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Abstract. A projection method is proposed for the partial pole placement in inear control

a systems. The procedure is of interest in the common situation where the system is very

large and only a few of its poles must be assigned. It is based on computing an orthonormal

basis of the left invariant subspace associated with the eigenvalues to be assigned and then

solving a small inverse eigenvalue problem resulting from projecting the initial problem

* into that subspace. We also preset an equivalent version of this method, which can be

" regarded as a variant of the Wielandt deflation technique used in eigenvalue methods.
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- 1. Introduction

This paper is concerned with the problem of assigning the poles of the single-input

, continuous-time linear control system

. =Ax + bu (.)

where A is a constant N x N matrix., b is a vector, and u is a scalar function of t. For

simplicity, we restrict ourselves to the single input case although our results can readily

be extended to multiple input control systems. We will interchangeably speak of the

- eigenvalues of the matrix A of the system (1.1) and the poles of its corresponding transfer

function H(s) = (sI - A)-lb. In the simple single input situation, the pole assignment

problem consists of finding a feedback vector f. such that the closed loop system

=(A- bfT)x + by.

has desired poles. In other words the linear algebra problem is to find a vector f so that

the perturbed matrix A - bfT has desired eigenvalues. This 'state feedback' technique con-

stitutes one of the most popular ways of modifying dynamical behaviors of time invariant

linear control systems 118].

Several methods to solve this problem are available for the case when the matrix

A is small. the one generally preferred being an analogue of the QR method developed

separately by Miminis and Paige [7] and Petkov [111.

However. in many realistic situations the matrix A is so large that the use of a QR-like
I,", ..-

algorithm becomes impractical. This arises for example in large space structure control

[1] and in the control of electrical networks [6]. Using these techniques to solve such large

pole assignment problems is not only uneconomical. but also untrustworthy. A general

consensus seems to be that assigning the poles of a system of order. say, 50 may be the

upper limit of what can be reliably achieved with standard double precision and these

standard numerical methods.

-- What is often desired in practice is to modify the eigenvalues of the original system to

make it stable. For the continuous time problem (1.1). this means that the eigenvalues with

* positive real parts must be shifted to the left half plane. In reasonable practical situations
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one can expect that the original system is nearly stable in the sense that only a few of

its eigenvalues are located in the right half plane. The goal is then to place only those

unstable eigenvalues in the left half plane and leave the others unchanged. In the next

section we describe a simple algorithm to achieve this goal, which is based on invariant

subspace techniques.

2. An algorithm for partial pole assignment by state feedback

2.1. The projection process

Let A be an A, x N real nonsymmetric matrix whose eigenvalues are

,-Al, A2,... Ak , Ak ,  AN.

Let b be a given real vector on which we will make some additional mild assumptions later.

_ The problem considered is to find a vector f so that the matrix

B=A -bfT (2.1)

has the given eigenvalues
l,": Ul, P2, • •,Pk. Ak+l, •.,AN.

In other words we would like to assign the eigenvalues A1, A2 .... Ak of A into /', J2. k.

while leaving the rest of the spectrum of A unchanged. and this with the rank one pertur-

bation -bfT. We refer to this as the partial pole assignment problem. We assume that both

sets of eigenvalues {A, A,.... A} and {1,.2.... ,Pk} are symmetric with respect to the

real axis, i.e., if a complex value is in one of the set then so is its conjugate. Moreover, if

a multiple eigenvalue belongs to the set {A1, A2..... Ak} we assume that it is represented

several times in the set according to its algebraic multiplicity.

In order to solve this problem we will need an orthonormal basis of the left invariant

subspace of A associated with the eigenvalues A1 , A2 ..... Ak. Let us assume that we have

comput -d the partial Schur factorization for AT:

ATQ = QR. (2.2)

.. .- .-I - .. I - . .A



where Q is an N x k matrix whose columns form an orthonormal basis of the left invariant

subspace associated with Ai, i - 1 .i.. k and R is a k x k upper quasi-triangular matrix.

W'e will seek a solution f in the form

f = Qs. (2.3)

Consider the matrix BTQ:

BTQ [AT fbT Q=QR-QsbTQ-Q R -srT ]

which can be rewritten as

BTQ = Q [RT -rsT] TC~ 24I I - O 'A - (2 .4 )

The above equation means that the choice (2.3) makes the subspace spanned by Q also

invariant under BT. Moreover, the eigenvalues of the matrix B associated with this in-

variant subspace are the eigenvalue of the k x k matrix Ck = RT - rsT. Under certain

simple conditions, which will be clarified shortly, the eigenvalues of this small matrix can

be assigned to be pi, i - 1.... k, by an appropriate choice of the vector s.

Therefore, let s be chosen so that

A {Ck} - {RT -rsT} = {pi, i 1,...k}, (2.5)

where A(X) denotes the spectrum of the matrix X. We will refer to the above problem

as the projected problem. Clearly, if k is small the projected problem can be solved by

standard pole assignment techniques. As was seen above this choice of s transforms the

eigenvalues Ai , i = 1, ..k of A into gij, i = 1.... k. What is interesting is that, in addition.

the remaining eigenvalues of A are unchanged as is stated in the following theorem.

Theorem 2.1. Let s be determined so as to solve the projected k x k problem (2.5) and

let f be given by (2.3). Then the matrix B = A - bfT has the eigenvalues U1 ,P 2 ,... ,k,

Ak+l ..... \N-

Proof. Let F = [WI, u'2,... w._k] be the remaining Schur vectors of AT associated with

the remaining eigenvalues Ai . i>k. In other words. W is an othogonal basis of the orthog-

* onal complement of span{Q} and is such that the matrix X [Q,W] is unitary. Using

3
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(2.4) we have.
QTB2 Q = C7: 11TBTQ = 0.

Using (2.3) we get.

QTBTTII = QT(AT - QsbT)w = QTATw + ET;

VwTBTw = WT(A T - QsbT)w = wJTATw.

Hence.

XTBx=(T
B -TAQ E WT AW) (2.6)

The proof follows immediatly.

A numerical procedure to solve the partial pole assignment problem is therefore as

follows.

Algorithm 1: Partial Pole Assignment by Projection

1. Compute the k eigenvalues to be assigned and the associated partial Schur decompo-

sition (2.2).

2. Compute r = QTb and solve the projected inverse eigenvalue problem, i.e., find s such

that RT - rST has the eigenvalues 11, /12.... 11k.

3. Form the feedback solution vector f = Qs.

The cost of the above process is dominated by the first step which computes a k-
dimensional invariant'subspace associated with the k eigenvalues to be assigned. There

are various methods for this computation, and the reader is referred, for example, to the

recent report [14]. Note that we need a method that computes the eigenvalues with (alge-

braically) largest real parts. This excludes the subspace iteration method which delivers

the eigenvalues of largest modulus. Here one can use either a Chebvshev (or least-squares

polynomial) acceleration technique combined with Arnoldi's method [14, 131, or a Lanczos

* type algorithm [10. 3]. If the matrix is banded a safer alternative is to combine Arnoldi

with a shift and invert strategy [9]. For time-discrete problems, we need to compute

4
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eigenvalues with largest modulii. The same techniques as above can also be used but we

can now add the subspace iteration method i4. 15], which is known to be a much slower

method. Although the numerical methods for computing eigenvalues/eigenvectors of large

nonsymmetric matrices are not as well established as those for symmetric problems. the

above few alternatives will solve the problem more or less efficiently, depending on its con-

ditioning. Large nonsymmetric eigenvalue problems are inheritently much more complex

that symmetric ones. Thus. there are instances where an eigenvalue is so poorly condi-

tioned that any iterative procedure will encounter serious difficulties in approximating it.

In the symmetric case all eigenvalues are well conditioned, i.e., their condition number

is one. Note that there are two condition numbers associated with the computation of

an eigenpair, one for the eigenvectors (from which the Schur vectors are derived) and the

*, other with the eigenvalues, see Chatelin [2] for details.

For the above algorithm to be practically feasible the number k of unstable modes must

be relatively small. An acknowledged weakness of the above procedure is that it may not be

known a-priori how many eigenvalues must be assigned until they axe computed. Ideally.

we would like all the eigenvalues with positive real parts and only those to be assigned

values in the complex left half plane. If A has only real eigenvalues, a technique based

on the inertia theorem can be employed to determine the number of unstable eigenvalues

[17]. However, this has limited applicability as it requires the factorization of the matrix A

and, more important, it assumes that A has a real spectrum. An alternative way in which

the difficulty can be handled is to keep computing eigenvalues with positive real parts

until no more are found or until the user decides that there are too many eigenvalues to

be assigned and takes some appropriate measure. Therefore a computational code based

on this approach must incorporate a parameter kmax which is the maximum allowable

number of poles to be placed. We should mention that in contrast with the Schur method

presented by Varga [16], the above algorithm requires only a partial Schur factorization.

2.2. Existence of a solution

We now examine the question of the existence of a solution. By looking at the proof

of Theorem 2.1. it appears clearly that for a solution to exist it is necessary and sufficient

*that a solution to the projected problem exists. Thus., as a conseqeunce of a well known

4%



result a solution exists for any set pl1,. ILk if and only if the system (R T , r) is controllable

[18]. We will refer to this as the partial controllability condition for (A, b) in the subspace

span {Q}. As is well known, (RT, r) is controllable iff rank{r,RTr,.. .(RT)k-lr} = k.

Denoting by rlk the orthogonal projector onto the subspace spanned by Q. it is clear

that RT is a matrix representation of the linear operator IlkA 1 k in the basis Q while

QRTQT is a matrix representation in the original (canonical) basis. Here, we have abused

the notation by using the same symbol A for the matrix and the linear operator that it

represents. The matrix representation of Rk in the original basis is QQT. An important

observation is that we have

fIkAIlk = IlkA. (2.7)

The reason for the above relation is that the subspace span{Q} is invariant under AT and

hence RkAT Ik - ATHk, which yields the result by transposition. Another simple proof

is to explicitly use the matrix representation of Ilk. We should point out that we also have

IIkA'IIk = ikAJ, Vj (2.8)

since span {Q} is also invariant under (AT)J. We are now ready to formulate the existence

condition in several equivalent ways.

Proposition 2.1. The system (1.1) is partially controllable in the subspace Span(Q), i.e.

the partial pole assigment problem has a solution of the form (2.3) for any set 1. , P,

if and only if one of the following equivalent conditions holds:

(i) rank {r, RTr, ... , (RT)k-lr} = k;

(ii) rank {flkb, IkArIkb,..., (IIkArIk)k-lb} = k;

(iii) rank {ikb , fIkArIkb.. HkAk- lkb} =k;

(iv) dim IIk span {bk, A bk,.. Ak-lbk = k, with bk = ITkb;

(v) dim [Ilk span {b, Ab,.... ,Ak-lbj = k.

Proof. The formulation (ii) is equivalent to (i) since the vectors in the system of (ii) are

obtained from those of (i) by multiplying them by the matrix Q. The other formulations

are easy to derive by application of (2.7) and (2.8).

6
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Of the above formulations (iv) and (v) are the most interesting. The condition (v) can

be interpreted as follows: the system is partially controllable in the sense of the proposition

iff the so-called Krylov subspace K k = span {b. Ab ... Ak- 1 b} is of full rank and contains

no vector orthogonal to span{Q}. or equivalently iff this Krylov subspace is of full rank

and its intersection with the orthogonal complement of the invariant subspace is reduced

to {0}.

A consequence of (iv) is that if the system of vectors {bk, Abk ... Ak-lbk} is of rank

less than k then (A. b) is not partially controllable. In particular, it is clear that when

bk = rlkb = 0 the system is not partially controllable. What this means is that the size of

IIlkbH2 as compared to the size of 11b11 2 can be a good first measure of how controllability

has deteriorated by restricting the problem into the invariant subspace. If b is nearly

orthogonal to span(Q) then [IIkbji 2 /[bI 2 << 1 and the problem is badly conditioned.

This will be futher discussed in Section 3 and in the numerical experiments section.

Note that the problem of assigning only a few "bad" eigenvalues, instead of all of

them as is traditionally done, is not new and some theory on the existence of a solution

in a general context is developed by Wonham [18]. Our context is limited by the fact that

we look for a solution of a particular form, namely the form (2.3).

3. Relation with deflation methods

A well-known technique in eigenvalue methods is the so-called Wielandt deflation. see

Wilkinson [17] pp. 596-599. Suppose that we have computed the eigenvalue A1 of largest

modulus and its corresponding eigenvector ql of a given matrix A by some algorithm such

as. in the simplest case. the power method. Assume further for simplicity that , is real.

A common problem is to compute the next dominant eigenvalue A2 of A. An old artifice

for achieving this is to use a deflation procedure: a rank one modification of the original

matrix is performed so as to displace the eigenvalue \ 1 to the origin, while keeping all

other eigenvalues unchanged. Thus the eigenvalue A2 becomes the dominant eigenvalue

of the modified matrix and therefore. the power method can subsequently be applied to

this matrix to compute the next dominant pair A2. q2. In contrast with other deflation

techniques. Wielandt's deflation requires only the knowledge of the right eigenvector. The

7



deflated matrix is of the form
or T

A- -qibT. (3.1)

where b is an arbitrary vector not orthogonal to ql and a is an appropriate shift. It can

be shown that the eigenvalues of B are the same as those of A except for the eigenvalue

A1 which is transformed into the eigenvalue A1 - a. see [17].

Going back to the pole assignment problem, let us assume that k - 1. i.e.. that there

is only one eigenvalue to assign. From (2.3) the solution f is of the form f = s 1 q1 where

here s, is a scalar. It becomes clear that the technique described in the previous section is

nothing but a Wielandt deflation technique for the matrix AT since the transpose of the

modified matrix has the form

AT slqlbT.

To shift the eigenvalue A1 to pl we must take sI = (A1 - p 1 )/bTql .

This deflation technique has the property of changing the eigenvalue A 1 into p I while

leaving the others unchanged. It is also known that the right eigenvector of AT associated

with the eigenvalue A1 is preserved and the left eigenvectors associated with the remaining

eigenvalues are unchanged. However, the left eigenvector of AT associated with A1 , (i.e.,

the right eigenvector of A associated with A1 ) does change in general. An exception takes

place when the vector b happens to be exactly the left eigenvector of AT associated with
4

A,. In eigenvalue methods the corresponding deflation technique is then a special case

of Wielandt's deflation called Hotelling's deflation. This tells us that the sensitivity of

the closed-loop system will change for a general vector b and that it will be unchanged

in the very particular case when b belongs to the left eigenspace of AT (i.e.. to the right

eigenspace of A). Note that a comparison of the expressions (2.6) and the analoguous

expression for A:

RT 0xTAX = K ITAQ WTAWJ

indicates that in some sense the variation of the sensitivity can be measured by the norm of

E - WTbsTQ. which vanishes when b is in the left invariant subspace of AT , or equivalenth

in the right invariant subspace of A. associated with the first k eigenvalues We do not pursue

8
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this question on the sensitivity of the modified matrix here but we mention that a detailed

analysis is currently being developed by Nichols [8].

The similarity with deflation techniques suggests a different algorithm which is based
on a more progressive process similar to the progressive Schur-Wielandt deflation procedure

used in [14] in the context of eigenvalue calculations. The principle of this approach is to

construct f in a progressive way by adding to it multiples of newly computed Schur vectors

of AT which are associated with unstable eigenvalues. The reason why this is possible is

that the left Schur vectors of A that have not yet been deflated are unchanged. For example.

at the beginning of the process we 'compute' A 1 = A - slbq T where s1 is chosen so as

to shift the eigenvalue A1 into pl. The key observation is that the left Schur vector q2

of A 1 is the same as the left Schur vector of A associated with the eigenvalue \ 2 as was

noted above. We can now get the rightmost eigenvalue of A 1 and the corresponding left

eigenvector which is orthogonalized against ql to produce q2. Then A2 = A 1 - sbqT is

- constructed, where s2 is again appropriately chosen. and the process is carried on until

exhaustior, of all unstable eigenvalues. For simplicity, we describe the method only for the

case where the eigenvalues are real.

Algorithm 2: Partial Pole Assignment by Successive Deflations

Start: Choose k,,ax the maximum allowable number of poles to place. Set fo 0, AO A.

Iterate:

1. Compute the eigenvalue A with large f real part of A i together with its left Schur

vector qi, with 1iq%2 = 1.

2. If Re(Ai) < 0 then exit [No more unstable eigenvalues]

3. Else compute

fi :=fi-1 + iqi, where si - (3.2)
bTqi

and define A i = A - bfT = Ai-1 - sibqf.

4. If i < kmax then set i i + 1 and go to 1. else exit [too many eigenvalues to assign].

9



It is important to observe that the matrix Ai is never computed explicitly in step 3.

since all that is required by the methods that compute eigenvalues and eigenvectors. are

matrix by vector multiplications x - Aix. These operations can be performed by storing

A and the vectors b and fi.

In order to avoid complex arithmetic when a computed eigenvalue is complex we can

proceed as follows. In step 1 we obtain two Schur vectors, instead of one. which are

the results of orthogonalizing the real part and imaginary part of the pair of conjugate

eigenvectors. against all previous Schur vectors. Then in Step 3 we can compute directly

fil "- fi- 1 + si- 1 qi- 1 + siqi by solving a 2 x 2 inverse eigenvalue problem to obtain

"i- 1 , .5i.

One advantage of this algorithm over Algorithm I is that there is no need to solve a
k x k inverse eigenvalue problem. Note, however, that since k is small as compared with the

dimension N of the problem. the cost of solving the projected pole assignment problem

is negligible. A disadvantage of the new algorithm is that if we encounter numerical

difficulties with some eigenvalue Ai then the following matrices A, Ai+i ,. Ai+2,. may be

badly perturbed or may lead to badly conditioned eigenvalues that will slow down the

computation of the eigenvalues and eigenvectors in Step 1 of the algorithm.

An interesting aspect of the above algorithm is the explicitness of the numerical com-

plications that we may encounter. The inner product bTqi in the denominator of the

_expression for si in (3.2) shows that if b is nearly orthogonal to any of the first Schur

vectors then we can expect to have numerical difficulties. Moreover. for multiple input

problems there are ways of enhancing the stability of the feedback solution by expolitng

the extra freedom provided by the inputs [5]. This can easily be implemented for the

method of Section 2 but it is not possible with the progressive method of this section

which is defined for single input problems only. We should point out, however, that block-

Wielandt deflation methods are perfectly defined, see [17] p. 599. and this can be used to

• generalize the above algorithm to multiple input case with the possible benefit of better

st abiIi tv.

1
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4. Numerical tests

As an application, we consider the following partial differential equation

au a0uAU + 3T + yu + F(x, y. t)

on the unit square 1l = (0, 1) x (0.1) with the boundary condition u(x, y. t) = 0 Vt. and

some initial condition which is of no importance for this test. Here A denotes the Laplacian

operator A = a2/ax 2 + a2/agy 2. We assume that F(x, y) has the form

F(x,y.t) f(x,y)g(t)

The unknown u may represent, for example, the concentration of a chemical component

that diffuses (Laplacien term) and convects (first order spatial derivative). The term

-ytu simulates a chemical reaction that results in an increase of the concentration that is

proportional to u. Realistic chemical reactions involve two or more chemical components

and systems of an equal number of coupled equations. Moreover the reaction term ,u is

usually nonlinear. For examples of such models see [12].

If we discretize the region with n interior points in the x direction and rn interior

points in the y direction, then the resulting matrix problem is of the form

= Au + bg

where A is square and of size N = nm.

In the first test we take 3 = 20, 3 = 180, n = 20 and m = 10. which results in

a matrix A of size 200 whose eigenvalues are all real and negative except two of them

which are positive. The vector b which discretizes the function f is filled with random

numbers between -1 and 1. The first column of Table 1 shows the first ten eigenvalues

labeled in decreasing order. We used Algorithm 1 to move the two positive eigenvalues

into the two new values -0.1 and -0.2 respectively. The resulting 10 largest eigenvalues

after the transformation are listed in the second column of Table 1. The method used for

computing the eigenvalues and the eigenspace is a combination of Arnoldi's method and

least squares polynomial acceleration as described in [14]. The stopping criterion when

11
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Original poles Modified poles

0.661904775009691D-01 -0.883292881569998D-01
0.770009639638372D-02 -0.100002599933231D+00
-0.883308887716324D-01 -0. 170289191634153D +00
-0.170288404278961D+00 -0.199995312092372D+00
-0.219757740327843D+00 -0.219759395742843D +00
-0.228778768259717D+00 -0.228779349544248D+00
-0.324809842594408D+00 -0.324809936649066D+00
-0.383643865022476D+00 -0.383644625862267D+00
-0.456236500465351D+00 -0.456236505002823D+00
-0.543074002456214D+00 -0.543073999830882D+00

Table 1: The 10 rightmost eigenvalues of the system

before and after the pole assignment transformation.

computing each eigenvector is 11(A - \I)uI E . where u is the normalized eigenvector and

4= 10- 08. Note that the 1-norm of A is equal to 8h - 2 = 3200. Each new Schur vector

is obtained by orthogonalizing a new eigenvector against all previous Schur vectors. The

projected problem was solved by Petkov's method. To give an idea of the performance, we

mention that it took about 5.1 seconds to solve this 200 x 200 problem by Algorithm 1.

on a Vax-8600 and about 12.5 seconds on a Vax-11-785. This time is dominted by the

computation of the three dominant righmost eigenvalues and the corresponding eigenspace

(we needed to compute three eigenvalues here assuming no knowledge of the number of

positive eigenvalues). Double precision was used throughout (round-off unit of about

1.38 x 10-17).

The feedback vector s for the projected problem was found to be

S - (-1.3144... 0. 14 0 5 ..)T .

The relative norm of the projection of b was IflikbII2/11J12 - 0.1050. This means that

this problem is relatively well conditioned. If b happens to be nearly orthogonal to the

Schur vectors the conditioning of the problem can be disastrous. For example. if we take

b = (1, 1 .... I)T then JIIbJI2 /J1b1 2 = 3.711 x 10 - l which means that b is orthogonal to

the first Schur vectors, within the expected accuracy for these Schur vectors. Here, the

resulting vector s has a magnitude of 1.6 x 1012. The resulting transformed matrix has

12
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completely erroneous eigenvalues. This behavior is to be expected from our comments of

Section 2 and Section 3. In this situation the system is nearly partially incontrollable in

the sense defined at the end of Section 2. The lesson to be lear- ied from this is that it is

important to check beforehand whether the angle between b and the invariant subspace is

close to 7./2. If it is the case then the problem is not safely solvable. Another important

point is that this aspect may be substantially improved in the case of multiple inputs by

using a method in the lines of the one introduced by Kautsky et al. [5].

5. Conclusion

The purpose of this paper was to show how eigenvalue methods can be put to work

to solve large scale control problems. The advantage of the technique proposed is that it

can handle pole assignment problems that are so large that standard algorithms are no

longer applicable. Its limitations are those limitations of the eigenvalue techniques: all

we need is to be able to compute the invariant subspace associated with the k unstable

modes. Thus, problems with a moderate number of unstable modes can be tackled u ith no

major difficulty. We feel that further research is needed to produce reliable pole assignment

software for very large systems and to better understand the underlying theory of partial

pole assignment.
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