yet.

x5z File system - These replies indicate the status of the
Server file system vis-a-vls the requested transfer or
other file system action.

The third digit gives a finer gradation of meaning in each of
the function categories, specified by the second digit. The
list of replies below will illustrate this. Note that the text

Postel 6 Reynolds [Page 38]

2-776

,-. .\<\ V.VV.VJ\«*.v. v.v >/.%••■ v -• V".v v *v • v . * A,

ft

APPLICATION LEVEL: FTP RFC 959 v_,

RFC 959 October 1985
File Transfer Protocol

associated with each reply is recommended, rather than
mandatory, and may even change according to the command with
which it is associated. The reply codes, on the other hand,
must strictly follow the specifications in the last section;
that is, Server implementations should not invent new codes for
situations that are only slightly different from the ones
described here, but rather should adapt codes already defined.

A command such as TYPE or ALLO whose successful execution
does not offer the user-process any new information will
cause a 200 reply to be returned. If the command is not
implemented by a particular Server-FTP process because it
has no relevance to that computer system, for example ALLO
at a TOPS20 site, a Positive Completion reply is still
desired so that the simple User-process knows it can proceed
with its course of action. A 202 reply is used in this case
with, for example, the reply text: "No storage allocation
necessary." If, on the other hand, the command requests a
non-site-specific action and is unimplemented, the response
is 502. A refinement of that is the 504 reply for a command
that is implemented, but that requests an unimplemented
parameter.

4.2.1 Reply Codes by Function Groups

200 Command okay.
500 Syntax error, command unrecognized.

This may Include errors such as command line too long.
501 Syntax error in parameters or arguments.
202 Command not implemented, superfluous at this site.
502 Command not Implemented.
503 Bad sequence of commands.
504 Command not implemented for that parameter.

V Postel & Reynolds [Page 39]

2 •»•»*-*
~i I 4

. ■• > \> V- > V V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959 October 1985
File Transfer Protocol

110 Restart marker reply.
In this case, the text is exact and not left to the
particular implementation; it must read:

5 MARK yyyy « mmmm
y Where yyyy is User-process data stream marker, and mmmm

server's equivalent marker (note the spaces between markers
and "=") .

211 System status, or system help reply.
212 Directory status.
213 File status.
214 Help message.

On how to use the server or the meaning of a particular
J| non-standard command. This reply is useful only to the

human user.
215 NAME system type.

m Where NAME is an official system name from the list in the
I Assigned Numbers document.
p
p 120 Service ready in nnn minutes.

220 Service ready for new user.
221 Service closing control connection.

Logged out if appropriate.
421 Service not available, closing control connection.

This may be a reply to any command if the service lonows it
must shut down.

125 Data connection already open; transfer starting.
225 Data connection open; no transfer in progress.
425 Can't open data connection.
226 Closing data connection.

Requested file action successful (for example, file
I transfer or file abort).

426 Connection closed; transfer aborted.
227 Entering Passive Mode (hl,h2.h3,h4,pl,p2).

i
230 User logged in, proceed.
530 Not logged in.
331 User name okay, need password.
332 Need account for login.
532 Need account for storing files.

Postel & Reynolds [Page 40]

I

2-778 I

s

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

'.**

r

150 File status okay; about to open data connection.
250 Requested file action okay, completed.
257 "PATHNAME" created.
350 Requested file action pending further information.
450 Requested file action not taken.

File unavailable (e.g., file busy).
550 Requested action not taken.

File unavailable (e.g., file not found, no access).
451 Requested action aborted. Local error in processing.
551 Requested action aborted. Page type unknown.
452 Requested action not taken.

Insufficient storage space in system.
552 Requested file action aborted.

Exceeded storage allocation (for current directory or
dataset).

553 Requested action not taken.
File name not allowed,

4.2.2 Numeric Order List of Reply Codes

110 Restart marker reply.
In this case, the text is exact and not left to the
particular implementation; it must read:

M*WC yyyy * mmmm
Where yyyy is User-process data stream marker, and mmmm
server1 s equivalent marker (note the spaces between markers
and "»").

120 Service ready in nrm minutes.
125 Data connection already open; transfer starting.
150 File status okay; about to open data connection.

l
Postal £ Reynolds [Page 41]

F*.

2-779

t ■ ■■ ■. I

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959 October 1985
File Transfer Protocol

200 Conmand okay.
202 Conmand not implemented, superfluous at this site.
211 System status, or system help reply.
212 Directory status.
213 File status.
214 Help message.

On how to use the server or the meaning of a particular
non-standard command. This reply is useful only to the
human user.

215 NAME system type.
Where NAME is an official system name from the list in the
Assigned Numbers document.

220 Service ready for new user.
221 Service closing control connection.

>*/ Logged out if appropriate.
225 Data connection open; no transfer in progress.
226 Closing data connection.

Requested file action successful (for example, file
transfer or file abort).

227 Entering Passive Mode (hi,h2,h3,h4,pl,p2).
230 User logged in, proceed.
250 Requested file action okay, completed.
257 "PATHNAME" created.

331 User name okay, ncsu password.
332 Ne*id account for login.
350 Requested file action pending further information.

421 Service not available, closing control connection.
This may be a reply to any command if the service knows it
must shut down.

425 Can't open data connection.
v 426 Connection closed; transfer aborted.

450 Requested file action not taken.
File unavailable (e.g., file busy).

451 Requested action aborted: local error in processing.
jv! 452 Requested action not taken.

Insufficient storage space in system.

Postel & Reynolds [P»9* 42]

2-780 jj

APPLICATION LEVEL: FTP RFC 959

RFC 959 October 1985
File Transfer Protocol

500 Syntax error, command unrecognized.
This may include errors such as command line too long.

501 Syntax error in parameters or arguments.
502 Command not implemented.
503 Bad sequence of commands.
504 Command not implemented for that parameter.
530 Not logged in.
532 Need account for storing files.
550 Requested action not taken.

File unavailable (e.g., file not found, no access).
551 Requested action aborted: page type unknown.
552 Requested file action aborted.

Exceeded storage allocation (for current directory or
dataset).

553 Requested action not taken.
File name not allowed.

5. DECLARATIVE SPECIFICATIONS

5.1. MINIMUM IMPLEMENTATION

In order to make FTP workable without needless error messages, the
following minimum implementation is required for all servers:

TYPE - ASCII Non-print
MODE - Stream
STRUCTURE * File, Record
OatflVNDS - USER. QUIT. PORT.

TYPE. MODE. STRU.
for the default values

RETR. ST0R,
£ N0OP.

The default values for transfer parameters are:

T*PE - ASCII Non-print
M MODE - Stream

STRU - File

All hosts must accept the above as the standard defaults.

ty Postel 6 Reynolds [Page 43j

2-781

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

5.2. CONNECTIONS

The server protocol Interpreter shall "listen" on Port L. The
user or user protocol interpreter shall initiate the full-duplex
control connection. Server- and user- processes should follow the
conventions of the Telnet protocol as specified in the
ARPA-Internet Protocol Handbook [1] . Servers are under no
obligation to provide for editing of command lines and may require
that it be done in the user host. The control connection shall be
closed by the server at the user's request after all transfers and
replies are completed.

The iiser-DTP must "listen" on the specified data port; this may be
the default user port (U) or a port specified in the PORT command.
The server shall initiate the data connection from his own default
data port (L-l) using the specified user data port. The direction
of the transfer and the port used will be determined by the FTP
service command.

Note that all FTP implementation must support data transfer using
the default port, and that only the USER-PI may initiate the use
of non-default ports.

When data is to be transferred between two servers, A and B (refer
to Figure 2), the user-PI. C, sets up control connections with
both sttrvmr-Pl^. One of the servers, say A. is then sent a PASV
command telling him to "listen" on his data port rather than
initiate a connection when he receives a transfer service command.
When the user-PI receives an acknowledgjaent to the PASV command,
which includes the identity of the host and port reing listened
on, the user-PI then sends A*s port, a, to B in a PORT command; a
reply is returned. The user-PI may then send the corresponding
service commands to A and B. Server B initiates the connection
and the transfer proceeds. The command-reply sequence is listed
below where the messages are vertically synchronous but
horizontally asynchronous:

Postal & Reynolds [Page 44]

2-782

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

User-PI - Server A User-PI - Server B

C->A : Connect
C->A : PASV
A->C : 227 Entering Passive Mode.

C->B : Connect

C->A : STGR
B->A

Al,A2,A3,A4,al,a2
C->B : PORT Al,A2,A3,A4,al,a2
B->C : 200 Okay
C->B : RETR

Connect to HOST-A, PORT-a

Figure 3

The data connection shall be closed by the server under the
conditions described in the Section on Establishing Data
Connections. If the data connection is to be closed following a
data transfer where closing the connection is not required to
indicate the end-of-flle, the smrver must do so immediately.
Waiting until after a new transfer command is not permitted
because the user-process will have already tested the data
connection to see if it needs to do a "listen"; (remember that the
user must "listen" on a closed data port BEFORE sending the
transfer request). To prevent a race condition here, the server
sends a reply (226) after closing the data connection (or if the
connection is left open, a "file transfer completed" reply (250)
and the user-PI should wait for one of these replies before
issuing a new transfer command).

Any time either the user or server see that the connection is
being closed by the other side, it should promptly read any
remaining data queued on the connection and issue the close on its
own side.

5.3. COMMANDS

The commands are Telnet character strings transmitted over the
control connections as described in the Section on FTP Commands.
The command functions and semantics are described in the Section
on Access Control Commands, Transfer Parameter Commands, FTP
Service Commands, and Miscellaneous Commands. The command syntax
is specified here.

The commands begin with a command code followed by an argument
field. The command codes are four or fewer alphabetic characters.
Upper and lower case alphabetic characters are to be treated
identically. Thus, any of the following may represent the
retrieve command:

Postal & Reynolds [Page 451

2-783

* • v; -•■ v v

I DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

RETR. Retr retr ReTr rETr

*4

This also applies to any symbols representing parameter values,
such as A or a for ASCII TYPE. The command codes and the argument
fields are separated by one or more spaces.

The argument field consists of a variable length character string
ending with the character sequence <CRLF> (Carriage Return, Line
Feed) for NVT-ASCII representation; for other negotiated languages
a different end of line character might be used. It should be
noted that the server is to take no action until the end of line
code is received.

The syntax is specified below in NVT-ASCII. All characters in the
argument field are ASCII characters including any ASCII
represented decimal integers. Square brackets denote an optional
argument field. If the option is not taken, the appropriate
default is implied. r.

i
v

V

*

Postel 6 Reynolds [Page 46]

I *

■

2-7*4 I

APPLICATION LEVEL: FTP RFC 959

RFC 959 October 1985
File Transfer Protocol

5.3.1. FTP COWANDS

The following «re the FTP commends: JRI

USER <SP> <username> <CRLF> Jl>*
PASS <SP> <passvord> <ORLF> ■$*/.
ACCT <SP> <aec»unt~ information <CRLF> 0\V
CWD <SP> <pathna»e> <CSLF> !*;-*•
CDUP <CRLF>
SMNT <SP> <pathname> <CRLF> Wk
QUIT <CRLF> >^
REIN <CRLF> s>
PORT <SP> <host-port> <CRLF> V
PASV <CRLF> ;>;■
TYPE <SP> <type-code> <CRLF> y\
STRU <SP> <structure-code> <CRLF> &±i
MODE <SP> <mode-code> <CRLF> M
RETR <SP> <pathname> <CRLF> ?7
STOR <SP> <pathname> <CRLF>
STOU <CRLF>
APPE <SP> <pathname> <CRLF> *//
ALLO <SP> «Jecimal-integer > \>.

[<SP> R <SP> «jecimal-integer >] <CRLF> ;>\
R£ST <SP> marker> <CRLF> K
RNFR <SP> oethname> <CRLF> ~
RMXO <SP» <pathname> <CRLF>
ABOR <OUJF>
DELE <SP> <pathname> <CRLF> !v"'
HMD <SP> <pathname> <CRLF> >>!
t*CD <SP> <pathname> <CRLF> ^
PWD <CRLF> fig
LIST [<SP> <pethneme>3 <CRLF> ~
NLST [<SP> <pathname>5 <CRLF>
SITE <SP> <string> <CRLF> /.•*•
SYST <CRLE> ,••;
STAT [<SP> <pathname>] <CRLF> />
HELP [<SP> <string>] <CRLF> 1>
HOOP <CRLF>

i
>" y
V
v Postal k Reynolds [Page «7] X

IK

I *

fcv^:>

2-7SS ^

-•-»>-••V-• • •• • ■•■••'■• ■-••••• ' ••••• ■•••--•>• ■•• •••

DDN PROTOCOL HAxNDBOOK - VOLUME TWO 1985

RFC 959 October 1985
File Transfer Protocol

5.3.2. FTP CC**1AND ARGUMENTS

The syntax of the above argument fields (using BNF notation
where applicable) is:

<username> ::= <string>
<password> ::= <string>
<account-information ::= <string>
<strlng> :: = <char> j <char><string>
<char> ::== any of the 128 ASCII characters except <CR> and
<LF>
«marker> ::» <pr-string>
<pr-string> ::« <pr-char> | <pr-char><pr-string>
<pr-char> ::= printable characters, any

ASCII code 33 through 126
<byca-size> ::» <number>
<host-port> ::= <host-number>,<port-number>
<host -number> :: * <number>. <number>. <number >, <num!ber>
<port-number> ::- <number>,<number>
<number> : :■ any decimal integer i througjh'255
<form-code> ::«N | T | C
<type-cod©> ::« A [<sp> <fona code>]

| E [<sp> <fom-code>]
I I
| L <sp> <byte-slze>

<structure~code> ::= F | R | P
<mode-code> ::«S | B | C
<pathname> •:* <string>
cdecimal-integer> ::» any decimal Integer

Postel k Reynolds [Page 481

2-78G

'.>■":-■■'./,. \ .- v..-," ' . •"-/-.*'•/ *■'*•'**.•"'•/•

APPLICATION LEVEL: FTP RFC 959

RFC 959 October 1985
File Transfer Protocol

5.4. SEQUENCING OF COMMANDS AND REPLIES

The communication between the user and server is intended to be an
alternating dialogue. As such, the user issues an FTP command and
the server responds with a prompt primary reply. The user should
wait for this initial primary success or failure response before
sending further commands.

Certain commands require a second reply for which the user should
also wait. These replies may, for example, report on the progress
or completion of file transfer or the closing of the data
connection. They are secondary replies to file transfer commands.

One important group of informational replies is the connection
greetings. Under normal circumstances, a server will send a 220
reply, "awaiting input", when the connection is completed. The
user should wait for this greeting message before sending any
commands. If the server is unable to accept input right away, a
120 "expected delay" reply should be sent immediately and a 220
reply when ready. The user will then know not to hang up if there
is a delay.

Spontaneous Replies

Sometimes "the system" spontaneously has a message to be sent
to a user (usually all users). For example, "System going down
in 15 minutes". There is no provision in FTP for such
spontaneous information to be sent from the server to the user.
It is recommended that such information be queued in the
ser-er-PI and delivered to the user-PI in the next reply
(possibly making it a multi-line reply).

The table below lists alternative success and failure replies for
each command. These must be strictly adhered to; a server may
sufcstltute cext in the replies, but the meaning and action implied
by the code numbers and by the specific command reply sequence
cannot be altered.

Command-Reply Sequences

In this secticn, the command-reply sequence is presented. Each
command is listed with its possible replies; command groups are
listed together. Preliminary replies are listed first (with
their succeeding replies indented and under them), then
positive and negative completion, and finally intermediary

Postel £ Reynolds [Page 49]

2-787

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

replies with the remaining commands from the sequence
following. This listing forms the basis for the state
diagrams, which will be presented separately.

Connection Establishment
120

220
220
421

Login
USER

230
530
500, 501, 421
331, 332

PASS
230
202
530
500, 501, 503, 421
332

ACCT
230
202
530
500, 501, 503, 421

CWD
250
500, 501, 502, 421, 530, 550

CDUP
200
500, 501, 502, 421, 530, 550

SMNT
202, 250
500, 501, 502, 421, 530, 550

Logout
REIN

120
220

220
421
500, 502

QUIT
221
500

Postal & Reynolds [Page 50]

2-788

f^^^-lv

APPLICATION LEVEL: FTP RFC 959

RFC 959 October 1985
File Transfer Protocol

Transfer parameters
PORT

200
500, 501, 421, 530

PASV
227
500, 501, 502, 421, 530

MODE
200
500, 501, 504, 421, 530

T¥PE
200
500, 501, 504, 421, 530

STRU
200
500, 501, 504, 421, 530

File action commands
ALLO

200
202
500, 501, 504, 421, 530

REST
500, 501, 502, 421, 530
350

STQR
125, 150

(110)
226, 250
425, 426, 451, 551, 552

532, 450, 452, 553
500, 501, 421, 530

STOU
125, 150

(U0)
226, 250
425, 426, 451, 551, 552

532, 450, 452, 553
500, 501, 421, 530

RETR
125, 150

(110)
226, 250
425, 426, 451

450, 550
500, 501, 421, 530

Postel & Reynolds [Page 51]

2-789

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

LIST
125, 150

226, 250
425, 426, 451

450
500, 501, 502, 421, 530

NLST
125, 150

226, 250
425, 426, 451

450
500, 501, 502, 421, 530

APPE
125, 150

(110)
226, 250
425, 426, 451, 551, 552

532, 450, 550, 452, 553
500, 501, 502, 421, 530

RNFR
450, 550
500, 501, 502, 421, 530
350

RNTO
250
532, 553
500, 501. 502, 503, 421, 530

DELE
250
450, 550
500, 501, 502, 421, 530

RIO
250
500, 501, 502, 421, 530, 550

MKD
257
500, 501, 502, 421, 530, 550

PWD
257
500, 501, 502, 421, 550

ABOR
225, 226
500. 501, 502, 421

Postel & Reynolds [Page 52]

2-790

A*AA AV*^ A A -% .'/•> A A A A A A .A «** A .*• A AA A A A A A . • A
Ä A'A'A'A'IVIV'A'A^A '.

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

Informational commands
SYST

215
500, 501, 502, 421

STAT
211, 212, 213
450
500, 501, 502, 421, 530

HELP
211, 214
500, 501, 502, 421

Miscellaneous commands
SITE

200
202
500, 501, 530

NOOP
200
500 421

Postel & Reynolds [Page 53]

2791

> _ * _ 1 _ » ^ :

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

6. STATE DIAGRAMS

Here we present state diagrams for a very simple minded FTP
implementation. Only the first digit of the reply codes is used.
There is one state diagram for each group of FTP commands or command
sequences.

The command groupings were determined by constructing a model for
each command then collecting together the commands with structurally
identical models.

For each command or command sequence there are three possible
outcomes: success (S), failure (F), and error (E) . In the state
diagrams below we use the symbol B for "begin", and the symbol W for
"wait for reply".

We first present the diagram that represents the largest group of FTP
commands:

+ — +

+ ♦

cmd

1,3 +---+

 >l E |
|

I
+---+ 2 ♦ ♦

•>l W | >| S |
+ + ♦ +

I
| 4,5 +---+
 >l F I

♦ ♦

This diagram models the commands:

ABQR, ALLO, DELE, CWD, CDUP, SMNT, HELP, MODE, NOOP, PASV.
QUIT, SITE, PORT, SYST, STAT, RMD, MKD, PWD, STOU, and TYPE.

Postel 6 Reynolds [Page 54]

2-792

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

The other large group of commands is represented by a very similar
diagram:

3 +—+
" >l E |

| ♦—♦
I

+—+ cmd + + 2 +—+
I B I—- >| W | >| S |
+ + >+ + + +

i I i
| l| 4.5 +---+
I 1 I >l F |

This diagram models the commands:

APPE, LIST, NLST, REIN, RETR, STOR, and STOU.

Note that this second model could also be used to represent the first
group of commands, the only difference being that in the first group
the 100 series replies are unexpected and therefore treated as error,
while the second group expects (some may require) 100 series replies.
Remember that at most, one 100 series reply is allowed per command.

The remaining diagrams model command sequences, perhaps the simplest
of these is the rename sequence:

♦—♦ RNER
I B |
+—♦

I
V

♦—«■ RKTO
I I
♦ ---♦

+ ♦
•>l w j-

♦ ---♦

I I

1,2 ♦---♦
 >l E |

4,5

I 1.3 I

♦ ♦

♦ ♦

2|
I I I
I I I

♦ + 4,5 >♦ ♦
">! w | >| F I

♦ ---♦ + •♦•

Postel & Reynolds [Page 55]

2-793

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

The next diagram is a simple model of the Restart command:

+---+ REST ♦---+ 1,2 +---+
I B | >| W | >| E |
+ + + + -->+ +

I I I
3 | i 4,5 |

I
 >l S |

I 3 | | ♦---♦

I ill
v II!

+ + cmd + + 4,5 >+---♦
I I >l W | >| F |
+ + -->+ ♦ + +

I I
I 1 |

Where "and" Is APPE, STCR, or RETR.

We note that the above three models are similar. The Restart differs
from the Rename two only in the treatment of 100 series replies at
the second stage, while the second group expects (some may require)
100 series replies. Remember that at most, one 100 series reply is
allowed per command.

Postel & Reynolds [Page 56]

2-794

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

The most complicated diagram is for the Login sequence:

+---+ USER +---♦--.
I B | >| W | 2
+ + ♦ + —

V
♦ +

I I"
PASS

 >+ +
—->| E |

4,5

I
+—+ 2

■>| W |-
+ +

I I
3 I [4.5

 >+ ♦

- >l S |

I 1*31
V | 2

♦ ♦ ACCT ♦ ♦ -- j *->+ +
I I >l W i 4,5 >| F |
+ ♦ ♦ ♦ >♦ ♦

Postal 6 Reynolds [Page 57]

2-795

, -'* _%*■■. _■

' •-' *.* •/ \,""v*\"*'*•.* "*■ * • ■ **• *** ""• •*■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

Finally, we present a generalized diagram that could be used to model
the command and reply interchange:

Begin

I

V
End

| ♦—+ cmd ♦—+ 2
">l I >l I'-

ll § I W |
~>| | ~>| | —

I I
I H

I

•>i i
I s I-
I I
+---♦

I I
—>| F |-

I I
++

Postel 6 Reynolds [Page 58]

2-796

v > • /AN" .*/ .•,%''< «VN*
A *• .'• .V.

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

7. TYPICAL FTP SCENARIO

User at host U wanting to transfer files to/from host S:

In general, the user will communicate to the server via a mediating
user-FTP process. The following may be a typical scenario. The
user-FTP prompts are shown in parentheses, ' >' represents
commands from host U to host S, and '< ' represents replies from
host S to host U.

LOCAL COMMANDS BY USER

ftp (host) multics<CR>

ACTION INVOLVED

username Doe <CR>

password mumble <CR>

Connect to host S, port L,
establishing control connections.
< 220 Service ready <CRLF>.
USER Doe<CRLF> >
< 331 User name ok,

need password<CRLF>.
PASS mumble<CRLF> >
< 230 User logged in<CRLF>.

retrieve (local type) ASCIKCR>
(local pathname) test 1 <CR> User-FTP opens local file in ASCII
(for. pathname) test.pll<CR> REIR test.pll<CRLF> >

< 150 File status okay;
about to open data
connection<CRLF>.

Server makes data connection
to port U.

type Image<CR>

< 226 Closing data connection,
file transfer successful<CRLF>.

TYPE I<CRLF> >
< 200 Command 0K<CRLF>

store (local type) image<CR>
(local pathname) file dump<CR> User-FTP opens local file in Image.
(for.pathname) >udd>cn>fd<CR> ST0R >udd>cn>fd<CRLF> >

< 550 Access denied<CRLF>
QUIT <CRLF> >
Server closes all
connections.

terminate

8. CONNECTION ESTABLISHMENT

The FTP control connection is established via TCP between the user
process port U and the server process port L. This protocol is
assigned the service port 21 (25 octal), that is L*21.

Postal & Reynolds [Page 59]

2-797

i^-^^—V%^V^1:^
' V.*."

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

APPENDIX I - PACE STRUCTURE

The need for FTP to support page structure derives principally from
the need to support efficient transmission of files between TOPS-20
systems, particularly the files used by NLS.

The file system of TOPS-20 is based on the concept of pages. The
operating system is most efficient at manipulating files as pages.
The operating system provides an Interface to the file system so that
many applications view files as sequential streams of characters.
However, a few applications use the underlying page structures
directly, and some of these create holey files.

A TOPS-20 disk file consists of four things: a pathname, a page
table, a (possibly empty) set of pages, and a set of attributes.

The pathname is specified in the RETR or STOR command. It includes
the directory name, file name, file name extension, and generation
number,

The page table contains up to 2**18 entries. Each entry may be
EMPTY, or may point to a page. If it is not empty, there are also
some page-specific access bits; not all pages of a file need have the
same access protection.

A page is a contiguous set of 512 words of 36 bits each.

The attributes of the file, in the File Descriptor Block (FOB),
contain such things as creation time, write time, read time, writer's
byte-size, end-of-flle pointer, count of reads and writes, backup
system tape numbers, etc.

Note that there is NO requirement that entries in the page table be
contiguous. There may be empty page table slots between occupied
ones. Also, the end of file pointer is simply a number. There is no
requirement that it in fact point at the "last" datum in the file.
Ordinary sequential I/O calls in TOPS-20 will cause the end of file
pointer to be left after the last datum written, but other operations
may cause it not to be so, if a particular programming system so
requires.

In fact, in both of these special cases, "holey" files and
end-of-flle pointers NOT at the end of the file, occur with NLS data
files.

Postel * Reynolds [Page 60]

rm

2-708

v. . *• » "» » *L "» *. "» » *■ *. « . ,. *#. "„•*/» *.* v v „'
;v^

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

The TOPS-20 paged files can be sent with the FTP transfer parameters:
TYPE L 36, STRU P, and MODE S (in fact, any mode could be used) .

Each page of information has a header. Each header field, which is a
logical byte, is a TOPS-20 word, since the TYPE is L 36.

The header fields are:

Word 0: Header Length.

The header length is 5.

Word 1: Page Index.

If the data is a disk file page, this is the number of that
page in the file's page map. Empty pages (holes) in the file
are simply not sent. Note that a hole is NOT the same as a
page of zeros.

Word 2: Data Length.

The number of data words in this page, following the header.
Thus, the total length of the transmission unit is the Header
Length plus the Data Length.

Word 3: Page Type.

A code for what type of chunk this is.
the FDB page is typ« 2.

Word 4: Page Access Control.

A data page is type 3,

The access bits associated with the page in the file's page
map. (This full word quantity is put into AC2 of an SPACS by
the program reading from net to disk.)

After the header are Data Length data words. Data Length Is
currently either 512 for a data page or 31 for an fDB. Trailing
zeros in a disk file page may be discarded, making Data Length less;
than 512 in that case.

Postal 6 Reynolds [Page 61}

2-799

K—* . i ■ r. ■ . »—» . i , i , t , i t_ /_j?^ - ** «* >- -•

."- * * . *• > .** ,*• .*•',' ."•,'• .

>>:X>: "ASS-AAV.-IV ^'VOVV^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

APPENDIX II - DIRECTORY COWHANDS

Since UNIX has a tree-like directory structure in which directories
are as easy to manipulate as ordinary files, it is useful to expand
the FTP servers on these machines to include commands which deal with
the creation of directories. Since there are other hosts on the
ARPA-Internet which have tree-like directories (including TOPS-20 and
Multics), these commands are as general as possible.

Four directory commands have been added to TIP:

MKD pathname

Make a directory with the name "pathname".

RMD pathname

Remove the directory with the name "pathname".

PWD

Print the current working directory name.

CDUP

Change to the parent of the current working directory*

The "pathname" argument should be created (removed) as a
subdirectory of the current working directory, unless the "pathname"
string contains sufficient information to specify otherwise to the
wmrvmr, e.g., "pathname" is an absolute pathname (in UNIX and
Multics), or pathname is something like <abso.lute.p
TOPS-20.

REPLY CODES

.path>" to

The CDUP command is a special case of CWD. and is included to
simplify the implementation of programs for transferring directory
trees between operating systems having different syntaxes for
naming the parent directory. The reply codes for CDUP be
Identical to the reply codes of CWD.

The reply codes for RMD be Identical to the reply codes for its
file analogue. DELE.

The reply codes for HCD. however, are a bic more complicated. A
freshly created directory will probably be the object of a future

Posts1 * Reynolds [Page 621

2-800

lsl%v.*V .vl'/lvl'/i vv>v.-"*V>'AJ
>^

;
-v>*S\ »v'^v W,

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

CWD command. Unfortunately, the argument to MKD may not always be
a suitable argument for CWD. This is the case, for example, when
a TOPS-20 subdirectory is created by giving just the subdirectory
name. That is, with a TOPS-20 server FTP, the command sequence

MKD MYDIR
CWD MYDIR

will fail. The new director/ may only be referred to by its
"absolute" name; e.g., if the MKD command above were issued while
connected to the directory <DFRANKLIN>, the new subdirectory
could only be referred to by the name <DFRANKLIN.MYDIR>.

Even on UNIX and Multics, however, the argument given to MKD may
not be suitable. If it is a "relative" pathname (i.e., a pathname
which is interpreted relative to the current directory), the user
would need to be in the same current directory in order to reach
the subdirectory. Depending on the application, this may be
inconvenient. It is not very robust in any case.

To solve these problems, upon successful completion of an MKD
command, the server should return a line of the form:

257 <space>"<directory-name>"<space><commentary>

That is, the server will tell the user what string to use when
referring to the created directory. The directory name can
contain any character; embedded double-quotes should be escaped by
double-quotes (the "quote-doubling" convention) .

For example, a user connects to the directory /usr/dm, and creates
a subdirectory, named pathname:

CWD /usr/dm
200 directory changed to /usr/dm
MKD pathname
257 vusr/dm/pathname" directory created

Ai example with an embedded double quote:

MKD foo"bar
257 "/usr/dm/foo""bar" directory created
CWD /usr/dm/foo"bar
200 directory changed to /usr/dm/foo"bar

Postel & Reynolds [Page 63]

2-801

i''*'^ ' «-* sJl *--*_• JJIS-VW^LAT.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

fcV*

RFC 959 October 1985
File Transfer Protocol

The prior existence of a subdirectory with the same name is an
error, and the server must return an "access denied" error reply
in that case.

CWD /usr/dtai
200 directory changed to /usr/dm ►>£
MKD pathname :*•%
521-"/usr/dm/pathname" directory already exists; C\-
521 taking no action. & ■ The failure replies for MKD are analogous to its file creating ^

cousin, STOR. Also, an "access denied" return is given if a file V\
name with the same name as the subdirectory will conflict with the •}$
creation of the subdirectory (this is a problem on UNIX, but ;V
shouldn't be one on TOPS-20) . fX

Essentially because the PWD command returns the same type of
information as the successful MKD command, the successful PWD
command uses the 257 reply code as well.

SUBTLETIES

i
Because these commands will be most useful in transferring ^
subtrees from one machine to another, carefully observe that the M
argument to MKD is to be interpreted as a sub-diractory of the ™
current working directory, unless it contains enough information Jv
for the destination host to tell otherwise. A hypothetical '•;]
example of its use in the TOPS-20 world:

CWD <some.where> *„**!
200 Working directory changed m
MKD overrainbow ™
257 "<some.where.overrainbow>" directory created C*
CWD overrainbow /.'
431 No such directory »'■'
CWD <some.where.overrainbow> K;
200 Working directory changed '*%

CWD <some.where> B
200 Working directory changed to <some.where> V
MKD <unambiguous>
257 M<unambiguous>" directory created
CWD <unambiguous>

Note that the first example results in a subdirectory of the ^
connected directory. In contrast, the argument in the second ™
example contains enough information for TOPS-20 to tell that the •"/

Postel & Reynolds [Page 64]

■

2-802

APPLICATION LEVEL: FTP RFC 959

Et
RFC 959
File Transfer Protocol

October 1985

Pi

i

<unambiguous> directory is a top-level directory. Note also that
in the first example the user "violated" the protocol by
attempting to access the freshly created directory with a name
other than the one returned by TOPS-20. Problems could have
resulted in this case had there been an <overrainbow> directory;
this is an ambiguity inherent in some TOPS-20 implementations.
Similar considerations apply to the HMD command. The point is
this: except where to do so would violate a host's conventions for
denoting relative versus absolute pathnames, the host should treat
the operands of the MKD and RMD commands as subdirectories. The
257 reply to the MKD command must always contain the absolute
pathname of the created directory.

Postel & Reynolds [Page 55]

a

2-803

^^£i£.ä^^^ M*jj~*>

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959 October 1985
File Transfer Protocol

APPENDIX III - RFCs on FTP

Bhushan, Abhay, "A File Transfer Protocol", RFC 114 (NIC 5823),
MIT-Project MAC, 16 April 1971.

Harslem, Eric, and John Heafher, "Comments on RFC 114 (A File
Transfer Protocol)", RFC 141 (NIC 6726), RAND, 29 April 1971.

Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 172
(NIC 6794), MIT-Project MAC, 23 June 1971.

Braden, Bob, "Comments on DTP and FTP Proposals", RFC 238 (NIC 7663),
UCLA/CCN, 29 September 1971.

Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 265
(NIC 7813), MIT-Project MAC, 17 November 1971.

McKenzie, Alex, "A Suggested Addition to File Transfer Protocol",
RFC 281 (NIC 8163) , 3BN, 8 December 1971.

Bhushan, Abhay, "The Use of "Set Data Type" Transaction in File
Transfer Protocol", RFC 294 (NIC 8304), MIT-Project MAC,
25 January 1972.

Bhushan, Abhay, "The File Transfer Protocol", RFC 354 (NIC 10596),
MIT-Project MAC, 8 July 1972.

Bhushan, Abhay, "Comrcents on the File Transfer Protocol (RFC 354)",
RFC 385 (NIC 11357), MIT-Project MAC, 18 August: 1972.

Hicks, Greg, "User FTP Documentation", RFC 412 (NIC 12404), Utah,
27 November 1972.

Bhushan. Abhay, "File Transfer Protocol (FTP) Status and Further
Comments", RFC 414 (NIC 12406), MIT-Project MAC, 20 November 1972.

Braden, Bob, "Comments on File Transfer Protocol", RFC 430
(NIC 13299), UCLA/CCN. 7 February 1973.

Thomas, Bob, and Bob Clements. "FTP Server-Server Interaction",
RFC 436 (NIC 13770), BBN, 15 January 1973.

Braden, Bob, "Print Files in FTP", RFC 448 (NIC 13299). UCLA/CCN,
27 February 1973.

McKenzie. Alex. "File Transfer Protocol". RFC 454 (NIC 14333). BBN.
16 February 1973.

Postal 6 Reynolds [Page 66]

2-804

i^LA^^ajftfcLjl^k^^^^

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

Bressler, Bob, and Bob Thomas, "Mail Retrieval via FTP", RFC 458
(NIC 14378), BBN-NET and BBN-TENEX, 20 February 1973.

Neigus, Nancy, "File Transfer Protocol", RFC 542 (NIC 17759), BBN,
12 July 1973.

Krilanovich, Mark, and George Gregg, "Comments on the File Transfer
Protocol", RFC 607 (NIC 21255), UCSB, 7 January 1974.

Pogran, Ken, and Nancy Neigus, "Response to RFC 607 - Comments on the
File Transfer Protocol", RFC 614 (NIC 21530), BBN, 28 January 1974.

Krilanovich, Mark, George Gregg, Wayne Hathaway, and Jim White,
"Comments on the File Transfer Protocol", RFC 624 (NIC 22054), UCSB,
Ames Research Center, SRI-ARC, 28 February 1974.

Bhushan, Abhay, "FTP Comments and Response to RFC 430", RFC 463
(NIC 14573), MIT-DMCG, 21 February 1973.

Braden, Bob, "FTP Data Compression", RFC 468 (NIC 14742), UCLA/CCN,
8 March 1973.

Bhushan, Abhay, "FTP and Network Mail System", RFC 475 (NIC 149.T9),
MIT-DMCG, 6 March 1973.

Bressler, Bob, and Bob Thomas "FTP Server-Server Interaction - II",
RFC 478 (NIC 14947), BBN-NET and BBN-TENEX, 26 March 1973.

White, Jim, "Use of FTP by the NIC Journal", RFC 479 (NIC 14948),
SRI-ARC, 8 March 1973.

White, Jim, "Host-Dependent FTP Parameters", RFC 480 (NIC 14949),
SRI-ARC, 8 March 1973.

Padllpsky, Mike, "An FTP Command-Naming Problem", RFC 506
(NIC 16157), MIT-Multics, 26 June 1973.

Day, John, "Memo to FTP Group (Proposal for File Access Protocol)",
RFC 520 (NIC 16819), Illinois, 25 June 1973.

Merrym»n. Robert, "The UCSD-CC Server-FTP Facility", RFC 532
(NIC 17451). UCSD-CC, 22 June 1973.

Braden. Bob, "TENEX FTP Problem". RFC 571 (NIC 18974). UCLA/CCN,
15 November 1973.

Postal 6 Reynolds [Page 67]

2-805

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 959
File Transfer Protocol

October 1985

McKenzie, Alex, and Jon Postel, "Telnet and FTP Implementation -
Schedule Change", RFC 593 (NIC 20615), BBN and MITRE,
29 November 1973.

Sussman, Julie, "FTP Error Code Usage for More Reliable Mail
Service", RFC 630 (NIC 30237), BBN, 10 April 1974.

Postel, Jon, "Revised FTP Reply Codes", RFC 640 (NIC 30843),
UCLA/NMC, 5 June 1974.

Harvey, Brian, "Leaving Well Enough Alone", RFC 686 (NIC 32481),
SU-AI, 10 May 1975.

Harvey, Brian, "One More Try on the FTP", RFC 691 (NIC 32700), SU-AI,
28 May 1975.

Lieb, J., "CWD Command of FTP", RFC 697 (NIC 32963), 14 July 1975.

Harrenstien, Ken, "FTP Extension: XSEN", RFC 737 (NIC 42217), SRI-KL,
31 October 1977.

Harrenstien, Ken, "FTP Extension: XRSQ/XRCP", RFC 743 (NIC 42758),
SRI-KL, 30 December 1977.

Lebling, P. David, "Survey of FTP Mail and MLFL", RFC 751, MIT,
1C December 1978.

Postel, Jon, "File Transfer Protocol Specification", RFC 765, ISI,
June 1980.

Mankins, David, Dan Franklin, and Buzz Owen, "Directory Oriented FTP
Commands", RFC 776, BBN, December 1980.

Padlipsky, Michael, "FTP Unique-Named Store Command", RFC 949, MITRE,
July 1985.

Postel 6 Reynolds [Page 68]

2-806

•- *. .'■.*»

■»f^V^'aAV»*^».«'. l\ *\\~f"*~^*-\'2^%J'*~i2C^£-^'£-*,~*- A rf-^'jC-VJ^/A.'^L.'^-rf-V -* 'Jj. V.^ V .'«fc*. '■' fc'.^.^.i:^V V ■■,"! .V *m'. J

APPLICATION LEVEL: FTP RFC 959

RFC 959
File Transfer Protocol

October 1985

REFERENCES

[1] Feinler, Elizabeth, "Internet Protocol Transition Workbook",
Network Information Center, SRI International, March 1982.

[2] Postel, Jon, "Transmission Control Protocol - DAKPA Internet
Program Protocol Specification", RFC 793, DARPA, September 1981.

T3] Postel, Jon, and Joyce Reynolds, "Telnet Protocol
Specification", RFC 854, ISI, May 1983.

[4] Reynolds, Joyce, and Jon Postel, "Assigned Numbers", RFC 943,
ISI, April 1985.

Postel & Reynolds [Page 69]

2-807

,. *,* »* ^» * - *»* * * • *»*

-*-V«" *** V* *.* V V %,* *.Y\
J»..-»'-«. *J^'W«.-"

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

i

2-808

vv.**yv- *yA%\vy.y.y/.-yv/.y vyy**Vv v\^\^^ •*y«\\.*y•[.*.■•"-//*.•**/*/*.«*/!% ,*****•*-
>"yS\v. ^VOV*A%V/J«-N\:XV/.V ^ .*"^.yv'.

APPLICATION LEVEL: SMTP RFC 821

1 RFC 821

SIMPLE MAIL TRANSFER PROTOCOL

Jonathan B. Postal

*
R

6

i, *

August 1982

Information Sciences Institute
University of Southern California

4676 Admiralty Way
Marina del Ray, California 90291

(213) 822-1511

IN

V

2-809
W * m."

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

&
S

V.
V

V

i

r*

2-810

F

.jJt.TA,V.r'-IL m- JLJI

»"■■' ."", -N

'^'wvS' 'j^:^\"jt''^'J"S ■ A v% A* s~'^'%^°'iß^jC?*^y**jy^*7:Ä*^j^*:tiL.t

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

TABLE OF CONTENTS

1. INTRODUCTION 1

2. THE SMIP MODEL 2

3. THE SMIP PROCEDURE 4

3.1. Mail 4
3.2. Forwarding 7
3.3. Verifying and Expanding 8
3.4. Sending and Mailing 11
3.5. Opening and Closing 13
3.6. Relaying 14
3.7. Domains 17
3.8. Changing Roles 18

4. THE SMTP SPECIFICATIONS 19

4.1. SKIP Commands 19
4.1.1. Command Semantics 19
4.1.2. Command Syntax 27
4.2. SMIP Replies , . 34
4.2.1. Reply Codes by Function Group J5
4.2.2. Reply Codes in Numeric Order 36
4.3. Sequencing of Commands and Replies 37
4.4. State Diagrams ...» 39
4.5. Details 41
4.5.1. Minimum Implementation 41
4.5.2. Transparency 41
4.5.3. Sizes 42

APPENDIX A: TCP 44
APPENDIX B: NCP 45
APPENDIX C: NITS , 46
APPENDIX D: X.25 47
APPENDIX E: Theory of Reply Codes 48
APPDIDIX F: Scenarios 51

GLOSSARY 64

REFERENCES 67

2-811

i£^j>&^ : ;-:;^: :^ o. -•-»•«* -»'-* -*

H

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

l-\

'A
>.

I
P 1

i
K

Kv

2-812

> A • » A • « * * .*« ,\m ■ A > . * . • *N . • . • .\. *.•.'. » * . • . • . . • • .*• . • . . • . • . ."• .'• .

.. la >\ t* «\ V. **.. A - ITJV- £* JLa ^-'■'- BMI m**f-

APPLICATION LEVEL: SMTP RFC 821

Network Working Group
Request for Comments: DRAFT
Replaces: RFC 788, 78C, 772

J. Postel
ISI

August 1982

SIMPLE MAIL TRANSFER PROTOCOL

i
1. INTRODUCTION

The objective of Simple Mail Transfer Protocol (SMIP) is to transfer
mail reliably and efficiently.

SMIP is independent of the particular transmission subsystem and
requires only a reliable ordered data stream channel. Appendices A,
B, C, and D describe the use of SMIP with various transport services.
A Glossary provides the definitions of terms as used in this
document.

An important feature of SMIP is its capability to relay mall across
transport service environments. A transport service provides an
interprocess communication environment (IPCE) . An IPCE may cover one
network, several networks, or a subset of a network. It is important
to realize that transport systems (or IPCEs) are not one-to-one with
networks. A process can communicate directly with another process
through any mutually known IPCE. Mail is an application or use of
interprocess communication. Mall can be communicated between
processes in different IPCEs by relaying through a process connected
to two (or more) IPCEs. More specifically, mall can be relayed
between hosts on different transport systems by a host on both
transport systems.

JA-

p

Postel [Page 1]

'V

>:

2-813

L^V/.. 'VV'VW.ViV --*- *■ - •--—«■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RFC 821

2. THE SMTP MODEL

The SMTP design is based on the following model of communication: as
the result of a user mail request, the sender-SMTP establishes a
two-way transmission channel to a receiver-SMTP. The receiver-SKIP
may be either the ultimate destination or an intermediate. SMTP
commands are g> iterated by the sender-SMTP and sent to the
receiver-SMTP. SMTP replies are sent from the receiver-SMIP to the
sender-SMTP in response to the commands.

Once the transmission channel is established, the SMTP sender sends a
MAIL command indicating the sender of the mail. If the SMTP-receiver
can accept mail it responds with an OK reply. The SMTP sender then
sends a RCPT command identifying a recipient of ehe mail. If the
SMTP-receiver can accept mail for that recipient it responds with an
OK reply; if not, it responds with a reply rejecting that recipient
(but not the whole mail transaction) . The SMTP-sender and
SMTP-receiver may negotiate several recipients. When the recipients
have been negotiated the SMTP-sender sends the mall data, terminating
with a special sequence. If the SMTP-receiver successfully processes
the mall data it responds with an OK reply. The dialog is purposely
lock-step, one-at-a-time.

| User |<-->
♦ ♦
♦----«•♦

| File |<--*
jSystem|

Sender-
SMTP

SMIP |
Commands/Repliesj Receiver-
< >| SMIP

and Mail | <-->| File !
I System!

Sender-SMTP Receiver-SMIP

Model for SMTP Use

Figure 1

The SMTP provides mechanisms for the transmission of mall; directly
from the sending user's host to the receiving user's host when the

[Page 2] Posto1

2-814

.*«".* V* .** •"•*.'• „'-V v

„"*■» .■-* *^ •-» ' _>,' jt *-:_*J.V •>„ '-•,.*. •y/;*:A\[/;/;*.: t^i^^^'*-\:^:&£i^l*s*

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

two host are connected to the same transport service, or via one or
more relay SMTP-servers when the source and destination hosts are not
connected to the same transport service.

To be able to provide the relay capability the SMTP-server must be
supplied with the name of the ultimate destination host as well as
the destination mailbox name.

Ihe argument to the MAiL command is a reverse-path, which specifies
who the mail is from. The argument to the RCPT command is a
forward-path, which specifies who the mail is to. The forward-path
is a source route, while the reverse-path is a return route (which
may be used to return a message to the sender when an error occurs
with a relayed message).

When the same message is sent to multiple recipients the SWIP
encourages the transmission of only one copy of the data for all the
recipients at the same destination host.

The mail commands and replies have a rigid syntax. Replies also have
a numeric code. In the following, examples appear which use actual
commands and replies. The complete lists of commands and replies
appears in Section 4 on specifications.

Commands and replies are not case sensitive. That is, a command or
reply word may be upper case, lower case, or any mixture of upper and
lower case. Note that this is not true of mailbox user names. For
some hosts the user name is case sensitive, and SMIP implementations
must take case to preserve the case of user names as they appear in
mailbox arguments. Host names are not case sensitive.

Commands and replie« are composed of characters from the ASCII
character set [1]. When the transport service provides an 8-bit byte
(octet) transmission channel, each 7-bit character is transmitted
right justified in an octet with the high order bit cleared to zero.

When specifying the general form of a command or reply, an argument
(or special symbol) will be denoted by a meta-linguistic variable (or
constant), for exanple, H<string>" or "<reverse-path>". Here the
angle brackets indicate these are meta-linguistic variables.
However, some arguments use the angle brackets literally. For
example, an actual reverse-path is enclosed in angle brackets, i.e.,
M<John.Smith@USC-I!5I.ARPA>n is an instance of <reverse-path> (the
angle brackets are actually transmitted in the command or reply).

Postel [Page 3]

2-815

."•"»'-> **V iL^JL^LZ^L^ZjäJ^^ZJllj^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982 RFC 821
Simple Mail Transfer Protocol

3. THE SMTP PROCEDURES

This section presents the procedures used in SMTP in several parts.
First comes the basic mail procedure defined as a mail transaction.
Following this are descriptions of forwarding mail, verifying mailbox
names and expanding mailing lists, sending to terminals instead of or

t" in combination with mailboxes, and the opening ard closing exchanges.
fcjl At the end of this section are comments on relaying, a note on mail
E domains, and a discussion of changing roles. Throughout this section
™ are examples of partial command and reply sequences, several complete
IV scenarios are presented in Appendix F.

£> 3.1. MAIL
NV
& There are three steps to SMIP mail transactions. The transaction
■ is started with a MAIL command which gives the sender
™ identification. A series of one or more RCPT commands follows

giving the receiver information. Then a DATA command gives the
mail data. And finally, the end of mail data indicator confirms
the transaction.

i

l

The first step in the procedure is the MAIL command. The
<reverse-path> contains the source mailbox.

MAIL <SP> FROM:<reverse-path> <CRLF>

This command tells the SMTP-receiver that a new mail
transaction is starting and to reset all its state tables and
buffers, including any recipients or mail data. It gives the
reverse-path which can be used to report errors. If accepted,
the receiver-SMTP returns a 250 OK reply.

The <reverse-path> can contain more than just a mailbox. The
<reverse-path> is a reverse source routing list of hosts and
source mailbox. The first host in the <reverse-path> should be
the host sending this command.

The second step in the procedure is the RCPT command.

RCPT <SP> TO: < forward-path> <CRLF>

This command gives a forward-path identifying one recipient.
If accepted, the receiver-SMTP returns a 250 OK reply, and
stores the forward-path. If the recipient is unknown the
receiver-SMIP returns a 550 Failure reply. This second step of
the procedure can be repeated any number of times.

[Page 4] Postel

2-816

-%.* v* ■-.'"I^SJLN*, •-*. -•...*. vV--*. •-•. v*. O. ^.' iJ^«J* »J "-* ;AJ,*.•■/■a.'. :^!lL*j^»l^li»i^^^aJj^^A'I^La^

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

The <forward-path> can contain more than just a mailbox. The
<forward-path> is a source routing list of hosts and the
destination mailbox. The first host in the < f orward-path>
should be the host receiving this command.

The third step in the procedure is the DATA command.

DATA <CRLF>

If accepted, the receiver-SMTP returns a 354 Intermediate reply
and considers all succeeding lines to be the message text.
When the end of text is received and stored the SMIP-receiver
sends a 250 OK reply.

Since the mail data is sent on the transmission channel the end
of the mail data must be indicated so that the command and
reply dialog can be resumed. SMTP indicates the end of the
mail data by sending a line containing only a period. A
transparency procedure is used to prevent this from interfering
with the user's text (see Section 4.5.2).

Please note that the mail data includes the memo header
items such as Date, Subject, To, Cc, From [2] .

The end of mail data indicator also confirms the mail
transaction and tells the receiver-SMIP to now process the
stored recipients and mail data. If accepted, the
receiver -SMTP returns a 250 OK reply. The DATA command should
fail only if the mail transaction was incomplete (for example,
no recipients), or if resources are not available.

The above procedure is an example of a mail transaction. These
commands must be used only in the order discussed above.
Example 1 (below) illustrates the use of these commands in a mail
transaction.

Postel [Page 5]

2-817

-•■Ji .-^ LM :

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RFC 821

Example of the SMTP Procedure

This SMTP example shows mail sent by Smith at host Alpha.ARPA,
to Jones, Green, and Brown at host Beta.ARPA. Here we assume
that host Alpha contacts host Beta directly.

S: MAIL FROM:<Smith@Alpha.ARPA>
R: 250 OK

S: RCPT TO:<Jones@Beta.ARPA>
R: 250 OK

S: RCPT TO:<Green@Beta.ARPA>
R: 550 No such user here

S: RCPT TO:<Brown@Beta.ARPA>
R: 250 OK

S: DATA
R: 354 Start mail input; end with <CRLF>. <CRLF>
S: Blah blah blah. . .
S: ...etc. etc, etc.
S: <CRLF>.<CRLF>
R: 250 OK

The mail has now been accepted for Jones and Brown. Green did
not have a mailbox at host Beta.

Example 1

[Page 6] Postal

2-818

»Vv »V/iV.v LAAÄ: .VA-JA^S'^' ^WA^AVA'JJL'-.VLA!.'!^

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

3.2. FORWARDING

There are some cases where the destination information in the
<forward-path> is incorrect, but the receiver-SMTP knows the
correct destination. In such cases, one of the following replies
should be used to allow the sender to contact the correct
destination.

251 User not local; will forward to <forward-path>

This reply indicates that the receiver-SMTP knows the user's
mailbox is on another host and indicates the correct
forward-path to use in the future, Note that either the
host or user or both may be different. The receiver takes
responsibility for delivering the message.

551 User not local; please try <forward-path>

This reply indicates that the receiver-SHIP knows the user's
mailbox is on another host and indicates the correct
forward-path to use. Note that either the host or user or
both may be different. The receiver refuses to accept mail
for this user, and the sender must either redirect the mail
according to the information pro ided or return an error
response to the originating user.

Example 2 illustrates the use of these responses.

Example of Forwarding

Either

S: RCPT TO:<Postel$USC-ISI.ARPA>
R: 251 User not local; will forward to <Postel@USC-ISIF.ARPA>

Or

S: RCPT TO:<Paul@USC-ISIB.ARPA>
R: 551 User not local; please try <Mockapetris@USC-ISIF.ARPA>

Example 2

Postel [Page 7]

2-819

"« '* * «**. ••*« «*« '• **» {% * • **• "*• **»•*».**• **• •*« •"».'"""^"'"i**» *** **• *"• •*. •**_**. ■*"• "*«.***'* "*** *"• *>* V» V» **„ *•'*'. ~»•". "«•*»•'»*'»**. •*» **. •*. *"* *'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982 RFC 821
Simple Mail Transfer Protocol

3.3. VERIFYING AND EXPANDING

SMTP provides as additional features, commands to verify a user
name or expand a mailing list. This is done with the VRFY and
EXPN commands, which have character string arguments. For the
VRFY command, the string is a user name, and the response may
include the full name of the user and must include the mailbox of
the user. For the EXPN command, the string identifies a mailing
list, and the multiline response may include the full name of the
users and must give the mailboxes on the mailing list.

"User name" is a fuzzy term and used purposely. If a host
implements the VRFY or EXPN commands then at least local mailboxes
must be recognized as "user names". If a host chooses to
recognize other strings as "user names" that is allowed.

In some hosts the distinction between a mailing list and an alias
for a single mailbox is a bit fuzzy, since a common data structure
may hold both types of entries, and it is possible to have mailing
lists of one mailbox. If a request is made to verify a mailing
list a positive response can be given if on receipt of a message
so addressed it will be delivered to everyone on the list,
otherwise an error should be reported (e.g., "550 That *s a
mailing list, not a user"). If a request is made to expand a user
name a positive response can be formed by returning a list
containing one name, or an error can be reported (e.g., "550 That
is a user name, not a mailing list").

In the case of a multiline reply (normal for EXPN) exactly one
mailbox is to be specified on each line of the reply. In the case
of an ambiguous request, for example, "VRFY Smith , where there
are two Smith's the response most be "553 User ambiguous".

The case of verifying a user name is straightforward as shown in
example 3.

[Page 8] Postal

2-820

LOfel>££»^>>l'S^

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

Example of Verifying a User Name

Either

S: VRFY SiLith
R: 250 Fred Smith <Smith@USC-ISIF.ARPA>

Or

S: VRFY Smith
R: 251 User not local; will forward to <Smith§USC-ISIQ.ARPA>

Or

S: VRFY Jones
R: 550 String does not match anything.

Or

S: VRFY Jones
R: 551 User not local; please try <JonesflUSC-ISIQ.ARPA>

Or

S: VRFY Gourzenkyinplatz
R: 553 User ambiguous.

Example 3

Posts! [Page 9]

2-821

'- .' .'• . * >v .*• *%

:vo^-v *«• %* *.• *.• •.* % %* js££<^s

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

A

August 1982 RFC 821
Simple Mail Transfer Protocol

The case of expanding a mailbox list requires a multiline reply as
shown in example 4.

Example of Expanding a Mailing List

Either

S: EXPN Example-People
R: 250-Jon Postel <Postel@USC-ISIF.ARPA>
R; 250-Fred Fonebone <Fonebone$USC-ISIQ.ARPA>
R; 250-Sam Q. Smith <SQSmith@ÜSC-ISIQ.AHPA>
R: 250-Quincy Smith <®USC-ISIF.ARPA:Q-Smith@ISI-VAXA.ARPA>
R: 250-<joe$foo-unix.ARPA>
R: 250 <xyzQbar-unix.ARPA>

Or

S: EXPN Executive-Washroom-List
R: 550 Access Denied to You.

Example 4

i
The character string arguments of the VRFY and EXPN commands
cannot be further restricted due to the variety of implementations
of the user name and mailbox list concepts. On some systems it
may be appropriate for the argument of the EXPN command to be a
file name for a file containing a mailing list, but again there is
a variety of file naming conventions in the Internet.

The VRFY and EXPN commands are not included in the minimum
implementation (Section 4.5.1), and are not required to work
across relays when they are implemented.

»-,

N
[Page 10] Postel

2-822

>\Y^>\'<M'<*^^^

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

3.4. SENDING AND MAILING

The main purpose of SMIP is to deliver messages to user's
mailboxes. A very similar service provided by some hosts is to
deliver messages to user's terminals (provided the user is active
on the host) . The delivery to the user's mailbox is called
"mailing", the delivery to the user's terminal is called
"sending". Because in many hosts the implementation of sending is
nearly identical to the implementation of mailing these two
functions are combined in SMTP. However the sending commands are
not included in the required minimum implementation
(Section 4.5.1) . Users should have the ability to control the
writing of messages on their terminals. Most hosts permit the
users to accept or refuse such messages.

The following three command are defined to support the sending
options. These are used in the mail transaction instead of the
MAIL command and inform the receiver-SMTP of the special semantics
of this transaction:

SEND <SP> FROM:<reverse-path> <CRLF>

The SEND command requires that the mail data be delivered to
the user's terminal. If the user is not active (or not
accepting terminal messages) on the host a 450 reply may
returned to a RCPT command. The mail transaction is
successful if the message is delivered the terminal.

SOML <SP> EROM:<reverse-path> <CRLF>

The Send Or MaiL command requires that the mail data be
delivered to the user's terminal if the user is active (and
accepting terminal messages) on the host. If the user is
not active (or not accepting terminal messages) then the
mail data is entered into the user's mailbox. The mail
transaction is successful if the message is delivered either
to the terminal or the mailbox.

SAML <SP> EHQM:<reverse-path> <CRLF>

The Send And MaiL command requires that the mail data be
delivered to the user's terminal if the user is active (and
accepting terminal messages) on the host. In any case the
mall data is entered into the user's mailbox. The mail
transaction is successful if -he message is delivered the
mailbox.

Postel [Page 11]

2-823

K^y^>L>]^l>Iit%>^^ , *'.im\j+:,-.;«' iA kjjbl h.\ k* >■'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RFC 821

The same reply codes that are used for the MAIL commands are used
for these commands.

[Page 12] Postel

2-824

:W:-: >iv>i>>;^i ü •>-_£;;. ■•:; :i

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

3.5. OPENING AND CLOSING

At the time the transmission channel is opened there is an
exchange to ensure that the hosts are communicating with the hosts
they think they are.

The following two commands are used in transmission channel
opening and closing:

HELO <SP> <domain> <CRLF>

QUIT <CRLF>

In the HELO command the host sending the command identifies
itself; the command may be interpreted as saying "Hello, I am
<domaln>".

Example of Connection Opening

R: 220 BBN-UNIX.ARPA Simple Mail Transfer Service Ready
S: HELO USC-ISIF.ARPA
R: 250 BBN-UNIX.ARPA

Example 5

Example of Connection Closing

S: QUIT
R: 221 BBN-UNIX.ARPA Service closing transmission channel

Example 6

Postal [Page 13]

2-825

U^^.^;^Ä^i; ^^^^iv^iS.»:; l±2jk .-*"-*. -»

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RFC 821

3.6. RELAYING

The forward-path may be a source route of tlie form
"<§ONE/<mrW:J0E@IHREE

M, where ONE, TWO, and THRF.E are hosts. This
form is used to emphasize the distinction between an address and a
route. The mailbox is an absolute address, and the route is
information about how to get there. The two concepts should not
be confused.

Conceptually the elements of the forward-path are moved to the
reverse-path as the message is relayed from one server-SMIP to
another. The reverse-path is a reverse source route, (i.e., a
source route from the current location of the message to the
originator of the message) . When a server-SMTP deletes its
identifier from the forward-path and inserts it into the
reverse-path, it must use tha name it is known iy in the
environment it is sending into, not the environment the mail came
from, in case the server-SMTP is known by different names in
different environments.

If when the message arrives at an SMIP the first element of the
forward-path is not the identifier of that SMTP the element is not
deleted from the forward-path and is used to determine the next
SMTP to send the message to. In any case, the SMIP adds its own
identifier to the reverse-path.

Using source routing the receiver-SKIP receives mail to be relayed
to another server-SMTP The receiver-SMTP may accept or reject the
task of relaying the mail in the same way it accepts or rejects
mail for a local user. The receiver-SMIP transforms the command
arguments by moving its own identifier from the forward-path to
the beginning of the reverse-path. The receiver-SMIP then becomes
a sender-SMI?, establishes a transmission channel to the next SMTP
in the forward-path, and sends it the mail.

The first host in the reverse -path should be the host sending the
SMTP commands, and the firat host in the forward-path should be
the host receiving the SMTP commands.

Notice that the forward-path and reverse-path appear in the SKTP
commands and replies, but not necessarily in the message. That
is, there is no need for these paths and especially this syntax to
appear in the To:" . "From:". ^CC:". etc. fields of the message
header.

If a server-SMTP has accepted the task of relaying the mail and

[Page 14] Postal

2-826

LVC%"VSV'*>«
>»••». »,-.-» <.-.«. 'AV-V

&a
APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

later finds that the forward-path is incorrect or that the mail
cannot be delivered for whatever reason, then it must construct an
Mundeliverable mail" notification message and send it to the
originator of the undellverable mail (as indicated by the
reverse-path) .

This notification message must be from the server-SMIP at this
host. Of course, server-SMIPs should not send notification
messages about problems with notification messages. One way to
prevent loops in error reporting is to specify a null reverse-path
in the MAIL command of a notification message. When such a
message is relayed it is permissible to leave the reverse-path
null. A MAIL command with ß null reverse-path appears as follows:

MAIL niOM:<>

An undellverable mail notification message is shown in example 7.
This notification is in response to a message originated by JOE at
HOSTW and sent via HOSTX to HOSTY with instructions to relay it on
to HOSTZ. What we sea in the example is the transaction between
HOSTY ani HOSTX, which is the first step in the return of the
notification message.

&•

vV

Postel [Page 15]

A

A

2-82: m
."- . • A .*•

.» -»■..«,_. .'« . ~^-.. . au tiiVt'iMVi V V iW i kAJfc, ■ ~*--'<*-^-^- *» *JM. -^ ^.VA -_'-*. L. .».•-..-vr-w--».*. Vo-y^-'*.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

August 1982
Simple Mail Transfer Protocol

RFC 821

Example Undeliverable Mail Notification Message

S: MAIL FR0M:<>
R: 250 ok
S: RCPT T0:<«H0STX.ARPA:JOEiH0STW.ARPA>
R: 250 ok
S: DATA
R: 354 send the nail data, end with .
S: Date: 23 Oct 81 11:22:33
S: From: SMIF4H0STY.ARPA
S: To: JOHH0STW.ARPA
S: Subject: Mail System Problem
S:
S: Sorry JOE, your message to SAMgBOSTZ.ARPA lost.
S: HOSTZ.ARPA said this:
S: M550 No Such User"
S: .
R: 250 ok

Example 7

[Page 16] Postal

2-828

,'^.rf Jt A f.* 2I2J^± :s:j:*:*-\\'f:**;{2*-!c~i^:^^\L\^.^\äki^'*.\^\:'*:

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

3.7. DOMAINS

Domains are a recently introduced concept in the ARPA Internet
mail system. The use of domains changes the address space from a
flat global space of simple character string host names to a
hierarchically structured rooted tree of global addresses. The
host name is replaced by a domain and host designator which is a
sequence of domain element strings separated by periods with the
understanding that the domain elements are ordered from the most
specific to the most general.

For example, "USC-ISIF.ARPA", "Fred.Cambridge.UK", and
"PC7.LCS.MIT.ARPA" micfrit be host-and-domain identifiers.

Whenever domain names are used in SMTP only the official names are
used, the use of nicknames or aliases is not allowed.

Postel [Page 17]

2-829

:^L:^AV>^\V.n:»i\ii\fc>^A*Vw »■», ahk •■J't-W'.slV,» A^V V^lVJ'/j^V«'^\:^TAVi:i\,w'-V.:A-.3i,'--,,Lr/-V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RFC 821

3.8. CHANGING ROLES

The TURN command may be used to reverse the roles of the two
programs communicating over the transmission channel.

If program-A is currently the sender-SMTP and it sends the TURN
command and receives an ok reply (250) then program-A becomes the
receiver - SMTP.

If program-B is currently the receiver-SMTP and it receives the
TURN command and sends an ok reply (250) then program-B becomes
the sender-SMIP.

To refuse to change roles the receiver sends the 502 reply.

Please note that this command is optional. It would not normally
be used in situations where the transmission channel is TCP.
However, when the cost of establishing the transmission channel is
high, this command may be quite useful. For example, this command
may be useful in supporting be mail exchange using the public
switched telephone system as a transmission channel, especially if
some hosts poll other hosts for mail exchanges.

[Page 18] Postal

2-830

■ * * ■

■ C ^.i Vi W. fcTi a.1, aJL '«^VtVaV^ 4*V»'.. \MJ£MJL* 3L*JL» <'. a. *>■!

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

4. THE SMTP SPECIFICATIONS

4.1. SMTP COMMANDS

4.1.1. COMMAND SEMANTICS

The SMTP commands define the mail transfer or the mail system
function requested by the user. SMIP commands are character
strings terminated by <CRLF>. The command codes themselves are
alphabetic characters terminated by <SP> if parameters follow
and <CRLF> otherwise. The syntax of mailboxes must conform to
receiver site conventions. The SMIP commands are discussed
below. The SMTP replies are discussed in the Section 4.2.

A mail transaction involves several data objects which are
communicated as arguments to different commands. The
reverse-path is the argument of the MAIL command, the
forward-path is the argument of the RCPT command, and the mail

j..^ data is the argument of the DATA command. These arguments or
data objects must be transmitted and held pending the
confirmation communicated by the end of mail data indication

^ which finalizes the transaction. The model for this is that
■ distinct buffers are provided to hold the types of data
K objects, that is, there is a reverse-path buffer, a
ES forward-path buffer, and a mail data buffer. Specific commands
V\ cause information to be appended to a specific buffer, or cause
Kj«. one or more buffers to be cleared.
k
E£ HELLO (HELO)

FT This command is used to identify the sender-SMTP to the
[v receiver-SMIP. The argument field contains the host name of
E>* the sender-SMTP.
K fy The receiver-SMTP identifies itself to the sender-SMTP in
fci the connection greeting reply, and in the response to this
p£ command.

This command and an OK reply to it confirm that both the
sender-SMTP and the receiver-SMTP are in the initial state,
that is, there is no transaction in progress and all state
tables and buffers are cleared.

M

m

tostel [Page 19]

2-831

i,V.;«\ A^'/■.V.'ir.'i'tV. \\a'.£fcK.im.imS^C^'aji^mSmjd.'imS^<* 'm^mXJLf^^JCm.w:Jf^rf»Y2irJY-VA■ J*-V^JY^v\^vl\v'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982 RFC 821
Simple Mail Transfer Protocol

MAIL (MAIL)

This command is used to initiate a mail transaction in which
the mail data is delivered to one or more mailboxes. The
argument field contains a reverse-path.

The reverse-path consists of an optional list of hosts and
the sender mailbox. When the list of hosts is present, it
is a "reverse" source route and indicates that the mail was
relayed through each host on the list (the first host in the
list was the most recent relay). This list is used as a
source route to return non-delivery notices to the sender.
As each relay host adds itself to the beginning of the list,
it must use its name as known in the IPCE to which it is
relaying the mail rather than the IPCE from which the mail
came (if they are different). In some types of error
reporting messages (for example, undeliverable mail
notifications) the reverse-path may be null (see Example 7) .

This command clears the reverse-path buffer, the
forward-path buffer, and the mail data buffer; and inserts
the reverse-path information from this command into the
reverse-path buffer.

RECIPIENT (RCPT)

This command is used to identify an individual recipient of
the mail data; multiple recipients are specified by multiple
use of this command.

The forward-path consists of an optional list of hosts and a
required destination mailbox. When the list of hosts is
present, it is a source route and indicates that the mail
must be relayed to the next host on the list. If the
receiver-SMIP does not implement the relay function it may
user the same reply it would for an unknown local user
(550).

When mail is relayed, the relay host must remove Itself from
the beginning forward-path and put itself at the beginning
of the reverse-path. When mail reaches its ultimata
destination (the forward-path contains only a destination
mailbox), the receiver-SMTP inserts it into the destination
mailbox in accordance with its host mail conventions.

[Page 20] Postal

2-832

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

For example, mail received at relay host A with arguments

FROM: <USERX@HOSTY. ARPA>
TO: «§HOSTA. ARPA, @HOSTB. ARPA: USERQ§HOSTD. ARPA>

will be relayed on to host B with arguments

FROM: <@HOSTA. ARPA: USERX@H03TY - ARPA>
TO: «§HOSTB. ARPA: USERC@HOSTD. ARPA>.

This command causes its forward-path argument to be appended
to the forward-path buffer.

DATA (DATA)

The receiver treats the lines following the command as mail
data from the sender. This command causes the mail data
from this command to be appended to the mail data buffer.
The mail data may contain any of the 128 ASCII character
codes.

The mall data is terminated by a line containing only a
period, that is the character sequence "<CRTJc> .<CRLF>" (see
Section 4.5.2 on Transparency) . This is the end of mail
data indication.

The end of mail data indication requires that the receiver
must now process the st' red mail transaction information.
This processing consumes the information in the reverse-path
buffer, the forward-path buffer, and the mail data buffer,
and on the completion of this command these buffers are
cleared. If the processing is successful the receiver must
send an OK reply. If the processing falls completely the
receiver must send a failure reply.

When the receiver-SMIP accepts a message either for relaying
or for final delivery it inserts at the beginning of the
mail data a time stamp line. The time stamp line indicates
the identity of the host that sent the message, and the
identity of the host that received the message (and is
inserting this time stamp), and the date and time the
message was received. Relayed messages will have multiple
time stamp lines.

When the receiver-SMIF makes the "final delivery" of a
message it inserts at the beginning of the mail data a

Postel [Page 21]

2-833

■ftji.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982 RFC 821
Simple Mail Transfer Protocol

return path line. The return path line preserves the
information in the <reverse-path> from the MAIL command.
Here, final delivery means the message leaves the SMTP
world. Normally, this would mean it has been delivered to
the destination user, but in some cases it may be further
processed and transmitted by another mail system.

It is possible for the mailbox in the return path be
different from the actual sender's mailbox, for example,
if error responses are to be delivered a special error
handling mailbox rather than the message senders.

The preceding two paragraphs imply that the final mail data
will begin with a return path line, followed by one or more
time stamp lines. These lines will be followed by the mail
data header and body [2]. See Example 8.

Special mention is needed of the response and further action
required when the processing following the end of mail data
indication is partially successful. This could arise if
after accepting several recipients and the mail data, the
receiver-SMTCP finds that the mail data can be successfully
delivered to some of the recipients, but it cannot be to
others (for example, due to mailbox space allocation
problems). In such a situation, the response to the DATA
command must be an OK r-aply. But, the receiver -SMTP must
compose and send an "undeliverable mail" notification
message to the originator of the message. Either a single
notification which lists all of the recipients that failed
to get the message, or separate notification messages must
be sent for each failed recipient (see Example 7). All
undeliverable mail notification messages are sent using the
MAIL command (even if they result from processing a SEND,
SOML, or SAML command) .

[Page 22] Fostel

2-834

i^:\-:;£>^

APPLICATION LEVEL: SMTP RFC 821

I

RFC 821 August 1982
Simple Mail Transfer Protocol

Example of Return Path and Received Time Stamps

Return-Path: <@GHI. ARPA, @DEF. ARPA, @ABC. ARPA: JOEQABC. ARPA>
Received: from GHI.ARPA by JKL.ARPA ; 27 Oct 81 15:27:39 PST
Received: from DET .ARPA by GHI.ARPA ; 27 Oct 81 15:15:13 PST
Received: from ABC.ARPA by DEE,ARPA ; 27 Oct 81 15:01:59 PST
Date: 27 Oct 81 15:01:01 PST
From: JOE@ABC.ARPA ^
Subject: Imoroved Mailing System Installed %%
To: SAM@JKL.AFPA £

This is to inform you that ...

Example 8

SEND (SEND)

This command is used to initiate a mail transaction in which
the mail data is delivered to one or more terminals. The
argument field contains a reverse-path. This command is
successful if the message is delivered to a terminal.

The reverse-path consists of an optional list of hosts and
the sender mailbox. When the list of hosts is present, it
is a "reverse" source route and indicates that the mail was
relayed through each host on the list (the first host in the
list was the most recent relay) . This list is used as a
source route to return non-delivery notices to the sender.
As each relay host adds itself to the beginning of the list,
it must use its name as known in the IPCE to which it is
relaying the mail rather than the IPCE from which the mail
came (if they are different).

This command clears the reverse-path buffer, the
forward-path buffer, and the mail data buffer; and inserts
the reverse-path information from this command into the
reverse-path buffer.

SEND OR MAIL (SOML)

This command is used to initiate a mail transaction in which
the mail data is delivered to one or more terminals or

K *,

Postel [Page 23]

i

2-835

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RFC 821

mailboxes. For each recipient the mail data is delivered to
the recipient's terminal if the recipient is active on the
host (and accepting terminal messages), otherwise to the
recipient's mailbox. The argument field contains a
reverse-path. This command is successful if the message is
delivered to a terminal or the mailbox.

The reverse-path consists of an optional list of hosts and
the sender mailbox. When the list of hosts is present, it
is a "reverse" source route and indicates that the mail was
relayed through each host on the list (the first host in the
list was the most recent relay). This list is used as a
source route to return non-delivery notices to the sender.
As each relay host adds itself to the beginning of the list,
it must use its name as known in the IPCE to which it is
relaying the mail rather than the TPCE from which the mail
came (if they are different) .

This command clears the reverse-path buffer, the
forward-path buffer, and the mail data buffer; and inserts
the reverse-path information from this command into the
reverse-path buffer.

SEND AND MAIL (SAML)

This command is used to initiate a mail transaction in which
the mail data is delivered to one or more terminals and
mailboxes. For each recipient the mail data is delivered to
the recipient's terminal if the recipient is active on the
host (and accepting terminal messages), and for all
recipients to the recipient's mailbox. The argument field
contains a reverse-path. This command is successful if the
message is delivered to the mailbox.

the reverse-path consists of an optional list of hosts and
the sender mailbox. When the list of hosts is present, it
is a "reverse" source route and indicates that the mail was
relayed through each host on the list (the first host in the
list was the most recent relay). This list is used as a
source route to return non-delivery notices to the sender.
As each relay host adds itself to the beginning of the list,
it must use its name as known in the IPCE to which it is
relaying the mall rather than the IPCE from which the mail
came (if they are different) .

This command clears the reverse-path buffer, the

[Page 24] Postel

^>:VK;.

2-836

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

forward-path buffer, and the mail data buffer; and inserts
the reverse-path information from this command into the
reverse-path buffer.

RESET (RSET)

This command specifies that the current mail transaction is
to be aborted. Any stored sender, recipients, and mail data
must be discarded, and all buffers and state tables cleared.
The receiver must send an OK reply.

VERIFY (VRFY)

This command asks the receiver to confirm that the argument
identifies a user. If it is a user name, the full name of
the user (if known) and the fully specified mailbox are
returned.

This command has no effect on any of the reverse-path
buffer, the forward-path buffer, or the mail data buffer.

EXPAND (EXPN)

This command asks the receiver to confirm that the argument
identifies a mailing list, and if so, to return the
membership of that list, the full name of the users (if
known) and the fully specified mailboxes are returned in a
multiline reply.

This command has no effect on any of the reverse-path
buffer, the forward-path buffer, or the mail data buffer.

HELP (HELP)

This command causes the receiver to send helpful Information
to the sender of the HELP command. The command may take an
argument (e.g., any command name) and return more spec!fie
information as a response.

This command has no effect on any of the reverse-path
buffer, the forward-path buffer, or the mail data buffer.

Postel [Page 25]

2-837

. A / - -J^OV^A.•• w«:*_-. . s». ■; k i -V*-— -' -' f-"- *-**-*-' JM hZ 1i* V .'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982 RFC 821
Simple Mail Transfer Protocol

NOOP (NOOP)

This command does not affect any parameters or previously
entered commands. It specifies no action other than that
the receiver send an OK reply.

This command has no effect on any of the reverse-path
buffer, the forward-path buffer, or the mail data buffer.

QUIT (QUIT)

This command specifies that the receiver must send an OK
reply, and then close the transmission channel.

The receiver should not close the transmission channel until
it receives and replies to a QUIT command (even if there was
an error). The sender should not close the transmission
channel until it send a QUIT command and receives the reply
(even if there was an error response to a previous command) .
If the connection is closed prematurely the receiver should
act as if a RSET command had been received (canceling any
pending transaction, but not undoing any previously
completed transaction), the sender should act as if the
command or transaction in progress had received a temporary
error (4xx).

TURN (TURN)

This command specifies that the receiver must either (1)
send an OK reply and then take on the role of the
sender-SMTP, or (2) send a refusal reply and retain the role
of the receiver-SMTP.

If program-A is currently the sender -SMTP and it sends the
TURN command and receives an OK reply (250) then program-A
becomes the receiver-SKIP. Program-A is then in the initial
state as if the transmission channel just opened, and it
then sends the 220 service ready greeting.

If program-B is currently the receiver-SMTP and it receives
the TURN command and sends an OK reply (250) then program-B
becomes the sender-SMIP. Program-B is then in the initial
state as if the transmission channel just opened, and it
then expects to receive the 220 service ready greeting.

To refuse to change roles the receiver sends the 502 reply.

[Page 26] Postel

2-838

'.w-v^'.y.'i \m

1 B APPLICATION LEVEL: SMTP RFC 821

k

RFC 821 August 1982
Simple Mall Transfer Protocol

There are restrictions on the order in which these command may
be used.

The first command in a session must be the HELO command.
The HELO command may be used later in a session as well. If

K; the HELO command argument is not acceptable a 501 failure
'" reply must be returned and the receiver-SMTP must stay in
|| the same state.

P The NOOP, HELP, EXPN, and VRFY commands can be used at any
k* time during a session.

H

K
The MAIL, SEND, SOML, or SAML commands begin a mail

K transaction. Once started a mail transaction consists of
IL one of the transaction beginning commands, one or more RCPT
■ commands, and a DATA command, in that order. A mail

transaction may be aborted by the RSET command. There may
be zero or more transactions in a session.

i
If the transaction beginning command argument is not
acceptable a 501 failure reply must be returned and the
receiver-SHIP must stay in the same state. If the commands
in a transaction are out of order a 503 failure reply must
be returned and the receiver -SMIP must stay in the same
state.

The last command in a session must be the QUIT command. The
QUIT command can not be used at any other time in a session.

4.1.2. CC*f4AND SYNTAX

[*: The commands consist of a command code followed by an argument
field. Command codes are four alphabetic characters. Upper
and lower case alphabetic characters are to be treated
identically. Thus, any of the following may represent the mail
command:

' MAIL Mail mail Mall mAIl

This also applies to any symbols representing parameter values,
such as "TO or "to" for the forward-path. Command codes and
the argument fields are separated by one or more spaces.
However, within the reverse-path a*Kl forward-path arguments
case is important. In particular, in some hosts the user

I- "smith" is different from the user "Smith".
t>
■ *

IN
K Postel [Page 27]

2-839

imJL*j£^£~. WJL» I', »; ^^«JL^L^^,!-..^^' *T- ILJ»V »'A; 1 cl*. 1^ -' ■?-' »•-'«!- 'w ■'.-. >'.''^. V ?„ -»r-w.^J^ >-,>•_■? ,/.A'rf...-,j.v

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RFC 821

The argument field consists of a variable length character
string ending with the character sequence <CKLF>. The receiver
is to take no action until this sequence is received.

Square brackets denote an optional argument field. If the
option is not taken, the appropriate default is implied.

[Page 28] Postel

2-840

a*. ^I«JV^..^-^^.._A.-,.U. •- i.„ik.A ,Wih,L ■'.^' ^A'A'V ^*lS-S~\ «W V * ±'^.\ A -.TA

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

The following are the SMIP commands:

HELO <SP> <domain> <CRLF>

MAIL <SP> FROM:<reverse-path> <CRLF>

RCPT <SP> TO:<forward-path> <CRLF>

DATA <CRLF>

RSET <CRLF>

SEND <SP> FROM:<reverse-path> <CRLF>

SOHL <SP> FROM:<reverse-path> <CRLF>

SAML <SP> FROM:<reverse-path> <CRLF>

VRFY <SP> <string> <CRLF>

EXPN <SP> <string> <CRLF>

HELP [<SP> <string>] <CRLF>

NOOP <CRLF>

QUIT <CRLF>

TURN <CRLF>

Poatel [Page 29]

2-841

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RFC 821

The syntax of the above argument fields (using BNF notation
where applicable) is given below. The "..." notation Indicates
that a field may be repeated one or more tiroes,

<reverse-path> : := <path>

<forward-path> : := <path>

<path> ::= "<M [<a-d-l> ":M] <mailbox> M>"

<a-d-l> ::= <at-domain> | <at-domain> "," <a-d-l>

<at-domain> ::= "®M <domain>

<domain>

<eleoent>

<mailbox>

<el it> | <element> <doraain>

:- <name> | "#" <number> | "[" <dotnum> "]'

: = <local-part> "@M <domain>

<local-part> ::= <dot-string> j <quoted-string>

<name> : := <a> <ldh-str> <let-dig>

<ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh~str>

<let-dig> ::~ <a> j <d>

<let-dig-hyp> : : = <a> | <d> | M-M

<dot-string> ::- <string> | <string> "." <dot-string>

<string> ::= <chi*r> j <char> <string>

<quoted-string> ::= <qtext> """

<qtext> ::* "\" <x> | M\" <x> <qtext> | <q> | <q> <qtext>

<char> ::- <c> | M\" <x>

<dotnum> ::= <snua> "." <snum> ".M <snum> "." <snuo>

<number> ::= <d> | <d> <number>

<CRLF> : := <CR> <LF>

[P*ge 30] Postel

2-842

«*_ rfjV _ J? mi. - *.'._ m*. _.*._'. mf . -5 —. _ -S. . --* -" -» —» i±£*im+£±i~:~

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

<CR> ::= the carriage return character (ASCII code 13)

<LF> :'= the line feed character (ASCII code 10)

<SP> ::= the space character (ASCII code 32)

<snum> : := one, two, or three digits representing a decimal
integer value in the range 0 through 255

<a> : := any one of the 52 alphabetic characters A through Z
in upper case and a through z in lower case

<c> : := any one of the 128 ASCII characters, but not any
<special> or <SP>

<d> : := any one of the ten digits 0 through 9

<q> : := any one of the 128 ASCII characters except <CR>,
<LF>, quote ("), or backslash (\)

<x> : := any one of the 128 ASCII characters (no exceptions)

<special> ::= "<M | ">" | " (" | ")" | "[" | "]" I "V I "."
| V* J ";" I ":" | *@M MMM | the control
characters (ASCII codes 0 through 31 inclusive and
127)

Note that the backslash, "\", is a quote character, rfhich is
used to indicate that the next character is to be used
literally (instead of Its normal interpretation) . For example,
"Joe\, Smith" could be used to luöicate a single nine character
user field with comma being the fourth character of the field.

Hosts are generally known by names which are translated to
addresses in each host. Note that the name elements of domains
are the official names --no use of nicknames or aliases is
allowed.

Sometimes a host is not known to the translation function and
communication is blocked. To bypass this barrier two numeric
forms aro also allowed for host "names". One form is a decimal
integer prefixed by a pound sign, "#", which indicates the
number is the address of the host. Another form is four small
decimal integers separated by dots and enclosed by brackets,
e.g., "[123.255.37.2]", which indicates a 32-bit AR?A Internet
Address in four 8-bit fields.

Postei [Pago 31]

2-843

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982 RFC 321
Simple Mail Transfer Protocol

The time stamp line and the return path line are formally
defined as follows:

<return-path-line> : := "Return-Path:" <SP><reverse-path><CRLF>

<time-stamp-line> ::= "Received:" <SP> <stamp> <CRLF>

<stamp> ::= <from-domain> <by-domain> <opt-info> ";"
<daytime>

<from-domain> : := "FROM" <SP> <domain> <SP>

<by-domain> : := "BY" <SP> <dcmain> <SP>

<opt-info> ::= [<via>] [<with>] [<id>] [<for>]

<via> ::= "VIA" <SP> <link> <SP>

<with> ::= "WITH" <SP> <protocoi> <SP>

<id> ::= "ID" <SP> <string> <SP>

<for> ::= "FOR" <SP> <path> <SP>

<link> ::= The standard names for links are registered with
the Network Information Center.

<protocol> ::= The standard names for protocols are
registered with the Network Information Center.

<daytime> ::= <SP> <date> <SP> <time>

<date> ::= <dd> <SP> <mon> <SP> <yy>

<time> ::= <hh> ":' <mm> ":" <ss> <SP> <zone>

<dd> :: = the one or two decimal integer day of the month in
the range 1 to .7 ,

<mon> ::= "JAN" | "FEB" | "MAR" | "APR" | "MAY" | "JUN" I
"JUL" | "AUG" | "SEP" | "OCT" | "NOV" | "DEC"

<yy> :: = the two decimal integer year of the century in the
range 00 to 99.

[Page 32j Postei

2-344

'*U

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

<hh> ::= the two decimal integer hour of the day in the
range 00 to 24.

<mm> : := the two decimal integer minute of the hour in the
range 00 to 59.

<ss> : := the two decimal integer second of the minute in the
range 00 to 59.

<zone> ::= "UT" for Universal Time (the default) or other
time zone designator (as in [2]) .

Return Path Example

Return-Path: <<|CHARLIE.ARPA,<5BAKER.ARPA:JOE®ABLE.ARPA>

Example 9

Time Stamp Line Example

Received: EROM ABC.ARPA BY XYZ.ARPA ; 22 OCT 81 09:23:59 PDT

Received: from ABC.ARPA by XYZ.ARPA via TELENET with X25
id M12345 for SmithflPDQ.ARPA ; 22 OCT 81 09:23:59 PDT

Example 10

Postel fPaoe 331

2-845

* ■ < ■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RFC 821

4.2. SMTP REPLIES

f-,

i

p
«,

i

Replies to SMTP commands are devised to ensure the synchronization
of requests and actions in the process of mail transfer, and to
guarantee that the sender-SMTP always knows the state of the
receiver-SMIP. Every command must generate exactly one reply.

The details of the command-reply sequence are made explicit in
Section 5.3 on Sequencing and Section 5.4 State Diagrams.

An SMTP reply consists of a three digit number (transmitted as
three alphanumeric characters) followed by some text. The number
is intended for use by automata to determine what state to enter
next; the text is meant for the human user. It is intended that
the three digits contain enough encoded information that the
sender -SMIP need not examine the text and may either discard it or
pass it on to the user, as appropriate. In particular, the text
may be receiver-dependent and context dependent, so there are
likely to be varying texts for each reply code. A discussion of
the theory of reply codes is given in Appendix E. Formally, a
reply is defined to be the sequence: a three-digit code, <SP>,
one line of text, and <CRLF>, or a multiline reply (as defined in
Appendix E) . Only the EXPN and HELP commands are expected to
result in multiline replies in normal circumstances, however
multiline replies are allowed for any command.

i
•V*

'j

«A.

i

>».*

m
"w*

v
<

fostei

>

2-S46

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

4.2.1. REPLY CODES BY FUNCTION GROUPS

,«y 500 Syntax error, command unrecognized
[This may include errors such as command line too long]

P£ 501 Syntax error in parameters or arguments
[j\ 502 Command not implemented

503 Bad sequence of commands
tea 504 Command parameter not implemented

B 211 System status, or system help reply
Ef* 214 Help message
y; [Information on how to use the receiver or the meaning of a
K particular non-standard command; this reply is useful only
C'"» to the human user]

1 220 <domain> Service ready
221 <domain> Service closing transmission channel
421 <domain> Service not available,

closing transmission channel
[This may be a reply to any command if the service knows it
must shut down]

250 Requested mail action okay, completed
251 User not local; will forward to < f orward-path>

£\ 450 Requested mail action not taker: mailbox unavailable
[E.g., mailbox busy]

JC\ 550 Requested action not taken: mailbox unavailable
[E.g., mailbox not found, no access]

451 Requested action aborted: error in processing
551 User not local; please try <forward-path>
452 Requested action not taken: insufficient system storage
552 Requested mail action aborted: exceeded storage allocation
553 Requested action not taken: mailbox name not allowed

[r+\ [E.g., mailbox syntax incorrect]
354 Start mail input; end with <CRLF>.<CRLF>
554 Transaction failed

r-

K

lit
Postel fPage :S]

2-847

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982 RFC 821
Simple Mail Transfer Protocol

4.2.2. NUMERIC ORDER LIST OF REPLY CODES

211 System status, or system help reply
214 Help message

[Information on how to use the receiver or the meaning of a
particular non-standard command; this reply is useful only
to the human user]

220 <domain> Service ready
221 <domain> Service closing transmission channel
250 Requested mail action okay, completed
251 User not local; will forward to < f orward-path>

354 Start mail input; end with <CRLF>. <GRLF>

421 <domain> Service not available,
closing transmission channel
[This may be a reply to any command if the service knows it
must shut down]

450 Requested mail action not taken: mailbox unavailable
[E.g., mailbox busy]

451 Requested action aborted: local error in processing
452 Requested action not taken: insufficient system storage

500 Syntax error, command unrecognized
[This may include errors such as command line too long]

501 Syntax error in parameters or arguments
502 Command not implemented
503 Bad sequence of commands
504 Command parameter not implemented
550 Requested action not taken: mailbox unavailable

[E.g., mailbox not found, no access]
551 User not local; please try <forward-path>
552 Requested mall action aborted: exceeded storage allocation
553 Requested action not taken: mailbox name not allowed

[E.g., mailbox syntax incorrect]
554 Transaction failed

[rage 30] Postel

2-848

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

i'.

4.3. SEQUENCING OF COMMANDS AND REPLIES

The communication between the sender and receiver is intended to
be an alternating dialogue, controlled by the sender. As such,
the sender issues a command and the receiver responds with a
reply. The sender must wait for this response before sending
further commands.

One important reply is the connection greeting. Normally, a
receiver will send a 220 "Service ready" reply when the connection
is completed. The sender should wait for this greeting message
before sending any commands.

Note: all the greeting type replies have the official name of
the server host as the first word following the reply code.

For example,

220 <SP> USC-ISIF.ARPA <SP> Service ready <CRLF>

The table below lists alternative success and failure replies for
each command. These must be strictly adhered to; a receiver may
substitute text in the replies, but the meaning and action implied
by the code numbers and by the specific command reply sequence
cannot be altered.

COMMAND-REPLY SEQUENCES

Each command is listed with its possible replies. The prefixes
used before the possible replies are "P" for preliminary (not
used in SMTP), "I" for intermediate, "S" for success, "F" for
failure, and "E" for error. The 421 reply (service not
available, closing transmission channel) may be given to any
comnand if the SMTP-receiver knows it must shut down. This
listing forms the basis for the State Diagrams in Section 4.4.

CONNECTION ESTABLISHMENT
S: 220
F: 421

HELO
S: 250
E: 500, 501, 504, 421

MAIL
S: 250
F: 552, 451, 452
E: 500, 501. 421

£ PoateJ [Page 37]

r-

2-849

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RCPT
S: 250, 251
F: 550, 551, 552, 553, 450, 451, 452
E: 500, 501, 503, 421

DATA
I: 354 -> data -> S: 250

F: 552, 554, 451, 452
F: 451, 554
E: 500, 501, 503, 421

RSET
S: 250
E: 500, 501, 504, 421

SEND
S: 250
F: 552, 451, 452
Ei 500, 501, 502, 421

SOML
S: 250
F: 552, 451, 452
E: 500, 501, 502, 421

SAML
S: 250
F: 552, 451, 452
E: 500, 501, 502, 421

VRTY
S: 250, 251
F: 550, 551, 553
E: 500, 501, 502, 504, 421

EXPN
S: 250
F: 55u
E: 500, 501, 5Ö2, 504, 421

HELP
S: 211. 214
E: 500, 501. 502, 504, 421

NOOP
S: 250
E: 500, 421

QUIT
S: 221
E: 500

TURN
S: 250
F: 502
E: 500. 503

RF(

[Page 38] Postel

2-SoO

APPLICATION LEVEL: SMTP RFC 821

k»V,

RFC 821 August 1982
Simple Mail Transfer Protocol

4.4. STATE DIAGRAMS

Following are state diagrams for a simple-minded SMTP
implementation. Only the first digit of the reply codes is used.
There is one state diagram for each group of SMTP commands. The
command groupings were determined by constructing a model for each
command and then collecting together the commands with
structurally identical models.

For each command there are three possible outcomes: "success"
(S), "failure" (F), and "error" (E). In the state diagrams below
we use the symbol B for "begin", and the symbol W for "wait for
reply".

First, the diagram that represents most of the SMTP commands:

1,3 ♦---+
 >l E |

|

!
+ + cmd ♦ + 2 ♦ +
I B | >| W | >| S |
+ + + + + +

I
j 4,5 +---♦
 >l F I

♦ + :o

This diagram models the commands:

HELO, MAIL, RCPT, RSET, SEND, SOML, SAML, VRFY, EXPN, HELP,
NOOP, QUIT, TURN.

Vy;

Postel [Page 39]

2-851

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985 a!

August 1982
Simple Mail Transfer Protocol

RFC 321

A more complex diagram models the DATA command:

+---+ DATA
I B j
♦ +

+-—+ 1,2
.>, w

3| |4,5
I I

+ +

' >l E |

I I

I I !
V 1.3| |2 j

♦—♦ data +—♦
I I >l W I
+ + +,.•+_

4,5

+ +

->| S I
+ ♦

->♦—♦
! * I

->♦—♦

Note that the "data" here is a series of lines sent from the
sender to the receiver with no response expected until the last
line is sent.

[Page 40] Postel

2-852

'•-•W'W- •"■/•-•*• *w

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

4.5. DETAILS

4.5.1. MINIMUM IMPLEMENTATION

In order to make SMIP workable, the following minimum
implementation is required for all receivers:

COWHANDS -- HELO
MAIL
RCPT
DATA >\
RSET ^:*.
NOOP ;..v!
QUIT N<

4.5.2. TRANSPARENCY g|

Without some provision for data transparency the character
sequence "<CRLF>.<CRLF>" ends the mail text and cannot be sent
by the user. In general, users are not aware of such
"forbidden" sequences. To allow all user composed text to be
transmitted transparently the following procedures are used.

1. Before sending a line of mail text the sender-SMTP checks
the first character o: the line. If it is a period, one
additional period is Inserted at the beginning of the line.

2. When a line of mail text is received by the receiver-SMTP
it checks the line. If the line is composed of a single
period it is the end of mail. If the first character is a
period and there are other characters on the line, the first
character is deleted.

The mall data may contain any of the 128 ASCII characters. All
characters are to be delivered to the recipient's mailbox
including format effectors and other control characters. If
the transmission channel provides an 8-bit byte (octets) data
stream, the 7-bit ASCII codes are transmitted right justified
in the octets with the higjh order bits cleared to zero.

t«-V

In some systems it may be necessary to transform the data as
it is received and stored. This may be necessary for hosts
that use a different character set than ASCII as their locax
character set, or that store data in records rather than

K

•'S

Postal [Page 41] ,-£

2-853 jr

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982 RFC 321
Simple Mail Transfer Protocol

strings. If such transforms are necessary, they must be
reversible -- especially if such transforms are applied to
mail being relayed.

4.5.3. SIZES

There are several objects that have required minimum maximum
sizes. That is, every implementation must be able to receive
objects of at least these sizes, but must not send objects
larger than these sizes.

* *
* TO THE MAXIMUM EXTENT POSSIBLE, IMPLEMENTATION *
* TECHNIQUES WHICH IMPOSE NO LIMITS ON THE LENGTH *
* OF THESE OBJECTS SHOULD BE USED. *
* *

user

The maximum total length of a user name 1» 64 characters.

domain

The maximum total length of a domain name or number is 64
characters.

path

The maximum total length of a reverse-path or
forward-path is 256 characters (including the punctuation
and element separators).

command lim

The maximum total length of a command line including the
command word and the <CRLF> is 512 characters.

reply line

The maximum total length of a reply line including the
r«ply mdm *r%& rhm <CRLF> ia 512 characters.

(Page 42J Postal

2-854

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

text line

The maximum total length of a text line including the
<CRLF> is 1000 characters (but not counting the leading
dot duplicated for transparency).

recipients buffer

The TnnYlffl"T" total number of recipients that must be
buffered is 100 recipients.

I

**
* *
* TO THE MAXIMUM EXTENT POSSIBLE, IMPLEMENTATION *
* TECHNIQUES WHICH IMPOSE NO LIMITS ON THE LENGTH *
* OF THESE OBJECTS SHOULD BE USED. *
* *

Errors due to exceeding these limits may be reported by using
the reply codes, for example:

500 Line too long.

501 Path too long

552 Too many recipients.

552 Too much mail data.

Postal [Page 43]

2-**o5

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982 RFC 821
Simple Mail Transfer Protocol

APPENDIX A

TCP Transport service

The Transmission Control Protocol [3] is used in the ARPA
Internet, and in any network following the US DoD standards for
internetwork protocols.

Connection Establishment

The SMTP transmission channel is a TCP connection established
between the sender process port U and the receiver process port
L. This single full duplex connection is used as the
transmission channel. This protocol is assigned the service
port 25 (31 octal), that is L=25.

Data Transfer

The TCP connection supports the transmission of 8-bit bytes.
The SMTP data is 7-bit ASCII characters. Each character is
transmitted as an 8-bit byte with the hi^lh-order bit cleared to
zero.

[Page 44] Postel

2-856

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RFC 821

APPENDIX C

NITS

The Network Independent Transport Service [6] may be used.

Connection Establishment

The SMIP transmission channel is established via NITS between
the sender process and receiver process. The sender process
executes the CONNECT primitive, and the waiting receiver
process executes the ACCEPT primitive.

Data Transfer

The NITS connection support» ths transmission of 8-bit bytes.
The SMIP data is 7-bit ASCII characters. Each character is
transmitted as an 8-bit byte with the high-order bit cleared to
zero.

[Page 46] Postel

2857

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

i

APPENDIX B

NCP Transport service

The ARPANET Host-to-Host Protocol [4] (implemented by the Network
Control Program) may be used in the ARPANET.

Connection Establishment

The SMTP transmission channel is established via NCP between
the sender process socket Ü and receiver process socket L. The
Initial Connection Protocol [5] is followed resulting in a pair
of simplex connections. This pair of connections is used as
the transmission channel. This protocol is assigned the
contact socket 25 (31 octal), that is L-25,

Data Transfer

The NCP data connections are established in 8-bit byte mode.
The SMIP data is 7-bit ASCII characters. Each character is
transmitted as an 8-bit byte with the hi^v-ordar bit cleared to
zero.

v.

s

Postel [Page 45]

2-858

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mall Transfer Protocol

APPENDIX D

X.25 Transport service

It may be possible to use the X.25 service [7] as provided by the
Public Data Networks directly, however, it is suggested that a
reliable end-to-end protocol such as TCP be used on top of X.25
connections.

Postel [Page 47)

2-859

f;v-v>>Vv-:^^:^;:v:
t • *. *• *. ". ", * V « • • * *

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982 RFC 821
Sinplo Mail Transfer Protocol

APPENDIX E

Theory of Reply Codes

The three digits of the reply each have a special significance.
The first digit denotes whether the response is good, bad or
incomplete. An unsophisticated sender-SMIP will be able to
determine its next action (proceed as planned, redo, retrench,
etc.) by siaply examining this first digit, A sender-SMIP that
wants to know approximately what kind of error occurred (e.g.,
mall system error, command syntax error) may examine the second
digit, reserving the third digit for the finest gradation of
information.

There are five values for the first digit of the reply code:

lyz Positive Preliminary reply

The command has been accepted, but the requested action
is being held in abeyance, pending confirmation of the
information in this reply. The sender-SMIP should send
another command specifying whether to continue or abort
the action.

[Note: SMTP does not have any commands that allow this
type of reply, and so does not have the continue or
abort commands.]

2yz Positive Completion reply

The requested action has been successfully completed. A
new request may be Initiated.

3yz Positive Intermediate reply

The command has been accepted, but the requested action
is being held in abeyance, pending receipt of further
information. The sender*SMTP should send another command
specifying this information. This reply is used in
command sequence groups.

4yz Transient Negative Completion reply

The command was not accepted and the requested action did
not occur. However, the error condition is temporary and
the action may be requested again. The sender should

[Page 48] Postal

2-850

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Tra'isfer Protocol

return to the beginning of the command sequence (if any) .
It ia difficult to assioji a meaning to "transient" when
two different altes (receiver- and sender- SMIPs) must
agree on the interpretation. Each reply in this category
might have a different time value, but the sender-SMTP is
encouraged to try again. A rule of thumb to determine if
a reply fits into the 4yz or the 5yz category (see below)
is that replies are 4yz if they can be repeated without
any change in command form or in properties of the sender
or receiver. (E.g., the command is repeated identically
and the receiver does not put up a new implementation.)

5yz Permanent Negative Completion reply

The command was not accepted and the requested action did
not occur. The sender -SMI*» is discouraged from repeating
the exact request (in the same sequence). Even some

£• "permanent" error conditions can be corrected, so the
human user may want to direct the sender-SMTP to
reinitiate the command sequence by direct action at some

V point in the future (e.g.. after the spelling has been
changed, or the user has altered the account status).

The second digit encodes responses in specific categories:

fcv

xOz Syntax -- These replies refer to syntax errors,
syntactically correct commands that don't fit any
functional category, and unimpiemented or superfluous
commands.

xlz Information -- These are replies to rec^jests for
information, such as status or help.

x2z Connections — These are replies referring to the
tv transmission channel.

I x3z Unspecified as yet.

x4* Unspecified ar yet.

L*- x5z Mail system -• These replies indicate tho status -*f
the receiver mail system vis-a-vis the raqp-'fttteci

fv transfer or other mail system action.
m
p." The third digit gives a finer gradation of meaning in #ach

category specified by the second digit. The list of replies

Postel [Page 49]

2-861

'»••*' «f * -• V .• *• .* V •* •• .* ,* "„• ,* V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RFC 821

illustrates this. Each reply text is recommended rather than
mandatory, and may even change according to the command with
which it is associated. On the other hand, the reply codes
must strictly follow the specifications in this section.
Receiver implementations should not invent new codes for
slightly different situations from the ones described here, but
rather adapt codes already defined.

For example, a command such as NOOP whose successful execution
does not offer the sender-SMTP any new information will return
a ;.50 reply. The response is 502 when the command requests an
uriimplemented non-site-specific action. A refinement of that
is the 504 reply for a command that is implemented, but that
requests an unimplemented parameter.

The reply text may be longer than a single line; in these cases
the complete text must be marked so the sender-SMTP knows when it
can stop reading the reply. This requires a special format to
indicate a multiple line reply.

The format for multiline replies requires that every line,
except the last, begin with the reply code, followed
immediately by a hyphen. "~" (also known as minus), followed by
text. The last line will begin with the reply code, followed
immediately by <SP>, optionally some text, and <CRLF>.

For example:
123-First line
123-Second line
123-234 text beginning with numbers
123 The last line

In many cases the sender-SMTP then simply needs to search for
the reply code followed by <SP> at the beginning of a line, and
ignore all preceding lines. In a few cases, there is Important
data for the sender in the reply "text". The sender will know
these cases from the current context.

[Page 50} Posts1

2-862

•Avl

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

APPENDIX F

Scenarios

This section presents complete scenarios of several types of SMTP
sessions.

A Typical SMTP Transaction Scenario

This SMIP example shows mail sent by Smith at host USC-ISIF. to
Jones. Green, and Brown at host BBN-UNIX. Here we assume that
host USC-ISIF contacts host BBN-UNIX directly. The mall is
accepted for Jones and Brown. Green does not have a mailbox at
host BBN-UNIX.

R: 220 BEN-UNIX.ARPA Simple Mail Transfer Service Ready
S: HELO USC-ISIF.ARPA
R: 250 BBN-UNIX.ARPA

S: MAIL FROM:<Smith«USC-ISIF.ARPA>
R: 250 OK

S: RCPT TC:<JonesfBBN-UNIX.ARPA>
R: 250 OK

S: RCPT TO:<Creen$BBN-UNIX.ARPA>
R: 550 No such user here

S: RCPT T0:<Brown#B8N-UNIX.ARPA>
R: 250 OK

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 250 OK

S: QUIT
R: 221 BBN-UNIX.ARPA Service closing transmission channel

Scenario 1

Postal [Page 51]

2-S63

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982 RFC 821
Simple Mail Transfer Protocol

Aborted SMTP Transaction Scenario

R: 220 MIT-Multics.ARPA Sinple Mail Transfer Service Ready
S: HELO ISI-VAXA.ARPA
R: 250 MIT-Multics.ARPA

S: MAIL ER0M:<Sfelth9ISI-VAXA.ARPA>
R: 250 OK

S: RCPT TO:<Jones#MIT-Multics.ARPA>
R: 250 OK

S: RCPT TO:<GreenfMIT-Multics.ARPA>
R: 550 No such user here

S: Rsrr
R: 250 OK

S: QUIT
R: 221 MIT-Multics.ARPA Service closing transmission channel

Scenario 2

[Page 52] Postel

2-864

o ...v , .. v/ . ..y.y ■ y -y.y,y. > .%> .•■ / ^ L ,-. .-. ,- > j.,

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Siaple Mail Transfer Protocol

Relayed Mall Scenario

Step 1 — Source Host to Relay Host

P.; 220 USC-ISIE.ARPA Single Mail Transfer Service Ready
S: HELO MIT-AI.ARPA
R: 250 USC-ISIE.ARPA

S: MAIL FROM:<JQP€MIT-AI.ARPA>
R: 250 OK

S: RCPT TO:<*JSC-ISIE.AWPA:Jories#BBN-VAX.ARPA>
R: 250 OK

S: DATA
R: 354 Start mall input; end with <CRLF>. <CRLF>
S: Date: 2 Nov 81 22:33:44
S: From: John Q. Public <J^fMIT-AI.ARPA>
S: Subject: The Next Meeting of the Board
S: To: JonesfBBN-Vax.ARPA
S:
S: Bill:
S: the next meeting of the board of directors will be
S: on Tuesday.
S: John.
S: .
R: 250 OK

S: QUIT
R: 221 USC-ISIE.ARPA Service closing transmission channel

Postel [Page 53]

2-865

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982 RFC 821
Sinple Mail Transfer Protocol

Stop 2 -- Relay Host to Destination Host

R: 220 B8N-VAX.ARPA Sinple Mail Transfer Service Ready
S: HELO USC-ISIE.ARPA
R: 250 BBN-VAX.ARPA

S: MAIL FROM:<gUSC-ISIE.ARPA:JQP«HIT~AI.ARPA>
R: 250 OK

S: RCPT T0:<Jones#B8N-VAX.ARPA>
R: 250 OK

S: DATA
R: 354 Start aall input; end with <CRLF>.<CRLE>
S: Received: from MIT-AI.ARPA by USC-ISIE.ARPA ;

2 Nov 81 22:40:10 UT
S: Date: 2 Nov 81 22:33:44
S: Eroei: John Q. Public <JQP*MIT-AI .ARPA>
S: Subject: the Next heating of the Board
S: To: JoneefBBN-Vax.ARPA
S:
S: Bill:
S: The next meeting of the board of directors will be
S: on Tuesday.
S: John.
S: .
R: 250 OK

S: QUIT
R: 221 USC-ISIE.ARPA Service closing transmission channel

Scenario 3

[Pegs 54] Postal

2-866

■ i. i ■ i ■ /. i ■ r i. i ■

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August: 1982
Simple Mall Transfer Protocol

Verifying and Sanding Scenario

R: 220 SU-SCORE.ARPA Single Mail Transfer Service Ready
S: HELO MIT-MC.ARPA
R: 250 SU-SCORE.ARPA

S: VREY Crispin
R: 250 Mark Crispin <Admin.MRC9SU-SCCRU.ARPA>

S: SEND EROM:<EAK|MXT-MC.ARPA>
R: 250 OK

S: RCPT TO:<A<faln.MRC«S0-SC0RE.ARPA>
R: 250 OK

S: DATA
R: 354 Start mall input; end with <OOr>.<CMjr>
S: Blah blah blah...
S: .. .etc. etc. etc.
S: .
R: 250 OK

S: QUIT
R: 221 SU-SCORE.ARPA Service closing transmission channel

Scenario 4

Postel [Page 55]

2-86:

-%_! *_* •_ ■_ _

DDN PROTOCOL HANDBOOK • VOLUME TWO 1985

August 1982 RFC 821
Sinple Mail Transfer Protocol

Sanding and Mailing Scenarios

First the user's name is verified, then an attenpt is nade to
send to the user's terminal. When that fails, the messages is
mailed to the user's mailbox.

R: 220 SU-SCCJUE.ARPA Simple Mall Transfer Service Ready
S: HELO MIT-MC.ARPA
R: 250 SU-SCORE.ARPA

S: VRFY Crispin
R: 250 Mark Crispin vAdmOn.MRCiSU-SC0ilE.ARPA>

S: SEW) FROM:<EAKfMIT-MC.ARPA>
R: 250 OK

S: RCPT T0:<AdmOn.MRCf6U>SC0R£.ARPA>
R: 450 User not active now

S: RSET
R: 250 OK

8: MAIL FR0M:<EAICfMIT-MC.ARPA>
R: 250 OK

S: RCPT TO:< Admin. HtC*SU-SCORE.ARPA>
R: 250 OK

S: DATA
R: 354 Start mall input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S: .. .etc. etc. etc.
S: .
R: 250 OK

S: QUIT
R: 221 SU-SCORE.ARPA Service cloelng transmission channel

Scenario 5

[Page 56} Postal

2-8&S

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

Doing the preceding scenario more efficiently.

R: 220 SU-SCORE.ARPA Simple Mail Transfer Service Ready
S: HELO MIT-MC.ARPA
R: 250 SU-SCORE.ARPA

S: VRFY Crispin
R: 250 Mark Crispin <Admin.MRC@SU~SCORE.ARPA>

S: SOML FROM:<EAK@MIT-MC.ARPA>
R: 250 OK

S: RCPT TO:<Admin.MRC@SU-SCORE.ARPA>
R: 250 User not active now, so will do mail.

S: DATA
R: 354 Start mail input; end with <CRLF>.-CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 350 OK

S: QUIT
R: 221 SU-SCORE.ARPA Service closing transmission channel

Scenario 6

Postal [Page 57]

2-869

- ■ * * ■ • ir ■ i f 1

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

August 1982
Simple Mail Transfer Protocol

RFC 821

Mailing List Scenario

First each of two mailing lists are expanded in separate sessions
with different hosts. Then the message is sent to everyone that
appeared on either list (but no duplicates) via a relay host.

Step 1 Expanding the Eirst List

R: 220 MIT-AI.ARPA Simple Mail Transfer Service Ready
S: HELO SU-SCORE.ARPA
R: 250 MIT-AI.ARPA

S: EXPN Example-People
R: 250-<ABCGMIT-MC.ARPA>
R: 250-Fred Fonebone <Fonebone$ÜSOISIQ.ARPA>
R: 250-Xenon Y. Zither <XY28MIT-AI .ARPA>
R: 250-Quincy Smith <^USC-ISIF.ARPA:Q-Smith®ISI-VAXA.ARPA>
R: 250-<joeQfoo-unix.ARPA>
R: 250 <xyzGbar-unix.ARPA>

S: QUIT
R: 221 MIT-AI.ARPA Service closing transmission channel

[Page 58] Postel

2-870

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

Step 2 « Expanding the Second List

R: 220 MIT-MC.ARPA Simple Mail Transfer Service Ready
S: HELO SU-SCORE.ARPA
R: 250 MIT-MC.ARPA

S: EXPN Interested-Parties
R: 250-A1 Calico <AEC^MIT-MC.AEPA>
R: 250-<XYZ®1IT-AI.ARPA>
R: 250-Quincy Smith <®JSC-ISIF.ARPA:Q-Smith@ISI-VAXA.ARPA>
R: 250-<fred@BBN-UNIX.ARPA>
R: 250 <xyz$bar-unix.ARPA>

S: QUIT
R: 221 MIT-MC.ARPA Service closing transmission channel

Postal [*■*• 593

2-871

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RFC 821

Step 3 -- Mailing to All via a Relay Host

R: 220 USC-ISIE.ARPA Sinple Mail Transfer Service Ready
S: HELO SU-SCORE.ARPA
R: 250 USC-ISIE.ARPA

S: MAIL FROM:<Account.Person@SU-SCORE.ARPA>
R: 250 OK
S: RCPT TO:<@ÜSC-ISIE.ARPA:ABQ§MIT-MC.ARPA>
R: 250 OK
S: RCPT TO:<@USC-ISIE.ARPA:Fonebone@USC-ISIQA.ARPA>
R: 250 OK
S: RCPT TO:<@U3C-ISIE.ARPA:XYZ@MIT-AI.ARPA>
R: 250 OK
S* RCPT

TO: «gUSC-ISIE .ARPA, @USC-ISIF, ARPA;Q-Smith@ISI -VAXA. ARPA>
R: 250 OK
S: RCPT T0:«9USC-ISIE.ARPA:joe@F0C-UNIX.ARPA>
R: 250 OK
S: RCPT TO:<<SUSC-ISIE.ÄRPA:xyzÄIBAR-UNIX.ARPA>
R: 250 OK
S: R<^ TO:<§USC-ISIE.ARPA:freo^BN-UNIX.ARPA>
R: 250 OK

S: DATA
R: 354 Start mail input; end with <CRLF>. <CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 250 OK

S: QUIT
R: 221 USC-ISIE.ARPA Service closing transmission channel

Scenario 7

[Page 60] Postel

2-872

* vv*W" \V V V V V V v v v v \- V V .'
-% ^a »•"► -'»~m his -w ■"* il -'" l * -*• -v -"•»'' -*• d -*• -'* - • • ^—.L.

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mail Transfer Protocol

Forwarding Scenarios

R: 220 USC-ISIF.ARPA Simple Mail Transfer Service Ready
S: HELO LBL-UNIX.ARPA
R: 250 USC-ISIF.ARPA

S: MAIL FROM:<mo@LBL-UNIX.ARPA>
R: 250 OK

S: RCPT TO:<fred@USC-ISIF.ARPA>
R: 251 User not local; will forward to <Jones@USC-ISI.ARPA>

S: DATA
R: 354 Start mail input; end with <CRLF>.<CRLF>
S: Blah blah blah...
S; ... tsi-t.. «it.C. dtC.

S: .
R: 250 OK

S: QUIT
R: 221 USC-ISIF.ARPA Service closing transmission channel

Scenario 8

Postal [Page 61]

2-873

"V V V V %" V %* v* •.
». ■TkJ!mJ?*. .<?■>*>*»_5«JE *J* «.

••" V v" V v* •i -. •• % *.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982
Simple Mail Transfer Protocol

RFC 821

Step 1 -- Trying the Mailbox at the First Host

R:
S:
R:

S:
R:

S:
R:

S:
R:

S:
R:

220 USC-ISIF.ARPA Simple Mail Transfer Service Ready
HELO LBL-UNIX.ARPA
250 USC-ISIF.ARPA

MAIL FROM:<mo@LBL-UNIX.ARPA>
250 OK

RCPT TO:<fred@USC-ISIF.ARPA>
251 User not local; will forward to <JonesflUSC-ISI .ARPA>

RSET
250 OK

QUIT
221 USC-ISIF.ARPA Service closing transmission channel

Step 2 - - Delivering the Mail at the Second Host

220 USC-ISI.ARPA Simple Mail Transfer Service Ready
HELO LBL-UNIX.ARPA
250 USC-ISI.ARPA

MAIL FR0M:<mo«LBL-UNIX.ARPA>
250 OK

: RCPT TO:<Jonea0USC-ISI.ARPA>
: OK

R:
S:
R:

S:
R:

S
R

: DATA
: 354 Start mail input; end with <CRLF>. <CRLF>
: Blah blah blah...

...etc. etc. etc.

S
R
S
S
S: .
R: 250 OK

S: QUIT
R: 221 USC-ISI.ARPA Service closing transmission channel

Scenario 9

[Page 62] Postel

2-874

VW^A,^ V--'^ i->i ••!*' -1/-1. '■''•: i-Si* £ "yC:-

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Slnple Mail Transfer Protocol

Too Many Recipients Scenario

R: 220 BERKELEY.ARPA Sinple Mail Transfer Service Ready
S: KELO USC-ISIF.ARPA
R: 250 BERKELEY.ARPA

S: MAIL FROM:<Postel«USC-ISIF.ARPA>
R: 250 OK

S: RCPT TO:<fabry$BERKELEY.ARPA>
R: 250 OK

S: RCPT TO:<erlc0BERKELEY.ARPA>
R: 552 Recipient storage full, try again in another transaction

S: DATA
R: 354 Start mail input; end with <CRLF>. <CRLF>
S! m*h bi*h blah...
S: ...etc. etc. etc.
S: .
R: 250 OK

S: MAIL FRGM:<PostelfUSC-ISXF.ARPA>
R: 250 OK

S: RCPT TO:<ericf6ERKELEY.ARPA>
R: 250 OK

S: DATA
R: 354 Start nail input; end with <CRLF>. <CRLF>
S: Blah blah blah...
S: ...etc. etc. etc.
S: .
R: 250 OK

S: QUIT
R: 221 BERKELEY.ARPA Service closing transmission channel

Scenario 10

Note that a real implementation oust handle many recipients as
specified in Section 4.5.3.

Postal [Page 63]

2-875

•■?■•■•

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 1982 RFC 821
Sinple Mail Transfer Protocol

GLOSSARY

ASCII

American Standard Code for Information Interchange [1] .

command

A request for a mail service action sent by the sender-SMTP to the
receiver-SMTP.

domain

The hierarchially structured global character string address of a
host computer in th*. mail system.

end of mail data indication

A special sequence of characters that indicates the end of the
mail data. In particular, the five characters carriage return,
line feed, period, carriage return, line feed, in that order.

host

A computer in the internetwork environment on which mailboxes or
SMTP processes reside.

line

A a sequence of ASCII characters ending with a <CRLF>.

mail data

A sequence of ASCII characters of arbitrary length, which conforms
to the standard set in the Standard for the Format of ARPA
Internet Text Messages (RFC 822 [2]) .

mailbox

A character string (address) which identifies a user to whom mail
is to be sent. Mailbox normally consists of the host and user
specifications. The standard mailbox naming convention is defined
to be "user^domain". Additionally, the "container" in which mail
is stored.

[Page 64] Postel

2-876

APPLICATION LEVEL: SMTP RFC 821

RFC 821 August 1982
Simple Mall Transfer Protocol

fe

receiver -SMIP process

A process which transfers mail in cooperation with a sender-SMIP
process. It waits for a connection to be established via the
transport service. It receives SMIP commands from the
sender-SMTP, sends replies, and performs the specified operations,

reply

A reply is an acknowledgment (positive or negative) sent from
receiver to sender via the transmission channel in response to a
command. The general form of a reply is a completion code
(including error codes) followed by a text string. The codes are
for use by programs and the text is usually Intended for human
users.

sender-SMIP process

A process which transfers mail in cooperation with a receiver-SMIP
process. A local language may be used in the user interface
command/reply dialogue. *The sender-SMIP initiates the transport
service connection. It initiates SMIP commands, receives replies,
and governs the transfer of mall.

session

The set of exchanges that occur while the transmission channel is
open.

transaction

The set of exchanges required for one message to be transmitted
for one or more recipients.

transmission channel

A full-duplex communication path between a sender-SMTP and a
receiver-SMTP for the exchange of commands, replies, and mall
text.

transport service

Any reliable stream-oriented data communication services,
example. NCP. TCP. NITS.

For

Postal [Page 65]

2-877

_v*

DDN PROTOCOL HANDBOOK - VOLUME TWO
1985

RFC 821

August 1982
Simple Mail Transfer Protocol

user
A human being (or a process on behalf of a human being) wishing to
obtain mail transfer service. In addition, a recipient of

computer mail.

word

A sequence of printing characters.

<CRLF>
The characters carriage return and line feed (in that order) .

<SP>

The space character.

Postel
[Page 66]

2-878

•t w 9 ; <ß

APPLICATION LEVEL: SMTP RFC 821

i

r •

RFC 821 August 1982
Simple Mall Transfer Protocol

REFERENCES

[1] ASCII

ASCII, "USA Code for Information Interchange", United States of
America Standards Institute, X3.4, 1968. Also in: Feinler, E.
and J. Postel, eds., "ARPANET Protocol Handbook", NIC 7104, for
the Defense Communications Agency by SRI International, Menlo
Park, California, Revised January 1978.

[2] RFC 822

Crocker, D., "Standard for the Format of ARPA Internet Text
Messages," RFC 822, Department of Electrical Engineering,
University of Delaware, August 1982.

[3] TCP

Postel, J., ed., "Transmission Control Protocol - DARPA Internet
Program Protocol Specification", RFC 793, USC/Infonnation Sciences
Institute, NTIS AD Number A111091, September 1981. Also in:
Feinler, E. and J. Postel, eds., "Internet Protocol Transition
Workbook", SRI International, Menlo Park. California, March 1982.

[4] NCP

McKenzie,A., "Host/Host Protocol for the ARPA Network", NIC 8246,
January 1972. Also in: Feinler, E. and J. Postel, eds., "ARPANET
Protocol Handbook", NIC 7104, for the Defense Communications
Agency by SRI International, Menlo Park, California, Revised
January 1978.

[5] Initial Connection Protocol

Postel, J., "Official Initial Connection Protocol", NIC 7101, ^
^ 11 June 1971. Also in: Feinler, E. and J. Postel. eds., "ARPANET £*-
P Protocol Handbook", NIC 7104. for the Defense Communications K

Agency by SRI International, Menlo Park, California. Revised ™
January 1978.

[6] NITS yi

PSS/SC3. "A Network Independent Transport Service". Study Croup 3. l;£
m The Post Office PSS Users Croup, February 1980. Available from mm
P the DCPU. National Physical Laboratory. Teddington. UK. ~

P -
V :■>:

Postel [Page 67] ^V

 - ■ — ■ •*. •

*

2-879 Cv
m

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

August 1982
Simple Mail Transfer Protocol

RFC 821 k

[7] X.25

CCITT, Recommendation X.25 - Interface Betveen Data Terminal
Equipment (DTE) and Data Circuit-terminating Equipment (DCE) for
Terminals Operating in the Packet Mode on Public Data Networks,"
CCITT Orange Book, Vol. VI11.2, International Telephone and
Telegraph Consultative Committee, Geneva, 1976.

[Page 68] Postal

2-880

Lbi^. ^1

APPLICATION LEVEL: DOMAIN RFC 883

Network Working Group
Request for Comments: 883

P. Mockapetris
ISI

November 1983

i

i

t

DOMAIN NAMES - IMPLEMENTATION and SPECIFICATION

This memo discusses the implementation of domain
name servers and resolvers, specifies the format cf
transactions, and discusses the use of domain names
in the context of existing mail systems and other
network software.

This memo assumes that the reader is familiar with
RFC 882. "Domain Names - Concepts and Facilities"
which discusses the basic principles of domain
names and their use.

The algorithms and internal data structures used in
this memo are offered as suggestions rather than
requirements; implementers are free to design their
own structures so long as the same external
behavior is achieved.

I

WARNING

This RFC contains format specifications which
are preliminary and are included for purposes
of explanation only. Do not attempt to use
this information for actual implementations.

Mockapetris Tage i]

I

2-881

* a

A<y &<'&. >>>^>^.:S>i>>: >>>i*.*SL*. >:' *v.v.i«
*. W

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

r •'

i

I

2-882

i t ■ X

APPLICATION LEVEL: DOMAIN RFC 883

BJFC 883 November 1933
Domain Names - Implementation and Specification

INTRODUCTION

Overview

The goal of domain names is to provide a mechanism for naming
resources in such a way that the names are usable in different
hosts, networks, protocol families, internets, and administrative
organizations.

From the user's point of view, domain names are useful as
arguments to a local agent, called a resolver, which retrieves
information associated with the domain name. Thus a user might
ask for the host address or mail information associated with a
particular domain name. To enable the user to request a
particular type of information, an appropriate query type is
passed to the resolver with the domain name. To the user, the
domain tree is a single information space.

From the resolver*s point of view, the database that makes up the
domain space is distributed among various name servers. Different
parts of the domain space are stored in different name servers,
although a particular data item will usually be stored redundantly
in two or more name servers. The resolver starts with knowledge
of at least one name server. When the resolver processes a user
query it asks a known name server for the information; in return,
the resolver either receives the desired information or a referral
to another name server. Using these referrals, resolvers learn
the identities and contents of other name servers. Resolvers are
responsible for dealing with the distribution of the domain space
and dealing with the effects of name server failure by consulting
redundant databases in other servers.

Name servers manage two kinds of data. The first kind of data
held in sets called zones; each zone is the complete database for
a particular subtree of the domain space. This data is called
authoritative. A name server periodically checks to make sure
that its zones are up to date, and if not obtains a new copy of
updated zones from master files stored locally or in another name
server. The second kind of data is cached data which was acquired
by a local resolver. This data may be incomplete but improves the
performance of the retrieval process when non-local data is
repeatedly accessed. Cached data is eventually discarded by a
timeout mechanism.

This functional structure isolates the problems of user interface,
failure recovery, and distribution In the resolvers and isolates
the database update and refresh problems in the name servers.

Mockapetris [Page 1]

2-885

^v^v -.* ••.>.:* :^\
V* V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

Implementation components

A host can participate in the domain name system in a number of
ways, depending on whether the host runs programs that retrieve
information from the domain system, name servers that answer
queries from other hosts, or various combinations of both
functions. The simplest, and perhaps most typical, configuration
is shown below:

Local Host | Foreign

+ + + +
| J user queries | |queries
I User | >| |
j Program j | Resolver |
I l< I l<
j | user responses! (responses
+ + + • --+

I A
cache additions | | references

V I
+ +
| database |
+ +

User programs interact with the domain name space throuojh
resolvers; the format of user queries and user responses is
specific to the ho&;t and its operating system. User queries will
typically be operating system calls, and the resolver and its
database will be part of the host operating system. Less capable
hosts may choose to implement the resolver as a subroutine to be
linked in with every program that needs its services.

Resolvers answer user queries with information they acquire via
queries to foreign name servers, and may also cache or reference
domain information in the local database.

Note that the resolver may have to make several queries to several
different foreign name servers to answer a particular user query,
and hence the resolution of a user query may involve several
network accesses and an arbitrary amount of time. The queries to
foreign name servers and the corresponding responses have a
standard format described in this memo, and may be datagrams.

Mockapetrls [Page 2]

2-886

• ."' »*• .** .*" • * •"• m * ■** • * ■ • * * ■"■ »*' i

s .VA .* _-. A _>V* A VJ.V.J VI>£\'V£VNL% "1V>."L% V/!V!

,•>./
v* *. * •." -." v" \ V ♦. • • ■ - /-.**• "V

>J

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-884

k"^Tl>^%'SS"l>'%"2s#I\-'"-'^/lv'l*,*l%,Ivl*.- v. 'lv"v!v!*,v _•, *N"JV**S*IV***.**N 1V>."\ ** S V.\V "**

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain N»mes - Implementation and Specification

TABLE OF CONTENTS
INTRODUCTION 3

Overview 3
Implementation components 2
Conventions 6
Design philosophy 8

NAME SERVER TRANSACTIONS 11
Introduction il
Query and response transport 11
Overall message format 13
The contents of standard queries and responses 15
Standard query and response example 15
The contents of inverse queries and responses 17
Inverse query and response example • 18
Completion queries and responses . 19
Completion query and response example 22
Recursive Name Service 24
Header section format 26
Question section format 29
Resource record format 30
Domain name representation and compression. 31
Organization of the Shared database , 33
Query processing > 36
Inverse query processing 37
Completion query processing 38

NAME SERVER MAINTENANCE 39
Introduction 39
Conceptual model of maintenance operations 39
Name server data structures and top level logic 41
Name server file loading 43
Name server file loading example 45
Name server remote zone transfer 47

RESOLVER ALGORITHMS 50
(operations 50

DOMAIN SUPPORT FOR MAIL 52
Introduction. 52
Agent binding 53
Mailbox binding 54

Appendix 1 - Domain Name Syntax Speci fication 56
Appendix 2 - Field formats and encodings 57

TYPE values 57
QTYPE values 57
CLASS values 58
QCLASS values 58
Standard resource record formats 59

Appendix 3 - Internet specific field tormats and operations 67
REFERENCES and BIBLIOGRAPHY 72
INDEX 73

Mockapetris [Page ii]

2-883

APPLICATION LEVEL: DOMAIN RFC 883

or/-" qo"> November 1983
Domain Names - Implementation and Specification

Depending on its capabilities, a name server could be a stand
alone program on a dedicated machine or a process or processes on
a large timeshared host. A simple configuration might be:

Local Host

--+

/I

Master j
files 1

Boreign

->|Foreign j
Resolver|

Here the name server acquires information about one or more zones
by reading master files from its local file system, and answers
queries about those zones that arrive from foreign resolvers.

A more sophisticated name server might acquire zones from foreign
name servers as well as local master files. This configuration is
shown below:

Local Host

j. . +

/I
 + I

! I
I I

Master | —
files | |

1/

+ +

|responses
Name j
Server j

l<
| queries

- - — ----+

K Imaintenance
V
queries

Y-
maintenance responses

Foreign

->jForeign j
jResolverj

• - +

->l
(Foreign
I Name
j Server

In this configuration, the name server periodically establishes a
virtual circuit to a foreign name server to acquire a copy of a
zone or to check that an existing copy has not changed. The
messages sent for these maintenance activities follow the same
form as queries and responses, but the message sequences are
somewhat different.

Mockapetris [Page 3]

2-88;

•/.•lO/VN'ls'lnV/VlNV.^.^'-V*^^'
, <*. ■•„ •". -".'•-.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

The information flow in a host that supports all aspects of the
domain name system is shown below:

Local Host

l User
| Program
i
I
+

user responses

cache additions |
V

+
| Shared
| database |

■f — +

A |
---«*■ refreshes 1 \ references

/I I V
■+ I

Master
files

I |responses
Name |
Server j

l<
I queries

 +

\ (maintenance
I v-
| queries

\
maintenance responses

Foreign

->jForeign j
j Resolverj

->! i I
|Foreign |
1 Name]
| Server j

The shared database holds domain space data for the local name
server and resolver. The contents of the shared database will
typically be a mixture of authoritative data maintained by the
periodic refresh operations of the name server and cached data
from previous resolver requests. The structure of the domain data
and the necessity for synchronization between name servers and
resolvers imply the general characteristics of this database, but
the actual format is up to the local implementer. This memo
suggests a multiple tree format.

>J

Mockapetris [Page 4]

2-888

r'-v.sv ,A^%*AVt'AVH*»>."!*/'; •.'!•.*' V_v_o.%\\\v_v_'*\v.'vv/\: V%» lyo^oiyS'wVv^viv

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

This memo divides the implementation discussion into sections:

NAME SERVER TRANSACTIONS, which discusses the formats for name
servers queries and the corresponding responses.

NAME SERVER MAINTENANCE, which discusses strategies,
algorithms, and formats for maintaining the data residing in
name servers. These services periodically refresh the local
copies of zones that originate in other hosts.

RESOLVER ALGORITHMS, which discusses the internal structure of
resolvers. This section also discusses data base sharing
between a name server and a resolver on the same host.

DOMAIN SUPPORT FOR MAIL, which discusses the use of the domain
system to support mail transfer.

Mockapetris [Page 5]

2-889

r>^>^^>J> *^1» V\»>^*-lfVVv**^*^ °">_-%i*'_ *V-L» -*»y '*T» •*»*' »~-%V. W.^'j"'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

Conventions

The domain system has several conventions dealing with low-level,
but fundamental, issues. While the implernenter is free to violate
these conventions WITHIN HIS OWN SYSTEM, he must observe these
conventions in ALL behavior observed from other hosts.

********** Data Transmission Order **********

The order of transmission of the header and data described in this
document is resolved to the octet level. Whenever a diagram shows
a group of octets, the order of transmission of those octets is
the normal order in which they are read in English. For example,
in the following diagram the octets are transmitted in the order
they are numbered.

0 1
0123456789012345

+-+-+-+-+-+-+-♦-+-+-+-+-+-+-+-+-+
I 1 I 2 I
+ , + ,. +. + _ + _ +_ + - + _ + - + - + -+ - + _ + _ + - + - +

I 3 | 4 |
♦ -♦- + - + - + - + --f- + -««.-"f- + - ♦- + - + - + -♦- +

I 5 | 6 |
+ - + - + - + -♦- + -♦-♦-♦- + - + -♦-♦-•!»- + - + - +

Transmission Order of Bytes

Whenever an octet represents a numeric quantity the left most bit
in the diagram is the high order or most significant bit. That
is, the bit labeled 0 is the most significant bit. For example,
the following diagram represents the value 170 (decimal).

01234567
♦-+-♦-♦-♦-♦-♦-♦-♦
|1 0 1 0 1 0 1 0|

Significance of Bits

Similarly, whenever a multi-octet field represents a numeric
quantity the left most bit of the whole field is the most
significant bit. When a multi-octet quantity is transmitted the
most significant octet is transmitted first.

Mockapetris [Page 6]

2-890

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

********** Character Case ***********

All comparisons between character strings (e.g. labels, domain
names, etc.) are done in a case-insensitive manner.

When data enters the domain system, its original case should be
preserved whenever possible. In certain circumstances this cannot
be done. For example, if two domain names x.y and X.Y are entered
into the domain database, they are interpreted as the same name,
and hence may have a single representation. The basic rule is
that case can be discarded only when data is used to define
structure in a database, and two names are identical when compared
in a case insensitive manner.

Loss of case sensitive data must be minimized. Thus while data
for x.y and X.Y may both be stored under x.y, data for a.x and B.X
can be stored as a.x and B.x, but not A.x, A.X, b.x, or b.X. In
general, this prevents the first component of a domain name from
loss of case information.

Systems administrators who enter data into the domain database
should take care to represent the data they supply to the domain
system in a case-consistent manner if their system is
case-sensitive. The data distribution system in the domain system
will ensure that consistent representations are preserved.

Mockapetrls [Page 7]

2-891

• •*•_/* A •*• •'■ .*• •** •"• ."* *'• • •"•»*>'• »• • • '** .'•*•-• ."* -

.>* •>> .** ,v *.» .*• .'* *"' *"» .*• .'• .*-. ■. * ."• .'»>"'

* * m v % V \ *■* •»* *.* *.*".* V ••* ." * . *

fc"* **■ »*•• »*• ■»** >.** .* •** »• »"* • • .** .** »** »** .*• »*'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

Design philosophy

The design presented in this memo attempts to provide a base which
will be suitable for several existing networks. An equally
important goal is to provide these services within a framework
that is capable of adjustment to fit the evolution of services in
early clients as well as to accommodate new networks.

Since it is impossible to predict the course of these
developments, the domain system attempts to provide for evolution
in the form of an extensible framework. This section describes
the areas in which we expect to see immediate evolution.

DEFINING THE DATABASE

This memo defines methods for partitioning the database and data
for host names, host addresses, gateway information, and mail
support. Experience with this system will provide guidance for
future additions.

While the present system allows for many new RP. types, classes,
etc., we feel that it is more important to get the basic services
in operation than to cover an exhaustive set of information.
Hence we have limited the data types to those we felt were
essential, and would caution designers to avoid implementations
which are based on the number of existing types and classes.
Extensibility in this area is very Important.

While the domain system provides techniques for partitioning the
database, policies for administrating the orderly connection of
separate domains and guidelines for constructing the data that
makes up a particular domain will be equally important to the
success of the system. Unfortunately, we feel that experience
with prototype systems will be necessary before this question can
be properly addressed. Thus while this memo has minimal
discussion of these issues, it is a critical area for development.

TYING TOGETHER INTERNETS

Although it is very difficult to characterize the types of
networks, protocols, and applications that will be clients of the
domain system, it is very obvious that some of these applications
will cross the boundaries of network and protocol. At the very
least, mail Is such a service.

Attempts to unify two such systems must deal with two major
problems:

1. Differing formats for environment sensitive data. For example,

Mockapetris [Page 8]

2-892

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

LN'

network addresses vary in format, and it is unreasonable to
expect to enforce consistent conventions.

2. Connectivity may require intermediaries. For example, it is a
frequent occurence that mail is sent between hosts that share
no common protocol.

The domain system acknowledges that these are very difficult
problems, and attempts to deal with both problems through its
CLASS mechanism:

1. The CLASS field in RRs allows data to be tagged so that all
programs in the domain system can identify the format in use.

2. The CLASS field allows the requestor to identify the format of
data which can be understood by the requestor.

3. The CLASS field guides the search for the requested data.

The last point is central to our approach. When a query crosses
protocol boundaries, it must be guided though agents capable of
performing whatever translation is required. For example, when a
mailer wants to identify the location of a mailbox in a portion of
the domain system that doesn't have a compatible protocol, the
query must be guided to a name server that can cross the boundary
Itself or form one link in a chain that can span the differences.

If query and response transport were the only problem, then this
sort of problem could be dealt with ln the name servers
themselves. However, the applications that will use domain
service have similar problems. For example, mall may need to be
directed through mail gateways, and the characteristics of one of
the environments may not permit frequent connectivity between name
servers in all environments.

These problems suggest that connectivity will be achieved through
a variety of measures:

Translation name sem/mrs that act as relays between different
protocols.

Translation application servers that translate application
level transactions.

Default database entries that route traffic through application
level forwarders in ways that depend on the class of the
requestor.

While this approach seems best given our current understanding of

Mockapetris [Page 9]

2-893

:^.\!-'.>*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

the problem, we realize that the approach of using resource data
that transcends class may be appropriate in future designs or
applications. By not defining class to be directly related to
protocol, network, etc., we feel that such services could be added
by defining a new "universal" class, while the present use of
class will provide immediate service.

This problem requires more thought and experience before solutions
can be discovered. The concepts of CLASS, recursive servers and
other mechanisms are intended as tools for acquiring experience
and not as final solutions.

Mockapetrls [Page 10]

2-80-1

"-*• •*• W* rVvVVWA-'*.- > vv V v v v vv >V\^\\V; .••/•/*.-;/*.•/. ;.•;.''.•>;•,•>■.■;.
-Vv: rtfrft

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November J.983
Domain Names - Implementation and Specification

NAME SERVER TRANSACTIONS

Introduction

The primary purpose of name servers is to receive queries from
resolvers and return responses. The overall model of this service
is that a program (typically a resolver) asks the neme server
questions (queries) and gets responses that either answer the
question or refer the questioner to another name server. Other
functions related to name server database maintenance use similar
procedures and formats and are discussed in a section later in
this memo.

There are three kinds of queries presently defined;

1. Standard queries that ask for a specified resource attached
to a given domain name.

2. Inverse queries that specify a resource and ask for a domain
name that possesses that resource.

3. Completion queries that specify a partial domain rame and a
target domain and ask that the partial domain name be
completed with a domain name close to the target domain

This memo uses an unqualified reference to queries to refer to
either all queries or standard queries when the context is clear.

Query and response transport

Name servers and resolvers use a single message format for all
communications. The message format consists of a variable-length
octet string which includes binary values.

The messages used in the domain system are designed so that they
can be carried using either datagrams or virtual circuit*. To
accommodate the datagram style, all responses carry the query as
part of the response.

While the specification allows datagrams to be used in any
context, some activities are ill suited to datagram use. For
example, maintenance transactions and recursive queries typically
require the error control of virtual circuits. Thus datagram use
should be restricted to simple queries.

The domain system assumes that a datagram service provides:

1. A non-reliable (i.e. best effort) method of transporting a
message of up to SI2 octets.

Mock ape r.r is [Page 11}

2-8Ö5

L* V .* •* V V V V V •- .• ".* ,* V V •• V V *.* . .• *.* v .• V V V *•• • V *.* .• *

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names * Implementation and Specification

Hence datagram messages are limited to 512 octets. If a
datagram message would exceed 512 octets, it is truncated
and a truncation flag is set in its header.

2. A message size that gives the number of octets in the
datagram.

The main implications for programs accessing name servers via
datagrams are:

1. Datagrams should not be used for maintenance transactions
and recursive queries.

2. Since datagrams may be lost, the originator of a query must
perform error recovery (such as retransmissions) as
appropriate.

3. Since network or host delay may cause retransmission when a
datagram has not been lost, the originator of a query must
be ready to deal with duplicate responses.

The domain system assumes that a virtual circuit set-vice provides:

1. A reliable method of transmitting a message of up to 65535
octets.

2. A message size chat gives the number of octets in the
message.

If the virtual circuit service doe« not provide for message
boundary detection or limits transmission size to less than
65535 octets, then messages are prefaced with an unsigned 16
bit length field and broken up into separate transmissions
as required. The length field is only prefaced on the first
message. This technique is used for TCP virtual circuits.

3. Multiple messages may be sent over a virtual circuit.

4. A method for closing a virtual circuit,

5. A method for detecting that the other party *&* requested
that the virtual circuit be closed.

The main Implications for programs accessing name servers via
virtual circuits are:

1. Either end of a virtual circuit may initiate a close when
there is no activity in progress. The other end should
comply.

Mockapetrls [Page 12]

2*896

^'>JL*:lv!:J.L^L<L/>>:%!-/%:i%5j^^/lvj*l^y^S^-v >"Sv^y.-.:v>\%yS>.v»l<.\vSv.'V.*v^v.*-l v>lvl*lvl-'*v

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

The decision to initiate a close is a matter of individual
site policy; some name servers may leave a virtual circuit
open for an indeterminate period following a query to allow
for subsequent queries; other name servers may choose to
initiate a close following the completion of the first query
on a virtual circuit. Of course, name servers should not
close the virtual circuit in the midst of a multiple message
stream used for zone transfer.

2. Since network delay may cause one end to erroneously believe
that no activity is in progress, a program which receives a
virtual circuit close while a query is in progress should
close the virtual circuit and resubmit the query on a new
virtual circuit.

All messages may use a compression scheme to reduce the space
consumed by repetitive domain names. The use of the compression
scheme is optional for the sender of a message, but all receivers
must be capable of decoding compressed domain names.

Overall message format

All messages sent by the domain system are divided into 5 sections
(some of which are empty in certain cases) shown below:

+ +

| Header |
+ +

| Question | the question for the name server
+ +

| Answer j answering resource records (RRs)
+ +

| Authority | RRs pointing toward an authority
+ +

J Additional | RRs holding pertinent information
+ +

The header section is always present. The header includes fields
that specify which of the remaining sections are present, and also
specify whether the message is a query, inverse query, completion
query, or response.

The question section contains fields that describe a question to a
name server. These fields are a query type (QTYPE). a query class
(QCLASS) , and a query domain name (QNAME) .

The last three sections have the same format: a possibly empty
list of concatenated resource records (RRs). The answer section
contains RRs that answer tho question; the authority section

Mockapetris [Page 13]

2-89^

L*VA«AL»*.«VI >'A.WI'^-'.
,
/A'''*-V'- V. -.-.- i^Ar'lJhrf.rf.«! ■* fc. ■v^:^^-;^^^^^^''^^^-^^'^'^-,

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

contains RRs that point toward an authoritative name server; the
additional records section contains RRs which relate to the query,
but are not strictly answers for the question.

The next two sections of this memo illustrate the use of these
message sections through examples; a detailed discussion of data
formats follows the examples.

Mockapetris [Page 14]

2-898

t 'I ftii'i I .VJ >» A.'J «• A'J* «• .VJJ ' uiutoL £^JL .v.v .v -**-?-■ -«v *-»-% -» •-■> 'A •_. ».* •_. •_< v>

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

The contents of standard queries and responses

When a name server processes a standard query, it first determines
whether it is an authority for the domain name specified in the
query.

If the name server is an authority, it returns either:

1. the specified resource information

2. an indication that the specified name does not exist

3. an indication that the requested resource information dees
not exist

If the name server is not an authority for the specified name, it
returns whatever relevant resource information it has along with
resource records that the requesting resolver can use to locate an
authoritative name server.

Standard query and response example

The overall structure of a query for retrieving information for
Internet mail for domain F.ISI.ARPA is shown below:

+ — +
Header | OPCODE^QUERY, ID=2304 |

+ -- +
Question |QT*PE=MAILA, QCLASS^IN, QKAME=F.ISI.ARPA |

+ ♦
Answer | <empty> I

♦ - ♦
Authority | <empty> 1

♦ - +
Additional I <erapty> |

<. « - — - .«.--..- -.-—+

The header includes an opcode field that specifies that this
datagram is a query, and an ID field that will be used to
associate replies with the original query. (Some additional
header fields have been omitted for clarity.) The question
section specifies that the type of the query is for mail agent
information, that only ARPA Internet information is to be
considered, and that the domain name of interest is F.ISI.ARPA.
The remaining sections are empty, and would not use any octets in
a real query.

Mockapetris [Page IS]

2-899

»-% J.„ _* „v.'. ^VJW Ja Jk-JL ..-.» -CA A'A'A'~IS *>'*«J W «^•».«W«' ^V'V«'S^''

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

One possible response to this query might be:

+ +

Header | OPCODE=RESPONSE, ID=2304 |
+ +

Question |QTYPE=MAILA, QCLASS=IN, QNAME=F.ISI .ARPA |
+ +

Answer | <empty> |
+ +

Authority | ARPA NS IN A. I SI .ARPA |
I
| ARPA NS IN F.ISI.ARPA j
+ +

Additional | F.ISI .ARPA A IN 10.2.0.52 |
| - ,

| A.ISI.ARPA A IN 10.1.0.22 |
+ +

This type of response would be returned by a name server that was
not an authority for the domain name F.ISI .ARPA. The header field
specifies that the datagram is a response to a query with an ID of
2304. The question section is copied from the question section in
the query datagram.

The answer section is empty because tha name server did not have
any information that would answer the query. (Name servers may
happen to have cached information even if they are not
authoritative for the query.)

The best that this name server could do was to pass back
information for the domain ARPA. The authority section specifies
two name servers for the domain ARPA using the Internet family:
A.ISI.ARPA and F.ISI .ARPA. Note that it is merely a coincidence
that F.ISI .ARPA is a name server for ARPA as well as the subject
of the query.

In this case« the name server included in the additional records
section the Internet addresses for the two hosts specified in the
authority section. Such additional data is almost always
available.

Giv**n this response, the process that originally sent the query
might resend the query to tine name ser*sor on A. ISI.ARPA, with a
new ID of 2305.

Mockapetris [Page 16]

2-900

- ■■■**' ^'-:--

»J*. fr* ■-.* 'U'^^' Jwl.^'jW JU^S-1%

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

The name server on A.ISI.ARPA might return a response:

Header | OPCODE=RESPONSE, ID=2305 |
+ - --- +

Question | QTYPE=MAILA, QCLASS=IN, QNAME=F.ISI.ARPA j

Answer I F.ISI .ARPA MD IN F.ISI .ARPA |

F.ISI .ARPA MF IN A.ISI.ARPA |
+ - +

Authority | <empty> |
+ —+

Additional I F.ISI.ARPA A IN 10.2.0.52 |
I I
J A.ISI.ARPA A IN 10.1.0.22 |
+ - +

Tnis query was directed to an authoritative name server, and hence
the response includes an answer but no authority records. In this
case, the answer section specifies that mail for F.ISI.ARPA can
either be delivered to F.I SI. ARPA or forwarded to A.ISI.ARPA. The
additional records section specifies the Internet addresses of
these hosts.

The contents of inverse queries and responses

Inverse queries reverse the mappings performed by standard query
operations; while a standard query maps a domain name to a
resource, an inverse query maps a resource to a domain name. For
example, a standard query might bind a domain name to a host
address; the corresponding inverse query binds the host address to
a domain name.

Inverse query mappings are not guarantied to be unique or complete
because the domain system does not have any internal mechanism for
determining authority from resource records that parallels the
capability for determining authority as a function of domain name.
In general, resolvers will be configured to direct inverse queries
to a name server which is known to have the desired information.

Name servers are not required to support any form of inverse
queries; it is anticipated that most name servers will support
address to domain name conversions, but no other inverse mappings.
If a name servnr receives an inverse query that it does not
support, it returns an error response with the "Not Implemented"
error set in the header. While inverse query support is optional,
all naae servers must be at least able to return the error
response.

Mockapetris [Page 17]

2-901

kü r.k_" . \ - < V »*» •*, •*» •*. »', » •*, •*. **. *". •*» »
^*_* iL A. m. , *>,t.» Xm% J\ mM .«t JUt m* k XV IVL.1 _

.* .* '• -*» A '

*-^**^»1*/.1J

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

When a name server processes an inverse query, it either returns:

1. zero, one, or multiple domain names for the specified
resource

2. an error code indicating that the name server doesn't
support inverse mapping of the specified resource type.

Inverse query and response example

Hie overall structure of an inverse query for retrieving the
domain name that corresponds to Internet address 10.2.0.52 is
shown below:

+ ■ +

Header j 0PC0DE=IQUERY, ID=997 |
+ +

Question | <empty> |
+ ,... +

Answer (<anyname> A IN 10.2.0.52 |
+ +

Authority j <empty> |
+ +

Additional j <empty> |
+ . . +

This query asks for a question whose answer is the Internet style
address 10.2.0.52. Since the owner name is not known, any domain
name can be used as a placeholder (and is ignored) . The response
to this query might be:

+ . . +

Header | 0PC0DE=RESP0NSE. ID=997 |
+ -.....,...— ----«- +

Question | QT¥PE=A, QCLASS=IN, QNAME^F.ISI.AFPA |
+ ..-.„,....... +

Answer | F.ISI .ARPA A xN 10.2.0.52 |
+ -. +

Authority j <empty> I
+-_4.

Additional] <empty> |
+ _ ... +

Note that the QTYPE in a response to an inverse query is the same
as the TYPE field in the answer section of the inverse query.
Responses to inverse queries may contain multiple questions when
the inverse is not unique.

Mockapetris [Page 18]

2-902

.\\Y* .:

K rtti i-jAm^m-tiri
Avy.Vyvy
fci\VfcfrflWiifiri VhlViVl iVi'l U* ' '+~<r''-— y.y.y.y.y.y.Yiy. 11 ■ fci fca *■ +■-.

APPLICATION LEVEL: DOMAIN RFC 883

°*\

RFC 883 November 1983
Domain Names - Implementation and Specification

Completion queries and responses

Completion queries ask a name server to complete a partial domain
name and return a set of RRs whose domain names meet a specified
set of criteria for '''closeness" to the partial input. This type
of query can provide a local shorthand for domain names or command
completion similar to that in TOPS-20.

Implementation of completion query processing is optional in a
name server. However, a name server must return a "Not \j
Implemented" (NI) error response if it does not support ||
completion. ™

The arguments in a completion query specify: >\

1. A type in QTfPZ that specifies the type of the desired name. >;
The type is used to restrict the type of RRs which will match [>]
the partial input so that completion queries can be used for jl
mailbox names, host names, or any other type of RR in the ^i
domain system without concern for matches to the wrong type of ^v
resource. ^

v'V
2. A class in QCLASS which specifies the desired class of the RR. •*,:

3. A partial domain name that gives the input to be completed. j^
All returned RRs will begin with the partial string. The m
search process first looks for names which qualify under the b>
assumption that the partial string ends with a full label »%;
("whole label match"); if this search fails, the search £,
continues under the assumption that the last label in the /*
partial sting may be an incomplete label ("partial label *V
match") . For example, if the partial string "Smith" was used ||
in a mailbox completion, it would match Smith@ISI .ARPA in
preference to Smithsonian®!SI .ARPA.

.*.

The partial name is supplied by the user throuoji the user
program that is using domain services. For example, if the
user program is a mail handler, the string might be "Mockap"
which the user intends as a shorthand for the mailbox m
Mockapetris@ISI.ARPA; if the user program is TELNET, the user Ü
miojit specify "F" for F.ISI.ARPA. V

In order to make parsing of messages consistent, the partial V
name is supplied in domain name format (i.e. a sequence of »v
labels terminated with a zero length octet). However, the
trailing root label Is ignored during matching.

4. A target domain name which specifies the domain which is to be
examined tor matches. This name is specified in the additional

1

Mockapetris [Page 19] S

V
V

2-903

fc>':::&v>:&^^ ±&

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

section using a NULL RR. All returned names will end with the
target name.

The user program which constructs the query uses the target
name to restrict the search. For example, user programs
running at ISI might restrict completion to names that end in
I SI -ARPA; user programs running at MIT migfrit restrict
completion to the domain MIT.ARPA.

The target domain name is also used by the resolver to
determine the name server which should be used to process the
query. In general, queries should be directed to a name server
that is authoritative for the target domain name. User
programs which wish to provide completion for a more than one
target can issue multiple completion queries, each directed at
a different target. Selection of the target name and the
number of searches will depend on the goals of the user
program.

5. An opcode for the query. The two types of completion queries
are "Completion Query - Multiple", or CQUERYM, which asks for
all RRs which could complete the specified input, and
"Completion Query - Unique", or CQUERYU, which asks for the
"best" completion.

CQUERYM is used by user programs which want to know if
ambiguities exist or wants to do its own determinations as to
the best choice of the available candidates.

CQUERYU is used by user programs which either do not wish to
deal with multiple choices or are willing to use the closeness
criteria used by CQUERYU to select the best match.

When a name server receives either completion query, it first
looks for RRs that begin (on the left) with the same labels as are
found in QNAME (with the root deleted), and which match the QTYPE
and QCLASS. This search is called "whole label" matching. If one
or more hits are found the name server either returns all of the
hits (CQUERYM) or uses the closeness criteria described below to
eliminate all but one of the matches (CQUERYU).

If the whole label match fails to find any candidates, then the
name server assumes that the rightmost label of QNAME (after root
deletion) is not a complete label, and looks for candidates that
would match if characters were added (on the right) to the
rightmost label of QNAME. If one or more hits are found the name
server either returns all of the hits (CQUERYM) or uses the
closeness criteria described below to eliminate all but one of the
matches (CQUERYU).

Mockapetris [Page 20]

2-904

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

If a CQUERYU query encounters multiple hits, it uses the following
sequence of rules to discard multiple hits:

1. Discard candidates that have more labels than others. Since
all candidates start with the partial name and end with the
target name, this means that we select those entries that
require the fewest number of added labels. For example, a host
search with a target of "ISI.ARPA" and a partial name of "A"
will select A.ISI.ARPA in preference to A.IBM-PCS.ISI .ARPA.

2. If partial label matching was used, discard those labels which
required more characters to be added. For example, a mailbox
search for partial "X" and target "ISI.ARPA" would prefer
XX@ISI.ARPA to XYZ2Y@ISI.ARPA.

If multiple hits are still present, return all hits.

Completion query mappings are not guaranteed to be unique or
complete because the" domain system does not have any internal
mechanism for determining authority from a partial domain name
that parallels the capability for determining authority as a
function of a complete domain name. In general, resolvers will be
configured to direct completion queries to a name server which is
known to have the desired information.

When a name server processes a completion query, it either
returns:

1. An answer giving zero, one, or more possible completions.

2. an error response with Not Implemented (NI) set.

Mockapetris [Page 21]

2-905

^^Jr'v^O^^V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

Completion query and response example

Suppose that the completion service was usea by a TELNET program
to allow a user to specify a partial domain name for the desired
host. Thus a user might ask to be connected to "B". Assuming
that the query originated from an I SI machine, the query might
look like:

+ +

Header j OPCODE=CQUERYU, ID=409 |
+ +

Question j QTYPE=A, QCLAS3=IN, QNAME=B |
+ +

Answer | <empty> |
+ +

Authority j <empty> I

Additional | ISI .ARPA NULL IN |
+ +

The partial name in the query is "B", the mappings of interest are
ARPA Internet address records, and the target domain is ISI.ARPA.
Note that NULL is a special type of NULL resource record that is
used as a placeholder and has no significance; NULL RRs obey the
standard format but have no other function.

The response to this completion query might be:

+ ... „ — .„„. +

Header | OPCODE=RESPONSE, ID=409 |
♦ __.. »„.. . - — +

Question | QTYPE=A, QCLASS^IN. QNAME=B |

Answer | B.ISI.ARPA A IN 10.3.0.52 |
+ „„ +

Authority | <empty> |
♦ +

Additional | ISI .ARPA NULL IN |
+ — .- +

This response has completed B to mean B.ISI.ARPA.

Mockapetris [Page 22}

2-906 V*

%».»^.?Lt.-^.VrV • JV ,

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

Another query might be:

+ - - +
Header | OPCODE=CQUERYM, ID=410 I

+ +

Question 1 QTYPi^A, QCLASS=IN, QNAME=B |
+-- - - +

Answer j <empty> |
+ - - +

Authority | <empty> I
+ - ♦

Additional | ARPA NULL IN |
♦ - *

This query is similar to the previous one, but specifies a target
of ARPA rather than ISI.ARPA. It also allows multiple matches.
In this case the same name server might return:

+ +

Header | OPCODE=RESPONSE, ID=41Q |
+ +

Question | QTYPE=A, QCLASS=IN, QNAME=B |
♦ -■ ♦

Answer | B.ISI .ARPA A IN 10.3.0.52 |
I ' I
| B.BBN.ARPA A IN 10.0.0.49 |
i - i
j B.BBNCC.ARPA A IN 8.1.0.2 |
+ +

Authority | <enpty> |
♦ ♦

Additional | ARPA NULL IN |
^ ♦

This response contains three answers, B.ISI .ARPA, B.BBN.ARPA, and
BBBNCC.ARPA.

Mockapetris [Page 23]

%W

^:»^s>>:>>>: &±&££L&^

»%J

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

Recursive Name Service

Recursive service is an optional feature of name servers.

When a name server receives a query regarding a part of the name
space which is not in one of the name server's zones, the standard
response is a message that refers the requestor to another name
server. By iterating on these referrals, the requestor eventually
is directed to a name server that has the required information.

Name servers may also implement recursive service. In this type
of service, a name server either answers immediately based on
local zone information, or pursues the query for the requestor and
returns the eventual result, back to the original requestor.

A name server that supports recursive service sets the Recursion
Available (RA) bit in all responses it generates. A requestor
asks for recursive service by setting the Recursion Desired (RD)
bit in queries. In some situations where recursive service is the
only path to the desired information (see below), the name server
may go recursive even if RD is zero.

I f a query requests recursion (RD set), but the name server does
not support recursion, and the query needs recursive service for
an answer, the name server returns a "Not Implemented" (NI) error
code. If the query can be answered without recursion since the
name server is authoritative for the query, it ignores the RD bit.

Because of the difficulty in selecting appropriate timeouts and
error handling, recursive service is best suited to virtual
circuits, although it is allowed for datagrams.

Recursive service is valuable in several special situations:

In a system of small personal computers clustered around one or
more large hosts supporting name servers, the recursive
approach minimizes the amount of code in the resolvers In the
personal computers. Such a design moves complexity out of the
resolver into the name server, and may be appropriate for such
systems.

Name servers on the boundaries of different networks may wish
to offer recursive service to create connectivity between
different networks. Such name servers may wish to provide
recursive service regardless of the setting of RD.

Name servers that translate between domain name service and
some other name service may wish to adopt the recursive style.
Implicit recursion may he valuable here as well.

Mockanetris [Page 24]

2-008

• - a . a - * *

APPLICATION LEVEL: DOMAIN RFC 883

RTC 883 November 1983
Domain Names - Implementation and Specification

These concepts are still under development.

i

I
•

u^

m

K',

I
Mockapetris [Pa9e 25j

2-909

■*■'■ '** '-'. •*•■;*.'./-' r.'A'iA'\'A''
„V *.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

Header section format

***** WARNING *****

The following format is preliminary and is
included for purposes of explanation only. In
particular, the size and position of the
OPCODE, RCODE fields and the number and
meaning of the single bit fields are subject
to change.

!
i

The header contains the following fields:

1 1 1 1 I 1
0123456789012345

♦-•♦--♦--■♦-■-"♦•••♦<--♦--♦-'-♦»■-♦-—•♦-—♦-'-♦--♦-■-♦--♦--♦

ID

QRj Opcode |AA|TC|RD|RA| | RCODE
+ - , 4 • - + - - + - -

QDCOUKT
■ -♦--♦*--♦--♦--♦

ANC0ÜNT
♦ -- + _.♦__ + ,_♦--♦,.♦--♦--♦..♦«-♦--♦-.-♦--♦--♦..,.♦--♦

NSCOUNT

♦--♦--♦--♦- .♦--♦--4.- -♦--♦

.♦--♦--♦--♦- ■♦--♦--♦•

ARCOUNT

where:

ID

OPCODE

A 16 bit identifier assigned by the program that
generates any kind of query. This identifier is copied
into all replies and can be used by the requestor to
relate replies to outstanding questions.

A one bit field that specifies whether this message is a
query (C), or a response (1).

A four bit field that specifies kind of query in this
message. This value is set by the originator of a query
and copied into the response. The values are:

0 a standard query (QUERY)

Mockapetrls [Page 26]

2-910

fc^v>&:v£to>:^ ^^^^^vi^iw^ fcV»V..\ **.v* ».* *.■- ^ »_*. ■ '«■'■• .**^*'J -A '~M '-^ "-* 'J '-.: "-» -• "j'l^J^J

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

1 an inverse query (IQUERY)

2 an completion query allowing multiple
answers (CQUERYM)

2 an completion query requesting a single
answer (CQUERYU)

4-15 reserved for future use

AA - Authoritative Answer - this bit is valid in responses,
and specifies that the responding name server
is an authority for the domain name in the
corresponding query.

TC - Truncation - specifies that this message was truncated
due to length greater than 512 characters.
This bit is valid in datagram messages but not
in messages sent over virtual circuits.

RD - Recursion Desired - this bit may be set in a query and
is copied into the response. If RD is set, it
directs the name server to pursue the query
recursively. Recursive query support is
optional.

RA - Recursion Available - this be is set or cleared in a
response, and denotes whether recursive query
support is available in the name server.

RCODE - Response code - this 4 bit field is set as part of
responses. The values have the following
interpretation:

0 No error condition

1 Format error - The name server was unable
to interpret the query.

2 Server failure - The name server was unable
to process this query due to a problem with
the name server.

3 Name Error - Meaningful only for responses
from an authoritative name server, this
code signifies that the domain name
referenced in the query does not exist.

Mockapetris [Page 27]

2-911

i»j.~r.\. --. v, OafcaJUlM V.Y,Y. ■ ■>'■ rfii £m l"i ^^i ■ tf.Y'.VY \J.'^:-». V- \».•-» -,-. *.: _'^J. .»_» -.WA.»,

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

4 Not Implemented - The name server does not
support the requested kind of query.

5 Refused - The name server refuses to
perform the specified operation for policy
reasons. For example, a name server may
not wish to provide the information to the
particular requestor, or a name server may
not wish to perform a particular operation
(e.g. zone transfer) for particular data.

6-15 Reserved for future use.

QDCOUNT - an unsigned 16 bit integer specifying the number of
entries in the question section.

ANCOUNT - an unsigned 16 bit integer specifying the number of
resource records in the answer section.

NSCOUNT - an unsigned 16 bit integer specifying the number of name
server resource records in the authority records
section.

ARCOUNT - an unsigned 16 bit integer specifying the number of
resource records in the additional records section.

Mockapetris [Page 28]

2-912

„ ... •. -t jfa.' - „'-" - * ■ ■ •-*-*w*. '-\ ■»>•, T»\A.V ; \J.z-.* i.;..».*. i*.'.' •.'. A»,^ i* fc^äh^jiBü '■*"- '-'^'^'-^v'^' v\•..•..!-•. ».Ai

A.', ". *.

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

Question section format

The question section is used in all kinds of queries other than
inverse queries. In responses to inverse queries, this section
may contain multiple entries; for all other responses it contains
a single entry. Each entry has the following format:

111111
0123456789012345

+_-+__+--+_-+--+--+--+--+--+— + -_+--+--+-- + -- + --+

i i
/ QNAME /

/ /

| QTYPE I
+_ -+--+_-+-_+__+_-+__+_-+—+_-+--+_..+_..+--.+--+-- +

| QCLASS |

where:

QNAME

QTYPE -

QCLASS -

a variable number of octets that specify a domain name.
This field uses the compressed domain name format
described in the next section of this memc. This field
can be used to derive a text string for the domain name.
Note that this field may be an odd number of octets; no
padding is used.

a two octet code which specifies the type of the query.
The values for this field include all codes valid for a
TYPE field, together with some more general codes which
can match more than one type of RR. For example, QTYPE
miojit be A and only match type A RBs, or might be MAILA,
which matches MF and MD type RRs. The values for this
field are listed in Appendix 2.

a two octet code that specifies the class of the query.
For example, the QCLASS field is IN for the ARPA
Internet, CS for the CSNET, etc. The numerical values
are defined in Appendix 2.

b

1 Mockapetris [Page 29]

[A 2-913

K\
r„- v V -•V*-"* " V V V'-' '•" '•' *.* *. -* V V V ,■ .• ' " '" •", •' '"

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

Resource record format

The answer, authority, and additional sections all share the same
format: a variable number of resource records, where the number of
records is specified in the corresponding count field in the
header. Each resource record has the following format:

111111
0123456789012345

+--+--+--+--+-- + --■*-- + --+-- + -•■-+--+-- + -- + --+--+-- +

i i
/ /
/ NAME /
I I
+ -- + -- + -- + -- + - - + -._ + -.- + -.- + + __ + _- + _.. + .. - + __ + -- + -_ +

| TYPE |
+-.-+-.- + --^.-_+-_+--+-- + -_+.._+--+--+_- + __+_ _+--+-- +

| CLASS |

| TTL |
+ . _ + __ + -_ + __ + __ + __ + .-_ 4. _ ~.j,..- + ~- + ,„4.-- + ,- + -- + -- + -- +

| RDLENC7TH |
+ --«►--+--+--+--+--.+--.►-.-.+—+--+--+--+--+-- + --+-- j
/ RDATA /
/ /
+ -.. + _- + -- + -- 4 + -- + -- + -- + ,.--4.-- + -- + -- + -- + -- + --♦

where:

NAME - a compressed domain name to which this resource record
pertains.

TYPE - two octets containing one of the RR type codes defined
in Appendix 2. This field specifies the meaning of the
data in the RDATA field.

CLASS - two octets which specify the class of the data in the
RDATA field.

TTL - a 16 bit unsigned integer that specifies the time
interval (in seconds) that the resource record may be
cached before it should be discarded. Zero values are
interpreted to mean that the RR can only be used for the
transaction in progress, and should not be cached. For
example, SOA records are always distributed with a zero
TTL to prohibit caching. Zero values can also be used
for extremely volatile data.

Mockapetris [Page 30]

2-914

'' --'•-«>-»"•-»*•-■'•-»'*-■■ *• -% «*»-> •■■»•-.»>...'-^_.v.»'--»'--.N ■'J% /'» J.' /»>>^V''Vv.%'>'k\.'wV«Vr^ UAVk \\\«*\s k A-A-..1 ^y»"A*^W.:/t^*-3A3»y.

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

RDLENGIH- an unsigned 16 bit integer that specifies the length in
octets of the RDATA field.

RDATA - a variable length string of octets that describes the
resource. The format of this information varies
according to the TYPE and CLASS of the resource record.
For example, the if the TYPE is A and the CLASS is IN,
the RDATA field is a 4 octet ARPA Internet address.

Formats for particular resource records are shown in Appendicies 2
and 3.

Domain name representation and compression

Domain names messages are expressed in terms of a sequence of
labels. Each label is represented as a one octet length field
followed by that number of octets. Since every domain name ends
with the null label of the root, a compressed domain name is
terminated by a length byte of zero. The high order two bits of
the length field must be zero, and the remaining six bits of the
length field limit the label to 63 octets or less.

To simplify implementations, the total length of label octets and
label length octets that make up a domain name is restricted to
255 octets or less. Since the trailing root label and its dot are
not printed, printed domain name» are 254 octets or less.

Although labels can contain any 8 bit values in octets that make
up a label, it is strongly recommended that labels follow the
syntax described in Appendix 1 of this memo, which is compatible
with existing host naming conventions. Name servers and resolvers
must compare labels in a case-insensitive manner, i.e. A=a, and
hence all character strings must be ASCII with zero parity.
Non-alphabetic codes must match exactly.

Whenever possible, name servers and resolvers must preserve all 8
bits of domain names they process. When a name ser^/mr is given
data for the same name under two different case usages, this
preservation is not always possible. For example, if a name
server is given data for ISI.ARPA and isi.arpa, it should create a
single node, not two, and hence will preserve a single casing of
the label. Systems with case sensitivity should take special
precautions to insure that the domain data for the system is
created with consistent case.

In order to reduce the amount of space used by repetitive domain
names, the sequence of octets that defines a domain name may be
terminated by a pointer to the length octet of a previously
specified label string. The label string that the pointer

Mockapetris [Page 31]

2-015

> J» _Jfc _* _J* _* J!» _*. _• _» _* Jm jJl aJi *J» -JE jJf - — * jfc* ^tL ^A. **P . _* ^££*£M£**!+£J££±I "JLLÄIJL ' ■»",dtsiA> *l.i£jt~m*?*d~*':jk*' .*'.'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 383 November 1983
Domain Names - Implementation and Specification

specifies is appended to the already specified label string.
YK% Exact duplication of a previous label string can be done with a
1 single pointer. Multiple levels are allowed.

K Pointers can only be used in positions in the message where the
P format is not class specific. If this were not the case, a name
r» server that was handling a RR for another class could make
K- erroneous copies of RRs. As yet, there are no such cases, but
t they may occur in future RDATA formats.

i If a domain name is contained in a part of the message subject to
a length field (such as the RDATA section of an RR), and
compression is used, the length of the compressed name is used in
the length calculation, rather than the length of the expanded
name.

Pointers are represented as a two octet field in which the high
order 2 bits are ones, and the low order 14 bits specify an offset
from the start of the message. The 01 and 10 values of the high
order bits are reserved for future use and should not be used.

Programs are free to avoid using pointers in datagrams they
generate, although this will reduce datagram capacity. However
all programs are required to understand arriving messages that
contain pointers.

For example, a datagram might need to use the domain names
c.ISI.ARPA, FOO.F.ISI.ARPA, ARPA, and the root. Ignoring the
other fields of the message, these domain names might be
represented as:

i

Mockapetri* [Page 32]

B 2-916

APPLICATION LEVEL: DOMAIN RFC 883

££C 883 November 1983
Domain Names - Implementation and Specification

+—+—+--+—+—+—+—+--+--+—+--+--+—+—+_-+--+
20 i 1 | F |

22 | 3 | I I
+ -_+„- + -- + -_+-- + --+-- + ---*.--+-- + -.- + --+--+-- + -- + --+

24 j S | I !

26 | 4 | A |
+_ _+_- + _-+_ _+_-+_..+-..-.+--.+-_+-- + ---».--+--+-- + -- + - -+

28 | R | P !

30 | A | 0 |
+ -_ + -_ + _-. + -- + -- + -- + -- + -- + -- + -- + -- + -- + --+-- + -- + -- +

40 | 3 ! F |

42 j 0 | 0 |
+-- + -_+--+--+-- + --+--+--+--+--+--+-- + --- + --+--+-'-+

44 | 1 1| 20 |

+_..+__+_-+-_+-- + -_+--+--+-- + --+--+-- + --.+--+--+-- +

64 1 1 1| 26 I
+,„+__+__+-_+--+__+__+--+--+--+--+--+--+--+--+--+

♦ --+-_+__+-.-+-..+- -+---f-—f--+--♦--+--♦--+--+--+--+
92 | 0 | I

+ .-+--+--+--♦--♦--+--+-■-♦--♦•---♦■-- + --+--+-- + -- + -- +

The domain name for F.ISI.ARPA is shown at offset 20. The domain
name FOO.F.ISI .ARPA is shown at offset 40; this definition uses a
pointer tc concatenate a label for F00 to the previously defined
F.ISI.ARPA. The domain name ARPA is defined at offset 64 using a
pointer to the ARPA component of the name F.ISI.ARPA at 20; note
that this reference relies on ARPA being the last labe: in the
string at 20. The root domain name is defined by a single octet
of zeros at 92; the root domain name has no labels.

Organization of the Shared database

While name server implementations are free to use any internal
data structures they choose, the suggested structure consists of
several separate trees. Each tree has structure corresponding to
the domain name space, with PRs attached to nodes and leaves.
Each zone of authoritative data has a separate tree, and one tree
holds all non-authoritative data. All of the trees corresponding
to zones are managed identically, but the non-authoritative or
cache tree has different management procedures.

Mockapetris [Page 33]

2-917

jr.- m

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

Data stored in the database can be kept in whatever form is
convenient for the name server, so long as it can be transformed
back into the format needed for messages. In particular, the
database will probably use structure in place of expanded domain
names, and will also convert many of the time intervals used in
the domain systems to absolute local times.

Each tree corresponding to a zone has complete information for a
"prunedM subtree of the domain space. The top node of a zone has
a SOA record that marks the start of the zone. The bottom edge of
the zone is delimited by nodes containing NS records signifying
delegation of authority to other zones, or by leaves of the domain
tree. When a name server contains abutting zones, one tree will
have a bottom node containing a NS record, and the other tree will
begin with a tree location containing a SOA record.

Note that there is one special case that requires consideration
when a name server is implemented. A node that contains a SOA RR
denoting a start of zone will also have NS records that identify
the name servers that are expected to have a copy of the zone.
Thus a name server will usually find itself (and possibly other
redundant name servers) referred to in NS records occupying the
same position in the tree as SOA records. The solution to this
problem is to never interpret a NS record as delimiting a zone
started by a SOA at the same point in the tree. (The sample
programs in this memo deal with this problem by processing SOA
records only after NS records have been processed.)

Zones may also overlap a particular part of the name space when
they are of different classes.

Other than the abutting and separate class cases, trees are always
expected to be disjoint. Overlapping zones are regarded as a
non-fatal error. The scheme described in this memo avoids the
overlap issue by maintaining separate trees; other designs must
take the appropriate measures to defend against possible overlap.

Non-authoritative data is maintained in a separate tree. This
tree is unlike the zone trees in that it may have "holes". Each
RR in the cache tree has its own TTL that is separately managed.
The data in this tree is never used if authoritative data is
available from a zone tree; this avoids potential problems due to
cached data that conflicts with authoritative data.

The shared database will also contain data structures to support
the processing of inverse queries and completion queries if the
local system supports these optional features. Although many
schemes are possible, this memo describes a scheme that is based
on tables of pointers that Invert the database according to key.

Mockapetris [Page 34]

2-0 IS

/o - y -W- o* *. v"'••*-•" -u"" v-v
^AJL^J£^JL^3*I1A1I<£A1LJIL^^ »'^'.,jV>.j'ej>-j',a''A>-t>,j',.i*,->^''-«SV.

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

Each kind of retrieval has a separate set of tables, with one
table per zone. When a zone is updated, these tables must also be
updated. The contents of these tables are discussed in the
"Inverse query processing" and "Completion query processing"
sections of this memo.

The database implementation described here includes two locks that
are used to control concurrent access and modification of the
database by name server query processing, name server maintenance
operations, and resolver access:

The first lock ("main lock") controls access to all of the
trees. Multiple concurrent reads are allowed, but write access
can only be acquired by a single process. Read and write
access are mutually exclusive. Resolvers and name server
processes that answer queries acquire this lock in read mode,
and unlock upon completion of the current message. This lock
is acquired in write mode by a name server maintenance process
when it is about to change data in the shared database. The
actual update procedures are described under "NAME SERVER
MAINTENANCE" but are designed to be brief.

The second lock ("cache queue lock") controls access to the
cache queue, this queue is used by a resolver that wishes to
add information to the cache tree. The resolver acquires this
lock, then places the RRs to be cached into the queue. The
name server maintenance procedure periodically acquires this
lock and adds the queue information to the cache. The
rationale for this procedure is that it allows the resolver to
operate with read-only access to the shared database, and
allows the update process to batch cache additions and the
associated costs for inversion calculations. TTie name server
maintenance procedure must take appropriate precautions to
avoid problems with data already in the cache, inversions, etc.

This organization solves several difficulties:

When searching the domain space for the answer to a query, a
name server can restrict its search ftr authoritative data to
that tree that matches the most labels on the right side of the
domain name of interest.

Since updates to a zone must be atomic with respect to
searches, maintenance operations can simply acquire the main
lock, insert a new copy of a particular zone without disturbing
other zones, and then release the storage used by the old copy.
Assuming a central table pointing to valid zone trees, this
operation can be a simple pointer swap.

Mockapetris [Page 35]

2-919

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

TTL management of zones can be performed using the SOA record
for the zone. This avoids potential difficulties if individual
RRs in a zone could be timed out separately. This issue is
discussed further in the maintenance section.

Query processing

The following algorithm outlines processing that takes place at a
name server when a query arrives:

1. Search the list of zones to find zones which have the same
class as the QCLASS field in the query and have a top domain
name that matches the right end of the QNAME field. If there
are none, go to step 2. If there are more than one, pick the
zone that has the longest match and go to step 3.

2. Since the zone search failed, the only possible RRs are
contained in the non-authoritative tree. Search the cache tree
for the NS record that has the same class as the QCLASS field
and the largest right end match for domain name. Add the NS
record or records to the authority section of the response. If
the cache tree has RRs that are pertinent to the question
(domain names match, classes agree, not timed-out, and the type
field is relevant to the QTYPE), copy these RRs into the answer
section of the response. The name server may also search the
cache queue. Go to step 4.

3. Since this zone is the best match, the zone in which QNAME
resides is either this zone or a zone to which this zone will
directly or indirectly delegate authority. Search down the
tree looking for a NS RR or the node specified by QNAME.

If the node exists and has no NS record, copy the relevant
RRs to the answer section of the response and go to step 4.

If a NS RR is found, either matching a part or all of QNAME,
then QNAME is in a delegated zone outside of this zone. If
so. copy the NS record or records into the authority section
of the response, and search the remainder of the zone for art
A type record corresponding to the NS reference. If the A
record Is found, add it to the additional section. Co to
step 2.

If the node is not found and a NS is not found, there is no
such name; set the Name error bit in the response and exit.

4. When this step is reached, the answer and authority sections
are complete. What remains is to complete the additional
section. This procedure is only possible if the name server

Mockapetrls [Page 361

2-020

v_v>.-:

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

fr:

knows the data formats implied by the class of records in the
answer and authority sections. Hence this procedure is class
dependent. Appendix 3 discusses this procedure for Internet
class data.

While this algorithm deals with typical queries and databases,
several additions are required that will depend on the database
supported by the name server:

QCLASS=*

Special procedures are required when the QCLASS of the query is
"*". If the database contains several classes of data, the
query processing steps above are performed separately for each
CLASS, and the results are merged into a single response. The
name error condition is not meaningful for a QCLASS** query.
If the requestor wants this information, it must test each
class independently.

If the database is limited to data of a particular class, this
operation can be performed by simply reseting the authoritative
bit in the response, and performing the cpiery as if QCLASS was
the class used in the database.

* labels in database RRs

Some zones will contain default RRs that use * to match in
cases where the search fails for a particular domain name. If
the database contains these records then a failure must be
retried using * in place of one or more labels of the search
key. The procedure is to replace labels from the left with
"*"s looking for a match until either all labels have been
replaced, or a match is found. Note that these records can
never be the result of caching, so a name smrvar can omit this
processing for zone» that don t contain RRs with * in labels,
or can omit this processing entirely if * rmver appears in
local authoritative data.

Inverse query processing

Name servers that support inverse queries can support these
operations through exhaustive searches of their databases, but
this becomes impractical as the size of the database increases.
An alternative approach is to invert the database according to the
search key.

For name servers that support multiple zones and a large amount of
data, the recommended approach ts separate Inversions for each

Mockapetris [Page 37]

2-92!

-A-..«■*&..■.,»,,, JB - i.V^>iJt,V.it-V ^•^' OA.VVU';-. «•,-.'« ■•.-•«•. »\ r.v.f. »*>.»-*>»•. 1-A". ^.t.tr.^-^^^Ji

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

zone. When a particular zone is changed during a refresh, only
its inversions need to be redone.

Support for transfer of this type of Inversion may be included in
future versions of the domain system, but is not supported in this
version.

[v

r>

Completion query processing

Completion query processing shares many of the same problems in
data structure design as are found in inverse queries, but is
different due to the expected nigh rate of use of top level labels
(ie., ARPA, CSNET) . A name server that wishes to be efficient in
its use of memory may well choose to invert only occurrences of
ARPA, etc. that are below the top level, and use a search for the
rare case that top level labels are used to constrai:* a
completion.

K

I
*•/

V

k*

I Mockapetris [Page 38]

2- Q22

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

NAME SERVER MAINTENANCE

Introduction

Name servers perform maintenance operations on their databases to
insure that the data they distribute is accurate and timely. The
amount and complexity of the maintenance operations that a name
server must perform are related to the size, change rate, and
complexity of the database that the name server manages.

Maintenance operations are fundamentally different for
authoritative and non-authoritative data. A name server actively
attempts to insure the accuracy ard timeliness of authoritative
data by refreshing the data from master copies. Non-authoritative
data is merely purged when its time-to-live expires; the name
server does not attempt to refresh it.

Although the refreshing scheme is fairly simple to implement, it
is somewhat less powerful than schemes used in other distributed
database systems. In particular, an update to the master does not
immediately update copies, and should be viewed as gradually
percolating thou^i the distributed database. This is adequate for
the vast majority of applications. In situations where timliness
is critical, the master name server can prohibit caching of copies
or assign short timeouts to copies.

Conceptual model of maintenance operations

The vast majority of information in the domain system is derived
from master files scattered among hosts that implement name
servers; some name servers will have no master files, other name
servers will have one or more master files. Each master file
contains the master data for a single zone of authority rather
than data for the whole domain name space. The administrator of a
particular zone controls that zone by updating its master file.

Master files and zone copies from remote servers may include RRs
that are outside of the zone of authority when a NS record
delegates authority to a domain name that is a descendant of the
domain name at which authority is delegated. These forward
references are a problem because there is no reasonable method to
guarantee that the A type records for the delegatee are available
onless they can somehow be attached to the NS records.

For example, suppose the ARPA zone delegates authority at
HIT. ARPA. and states that the name server is on AI.MIT.ARPA. If a
resolver gets the NS record but not the A type record for
AI .MIT.ARPA, it ml#it try to ask the MIT name server for the
address of AX.MIT.ARPA.

Mockapetris 'Page 39]

2-923

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

The solution is to allow type A records that are outside of the
zone of authority to be copied with the zone. While these records
won't be found in a search for the A type record itself, they can
be protected by the zone refreshing system, and will be passed
back whenever the name server passes back a referral to the
corresponding NS record. If a* query is received for the A record,
the name server will pass back a referral to the name server with
the A record in the additional section, rather than answer
section.

The only exception to the use of master files is a small amount of
data stored in boot files. Boot file data is used by name servers
to provide enough resource records to allow zones to be imported
from foreign servers (e.g. the address of the server), and to
establish the name and address of root servers. Boot file records
establish the initial contents of the cache tree, and hence can be
overridden by later loads of authoritative data.

The data in a master file first becomes available to users of the
domain name system when it is loaded by the corresponding name
server. By definition, data from a master file is authoritative.

Other name servers which wish to be authoritative for a particular
zone do so by transferring a copy of the zone from the name server
which holds the master copy using a virtual circuit. These copies
include parameters which specify the conditions under which the
data in the copy is authoritative. In the most common case, the
conditions specify a refresh interval and policies to be followed
when the refresh operation cannot be performed.

A name server may acquire multiple zones from different name
servers and master files, but the name server must maintain each
zone separately from others and from non-authoritative data.

When the refresh interval for a particular zone copy expires, the
name server holding th** copy must consult the name server that
holds the master copy. If the data in the zone has not changed,
the master name server instructs the copy name server to reset the
refresh interval. If the data has changed, the master passes a
new copy of the zone and its associated conditions to the copy
name server. Following either of these transactions, the copy
name server begins a new refresh Interval.

Copy name servers must also deal with error conditions under which
they are unable to communicate *ith the name server that holds the
master copy of a particular zone. The policies that a copy name
server uses are determined by other parameters In the conditions
distributed with every copy. The conditions Include a retry
Interval and a maximum holding time. When a copy name server Is

Ntockapetris Tag» 40]

'2-02-1

'Jk * > Ik :^,J'.A>'-* ^... ,i „» , '„■■■„**'. aN »>. fcj „.' .» /„m'l.M Ik* -„ Jim': m, " »„8 »*- k tt'f A.t m t mU ~m.*S"Si^m.J*\\ ~ »Jf -"'^V^^V»*- .Vt.'V.l'.VA » 1 „*» -

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

unable to establish communications with a master or is unable to
complete the refresh transaction, it must retry the refresh
operation at the rate specified by the retry interval. This retry
interval will usually be substantially shorter than the refresh
interval. Retries continue until the maximum holding time is
reached. At that time the copy name server must assume that its
copy of the data for the zone in question is no longer
authoritative.

Queries must be processed while maintenance operations are in
progress because a zone transfer can take a long time. However,
to avoid problems caused by access to partial databases, the
maintenance operations create new copies of data rather than
directly modifying the old copies. When the new copy is complete,
the maintenance process locks out queries for a short time using
the main lock, and switches pointers to replace the old data with
the new. After the pointers are swapped, the maintenance process
unlocks the main lock and reclaims the storage used by the old
copy.

Name server data structures and top level logic

The name server must multiplex its attention between multiple
activities. For example, a name server should be able to answer
queries while it is also performing refresh activities for a
particular zone. While it is possible to design a name server
that devotes a separate process to each query and refresh activity
in progress, th3 model described in this memo is based on the
assumption that there is a single process performing all
maintenance operations, and one or more processes devoted to
handling queries. The model also assumes the existence of shared
memory for several control structures, the domain database, locks,
etc.

The model name server uses the following files and shared data
structures:

1. A configuration file that describes the master and boot
files which the name server should load and the zones that
the name server should attempt to load from foreign name
servers. This file establishes the initial contents of the
status table.

2. Domain data files that contain master and boot data to be
loaded.

3. A status table that is derived from the configuration file.
Each entry in this table describes a source of data. Each
entry has a zone number. The zone number is zero for

Mockapetris [Page 41]

2-925

>.*-^i^>l^:*I-*:Vjy^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

non-authoritative sources; authoritative sources are
assigned separate non-zero numbers.

4. The shared database that holds the domain data. This
database is assumed to be organized in some sort of tree
structure paralleling the domain name space, with a list of
resource records attached to each node and leaf in the tree.
The elements of the resource record list need not contain
the exact data present in the corresponding output format,
but must contain data sufficient to create the output
format; for example, these records need not contain the
domain name that is associated with the resource because
that name can be derived from the tree structure. Each
resource record also internal data that the name server uses
to organize its data.

5. Inversion data structures that allow the name server to
process inverse queries and completion queries. Although
many structures could be used, the implementation described
in this memo supposes that there is one array for every
inversion that the name server can handle. Each array
contains a list of pointers to resource records such that
the order of the inverted quantities is sorted.

6. The main and cache queue locks

7. The cache queue

The maintenance process begins by loading the status table from
the configuration file. It then periodically checks each entry,
to see if its refresh interval has elapsed. If not, it goes on to
the next entry. If so, it performs different operations depending
on the entry:

If the entry is for zone 0, or the cache tree, the maintenance
process checks to see if additions or deletions are required.
Additions are acquired from the cache queue using the cache
queue lock. Deletions are detected using TTL checks. If any
changes are required, the maintenance process recalculates
inversion data structures and then alters the cache tree under
the protection of the main lock. Whenever the maintenance
process modifies the cache tree, it resets the refresh interval
to the minimum of the contained TTLs and the desired time
interval for cache additions.

If the entry is not zone 0, and the entry refers to a local
file, the maintenance process checks to see if the file has
been modified since its last load. If so the file is reloaded
using the procedures specified under "Name server file

Mockapetris [Page 42]

2-926

V *.* ~r *j* %* *«*""•" V V "-* *«* ".* "„* '.• * ••*",.*' *^*** -" y* - ' •"%**"* ■"* " * •"*.■" * " •"' ■>"" *"" *** - ' * " * " • ** •"*> •"* * '•""" * •*' • * »^ • "

„*%

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

loading". The refresh interval is reset to that specified in
the SOA record if the file is a master file.

If the entry is for a remote master file, the maintenance
process checks for a new version using the procedure described
in "Names server remote zone transfer".

Name server file loading

Master files are kept in text form for ease of editing by system
maintainers. These files are not exchanged by name servers; name
servers use the standard message format when transferring zones.

Organizations that want to have a domain, but do not want to run a
name server, can use these files to supply a domain definition to
another organization that will run a name server for them. For
example, if organization X wants a domain but not a name server,
it can find another organization, Y, that has a name server and is
willing to provide service for X. Organization X defines domain X
via the master file format and ships a copy of the master file to
organization Y via mail, FTP, or some other method. A system
administrator at Y configures Y's name server to read in X's file
and hence support the X domain. X can maintain the master file
using a text editor and send new versions to Y for installation.

These files have a simple line oriented format, with one RR per
line. Fields are separated by any combination of blanks and tab
characters. Tabs are treated the same as spaces; in the following
discussion the term "blank" means either a tab or a blank. A line
can be either blank (and ignored), a RR, or a $INCLUDE line.

If a RR line starts with a domain name, that domain name is used
to specify the location in the domain space for the record, i.e.
the owner. If a RR line starts with a blank, it is loaded into
the location specified by the most recent location specifier.

The location specifiers are assumed to be relative to some origin
that is provided by the user of a file unless the location
specifier contains the root label. This provides a convenient
shorthand notation, and can also be used to prevent errors in
master files from propagating into other zones. This feature is
particularly useful for master files imported from other sites.

An include line begins with $ INCLUDE, starting at the first line
position, and is followed by a local file name and an optional
offset modifier. The filename follows the appropriate local
conventions. TTi« offset is one or more labels that are added to
the offset in use for the file that contained the $ INCLUDE. If
the offset is omitted, the included file is loaded using the

Mockapetris [Page 43]

2-927

t _».-.»-,»,. > -v-^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

offset of the file that contained the $ INCLUDE command. For
example, a file being loaded at offset ARPA might contain the
following lines:

$INCLUDE <subsys>isi.data ISI
$INCLUDE <subsys>addresses.data

The first line would be interpreted to direct loading of the file
<subsys>isi.data at offset ISI .ARPA. The second line would be
interpreted as a request to load data at offset ARPA.

Note that $ INCLUDE commands do not cause data to be loaded into a
different zone or tree; they are simply ways to allow data for a
given zone to be organized in separate files. For example,
mailbox data might be kept separately from host data using this
mechanism.

Resource records are entered as a sequence of fields corresponding
to the owner name, TTL, CLASS, TYPE and RDATA components. (Note
that this order is different from the order used in examples and
the order used in the actual RRs; the given order allows easier
parsing and defaulting.)

The owner name is derived from the location specifier.

The TTL field is optional, and is expressed as a decimal
number. If omitted TTL defaults to zero.

The CLASS field is also optional; if omitted the CLASS defaults
to the most recent value of the CLASS field in a previous RR.

The RDATA fields depend on the CLASS and TYPE of the RR. In
general, the fields that make up RDATA are expressed as decimal
numbers or as domain names. Some exceptions exist, and are
documented in the RDATA definitions in Appendicies 2 and 3 of
this memo.

Because CLASS and TYPE fields don't contain any common
identifiers, and because CLASS and TYPE fields are never decimal
numbers, the parse is always unique.

Because these files are text files several special encodings are
necessary to allow arbitrary data to be loaded. In particular:

A free standing dot is used to refer to the current domain
name.

@ A free standing @ is used to denote the current origin.

Mockapetris [Page 44]

2-92S

APPLICATION LEVEL: DOMAIN RFC 883

L<

RFC 883 November 1983
Domain Names - Implementation and Specification

Two free standing dots represent the null domain name of
the root.

\X where X is any character other than a digit (0-9), is used
to quote that character so that its special meaning does
not apply. For example, "\." can be used to place a dot
character in a label.

\DDD where each D is a digit is the octet corresponding to the
decimal number described by DDD. The resulting octet is
assumed to be text and is not checked for special meaning.

() Parentheses are used to group data that crosses a line
boundary. In effect, line terminations are not recognized
within parentheses.

Semicolon is used to start a comment; the remainder of the
line is ignored.

Name server file loading example

A name server for F.ISI.ARPA , serving as an authority for the
ARPA and ISI.ARPA domains, might use a boot file and two master
files. The boot file initializes some non-authoritative data, and
would be loaded without an origin:

i

9999999 IN NS B.ISI.ARPA
9999999 CS NS UDEL.CSNET

B.ISI.ARPA 9999999 IN A 10.3.0.52
UDEL.CSNET 9999999 CS A 302-555-0000

This file loads non-authoritative data which provides the
identities and addresses of root name servers. The first line
contains a NS RR which is loaded at the root; the second line
starts with a blank, and is loaded at the most recent location
specifier, in this case the root; the third and fourth lines load
RRs at B.ISI.ARPA and UDEL.CSNET, respectively. The timeouts are
set to hioji values (9999999) to prevent this data from being
discarded due to timeout.

The first master file loads authoritative data for tt.# ARPA
domain. This file is designed to be loaded with an origin of
ARPA, which allows the location specifiers to omit the trailing
.ARPA labels.

n

Mockapetris [Page 45]

2-929

k.—^^«-«. A •-..'■»■ '-.*. -. fuY *-..-».* 2,.* .^^.'-V _•-. v - •> .. -vT...',- '.* ■..*•.'■'.'. -J.'.'. 'J ■..' L.' L.II\A.,
.IAC* I.' --' .' Hl 'm A.^^MV.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

@ IN SOA F.ISI.ARPA Action.E.ISI.ARPA (

NS F.ISI.ARPA
NS A.ISI.ARPA

MIT NS AI.MIT.ARPJ

ISI NS F.ISI.ARPA

UDEL MD UDEL.ARPA
A 10.0.0.96

NBS MD NBS.ARPA
A 10.0.0.19

DTI MD DTI.ARPA
A 10.0.0.12

AI .MIT A 10.2.0.6
F.ISI A 10.2.0.52

20 ; SERIAL
3600 ; REFRESH
600 ; RETRY
3600000; EXPIRE
60) ; MINIMUM

F.ISI.ARPA is a name server for ARPA
A.ISI.ARPA is a name server for ARPA

AI .MIT.ARPA; delegation to MIT name server
delegation to ISI name server

The first group of lines contains the SOA record and its
parameters, and identifies name servers for this zone and for
delegated zones. The Action.E.ISI.ARPA field is a mailbox
specification for the responsible person for the zone, and is the
domain name encoding of the mail destination Action^E. ISI .ARPA.
The second group specifies data for domain names within this zone.
The last group has forward references for name server address
resolution for AI .MIT. ARPA and F.ISI.ARPA. This data is not
technically within the zone, and will only be used for additional
record resolution for NS records used in referrals. However, this
data is protected by the zone timeouts in the SOA, so it will
persist as long as the NS references persist.

The second master file defines the ISI .ARPA environment, and is
loaded with an origin of ISI.ARPA:

.*.

•«

■

<§ IN SOA F.ISI.ARPA Action\.ISI.E.ISI.ARPA (
20 • SERIAL
7200 • REFRESH
600 * RETRY
3600000 • EXPIRE
60) • MINIMUM

I

A

B

Mockapetrls

NS F.ISI.ARPA
A 10.1.0.32
*D A.ISI.ARPA
MF F.ISI.ARPA
A 10.3.0.52
MD B.ISI.ARPA

F.ISI.ARPA is a name server

[Page 46]

P

I

2*930

»»*/.•>,% -»\Wr\v >,•;

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

field in the new SOA record with the SERIAL field in the SOA
record of the existing zone copy. If these values match, the zone
has not been updated since the last copy and hence there is no
reason to recopy the zone. In this case the name server resets
the times in the existing SOA record and closes the virtual
circuit to complete the operation.

If this is initial load, or the SERIAL fields were different, the
name server requests a copy of the zone by sending the foreign
name server an AXFR query which specifies the zone by its QCLASS
and QNAME fields.

When the foreign name server receives the AXFR request, it sends
each node from the zone to the requestor in a separate message.
It begins with the node that contains the SOA record, walks the
tree in breadth-first order, and completes the transfer by
resending the node containing the SOA record.

Several error conditions are possible:

If the AXFR request cannot be matched to a SOA, the foreign
name server will return a single message in response that does
not contain the AXFR request. (The normal SOA query preceding
the AXFR is designed to avoid this condition, but it is still
possible.)

The foreign name server can detect an internal error or detect
some other condition (e.g. system going down, out of resources,
etc.) that forces the transfer to be aborted. If so, it sends
a message with the "Server failure" condition set. If the AXFR
can be immediately retried with some chance of success, it
leaves the virtual open; otherwise it initiates a close.

If the foreign name server doesn't wish to perform the
operation for policy reasons (i.e. the system administrator
wishes to forbid zone copies), the foreign server returns a
"Refused" condition.

The requestor receives these records and builds a new tree. This
tree is not yet in the status table, so its data are not used to
process queries. The old copy of the zone, if any, may be used to
satisfy request while the transfer is in progress.

When the requestor receives the second copy of the SOA node, it
compares the SERIAL field in the first copy of the SOA against the
SERIAL field in the last copy of the SOA record. If these don't
match, the foreign server updated its zone while the transfer was
in progress. In this case the requestor repeats the AXFR request
to acquire the newer version.

Mockapetris [Page 48]

2-932

I1AAJAA-W3 m 1 «-*. »..1*«. V« uiti'tui!. iV >„,%*., a*^«l> a*. «.'..*.- ■.". >V «.-a,'- «T. - . »1 «*^»V. > t .*- -' -V »r_ .".V. »\VJ».'_V ■V.V*-W..'V.. .E-V.V-

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

MF
A
MD
MF

F.ISI.ARPA
10.2.0.52
F.ISI.ARPA
A.ISI.ARPA

$INCLUDE <SUBSYS>ISI-MAILBOXES.TXT

Where the file <SUBSYS>ISI-MAILBOXES.TXT is:

MOE MB
LARRY MB
CURLEY MB
STOOGES MB

MG
MG
MG

F.ISI.ARPA
A.ISI.ARPA
B.ISI.ARPA
B.ISI.ARPA
MOE.ISI.ARPA
LARRY. ISI.ARPA
CURLEY.ISI.ARPA

Note the use of the \ character in the SOA RR to specify the
responsible person mailbox "Action. ISI@E. ISI .ARPA" .

Name server remote zone transfer

When a name server needs to make an initial copy of a zone or test
to see if a existing zone copy should be refreshed, it begins by
attempting to open a virtual circuit to the foreign name server.

If this open attempt fails, and this was an initial load attempt,
it schedules a retry and exits. If this was a refresh operation,
the name server tests the status table to see if the maximum
holding time derived from the SOA EXPIRE field has elapsed. If
not, the name server schedules a retry. If the maximum holding
time has expired, the name server invalidates the zone in the
status table, and scans all resource records tagged with this zone
number. For each record it decrements TTL fields by the length of
time since the data was last refreshed. If the new TTL value is
negative, the record is deleted. If the TTL value is still
positive, it move» the RR to the cache tree and schedules a retry.

If the open attempt succeeds, the name server sends a query to the
foreign name server in which QTYPE=S0A, QCLASS is set according to
the status table information from the configuration file, and
QNAME is set to the domain name of the zone of interest.

The foreign name server will return either a SOA record indicating
that it has the zone or an error. If an error is detected, the
virtual circuit is closed, and the failure is treated in the same
way as if the open attempt failed.

If the SOA record is returned and this was a refresh, rather than
an initial load of the zone, the name server compares the SERIAL

Mockapetris [Page 47]

2-931

i.,i.kA.vl.,a>\k.i. . * Jk. ■k,;i.>i h...fc, ukAA^tk

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

If the AXFR transfer eventually succeeds, the name server closes
the virtual circuit and and creates new versions of inversion data
structures for this zone. When this operation is complete, the
name server acquires the main lock in write mode and then replaces
any old copy of the zone and inversion data structures with new
ones. The name server then releases the main lock, and can
reclaim the storage used by the old copy.

If an error occurs during the AXFR transfer, the name server can
copy any partial information into its cache tree if it wishes,
although it will not normally do so if the zone transfer was a
refresh rather than an initial load.

Mockapetris [Page 491

2-933

•*i'*i-sivi>:>i :AJ^^^^N^^V1^%"2 vlvi^

•/AV.V V.'-\

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

RESOLVER ALGORITHMS

Operations

Resolvers have a great deal of latitude in the semantics they
allow in user calls. For example, a resolver might support
different user calls that specify whether the returned information
must be from and authoritative name server or not. Resolvers are
also responsible for enforcer: ant of any local restrictions on
access, etc.

In any case, the resolver will transform the user query into a
number of shared database accesses and queries to remote name
servers. When a user requests a resource associated with a
particular domain name, the resolver will execute the following
steps:

1. The resolver first checks the local shared database, if any,
for the desired information. If found, it checks the
applicable timeout. If the timeout check succeeds, the
information is used to satisfy the user request. If not, the
resolver goes to step 2.

2. In this step, the resolver consults the shared database for the
name server that most closely matches the domain name in the
user query. Multiple redundant name servers may be found. The
resolver goes to step 3.

3. In this step the resolver chooses one of the available name
servers and sends off a query. If the query fails, it tries
another name sem/er. If all fail, an error indication is
returned to the user. If a reply is received the resolver adds
the returned RRs to its database and goes to step 4.

4 In this step, the resolver interprets the reply. If the reply
contains the desired Information, the resolver returns the
information to the user. The the reply indicates that the
domain name in the user query doesn't exist, then the resolver
returns an error to the user. I f the reply contains a
transient name server failure, the resolver can either wait and
retry the query or go back to step 3 and try a different name
server. If the reply doesn't contain the desired information,
but does contain a pointer to a closer name server, the
revolver returns to step 2, wher« the closer name servers will
be queried.

Seve. al modifications to this algorithm are possible. A resolver
may not support a local cache and Instead only cache Information
during the course of a single user request, discarding it upon

Mockapetrts [Page 50]

2-934

JJ.

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

completion. The resolver may also find that a datagram reply was
truncated, and open a virtual circuit so that the complete reply
can be recovered.

Inverse and completion queries must be treated in an
environment-sensitive manner, because the domain system doesn't
provide a method for guaranteeing that it can locate the correct
information. The typical choice will be to configure a resolver
to use a particular set of known name servers for inverse queries.

Mockapetris [Page 51]

2-935

'« ."♦ ■*» .'• >' .*> > J» Ji .'» .'-,.•- >•♦ > ■> -'• +'' ■'-,»•• * ».«••_» • ,':.isA^,,j,.'j :-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

DOMAIN SUPPORT FOR MAIL

Introduction

Mail service is a particularly sensitive issue for users of the
domain system because of the lack of a consistent system for
naming mailboxes and even hosts, and the need to support continued
operation of existing services. This section discusses an
evolutionary approach for adding consistent domain name support
for mail.

The crucial issue is deciding on the types of binding to be
supported. Most mail systems specify a mail destination with a
two part construct such as X@Y. The left hand side, X, is an
string, often a user or account, and Y is a string, often a host.
This section refers to the part on the left, i.e. X, as the local
part, and refers to the part on the right, i.e. Y, as the global
part.

Most existing mail systems route mail based on the global part; a
mailer with mail to deliver to X@Y will decide on the host to be
contacted using only Y. We refer to this type of binding as
"agent binding".

For example, mail addressed to Mockapetris@ISIF is delivered to
host USC-ISIF (USC-ISIF is the official name for the host
specified by nickname ISIF).

More sophisticated mail systems use both the local and global
parts, i.e. both X and Y to determine which host should receive
the mail. These more sophisticated systems usually separate the
binding of the destination to the host from the actual delivery.
This allows the global part to be a generic name rather than
constraining it to a single host. We refer to this type of
binding as "mailbox binding".

For example, mail addressed to Mockapetris@ISI might be bound
to host F.ISI.ARPA, and subsequently delivered to that host,
while mail for Cohen@ISI might be bound to host B.ISI.ARPA.

The domain support for mail consist» of two levels of support,
corresponding to these two binding models.

The first level, agent binding, is compatible with existing
ARPA Internet mail procedures and uses maps a global part onto
one or more hosts that will accept the mail. This type of
binding uses the MAILA QTYPE.

The second level, mailbox binding, offers extended services

,V

Mockapetris [Page S>2]

2-93G

' »* *. v* *> •• "• *• .*- «"* » * t * • * • * • »* • *f * • *' * * '»* • * * •

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

that map a local part and a global part onto one or more sets
of data via the MAILB QTYPE. The sets of data include hosts
that will accept the mail, mailing list members (mail groups),
and mailboxes for reporting errors or requests to change a mail
group.

The domain system encodes the global part of a mail destination as
a domain name and uses dots in the global part to separate labels
in the encoded domain name. The domain system encodes the local
part of a mail destination as a single label, and any dots in this
part are simply copied into the label. The domain system forms a
complete mail destination as the local label concatenated to the
domain string for the global part. We call this a mailbox.

For example, the mailbox Mockapetris@F.ISI .ARPA has a global
domain name of thrc*e labels, F.ISI .ARPA. The domain name
encoding for the wnole mailbox is Mockapetris.F.ISI .ARPA. The
mailbox Mockapetris.cad@F.ISI.ARPA has the same domain name for
the global part and a 4 label domain name for the mailbox of
Mockapetris\.cad.F.ISI .ARPA (the \ is not stored in the label,
its merely used to denote the "quoted" dot).

It is anticipated that the Internet system will adopt agent
binding as part of the initial implementation of the domain
system, and that mailbox binding will eventually become the
preferred style as organizations convert their mail systems to the
new style. To facilitate this approach, the domain information
for these two binding styles is organized to allow a requestor to
determine which types of support are available, and the
information is kept in two disjoint classes.

Agent binding

In agent binding, a mail system uses the global part of the mail
destination as a domain name, with dots denoting structure. The
domain name is resolved using a MAILA query which return MF and MD
RRs to specify the domain name of the appropriate host to receive
the mail. MD (Mail delivery) RRs specify hosts that are expected
to have the mailbox in question; MF (Mail forwarding) RRs specify
hosts that are expected to be intermediaries wjiUng to accept the
mail for eventual forwarding. The hosts are hints, rather than
definite answers, sines the query is made without the full mail
destination specification.

For example, mail for MOCKAPETRIS^F.ISI.ARPA would result tn a
query with QfIYPE=MAILA and QNAME=F. ISI .ARPA. which might return
two RRs:

Mockapetrls [Page 53]

2-937

L *
[*->y*v>\ y ;.;>YV >; y. //.'•;.-*. y\-. \ -. ;. ■;'.-;.. .y-\y .y.. ■/.- '.. yy-*-y ■. •;.; y*;v v* '. '•'■>%

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

RFC 883 November 1983
Domain Names - Implementation and Specification

F.ISI.ARPA MD IN F.ISI.ARPA
F.ISI.ARPA MF IN A.ISI.ARPA

The mailer would interpret these to mean that the mail agent on
F.ISI.ARPA should be able to deliver the mail directly, but that
A.ISI.ARPA is willing to accept the mail for probable forwarding.

Using this system, an organization could implement a system that
uses organization names for global parts, rather than the usual
host names, but all mail for the organization would be routed the
same, regardless of its local part. Hence and organization with
many hosts would expect to see many forwarding operations.

Mailbox binding

In mailbox binding, the mailer uses the entire mail destination
specification to construct a domain name. The encoded domain name
for the mailbox is used as the QNAME field in a QTYPE^MAILB query.

Several outcomes are possible for this query:

1. Hie query can return a name error indicating that the mailbox
does not exist as a domain name.

In the long term this would indicate that the specified mailbox
doesn't exist. However, until the use of mailbox binding is
universal, this error condition should be interpreted to mean
that the organization identified by the global part does not
support mailbox binding. The appropriate procedure is to
revert to agent binding at this point.

2. The query can return a Mail Rename (MR) RR.

The Ml RR carries new mailbox specification in its RDATA field.
The mailer should replace the old mailbox with the new one and
•"etry the operation.

3. The query can return a MB RR.

The MB KR carries a domain name for a host in its RDATA field.
The mailer should deliver the message to that host via whatever
protocol is applicable, e.g. SMTP.

4. The query can return one or more Mail Croup (MC) RRs.

This condition means that the mailbox was actually a mailing
list or mail group, rather than a single mailbox. Each MC RR
has a RDATA field that identifies a mailbox that is a member of

Mockapetns [Page 54}

2-93S

• • N ',

**i»**-*'vji* _»*"_.**_***J> * «TV m*. -*• -'* «*• -*' -"• -*» »I* -^ «*• -*' ■** ■£ -v r-"* »** it' r * it'* a \n'*+ ' rV ft ^ LÄÜ g*',k ' «■ '■+'*■*■ » * * « *■» !-> .Lt!,* -a. '_* '^ :* '

APPLICATION T i VEL: DOMAIN RFC 883

\r:

RFC 883 November 1983
Domain Names - Implementation and Specification

the group. The mailer should deliver a copy of the message to
each member.

5, The query can return a MB RR as well as one or more MG RRs.

This condition means the the mailbox was actually a mailing
list. The mailer can either deliver the message to the host
specified by the MB RR, which will in turn do the delivery to
all members, or the mailer can use the MG RRs to do the
expansion itself.

In any of these cases, the response may include a Mail Information
(MINFO) RR. This RR is usually associated with a mail group, but
is legal with a MB. The MINFO RR identifies two mailboxes. One
of these identifies a responsible person for the original mailbox
name. This mailbox should be used for requests to be added to a
mail group, etc. The second mailbox name in the MINFO RR
identifies a mailbox that should receive error messages for mail
failures. This is particularly appropriate for mailing lists when
errors in member names should be reported to a person other than
the one who sends a message to the list. New fields may be added
to this RR in the future.

Moekapetris [Page 55]

2-939

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

tt

RFC 883 November 1983
Domain Names - Implementation and Specification

Appendix 1 - Domain Name Syntax Specification

The preferred syntax of domain names is given by the following BNF
rules. Adherence to this syntax will result in fewer problems with
many applications that use domain names (e.g., mail, TELNET) . Note
that some applications use domain names containing binary information
and hence do not follow this syntax.

<domain> : := <subdomain> | " "

<subdomain> ::= <label> | <subdomain> "." <label>

<label> ::= <letter> [[<ldh-str>] <let-dig>]

<ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

<let-dig-hyp> ::= <let-dig> | "-"

<let-dig> ::= <letter> | <digit>

<letter> : := any one of the 52 alphabetic characters A through Z
in upper case and a through z in lower case

<digit> ::= any one of the ten digits 0 through 9

Note that while upper and lower case letters are allowed in domain
names no significance is attached to the case. That is, two names
with the same spelling but different case are to be treated as if
identical.

The labels must follow the rules for ARPANET host names. They must
start with a letter, end with a letter or digit, and have as interior
characters only letters, digits, and hyphen. There are also some
restrictions on the length. Labels must be 63 characters or less.

For example, the following strings identify hosts in the ARPA
Internet:

F.ISI.ARPA LINKABIT-DCN5.ARPA UCL-TAC.ARPA

Mockapetris [Page 56]

2-D40

APPLICATION LEVEL: DOMAIN RFC 883

RFC 833 November 1983
Domain Names - Implementation and Specification

Appendix 2 - Field formats and encodings

+

***** WARNING *****

The following formats are preliminary and
are included for purposes of explanation only.
In particular, new RR types will be added,
and the size, position, and encoding of
fields are subject to change.

TYPE values

TYPE fields are used in resource records. Note that these types
are not the same as the QTYPE fields used in queries, although the
functions are often similar.

TYPE value meaning

a host address

an authoritative name server

a mail destination

a mail forwarder

the canonical name for an alias

marks the start of a zone of authority

a mailbox domain name

a mail group member

a mail rename domain name

a null RR

a well known service description

a domain name pointer

host information

mailbox or mail list information

rPaae 571

A 1

NS 2

MD 3

MF 4

CNAME 5

SOA 6

MB 7

MG 8

MR 9

NULL 10

WKS 11

PTR 12

HINFO 13

MINFO 14

Mockapetris

2-911

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

QTYPE values

QTYPE fields appear in the question part of a query. They include
the values of TYPE with the following additions:

AXFR 252 A request for a transfer of an entire zone of authority

MAILB 253 A request for mailbox-related records (MB, MG or MR)

MAILA 254 A request for mail agent RRs (MD and MF)

* 255 A request for all records

CLASS values

CLASS fields appear in resource records

CLASS value meaning

IN 1 the ARPA Internet

CS 2 the computer science network (CSNET)

QCLASS values

QCLASS fields appear in the question section of a query. They
include the values of CLASS with the following additions:

* 255 any class

w
V

• <
'S

Mockapetris [Page 58]

2-942

tV7

APPLICATION LEVEL: DOMAIN RFC 883

REC 883 November 1983
Domain Names - Implementation and Specification

Standard resource record formats

All RRs have the same top level format shown below:

111111
0123456789012345

j J
/ NAME /

I I

| TYPE I
+__+__+-_+--+-- + --+.. _+_-. + --+-- + -- + - _+-_+-_+-- + -- +

j CLASS |

| TTL I
+_-+—f_.+__+».+__+_-+--.+--+__ + -_+-- + -- + --+--+-- +

| RDLENGTH I
+__+__+__ ++„ + __+..-+--+-- + -- + -- + -- + --+--+--+--J
/ RDATA /

/ /
+__+_-+-_+--+-- + -- + --+--+--+-.- + -- + -- + -- + --+--+-- +

where:

NAME - a compressed domain name to which this resource
record pertains.

TYPE - ti**c octets containing one of the RR type codes
defined in Appendix 2. This field specifies the
meaning of the data in the RDATA field.

CLASS - two octets which specifies the class of the data in
the RDATA field.

TTL - a 16 bit signed integer that specifies the time
interval that the resource record may be cached
before the source of the information should again be
consulted. Zero values are interpreted to mean that
the RR can only be used for üvö transöctior» ii»
progress, and should not be cached. For example, SOA
records are always distributed with a zero TTL to
prohibit caching. Zero values can also be used for
extremely volatile data.

RDLENGTH- an unsigned 16 bit integer that specifies the length
in octets of the RDATA field.

I

Mockapetris [Page 59]

2-943

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

RDATA - a variable length string of octets that describes the
resource. The format of this information varies
according to the TYPE and CLASS of the resource
record.

The format of the RDATA field is standard for all classes for the
RR types NS, MD, MF, CNAME, SOA, MB, MG, MR, FTP., HINFO, MINFO and
NULL. These formats are shown below together with the appropriate
additional section RR processing.

CNAME RDATA format

+ --+-- + --+-- + --+-- + --+-- + --+-- + -- + --+-- + --+---t—+

/ CNAME /
/ /

where:

CNAME - A compressed domain name which specifies that the
domain name of the RR is an alias for a canonical
name specified by CNAME.

CNAME records cause no additional section processing. The
RDATA section of a CNAME line in a master file is a standard
printed domain name.

HINFO RDATA format

+ __ + __ + _.. + _. + .- + __ + -_ + __ + ,_ + _, + ,, + .._ + __ + ...+ «- + ..,..4.

/ CPU /

/ OS /
+ -- + --♦-- + -- + --♦-.-♦-- + -- + --♦-- + -- + --♦--♦--♦- - + -- +

where:

CPU - A character string which specifies the CPU type. The
character string is represented as a single octet
length followed by that number of characters. The
following standard strings are defined:.

PDP-11/70 C/30 C/70 VAX-11/780
H-316 H-516 DEC-2060 DEC-1090T
ALTO IBM-PC IBM-PC/XT PERQ
IBM-360/67 IBM-370/145

OS - A character string which specifies the operating system
type. The character string is represented as a single octet

Mockapetris [Page 60]

*."«'

2-94-1

A,«.*-' •-.**.*- >V-.v.*'

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

length followed by that number of characters.
standard types are defined:.

The following

ASP AUGUST BKY CCP
DOS/360 ELF EPOS EXEC-8
GCOS GPOS ITS INTERCOM
KRONOS MCP MOS MPX-RT
MULTICS MVT NOS NOS/BE
OS/MVS OS/MVT RIG RSX11
RSX11M RT11 SCOPE SIGNAL
SINTRAN TENEX TOPS10 TOPS20
TSS UNIX VM/370 VM/CMS
VMS WAITS

HINFQ records cause no additional section processing.

HINFO records are used to acquire general information about a
host. The main use is for protocols such as FTP that can use
special procedures when talking between machines or operating
systems of the same type.

MB RDATA format

/
/

MADNAME /
/

where:

MADNAME - A compressed domain name which specifies a host which
has the specified mailbox.

MB records cause additional section processing which looks up
an A type record corresponding to MADNAME. The RDATA section
of a MB line in a master file is a standard printed domain
name.

MD RDATA format

/
/

MADNAME

where:

MADNAME - A compressed domain name which specifies a host which

Mockapetris TVaeyr* f>\]

2-9-15

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

has a mail agent for the domain which should be able
to deliver mail for the domain.

MD records cause additional section processing which looks up
an A type record corresponding to MADNAME. The RDATA section
of a MD line in a master file is a standard printed domain
name.

MF RDATA format

/ MADNAME /
/ /

He

where:

MADNAME - A compressed domain name which specifies a host which
has a mail agent for the domain which will accept
mail for forwarding to the domain.

MF records cause additional section processing which looks up
an A type record corresponding to MADNAME. The RDATA section
of a MF line in a master file is a standard printed domain
name.

MG RDATA format

/ MGMNAME /
/ /

where:

MGMNAME - A compressed domain name which specifies a mailbox
which is a member of the mail group specified by the
domain name.

MF records cause no additional section processing. The RDATA
section of a MF line in a master fii<* is a standard printed
domain name.

McxTkROÄtris [Page 62]

2-9-16

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

Pf

MINFO RDATA format

+ -.+ -.+__ + -- + .- + -- + --+ + K— + -- + -- + — + -- + -- + -- +

/ RMAILBX /
+ _„+__ + -_+-_+-.- + -- + --+-...+-.-+--+--+--+-- + --+--+-- +
/ EMAILBX /
+__ + _-.+_-+_- + __+--+_- + --+-- + --+-- + -- + -- + --+-- + -- +

where:

RMAILBX - A compressed domain name which specifies a mailbox
which is responsible for the mailing list or mailbox.
If this domain name names the root, the owner of the
MINFO RR is responsible for itself. Note that many
existing mailing lists use a mailbox X-request for
the RMAILBX field of mailing list X, e.g.
Msgroup-request for Msgroup. This field provides a
more general mechanism.

EMAILBX - A compressed domain name which specifies a mailbox
which is to receive error messages related to the
mailing list or mailbox specified by the owner of the
MINFO RR (similar to the EFRQRS-TO: field which has
been proposed) . If this domain name names the root,
errors should be returned to the sender of the
message.

MINFO records cause no additional section processing. Although
these records can be associated with a simple mailbox, they are
usually used with a mailing list. The MINFO section of a MF
line in a master file is a standard printed domain name.

MO OTMVrH #<*_.»*>

/ NEWNAME /
/ /

where:

NEWNAME - A compressed domain name which specifies a mailbox
which is the proper rename of the specified mailbox.

Ml records cause no additional section processing. The RDATA
section of a Ml line in a master file is a standard printed
domain name.

Mr>£$£ »r>*jr f is [Page 631

2-94:

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

NULL RDATA format

+ __+__+__+_- + __ + __ + __+__ + -_+_- + ..-+.... + --.+--+--+--+

/ <anything> /
/ /
+__+..« + __ + -- + -_+__+__ + _-+-.- + --+_- + -_+_-+-_ + --. + -_ +

Anything at all may be in the RDATA field so long as it is
65535 octets or less.

NULL records cause no additional section processing. NULL RRs
are not allowed in master files.

NS RDATA format

/ NSDNAME /
/ /
+_-+-_ + __+-_ + --+-_ + --.+-_+_- + --+-- + -..+- -+_., + _- + .._ +

where:

NSDNAME - A compressed domain name which specifies a host which
has a name server for the domain.

NS records cause both the usual additional section processing
to locate a type A record, and a special search of the zone in
which they reside. The RDATA section of a NS line in a master
file is a standard printed domain name.

PTR RDATA format

+-- + -- + --+_. + _- + -- + _- + -_+_- + --♦-.. + -_♦..-.♦.--♦--♦--♦

/ PTRDNAMT. /

where:

PTRDNAME - A compressed domain name which points to some
location in the domain name space.

PTR records cause no additional section processing. These RRs
are used in special domains to point to some other location in
the domain space. These records are simple data, and don't
imply any special processing similar to that performed by
CNAME, which identifies aliases. Appendix 3 discusses the use
of these records in the ARPA Internee rddre»s domain.

Mockapetris [Page 641

2-918

APPLICATION LEVEL: DOMAIN RFC 883

RFC S83 November 1983
Domain Names - Implementation and Specification

SOA RDATA format

+ - -+- - + - - + - - + - -+- - + - -+--+--+- - + - - + - - + - ~+- - + - -+- -+

/ MNAME /
/ /
+ - -+- - + - -+- -+- - + - -+- -+--+--+- -+- - + - -+- - + - -+- -+- - +

/ RNAME /
+ -

1
-+- -+- -+- -+- -+- - + -

SERIAL
- + - -+- - + - -+- - + - -+- - +

I
+ - -+- -+- -+- - + - - + - -+-

REFRESH
-+- -+- -+- - + - -+- -+- - +

+ - -+- -+- -+- - + - -+- - + -
RETRY

- + - -+- ~ + - -+- - + - - + - - +

+ - • ♦- -♦- - + - -+- -+- - + -
EXPIRE

- + - -+> - + - -+- - + - - + - - +

+ -

1
-+- - + - - + - -+- -+- - + - -■♦— + -- + -

MINIMUM
-+- - + - -+- - + - -♦- -♦- - +

1
+- -+- -+- -+- - + - -+- - + - -+--+--♦- - + - - + - - + - -♦- - + - -+- - +

where:

MNAMF

RNAME

- The domain name c: the name server that was the
original source of data for this zone.

- A domain name which specifies the mailbox of the
person responsible for this zone.

SERIAL - The unsigned 16 bit version number of the of the
original copy of the zone. This value wraps and
should be compared using sequence space arithmetic.

REFRESH - The unsigned 32 bit time interval before the zone
should be refreshed.

RETRY - The unsigned 32 bit time interval that should elapse
before a failed refresh should be retried.

EXPIRE - A 32 bit tisüö value that specifies the upper limit on
the time interval that can elapse before the zone is
no longer authoritative.

MINIMUM - The unsigned 16 bit minimum TTL field that should be
exported with any RR from tnis zone (other than the
SOA itself) .

SOA records cau*e no additional section processing. The RDATA

Mockapetris [Page 651

2-949
IT

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

section of a SOA line in a master file is a standard printed
domain name for MNAME, a standard X@Y mailbox specification for
RNAME, and decimal numbers for the remaining parameters.

All times are in units of seconds.

Most of these fields are pertinent only for name server
maintenance operations. However, MINIMUM is used in all query
operations that retrieve RRs from a zone. Whenever a RR is
sent in a response to a query, the TTL field is set to the
maximum of the TTL field from the RR and the MINIMUM field in
the appropriate SOA. Thus MINIMUM is a lower bound on the TTL
field for all RRs in a zone, RRs in a zone are never discarded
due to timeout unless the whole zone is deleted. This prevents
partial copies of zones.

MocW*p*"»tri!« Page 66*

2-950

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883
Domain Names

November 1983
Implementation and Specification

Appendix 3 - Internet specific field formats and operations

Message transport

The Internet supports name server access using TCP [10] on server
port 53 (decimal) as well as datagram access using UDP [11] on UDP
port 53 (decimal). Messages sent over TCP virtual circuits are
preceded by an unsigned lo bit lengtn fie ANA mu.c*i «.*cscrj.«-.GS the
length of the message, excluding the length field itself.

***** WARNING *****

The following formats are preliminary and
are included for purposes of explanation only.
In particular, new RR types will be added,
and the size, position, and encoding of
fields are subject to change.

A RDATA format

♦ -.♦-^--♦--♦--♦--♦--♦--♦--♦--♦--♦--'♦--♦--♦-'♦~- +

where:

ADDRESS - A 32 bit ARPA internet address

Hosts that have multiple ARPA Internet addresses will have
multiple A records.

A records cause no additional section processing. The RDATA
section of an A line in a master file is an Internet address
expressed as four decimal numbers separated by dots without any
imbedded spaces (e.g., "10.a.0.52" or "192.0.5.6").

■jk*

Moocapetrls [Page 67]

2-9M

v ".-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

WKS RDATA format

+ __ + _..+-- + -_+.-_ + -_+-.- + —t „.„+__+__+.- + ..-+_-+,. _ + -« +

| ADDRESS |
+--+-- + --+-- + --+-- + --+--+--+--.+-- + -- + --+-- + --+--+

| PROTOCOL | j
+ _- + _.+_ _ + --.+-_ + --. + --. + -_ +

I I
/ <BIT MAP> /
/ /
+ -- + -- + -- + -- + --T-- + -- + --+-- + -- + -- + -- + --"♦■-- + -- + -" +

where:

ADDRESS - An 32 bit ARPA Internet address

PROTOCOL - An 8 bit IP protocol number

<BIT MAP> - A variable length bit map. The bit map must be a
multiple of 8 bits long.

The WES record is used to describe the well known services
supported by a particular protocol on a particular internet
address. The PROTOCOL field specifies an IP protocol number, and
the bit map has one bit per port of the specified protocol. The
first bit corresponds to pert 0, the second to port 1. etc. If
less than 256 bits are present, the remainder are assumed to be
zero. The appropriate values for ports and protocols are
specified in [13].

For example, if PROTOCOL^TCP (6), the 26th bit corresponds to TCP
port 25 (SMTP). If this bit is set, a SMTP server should be
listening on TCP port 25; if zero, SMTP service is not supported
on the specified address.

The anticipated use of WKS Rks is to provide availability
information to*" servers for TCP and UDP. If a server supports
both TCP and UDP, or ha* multiple Internet addresses, then
multiple WKS RRs are used.

WKS RRs cause no additional section processing. The RDATA section
of a WKS record consists of a decimal protocol number followed by
mnemonic identifiers which specify bits to be set to 1.

IN-ADDR special domain

The ARPA internet uses a special domain to support gateway
location and ARPA Internet address to host mapping. The intent of
this domain is to allow queries to locate all gateways on a

Kockapetris fPage 68]

m

Sfc

2-952

APPLICATION LEVEL: DOMAIN RFC 883

XgQ 883 November 1983
Domain Names - Implementation and Specification

particular network in the ARPA Internet, and also to provide a
guaranteed method to perform host address to host name mapping.

Note that both of these services are similar to functions that
could be performed by inverse queries; the difference is that this
part of the domain name space is structured according to address,
and hence can guarantee that the appropriate data can be located
without an exhaustive search of the domain space. It is
anticipated that the special tree will be used by ARPA Internet
resolvers for all gateway location services, but that address to
name resolution will be performed by first trying the inverse
query on the local name server database followed by a query in the
special space if the inverse query fails.

The domain is a top level domain called IN-ADDR whose substructure
follows the ARPA Internet addressing structure.

Domain names in the IN-ADDR domain are defined to have up to four
labels in addition to the IN-ADDR label. Each label is a
character string which expresses a decimal value in the range
0-255 (with leading zeros omitted except in the case of a zero
octet which is represented by a single zero). These labels
correspond to the 4 octets of an ARPA Internet address.

Host addresses are represented by domain names that have all four
labels specified. Thus data for ARPA Internet address 10.2.0.52
is located at domain name 52.0.2.10.IN-ADDR. The reversal, though
awkward to read, allows zones to follow the natural grouping of
hosts within networks. For example, 10.IN-ADDR can be a zone
containing data for the ARPANET, while 26.IN-ADDR can be a
separate zone for MILNET. Address nodes are used to hold pointers
to primary host names in the normal domain space.

Network addresses correspond to some of the non-terminal nodes in
the IN-ADDR tree, since ARPA Internet network numbers are either
1. 2, or 3 octets. Network nodes are used to hold pointers to
primary host names (which happen to be gateways) in the normal
domain space. Since a gateway is, by definition, on more than one
network, it will typically have two or more network nodes that
point at the gateway. Gateways will also have host level pointers
at their fully qualified addresses.

Both the gateway pointers at network nodes and the normal host
pointers at full address nodes use the PTR RR to point back to the
primary domain names of the corresponding hosts.

For example, part of the IN-ADDR domain will contain information
about the ISI to MILNET and MIT gateways, and hosts F.ISI.ARPA and
MULTICS.MIT.ARPA. Assuming that ISI gateway has addresses

Kockapetris [Page 69]

2-953

.*• .** .*- .*» .** /•."».

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

10.2.0.22 and 26.0.0.103, and a name MILNET-GW.ISI .ARPA, and the
MIT gateway has addresses 10.0.0.77 and 18.10.0.4 and a name
GW. MIT. ARPA, the domain database would contain:

10. IN-ADDR PTR
10. IN-ADDR PTR
18. IN-ADDR PTR
26.IN-ADDR PTR
22.0.2.10.IN-ADDR PTR
103.0.0.26,IN-ADDR PTR
77.0.0.10.IN-ADDR PTR
4.0.10.18.IN-ADDR PTR
52.0.2.10.IN-ADDR PTR
6.0.0.10.IN-ADDR PTR

IN MILNET-GW.ISI .ARPA
IN GW.MIT.ARPA
IN GW.MIT.ARPA
IN MILNET-GW.ISI.ARPA
IN MILNET-GW.ISI.ARPA
IN MILNET-GW.ISI.ARPA
IN GW.MIT.ARPA
IN GW.MIT.ARPA
IN F.ISI.ARPA
IN MULTICS.MIT.ARPA

Thus a program which wanted to locate gateways on net 10 would
originate a query of the form QTYPE=PTR, QCLASS=IN,
QNAME=10.IN-ADDR. It would receive two RRs in response:

10.IN-ADDR
10.IN-ADDR

PTR IN MILNET-GW. ISI .AFPA
PTR IN GW.MIT.ARPA

The program could then originate QTYPE=A, QCLASS=IN queries for
MILNET-GW. ISI .ARPA and GW.MIT.ARPA to discover the ARPA Internet
addresses of these gateways.

A resolver which wanted to find the host name corresponding to
ARPA Internet host address 10.0.0.6 might first try an inverse
query on the local name server, but find that this Information
wasn't available. It could then try a query of the form
QT*PE=PTR, QCLASS=IN, QNAME=6.0.0.10. IN-ADDR, and would r $c*iv*:

6.0.0.10.IN-ADDR PTR IN MULTICS,MIT.ARPA

Several cautions apply to the use of these services:

Since the IN-ADDR special domain and the normal domain for a
particular host or gateway will be in different zones, the
possibility exists that that the data may be inconsistent.

Gateways will often have two names in separate domains, only
one of -*hich can be primary.

Systems that use the domain database to initialize their
routing tables must start with enough gateway information to
guarantee that they can access the appropriate name server.

The gateway data only reflects the existence of a gateway in a

Mockapetris [Page 70]

2-954

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

manner equivalent to the current HOSTS.TXT file. It doesn't
replace the dynamic availability information from OGP or EGP.

Mockapetrls [Page 71]

2-Ö55

t k \ T

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 883 November 1983
Domain Names - Implementation and Specification

REFERENCES and BIBLIOGRAPH*

[I] E. Feinler, K. Harrenstien, 2. Su, and V. White, "DOD Internet
Host Table Specification", RFC 810, Network Information Center,
SRI International, March 1982.

[2] J. Postal, "Computer Mail Meeting Notes", RFC 805,
USC/Information Sciences Institute, February 1982.

[3] 2. Su, and J. Postal, "The Domain Naming Convention for Internet
User Applications", RFC 819, Network Information Center, SRI
International, August 1982.

[4] 2. Su, "A Distributed System for Internet Name Service",
RFC 830, Network Information Center, SRI International,
October 1982.

[5] K. Harrenstien, and V. White, "NICNAME/WHOIS", RFC 812, Network
Information Center, SRI International, March 1982.

[6] M. Solomon, L. Laniweber, and D. Neuhengen, "The CSNET Name
Server", Computer Networks, vol 6, nr 3, July 1982.

[7] K. Harrenstien, "NAME/FINGER", RFC 742, Network Information
Center, SRI International, December 1977.

[8] J. Postal, "Internet Name Server", IEN 116, USC/Information
Sciences Institute, August 1979.

[9] K. Harrenstien, V. White, and E. Feinler, "Hostname« Server",
RFC 811, Network Information Center, SRI International,
March 1982.

[10] J. Postal, 'Transmission Control Protocol". RFC 793,
USC/Information Sciences Institute, September 1981.

[II] J. Postel, "User Datagram Protocol", RFC 768, USC/Information
Sciences Institute, August 1980.

[12] J. Postel, "Simple Mail Transfer Protocol". RFC 821.
USC/Information Sciences Institute, August 1980.

[13] J. Reynolds, and J. Postel, "Assigned Numbers". RFC 870.
USC/Information Sciences Institute, October 1983.

[14] P. Mockapetris, "Domain names - Concepts and Facilities,"
RFC 882. USC/Information Sciences Institute, November 1983.

Mockapetris [Page 72]

2-056

.* v * \ ■-•■/.• v.v.v •\V\ •'„•*. -*. •". •*.-*. «*.*-*.*\ -\ ". -\ •*.**%,-'. '"-.'**-*» "*%"•*%*
.% . • \\.\. v v • v v .■* .- .• V v V .• v * * *-• V.v.v.v V; •*.'•*. •*?-*.•• V„.
•Vfc •'-• '•* '• '■' '-' "■' ' >V-':,-.'-V-'.'-»,-«>-''.'-a'.V.'',>*'.^«,.?i'.',.-'.*\'>'\'

APPLICATION LEVEL: DOMAIN RFC 883

RFC 883 November 1983
Domain Names - Implementation and Specification

INDEX

* usage * 37' 57

A RDATA format 67

byte order • 6

cache queue 35, 42
character case 7* 31
CLASS 9* 58
completion 19

compression 31
CNAME RR 60

header format 26
HINFO RR 60

include files 43
inverse queries I7

mailbox names 53
master files 43
MB RR 61
*€> RR 61
message format 13
MF RR. 62
MC RR 62
MINTO RR 63
MR RR 63

NULL RR 64
NS RR 64

FIR RR 64. 69

QCLASS 58
QfHPE 57
queries (standard) 15

recursive service 24
RR format 59

SOA RR 65
Special domains 68

TYPE 57

WKS type RR 68

Mockapetris P**9« 73)

2-Q57

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

2-958

-
N
 **• .'■

i'~ ■ t i

> ,% .% »\ ,\ .

^ "b V,' \

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 953 October 1985
Hostname Server

where <response key> Is a keyword indicating the nature of the
response, and the rest of the response is interpreted in the context
of the key.

NOTE: Care should be taken to interpret the nature of the reply
(e.g, single record or multiple record), so that no confusion about
the state of the reply results. An "ALL" request will likely return
several hundred or more records of all types, whereas "HNAME" or
"HADDR" will usually return one HOST record.

C0W4AND/RESP0NSE KEYS

The currently defined c-:«mand keywords are listed below. NOTE:
Because the mmrvmr and the features available will evolve with time,
the HELP command should be used to obtain the most recent summary of
implemented features, changes, or new commands.

Keyword Response

HELP This information.

VERSION "VERSION: <string>" where <strlng> will be different for
each version of the host table*

HNAME <hostname>
One or more matching host table entries.

HADDR <hostaddr>
One or more matching host table entries.

ALL The entire host table.

ALL-OLD The entire host table without domain style names.

DOMAINS The entire top-level domain table (domains only).

ALL-DOM Both the entire domain table and the Mat table.

ALL-INCWAY
All known gateways in TENEX/TOP5-20 ItfTEÄNET.GATEWAYS
format.

Remember that the server accepts only a single command : Ine and
returns only a single response before closing the connection. HNAME
and HADDR *rm useful for looking up a specific host by name or
address; VERSION can be used by automated processes to se*> whether a
"new" version of the host table exists without having to transfer the

Harrenstien 6 Stahl £ teinler 'Page 2]

2-9GO

APPLICATION LEVEL: HOSTNAME RFC 953

•
Network Working Group K. Harrenstien (SRI) jj
Request for Comments: 953 M. Stahl (SRI) |
Obsoletes: RFC 811 E. Feinler (SRI)

October 1985

HOSTNAME SERVER \

I
STATUS OF THIS MEMO \

This RFC is the official specification of the Hostname Server [
Protocol. This edition of the specification includes minor revisions
to RFC 811 which brings it up to date. Distribution of this memo is
unlimited.

INIHODUCTION j

The NIC Internet Hostname Server is a TCP-based host information
program and protocol running on the SRI-NIC machine. It is one of a
series of internet name services maintained by the DDN Network
Information Center (NIC) at SRI International on behalf ot the
Defense Communications Agency (DCA) . The function of this particular -
server is to deliver machine-readable name/address information I
describing networks, gateways, hosts, and eventually domains, within
the internet environment. As currently implemented, the server
provides the information outlined Ln the DoD Internet Host Table
Specification [See RFC-952]. For « discussion of future developments
see also RFC-921 concerning the Domain Name System.

PROTOCOL |

To access this 9mryw from a program, establish a TCP connection to
port 101 (decimal) at the service host, SRI-NIC.ARPA (26.0.0.73 or
10.0.0.51). Send the information request (a single line), and read
the resulting response. The connection is closed by the server upon
completion of the response, so only one request can be made for each
connection. I

QUERY/*ESPONSE FORMAT

The nome server accepts simple text query requests of the form

<command key> <argument(s)> [<options>]

where square brackets ("[]**) indicate an optional field. The command
key is a keyword indicating the nature of the request. The defined
keys are explained below.

The response, on the other hand. Is of the form

<response key> : <rest of response>

Harrenstien k Stahl 6 Feinler [Page V)

2-0S9

APPLICATION LEVEL: HOSTNAME RFC 953

RFC 953 October 1985
Hostname Server

whole table. Note, however, that the returned version string is only
guaranteed to be unique to each version, and nothing should currently
be assumed about its format.

Response Keys:

ERR entry not found, nature of error follows
NET entry found, rest of entry follows
GATEWAY entry found, rest of entry follows
HOST entry found, rest of entry follows
DOM/UN entry found, rest of entry follows
BEGIN followed by multiple entries
END done with BEGIN block of entries

More keywords will be added as new needs are recognized. A more
detailed description cf the allowed requests/responses follows.

QUERY/RESPONSE EXAMPLES

1. HNAME Query - Given a name, find the entry or entries that match
the name. For example:

HNAME SRX-NIC.ARPA <CRLF>

where <CRLF> is a carriage return/ 1 in«feed, and 'SRI-NICARPA1

is a host name

The likely response is:

HOST : 26.0.0.73. 10.0.0.51 : SRI-NIC.ARPA.SRI-NIC.NIC :
DEC-2060 : T0PS20 : TCP/TELNET.TCP/SKI?.TCP/TIKE.TCP/FTP.
TCP/ECHO. IOMP :

A response may stretch across more than one line. Continuation
lines always begin with at least one space.

2. HAD0R Query - Given an internet address (as specified in RFC 796)
find the entry or entries that match that address. For example:

KADOR 26.0.0.73 <CRLF>

where <CRLF> is a carriage return/ linefeed, and *26.0.0.734 is
a host üädrmmm.

The likely response is the same as for the previous HNAME request.

Harrenstien 6 Stahl * Feinler [Page 3]

2-9M

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 953 October 1985
Hostname Server

3. ALL Query - Deliver the entire Internet host table In a
machine-readable form. For example:

ALL <CRLF> ;where <CRLF> is a carriage return/linefeed

The likely response is the keyword 'BEGIN' followed by a colon
': \ followed by the entire internet host table in the format
specified in RFC-952, followed by 'END:'.

ERROR HANDLING

ERR Reply - may occur on any query, and should be permitted in any
access program using the nane rjerver. Errors are of the form

ERR : <code> : <atring> :
as in

ERR : NAWFD : Name not found :

The error code is a unique descriptor, limited to 8 characters in
length for any given error. It may be used by the access program to
identify the error and. In some cases, to handle it automatically.
The string is an accompanying message for a given error for that case
where the access program simply logs the error message. Current
codes and their associated interpretations are

NAMMED Name not found; name not in table
ADRNFD Address not found; address not in table
ILLCOM Illegal command; command key not recognized
7WSYS Temporary system failure, try again later

REFERENCES

1. Harrenstien, K.. Stahl. M.. and Feinler. E.. "Official DoD
Internet Host Table Specification." RFC-952. DON Network
Information Center. SRI International. October 1985.

2. Pickens. J.. Feinler. E.. and Kathis. J.. "The NIC Name Server." A
Datagram-based Information utility. RFC-756. Network Information
Center. SRI International. July 1979.

3. Postel. J.. "Address Mappings." RFC-796, Information Sciences
Institute. University of Southern California. Marina del Rey.
September 1981.

4. Postel. J.. "Domain Name System Implementation Schedule". RFC-921.
Information Sciences Institute. University of Southern California.
Marina del Rey. October 1984.

Harrenstien * Stahl 4 Feinler IPago *j

2-952

APPLICATION LEVEL: HOSTNAME RFCÖ53

RFC 953
Hostname Server

October 1985

Harrenstien * Stahl * Fei.\ier [Page 5}

2-063

ii m*■ i §n\M■ | , H (,..^ii ■.ii,, i
A A.*-. 'A V * VA".' ' -' ->' ' ^-'A'. \:*

Hw'¥-Wf I ■ ■ *r "■ .■ i'| ■■■*<■ J* 1 ■ ■ '■ ■ mpm i m» ■ ; ■
..> % -:.v; v v:•* -

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

2-064

'.'■'■•'>•''■>• •■■' ■••••'

viviviv.vi'f. i «

APPLICATION LEVEL: TFTP IEN 133

IEN 133

The TFTP Protocol

January 29, 1980

Karen R. Sollins

Summary

TFTP Is a very simple protocol used to transfer files. It is from
this that its name comes, Trivial File Transfer Protocol or TFTP. Each
nonterminal packet is acknowledcjed separately. This document describes
the protocol *nd its types of packets. The document also explains the
reasons behind some of the design decisions.

2-965

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-966

::-\v:>:s^>:<-<\;
v .■•.'"

APPLICATION LEVEL: TFTP DEN 133

Acknowledgements

The protocol was originally designed by Noel Chiappa, and was

redesigned by him. Bob Baldwin and Dave Clark, with comments from Steve

Szymanski. The original version of this document was written by Bob

Baldwin. The current version of the document includes modifications

suggested by Noel Chiappa, Dave Clark, Liza Martin and the author. The

acknowledgement and retransmission scheme was inspired by TCP, and the

error mechanism was suggested by PARC's EFTP abort message.

2-967

i * - • 8 I I ' 3—1

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2*968

APPLICATION LEVEL: TFTP IEN 133

i/'

1: Purpose

TFTP is a simple protocol to transfer files, and therefore was

named the Trivial File Transfer Protocol or TFTP. It is built on top of

the Internet User Datagram protocol (UDP or Datagram) [2] so it may be

used to move files between machines on different networks. It is

designed to be small and easy to implement. Therefore, it lacks most of

the features of a regular FTP. The only thing it can do is read and

write files (or mail) from/to a remote server. It cannot list

directories, and currently has no provisions for user authentication.

In common with other Internet protocols, it passes 8 bit bytes of data.

Three modes of transfer are currently supported: netascii (1);

binary, raw 8 bit bytes; mail, netascii characters sent to a user rather

than a file. Additional modes can be defined by pairs of cooperating

hosts.

2: Overview of the Protocol

Any transfer begins with a request to read or write a file, which

also serves to request a connection. If the server grants the request,

trie connection is opened and the file is sent in fixed length blocks of

512 bytes. Each data packet contains one block of data, and must be

(1) Thi» is* aacii as defined in "USA Standard Code for Information
Interchange" [1] with the modifications specified in "Telnet Protocol
Specification'* [3] . Note that it is 8 bit ascii. The term "netascii"
will be used throughout this document to mean this particular version of
ascii.

2-969

DDN PROTOCOL HANDBOOK ~ VOLUME TWO 1985

acknowledged by an acknowledgment packet before the next packet can be

sent. A packet of less than 512 bytes signals termination of a

transfer. If a packet gets lost in the network, the intended recipient

will timeout and may retransmit his last packet (which may be data or an

acknowledgment), thus causing the sender of the lost packet to

retransmit that lost packet. The sender has to keep just one packet on

hand for retransmission, since the lock step acknowledgment guarantees

that all older packets have been received. Notice that both machines

involved in a transfer are considered senders and receivers. One sends

data and receives acknowledgments, the other sends acknowledgments and

receives data.

Most errors cause termination of the connection. An error is

signalled by sending an error packet. This packet is not acknowledged,

and not retransmitted (i.e., a TFTP server or user may terminate after

sending an error message), so the other end of the connection may not

get it. Therefore timeouts are used to detect such a termination when

the error packet has been lost. Errors are caused by three types of

events: not being able to satisfy the request (e.g., file not found, or

access violation), receiving a packet which cannot be explained by a

delay or duplication in the network (e.g. an incorrectly formed packet),

and losing access to a necessary resource (e.g., disc full, or source

file truncated during transfer).

TFTP recognizes only one type of error that does not cause

termination, the source port of a received packet being incorrect. In

2-970

'." *.' *•" *•* *•' "•*«"*".*<'.*'■ '«V*•'*.*«»" •'«*■*-""*.

APPLICATION LEVEL: TFTP IEN 133

- 3 -

this case an error packet is sent to the originating host. See the

section on the Initial Connection Protocol for more details.

This protocol is very restrictive, but that makes it easier to

implement. For example, the fixed length blocks make allocation

straight forward, and the lock step acknowledgement provides flow

control and eliminates the need to reassemble files.

3: Relation to other Protocols

As mentioned TFTP is designed to be implemented on top of the

Datagram protocol. Since Datagram is implemented on the Internet

protocol, packets will have an Internet header, a Datagram header, and a

TFTP header. Additionally, the packets may have a header (LNI, ARPA

header, etc.) to allow them through the local transport medium. As

shown in Figure 1, the order of the contents of a packet will be local

medium header, if used, Internet header. Datagram header, TFTP header,

followed by the remainder cf the TFT? packet. (This may or may not be

data depending on the type of packet as specified in the TFTP header.)

TFTP does not specify any of the values in the Internet header.

The source and destination port fields of the Datagram header (its

format is given in the appendix) are used by TFTP and the length field

reflects the size of the TFTP packet. The transfer identifiers (TTD's)

used by TFTP are passed to the Datagram layer to be used as ports.

Therefore for they must be between 0 and 65,535. The initialization of

TID's is discussed in the section on initial connection protocol.

2-071

111\ ! * ■'- iVl ■" \ I '■' -' -'/l

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

- 4 -

The TFTP header consists of a 2 byte opcode field which indicates

the packet's type (e.g., DATA, ERROR, etc.) These opcodes and the

formats of the various types of packets are discussed further in the

section on TFTP packets.

Figure 1. Order of Headers

j Local Medium | Internet | Datagram | TFTP j

4: Initial Connection Protocol

A transfer is established by sending a request (WRQ to write onto a

foreign file system, or RRQ to read from it), and receiving a positive

reply, an acknowledgment packet for write, or the first data packet for

read. In general ar> acknowledgment packet will contain the block number

of the data packet being acknowledged. Each data packet has associated

with it a block nunber; block numbers are consecutive and begin with

one. Since the positive response to a write request is an

acknowledgment packet, in this special case the block number will be

zero. (Normally, since an acknowledgment packet is acknowledging a data

packet, the acknowledgement packet will contain the block number of the

data packet being acknowledged.) If the reply is an error packet, then

the request is denied for the reason stated in the error packet.

In order to create a connection. TID's to be used for the duration

of the connection are chosen by the two ends of that connection. The

TID's chosen for a connection should be randomly chosen, so that the

2-972

APPLICATION LEVEL: TFTP IEN 133

- 5 -

probability that the same number is chosen twice in immediate succession

is very low. Every packet has associated with it two TID's, the source

TID and the destination TID. A requesting host chooses its source TID

as described above, and sends its initial request to the known TID 69

(105 octal) on the serving host. The response to the request, under

normal operation, uses a TID chosen by the server as its source TID and

the TID chosen for the previous message by the requestor as its

destination TID. The two chosen TID's are then used for the remainder

of the transfer.

As an example, the following shows the steps used to establish a

connection to write a file. Note that URQ. ACK, and DATA are the names

of the write request, acknowledgment, and data types of packets

respectively. The Appendix contains a similar example for reading a

file.

1. Host A sends a "WRQ" to host B with

source« A's TID, destination« 69.

2. Host B sends a "ACK" (with block number» 0) to host A with

source» B's TID, destination- A's TID.

3. Host A sends a "DATA" (with block number« 1) to host B with

source« A's TID, destination» B's TID.

4. Host B sends a "ACK" (with block number« 1) to host A with

source» B's TID, destination» A's TID.

In step three, and in all succeeding steps, the hosts should make

sure that the source TID matches the value that was agreed on in step 2.

2-973

'm' ''""* '*■-** "■**-* -''■- '-» '■• s •-»'-•* *'^V »'..••- ..' - .• •- \ ,'_»,' •••'*. .* . -.••••.-.•■ ■/ ' " -y- • «i

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

- 6 -

If it doesn't match, an error packet should be sent to the originator,

but the connection should not be aborted. The following example

demonstates the problem this and the randomly chosen TID's are trying to

solve.

Host A sends a request to host B. Somewhere in the network, the

request packet is duplicated, and as a result two acknowledgments are

returned to host A, with different TID's chosen on host B in repsonse to

the two requests. When the first response arrives, host A continues the

connection. When the second response to the request arrives, it should

be rejected, but there is no reason to terminate the first connection.

Therefore, if different TID's are chosen on host B and host A checks the

source TID's of the messages it receives, the first connection can be

maintained while the second is rejected.

5: TFTP Packets

TETP supports five types of packets, all of which have been

mentioned above:

opcode operation

1 Read request (RRQ)

2 Write request (WRQ)

3 Acknowledgment (ACK)

4 Data (DATA)

5 Error (ERROR)

2-974

. • ."-'.> v,**"•*-'. v '„•'" '" . * .*• .'* A **• .** •> v** »N •**•"• »** .** •'

_» _*_*_*_ «_ * _ I

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

- 8 -

Data is actually transferred in DATA packets depicted in Figure 3. DATA

packets (opcode * 4) have a block number and data field. The block

numbers on data packets begin with one and increase by one for each new

block of data. This restriction allows the program to use a single

number to discriminate between new packets and duplicates. The data

field is from zero to 512 bytes long. If it is 512 bytes long, the

block is not the last block of data; if it is from zero to 511 bytes

long, it signals the last data packet. (See the section on Normal

Termination for details.)

Figure 4. ACK packet

2 bytes 2 bytes

| Opcode i Block # |

All packets other than those used for termination are acknowledged

individually. Sending a DATA packet is an acknowledgment for the ACK

packet of the previous DATA packet. The WRQ and DATA packets are

acknowledged by ACK or ERROR packets, while RRQ and ACK packets are

acknowledged by DATA or ERROR packets. Figure 4 depicts an ACK packet;

the opcode is 3. T*e block number in an ACK echoes the block number of

the DATA packet being acknowledged. A WRQ is acknowledged with an ACK

packet having a block number of zero.

2-075

•.*-!■ ^v<->*v!vv->>>:v">L,,iv!Cvl*iv wvv*%*!viC\ v*

APPLICATION LEVEL: TFTP IEN 133

- 7 -

The TFTP header of a packet contains the opcode associated with that

packet.

Figure 2. RRQ/WRQ

2 bytes string 1 byte string 1 byte

| Opcode | Filename | 0 | Mode | 0 |

RRQ and WRQ packets (opcodes 1 and 2 respectively) have the format

shown in Figure 2. The file name is a sequence of bytes in netascii

terminated by a zero byte. The mode field contains the string

"netascii", "binary", or "mail" in netascii indicating the three moOes

defined in the protocol. A host which receives netascii mode data must

translate the data to its own format. Presumably, every host will

translate its character set to and from netascii. Binary mode allows

the two communicating hosts to impose their ovn interpretation on the

data being transmitted; between similar machines binary mode can be

used to avoid the conversion overhead. If a host receives a binary file

and then returns it, the returned file must be identical to the file it

received. Mail mode uses the name of a mail recipient In place of a

file and must begin with a WRQ. Otherwise it Is identical to netascii

mode.

Figure 3. DATA

2 bytes 2 bytes n bytes

} Opcode | Block * j Data !

2-973

APPLICATION LEVEL: TFTP IEN 133

- 9 -

Figur« 5. ERROR packet

2 bytes 2 bytes string 1 byte

| Opcode | ErrorCode | ErrMsg I 0 |

An ERROR packet (opcode 5) takes the form depicted in Figure 5. An

ERROR packet can be the acknowledgment of any other type of packet. The

error code is a small integer indicating the nature of r ie error. A

table of its values and meanings is given in the appendix. The error

message is intended for human consumption, and should be in netascll.

Like all other strings, it is terminated with a *ero byte.

6: Normal Termination

The end of a transfer is marked by a DATA packet that contains

between 0 and 511 bytes of data (i.e. Datagram length < 516) . This

packet is acknowledged by an ACK packet like all other DATA packets.

Tne final ACK packet is rmvmr retransmitted; the host acknowledging the

final DATA packet may terminate its side of the connection on sending

the final ACK. On the other hand, the host sending the last DATA must

retransmit it until the packet is acknowledged or the sending host times

out. If the rmsp<m»m is an ACK. the transmission was completed

successfully. If it is an ERROR (unknown transfer ID), or the nrnvdmr of

the data times out and is not prepared to retransmit any more, the

transfer may still have been completed successfully, after which the

acknowledger may have experience^ a problem. It is also possible in

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

- 10 -

this case that the transfer was unsuccessful. In any case, the

connection has been closed.

7: Premature Termination

If a request can not be granted, or some c^rnr occurs during the

transfer, then an ERROR packet (opcode 5) Is sent. This is only a

courtesy since it will not be retransmitted or acknowledged, so it may

never be received. Timeouts must also be used to detect errors.

2-978

>£>ivV:i -i .^i>i>is>!^>]v <:, v>v >\%v i^i. •-!,>>:. ■"_. *- - •
■v»v«\ »*«

APPLICATION LEVEL: TFTP IEN 133

- 11 -

APPENDIX

Order of Headers

2 bytes

| Local Medium j Internet j Datagram | TFTP Opcode

TFTP Formats

Type Op # Format without header

2 bytes string 1 byte string 1 byte

KRQ/ | 01/02 ; Filename | 0 | Mode | 0 |
WRQ - —

2 bytes 2 bytes n bytes

DATA | 03 | Block # | Data |

2 bytes 2 bytes

ACK | 04 | Block # |

2 bytes 2 bytes string 1 byte

ERROR j 05 | ErrorCode | ErrMsg i 0 |

2-979

■w^*"^ ■*** ^^^■■1.!« »; i»^*V nn ±*m' ■ W+ ■■* m'mm ifrMfeHfe

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

- 12 -

Initial Connection Protocol for reading a file

1. Host A sends a "RRQ" to host B with

source= A's TTD, destinations 69.

2. Kost B sends a "DATA" (with block numbers 1) to host A with

source= B'S TID, destinations A's TID.

3. Host A sends an "ACK" (with block numbers l) to host B with

sources A's TID, destinations B's TID.

2-980

r.'J*.«^* •_•..•_* _* «_• «L* »_* :-.

.% ,N „-. *."

•V- *A\V,

APPLICATION LEVEL: TFTP IEN 133

- 13 -

Error Codes

Value Meaning

0 Not defined, see error message (if any)

1 File not found.

2 Access violation.

3 Disc full or allocation exceeded.

4 Illegal TFTP operation.

5 Unknown transfer ID.

2-981

/•*.**i\v iVAV«: v. -v 1-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

- 14 -

Internet User Datagram Header

Format

0 12 3
01234567890123456789012345678901

| Source Port | Destination Port |

| Length j Checksum |

Values of Fields

Source Port
Dest. Port
Length
Checksum

Picked by originator of packet.
Picked by destination machine (69 for RRQ or WRQ).
Number of bytes in packet after Datagram header.
Reference 2 describes rules for computing checksum.
Field contains zero if unused.

Note: TSTP passes transfer identifiers (TID's) to rhm Internet User
Datagram protocol to be used as the source and destination ports.

2-982

^ i»
.-. V» A.«
i* C •-'.i»V.» «wJ <" ' <-• ■ ■^--v

APPLICATION LEVEL: TFTP IEN 133

- 15 -

References

1. USA Standard Code for Information Interchange,
USASI X3.4-1968.

2. Postel, Jon., "User Datagram Protocol," IEN 88, May 2,
1979.

3. "Telnet Protocol Specification," RFC552, NIC 18639,
August, 1973.

2-983

» « - * * . * - • H \» *Jk • . ■ » * H V V V V V V

V .*" «"' .**'»** -"» »*"• »** »**► J"* t,** .*" •*• • • .*" »

V. -\v

:*:£^*1-.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-984

-VNV-"_^".^V-V'_NV'V- *V*1N*1^V-^>*1S*1^\^*1^A'JVVW""V' a*_*J_v!_v"Lv_ AVL^\ä. J._VI__^JI _*_\^iJrt.*

APPLICATION LEVEL: SFTP RFC 913

Network Working Group Mark K. Lottor
Request for Comments: 913 MIT

September 1984

Simple File Transfer Protocol

STATUS OF THIS MEMO

This RFC suggests a proposed protocol for the ARPA-Internet
community, and requests discussion and suggestions for improvements.
Distribution of this memo is unlimited.

INTRODUCTION

SFTP is a simple file transfer protocol. It fills the need of people
wanting a protocol that is more useful than TFTP but easier to
Implement (and less powerful) than FTP. SFTP supports user access
control, file transfers, directory listing, directory changing, file
renaming and deleting.

SFTP can be implemented with any reliable 8-bit byte stream oriented
protocol, this document describes its TCP specification. SFTP uses
only one TCP connection; whereas TFTP implements a connection over
UDP, and FTP uses two TCP connections (one using the TELNET
protocol).

THE PROTOCOL

SFTP is used by opening a TCP connection to the remote hosts' SFTP
port (115 decimal) . You then send SFTP commands and wait for
replies. SFTP commands sent to the remote server are always 4 ASCII
letters (of any case) followed by a space, the argument (s), and a
<NULL>. The argument can sometimes be null in which case the command
is just 4 characters followed by <NULL>. Replies from the server are
always a response character followed immediately by an ASCII message
string terminated by a <NULL>. A reply can also be just a response
character and a <NULL>.

<command> : = <cmd> [<SPACE> <args>] <NULL>

<cmd> : = USER ! ACCT ! PASS ! TYPE ! LIST ! CDIR
KILL ! NAME ! DONE ! RETR ! STOR

<response> : = <response-code> [<message>] <NULL>

<response-code> : " ♦ \ - \ I !

<message> can contain <CRLF>

Commands that can be sent to the server are listed belcw. The server

Lottor [Page 1]

2-985

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 913
Simple File Transfer Protocol

September 1984

replies to each command with one of the possible response codes
listed under each message. Along with the response, the server
should optionally return a message explaining the error in more
detail. Example message texts are listed but do not have to be
followed. All characters used in messages are ASCII 7-bit with the
high-order bit zero, in an 8 bit field.

The response codes and their meanings:

+ Success.

- Error.

An error occurred while processing your command.

Number.

The number-sign is followed immediately by ASCII digits
representing a decimal number.

! Logged in.

You have sent enough information to be able to log yourself in.
This is also used to mean you have sent enough information to
connect to a directory.

To use SFT? you first open a connection to the remote SFTP server.
The server replies by sending either a positive or negsitlve greeting,
such as:

♦MIT-XX SFTP Service

(the first word should be the host name)

-MIT-XX Out to Lunch

Lottor [Page .2]

2-Ö86

• ' ■•••'.>»?•''.'- •'. "- ** 5i - - - N - ■ J *- ■ --^ > ^-«-i; . - ■-■ '■ ^ '■ •

APPLICATION LEVEL: SFTP RFC 913

RFC 913
Simple File Transfer Protocol

September 1984

If the server send back a '-' response it will also close the
connection, otherwise you must now send a USER command.

USER user-id

Your userid on the remote system.

The reply to this command will be one of:

!<user-id> logged in

Meaning you don't need an account or password or you
specified a user-id not needing them.

^User-id valid, send account and password

-Invalid user-id, try again

If the remote system does not have user-id's then you should
send an identification such as your personal name or host name
as the argument, and the remote system would reply with •♦'.

ACCT account

The account you want to use (usually used for billing) on the
remote system.

Valid replies are:

! Account valid, logged-in

Account was ok or not needed. Skip the password.

+Account valid, send password

Account ok or not needed. Send your password next.

-Invalid account, try again

Lottor [Page 3]

2-087

y«-. *//.-.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

RFC 913
Simple File Transfer Protocol

September 1984

PASS password

Your password on the remote system.

Valid replies are:

! Logged in

Password is ok and you can begin file transfers.

♦Send account

Password ok but you haven't specified the account.

W> mg password, try again

Lottor [Page 4]

2-088

v *v;'

APPLICATION LEVEL: SFTP RFC 91?,

RFC 913
Simple File Transfer Protocol

September 1984

I

I
1

You cannot specify any of the following commands until you receive a
'!' response from the remote system.

TYPE < A | B | C }

The mapping of the stored file to the transmission byte stream
is controlled by the type. The default is binary if the type
is not specified.

A - ASCII

TU* ASCII bytes are taken from the file in the source
system, transmitted over the connection, and stored in the
file in the destination system.

The data is the 7-bit ASCII codes, transmitted in the
low-order 7 bits of 8-bit bytes. The high-order bit of the
transmission byte must be zero, and need not be stored in
the file.

The data is "NETASCII" and is to follow the same rules as
data sent on Telnet connections. The key requirement here
is that the local end of line is to be converted to the pair
of ASCII characters CR and LF when transmitted on the
connection.

For example. TOPS-20 machines have 36-bit words. On TOPS-20
machines. The standard way of labeling the bits is 0 through
35 from high-order to low-order. On TOPS-20 the normal way
of storing ASCII data is to use 5 7-bit bytes pmr word. In
ASCII mode, the bytes transmitted would be [0-6], [7-13],
[14-20], [21-27], [28-34], (bit 35 would not be
transmitted), each of these 7-bit cjuantlties would be
transmitted as the low-order 7 bits of an 8-bit byte (with
the high-order bit zero) .

For example, one disk page of a TOPS-20 file is 512 36-bit
words. But using only 35 bits pnr word for 7-bit bytes, a
page is 17920 bits or 2560 bytes.

r**

Lottor

ft

[P.9« 5]

1
k Vi v V V V V V * • V V V V V * V V * » *
r »* •* - V V V * V * * * • «• * * • " • * •

2-989

to^i:^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 913
Simple tile Transfer Protect I

September 1984

B - BINARY

The 8-bit bytes are taken from the file in the source
system, transmitted over the connection, and stored in the
file in the destination system.

The data is in 8-bit units. In systems with word sizes
which are not a multiple of 9, some bits of the word will
not be transmitted.

For example, TOPS-20 machines have 36-bit words. In binary
mode, the bytes transmitted would be [0-7], [8-15], [16-23],
[24-31], (bits 32-35 would not be transmitted).

For example, one disk page of a TOPS-20 file is 512 36-bit
words. But using only 32 bits per word for 8-bit bytes, a
page is 16384 bits or 2048 bytes.

C - C0KTINU0ÜS

The bits are taken from the file in the source system
continuously, ignoring word boundaries, and sent over the
connection packed into 8-bit bytes. The destination system
stores the bits received into the file continuously,
ignoring word boundaries.

For systems on machines with a word size that is a multiple
of 8 bits, the implementation of binary and continuous modes
should be identical.

For example. TOPS-20 machines have 36-bit words. In
continuous mode, the bytes transmitted would be [first word,
bits 0-7], [first word, bits 8-15], [first word, bits
16-23], [first word, bits 24-31], [first word, bits 32-33 ♦
second word, bits 0-3], [second word. bit*i 4-11]. [second
word, bits 12-19], [second word, bits 20-27]. [second word,
bits 28-35], then the pattern repeats.

For example, one disk page of a TOPS-20 file is 512 36-bit
words. This is 18432 bits or 2304 8-bit bytes.

Replies are:

♦Using { Ascii | Binary | Continuous > mode

-Type not valid

Lottor [Pag«? 6;

2-990

APPLICATION LEVEL: SFTP RFC 913

i

RFC 913 Sepcumber 1984
Simple File Transfer Protocol

LIST { F | V } directory-path

A null directory-path will return the current connected
directory listing.

F specifies a standard formatted directory listing.

(An error reply should be a '-' followed by the error message
1 from the remote systems directory command. A directory
(I listing is a *♦' followed immediately by the current

_jj directory path specification and a <CRLF>. Following the
directory path is a single line for each file in the
directory. Each line is Just the file name followed by
<CRLF>. The listing is terminated with a <NULL> after the
last <CRLF>.

I
I V specifies a verbose directory listing.

f» An error returns •-' as above. A verbose directory listing
^ is a *♦' followed immediately by the current directory path

specification and a <CRLF>. It is then followed by one line
per file in the directory (a line ending in <OULF>) . The
line returned for each file can be of any format. Possible
information to return would be the file name, size,
protection, last write date, and name of last writer. •

I
i
r *

U

Lottor 'Page 7*
I»* i

2-991

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 9X3 September 1984
Simple File Transfer Protocol

CDIR new-directory

This will change the current working directory on the remote
host to the argument passed.

Replies are:

•Changed working dir to <new-directory>

-Can't connect to directory because: (reason)

♦directory ok, send account/password

If the server replies with *♦* you should then send an ACCT or
PASS command. The server will wait for ACCT or PASS commands
until it returns a '-• or '!' response.

Replies to ACCT could be:

! Changed working dir to <new-directory>

♦account ok, send password

-invalid account

Replies to PASS could be:

! Changed working air zo <new~directory>

♦password ok, mmnd account

-invalid password

KILL file-spec

This will delete the file from the remote system.

Replies are:

♦<file-spec> deleted

-Not deleted because (reason)

Lottor [Page 8}

2-992

:/j^y<^l^

APPLICATION LEVEL: SFTP RFC 913

REC 913 September 1984
Simple File Transfer Protocol

NAME old-file-spec

Renamas the old-file-spec to be new-file-spec on the remote
system.

Replies:

+File exists

-Can't find <old-file-spec>

NAME command is aborted, don't send TOBE.

If you receive a '+' you then send:

TOBE new-file-spec

The server replies with:

+<old-file-spec> renamed to <new-file-spec>

-File wasn't renamed because (reason)

DONE

Tells the remote system you are done.

The remote system replies:

+(the message may be charge/accounting info)

and then both systems close the connection.

Lottor [Page 9]

2-993

L^^fi^fcWnuWt wVV.VnV.V, ^ • .* ."* »** .** ->

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 913
Simple File Transfer Protocol

September 1984

RETR file-spec

Requests that the remote system send the specified file.

Receiving a '-' from the server should abort the RETR command
and the server will wait for another command.

The reply from the remote system is:

<number-of-bytes-that-will-be-sent> (as ascii digits)

-File doesn't exist

You then reply to the remote system with:

SEND (ok, waiting for file)

The file is then sent as a stream of exactly the number
of 8-bit bytes specified. When all bytes are received
control passes back to you (the remote system is waiting
for the next command). If you don't receive a byte
within a reasonable amount of time you should abort the
file transfer by closing the connection.

STOP (You don't have enough space to store file)

Replies could be:

♦ok, RETR aborted

You are then ready to send another command to the remote host.

Lottor [Page 10]

2-994

•^i^i^^ii.^

APPLICATION LEVEL: SFTP RFC 913

R£C 913 September 1984
Simple File Transfer Protocol

STÖR { NEW | OLD | APP } file-spec

Tells the remote system to receive the following file and save
it under that name.

Receiving a ' -' should abort the STOR command sequence and the
server should wait for the next command.

NEW specifies it should create a new generation of the file and
not delete the existing one.

Replies could be:

♦File exists, will create new generation of file

♦File does not exist, will create new file

-Eile exists, but system doesn't support generations

OLD specifies it should write over the existing file, if any,
or else create a new file with the specified name.

Replies could be:

♦Will write over old file

♦Will create new file

(OLD should always return a '♦')

APP specifies that what you send should be appended to the file
on the remote site. If the file doesn't exist it will be
created.

Replies could be:

♦Will append to file

-Will eraate file

(APP should always return a '♦')

Lottor [Page 11]

2-995

&£■!»: ^:L>^ ■_' fcAjJ! iL-'^t-' .-* .^•TAJ. *JV' «JJAL •-•*•-*'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 913
Simple File Transfer Protocol

September 1984

You then send:

SIZE <number-of-bytes-in-file> (as ASCII digits)

where number-of-bytes-in-file

is the exact number of 8-bit bytes you will be
sending.

The remote system replies:

+ok, waiting for file

You then send the file as exactly the number of bytes
specified above.

When you are done the remote system should reply:

-»-Saved <file-spec>

-Couldn't save because (reason)

-Not enough room, don't send it

This aborts the STQR sequence, the server is waiting for
your next command.

You are then ready to send another ccmmand to the remote host.

Lottor [Page 12]

2-996

lYl^VeLvlVA'^.r^'.O.^lV^ * -" *-." *. •.' "v* v" *-* "•■" ".* K *.* * " »«.' v" - * ^ »*.**♦ %• « • * * » w. " » »V*

APPLICATION LEVEL: SFTP RFC 913

RFC 913
Simple File Transfer Protocol

September 1984

I

AN EXAMPLE

An example file transfer. 'S* is the sender, the user process. 'R'
is the reply from the remote server. Remember all server replies are
terminated with <NULL>. If the reply is more than one line each line
ends with a <CRLF>.

R:
S:
R:
S:
R:
S:
R:
S:
R:

S:
R:

S
R
S
R

S:
R:

(listening for connection)
(opens connection to R)
+MIT-XX SFTP Service
USER MKL
+MKL ok, send password
PASS foo
! MKL logged in
LIST F PS: <MKL>
♦PS: <MKL>
Small.File
Large.File
LIST V
♦PS: <MKL>
Small.File 1 69(7) P775240
Large.File 100 255999(8) P770000
RETR SMALL.FILE
69

SEND
This is a small file, the file is sent without
a terminating null.
DONE
♦MIT-XX closing connection

2-Aug-84 20:08 MKL
9-Dec-84 06:04 MKL

r ■

FT"

1*'

Lotter [Page 13]

2-9Ö7

■,.*».> A»**.-.'- .*• .*■.*•

*** litt*» »V *—..«*» *^X^'*m **_t». **i'*"l •lJ'«L* *•»»*-*•"_ _*_" ».- JL _ * _ k! -

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 913 September 1984
Simple File Transfer Protocol

EDITORS NOTE

Mark Lotter receives full credit for all the good ideas in this memo.
As RFC editor, i have made an number of format changes, a few wording
changes, and one or two technical changes (mostly in the TYPEs). I
accept full responsibility for any flaws i may have introduced.

A draft form of this memo was circulated for comments. I will
attempt to list the issues raised and summarize the pros and cons,
and resolution for each.

ASCII Commands vs Binary Operation Codes

The ASCII command style is easier to debug, the extra
programming cost in minimal, the extra transmission cost is
trivial.

Binary operation codes are more efficient, and a few days of
debugging should not out weigh years of use.

Resolution: I have kept the ASCII Commands.

Additional Modes

Pro: For some machines you can't send all the bits in a word
using this protocol. There should be some additional mode to
allow it.

Con: Forget it, this is supposed to be SIMPLE file transfer.
If you need those complex modes use real FTP.

Resolution: I have added the Continuous mode.

Lottor [Page 14]

2-Ö98

P /
t-'. «- -'-'. ►-l-t-M-i^'^J

APPLICATION LEVEL: SFTP RFC 913

RFC 913 September 1984
Simple File Transfer Protocol

CRLF Conversion

Pro: In \SCII type, convert the local end of line indicator to
[J CRLF on tne way out of the host and onto the network.

Lv

r.

r
v.

Con: If you require that you have to look at the bytes as you
send them, otherwise you can just send them. Most of the time
both sides will have the same end of line convention anyway.
If someone needs a conversion it can be done with a TECC macro
separately.

Resolution: I have required CRLF conversion in ASCII type. If
you have the same kind of machines and the same end of line
convention you can avoid the extra cost of conversion by using
the binary or continuous type.

TCP Urgent

Pro: Use TCP, Urgent to abort a transfer, instead of aborting
the connection. Then one could retry the file, or try a
different file without having to login again.

Con: That would couple SFTP to TCP too much. SFTP is supposed
to be able to be work over any reliable 8-bit data stream.

Resolution: I have not made use of TCP Urgent.

Random Access

Pro: Wouldn't it be nice if (WIBNIF) SFTP had a way of
accessing parts of a file?

Con: Forget it, this is supposed to be SIMPLE file transfer.
If you need random access use real FTP (oops, real FTP doesn't
have random access either -- invent another protocol?).

Resolution: I have not made any provision for Random Access.

jon postel.

Lottor [Paga 15]

Es 2-G99

F
."■ •> "*•,

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-1000

'**-{*-' «.''«-'-V^•*.-\»'. *V »*>i^•*- ^- «:_■ - «-«'- »*- »'- ■'. «.*- «*-«'- «•'- V ^ >w^ ^Jl >:^: >

APPLICATION LEVEL: ECHO RFC 862

Network Working Group
Request for Comments: 862

J. Postel
ISI

May 1983

Echo Protocol

This RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet that choose to implement an Echo Protocol are expected
to adopt and implement this standard.

A very useful debugging and measurement tool is an echo service. An
echo service simply sends back to the originating source any data it
receives.

TCP Based Echo Service

One echo service is defined as a connection based application on TCP.
A server listens for TCP connections on TCP port 7. Once a
connection is established any data received is sent back. This
continues until the calling user terminates the connection.

ÜDP Based Echo Service

Another echo service is defined as a datagram based application on
UDP. A server listens for UDP datagrams on UDP port 7. When a
datagram is received, the data from it is sent back in an answering
datagram.

Postal [Page 1]

2-1001

<*P ... * «.<-. <*_• -. • _ m « «'^^ t* f- f. rfL «*L «"_ ■*L .♦_ «•_ .•_'J»_ V_ -•_ JL" ^l^i ±n »• *.v A -:.:-i>>:*>

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-1002

'.'VAVA'A.

.'.\ ■%,/„*.

^J^^ AA^!t ^ *- - A Ji^t-i.J Jji kd^A ».Ik «.** -\ «*-. -*• -.** -** «/» JW~'* -A » ^

APPLICATION LEVEL: DISCARD RFC 863

Network Working Group J- Postel
Request for Comments: 863 ISI

May 1983

Discard Protocol

This RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet that choose to implement a Discard Protocol are

b expected to adopt and implement this standard.

P A useful debugging and measurement tool is a discard service. A discard
^ service simply throws away any data it receives.

TCP Based Discard Service

One discard service is defined as a connection based application on
m TCP. A server listens for TCP connections on TCP port 9. Oncm a
P connection is established any data received is thrown away. No
iv response is sent. This continues until the calling user terminates
IjS the connection.

f• I

i

UDP Based Discard Service

Another discard service is defined as a datagram based application on
UDP. A server listens for DDP datagrams on UDP port 9. When a
datagram is received, it is thrown away. No response is sent.

Postel [*•*• 13

r.

2 1003

V

£&&v>:>:^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

*

r*

i
f

I

i
V 2-10CM

frVAS;- -* -*•- ■* a A A,, A. ̂ A. -»•^*^ -^ -«

'.'. 'A*"

APPLICATION LEVEL: DAYTIME RFC 867

Network Working Croup
Request for Comments: 867

J. Postel
ISI

May 1983

Daytime Protocol

This RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet that choose to implement a Daytime Protocol are
expected to adopt and implement this standard.

A useful debugging and measurement tool is a daytime service. A daytime
service simply sends a the current date and time as a character string
without regard to the input.

TCP Based Daytime Service

One daytime service is defined as a connection based application on
TCP. A server listens for TCP connections on TCP port 13. Once a
connection is established the current date and time is sent out the
connection as a ascli character string (and any data received is
thrown away). The service closes the connection after sending the
quote.

UDP Based Daytime Service

Another daytime service service is defined as a datagram based
application on UDP. A mmrymr listens for UDP datagrams on UDP port
13. When a datagram is received, an answering datagram is sent
containing the current date and time as a ASCII character string (the
data in the received datagram is ignored).

Daytime Syntax

There is no specific syntax for the daytime. It is recommended that
it be limited to the ASCII printing characters, space, carriage
return, and line feed. The daytime should be just one line.

One popular syntax is:

Weekday. Month Day, Year Time - Zone

Example:

TMesday. February 22. 1982 17:37:43«PST

Postel [P»9* *3

2-IOCS

r

I* .*'* ■* "■•*»"*»• "»* '/*W »*'*"* V * ,* * *** -'* *** '*"" »^ »*• »^ »** »** "' -*' »** »"* ."•***".*• *» **•,*•* * '

: - *-* ",a ,** •.»':

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 867
Daytime Protocol

May 1983

Another popular syntax is that used in SMTP:

dd mmm yy hh:tnm:ss zzz

Example:

02 FEB 82 07:59:01 PST

NOTE: For machine useful time use the Time Protocol (RFC-868).

Postel rp*qm 2]

2-1006

Ll* ^^••^yv*/»; A]S*l*y v.% !>**> *>"»'_ A'1* *Sv.v."!

APPLICATION LEVEL: TIME RFC 868

Network Working Group J. Postel - ISI
Request for Comments: 868 K. Harrenstien - SRI

May 1983

Time Protocol

This RFC specifies a standard for the ARPA Internet community. Hosts on J
the ARPA Internet that choose to implement a Time Protocol are expected *
to adopt and implement this standard. «

Ibis protocol provides a site-independent, machine readable date and I
time. The Time service sends back to the originating source the time in
seconds since midnight on January first 1900.

»
One motivation arises from the fact that not all systems have a v
date/time clock, and all are subject to occasional human or machine
error. The use of time-servers makes it possible to quickly confirm or J
correct a system's idea of the time, by making a brief poll of several j
Independent sites on the network.

Ibis protocol may be used either above the Transmission Control Protocol
(TCP) or above the User Datagram Protocol (UDP).

When, used via TCP the time service works as follows:

S: Listen on port 37 (45 octal).

U: Connect to port 37.

S: Send the time as a 32 bit binary number.

U: Receive the time.

U: Close the connection.

S: Close the connection.

The server listens for a connection on port 37. When the connection
is established, the server returns a 32-bit time value and closes the
connection. If the server is unable to determine the time at its
site, it should either refuse the connection or close it without
sending anything.

Postel [Page 1]

2-1007

- •. . v

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 868
Time Protocol

May 1983

When used via UDP the time service works as follows:

S: Listen on port 37 (45 octal).

U: Send an empty datagram to port 37.

S: Receive the empty datagram.

S: Send a datagram containing the time as a 32 bit binary number.

U: Receive the time datagram.

The server listens for a datagram on port 37. When a datagram
arrives, the server returns a datagram containing the 32-bit time
value. If the server is unable to determine the time at its site, it
should discard the arriving datagram and make no reply.

The Time

The time is the number of seconds since 00:00 (midnight) 1 January 1900
GMT, such that the time 1 is 12:00:01 am on 1 January 1900 GMT; this
base will serve until the year 2036.

For example:

the time 2,208,988,800 corresponds to 00:00 1 Jan 1970 GMT,

2,398,291,200 corresponds to 00:00 1 Jan 1976 GMT,

2,524,521,600 corresponds to 00:00 1 Jan 1980 GMT,

2,629,584,000 corresponds to 00:00 1 May 1983 GMT,

and -1,297,728,000 corresponds to 00:00 17 Nov 1858 GMT.

Postel [Page 2]

2-1008

APPLICATION LEVEL: CHARGEN RFC 864

Network Working Group J- Postel
Request for Comments: 864 ISI

May 1983

Character Generator Protocol

This RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet that choose to implement a Character Generator
Protocol are expected to adopt and implement this standard.

A useful debugging and measurement tool is a character generator
service. A character generator service simply sends data without regard
to the input.

TCP Based Character Generator Service

One character generator service is defined as a connection based
application on TCP. A server listens for TCP connections on TCP port
19. Once a connection is established a stream of data is sent out
the connection (and any data received is thrown away) . This
continues until the calling user terminates the connection.

It is fairly likely that users of this service will abruptly decide
that they have had enough and abort the TCP connection, instead of
carefully closing it. The service should be prepared for either the
carfull close or the rude abort.

The data flow over the connection is limited by the normal TCP flow
control mechanisms, so there is no concern about the service sending
data faster than the user can process it.

UDP Based Character Generator Service

Another character generator service is defined as a datagram based
application on UDP. A server listens for UDP datagrams on UDP port
19. When a datagram is received, an answering datagram is sent
containing a random number (between 0 and 512) of characters (the
data in the received datagram is ignored).

There is no history or state information associated with the UDP
version of this service, so there is no continuity of data from one
answering datagram to another.

The service only send one datagram in response to each received
datagram, so there is no concern about the service sending data
faster than the user can process it.

Postel [Page 1]

2-1009

^AtJ^J>>rJ^J»:.-V^V^^'J.'/«;J»-'i*J.jfJ«:,J'^.*»:M^.,JiJ^'m\\\^\t^A^ lm**~mL*!L± 'jkL.ht**:,^.,*..

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

i

i

FFC 864 May 1983
Giaracter Generator Protocol

Data Syntax

The data may be anything. It is recommended that a recognizable
pattern be used in tha data.

One popular pattern is 72 chraracter lines of the ASCII printing
characters. There are 95 printing characters in the ASCII
character set. Sort the characters into an ordered sequence and
number the characters from 0 through 94. Think of the sequence as
a ring so that character number 0 follows character number 94. On
the first line (line 0) put the characters numbered 0 through 71.
On the next line (line 1) put the characters numbered 1 through
72. And so on. On line N, put characters (0+N mod 95) through
(71+N mod 95) . End each line with carriage return and line feed.

V Postel [Page 2]

2-1010

APPLICATION LEVEL: CHARGEN RFC 864

RFC 864 May 1983
Character Generator Protocol

Example

! "#$%&' () * +, ~ . /0123456789:; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] *_* abcdefgh
"#$%&' 0 * +. " • /012 3456789:; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] ~_* abcdefghi

()*+,-. /0123456789:; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] *_* abcdefghijklmn
()*+,- ./0123456789:; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] "S abcdefghi jklmno
) *+, - ./0123456789: ;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] *.* abcdefghi jklimop
*+, - . /0123456789:; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] V abcdefghijklmnopq
+ - . /0123456789:; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] ~_~ abcdefghi jklmnopqr
, - . /0123456789:; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] ~_* abcdefghi jklmnopqr s
- ./0123456789:; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] ~_~ abcdefghi jklmnopqr st
./0123456789:; <=>?@ABCDEFCHIJKLMNOPQRSTUVWXYZ [\] V abcdefghijklmnopqrstu
/012 3456789:; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] "_* abcdefghi jklmnopqr stuv
0123456789:; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] 'S abcdefghi jklmnopqr stuvw
123456789:; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] ~_~ abcdefghi jklmnopqr stuvwx
23456789:; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] 'S abcdefghi jklmnopqrstuvwxy
3456789:; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] ~_" abcdefghi jklmnopqrstuvwxyz
456789:; <=>?®ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] "V abcdefghi jklmnopqrstuvwxyz {
56789:; <=>?®ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] ~S abcdefghi jklmnopqrstuvwxyz { |
6789:; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] ~_* abcdefghi jklmnopqrstuvwxyz < | }
789:; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] 'S abcdefghi jklmnopqrstuvwxyz {| }~
89:; <=>?<§ABCDEFCMI JKLMNOPQRSTUVWXYZ [\] ~J* abcdefghi jklmnopqrstuvwxyz {1 }"
9:; <->?<§IABCDEFGHI JKLMNOPQRSTUVWXYZ [\] 'S abcdefghi jklmnopqrstuvwxyz { | >" !
:; <=>?®ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] 'S abcdefghi jklmnopqrstuvwxyz { | >" ! "
; <=>?®ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] mS abcdefghi jklmnopqr stuvwxyz{ | }" ! "#
<=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] 'S abcdefghi jklmnopqr stuvwxyz< | >" ! M#$
=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] mS abcdefghi jklmnopqrstuvwxyz { | >" ! "#$%
>?®ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] *_% abcdefghi jklmnopqrstuvwxyz { | >" ! "#$%&
?@ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] 'S aocdefghi jklmnopqrstuvwxyz< | >" ! "#$%&'
^ABCDEFGHI JKLMNOPQRSTUVWXYZ [\] 'S abcdefghi jklmnopqrstuvwxyz {| >" ! "#$%&' {
ABCDEFGHI JKLMNOPQRSTUVWXYZ [\]" J* abcdefghi jklmnopqrstuvwxyz < | }~ ! "#$%&' ()
BCDEFGHI JKLMNOPQRSTUVWXYZ [\] ".* abcdefghi jklmnopqrstuvwxyz < | >- ! "#$%&' () *
ODEFCWIJKLMNOPQRSTUVWXYZC\]"abcdefghijklmnopqrstuvwxyz< |>" !"#$%&' () *♦
DEFCMIJKLMNOPQRSTUVWXYZ[\]-^ abcdefghi jklmnopqrstuvwxyz < | }* !"#$%&' ()**,
EFGHIJKLMNOPQRSTUVWXYZ[\]*^abcdefghijklmnopqrstuvwxyz{ |>" !"#$%&• () •♦. -
FGHI JKLMNOPQRSTUVWXYZ [\] " abcdefghi jklmnopqrstuvwxyz{ | >" ! "#$%& * ()•♦.-.
CHI JKLMNOPQRSTUVWXYZ [\] 'S abcdefghi jklmnopqrstuvwxyz{|}" !"#$%&' ()•♦.-./
HIJKLMNOPQRSTUVWXYZ[\]"^ abcdefghi jklmnopqrstuvwxyz{|}~ l"*^' ()*♦.-. /0
IJKLMNOPQRSTUVWCYZ[\lÄ^abcdefghijklnunopqrstuvwxyz{|>- »M#$%&' ()•♦.-./01
JKLMNOPQRSTUVWXYZ [\] 'S abcdefghi jklmnopqrstuvwxyz{|}~ !"#$%&* ()**.-./<U2
KLMNOPQRSTlA^X/Z[\]Ä^abcdefghijklmnopqrstuvwxyz{|>" >"*$%&' ()**.-./0123
LMNOPQRSTUVWXYZ t\] "abcdefghi jklmnopqr stuvwxyz{ | }" ! •'#$%&* () •♦. - ./01234
MNOPQRSTUVWXYZ [\] 'S abcdefghi jklmnopqrstuvwxyz {j>- !M*$%Ä' ()•♦,-./012345
NOPQRSTUVWXYZ [\ j _~abcdefghijklmnopqrstuvwxyz{ | >" •"#$%&' ()•♦,- ./°U3456

Postel [Page 3]

2-1011

.„,./, t ^ "^ ,V Jl >.V.V„V..V.Y. «V»- £fc %'m. £a {*£*£* *** <m.£m*m.fmjimX±.<M.\m-Zm+mAm£ul+imJtm **>»'- t'^rf. £S JV_' «^V-V-V^ J*J

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

i

k • k-

i
K

J

l«\

2-1012

.% ,". ,'. /

A^J,^'-*A%.-V.*'^>>^:^*VSA>.I>.I>!»'*£ v?\>..fc 'VAs.';-^ >i.>' \..V/J,/1\'!V^'^V.\-»VAV!\'>-V,,'^,W-;/ VvV

APPLICATION LEVEL: QUOTE RFC 865

Network Working Group
Request for Comments: 865

J. Postel
ISI

May 1983

Quote of the Day Protocol

IMs RFC specifies a standard for the ARPA Internet community. Hosts on
the ARPA Internet that choose to implement a Quote of the Day Protocol
are expected to adopt and implement this standard.

A useful debugging and measurement tool is a quote of the day service.
A quote of the day service simply sends a short message without regard
to the input.

TCP Based Character Generator Service

One quote of the day service is defined as a connection based
application on TCP. A server listens for TCP connections on TCP port
17. Once a connection is established a short message is sent out the
connection (and any data received is thrown away). The service
closes the connection after sending the quote.

UDP Based Character Generator Service

Another quote of the day service is defined as a datagram based
application on UDP. A server listens for UDP datagrams on UDP port
17. When a datagram is received, an answering datagram is sent
containing a quote (the data in the received datagram is ignored) .

Quote Syntax

There is no specific syntax for the quote. It is recommended tiiat it
be limited to the ASCII printing characters, space, carriage return,
and line feed. The quote may be just one or up to several lines, but
it should be less than 512 characters.

Postel [Page 1]

2-1013

J-..V .V.. ■•- «f. A, «rJ '^V'.»>J>SV*JVL>>-> ».»'• ":^J^>S-S: ^■'-':j -"-» **LLL±* s-«-'-*'-» "-»"^ '-*-'-» Id :^.'jt->-» v»:

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

V*

*\

i
2-1014

<A -«.. .«. .'_ *\ ■*_ /^ i - /, f.. CfcJ&i»^ « - a mKm KM■ - ^> «~ *- 1 - *-r-^ V- J-l- *.*. «*-«*-*■*-'

APPLICATION LEVEL: USERS RFC 866

Network Working Group
Request for Comments: 866

J. Postel
ISI

May 1983

Active Users

This RFC specifies a Standard for the ARPA Internet community. Hosts on
the ARPA Internet that choose to implement an Active Users Protocol are
expected to adopt and implement this standard.

A useful debugging and measurement tool is an active users service. An
active users service simply sends a list of the currently active users
on the host without regard to the input.

An active user is one logged in, such as listed in SYSTAT or WHO.

TCP Based Active Users Service

One active users service is defined as a connection based application
on TCP. A server listens for TCP connections on TCP port 11. Once a
connection is established a list of the currently active users is
sent out the connection (and any data received is thrown away) . The
service closes the connection after sending the list.

UDP Based Active Users Service

Another active users service service is defined as a datagram based
application on UDP. A server listens for UDP datagrams on UDP port
11. When a datagram is received, an answering datagram is sent
containing a list of the currently active users (the data in the
received datagram is Ignored).

If the list does not fit in one datagram then send a sequence of
datagrams but don't break the information fcr a user (a line) across
a datagram. The user side should wait for a timeout for all
datagrams to arrive. Note that they are not necessarily in order.

User List Syntax

There is no specific syntax for the user list. It is recommended
that it be limited to the ASCII printing characters, space, carriage
return, and line feed. Each user should be listed on a separate
line.

Postel [Page 1]

2-1015

^i*^^i»VJiOj^lVl\'l*^lvj^«*^^i^ilvl.^^v^ >:•;> y- :i>i>i i^;*>>i>:I-«i-i

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

ft

i

i

P

2-1016
I
£.

APPLICATION LEVEL: FINGER RFC 742

NWG/RfC# 742
Network Working Group
Request for Comments: 742
NIC: 42758

KLH 30-Dec-77 08:31 42758
K. Harrenstien

SRI-IX
30 December 1977

NAME/FINGER

Introduction

This note describes the Name/Finger protocol. This is a simple
protocol which provides an interface to the Name and Finger programs
at several network sites. These programs return a friendly,
human-oriented status report on either the system at the moment or a
particular person in depth. Currently only the SAIL (SU-AI), SRI
(SRI-(KA/KL)), and ITS (MIT- (AI/ML/MC/DMS)) sites support this
protocol, but there are other systems with similar programs that
could easily be made servers; there is no required format and the
protocol consists mostly of specifying a single "command line".

To use via the network:

ICP to socket 117 (octal. 79. decimal) and establish two 8-bit
connections.

Send a single "command line", ending with <CRLF>.

Receive information which will vary depending on the above line and
the particular system. The server closes its connections as soon as
this output is finished.

The command line:

Systems may differ in their interpretations of this line. However,
the basic scheme is straightforward: if the line Is null (i.e. just
a <CRLF> is sent) then the server should return a "default" report
which lists all people using the system at that moment. If on the
other hand a user name is specified (e.g. FOQ<CRLF>) then the
response should concern only that particular user, whether logged In
or not.

Both ITS and SAIL sites allow several names to bs included on the
line, separated by commas; ht't the syntax for some servers can be
slightly more elaborate. For example, if "/W" (called the "Whois
switch") also appears on th*» line given to an ITS server, much fuller
descriptions are returned- The complete documentation may be found
at any time in the files 'MNFO.;NAME ORDER" on MIT-AI,
"FINCER.LESrUP.DOCl" on SU-AI, and "<DOCUMENTATION>FINGER.DOC" on

[Page l]

2-1017

Lf-V»»'«y«y»^«V^./«-'\jrr,*V<k<fcffBK^V\V.V*V «-v», ^-\/ v-^^*o* >/<-•%-»* oV^t-V«-V«_ ■_* ■. v* -_•'»_• -.\-j*^'■-*v r1liihw h'h

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 742 KLH 30-Dec-77 08:31 42758
Name/Finger

SRI-KL, all freely accessible by FTP (with the exception of SRI-KL,
where TOPS-20 requires the "anonymous" login convention).

Allowable "names" in the command line should of course include "user
names" or "login names" as defined by the system, but it is also
reasonable to understand last names or even full names as well. If a
name is ambiguous, all possible derivations should be returned in
some fashion; SAIL will simply list the possible names and no more,
whereas an ITS server will furnish the full standard information for
each possibility.

Response to null command line - "default" listing:

This is a request for a list of all online users, much like a TOPS-10
or TENEX "systat". To fulfill the basic intent of the Name/Finger
programs, the returned list should include at least the full names of
each user and the physical locations of their terminals insofar as
they can be determined. Including the j^b name and idle time (number
of minutes since last typein, or since last job activity) is also
reasonable and useful. The appendix has examples which demonstrate
how this information can be formatted.

Response to non-null command line - "name" listing:

For in-depth status of a specified user, there are two main cases.
If the user is logged in, a line or two is returned in the same
format as that for the "default" listing, but shewing only that user.
If not logged in, things become more interesting. Furnishing the
full name and time of last logout is the expected thing to do, but
there is also a "plan" feature, wherein a user may leave a short
message that will be included in the response to such requests. This
is easily implemented by (for example) having the program look for a
specially named text file on the user's directory or some common
area. See the examples for typical "plans".

Implementation miscellany:

Anyone wishing to implement such a server is encouraged to get in
touch with the maintainers of NAME by sending a message to BUG-uAME §
MIT-AI; apart from offering advice and help, a list of all sites
with such servers is kept there. It is also suggested that arty
existing programs performing similar functions locally (i.e. not as
net servers) be extended to allow specification of other sites, or
names at other sites. For example, on ITS svstems or*e can say
":NAM£<cr>" for a local default listing, or *':NAME @SAIL<cr>" for
SAIL'S default listing, or ":NAME Foo#C<cr>" to ask MIT-MC about
Foo's status, etc.

[Pago 2:

2-1018

»Ov*JV-\.»1VL\rjJjj'' %"*-•v \j'v>.>y* ^^^*^1^J^^

APPLICATION LEVEL: FINGER RFC 742

NWG/RFC* 742
Name/Finger

KLH 30-Dec-77 08:31 42758

It should be noted that connecting directly to the server from a TIP
or an equally narrow-minded TELNET-protocol user program can result
in meaningless attempts at option negotiation being sent to the
server, which will foul up the command line interpretation unless the
server knows enough to filter out IAC's and perhaps even respond
negatively (IAC WON'T) to all option commands received. This is a
convenience but is not at all required, since normally the user side
is just an extended NAME/FINGER type program.

And finally a little background:

The FINGER program at SAIL, written by Les Earnest, was the
inspiration for the NAME program on ITS. Earl Killian at MIT and
Brian Harvey at SAIL were jointly responsible for implementing the
protocol just described, and Greg Hinchliffe has recently brought up
a similar server for SRI-KA and SRI-KL.

>\

A'

[Page 3;

2-lOiü

/W* *.*. fc.*. 4.'. «t.1 ^L^A tjC^JuLa^JL* iV.t,'A*.V^ i ^V. tV t*-. fc> IlL. tLm *—'»*., «,'.»'- fcJ -'V.„, » "■C.V."I

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC* 742
Appendix * Examples

KLH 30-Dec-77 03:31 42758

EXAMPLES

Note: it is possible for some lines of the actual output to exceed 80
chars in length. The handling of such lines is of course dependant on
the particular user program; in these examples, lines have been
truncated to 72 chars for greater clarity.

Three examples with a null command line:

Site: MIT-AI
Command line:

-User- --Full name--
XGP 0 Xerox Graphics Printer
FFM U Steven J. Kudlak
KLH ♦ Ken Karrenstlen
 013 - Not Logged In
CWH U Carl W. Hoffman
CARL A Carl Hewitt
APD M Alexander Doohovskoy
JJK T James Koschella
KEN L Kenneth Kahn

Jobnam Idle TTY
XGPSPL T24
HACTRN T41
F T42
HACTRN 1.-26.T43
E 4.T50
HACIRN 5:03.T52
XGP 1:52.T54
E T55
E T56

-Console location-
Datapoint Near XGP (9TH)
Net site CMU-10A
Net site SRI-KL
DSSR UNIX X3-6048 (MIT-*
919 Very Small Data Bas*
813 Hewitt X5873
912 9th Floor Lounge x6*
824 Hollerbach, Levin, *
925 Moon (Tycho under) *

Site: SAIL
Command line:

Person
DAN Dan Sleator
DEK Don Khuth

ES Gene Salamln
JJ Jerrold Cinsparg
JMC John McCarthy

<RD Randy Davis
LES Les Earnest
ME Martin Frost

PAM Paul Martin
ROD Rod Brooks
RWC Bill Gosper

Job Jobnam
46 MACLSP
3 E

20 PI
44 SD MC
11 TELNET
1 FINGER

12 E
42 AID
23 TEMPS
17 E
31 E
9 E

37 MACLSP
30 SD MC

Idle

3.
2

2.
7
2.
3

Terminal
DM-3

RWW Richard Weyhrauch 39 E
SYS system files 6 FINCER

tv-55
TV-55
TV-40
DM-0
detached
IML-15
TV-52
DM-1
tv-46
TV-46
TV-106 251C
TV-117 250C
TV-34
TV-67
TV-42
PTY122

205
205
223a

203

220
220

230e
213
214

150/1200 modem 415 49*
Library
Library
Farmwald
150/1200 modem 415 49*

McCarthy's house
Allen
150/1200 modem 415 49*
Fllman, Frost
Filman, Frost
King, Levy. Martin

Robinson
Kant. McCune. Stelnbe*
Weyhrauch
Job 5 Arpanet site AI*

2-1020

■Page 4]

^*_ ^». ift/^'ViWi. A Sfa »-■ %.*, •■' i.'ifc'i fc ,kih i. -- ^

APPLICATION LEVEL: FINGER RFC 742

NWG/RFC* 742
Appendix - Examples

KLH 30-Dec-77 08:31 42758

Site: SRI-KL
Command line:

Thursday, 15-Dec-77 01:21:24-PST System up 3 Days, 22:20:52 28 Jobs
Drum 0% Load avs 0.26 0.23 0.31 14 Act, 10 Idle, 8 Det

User Personal Name Job Subsys 15m% TTY Room Console Location
BLEAN Bob Blean 37 EXEC 0.0 41 K2007 Blean
KLH Ken Harrenstien 83 TELNET 1.6 12 J2023 Spaceport
KREMERS Jan Kremers 48 TECO 0.0 121 Dialup 326-7005 (300 Ba*
MAINT Digital Equipment 54 SNDMSG 0.5 43 K2035 Melling
MCCLURG Jim McClurg 40 EXEC 0.0 26 PKT
M4CM Michael McMahon 31 EXEC 1.5 122 Dialup 326-7006 (300 Ba*
MOORE J Moore 52 TV 0.2 124 Dialup 326-7008 (300 Ba*
PATTIS Richard Pattis 19 LISP 0.8 11 ARC
PETERSO Norman Peterson 33 EXEC 25:12 234 (RAND-TIP)
STONE Duane Stone 34 TELNET 3:51 240 (RADC-TIP)

27 EXEC 7:11 232 (SRI-KL)
TORRES Israel Torres 64 BSVl» 0.0 76 K2079 TI by tape drives

68 EXEC 1:15 104 K2029 Operators' Office

[Page 5]

2-1021

■.-. *, \ % ■•.

ifmtMi ***^ «>■»>■m'r*'&*?'**.**!fi.» IYI*inS\ä'£ÄL*'iLmKäti*tm",*i» \..VV« V'AV^V^VlY^>^>^/^\'J.N^V\%^VrVi>-%\VAv.^Vi'^.y..,,.,,..:. t ..._,..<'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 742
Appendix - Examples

KLH 30-Dec-77 08:31 42758

Examples with names specified:

'„V

Site: MIT-AI
Command line: klh

KLH + Ken Harrenstien Last logout 10/16/77 13:02:11 No plan.

Site: MIT-MC
Command line: cbf

CBF M Charles Frankston Not logged in. Plan:
I'll be visiting another planet til about December 15. If anyone
wants to get a hold of me transmit on some fundamental wavelength
(like the radius of the hydrogen atom).

Site: MIT-MC
Command line: smith

BRIAN A Brian C. Smith Last logout 11/24/77 08:02:24
DBS T David B. Smith Last logout 12/03/77 11:24:01
BPS T Byron Paul Smith Not logged in. No plan.
GRS U Gary R. Smith Last logout 12/12/77 18:43:19
JOS S Julius Orion III Smith Last logout 11/29/77 06:18:18
$PETE M PETER G. SMITH, Not logged in. No plan.
IAN L Ian C. Smith Not logged in. No plan.
AJS D Arnold J. Smith Last logout 12/09/"77 14:31:11

No plan.
No plan.

No plan.
No plan.

No plan.

Site: SU-AI
Command line: smith

"SMITH" is ambiguous:
RS Bob Smith
DAV Dave Smith
JOS Julius Smith
LCS Leiand Smith

[Page 6]

>\->
2-1022

\»"«V-V -'S"VI■•v-v-v» VSv VVVVVVVV -*-?„".VVJ -*- *-^' -?- '_■*-.»_*-?. ">_-?_ *J^*WL .-ft-"^L*_'J*-V*^^-%. *-5^JLljJLd

APPLICATION LEVEL: FINGER RFC 742

NWG/RFC# 742
Appendix - Examples

KLH 30-Dec-77 08:31 42758

Site: SU-AI
Command line: jbr

Person
JBR Jeff Rubin

Job Jobnam Idle Line Room
16 COPY 27. TV-43 222

TV-104 233

Location
Rubin
hand-eye table

Site: SU-AI
Command line: bh

Person Last logout
BH Brian Harvey 22:49 on 14 Dec 1977. Plan:

~O08-Oct-77 2156 BH 'Y12257 (l-Jul-78)
Weekdays during the day I'm usually unreachable; I'm either at S.F.
State or at Benjamin Franklin JHS in San Francisco, but neither place
is recommended for leaving messages. Evenings and weekends I'm
generally home (55) 751-1762 unless I'm at SAIL. I log in daily from
home.

Site: SRI-KL
Command line: greg

GREG (Greg Hinchliffe) is on the system:

Job Subsys # Siz Runtime lm% 15m% TTY Room Console Location
62 EXEC 1 0 0:00:10.6 0.8 235 (SUMEX-AIM)

Last login: Mon 12-Dec-77, 15:05, from SUMEX-AIM (Host #56.)
GREG has no new mail, last read on Mon 12-Dec-77 15:10

[Page 7]

2-1023

fcj^^teL&&5&Si^&&2!L '?ym^\^^*^^*^^'^y?y:y'^^^^-\'1A?**mJ&-tbJ&^'^:^'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-1024

.> ■**»."»►* „■• .> .** v.v.v "•**• •

APPLICATION LEVEL: NICNAME RFC 954

Network Working Group K. Harrenstien (SRI)
Request for Comments: 954 M. Stahl (SRI)
Obsoletes: RFC 812 E. Feinler (SRI)

October 1985

NICNAME/WHOIS

STATUS OF THIS MEMO

This RFC is the official specification of the NICNAME/WHOIS protocol.
Ihis memo describes the protocol and the service. This is an update
of RFC 812. Distribution of this memo is unlimited.

INTRODUCTION

The NICNAME/WHOIS Server is a TCP transaction based query/response
server, running on the SRI -NIC machine (26.0.0.73 or 10.0.0 .51) , that
provides netwide directory service to internet users. It is one of a
series of internet name services maintained by the DDN Network
Information Center (NIC) at SRI International on behalf of the
Defense Communications Agency (DCA). The server is accessible across
the Internet from user programs running on local hosts, and it
delivers the full name, U.S. mailing address, telephone number, and
network mailbox for DDN users who are registered in the NIC database.

This server, together wi<:h the corresponding WHOIS Database can also
deliver online look-up of individuals or their online mailboxes,
network organizations, DDN nodes and associated hosts, and TAC
telephone numbers. The service is designed to be user-friendly and
the information is delivered in human-readable format. DCA strongly
encourages network hosts to provide their users with access to this
network service.

WHO SHOULD BE IN THE DATABASE

I

B

I

I
DCA requests that each individual with a directory on an ARPANET or
MILNET host, who is capable of passing traffic across the DoD
Internet, be registered in the NIC WHOIS Database. MILNET TAC users
must be registered in the database. To register, send via electronic
mail to REGISTRAR@SRI-NIC.ARPA your full name, middle initial, U.S. .>
mailing address (including mail stop and full explanation of
abbreviations and acronyms), ZIP code, telephone (including Autovon]•
and FTS, if available), and one network mailbox. Contact the DDN
Network Information Center, REGISTRAR@3RI-NIC.APPA or (800) 235-3155, a
for assistance with registration. I

Harrenstien «i Stahl £ Feinler [Page 1]

2-1025

r *'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 954 October 1985
NICNAME/WHOIS

PROTOCOL

To access the NICNAME/WHOIS server:

Connect to the SRI-NIC service host at TCP service port 43
^(Jicv-xiiid ± j .

Send a single "command line", ending with <CRLF> (ASCII CR and
LF).

Receive information in response to the command line. The server
closes its connection as soon as the output is finished.

EXISTING USER PROGRAMS

NICNAME is the global name for the user program, although many sites
have chosen to use the more familiar name of "WHOIS". There are
versions of the NICNAME user program for TENEX, TOPS-20, and UNIX.
The TENEX and TOPS-20 programs are written in assembly language
(FAIL/MACRO), and the UNIX version is written in C. They are easy to
invoke, taking one argument which is passed directly to the NICNAME
server at SRI-NIC. Contact NIC@SRI-NIC.ARPA for copies of the
program.

CONMAND LINES AND REPLIES

A command line is normally a single name specification. Note that
the specification formats will evolve with time; the best way to
obtain the most recent documentation on name specifications is to
give the server a command line consisting of "?<CRLF>" (that is, a
question-mark alone as the name specification). The response from
the NICNAME server will list all possible formats that can be used.
The responses are not currently intended to be machine-readable; the
information is meant to be passed back directly to a human user. The
following three examples illustrate the use of NICNAME as of October
1985.

Command line: ?
Response:

Please enter a name or a NIC handle, such as "Smith" or "SRI-NIC"
Starting with a period forces a name-only search; starting with
exclamation point forces handle-only. Examples:

Harrenstien & Stahl 6 Feinler [Page 2]

2-1026

^^^^^Lli^t^^^

APPLICATION LEVEL: NICNAME RFC 954

RFC 954
NICNAME/WHOIS

October 1985

Smith rlooks for name or handle SMITH]
! SRI-NIC [looks for handle SRI-NIC only]
.Smith, John

[looks for name JOHN SMITH only]

Addinq ". . ." to the argument will match anything from that point,
e.g. r,ZU..." will match ZUL, ZUM, etc.

To search for mailboxes, use one of these forms:

Smith® [looks for mailboxes with username SMITH]
@Host [looks for mailboxes on HOST]
Smith@Host

[Looks for mailboxes with username SMITH on HOST]

To obtain the entire membership list of a group or organization,
or a list of all authorized users of a host, precede the name of
the host or organization by an asterisk, i.e. *SRI-NIC. [CAUTION:
If there are a lot of members, this will take a long time!] You
may use exclamation point and asterisk, or a period and asterisk
together.

Command line: fischer
Response:

Fischer, Charles (CF17)
Fischer, Herman (HF)
Fischer, Jeffery H. (JHF1)

Fischer, Kenneth (KF8)

Fischer, Marty (MF28)
Fischer, Michael J. (MJF)
Fischer, Nancy C. (NANCY)
Fischer, Richard A. (RAF4)

fischer@UWISC
HFischer@USC-ECLB
FISCHER@LL-XN

SAC.SIUBO@USC-ISIE

MFISCHERdOCA-EMS
FISCHER@YALE
FISCHER@SRI-NIC
Fisher Richa@LLL-MFE

(608) 262-1204
(818) 902-5139
(617) 863-5500
ext 4403 or 4689
(402) 294-5161
(AV) 271-5161
(703) 437-2344
(203) 436-0744
(415) 859-2539
(415) 422-5032

To single out any individual entry, repeat the command using the
argument "IHANDLE" instead of "NAME", where the handle is in
parentheses following the name.

Command line: !nancy
Response:

Harrenstien £ Stahl & Feinler [Page 3]

2-1027

..■,,, t , . .• *LM ,U ,'*';JT m\ v.V V. V.^VJ--.V.V>rfJVJV^.y/a'VV-V-Y» *VAM£MaW«. 4*tMkft(^?*M.\^'\•'*?' >.-.'A-.'t.'^-.'i.ri-'V,;'iL.i>*^'.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 954
NICNAME/WHOIS

October 1985

Fischer, Nancy C. (NANCY) FISCHER@SRI-NIC SRI International
Telecommunication Sciences Center
333 Ravenswood Avenue, EJ289
Menlo Park, California 94025
Phone: (415) 859-2539

BIBLIOGRAPHY

1. Harrenstien, K., and White, V., "NICNAME/WHOIS," RFC-812, Network
Information Center, SRI International, March 1982.

2. Harrenstien, K., "NAME/FINGER," RFC-742, Network Information
Center, SRI International, December 1977.

Harrenstien 6 Stahl & Feinler [Page 4]

2-1028

V«f._*. .. *'*, '\"*m. »"m * .. «*- *** t*«. Mm. •*-. 1*« !t . •". «*_ %*_ »*. ■*_ »_ «*« »" £_ «

APPLICATION LEVEL: NETED RFC 569

Network Working Group Mike Padlipsky
RFC 569/ NET-USING Memo 1 NET-USING
NIC # 18972 October 15, 1973

NETED: A Common Editor for the ARPA Network

BACKGROUND

At the recent Resource Sharing Workshop, there was a somewhat
surprising degree of consensus on what I had anticipated would the
laast popular aspect of the my "Unified User-Level Protocol" proposal:
A number of the attendees agreed without argument that it would be
a good thing to have "the same" context editor available on all
Servers -- where "the same" refers, of course, to the user interface.
We even agreed that "NETED" seemed to be a plausible common name. In
viaw of the fact that the rest of the proposal didn't seem to capture
anybody's imagination, though, it seemed to be a useful notion to
separate out the common editor and make it the subject of a
st \nd-alone proposal.

My resolve to come up with the following was further strengthened at
the the organizing meeting of the Network User Interest Group, which
followed the Workshop. Being primarily concerned with user issues,
this group was downright enthusiastic about the prospect of a common
editor. Indeed, this proposal has been reviewed by the group and is
endorsed by it.

REASONS

The need for a common editor mi^it well be obvious to many readers.
They are encouraged to skip this section, which is for the benefit of
those who don't already see the light.

In the first place, it's almost axiomatic that to use a time-sharing
system, you have to be able to create files (/"datasets"/"segnents").
Even if you're only using the Network to send "mail", you'd still like
to be able to create a file separately, so as to be able to edit it
before sending. And if you want to write a program --or even make a
"runoff" source file -- you simply must be able to use some editor
command on the system at hand.

Unfortunately, there are even more editors than there are systems;
and each one has it own conventions and peculiarities. So "Network
users" (who use several Servers, as opposed to those who use the
Network only to access a particular system all the time) are faced
with the unpleasant chore of developing several sets of incompatible
reflexes if they want to get along. This can certainly be done. It
has beon by a number of members of the Network Working Group.

2-1029

-'•--'* -"*-**—**^*^.V.-*«-*-«-.V«I». .V^** _**-!» ./.* JiJtA»A.^A^!f ■^'^M^^3^^^^^^^^^*^.A^^^3^^^j^^^^JiJ^JL^lajC.^''M^*^*'^^».^MJ\»jCM^iA

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NETED SPEC P-2

The real kicker, however, comes when we consider the needs of those
users — who are coming into the Network community in ever-increasing
numbers -- who are not professional programmers. They just want to
get some work done, "on the Net" (that is, irrespective of which
operating system they might be talking to) . They are likely to be
appalled rather than amused by having to learn a dozen ways of getting
to first base. Therefore, it seems clear than not only do we need a
common editor, but we also need a simple common editor.

CHOICES

Simplicity is not the only criterion for rejecting the apparently
,,obvious,, choice of either TECCO or QED. (That it is a strong factor
is indicated by the old test of "Consider explaining it to a naive
secretary -- now consider explaining it to a corporation president.")
Perhaps even worse is the problem of "dialects". That is, features
vary across implementations, and settling on a common set of features
(or dialect) is likely to be a very hard task, for programmers tend to
get very fond of their familiar goodies. Besides, both TECO and QED
have their own strong (/fanatic) advocates, who's probably never be
willing to settle for the other one. Further, not every system has
both, and implementing the other is a fairly large job even if the NWC
could agree on which (and how much).

At any rate, the difficulties seem overwhelming when it comes to
choosing a high-powered editor as the common editor. Therefore, I
tried to think of a nice low-powered editor, and it suddenly occurred
to me that I not only knew of one, but it was even fairly well
documented (I). The editor in question is known on Multlcs as "eds"
(the same member of the "ed" family of editors which started on
CTSS), a line-oriented context editor (no "regular expressions", but
also no line numbers) . It is used as an extended example of
programming In the Multlcs environment in Chapter 4 of the Multlcs
Programmers' Manual, which gives an annotated PL/I listing of the
actual working program. It is simple to learn and should be quite
easy to implement, PL/I version serves as a detailed model with only
equivalent system calls and choice of language to worry about. I urge
its adoption as the common Network editor, to be known on all
participating Servers as "NETED" and/or "neted".

DOCUMENTATION

In view of rim fact that if "eds"/NETED is adopted only perhaps a
dozen members of the NWC will actually have to implement one, it seems
wasteful to distributed some 30 pages of the MPM to everyone --
especially since most of the parties concerned have access to an MPM
already. (Another problem solved by not including it here is that of
whether I'd be violating copyright by doing so.) The exact reference
is pp. 24-54 of Chapter 4 of Part I of the Multlcs Programmer's
Manual.

2-1030

•'/'jsy%V!\'^*-/:/:^

APPLICATION LEVEL: NETED RFC 569

NETED SPEC p. 3

Anybody who needs a copy can let me know. Although the emphasis in
the document is, naturally enough, on the Multics-specific aspects, I
believe that the listing is clear enough to serve as a model to
implementors without any great difficulty. If we do get to the
implementation stage, I'll be glad to try to explain any non-obvious
system calls, either individually or in a follow-up memo. But even
though we "initiate" where you "open", or we " call los_$readl_ptr"
where you "IOT TTY" (or something), it shouldn't cause much trouble.
For that matter, some implementers might prefer to ignore the existing
program and simply work from the function specifications (below).

LIMITATIONS

It became abundantly clear during the course of the review of this
document by the User Interest Group that the limitations of NETED must
be acknowledged (even insisted upon) and explained here. In the first
place, it must be emphasized that it is not being proposed as "THE"
Network editor. Rather, it is an insistently simple-minded editor for
two major reasons: 1) it is meant for use mainly by non-professional
programmers, and 2) more important still, it is meant to be extremely
easy to implement. Therefore, it seems far more important to go with
the published program, with all its warts, than to specify the
addition of new, undebugged features. The idea is to make it
implementable in man-days by an average to average-plus programmer
instead of in man-weeks by a superstar programmer.

In the second place, the very act of adding new features is fraught
with peril. To take some examples from the comments I received during
the review phase: In the first draft, I inadvertently failed to
document the mechanism by which the ability to "go backwards" (i.e.,
to reverse the direction of the current-line pointer described below)
is actuated. Several reviewers argued strongly for the inclusion of
such a mechanism; but, not knowing it was already "in" the code I
argued -- successfully -- for leaving it out, on the grounds that we
should stick to what's in the existing code, which is known to work as
published. Even what to call such a new request would have been
debatable -- should it be "-" and become the only non-alphabetic name?
should it be "b" for "bottom"? should "n" (for f'next") become "+"?
And so on. Although this particular issue turned out be a false
alarm, I've left it in to emphasize the sort of pitfalls we can get
into by haggling over particular "features". Another familiar feature
is some sort of "read" request so that the file name need not be
specified as an argument to the command. Then, of course, one would
also want a "create" or "make" request. And perhaps a file delete
request? It keeps going on and on. The point, I think, is that if we
allow ourselves to go into "tinker mode" we could spend as many years
striving to achieve consensus on what features to add as we've spent
on Telnet or FTP ... and still not please everyone. Therefore, I urge
the NWC to accept the contention that having a working model to use as

2-1031

fr>-s>.±: v^yv*vv > /:;\^Av'^'»:<Vvt'>v<-'-:-;/>äX^>.V:

V* "*•".***."•". • .'*."♦

»_iAJi—*« -*» -*■ -^ -*» -% -*» -*» ~' J * _% -* »S _*» J\

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NETED SPEC p. 4

a pattern is more important than any particular additional features
(even though I myself find "=" for "what's the current line's
number?" annoying to live without).

RESPONSES

For the benefit of those who don't want to plow through the functional
spec, this seems to be a good spot to indicate what appropriate
responses to this prooosal would be. Ideally, I'd like to hear from a
responsible system programmer at, say, TENEX~, CCS. UCSD, UCSB,
AMES-67, one of the DEC 10/50 Hosts, and from any of the experimental
Servers who happen to be interested, that they think it's a fine idea
and why don't I log in next week to try their NETEDs. Next most
desirable would be agreement in principle followed by specific
inquiries about "eds". I would hope that haggling over specific
features wouldn't occur (as we're not trying to do a definitive
editor, just an easy, commonly implemented one based on an existing
implementation), but unfortunately I can't legislate such haggles out
of existence. At the very least, I'd hope to either hear or see
reasoned arguments why it's not worth doing. As usual, phone, mail
"mail" ("map, en" in sndmsg, or "map en" in "mail" on Multics) or RFC's
are the assumed media for responding.

USAGE

(The following is intended to smrvm double-duty, as both a functional
spec now and -- with the addition of some examples --a "users'
manual" later. So if it seems to "tutorial", I'm sorry. And if it
doesn't seem tutorial enough — assuming the addition of examples --
please let me know.)

As is typical of "context editors," the NETED command is used both for
creating new files and for altering already existing files -- where
"files" are named collections of character encoded data in the storage
hierarchy of a time-sharing system. ConseoAiently, NETED operates in
two distinct "modes" — called "input mode,f and *edit mode".

When NETED is used to create a file (that is, when it is invoked from
command level with an argument which specifies the name of a file
which does not already exist in the user's ''working directory"), it is
automatically in input mode. It will announce this fact by outputting
a message along the lines of "File soandso not found. Input." Until
you take explicit action to leave input mode, everything you type will
go into the specified file. (Actually, it goes into a "working copy"
of the file, and into the real file only when you indicate a desire to
have that happen.) To leave input mode, type a line consisting of only
a period and the appropriate new-line character: ".<NL>". where <NL>
is whatever it takes to cause a Telnet New-Line to be generated from
your terminal

2-1032

LA» uutiun. ia i , Ul*ltii ^L^L

APPLICATION LEVEL: NETED RFC 569

NETED SPEC P- 5

After leaving input mode, you are in edit mode. Here, you may issue
various "requests" which will allow you to alter the contents of the
(working) file, re-enter input mode if you wish, and eventually cause
the file to be stored. Note that edit mode is entered automatically
if the argument you supplied to NETED specified an existing file.
Regardless of how it was entered, being in edit mode is confirmed by
NETED's outputting a message of the form "Edit". Editing is performed
relative to (conceptual) pointer which specifies the current line, and
many requests pertain to either moving the pointer or changing the
contents of the current line. (When edit mode is entered from input
mode, the pointer is at the last line input; when entered from command
level, the pointer is at the "top" of the file.)

NETED's edit mode requests follow, in order intended to be helpful.
Two important reminders: the requests may only be issued from edit
mode, and each one "is a line" (i.e., terminates in a new line /
carriage return / linefeed is appropriate to the User Telnet being
employed) . SYNTAX NOTE: If the request takes an argument, there must
be at least one space (blank) between request's name and the argument.

1. n m

For unsigned m, the n(ext) request causes the pointer to be moved
"down" m lines. If m is negative, the pointer is moved "up" m lines.
If m is not specified, the pointer is moved one line. If the end of
the file is reached, an "End of file reached by n m" message is output
by NETED; the pointer is left "after" the last line.

2. 1 string

The 1(ocate) request causes the pointer to be moved to the net line
containing the character string "string" (which may contain blanks);
the line is output. If no match is found, a message of the form "End
of file reached by 1 string" will be output (and the pointer will
have returned to the top of the file). The search will not wrap
around the end of the file; however, if the string was above the
starting position of the pointer, a repetition of the locate request
will find it, in view of the fact that the pointer would have baen
moved to the top of the file. To find any occurrence of the string --
rather than the next occurrence -- it is necessary to move the pointer
to the top of the file before doing the locate (see following
request).

3. t

Move the pointer to the top of the file.

2-1033

,v.v. .*..*.v.v.,• >v;, *•■.*; ■ . * ■ ■ ■/■.-• - v * > v v .■'."' '■ % «

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NETED SPEC p. 6

4. b

Move the pointer to the bottom of the file and enter input mode.

5. "/'

Leave the pointer where it is and enter input mode. (First new line
goes after current old line.)

6. i string

The i(nsert) request cause a line consisting of string (which will
probably contain blanks) to be inserted after the current line. The
pointer is moved to the new line. Edit mode is not left.

7. r string

The r («place) request causes a line consisting of string (probably
containing blanks) to replace the current line..

S. i? m

The p(rint) request causes the current line and the succeeding m - i
lines to be output. If m is not specified, only the current line will
be output. End of file considerations are the same as with V.

9. c /sl/s2/ m g

The c(hange) request is quite powerful, although perhaps a bit complex
to new users. In the line being pointed at, the string of characters
si is replaced by the string of characters s2. If si is void, s2 will
be inserted at the beginning of the line; if s2 is void, si will be
deleted from the line. Any character not appearing within either
character string may be used in place of the slash (/) as a delimiter.
If a number, m, is prmm^rxz. the request will affect m lines, starting
with the one being pointed at. All lines in which a change was made
are printed. The pointer is left at th« last line scanned. If the
letter Mg" is absent (after the final delimiter) only the first
occurrence of si within a line will be changed. If "g" (for "global")
is present, all occurrences of si within a line will be changed. (If
si is void, "g1* has no effect.) MOTE WELL: blanks in both strings
are significant and oust be counted exactly. End of file
considerations are the same as with V.

10 dm

The delete) request causes m lines, including the current one. to be
deleted from the working copy of the file. If m is not specified, only
the current line is deleted. The pointer is left at a null line above
the first undeleted line. End of file considerations are the same .is

*nw

^ü.

2-HO-I :•
I

'■Vl.^'JU'-^'-'W A'A'.CA'J^'. «'J«'JAV> AV»VLV^'^-V^.VJW'JV ~*~~* ~* ~ * -*a■« Jk .1 ■!* «.^ «.^ h\<A^Jl«J ik fta.Va.'hm\ >"k»'« alt m*M ■'* +* ■%tUk m\ ii. i. * ■

APPLICATION LEVEL: NETED RFC 569

NETED P- 7

11. w

Write out the working copy into the storage hierarchy but remain in
NETED. (Useful for those who fear crashes and don't want to lose all
the work performed.)

12. save

Write out the working copy into the storage hierarchy and exit from
NETED.

Additional specs:

a. On Multics, type-ahead is permitted. This approach is recommended
for all versions of NETED, but is of course not required as various
Servers' NCP Implementations may prohibit it; however:

b. If an error is detected, the offending line is output, and pending
typeahead (if any) must be discarded (to guaro against the possibility
of the pending request's being predicated on the success of erroneous
request) .

c. The command is not reinvokable, in the sense that work is lost if
you "quit" out of it via the Telnet Interrupt Process command or its
equivalent; indeed, quitting out is the general method of negating
large amounts of incorrect work and retaining the original file
intact.

(When the time comes, I'll be glad to furnish examples for the users*
manual version; but for now, that's all there is.)

NOTE

It really does work, unsophisticated though it may be. I think that
it's sufficient to get new users going, and necessary to give them a
fighting chance. It would even be of utility within the NWG, for
those of us who don't like having to learn new editors all the time.
If anybody wants to try it, I'll make a version available to
"anonymous us^rs" (see the Multics section in the Resource Notebook if
you don't already know how to get in our sampling account), under the
name "neted". (*) (If you do try it, please delete files when done
with them.)

(*) Knowledgeable Multics users with their own accounts can instead
link to >udd>cn>map>neted. It is also there under the names "eds" if
you want to save typing a couple of characters.

2-1035

V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

y

2-1036

APPLICATION LEVEL: RLP RFC 887

Network Working Group M- Accetta
Request for Comments: 887 Carnegie-Melion University

December 1983

RESOURCE LOCATION PROTOCOL SRH5

This note describes a resource location protocol for use in the ARPA
Internet. It is most useful on networks employing technologies which
support some method of broadcast addressing, however it may also be used
on other types of networks. For maximum benefit, all hosts which
provide significant resources or services to other hosts on the Internet
should implement this protocol. Hosts failing to implement the Resource
Location Protocol risk being ignored by other hosts which are attempting
to locate resources on the Internet. This RFC specifies a draft
standard for the ARPA Internet community.

The Resource Location Protocol (RLP) utilizes the User Datagram Protocol
(UDP) [1] which in turn calls on the Internet Protocol (IP) [3] to
deliver its datagrams. See Appendix A and [6] for the appropriate port
and protocol number assignments.

Unless otherwise indicated, all numeric quantities in this document are
decimal numbers.

1. Introduction

From time to time, Internet hosts are faced with the problem of
determining where on the Internet some particular network service or
resource is being provided. For example, this situation will arise when
a host needs to send a packet destined for some external network to a
gateway on its directly connected network and does not know of any
gateways. In another case, a host may need to translate a domain name
to an Internet address and not know of any name servers which it can ask
to perform the translation. In these situations a host may use the
Resource Location Protocol to determine this information.

In almost all cases the resource location problem is simply a matter of
finding the IP address of some one (usually any) host, either on the
directly connected network or elsewhere on the Internet, which
understands a given protocol. Most frequently, the querying host itself
understands the rrotocol in question. Typically (as in the case of
locating a name server), the querying host subsequently intends to
employ that protocol to communicate with the located host once its
address is known (e.g. to request name to address translations). Less
frequently, the querying host itself does not necessarily understand the
protocol in question. Instead (as in the case of locating a gateway),
it is simply attempting to find some other host whir:h does (e.g. to
determine an appropriate place to forward a packet wnlch cannot be
delivered locally).

Accetta [Page 1]

2-1037

CM

m

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 887 December 1983
Resource Location Protocol

2. Resource Naming

Although the resource location problem can, in most cases, be reduced to
the problem of finding a host which implements a given Internet based
protocol, locating only a particular lowest level Internet protocol
(i.e. one assigned a protocol number for transport using IP) is not
completely sufficient. Many significant network services and resources
are provided through higher level protocols which merely utilize the
various lower level protocols for their own transport purposes (e.g. the
FTP protocol [2] employs the TCP protocol [4] for its lower level
transport). Conceptually, this protocol nesting may even be carried out
to arbitrary levels.

Consequently, the Resource Location Protocol names a resource by the
protocol number assigned to its lowest level Internet transport protocol
and by a variable length protocol/resource specific identifier. For
example, the UDP based Echo Protocol can be named by its assigned
protocol number (17) and its assigned 16-bit "well-known11 port number
(7). Alternatively, the Internet Control Message Protocol [5] (lacking
any higher level client protocols) would be named simply by its assigned
protocol number (1) and an empty protocol specific identifier. On the
other hand, some as yet undefined resource protocol (provided via. say
TCP), might be named by the assigned protocol number (6), its 16-bit
"well-known" TCP port number, and then some additional fixed or variable
length identifier specific to that TCP port.

In general, the components of the protocol/resource specific identifier
are defined to be the "natural" quantities used to successively
de-multiplex the protocol at each next highest protocol level. See
section 5 for some sample assignments.

3. Protocol Summary

The Resource Location Protocol is a simple request/reply procedure. The
querying host constructs a list of resources which it would like to
locati and sends a request message on the network. A request message
may be sent either to a particular IP address and host or, on networks
which provide broadcast address capability, to the IP address which
refers to all hosts on that network (see [7]). For example, a host
attempting to locate a domain name server might construct a request
containing the resource name [17, 53] (referring to the Domain Name
Server protocol provided at "well-known" UDP port 53) and then broadcast
that request on its local network.

Each receiving host examines the list of resources named in the request
packet, determines which of the resources it provides, and returns a
reply message to the querying host in confirmation. The receiving host
determines whether or not: it provides a resource by successive
decomposition of the resource name until either the name is exhausted or
it encounters a component which Is not supported. In the previous

Accet^ [Page 2]

2-103«

■ *• - *»* -" •

APPLICATION LEVEL: RLP RFC 887

RFC 887 December 1983
Resource Location Protocol

example, each host on the npt-work receiving the broadcast request would
examine the resource name by first consulting its tables to determine if
it provided UDP service. If this was successful, it would then examine
the UDP port component of the name and consult its UDP table to
determine if it provided service on UDP port 53. At this point the name
would be exhausted and if both checks were successful the host would
return a reply message to the querying host indicating support for that
resource.

3.1. Request Messages

RLP provides two basic types of request messages which may be
transmitted by a querying host. The first type requires any host
receiving the request message to return a reply message only if it
provides at least one of the resources named in the request list. The
second type requires any host receiving the message to always return a
reply message even if it provides none of the resources named in the
request list.

These two types of request messages -*re:

<Who-Provides?>
This type requires any host receiving the message to return an
appropriate reply message which names all of the resources from the
request list which it provides. If the receiving host provides none
of the named resources, no reply may be returned.

<Do-You-Provide?>
This type is identicel to the <Who-Provides?> message but with the
extra requirement that a reply must always be returned. When a
receiving host provides rone of the requested resources, it simply
returns an empty reply list. This empty reply list allows the
querying host to immediately detect that the confirming host
provides none of the named resources without having to timeout after
repeatedly retransmitting the reouest.

The <Who-Provides?> request message is most typically used when
broadcasting requests to an entire IP network. The <Do-You-Provide?>
request message, on the other hand, is most typically used when
confirming that a particular host does or does not provide one or more
specific resouices. It may not be broadcast (»im-ts sucn a request •;ould
flood the querying host with reply messages from all hosts on the
network).

In addition to the two basic types of request messages, en additional
two variant types of request messages may also be transmitted by a
querying host. These message types provide a "third-party" resource
location capability. They differ from the basic message types by

Acc^tta [Page 3]

2-1030

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985
\ <\

RFC 887 December 1983
Resource Location Protocol

providing space for an additional qualifier with each listed resource to
identify "third-party" hosts which the confirming host believes may
provide the resource. As before, the first type requires any host
receiving the request message to return a reply message only if it knows
of some host which provides at least one of the resources named in the
request list. The second type requires any host receiving the message
to always return a reply message even if it knows of no hosts which
provide any of the resources named in the request list.

These two remaining types of request messages are:

<Who-Anywhere-Provides?>
This message parallels the <Who-Provides?> message with the
"third-party" variant described above. The confirming host is
required to return at least its own IP address (if it provides the
named resource) as well as the IP addresses of any other hosts it
believes may provide the named resource. The confirming host
though, may never return an IP address for a resource which is the
same as an IP address listed with the resource name in the request
message. In this case it must treat the resource as if it was
unsupported at that IP address and omit it from any reply list.

<Does-Anyone-Provide?>
This message parallels the <Do-You-Provide?> message again with the
"third-party" variant described above. As before, the confirming
host is required to return its own IP address as well as the IP
addresses of any other hosts it believes may provide the named
resource and is prohibited from returning the same IP address in the
reply resource specifier as was listed in the request resource
specifier. As in the <Do-You-Provide?> case and for the same
reason, this message also may not be broadcast.

These variant request messages permit "smart" hosts to supply resource
location information for networks without broadcast capability (provided
that all hosts on the network always "know" the address of one or more
such "smart" hosts). They also permit resource location information for
services which are not provided anywhere on a directly connected network
to be provided by "smart" gateways which have perhaps queried other
networks to which they are attached or have somehow otherwise acquired
the information.

The restriction against returning the same IP address in a reply as was
specified in the request: provides a primitive meuianism tor excluding
certain known addresses from consideration in a reply (see section 5,
example 3). It may also be used to override the receiving host's
preference for its own IP address in "third-party" replies when this is
required.

Accetta [Page 4]

2-1010

APPLICATION LEVEL: RLP RFC 887

R££ 387 December 1983
Resource Location Protocol

3.2. R.eply Messages

Each of the types of request messages has an associated type of reply
message. The basic reply message type is returned in response to both
<Who-Provides?> and <Do-You-Provide?> request messages and supplies
information about the resources provided by the confirming host. The
other reply message type is the "third-party" variant returned in
response to both <Who-Anywhere-Provides?> and <Does-Anyone-Provide?>
request messages and supplies information about resources provided by
hosts known to the confirming host.

These two types of reply messages are:

<I-Provide>
This reply message contains a list of exactly those resources from
the request list which the confirming host provides. These
resources must occur in the reply list in precisely the same order
as they were listed in the request message.

<They-Provide>
This reply message similarly contains a list of exactly those
resources from the request list (appropriately qualified with IP
addresses) which the confirming host provides or believes another
host provides. These resources again must occur in the reply list
in precisely the same order as they were listed in the request
message.

Neither type of reply message may be broadcast.

A querying host which receives a <They-Provide> reply message from a
confirming host on behalf of a third host is not required to
unquestlonlngiy rely on the indirectly provided information, lfris
information should usually be regarded simply as a hint. In most cases,
the querying host should transmit a specific <Do-You-Provide?> request
to the third host and confirm that the resou/ce is indeed provided at
that IP address before proceeding,

4. Message Formats

RLP massages are encapsulated in UDP packets to take advantage of the
multiplexing capability provided by the UDP source and destination ports
and the extra reliability provided by the UDP checksum. Request
messages are sent from a convenient source port on the querying host to
the as: gned RLP destination port of a receiving host. Reply messages
are returned from the assigned RLP source port of the confirming host to
the appropriate destination port of the querying host as determined by
the source port in the request message.

The format of the various RLP messages is described in the following
diagrams. All numeric quantities which occupy more than one octet are

Accetta [Page S]

2-ion

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 887 December 1983
Resource Location Protocol

stored in the messages from the high order octet to the low order octet
as per the usual Internet protocol standard. All packet diagrams
indicate the octets of the message from left to right and then top to
bottom as they occur in the data portion of the encapsulating UDP
packet.

Each RLP packet has the general format

+ + + + +

iii i
| Type | Flags | Message-ID |
III I

I
| Resource-List

I
+ — _ + + t - N N vv - +

+

Resource-List |
I

♦ + * +---\V~-+

where

<Type>
is a single octet which identifies the message type. The currently
defined types are:

0 <Who-Provides?>
i <Do-You-Provide?>
2 <Who-Anywhere-Provides?>
3 <Dces-Anyone-Provide?>
4 <I-Provlde>
5 <They-Provide>
6-255 Reserved.

Accetta [Page 6]

2-1042

"-..*«•■-

APPLICATION LEVEL: RLP RFC 887

RFC 887 December 1983
Resource Location Protocol

<Flags>
Is a single octet specifying possible modifications to the standard
interpretation of <Type>. Bits in this field are numbered from left
to right (from most significant to least significant) beginning with
bit 1. The currently defined flag bits are:

Bit 1 <Local-Only>. Requires that any reply message generated in
response to a request message with this flag bit set may
only name IP addresses which are on the same IP network as
the sender of the request message. This flag also requires
that multi-homed hosts answering broadcast <Who-Provides?>
requests use the appropriate local network IP source
address in the returned reply. This bit must be zero in
reply messages.

Bits 2-8 Reserved. Must be zero.

<Message-ID>
is a two octet (16-bit) value which identifies the request message.
It is used simply to aid in matching requests with replies. The
sending host should initialize this field to some convenient value
when constructing a request message. The receiving host must return
this same value in the <Message-ID> field of any reply message
generated in response to that request.

<Resource-Li&t>
is the list of resources being queried or for which location
information is being supplied. This list is a sequence of octets
beginning at the octet following the <Message-ID> and extending
through the end of the UDP packet. The format of this field is
explained more fully in the following section. The size of this
list is implicitly specified by the length of the encapsulating UDP
datagram.

4.1. Resource Lists

A <Resource-List> consists of zero or more resource specifiers. Each
resource specifier is simply a sequence of octets. All resource
specifiers have a common resource name initial fcnnat

♦ * ♦-■ ♦-- -\v--*
II! i
!Protoco1|IDLength| Resource-ID |
1 I I !
* ♦---- ,. —..NV.-*

where

Accetta ".P^o 7.

2-1013

'^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 887
Resource Location Protocol

December 1983

<Protocol>
is the protocol number assigned to the lowest level Internet
protocol utilized for accessing the resource.

<IDLength>
is the length of the resource identifier associated with this
<Protocol>. This length may be a fixed or variable value depending
on the particular resource. It is included so that specifiers which
refer to resources which a host may not provide can be skipped over
without needing to know the specific structure of the particular
resource identifier. If the <Protocol> has no associated natural
identifier, this length is 0.

<Resource-ID>
is the qualifying identifier used to further refine the resource
being queried. If the <IDLength> field was 0, then this field is
empty and occupies no space in the resource specifier.

In addition, resource specifiers in all <Who~Anywhere-Provides?>,
<Does-Anyone-Provide?> and <They-Provide> messages also contain an
additional qualifier following the <Protocol-ID>. This qualifier has
the format

♦-«- +>

I I
|IPLength|
I I
♦ ♦«

-//—♦

IP-Address-Llst

.//—♦

where

Accetta (Page 8]

2-1044

APPLICATION LEVEL: RLP RFC 887

RFC 887
Resource Location Protocol

December 1983

<IPLength>
is the number of IP addresses containing in the following
<IP-Address-List> (the <IP-Address-List> field thus occupies the
last 4*<IPLength> octets in its resource specifier). In request
messages, this is the maximum number of qualifying addresses which
may be included in the corresponding reply resource specifier.
Although not particularly useful, it may be 0 and in that case
provides no space for qualifying the resource name with IP addresses
in the returned specifier. In reply messages, this is the number of
qualifying addresses known to provide the resource. It may not
exceed the number specified in the corresponding request specifier.
This field may not be 0 in a reply message unless it was supplied as
0 in the request message and the confirming host would have returned
one or more IP addresses had any space been provided.

<IP-Address-List>
is a list of four-octet IP addresses used to qualify the resource
specifier with respect to those particular addresses. In reply
messages, these are the IP addresses of the confirming host (when
appropriate) and the addresses of any other hosts known to provide
that resource (subject to the list length limitations). In request
messages, these are the IP addresses of hosts for which resource
information may not be returned. In such messages, these addresses
should normally be initialized to some "harmless" value (such as the
address of the querying host) unless it is intended to specifically
exclude the supplied addresses from consideration in any reply
messages.

The receiving host determines if it provides any of the resources named
in the request list by successively decomposing each resource name. The
first level of decomposition is the Internet protocol number which can
presumably be looked up in a table to determine if that protocol is
supported on the host. Subsequent decompositions are based on previous
components until one of three events occur:

1. the current component identifies some aspect of the previous
components which the host does not support,

2. the resource name from the request list is exhausted, or

3. the resource name from the request list is not exhausted but
the host does not expect any further components in the name
given the previous components

In case I, the receiving host has determined that it does not provide
the named resource. The resource specifier may not be included in any
reply message returned.

In case 2. the receiving host has determined that it does indeed provide
the named resource (note: this may occur even if trw receiving host

Accetta 'Pago %

2-1045

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 887 December 1983 »ff
Resource Location Protocol

would have expected the resource name to contain more components than
were actually present). The resource specifier must be included (modulo
IP address prohibitions) in any reply message returned.

In case 3, the receiving host has determined that it does not completely
provide the named resource since name components remain which it does
not understand (this might occur with specializations of or extensions
to a known protocol which are not universally recognized). The resource
specifier may not be included in any reply message returned.

5. Sample Usage

The following scenarios illustrate some typical uses of RLP. In all
\\« cases the indicated messages are encapsulated in a UDP datagram with the

appropriate source and destination port numbers, message length, and
checksum. This datagram is further encapsulated in an IP datagram with
the appropriate source address of the sending host and destination
address (either broadcast or individual) for the receiving host.

All numeric protocol examples are as specified in the appropriate
protocol description documents listed in the references.

1. Suppose a freshly rebooted host H wishes to find some gateway
on its directly connected network to which it can send its
first external packet. It then broadcasts the request

<Who-Provides?> <Flags>=<Local-CYiiy> <Message-ID>=12345
<Resource-List>~{[GGP], [EGP]}

encoded as the 8 octet message

+ *„ + ♦ + ♦ + —„.. + ♦ — - -♦

| 0 I 128 I 12345 i 3 | 0 j 8 | 0 |

on its local network.

- Gateway Gl (which understands EGP) receives the request and
returns the reply

<I-Provide> <Elags>«none <Message-XD>=1234S
<Resource-List>*{[EGP]>

encoded as the 6 octet message

j 4 | 0 | 12345 | 8 i 0 |

to host H which then remembers that gateway Gl may be used

Accetta [Page 10]

2-1016

i T
 i ■

APPLICATION LEVEL: RLP RFC 887

RFC 887 December 1983
Resource Location Protocol

to route traffic to the rest of the Internet.

- At the same time, gateway G2 (which understands both GGP
and EGP) might also receive the request and return the reply

<I-Provide> <Flags>=none <Message-ID>=l2345
<Resource-List>={[GGP], [EGP]}

encoded as the 8 octet message

+ + + + + + + +-- — ♦
| 4 | 0 | 12345 | 3 | 0 j 8 | 0 |
+ + + + + + + + -♦

to host H which mi^it then also add gateway G? to it,«* list
if It chooses.

2. Assume instead that host H is a stand-alone system which has
just encountered some fatal software error and wishes to locace
a crash dump server to save its state before reloading.
Suppose that the crash dump protocol on the host's local
network is implemented using the Trivial File Transfer Protocol
(TTTP) [8]. Furthermore, suppose that the special file name
"CRASH-DUMP" is used to indicate crash dump processing (e.g.
the server might locally generate a unique file name to hold
each dump that it receives from a host). Then host H might
broadcast the request

<Who-Provid£s?> <Flags>=none <Message~ID>=54321
<Resource-List>={[UDP. TFTP. WRQ, MCRASH-DUMPM] >

encoded as the 21 octet message

+ . + „ + + + -,,— , ♦ ~ + ♦ ♦

| 0 | 0 | b4J2i | 17 | 15 j 69 j

J 2 | 'C 'R' 'A* 'S1 *H' '-, j

j 'D* 'IT 'M* 'P* 0 |

to its local network (note that the til • name component is
explicitly terminated by a null so as not to exclude future
further specialization of the crash dump protocol).

- Host C (which supports this specialization of the TFTP
protocol) receives the request and returns the reply

<I-Provide> <Fiags>;=none <Message~ ID>~54321
<Resourc«-List>*{rUDP. TFTP. WRQ. "CRASH DUMP";>

Aecetta s\u?** li;

2-1017

* *-* * •'-- *- "-■ *-*'- *-**-* -*• -*• -* -% ~% -*• -^ *

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 887 December 1983
Resource Location Protocol

encoded as the 21 octet message

+ + + + + + + * +

| 4 | 0 | 54321 | 17 j 15 | 69 |

| 2 j 'C* 'R* 'A' 'S' 'H' '-' j
+ + + + + + + ...-• + +

I 'D' ,U* 'M* 'P* 0 I
+ + + + + +

to host H which may then proceed to send its crash dump to
host C and reload.

- Host D (which provides TFIP service but not the crash dump
specialization), however, might receive the request and
determine that it provides no support for the resource
(since the resource name contains components following the
UDP port number which it does not understand), It would
therefore return no reply to host H.

3. Finally, suppose host M wishes to locate some domain name
translation server (either UDP or TCP based) anywhere on the
Internet. Furthermore, suppose that host M is on a IP network
which does not provide broadcast address capabilities and that
host R is a "known" resource location server for that network.

First, since host M prefers to find a domain name server on its
own locally connected network if possible, it sends the request

<Does-Anyone-Provide?> <Flags>=*<Local-Only>
<Message-ID>«12321 <Resource-List>«

{[TCP, <DOMAIN-NAME-SERVER-PORT>] <M>,
[UDP. <D0MAIN-NAME~SERVER-PORT>] <M>>

encoded as the 22 octet message

I 3 j 128 I LJ321 j
+ .^._..» + «***. + »•«•. + .•... + ••.... + _.««•* •-.«.•+**--.. + --..-.<+

! 6 j 2 [53 ! 1 I M I
♦ . .*. « + ••*.... + . .«. *»^..«--^., .»»♦*».- <»♦* »-»»♦«»- --♦.»,,,..»

i 17 I 2 j 53 j 1 j M I

to host R.

Host R receives the request and consults its tables for any
hosts known to support either variety of domain name service.
It finds entries Indicating that both hosts S and T provide UDP

Accetta [P»9o **]

2-1048

j^sL

APPLICATION LEVEL: RLP RFC 887

RFC 887 December 1983
Resource Location Protocol

based domain name service but that neither host is on the same
IP network as host H. It must then send the negative
confirmation reply

<They-Provide> <Flags>=none <Message-ID>=12321
<Resource-List>={}

encoded as the 4 octet message

+ + + + +

| 5 j 0 | 12321 |
+ .-+ + + +

back to host M.

Host M, receiving this reply, might now abandon any hope of
finding a server on its own ratwork, reformat its request to
permit any host address, and resend

<Do«s-AiV/one-?rovide?> <Flags>=Tione <M$sssage-ID>=12322
<Resource-List>=

{[TCP. <DOMAIN-NAME-SERVER-PORT>] {M}.
[UDP, <DOMMN-NAME-SERVER-K)RT>] {M}}

encoded as the 22 octet message

+ +. + + +

j 3 | 0 | 12322 |
♦ ♦.,...+-. + ♦ + ♦ + ♦ ♦

j 6 | 2 | 53 | 1 | M |
+ ♦ ♦--«---♦ ♦ ♦ ♦ - - ♦ ♦ ♦

j 17 | 2 1 53 | 1 | M |
+ _♦ ♦ --♦ * ♦ ♦ -■-♦ ♦ ♦

again to host R.

Host R receives this new request and is no longer constrained
to return only local addresses. However, since only space for
a single qualifying IP address was provided in each request
r^nource specifier, it may not immediately return both
u -resses. Instead, it is forced to return only the first
aadress and replies

<They-Provide> <Flags>^r,cne <M**ssage-ID>=12322
<Resource-List>=<[UDP, <DOMAIN-NAME-SERVER-PORT>] <S>>

encoded as the 13 octet message

Accetta ■Pag© 3]

2-1049

> .*. .*• .*- .•• ,*•. * .** i, *N • •.' • * > • * *% • • »•»* -V • • > • ■ - •«% • • P* »v.*V .».**> .\. •

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 887 December 1983
Resource Location Protocol

+. + + + + + + + +

| 5 | 0 I 12322 | 17 j 2 | 53 |
+ + + + , + + + + +

I 1 I S |
+ + + + + ^

to Host M.

Host M receives the reply and (being the auspicious sort)
decides to confirm it with host S. It then sends

<Do-You-Provide?> <Flags>=none <Message-ID>=12323
<Resource-List>={[UDP, <DOMAIN*NAME-SERVER-PORT>]>

encoded as the 8 octet message

4 4--- 4 4 + + + ♦ +

| 1 | 0 1 12323 | 17 | 2 | 53 |
4-_ 4-, 4 4 4 .-4 4-, 4 4

to host S and receives back from host S the reply

<I-Provlde> <Flags>=none <Message-ID>!=12323
<Resource-List>={}

encoded as the 4 octet message

4 .-4_„•»«4»•••»4«,»--4

| 4 j 0 | 12323 |
4 _„4 •-♦ ♦ ♦

denying any support for UDP based domain name service.

In desperation host M again queries host R. this time exclud t*q
host S from consideration, and sends the request

«Does-Anyone-Provide?* <Flags>=none <Message-ID>=12324
<Resource-List>=

{[TCP, <D0MAIN-NAME-SERVER-P0RT>1 {SV
[UDP. <D0MAIN-KAME-3ERVER-P0RT>] {S}>

encoded as the 22 octet message

| 3 j 0 | 12324 j

16 12s 53 | 1 | S |

I 17 I 2 I 53 | I | S j

Accetta 'Page 14^

2-1050

APPLICATION LEVEL: RLP RFC 887

RFC 887 December 1983
Resource Location Protocol

and this time receives the reply

<They-Provide> <Flags>=none <Message-ID>=12324
<Resource-List>={[UDP, <DOMAIN-NAME-SERVER-PORT>] {T}}

encoded as the 13 octet message

| 5 | 0 | 12324 j 17 | 2 | 53 |

111 T |
+ + +.. + + ♦

from host R which of course host M again insists on confirming
by sending the request

<Do-You-Provide?> <Flags>=none <Message-ID>=12325
<Resource-List>=

{ [UDP, <DüMAiN-NAME-SERVER-PORT>j >

encoded as the 8 octet message

| 1 | 0 | 12325 | 17 | 2 | 53 I
+. ♦_ + . -...+ ^..,-- + ♦-• ♦ ♦

to host T and finally receives confirmation from host T with
the reply

<I-Provide> <Flags>=none <Message-ID>=12325
<Resource-List>*{ [UDP. <DOMAIN-NAME-SERVER~PORT>] >

encoded as the 8 octet message

I 4 I 0 I 12325 i 17 I 2 I 53 |
♦-.-,-+.-...♦-»..-^-.-•-♦---«-♦«----♦--.--♦-«.-•♦

that it indeed provides domain name translation service at UDP
port 53.

A. Assigned Numbers

The "well-known" UDP port number for the Resource Location Protocol is
39 (47 octal).

Accetta [Page 15]

2-1051

*•"•**«*.*.* V V,'.1 f „ - , '
-fa.

u

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 887 December 1983
Resource Location Protocol

REFERENCES

[1] Postel, J.
User Datagram Protocol.
RFC 768, USC/Information Sciences Institute, August, 1980.

[2] Postel, J.
File Transfer Protocol.
RFC 765, USC/Information Sciences Institute, June, 1980.

[3] Postel, J.
Internet Protocol - DARPA Internet Program Protocol Specification.
RFC 791, USC/Information Sciences Institute, September, 1981.

[4] Postal« J.
Transmission Control Protocol- DARPA Internet Program Protocol

Specification.
RFC 793, USC/Information Sciences Institute, September. 1981.

[5] Postel, J.
Internet Control Message Protocol - DARPA Internet Program

Protocol Specification.
RFC 792, USC/Information Sciences Institute, September, 1981.

[6] Reynolds, J., and J. Postel.
Assigned Numbers.
RFC 870, USC/Information Sciences Institute, October, 1983.

[7] Curwltz, R.. and R. Hinden.
IP - Local Area Network Addressing Issues.
IEN 212, Bolt Beranek and Newman, September, 1982.

PS] Sol Uns. K.
Ttm TFTP Protocol (revision 2).
RFC 783. MIT/Laboratory for Computer Science, June, 1981.

Accetta [Page 16]

2-1052

- -^ -

APPLICATION LEVEL: RJE RFC 407

(Oct. 16, 1972)
RFC 407 NIC 12112

Robert Breeeler, MIT-CMOG
Richard Guide, MIT-DMCG
Alex McKenzie, BSN-NET

Obsoletes RF~ 360

REMOTE JOB EKXRY PROOOCOk

V.'

2*1053

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

N
L*.

> "* p.

I

i

2-10S4

Vv* >>>>? jf>.v\y .*; *> • .*%"-*.*^!

APPLICATION LEVEL: RJE RFC 407

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

REMOTE JOB ENTRY PROTOCOL

INTRODUCTION

Remote job entry is the mechanism whereby a user at one location
causes a batch-processing job to be run at some other location. This
protocol specifies the Network standard procedures for such a user to
communicate over the Network with a remote batch-processing server,
causing that server to retrieve a job-input file, process the job,
and deliver the job's output file(s) to a remote location. The
protocol uses a TELNET connection (to a special standardized logger,
not socket 1) for all control communication between the user and the
server RJE processes. The server-site then uses the File Transfer
Protocol to retrieve the job-input file and to deliver the out*>ut
file(s) .

ihere ar« two typ«s of us#rs; direct users (persons) and iif*sr
processes. The direct user communicates from an interactive terminal
attached to a TIP or any host. This user may cause the input and/or
output to be retrieved/sent on a specific socket at the specified
host (such as for card readers or printers on a TIP), or the user may
have the files transferred by file-id using File Transfer Protocol.
The other type of user is a RJE User-process in one remote host
communicating with the RJE Server process in another host. This type
of user ultimately receives its instructions from a human user, but
through some unspecified Indirect means. The command and response
streams of this protocol are designed to be readily used and
interpreted by both the human user and the user process.

A particular user site may choose to establish the TELNET control
connection for each logical job or may leave the control connection
open for extended periods. If the control connection is left open,
then multiple job-files may be directed to be retrieved or optionally
(to servers that are able to determine the end of one logical job by
the input stream and form several jobs out of one input file) one
continuous retrieval may be done (as from a TIP card reader) . This
then forms a "hot" card reader to a particular »mrvmr with the TELNET
connection serving as a "job monitor . Since the output is always
transferred job at a time per connection to the output socket, the
output from this "hot" rmmömr would appear when ready as if to a
"hot" printer. Another possibility for more complex hosts is to
attach an RJE User-process to a card reader and take Instructions
from a lead control card, causing an RJE control TELNET to be opened
to the appropriate host with appropriate log-on and input retrieval
commands. This card reader would appear to the human user as a
Network "hot" card reader. The details of this RJE User-process are
beyond the scope of this protocol.

2-1055

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

GENERAL SPECIFICATIONS

User

A human user at a real terminal or a process that supplies the
command control stream causing a job to be submitted remotely will
be termed the User. The procedure by which a process user
receives its instructions is beyond the scope of this protocol.

User TELNET

The User communicates its commands over the Network in Network
Virtual Terminal code through a User TELNET process in the User's
Host. This User TELNET process initiates its activity via ICP to
the standard "RJE Logger'* socket (socket 5) at the desired
RJE-server Host.

RJE-Server TELNET

The RJE-server process receives its command stream from and sends
its response stream to the TELNET channel through an RJE-server
TELNET process in the server host. This process must listen for
the ICP on the "RJE Logger** socket (and cause appropriate ICP
socket shifting).

TELNET Connection

The command and response streams for the RJE mechanism are via a
TELNET-like connection to a special socket with full
specifications according to the current NWS TELNET protocol.

RJE-Server

The RJE-Server process resides in the Host which is providing
Remote Batch Job Entry service. This process receives input from
the RJE-server TELNET, controls access through the "log-on"
procedure« retrieves input job files, queues jobs for execution by
the batch system. rmsponOm to status inquiries, and transmits job
output files when available.

User FTP

All input and output files are transferred under control of the
RJE-server process at its initiative. These files may be directly
transferred via Request-for-connect ion to a specific Host/socket
or they may be transferred via File Transfer Protocol. If the
latter method Is used, then the RJE-server acts through its local
User FTP process to cause the transfer. This process initiates

2-1056

^Vää:

APPLICATION LEVEL: RJE RFC 407

I

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

activity by an active Request-for-connection to the "FTP Logger"
in the foreign host.

Server FTP

This process in a remote host (remote from the RJE-server) listens
for an ICP from the User FTP and then acts upon the commands from
the User FTP causing the appropriate file transfer.

FTP

When Eile Transfer Protocol is used for RJE files, the standard
FTP mechanism is used as fully specified by the current NWS
FTProtocol.

RJE Command Language

The RJE system is controlled by a command stream from the User
over the TELNET connection specifying the user's identity
(log-on). the source of the Job input file, the disposition of the
job1« output files, enquiring about Job status, altering job
status or output disposition. Additional commands affecting
oui^xit disposition are Includable in the Job input file. This
command language is explicitly specified in a following section of
this protocol.

RJE Command Replies

*> Every command input from the User via TELNET calls for a
massags from the RJE-server to the User over the TELHET
connection. Certain other conditions also require a
message. These messages are formatted in a standardised manner to
facilitate interpretation by both human Users and User pre
A following section of this protocol specifies the rt

i

2-1057

«

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

RJE C0W1ANDS OVER TELNET CONNECTION

GENERAL CONVENTIONS

1. Each of the commands will be contained in one input line
terminated by the standard TELNET "crlf". the line may be of any
length desired by the user (explicitly, not restricted to a
physical terminal line width). the characters "or" and "If" will
be ignored by the RJE-server except in the explicit order "crlf"
and may be used as needed for local terminal control.

2. All commands will begin with a recognized command name and may
then contain recognized syntactic element strings and free* form
variable strings (for user-id. file-ids, etc.) . Recognized words
consist of alphanumeric strings (letters and digits) or
punctuation. Recognized alphanumeric string elements must be
separated from each other and from unrecognizable strings by at
least one blank or a syntactlcly permitted punctuation. Other
blanks may be used freely as desired before or after any syntactic
element (J*blank" is understood here to mean ASCII SPACE (octal
040); formally: <blank>::» <blank><ASCII SPACE> { <ASCII SPACE> ;
thus, a sequence of SPACES is also permissible in place of
<blank>, although there is no syntactic necessity for there to be
more than one). The "*H after the command name in all commands
except OUT and CHANGE is optional.

3. Recognized alphanumeric strings may contain upper case letters or
lower case letters In any mixture without syntactic
differentiation. Unrecognisable strings will be used exactly as
presented with full differentiation of upper and lower case input,
unless the host finally using the string defines otherwise.

4. There are two types of Unrecognizable strings: final and
imbedded. Final strings appear as the last syntactic element of a
command and are parsed as beginning with the next non-blank
character of the input stream and continuing to the last non-blank
character before the MctlfM.

Imbedded strings include "Job-id" and "Job-file-id" in the OUT.
CHANGE, and ALTER commands. At present these fields will be left
undellmited since they must only be recognizable by the wmrsenr host
vhicn hopefully can recognize its own Job-ids and flle-i

SYNTAX

the following command descriptions are given in a 8NF syntax,
within angle brackets are non-terminal syntactic elements which are
expanded in succeeding syntactic equations. Each equation has the

2-105*

\ \v.v; ■;. L* « * i s>

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

PASS

Pass * <password>

REMOTE Job Entry Protocol
? (Oct. 16, 1972)
S" RFC 407 NIC 12112

i J> this command immediately follows a USER command and completes
£ tha Mlog-on" procedure. Although a particular Server may not

require a password and has already Indicated Mlc«g-on ok1* after
> the USER command, every Server oust permit a PASS command (and
1 possibly Ignore It) and acknowledge it with a "log-on ok" if
I the log-on la completed.

WE

[v B¥E

this command terminates a USSR and requests the RJE server to
close the TELNET connection. If input transfer is not in
progress, the TELNET connection may be closed immediately; if
input is in progress, the connection should remain open for
result response and then be closed. During the interim, a new
USER commend (and no other command) is acceptable.

i An unexpected close on the TELNET connection will cause the
to take the affective action of an ABORT and a RYE.

INID/UPASS

INXD m <ueer-id>
INPASS « <pessword>

■ The specified user-id and password will be sent in the File
™ Transfer request to retrieve the input file. These per
[> are net used by the Smnmr in any other way. If this
K does non appear, then the USER/PASS parameters are

tl WATH/IWUT
v*
M XNPATH » <flle-id>

IHPOT » <file-id>
INPVT

NOTE: The following syntax will be ueed for output aa well

<flie-ld>::« <host-socket > | <host-file>
<hoet-socket>::» <hoet>.<eocket><sttributes> |

^ <soCket><attrlbutas>
no <host> part implies the User-site host

.; <host>::» <Integer>
<secket>::» <integer>

i
i

y .

2-1060

»N„.*'V- ,*'.'•'. •*->- ."-V

APPLICATION LEVEL: RJE RFC 407

REMOTE Job Entry Protocol
(Oct. 16, 1372)

RFC 407 NIC 12112

A

i
£

Lrf

defined n*ae on the loft of the : :* and a Mt of alternative
definitions, separated by vertical lines "I". on the right.

REINITIALIZE

REINIT

this i i —MM id puts the UMT into a «tat« identical to tha state
immediately after a successful connection to the RJE-server.
prior to having sent any coasends over the TELNET connection,
the effective action taken is that of an AÄÄT and a flushing
of all INPUT, 0UIPUT and ID inforsetion. Naturally, the user
is still responsible for any usage charges incurred prior to
his REINIT command, the TELNET connection is not affected in
any way.

USER

Ueer ■ <user*id>

this cosmsnd must be the first cossend over a
connection. As such, it initiates a Mlogon'

to this cossend is one of the following

TELNET

User coda in
Enter password (if user coda ok).
Log-on ok, proceed (if no password)•

f.*.

i

the

1.
2.
3.

Another USOt cossend say be sent by the User at any tie* to
change Users, further input will then be charged to the new
user. A server say refuse to honor a new user cosmsnd if it is
not able to process it in its current state (during input file
transfer, for example), but the protocol permits the USER
cossend at any ties without altering previous activity. An
incorrect subsequent USE! cossend or ita following PASS
are to be Ignored with error response, leaving the original
User logged~in.

ht.

It 1» permissible for a server to close the TELNET connection
If the initial USER/PASS cosmanda are not ceepleted within a
server specified tise period. It is not required or isplled
that the "logged-on" Ueer*e user-id be the one used for file
tranefer or Job execution, but only identifies the submitter of
the cossend stream. Servers will establish their own rules
relating user-id with the Job-execution-user for Job or Output
alteration

iful "log-on" always cleare any previous Input or (Xitput
default parameters (XNID. etc.).

MO&tt

APPLICATION LEVEL: RJE RFC 407

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

<integer>: := D<decimal-Integer> | 0<octal-Integer> |
H<hexadecimal-integer>

<host-file>: := <host><attributes>/<pathname>
<attributes>::= <empty> | :<transmission><code>
<transm±ssion>: := <empty> | T | A | N

<empty> implies default which is N for Input files
and A for Output files

T specifies TELNET-like coding with embedded
"crlf" for new-line, "ffM for new-page

N specifies FTP blocked transfer with record
marks but without other carriage-control

A specifies FTP blocked records with ASA
carriage-control
(column 1 of image is forms control)

<code>::= <empty> | E
<empty> specifies NVT ASCII code
E specifies EBCDIC

<pathname>::= <any string recognized by the FTP Server at
the site of the file>

The <file-id> syntax is the general RJE mechanism for
specifying a particular file source or destination for input or
output. If the <host-socket> form is used then direct transfer
will be made by the RJE-Server to the named socket using the
specified <attributes>. If the <host-file> form is used then
the RJE-server will call upon its local FTP-uaer process to do
the actual transfer. The data stream in this mode is either
TELNET-like ASCII or blocked records (which may use column 1
for ASA carriage-control). Althou^i A mode is permitted on
irput (column 1 is deleted.) the usual mode is the default N.
The output supplies carriage-control in the first character of
each record C*blank" » single-space, H1H * new-page, etc.)'
while the optional N mode transfers the data only (as to a card
punch, etc.).

The <pathname> is an arbitrary Unrecognized string which is
saved by RJE-server and sent back over FTP to the FTP-aarver to
retrieve or store the appropriate files.

INPAIH or INPUT commands first store the specified <file-id> if
one is supplied, and then the INPUT command initiates input.
The INPATH name may be used to specify a file-id for later
input and the INPUT command without file-id will cause input to
initiate over a previously specified file-id. An INPUT "crlf"
command with no previous <file~ld> specified is illegal.

2-1061

.'tii•%>*irri**i *•
>>: .\vv/.*; .■" .*• »> ."* •'" »v *■* .-••»'* «.*.>• ->.v v.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

ABORT

ABORT

This command aborts any input retrieval In progress, discards
already received records, and closes the retrieval connection.
Note: ABORT with parameters Is an Output Transmission control
(see below).

OUIUSER/OtflPASS

OUTUSER s <user-id>
OUTPASS = <password>

The specified user-id and password will be sent in the File
Transfer request to send the output file(s). These parameters
are not used by the Server In any other way. If this command
does not appear, then the USER/PASS parameters are ussd.

OUT

s
OUT <out-fiie> » <dlsp>

<cut-file>::=* <enpty> | <job-file-id>
<empty> Implies the primary print file of the job

<job-file-id>: :* <string representing a specific output file
from the job as recognized by the Server>

<disp>::» <empty><file-id> | (H) \ (S)<file-id>| (D)
<empty> specifies Transmit then discard
(H) specifies Hold-only, do not transmit
(S) specifies Transmit and Save
(D) specifies discard without transmitting

Note: Parentheses aro part of the above elements.

<file-id>::= (same as for INPUT command)

This command specifies the disposition of output file(s)
produced by the job. Unspecified files will be Hold-only by
default. The OUTUSER, OUTPASS, and OUT commands must be
specified before the INPUT command to be effective. These
commands will affect any following jobs submitted by this USER
over this RJE-TELNET connection. A particular job may override
these commands by NET control cards on the front of the input
file.

Once output disposition is specified by this OUT command or by
a NET OUT card, the information is kept with the job until
final output disposition, and is modifiable by the CHANGE
command.

8

2-1062

APPLICATION LEVEL: RJE RFC 407

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

On occasion, the server may find that the destination for the
output is "busy" (i.e., RFC to either Server-FTP or specified
socket is refused), or that the host which should receive the
output is dead. In these cases, the server should wait several
minutes and then try to transmit again.

OUTPUT RE-ROUTE

CHANGE <job-id><blank><out-file> ■ <disp>

This command changes the output disposition supplied with the
job at submission. The <job-id> is assumed recognizable by the
RJE-server, who may verify if this USER is authorized to modify
the specified job. After the job is identified, the other
information has the same syntax and semantics as the original
OUT command. CHANCE command may be specified for a job-file-id
which was not mentioned at submission time and has the same
effect as an original OUT command.

OUTPUT C0NXR0LS DURING TRANSMISSION

<command><blank><count><blank><what>

<command>:: * RESTART
ABORT I HOLD

RECOVER | BACK | SKIP |

These commands specify (respectively):

Restart the transmission (new RFC, etc.)
Recover restarts transmission from last FTP
Restart-marker -reply
(see FTP).
Back up the output "count" blocks
Skip the output forward "count" blocks
Abort the output, discarding it
Abort the output, but Hold it

<count>::* <empty> | <integer>
<empty> implies 1 where defined

<what>::* <p<file-id> | <job-id><job-file-id>
<disp>:; - (same as for OUT command)
<file-id>::* (same as for IWITT command)
<integer>::« (same as for INPUT command)
<job-id>::» <server recognized job identifier which was supplied

at INP completion by the server>

<job-file-id>::= <server recognized file identifier or if missing
then the prime printer output of the specified
job>

2-1063

\ »V-V" v ".*.*.• v ".* v v *.• v
,•«♦..*,-.*.».-.«»* - - • * •. •

* .- ._« -a •-* *_- *_; _: •_• ; »

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

This collection of commands will modify the transmission of output
in progress or recently aborted. If output transmission is
cut-off before completion, then the RJE-server will either try to
resend the entire file if the file's <disp> was
Transmit- and-discard or will Hold the file for further User
control if the <disp> was (S) transmit-and-Save. Either during
transmission, during the Save part of a transmit-and-Save, or for
a Hold-only file, the above commands may be used to control the
transmission. The §<file-id> form of <what> is permitted only if
transmission is actually in progress.

If the file's state is inconsistent with the command, then the
command is illegal and ignored with reply.

STATUS

STATUS <job-id>
STATUS <job-id><blank><job-file-id>

These commands request the status of the RJE-server, a
particular job, or the transmission of an output or input file,
respectively. The information content of the Status reply is
site dependent.

CANCEL/ALTER

CANCEL <job-id>
ALTER <job-id><blank><site dependent options>

These commands change the course of a submitted job. CANCEL
specifies that the job is to be immediately terminated and any
output discarded. ALTER provides for system dependent options
such as changing job priority, process limits, Teminate without
Cancel, etc.

OP

OP (any string)

The specified string is to be displayed to the Server site
operator when any following job is initiated from the batch
queue of the Server. This command usually appears in the input
file as a NET OP control card, but may be a TELNET command. It
is cancelled as an all-jobs command by an 0? "crlf" command (no
text supplied).

10

2-1064

^ v %^V>^-lv>*-"\:>S" "v** -V* >V%^VV\»V*"VV\"%.' >.>:
'. ■ .

."V .'•

APPLICATION LEVEL: RJE RFC 407

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

RJE CONTROL CARDS IN THE INPUT FILE

Certain RJE commands may bo specified by control cards in the front
of the input file. If these controls appear, they take precedence
over the same command given thru the RJE-TELNET connection and affect
only this specific job. All these RJE control cards must appear as
the first records of the job's input-file. Ihey all contain the
control word NET in columns 1 through 3. Scanning for these controls
stops when the first card without NET in col 1-3 is encountered.

The control commands appear in individual records and are terminated
by the end-of-record (usually an 80 column card-image) . Continuation
is permitted onto the next record by the appearance of NET+ in
columns 1-4 of the next record. Column 5 of the next record
immediately follows the last character of the previous record.

NET 0UTUSER = <user-id>
NET OUTPASS * <password>
NET OUT <out-flle> = <dlsp>
NET OP <any string>

See the corresponding TELNET command for details. One option
permitted by the NET OUTUSER and NET OUT controls not possible from
the TELNET connection is specification of different OUTUSERs for
different OUTS, since the TELNET stored and supplies only an initial
OUTUSER, but the controls may change OUTUSERs before each OUT control
is encountered.

RJE USE OF FILE TRANSFER PROTOCOL

Most non-TIP files will be transferred to or from the RJE-server
through the FTP process. RJE-server will call upon its local
FTP-user supplying the Host, File-pathname« User-id, Password, and
Mode of the desired transfer. FTP-user will then connect to its
FTP-server counterpart in the specified host and set up a transfer
path. Data will then flow through the RJE-FTP interface in the
Server, over the Network, from/to the foreign FTP-server and then
from/to the specified File-pathname in the foreign host's file
storage space. On output files, the file-pathname may be recognized
by the foreign host as directions to a printer or the file may simply
be stored; a User-RJE-process can supply an output <file-id> by
default which is recognized by its own Server-FTP as routing to a
printer.

Although many specifics of the RJE-Server/User-FTP Interface are
going to be site dependent, there are several FTP options which will
be used in a standard way by RJE-Servers;

11

2-1065

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

1. A new FTP connection will be initiated for each file to be
transferred. The connection will be opened with the RJE User
supplied User-id (OUTUSER or INUSER) and Password.

2. The data bytesize will be 8 bits.

3. The FTP Type, Structure, and Mode parameters are determined by
the RJE transfer direction (I/O), and the <transmission and
<code> options supplied by the User:

I/O <TRANS> <C0DE> FTP-TYPE FIP-STRUCTURE FTP-l
I* N - A R B
I N E E R B
I T - A F S
I T E E F S
I A - P R B
I A E F R B

0* A - P R B
0 A E F R B
0 N - A R B
0 N E E R B
0 T ~ A F S
0 T E E F S

(*indicates default)

4. The service commands used will be Retrieve for input and Append
(with create) for output. The FTP pathname will be the
<pathname> supplied by the RJE User.

5. On output in B form, the User-FTP at the RJE-Server site will
send Restart-markers at periodic Intervals (like every 100
lines, or so), and will remember the latest
Restart-marker-reply with the file. If the file transfer is
not completed and the <disp> is (S) then the file will be held
pending User intervention. The User may then use the RECOVER
command to cause a FTP restart at the last remembered
Restart-marker-reply.

6. The FTP Abort command will be used for the RJE ABORT and CANCEL
commands.

7. For transfers where the FTP-MODE is defined as B, the user FTP
may optionally attempt to use H mode.

The specific form of the FTP commands used by an RJE-Server site, and
the order in which they are used will not be specified in this
protocol.

12

2-1066

•^.A^-iM^-V'V.v:

APPLICATION LEVEL: RJE RFC 407

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

Errors encountered by FTP fall into three categories: a) access
errors or no storage space error; b) command format errors; and c)
transfer failure errors. Since the commands are created by the
RJE-Server process, an error is a programming problem and should be
logged for attention and the situation handled as safely as possible.
Transmission failure or access failure on input cause an effective
ABORT and user notification. Transmission failure on output causes
RESTART or Save depending on <disp> (see OUT command). Access
failure on output is a problem since the User may not be accessible.
A status response should be queued for him, should he happen to
inquire; a <disp> * (S) file should be Held; and a <disp> ■ <empty>
transmit-and-discard file should be temporarily held and then
discarded if not claimed. •Temporarily1* is understood here to mean
at least several days, since particularly in the case of jobs which
generate voluminous output at great expense to the User, he should be
given every chance to retrieve his rightful output. Servers may
elect, however, to charge the User for the file-storage space
occupied by the held output.

13

2-1067

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

REMOTE Job Entry Protocol
(Oct. 16. 1972)

RFC 407 NIC 12112

REPLIES OVER THE TELNET CONNECTION

Each action of the RJE-server, including entry of each TELNET
command, is noted over the TELNET connection to the User, these
RJE-server replies are formatted for Human or Process interpretation.
They consist of a leading 3-dlgit numeric code followed by a blank
followed by a text explanation of the message. The numeric codes are
assigned by groups for future expansion to hopefully cover other
protocols besides RJE (like FTP). The numeric code is designed for
ease of interpretation by processes. The three digits of the code
are interpreted as follows:

The first digit specified the "type" of response indicated:

000

These "replies'* are purely informative, and are issued
voluntarily by the Server to inform a User of some state of the
server's system.

100

Replies to a specific status inquiry. These replies serve as
both information and at; acknowledgment of the status request.

P.; aoo
r * »
r*.. Positive acknowledgment of some previous command/request. The
1> reply 200 is a generalized "ok" for commands which require no
fc* other comment. Other 2xx replies are specified for specific

successful actions.

300

Incomplete lnfonuition supplied so far. No major problem, but
activity cannot proceed wlUi the input specified.

400

Unsuccessful reply. A request was correctly specified, but
could not be correctly completed. Further attempts will
require User commands.

500

t Incorrect or illegal command. The command or its parameters
i*% were invalid or incomplete from a syntactic view, or the
K*< command is inconsistent with a previous command. The command
fvj in question has been totally ignored.

% i
w:

14

h£ 2-1068

V""
P ^^ W* —* V* «* ^* mt* m" & ^* ^ ä#

 «* •* m * * * »' i*' • .* / / .' • _• -* J* -'*"-,• • * _* * *■ • * • * * * WW % *. "m, % *. %% *- % v •• V *. *. v % v *. \ •/ \ *. *, -• *. ■ -. ■.'-,■* ■.".-.' •*••'-*-•>.

APPLICATION LEVEL: RJE RFC 407

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

600-900

Reserved for expansion

The second digit specifies the general subject to which the response
refers:

x00-x29

General purpose replies, not assignable to other subjects.

x30

Primary access. These replies refer to the attempt to "log-on"
to a Server service (RJE, FTP, etc.).

x40

Secondary access. The primary Server is commenting on its
ability to access a secondary service (RJE oust log-on to a
remote FTP service).

x50

FTP results.

x60

RJE results.

X70-X99

Reserved for expansion.

The final digit specifies a particular message type. Since the code
is designed for ah automaton process to interpret, it is not
necessary for every variation of a reply to have a unique number,
only that the basic meaning have a unique number. The text of a
reply can explain the specific reason for the reply to a human User.

Each TELNET line (ended by "crlf") from the Server is intended to be
a complete reply message. If it is necessary to continue the text of
a reply onto following lines, then those continuation replies contain
the special reply code of three blanks.

15

2-106Ö

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

The assigned reply codes relating to RJE are:

000 General information message (time of day, etc.)
030 Server availability information
050 FTP commentary or user information
060 RJE or Batch system commentary or information
100 System status reply
150 File status reply
151 Directory listing reply
160 RJE system general status reply
161 RJE job status reply
200 Last command received ok
201 An ABORT has terminated activity, as requested
202 ABORT request ignored, no activity in progress
203 The requested Transmission Control has taken effect
204 A REINIT command has been executed, as requested
230 Log-on completed
231 Log-off completed, goodbye.
232 Log-off noted, will complete when transfer done
240 File transfer has started
250 FTP File transfer started ok
251 FTP Restart-marker-reply

Text is: MARK yyyy « nmmm
where yyyy is data stream marker value (yours)
and mam is receiver *s equivalent mark (mine)

252 FTP transfer completed ok
253 Rename completed
254 Delete completed
260 Job <job-id> accepted for processing
261 Job <job-id> completed, awaiting output transfer
262 Job <job-ld> Cancelled as requested
263 Job <job-id> Altered as requested to state <status>
264 Job <Job-id>,<job-file-id> transmission in progress
300 Connection greeting message, awaiting input
301 Current command not completed (may be sent after

suitable delay, if not Mcrlf")
330 Enter password (may be sent with hvde-your input mode)
360 INPUT has nmmr specified an INPÄIH
400 This service is not implemented
401 This service is not accepting log-on now, goodbye.
430 Log-on time or tries exceeded, goodbye.
431 Log-on unsuccessful, user and/or password invalid
432 User not valid for this service
434 Log-out forced by operator action, please phone site
435 Log-out forced by system problem
436 Service shutting down, goodbye
440 RJE could not log-on to remote FIP for input transfer
441 RJE could not access the specified input file thru FTP
442 RJE could not establish <host-socket> input connection

16

2-1070

•*« «"» - m ' - *

APPLICATION LEVEL: RJE RFC 407

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

443 RJE could not log-on to remote FTP for output delivery
444 RJE could not access file space given for output
445 RJE could not establish <host-socket> output connection
450 FTP: The named file does not exist (or access denied)
451 FTP: The named file space not accessable by YOU
452 FTP: Transfer not completed, data connection closed
453 FTP: Transfer not completed, insufficient storage space
460 Job input not completed, ABORT performed
461 Job format not acceptable for processing. Cancelled
462 Job previously accepted has mysteriously been lost
463 Job previously accepted did not couplets
464 Job-id referenced by STATUS, CANCEL, ALTER, CHANGE, or

Transmission Control is not known (or access denied)
465 Request Alteration is not permitted for the »pacified Job
466 Un-deliverable, un-claimed output for <job-id> discarded
467 Requested REINIT not accomplished
500 Last command line completely unrecognized
501 Syntax of the last command is incorrect
502 Last command incomplete, parameters missing
503 Last command invalid, illegal parameter combination
504 Last command invalid, action not possible at this time
505 Last command conflicts illegally with previous command(s)
506 Requested action not implemented by this Server
507 Job <job~ld> last command line completely unrecognized
508 Job <Job-id> syntax of the last command is incorrect
509 Job <job-id> last command incomplete, parameters missing
510 Job <Job-id> last command invalid, illegal parameter

combination
511 Job <1ob-id> last command invalid, action impossible at

this time
512 Job <job-id> last command conflicts illegally with previous

command(s)

SEQUENCING OF COMMANDS AND REPLIES

The communication between the User and Server is intended to be an
alternating dialogue. As such, the User Issues an RJE command and
the Server responds with a prompt primary reply. The User should
wait for this initial success or failure response before sending
further commands.

A second type of reply is sent by Server asynchronously with respect
to User commands. These replies report on the progress of a Job
submission caused by the INPUT command and as such are secondary
replies to that command.

The final class of Server "replies" are strictly Informational and
may arrive at any tls*a. These "replies'* are listed below as
spontaneous.

17

2-1071

"»V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

CGMttND-REPr.Y CORRESPONDENCE TABLE

COMMAND SUCCESS

REINIT 204
USER 230,330
PASS 230
BYE 231,232
INID 200
INPASS 200
INPATH 200
INPUT 240

input retrieval 260
job execution 261
output transmission -

ABORT (input) 201,202
OUTUSER 200
OUTPASS 200
OUT 200
CHANGE 200
RESTART/RECOVER/BACK
/SKIP/ABORT (output)/HOLD 203

STATUS lxx,264
CANCEL 262
ALTER 263
OP 200
Spontaneous Oxx, 300,301

FAILURE

467,500-505
430-432,500-505
430-432,500-505
500-505
500-505
500-505
500-505
360,440-442,500-505
460,461
462,463
443-445,466
500-505
500-505
500-505
500-505
500-505

464,500-506
460-465,500-505
464,500-506
464.465,500-506
500-505
434-436

Not«: For command» appearlng on cards, a separat« set of error codes
is provided (507-512). Since these error replies are
''asynchronously** sent, and thus could cause some contusion if the
user is in the process of submitting a new job after the present
the error replies must identify which job has the faulty card(s).

18

2-1072

APPLICATION LEVEL: RJE RFC 407

REMOTE Job Entry Protocol
(Oct. 16, 1972)

RFC 407 NIC 12112

TYPICAL RJE SCENARIOS

TIP USER WANTING HOT CARD READER TO HOSTX

1. TIP user opens TELNET connection to HOSTX socket 5

2. Connsnds sent over TELNET to RJE

USER*wyself
PASS"dorwssap
OUT*in0002
INFJT*H50003

3. RJE~server connects to the TXP's device 5 end begins
reeding. When end-of-job card is recognized, the job is
queued to run. The connection to the cerd reader is still
open for »ore input as another job.

4. The first job finishes. A connection to the TIP'S device 7
is established by RJE-server and the output is sent as an
NVT stream.

5. Continue at any time with another deck at step 3.

TIP WITH JOB-AX-A-TIME CARD READ»

1. thru 4) the same but User closes Reader after the deck

2. The output finishes and the printer connection closes.

3. INPUT may be typed any time after step 3 finishes and
another job will be entered starting at 3.

19

21073

Er V.V. A •% * •'. *V ••*»/ * *"
:&&&$^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

REMOTE Job Entry Protocol
(Oct. 16. 1972)

RFC 407 NIC 12112

HOSTA USER RUNS JOB AT HOSTC, INPUT FROM HOSTB

1. User TELNET connect» to HOSTC socket 5 for RJE

USER*roundabout
?ASS=aaabbbc
OUTUS£R«roundabl
OUT»: E/ . sysprinter
OUT puncher * (S)HOSTB:NE/ny.»*vepunch
INUSER«rounder
INPASS*x.x.x
INPUT*H0STB: E/my. Job Input

2. The RJE-server ha* FTP retrieve the input fro» HOSTB using
User-id of "rounder" end Password of "x.x.x" for file named
'**y.jobinputM.

3. The job finishes. RJE-server uses FTP to send two files:
the print output is sent to HOSTA in EBCDIC with ASA
carriage control to file M. sysprinterM while the file known
as "puncher" is sent to HOSTB in EBCDIC without
carriage-control to file "isy.savepunch".

4. when the outputs finish. RJE-server at HOSTC discards the
print file but retains the MpuncherM file.

5. The User who has signed out after Job submission has gotten
his output and checked his file "ey.savepuneh** at HOSTB. Ha
deletes the saved copy at HOSTC by re-calling RJE at HOST*.

USER*roundabout
PASS~aaabbbcc
ABORT job 123 puncher

or
OUNCE job 123 puncher » (D)

20

2-1074

A s'.vV

APPLICATION LEVEL: NETRJS RFC 740

RFC 740
NETRJS Protocol

RTB 42423 22 Nov 77

Network Working Group
Request for Comments: 740
NIC: 42423
Obsoletes: 189, 599

R. Braden
UCLA-CCN

22 November 1977

NETRJS PROTOCOL

A. Introduction

NETRJS, a private protocol for remote job entry service, was defined
and implemented by the UCLA Campus Computing Network (CCN) for batch
job submission to an IBM 360 Model 91. CCN's NETRJS server allows a
remote user, or a daemon process working in behalf of a user, to
access CCN's RJS (''Remote Job Service") subsystem, RJS provides
remote job entry service to real remote batch (card reader/line
printer) terminals over direct communications lines as well as to the
ARPANET.

A batch user at a remote host needs a NETRJS user process to
communicate with the NETRJS server at the batch host. An active
NETRJS user process simulates a "Virtual Remote Batch Terminal", or
"VRBT".

A VRBT may have virtual card readers, printers, and punches. In
addition, every VRBT has a virtual remote operator console. Using a
virtual card reader, a Network user can transmit a stream of card
images comprising one or more batch jobs, complete with job control
language (*JCL"), to the batch amrvmr host. The NETRJS server will
cause these jobs to be spooled into the batch system to be executed
»'■cordinr to their priority. NETRJS will automatically return the
print and/or punch output images which are created by these jobs to
the virtual printer and/or card punch at the VRBT from which the job
was submitted. Ttm batch user can wait for his output, or he can
slgnoff and signon again later to receive it.

To initiate a NETRJS session, the user process must execute a
standard ICP to a fixed socket at the server. The result is to
establish a full-duplex Telnet connection for the virtual remoue
operator console, allowing the VRBT to signon to RJS. The virtual
remote operator console can then be used to issue commands to NETRJS
and to receive status, confirmation, and error messages from the

„%

*

Braden [page 1]

2-1075

i •*. ^« *«■

i'ü-'LAj^'X* ;.-.---#* •_%\V:*JV_^_V_V_VVAV^VS'J

•;.\v>?w\v;* \v.v
.»*»*_• *> * J> '»*»■«- *

'.•«V.v.v"*
v--.>\A

• »^ ^. • ' • * . ■ • ■

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

server. The most important remote operator commands are summarized
in Appendix D.

Different VRBT's are distinguished by 8-character terminal id's,
'which are assigned by the server site to individual batch users or
user groups.

B. Connections and Protocols

The protocol uses up to five connections between the user and server
processes. The operator console uses a a full-duplex Telnet
connection. The data transfer streams for the virtual card reader,
printer, and punch each use a separate simplex connection under a
data transfer protocol defined in Appendix A. This document will use
the term "channel" for one of these simplex data transfer connections
and will designate a connection "input" or "output" with reference to
the server.

A particular data transfer channel needs to be open only while it is
in use, and different channels may be used sequentially or
simultaneously. CCN's NETRJS server will support simultaneous
operation of a virtual card reader, a virtual printer, and a virtual
punch (in addition to the operator console) on the same VRBT process.
The NETRJS protocol could easily be extended to any nuraber of
simultaneously-operating virtual card readers, printers, and punches.

The NETRJS server takes a passive role in opening the data channels:
the server only "listens" for an RFC from the user process. NETRJS is
defined with an 8-bit byte size on ail data channels.

Some implementations of NETRJS user processes are daemons, operating
as background processes to submit jobs from a list of user requests;
other implementations are Interactive processes executed directly
under terminal control by remote users. In the latter case, the VRBT
process generally multiplexes the user terminal between NETRJS, i.e.,
acting as the remote operator console, and entering local commands to
control the VRBT. Local VRBT commands allow selection of the files
containing job streams to be sent to the mmrvmr as well as files to
receive job output from the s&rwmr. Other local commands would cause
the VRBT to open data transfer channels to the NETRJS server and to
close these channels to free buffer space or abort transmission.

The user process has a choice of three ICP sockets, to select the
character set of the VRBT — ASCII-68, ASCII-63, or EBCDIC. The
server will make the corresponding translation of the data in the
card reader and printer channels. (In the CCM implementation of
NETRJS, an EBCDIC VRBT «'ill transmit and receive, without

*.v

Braden [page 2]

2-1076

>V«** •'v'*V' .*'.*• * »V«'. ■ ■-" -,"■". •''**". "„'•*.** V-V-

APPLICATION LEVEL: NETRJS RFC 740

RFC 740
NETRJS Protocol

RTB 42423 22 Nov 77

translation, "transparent" streams of 8-bit bytes, since CCN is an
EBCDIC installation). The punch stream will always be transparent,
outputting "binary decks" of 80-byte records untranslated. The
operator console connections always use Network ASCII, as defined by
the Telnet protocol.

The NETRJS protocol provides data compression, replacing repeated
blanks or other characters by repeat counts. However, when the
terminal id is assigned, a particular network VRBT may be specified
to use no data compression. In this case, NETRJS will simply
truncate trailing blanks and send records in a simple "op
code-length-data" form, called "truncated format" (see Appendix A).

C. Starting and Terminating a Session

The remote user establishes a connection to the NETRJS server by
executing an ICP to the contact socket 71 (decimal) for EBCDIC,
socket 73 (decimal) for ASCII-68, or to socket 75 (decimal) for
ASCII-63. A successful ICP results in a pair of connections which are
in fact the NETRJS operator console connection«!. NETRJS will send a
READY message over the operator output connection.

The user (process) must now enter a valid NETRJS signon command
("SIGNON terminal-id') through the virtual remote operator console.
RJS will normally acknowledge signon with a console message; however,
if there is no available NETRJS smrvmr port, NETRJS will indicate
refusal by closing both operator connections. If the user falls to
enter a valid signon within 3 minutes, NETRJS will close the operator
connections. If the VRBT attempts to open data transfer channels
before the signon command is accepted, the data transfer channels
will be refused with an error message to the VRBT operator console.

Suppose that S is the even number sent in the ICP; then the NETRJS
connections have sockets at the mmrver with fixed relation to S, as
shown in the following table:

Channel Server Socket User Socket

S U ♦ 3 Telnet
S ♦ 1 Ü ♦ 2 Telnet
S ♦ 2 any odd number
S ♦ 3 any even number
S ♦ 5 any even number

Remote Operator Console Input
Remote Operator Console Output
Data Transfer - Card Reader #1
Data Transfer - Printer «1
Data Transfer - Punch #1

Once the VRBT has Issued a valid signon, it can open data transfer
channels and initiate input and output operations as explained in the
following sections. To terminate the session, the VRBT may close all

Braden [page 3)

2-10 * t

5vC* V* ■**••*/• *•■ «** * •*"% "VI v*>"* 'm% v*** * *""V* * *.
>n^f 4 «\ySy. y .>.>v<'-v-\ n\y«_«v,>.y »"<» *_ .> v-.y.?"-i *«y -_y •l-V". O - « m_' y» ■A'.'/A'A'.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 740
NETRJS Protocol

RTB 42423 22 Nov 77

connections. Alternatively, it may enter a SIGNOFF command through
the virtual remote operator console. Receiving a SIGNOFF, NETRJS
will wait until the current job output streams are complete and then
itself terminate the session by closing all connections.

D. Input Operations

A job stream for submission to the NETRJS server is a series of
logical records, each of which is a card image of at most 80
characters. The user can submit a "stack" of successive jobs through
the card reader channel with no end-of-job indication between jobs;
NETRJS is able to parse the JCL sufficiently to recognize the
beginning of each job.

To submit a batch job or stack of jobs for execution, the user
process must first open the card reader channel by Issuing an Init
for foreign socket S+2 and the appropriate local socket. NETRJS,
which is listening on socket S+2, will return an RTS command to open
the channel. When the channel is open, the user can begin sending his
job stream using the protocol defined in Apendix A. For each job
successfully spooled, NETRJS will send a confirming message to the
remote operator console.

At the end of the job stack, the user process must send an
End-of-Data transaction to initiate processing of the last job.
NETRJS will then close the channel (to avoid holding buffer space
unnecessarily). At any time during the session, the user process can
re-open the card reader channel and transmit another job stack. It
can also terminate the session and signon later to gat the output.

If the user process leaves the channel open for 5 minutes without
sending any bits, the mmrvmr will abort (close) the channel. The user
process can abort the card reader channel at any time by closing the
channel; NETRJS will then discard the last partially spooled job.
If NETRJS finds an error (e.g., transaction sequence number error or
a dropped bit), it will abort the channel by closing the channel
prematurely, and also inform the user process that, uw job was
discarded (thus solving the race condition between End-of-Data and
aborting) . The user process should retransmit only those jobs in the
stack that have not been completely spooled.

If the user's process, NCP, or host, or the Network itself fails
during input, RJS will discard the job being transmitted. A message
informing the user that this job was discarded will be generated and
sent to him the next time he signs on. On the other hand, those jobs
whose receipt have been acknowledged on the operator's console will
not be affected by the failure, but will be executed by the server.

Braden [page 4]

2-1078

^>>>iv^*^_->:.>^c^^

APPLICATION LEVEL: NETRJS RFC 740

RFC 740
NETRJS Protocol

RTB 42423 22 Nov 77

E. Output Operations

The VRBT raay wait to set up a virtual printer or punch and open its
channel until a STATUS message from NETRJS indicates output is ready;
or it may leave the output channel (s) open during the entire session,
ready to receive output whenever it becomes available. The VRBT can
also control which one of several available jobs is to be returned by
entering appropriate operator commands.

To be prepared to receive printer (or punch) output from its jobs,
the VR3T issues an Init for foreign socket S+3 or S+5 for printer or
punch output, respectively. NETRJS is listening on these sockets and
should immediately return an STR. However, it is possible that
because of a buffer shortage, NETRJS will refuse the connection by
returning a CLS; in this case, try again later.

When NETRJS has job output for a particular virtual terminal and a
corresponding open output channel, it will send the output as a
series of logical records using the protocol in Appendix A. The
first record will consist of the job name (8 characters) followed by
a comma and then the ID •string from the JOB card, if any. In the
printer stream, the fixsz column of each record after the first will
be an ASA carriage control character (see Appendix C) . A virtual
printer in NETRJS has 254 columns, exclusive of carriage control;
NETRJS will send up to 255 characters of a logical record it finds in
a SYSOtfT data set. If the user wishes to reject or fold records
longer than some smaller record size, he can do so in his VRBT
process.

NETRJS will send an End-of-Data transaction and then close an output
channel at the end of the output for each complete batch job; the
remote site must then send a new RFC to start output for another job.
This gives the remote site a chance to allocate a new file for each
job without breaking the output within a job.

If the batch user wants to cancel (or backspace or defer) the output
of a particular job, he can enter appropriate NETRJS commands on the
operator input channel (see Appendix D) .

If NETRJS encounters a permanent I/O error in reading the disk data
set, it will notify the user via his console, skip forward to the
next set of system messages or SYSOUT data set in the same job, and
continue- If the user process stops accepting bits for 5 minutes, the
server will abort the channel. In any case, the user will receive
notification of termination of output data transfer for each job via
a remote console message.

Braden [page 5]

2-1079

s%ys*/.v: y.y.
ELV-VJL _*/_- ;lv'_v>>!vl^v>>!v>£>>I'! >:•! '%J\i<S>ÄAVo"V?>

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 740
NETRJS Protocol

RTB 42423 22 Nov 77
!

If the user detects an error in the strain, he can issue a Backspace
(BSP) command from his console to repeat the last "page" of output,
or a Restart (RST) command to repeat from the last SYSOUT data set or
the beginning of the job, or he can abort the channel fay closing his
socket. If he aborts the channel, NETRJS will simulate a Backspace
command, and when the user re-opens the channel the job will begin
transmission again from an earlier point in the same data set. This
is true even if the user terminates the current session first and
reopens the channnel in a later session; RJS saves the state of every
incomplete output stream. However, before re-opening the channel he
can defer this job for later output, restart it at the beginning, or
cancel its output (see Appendix D) . Note that aborting the channel
is only effective if NETRJS has not yet sent the End-of-Data
transaction.

If the user's process, NCP, or host or the Network itself fails
during an output operation, NETRJS will act as if the channel had
been aborted and the user signed off. NETRJS will discard the output
of a job only after receiving the RFNM from the last data transfer
message (containing an End-of-Data). In no case should a NETRJS user
lose output from a batch job.

g

I
v.

V
V,

.V

1

Braden [page 6] !

2-1080
I

^^^^2^>>^fe>>y VLXV^^V:-!*:

•• .*- .> , • . * . »V *> . •. •. * >»« %•* % •»•. •.•. •. ■ •>, • * • .v «v»% ■* V * • V V

APPLICATION LEVEL: NETRJS RFC 740

REG 740
NETRJS Protocol

RTB 42423 22 Nov 77

ft

i

APPENDIX A

Data Transfer Protocol in NETRJS

1. Introduction

The records in the data transfer channels (for virtual card
reader, printer, and punch) are generally grouped into
transactions preceded by headers. The transaction header includes
a sequence number and the length of the transaction. Network byte
size must be 8 bits in these data streams.

A transaction is the unit of buffering within the server software,
and is limited to 880 8-bit bytes. Transactions can be as short as
one record; however, those sites which are concerned with
efficiency should send transactions as close as possible to the
880 byte limit.

There is no necessary connection between physical message
boundaries and transactions ("logical messages"); the NCP can
break a transaction arbitrarily into physical messages. The CCN
server starts each transaction at the beginning of a new physical
message, but this is not a requirement of the protocol.

Each logical record within a transaction begins with an "op code"
byte which contains the channel identification, so its value is
unique to each channel but constant within a channel. This choice
provides the receiver with a convenient way to verify
bit-synchronization, and it also allows an extension in the future
to true "multi-leaving" (i.e., multiplexing all channels within
one connection in each direction) .

The only provisions for transmission error detection in the
current NETRJS protocol are (1) the "op code" byte to verify bit
synchronization and (2) the transaction sequence number. Under the
NETRJS protocol, a data transfer error must abort the entire
transmission; there is no provision for restart.

Bradan [page 7]

2-1081

k>v>:x.->:'
SVvVAV. '.V.'-'-V.-.V.V.

. _ 1 _ A*_ *.~- *_ . i_ 1*. s^_ !_"_ »*_ iL_

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

2. Meta-Notation

The following description of the NETRJS data transfer protocol
uses a formal notation derived from that proposed in RFC 31 by
Bobrow and Sutherland. The notation consists of a series of
productions for bit string variables. Each variable name which
represents a fixed length field is followed by the length in bits
(e.g., SEQNUMB(16)). Numbers enclosed in quotes are decimal,
unless qualified by a leading X meaning hex. Since each hex digit
is 4 bits, the length is not shown explicitly in hex numbers. For
example, '255' (8) and X'FF' both represent a string of 8 one bits.

The meta-syntactic operators are:

| :alternative string

[] :optional string

() :grouping

+ :catenation of bit strings

The numerical value of a bit string (interpreted as an integer) is
symbolized by a lower case identifier preceding the string
expression ana separated by a colca. For example, in
"i:FIELD(8)", i symbolizes the numeric value of the 8 bit string
FIELD.

Finally, we use Bobrow and Sutherland's symbolism for iteration of
a sub-string: (STRING-EXPRESSION ■ n); denotes n occurrences of
STRING-EXPRESSION, implicitly catenated together. Here any n
greater or equal to 0 Is assumed unless n is explicitly
restricted.

3. Protocol Definition

STREAM : := (TRANSACTION * n) ♦ [END-OF-DATA]

That is, STREAM, the entire sequence of data on a particular
open channel, is a sequence of n TRANSACTIONS followed by an
END-OF-DATA marker (omitted if the sender aborts the channel) .

TRANSACTION : := THEAD(72) ♦ (RECORD « r) ♦ ('0'(1) * f)

That is, a transaction consists of a 72 bit header, r records,
and f filler bits; it may not exceed 880*8 bits.

Braden [page 8]

2-1082

APPLICATION LEVEL: NETRJS RFC 740

RFC 740
NETRJS Protocol

RTD 42423 22 Nov 77

THEAD ::= X'FF'+f :FILLER(8) ♦SEQNUMB(16)+LENGIH(32)+X,00'

Transactions are to be consecutively numbered in the SEQNUMB
field, starting with 0 in the first transaction after the
channel is (re-) opened. The 32 bit LENCIH field gives the
total length in bits of the r RECORD'S which follow. For
convenience, the using site may add f additional filler bits at
the end of the transaction to reach a convenient word boundary
on his machine; the value f is transmitted in the FILLER field
of THEAD.

RECORD : := COMPRESSED j TRUNCATED

RJS will accept intermixed RECORD'S which are COMPRESSED or
TRUNCATED in an input stream. RJS will send one or the other
format in the printer and punch streams to a given VRBT; the
choice is determined for each terminal id.

COMPRESSED : :« '2'(2) ♦ DEVTD(6) + (STRING «p).+ 'O'(8)

STRING ::» ('6' (3) ♦ i:DUPC0UNT(5)) |

This form represents a string of i consecutive blanks

(•7* (3) ♦ i:DUPC0UNT(5) ♦ TEXTB¥TE(8)) |

This form represents string of i consecutive duplicates of
TEXTBYTE.

(I2,(2) ♦ j:LENCIH(6) ♦ (TEXTBYTE(8) » j))

This form represents a string of j characters.

TRUNCATED ::» *3'(2) ♦ DEVID(b) ♦ n:C0UNT(8) ♦ (TEXTBYTE(8)*n)

DEVID(6) ::» DEVN0(3) ♦ t:DEVTYPE(3)

DEVID identifies a particular virtual device, i.e.. it
identifies a channel. DEVTYPE specifies the type of device, as
follows:

t « 1
2
3
4
5

6,7

Output to remote operator console
Input from remote operator console
Input from card reader
Output to printer
Output to card punch
Unused

Braden [p»g* 9]

2-1083

'V*L**'_'N_' SV" \ V_»" lx '*'[*« >V?W->V _*A*S *lv\ 1 • '1 • j-V /*• 1* "j.jvV.. _"■ AV.J. " ••* '

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 740
NETRJS Protocol

RTB 42423 22 Nov 77

DEVNO Identifies the particular device of type t at this remote
site; at present only DEVNO » 0 is possible.

END-OF-DATA ::=X'FE'

Signals end of job (output) or job stack (input).

Braden (page 10]

2-1084

APPLICATION LEVEL: NETRJS RFC 740

RFC 740
NEHUS Protocol

RTB 42423 22 Nov 77

APPENDIX B

Telnet for VRBT Operator Console

The remote operator console connection« use the ASCII Telne ;
protocol. Specifically:

1. The following one-to-one character mapping« are used for the
three EBCDIC graphics not in ASCII:

ASCII in Telnet NETRJS

broken vertical bar
tilde
back slash

solid vertical bar
not sign
cent sign

2. Telnet controls are ignored.

3. An operator console input line which exceeds 133 characters
(exclusive of CR Lf) is truncated by NETRJS,

4. NETRJS accepts BS (Control-H) to delete a character and CAN
(Control-X) to delete the current line» The sequence CR IS
terminates each input and output line. KT (Control-I) is
translated to a single space. An ETX (Control-C) terminates
(aborts) the session. All other ASCII control characters are
ignored.

5. NETRJS translates the six ASCII graphics with no equivalent in
EBCDIC into the character question mark ("?") on input.

Braden CW* 11]

2-10S5

«\ \.* •.♦ V v V V V *. * •\V.V.""\V1

tO^Svvlv^S^lvlvi V V^vvivvl'X

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 740
NETRJS Protocol

RTB 42423 22 Nov 77

APPENDIX C

Carriage Control

The carriage control characters sent in a printer channel by NETRJS
conform to IBM's extended USASI code, defined by the following table:

CODE ACTION BEFORE WRITING RECORD

Blank Space one line before printing
0 Space two lines before printing

Space three lines before printing
♦ Suppress space before printing
1 Skip to channel 1
2 Skip to channel 2
3 Skip to channel 3
4 Skip to channel 4
5 Skip to channel 5
6 Skip to channel 6
7 Skip to channel 7
6 Skip to channel 8
9 Skip to channel 9
A Skip to channel 10
B Skip to channel 11
C Skip to channel 12

Braden [P«ge 12)

2-1086

A .' -* .*■ .

APPLICATION LEVEL: NETRJS RFC 740

RFC 740
NETRJS Protocol

RTB 42423 22 Nov 77

APPENDIX D

Network/RJS Command Summary

mis section presents an ovarviev of the RJS Operator Command», for
the complete form and parameter specifications pluase see references
2 and 3.

Terminal Control and Information Commands

SIGNON

SIGNOEF

Eirst command of a session; identifies VRBT by giving
its terminal id.

Last command of a session; RJS waits for any data
transfer in progress to complete and then closes all
connections.

I *

STATUS Outputs on the remote operator console a complete
list, or a summary, of ail jobs in the system for
this VRBT, with an indication of their processing
status in the batch host.

ALERT Oitputs on the remote operator console an "Alert'1

message, if any. from the computer operator. The
Alert message *• also automatically sent when the
user does a SIGNQN, or whenever the message changes.

MSC Sends a message to the computer operator or to any
other RJS terminal (real or virtual). A message from
the computer operator or another RJS terminal will
automatically appear on the remote operator console.

Job Control and Routing Commands

Under CCN's job management system, the default destination for
output is the input source. Thus, a job submitted under a given
VRBT will be returned to that VRBT (i.e., the same terminal id),
unless the user's JCL overrides the default destination.

RJS places print and punch output destined for a particular remote
terminal into either an Active Queue or a Deferred Queue. Whan
the user opens his print or punch output channel, RJS immediately
starts sending job output from the Active Queue, and continues
until this queue is empty. Job output in the Deferred Queue, on
the other hand, must be called for by job name, (via a RESET
command from the remote operator) before RJS will send It. The
Active/Deferred choice for output from a job is determined by the

■ *
[v

L% Braden [page 131

6

/.v.'-V-'V

>i*X>i<r, !_" S_* *_T. 1 Jt^'l

2-10*7

>\. % „V*
■'i.<i<m*±f *y«! A

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

RJFC 740
NETRJS Protocol

RTB 42423 22 Nov 77

DEFER

deferral status of the VRBT when the job is entered; the deferral
status, which is set to the Active option when the user signs on,
may be changed by the SET command.

SET Allows the remote user to change certain properties
of his VRBT for the duration of the current session;

(a) May change the default output destination to be
another (real or virtual) RJS terminal or the
central facility.

(b) May change tho deferral status of the VRBT.

Moves the print and punch output for a specified job
or set of jobs from the Active Queue to the Deferred
Queue. If the job's output is in the process of
being transmitted over a channel« RJS aborts the
channel and saves the current output location before
moving the job to the Deferred Queue. A subsequent
RESET command will return it to the Active Queue
with an implied Backspace (BSP).

Moves specified job(s) from Deferred to Active Queue
so they may be sent to user. A specific list of job
names or all jobs can be moved with one RESET
command.

Re-routes output of specified jobs (or ail jobs)
waiting in the Active and Deferred Queues for the
VRBT. The new destination may be any other RJS
terminal or the central facility*

Cancels a job which was successfully submitted and
awaiting execution or is currently executing.

Control Commands

BSP (BACKSPACE) "Backspaces" output stream within current sysout
data set. Actual amount backspaced depends upon
sysout blocking but is roughly equivalent to a page
en the line printer.

RESET

ROUTE

ABORT

Output Str

CAN (CANCEL) (a) On an output channel. CAN causes the rest of
the output in t>* sysout data set currently being
transmitted to be omitted. Alternatively, may omit
the rest of the sysout data sets for -j>e job
currently being transmitted; however, the remaining

Braden tP»9* 14]

2-ims

«■ *- ^ » *»—Tk _-L.—Bfc. —.. —.— -»-
. •. v\ • »y.y*vv -■».* :.\' . *

APPLICATION LEVEL: NETRJS RFC 740

RFC 740
NETRJS Protocol

RTB 42423 22 Nov 77

system and accounting messages will be sent.

(b) On an input channel, CAN causes RJ3 to ignore
the job currently being read. However, the channel
is not aborted as a result, and RJS will continue
reading in jobs on the channel.

(c) CAN can delete all sysout data sets for
specified job(s) waiting in Active or Deferred
Queue.

RST (RESTART) (a) Restarts a specified output stream at the
beginning of the current sysout data set or,
optionally, at the beginning of the job.

(b) Marks as restarted specified job(s) whose
transmission was earlier interrupted by system
failure or user action (e.g., DEFER command or
aborting the channel) . When RJS transmits these
jobs again it will start at the beginning of the
partially transmitted sysout data set or,
optionally, at the beginning of the job. mis
function may be applied to jobs in either the Active
or the Deferred Queue; however, if the job was in
the Deferred Queue then RST also moves it to the
Active Queue. If the job was never transmitted, RST
has no effect other than this queue movement.

REPEAT

EAM

Sends additional copies of the output of specified
jobs.

Echoes the card reader stream back in the printer
and/or punch stream.

I».1,.

Braden [page 15]

2-1089

l*"v"v*vv*""* *N N*>i-.V**!

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 740
NETRJS Protocol

RTB 42423 22 Nov 77

APPENDIX E

NETRJS TERMINAL OPTIONS

When a new NETRJS virtual terminal is defined, certain options are
available; these options are listed below.

1. Truncated/Compressed Data Format

A VRBT may use either the truncated data format (default) or
the compressed format for printer and punch output. See
Reference 9 for discussion of the virtues of compression.

2. Automatic Coldstart Job Resubmission

If "R" (Restart) is specified in the accounting field on the
JOB card and if this option is chosen, RJS will automatically
resubmit the job from the beginning if the server operating
system should be "coldstarted" before all output from the job
is returned. Otherwise, the job will be lost a*id must be
resubmitted from the remote terminal in case of a coldstart.

3. Automatic Output RESTART

With this option, transmission of printer output which is
interrupted by a broken connection always starts over at the
beginning. Without this option, the output is backspaced
approximately one page when restarted, unless the user forces
the output to start over from the beginning with a RESTART
command when the printer channel is re-opened and before
printing begins.

4. Password Protection

This option allows a password to be supplied when a terminal is
signed on, preventing unauthorized use of the terminal ID.

5. Suppression of Punch Separator and Large Letters.

This option suppresses both separator cards which RJS normally
puts in front of each punched output deck, and separator pages
on printed output containing the job name in large block
letters. These separators are an operational aid when the
ouptut is directed to a real printer or punch, but generally
undesirable for an ARPA user who is saving the output in a file
for on-line examination.

Braden [page 16]

2-1000

>V-V- "* .. .-• v, •./.•/. .\.. /•/ .•/•,.'•/• v \« v \- v '.\v/.\v *. '•■.*•:-•. <■* A V. -V". -WWV W .'*" %VLV-V-V-V«. ■->*/''.

APPLICATION LEVEL: NETRJS RFC 740

RFC 740
NETRJS Protocol

RTB 42423 22 Nov 77

APPENDIX F

Character Translation by CCN Server

A VRBT declares Its character set for job input and output by the
initial connection socket it chooses. A VRBT can have the ASCII-68,
the ASCII-63, or the EBCDIC character set. The ASCII-63 character
mapping was added to NETRJS at the request of users whose terminals
are equipped with keyboards like those found on the model 33
Teletype.

Since CCN operates an EBCDIC machine, its NETRJS server translates
ASCII input to EBCDIC and translates printer output back to ASCII.
The details of this translation are described in the following.

For ASCI I-68, the following rules are used:

1. There is one-to-one mapping between the three ASCII characters
broken vertical bar, tilde, and back slash, which are not in
EBCDIC, and the three EBCDIC characters vertical bar, not
siort, and cent sign (respectively), which are not in ASCII.

2. The other six ASCII graphics not in EBCDIC are translated on
input to unused EBCDIC codes, shown in the table below.

3. The ASCII control DC4 is mapped to and from the EBCDIC control
TM.

4. The other EBCDIC characters not in ASCII are mapped in the
printer stream into the ASCII question mark.

For ASCII-63, the same rules are used except that the ASCII-63 codes
X'601 and X'7B' - X'7E' are mapped as in the following table.

EBCDIC ASCII-68 VRBT ASCII-63 VRBT

vertical bar
not sign
cent sign
underscore

X'4F'
X'SF'
XI4A'
X'oD1
X'71*

open bracket X'AD'
close bracket X'BD'

X'8B*
X^B*
X*79'

vertical bar X'7C
tilde X'7E'
back slash X'SC1

underscore X*5F*
up arrow X'SE'
open bracket X'SB*
close bracket X'5D*
open brace X'7B*
close brace X'7D'
accent X'60*

open bracket X'SB'
close bracket X'SD*
back slash X'SC'
left arrow X*5F'
up arrow X'SE*

X§7C'
X^E1

X*7B*
X'TD*
X'60#

Braden [page 17}

2-1091

—...» -* -«.*»■« I^•l■:^2v^^^^v^/^Iflv^i^Iv^<r

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 740 RTB 42423 22 Nov 77
NETRJS Protocol

APPENDIX G

REFERENCES

1. "Interim NETRJS Specifications", R. T. Braden. RFC #189: NIC
#7133, July 15, 1971.

This was the basic system programmer's definition document. The
proposed changes mentioned on the first page of RFC #189 were
never implemented, since the DIP then in vogue became obsolete.

2. "NETRJS Remote Operator Commands", R. T. Braden. NIC #7182,
August 9, 1971

This document together with References 3 and 8 define the remote
operator (i.e. user) command language for NETRJS, and form the
basic user documentation for NETRJS at CCN.

3. "Implementation of a Remote Job Service", V. Martin and T. W.
Springer. NIC #7183, July, 1971.

4. '•Remote Job Entry to CCN via UCLA Sigma 7; A scenario", UCLA/CCN.
NIC #7748, November 15, 1971,

This document described the first NETRJS user implementation
available on a amrvmr host. This program Is no longer of general
interest.

5. "Using Network Remote Job Entry", E. F. Harslem. RFC #307: NIC
#9258, February 24, 1972.

This document is out of date, but describes generally the Tenex
NETRJS user process "RJS".

Ö. "EBCDIC/ASCII Mapping for Network RJS", R. T. Braden. RFC #338?
NIC #9931, May 17, 1972.

The ASCI 1-63 mapping described here is no longer correct, but
CCN's standard ASCII-68/EBCDIC mapping is described correctly.
This information is accurately described in Appendix F of the
current document.

Braden [page 18]

2-1002

■„V-V-V-V .'• .**

APPLICATION LEVEL: NETRJS RFC 740

RFC 740
NETRJS Protocol

RTB 42423 22 Nov 77

7. "NETRJT--Remote Job Service Protocol for TIP's", R. T. Braden. RFC
#283: NIC 38165, December 20, 1971.

Ulis was an attempt to define an rje protocol to handle TIPs.
Although NETRJT was never implemented, many of its features are
incorporated in the current Network standard RJE protocol.

8. "CCN NETRJS Server Messages to Remote User", R. T. Braden. NIC
#20268, November 26, 1973.

9. "FTP Data Compression", R. T. Braden. RFC #468: NIC #14742,
March 8, 1973.

10. "Update on NETRJS", R. T. Braden. RFC #599: NIC #20854, December
13, 1973.

This updated reference 1, the current document combines the two.

11. "Network Remote Job Entry — NETRJS", G. Hicks. RFC #325: NIC
9632, April 6, 1972.

12. "CCNRJS: Remote Job Entry between Tenex and UCLA-CCN", D.
Crocker. NUTS Note 22, [ISI]<DOCUMEOTATION>CCNRJS.DOC, March 5,
1975.

13. "Remote Job Service at UCSB", M. Krilanovich. RFC #477: NIC
#14992, May 23, 1973.

Braden [page 19]

2-1003

•".>."
■JLhlk« *« »bt -*"■ ■-*- ■,j- ■'-i */i

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

£

2-1094

'•'.•V*!»'^" i'A''^'v'\l,.--.-'.,.>•.<*V-VJ.^vl\\VJ*\'t\'.tvr^i«!*:/•• -'• -\atÄtj''*\±;'±\LL;A.>*\±.\±'\^±',&

APPLICATION LEVEL: RTELNET RFC 818

Network Working Group J- Pos^®J
Request for Comments: 818 JS*
^ November 1982

The Remote User Telnet Service

This RTC is the specification of an application protocol. Any host that
implements this application level service must follow this protocol.

This RFC was suggested by Mike Mulligan some months ago when he was at
BBN.

In th© ARPANET Host-to-Host Network Control Protocol (NO?) and in the
Internet Transmission Control Protocol (TCP) well known sockets or ports
are used to identify services. The general notion is that there are a
few types of services that are distinct and useful enough to use the NOP
or TCP demultiplexing mechanism directly.

The most common of these is the Server Telnet which generally speaking
defines the network terminal access procedure for a system executive.
That is, making a connection to the server Telnet port actually puts the
caller in contact with the system executive, for example, the TOPS20
EXEC or the Unix Shell.

On some small hosts there may be very limited functionality and no
executive. In such cases it may be useful to designate specific well
toown ports for specific applications.

This memo specifies that the specific service of User Telnet may be
accessed (on hosts that choose to provide it) by opening a connection to
port 107 (153 octal). The Telnet Protocol is to be used on the
connection from the originating user to the server.

EXAMPLE: REMOTE TELNET SERVICE ON THE BBN TC68K

The TC68K is a Terminal Concentrator based on the Motorola MC68000
microprocessor. It is used at Bolt Beranek * Newman to provide access
by terminals to the FiberNet, a local area network.

Ine custom hardware provides one network connection, sixteen RS232
terminal connections, and a programmable timer.

The software is based on the Micro-Operating System (MOS) using the IP,
ICMP, TCP, and Telnet protocols. A user TC-Telnet application provides
«n inter <."<■*• ww -He- xJhm user to use the network to connect to a host.

Postal [P*9e 1)

2-1095

**, . • '*. •*. w.

VVY^vvvvV^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 818 November 1982
Remote User Telnet Service

providing a network virtual terminal. A server Telnet also exists on
the TC68K to serve as a front end for devices that have no awareness of
the net. This is used for remote printer/plotters and computers with no
network software.

The TC68Ks at BBN are distributed about several buildings. To provide
an operational tool to test remote TC68Ks, the TC68K software was
configured to put a user Telnet back to back with a server Telnet. An
operator can open a connection to a remote TC68K and appear to be a
terminal local to that unit. This verifies that the network path
between the two units is operational and provides the operator with
access to statistics that are kept as part of the standard user
TC-Telnet application.

Operator' s Local
Terminal <=TTY=> user

TC-Telnet

Remote Remote
<=FiberNet=> server <=PTY=*> user

Telnet TC-Telnet

This solution was attractive as the only extra piece of software
necessary for this was the "Pseudo Teletype" (PTY) device driver for
MOS. This "device" appears as a terminal to its application, but what
it is really doing is providing a character stream between two
processes.

Postel [Page a]

2-1096

i\ 'V» ^ L t*. i«, /> m\ £. »V f. fcV«V« ^ %*. f- *m *\ *'. AA/. »*. \>**s s^L*yy^*jjjs'*^

APPLICATION LEVEL: GRAPHICS RFC 493

A Network Graphics Protocol

August 10, 1074

Robsrt F. SpfouU
X«rox P«k> Alto R«s««rch Center

El«in« L Thomss
Massachusetts Institut« of Technology — Project MAC

2-1097

LN.«.,.4.>ki.».f.N.V .« A ^ A A fc . A A A A A ^VAA'. h'A ^^* iJ. ».» %.-■,■/«.{«.» ^ >.«. hS ^ ^ ^ ■»•> *- La, £m *- ^~* - £■ L> £M JM » - £■ ^- L -

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-1098

'**-*«-.r*»-**«u'"«-*'iJ' i»**t-", O, fc.lrjCtJla^iaJL

APPLICATION LEVEL: GRAPHICS RFC 493

August 16, 1074

Tsbie of Contents

SECTION PAGE

I Guifle to ths Document 1

II Introduction 2

11.1 A Typtest Session 9

11.2 A Model for the Network Grephtes Protocol 4

11.3 Positioned Text 11

11.4 Input Faculties 11

II.6 Inquiry ia

11.6 UP Implemcntetlena 19

11.7 Summary 14

III The Protocol 16

111.1 Mtisl Connection Protocol 10

111.2 Output Protocol Formst* 10

ltl.3 Trsnsfoneed Formet 10

»11.4 Seoment Control 10

111.6 Graphical Primitives ♦ 21

HI.6 Coordlnete Systems 21

111.7 Intensity 21

IMS line Type 22

111.0 Character Olspley 22

111.10 SeesMtnt Attributes 20

111.11 Seoment fteedbeefc. ■ 20

111.12 Positioned Text 20

111.13 Input Fecmttes 20

2-1099

:■ A % A A.

»*.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16. 1074 TAMJ OF CONTENTS

111.14 Rifling the Slitt of input Devices 20 v~*

111.16 Input Events 30 V

111.10 Enabling Events. 32 S£

111.17 Event Reports 00 ^|

III.16 inquiry 06 5?

111.10 Miscellaneous 00 >w

IV Implementation Suggestions 40 H

V Op-Code Assignments and Options 41

Append** 44

References 40

2-1100

A^/oV«A''%y*J*%S*S*.•>«'^/^^t-'V«'«_» V*!>*'»*-*»»'J*■>'. i.V-VJVJa-"* -VJV **'/%** 2*£M **-%--V-* J2J£2JL» i-*1 £2m-V -*■£- «l^LJ^^L

APPLICATION LEVEL: GRAPHICS RFC 493

August 16, 1074

SECTION I

GWrfe fo t/w Oocuofrt

i
K%"

This report describes a network graphics protocol (HOP) developed by the
Network Graphics Group. • working group ot ARPA network members. Wo beUevo
that the design presented horo should appeal to two groups.

— Those Interested in device-independent graphics systems snd graphics
standarda* Indeed, the philosophy behind the protocol deafgn originates In
principles of graphics system desiqn.

— Those Interested in using graphics via any network or communication
system. Although the design was developed for the AHF>A network, we
believe that it hat far wider applicability.

There ere three Major parts to the report: (1) an introductory section that grvea
the pools of the protocol, the general philosophy that gave rise to the particular
protocol dosten, and definitions for a number of terme used throughout the reports
(2) the details of the protocol; and (3) acme suggestions to aid Implementation of
the protocol«

The authors of thai report ere by no smarts the only contributors to the Ideas
presented here. The Network Graphics Group members, too numerous to mention,
have aH contributed. Especially useful ideas ware provided by Jke Mlcnonor. Don
Cohen. Ira Cotton. Wseem Newman. Ren victor and Cd Taft.

r-'

I
r a

S*

2-1101

£cs>>^xSivy& i::-'>>; ^::>: v :«>&: u ^L '-* *-* ~^ -* »^ '

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 10. 1674

SECTION II

Introduction

Protocol proposals tend to contain so much detail thst the overe* lotont and
design consider it too* sre tost In * r>«e of bits. This Introduction attempts to
describe ths high-level considerations of tho graphics protocol. In preparation for
the mess of detail in section ill.

The «ton of a grephics protocol Is to »Now users with various different kind* of
display hardware» at different sitas to a network to wake use of common -graphic»
application programs." For example, a user may want to access the ttOMOO
system at Rand, tho On-line System at UCSB or the MLS system at Sftl with Ma or
he* display hardware.

Ono approach Is a collection of "special-purpose protocols." Each application
program would publish a description of the protocol needed to drive the program
and to view the output (e.g. the UCSS system was so documented). The
prospective user would then write a program at his site to totergret the puboahsd
protocol and to drive Ms display (probably making use Of existing graphics
programming fecifctle* al his site). This aught permit a convenient division of labor
between tho computer executing the application program end the computer
driving the display (in pursuit of true resource sharing); It slight be able to
achieve very smooth performance despite poor network response, eta. The
disadvantage of this approach is that the user must write • now peogresi to
inter face Ms display to each different application protocol. In addition, there la
no guarantee that the protocol reguired by the eepecetton program eon actuety
be impiemented within the user'» operating system m*4 display herdwere.

Another approach is to develop one "generel-purpeae protocol" that tried to
provide faculties that a large number of appkeetien programs cosed use end that e
lern* number of user sites eeuttl euerer et. Thus one user program eon bo used to
interface to a number of eppacation programs the disadvantage of tMs epproseh
is that the «enernkty mey preckKte adeejuate response through the network. Of
that some epptteetien proerems wi« find the generel-pureeae protocol see
restrictive In be use<l at aH In atktitten, the design of such a protOOOt Id not
easy: attempt*»«} to provide e common device-independent fro wo work for driving
herdwere of guebtettvery different capabdltles may be very difficult.

The protocol proposed m ties document is. of course, a general« ourpeso pre toot I.
However, we anticipate (hat spoc*n*-purpese protocols wet be ebeefcitety
necessary lor certain applications. In these cases, tue ejooofoj Purpose protucoi
ca » pern**« he trsen »$ a stammt point tor devotee meet of epeolel purpose
protocols lht* oen^rai-ptirnose i»retecoi should be used whenever poaasate.
however, so that separata use« IMIHKK» Head not ee written tor each user arte.

The network protocol consular ed m this rlocument is not let ended to satisfy as
graphics nert«*. for a« loraunai». new *n* m the future It Is watted to cemgrophJc
piclures. to moderate interact** dementis, and to "host effort" attempts to
generate tno regiere* graphics Certemty the kaeact of VMSCO technology wfS
increase demenct lor variable character sets, shading, end meybe even ejdmetksn
techniques Theee uses are clearty toe new to ceneider Mi the present i

2-1102

•.

fc

^v^^;v:vvav.:.-vx<^^

APPLICATION LEVEL: GRAPHICS RFC 493

August 16. 1974 Introduction

11.1. A Typical Sassion

At the bcginninq of an interactive session, a (human) user sits down at a graphics
display attached to a computer on the network (the user host, UH; see Figure 1).
He uses a keyboard associated with the display to communicate with the user
host and to initiate a proqram that Ks dubbed the "user program," UP. This
program initially performs TELNET" functions, allowing the user to establish a
connection with another host on the network where a service he desires is
offered (the server host, SH). The TELNFT functions can be used to log In, query
system status, and so forth, and eventually to initiate a graphics application
program (AP) in the server.

UP
€
^^

Display Proc«««or 6
Consols

SH, Sarvsr Host

AP: Application Progra
SPt Sarvsr Prograa

UK, Ussr Host

UP: Ussr Program

flow* 1: A nrtworfc QrasMo »si «ion. A vasMes application
program nmmo in on* computer (tHs Swv« Most) SHvSS S
«splay consols aMaeheS le anothsr computer (lh« Ussr Kost).

The application proqram. when it wishes to produce graphical output or to request
graphical input, makes use of a server proqrnm (SP) which may simply *>* a
subroutine package. The job of the SP is to interface to the network graphics
protocol on one side and to n "graphics language" on the other. (We shall us J the
term "graphics lanquaqo" loosely hern, it may just be a set of subroutine calls.
The reason for making the distinction at nil will appear below.)

The protocol transmitted belwecn the SP and the UP is the graphics protocol
described to this document. It provides facilities so that:

1. The SP can cause imaqes to appear on the user's display screen.

2. The UP can report to the SP any interactions that the user Initiates,
such as keys depressed on the keyboard or stylus Interactions.

lUNf T is the name of a rlnss of proqrnm* prnvided by many sites on the ARPA
network that allow user« to ion m on Iimo-sharing or multi-access systems at
other sitrs in the network, the term TElNfl also refers to the message-
transmission protocol used by the netwc - to accomplish this function. (See l.G.
Roberts and HO Wessler, "Computer Network Development to Achieve Resource
Shartnq," At IPS SJCC Prottfrfiags. Vol 30, May 1970. p. 543-607.)

2-1103

&£>:&&^^^^^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16, 1974 Introduction

3. The SP can discover various special properties of the user's display
terminal, and can take advantage of them in conjunction with the
application program.

We shall dub these types of protocol transmission "output," "Input," and "Inquiry."

The Job of the UP is to interpret the protocol and to generate appropriate device-
dependent information so that the imaqo shown on the user's display corresponds
to thnt specified by the SP using the protocol. It also implements the Input and
inquiry aspects of the protocol. The UP may have many "local options" that are
not covered by the protocol. For example, the UP might contain facilities for
creating hard copies of the image on the display without engaging in any protocol
exchanges.

If the display terminal is attached to a TIP*, the organization changes very little.
The TIP is not the "user host." but only provides communications between the UH
and the display terminal itself. In this case, the UH is often dubbed the "last
Intelligent host." Note that nothing prevents the UH and SH from being the very
same computer.

11.2. A Model tor tho Network Graphics Protocol

The analog of the task of defining a general-purpose graphics protocol la that of
designing s "general-purpose interactive graphics system." This activity has
boon pursued hy graphics system designers for years. Of course, these designs
have been singlc-slto designs; issuos of device-independence and networking
hove been rarely addressed.

Tho philosophy behind the network graphics protocol can be demonstrated by
giving a model of s general-purpose graphics system and combining It with the
network model of Figure 1. The model of tho system is shown In Figure 2. (The
model Is described in detail in [N&S] and [10GR]; we present only a brief
description hero.) To avoid misundnrstandinqs, and for the sake of defining
terminology, it is worthwhile to describe briefly each of the elements of Figure 2:

1. Thn input devices -- keyboard, stylus etc. — are used by the
operator of the application program to provide data and to control
the program during execution.

2. Tho application data structure contains data, basically non-
graphical, relating to the application program.

a. The Input routines receive data from the Input devices, make
appropriate changes to the application data structure, and hand
control to other routines.

4. The non-l/O routines analyze and modify the application data
structure.

TIP is tho name of a particular kind of small computer attached to the AftPA
notwork that implements TELNET functions for a numbor of dial-up communications
linos. Tho TIP performs no sianificont computations for any users that dial It, but
simply interfaces the network TELNET protocol to a number of terminals.

2-1104

" -» •-» Le *-* la *- "-* -*"•-»"-» -* *-» *-* -* '-* *-« a *•*■"'*-■ *-» Irfi*-» ■'-» -» '-» '-*'-*--» jfl tt+y&t^^

APPLICATION LEVEL: GRAPHICS RFC 493

August 16. 1974 Introduction

Aoplieacioi^Progrw

1 .Tr»ntformation«
4-' fip

n
LgPHACS

T*C Mo« k* TDF h*W —"\jptAY I

k.--.--T--J

Application Program:
IN Input Routines
OUT Output Routines
HÖH I/O Application Routines
DATA Application Osts Structure

Graphics Packarie and Hardware:
IR Interrupt Routines
RUIl 0 Routines to build the SPD
SPD Structured Picture Definition
TRACE Routines to trace the SPO
CONCAT Concatenation routine
T4C Transformation nnd clipping routines
OCG Display code nenerator
TDF Transformed Display File
DGEN Display generator

Fl*«* 2-, A C<w«*tual U<*H of « 9»apNci AafMcail«* ftofram.
a OHM«» F*ci*t» mt PUpiay dm—**.

6. The output routines build o structured picture definition from
date drawn from the application data structure. Effectively they
define how this tint a may be visualized for display purposes.

A. The structured picture definition defines the entire picture to be
disptayed, pert or all of which may be visible on the screen. The
picture definition is fienrrally made up of a number of elements,
reproaentlno pnrta of the picture known collectively as subplctures;
Minnie lures may themselves be marie up of other subplctures. A
familiar type of stiltptcture Is the symbol which is often used many
times wtthin a simile picture or nuhptctur«. Fach reference or call
to a suhpictiire element may denote a transformation — scale,
rotation, etc. -- to be applied to the suhpictiire.

7 The transformation routines apply the trans formations specified
in the structured picture definition and clip out information that lies

2-1105

LvÄNV&iv^ 'JW\V*LA^VI1I_ ^Lka^JL ^—^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16. 1974 Introduction

off-screen. Often An arbitrary rectangular viewport is used as the
cllpplnn boundary instead of the screen edge. These routines also
handle the concatenation of transformations necessitated by multi-
level structured picture definitions.

8. The transformed display file is essentially what remains of the
picture after transformation and clipping. It is defined In the
screen's coordinate system and is qencrally stored In a format that
allows direct refresh or regeneration of the picture. The display fllo
contains "primitives- that specify lines, dots and text to bo
displayed.

0. The display generator generally includes a vector generator and
a character generator, which transform the contents of the
transformed display file into signals that the display's deflection
system can understand.

10. The display Itself.

We shall now analyze Figure 2 to see how the system can be implemented. The
diagram illustrates three information structures (an application data structure, the
structured picture definition, ond the transformed display file), and thro«
processes (the output routines, the transformations, and the display generator).
The design of a general-purpose graphics system requires specifying the roles of
all of these elements, with the exception of the application data structure. Our
examination amounts to asking: what con the hardware do, and what does tho
graphics proqrommer think ho con do? (For a more careful treatment of tho
concepts discussed In the next few paragraphs, so* [10GR].)

Moat display hardware Is "processor" hardware, capable of Implementing some or
all of tho three processes in Figure 2. If. for example, a display processor Is
available that implements transformations and display generation, then tho
transformed display file is absent, and we can view the hardware as Msn
Interpreter of structured picture definitions." If the available hardware has fewer
capabilities (e.g. no transformation ability), the picture is refreshed from tho
transformed display file, and the hardware is "an interpreter of transformed
picture definitions." Or. if the hardware is a storage-tube terminal that does not
require a display file for refreshing purposes, part of the display generation
process is a software process. (However, a display file Is still required, es wo
shall see below.)

Determination of what the programmer con do is somewhat more subtle, because
the graphics system designer has complete control of the faculties he presents
to the programmer. For example, tho programmer of the system shown In Figure 2
would think he was creating a structured picture definition: the output routines
«How him to create, modify, and delete elements of that structure. The remaining
processes (transformotton and display generation) and structures (transformed
display file. If it exists) mm inaccessible to the proqrommer; In some sense, ho
thinks that a "display processor" is interpreting the structured picture definition
in order to generate a display. Me cannot determine whother a transformed
display file exists, nor whether transformations are done in hardware or software,
etc.

If the structured picture definition is deleted, the programmer sees S quite
different set of facilities. The output routines create (after transformation) s
transformed display file. The programmer now thinks that the hardware la s
"transformed display file interpreter." Again, the programmer la unaware of tho

2-1100
I*

«.*-.&*. ..!„«. JL—..S

APPLICATION LEVEL: GRAPHICS RFC 493

August 16, 1974 Introduction

details cf thf! display generator process (for example, if the display Is a storage
tube terminal, the display generator is a combination of a software display file
Interpreter and some hardware vector And character generators. If, on the other
hand, the transformed display file is used to refresh a display, the display
generator is presumably entirely in hardware).

The discussion suggests that relative device independence can be provided if we
permit two different kinds of output information; (1) information for building
structured picture definitions, or (2) information for building transformed picture
definition» directly. The first of these Is matched to high-performance displays
such as the LOS-2 or LDS-1; the second to standard refresh displays such as the
IMtAC or GT-40.

How does this relate to network protocol? We con essentially view the UP aa a
"display processor.** I.e. an "interpreter of structured picture definitions," or en
"Interpreter of transformed picture definitions." Tho network protocol Is used to
build and modify a picture definition contained In the user host. Various UP
options aro shown In Figure 3 (the dotted lines surround those processes that are
implemented with display processor hardware). Figures 3a and 3b ahow the
network used to transmit transformed Information; the UP uses this information to
build a display file for refreshing a display or for updating a storage-tube.
Figures 3c, 3d and 3e show the network being used to transmit Information for
building a structured picture do fin t ion; the UP is an Interpreter of a structured
display file.

Figure 4 illustrates some possibilities for the smryfmr; the server can generete
either structured ot transformed display Information. In Figures 4a and 4b the
programmer "sees" a structured picture definition; In Figure 4c a transformed
picture definition.

In the protocol, the UP tells (he SP which kinds of format It csn implement. It Is
perfectly possible for the UP to implement both -- the display images due to each
of tho formats are merged onto the screen.

The two different kinds of output format can be summarised aa foWowa:

Transformed

The protocol is used to r»uitd ami modify a set of "segments" (sometimes
called "records") of a transformed display file, stored In the user host. A
segment is a list of ttraphleal primitives that specify lines, dots and text to
he displayed at specific positions on the display screen, individual
segments may he deleted or r* placed; limy may he added to or removed
from a list of senmenM to actually display on the screen (this is called
"postinn" and "unpoMing" «segments). If a picture is composed of many
senmenls. changes to the picture can often be made by replacing on« or
two senments; thus senmenttnn. the display file helps to reduce the amount
of information that must Im transmitted through the network to affect a
channc. Considerable experience with this type of picture definition has
demonstrated that device independence can easily be achieved
[Ommoraph ttnti Omnuiraph.hrief).

One advantaoe of transformed format is that the UP can be kept very
simple; no transformations need he performed in the UH. A OP along the
Hues of Figure 3a sitnuid be ahle to he Implemented k% an IMLAC. The
burden of transformation is left to the SH, presumably a large computer
quite capable of bout<i programmed to do transformations.

2-1107

APPLICATION LEVEL: GRAPHICS RFC 493

August 16. 1974 Introduction

*)

b)

e)

;;on I/O

IM OUT

NOK I/O

IN <WT

us*_]

TOTTI

Structured Format

'bwcd

*» _nu«

n nc
Tr*n*fon»d formt

Tr«MforB»4 ftwiMt

smoJc transformation (on. to chanoc the
thrc**fftmensionAi nhjnct).

vtewfetQ transformation for •

Although « Mrurdwrrt pictitrn «icfirMtH» ran b« Interpreted dlroetly ©y a
fOW display processor* Ihnl havo transformation eoülty, most UP'» that
n«i»irmrnt structuri-rt tormat wt* pnrform the transformation In software
(Flour* 3rt.e; (lOGfl)). Tin» implementation la relatively difficult, and
certainly reottfres a fairly powerful UN computer.

The kind of network protocol (structured or tranaforaiod) should be doerty
distttutttished from Ilia nrnchtc» famttiAfte ami the "output routines1* of Figure 2.
For example, the eppscation data structure mtoht he elaborately structured (e.g.

2-1100

ilLillil^ 1A '-»'-»' -■■ ■"-» -'

*. «\ '- •". -'.

V.V*VV.V-V.VJ .'.V.vl' L«|U JaAa^aiaJuflaaAeJ

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16. 1074 Introduction

A) Refresh
Trwtot—d format

DCC EHUD

bi Stonf» Tub«
TfMfer—* For—t jxTUJTDr U[pJ---<^;[

s) Ht«*t MrforwuiM rwmf TIT

«) RftflMh

• I 0

»IfJM * V«Hw» CMtkmMMw« tat *• UP. CM** Im

PMWIH a» «wet » »» mtmo* ■wWpüOia

Structured

The protocol I« used to build snd »edlfy ■Hour«*;» each fMjerc I« •
collection of »units." A unit «My bo s Mt of orsphtcst prbeltlve«. such ss
Ones, dots «nd tost; or It «sy specify • "es*" on another flour«, together
with « tr»itftlon»«tion to apply to ihn cased fig**«. The protocol eon
replace Individual unit»; eltertnrj « floure tb«t »s cased m sovorsl piece»
may csuse wtdesprosd chsnoos lo the visible displey. Tno structured
formst reouv-es (m prtnclole) f^ven lets network bandwidth for updates
then does the trensfetiied !om«t; «Mjny updstss «sy Involve changing «

2-1108

V •-• v -_» £ '^^ &LY* A^ivlvkÄ-.v V &£& '^.VAfrV AVA' *^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 10, 1074 Introduction

a circuit diagram, with Instances of flip-flops and gates, etc.), and the
programmer may think of the display generation in a structured way even though
the network traffic Is transformed (I.e. unstructured). This effect cen be
achieved with the display procedure technique.

Another way of looking at this ie as follows: if we view the UP aa a "display
processor.'' thon we might view the SP aa a "graphics package" for driving the
dlaplay processor. Moat graphics packagea attempt to Insulate the programmer
from the vegariea of a particular dlaplay processor, to provide structure even
though the display processor does not, etc. in other words, the application
programmer may have a structured view of the world even though the UP cannot
provide auch a view.

We have glossed over a aignlfieant problem introduced when some of the
processes of Figure 2 are implemented In software. If the programmer thtafce he
Is producing a structured picture defintion, but the hardware «a Interpreting a
transformed picture defintion. when Is the transformation software run? A similar
problem occurs m Figure 3b» when Is the dispby.generation software run In order
to update the display? One enewer let whenever a dispiey f»e is changed,
necessary software processes sro Invoked to update the display. This haa
several bad affect». A more useful technique is for the SP (and application
program) to signal the UP whenever a eoNoetton (or batch) of changes Is
complete end the dlaplay should be updated. Thla technique has the following
advantages:

1. Transformation aoftware (e.g. 3d, 3e) la executed only when neceeaary
In ordor to update the display; we nmmr neetfeeety repeat
transformations.

2. Screen ereeurea on storage tubes (e.g. 3b) can be mWmtxed — we
need eraae the ecreon a maximum of once per batch of updates, rather
once per update. See [0mn4graph.br*ef).

3. Ail changes to the dlaplay appear "Instantly." Network apeed means
that <Haptey*fHe updates wMl arrive at the UP over a longleh period of tkee.
If the effect of these changes la delayed until a batch la finished, the
display we! appear to change "aa at once." a much mere settofytag effect
then many alow changes. This la particularly true rf an Image Ie being
replaced by another Image that m a sested*up version of the origjneti some
things grow before others, and the dlaplay passes through a number of
nonsensical states.

To take fua advantage of this Inehnktuc. the AP ahould specify when the screen
ahould be updated to represent precisely what la specified ei the «splay fee.
Theao "ond batch of updates" commands should probsbry precede each request
for new user Input — thus the user w« see an up-to-date image before
formulating his response. Specifying ties information la quite eaelty done, end Ie
not at all unnatural for the application programmer.

If this poftcy of delaying changes la not to a programmer's »king, the SP could be
instructed by the AP to »sue an "ond batch of updates" commend following each
end every update to a segment. Updates only occur as a result of a —■*• —-*-•
of protocol commands (aee section III); thla should not be difficult.

10

2-1110

. - „N " "• - .*• . » ,N.*« • '."

-i- . .*-. . •_"_*~. V i^^.4. >»>

APPLICATION LEVEL: GRAPHICS RFC 493

August 16, 1974 Introduction

II.3. Positioned Text

The graphics facilities already described can be used to put text information on
the screen. However, certain application proqrams display exclusively text (e.g.
NLS [NLS]) and require a rather different set of facilities for controlling the
display. Strings of text are "positioned" on a display screen and "edited" by
commands from the server host.

The positioned text facilities have been separated from the graphics facilities for
two reasons: (1) users with simple alphanumeric terminals (e.g. Hazeltlne) can In
fact implement the positioned text protocol even though they cannot Implement
the full graphics protocol; (?.) it simplifies the design of user programs that only
need to provide text interfaces (e.g. allows one to build a UP In an IMLAC that Is
optimized for NLS use).

This graphical output format is completely independent of the transformed and
structured formats. A UP may report to the SP that It implements only the
positioned text format — this might be the case of a UP for NLS uae.

11.4. Input Facilities

The problem of providing input facilities is oven harder than that of providing
output faellties. The diffictiities ore chiefly those of device independence and of
adequate performance. The device independence issue Is eaaily demonstrated:
display hardware can have a large number of very different kinds of input
gadgets attached (light pens.-tablet «ml styll. joysticks, knobs, buttons, etc.)
that have different properties and different methods of reporting their output
(e.g. periodically, on computer demand, or "when something changes"). In
addition, operattnq systems at user sites often enforce restrictions on the use of
input equipment in order to avoid undue system degradation.

The problem of performance is nicely demonstrated by Figure 1 *• If each Input
must »e shipped to tho server host, processed by the AP and SP, then eny
display updates shipped to the user host and processed by the UP before the
user soi»s the response, it would be lmt>oasibie to use many interactive graphical
techniques.

The protocol attacks these problems in simple and probably inadequate ways. For
this reason, the input facilities are the most controversial and experimental of the
protocol.

The device independence issue is solved by inquiry, the UP reports to the SP a
list of available devices. Ihe SP and AP can then cotlaborath/eiy arrive at an
acceptable set needed for operatinu (ho AP. if tho set of input devices Is
insufficient, the AP can perhaps enqacte in a diaioq with the (human) uaer to seek
remedies. Perhaps a spare device can he pfuqqed in; perhaps another version of
the Uf* can be run which implements the required device. Or. if the AP and SP are
sufficiently flexible, perhaps the command language of the application program
can be altered dynamically to permit its operation with the available devices. For
example, if the UP responds that it has no coordinate input device (and that it la
not wtllmq to simulate one with. say. two knobs) then the AP might went to uae e
keyboard-based interaction sequence and to orgaru/e the entire command system
differently.

The performence difficulties are addressed by permitting the SP to ask the UP to

11

2-1U1

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 10, 1074 Introduction

ti90 • particular Interactive technique In conjunction with an Input device, and to
report tho results of tho Interaction. We shall term such Interaction techniques
events. The techniques often involve providing -local feedback,11 ao that tho uaer
soos tho results of his Interaction without a lonq network delay. Examples «rot
displaying a -tracking dot" at the current location of a coordinate Input device, or
displaying a trail of "Ink" behind the tracking dot, etc. Examples of tho apodal
everts thet the protocol provides w:

Positioning •* Using a coordinate (or other) device to provide a pair of
coordinates to specify the position for something. The UP w* uauaNy
display a tracking dot to aid the user In coordinating Ms Input with tho
display.

Pointing — Using s coordinate (or other) device to Identify an object
currently being displayed on the screen. Again, tho UP wW probably
provide tracking. There ^9 two ways of providing this technique: one la to
assume thet the display terminal has some hardware feature that aide
Identifying a graphical feature being pointed at (o.g. Hobt pen or
comparator). However, the same Information can bo deduced from o
positioning Interaction and some software calculation (either In the SP or
UP) to determine what object la being Identified. Thua, even If • UP
cannot provide the "pointing" Interaction, the 5P may bo able to (aoo
[N&S] for a description of the process).

Stroke — Using a coordinate (or other) device to treeo out a free-form
curve end reporting a atream of coordinate points en the curve. Tho UP
will provide tracking and leave a traM of dots ("Ink") along tho curve.

Dragging *• Using a coordinate (or other) device to cause some portion of
the display Image to move In synchronism with the coordinate device. TMo
technique could be classed aa "highly interactive," end aome daplay
termineis cannot provide It.

The protocol provides tho 5° with two basic methods for dealing with Input
devices: (1) to request and obtain the afate of an Input device, o.g. the current
position of e coordinate Input device, and (2) to enable various events, end to
obtain a "report" doscrtbtng the events resulting from uaer action«.

The uaer alto haa a wide latitude m implementing these Input faeWtiea. Since
Inquiry la used to find out what devices sod eventa the uaer alte Implements, the
site may Implement as many or aa few aa it Hkea. The latitude permits Indrviduol
users to use devices differently or to establish special feedback mechenlame
(e.g. a number displayed on the aereen that represents the current reading of a
knob). It also permits uaer altes with weed hardware or operating systems to
emulate input devices tn any way they choose. (For example, no requlrementa
are put on aampttng ratea for Inked strokes; something "reasonable end proper* la
adequate.)

11.6. inquiry

The protocol hen no set of "standard" features; there Is thua no standard
graphics terminal as viewed by the protocol. The inquiry function la used to
transmit to the $P e certeln amount of detailed information about the terminal m
%*%m mi* the UP that drives It. This information la a "constant" thet wtt probably
be requeatee by the SP when It initiates e graphics session.

12

2-1112

• vv wvvv* «\ ••»'• • . •/•.*. •**-.*■. .v..-v .• .*• •■.■-.*-."- ."■ ■■/....* '- .-..-.•• .-..•• .N .* ♦

APPLICATION LEVEL: GRAPHICS RFC 493

l
August 16, 1974 Introduction

Thn Information transmitted by the Inquiry response It In part for Information only.
However, some of the information returned la essential In order for the SP to
transmit legal protocol to thn UP. In outline, the Information returned Is:

List of Implemented protocol commands. This Hst tells the SP whether the
UP Implements transformed format, or structured format, or positioned text,
or sny combination of them, and ao forth. In addition, this report teds wtrtch
optional parts of the protocol are Implemented by the OP.

Coordinate Information. This Information Is necessary for the SP to carry
out transformations that generate coordinates In the coordinate system
used by the terminal.

Parameters that describe available character sizes, available Intensity
resolution, available line textures, etc.

A Hst of available Input devices snd events. A "device number" Is
specified for each device; this Is used when reeding the stste of s device.
Similarly, sn "event number" Is specified for each event, end Is cited when
enebftng or disabling It.

An ASCII text string that describes the terminal, e.g. "IMUC POS-1 In room
22."

The information in the inquiry response (thst transmitted from UP to SP) that I«
not essential to further protocol operation may still be useful to the SP In order to
drive the terminal intelligently. For example, inquiry can determine the kind of
display being used, not so ss to send device-specific code to It, but so that the
AP does not try to use a graphic technique en a terminal that cannot handle It
(e.g. some sort of dynamics on s storage tube).

H.6. UP tmpi&mtttallons

Althoueh the description of the protocol la quite lengthy, the protocol Itself Is
quite simple. The elm of the design is thst the UP could be Implemented m en
IMUC or GT-40 or similar "smart" terminal. Of course, it could also be
implemented on any heat computer, with a less smart terminal attached to the
host.

There ere three main mechanisms for simplifying the bapiementetton: (1) the
inquiry function specifies many of the tnrmmnl details to the SP, thus freeing the
MP from conmg wtth complicated iomc to implement complicated ncerettous; (2)
much of the protocol is optional, a subset being quite adequate for moot
applications: (3) m thorny areas (e.g.. »«put protocol), the protocol la deliberately
vaoue. allowing the {JP tmpinmentstion conaMeraMe latitude to abey the protocol
as best it can.

The philosophy of -mäkln« the SP drive the terminal.* rather then making the \iP
eenreve en ideal perferisence is key. This approach puts Ingenious grephtca
programming and command languages where they belong, m the server.

13

2-1113

r\W,»!A.*YJ>VV-V-v^%l^V**< >^v>^lr^>^.V>S^lV«V.^ -M-zjb.:^ :,*..:. •■:■■':<■
" . *"»*'. ♦*. ■*• **. **. *"• "*0 * **0** **v**v*** * * **• "*• **« •

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16. 1074 InfrOOUCuOn

11.7. Summary

Hero is • brief summary of the main philosophical points of the protocol:

0. The protocol is based on the premise that much, but not aN, graphics can be
dono within a "general-purpose" framework. Special-purpose protocols mrm
inevitable.

1. The protocol faculties for graphical output can be Nfcofied to those of a
graphics system driving s display processor. The protocol creates end
modifies a display file at the user site.

2. The protocol provides options: the SP and UP muat agree on whet kind of
"display processor* the UP csn implement (Structured, Transformed,
Positioned Text, or some combination) and on selection of Input devices. The
protocol thus Implements no fixed "virtual display" but rather e large variety
of display processors.

3. Portions of the protocol sre left deliberately vsgus. The user program Is
oxpected to implement features to the best of Its aWöty. ff the
implementation la inadequate, the shortcomings wts probably be qutokry
discovered by s user.

4. Although the protocol appesrs largely "device
functions permit the application program to discover many
necessary to drive the display Intelsgentty.

nerewere emtaea

14

2-1114

.>.'*■ >>y-y^/f>>y- Vv'v^^Sv^i:

, «r. .

\" *•" * V* ••*'/"%-* •• V ».' <■'•-"'•*•■'" 1 *££

APPLICATION LEVEL: GRAPHICS RFC 493

August 10. 1074

SECTION IM

The Protocol

This section presents details of tho graphics protocol. The topics covered or«
tho connection protocol, the graphics! output protocols, tho graphical input
protocol and tho inquiry protocol.

Tho section describes network traffic as a series of commands and operands, eN
expressed in a common notation. The smallest unit of traffic is an 6-bit byte.
Tho construct <...> rofers to s specific byte, I.e. a command that is assigned a
particular op-code (listed in the eppondlx). Constructs of the form <■„.•> refer
to sequences of bytes that are defined elsewhere In this document.

Following ere seme stsndsrd definitions:

AN numbers In this document ere decimal unless preceded by en
apostrophe, in which case they sre octal (Os'10}.

A <aa>«a*\!nteger'> Is one d-Wt byte that contains the Integer (range 0 to
206).

A <*l«ren.integer-> 1» two «-bit bytes that together comprise e 16-btt
Integer. The first byte transmitted is the high-order 6 bits; the second the
low-order S bits (t*iw 0 to *\ 77777).

A <*smslMr action* > la a two's complement fraction in the range [*1«1-
1/120]. It to defined as (<*sma*.lntegera>-12«)/126.

A <*leroe. fraction") is a two's complement fraction in the renge [-1J1-
1/3270«]. It la defined aa (<Marne lnte«er->-3276e)/a2706.

A <*count*> la cither one or two 0-btt bytes, depending on the elte of the
count. If the count Is less than or equal to 127, then <• count•> Is sunpty
one byte thet coutsats the count: otherwise it le two bytes, end the count
la computed ss (byte1-126)*?66*byte2.

A text strmq <»to«t*> Is dnfined ss s character count, <*eeunta>, followed
by that number of Q-IMI bytes. If the text string is intended to be
interpreted as ASCII tnat. then the foSowtng conventions are observed:
(1) every prtntinq character m the ASCII set la In the set (high-order bit is
teroh (?) tho ASCII control characters carriage return 010). ene feed
(M2K tab (Ml) and formfeed CM) may appear: (3) codes m the renge
•200 to '377 may he uned for wliatever purpoees user end aerver deelre,
but the protocol estahSahes no conventional meanings.

I he various forms of picture definitions in the user host ere given nemos
(e.g. <»seq.neme*>. («ptoat.name*». These are aN defined ea 16-bit
quantities, m <*targe.mtegcr*> formet. The name spaces are ei separate.

16

2-1115

->»
£^j£l£l£^

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

Aitquat 16, 1074

III. 1. Inillmi Connection Protocol

Thts tmction dote." bot Ihm mmchmnitm tot
etlnblithing connection* botwnon ihm SP mnd
UP in Ihm APPA natwork. An undorttmnding
of thit section it not rcquirod in ordor 10
undmrtlmnd thm remntndmr of Ihm protocol.

A \tnm »«»»ton with • graphics Application program (sea Flour« 0, ar «laboratton
of Flowo 1) haa many cloae analooles to a TF.INET aeaalon with a program: th«
UXM must Ion into a snrvor syatnm, nxncttt« aovoral ayataai cormanda, Inttlat«
tlio propram, communicate with tho program at It la running, parhapt Interrupting a
rurmtnn orooram. togojno, out, ate. A graphiea aaaalon can story raqtitraa all of
th*»« foatore*; m addition It wW roquir« a pathway for transmitting graphics
protocol Information In both dtraetions.

&.*
SftVf* HOST

Prwmtm

MtHc*t<Oft
I

THWT I ,/ j'

■ ' tu

I <*t»

Uftift NMt («r Ti?)

6r•»♦>(« »r«toc*l tmrm.Om%

i
TttufT rr«t*cat £•**•<»!•**

t
9f%t*m

<UF)

tfwr

1 • " Tiuarr

UN

<*»

(A |M MM •# M i<it«tlif«*t t«mi««l »tttcMi I« • t
tu* IMM IftMIM *»(«*) MS SM# TfLSfT *r« ia»i«w
W IM TIP: tM M» lM«l«S W Mfttltf I* f«p>«*«»< '«
lAUllifMt Unlwl.

Tl»,
>M«

CM

T*i« («Mwfuii«* M»* U «CMM>i«MS wit» M*r«t*f
»V«t«n «ill• tMl tvM flMTMiart an IM CAWI-»»HW§
IcmiMl «M tMl xmi «MrwHrt '*■• IM4 W»*«*l.
(TMi it. iMi* II«MI <ift<i ******* amaiia.l

9**9+ \- S aSMmH (VMM** CwwiM «M S>lirt>IM

tho prapMes protocol traffic i« ««HofeAltv sop*rst« from th« TClmtT traffic, and
aliould us« a set*arate net work teorwrlton It is iwconvaniant to muftipNix
prapfwes protocol on ton TFUft f eonttoctmns iMtcsusa many operating ayatoaw
gtv« a*»*s accoss to tno iütst f conoectiofi o»sy v*a in« machawams thai thay
use to accoaa a eontnsttng term*n«4. tho aoaacatasn program »typoa* to tfsa

10

2-1116

■raj '^'
.v.

.» >-. «fe. «£, .» AnE, -"- .*. **- *•- »». W. ^ A» »^ aL* ^- ^ £> *- Aut^PL »V % «jg^ t»& * ^ * «A fc3 aJ *-* - aLa L«JU

APPLICATION LEVEL: GRAPHICS RFC 193

August 16. 1974 The Protocol

terminal. In addition, the TtlNPT connection is used by some operating systems
when siqnnlinq errors: this summary use might interfere with a multiplexing
scheme. Thus, the protocol requires a pair of network connections dedicated to
graphics trofflc.

This Approach can also acenmorinte intelligent terminals (e.g. IMLAC's) attached
to TIP'S. If the IMLAC proqrnm interprets (1) ASCII text and (2) graphics
protocol, and uses a simple multiplexing scheme to transmit these two kinds of
traffic »o and from the TIP, then the UP con support the traffic with minor
modification. The IIP need only be able to establish the extra pair of connections
and to multiplex the two kinds of traffic for consumption by the intelligent
terminal. (This is not the same as multiplexing the TELNET connection.)

There are two connection schemes, one to bo used for now, and one that is
intended for uso when the new style TELNET protocol is fully operational and
whett a sufficient number of operating systems have been modified to give the UP
and SP access to the negotiation mechanism.

For now.

When a graphics SP Is started (usually by the user's Issuing an
appropriate command to the user host through the TELNET connection), and
wishes to initiate a graphics dialog, it gets a pair of complementary socket
numbers from Its operating system. These are called SP-send and SP"
receive. The SP then "types" over its TFINET connection an ASCII string
that consists of 1 7 characters: the first six characters w "GICP"; the
remaining 11 characters ore the 11 octal digits (In ASCII, of course) of the
socket number for SP-receive. Note that SP-receive is an even number,
and that SP-send » (SP-rcceive)*1. (This is a network convention that
seems quite nice for now.) After typing this information, the SP does
"listens'* on those socket numbers.

The UP recognises the special character string and following digits, and
issues RFC* (requests for connection) from two of Its sockets (UP-send
and UP-rocoivc) to the complementary sockets at the SP. The SP will
return tiro V.i C's. thus rompletinq the connections. The dust has settled,
and the connections UP-scnd«>SP-roceive and SP-send«>UP-receive are
reody for uso.

Ultimately.

When reason descends on the world, the TELNET negotiation mechanism
(see NIC 1537?) will be used to establish tho willingness to transmit
graphics information (DO, OONT, WILL. WONT GRAPHICS), and a
suhncqntiation transmission will transmit the socket number. In the case of
An Inlelliqeni qraphics terminal attached to a TIP, the TIP TELNET responds
to the noqotiolion and establishes the connections.

Even after graphics protocol has boon initiated, not ail communications between
SP and UP will be qraphics protocol: there still may be TELNET traffic. From UP to
SP will go "breaks;" from SP In UP will go text "typed" by tho application program
(rather than enclosed «n seme qraphical command for displaying text) as well as
systnm nrror or informational messaqes. Such SP-to-UP text Is Called
"unescorted text." The user wtll probably wish to read this text, since it la often
important for understanding or oprrotinq the AP The text can be handled by the
UP in either or both of-

17

2-1117

Jtt, tA ^l.'t.k.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16, 1974 The Protocol

1. Show It on the display screen. This option is controlled by the graphics
protocol (sec positioned text).

2. Local (UP) option. This treatment Is up to the UP: the text can be
displayed regardless of provisions of method 1; it can be typed on %n
adjacent hard-copy terminal, or whatever.

»11.2. Output Protocol Formats

The network graphics protocol makes provision for three kinds of formats for
graphical output:

1: Transformed format.
?\ Structured format,
3: Positioned text format.

It Is possible to design a UP that can correctly Interpret any combination of
formats coming from the SP. The UP reports to the SP, via the Inquiry response,
which formats are implemented (this information is contained in the list of
implemented commands).

The design of the structured formot is still in preliminary stages. This Is chiefly
because of difficulties designing a suitably device-independent view of
transformations (e.g.. clipping and rotation conflicts, providing for the constraints
of transformations performed with analog hardware). A brief description of the
preliminary design appears In the appendix.

III.3. Transformed Format

The protocol for "transformed format" is used to build and modify a set of
segments of the picture definition stored in the UN. All coordinate transformations
are performed In the SP prior to sending data to the UP; the segmented picture
definition thus contains descriptions of linos, dots and text that will have a fixed
location on the screen.

A segment is created In the following fnshion. The "open segment" command is
sent to the UP. together with o "name" for the segment. Any subsequent
graphical primitives (e.g. line, dot, text) sent to the UP are added, in order
received, to the currently open segment. The creation process Is terminated by a
"close segment" command. The segment now specifies how to draw some (or all)
of the desired display Imago.

The creation of a segment simply specifies a list of graphical primitives and not
the use to which they arc put. If the segment is to be displayed, a "post"
command specifies that a segment is to he added to a list of segments to be
displayed. The "impost" command removes a segment from the display list. The
"kill" command is used to destroy the segment altogether.

No rhnnocs to the visible display ore mode until the "end batch of updates"
command is received at the UP. Thus, the effects of the "post," "unpost," and
"kill" commands must be delayed until this command is received.

Althouqn the graphical primitives that are contained in a segment cannot be

18

2-1118

.*- •*• .^

.»''-«N-»*'-»*'!»\\>^"*'»> .>VrV^iVj>\VAV»VK*A A*.*ir-V^V.NV>\%Vh'JW^%"..V^*~\ ".W-'A.**".'.'. VAIV'I -"^ ».*. ±L±LtJk*

APPLICATION LEVEL: GRAPHICS RFC 493

Auqust 16. 1974 The Protocol

modified, a certain number of "Attributes'1 associated with each segment mey be
individually modified. These facilities arc described more fully below.

111.4. Sogmant Control

A detailed description of the commands follows:

<seg.open> <*seg.name">

This command opens a new segment and specifies Its name. All
subsequent graphical primitives will bo added. In order received, to the
open segment. Graphical primitives need not follow contiguously « other
graphics protocol commands may intervene between specification of
primitives to be added to the segment. If a segment with the same name
already exists, it is not dostroyod at this point (this technique is called
HsupercodingM a segment; the protocol insists that the segment being
created Is double-buffered).

Immediately after the <sog.open> <"seg.n«me*>, any attributes that ere to
bo associated with the new segment must be set, before the first
grnphlcal primitive is specified. This operation indicates tc the UP which
attributes of this segment might be changed later on. Such attribute
settings are accomplished with the <"nttrihute"> sequence, described In
section 111.10. The reason for this convention is that the UP may wish to
build the display file in a slightly different way If certain attributes mrm
specified, so that they may later ho changed.

< s eg. close >

This commmand signals the end of generation of (or appending to) the
currently open segment. The segment can now be posted, unposted, or
killed.

<scg.post> <*scq.nnme'>

The specified segment is added to the list of segments to be displayed. If
the nmtied soqmunl is the currently open segment. It is "closed** first. No
change is made to the currently visible display.

<sco impost) <'seq.name,>

The specified senment is removed from tho display list. Again, no change
is made to the currently visible display.

<seg.kill> <"r»of|.namo'>

The specified segment in deleted entirely. If the segment Is currently In
tho display list, it is "unposted" first. Note that this means deletion may
be delayed so as not to alter the currently visible display until the "end
batch of updates" command arrives.

<seg append) <*seg nnme*>

This commond specifies that nil subsequent graphical primitives are to be
added to the end of the segment named, which must already exist. Note,

19

2-1119

• - « _ •r. ,

■ DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

& August 16, 1074 The Protocol

howovor, that ovon if the segment named Is currently being displayed, the
appended information cannot be displayed until the next "end batch of
updates" command. A segment that is appended to leaves attribute
settings unchanged. In particular, the set of available attributes cannot
be augmented beyond those specified originally following the <aeg.open>
command.

The "append" feature Is entirely optional; If the UP Implementation does
not permit appending, the inquiry response will so specify. Felling to
imploment this command has no effect on the interpretation of the rest of
the commands.

<end.batch.of.updates>

This command specifies that a collection of updates is complete, end the
visible displsy should be updated to reflect the changes. In partlcuier:

— Any killed segments are entirely deleted and returned to free
storage.

-- The old versions of cay superceded segments ere deleted end
replaced by the new versions.

— Any "posts" or "imposts" transmuted since the !«st "snd festeh of
updates" can be performed.

~ Any "appends" specified are actually added to the appropriate
segment.

(If the display fllo is not used to refresh a display, ü9 Is the case with a
storage tube terminal, tho modifications to the display file structure Itself
need not be delayed until the <cnd.batch.of.updates) commend arrives,
but all screen changed must he delayed. This minimizes the number of full-
screen orasures required on storage tubes.)

Some application programs may wish to cause chanqes to appear as soon
as the change has been successfully transmitted to the UH (e.g. when e
<sog.post> Is sent). In this case, the AP or SP can simply arrange to
follow each such modification command with a <end.batch.of.updates>
command.

t£ One drawback of delaying changes is that »p to twice the amount of
fit dislay-filc storage can be consumed, compared to that required to store

one picture. This will happen If a batch of changes involves superseding
every segment. This miqht cause the DP to exhaust the free storage
available to it for display files. If this happens, the UP may simulate the
effect of an <end.batch.of.updates> command prematurely, and thus

l\ reclaim storage used for superseded segments. This should really be
t*} considered an error.

-. A number of anomalous or "illegal" sequences of the segment-controWng
V commands might occur. Specific remedies are described below. (A UP
\ implementation is not required to follow these conventions, and SP
^ implementations should not count on them.)

v 1. If graphical primitives are received by the UP when no segment has
fci been opened (either by <seg.open> or <seg.append>) they are discarded.

The UP might issue an error indication.

i .*■

20

2-1120

A\I-'V'A'.L' -J, .* .'. ' •«■'. . '.'*.»*-• ^l". .' . » -». !■.'« ,•■■,"» '■ ,'m rtt^.'>.!k 'm '■i.kuj.'iiiilin M* i

APPLICATION LEVEL: GRAPHICS RFC 493

August 10. 1974 The Protocol

2. If a <scg.opcn> or <scg.append) is received when a segment is already
open, the newly-received command is ignored. Again, the UP might issue
an error..

3. if the segment named by a <seg.append) does not exist, the command
should bo treated as a <seg.open>.

4. If the segment named in a <scg.klll>, < sog. post) or <seg.unpost> does
not exist, the command is ignored.

fi. <end.batch.of.updates) may occur anywhere, even while a segment is
open. Primitives added to the currently-open segment should not,
however, be displayed (because the segment is being created, and is not
yet finished!).

6. If the <seg.klll) or <sog.unpost) commands give a name that matches
that of the currently open segment, tho command refers to the old version
of the segment (if any), not to the one currently open.

III.G. Graphical Primitives

The following commands cause primitives to be added to the currently open
segment:

<seg.dot) <*x.s.coord"> <"y.s,eoord*>
<scq.movc) <-x.s.coord*> <*yscoord*>
<seg.draw) <*x.s.coord"> <"y.s.coarda>
<scq.text) <*text">

Those primitives are the familiar commands for addinq points, lines and text to the
open segment. No relative mode is provided: the SP can easily let the application
program specify relative information, and convert to absolute for transmission.

It IG. Coordinate Systems

The coordinate system used for arquments to dot, move ami draw In the
transformed format is called the "screen coordinate system." The format of a
<* x coord*> construct is dotnrminrd from ihn inquiry response, and /S M fne
coordinate systom atttunlly u**d by the graphics terminal. Tho Inquiry response
defines how many ll-bit bytes are used to specify such a coordinate, and what
value»* correspond to the left. nuht. bottom and lop addressable points on the
screen (F or a discussion of other possibilities for the screen coordinate system,
sen (NIC 10833).) see section 111.10. item 2 for an example of the screen
coordinate calculations.

III./. Intensity

The SP can select an intensity that is to be used for all subsequent graphical
primitives added to segments (except as noted balow). The commend

21

2-1121

itvA^L^^^w^v^v^itVfiv.'f ,*t «•» > * j*^f «** „vv> MVIAIVM'W»-*»"», ,»ifc>!»>y« «\Vf y»v»L*»y vAVt y v». * ■** m '— *^* ~~* ■*■ A Cm ■ l -*i

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16, 1974 The Protocol

<set.lntenstty> <«count">

specifies the Intensity In <"count"> format. Permissible values of the <*count">
arc returned In the Inquiry response. Exception: if intensity is specified as an
attribute of a segment, that value overridos any that is specified within the
segment. (See the section on attributes, below. One of the reasons for declaring
the intention to change attributes when opening a segment Is so that the UP can
generate the segment In such a way that the attribute may be Implemented
efficiently on the display hardware.) A default intensity (anything visibt«} is
established by the UP Initially. ■

III.8. Line Type

The SP can govern the type of line added to segments by the draw primitive. The
sequence

<set.typo> <"count">

sets the line typo for all subsequent lines. The inquiry function can bo used to
find out how many distinct typos (e.g.. dotted, dashed) are supported by the UP.
Type 0 Is always a normal solid vector, and is established as the default typo by
the UP initially. The protocol makes no precise definition of lino typos.

III.9. Cneracfer Diaptay

The text primitive adds alphanumeric information to the open segment; most
terminal« will have hardware character generators for actually drawing the
characters. However, the SP can control certain aspects of character display:
size and orientation. There are two methods of specifying the size or orientation:
(1) the SP may select one of several discrete character sizes and orientations
available (details about these sizes are contained In the inquiry response), or (2)
may select an exact size. AN subsequent text primitives (up to the next time the
SP asks to change) use that style.

Initially, the UP sets a default size (any legible size) and orientation (horizontal).
The UP implementation should try to be resilient when the SP generates text that
lies off the screen.

The orientation is selected by me sequence:

<set.eharacter.ortentatlon.d:scroto> <*count">

whore <acount*> specifies one of several discrete orientations avallabte, ae
specified in tho Inquiry response. Alternatively, the following (optional) command
may be used:

Alt that is needed to implement tills facility In the UP Is one variable that
maintains the "current intensity " Whenever A Nno, dot or text string Is added to
an open segment, the vakie of the variable specifies the Intensity. A shelter
method is applicable for No« type, character sire, and character orientation.

22

2-1122

VlV>.'l A:>/^:.-:^'- .''•v'V^';. V-^^':^:AV:-A V._ ^^: ^'A»'V ^^V^^^^^^V'^^JJL^V'^V'^^^^AV^V^I"" I'V'iaAarf

APPLICATION LEVEL: GRAPHICS RFC 493

- W-AäJ'.AJC*.

August 1 ö, 1974 Ths Protocol

<sot.character.orientatk>n.continuous> <*large.fractlon*>

where the fraction is a measure of the anqle between the text drawing direction
and the horizontal as fractions of 2*pi. The fraction for horizontal direction la 0,
for vortical text running up is 1/4, etc. If this command is Implemented, the UP
agrees to draw characters at any orientation.

The si.--? »• selected by on« of two methods. A specific discrete size, the details
of which are returned in tho Inquiry response, is sot with

<3ot.charactcr.si2c.discrete) <"cotint*>

whore the count Is tho index of the character size returned by the inquiry
response.

Tho following command can be used to specify a "continuous" character size.
This command is optional; if It is implemented, the UP agrees to display characters
of any size:

<set.character.slzo.continuous) <*char.size.descriptlon*>

where <"char.sizo.descriptionB> is

<"BW.s.coord»><*BUs.coord">
<«CW.s.coord»><'CH.s.ccord'><»CT.s.coord«>

Tho coordinates spocify five dimensions. In screen coordinates, of the character,
as shown in Figure 6.

111.10. Segment Attributes

Although the graphical primitives that make up a segment may not be modified, a
small number of "attributes" may be. This section describes the attributes and
tho mechanisms for changing thorn,

Just after the <seg.open) common j is transmitted, any number of <"attribute">s
may be specified: these are attributes that are to be associated with the new
segment. At some later time, the < change.at tribute) command can be used to
Change any attribute that was specified in this original list. The reason for the
initial Hat Is that the UP may wish to generate the display file for a segment
differently if It knows that certain attributes might later be changed.

The attributes are Individually optional. If the the UP does not Implement the
<»et.xxxx.attribute) command, then it has no facilities for dealing with the
corresponding attribute

Attributes may be changed by the sequence:

<change attribute) <*seq.name*) <'attribute")

Such changes do not take effect Immediately: an <end.batch.of.updates)
command causes changes.

Tho possible <*attributc*) sequences are:

23

2-1123

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16, 1974 The Protocol

origin

Figure ft: A Character Site Description.
AH measurement» «re mao> In th» screen
eowrilnaie system. The pekil labeled
•tMtfttfi" u th* I*I«MM Mint for «ho
etwraciff. I.e. It coincides with the (x.y)
point set by the <s*g,move>. <*eg.o)ot>
er <«eodrew) previous to the <«eg.tent>.

HIghliohlinq. This is on on/off condition for highlighting (o.g. blinking or
Intensifying unnaturally) an entire sertmont. The relevant <"attrtbute">
sequence is either

<set.hlghliciht.attrlbule> <on>
<set.hlghlight.ottrlbute> <off>

or

The default is <off>.

Hit sensitivity. This on/off attribute is used In conjunction with Input
fncililicr. (sen III. 13). If a segment Is hit snnsitive, then its name may be
reported tu Ihr SP if a coordinate input device is pointed at any line, dot
or text that is part of the? segment. Ihn <"attribute*> sequence Is either

<set.hlt.sensitivity.attrihute> <on>
<set.hit.sensitivlty.atUihute> <off>

or

Default is <off>.

Intensity. This attributo controls the intensity of ell graphical primitives In
the entire segment. It overrides any <set.lntensity> settings within the
segment.

<sct.lntensity.attribute> <•count")

The permissible values of <"count*> ötn returned in the Inquiry response.
Default is something visible.

The intensity attribute nnri <*nt.intensity) are mutually exclusive within a
segment: a segment created with an intensity attribute will Ignore any
<set.intensity) commands; one created without an intensity attribute will
honor nit (set intensity) commands.

Screen select. If a user site has several display screens, the SP can
control which screens a particular senment is to be viewed on (see Inquiry
section for a description of bow the SP can discover the number of

24

2-1124

, A *. •*

.». • . • . * « • . » \r • »V« • ^v^»lviv>iVt-lvlv^

APPLICATION LEVEL: GRAPHICS RFC 493

August 16, 1974 The Protocol

p* m

m

screens In use at the user site). Screens are enabled by a mask byte,
with a bit for each of up to eight display screens (the high-order bit of th«
byte is the first display, the next the second, etc.). If the bit is on,
•posting1 the segment will cause the segment to appear on the)
corresponding screen. The default Is '200 (screen number 1 on).

<snt.screen.selnct.attribute> <"small.integer*>

Initial position. This command sets the position on the screen of the first
Item In the segment. This Indicates the Intention of the SP to either cause
dragging to be per formed, or to change the position of the segment st
some future time.

<set.position.attrihute> <"x.s.coord"> <"y.s.coord*>

As an example: <seg.open> <seg.nnme«2> <set.posltJon.attrlbute>
<coordinato*500> < coordinate* 500 > <seg.move> <coordlnate«400>
<coordlnato*600> <seq.dr«w> <coord»nate«6Q0> <coordinate»600>
<seq.post> <sog.nome«2> <end.batch.of.updates> causes s segment with
ono visible lino to be created. The line extends 100 units left of the initial
position» twti 100 units to the right. If we later wish to change the
position. the command <chnngo.attrlbute> <seg.neme*2>
<set.position.attribute> <coordlnoio«200> <coordinate»600> will move the
line 300 units to the left. Note that some UP's will wish to store segments
that are to be renositioned in sn internal format that Is different from that
for other segments (e.g., as a sequence of relative moves and vectors).

111.11. Sagrmm ffendnec*

This section describes facilities for transmitting information about a segment
stored In the UP bock to the SP. Ihis allows the SP to ssve "copies" of
segments to use later or to drive hard-copy equipment. The facilities can also be
used for dohunqinq or for certain kinds of "group sessions1' in which users st
several points in the notwerk may be working concurrently and wish to "transmit"
pictures to each other.

This collection of facilities <s optional. The implementation should, however, be
very simple, and we expect that most UP's will of for this service.

The command sent from the SP to the UP

<seg.rcadback.sogilst>

causes the UP to transmit to the SP the sequence:

<scg.readnack.scqtiM> <"count"> <"seg.name"> ...
<"count"> <"scq.name"> ...

P.*

k

The UP returns the count of posted segments, followed by their segment names,
followed by the count of unposted segments, followed by their segment names.

The command from SP to UP

<seg.rearihack.s*g> <"seg.name">

25

2-1125

I *_*■_*. *. «_"L *\ *-•- LILIJ »J «Am.1 M^ J_i AJLA^. ^l«.l. *.*Jk^lLmj£^JLJm^lmJLmJLm. t .. M*-V^ ' >.*» atJA-'J^T^-'«? - .'.

f.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16, 1974 The Protocol

causes the UP to send back to the SP a sequence in network format that
completely describes the nom«d segment. The sequence can be any legel
sequence of senment commands described in this section (Including character
si7e and type control commands) sufficient to unambiguously describe the
segment (i.e., if the sequence were transmitted to the same UP, it would
generate on identical display). The sequence is <seg.open> <"seg.neme">
followed by any attributes of the segment, such as <sot.hit.sensltlvity attribute>
<on> or <sct.lntensity.attribute> <5> followed by s sequence of graphical
primitives that are contained in the segment.

Intensity, lino type and charactor size commands (Just like those sent from SP to
UP) are imbedded In the sequence of primitivies whenever necessary in order to
specify the segment exactly.

Finnlly. at the nnti of the sequence of primitives, a <seg.cloae> is sent If the
segment was unposted, or a <sog.post> <*seg.namo*> is sent If the segment wee
posted.

111.12. Positioned Text

This section describes protocol for displaying positioned text on the screen. The
positioned text facilities are intonded to cater for tho noeds of display-oriented
text editors, like NLS. The SP can instruct the HP to create "text windows" on
the screen: a text window is a rectangular area in which a series of "Hnea" of
text can be displayed. Protocol commands from the SP permit eharactera wttMn a
line to be changed, permit lines to be moved, and the like. AN changes to the text
windows specified by positioned text protocol take effect Immediately.

The same mechanisms for dealing with positioned text can be used to provide
"teletype simulation1* for 1E IN11-like dialog with the server host, although thla le
entirely up to the UP Implementation.

The commands for creating and destroying text windows ere

<ptext.open> <*ptext.name*> <*count*> <*x.s.eoord*> <*y.s.eoord">
<*x.s.coord*> <*y.s.eoord*> <*count*>

<ptext.klll> <*ptext.nnme*>

The open command creates a text window, specifies s unique name for It, the
number of lines it is to contain (the first <'count*>), the coordinates of the lower
left and upper right corners of the window in screen coordinates, and the
(discrete) character size to use for art characters in the window (the second
<■ count•>). If the name specified in the open command already exiats, the eld
window is destroyed.

Tho kill command destroys the named text window, if no such window exists, the
command is ignored.

A number of attributes of a text window can be set with the optional command

<Ptext.set> <*ptext.nemo*> <'ptext.flags*>

Tho <*ptext. flags*) byte is simply a <•small integer*> of flag bits:

26

2-1126

APPLICATION LEVEL: GRAPHICS RFC 493

August \Q<\974 The Protocol

[•001] Accept unescorted characters ("teletype simulation*). If this bit Is
on. any characters trnnsmitted by the server host as part of TELNET
protocol should ho displayed in this text window. They are added "at the
end." with normal ASCII conventions about format characters. Optional.

['002] Automatically scroll when text window fills up. This Is probably only
useful in conjunction with teletype simulation. Optional.

['004] Wrnp long lines around to a new linn. This too Is most useful In
conjunction with teletype simulation. A wrapped string counts as a new
string. Optional.

['010] Make this text window visible. If the bit is off, the text window
remains (and may be edited) but is not displayed. Optional.

f'OPOl Make this text window -Hit sensitive.11 That is, the Input facilities
for pointing can be applied to the window. Optional.

A default setting of <aptoxt.llags*> to '010 is performed when a text window is
first created.

There »tn several commands for changing the contents of strings In a text
window. Strings within a text window are identified by a number (0 to n-1 where
n is the number of strings in the window and I he topmost string In the window Is
numbered 0). A <*strtng.number*> is simply the number of the string. In <"count">
format, (ach string has an implicit length associated with it (Internally In the UP);
characters In a string are referred to by position (numbered starting et 1).
Strings will normally contain standard ASCII printing characters.

The commands that modify strings are:

<ptext.seroJl.up> <*ptext.name"> <*stnng.number*> <*strtng.number">

Within a text window, scroll lines from the first string number to the
second string number up one tine. i.e. if the two string numbers specified
arc» x oud y, replace line x with x*1, x*1 with x*2. ... y-1 with y, end y
with a null string.

<ptcxt scroll.down) <#ptext.namc*> <#string.number*> <'string.number•>

Similar, but scroll down.

<ptcxl.move> <"ptext.namo"> <• string.number* > <*ptext.neme">
<'string.numher'>

Ibis command eatir.es Kin first string (specified by the text window name
und stiinti tiumlier) to he mown! lo the second string location. The first
stritte is replaced with A null string.

<ptex». edit) <*ptext.tiamu*> CMtring.number») <"posl*> <wpos2*> <-text->

fluw is the muni cnmmmid h>r editing strums. The arguments <"pos1*> and
<'pns2*> «re character ptvaimnn within Hie specified string (In <"count*>
tormut). The otlect of (he edit command is to replace the substring
beginning with character post atmt ending with character pos2*1 with the
specified text strut«!. If post * po*2. this simply means that the string Is
inserted before the post tb character. There are two classes of illegal
substring» that can be specified with post and pos2:

27

2-1127

—^,.,.e—'-y «.•.,..-.«•:* v.v.•.._•.•j».v.y..v.y.,v.Y,v.<*%\svt^vi..-^-^v.^v^-Vv.,v^ *.-:.. ..;,_• ^-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16, 1974 The Protocol

posl > length of string. In this cos*, the text string is appended to the
end of the present string.

pos? > (Icnqth of string)* 1, In this case, the command has the same
effect os if pos? were exnetly (lencjth of string)* 1.

Note that the text specified may bo a null string — hence tf postal.
pos2=lnrgo numher (e.g. 127), and tcxt*nuH, the entire specified string Is
replaced by the mill string.

<ptext.modify> <»ptcxt.namc"> <*string.number'> <"pos1*> <"pos2">
<"ptoxt.featurn*>

This optional command is used to select a substring that is to receive
special treatment (c.q. hiqhlmhtinq. or blanking). It can also be used to
make individual lines visible and later invisible. The value« of
<mptextfeature") are:

<ptext.hlqhllqht.on>
<ptexl.hiqhliqht.off>
<ptext.visible.on>
<ptoxt.vistbln.off>

Whenever a substring is inserted with the <ptext.edit> command, the
default Uptext.higblight.off>. <ptext.visible.on» Is estebUshed.

<ptext.rnmote.edlt> <*ptext.name*> <'strinq.number")

This optional command is an nd hoc attempt to allow UP's to implement
various local line-editing ruqtmona, without requiring Interaction with the $H
or SP. 1 his command specifies a strinq in a positioned text window that Is
to be "edited" by the user. When the editing Is finished, the line Is
returned to the SP via the TCLNf.T connection. (This solution Is
unsatisfactory for several reasons, but it seems necessary to offer euch a
capability.)

(There have been some suqqesttona that wc try to devise a subset of these
facilities that could be implemented on some kinds of text terminal with no
external character memory. If the terminal has the ability to Insert and delete
characters at wiil. and to do the scrolling functions listed above, then the ordy
troublesome commends are the <ptext.move> com.nand, which requires reeding
characters from nt% arbitrary line, and the <ptext.modify> command.)

iii.13. input r*ciim*m

This suction describe» a set of input facilities for the graphics protocol. They
have been kept very simple to allow simple interaction with graphics programs
without tremendous complexity Specific interactive requirements may
necessitate special-purpose protocols. Ihr input facilities ero optional: many
graphics application .»rmirams nn«d only keyboard facilities provided by TELNET.

Many details concerning provision of input facilities are left to the designers of
the UP. The main reason for this approach stems from vast differences among
operating systems and Input device hardware -• no detailed set of specifications
could be mot by any one site. For example, en operating system may use

28

2-1128

J.^. .'^IaA» * » »V ±.m.jL~. Jt -. A!^ »"-. V- » — rfL ft- «!-. ■ '-W.'A,?"'-f.**/-lV/,J. '-»-•^J^-'

APPLICATION LEVEL: GRAPHICS RFC 493

Auoust 16,1074 The Protocol

"thinning" algorithm when pnr.sing tablet coordinates to a program In the system;
cliff «rent operating systems will surely have different conventions. In addition,
individual (human) users mny prefer slightly different stylos of interactions; some
of the stylistic flexibility that the protocol leaves open to the UP can be
exploited by the user. However, the protocol does specify the purpose of each
kind of input device and event. The UP should abide by the spirit of these
descriptions, although the details may vary.

The Input provisions provide mechanisms for the server tc:

1. Road tho sfafe of a devico on demand.
2. Uso an Interactive technique, called an event.

111.14. Reading tho State of* input Devices

This section describes facilities for reading tho state of any Input device
available at the UH.

The repertoire of available input devices Is reported by the UP to the $P in the
Inquiry response. This list includes, for each device that Is available, e one-byte
"Index" that uniquely identifies tho device. This Index, referred to ee en
<*lnput.devtce.number">, is used by tho SP to request measurement of the state
of the device.

The protocol provides for the following five types of devices:

Coordinate Device

The state of a coordinate device Is a pair of coordinates In the screen
coordinate system, these coordinates could be derived free) e tablet end
stylus, from a Itqht pen. from two knobs, from a keyboard (by typing In
values, or using a keyboard-propelled cursor) or whatever.

Linear Device

The purpose of linear devices, stich as knobs. Is to provide a fraction in
the range 0 to 1 In the SP. The UP may, If It wishes, provide some
"echoing" of the current knob value, such aa a changing number on the
screen.

Key Device

Tho purpose of keys (or buttons) is to provide "function button"
information to the SP. A key m*v bo a stngte button (on/off) or e
collection, arranged to form a number of possible code combinations (e.g..
MLS keyset) Tnn $tntn of ihn key Is a emit describing the State of tho
key (Wt*0 for normal position. bit*1 tor depressed position).

keyboard Device

A keyboard device provides a way of typing characters In the standard
ASCII set. The state of ihn krybnard m Hie ASCII character code for the
key most recently struck, or /em d Hie character has «»ready been
reported. (Note that the "slate" of a keyboard is somewhat nonsensieel
•-we are more interested «i tho "events" caused by a keyboard. The
keyboard is listed here for completeness.)

2-1129

^-^-^-V-V-V-^'. '.'J-'. v. v-k - -J. %Z *-' *--. %J*. ^•"v-*.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16, 197*4 The Protocol

Tim«

If the UP provides ■ "time" input device, then it is wiiiing to report to the
SP a measurement of the current time. The protocol mekee no tight
specifications «bout how time is measured, except thet It should be
counted up once every 10 to 100 milliseconds. The VP may choose to
count time somewhat inaccurately (e.g., by counting m an idte loop).

The SP can request that the state of a number of Input devices be rood end
reported back with the optional command:

<input.report) <"cotint*> <*input.device.number-> ...

which specifies a list of devices whose states are to be measured ee nearly
simultaneously as possible and returned to the SP ki the formet:

<input.report) <°deviee.roport.sequenee">

where <*devlcc.report.sequence•> is a kst:

<*count*> <"lnput.device.reporr> ...

Each class of device has a canonical rcporttnq format. <*lriput.dev*se.re»oft">.
The following paragraphs describe the format of <*ktput.devteo.re*orta>.

Keyboard Device: <«input.device.number*> <*ceunt">

The character code of the last key struck Is returned m <"count"> format.
Zero Is returned If no key has been struck since the last report.

Key Device: <" input, device.number •> <»count•>

This report simply specifies the current vakie of the code of the key
device (0 to n-1 where n Is the number of states of the device).

Linear Device: <*input.deviee.nember'> <*large.fract«en#>

This simply reports the reading of the dev#lc« as a fraction of Ita maximum
excursion.

Coordinate Device: <*irtput.devtee.mimber"> <*x.s.coord") <*y.s.eot*d*> <*ew*>

This report gives the current coordinates of the Input device, end en
tnriicntmn of whoth*» th* "pen switch" (If it exists) is depressed «*ew*>
• <on>) or not (<*sw«> * <o»f >).

Time Device: <*lnput.device.iiumb«r*> <*time*>

The time report specifies the current tune. The fotMt of <*time"> »a
Oiarno.integer* > Note that ttme is recorded modulo 2

111.15. Input fn+nts

The protocol provides a set of f «duties for rcportmu to the SP the reeutte of
several kinds of input avents «MIMIC»* by trts user. This Is ki contrast to the

30

2-1130

APPLICATION LEVEI GRAPHICS RFC 493

August 16. 1974 The Protocol

"report-on-demand" facilities of the previous section. In particular, the protocol
associates wan several of the events a particular kind of Interactive technique,
often Involving local feedback.

Keyboard Event

A keyboard event occurs when a key of a "keyboard device" Is struck.
"He "report" for thU event is the ASCII code of the key struck.

Key Event

Key events cause reports to be sent to the SP when the user manipulates
a key device. A key event can be reported when the key Is depressed or
when it is released. (The NLS keyset is almost Impossible to use unless
key values are reported when a key Is released.) The "report" ie identical
to reporting the state of a key. as described above. r*

Linear Event ';.»'

The definition of this event, which can only be provided by "linear sv
devices." !s left to the UP. It might occur if the user changes the reading p
of a knob more than a certain threshold amount, or whatever. ™

Positioning Event *„/

A coordinate device is used to specify a particular position or coordinate
pair. r or example, the user might br'efly depress a tablet stylus and thus
specify a position. The dotaila of how the positioning event Is caused wm
loft up to the UP.

Pointing Event

A coordinate devise is used to identify some segment, figure (structured
picture definitions) or portion of positioned text thet Is currently displayed
and that has been made "hit sensitive." The user can thua point at
something on the semen. The SP expects to be told the neme of the thing
pointed at and the coordinates where the "hit" occurred. The UP cen use
a number of devices snd technigues to provide these featurea (e.g. light

fv pon. tv J»!et and stylus with a hardware or software comparator). The
details of when ihn hit Is caused are left to the UP. The size of the
"window" used to search for the hit Is also left up to the UP (the human
user may want to control this). As a local option, the UP may want to
highlight in some way the segment or character that is pointed at. This
identification can be removed when pointing is disabled or when the user Is
no longer pointing at the object (after a possible time lag). These details
aro up to the UP.

Stroke Event

A coordinate device Is used to "draw" a stroke. The UP shows on the
screen a track of ink loft nrhnui the coorriinai« positions, jnu fepofts to
the SP the coordinates of points along the stroke. The dotaila about when
a stroke is terminated (and hence when the inking event Is caused) are
ieft to the UP. One common convention is to begin a stroke when the
stylus pen switch is depressed, to continue recording points st some rat«
as long as the switch stays closed, and to terminate the stroke when the
switch opens.

K
31

„N __________________«-—-___«.

2-1131

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16, 1974 The Protocol

Multiple Stroke Event

This event is similar to the stroke event, hut is used to record a sequence
of several strokes. This Is useful for on-line character recognition. The
usual technique is to assume the user is finished with a collection of
strikes when a period of, say, 0.5 second has elapsed since the
completion of the last stroke.

Dragging Event

A coordinate device is used to move figures around on the display screen
without rcquirinq intervention from the SP. The idea Is to attach a segment
to the coordinates delivered from a coordinate input device, such as a
tablet stylus. This interaction is not possible on many kinds of displays
(e.q.storaqn tubes); UP's drivinq these terminals will not be able to provide
dragging. On many refresh displays, an implementation of dragging is very
simple: each segment can be defined as an absolute position, followed by
relative motions (i.e. relative vectors, and relativo invisible motions). In
addition as the segment is recorded in the UP, we record tho maximum and
minimum values of x and y that the beam visits. In order to drag the
segment about, wc receive coordinates from the Input device, check
against the x and y maxima and minima to be sure that the new coordinate
position wilt not cause any portion of the segment to go off the edge of
the screen, and if not. the coordinates of tho initial position Instruction ere
replaced by tho tablet coordinates (this check is only necessary for
displays that cannot tolerate vectors or text that go off the screen), in
order to be dragged, a segment must have been created with the
<sot.positlon.attributo> ottribute specified (thus the UP can generate the
segment of this display file as described above).

Pendown, Penup Events

Those are special cases of positioning events which may be meaningful In
cettain applications. The pendown event Is caused when a stylus I«
pressed onto a tablet surface; the pemip event when it Is raised.

It any of tho positioning, pointing, stroke, multiple stroke, dragging, pmnup or
pondown events are enabled, the UP should cause a tracking dot (or some
form of positional feedback) to appear on the screen.

111.16. enabling Events

Tho repertoire of Input event« is reported by tho UP to the SP In the Inquiry
response. Ihis list Includes a one-byte index, the <*lnput.event.numbera>, that
uniquely identifies each event implemented by the UP. If, for example, a pointing
event can be caused by a light pen or by a stylus device, then two separate
<ainput.event.number">s are assumed, one for the corresponding event on each
device.

The SP may send commands that enable and disable input events. If an event Is
not enabled, the UP can ignore the corresponding device (I.e. nemü not buffer
events that occur en an un-enuliicd device). (As a local option, the UP may send
characters typed on an unenabled keyboard through the TELNET connection at
"unescorted characters.")

32

2-1132

APPLICATION LEVEL: GRAPHICS RFC 493

as
August 10, 1974 Tne protocol $5

When the SP enables for on event. It specifies the event being enabled, the
conditions under which the event will be disabled, and what Is to be reported
when the event occurs. The command is:

<lnput.enable) <"input.event.number")
<"input.tiisnhle.condition">
<'lnpjt.report.sequence")

The <*input.disoble.condition*> is on« of:

<nevcr> Event remains enabled (until further notice from SP).

<with.thls.event> Disable this event when this event occurs.

<wilh.ony.event> Disable this event when the next event occurs.

When an enabled event occurs, the UP sends to the SP an <"loput.event.report">
that describes the results of tho event that occurod. in addition, the application
program may desire that the state of various input devices be measured when the
ovont occurs, and that these readings also bo reported. When an event Is
enabled, the <"lnput.report.sequence"> specifies an ordered list of devices
whose state should be moasured:

<wcount"> <*lnput.dev»ce.number«> ...

The UP should save the report list and associate It with the event that Is enabled
with this command. When the event occurs, trie report iist is used to compose e
message for the SP that describes the event. (This Is the mechanism used to
report the time at which an event occurs.)

The dragging ovont requires an additional argument, the <'seo,.name*> of the
segment that is to be dragged. This is treated as a special case, and Is set
(before enabling) with the command:

<input.drag.set> <*»nput.event.number*> <-seg.neme">

An event may be explicitly disabled by

<Input.disable> <°inptit.cventnumbcr">

(If stroke collection is dtsabted, the ink is cleared. If notnting is disabled, any
highlighting for the object pointed at enn be cleared.)

Tho entire input system is cleared and all events disabled with the command

< Input.reset.system)

lil.l 7. Event Report$

When an input event occurs, an event report is sent item the UP to the 3P. The
form of an eve:it report is:

Onput.reporO <'input.event.roporf> <*input.roport.seguencel>>

33

2-1133

^_

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16. 1974 The Protocol

The < "input.report.sequence" > is defined above, and is the collection of state
measurements made on various input devices when the event occurred. The
<*input.cvcnt.roport"> has a canonical form for each event class as follows
(unless otherwise noted, the format Is the same as the corresponding
<"input.devicc.rcport">):

Keyboard Event: <"input.event.number"> <*count">

Key Event: <"lnput.evcnt.number"> <"count">

Linear Event: <"input.event.number"> <"large.fractlon">

Positioning Event: <"input.event.number"> <"x.s.coord"> <"y.3.coord,>

Pendown Event: <*lnput.event.numher"> <"x.s.coord"> <"y.s.coord">

Penup Event: <"input.event.number*> <"x.s.coord"> <"y.a.coord">

These last three reports simply specify a coordinate pair, In the screen
coordinate system.

Pointing Event: <"input.event.numbor"> <"hit*>

This report varies with different kinds of things that are hit. A <"Wt*> Is
one of two things:

<segment.hit> <"seg.namc"> <"x.s.coord,,> <*y.a.coord">
<ptext.hlt> <"ptext.namo"> <"atrlng.number,> <"pos1a>

The first specifies the name of the entity that waa pointed io. The lest
specifics the namo of the text window, the string number end eherecter
position within the string that was identified.

Stroke Event: <-input.event.ni»mhcr"> <"tlmed"> <"stroke">

There are two ways of rnportinq stroke information: with and without tanes
associated with each point. The SP requests that time be reported by
including the "time" device in the <"input.rcport.scquenee*> when enabling
the stroke event. The UP will then record times If It can.

The stroke report contains an indication of whether timing Information Is
associated with each coordinate pair. If < »timed* > la <off>, a <*atroke*>
is:

<"count"> <"x.s.cocrd"> <*y.s.coord#> ...

where <"count"> is the number of coordinate pairs that follow. If <••**•*■>
is <on>. a stroke is;

<"count"> <"x.s.coord"> <"y.s.coord"> <"time*> ...

in other words, each coordinate pair has a time associated with It as well.

M;.-:fple Stroke Event: <"input.event number') <"timed"> <*count"> <"atroke"> ...

This report <s very similar to the stroke report, but has a provision for
listing severs strokas. Tho <"count"> is the number of strokes reported.

34

2-1134

APPLICATION LEVEL: GRAPHICS RFC 493

August 16, 1974 The Protocol

Dragging Event: <*lnput.ovont.numbcr*> <tx.s.coord"> ('ys-coord')

This report simply specifies the coordinate pair that replaces the original
home (• «. first 'move1 instruction) of the dragged segment

111.18. Inquiry

The UP can transmit to the SP a number of bytes that describe the terminal
serviced by the UP. This information is constant (so that a UP implementation
does not havo to compute it each timo). and is usually requested by the SP et
the beginning of a graphics session.

The SP can ask for the Inquiry response by transmitting to the UP the command:

< inquire)

The UP then transmits to the SP the sequence

<inquiro.response> <*eount*> <■ response.phrsse*> ...

This response includes a count of the number of response "phrases" that follow,
and the response phrases. In any order. A <"response.pbrase'> la

<"response.tegfl> <"count*> <*rftsponse.vaiue">

Tho count Is the number of bytes in this particular <Veaponee.value*>. The
reason for this organization is *« make the inquiry responses open-ended: the SP
can ignore <*responsc.valuea>s it cannot Interpret.

In tho description below, the tags and vakir s for each kind of information are
sper»«e?* !f i «*-«*••*» >« «fwwMfUi* it may be assumed If the Inquiry reaponae
cioos not include a phrase that overrides, the default.

UP Features

1. What protocol commands are implemented in the UP?
Tag: O.implomented.commands >
Value: up to 32 bytes of bit mask
The I th bit of the mask is a 1 If command i is implemented (I renges from 0
to 255}. Since in* <'rasponse phrase"> for this Information contains a
count of the number of bytes that comprise the response, it is not
ner«»ss«?y !?> provide the cntir** 32 hytes in th« f»sponae. In the present
protocol, there are only 102 command codes assigned (0-101). so onfy 13
hytos are raqutrrd to completely describe which commands are
implemented. This information >s msndatory in the response.

Terminal Features

2. What is the screen coordinate system?
Tag: <l.screen.coorchnates>
Value: <-x.le!t.lv»> <«y.bottom.lv'> <• x.right.Iv*> <"y.top.rva> <"count">
This specifies precisely the admissible values for the <*tx.s.coord'> end
<"y.s.coord*> sequences *n the subsequent protocol. The <*count">
specifies how many bytes are u%cd to make up a coordinate value (eg,
this would be 2 for displays thnt arm addressed as 0 to 1023). Thu*. tho
numbme of oyfss in a <m .$.coord* > is tixod Of fee UP.

36

2-1135

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16, 1974 The Protocol

The four <■ . .lv"> constructs that follow are examples of the screen
coordinote system. Each <• . .Iv*> is a 4-byto sequence that specifies e
32-blt signed two's complement number. The four constructs thus specify
the left, bottom, right, and top limits of the addressing space of the
terminal.

fxemptof An IMIAC requires two bytes per coordinate; the lower-left
corner of the screon is (0,0) and the upper right is (1023,1023). The 17
bytes of response are thus:

•000 '000 '000 '000 ;;x left
•000 '000 '000 '000 ;;y bottom
•000 '000 '003 '377 ;;x nqht
•000 '000 '003 '377 ;:y top

'002 ;;numbcr of bytes In <• .s.eoorda>

As an example of the computation of a screen coordinate, suppose thet we
wish to compute the x screen coordinate of a spot that Is the fraction f of
the width of the screen (f»0 Is at tho loft edge, f"1 et the right).
Compute s ■ (<"x.rlght.lv">-<"x.lefUv">)V ♦ <"x.left.rv*>. Then transmit £
to tho UP tho low-order n bytes of the result, where n Is the value of
<"count*> in the response.

This response is mandatory.

3. What Is the screen size?
Tag: <l.acreen.slze>
Veluc: <Mexf> <"tcxt">
The two text strings specify, In decimal format (e.g. 126.43), the x end y
dimensions of the screen in centimeters. Note thet this formst Is chosen
so that roll plotters c»n work effectively: they might choose e huge screen
coordinate system, end specify a long dimension es well, o.g. 1000
centimeters. •'

4. How many screens are there?
Tag: <l.sereen.uumber>
Value: <*count*>
Default is 1.

6. What is the device name?
Tan: <l.terminal.name>
Value: <*text*> <*texf>
Two strlnns are returned: the first is some form of manufacturer's name for
the terminal (en "HIM ?,?50"). Ihe second is a string thet emn uniquely
Identify the terminal at the user site (e.g. "Terminal In room 34."). The
protocol makes no specific format requirements on these strings — they
«re for information only.

6. What is the terminal typ*?
Tag: <l.termtnni.type>
Value: either <stor<**i* t™mmai>, <st9fege.wttft.setecttve.erMe>,
<refresh.calUaraphic> or < re fresh. vidco>

7. How many resoivahle Intensity vaHies are there?
Tag: <l.tnlenau*ea>
Vehie: <"count•>
If the < "count* > value is n. then the permissible values ss arguments to

36

2-1136

•>>>.*'

APPLICATION LEVEL: GRAPHICS RFC 493

A

>

August 16. 1974 The Protocol

th« intensity-sotting functions sre 0 (no intensity) through n-1 (maximum
Intensity). Default m>2.

How many different lino types are thero?
Tag: <l.line.type>
Value: <■count'>
If tho <"co«mt*> value is n, then the permissible values as arguments to
the type-setting functions «re 0 (soild) through n-1. Default n«1.

Whftt characters can be displayed on the terminal?
Tag: <i.charactnrs>
Value: 32 bytns
Each of the 128 ASCII characters has a 2-blt code for It. The codes »rm
00 (cannot display K 01 (can display exactly), 10 (can transliterate, e.g.
lower case to upper case, or tab to spaces), 11 (this la some visible
character. but not ASCII). Default: 04 cherester ASCII.

l
■VA*.

10. Whet character orientations are there?
Tag: O.cbaracter.ortantatlons)
Value: < •count0 > Olargo.frsctlon') ..,
This response returns s list of available discrete orientations. Each
fraction represents w anote (In range 0 to 2*pi) that le available (e.g.
0*normnl horizontal; 1/4 is vertical running upward, etc.). If the <*eount">
is ii, then Indices passed to the <setxharacter.orientatlon.dlscrete>
command are in the range O to n-1. Default »«1, and the corresponding
direction is 0.

11. What are the character sizes?
Tag: <l.character.si/c>
Value: <*count"> (•char.size .description» > ...
If <*count*> Is n. then ihern are n discrete character sizes available, end
the argumonta to <set.character.slze.diserele) should range from 0 to n-1.
Tho character size descriptions are (as nearly as possfehs) Hi 2r49? of
Increasing size.

i

< •input device.description* >

1 ? What input rinvlees «r« AvaMaM«»?
Tarj: O.evatlabfe.t.-tptil device)
Value: < •input, device, number" >
<*events provided") <*text*>
This responso phrase specific* the identity of one input device (they are
broken out so that the $P can skip over individual ones whose formet It
cannot interpret). The <*input.devtce.miniber"> is one byte that ia to be
used by th* SP tn refer«»** the device, The <'text*> is a text string for
human consumption that «rscfJhes the *evizx. (This string mieh! be used
by tho SP to <ma«n<* tn a dialog with tho user, asking Mm which devices to
use tor «what tune lien.) The <*tni>ut.dcvtce.dcscripMoo"> is one of:

K."

< device, k ey board >
<device key) <»count*)
Cdevtee.üneef)
» »it»v»c r. coot t Im A t n >
(device !lm«) <'count*>

The key devtcn dive*, m <»count*), the number of states the key can
Assume (c ti. en HLS keyset enn ISMWC 32 states). The time device
«lives, in <*eeurt*,>. th* *tJj5?o«tiRate number of mtHlsecofids that etepse
between increments to the lime counter.

tV.V

a.*

2-U37 m

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16, 1974 The Protocol

Each device also lists the kinds of events it can provide, and the
<"input.cvrnt.number")s used to reference the events. The reeson for
providing unique <"input.nvent.number">s for each (device.event) pair ia
so thnt more than one device can provide similar Interactive techniques.
The <"events.provided*) is:

<"count"> <"input.event.number") <tcvent.descriptiona> ...

The count is the number of different events this device can provide. Each
event is specified by its unique index and the <"evsnt.description" >,
which is one of:

!

<evont
<evrnt
<evcnt
<event
<evcnt
<event
<event
<event
<event
<event

keyboard)
key)
linear)
positioning)
pointing)
stroke)
multiple.stroke)
dranging)
.pendown)
.pen tip)

111.10. M/sce//aneovs

This section describes a coiieciion of mi»coüim«K>uSi vüSiiSirwi provided Jr. the
protocol.

The sequence

<escape.protocol) <Mext">

is a way for the SP to transmit device-dependent information to the UP or from
the UP to the SP. The protocol makes no provision for the format or encoding of
the text string.

The command from SP to UP

<synchronize) <"count ">

cause" »he IIP to resnond

<synchronize) <"count•>

This provides a method of synchronizing things if absolutely necessary (e.g. a
way of knowing whether a certain Input event was caused before or after the
display was changed with an "end batch of updates" command).

The command

<reset>

CAM«««« the UP to reset itself to a potnt r»nht utter the initial connection protocol
has been completed end the connections opened. During earty atagea of
debuogmg server and user software, this win doubtless be very useful.

38

2-1138 ■r

APPLICATION LEVEL: GRAPHICS RFC 493

Auqust 16. 1974 The Protocol

Error conditions detected In the UP may bo handled in several ways (the protocol
makes no precise requirements):

1. ignore thorn, or have the UP try to continue with as little damage as
possible. Evon severe errors should not crash the UP. since Its operation
is ossontlal to permit the user to communicate with the SH and the
application program.

2. Inform the SP of the error detected.

3. Inform the wer (locally) of the error detected.

As a general strateqy. the UP should probably try these In order. Certainly the UP
should attompt to deal adequately with all errors (particularly such things as
running out of display buffer space) so as to minimize the chances of a user
losing n session's work.

Experience with common orrors is probably noeded before e useful error-
mnnngoment scheme can be devised. For this reason« we provide a mechanism
for the UP to report to the SP any error conditions it dotocts (In free text format)
and vice-versa. Thus system programmers at each end can. by saving and later
examining error messages, keep track of major sources of error. The error report
Is

<error.string) {"text*)

In some networks, it may bo neeensary to establish synchronization of sender and
receiver of protocol. For example, if a message Is lost In the network, the UP may
start interpreting oprranrf bytes as if they worn command codes. Since this is
not a serious problem in th« ARPA network, the present protocol does not enforce
a synchronization mechanism, The followinq scheme is believed to be adequate,
and wHI be instituted if network reliability is a problem:

Wo shall define a synchronization command, called GS. that has a
code different from that of any protocol command. Whenever a
data byte that is equal to GS is transmitted, it must be doubled (I.e.,
it is transmitted as GS. GS). A 'angle GS may precede any protocol
command rode. Ihiis. wbenever a receiver encounters a single GS,
it knows that the next byte is a protocol command, and not an
opftrand. Tbe sender may transmit a GS preceding any command
byte. It may choose to transmit as many or as few of these aa
seem appropriate.

39

2-1139

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16. 1074

SECTION IV

Implementation Suggestions

The details of the protocol may seem prohibitively forbidding. This section
attempts to dispel that notion and to make It all appear so simple that standard
mortals can Implement It.

The op-cod© daflntlons (saa following saction) group the commands Into four
groups:

Mandatory
Group 1 — Transformed Format
Group 2 •• Positioned Text
Group 3 — Input

Once the mandatory functions arc implemented, any combination of the remaining
throe groups snd the various optional commands may be implemented. Per
example, a UP that Implements the Mandatory functions snd Group 1 will be very
useful Indeed: msny curve-plot ting snd mathematics package« that wieh to do
graphic output but are content with teletype-like Input (provided by TELNET) cen
now be used.

An implementation of Mandatory and Group 2 would be adequate for simple page-
oriented text editors; addition of Group 3 permits HIS snd other more Interactive
systems to work. (The only combination that Is probably net meaningful la Just
Mandatory and Group 3.)

Since many of the features of the protocol are optional, It la Hkely that many
Implementations will not Include msny of the options. Teere Is no tilg me
associated with omitting option*! nottiom.

In order to diatribute information about sites that have implemented server or
user programs thai com'om io the protocol, we would Wee to estebttsh en informal
"clearing-house" for auch information. These with information to give or re^ueet
Should address:

Robert F. Sprout!
Xerox Pak» Alto Research Center
31A0 Porter Drive
Paio Alto. Calif. 94304

or
SPflOUUCPAAC-MAXC (ARPA network malt)

Especially welcome Is tnlormstton shout implementstlon» of the protocol that can
bo offered to others (e.g.. if someone writes an SP facility for INTEMJSP. or a UP
for an IMtAC).

<*.». jf p

K < *\

>.>:

40

2-1140 m

APPLICATION LEVEL: GRAPHICS RFC 493

August 10, 1074

SECTION V

Op-Coda Assignments and Options

This section assigns a number for nach of th« protocol command bytes described
In section III. and tries to Indicate what is optional and what Is not.

The options column describes the conditions under which the UP should implement
the command. M stands for "mandatory." and 0 for "optional." M-1 means
mandatory if any commands In group 1 ar% implemented. I.e. if any M-1 command
la Implemented, then all M-1 commands must bo. 0-1 means optional If M-1
commands are implemented, otherwise not Implemented.

The op-codos w grouped so that they may be decoded without requiring a full
dispatch tsble if entire groups are unimplemented. The high-order three bite of
the op code ere the group number, the remaining five bits are the command within
the group.

ft

Inquiry Commands
< Inquire)
< Inquire.respense >

General Commands
<nscfipc.protoeot>
< synchronize)
< re sot)
< error, string)

Transformed Format Commands (Group 1)
< sen open)
<sen.close)
<scn-iH»si>
<se<|.impost >
Ueo.kill)
<cnd.botch.of. updates)
<seq.append)

<sen.ik>t)
<seg.movc)
<*erj.draw)
< sentnxt)
<set. intensity)
< set.type)
<set. character, orientation, discrete)
< set.character orten!«tM»vcontitmo«is)
<set.ch«r«t:tt*f.»i/e.düvcrcte>
<»•! character size continuous

<cha«Mie attribtit»)
< set .htohftqhl .attribute >
<set Ittt.sensfthdty.attrilMtte)
<sct.intensity ettrientc)
<*etscreen.*etecf attribute)
< set. position at tribute)

1 M
2 M

3 0
4 0
5 0
0 0

32 M-1
33 M-1
34 M-1
35 M-1
30 M-1
37 M-1
30 0-1

30 M-1
40 M-1
41 M-1
42 M-1
43 0-1
44 0-1
45 0-1
40 0-1
47 0-1
40 0-1

40 0-1
SO 0-1
31 0-1
02 0-1
53 0-1
64 O-l

AM

m

41

2-1 Hi m.

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16, 1974 Op-Cod« Assignments and Options

a
<sea.readback.senllst>
<aea.readhack.soa>

Positioned Text Commsnds (Group 2)
<ptcxt.open>
<ptext.klll>
<ptext.sot>
<ptext.serotl.up>
<ptcxt.scroll.ctown>
<ptext.movn>
<ptext.odit>
<ptcxt.modl!y>
<ptext.remole.edlt>

Input Commends (Group 3)
<lnput.enable)
< Input.disable)
<lnput.rcr*ort>
< Input.event >
<lnput.resot.system)
<lnput.drso.set>

66 0-1
66 0-1

64 M-2
06 M-2
66 0-2
er 0-2
66 0-2
60 0-2
70 M-2
71 0-2
72 0-2

06 M-a
07 M-a
06 0-3
00 M-a
100 M-a
101 o-a

Other code ssslonments (these ere not commends)
<off> 0
<on> 1

Positioned Text
<piext.vtst»ieon>
<ptext.vislbte.nn>
<ptext.NahUolit.off>
<ptext.Moh»qht.on>

Input faeMlUc*
< device .keyboard)

<devtee.knear>
< device, coordinate)
< He vice, time >

< event,
<*vent
< event
{event
<event
<event
<event
<evr>nt
<event
<event

keyboard)
key>
Nnrnr)
i*OAitiomR9>
.pointino/
stroke)
eaNtiple.stroke>
0>a«rf|ln«>
.pendowo)
.pee«r>

< never)
< wit b. this, event)
<wttb.any.event)

<seoment.hil>
<ptext.htt>

0
1
2
a

o
1
2
3
4

0
1
2
6
6
7
6
0
10
11

0
1
2

0
1

42

2-1142

APPLICATION LEVEL: GRAPHICS RFC 493
U

August 16, 1974 Op-Cod« Assignments and Options

Inquiry tan definitions
<l.implemented.commands)
<i.screen.coordinates)
O.scraan.slzn)
O.scroen.number)
<l.terminal.r.ame>
<l.terminal.type)
<i.intansitlas)
<I.Hno.typ«>
<l.characters)
<l.character.oriantatk>na)
<l.character.size)
<i.svsMsbl«.input.dovlct>

1
2
3
4
6
6
7
8
0
10
11
12

M
M
C
0
0
0
O
0
0
0
0
0

< refresh.calligraphic)
<stor«c,e.tormlnal)
<stor«rj« with.selective.arasa)
<rofreah.vtdeo>

0
1
2
3

JÜ.

2-ms

\~m ■ 8 ■
v/.- V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

August 10, 1074

Appendix

Outline of Structured Format Protocol

A v-« m
This appendix presents a preliminary design for a structured output formet
protocol. It Is similar to tho "groups and items" technique [N&8]. It cater»
primarily for high-performance displays that are capable of implementing
transformations In hardware and of Interpreting a structured display fH«.
However, software processes csn be used by a UP to simulate these facttltlea Itf
the display does not have the capability.

Display Structure

A display structure consists of figure*, each containing any number of unftm.
Thorp are two types of units, primitive units ant\ cait units. Primitive units contain
drswinct Instructions and associated coordinates that may generate visible
Information on the display screen. Drawing instructions and coordinates sen
occur only in primitive units.

Call units givo tho display structure a subroutine capability. A can unit Invokes
the display of nnother figure. In other words, a call unit allows one figure to
contain instances of other figures. As well as providing for subroutine-style
control transfer, call units can be uned to establish the parameters to be used In
the display of the subfigure. For example, a call unit can be used to call a figure
with a specified intensity sett inn and translation. On return from the called
finure, these parameters are restored to their original values.

A figure is an ordered list of units winch can be any mixture of primitive and ea*
units. Each finure begins with a /Minder and terminates with the tlgttrm eng* «*Vt.
The ordering of units within a fiqure dees not affect the display produced, but,
particularly in lannuagcs such as LISP, it may he convenient to have this ordering
correspond to some application data structure ordering.

In order to uititorstönd IK>W control PAS.»«» tftoruoh a structure, one can think of
the display elements AS fellow«»: futures are »uttroutine« and units ere linked
blocks of in-line code When all of the units contained in a figure neve been
executed, the finure entl umt returns control to wherever the figure was called
from. A primitive umt contains line and character descriptions en4 e trensfer to
the next taut. A cell unit contains a sttfcrouttne cea to a subftgure en4 a trenefer
to the nexl unit In See. Figure 1 sttowa a typical display structure.

Accessing Mechaninm»

Flfiures are reference«! by user>Asstnned name*, llnits may be given names st
the option of the user. Mo two futures cjin have the Käme name, and no two units
wit run a fin«»« can have the »am* name. HOWCVM, units in separate figures can
have htontical name». «uwl a und can be "named after* (i.e.. carry the same name
as) a fteure, i Untre names are «ratted ah*hot ami unit names local to reflect the
fact that a unit name only dtstmoutshei between the units within a figure.

To reference a fteure, one aterety refers in It hy name. To reference a ufUt within
a figure, one sueeUcs both the figure and ue#? names. It is ihts naming mechanism
widen makes it possible to mat* (ncrt-atenui changes at lite dtaeley.

The display structure exists at fhr Utt. rather than at the eppftcatlon program.

44

2-1144

APPLICATION LEVEL: GRAPHICS RFC 493

August IG, 1074 Appendix

FIGURE
HEADER

CALL
UNIT

PRIMITIVE
UNIT

FIGURE
KEAOER

PRIMITIVE
UNIT

CALL
UNIT

FIGURE
HEAOER

FIGURE
ENO UNIT

rifur» 7: A Ty»iccl »*|H*y Struct»«

For figure and unit nsmrs to he useful, the application program should generate
display names carefully to itisuro a one-to-one correspondence between display
names snd application program data structure parts.

Primitive Unit

A primitive unit can be used to draw any combination of tines and characters.
Mori» specifically, a primitive unit can consist of any numoer or combination of

->i«cal primitives for drawmc; dots. Itnns and tout (sieutar to the primitives for
IK, transformed formst, section III.6). Display coordinates w two's complement
fractions of appropriate resolution centered about the point (0.0).

An option should be provided in the protocol to specify graphical primitivee In a
three-dimensional coordinate system.

Cat! Unit

CaN units enable several similar picture parts to be described by the same figure.
For example, the display of a circuit diattram can be constructed from a figure
winch is composed of the lines for a resistor and cad units of this figure for eech
resistor *n the display. All coordinate transformations and changes In mtenelty
are specified as parameters of catt units.

Master and instance rectanoles are used to specify the capping end acattng of

46

2-1145

J A '"* *•»'*■•«• >' Y •1f^
v?.iV •-,•!•• ,vv V Y V

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16. 1974 Appendix

coordinates. A mnstcr rectangle Is on area in tho coiled figure which is to be
mnpped into An arc« specified by the instance rectangle in the cailinQ figure (see
Figure 8). Lines in the called (inure which have coordinates outside the master
rectangle are not displayed in the calling figure; linus in the colled figure which
cross the master rectangle are clipped when they wo displayed In the celling
figure.

»MASTER RECTANGLE INSTANCE RECTANGLE

CALLED FIGURE CALLING FIGURE

Several ways of describing the master and instance rectangles of e cell unit
should be provided in tho protocol:

1. If no master and instance rectangles nrit specified when erecting e eel
unit, the coordinate* of the called figure are not cupped or transformed but
ere displayed Just ss they appear in the called figure.

2. A move ca#7 unit has master and instance rectangles which are maximum In
sl/e and offset with respect tn each othm, thus "moving* eH the coordinates
of the called figure by a specified «mount in the catting figure.

9. A «cafe ca/l urWf moves owl scales the called figure wttft respect to the
celling I inure, fc utter the master rectangle or the instance rectangle le
maximum in sue, and the other rectangle is suitably smeller to achieve the
desired scale.

4. Both tho master and instance rectangles can be specified directly by the
%»B«*r. A rectangle is deskjneted by Ms lower left-hend and upper right «hand
corners.

A cell unit also can specify en angle of rotation to be eepbod to the celled figure.
Display coordinates are rotated before they are scaled and capped.

46

2-1146

APPLICATION LEVEL: GRAPHICS RFC 493

Aucuat 16. 1074 Appendix

An option should bo provided so that a call unit can specify a three-dimensional
transformation. This allows displays of graphical primitives that havo boon
specified In three dimensions Ideally, the transformation should Include the
ability to specify a perspective view.

Tho intensity value specified in a call unit is the absolute Intensity level at which
the called figure Is to be displayed. If no Intensity Is specified, the intensity
remains unchanged from that of tho colling figure. The default Intensity of the
display Is the scope's brightest Intensity.

Many displays have bunking line and dashed line capabilities. A cs» unit con be)
used to change the line typo to dashed and/or blinking for aU the lines of the
celled figure. If a particular scope does not hsve the requested capability then
the line typo remetns unchanged (analogous to transformed formet, section III.S).

Dispifiy Structure Comtructlon end Modification

A display structure is constructed by cresting its units. When e unit Is crested,
the figure containing tho unit must be specified. If the figure does not exist. It Is
also created. In addition, if the figure called by a cad unit does not exist. It Is
crested. Thus, new figures sre crested implicitly by placing units In them or by
caMing the« from some other figure.

A unit can bo inserted In the structure in one of three wsys:

1. It csn be inserted at the end of a figure.

2. It can bo inserted sftor s particular unit in s figure (where the figure
heeder Is sn acceptable unit after which to insert).

3. It csn replace a particular unit which already exists.

If e unit with the ssme local name as the new unit already exists In the figure,
the old unit wttl be deleted as a result of the creation of the new unit.

The function "display figure" causes the specified figure to be displayed. The
amuments to this function are similar to those of a cad unit: a «aster rectangle Is
applied to the called ttuure. ami mapped onto a "viewport," specified In the
screen coordinate system. Tins call unit is distinguished from a* others because
It alone specifies a mapping from the lArn«» two's complement coordinate system
of figures ami units to the screen coordinate system (which mey not heve s
square aspect ratio). At any one time, only a single figure can be displayed.
However, this is not restrictive smcc tho figure on display can csM any or ail
other fiqures. As units M9 added to tho displayed figure, they w dlspisyed. An
empty figure is created as s result of the "display figure" function if the figure
does not already exist. The function "clear scope" removes a* such displayed
figures from view.

The protocol should provide several mechanisms o change a display structure
Incrementally. Individual units and »mures can be deleted from the display
structurn, th*. names of figures and units can be changed, and units een be
blanked and unbtantted.

Three types of deletion operations may be performed:

1. A single unit can be deleted.

47

2*1147

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16. 1974 Appendix

2. A figure curt be clewed, on operation which deletes each of the unit« of a
figure but returns the figure header.

3. A figure can be deleted, thereby deleting all the units of the figure, the
figure header, and all calf units which reference the figure.

In ail of the deletion operations, thorn is no error generated if the object to be
deleted does not exist.

A imit or figure can be given a new name. If a unit is given the aaste name as
sonto other unit In the ssme figure, the unit originally carrying the name Is
eliminated. If a figure name l* changed tn that of some other figure, the figure
that already had tho namo is eliminated, along with any calls to It.

A blanked unit is a unit which exisis in the display structure but which Is marked
not to be displayed. Thus, the lines and character« of s blanked primitive unit «re
not drawn and the figure referenced by a blanked call unit la not processed.
(Nanking and unblnnktng a unit is more efficient than deleting and recreating It

If the transformations are being interpreted m software. It la often desirable to
make several changes to the display structure before repainting the scope with
tho updated picture. Tho "end batch of Updates* command Is used to cause a
complete update to the visible display.

Input f ecrVWes

Two of the input faculties of tho protocol tske on a different meaning tot
conjunction with a structured display fse: dragging and pointing.

For pointing, the Sf> can make individual futures "hit sensitive.■ Then, If the
pointing ovont is enabled and tho user identifies an objeet visible en the screen,
the event report cites the global name and lnc.nl name (If any) of the unit "Mt"

Dranging is acenmptiahnd by Identifying a move es« unit whose parameter« ere to
bo changed by coordinates dHivcred from a coordinate input device. (For
simplicity, the input device conrdwiatos are used diroetty as the offset of the
caned figure to the cemng finure. Thus, if the coordinates of the caking figure
aro transformed m any way. the movement of the cased figure w«l be related to.
but not directly tied to the movement of the input device.)

48

2-1148 £

[+Z

APPLICATION LEVEL: GRAPHICS RFC 493

August 10, 1074

REFERENCES

[M*«l

W.M. NiwiRin end R.F. 5r*ou«l. Prtnelßtm of* IMvicthm Computmr
Gree»Vcs, McGraw HW, 1073.

[10GR]

W.M. NttwiNii «nd R.F. SprcuN, "An Approach to Orephlee System DeeHj","
Proc—ätnQ* e/ fee /eff. AprM 1074.

(OaNNQf aph.bnaf j

RT. Spreu*. "Oamlgraph - SHaplo Terminal Independent OrepMca
Software," Xerox PARC Report CSl-73-4.

COmmoraph]

•POP-10 Otaplay Syeteme." available free) Computer Center •reiten.
Division of Computer Research and Technology, National InetHutee of
Health, Bethesde, Maryland 20014.

[NIC 10933]

"Proposed Network Graphics Protocol.* Network Information Center 18039.
(Unfortunately, this la no longer eveeeMe from the NIC.)

(NIS]

O.C. Engefeert and W.K. Ennftah, "A Reaeeroh Center for ftuomootlno Human
mteeeci." FJCC 100«. p. 303.

40

2-1140

v.v.V *-■ *.- ';■ v. > ."• .** .v ,

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

August 16, 1974

INDEX

{"attribute*) 23
<*chnr.slze.d**cription*> 23
< •count *> 16
<"devtce.report.soquence*> 30
<"Wf> 34
<• input.device number•> 20
<-Input.devlcomport*) 30
<-Input.disnblc condition") 33
<"Input.event.number •> 32
< »Input.ovent.rcport*) 34
<'input repert.aequence*) 33
<*larqc.«r«ctlon'> 16
<*larna.lnteoer"> 16
<*pt«xt.feature*> 26
<•ptext.fl««»*> 20
<aptext.iMMne*> 16
<*re*ponse.pbr»se*) 36
<*respenee.t«fi*> 36
<• response, value") 36
<"seo.n*mr>*) 16
<* small, fraction*) 16
<*aeiatUnteoer*> 16
<•»Umo.number•> 27
<«te*t*> 16
<"bme*> 30
<• timed* > 34
<<M.S coord") 21.36
<*y.s.coord*> 21.36
<chanoe attribute) 23
<ertd.betcb.of.upd«tea> 20
<nrror,»trinfli> 30
< escape .protocol) 36
< Input.rttaabte) 33
<mput rirao.aet) 33
< Inputenable» 33
<Input report) 30.33
<tnput.re»et.ftvite«i> 33
<bM|i»re.re»penae) 36
<inou*rc) 36
<never) 33
<ptext edit) 27
Cpteatt«) 20
<pteat modify) 26
Cfiteal mov«) 27
<Pteat.open) 26
<pteat.remnte.edH> 26
<niex1.acro«*fcmra> 2T
<pleat.acrea.up> 27
<pteat.aet> 20
<reset> 3«
<»»qapp»nd> to

60

2-1 ISO

V2
ft

'.•**•

APPLICATION LEVEL: GRAPHICS RFC 493

August 10. 1074 INDCX

<acf|.eloso> 10
<s*<i.ftot> 21
<scq.dr«w> 21
<&Ofi.kW> 10
<»cqmov«> 21
<sc^.opf»n> 10
<*0Cl.pO3t> 10
<seu.roidb«cfc.seQ> 26
<aeti rPÄdhaclc s«Q«st> 26
<so{|.toxt> 21
<sccMittpoat> 10
<set.ch«r«ctor.ortcf«t«tlofi.contimjous> 23
<»atcfcaraet«r.orf«M«tton.<ft9eraie> 22
<«etxlt4ir«ctor.fizo.continuous> 23
<sot.ch«raet«r.*i?«.diftcr«t«> 23
<*<ft.Mf!httf|ht.«UrttH!t0> 24
<»ct.Wt.iertsitMty.«ltHbul«> 24
<»«t.M«»«Jty •Itntnita) 24
<set.ititcmstty> 21
<j«t.positton.attrtbuta> 26
<tet.9cr«oit.setect«ttntM»tfl> 26
<»et typa> 22
<synchrontz«> 36
< writ h. any. nvent> 33
<wUh.thts.av«nt> 33

61

2-ilSl

"..■■ "i «» .*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

I

,*.

i

>
,>

2-1152

"/♦*"• .*»,'■ .* '.*

APPLICATION LEVEL: AUTH RFC 931

Network Working Group
Request for Comments: 931
Supersedes: RFC 912

Mike StJohns
TPSC

January 1985

Authentication Server

>

I

STATUS OF THIS MEMO

This RFC sv.ggests a proposed protocol for the ARPA- Internet
conmunity, and requests discussion and suggestions for improvements.
This is the second draft of this proposal (superseding RFC 912) and
incorporate** a more formal description of the syntax for the request
and response dialog, as well as a change to specify the type of user
identification returned. Distribution of this memo is unlimited.

INTRODUCTION

The Authentication Server Protocol provides a means to determine the
identity of a user of a particular TCP connection. Given a TCP port
number pair, it returns a character string which identifies the owner
of that connection on the server's system. Suggested uses include
automatic identification and verification of a user during an FTP
session, additional verification of a TAC dial up user, and access
verification for a generalized network file server.

OVERVIEW

i
for This is a connection based application on TCP. A server listens

TCP connections on TCP port 113 (decimal). Ckvcm a connection is
established, the smrvmr reads one line of data which specifies the
connection of interest. If it exists, the system dependent user
identifier of the connection of Interest is sent out the connection.
The service closes the connection after sending the user identifier.

RESTRICTIONS

Queries are permitted only for fully specified connections. The
local/foreign host pair used to fully specify the connection are
taken from the query connection. This means a user on Host A may
only query the 9mrv^r on Host B about connections between A and ».

StJohns (?»9* 13

m

L* '

ß
2-1153

A".*»",

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 931 January 1985
Authentication Server

QUERY/RESPONSE FORMAT

The server accepts simple text query requests of the form

< local -port>, <foreion-pcrt>

where «local-port> is the TCP port (decimal) on the target (a^r>mr)
system, and «forelgn-port> is the TCP port (decimal) on the source
(user) system.

For example:

23. 6191

The response is of the form

«local-port>. <forei^-port> : «response-type> : «additional-info>

where <local-port>,«foreign-port> are the same pair as the query.
«response-type> is a keyword identifying the type of response, and
<additional info> is context dependent.

For example:

23. 6191 : USERID : MULTXCS : SUohn*.DOOCSC.a
23. 6193 : USERID : TAC : MCSJ-MXTHUL
23. 6195 : ERROR : NO-USER

RESPONSE TYPES

A response can be one of two types:

USERID

In this case, «additional-info> is a string consisting of an
operating system name, followed by a ":**. followed by user
identification string in a format peculiar to the operating system
indicated. Permitted operating system names are specified in
RFC-923, "Assigned Numbers" or its successors. The only other
names permitted are "TAC" to specify a B8N Terminal Access
Controller, and "OTHER" to specify any other operating system not
yet registered with the NIC.

StJchns [Page 2]

2-11S4

APPLICATION LEVEL: AUTH RFC 931

RfC 931 January 1985
Authentication Server

ERROR

For some reason the owner of <TCP-port> could not be determined,
<addltional-info> tella why. The following are suggssted value«
of <additional-info> and their meaning».

INVALID-PORT

Either the local or foreign port was improperly specified.

NO-USER

The connection specified by the port pair is not currently in

w '

UNKNOWN-ERROR

Can't determine connection owner; reason unknown. Other values
may be specif*ed as necessary.

CAVEATS

Unfortunately, the trustworthiness of the various host systems that
miojvc Isplement an authentication server will vary quite a bit. It
is up to the various applications that will use th* server to
determine the amount of trust they will place in the returned
information. It may be appropriate in some cases restrict the use of
the server to within a locally controlled subnet.

APPLICATIONS

1) Automatic user authentication for FT?

A user-FTP ray send a USER command with no argument to the
server-rXP to request automatic authentication. The server-FTP
will reply with a 230 (user logged in) if it can use the
authentication. It will reply with a 530 (not logged in) if it
cannot authenticate the user. It will reply with a 500 or SOI
([syntax or parameter problem) if it dees not implement automatic
authentication. Please note that no change is needed to currently
implemented servers to handle the request for authentication; they
will reject it normally as a parameter problem. This is a
suggested implementation for experimental use only.

I

2) Verification for privileged network operations. For example,
having the servmr start or stop special purpose servers.

StJohns t**9» *}

rx
2-U&S

k

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

RFC 931
Authentication Server

January 1985

3) Elimination of "double login" for TAC and other TELNET user».

This will be implemented ae a TELNET option.

FORMAL SYNTAX

:« <port-peir> <CR> <LF>

:« <integer-marker> ", ** <integer-number>

:« <reply-text> <CR> <LF>

:» <error~reply> | <auth-reply>

:m <port-pair> *Vf ERÄCÄ **:** <error-type>

:* <port-pair> ":** USOUD H:H <opeys> **:H <user"ld>

INVALID-PORT | NO-USER | UNKNOWN-ERROR

<request>

<port-pair>

<reply>

<reply-text>

<error-reply >

<auth-reply>

<error-type>

<opeys>

Note» en Syntax

TAC 1 OTHER | MULTICS | UNIX ...etc.
(See "Assigned Number»**)

1) White apace (blanke and tab character») between token» 1» not
important and may be ignored,

3) White »pace, the token separator character (":"), and the port
pair eeparator character (**.**) must te quoted if used within a
token. The quote character is a back-slash, ASCII 92 (decimal)
(**V*). For example, a quoted colon iv **\:M. The back-slash must
also be quoted if its needed to represent itself ("W").

Notes on User Identification Format:

The user identifier returned by the server should be the standard one
for the system. For example, the Stander* Multlca identifier
consists of a PER30NID followed by a *\", followed by a PROJfcCTXD.
followed by a ".**. followed by an INSTANCE TAG of one character. An
instance tag of "a" identifies an interactivn user, and instar»* tag
of MmM identifies an absentee job (batch job) user, and an Instance
tag of Ms" identifies a daemon (background) user.

Each set of operating system users must come to a consensus as to

SUohns {Page«)

2-1156

.* V >.*•«
*."'»"

k*»1

APPLICATION LEVEL: AUTH RFC 931

RFC 931
Authentication Server

January 1985

F-

l

w •

I

what the OFFICIAL user identification for their systems will be.
Until they register this information, they must use the "OTHER" tag
to specify their user identification.

Notes on User Identification Translation:

Once you have a user identifier from a remote system, you must than
have a way of translating it into an identifier that meaningful on
the local system. The following is a sketchy outline of table driven
scheme for doing this.

The table consists of four columns, the first three are used to match
against, the fourth is the result.

USERID Opsys Address Result
MCSJ-MITMUL TAC 26.*.*.* StJohns
* MULTICS 192.5.42.* ■
* OTHER 10.0.0.42 anonymous
MSJ ITS 10.3.0.44 StJohns

The above table is a sample one for a Multics system on MILNET at the
Pentagon. When an authentication is returned, the particular
application using the user id simply looks for the first match in the
table. Notice the second line. It says that any authentication
coming from a Multics system on Net 192.5.42 is accepted in the same
format.

Obviously, various users will have to be registered to use this
facility, but the registration can be done at the same time the use
receives his login identity from the system.

r ,
V- *

StJohns [Page 5]

2«! 157

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

2-1158

.:**.>."« * _ *_*_*._'

APPLICATION LEVEL: CLOCK RFC 778

RFC 778

DCNET Internet Clock Service
D.L. Mills, COMSAT Laboratories

18 April 1981

Introduction

Following is a description of the Internet Clock
Service (ICS) provided by all DCNET hosts. The service,
intended primarily for clock synchronization and one-way
delay measurements with cooperating internet hosts, is
provided using the Timestamp and Timestamp Reply messages of
the proposed Internet Control Message Protocol (ICMP) . In
addition, in order to maintain conpatability with present
systems, this service will be provided for a limited time
using the Echo and Echo Reply messages of the
Gateway-Gateway Protocol (GGP) .

It should be understood that ICMP and GGP datagrams are
normally considered tigfrtly bound to the Internet Protocol
(IP) itself and not directly accessable to the user on a
TOPS-20 system, for example. These datagrams are treated
somewhat differently from user datagrams in gateways and
DCNET hosts in that certain internal queueing mechanisms are
bypassed. Thus, they can be a useful tool in providing the
most accurate and stable time reference. The prime
motivation for this note is to promote the development of
this service in other internet hosts and gateways so that
the feasibility for its use thoughout the community can be
assessed.

ICS Datagrams and Times tamps

At present, the ICS is provided using either ICMP or
GGP datagrams. The only difference between these is that
ICMP uses protocol number 1 and GGP uses protocol number 3.
In the following these will be referred to interchangably as
ICS datagrams. ICS datagrams include an internet header
followed by an ICS header in the following format:

2-1159

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DCNET Internet Clock Service PAGE

0 12 3
01234567890123456789012345678901

| Type | Code | Sequence |
+_+_+_+-+-+_+_+_+_+_+-+_+_+-+-+-+-+-+-+- 4- + - + -+-+-+-+ - + -«f- + - + - + - +

I Originate Timestamp !
+ _ + _4.- + ~ + -4.- + - + - + - + - + - + - + - + - + - + - + - + - + ~-f- + - + - + - + - + - + - + - + - +- + - + - + - +

| Receive Timestamp I
+-+-+-+-+-+-+_+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--♦--+-+-+-+-+-■♦■- +

| Transmit Timestamp j

XCS Datagram Format

TbB originator fills in all three timestamp fields just
before the datagram is forwarded to the net. Each of these
fields contain the local time at origination. Although the
last two are redundant, they allow roundtrip delay
measurements to be made using remote hosts without
timestamping facilities. The "Type" field can be either 8
(GGP Echo) or 13 (ICMP Timestamp) . The "Code" field should
be zero. The "Sequence" field can contain either zero or an
optional sequence number provided by the user. The length
of the datagram is thus 36 octets inclusive of the 20-octet
internet header and exclusive of the local-network leader.

The host or gateway receiving an ICS datagram fills in
the "Receive Timestamp" field just as the datagram is
received from the net and the "Transmit Timestanqp" just as
it is forwarded back to the sender. It also sets the "Type"
field to 0 (GGP Echo Reply), if the original value was 8, or
14 (ICMP Timestamp Reply), if it was 13, The remaining
fields are unchanged.

The timestamp values are in milliseconds from midnight
UT and are stored right-justified in the 32-bit fields shown
above. Ordinarily, all time calculations are performed
modulo-24 hours in milliseconds. This provides a convenient
match to those operating systems which maintain a syst«*
clock in ticks past midnight. The specified timestamp unit
of milliseconds is consistent with the accuracy of -existing
radio clocks and the errors expected in the timestamping
process itself.

Delay Measurements

Delay measurements can be made with any DCNET host by
simply sending an ICS datagram in the above format to it and
processing the reply. Let tl. t2 and t3 represent the three
timestamp fields of the reply in order and t4 the time of
arrival at the original sender. Then the delays, exclusive
of internal processing within the DCNET host, are simply
(t2 - tl) to the DCNET host. (t4 - t3) for the return and

2-1160

APPLICATION LEVEL: CLOCK RFC 778

DCNET Internet Clock Service PAGE

(t2 - tl) + (t4 - t3) for the roundtrip. Note that, in the
case of the roundtrip, the clock offsets between the sending
host and DCNET host cancel.

Although ICS datagrams are returned by all DCNET hosts
regardless of other connections that may be in use by that
host at any given time, the most useful host will probably
be the COMSAT-WWV virtual host at internet address
[29,0,9,2], which is also the internet echo virtual host
formerly called COMSAT-ECH. This virtual host is resident
in the COMSAT-GAT physical host at internet address
[29,0,1,2], which is connected to the ARPANET via the COMSAT
Gateway, Clarksburg SIMP and a 4800-bps line to IMP 71 at
BBN. The roundtrip delay via this path between the
COMSAT-GAT host and the BBN Gateway is typically 550
milliseconds as the ICS datagram flies.

As in the case of all DCNET hosts, if the COMSAT-WWV
virtual host is down (in this case possible only if the
Spectrsieom radio clock is down or misbehaving) a ''host not
reachable" OGP datagram is returned. In unusual
circumstances a "net not reachable" or "source quench" GGP
datagram could be returned. Note that the references to
"OGP" here will be read "ICMP" at some appropriate future
time.

Local Offset Corrections

All DCNET timestamps are referenced to a designated
virtual host called COMSAT-WWV (what else?) with internet
address [29,0,9,2]. This host is equipped with a Spectracom
radio clock which normally provides WWVB time and date to
within a millisecond. The clock synchronization mechanism
provides offset and drift corrections for other hosts
relative to this host; however, offsets up to an appreciable
fraction of a second routinely occur due to the difficulty
of tracking with power-line clocks in some machines. A
table of the current offsets can be obtained using the
follüw i i iy pr ocGdur s.

1. Connect to COMSAT-GAT host at internet
[29,0,1,2] using TELNET and local echo.

address

2. Send the command SET HOST HOST. A table with one line
per DCNET host should be returned. Note the entry under
the "Offset" column for the WWV host. This contains the
offset in milliseconds that should be added to all
timestamps generated by either the COMSAT-GAT or
COMSAT-WWV hosts to yield the correct time as broadcast
by WWVB.

3. Send the command SET WWV SHOW. A summary of datagram
traffic is returned along with an entry labelled "NBS

2-1161

>£"'
.* V -.* V V -.' *.* »,

<r?■■■-..■._ t». -. ■ .*•_* .» .*

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

DCNET Internet Clock Service PAGE

t time." The string following this is the last
received from the Spectracom unit in the format:

<code> DDD HH:MM:SS TZ=00

reply

where <code> is normally <SP> in case the WWVB signal is
being received correctly or ? in case it is not. The
DDD represents the day of the year and HH:MM:SS the time
past UT midnight. The two digits following TZ=
represent the time zone, here 00 for UT.

4. Close the connection (please!).

REFERENCES

[1] ICMP

Postel, J., "Internet Control Message Protocol", RFC 777,
USC/Information Sciences Institute, April 1981.

[2] GGP

Strazisar, V., "How to Build a Gateway", IEN 109, Bolt
Beranek and Newman, August 1979.

».'

2-1162
pr

APPLICATION LEVEL: CLOCK RFC 778

DCNET Internet Clock Service PAGE

Following is a specification of the ICS header in PDP11
code:

; OGP/ICMP Header

GH.TYP: .BLKB
Ö
1 ; Message type

GC.RPY s 0 ;Echo reply
GC.UPD s 1 ;Routing update
GC.AOC s 2 ;Positive acknowledgment
GC.DNR sz 3 ;Destination unreachable
GC.SQN s 4 ;Source quench
GC.RDR s 5 ; Redirect
GC.ECH = 10 ;Echo
CC.STX s 11 ;Net interface status
GC.NAK 3S 12 ;Negative acknowledgment
GC.TIM 3S 15 .•Timestamp
GC.TRP SS 16 ; Times tamp Reply
GH.CCD: .BLKB 1 ;Message code
Qi.SEQ: ,BUCW 1 ;Sequence number
GH.HDR s * ;Beginning of original

;internet header
GH.QRG: .BLKW 2 ;Originating timestamp
GH.REC: .BLKW 2 «'Received timestamp
GH.XMT; .BLKW 2 «'Transmitted timestamp
GH.LEN s . ;End of timestamp header

Note that all PDP11 word fields (.BLKW above) are
"byte-swapped," that is, the order of byte transmission is
the hi^h-order byte followed by the low-order byte of the
PDP11 word.

2-1163

.V.*,* V" »/
\" ■.'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

I

> " I
K

2-1164

_V_V_

* »*. *\ »■ «•*.» . •", «", •*. .*, ••.
k.y-'.>\ ,-^Xv;v,v

APPLICATION LEVEL: SUPDUP RFC 734

NWG/RFC# 734 MRC 07-OCT-77 08:46 41953
SUPDUP Display Protocol Page 1

Network Working Group Mark Crispin
Request for Comments 734 ^ SV™
NIC 41953 7 October 1977

SUPDUP Protocol

INTRODUCTION

This document describes the SUPDUP protocol, a highly efficient display
telnet protocol. It originally started as a private protocol between the
ITS systems at MIT to allow a user at any one of these systems to use one
of the others as a display. At the current writing, SUPDUP user programs
also exist for Data Disc and Datamedia d splays at SU-AI and for
Datamedias at SRI-KL. The author is not aware of any SUPDUP servers other
than at the four MIT ITS sites.

The advantage of the SUPDUP protocol over an individual terminal's
protocol is that SUPDUP defines a "virtual" or "software" display terminal
that implements relevant cursor motion operations. The protocol is not
built on any particular display terminal but rather on the set of
functions common to all display terminals; hence it is completely device-
independent- In addition, the protocol also provides for terminals which
cannot handle certain operations, such as line or character insert/delete.
In fact, it is more than this. It provides for terminals which are
missing any set of features, all the way down to model 33 Teletypes.

The advantage over the TELNET protocol is that SUPDUP takes advantage of
the full capabilities of display terminals, although it also has the
ability to run printing terminals.

It is to be noted that SUPDUP operates independently from TELNET; it is
not an option to the TELNET protocol. In addition, certain assumptions
are made about the 9mrvwr and the user programs and their capabilities.
Specifically, it is assumed that the operating system on a server host
provides all the display-oriented features of ITS. However, a server may
elect not to do certain display operations available in SUPDUP; the SUPDUP
protocol is far-reaching enough so that the protocol allows terminals to
be handled as well as that host can handle terminals in general. Of
course, if a host does not support display terminals in any special way,
there is no point in bothering to implement a SUPDUP server since TELNET
will work just as well.

A more complete description of the display facilities of SUPDUP and ITS
can be found by FTP'ing the online file .INFO; ITS TTY from ARPAnet host
MIT-AI (host 206 octal, 134. decimal). For more information, the mailing
address for SUPDUP is "(BUG SUPDUP) at MIT-AI". If your mail system won't
allow you to use parentheses, use Bug-SUPDUPSMIT AI.

** .** .*•> >,

2-1165

.: ;::.\ ;:--x. v •:,. .vA^-:^;-:;-::;:;.::::;;.;:Sy;;.:-..>::s

c

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 734
SUPDUP Display Protocol

BACKGROUND

MRC 07-OCT-77 08:46 41953
Page 2

The SUPDUP protocol originated as the internal protocol used between parts
of ITS, and between ITS and "intelligent" terminals. Over the network, a
user host acts like an intelligent terminal programmed for ITS.

The way terminal output works in ITS is as follows: The user program
tells the system to do various operations, such as printing characters,
clearing the screen, moving the cursor, etc. These operations are formed
into 8-bit characters (using the %TD codes described below) and stored
into a buffer. At interrupt level, as the terminal demands output,
characters are removed from the buffer and translated into terminal
dependent codes. At this time padding and cursor motion optimization are
also done.

In some cases, the interrupt side does not run on the same machine as the
user program. SUPDUP terminals have their "interrupt side" running in the
user host. When SUPDUP is run between two ITS's, the SUPDUP user and
server programs and the network simply move characters from the buffer in
the server machine to the buffer in the user machine. The interrupt side
then runs on the user machine just as if the characters had been generated
locally.

Due to the highly interactive characteristics of both the SUPDUP protocol
and the ITS system, all transactions are strictly character at a time and
all echoing is remote. In addition, all padding and cursor control
optimization must be done by the user.

Because this is also the Internals of ITS, the right to change it any time
if necessary to provide new features is reserved by MIT. In particular,
the initial negotiation is probably going to be changed to transmit
additional variables, and additional %TD codes may be added at any time.
User programs should ignore those they don't know about.

The following conventions are used in this document: function keys (ie,
keys which represent a "function" rather than a "graphic character") are
in upper case in square brackets. Prefix keys (ie, keys which generate no
character but rather are held down while typing another character to
modify that character) are in upper case in angle brackets. Hence
"<CQNTROL><META> [LINE FEED]" refers to the character generated when both
the CONTROL and META keys are held down while a LINE FEED is typed. Case
should be noted; <CONTROL>A refers to a different character from
«"CONTROL^. Finally, all numbers which do not explicitly specify a base
(ie, octal or decimal) should be read as octal unless the
immediately followed by a period, in which case it is decimal.

number is

2-1166

v y\ - l.l.i.l.l.H.W

APPLICATION LEVEL: SUPDUP RFC 734

NWG/KFC# 734 MRC 07-OCT-77 08:46 41953
SUPDUP Display Protocol Pag® 3

INITIALIZATION

The SUPDUP server listens on socket 137 octal. ICP proceeds in the normal
way for establishing 8-bit connections. After the ICP is completed, the
user side sends several parameters to the server side in the form of
36.-bit words. Each word is sent through the 8-bit connection as six
6-bit bytes, most-significant first. Each byte is in the low-order 6 bits
of a character. The first word is the negative of the number of variables
to follow in the hig^i order 18. bits (the low-order 18. bits are ignored),
followed by the values of the TCTYP, TIYOPT, TCMXV, TCMXH, and TTYROL
terminal descriptor variables (these are the names they are known by at
ITS sites). These variables are 36.-bit binary numbers and define the
terminal characteristics for the virtual terminal at the REMOTE host.

The count is for future compatability. If more variables need to be sent
in the future, the server should assume "reasonable" default values if the
user does not specify them. PDP-10 fans will recognize the format of the
count (ie, -count,,0) as being an AOBJN pointer. At the present writing
there are five variables hence this word should be -5, ,0.

Ihe TCTYP variable defines the terminal type. It MUST be 7 (%INSFW) . Any
other value is a violation of protocol.

The TTYOPT variable specifies what capabilities or options the user's
terminal has. A bit being trua implies that the terminal has this option.
This variable also includes user options which the user may wish to alter
at his or her own descretion; these options are included since they may be
specified along with the terminal capabilities in the initial negotiation.
See below *or the relevant TTYOPT bits.

The TCMXV variable specifies the screen heitfit in number of lines.

The TCMXH variable specifies the line width in number of characters. This
value is one less than the screen width (ITS indicates line overflow by
outputting an exclamation point at the end of the display line before
moving to the next line). Note: the terminal must not do an automatic
CRLF when a character is printed in the ri#itaost column. If this is
unavoidable, the user SUPDUP must decrement the width it sends by one.

Note: Setting either the TCMXV or TCMXH dimension greater than 128. will
work, but will have some problems as coordinates are sometimes represented
in only 7 bits. The main problems occur in the SUPDUP protocol when
sending the cursor position after an output reset and in ITS user programs
using the display position codes ~PH and *PV.

Ihe TTYROL variable specifies the "glitch count" when scrolling. This is
the number of lines to scroll up when scrolling is required. If zero, the
terminal is not capable of scrolling, 1 is the usual value, but some
terminals glitch up by more than one line when they scroll.

Following the transmission of the terminal options by the user, the smr^er
should respond with an ASCII greeting message, terminated with a %TDN0P
code G£TD codes are described below) . All transmissions from the server
after the JflDNOP are either printing characters or virtual terminal
display codes.

2-1167

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

NWG/RFC# 734
SUPDUP Display Protocol

MRC 07-OCT-77 08:46 41953
Page 4

The user and the server now both communicate using the intelligent
terminal protocol (described below) from the user and XTD codes from the
server, the user has two commands in addition to these; they are escaped
by sending 300 (octal). If following the escape is a 301 (octal), the
server should attempt to log off the remote job (generally this is sent
immediately before the user disconnects, so this logout procedure should
be done regardless of the continuing integrity of the connection) . if the
character following the escape is a 302 (octal), ail ASCII characters
following up to a null (000 octal) are interpreted as "console location"
which the server can hvidle as it pleases. No carriage return or line
feed should be in the console location text. Normally this is saved away
to be displayed by the "who" command when other users a?»k where this user
is located.

'Ml 68

♦vv .■:•.vvyyy

APPLICATION LEVEL: SUPDUP RFC 734

NWC/RFC* 734
SUPDUP Display Protocol

TTYOPT FUNCTION BITS

WC 07-OCT-77 08:46 41953
Page S

The relevant TTYOPT bits for SUPDUP usage follow. The values are given In
octal, with the left and right 18-bit halves separated by ",," as in the
usual PDP-10 convention.

Bit name

tTOALT

JCIOERS

Value

200000.,0

40000,,0

XTOMVB

XTOSAI

%T0OVR

10000,.0

4000..0

1000.,0

xroMvu

XT0LWR

XT0FCI

xnxiD

XIOCID

400..0

20,,0

10,.0

2..0

1..0

Meaning

characters 175 and 176
altmode (033) on input.

are converted to

this terminal is capable of selectively
erasing its screen. That is, it supports
the JCTOEOL, the RIDDLE, and (optionally)
the XIDEOF operations, For terminals
which can only do single-character
erasing, see %T00VR.

this terminal is capable of backspacing
(ie. moving the cursor backwards) .

this terminal has the Stanford/ITS
extended ASCII graphics character set.

this terminal is capable of overprinning;
if two characters are displayed in the
same position, they will both be visible,
rather than one replacing the other.

Lack of this capability but the capability
to backspace (see XTOWB) Implies that the
terminal can do single character erasing
by overstriking with a space. This allows
terminals without the JflbERS capability to
have display**style "rubout processing0, as
this capability depends upon either glüERS
or CXTOHVB and not XIOOVR).

this terminal is capable of moving the
cursor upwards.

this terminal's keyboard Is capable of
generating lowercase characters; this bit
Is mostly provided for programs which want
to tatow this Information.

this terminal's keyboard Is capable of
generating CONTROL and META characters as
described below.

this terminal is capable
ln*ert/deleT > operations, I
£ID1LP and XTi/XP.

of doing line
t. It supports

this terminal Is capable of doing
character Insert/delete operations, ie. it
supports %TD1CP and %TWCP.

2-1169

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC* 734
SUPDÜP Display Protocol

TTYQPT FUNCTION BITS (continued)

MfcC 07-OCT-77 08:46 41953
Page 6

Bit name

%1PCBS

KIPORS

Value Meaning

0,,40 this terminal is using the "intelligent
terminal protocol".
THIS BIT MUST BE ON.

0,,10 the server should process output resets
Instead of ignorinq them.
IT IS HIGHLY RECOMMENDED THAT THIS BIT BE

ON; OTHERWISE THERE MAY BE LARGE DELAYS IN
ABORTING OUTPUT.

Bit

JCirxxc

The following bits are user option bits. They may be set or not set at
the user's discretion. The bits that are labelled "normally on" are those
that are normally set on when a terminal is initialized (ie, by typing
[CALL] on a local terminal).

Value Meaning

100000..0 convert lover-case input to upper case.
Many terminals have a "shift lock" key
which makes this option useless.
NORMALLY OTT.

2000,,0 characters 001-037 should be displayed
using the Stanford/ITS extended ASCII
graphics character set instead of iperrov
followed by 100+character.
NORMALLY OFF.

200,,o the system should provide "**MGRE**M

processing when the cursor reaches the
bottom line of the screen. **M0RE**
processing Is described in ITS TTY.
NORMALLY ON.

100,.0 the terminal should scroll when attempting
output below the bottom line of the screen
instead of wrapping around to the top.
NORMALLY OFF.

XT0M0R

%T0ROL

2-U7Ö

APPLICATION LEVEL: SUPDUP RFC 734

NWG/fcFC# 734
SUPDUP Display Protocol

INPUT -- THE INTELLIGENT TERMINAL PROTOCOL

MRC 07-OCT-77 08:46 41953
Page 7

Note: only the parts of the intelligent terminal protocol relevant to
SUPDUP are discussed here. For more information, read ITS TTY.

CHARACTER SETS

There are two character sets available for use with SUPDUP; the 7-bit
character set of standard ASCII, and the 12-bit character set of extended
ASCII. Extended ASCII has 5 higii order or "bucky" bits on input and has
graphics for octal 000-037 and 177 (see the section entitled "Stanford/ITS
character set" for more details) . The two character sets are identical on
output since the protocol specifies that the host should never send the
standard ASCII formatting characters (ie, TAB, LF, VT, FF, CR) as
formatting characters; the characters whose octal values are the same as
these formatting characters are never output unless the user job has these
characters enabled (setting %TOSAI and %IOSAl generally does this) .

Input differs dramatically between the 7-bit and 12-bit character sets.
In the 7-bit character set, all characters input whose value is 037 octal
or less are assumed to be (ASCII) control characters. In the 12-bit
character set, there are 5 "bucky" bits which may be attached to the
character. The two most important of these are CONTROL and META, which
form a 9-bit character set. TOP is used to distinguish between printing
graphics in the extended character set and ASCII controls. The other two
are reserved and should be ignored. Since both 7-bit and 12-bit terminals
are commonly in use, 0001, 0301, and 0341 are considered to be <C0NTR0L>A
on input by most programs, while 4001 is considered to be downwards arrow.

MAPPING BETWEEN CHARACTER SETS

Many programs and hosts do not process 12-bit input. In this case, 12-bit
input is folded down to 7-bit as follows: TOP and META are discarded. If
CONTROL is on, then if the 7-bit part of the character specifies a lower
case alphabetic it is converted to upper case; then if the 7-bit part is
between 077 and 137 the 100 bit is complemented or if the 7-bit part is
040 the 040 bit is subtracted (that's right, <C0NTR0L>? is converted to
[RUBOUT] and <C0NTR0L> [SPACE] is converted to [NULL]) . In any case the
CONTROL bit is discarded, and the remainder is treated as a 7-bit ASCII
character. It should be noted that in this case downwards arrow is read
by the program as standard ASCII <C0NTR0L>A.

Servers which expect 12-bit input and are told to use the 7-bit character
set should do appropriate unfolding from the 7-bit character set to
12-bit. It is up to the individual server to decide upon the unfolding
scheme. On ITS, user programs that use the 12-bit character set generally
have an alternative method for 7-bit; this often takes the form of prefix
characters indicating that the next character should be "controllified" or
"metlzed,\ etc.

>?

2-117!

'• »*» »'• k** »*• «.*» V*" „*" »** * ""* »*■ • '* •'* • * »** »*" »""* m'm *** »^ V*1 % * •*' • * • " »** » * »"* »^ » * •** .*• * • •** »* :>.-../:v.v?-:-:-^-

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 734
SUPDUP Display Protocol

MRC 07-OCT-77 08:46 41953
Page 8

Name Value

£TXTOP 4000

£TXSFL 2000

J^TXSFT 1000

£TXMTA 400

KTXCTL 200

%TXASC 177

INPUT --THE INTELLIGENT TERMINAL PROTOCOL (continued)

BUCKY BITS

Under normal circumstances, characters input from the keyboard are sent to
the foreign host as is. There are two exceptions; the first occurs when
an octal 034 character is to be sent; it must be quoted by being sent
twice, because 034 is used as an escape character for protocol commands.
The second exception occurs when %T0FCI is set and a character with
non-zero bucky bits is to be sent« In this case, the character, which is
in the 12-bit form:

Description

This character has the [TOP] key depressed.

Reserved, must be zero.

Reserved, must be zero.

This character has the [META] key depressed.

This character has the [CONTROL] key depressed.

The ASCII portion of the character

is sent as three bytes. The first byte is always 034 octal (that is why
034 must be quoted) . The next byte contains the "bucky bits", ie, the
£HT0P throuojh £TXCTL bits, shifted over 7 bits (ie, %TXT0P becomes 20)
with the 100 bit on. The third byte contains the £TXASC part of the
character. Hence the character <CONTROL><META>[LINE FEED] is sent as 034
103 012.

OUTPUT RESETS

The intelligent terminal protocol also is involved when a network
interrupt (INR/INS) is received by the user program. The user program
should increment a count of received network interrupts when this happens.
It should not do any output, and if possible abort any output in progress,
if this count is greater than zero (NOTE: the program MUST allow for the
count to go less than zero).

Since the server no longer knows where the cursor is, it suspends all
output until the user informs it of the cursor position. This also gives
the server an idea of how much was thrown out in case it has to have some
of the aborted output displayed at a later time. The user program does
this when it receives a %TDCRS from the server. When this happens it
should decrement the "number of received network interrupts"' count
described in the previous paragraph and then send 034 followed by 020, the
vertical position, and the horizontal position of where the cursor
currently is located on the user's screen.

2-1172

L* *

APPLICATION LEVEL: SUPDUP RFC 734

NWG/RFC# 734
SUPDUP Display Protocol

OUTPUT — DISPLAY PROTOCOL {%TD CODES)

MRC 07-OCT-77 08:46 41953
Page 9

Display output is somewhat simpler. Codes less than 200 octal are
printing characters and are displayed on the terminal (see the section
describing the "Stanford/ITS character set"). Codes greater than or equal
to 200 (octal) are known as "£ID codes", so called since their names begin
with %TD. The %TD codes that are relevant to SUPDUP operation are listed
here. Any other code received should be ignored, although a bug report
might be sent to the server's maintainers. Note that the normal ASCII
formatting characters (011 - 015) do NOT have their formatting sense under
SUPDUP and should not occur at all unless the Stanford/ITS extended ASCII
cTiaracter set is in use (ie, %TOSAI is set in the T7Y0PT word) .

For cursor positioning operations, the top left corner is (0,0), ie,
vertical position 0, horizontal position 0.

LV

I
* I
i->

£ID code

£IDM0V

Value

200

XIEMV1

5fTDE0F

201

202

I**

IV,

I
£IDE0L 203

Meaning

General cursor position code. Followed by
four bytes; the first two are the "old"
vertical and horizontal positions and may
be ignored. The next two are the new
vertical and horizontal positions. The
cursor should be moved to this position.

On printing consoles (non JfTOMVU), the old
vertical position may differ from the true
vertical position; this can occur when
scrolling. In this case, the user program
should set its idea of the old vertical
position to what the XIDMOV says and then
proceed. Hence a XIDMOV with an «Id vpos
of 20. and a new vpos of 22. should always
move the "cursor" down two lines. This is
used to prevent the vertical position from
becoming infinite.

An internal cursor motion code which
should not be seen; but if it is, it has
two argument bytes after it and should be
treated the same as %TDMV0.

Erase to end of screen. This is an
optional function since many terminals do
not support this. If the terminal does
not support this function, it should be
treated the same as %TDE0L.

XIDEOF does an erase to end of line, then
erases all lines lower on the screen than
the cursor. The cursor does not move.

Erase to end of line. This erases the
character position the cursor is at and
all positions to the right on ttm same
line. The cursor does not move.

i>
2-1173

-\"'\ A.'

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 734
SUPDUP Display Protocol

MRC 07-OCT-77 08:46 41953
Page 10

OUTPUT -- DISPLAY PROTOCOL (%TD CODES) (continued)

%TD code Value Meaning

XTDDLE 204

XTDCSL 207

XIDNOP

XIT<3RS

XIDQOT

210

214

215

I k- I
%TDFS

XICMV0

%IDCLR

XXDBEL

XIDILP

216

217

220

221

223

i

i%
%TDDLP 224

i

Clear the character position the cursor is
on. The cursor does not move.

If the cursor is not on the bottom line of
the screen, move cursor to the beginning
of the next line and clear that line. If
the cursor is at the bottom line, scroll
up.

No-op; should be ignored.

Output reset. This code serves as a data
mark for aborting output much as IAC DM
does in the ordinary TELNET protocol.

Quotes the following character. This is
used when sending 8-bit codes which are
not %TD codes, for instance when loading
programs into an intelligent terminal.
The following character should be passed
through intact to the terminal.

Non-destructive forward space. The cursor
moves riojht one position; this code will
not be sent at the end of a line.

General cursor position code. Followed by
two bytes; the new vertical and horizontal
positions.

Erase the screen. Home the cursor to the
top left hand corner of the screen.

Generate an audio tone, bell, whatever.

Insert blank lines at the cursor; followed
by a byte containing a count of the number
of blank lines to insert. The cursor is
unmoved. The line the cursor is on and
all lines below it move down; lines moved
off the bottom of the screen are lost.

Delete lines at the cursor; followed by a
count. The cursor is urwB©v<§d. The first
line deleted is the one the cursor is on.
Lines below those deleted move up. Newly-*
created lines at the bottom of the screen
are blank.

2-1174

* v .*„ .*, .*.
' * • ■»'•"•' •■*'-•"•-'• * » V**''•'•>','''>%i

APPLICATION LEVEL: SUPDUP RFC 734

NWG/RFC# 734
SUPDUP Display Protocol

MRC 07-OCT-77 08:46 41953
Page 11

OUTPUT — DISPLAY PROTOCOL (%TD CODES) (continued)

%TD code

£IDICP

Value

225

^Xisi. 226

XTDBOW

£IBRST

227

230

Meaning

Insert blank character positions at the
cursor; followed by a count. The cursor
is unmoved. The character the cursor is
on and all characters to the right on the
current line move to the right; characters
moved off the end of the line are lost.

Delete characters at the cursor; followed
by a count. The cursor is unmoved. The
first character deleted is the one the
cursor is on. Newly-created characters at
the end of the line are blank.

Display black characters on white screen.
HIGHLY OPTIONAL.

Reset £IDB0W and such any future options.

%

1

i

2-1175

'./■■..••■.'■■.'■..'..'' ■'• ■'• .'• .'■ .'■ /•.% A .•■..•■. .•
' ft *■• ; i ri' - ' --* - ' t * t • *

DDN PROTOCOL HANDBOOK - VOLUME TWO 1985

NWG/RFC# 734
SUPDUP Display Protocol

STANFORD/ITS CHARACTER SET

MRC 07-OCT-77 08:46 41953
Page 12

This section describes the extended ASCII character set. It originated
with the character set developed at SAIL but was modified for 1968 ASCII.

This character set only applies to terminals with the %T0SA1 and £T0FCI
bits set in its TTYOPT word. For non-%T0SAI terminals, the standard ASCII
printing characters are the only available output characters. For
non-%T0FCI terminals, the standard ASCII characters are the only available
input characters.

PRINTING CHARACTERS

The first table describes the printing characters. For output, the 7-bit
code is sent (terminal operations are performed by %TD codes). For input,
the characters with values 000-037 and 177 must have the £TXT0P bit on to
indicate the graphic is intended rather than a function or ASCII control.

Value Character

4000 centered dot
4001 downward arrow
4002 alpha
4003 beta
4004 logical AND
4005 logical NOT
4006 epsilon
4007 pi
4010 lambda
4011 gamma
4012 delta
4013 uparrow
4014 plus-minus
4015 circle-plus
4016 infinity
4017 partial delta
4020 proper subset (left horseshoe)
4021 proper superset (rignt horseshoe)
4022 intersection (up horseshoe)
4023 union (downward horseshoe)
4024 universal quantifer
4025 existential quantifier
4026 circle-X
4027 double arrow
4030 left arrow
4031 right arrow
4032 not-equal
4033 lozenge (diamond)
4034 less-than-or-equal
4035 greater-than-or-equal
4036 equivalence
4037 logical OR
0040 first standard ASCII character (space)

0176 last standard ASCII character (tilde)
4177 integral

2-1176

:-/:>::^

APPLICATION LEVEL: SUPDUP RFC 734

NWG/RFC# 734
SUPDUP Display Protocol

STANFORD/ITS CHARACTER SET (continued)

MRC 07-OCT-77 08:46 41953
Page 13

FUNCTION KEYS AND SPECIAL CHARACTERS

In addition, the following special characters exist for input only. These
characters are function keys rather than printing characters; however,
some of these characters have some format effect or graphic which they
echo as; the host, not the SUPDUP program, handles any such mappings.

Usual Function

text formatting
text formatting
text formatting
text formatting
text formatting
text formatting
escape to system
special activation
monitor command prefix
character delete

local terminal command
local subsystem escape

requests a help message

For all input characters, the following ,'bucky bits" may be added to the
character. Their interpretation depends entirely upon the host. <T0P> is
not listed here, as it has been considered part of the character in the
previous tables.

<CONIROL> is different from ASCII CTRL, however, many programs may request
the operating system to map such characters to the ASCII forms (with the
<T0P> bit off) . In this case <META> is ignored.

Value Key

Value Character Usual echo

0000 [NULL]
0010 [BACK SPACE]
0011 [TAB]
0012 [LINE FEED]
0013 [VT]
00X4 [FORM]
0015 [RETURN]
0032 [CALL] uparrow-Z
0033 [ALTMODE] lozenge or $
0037 [BACK NEXT] uparrow-underscore
0177 [RUBOOT]

4101 [ESCAPE]
4102 [BREAK]
4103 [CLEAR]
4110 [HELP]

BUCKY BITS

2000
1000
0400
0200

Reserved
Reserved
<META>
<COhTIROL>

LV 2-1177

DDN PROTOCOL HANDBOOK - VOLUME TWO 1085

NWG/RFC# 734
SUPDUP Display Protocol

ACKNOWLEDGEMENTS

MRC 07-OCT-77 08:46 41953
Page 14

Richard M. Stallman (RMS@MIT-AI) and David A. Moon (MoortSMIT-MC) of the
MIT-AI and MIT-MC systems staff wrote the source documentation and the
wonderful ITS terminal support that made this protocol possible. It must
be emphasized that this is a functional protocol which has been in
operation for some years now.

In addition, Moon, Stallman, and Michael McMahon (»fcMSSRI-KL) provided
many helpful comments and corrections to this document.

For further reference, the sources for the known currently existing SUPDUP
user programs are available online as:

[MIT-AI] SYSENG; SUPDUP >
[SU-AI] SUPDUP. MID [NET, *RC]
[SRI-KL] <MfcM>SD.FAI

for the ITS monitor,
for the SAIL monitor,
for the TOPS-20 monitor.

The source for the known currently existing SUPDUP server program is:

[MIT-AI] SYSENG;TELSER > for the ITS monitor.

These programs are written in the MIDAS and FAIL dialects of PDP-10
assembly language. ¥?>

2-1178

A,

