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FOREWORD

A wovkshop for research personnel involved in the
DARPA program on Speech Recognition was held on 19-20
February 1986 in Palo Alto, California. The purpose of the
workshop was to review progress on the technical aspects of
the work being done by researchers at Carnegie-Mellon
University, MIT, BBN, TI, MIT-Lincoln Laboratory, NBS, SRI
International, Schlumberger Palo Alto Research, and the Air
Force Aerospace Medical Research Laboratory. Also in
attendance were personnel from Dragon Systems who have
recently been added to the research team; SPAWAR =~ the
contractual monitoring organization; and NOSC, RADC, CIA and
NSA - government laboratories and organizations interested in
the research.

Commander Allen Sears, the program manager for the
DARPA Speech Recognition Program, welcomed the more than
forty-five attendees to the workchop. He thanked Gary Kopec
of Schlumberger for conducting a hands on working session for
interested researchers on the Signal Representation Language
(SRL), and Integrated Signal Processing System (ISP) on the
previous day, 18 February 1986. SRL and ISP, he noted, are
fundamentally programming environments for LISP-based $ignal
processing and may be key tools for researchers in the DARPA
program.

Cdr. Sears noted that the essence of the program
was cooperation and tnat all groups were expected to
contribute to the successful end results and were not to
duplicate research techniques but to use successfully devel-
oped items in their syetems regardless of who did the
original work. Also, he indicated, we must get the service
laboratories, like AFWAL and NOSC, involved in demonstrations
of the maturing technology. Cdr. Sears reviewed the results
of his recent visit to Carnegie-Mellon University to view a
demonstration of their speech recognition system. The
progress being made was impressive; the next demonstration is
scheduled for September 1986 where the goal is to show an
order of magnitude improvement in processing performance. 1In
closing, Sears enjoined the group to keep the end objective
in mind - a relevant demonstration of results and to observe
the essence in this research program -- cooperation.

This proceeding consists of seventeen technical
reports which were reviewed by the key individual for that
program at the workshop. Alsc appended is a companion paper
by Dragon Systems concerning their work in speech training.
The papers are arranged in the order the subjects were
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presented using three general groupings: review of new
generation system {(NGS) for continuous speech recognition,
review of NGS for robust speech recognition, and review of
supporting infrastructures.

In addition to the governmant and vresearch
attendees, four guest experts were invited to visit the
sessions and to present their reactions tc the material
discussed during the workshop. The invited guests were:

Steven F. Boll - ITT-DCD

Jordan Cohen - IDA

Bruce T. Lowerre - Hewlett-Packard Labs

Fred Jelinek - IBM - TJ Watson Research Center

All four reviewers gave their impressions of the
research program in a give and take session on the afternoon
of day two of the workshop. The reviewers indicated they
were impressed by the progress made to date. In general,
they expressed satisfaction with the aims and objectives of
the program, with the cooperative nature of the research, and
with the tight, but realistic, schedule as outlined in the
program plan. Also, it was stated that good and sufficient
test data would be required in order to insure the robustness
of the resultant systems. The group advised all researchers
to include in their plans sufficient flexibility as they are
sure to find that the environment at the end of the project
will be vastly different from that envisaged at this point in
the evolution of the projects. Also, it was stressed that
sufficient training time must be built into any schedule for
installation and use of a speech system. For, it was stated,
a speaker can always make the system fail - sometimes even
when not trying to do so. Finally, Dr. Jelinek of IBM warned
that the not-invented-here syndrome is hard to break and the
research teams need to accept the selected techniques and
proceed with new research regardless of which group developed
the algorithm or the particular processing code. Cdr. Sears
expressed the appreciation of the Defense Advanced Research
Projects Agency for the candid and informed remarks of the
group which; he stated, would be taken to heart for the good
of the progranm.

The final session was devoted to integration plans
and several groups met separately to discuss collection and
distribution of data bases; productioa, distribution and use
of tools; and integration of new research into the NGS. Cdr.
Sears closed the general session by announcing that David
Pallett of NBS would manage the performance evaluation and
the data base collection efforts, and that James Hieronimus
of NBS would manage the technical integration and transition
issues involved in the speech recognition program.
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Appreciation is due to the Schlumberger Palo Alto
Research for their hospitality and use of their facilities
for the conduct of this workshop. Particular thanks |is
extended to Richard Lyon and Robin Wallace of Schlumberger
for their assistance in making necessary arrangementa.

The cover layout was created by Peter Gustafsoa of
the SAIC Graphics Department using material fron Stephanie
Seneff's paper on an application to spcaker-independent vowel
recugnition., The figure illustrates the envelope response of
40 channe_.s for the word "Celebrate," and appears as Figure 6
in her payer. For more information see Seneff's paper
included herein.

Lee S. Baumann

Science Applications
International Corporation

Workshop Organizer
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SECTION 1

REVIEW OF NEW GENERATION SYSTEM FOR
CONTINUOUS SPEECH RECOGNITION
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Status ot the C-MU Phonetic Classification System

The Feature Group1

Computer Science Department
Carnegie-Mellon University

‘* bstract

The C-MU phonctic classificztion system is designed to provide
a speaker-independent phonetic transcription of an unknown
utterance. The system uses perceptually motivated features of
speech to locate and classify phonetic segmente. This report
descsibes the current system configuration, the research that is
performed to develop and improve the system, and the most
recent perfoimance evaluation.

System Overview

The input to the phonetic classification system is a spoken
utterance. The outpat is a lattice of phonetic segments with
probabilities nssigned to each segment. Begin r~d end times for
rach segment are determined by locator algorithms. Phonetir
lakel nrobabilities are ussigned to each segment location by
classi fication algorithms.

At the present time, the scgment lattice is created by iour
separate modules. Each module is designed to locawe and c'essify
a particular set of target cegments; phonetic segmcnts with
common acoustic properties. The four modules are:

o Stop Module; Designed to locate and ciassify stop and
affricate consonants before sonorants (vowels, liquids, nasuls
and glides).

The target segments include [b, d, g, p, t, k, ch, jh] and the
stop-like allonhone of /dh/.

o Fricative vModule: Designed to locate and classify phonctic
segments that are accompanied by frication noise.
7 he target segments include [s, sh, z, =, f, th, ch, jhj.

e Closure Module: Designed to locate and classify closures,
background noise and pauses.

Target segments include voiced closures, voiccless closures,
epinthetic closures, background noise ani pauses.

o Sonorant Module: Designed to locate and classify ali
voiced segments.

Targets include vowels, dipthongs, liquids, glides nasals and
flaps.

1The Feature Group is Ron Cole, Mike Phillips Bob Brennan, Ben Chigier, Rich
Green, Bob Weide and Je et Weaver
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Research Process

This section provides an overview of the research process for
(a) developing locators, (b) developing classifiers, and (c)
analyzing and improving classifier performance. Those familiar
with the research process should proceed to the following section,
which describes the four modules.

Approach

The general approach is to use perceptually motivated features
of speech to make phonetic decisions. This process requires
examining speech spectrograms and other visual displays to
determine it features of speech that are needed to discriminate
among b given set of segments, Feature ' .sasurement algorithms
are then developed and the resulting feature mea=ire aent v:lues
are combined to make phonet.¢ decisions.

There are two major advantages to this approach. First,
decisions about phor.etic segments are based on all available
information. It is well known that the perceptual cues for
paonetic segments are Aistributed across both frequency and
time, and that perceivers make use of all available information.
For example, cnes for inter-vocalic [t] vs. [k] may include
features in the preceding vowel, fealures in the closure interval,
features in the Lurst w«nd aspiration and features in the
subsequent vowel. The current approach allows us to measure
and combine these features to make phonetic decisions.

A secony advantage of the approach is the ability to
understand and correct errors. By studying pictures of segments
that are incorrectly classified, it is possible to understand why
misclassifications occur and what car be done to eliminate them,

Development of Location Algorithms

The location algorithms use rules to hypothesize the location nf
target segments. Location algorithms are evaluated in terms of
(a) the percentage of target segments correctly detected in a
database of hand-labeled speech, (b) the accuracy with which the
left. and right boundaries are located, and (c¢) the number of
additionai firings produced by the algorithma (an additional firing
is any locator firing theat does not correspoud %o a target
segment).
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The goal of the research is to develop location algorithms that
accurately locate each target allophone. The process proceeds as
follows:

1. Create pictures of the targr: allophones showing many
different parameters.

2. Select the best parameter(s) for locating the allnphones.

3. Develop an algorithm to locate every target allophone in a
training database of hand-labeled speech.

4. Evaluate the algorithm in terms of hits, misses, accuracy of
boundary location and number of additional firings.

5. Make pictures showing the behavior of the algorithm.

8. Refine the algorithm to eliminate misses, improve boundary
location and reduce the number of additional firings.

7. Repeat this process until satisfactory results are achieved on
the training database.

8. Test on a new database.
9. Iterate steps 4 through 8.

Development of Classification Algorithms

Classification algorithms use perceptually motivated features
and multivariate classifiers to separate additional firiugs from
the targe* segments, and to discriminate among the target
segments. Classification algorithins are evaluated by comparing
the segment probabilities produced by the classifier to a database
of hand-labeled speech.

The process of building a classifier proceeds through the
following stages:

1. Make a picture of each firing of the location algorithm.

2. Sort tbe pictures into different piles based nn acoustic
features. For example, picturcs of locator firings for each
occurrence of [t| may be srouped into separate piles for
aspirated [t]s, [t] in [st| clusters, and unaspirated [t]s before
unstresced vowels. "Extra firings" are also grouped into
categories based on common acoustic features.

3. The locator firings are now given new labels; e.g., "aspirated
t", "cluster t", "short t".

4. The pictures are studied to determine the features needed to
discrimina.te among the category labels.

5. Feature measurenient algorithms are developed and feature
measurement values are collected for each category label.

6. A classifier is built that provides the best possible
discrimination of the labcled categories.

7. The classificr is tested on a new database of hand-labeled
speech.

N R A N AR P I T St W P S DI WD D DY

Classifiers are created using an interactive graphics program
called *Classgraph.® Classgraph allows the researcher to design
a classifier that incorporates knowledge about how features
interact to define phonetic categories. Classgraph is a tool for
both understanding the feature relationships in a particular
classification and for creating the classifier structure and
boundaries. It allows the user to look at hand-labeled training
data in two-dimensional projections of the original feature space.
These projections can be selected by hand or computed
automatically.

The user muy create regione in Classgraph by drawing a set of
boundaries. Additional regions may be created within the new
region, or in the region excluded by the original region, allowing
the user to create a tree structure of regions. This process is
guided by tbe user’s knowledge of how the decisions should be
structured and how the projections should be made at each node
of the decision tree.

The goal when using Classgraph is to create regions containing
tbe correct proportion of category labels given the available
featural information. Thus. if the featural information shown on
the visual displays is sufficient to uniquely identify the segment
[s], we attempt to use these same features to create a region in
Classgraph containing only labeled samples of [s]. Similarly, if
the features are sufficient to determine that the segment was
either [s} or [th] but not [f], then the feature measurement values
are used to create a region that contains labeled samples of [s]
and [th], but no labeled samples of [f].

Error Analysis

The classifier is then tested on a new set of utterances to detect
misclassifications. Misclassifications are eliminated using the
following procedure:

1. Determine the regions in Classgraph to which each
misclassified segment was assigned.

2. Analyze pictures of each type of misclassified segment in each
region.

3. Compare the misclassified segments to other segments in the
region. Ask the following questions:

o What features were supposed to discriminate the
misclassified segment from the segments in the region?

e Why did they fail to do so?

e What additional features are needed to redirect the
misclassified segments to the appropriate region?

S

. Refine the existing feature measurement algorithms or
develop new featu . measurement aigorithms.

5. Compute measurement values.

b

Create a new Classgraph structure that eliminates the
misclassifications.

7. Run the system on a new set of utteranccs.

8. Continue this process until the classifier performs in an
acceptable manner.
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The Modules

Before describing the modules, a few general points should be
made. First, algorithms in all modules were designed to look no
more than 250 msec ahead of the curren* time frame. This
constraint was imposed so that the modules could be
implemented to perform in near real time. Second, at the
present time, the four modules operate independently. In future
iterations, the modules will share information. Finally, in each
module, the locator algorithm produces additional firings; that
is, segments are hypothesized that do not correspond to the
target segments. Additional firings fall into two categories.
“Bad firings* are spurious hypotheses that are not ussful for
word recognition. *“Good firings* correspond to phonetic
categories (other than the target categories) and may provide
useful information to other modules in the system. For exa.nple,
the closure module locates many of the intervocalic weak
fricatives that are not found by the fricative module. We use
features and classif*~rs to eliminate bad firings from further
consideration and to correctly classify good firings.

Stops

The Stop Module is designed to locate and classify [b], [d], [g],
{pl, [t], [k], [ch], [ih] and stop-like [dh] before any sonorant
(vowels, nasals, liquids, and glides). The components of the
module are (a) a locator algorithm that finds stop bursts and
soncrant onsets and hypothesizes segments between the two, (b)
a classifier that discriminates among target segments and bad
firings, and (c) a classifier that discriminates among the target
segments.

The stop locator detects stop bursts followed by sonorant
onsets. A stoo burst is defined as any jump in high frequency

energy greater than a threshold value. Sonorant ousets are
detected by finding significant changes in low frequency peak to
peak amplitude following each possible stop burst. Target
segments are then hypothesized between each stop burst and
each sonorant onset within 200 msec. Target segments that do
not have a preceding closure are eliminated from [urther
consideration.

Next, a classifier eliminates l.ad firings. Bad firings include
categories such as *better burst later,* “better burst earlier,*
"ne real sonorant present,” and so forth. This classifier was
designed to eliminate bad firings without losing any target
segments.

A final classifier assigns a phonetic label probability ‘o the
remaining segments. The [irst stage of this classifier assigns each
segment to one of seven categories based on two features: The
duration of the segment and the average high frequency energy
in the segment. Finer distinctions are then performed using
features appropriate to the individual sesgments. At this time,
only the obvious features have been used to perform fine
phonetic distinctions, such as the spectral properties at burst
onset, spectral center of gravity, and relative amplitude
differences.  More sophisticated features (such as formant
transitions in the adjacent sonorant) will be included in the next
iteration of the module.

D e ——

Fricatives

The Fricative module is designed to locate and classify the
fricatives [s], [sh], [2], [zh], [], [th] and the affricates [ch] and [jh]
in any context. The module consists of (a) a locator algorithm,
and (b) a classifier that discriminates among target segments and
additional firings.

The locator algorithm uses zero crossings and low frequency
peak-to-peak amplitude to find fricatives. Local maxima in zero
crossings of the waveform trigger segment hypotheses. Segment
bourdaries are determined by a significant drop in zero crossings
or a significant increase in low freqiency peak to peak
amplitude.

Segments are then classified as targets or additional firings.
Additional firings include aspirated stop consonants, unaspirated
stops, syllable-final stop release bursts, and weak voiced
fricatives ([dh] and [v]). The main features used in classification
include spectral center of gravity, presence of voicing during or
preceding the segment, zero crossings, and amplitude onset
characteristics. At present, contextually important features
(such as the spectral broadening caused by a subsequent [I] or [r])
have not yet been incorporated into the classifier.

Closures

The closure module locates and classifies closure and nonspeech
intervals based on dips in two parameters; energy and overall
peak to peak amplitude computed from the waveform. The
threshold values used to postulate closures and nonspeech
intervals are normalized to the maxiinum energy and peak to
peak values observed thus far in the utterance so that
hypothesized segments are based on relative changes.

Locator firings are classified as targets or additional firings.
Targets include voiced, voiceless and epinthetic closures, pauses
and nonspeech intervals. Additional firings are classified as weak
fricative, weak sonorant, aspiration, or glottalization.

The classifier was developed one category at a time, starting
with the target categories (voiceless closures, voiced closures,
pauses). The main features used to classify target categories are
pitch within the segment (implies voiced closure), zero crossings,
high frequency energy and low frequency peak to peak
amplitude. The main features used to classify glottalized
additional firings are the standard deviation of the low frequency
energy and the presence of low peak to peak *humps.® The
main features used to classify weak [ricatives are zero crossing
and high frequency energy.

Sonorants

The sonorant module locates and classifies all voiced sections of
speech including vowels, nasals, liquids, glides, flaps, voiced
closures, and voicel fricatives.

Sonorant regions are located using low frequency (0 - 700 Hz)
peak to peak amplitude. The algorithm is designed to find all
sonorant strctches of speech, and therefore includes voiced
fricatives and other phonetic events. Within each voiced region,
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possible segmentation events are found. These events are: dips
in low frequency amplitude, changes in low frequency amplitude,
and changes in the ratio of mid frequency (500 - 3500 Hz)
amplitude to low frequency amplitude. Each possible
segmentation event is classified into one of three classes: not a
segment boundary, maybe a segment boundary, and definitely a
segment boundary. A lattice of possible segments is created
using rules about the combination of these classified
segmentation events.

The segments in the la'tice are then classified. A separate
classifier was developed for each sonorant label. In addition, a
classifier was developed for each type of additional firing. Each
of these classifiers discriminates between the target label and all
other firings. The classifier probabilities are combined by taking
the probability of each label from it's classifier and
renormalizing to make the probabilities of all labels sum to one.

The features used include formant frequencies and trajectories,
duration, relative amplitudes in various irequency bands, and
spectral center of gravity in different frequency bands.

Evaluation

Evaluations were performed for each module, and for the

combined output of the modules. The evaluations were
performed on 100 sentences produced by 10 speakers: 50
plionetically balanced sentences and 50 sentences from an
Electronic Mail task. These sentences were not used to train the
modules.

The 100 test sentences were hand-labeled phonetically.
Modules were evaluated by comparing the locator/classifier
output to each occurrence of a hand-labeled target segment. The
following tabulations were made: (a) percentage of targets
located (hits), (b) percentage of targets missed, (c) left and right
boundary alignment, (d} rank order of the target label provided
by the classifier and (d} additional firings.

A target was scored as a hit if the hypothesized segment
overlapped the hand-labeled target. 1f more than one segment
was hypothesized for a target, the hypothesized segment with the
best boundary alignment was selected as the correct firing. The
remaining hypotheses were classified as *additional firings". If
no hypothesized segment overlapped the hand-labeled target, the
target was missed. Classification performance was evuluated in
terms of the rank order of the target label provided by the
classifier.

Stop Module

The stop module located 967 of the 314 targets in the 100
sentences. The majority of the missed segments were voiced
stops preceded by nasals. In this context, there is minimal
closure inforination; the closure was not detected and the
segment was rejected as a stop. 99% of segments located were
within 20 msec of the hand-labeled boundaries.

Of the 301 targets that were located, 54% were correctly
classified as thie top choice, with 77% in the top three choices.

There were 247 additional firings: 0.8 for each hit. 69% of
these firings corresponded to stop-like events (glottalized vowel
onsets or fricatives following stop closures) while 31% were
judged to be "had" firings. More work is needed to correctly
classify these additional firings.

Fricatlve Module

The fricative module located 96% of the 381 targets in the 100

sentences. All of the missed fricatives occurred in fricative-
fricative or affricative-fricative contexts (e.g., the [f] was missed
in "messages from"). 98% of the located segments were within
20 msec of the hand-labeled boundaries; for those segments with
bad boundaries, the average left-boundary error was 40 msec and
the average right-boundary error was 80 msec.

Of the 348 fricatives found, 51% were correctly classified as the
top choice, with 74% in the top three choices.

There were 326 additional firings: 0.85 for each hit. Additional
firings were classified as stop, aspirated stop burst, dh, v, and h.
78% of the additional firings were correctly classified.?

Closure Module

The closure module located 98% of the 828 targets in the 100
sentences. 95% of all segments located were within 20 msec of
the hand-labeled boundaries; for those segments with bad
boundaries, the average left-boundary error was 80 msec and the
average right-boundary error was 55 msec.

Of the 818 closuces that were located, 95% were correctly
classified as the top choice, with 99.5% in the top three choices.

There were 408 additional firings: 0.85 for each hit. Additional
firings were classified as aspiration, weak fricative, glottalization,
v or weak sonorant. 93% of the additional firings were correctly
classified.

Sonorant Module

The sonorant module located 98% of the 1209 targets in the
100 sentences. 88% of segments located were within 20 msec of
the hand-labeled boundaries; for those segments with bad
boundaries, the average left-boundary error was 85 msec and the
average right-boundary error was 55 msec.

Of the 1179 sonorants correctly found, 56% were correctly
classified as the top choice, with 79% in the top three choices.

There were 2283 additional firings: 1.9 for each hit. 97% of
the additional firings were correctly classified. We also scored
the above additional firings for those occurring within a segment
and those spanning two or more segments; 30% of these
additional firings occurred within a segment.

Coverage Across Modules

The above evaluation examined the percentage of target
segments located and classified by each module. However, this
evaluaticn is incomplete for two reasons:

1. A target segment missed by one module may be located and
correctly classified as an additional firing by another module.

2. A segment not targeted by any modvle may be located and
correctly classified as an additional firing by another module.
For example, flaps were not targeted by any module, hut
were classied as additional firings by the sonorant module.

2An additional firing was considered to be correctly classified if a 'abel In the
lattice corresponded to the broad class of the hand-labeled segment
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Twenty sentences were analyzed to determine the amount of
coverage provided by the combined output of the four modules.
This analysis yielded 604 hand-labeled segments. Of the 604
segments, 97% were located and correctly classified by one of the
four modules. The missed segments were distributed as follows:

¢ 1% of the 604 segments were targets missed by all modules.

® 2% of the 604 segments were not targets, and were not
found by any module.

Reading Experiment

An experiment was also performed to test the “readability* of
the phonetic segment lattice.  The question asked in this
experiment was: “How well can a person who is familiar with
the Electronic Mail task (i.e., the vocabulary and grammar) read
sentences from this task given only a segment lattice generated
by the phonetic classification system?*

In the experiment, a member of the research team (JW) was
presented with segment lattices for 17 different sentences. The
sentences were created for the experiment and were unknown to
the subject. The sentences were selected from a set of tweniy
sentences recorded by 10 male and 10 female speakers (3
sentences were used for practice). For each sentence, the subject
was presented with the segment lattice produced by the four
modules and a list of the 243 vocabulary words used in the
Electronic Mail task.

Of the 100 words in the 17 sentences, only two were missed.
Both errors consisted of confusions between the words *two* and
“ten*. This result suggests that the current system output is
nearly sufficient to recognize words from continuous speech in a
highly constrained task when higher level constraints can be used
as efficiently as a human problem solver.

Assessment

All of the modules need a great deal of improvement. Only
stop consonants are located well and only closures are classified
well. It is likely that classification performance must be
improved by at least 15% to 20% to achieve acceptable word
level accuracy for a vocabulary of 1000 words.

Fortunately, there are many obvious ways to imp- ve the
performance of the locators and classifiers. The research process
allows us to understand misclassifications, develop the
appropriate featurc measurement algorithms and improve
classification. We therefore hope to achieve significant
improvement in classification performance in subsequent
iterations of each module.
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Abstract

Agora is an environment that supports the construction of large,
loosely-structured  programs  that  manipulate  complex  data
strctures, e.g. knowlcdge based systems. Agora can be
customized to support the programming model that is more
suitable for a given application, Agora has been designed
caplicitly to support multiple languages and highly parallel
computations by means of memory caching and pattern directed
invocation.  Systeins built with Agora can be exceuted on a
number of gencraul purpose multiprocessor architeetures.

1. Introduction

Our long-term goul is to develop a software 2nvironment that
mects the necd of application specialists to build and evaluate
their own parallcl processing systems quickly and efficiently. To
this effect we are developing a set of tools called Agora
(marketplace) that can be used to implement custom
environments (called frameworks) for describing, executing, and
evaluating parallel systems.

Numeious existing lingunage  eatensions  and programniing
enviroiments provide abstractions titored o the ncremental
design and implementation of large systems, €.2. 1.0O0PS [8],
STROBI: [y Other linguage extentions  deal with gCI]CI’.(II
purpose parallel processing, ¢.g. Multilisp [6]. LINDA [4]. Still
others deal with the needs ol intelligent and  heterogenous
systems design, ¢.g ABE[S]. ‘These kiguages and cnviromments
have different characteristics and capabilities because they have
different gouls.  Agora shares some but not all of their
characleristics:

Agora is not an "environment in scurch of an application” but is
"driven" by the requirement of snpporting the implementation
of the CMU distributed specch recognition sysiem {3]. During
the past ycar, we designed and implemented an initial version of
Agora and successfully used it to build two prototype specch-
recognition systents. Qur experience with this initial version of
Agora convinced us that, when building paralicl systems, the
ciTort invested to obtain a quality soflware environment pays off
manyfold in productivity. Agora has reduecd the tinie to
assemble u complex paralicl system and run it on a
multlprocessor from more than a mun-year to about one man-
month. The main reason for this has been that the interfacing
between user prograims has been taken carc by Agora.

Application research, however, «calls for still greater
improvement.  Significant progress in evaluating parallcl task

decompositions, in CMU's continuous specch project, for
example, will ultimatcly require that a single person can
assemble and run a complete system within one day.

Agoia’s relationship to user eode and operating system functions
can be explained by using an “onion skin” model: each
successively higher layer provides increasingly sophisticated
abstractions and tools, relying on the layer below for functions it
requires, Figure 1 shows how Agora lics above Mach's
facititics {1} and below application-specific abstiactions. The
Mach layers provide three major abstractions: message passing,
shared mcmory and "thrcads”. Message passing is the main
communication mechanism: all Agora implementations can run
on machines that provide message passing as the only
communication mechanism, Shared memory (when availble in
thc underlying computer  system) is used to  improve
performance, Threads (processes that share the address space
with other processes) are used 1o support the Tast creation of
processes (a uscind but not ulways necessary characteristic),

The Agora layers correspond to different needs:

-Agora is a complete environment, not just a language.

-Agora does not deline i new fangnage but rather cxtends the
capabilitics ol existing kinguages.

-Agora can he used to buitd lielerogenons  systems on
betcrogenons machines.

-The framework layer is (he level at which most of the
application vescarchers will propram. A Framework is like
specialized enviromment that has been bnibt to intevact with the
user in Lniliar terms. “The description, assembly. debugging
and production run of an application system are all performed
through the sime framework,

-The agent layer represents the “assembly kmguage levet” of
Agora.  Since all the details about the control and data
structure of the system are available at this level, paratlelism
can be eapressed in a convenient way, Although systems can
be fully described at the agent level. this level is best used to
deserine “lrameworks™  rather than (0 program  user
computations.  Computations capressed at this level are
machine independent.
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-the cluster laver maps the "agent layer” into a specific
computer system, It is in this layer that the most suitable Mach
primitives are selected, the code is compiled and linked, tasks
assigned to machines, etc.

While Agora can offer general support for constructing parallel
systems, our work tracks closcly the particular needs of CMU's
continuous speech recognition system. In Figure 1 and
throughout our discussion, we frequently illustrate Agora
features by referring to the specch system, To introduce Agora's
rcle in developing a specialized application we next summarize
the development steps for a parallel specch recognition systent,

Application cngincers first program one or mare "fromeworks"
that impleinent the computation environments that an
application requires. In the case of the continnous specch system
we currently have a different framework for each of the major
components and a "global" framework that ties the components
together (sec Figure 2). In the case of Figure 2 the framework
provides data flow and "remote procedure call* communication
mechanisms, A framework provides all the tools to generate and
maintain framework instantiations, ic. frameworks with user
provided code and data.

Researchers can then use frameworks to create framework
instantiations. An instantiation of the framework is gencrated by
describing the computations (the blocks in Figure 2 ), the data
(the ares in Figure 2) and the communication (the

intereonnections between nodes ot ares).  Components of a
framework instantiation can thenselves be instantintions of some

other framework,  In the speech system, Tor example, the word
hypothesizer is described by using a trinnework that emibodics
the asynchronous control necessary 10 tun the word hypothesizer
in paraltel together with code 1o display the data processed;
nser need only be Taniliar with the wlgorithms :nd the linguage
in which they are written,  Kescarchers can then instruet the
framework to map agents (via resource-shuring  clusters) to
processors. The Iramewaork, under user control, can then execute
onc or more system agents while the user can incpeet the
clements generated by means ol an element editor.  Finally, a
framework can be instructed to run the complete system,

Frameworks are described in terms of C or Lisp procedures
(called agents) that communicute with the rest of the system only
through streams of typed data clements called element streams,
or ES) whose typc is globally defined.  An clement might
contain, for example, informution postulating candidate
phonemes and their likclihoods for a given time interval. The
code provided by the application builder can also be in cither C
or Lisp.

This paper is an introduction to some of the ideas underlying
Agera. The current design of Agora is the result of the
experience acquired with two designs and inplementations
camied ont during 1985, One of these implementations is
currently nsed to support the execution of a prototype speech
recognition system on a network of Pergs and microVaxes, The
design described in this paper is cxpected to be running on a
sharcd memory multiprocessor by the end of the second quarter
of 1986.

Data structures, \
algorithms .
e.g. Word hypothesizer
User
V Framework \
layer ¢.9. Blackboard Iramework,
Word hypolhesizer framework...
Agent
layer e.g. Candidale phonemes,
Agora Iricalive classifler
layer /—————-—\
L Cluster

layer

shared memory

/ Message passing, !

Mach
layers

Commercial hardware

e.g. VAXs, Pergs, PC-RTs,
Symbolics, Suns, ...
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2. The Framework Leve!

The framework level is the primary interface for describing,
starting up and running an application.  Dilferent applications
require different computational models and a dilferent style of
interaction with the uscr. A framework unifies all the neeessary
tools within a single cnvironment so that they cun ull benelit
from knowledge of the task. Most of this knowledge is built into
a framework by its designer, ¢.g. by adding a display procedure.

Agora contains a number of tools that can he used when building
a framework. Each tool can be parametrized to fit the
requircmients of the framework, Tools are controlled through a
common graphical user interfice.  Agora contains tools to
support.

~Task deseription, ‘The systemis thal we envision building with
Agora contain up to 50 independent compntations).  Systems
of this siz¢ contain a large nanber ol interconneetions and are
complea enouph to make it iapossible to cheek the correctness
of the deseription hy hand. Agora provides a graphic
structured-cditor that performs a number of checks on the
correctiiess of the system structure, ‘this cditor cun be
parametrized to lit a given Tramework as a VESI editor can be
paramctrized o fit a given technology. This editor also
contains lunctions to start up a system and perform some
checks of thie structitre of the system at run timg,

-Custom display of nuser data. When debugging an application it
is uscful to examine the data that Now within the system in a
compagct, graphic forni. Agora provides a number of lacilities
that let a framework builder speeify "display (unctions™ and
then attach them to data communieation paths,

RT—— P —

-Lditing of clenients.Streams of data can be generated from
files and edited interactively by means of a “stream editor",
The editor is automaticatly configured by the information
provided by the tusk description editor. The user can read
hypotheses from files or from streams, write hypotheses to files
or msert them into strcams, or just browse through the
clements.

-Multiprocess  dehugging. Agora contains a  debugger that
continuously traces memory activity in a non-obtrusive way,
performs controlled replay of a particular stream of agent
activations and can start a number of element stream and
language debuggers in parallet on multiple element streams
and agents,

-Performance monitoring.Agora provides performance statistics
that can b displayed in real time or sent to user code to be
used as the input of load balancing procedures.

2.1.Example

We will use as cxample the description of a realistie (although
simplified) component of the CMU specch recognition system: a
word hypothesizer that computes word hypotheses “anchored"
at speeifie tines in the utterance.

Al the framework level this component is characterized by three
data types: anchors that specify when « word matching should
occut, phonctic hypotheses that are used o perform the match
and word hypatheses that are the result of the match. Two
lunctions are required:  the matching function that hypothesizes
words from phonemes and the condition function that checks if

Send Jones

i nized
Microphone Recog AR
input utterance
A A |
Ard <7
Scheduler Scheduler Scheduler Scheduler
Sampled 1 || Parameter =0 Phoneme RE Word
speech matrix lattice lattice
Knowledge Knowledge Knowledge Knowledge
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Parametler Acoustic Word Sentencle
Extractor Phonetic Hypothesizer Hypothesizer
Classitier
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Figure 2: Pictorial Representation of the Distributed
Specch Sysiem Framework
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there e cnongh phonemes within a time interval from the
anchot. 'The word hypothesizer st be able o receive anchors
and phonemes in oy arder and perform a word matching
aronnd cuch anchor after having checked that all the necessary
phonctic hypotheses are available,

The ward-hypothesizer Tramework lets o user specify the two
functions and bhinds them with the agent Tevel deseription that
provides the parallel implonentation (sce Sectian ). ‘The
fiamework also contains a display Tunction that can be altercd by
auser,

3. The Agent Leval

Agora (us any other cnvironment) cannot provide oplimum
performanee independently ol the style of computation that a
task requires and independently of the architecture and
Implementation of the computer system on which it runs.
Agora's agent level is particularly suituble to tasks where the
processing that is required i« almost but not completely known in
advance and some latency in setting-up a contputation can be
tolerated. Agora also has =xplicit support for pipeline and
parallel/pipcline computations,

‘These are the main features of Agora:

-Caches. Agora manages on bchalf of the user a "global”
memory that is organized in strcams of records. Dynamically,
part ol this memory can be "cached” into the address space of
a particular computation, Caches:

*deiine a convenient model of structured and proteeted
shared memory;

*can only be accessed through appropriate primitives that
guarantee synchronization;

*can be implemented regardless of the fact that the computer
system used has or not a physical shared memory;

*allow automatic optimization of data distribution,

Analogics can be drawn to the hardware caches in
multiprocessors, Agora’s model resembles ownership caching
schemcs, sce [7].

-Hidden parallellsm. Computation descriptions are independent
of the fact that parallelism is available in the undcrlying
computer system. In many cases parallelism and pipelining can
be automatically gencrated by the system,

3.1. Main Abstractions

The nutin abstvactions thid Agora presents o tlie framework

bnilder arc;

the (only) form in which data are transported
and stored,

Flements:

Elenient Streaws: seqriences ol elements:

Ageuts: the wuwnit af processing that  cxeentes
concurrently with other agents. cxchauges
dita using clement streamis and 15 activated
when  certain - paticrns  of  clements  are
generated;

We will describe euch of these components and explain how they
intcract,

3.1.1.Elements

Agora is centered around representing data as streams  of
elements of the same type (clement can be regarded as vartable-
size records). In a specch recognition system, lor exainple, an
clement could be a phoncme, word, sentence o¢ same other
meaningful intermediate representation of speech, Euach stream
hus a name that completely identilics the stream, a type (from a
sct of globally-defined typss) and is ordered by the time of
"arrival” ol its clements. Any agent that knows the name of a
stream can perforin operations on it since Agora "registers” the
name of cach strcam when it is crcated.  Since "names" are
global the only condition Tor sharing a stream between agents is
that a stream he first "created” by an agent (the agent cache
becomes then the Mowner" of the strcam) and then declared
“shared” by another agent. Ownership can be transferred from
agent to agent.

Flement types arc described within the agent code by using the
syntax of the languages that are used the progrun the agents with
very few additions. This mcans thut users nced not learn a
different language. The additional informution is stripped from
the source coce by Agora befoic the code is handed to the
compiler or interpreter, This is in contrast with other lunguage-
independent data transport mechanisms, like the mechanism
described in [2], that use a separate langnage to define the data,
The type declarations can contain extra information for
debugging purposcs, e.g. the legal values that elcments can
assume, display procedures, ete.

Agents can refer to subscts of clement streams by using
capabunines, Capabilities are identifiers that contain three picees
ol information: the streanmt name, and two indeaes that identify a
number ol contignous clements by their first and lust clement.

Cupabilitics arc manipulated by Agora functions and can be used
to "copy” from a cache into the address space ol an agent and o
copy ltom the agent space into a cache (often no real capy will be
necessary). There are three “modes” ol accss: Read-only: the
duta cnnot be written back into the cache. Add-efement: data
can be udded at the end of a strecam. Replace: clements can be
replaced by an cqual number of new clements,

3.1.2. Agents

Apora furces the user to split a computation into separate
components called agents. Fanctions (culled agent functions) arc
incapsulated in o module  (called agent)  that  exceutes
concurrently with other agents, Asent functions are completely
independent of the topology of the system they are used in and
must only be able to deal with the clement types that they
dedare.  An ageat cun contain mere than one agent function,
each activated by a diiterent pattarn (see later). Only one agent
functon i3 active at any given tme.  Fxinples of agents in a
specch system include a vowel classificr in the phouetic classificr
cluster ansl a matcher in the word hypothesizer,

Agents are created by un Agora lunction (buifd), each calt 10
buitd potentially gencrates multiple instances (called clones) of
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the sume agent. If an agent is programimed as a sct of state-less
functions the number of instinces does not affect the
computation but for the fact that scine agents computations
wight be cxecuted ia different order (which, in turn could affect
the outcome of the coniputation),

Agents are associated with a pattern that is checked every time
one of the streams mentioned in the pattern changes. Multiple
patterns that refer to the same stream are evaluated secuentially
in the order they were declared but starting from the last pattern
that successfully matched. Only the streams that have been
"cached" in the agent in which e pattern is specified can be
used within a pattern.

The pattern is expressed in terms of “arrival events” (the fact that
an elen.wnt has entered a stream) and in terms of the values of
the element fields. For example, one ean speeify a puttern that is
matched evory time a new element enters the stcan or that only
matches if a field in the clement has a specific value. More than
one streamm can be mentioned in the same pattern but no
variubles arc perminted in the pattern (i.e. dhere is no binding). 1t
i3 also possible to specily il an event must be considered
"consumed” by a successtul match or i it can be used by other
patierns (this can be very usclul to demultiplex a streum into
dilferent agents or to guarantee natual exclusion when needed).

This is how a "typical" agent will look (the syntax has not been
formally specificd yet):

agent for(list of eagabilitics and paramelers),

calry poiat al erealion time:
Ceoded

creation of new and shaied elomend sireams;

Leoded
end of agent Lunetion;

enlry poinl drdgpered by a paliern:
<code>

e of agent funclion,
<inore cnlry poinls>
cird of agent foo,

<ended can contain any statement in the language that is being
uscd and any of the following Agora functions, expressed in a
way that is compatible with the langnage used,

huild{...) -> agent forks another agent, specifies when the agent
should be uctivated, specifies capabilities to be
passcd to the agent uron activation, specilies
the desired multiplicity of the agent (clones).
The agent instantiation(s) 1emains active and
can be re.tivated an unlimited number of
times, The user can explicitly allow or
disallow Agora to "clone” an agent (use the
same address space) when it is built more than
onee.

ereate(...) -> capahility
creates an element stream(L3) with a global
name and a global type. 1t also specilies the
legal operations on the ES.
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share(...) -> capability

binds a local capability with a previously
declared ES and speeifies the operations that
can be perfiwmed on the ES (read. wiite,
read/write) by the local agent, ‘The operations
specificd  mwst  be  consistent  with  the
attributes of the streum as specified in the
corresponding create( ).

activatlon( ) +> capabllity
returns o capability to the element(s) that
caused an activation, fI" cloments from more
than one stream are involved suceessive calls
to aetivarion will return atll the capabilitics.

sei{capahllity) ->local variable
copics the elements specified by the cipability
into the agent address space,

replace(capubility, loeal variable)
replaces the elements pointed to by tite
capability with the same number of elements
contained in the local variable,

add(p,eapahility) adds the data to the clement stream pointed to

by the capability.

tennlnate(ayent) terminates all the active instances of the agent
effectively caneeling the effect of build, Can

be used by an ugent on itsell (and its siblings).

upilate(agent, pattern)
changes the pattern matching clause,

regulatc(agent, new —power)
controls the resource allocation,

3.2. Example

Thls fragment of code deseribes the agent level implementation
of the work hypothesizer framework. Please note that the use of
_Agora’s construets and not the syntax or the (C-like) language are
important. The time when to compute a word hypothesis is
generated elsewhere and added to a stream called anchor-points.
A word-hypothesization can only be performed if all the
acoustle-phonetic hypotheses within delta time units from anchor
are availahle. Phonetie hypotheses arrive at unpredietable time
and in any order,

First, a few (six) agents that wait for "anchor points” are ercated.
When any ol these agents receives an "anchor” it checks if there
are cnough phgnc(ic hypotheses and, if so, exccutes the mateh
function, I mot enough hypotheses are available, it ereates
another agent that will wait for the phonemes,

Type anchor §
Anchodtime | inleger,

Type phoneme {
Begintime, Fadlime  inleger;

Type word {
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agent selop=nord-hyp()

anch = crcalef anchor, "anclior - polnts" );

phon ¢ = creale proncme, "jlioreme = tatlice™ );

worl 1= creale{ word, “word = laitice™):

boll (word - by petlesize( Jactivale cuclearrival-of anch,
6 clones );

end-of-agent;

/1*“““*‘&!!!““,

agent word = hypotheslze( )

phon :&= slare("thoneme = tattice™);

ancn iz got(activation( )
/* gets the tast eloment in The siream polnted to by plion nnd checks

its time ¥/

If condition( anch -> Anchertime, gel ~ last~ element( phon ) -> EndTlme )

then { mztch( nach > AnchiorThne );

add - elewent( share{"wort--Initice"), matched = word ); }

else bulld (wait{ anch -> AnchorTine, nctivate new-arrivnl-of phon), shnrable)

end-of-agent;

/.“““!t‘t“‘*“‘/

agent walt{ marker : Integer)
If condltlon{ matker, get—activation( ) -> EndTime)
then {
match( marker ),
add ~ etement{ share("word - lattlc. "), matched — word );
terminate{myself);

end-of-agent;

/“““““**““‘./

functlon match { time =reference : integer , matched = word : word)

end;

/“““ttt““'.“‘/

function condition{ 11,17 : imteger ): boolean
end;

S kel R

4. The Cluster Level

Clusters arc collections of agents that can benetit from sharing
some of the computer resources. For exumple, a cluster wilt
contain agents that shae un element streom or agents that should
be schieduted (e, exceute) togethier,  An example of u cluster
could b u set of avents that aeeept paramcters such as piich,
amplitude, zero crossings and cnergy levels and  produce
plionetic units.  Apora maintains information on witich usents
are runnable and on how much of the eluster cunptution power
cach ngnnt should be recetving, ‘The “agent power™ can be
influenced by all the agents in @ cluster by using Agora
prinaitives,

Ulowes (iiltizle staness of he sewwe ageni) have a very
cffective and simple implementation on the Mach operating
system f1] as a single process (task, in Mach teiminology) in
wiiich ul'lu;ﬂlﬂ; uu\.uun'. Ui \umyul--n:un '\':.- ;\.u?iy r'\ll:[‘pk‘,\l‘
down sub-processes that share the address spuce) implement the
agents,

Although clusters could also be implemented us Mach tasks,
sharing the address space between "random™ tasks can be very
dangerous.  Clusters can be implemented (in decreasing order of
efficiency) as multiple processes that share memory or as
multiple processes interconnected by messages.

The Agora model of computation provides a variable degree of
multiprocessing: agents can be exccuted by separate processors
and clusters can be used to dynamically control the allocation of
processors,

One of the characteristics of “intelligent systems" is that the
¢ffort expended to find a satisfactory solution can depend on the
order in which different activities are scheduled, Agora provides
all the components necessary to implement focus-of-attention
policies within a system, but the responsibility of designing the
control procedures remains with the user. The Agora cluster
fun-time support procedures match the scheduling requests
performed by the agents with the reality of the underlying
computer system. For example, if a uiser indirates that an agent
can be replicated and run in parallel, Agora .un replicate it and
attenipt to exeente #in parallel with other instantiations of the
KIMC agent.

4.1.Example

The mapping of' the word hypothesizer framework into a parallel
system shows how Mach primitives cun be used. The agent
word-hypothesize will be built as a task if the target machine does
not have shared memory, The pragma "6 ctones” (in the eall to
build) indicates to the cluster level that the framework builder
believes six copies of the agent can be elficicmly used. If the
machine has shired memory then threads can be used and the
pragma becomes irrelevant since new threads can be generated
without incurring too much cost, The cluster hyer is instructed
(by using the pragma "sharable™ in the call to huilkd) to build the
wuit agents as threads of the saume task, This is possible bechuse
the agent waitr and the functions it calls do not use any global
data.

5. Conzlusions

Agora has a number of characteristics that muke it particularly
suitable for the development of complex systems in a
multiprocessor environment. "Fhese include:

-the complexity of parallel processing can be hidden by
building "reusable” custom cnvironments that guide a uscr in
deseribing. debugging and running an application without
getting involved in parallel processing programming;

-computations can be expressed in different languages;

-the system topology can be "computed™ in real time;

~dala are dynamically "cached” to minimize data transfer;

-agents can explicitly and dynamically declare how they interact
as far as memory is concerned;

-agents are activated oy pattern matching on the element
streams;

-ngents are described in a wan that allows Apora to mgiich the
available resources with the requirements of the computation.
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_ Agora also provides a way of describing the task at hand without
any concern for the kind of physical distribution that will be
pussible on a given computer system. Thus, u system description
will not change whether the system is rur on a network of
workstations, on a shared memory multiprocessor or on a
hypercube-network multiprocessor.
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Speech Recognition Experiments
with a Cochlear Model

Richard F. Lyon
Sckamberger Palo Alto Research
3340 Hillview Ave.

Palo Alto, CA 94304

Abstract

There are several ways that a computational model
of auditory processing in the cochlea can be applied as
the front end of a speech recognition system. For an ini-
tial round of experimentation, the fine time structure in
the model’s output has been used to do spectral sharpeu-
ing, yielding a “cockleagram™ representation analogous to
a short-time spectral representation. In later experiments,
fine time structure will be expioited for a more detailed
characterization of sounds, and for sound separation.

So far, experiments have been done with only two words
(“one” and “nine™) spoken by 112 talkers, to limit the range
of phonetic variation to simple voiced sounds, while provid-
ing a good sample of inter-speaker variation. The structure
of the vector space of “auditory spectra” has been exam-
ined through vector quantization experiments, which yield
a measure of information content and local dimensionality.

The inclusion of more dimensions of perceptual varia-
tion, such as pitch and loudness, in a speech front end rep-
resentation is both an opportunity and a probiem. Much
larger vector quantization codebooks and more training
data may be needad to take advantage of the extra in-
formation dimensions. A product-code approach and an
improved algorithm for finding the nearest neighbor code-
word are suggested to help cope with the problein and take
advantage of the opportunity.

Preliminary recognition experiments using a single code-
book per word and no time sequence information have shown
a performance of about 97% correct one/nine discrimina-
tion for talkers outside the training set, and 100% correct
for second repetiticns from talkers in the training set. Fur-
ther experiments are currently underway.

Introduction

Our experimental cochlear model has been most re-
cently described in terms of its performance on simple “phys-
iology” esperiments [1]. Those experiments concentrated
on the role of the AGC stages, which serve to partially
normalize the output representation in the face of a wide
dynamic range of overall amplitude and overall spectrum
variations. The dynamics of the gain control process help
to preserve perceptually relevant information about loud-
ness and spectrum, emphasizing short-term changes.

The output of the model is regarded as a sequence of
vectors in n-space, ren.esenting n-channel perceptual spec-
tra. Silence maps to the zero vector, and perceptually
louder sounds map to points further from zero. But de-
tailed characterizations of this pattern space are diffcult,
due partly to its high dimensionality.

The number of important dimensions of variation due
to phonetic and talker identity is an important issue in
designing recognizers to work in this space, and is discussed
in the next section. The following section discusses a set of
recognition experiments, including comparisons with LPC.
Finally, improved vector quantization techniques to work
in this pattern Jpace are suggested in the last section.

The Space of Cochlear Spectra

In the current version of the model, 92 bandpass chan-
nels are used to span a range of about 23 barks (about
100 Hz to 10 kHz). By modeling hearing, it is hoped
that sounds will map into 92-space in such a way that
a simple Euclidean distance in that space will correlate
well with perceptual distinctions. Therefore, it is expected
that a low-distortion vector quantizer designed to minimize
mean squared Euclidean error will preserve most of the rel-
evant information in a cochlear spectra. To explore this
notion, codebooks of different sizes and distortions were
constructed from various training corpora.

To make codebooks, a modified k-means algorithm was
used. In each pass over the training data, new crdewords
were added to the codebook whenever tiie distortion to
a training vector exceeded a desired distortion bound; at
the end of a pass, each codeword was moved to the aver-
age of the vectors that were closest to it. Compared to
a straight k-means with zodebook size doubling, we found
convergence to abcut the same rms distortion for a given
codebook size, but in fewer iterations. Having maximum
distortion as an independent variable is also useful.

The resulting data on codebook size vs. rms distortion
and max distortion for a training corpus of 112 talkers say-
ing “one” and “nine” are shown in Figure 1. The desired
value of max distortion, such that reconstructed cochlea-
grams have clear and centinuous formant and pitch tracks,
is probably less than the lowest tried so far.
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Figure 1: Codebook rms distortion (filled symbols) and
maximum distortion (empty symbols) vs. codebook size.

The slope of the size vs. distortion curves (on a log-log
plot) should reveal the dimensionality of the subspace that
the codewords are packing into. Cutting the distortion by
a factor of two will requira a factor of sixteen in codebook
size increase if there are four dimensions of variation to be
covered.

The data show slopes corresponding to about 6 dimen-
sions. Since the phonetic variation in the test corpus is
quite small, much of this variation is probably due to talker
differences. Since lower pitch harmonics are resolved in the
spectrum, and loudness is not completely normalized out,
these perceptually important dimensions contribute impor-
tant dimensions of variation in the data that would not nor-
mally be seen in LPC and other conumon representations.

For the one/nine data, a codebook size of 1801 is barely
adequate for high-fidelity coding of cochleagrams of the
talkers in the training set. For the complete digit vocab-
ulary, a codebook about five times larger would probably
perform similarly. The distortion caused by various code-
books is apparent in figure 2.

Based ca these observations, it appears that represent-
ing a complete range of phonetic variation (eight or more
dimensions), with reasonable fidelity would require a code-
book size around 50,000 to 1,000,000. These sizes are far
beyor«. normal practice in the speech recognition field, and
require new techniques if they are to be useful.

R.cognition Experiments

Since training our existing recognizer [2] to use the
¢ >chlear spectrum pattern space will take considerable time,
;- much simpler test was undertaken first. Using the tech-
aique of Shore and Burton [3], a codebook was designed
for “one” and another codebook was designed for “nine”,
using a single repetiticn of each -vord from each of the first
5" of the 112 talkers. Setting maximum distortion to 140
for both cases, the codebook for “one™ reached a size of
261 and an rms distortion of 45.2, while the codebook for
“nine” reached a size of 272 and a 5% higher rms distcrtion
of 47.3.

t4

Recognition proceeded by comparing quantization dis-
tortions (rms or total squared distortion) using the two
cadebooks, without compensation for the different code-
book characteristics. No endpoint detection was done, so
the generous amount of silence and noise at hoth ends of
the words was included in the distortion measurements.

Testing on the second repetition of the same words from
the training talkers led to no errors (in 100 trials). This
result is encouraging, since this recognition technique has
not previously been very successfully applied to speaker-
independent or multi-speaker problems.

Testing on the other 62 talkers showed a serious bias:
there were no misrecognitions of “one” as “nine”, but ten
misrecognitions of “nine” as “one” (5 on first repetition, 5
on second repetition, mostly from different talkers). Over-
all, on this speaker independent condition, there are 10
errors in 248 trials, or 96% correct. While this does not
approach the performance of a good speaker independent
isolated digit recognizer on the “one/nine” discrimination
task, it is quite respectable for this simple algorithm.

Using order 11 LPC as a parameterization for compar-
ison, with an Itakura distortion measure, we obtained at
best 2 errors in 100 trials from talkers in the training set
(98% correct), for various codebook sizes, and 14 errors in
248 trials on the other talkers (94.4% correct). Surprisingly,
even very smali codebooks (2 to 16 codewords) performed
well with LPC, so it was decided to go back and try the
cochleagrams with small codebooks.

With cochleagrams, it was found that for talkers in the
training set, larger codebooks work best {sizes 32 and up
gave no errors), but that smaller codebooks do a better
job of generalizing to talkers outside the training set (size
32 was optimal with 7 errors in 248 (97.2% correct), while
sizes 16 and 64 both were both slightly be*ter than the ini-
tial large-codebook experiment, with 9 errors each. These
differences may not be significant.

For every codebook size except size 2, the cochleagrams
gave fewer errors than the LPC, usually by more than a
factor of two.

VQ Algorithm Improvements

In spite of the encouraging results with small code-
books, it seems that to take full advantage of the infor-
mation in cochleagrams with large talker populations will
require very large codebooks. There are (at least) two alter-
native approaches to making very large vector codebooks
practical. First, better fast quantization algorithms can be
used to reduce the time cost. Second, codebooks can be
consiructed as product codes built from a small number of
moderate-size codebooks.

Cur present quantization algorithm takes advantage of
the triangle inequality that applies to the Euclidean dis-
tance metric, so that codewords too far from a current best
guess need not be examined; this unfortunately requires a
table of N? inter-codeword distances, and so is impractical
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Figure 2: Cochleagram and vector quantized cochleagrams of “nine” and “one”. From top:
original, size 383 codebook, size 879 codebook, size 32 “nine” codebook, size 32 “one” codebook
(talier outside the training set).
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for much larger codebooks. The FN algorithm [4] uses a
tree structure with a branch-and-bound search algorithm
to take advantage of the same inequality with less stored
information. Another approach which looks promising is
to store the dual of the multi-dimensional Voronoi diagram
(5] of the code vectors, so that each code vector is linked to
its neighbors; in this case, when the current best guess is
better than any of the neighbors, no further codewords need
be examined. Using the last frame’s quantization index as
a first guess is very effective in these algorithms. In any
case, the auxiliary data structures should be designed such
that they are easy to modify when expanding or iterating
the codebook.

The product code approach [6] is an alternative way to
encode many bits of information per symbol with low dis.
tortion and small codebooks. The code space is the direct
product of smaller codes, each of which encodes a separate
part of the information in the original vector. In the sim-
plest case, the original vector to be encoded is simply split
up such that some components (i.e., cochleagram channels)
are used as a small vector in one codebook, and the other
components are used with one or more other small code-
books. But other vector processing operations could also
be used to try to separate the information more cleanly
into feature vectors of lower dimensionality. For example,
one process could attempt to capture pitch information,
another could try to capture first formant information, etc.
As long as these “feature extraction” processes don't lose
information, the overall vector quantization distortion can
be made as low as desired (even if quantizing sub-optimally
by independently quantizing with each small codebook). If
each feature detecting process captures only one or two im-
portant dimensions ot variation, the resulting codebooks
could he quite small. The structure imposed on the code
space by the product code may also be usefui in sume kinds
of recognition algorithms.
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Conclusions

The cochlear model produces a spectral representation
that captures important dimensions of speech signals. Pre-
liminary experiments show that cochlear spectra lead to
about 50% fewer errors in a very simple recognition tech-
nique, compared to LPC. Taking full advantage of the ex-
tra dimnensions of information in cochlear spectra with a
wide range of phonetic material and a wide range of talkers
may yet require very large vector quantization codebooks
or other techniques to extract the relevant features.
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AN AUDITORY-BASED
SPEECH RECOGNITION STRATEGY:
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ABSTRACT

This paper describes a new system for speech processing that
is guided by knowledge about the human auditory system. A
bank of critical band filters defines the initial spectral analy-
sis. Filter outputs are subjected to an adaptation model that
introduces features such as enhanced onsets and compressed dy-
namic range. The adaptation outputs are delivered to two par-
allel channels, each of which produces outputs appropriate for
distinct subtasks of the recognition process. One path yields an
overall energy measure for each channel, an envelope response
that can be identified with “mean rate.” The outputs of this
path appear useful for locating acoustic events and assigning
segments to broad categories.

The extent of dominance of periodicities at each channel’s
center frequency is captured by a synchrony measure in the
other path, which yields a spectral representation with enhanced
spectral contrast but with “amplitudes” that are only vaguely
related to energy in the corresponding frequency band. The
outputs of this stage show clear formant peaks, with smooth
transitions over time. These outputs were applied to the task
of speaker-independent vowel recognition, using an intermediate
“line-formant™ representation that is derived by applying tech-
niques similar to those used in vision research. The formant
data are first reduced to fuzsy descriptors such as “rising for-
mant over the second half of the vowel centered at 12 Barks.”
The recognition process involves specifying for each vowel the
tolerance ranges for the first two formants, and then searching
the list of the line-formants of an unknown token for appropriate
matches. Once the line-formants are abstracted, the recognition
process is extremely fast, and performance compares favorably
with other results reported in the literature for similar tasks.

INTRODUCTION

The human auditory system is an existirg speech rec-
~gnizer with excellent performance If we could build com-
puter models that adequately reflect the transformations
that take place in the ear, then the resulting “spectral”
representations should be superior to other ropresentations
for computer speech recognition. Due to the extensive

* This research was supported by DARPA under Contract N0O0039-85-
C-0254. monitored through Naval Electronic Systems Command.
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studies of auditory physiologists, we now know quite a bit
about the kinds of transformations that take place, at least
at the peripheral level, and it is feasible to build computer
models that take these effects into account.

The outputs of such modeis can often be represented
in a spectrogram-like form, such that resonances of the
vocal tract show up as peaks at the appropriate frequez-
cies. It may be appropriate to use techniques cimilar to
those used in vision research 7] to abstract fiom such
spectrogram-like representations the relevant information
necessary for phoneme identification. By first construct-
ing a “primal sketch” of an auditory-based spectrogram,
it is then possible to identify such prominent features as
a rapidly falling formant in a form that readily leads to
a subsequent straightforward phoneme recognition proce-
dure. Specialized frequency-modulation detectors in the
central auditory system [13] lend further credibility to such
an approach.

This paper is divided into two major units. The first
half focuses on the model for speech prscessing, which pro-
duces two spectrogram-like representations, from which
appropriate features could be extracted. The second half is
concerned with a proposed new speaker-independent vowel
recognition strategy, based on formant trajectories. Fea-
tures for recognition are abstracted from the synchrony
spectrogram obtained as an output of the auditory model.
A set of 16 vowels and diphthongs of American English is
selected as a small recognition task to serve as a testbed
for the proposed method.

PERIPHERAL MODEL

Auditory neurophysiologists have gathered consider-
able data describing how nerve fibers in the eighth nerve
of the mammalian audilory system respond to tone stim-
uli, tone complexes, and synthetic speech stimuli {1,3,5,6].
From these data it is clear that the ear performs a fre-
quency analysis of auditory stimuli, but that nonlineari-
ties, such as saturation at high stimulus levels, and dy-
namic effects, such as adaptation, are prevalent in the
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measured responses. These data were used for guiding the
design of a computer simulation for the peripheral stage
of auditory processing.

The analysis system consists of a set of 40 indepen-
dent channels, which collectively cover the frequency range
from 130 to 6400 Hz. A block diagram is given in Figure
1. Each channel consists of a linear critical-band filter, fol-
lowed by a nonlinear stage (Stage II), intended to capture
the prominent features of the transformation from basilar
membrane vibration to nerve fiber probabilistic response.
The Stage II outputs include the detailed waveshape of the
response to individual cycles of the input stimulus; they
are still sampled at the original 16 kHz sampling rate. The
outputs are delivered to two parallel noninteracting mod-
ules. One module determines the envelope response, cor-
responding to “mean rate response” of auditory neurons.
The other module measures to what extent the informa-
tion near the center frequency (CF) of the linear filter
dominates the output; i.e., determines the “synchronous
response.”

We believe that these two representations are useful
for different aspects of the problem of speech recognition.
The envelope response tends to show enhanced sharpness
of onsets and offsets, relative to the outputs after only the
linear stage, and therefore should be useful for determin-
ing acoustic boundaries. Furthermore, due in part to sat-
uration phenomena, steady state formants tend to become
broader in frequency, which should make it easier to group
segments into broad acoustic classes. The synchrony mod-
ule measures the extent of dominance of infermation near
the filler center frequency in the channel response. This
module is described in [10,11]; the only significant mod-
ification reported here is the extension of the frequency
range from 2700 Hz to 6400 Hz. The outputs of this stage
generally show narrow peaks at the formant frequencies,
and thus should be suitable for making fine distinctions
among within-category competitors.

Filter Bank Design

The filter bank consists of 40 overlapping critical-band
filters spanning the frequency region from 130 to 6400 Hz.
Their frequency response is shown in Figure 2a, plotted
on a linear frequency scale, and in Figure 2b, on a Bark
scale [15]. The analog speech is initially filtered at 6.5 kHz
cutoff and sampled at 16 kHz. In the interest of efficiency,
the filter bank system was designed as a cascade of com-

fitoad
ENVELOPE !
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CRITICAL} ThAIR CELL/ ?
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FILTER MODEL SYnClRoNOUS| | Fine
BANK RESPONSE Distinctions
Stage | Stage ll Stage 1l

Figure 1: Block diagram of overall system structrra.
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plex high-frequency sero pairs, with taps after each zero
pair to individual tuned resonators. Each individual res-
onator consiats of a double complex pole pair at CF aad
a double complex zero pair at half CF. The choice of a
double complex pole pair was ‘notivated in part by obser-
vations of phase data on basilar membrane vibrations and
nerve fiber responses, suggesting a 2x phase shift through
resonance [2,8]. The double gero pair at half CF is neces-
sary in order to produce broad low-frequency tails on the
high-CF filters, such as are observed in neural data [6]. A
complex zero pair at half CF has been previously proposed
by Allen [1].

To specify the critical bandwidth criterion, the fre-
quency scale in Hz was first converted to a Bark scale
through a nonlinear mapping function. The conversion
was defined by the following set of equations derived by
Goldhor [personal communication]:

01f, 0< f<500
B(f)={ 007f+15, 500<f<1220 (1)
6lnf-326, 1220<f

where f is the frequency in Hsz, and B is the frequency
in Barks. For a given filter, centered at frequency fj,
the critical bandwidth in Hg is obtained by first evaluat-
ing By = B(fo), and then inverting the process to obtain
J(Bo—1/2) and f(By+1/2). The difference between these
two frequencies is then the critical bandwidth in Hs.
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Figure 2: Frequency response characteristics of filter bank.




The major design task was to determine the radius of
the double complex pole pair in the s-plane that provides
the critical bandwidth, given the existence of the seros.
This was accomplished through linear apjroximations as
follows: !

1. Compute the slope, m, of the frequency response of
the filter near center frequency (f.) when all poles
and geros are included except the double pole at + £,
and the two poles at ~f, are assumed to have a ra-
dius =7 1.0.

2. From a linear approximation to the slope, and us-
ing Equation 1 above to determine critical band-
width, BW, compute two locations above and be-
low f. where the 3dB points should be. These two
frequen-~y locations are separated by a critical band-
width but may not be equidistant from f..

3. By linearizing the unit circle near f., use geometric
considerations to determine the radius of the poles
that will yield critical bandwidth as follows. Let
7(= V2) be the ratio of the amplitude at the center
frequency to the amplitude at the edge of the critical

band.
Define: q
g=1
[m| ¥
z=pf+ BW/2 - \/(BW/2)? + ?
Then,
, e LO_IBW—ZZ
mq

In traditional spectral analysis, speech is typically pre-
emphasized prior to Fourier analysis. Some form of pre-
emphasis can also be motivated from an auditory stand-
point. It has been determined experimentally that broad
outer ear resonances chould result in a boost in energy
above about 1500 Hz by roughly 10 to 20 dB [14]. The
gains of the filters in the model are set so as to reflect
these resonances, as shown in the figure.

Hair-Cell/Synapse Model

Following the linear filtering stage, 2ach channel is pro-
cessed independently through a nonlinear stage, to model
the transformation from basilar membrane vibration to re-
sponses in the eighth nerve. The model incorporates such
nonlinearities as dynamic range compression and half-wave
rectification, and also captures effects that resemble short-
term adaptation and rapid adaptation. No attempt was
made to model any long-term adaptation phenomena. The

'For a derivation of this method for determining critical bandwidth,
see Appendix 1 of [10}.

19

A RAPID IITAN G
IN==% Acc [TluaLrwave[— Y
L
B \ C Gv GL <T>i5.“0’il‘llv9
Jio
c : LOWPASS
lo_" — OUT
FILTER

Figure 8: Three-stage hair-cell/synapse model.

output of this stage represents a probability of firing, cor-
responding to a period histogram.

The model consists of three substages, as shown in Fig-
ure 3. The first substage compresses the amplitude at high
signal levels and performs a half-wave rectification, based
on a raised hyperbolic tangent function. The output of
this substage becomes the variable resistance in an adap-
tation model in the second substage, which is similar to
the one proposed by Schroeder and Hall [9]. The “current”
through the variable resistance in the membrane becomes
the input to the third substage, which is simply a linear
lowpass filter to model the partial loss of synchrony with
increasing frequency. The shape of this lowpass filtcr was
derived from rclevant data obtained by Johnson [5].

In the Scuroeder-Hall model, “quanta” of an electro-
chemical agent are generated at a fixed average rate, r
quanta/sec. The probability of firing of an attached nerve
fiber is directly proportional to the number of quanta cur-
rently in existence and to a permeability function, p(t),
that is related to the instantaneous input stimulus level.
The quanta are “used up” in direct proportion to the prob-
ability of firing, and there is also a certain amount of “leak-
age,” such that a small percentage of the total quanta
available disappear without causing a nerve fiber to fire.

Thus, the following equation describes the number of
quanta as a function of time:

dn(t)/dt = r - [g + p(t)]n(t)

where n(t) is the number of quanta at time t, r is the
constant quanta generation rate, g is the leakage factor,
and p(t) is the permeability function, which depends upon
the input stimulus.

The model can be described by an electrical analog as

follows:

C% =1, - [G[, + (v'v(t)]V(t)
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where C, a free variable identified with capacitance, can
arbitrarily be set to 1.0; i,, a current source, is the quan-
tum generation rate r; and G; and Gy (t) are conductances
asgociated with g and p(t) respectively. :

The model proposed here is similar to the Schroeder-
Hall model, but with one important difference: the quan-
tum generation rate is not fixed, but rather adapts so as
to try to regenerate on the average the same number of
quanta that have been “lost” through the two conduc-
tances. Thus r(t) becomes a dependen: current source,
1,(t), determined by passing the current flowing through
G and Gy(t) through a leaky integrator.

The current, 1,(t), through the conductance Gy (t) varies
over a wide range with each cycle of the stimulus, whereas
1,(t) tracks only the average value of this current. An ef-
fect much like adaptation then occursin the model because
of the delay inherent in the averaging process. Thus the
dependent current source becomes the dominant factor in
controlling the adaptation rate of the circuit. The time
constant of the lowpass filter should therefore be set to a
value appropriate for short-term adaptation, i.e., around
30 ms.

Some Examples

Figure 4 shows the outputs of intermediate substages of
the hair-cell/synapse model shown in Figure 3, when the
input signal consists of a sequence of 2-kHg tone bursts of
50 ms duration, that double in amplitude halfway through,
interspersed with equal intervals of silence. The envelope
response is apparent on the left, and the detailed wave-
shape near the cursor is shown on the right. Saturation
and half-wave rectification are evident in G,, whereas the
effects of adaptation become apparent in 1y, after substage
B. The final output is simply iy, lowpass filtered.
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Figure 8: Responses of 800 Hz channel to first two sylla-
bles of “satisfy,” spoken by a male speaker, before and after

hair-cell/synaps: model. Time-expanded response during /a/

shown on right.

Figure 5 shows the response of the channel tuned to
800 Hz to a segment of natural speech. The response is
shown after only the linear filter [top] and after the hair-
cell/synapse stage [bottom]. The first formant of the vowel
e/ is close to the center frequency of the peripheral filter;
hence the response is very strong. The time-expanded dis-
play on the right shows the detailed shape of the response
near the midpoint of the vowel /2¢/. One evident effect of
saturation is that the periodicity at the formant frequency
becomes enhanced relative to the periodicity at the funda-
meptal frequency of voicing. A similar effect is observed in
auditory nerve fiber responses to speech-like stimuli {3]. In
the weak second syllable, on the other hand, the periodic-
ity at the fundamental is enhanced by the nonlinearities.

Figure 6 illustrates the effect of the hair-cell/synapse
stage on the envelope response, for a segment of natural
speach. Each waveform is the smoothed output of one of
the 40 channels as a function of time, with low-frequency
channels at the bottom. The original speech waveform
and the phonetic transcription are displayed underneath
each set, aligned in time. The left panel shows the log
magnitude of the smoothed channel outputs, after only
the linear filtering stage, hereafter referred to as “Stage I
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Figure 4: Responses at intermediate substages of hair-cell/synapse

model to 2-kH7 tone with varying amplitude. Time-expanded
response at vertical bar shown on right.

Al
Figure 6: Envelope response of 40 channels for word “cele-
brate,” spoken by a male speaker, after Stage I [left] and after
Stage II [right].
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Figure 7: Left: Wide-band spectrogram for word “bite,” spo-
ken by a female speaker.

Middle: Synchrony spectrogram for same word.

Right: Narrow-hand spectrum and synchrony spectrum at time
of vertical bar.

outputs.” The r ght panel shows the smoothed magnitude
response, after Stage II. Acoustic boundaries in time are
generally better demarcated after Stage II. For example, it
is very hard to see the boundaries of the /1/ in the Stage I
outputs, whereas these boundaries are much clearer on the
right, particularly in the higher frequency filters. Silence
intervals, such as the closure for the /b/, show up as a
constant value at the spontaneous rate in Stage II, whereas
the Stage I outputs during silence or background noise are
much less consistent. Rapid formant movements are also
better preserved after Stage II, as shown by the rapid rise
of F; in the /re/ of “-brate.”

The Synchrony Spectrogram

The synchrony computation that is performed in the
bottom branch of Figure 1 is described in detail in [10]
The output of each channel is subjected to an amplitude-
normalized scheme for detecting the extent of dominance
of energy at the channel’s center frequency in the chan-
nel output. The frequency resolution is such that the
pitch information, in the form of harmonic structure, is
lost for male voices but typically retained in the first fo.-
mant region for female voices, Harmonics between F} and
F; are typically suppressed, because prominent energy at
the first formant frequency in the channel output destroys
synchrony to the intermediate harmonic. Pitch striations
over time are usually absent, due to the amplitude nor-
malizaticn process. Peaks at the formant frequencies are
much narrower than in the envelope representation, thus
making the synchrony spectrum more suitable for fine dis-
tinctions.

The features of the synchrony branch of the system are
illustrated in Figure 7. A wide-band spectrogram for the
word “bite” is compared with a synchrony spectrogram of
the same word, where the latter is displayed on a Bark
scale. The synchronous “amplitude” is a highly nonlin-
ear function of the local prominence of a given spectral
peak. A narrow-band spectrum in the /a/ portion of the
diphthong is compared with a synchrony spectrum on the
right.
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The synchrony algorithm works surprisingly well in
sounds with predominantly high-frequency energy, such
as the /t/-burst, because the synchrony measure incorpo-
rates energy at d.c. as well as energy at CF. Any strong
energy concentration in the signal at high frequencies is
mostly converted to d.c. energy, which is passed by the
synchrony measure. Prominent peaks in the input wave-
form well below the CF of high-frequency filters appro-
priately reduce the synchronous response of such filters,
because significant synchrony to the wrong frequency is
present.

VOWEL RECOGNITION SYSTEM

After arriving at the speech analysis method outlined
above, we then sought to test the applicability of the syn-
chrony outputs to recognition problems. We defined a
specific task and developed a complete recognition system
for this task, based on the synchrony spectrogram repre-
sentation. Instead of choosing traditional methods such
as dynamic time warping and template matching, we de-
cided to pursue novel alternative methods, motivated in
part by vision research. The task is the recognition of the
following 16 vowels and diphthongs of English, spoken by
multiple native- American speakers, both male and female:
/i, e, yu, I, €, £ 0,90, 4 u,u,a’7,a" o, 3/

The first step in recognition is to describe spectral
peak contours over time in such a way as to conveniently

describe formant frequencies and trajectories. The typ-
ically two-stage process of (1) formant tracking and (2)
abstraction of rates and directions of formant movements
is collapsed into a one-step process of directly assigning
straight-line segments to the resonance contcurs in the
frequency-time space. The computational procedures are
straightforward, leading to a description of the formant
information for a givern vowel by a list of oriented straight-
line segments. These line segments lead naturally to de-
scriptions such as “rising formant,” with the slope of the
line conveying the degree of rise. No attempt is made to
assign the line segments to particular formants, such as
F;. Instead, the recognition process is hypothesis-driven.
For each vowel or diphthong to be recognized, a short de-
scription of expected ranges of frequency and orientation
in the time-frequency dimensions for the first two formants
is given.

Line Formant Extraction Process
Figure 8 illustrates the process to obtain a list of straight-

line segments describing the formant patterns in a given
sonorant segment of speech. The synchrony spectrogram
for the word “Burt,” spoken by a male speaker, is shown
in part (a) of the figure, with the frequency axis repre-
sented on a Bark scale. A nonlinear filter-and-quantize
procedure defines “On” and “Off” contour regions in time
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and frequency, shown in part (b). These correspond ap-
proximately to regions where the instantaneous amplitude
is greater [On] or less [Off] than the local average.

Each robust peak in a given synchrony spectral cross-
section is allowed to vote for a best-fit line segment, re-
stricted to stay within an “On” region and to pass through
the time-frequency location of the peak. The selection pro-
cess, as jllustrated in Figure 9, is realized by *drawing” a
finite set of straight lines of differing orientations through
the sample peak. The average amplitude of all samples
on each line, as well as the line’s total duration, are de-
termined. The “longest and strongest” line segment is
selected as the vote for the given peak. In the figure, only
seven different orientations are shown, whereas a total of
11 orientations were used in the system. The votes of the
robust peaks are accumulated in a list giving information
about tne orientation, center-points in time and frequency,
duration, and mean amplitude of each line.

The next step is to consider collectively the list of can-
didate lines over a time interval defined by the unknown
vowel’s extent. Usually, several peaks vote for the same
line or very similar lines. A heuristic algorithm was devel-
oped to collapse the list of lines into a new list. “Equiva-
lent® lines are merged into a single representative, and a
count of the number of votes being merged is accumulated.
Finally, the list is further p:uned, and line segments that
appear to be insiguificant are discarded. Elimination is
based on threshold requirements for the number of votes,
the minimum allowable duration, and the mean ampli-
tude. In the example, the line segments that remain after
pruning are shown in Part {c) of the figure.

The final step in the formant extraction process is to
convert the list of line segments into a fuggy descriptor
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Flgure 8: Illustration of Line-formant Abstraction Process (a)
Synchrony spectrogram for word “Burt”; (b) One-bit enhanced
spectrogram defining allowable regions for line segments; (c)
Resulting line segments describing formants of vowel.
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Figure 9: Schematic diagram of process of determining best
line candidace to describe possible formant passing through a
single peak. Black reginn denotes “On” contour. Lines at sev-
eral pre-specified orientations are “drawn” on the synchrony
spectrogram, and the strongest (defined by mean amplitude of
spectrogram along the line) and longest (where lines are re-
stricted to remain within “On” regions) line segment is selected
as the vote for the given peak.

format. The temporal extent of a given line is converted
to a verbal description of its extent relative to the vowel
end points, such as “first half.” Similarly, the strength
and orientation of the line are quantized to a small set of
possibilities. Only the center frequency is retained as a
number. Table 1 lists allow:ble categories for each item.

Recognition Procedures

The line formant representation was applied in a speake;
independent recognition task for the following 16 vowels
and diphthongs of English, restricted to /bVt/ context:
/iy e, yu, I, &, &, 0,9, 0, A, U, u,a’, a¥, o7, 3/. The
only step used for speaker normalization was to reference
each line formant’s center frequency sn Barks to an imagi-
nary “zero line” defined as the median frequency in Barks
of Fy over the duration of the vowel. Fy was determined
automatically using the method described in [10]. This
normalization procedure resembles the method used by
Syrdal [12] except that all formants, as opposed to only
F\, are defined relative to F,.

Each vowel candidate is associated with a descriptor
list of line-segment specifications for acceptability limits
for the first two formants. An example of the descrip-
tor list used for the diphthong /o7/ is given in Table 2.
For /o7/ to be a candidate solution, the list of line seg-

Orientation Temporal Strength
Rapid Rise Rapid Fall| At Start At End Strong

Rising Falling [First Half Second Half, Medium
Slight Rise Slight Fall|In Middle Throughout| Weak

Steady l |

Table 1: Categories for descriptors of line formants.
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Freq[Bark]| Orientation |Temporal Strength

F1 3.1.4,6 any not at end| any

F2 6.9-10.0!rapid rise, rising| in center any
orl 10.1-11.6/rapid rise, rising|second half| any

Table 2: Descriptor list for acceptability of diphthong /o7/.

ments for a given unknown vowel must contain at least
one line that matches the descriptor for F}, and at least
one line that matches one of the descriptors for F,. The
F, descriptor is very general in its requirements, whereas
the F; descriptors both demand a rising formant over a
restricted frequency region, whose range is defined differ-
ently depending upon whether the line segment is located
in the center of the vowel or toward the latter half.

Each vowel is specified by “approval® requirements for
the first two formants, and validity tests for the 16 vowels
yield a list of potential candidates. A two-stage pruning
process ensues, The first stage is a mandatory elimina-
tion of certain candidates if certain other candidates are
present. This stage is necessary because the synchrony
spectral representation for high-pitched voices may show
individual harmonics of the fundamental up to the first

formant frequency. In certain cases, a harmonic below Fy
could be an acceptable first formant for /i/, and the un-
derlying Fy could be an acceptable second formant. If a
back vowel such as /5/ also passed its requirements, then
the vowel is assuredly not /i/. Rather than require that
the /i/ approver look for line segments in a reject region,
it is simpler to suppress /i/ on conditions of acceptability
of certain back vowels.

The second stage involves a verification step, which
may include information about other formants, such as
Fy for /2/. Oftca the task is to decide between two com-
peting candidates, such as /i/ and /e/. Durational rules
may be invoked tc inake a decision between a short vowel
such as /e/ and a long vowel such as /a/. Such rules in-
clude an overlap region where both candidates are allcwed
to survive.

Recognition Results

The system was trained and tested on a set of 272 to-
kens, with each vowel spoken once in bVt context by each
of nine male and eight female native-American speakers.
The system gave a single correct choice 89.6% of the time.
A single incorrect choice was given 3% of the time. The
remaining 7.4% of the time, there were two choices, one of
which was correct. No attempt was made to order these
two choices.
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Three out of eight errors and nine out of 20 double
choices involved the vowels /o/ and /a/. Most of these
could be considered as pronunciation errors, for many of
the speakers did not make a distinction between these two.
Thus if these two are combined into the same class, then
94.7% of the time a single, correct answer is given, 2%
of the time a single, incorrect answer is given, and 3.3%
of the time two choices are given, one of which is correct.
The five errors were /yu/ — /i/, /&) — Ja¥/, /o[ = v/,
/o] = [/, and Ju/ = [o].

It is perhaps surprising that the harmonic structure in
the F, region for female speech did not present a serious
problem to the recognition algorithm. While the frequency
of F, ia quantized in such cases to the nearest harmonic of
Fy, such quantization is usually adequate to make a correct
decision about the vowel. Such structure also necessitated
very unrestricted descriptions of allowable orientations for
F,. For example, although F) should be falling for the
diphthong /a Y/, it was not possible to require a falling
line segment because of the possible interference of the
harmonic structure.

Results based on training data are obviously suspect,
particularly in a case like this where hard decisions are
made. The system was therefore tested on the 16 words
spoken by four new speakers, one male, one female, and
two boys, aged 13 and 15. Results are summarized in
Table 3, where /a/ and /5/ are collapsed into a single
category. Performance for the two teenagers [B1 and B2]
was somewhat worse than for the adults, but for the most
part vowels for the new speakers fell within the ranges
determined from training data. It is significant, however,
that after minor rule adjustment, performance for the new
data could be imp:oved to the level indicated after the
/, without any performance degradation for the training
data. Thus, while 16 tokens for each vowel is not enough
data to determine the extreme formant positions for those
vowels, it requires only minor adjustments of the system
to correct errors that occur when new data fall outside the
defined ranges.

I.D. |Errors| Two Choices/Count
M1 | 0/0 0/0 16
F1 1/0 1/0 16
B1 (156 yr)| 2/0 2/3 16
B2 (13 yr)| 2/1 2/0 16
Total 5/1 5/3 48 |

Table 3: System recognition results for 16 vowels spoken by
four new speakers.

Key: 2/1 — Two errors before and one error after rule modifi-
cation.
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SUMMARY AND CONCLUSIONS

It is still premature to know whether an auditory-based

speech analysis system will pay off in speech recognition.
There are emerging, however, strong indications that au-
ditory based representations are interesting and worthy of
further study. We have described here two such represen-
tations for the #peech signal, one based on mean rate re-
sponse and the other based on synchronous response. The
mean rate response outputs have been used successfully
for locating acoustic boundaries and making broad cate-
gory decisions [4]. Preliminary results using these outputs
for syllable detection in continuous speech are encourag-
ing. We are also exploring their utility in fricative identifi-
cation, and they appear to enhance the differences among
the fricative sounds of English, relative to standard Fourier
technigues,

We have demonstrated the potential utility of the syn-

chrony spectrogram by means of a speaker-independent
vowel recognition task. The method chosen for the por-
tlon of the recognizer concerned with extracting features
from the auditory representation is similar to strategies
used in vision resea ch to cartoonize pictures [7]. By re-
ducing formant information over vowel portions of speech
to a small set of fuzzy descriptors, it becomes feasible to
require a recognizer to use hard decisions, thus simplify-
ing enormously the computations involved. In spite of the
fact that the recognizer makes use of no statistical infor-
mation and obtains no scores other than “in® or ®out,” the
system has excellent performance on a relatively difficult
classification task. The training set used here is not yet ad-
equate to predict the variability of all new data; however,
minor rule adjustinents could yield improved performance
for the test set without changing the original results for the
training data. We anticipate that with sufficient training
data, it will be possible to capture nearly all of the within-
phoneme variability (in this limited bVt context).

The spectral representation, the synchrony spectrogram,

chosen for extracting the line formants used for recog-
nition, is particularly well suited to that task, because
the formant peaks tend to be well-defined and continuous
across time. While it may be feasible to use other rep-
resentations, such as the LPC spectrogram, us inputs to
the line-formant detector, it is not clear that results, ei-
ther at the level of extracting the lines or at the level of
recognizing the phonetic content, would be as good. It
is particularly encouraging that the presence of harmonic
structure in the first formant region for female speech did
not cause problems in vowel recognition.
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ABSTRACT

This paper presents a progress report on the recognition
of nasal consonants, /m, n, 1/, in American English. Our
present effort is focused on the detection and recogmition of
nasal consonants using acoustic information in the nasal mur.
ie °r. Presently, we make no use of nasalization information in
adjacent vows'-. Our immediate goal is to locate and identify
only those iasals in continuous speech that have a clear mur-
mur, leaving the ambiguous ones for future analysis. A nasal
detection algorithm based on a local decision criterion has been
developed, using the outputs of an auditory model. Evaluation
of its performance on 365 sentences indicates that 70% of the
nasals are correctly located, with one impostor accepted for ev-
ery nasal. Most of the missed nasals occur in a small number of
well defined phonetic environments in which the nasal murmurs
are typically articulated poorly. Nasal sdentification is based on
a set of five acoustic measures and a strategy that combines a
hierarchical decision tree with the likelihood measures fur each
feature. Lvaluation of the classifier performance on the same
database indicates that 80% of the nasals and impostors are
correctly id.ntified, yielding an overall nasal recognition rate of
56% with an insertion rate of 15%. In order to improve system
performance, we must make use of acoustic information from
adjacent vowels.

INTRODUCTION

This paper describes our effort in recognizing nasal con-
sonants, /m, n, 1/, in American English. Nasal conso-
nants are difficult to recognize for several reasons. First,
the characteristics during oral closure, often referred to
as the nasal murmur, differ significantly fro.n speaker to
speaker because of individual differences in the size and
shape of the nasal and sinus cavities. Second, a nasal
murmur can be affected drastically by the phonetic envi-
ronment. In some cases, as in “camp,” the nasal murmur
is almost entirely absent. In such cases, the detection of
the nasal consonant depends almost entirely on the degree
of nasalization in the adjacent vowel. Finally, the complex
production mechanism makes acoustic characterization of
nasals difficult.

*This research was suppor't_ed by DARPA under Contract N00039-85-
C-0254, monitored through Naval Electronic Systems Command.
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The goal of our research is to develop algorithms that
recognise nasal consonants in continuous speech. Realis-
ing that in some phonetic environments the presence of a
nasal consonant Is almost entirely encoded in the adjacent
vowel, our strategy utilices acoustic cues from both the
nasal murmur and the adjacent vowel. The recognition
strategy is as follows. First, regions in the acoustic signal
that potentially contain nasal consonants are delineated.
Next, acoustic measurements made in each region are used
to decide whether the region corresponds to a nasal mur-
mur or an impostor. Measurements are also made in the
adjacent sonorant regions to decide whether or not they
are nasalized. Finally, the independent decisions based
on the consonantal and vocalic portions are combined to
provide a single indication of the presence of a nasal con-
sonant,

Our present emphasis is on the deteciion and recog-
nition of nasal consonants based solely on acoustic infor-
mation in the nasal murmurs, and not on the degree of
nasalization in adjacent vowels. Our immediate goal is to
locate and identify only those nasals in continuous speech
that have a clear murmur, leaving the ambiguous ones for
future analysis. We will first describe a nasal detection
algorithm that attempts to delineate regions in the acous-
tic signal that may contain a nasal murmur. Next we will
descrii-e the identification algorithm and evaluate the sys-
tem performance. We have not yet completed the nasal
recognition system outlined above; therefore, this papes
should be viewed as a progress report.

NASAL DETECTION

Potential nasal murmur regions in the acoustic signal
are detected in several steps. First, the speech signal is au-
tomatically delineated into stable acoustic regions. Next,
each region is classified into one of four broad phonetic cat-
egories, using measurements derived from the gross spec-
tral shape within the region and from the energy contour
around a region. Finally, several simple parameters are
used to rule out obvious impostors.
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Signal Representation

The algorithm for finding stahle acoustic regions uses
a spectral representation that incorporates known proper-
ties of the human auditory system, such as critical-band
filtering, half-wave rectification, adaptation, saturation,
spontaneous response, and synchrony detection [6]. Specif-
ically, we use the envelope of the output of the filter chan-
nels of 2. hair-cell model, corresponding to the “mean rate
response” of the auditory neurons. The model consists of
40 filters equally spaced on a Bark frequency scale, span-
ning a frequency range from 130 to 6,400 Hs. The hair-cell
outputs are represented as a 40-dimensional feature vec-
tor, computed once every 5 ms.

We find this representation desirable for several rea-
sons. The hair-cell model tends to enhance the onsets
and offsets in the critical-band channel outputs. For low-
amplitude sounds, the output corresponds to the spon-
taneous firing of the neurons, and is greatly attenuated.
These two effects combine to sharpen acoustic boundaries
in the speech signal. Furthermore, due to the saturation
phenomena, formants in the envelope response appear as
broad-band peaks, obscuring detailed differences among
similar sounds. As a result, we surmise that this repre-
sentation may be appropriate for broad phonetic classifi-
cation.

Figure 1 compares the hair-cell envelope response (on
a Bark frequency scale) with a wide-band spectrum (on a
linear frequency scale) computed during an /s/ (left) and
at a /k/ release (right). For these examples, the hair-cell
output generally enhances important acoustic cues while
suppressing irrelevant information. Note that the outputs
of the low-frequency channels of the hair-cell model show
only the spontaneous rate response.

Finding Stable Acoustic Regions
Cur next objective is to establish stable acoustic re-
gions for further phonetic analysis. Realising that certain

acoustic changes are more significant than others and that

the criteria for boundary detection often change as a func-
tion of context, we adopted the strategy of measuring the
similarity of a given spectral frame to its immediate neigh-
bors. The algorithm moves on a frame-by-frame basis,
from left to right, and attempts to associate a given frame
with its immediate past or future. Specifically, each frame

Figure 1: A comparisou of hair-cell versus DFT outputs.
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builds up forward and backward cumulative distance con-
tours Dp(n, ) and Dp(n, —5) respectively, with D(n,s) de-
fined as:

D(n,s) = id(n, 1)

where d(n, 5) denotes the Euclidean distances between the
featui« vectcr of the current frame, ¥(n), and that of the
n+ s frame, #(n + j). Then the decision strategy is:

Loop for i from 1 to I,
until | Dr(n.€) — Dp(n, 1) |> Dmin
finally
if Dp(n,s) — Dp(n,—1)>0
then associate frame n to its past
else associate frame n to its future

Thus I,,,, constrains the observation range. Currently
this value is set to 50 ms. The threshold D,,, is a min-
imum distance threshold indicating when the difference
between the two cumulative distance functions is signifi-
cant enough to form an association. By terminating the
search as soon as the threshold is exceeded, the algorithm
gelf- adapts to capture short regions that are acoustically
distinct. In addition, the algorithm assigns ar asscciativn
strength, A(n), to each frame, which measures the maxi-
mum difference between Dy and Dp in the range of asso-
ciation. An example of the association waveform is shown
in the top part of Figure 2. The positive-to-negative gero-
crossings of the waveform correspond to potential acoustic
boundaries. To minimize the effect of detecting small and
insignificant acoustic changes, this association waveform
is smoothed with a gaussian filter with sigma 0.005. For
the example shown in Figure 2, this smoothed waveform
is shown just below the association waveform.

The information in the smoothLed association waveform
can be captured in the form of a pulse train, also shown
for the example in Figure 2. The pulse train provides in-
formation not only on the location of the acoustic bound-
aries, but also t': boundary strength (by the height of the
pulse) and abruptness (by the width of the pulse). In par-
ticular, we found that the height of the pulse is well corre-
lated with the significance of the acoustic change. In other
words, smaller pulses typically correspond to insignificant
acoustic changes, or false boundaries. This observation is
demonstrated in Figure 3, which compares the histogram
of the pulse height for legitimate boundaries to that for
false boundaries. Thus it is possible to set a boundary
threshold and consider - nly those spikes whose height ex-
ceeds this threshold.

By varying both the boundary threshold on the pulse
height, and the amount of smoothing performed on the
association waveform, we can control the system's senss-
tivity to detecting acoustic boundaries. If the seusitivity
is set too low, then the system may miss some of the le-
gitimate boundaries. On the other hand, a high sensitiv-
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ity would tend to insert false boundaries. In our present
implemertation, the threshold and the amount of smooth-
ing performed have been set to minimise the insertion and
deletion error, based on a training sample of 200 sentences
from 10 male and 10 female talkers. For the sentence
shown in rigure Z, the acoustic boundary locations are
superimposed as dotied vertical lines on the spectrogram.
By comparing with tLe time-aligned phonetic transcrip-
tion above the spectrogram, we see that most of the major
acoustic boundaries have been located accurately.

Segment Classification

Once the boundaries have been determined, the regions
within a set of boundaries are classified by a set of energy-
related measures into one of four categories: sonorant-like
(8), obstruent-like (O), silence-like (-), and murmur-like
(M). To establish the general context of the region, the
detection component next examines the energy contour
and determines whether a given region signifies an en-
ergy peak, a valley, or a plateau. A murmur-like region
is labeled prevocalic if it is followed by an energy peak,
postvocalic if preceded by an energy peak. and mudial is
it cepresents an energy dip. Note that any isolated nasal,
such as a syllabic nasal or a schwa nasal that has been
labeled a single acoustic region will be labeled as S (about
5% of the detected nasals fall in this category). Currently,
we make no attempt to recover these nasuls since we are
trying to label only murmurs adjacent to a vowel.

The broad classifier locates many nasal impostors be-
cause it utilizes a very straightforward context-independent
algorithm with Little speech knowledge. On both training
and test data, the impcster to nasal ratio is approximately
two to one. However, it is possible to rule out many impos-
tors with several simple measurements before any detailed

"analysis of the murmur-like segments is made. This re-
duces the imposter to nasal ratio to approximately one to

Figure 3: The nasal detection component.
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Flgure 3: Histograms of pulse height for legitimate and false
acoustic boundaries.
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one, eliminating only a v all fraction of tne nasal candi-
dates in the process.

Results

The nasal detection algorithm was evaluated on two
separate databases. The first database consisted of 200
phonetically balanced sentences collected at MIT from 10
male and 10 female talkers. The recording was made in a
sound-treated room with a lapel microphone. The second
database of 165 phonetically balanced sentences was col-
lected at C-MU from eight male and niue female talkers.
The sentences were recorded in a computer room with a
hand-held omni-directional microphone. All in all, there
were 10 sentences each from 36 talkers and 5 additional
sentences from 1 female talker in the C-MU corpus. None
of the speakers or sentences were used for system training.

In order to evaluate the effectiveness of the nasal detec-
tion component, all labeled acoustic regions were mapped
onto the time-aligned phonetic transcription. A phoneiic
label was associated with each region based on the phoneme
that most overlapped the acous ‘c region. Using the crite-
rion that a nasal has been detected if it overlaps a . egion
by more than 50%, the system detects 70% and 71% of
the nasals for the MIT and C-MU databases, respectively.
For every potential nasal that the system detects, it also
proposes 1.1 and 1.0 impostors for the two databases, re-
spectively. A breakdown of the errors as a function of
the phonetic context is shown in Table 1. We see that
most of the detection errors occurred when the nasal was
in a syllable-final position followed by an obstruent (as in
“camp”), in a syllable-initial position preceded by an ob-
struent (as in “snap”), or between two vowels and realized
as a nasal flap (as in “any”).
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?;: Table 1: Error Analysis for the Detection Algorithm In order to avoid the difficuiiies of estimating multi-
] r - - dimeneional densities with a small nr mber of tokens, and
= Phonetic | MIT D a.abm‘ae C-MU Database to avoid assuming some underlying distribution shape, the
$°“t:)x; (% °f7f"°” (% of6(l;3rror) classifer assumed that the feature sets were statistically

8.

independent and estimated th= density of each feature in-
Obs. _ V 14 17 B dividually using a k-nearest neighbor approximation [1].

V_Vv 10 10 | The nas»l classification score, S, was produced by sum-
ming up individual log likelihoods for each feature.
NASAL RECOGNITION = él Pn(j)
PO

Strategy

The detcction algorithm delineates regions in which
a nas. ! murmur can potentially exist. However, some
of tucs2 re  ns may indeed contain an impostor, i.e., a
speech scur ‘4 i3 acoustically similar to a nasal mur-
mur. The u¢ ge of our recognition system attempts
to separate the u..-als from imnostors, which include front
vowels, semivowels, voice bars, and weak voiced fricatives,

The classification system inco-porates five robust sets
of measurements on nasal murmurs, as suggested by an
earlier acoustic study [2]. The five measures are:

where Py(j) and Py(5) are the estimated probabilities of
the j' feature for nasals and imposters respectively. J
was typically arcund five for each classifier.

Results

As was the case for the evaluation of the nasal detection
system, each acoustic region was assignec a phonetic label
based on a 50% overlap criterion. Using this procedure,
the classifier was able to correctly identify 80% and 79%
of the murmur-like segments from the MIT and C-MU
databases respectively. A breakdown of the performance
is shown in Table 2.

To evaluate the performance of the entire sysiem, tak-
ing into account both the detection ard recognition parts,
we compared the finai output to thr original time-aligneu
phonetic transcription. This evaluation produced two mea-
sures of the accuracy of the syrtem, the hit rate and the
insertion rate. The hit rate is Gefined as the percentage
of time that an underlying nasal is detected and classified
correctly (and overlaps with the time-aligned transcrip-
tion). The insertion rate is defined as the number of im-
postors identified as nasal for each nasal in the database.

Evaluating the recogrition system on the same 365 sen-
tences produced hit rates of 54% and 59% and insertion
rates of .12 and .18 per nasal for the MIT and C-MU
databases respectively.

o Strength: the average erergy in very-low frequency
band relative to the energy in low and medium-low
frequency bands,

m
i

o St hility: the change in low-frequency and mid-frequency
energy throughout the consonant,

W

i

s
l

e Encrgy: the difference in average energy between ihe
consonant and the adjacent vowel, in both low and
medium frequency bands,

AT

el
Ay

o Transition: the maximum rate of energy change be-
tween the consonant and the adjacent vowel, in both
low and medium frequency bands,

e Change: the amount of spectral change both within
the consonant and between the consonant and the
adjacent vowel.

DISCUSSION
Nasal Detection
From Table 1, we see that the nasals missed by the de-

Our carlier investigation revealed that the usefulness of
the attributes depended on knowledge of the broad pho-
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netic context. As a result, the broad phonetic context was
used to divide the data into three categeries: prevocalic,
medial, and postvocalic. Further splits were also made in
orde: to divide the imposter set into those which were more
obstrueni-like versus those which we-2 more sonorant-like.
This facilitated the subsequent decisioa-m-king process by
allowing each classifier to select the features that best sep-
arated the nasals from the impostors for the given context.

Once the murmur-like segment had been sorted into
a particular class based on its context and low resonance
frequency, it was passed through a log likelihood classifier
to produce a nasality score. The classifiers were trained
on 400 sentences from an MIT database, containing 10

tect.on algorithms consistently fall into severa. broad pho-
netic contexts. Nasal murmurs in these environments are
typically articui. ‘ed poorly. This is illustrated in Figure 4,
which compares the duration of the nasals detected to that
of the nasals missed. We see that the missed nasals are
typically shorter thon { .. .e detected. The missed nasals
with durations of 50 ms or more either had a transcrip-
tion error or had a subtle transition between the vowel and
the nasal. Since our strategy is to locate only the robust
nasals, we are not particularly concerned with these missed
nasai consonants. As we can see from the spectro sraphic
examples in Figure 5, vowels adjacent to poorl .:ticu-
lated nasals are usually heavily nasalized, sugge 7 that

sentences from 20 male and 20 female speakers.
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Table 2: Error Analysis for the Classifier Algorithm

MIT Database {C-MU Database
Output (%) | Output (%)
Input NasaliImposter | Nasal| Imposter
Nasal 75 25 i 79 21
Imposter; 15 85 | 20 80

acoustic information in adjacent vowels may carry the pri-
mary information on the presence of the nasal consonants.

Nasal Recognition

The majority of the recognition errors for the MIT
database are due to confusions between nas: s and semivow-
els, or between nasals and front vowels. In both cases, we
suspect that information on formant frequencies and tra-
jectories in adjacent vowels may be helpful. Over half of
tke errors in the C-MU database are dve to confusions be-
tween nasals and front vowels. In this case we suspect the
difference in the microphone may also play a role. Recall
that the MIT data were collected using a lapel microphone,
which tends to emphasize the low-irequency portion of the
spectrum, whereas the C-MU data were collected with a
far-field microphone. If microphone differences were in-
deed the source of this confusion, we may be able to im-
prove system performance by including in the training set
data collected from both microphones.

The present recognition algorithm utilizes only infor-
mation in the nasal murmurs. In a previous study (3], we
were able to determine vowel nasalization with some suc-
cess. By incorporating acoustic information from both the
nasal murmur and the adjacent vowel, we should be able
to further improve system performance.

Figure 4: Histograms of the duration of detected and missed
nasal murmurs.
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Figure 6: Spectrograms [llustrating the Missed Nasal Murmurs

SUMMARY AND FUTURE PLANS

In summary, this paper presents a progress report on
our effort to detect and recognize nasal consonants in con-
tinuous speech. Preliminary evaluations suggest that the
algorithms are accomplishing what we expected, although
further evaluation is definitely needed. Future work to
improve system performance will include:

o refinement of acoustic features for recognition, in-
cluding the use of formant frequency information,
and

the incorporation of information regarding the de-
gree of nasalization in adjacent vowels.
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Abstraci

A comple.e system for deriving formants from contin-
uous speech is presented. The system contains a pitch
tracker optimized for finding analysis frames which provide
good spectra. The pitch tracker also provides a sonorant,
obstruent decision and a voicing decision which is used by
other componente. The anharmonic pitch sychronous spec-
tra cre based on Hanning windowed regions of the pitch pe-
riods. Exactly which regions are analyzed is dependent on
whether the region is an obstruent or a sonorant. Finally
these spectra are used to drive » formant tracker based on
the princip’e of maximum continuous length. The resulting
system is being deveioped as part of the vowel recognition
module at NBS.

Introduction

There have been a number of pitch trackers developed
over the past 20 years. [1]-[7] Each one has been de-
signed for a particular application. Some applications re-
quire smooth pitch frequencies, even though the real pitch
of the first pitch period at the start of voicing is often
low. The pitch tracker which is discussed here has been
optimized for finding pitch periods which produce good
spectra. In glottalized regions, it will find pitch periods of
approximately the length of regular pitch periods in that
part of the sentence. In the course of developing this pitch
tracker, many very strange looking waveforms were exam-
ined. In each case the pitch period boundaries are se-
lected which produce the Lest spectra. We built our own
pitch tracker because our sonorant identification modules
account for coarticulation by looking at formant transi-
tions between the sonorant and adjoining obstruents. The
pitch in the transition region is difficult to track accurately,
but is of great importance for our pitch synchronous anal-
ysis of these regions.

Pitch Tracker

The goal of the pitch tracker is to produce high qual-
ity spectra suitable as input to a formant tracker based
on peak finding. The algorithm used is fast, at an early
stage performing data reduction on the input speech and
using only reduced data thereafter. Detecting the true
pitch produced by the talker is not a goal of this project.
Only those measures with increase the performance of the
formant tracker are used. Particular emphasis is given the
the edges of voiced regions where transitional information
may be present in the resulting formants. As byproducts
of pitch detection, a measure of sonority and an estimate
of syllable boundries are produced.
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A pitch period i the amount of time between subse-
quent excitations of the vocal tract during voicing. The
exponential waveform decay during the pitch period is a
commonly recognized feature of a voiced region of speech.
The algorithm employed by this pitch tracker [7] utilizes
this exponential decay of amplitude to detect the presence
of voicing and the alignment of the pitck period.

This algorithm uses a parameterized representation of
the input speech. The speech waveform is low-pass filtered
80 as to include approximately the lowest two formants.
Using the filtered waveform, zero crossing locations and
peak heights between zero crossings are computed. All
calculations are based on zero crossings and peak heights
with one exception. The transition between voiced and
unvoiced regions is detected using a sum of squares energy
calculation on the original waveform.

This algorithm detects the pattern of decaying ampli-
tudes which appear ac decending steps on a plot of peak
heights.[Figure 1b] Each flight of steps represents a pitch
period. Within a pitch period the largest peak is either
the pitch pulse or the glottal opening, the opposite signed
peak preceding the pitch pulse. Using apriori knowledge of
the orientation of the pitch pulse the pitch peak is labeled.
This algorithm alone correctly labels pitch periods within
open vowels. Pitch labels in other voiced regions typically
require one or more forms of correction. Pulses which do
not represent pitch pulses can be labeled, valid pitch pulses
can go unlabeled and occasionally the pulse following the
pitch pulse will be labeled instead. In order to clean up
the mislabelings, an overall estimate of pitch is made by
finding the largest region of constant pitch. Restrictions
on feasible pitch range are used to restrict the choices.

The most frequent labeling error is marking non-pitch
pulses as pitch pulses. This is corrected by identifying and
deleting the errant label. Pitch periods containing an extra
labeled pulse within it are frequently adjacent to periods
with correct pitch. This is the easiest case to detect and
correct. [Figure 2] In other places an entire voiced re-
gion will be labeled with double pitch marks and thus not
supplying a easy starting point for correction. Lacking an
appropriate neighbor, canidate pitch pulse amplitudes are
investigated. A correlation of cauidate pitch peak ampli-
tude is used to choose peaks for deletion. }Figure 1c]
When every second canidate is significantly lower in am-
plitude than its neighbor the higher amplitude pulses are
labels as pitch pulses and the lower amplitude pulses are
deleted.

If the amplitude difference between neighboring peaks
is not significant (roughly 30 percent) then the extra peaks
are labeled as pitch pulses. This produces an abnormality
in the pitch frequency but has been found not to signifi-
cantly degrade the resulting synchronous spectra.

B R T r e A N e M e e b b e Y o ke o T R TS AN T Lo Y L R TN Lo T I I S I o D L TR



Figure la. Original luav<eform with pitch pulses labeled.

L

Figu~e 1b,

Peak heights - Time aligned with original waveform
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Figure lc. Pitch Pulse magnitudes.
are identified by their magnitudes.

Other areas require interpolation or extrapolation of
pitch marks. Voiced obstruents typically produce a wave-
form which shows little amplitude decay and as few as two
peaks, one full cycle, per pitch period. These do not trigger
the amplitude decay based detector and must be detected
seperatly. [Figure 3] If the voiced obstruent has adjacent
to it a more open voiced region containing well formed
pitch periods then pitch labeling is extrapolated into the
voiced obstruent. As before, zero crossings from the fil-
tered waveform are used to align the pitch marks. The
pitch labeling is extended until it joins another already la-
beled region or an energy threshold detector indicates the
end cf voicing.
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Incorrectly labeled pulses

Formant Tracker

The pitch synchronous spectra are derived from an-
harmonic analysis. Pitch synchronous spectral analysis of
various types has been developed over the past 25 years.
Anharmonic piich synchronous analysis was first discussed
by Hess [15]. In the simplist case, the waveform is win-
dowed with a Hanning window which begins at the zero
crossing before the principal excursion or excitation pulse
and ends at the zero crossing before the next principal
excursion. Then the windowed waveform is padded with
zeros to form a window long enough to give the frequency
resolution desired in the FFT,
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Figqure 2. Original waveform above and peak heights below showing
mislabeled pitch pulse.

el

Figure 3. Original waveform above and peak heights below showing
transition into a closure causing ramp pattern to
deteriorate,
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Figure 4,

In our implementation, the spectral analysis of the
sonorants and obstruents are done differently. The Han-
ning window for the sonorants is approximately 75roughly
to the glottis closed portion of the waveform. For obstru-
ents there is very little energy in the waveform, other than
the principal excursion. Therefore the window is moved
forward co that the principal excursion in in the middle
of the Hanning window. This differentiation between the
processing for sonorants and obstruents leads to superior
spectra and thus mukes the task of formant tracking easier.

The formant tracker is based on the idea of mimicing
the way a human spectrogram reader finds the formants.
Humans seem to look for more or less continuous dark re-
gions in the spectrograms, and label these formants. Many
formant finding algorithms have been developed in the past
based on as many models of what a formant is. These for-
mant trackers had varying degrees of success. Our algo-
rithm works by finding the main peaks in the spectrum in
a sonorant region and then extending these peaks into less
sonorant regions. After a structure which represents the
length of the regions with continuous spectral peak trails
has been built, then these trails are examined and assigned
to the formants. Currently up to six peak trails are found
in each sonorant region.

The formant tracker uses synchronous spectra calcu-
lated using pitch labels computed by the pitch tracker.
Regions of contiguous pitch periods are labeled voiced re-
gions with all nther time being accounted for as unvoiced
regions. Formant tracking is restricted to voiced regions.

Formant tracking proceeds in three stages: peak pick-
ing, peak tracking and formant tracking. Peak picking
finds the major peaks in ‘he synchronous spectra. Feak
tracking finds ridges in the spectra within a voiced region
which correspond to formants. Formant tracking takes the
per voiced region peak tracks and combines them and as-
signs formant number labels (ie. F1, F3 ...) to each for-
mant.

Kk TN
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Spectrogram showing calculated formant tracks.

In the first stage, peaks representing vocal tract reso-
nances are extracted from each synchronous frame in each
voiced region. Peaks are chosen in amplitude decending
order to insure the major resonances are extracted. Even
with synchronous spectra, closely spaced peaks whose sper-
tral skirts overlap significantly are difficult to discriminate.
As each peak is identified, a parabola is fit to the peak us-
ing a lear’ squares calculation. The parabola is subtracted
from the spectra. This leaves any overlapping peaks intact
for subsequent extraction.

In peak tracking, spectral peaks within a voiced region
are linked to form peak traces. Peak tracking is performed
in a way which is analogous to what we do when look-
ing at a spectrogram. Peaks are linked to peaks of simi-
lar frequency in adjacent frames. Since this must operate
on glottalized regions, peaks are matched with adjacent
frames and with frames two away. The peak lists are then
pruned to exclude nonesential tracks.

In the formant tracking stage, each voiced region is di-
vided into thirds. Peak tracks which are present in the
third closest to an unvoiced region are considered to bor-
der the unvoiced region. Unvoiced regions will be refered
to as breaks. Canidate pairs of peak tracks for match-
ing are found. To be considered, a track must boarder
the break and be the best match in frequency. To qual-
ify, both border tracks must choose the other as its best
match and the next closest track must be greater than dou-
ble or less than half in frequency. Less stringent rules are
then applied to complete the matching. Finally, a consis-
tancy check is made on the matches. This section looks for
formant tracks which change formant affiliation thus indi-
cating a bad match was made between peak tracks. Shifts
in match assignments are made to correct the inconsistan-
cies. We have not yet considered cavity affiliation switches
in this algorithm.

Work on the pitch tracker and formant tracker is not
yet complete. This paper is intended as a progress report
of ongoing work.
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Abstract

Seven English monothong vowels were studied in con-
tinuous sentences. The purpose of the study was to de-
termine what methods are likely to be successful in com-
pensating for coarticulation in all vowel and consonantal
contexts. A method by Kuwabara has been examined in
detail. The Kuwabara compensation improves the sepa-
ration of the vowel regions in a space composed of the
first and second formant in Japanese. Important issues
are where to measure the formant “target” frequencies,
how to obtain good formant tracks, measuring speaking
rate accurately, and how to labei vowels accurately.

Introduction

Vowe! articulation, that is the propensity of nearby
phonemes to alter the characteristic frequencies of vowels,
is a problem in continuous speech recognition. The ef-
fect of a nearby liquid or glide Si.e., N/, 7r/, /y/,or [w/)
is very laige. Some back vowels are actually effected so
much by a consonant thai they become “fronted.” Using
a conventional classifier on these vowels results in a mis-
classification. Also continuous speech tends to centralize
the formant frequencies of all vowels, especially those with
secondary stress.

Coarticulatiza hes hedn studled by several greups i
the last 15 years using isolated CVC or VCV words and
these words smbedded in carrier phrases. .Stevens and
House |3} stulied the perterbition of vowdl formant bar
get frequencies by consonantal context. They studied yy
American English vowels. They concluded that vowels in
symmetrical CVC environments are centralized relative to
their formant target frequencies in isolation or in the hVd
context.

Lindblom [3] studied vowel reduction in Swedish. He
concluded that the effect of coarticulation could be moc-
eled by a decaying exponential. The constant multiplier
aind decay time constant were dependent on the vowel
and consonant. The longer the vowel (more stress), more
closely the normal vowel targets were reached. This study
was done on CVC words {where the beginming C and the
following C were the same consonant) embedded in carrier
phrases. The data was provided by one talker.

Ohde and Sharf [4) studied the effects of voiced stops
on vowel formant targets. They found that the effect of
voiced stops on vowel reduction was greater for preceding
consonants than for following consonants. Once again this
work was done on isolated CVCV utterances.

Broad and Fertig |5] studied vowel coarticulation fui
the vowel /I/ in CVC monosyllables consisting of all pos-
sible combinations of 23 consonants plus a silence element.
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Analysis of variance showed that the superposition prin-
ciple characterized the results very well. The transition
functions for initial and final consonants were in general
asymmetric.

A major difference between CVC words in isolation
or in carrier phrases and continuous speech is that the
timing of the articulators can be more carefully planned
in the CVC case. This means that symmetric CVC’s are
more nearly symmetric, and the vowels in CVC’s are longer
than in connected speech. Consonant clusters in continu-
ous speech can have a cumulative effect on the vowel for-
mants. These complex interactions must be studied in con-
tinuous speech, using the results from the CVC studies as
a guide. Also prepausal lengthening and duration changes
due to stress mean that the vowel durations are much more
variable than the isolated CVC word case.

Several methods of compensating for vowel coarticula-
tion have been proposed. However, none of these methods
has been tested on large amounts of speech data. The most
promising methods use some measure of the formant slopes
near the vowel to compute an adjusted formant frequency.

A recent paper by Kuwabara {1] tested coarticulation
renormalization for vowels in Japanese sentences. Since
Japanese is a CV language, these results may not hold for
¢ lenguage with & tuure eommplieated syllable strueture ltke
English. This method used a symmetric Gaussian function
in time to compute a renormalized formant trajectery for
the frst and second Tormatits. The téchnique was wmotbi=
vated by perceptual studies of vowel sequencies and audi-
tory modeling. Using the 5 vowels /i/, /e/, /a/, /o/, and

u/ from Japanese, the method was successful in eliminat-
ing most of the confusion of these vowels in F1-F2 space.
Before the method was applied there was considerable con-
fusion due to centralization.

A similar schem.= W~ used by us to compensate for
vowel coarticulation in American English, Seven American
English monothong vowels (/i/, /1/, /eh/, [ae/, [a/, [o/,
and /u/) were studied. Two continuous speech data bases
were used which contained 1853 exemplars of these vow-
eis. T'he data shown in this paper 1s for 225 voweis out of
the 1853. The formant tracks obtained automatically were
ennimined dor securnsy  Appdonicintely B0 of Lhes nomls
were not used in the study because of formant tracking
errors due to nasalization. The major questions to be an-
swered by this study are 1) Does this method work well for
English? 2) Does it compensate adequately for coarticula-
tion from semi-vowels? 3) Can the use of other functions
than Gaussians improve the performance of the compen-
sation? 4) Do adjustments of the width of the Gaussian
have to be made to account for coarticulation at different
speaking rates?
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Some other compensations are also being tested. One
uses decaying exponentials to compensate for coarticula-
tion. Another one uses different curves derived from the
work of Broad [6] for compensation. Broad proposed sev-
eral families of decaying exponentials for each class of con-
sonants and the principle of superposition for the effects of
preceding context and following context. None of the data
from these other compensations is shown in this paper.

The compensations have the potential to improve the
vowel recognition in continuous speech.

Speech Data Bases

Two data bases of continuously spoken sentences were
used in the experiment. The first, the CMU Coca-Cola
Database, was collected and labeled at Carnegie-Mellon
University by the Speech Recognition Group. It contains
600 sentences from the Harvard list, 10 spoken by each
of 32 male and 28 female speakers. The speech was di-
rectly digitized using a 16 bit AD converter sampling at
16 k samples/second. A cardioid microphone as used in
a computer termina! room, which provided fan noise and
some low level background speech.

The second speech data base was collected and labeled
at NBS. It contains 20 sentences spoken by 5 male and
3 female speakers. The sentences contain words with the
seven vowels /i/, /1/, /eh/, [ae/, [a/, [o/, and [u/ in
most contexts from the neutral h_d context to glides and
semivowels. The speech was collected in a sound isola-
tion booth using a Shure SM-10 close talking microphone
on one channel and a B&K pressure microphone on the
other chaunel of a Sony PCM-F1 digital audio processor.
The output of the close talking microphone was direct dig-
itized using a 16 bit AD converter sampling at 16 k sam-
ples/second. The talkers produced the sentences at their
normal speaking rate and at a “fast” rate. The fast speech
resulted from instructing the talkers to speak as rapidly as
possible without obvious mispronunciations. A list of the
sentences is given in Table 1.

He led the hot head to the yacht.

The rat rode the door to the weedy lot.

The rude lad had hoped to wed the doll.

Yes, the yak wore a red yoke.

He wooed her with his lewd wit.

She woke hearing a roar in her ear.

The yeast dough rose against the lid.

You'd better load the real gun.

We’'ll lead them to the lead rod.

You're getting rid of this wad.

The deer wagged its tail and ran to the well.
The crude fiber deal yielded no profit.

The dol! liked the yacht tour very much.

The well rod rode against the rule.

The old yoke decorated the room.

The wad of gum was on a lid behind the door.
Will we dare hold the rally next year?

That year the Dallas gang war was in a tar yard.
The rule was yelled by the leering judge.

b b puk ik okt b b b b
CEISNA WP PRI TR LN

20.
Table 1. Sentences in the NBS Coarticulation Data Base

The number of exemplars of each vowel in the two data
bases is shown in Table 2.

The CMU and the NBS data bases had only a s_ma.ll num-
ber of /uw/ vowels, so we were not able to study these as
extensively as the other vowels.

According to lore Dirty Larry wallowed in the rill.
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Distribution of Vowels
Vowe Sex CMU NBS

/i/ m 208 98
f 193 88
7 m 226 80
f 204 84

/eh/ m 173 81
f 163 88

[ae/ m 134 42
f 122 41

Jaf m 148 63
{ 149 64

Jo/* m 30 0
f 23 0

[ow/ m 68 53
f 65 51

Juf m 34 25
f 28 27

* (non-dipthongized /ow/)
Table 2. Number of exemplars of each vowel

Formant Tracking

Automatic formant tracking is a difficult task which
requires care at every step of the procedure. The formant
tracker which we have developed uses anharmonic pitch
synchronous Fourier transforms as the input data. Major
peaks in the log magnitude squared spectrum are selected
using amplitude and ares. Data structures which retain
the time history of the peak frequencies are searched for
continuous formants. Only as a last step in the process
are the formants assigned labels as first formant, second
formant, etc. Since the data used in this paper only re-
quire first and second formants, only this data is shown
here. A detailed discussion of this formant tracker and its
performance will be presented in a later paper. Figure 2
shows the output of the formant tracker superimposed on
a wide band speech spectrogram.

Wigure 2. Formant Tracker Output

At present strongly nasalized vowels with split first for-
mants can have the nasal formant identified as the second
formant. A special technique is being developed to elimi-
nate this error.
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Vowel Formant Targets

In order to find the vowel target frequencies, two tech-
niques were used. The first replicates the usual technique
of taking the temporal midpoint of the region with the
vowel label. Figure 3 shows the male data with 225 vowel
targets using this technique.
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Figure 3. Male Vowel Target Frequencies Method 1

The second technique is to take the target to be the
place with the minimum average slope for the first and
second formant. Thus if the “steady state” region is shifted
due to coarticulation, it will be captured in this technique.
Figure 4 shows the result of using this technique on the
vowels presented in Figure 3.
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Figure 4. Male Vowel Target Frequencies Method 2

The first technique seems to produce better results in
that the vowels of the same identity ~luster in more com-
pact regions. However the effect is not so pronounced to
clearly indicate that the first technique is best. The verti-
cal rows of labels in the figures are due to the quantization
of the FFT, which has a resolution of 60 Hz. The results
for the females is similar but will not be shown because of
the size limit for this paper.
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Renormalized Vowel Formant Targets

The Kuwabara method was applied to the vowel for-
mant trajectories and the resulting renormalized vowel for-
mants obtained. Only method 1 for determining the vowel
target frequencies is shown, since method 1 seerus to give
superior results. One detail of our present implementa-
tion differs from the original Kuwabara method, we do not
extrapolate the formants into the consonants for voiceless
consonants. This should effect a maximum of 1/3 of the
data. Instead we do a linear extension of the formants into
the neighboring u.voiced regions. This discrepancy will be
corrected in future work. Figure 5 shows the male vowels
with targets obtained from method 1.
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Figure 5. Renormalized Target Frequencies Method 1
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SECOND FORMANT (Hz)
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Discussion

By examining Figures 3-5 in detail we see that the
Kuwabara method does not produce the same spectacu-
lar results for American English that it does for Japanese.
Figures 6 — 9 show the Kuwabara results from Japanese
for comparison. Figure 6 and 7 are for vowel — vowel tran-
sitions and Figure 8 and 9 are for vowel - consonant tran-
sitions.
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Figure 6. Target Frequencies for 5 Japanese Vowels
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Figure 9. Renormalized Japanese Target Frequencies

Perhaps this difference in performance is due to the
CVCYV structure of the Japanese language. The Kuwabara
renormalization shifts some of the target frequencies in the
direction of the ustal regions for these vowels. The /I/
vowels which are mixed with the /iy/ vowels are moved
to regions of higher F1 and thus generally out of the /iy/
region. However the separation between the regions is not
large. On the other hand one of the /ow/ vowels was moved
into the /uw/ region. The separation between /iy/ and
/uw/ were made less by the renormalization. The vowel
éliy/ was shifted to a second formant frequency above 3000

z. in many cases. Thus, this methog does not consis-
tently shift the vowel target into its canonical pesition in
F1-F2 space.

It is possible that the Kuwabara renormalization will
be useful in improving the first choice performance of a
vowel classifier, because on the average it throws the vowel
formants in the "right direction.” To see this more clearly
Figure 10 shows a scatter plot of the difference between
the Kuwabara formant and the normal formant frequency
for the first ar.d second formant.

F2 diff
!
- - N Wd WO N ® O
© S € 6 © &6 6 © 6 o
S ©68965958 595559
©O ©O 0O 0O 0 © OO O 0 ©
.!b lullIIIIIIIIllllllllllIllllllllllllllllllllllllllllllll
3
°™] -4 m
o ] . o ==
o= = T
m -—— :
o
8 = = -
o ] = =
- S = 3
8] T
S =« = g
© 5 " - =3
= N . -
T 3 W
-
o - )
© .- . T
o ] 1) 11% 11 -
- )
t m -
©— o oh g » =
— - -0
- _ M‘, -’ -2
- € c & - -
e ~ & % L3 = =
= 3 ~ N . -u-p-.s
- O = 8 Q;' ==
© ] S NI
- ) L]
.| g ¢ oy
N o [, - M
8—- Q‘ c al] .l - =
Q - 4 Mn - =
S )
(-]
w - " ‘D m- nﬁ -
© ] R ®
P—— o pm )
o ] [ I -
- L) L) ®
- B ¢ L)
b L]
81 v "
°o 7 ® y °" °
o
© ] B P
© ® e
o -

Figure 10. English Vowel Corrections
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From the plot we see that the Kuwabara renormaliza-
tion gives generally symmetric correction to the formants.
The corrected values are not large. Figure 11 - 12 shows
a blow up of the most central region of the F1 - F2 vowel
space for the ordinary formants and the renormalized ones.
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Figure 11. Target Frequencies for English Vowels

We will examine the possibility of adding the Kuwabara
renormalization to a CMU style classifier in the next two
months.
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when reading quite fast, and she consistently flaps the first /t/ even

1. INTRODUCTION when reading very carefully. This behavior suggests two things: (1)
for some phenomena and some speakers, reading may not yield the

This report presents some results of the first nine months work at same forms found in normal speech, and (2) the probability that an

SRI International on the problem of how to accommodate dialectal underlying segment wil! be realized in a certain form (in a particular

and phonologica! variation in American English pronunciation in the environment) may be much more stable for one segment-in-

design of large vocabulary speaker-independent speech recognition environment than for another over a range of speaking modes.

systems. The particular system component that we are focussed on

is Lexical Access {(or Word Hypothesizing), although d.ferences in COMPETITIVE

pronunciation between and within speakers need to be taken into

account in the design of many components of a recognition system. 1SN0 18T

Lexical access involves associating a string (or lattice) of input sym-
bols with sequences of lexizal items. Designing a recognition system
component that accomplishes this association can be seen in two
parts: empirical and algorithmic. Empirical studies are needed to
determine, for example, the circumstances in which /sr/ palatalizes
or in which schwa devoices or {eletes. Algorithms need to be
designed to support the empirical studies and to use the empirical Spontaneous (flap] [Rap]

knowledge within a system. SRI's research plan has been to pursue

the facts first and work on implementations and system integration

second. Our empirical results should be generally useful, and are not 2.0158{0.5784)
necessarily tied to any particular system approach.

This report covers three tasks of our first year’s work: a database -*—ﬁww——ﬁwww—ww—ﬂ
study; a rule-tool system; and t-rules across three speakers.

13778 ESROTIFD Original Wavalorm 2.0778

BEEPFY Orlginal Wavelerm

2. DATARASE STUDIES .

Fast Reading (flap] |t]
Qur concern was with phonologica! and phonetic difTerences between
spontaneous speech and the speech produced when people read from
prepared text. A prime motivation for studying these differences is 2"2”(°'5F"’
the use of read speech to train speech recognition systems. Systems
are being designed to adapt to a new speaker on the basis of an brief
enrollment passage that is read. In principle, a read passage should
be adequate to delineate many aspects of a person’s speech, including
oral and nasal resonant frequencies, prosodic parameters, dialcct -
fcatures such as vowel inventories and qualities, and phonological
style. Presumably, the physical properties of the vocal tract will he
about the same in reading as in spontaneous speech. llowever it may
be that iinguistic aspects of speech are systematically different in the
two modes.

Orlginal Wavalorm

Normal Reading (Map] [t]

2.2252(0.7347)

For collecting a database of speech samples on which to train and
test speech recognition systems, it is more eflicient to collect specific,

prepared materials, rather that the very large samples of spontaneous
speech needed to encounter specific phonological phenotnena. If one
1s recording read speech, what elicitation proccdure will yield speech X 133 ARG TICE
that is most like spontaneous? Examples like the one shown in Fig-

ure | very easy to generate. An educated woman produced the word Careful Reading [flap] [t
< competitive>> with two flaps in spontaneous speech, yet when

asked to read the same words, she does not flap the sccond /t/ even Figure 1.

Briginel Wavalorm TA0TT
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We set out to measnre speaking rate and deletion of phonetic seg-
ments in read vs. spontaneous speech and to nse these measures to
find out which reading mude (if nny) is closest in form to spontane-
ons speaking. This paper reports data from three speakers who were
employees at SRI. These three arc one fast talker (M1), one pracise
talker (F) and one more or less neutral talker (M2). Each speaker
was recorded in a interview-like exchange for 30 minutes. The
conversation was conducted in a quiet room with the interloeutors
seated about B feet apart; the subject was wearing a head-mounted,
nois» zancelling microphone. The rcnversation was then transcribed
hy ¢ :ecretary and searched for items of interest like frequently used
words that contain consonant clusters. The most frequently used
clustery words in written Englis. include "prohlem, prohahly, ques-
tion”.

About 30 sentences were selected from the transcriptions for each
speaker. These sentences included words of interes' and according to
the secratary’s transcription they were weil forried grammntically
and would not embarrass the = ‘ker wien asker to read them. Of
these 30 sentences, about 20 ; .+ spevker turiied out to be fluent in
the spontaneous recording. These 20 sentences were then typed on
cards and the each sneaker was asked to read the 20 sentences from
t* 'r own cor ersaticn. Following this reading, they were asked to
read the same sentences "very fast”, and last they were asked to read
the sentences in a slow and careful manner as if they were "speaking
to a hard-of-hearing person over a poor telephone connection”.
These three instructions define normal, fast and slow reading. Of the
20 sentences, only alout 15 per speaker were replicated word for

word in all four conditions (spont., fast, normal, and slow). Typi-
ally, in one or more of the read versions of an excluded sentence,
the speaker had changed, reversed or left out a wori. ‘ihus the
materials reported here are 180 sentences (3 speakers x 15 sentences x
4 versions).

Original Wavelorm

e T wusy

Figure 2.

All the durations and rates cited here are for actual speaking time;
pauses greater than 25 seconds in length were subtracted out. Since
sentence prosody 1:ainly affects durations in the region from the last
stressed syllable to the end of the sentence (Klatt 1976,1979; 7' 1eda
1976), the measurements excluded tiie tail-end of each sentence from
the onset of the last stressed vowel. The sentence displayed in Fig-
ure 2, "Probably after the baby is born, we'll go back”, was meas-
ure! from the burst of [p| in "probably” to the onset of the [a] in
back, with the " Against thz callousness” would be measured from the
[g] burst in "u  7st” to the [a] onset in "callousness”.
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Figure 3.
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A precise phonetic/acoustic transcription of the four versions of the
15 sentences w15 made for each of the sentences. An example ”prob-
ably something to do with the government” is displayed in Figure 3.
The top transcription is of the spontaneous version. The 2nd, Srd
and 4th are fa=, normal and slow reading respectively. The top
(spontaneocus) version is missing any sequence of segmental events
corresponding to "-thing to”, although when the utterunce is heard,
it is very clear that this is what the speaker said. Perhaps the dura-
tions of the [m[ and the [d| subsume the rhythmic place of "-thing
t0”; however there is no glottal stop in the [m| that would yield a
clear percept of "sump'm”. In most cases sonorant nuclei are
counted as one segment, since it is very hard to decide on the pres-
ence or absence of pre- and post-vocalic sonorants next to an
obstruent. For insuance, it is very hard tc differentiste {od] from
[old]. Note also in Figure 3 that the three read versions of the sen-
tonce have a full stop and burst transcribed for the /g/ in "govern-
me.. ", but the spontaneous version has a velar approximant
’‘gamma’. This does not count as a deletion; the three microsegments
of the /g/ count as one realization of .he /g/, as does the voice velar
approximant, 'gamma’.

Percent Phonemes Deleted

20 7]
spont
1. ™ fast
%
10 -1 fast
normal spont
spont
57 slow slow/normal fast
normal
slow
M1 M2 F
480 segs 474 segs 522 segs

Figure 4.

Figure 4 chows the percentage of segments that were deleted in the
various versions of the material. The fast male speuker (M1) deleted
18% of the segments in spontaneous speech, 15% in fast reading, 9%
in normal reading, and 4% in slow, careful reading. The precise
female spesker (F) showed the same ordering of the speaking condi-
tions, but the magnitudes are less. The neutrakish’ male (M2)

deleted nbo 1t the same numher of segments in fast and spontaneous,
and a much :maller nuinber in normal and slow reading. For two of
the three spe: kers, no reading condition was phonologically similar to
their spontar eous speech by the deletion measure. But perhaps dele-

tion is a fur:tion of speaking rate, and the spoutancons speech is fas-
ter.

The diw 2 displayed on Figure 5 show that for speaker M1 (and the
others as wil' ' 2 seen = the next two slides), the spontancous spzech
is like the fi.  reading in absolute duration, but more fike the  -rmal
reading when measured in phonetic segments per second. Thus,
assuming that deletions are simply a function of speaking rate won't
work.

in Figure 5, the values displaycd are medians and quartiles. ‘The
leftmost mark represents the values found if you measure the slow
reading rate of each s ntence and subtract from it ’he rate (in
segments/sec) of the normal reading of that sentence. Thus, for sub-
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Subject M1
Speech Rate
(segments/second - normal readlng rate)

8 - r 8
qo 0 T
Norms{__ a
Resd
i G
8- L .8
slow isst spont slow {sst spont
phonemic phonetic
Figure 5.

ject M1, the slow readings tend to be about 3.5 segments/second
slower than normal reading, when counting PHONEMIC segments.
The phonemes, the linguistic elements, in each version of the sen-
tence are the same, so the segments per time in the left side of Fig-
ure 5 are just a scalirg of time. On the right side of the slide, the
values shown are differences in PHONETIC segments per second.
Here, if one version of a sentence is completed in a much shorter
titne than another version. the speech rate in segments per second
may not be any different, if some number of segments in that version
of the sentence were skipped (or 'deleted’). Thus the phonemic rate
approximates linguistic material per time, and the phonetic rate
approximates the articulation rate per time.

The normal reading rate for the first male speaker, M1, averaged
about 16 phonemic segments per second, witl, the fast and slow read-
ings ubout 4 segmentsper second faster and slower, respectively. In
elapsed time or phonemic rate, his spontaneous productions were
most like his fast reading. However, referring back to Figure 5, since
his average rate of segment skipping was quite different in the four
conditions, the situation looks different when you measure phonetic
segments per second. Although fast, normal and slow reading keep
their relative positions, the rate differences are less when counting
phonetic segments. More importantly, in phonetic segments per
time, the spontanzous speaking rate is most like the normal reading
rate. That is, in elapsed time or linguistic material per time, the fast
reading is most like spontaneous speech, but in articulation timing,
normal reading is most like the spontaneous material.

Subject F
Speech Ratc
(segments/second - normal reading rate)

8 - r 8
4 % l § - 4
[0)]
-l
-4 4 - .4
.8 J i £ L .8
slow  fast  spont slow fast spont
phonemic phonetic
Figure 6.

The female speaker, ', shows a similar pattern: lu elapsed time and
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in percent deletions, fast reading is inost like spontaneous specc}!; bl{t
in the rate of production of articulated sounds, the normal reading is
most like her spontaneous specch.

Subject M2
Speech Rate .
(segments/secoid - normal reading rate)

8 - r 8
4 - £ % i) $ -
¢ —— as
4 5 - -4
.§ L -8
slow fast spont slow fsst spomt
phonemic phonetlc

Figure 7.

The second male speaker shows no differences between slow and nor-
mal reading, and other differences are somewhat attenuated. Noth-
ing is very clear cut in Figure 7, but the data are not particularly
inconsistant with the paitern of thie o' 'ier two speakers.

People cover more linguistic material per time in spontaneous speak-
ing than in normal reading. However, when instructed to read faster,
they mostly increase rate by speeding up each segment that is spo-
ken. This is in contrast to spontaneous speech, where fast rate is
accomplished more by skipping segments.

With regard to selecting a procedure for recording read materials to
train speech recognizers, normal reading may be the best for studies
of phonetic durations and coarticulatory phenomena, but fast readinrg
will most likely yield a better approximation of the phonological pat-
terns of vhe speaker. No reading seems to yield both.

Relevant to the design of lexical access with a speech recognition sys-
tem, we need to know where and in what circumstances people are
likely to delete segments. None of the reading material provides an
accurate or complete picture of this aspect of people’s speaking
habits.

3. NETWORKS AND RULE TESTING

SRI has constructed a facility for the study of phonological variation.
The tools include:

(1) an interactive facility to write phouological rules and apply them
to baseforms, change rules and test tlicir ¢ffects on the phonological
representation, transcribe speech using phonological rules, and test a
set of rules on a datahase of transcribed speech.

and (2) a graphical farility to display and manipulate network
representations of possible phonetic realizations.

These tools can be used with a datahase of trauscribed sentences to
iteratively update and test the adequacy of a set of phonological
rules. This facility separates the tinguistic knowledge that goes into
a set of plhouological rules, and the actual programs that. use these
phonological rules. In this way, the linguistic kuowledge of a system
is explicity represented We descrihe both of these aspects of the sys-
tem: the form of the phouological rules and uetworks, their imple-
mentation.

Networks consisting of nodes and arcs are nsed to represent the
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pronunciation  utterances.  Phonological alternations can  be
represented hy the application of rules to a network. Such networks
and rules can serve several purposes, including as a framework for
letter to sound conversion, the enumeration of possible pronuncix-
tions, hitting duration models, and for advanced data-base searching.

For instance, rules can be used to transcribe speech if there is a dic-
tivaary of haseforms for words and a set of rules to transform this
baseform into a network of possible pronunciations. Using the
interactive network facility, one can select those labels that were in
the actual recorded pronunciation. When the labeling is complete, a
menu pops up to provide a file nane for storing this transcription.
Integrated with an automatic alignmment program, this process can be
made semi-autoinatic.

If the actual pronunciation is not allowed in the pronunciation net-
work, the user can pop into the rule editor, write the appropriate rule
to generate this pronunciatior and then restart the above procedure.
In this way, a person can transcribe speech and at the same time
develop the set of rules that can account for the observed speech
data.

3.1. Form

3.1.1. Pronunciation Network Pepresentation

The network representation used by SRI consists of a data structure
composed of nodes and arcs. Each symbol in the network is con-
tained as the label on an arc in the network. An arc’s label can be
used to represent words or phonemes. If the arc’s label is NIL, then
it is treated as a null arc. The purpose of a null arc is to allow this
arc to be skipped. A series of arcs (with phonetic labels) is displayed
in figure 8,

a 2 @ 0 (% a
[o e[/ e s v o e/,
/
e ~.2~

Figure 8,
The above network represents the word < outside >

The data structures that are used to represent the network, nodes,
and arcs, are NETWORK, NODE and ARC. The NETWORK not
only has lists of nodes and arcs, but various pointers into SPIRE data
structures. Each NODE helongs to a NETWORK and keeps track of
its own ARCs in and out. The ARC structure itsell embodies the
most interesting new features of these networks. Beside the usual
from and ’to and ’lahel. each ARC las slots to identify the arc and
rules from which it was generated in the current network, a time
alignment with a SPIRE file, and pointers to corresponding ARCs in
higher or lower level NETWORKSs that represent. the same material.

3.1.2. Rule Editor

tn order to facilitate the writing ol rules, a "rule editor” has been
constructed. A picture of this facility ¢an be seen in Figure 9. It
consists of a regular zmuacs editor, along with several starionary
wenu’s. By clicking on any of the menn’s, corresponding "rule text”
will appear in the zmars window at the location of the cursor. By
moving the ersor around and clicking on the appropriate menu's,

one exa cornwatly write rules.
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Figure 9

The rules are saved to a file just like ay other lisp file. If one wishes
to modify a rule, one simply changes the text of the rule, and then
recompiles the rule, Then, if this rule set is applied to a network, all
earlier versions of this rule are automatically deleted.

3.1.3. Rule Syntax

When one uses the rule editor, the following default display is pro-
vided to the rule writer:

{defrule
naine
rrule-documentation
icore
Hleft-environment
‘right-environment
:action
irule-type SRI-1
:copy-matching-arcs T
:application-order-number 0

)

The contents of each rule is organized in four slots which are the:
"left environment”, “core”, "right environment”, and "action”.
Each of these four slots can contain a series of clauses. Fach clause
consists of a test that is applied to an arc, to determine if that arc
satisfies that clause. There exist a predefined series of clauses that
are available to the rule writer. The following predefined clauses are
can he used ONLY in the left. core, or right environments:

L. (feature foo) e.g. (feature voiced) -- This tests the arc’s feature
structure to determine if the arc is voiced. I it is desired to test that
the arc is not voiced, cne would write: {Feature {voiced nil}) Ouly
one feature may be present in this clause.

28 (fcaturc-and foo foobur) e.g. (featurc-and voiced (stress 2)) -- This
tests the arc’s feature structure to deternune if all the features listed
are satisfied, The above clause would lest an are to determine if it
was voiced and had a stress level of 2. AN the features are either T
or Nil, except for stress, which is 0, 1, or 2.

3. (feature-or foo foobar) ¢.g. (feature-or voiced (sonorant nil)) --
This tests the are’s fcatur(' structure to determine if any of the
features listed are satisfied by this are.
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4. (phoneme "string”) e.g. (phoneme "p") -- This test the a.rc’s: l%llbel
to determine il it is the same as the phoneme in the clause, Distine-
tions are made between upper and lower case.

5, (phoneme-or "s1” "s2” ”s3”) e.g. (phoneme-or "p” ".t." 7k”) -- This
test the arc’s label to determine if it any of the following phonemes.

6. (boundary foo-boundary) e.g. (boundary morplieme-boundary) --
This tests the arc’s feature structure to determine if it is a morphenie
boundary. This is very similar to the "feature” clause. The
difference between this and the feature clause is in the way that the
clause is compiled. The rule compiler (discussed in a later section)
automatically inserts the clause (optional (feature morpheme-
boundary)) everywhere, except when it sees a boundary clause.

7. (no-automatic-boundary) -- This is an instruction to the rule com-
piler for it rot to insert the clausc {optional (feature morpheme-
boundary)) between this clause’s two neighboring clauses. It does not
translate into a clause itself.

8. (optional (clause)) e.g. (optional (feature voiced)) -- The optional
clause may be followed by any test, except for clause~ § and 7 (this is
because 6 and 7 are instructions to the rule compiler). In addition to
containing any predefined clause type, this may contain any lisp code
(see example below).

9. In addition to these predefined clauses, the user can combine the
first five clauses in any lisp function that he desires. Predefined
clauses "boundary” and "no-automatic-boundary” cannot be con-
tained in lisp expressions. For example:

(optional (or (feature-and nasal dental) (phoneme "th”)))

For each clause in the core environment, there must be a correspond-
ing clause in the action environment (except for the "no-automatic-
boundary” clause in the core, since it does not generate any code).
For each optional clause in the corc, there must be a corresponding
optional clause in the action environment. Insertions have no
corresponding clause in the core. Each corresponding clause deter-
mines the action that is to be performed on the arcs that match the
core clauses. If the arcs are copied, the action is taken on the copied
arcs. If the arcs are not copied, the action is taken on the matching
arcs. The following predefined clauses are can be used ONLY in the
action environment:

(replace-phoneme "foo™)
(change-features foo foobar ...)
(delete-phonemc)

(do-nothing)

(insert "foo”)

(optional (delete-phoneme))

Additional predefined clause ty.cs can be written. Some possible
new clause types might include (Part-of-speech-p foo) to test if 'foo
is the grammatical class of the word dominating the current node, or
(tri-morph-{requency-greater constant) to test if the arc is part of a
threc morph sequence with frequency of occurence greater than ’con-
stant. Another more immediately useful addition would be {replace-
plioneme-list. "foo” "fool” "f002”).

The following sample rule demonstrates the syntax:

{defrule
‘name n7

srile-documentation expands unstresses initial-syl 1Y to 14"

icare {and (phoneme "1Y"){feature (stress nil)))
Hleft-environment {{feature word-boundary)
(optional (Teature-and segment (syllabic nil)}})

right-environment feature (syllabic nil))

:action (replace-phoneme "I1I")
wwule-type CMU

:copy-matching ares T
application-order-number 0

)
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Note that for the core, right, and action cnvironments there is only
one clause and it appears by itself. When more than one clause is
present (as is shown in the left cnvironment), they must be enclosed
in a list.

3.1.4. Interactlve Interface for Examlning Networks

In order to facilitate the examination of networks, a "network exa-
miner” has been constructed. This facility can be seen in Figure 9.
It consists of a graphics pane in which the networks are displayed, a
notification pane which prints out instructions, a command menu
pane which provides nienu commands to manipulate the networks
and their corresponding displays and a lisp pane for lisp expressions.

3.2. Implementation

3.2.1. Rule Compiler

The rule compiler takes the information contained in the rule and
compiles it in a form that is used by the rule application program.
Each clause in the rule is compiled into a "rule-clause” lisp structure.
One of the slots of this clause is called "match-compiled-function”.
The rule clause that the person writes will typically contain a macro
such as (ohoneme "p”). The function ”phoneme” is a maero that
expands out into code that tests the label of the arc that is currently
under consideration. This code is compiled using the following lisp
code:

(compile (gensym) ‘(lambda (arc) ,clause))

This creates a random function (which is bound to the variable
returned by gensym), which contains the compiled code that is to be
applied to an arc. Therefore, any clause that the person writes can
assnme that it will be applied with the variahle "arc” bound to the
arc that we are currently testing. When the rule clause is applied to
an arc, the following lisp code is used:

(funcall (match-noncompiled-function clause) arc)

If this returns T, then the arc successfully satisfies the rule clause’s
require aent. If this returns nil, then the arc did not satisfy the
clause requirenient.

3.2.2. Rule Application Strategy

3.2.2.1. Rule Ordering

For each rule set, the rules in that set are ordered by the rule
number specified in the rule. However, taking a fix:d set of rules,
there are several different strategies by which they can be applied to
a network.

i. Loop for each rule in the list-of-ordered-rules
Loop for each arc in the network
Test if the rule applies tu the network starting
at this arc.
If rule is snccessfully applied,
*hen modify the network,

2, Loop for each arc in the network
Loop for each rule in the list-of-ordered-rules
Test il the rule wpplies to the network
starting at this are,
If rule is successfully applied,
then modify the network.
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This is a choice of algorithms if the rule set is to only be applied
onee to the network. The eurrent rule application program uses algo-
rithm number 1. Algorithm number 2 is also availahle if desired.
The rule application program keeps count of the number of rule that
have been applied in a variable called *rule-applied-count*. The
actual algorithm that is used to apply the rules is listed below

1. Loop selecting the first rule remaining in the List-of-ordere--rules
2. Collect all the rules that have the same application
order number aa this rule into Temp-rule-list
3. Set *rule-applied-count* to 0
4. Loop for each rule in Temp-rule-list
5. Loop for each arc in the network
6. Test it the rule applies to the network
starting at this are.
7. 1f rule is successfully ~pplied, then modily the
network, and increment *rule-a, plied-count®.
8. If *rule-applied-count* > 0, Go to step 3
9. Delete all the rules of temp-rule-list from the list of
remaining rules and iterate.

3.2.2.2. Matchlng a Rule to a Series cf Arcs In a Network

When 2 rule is applied to an arc in a network, this arc is tested
against the first clzuse in the rule. If this arc successfully matches
the first clause, then we want to proceed onto testing the next clause.
However, if there are several arcs which follow this first successful
arc, a recursive algorithm is used, where the next clause is applied to
each of the following arcs. If any of these arcs successfully satisfy
the clause, then the system recurses with the next clause test on the
frllowing arcs. A simplified version of the algorithin is described
"conceptually” below:

{defun test-rule {remaining-clause-list last-positive-are)
(cond ((null remaining-clause-list)
;; there are no clauses remaing to be matched
{possibly-apply-rule-to-net work rule))
{t
{loop for arc in (following-arcs last- positive-arc)
with clause -
do
(cond (({funcall {mateh-compiled-function clause} arc}
;i the are successfully satisfies the clause

(first remaining-clause-list)

(store-arc-as-matched arc clause)
(test-rule (cdr remaining-clause-list) arc)))))))

The actual algorithin used is somewhat nore complicated to take
care of optional clanses, Null arcs and the possibility of applying
rules across word boundaries where each network is one word long.

When there are no more clauses left, the rule is potentially applicable
to the network. Sin - the rules are it<ratively applied to the net-
work, a test must be performed to deterinine if this rule has already
applied to this same series of arcs in the network. If it already has
applied to the same series of arcs, then the rule is not applicable to
be applied again. Otherwise, the rule is applied to the matching arc
list.
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3.2.2.3. Applylng a Rule to a Matching Series of Arcs

When a rule is applied to a matching series of arcs, if the arcs are to
be copied, then all the arcs matching left, core, and right clauses are
copied. Then, for ail the arcs that match core clauses, the
corresponding "action” is taken on each of these arcs, as specified in
the action clause and the appropriate bookeeping is perfomed.

3.2.3. Testlng Rules

Given a series of rules and a database of transcribed speech, one can
test that the rules can account for all the observed pronunciations in

the database. This is done by a process which is similar to the pro-
eess of transcribing speech described in a previous section. The pro-
cess of testing a rule set involves (1) producing the baseform pronun-
ciation from the dictionary, and then applying the relevant rules to
the baseform sequence to produce a fuller network that represents all
the pronunciations consistent with the baseforms and rules, (2) use
the interactive network facility to find the longest path through the
network of possible pronunciation that matches the actual pronuncia-
tion network. This path is highlighted on both networks. If this
path does not reach the end of the network, then the user knows that
additional rules are needed to account for the observed pronuncia-
tion. The user can then go into the rule editor and write the
appropriate rule, recompile and reapply the rules.

An example of rule testing is shown in Figure 10. The upper net-
work is a hand transcription of the spontaneous utterance "It’s not
like outside businesses that I've worked with.” The seeond network
is the string of baseforms automatically retreived for that sentence,
and the third network is shows all the possible phonetic sequences
that can be derived from the application of the phonological rules for
this speaker to the second, 'baseform’, network. The path through
the third network that eorresponds to the hand transcription has
been automatieally identified and highlighted.

4. /T/ ACROSS SPEAKERS

We are studying the phonology of /t/ across three speakers in year
one so that we might develop a model of across- and within-speaker
phonological variation for a limited environment. With this model
and the model derived from our complete phonology of one spe aker,
we hope to estimate the size and complexity of a model of general
phonological variation.

4.1, Issues

The basic issues involved in this study are:
e What forms are realized for /t/s?

. What environments are correlated with these forms {phonemic

environment, speech rate, word or word frequency, speaker,
speech siyle)?

. Wh{xt types of functions can be derived that estimate the pro-
bability of #n observed form given the environment of a /t)?
. How can these probabilistic estimates be improved by observa-

tions of other near-by forms ohserved in the speech?

o'1 s na ? 1 gk k' k'a™'s o"db'b'1"ns eadaradvwdt'ttt>w: 60
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Figure 10
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Basic issues needed to be resolved in order to complete the
above are:

. Ilow do we define a form in an objective manner? For instance,
what differentiates a flap from a d-stop?

) Ilow are speech rate, specch style, and word frequency delined?
4.2. Materlals

For an initial study of /t/ across speakers, the spontaneous speech
forms realized by three carefully chosen speakers arc being studied.

The speakers used were among 20 speakers chosen from 150 speakers
in an earlier study (Bernstein, IKahn and Poza; 1985). The 20 speak-
ers were chosen to represent the range of speaker characteristic and
speech styles evident in the 150 speaker sample, and the three speak-
ers used here were one fast male speaker (JK), one neutral male
speaker (SH) and one precisc female speaker (SS). JK is subject
"M1” in the database study reported in Section 2; the other two
speakers are different from subjects "M2” and "F”. These speakers
were interviewed in half hour sessions. Spontaneous speech was
chosen because the phonclogical processes in eflect in spontaneous
speech differ significantly from that of read speech (see section 2,
above), and should be similar to preferred manner of speaking com-
mands to speech recognition systems.

4.3. Tools

We have developed several tools to aid us in observing the /t/-forms
and to help gather statistics about their occurrence. The first is a
digital tape recorder based on the Symbolics 3600 LISP Machine.
This allows us to keep a session of recorded speech (one of the inter-
views) on line. The speech is recorded direct to disk and played back
from it. Recording requires a Digital Sound Corp. A/D converter
attached to the LISP Machine, but playback does not. This tool aids
in quickly locating and transferring portions of the spontancous
speech to another tool for classification and data collection.

The orthographic record of the recorded sessions was manually typed
into text hles. This text was couverted to an approximate phonemic
representation by the use of the PROSE-2(00 text to speech con-
verter,

Given the text and ‘he phenemic transcriptions, the speech can then
be searched for phonemic environments under study. A facility to
compute a nonminal speech rate for that context will also be
developed. The speech rate will be defined as the phrase duration
predicted by Klatt’s (1979} inodel phonetic durations, divided by the
observed duration. Thus, if a speaker produces a sequence of words
in half the time that Klatt’s rules wonld predicy, th~ nominal rate
would be 2.0.

All the above tools are integrated into a data collection facility. The
goal of this tool is to collect data of discrete variation of /t/, making
the categorical decisions necessary in an objective manner. A secon-
dary goal is to facilitate the quick collection of such data, as a large
amount of speech must be analyzed in order to compute meaningful
statistics. Also, timne offsets in the disk recording files are stored so
that particular data points can be recovered and reanalyzed quickly.

The are several important issues relevant to the design of such a data
collection too!. The most meaningful way such data could be col-
lected for a particular speech recognition system would he to rategor-
ize the /t/ realizations based on the recognition components of that
speech recognition system. llowever, to make the conclusions
obtained from such data of general use, somewhat more general
measures should be used. Further, in order to accommodate certain
non-categorical liypotheses ahcut plonological variation (i.e. that
there is a continuum of possible realizations from canonic-t throngh
d-stop, glottal-stop and flap to ueletion} certain continuous measures
should be collected in addition to the categorical measurements,
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Our philosophy, in relation to the above problems, lias been to ini-
tially collect data inaking the categorical decisions by eye. When the
point is reached for the initial three speakers that the types of forms
realized are known and hypotheses are proposed about their distribu-
tions, the categorical decisions made will be semi-automated. (For
instance a user may indicate that there is a /t/ in the following
phonetic context somewhere in a small region and the machine will
search for it and define its (component) durations and take certain
continuous measures.

4.4. Results

4.4.1, Dlstributlon of contexts in the spontaneous speech

Up to this point, we have recorded the speakers and collected some
data on the observed forms of /t/ in the intervocalic /t/ context
(with optional word boundaries). There are several observations to be
made regarding the distribution of forms in spontaneous speech (and
how that impacts the amount of spcech required to be collected for
reasonable statistics).

The table below shows the distribution of contexts for each speaker
(speakers SH and JIX are male, SS is female) based on phonemics
generated by the PROSE-2000. Note that below V=Vowel for left
contexts. For right contexts V' = stressed vowel, V == unstressed
vowel (including reduced vowels unless v is given too), and v =
reduced vowels. When not in contrast to V', V refers to all vowels.

DISTRIBUTION OF /T/ ACROSS CONTEXTS
‘ (30 _minutes of speech)

Context Speaker

SH JK SS
STV 4 11 6
STV 5 15 14
ST V' 3 1 5
ST V 12 16 17
STV’ 0 0 0
STV 10 5 7
STv 12 6 15
v.Tv’ 32 30 37
V_TV 28 20 23
vr_ v 50 37 40
VT_V 109 58 136
VTV 20 8 23
vrv 62 99 71
VTv 48 56 65
VTS 30 24 31
VTS 72 65 v
N_TV' 9 4 11
N_TV 3 7 8
NT_ V' 7 4 4
NT_V 18 10 12
NTV' 6 10 8
NTV 11 14 35
NTv 7 6 9
v.rJ 0 0 0
VT_J 26 12 21
vTJ 0 0 0
V_TN 0 0 0
VTN 6 7 9
VI'N 8 3 9
vV TW 0 3 1
VT_W 46 54 39
VTw 1 0 2
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Ignoring word boundaries the following distributions occur:

DISTRIBUTION OF /T/ ACROSS CONTEXTS

(Ignoring word boundary)

_ {30 minutes of speech)
Context Speaker

SH JK SS

STV 52 59
STS 4 13 7
STW 3 3 5
vrv 258 302 316
VTS 97 86 120
vrw 47 54 45
NTV 58 51 81
NTS 8 13 12
NTW 7 4 3
LTV 10 9 14
LTS 1 1 0
LTW 0 0 0

It is clear from the above data that it will be difficult for realization
probabilities to be estimated for many context from spontaneous
speech, and a strategy of "going to more general contexts when
insufficient data is available for a current context” will have to be
adopted, as has been used in the IBM and BBN speech recognition
efforts.

4.4.2. Realized /T/ forms for VTV

A small study of intervocalic /T/ for the first 10 minutes of each
speakers first session was performed. This study and others like it
will be used to guide the construction and the areas of application for
the semi-automated data collection tool described above. The data
collected (limited to about 10 data points from any given context)
was:

REALIZATIONS OF /T/ ACROSS CONTEXTS
L {up to 10 minutes of speech per speaker)

Context  Delete  Glot  Flap D-stop+T-rel  Canonic
TV
SH 2 2
JK 1 2 2
SS 2 ] 1
TV
SH 3 4 2
JK 3 1 3
S8 1 5
_to-word
s 1
JK 3 1 1
SS 1 3
_TV
sn 5
JK 10
SS 10
VTV
s
JK 2 4 3
SS 4 5 2
VT-ate
SH 3 1 2
JK 3
SS 1 4

LGN TR CRPREER
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This data, which was chosen for preliminary study because it was the
easiest to analyze, shows few differences among these three speakers.
In general, the "flap” form and the "d-stop+t-release” form are both
heard ss flaps, but speaker SS seems to differentiate the two in final
/t/s depending on the stress of the following vowel. SS also seems
more likely to asperate the /t/ in the word <to>. This kind of
anaysis is continuing.

5. SUMMARY

This paper has covered three activities at SRI, all related to the goal
of accommodating within and across speaker variation in speech
recognition design. The network and rule manipulation tools are still
evolving, and the study of /t/ allophonics across speakers is in pro-
gress. Several key issues remain in all of these endeavors, including
technical question like how to merge processes and still recover the
probabilities of the events, and system issues like how to integrate
this knowledge in a lexical access algorithm.
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The Role of Word-Dependent Coarticulatory Effects
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ABSTRACT

This paper describes the results of our work in

designing a  system for large-vocabulary word
recognition of continuous speech. We generalize the use
of context-dependent Hidden Markov Models (HMM) of
phonemes to take 1nto account word-dependent
coarticulatory effects. Robustness 1s assured by
smoothing the detailed word-dependent models wmith less
detalled but more robust models. We describe training
and recogmtion algorithms for HMMs of phonemes-in-
context. On a task with & 334-word vocabulary and no
grammar (1.e.., a branching factor of 334), 1n speaker-
dependent mode, we show an average reduction n word
error rate from 24% using context-independent phoneme
models, to 10% when using robust context-dependent

phoneme models.

1. INTRODUCTION

1t 1s well known that the acoustic realizations of
phonemes 1n continuous speech vary with the phonetic
context that the phoneme 1s 1n. The resulting
coarticulatory effects are most pronounced for
immediately adjacent sounds, but have been known to
extend to several phonemes away from the observed
phoneme. In our continuous

speech phonetic

recogmtion work [1. 2], we have modeled these
coarticulatory effects by using context-specific phoneme
models In particular, we have defined a unique model
for a phoneme 1n each of 1its different phonetic
environments (as determined by the context of
immediately adjacent phonemes). We call this context-
specific model a “phoneme-in-context” model. Since
this set of models 1s very large (1n principle. the cube of
the number of phonemes) we cannot expect to model all
of them very well with a limited training set. In general,
thesc models are combined (smoothed) with less detailed
(but more robust) modeis with weights that depend on

the amount of training of each model

In our phonetic recognmition experiments we have

observed that the improvement in performance due to
using diphone-dependent models of phonemes instead of
context~independent models, for example, 1s smaller
when the test vocabulary was different from the t'rammg
vocabulary - even though the diphones in the test set
hed occurred frequently 1n the traiming set. We
nypothesized that contexts beyond the immediate
plhonetic contexts are important and affect recognition
results. This may be a main reason why speech
recognition systems that model whole words typically
outperform those that use a phoneme model. as long as
the amount of training for each word 1s sufficient and
the effects between words are not severe. However,
word-based systems cannot easily take into account
word boundary effects and are not easily extensible to
vocabularies of thousands of words. The problem then
1s to model phonemes in context to maximize recognition
performance on a particular large vocabulary, especially
when not all the words 1n the vocabulary appear often
enough in the training set to allow the estimation of
robust models.

In this paper, we demonstrate the effects of word-
level contexts on recogmtion performance. We describe
a method for incorporating word-dependent
coarticulatory effects i1n a phoneme-based speech

recognition system

The paper 1s organmized as follows. Section 2 gives
an overview on the modeling of phonemes in context,
accompanied by a description of training and recognmtion
algorithms., Section 3 describes the recognition task
domain and the database used for the experiments
presented here, Section 4 contains performance figures
for using different levels of context, along with a
discussion of the results, Finally, Section 5 presents

conclusions drawn from this work.

2. FRAMEWORK FOR MODELING COARTICULATION

In a phoneme-based speech recognition system. each
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word in the lexicon is decomposed into phoneme
subunits, each of which can be modeled by a single HMM.
We have previously argued, however, that performance
can be improved by taking into account immediate
phonetic context. In this paper we have extended this
concept to incorporate the greater detail of word-
dependent contextual modeils. Each phoneme within a
word 18, 1n principle, modeled as depending on the word
in which 1t occurs. However, if the word has not been
observed a sufficient number of times, information about
the acoustic realization of the seame phoneme 1n similar
phonetic environments can be generalized from other
words in the training set. 1n fact., we combine these
several hierarchical models of a phoneme (word-
dependent. triphone context, left and right context. ne
context) with continuous linear weights that depend on
the number of occurrences of each type of umt, the
location within the phoneme, and the relative importance

of each umt on the acoustic realization of the phoneme.

Training and Racognition

The different context-dependent models together
form a unique expanded HMM network for each phoneme
of each word in the lexicon, where the less detailed
models are shared across different words. These models
Forward-Backward
algorithm to obtain the maximum likelihood estimate of
the HNN parameters for all the different context models
given the training data.

are tramned jointly using the

Once the tramning 1s completed, we precompute a
single model for each word 1n the lexicon from a
complete set of these phoneme-in-context models
acquired during traiming. given the pronunciations for
the word. We combine all relevant context modeils that
were observed with appropriate weights to obtain a
robust model for each phoneme in the context of the
particular word

The combined model should achieve the high
performance of word-based recognition systems for
words that have been observed sufficiently. while
allowing reasonable performance for less frequent words

or words that have never been observed.

3. EXPERIMENTAL CONDITIONS

in this section. we describe the database and the
task domain for the recognition experiments described

below
Database

The vocabulary used in this study was from a 334-
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word electronic mail task. A total of 400 different
sentences were generated covering 250 words of the
vocabulary. (200 words of the vocabulary and 100 of
the sentences were supplied by CMU.) The sentences
were each recorded by three male speakers i1n sessions
The first
three sessions were designated as training data, and the
last as test material. The total duration of the training

material was thus about 15 minutes for each speaker.

of 100 sentences, separated by a few days.

The test material used in the experiments below included
30 of the test sentences, with a total of 187 word
tokens covering 80 different words. Each test word

occurred at least once 1n the training set.

A dictionary of phonetic pronunciations was
constructed for this 334-word vocabulary without
listening to either the training or test material, but by
trying to account for the most frequent phonological
variations for each word. The average number of
different pronunciations per word was 2. Word boundary

phonological variations were not included.

Analysis

The sentences were read directly into a close talking
microphone 1n a natural but careful style in a normal
office environment. The input speech was lowpass

filtered at 10 kHz and sampled at 20 kHz. Fourteen

Mel-frequency cepstral coefficients (MFCC) were
computed every 10 ms on a 20 ms analysis window.
Some of the traiming data was used with a k-means
clustering algorithm to produce a representative set of
MFCC vectors. The k-means clustering was found to
result in shghtly better performance than a nonuniform
binery clustering procedure. These experiments were
perfoermed using a codebook size of 256 MFCC templates.
Each MFCC vector in the training and test sets was then
classified using vector quantization (VQ) [3]. as one of
the 256 template vectors. To save computation. strings
of up to 3 identical vector ccdes were compressed to 1
observation. (This simple variable frame rate scheme

was found not to affect performance.)

Training

To obtain the necessary initial estimate for the
probability density functions (pdfs) for each state of the
phonetic HMM we use @& bootstrapping technique A
separate passage (5 minutes of speech of a different
vocabulary) spoken by one of the talkers was carefully
labeled. indicating the beginning frame of each phoneme
The hand-labeled speech was tlien quantized using the
VQ codebook for each
Normealized histograms cf the observed

particular talker 1in the
experiment.
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vector—quantized spectra for each phoneme were
computed from the labeled data to form an initial
estimate of the pdf for that phoneme for that talker
This bootstrapping technique of using a single talker's
speech as an 1nitial estimate for all talkers seems to
work quite well. All the pdf's for the different states in
the HMM for a phoneme are set to this initial estimate.
Finally, all the pdfs for the context-dependent models of
& phoneme are set equal to the single, context-

independent model of that phoneme.

The 15 mnutes of tramning data per talker 1s
transcribed with the sequence of words spoken (no time
labels and no phonetic labels)
then processed with five passes of the Forward-

The treaining data 1s
Backward algorithm. In the cases where context-

dependent models of the phonemes are wused. the
training algorithm maintains separate models for each

observed phonetic context.

Prior to recognition, word models are precomputed
for each word in the vocabulary from the appropriate
phoneme-in-context models with weights depending on
the number of occurrences of each model and the
position within the phoneme (as used in training)

Recognition

The recognition algorithm wused 1s a time-
synchronous procedure [2]. which attempts to find the
sequence of words that are most likely given the
observed sequence of vector quantized spectra in a test
utterance At present. no grammar 18 used, thus making
the effective branching factor or perplexity equal to the

vocabulary size (334)

The recognized sequence of words is then compared
automatically to the correct answer to determine the
percentage of correct, deleted and inserted words. Word
substitutions and deletions are tabulated as errors,
while insertions are counted separately

4. EXPERIMENTAL RESULTS

In this section we present results on several word
recognition experiments on continuous speech As
described 1n the previous section, the results were
produced for the following set of conditions 3 speakers.
speaker-dependent, 334-word lexicon, electronic mail

task. no grammar. !5 minutes of traiming, and 30 test

utterances totaling 187 words.

Table 1 gives a detalled description of the various
system configurations for the different experiments

eystem nome word models ore conatructed uesing

PH context-independent phoneme modele

w only word=dependent phoneme models,
regordiens of whether troining le
sufficient for the word

PH+W linear interpoiotion of
context-independent ond word—dependent
phoneme mode s

PHeL+R iineor interpolotion of
context-independent,
left=context—dependent ond

right-context-dependent phaneme modetle.

PH+L+R+W linear interpolotion of
context-independent,

left-context-dependent,
right-context—dependent,

ond word—dependent phoneme models.

Table 1: Different System Configurations for Word

Recogmtion.

Table 2 shows word recognition error rates obtained
for meny different configurations of the system. A
complete set of results was obtained for three speakers,
RS, FK, AW. Also shown 1s the average error rate for
the three speakers, and the difference in error rates
from the best to the worst speaker for each system.
The word insertion rates are not given for each speaker
and system below However, for systems PH and W. the
insertion rate ranges from 5-107, while for the other
systems, which use combinations of models, the range is
from 2-4% 1n all cases

Sent minua
Worst
RS FK AW AVG Error Rots
PH 15 25 32 24 17
w 1" 17 14 14 6
PH+W 8 11 12 10 4
PH+L+R 1@ 12 14 12 4
Table 2. Experimental Results

The first experiment (PH). with word models derived
from context-'ndependent phoneme models. constitutes
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The word recognition error rate 1s

our baseline resuit

247 averaged across the three talkers The second
experiment (W) using word-dependent phoneme models
In the

remaining experiments, the model of each word was

only, resulted 1n an average error rates of 147

constructed from combinations of several models with

appropriate weights, I1n an attempt to 1improve
performance over using the word-dependent model by
itself. The error rates are as follows. PH+W - 0%,

PH+L+R - 12%

From the results given above, we make the following
that model
coarticulatery effects clearly result in better recognition

observations. First, the systenms

performance For example, svstem W achieves
significantly better performance than system PH This
result 1s due to the facts that each word in the test set
has been observed at least once in the training. and
effects are

that word-dependent coarticulatory

important Although some words are poorly trained, the
overall performance is improved  Note that for larger
vocabularies, many words would not occur in treining,
making this system (W) inappropriate. A system that
uses a subword context-dependent model will be
necessary. Second. the systems that use less detailed
models to smooth the highly context-dependent models
result in better performance than those that attempt to
use the context-dependent model by itself For example
system PH+W outperforms svstem W. Third, the range in
performance across the three speakers (17%) 15 large for
the context-independent (PH) system We conjecture
that this 1s due to a ditference in the degree of
coarticulation present Speaker RS has been
subjectively judged to speak more carefully than the
other two speakers. However. the range in perfcrmance
for the context-dependent systems (4-6%) 15 greatly
reduced - a desirable attribute. We believe this
behavior 1s due to the fact that these systems are

better able to model coarticulation.

As as side note. we tried combinming all four models
(PH+L+R+¥) 1n a single experiment, but found that
performence did not improve over the PH+W system We

presume that this i1s due to the fact that most words in

the test set were weil trained

5. CONCLUSION

In conclusion, we have made two major extensions io
concepts that were introduced in our previous work
First, we have extended the use of context-dependent
phoneme models to the case of continucus speech word
recognition. Second. we have extended the phoneme-
in-context models to account for word-dependent
coarticulatory effects Our method, based on a context-~
dependent phonetic hidden Markov model, automatically
uses information about adjacent phonetic context only
to the extent that it has seen examples of that context
in treining, and combines this information with less
context-specific models for the phoneme. Systems that
make use of robustly combined (smoothed) word-
dependent models of the phoneme are demonstrated to
have the best performance
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RECOGNITION PERFORMANCE
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ABSTRACT

We describe the integration of grammatical with
acoustic knowledge sources in the BBN continuous word
the

This combination decreases the

recognition system, and resulting effects on

total
number of insertions, deletions and substitutions by a

performance.

factor of more than 6 compared to the system with no
grammatical constraints, and yields a word accuracy of
better than 987%.

possible word sequences can improve performance, even

We show that constraining the set of

when the emount of training per lexical item remains
fixed. In addition. we address the issues of estimating
from limited data the degree of constraint imposed by a
grammar and t.ue importance of incorporating acoustic

similarity in such measures.’

1 INTRODUCTION

In this report we describe the development and use
of various finite state grammars in the BBN continuous
speech recognition system. In particular, we investigate
between recogmtion performance and
Ve feel

crucial to

the relationship
the degree of constraint imposed by a grammar.
such

that understanding relationships is

evaluating how well speciiic techniques of hngustic
modeling can be generalized to larger and more complex

tasks.

It 18 well known that

improves as vocabulary size decreases.

recognition performance
Similarly, when
syntactic and semantic information are used to reduce
the number of words that can legally follow a given
sequence of words, a recognzer 1S expected to make

fewer errors. Two related measures of this type of

1Thil work wos sponsored by the Defense Advanced Research
Projects Agency ond wos monitored by the Office aof Novol
Research under controct number NO@@39-85-C-0423.
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grammatical constraint are perplexity and branching

factor. decreasing these characteristics of a grammar
should lead to improved performance. ¥e shall discuss
how these measures can be estimated when only a small

set of representative sentences are available.

In the
recognition system.

following section we describe our
In section 3, we describe a set of
experiments designed to demonstrate the relationship of
performance to branching factor when the amount of
training per item remains constant. We then address
the 1ssue of estimating degree of grammatical constraint

from limited data (section 4). In section 5, we describe

the incorporation of various grammars 1inp our
recognition system and the resulting effects on
performance.

2 THE SPEECH RECOGNITION
SYSTEM

The
feature extraction stage,
The
short—time

speech recognition system consists of a

an acoustic scoring and a
linguistic  scoring. feature 2xtraction
the

and

stage
computes spectral
by 14

A vector quantizer discretizes the

envelope every

centisecond represents it Mel-warped
cepstral coefficients.
spectral envelope to one of 256 spectral templates using

Euchdean distance. The sequence of discrete spectra is

used to compute the hkelihoods of all possible
hyputheses in  the acoustic and linguist: scoring
modules Recognizing an 1nput utterance involves

finding the sequence of words Wj ... Wp that maximizes
P(x;x, ... Xp | Wy oowp) Plwy owp)

where x;..x, 1s the sequence of quantized spectre

and Wi .. Wpo1s a sequence of words. The firsi term.

the acoustic score, 1s derived from a hidden-Markov

model (HMM) for each word The second term, the
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linguistic score, 1s, 1n principle, a model of the expected
syntax and semantics. This term includes a model of
duration (longer sequences are less likely), and a
grammatical score. At present, due to hmited data, the
grammatical score is simply set to 1 for sentences

allowed by the grammar and to 0 otherwise.

The dictionary used was developea and made
available to us by the speech g-oup at Carnegie—Mellon
University. We expanded 1t (from about200 words) to 334
words 11n c-der to [fill out categories that were
represented 1n the original version. In particular, our
version Includes all months, all davs of the week,
possessives for all proper nouns and plurals for all
nther nouns, and cardinals and ordinals to cover
numbergup to 999.

The treaining for our system was on 300 sentences
(about 15 minutec) for each talker. These sentences
were syntacticelly and lexically based on 100 example
sentences alsc provided by CMU. We reserved the set of
100 sentences for testing. The sentences were designed
to be representative of human-machine interaction in

an electronic mail task, referred to as the Email task.

Cur word models are phlonetically based and
capture the acoustic coarticulatory effects within a word
to the extent that they can be estimatcd rehably from
available training data. In short, to obtain robust
estimates of the transition and output distributions of
the HMM for a phoneme-in-context we use a weighted
average of the parameters of models with . .rying
amount of context. The details of these word models
are discussed in [2)

The lhnguistic model, which computes the a priori
probability of a word sequence, uses one of two types of
models for the language. The first model has no grammar
and allows any word sequence. In this case, the
probability of a word sequence 15 determined by s
Jength.

Plw, ..w]=¢c a~k

where a is just an insertion penalty that is chosen
empirically to control the insertion rate of the
recogmizer output and ¢ 18 a normalizing constant. The
second language model 1s a finite state automaton We
describe 1n a later section how we generated the finn>
state grammars from a small corpus of sentences. At
present. sentences are either accepted or rejected as
grammatical depending on whether the automatcn parses
them or not. CGiven sufficient data to determine the
hkehhood of different word sequernces, the paths of the
automaton could be modified to 1mpose probabilities on

sentences of the grammar
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3 RECOGNITION ACCURACY AND
BRANCHING FACTOR

1t is well known that recognition performance
improves with smaller vocabulary size, with or without
grammatical constraints. The improved performance may
stem from two factors. (1) the smaller set of elements
that need to be distinguished, and (2) the greater
amount of training that can be devoted to each of the
items. As vocabulary size increases, comparable training
becomes more difficult. Since our goals 1nvolve
increasing vocabulary size, we felt it was important to
establish that the first of the above factors alone, 1e.,
smaller vocabulary size (which can be simulated by using
a grammar), 1s sufficient to improve performance without
increasing the amount of training per lexical item.
Further, we would ke to investigate the relationship
between performance and constraints such as vocabulary
size or grammaticahty. A set of experiments was
designed to simulate the effect of grammeatical
constraints over a range of branching factors. This was
done by restricting the set of lexical items to the words
appearing in a given test seitence plus additional words
selected randomly from the dictionary until the total
number of words 1s equal to the desired branching

factor.

3.1 Methodology

We investigated branching factors of 10, 20, 50,
100, 200, and 334. The last figure includes the entire
dictionary Performance was assessed for the task of
recognizing 30 of the 100 test sentences, described
earlier, as produced by three male talkers. Smce we
had previously made changes 1n our system bars>d on
recognition of these 30 sentences, we repeated the
experiment for the smallest and largest branching
factors on the 70 previously unused sentences. Since
performance at these points for the new sentences did
not differ greatly from the results based on the 30
sentences (performance was actually about 1% better on
the new sentences), we present the results based on the
3G sentences.

In order to achieve ccmparable statistical
significance across the tests at various branching
factors (BF), that is, to alequately sample the dictionary
for each, we increased the number of repetitions for

experiments at lower BF. BF of 10 was repeated at least

10 times per talker pe. sentence, BF 20 (11 times). BF
50 (6 times), BF 100 (3 times), BF <00 (twice) and BF 334

(once).
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958 - 5%
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Branching Factor
Figure 1: Performance and Branching Factor.

Plotted is word accuracy, (substitutions
+ deletions) divided by the total number
of words in the test sentences, averaged
acrosa 3 male speakera, as a function
of branching factor.

3.2 Results and Discussion

Figure 1 shows the error rate averaged across the
3 talkers’
Performance is plotted as a function of branching factor
on a that
increrses (linearly on this scale) with smaller branching

productions of the 30 test sentences.

log—log scale. It is seen performance

factors. word accuracy improves from about 90% for the
full dictionary to about 98.5% for the branching factor
of 10 As
remeining 70 test sentences was about 17 better for
fuctor of 10. The
experiment allow us to sample the effects of various
items, but not the effects of
In fact,

mentioned earlier, performance on the

branching repetitions of the
choices of vocabulary
variability in articulation. our entire set of
errors for the branching factor of 10 correspond to one
or two words produced by each talker. Given this
distributior. of errors and the difference between the
p<rcentage of errors on the two sets of sentences, we
conclude that U0 test sentences (187 words per talker)
are not sufficient to reliably estimate performance 1in
this case. The experiment has, hcwever, confirmed our
hypothesis that reduction of the number of allowable
words 1s sufficient to withcut

improve performance
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increasing training. and we feel that the methodology
may prove useful for estimating the performance of a
tasks differing in the
In order to

recognition algorithm on

complexity required of
quantify this complexity, we present several methods for

imposed by a

the grammar.

estimating the amount of constraint

grammar.

4 ESTIMATING GRAMMATICAL
CONSTRAINT

¥hen recognition is performed without a grammar,
the set of possible outcomes is the set of all possible
items. The role of a
This
means that at any point the grammar has to choose not

combinations of the lexical

grammar is to disallow some of those combinations.

from the entire set of lexical items, but from a smaller
set. By reducing the legal possibilities the grammar
imposes a constraint which makes the recognizer's task
easier. How does one measure the constraint imposed
by the grammer? One would like to average the number
of choices at various points and weight them according
tc how hkely they are to occur. Such a measure, based
on the information theoretic concept of entropy, exists
and is called "perplexity" {1]. For a deterministic finite

state automaton we define its entropy, H, by

H= Z p(i) hi)

where p(i) is the probability of node i, and h(i) is
the entropy of the set of choices emanating from that

node. The perplexity, Q is

q=c2t

The perplexity of a grammar 1s determined by the
network connectivity and the probability assignment of

the different transitions. In our case, the network

connectivity 1s determined by the types of linguistic

phenomena captured 1n a particular grammar. The

probability assignmeat of the transitions is, however,

more difficult. Th= basis for our grammar was a set of

100 sentences intended to represent rather than to

define the language. In fact, many different grammars

can be built to cover all or most of these sentences

while differing greatly 1in the number and type of

additional sentences covered, and, more 1mportantly,

differing in their perplexity. The problem now becomes

the estimation of perplexity given a set of

"representative” sentences. We propose three methods.

%
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The first 1s the maximum perplexity of a finite languagc
[6] which i3 obtained by solving for the positive root Xy

of Imax

¥
yav

k
=1
k=1

N xa™% =
wheve Ny 1s the number of -entences of length k
max !S5 the
language,

in the language, 1 length of the longest

sentence in the and Xg 1s the desired

maximum perplexity.

A second measure, which we will call the uniform

branching estimate of perplexity, 1s obtained by
assuming all transitions from a node i1n the grammar to

be equally likely.

The third measure, called test set branching
factor, uses the set of test seutences to estimate the
average branching factor encountered by traversing the
FS network along the paths corresponding to each
sentence. We use the geometric mean of the number of
branches at each node over all the test sentences as an

es*‘mate of task perplexity.

All  the
similarity of the words, an important factor.

ubove measures 1gnore the acoustic
Me sures
factor

including this have been proposed, sec, for

example, [3].

5 RECOGNITION AZCURACY AND
GRAMMATICAL CONSTRAINTS

In this
performance using grammars d-‘fering in the degree to
whic.a  the

sequences.

section, we con\pare recogniticn

constrain the set of allowable word

v

We began with a grammar designed to cover

a structural subset of the Email sentences, tne

commands. A goal of this grammar was to maximize

coverage of these sentences plus logical extensions

suited to the Email task environment. FEqually important
in the des, 1 of this grammar was the minmimization »f
"over-generation’”, 1 e, the generatior. or acceptance of

many ungrammatical sentences.

Our interest 1n grammars 1s broader than simply

improving performance on a given task. In addition, we

would like to investigate the trade-off i performance

versus over-generation, and to estimate performance on

more difficult tasks, 1e., tasi.s requiring a larger number

of choices at various points 1n the grammar. We

therefore designed a second grammar for the commands.

a grammar wth greater perplexity. Similarly, we

designed two grammars differing 1n perplexity for the

entire set of sentences (commands es well as questions).
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5.1 Integration of Grammatical Constraints in the
Recognition System

We approached the implementation of a grammar 1n
our recognition system 1n two steps. First we created a
description o the Email task language n a modified
context-free notation. This description was based on
the 100 sentences mentioned earlier, and was designed
to capture generahzations of the linguistic phenomena
tools that

structures

found 1n them. Second, we created

transformed this description 1nto In  our
recognizer that provide the corresponding grammatical
These

facility for capturing

constraint. tools provide us with a general

in our recogntion system an
approximation of any language expressible in context—
free rules. We chose to implement th. constraintz in
the recognition system i1n the form of a finite automaton

(FA) similar to thuse described in [4] and [1).

At the first stage 1n generating &« gramme., we use
& context-free notatinn augmented with variables in
order to simplify the process of describing a language.
For example, this nctation would allow 1 rule that says
a ncun phrase of aiy number can be replaced by cn
article and a noun of the same number, whereas
ordinary context—free notation would require two rules
that are identical except that one would he for singular

number end the other for plural.

Our system first translates the augmented notation
into ord nary context—free rules and then constructs a
FA based on these rules. While 1t is true that context-
free grammars can accept recursive languages which
finite automata cannot, fimte autor.ata can approximate
recursion by setting upper hmits on the number of
levels of recursion allowed. Such an approximation 1s

reasonable for most task languages, since spoken
sentences do not ordinarily use more than a few levels

o recursion.

In our recognition system, {he automaton 1s used
as follows. Associated with each transition 1n the FA 1s
a hidden—~Markov word model that 1s used to compute
the probabiity of a spectral sequence given the
occurrence of the wcod at that place in the gremmar.
The recogmtion algorithm with this erammar 1s only
slightly differeni from the version of the algorithm that
allows any sequence of words [2] For each 10 ms frame
of the input speech, the scores for all the word models
in the FA network are updated according to a modified
Bauir-Welch algorithm. The score for the start state of
the FA 1s umity and the score for every other FA state
1s simply the maximum of all the word model scores that
This state score,

enter the ‘e along FA transitions.

in turn, 1s propagated to the beginming of all the word
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models on transitions leaving the state, to be used as
the new 1nitial score for those models In this way the

recognizer only considers _,rammatical sequences of
words. Maintained througlcot this scoring precess are
traceback pointers that indicate for each state and euach
time the word model that produced the best score to
enter the state. Once an utterance is thus processed, 1t
ir & simple matter to follow these pointers back through
*1e network to find the highest scoring sequence of

words.

difficulty with a FA grammar for
that,
computation is proportional to the number of transitions
in the FA.
complex .
grammars for the Email task, a simple time-synchronous

One potential

recognition stems from the fact ordinanly,
This number can become quite large for
Juages, However, in our experience with

search with pruning [5] effectively reduces the
computation to less than that for the algorithm that

does not use a grammar, without affecting performance.

5.2 Description of the Grammars and Methodology

We compare here the effects on performance of
grammars differing in which set of sentences they are
intended to cover {the full set of test sentences or the
commends only) and along a dimension we call tight-
loose, which refers to an estimate of how much over-
"Tight"

grammars have very little over—-generatior. (generation of

generation 1s produced by the grammar.

sentences tnat are considered ungrammatical) and,
because of these tighter constraints, tend to have fewer
choice. at various points i the grammar, i.e, smaller
perplexity. "Loose” grammars, on the other hand, have a
great deal of over—generation and greater perplexity
(larger sets of choices at various states). The Jloose
crammars developed here are loose in that, for examyle,
semantic agreement 1s

no number, tense, case or

required.

The grammars we have 1nvestigated so far include
a tight and a loose grammar for commands (COM-T aad
COM-L, respectively) and a loose grammar that covers
both commands and questions (SENT-L). 1n addition, we
have used another grammar that 1t tighter than SENT-L
(and hence 1s called SENT-T), but only in aspects that
would otherwise put into similar grammatical distribution
For example, singular

large sets of minimal pairs.

versus plur nouns, the cardinals versus ordinals, or
verb tenses all involve large sets of acoustically similar
items This fact can pose s problem for recogmtion 1f

the grammar allows sequences 1n which one

member of the pair can be substituted for the other.

many

TR TN

On the other hand, distinguishing verbs on the basis of
which objects they take reduces perplexity without
necessarily reducing the number of acoustically similar

competing words.

attributes of the
For comparison, the results for

Table 1 rejevant
grammars investigated.
no grammar (the trivial grammar that allows any lexical
The table

the number of arcs (a rough measure of size,

shows the

item to occur anywhere) are also included.
includes:
and is related to computation time), the three estimates
of perplexity (Maximum Perplexity, Test Set Branching
Factor, and Uniform Branching). This table also shows
the number of words and number of sentences on which
each grammar was tested, and the performance for each.
Word accuracy here is computed as the sum of all errors
(insertions + deletions + substitutions) divided by the
sum (total words + 1insertions) Sentence accuracy 1s
also included in order to show that a few percentage
points difference 1n word accuracy can result in much
larger differences in the number of correctly recognized
sentences a number that is no doubt very important to

potential users.

Since we had used 30 of the 100 test sentences 1n

previous experiments and modified our cystem as a
function of those results, we used only th: subset of 70
performance figures

remaining sentences for the

reported here. In order to compare the tight and loose
versions of the grammars, performance was assessed
using the intersection of the sentences parsed by each
grammar. Results are based on using the phone-left—

and-right word-model discussed in [2].

5.3 Results and Discussion

Figures 2a (commands only) and 2b (commands and
questions) show graphically the word accuracy figures of
Table 1 associated with each grammar. Performanrce 1s
plotted as a function of the perplexity estimates used.
As can be seen these grammars differ in their effects
on performance. Further, when two grammars that cover
the same set of sentences are compared (COM—T versus
COM-L or SENT-T versus SENT-L), the more¢ constrained

grammar has significantly better word accuracy than the

less ronstrained one. tightening of the command
grammar 1mproved performance from 95.5% to 984%,
tightening of the sentence grammar improved

performance from 96.2% to 98.2”7. Word accuracy, again,

errors all 1nsertions, deletions and
Further, 1t

constraints that take 1nto account acoustic similarity

includes as

substitutions. appears that grammatical
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TABLE 1

Properties of the Grammars

GRAMMAR COM-L  CON-T SENT-L SENT-T NONE
Number of arcs 838 7167 2547 3771

Maximum Perplexity 58 18 75 50 334
Test Set Branching 40 18 47 31 334
Unijform Branching 19 9 R2 19 334
Words in test set 183 183 438 438 492
Sentences in test set 27 27 63 63 70
Sentence accuracy 72 9% 80.1% 80.5% 90.25 36.7%
Word Accuracy 95.5% 98.4% 96.27% 98 .2% 88.6%

Comparison of the varjous grammars used for the commands (tight
coverage, COM-T; 1loose coverage, COM-L) and the commands plus
questions (tight coverage, SENT-T; loose coverage, SENT-L). Word
accuracy here is computed as (insertions + deletions + substitutions)
divided by (total words + insertions).

(b) (a)
99 4 Iy Iy Y r i A 3 'L Y 99 % A 'y ' A A 4 4 = : rere
£ 7 SENT-T . . LA = I CONAT s
& o8- \ L ¥ o8- S
M : v :
b 25 & & - 25 =
< M < u
97+ - g 97 - 8
T " Y L
9 q x . ° i o 5]
* 1 SENT-L 4w =R . COM-Lf4 =3
o o
95 E & 951 - =
J L6 ] L6
93- L 1 L) ¥ ' L) L] L] LA | 3 93- L] 1] 1 ) 1 L) L L] L] 3
10 20 50 100 10 20 50 100
FSTIMATE OF PERPLEXITY ESTIMATE OF PERPLEXITY

Figure 2: Performance with Grammars. Plotted is performance, (insertions + deleticns + substitutions)
divided by (number of words + insertions), as a function of perplexity as estimated by the
uniform branching assumption (X), the test szt branching factor (squares), and the maximum
perplexity {circles). (.) The tightly constrained command grammar (COM-T) and its loose
counterpart (COM-L). (b) The tightly conatrained sentence grammar (SENT-T) and its loose
counterpart (SENT-L), which considers acoustic similarity.
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improve performance more than those that do not for
the SENT-L grammar
improves performance more than its estimated perplexity

comparable estimated perplexity.

would predict 1f acoustic similarity had not been an
important factor.

An anaiysis of the recognition errors using these
various grammars reveals that, in general, acoustically
similar items are confused. it does not appear that
function words are more often involved in the errors
than content words. A large percentage of our errors
(32% for SENT-T) involve "the"” and "a”, which happen to
be function words. However, no other function words
We believe that "the”

in the errors NOT because they are

show this pattern. and "a"” show
up more often
function words, but because they are (1) acoustically
similar, (2) have similar grammatical distributions, and
(3) are

Assuming thut we cannot change their acoustic similarity

very frequent words 1n these sentences.

or their lexical frequency, improving performance on
these words raquires a more constrained specification of
their distribution 1n the linguistic model.
that

separate the two disiributions, given a well-defined task

1t is possible

semantic, pragmatic or discourse models could

environment.

6 CONCLUSIONS AND FUTURE
RESEARCH

We have tested metheds of
combining grammatical and acoustic knowledge sources
find that the use of

grammatical constraints can decrease the error rate by

implemented and

in our recognition algorithm. We
a factor of more than six. This result corresponds to a
word accuracy (counting all insertions, substitutions and
deletions as errors) of more than 98% for the Email

task.
recognizer boosts performance, even when the amount of

Reducing the number of words considered by the

training per word 1s fixed. We have presented various

estimates of grammatical perplexity and shown that

performance improves as =stimated perplexity decreases
for a given task. Our experience with a grammar that
focuses only on syntactic constraints in acoustically
confusable portions of the grammar demonstrates the
importance of acoustic

similarity in  predicting

performance accurately and 1n improving recogmtion

performance.
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IMPLEMENTATION OF CONTINUOUS SPEECH
RECOGNITION ON A BUTTERFLY ™
PARALLEL PROCESSOR

Lynn Cosell, Owen Kimball,
Richard Schwartz, Michael Krasner

BBN Luboratories
10 Moulton St.
Cambridge, MA 02238

ABSTRACT prior experience on this or any other parallel machine.

This paper describes the implementation of a The outline of this paper 1s as follows. section 2
continuous speech recognition algorithm on the BBN describes the Butterfly, section 3 explains the BBN word
Butterfly™ Parallel Processor. The implementation  recognition algorithm, section 4 describes the single
exploited the parallelism inherent 1n the recognition processor version of the program, section 5 present: the
algorithm to achieve good performance, as indicated by  Parellel programming methodology used, section 6
execution time and processor utilization. The  eXplains the parallel versions and the final section

implementation process was simplified by a programming  Contains results and future work.
methodology that complements the Butterfly

architecture. The paper describes the architecture and
N BUTTERFLY
methodology used and explains the speech recognition

algorithm, detailing the computationally demanding arse The  Butterfly Parallel Processor [1] is composed of

critical to an efficient parallel reahization. The steps multiple (up to 256) identical nodes interconnected by a

taken to first develop and then refine the parallel R~ poEarmonee  Suish Each node contans a

implementation are discussed, and the appropriateness EEESEEE  COE) TYLET The switch allows each

hodol
of the architecture and programming methodology for processor to access the memory on all other nodes.

A 1
such speech recogmtion applications 1s evaluated. Collectively, these memorie- form the shared memory of

the machine, a single address space accessible to every
processor. All  intecrprocessor communication is
performed using shared memory. From the point of view
INTRODUCTION of a program, the only difference between references to

memory on 1its local node and memory on other nodes is

This paper describes research to investigate the that remote references take a little longer to complete.

uses of parallel computation for continuous speech word Typical memory referencing instructions accessing local

recognition. Qur goal in this work is o determine the pepory take about 2 microseconds to complete, whereas

extent tv  which continuous speech recognition those accessing remote memory take about 5 or 6

algorithms can make use of parallel processing to  picroseconds. The speeds of the processors, memories

achieve real time speeds. Qur approuch has been to  and switch are balanced to permit the system to work

develop parallel versions of an existing recognition efficiently 1n a wide range of configurations.
algorithm on BBN's Butterfly Parallel Processor.

Additionally. this work provided & chance for us to learn The Butterfly has a number of interesting
about the Butterfly Paralle Processor and parallel architectural charecteristics. It s a multiple
algorithms 1n general, we approached the project with no instruction multiple data stream (MIMD) machine where

each processor node executes its own sequence of

instructions, referencing data as specified by the
1oy, instructions. The MIMD architecture permits a variety of
vhis work wos sponsored by the Defsnse Advonced Reseorch

Projects Agency ond wos monitarso by the Office of Novol approaches to programming the machine, making 1t

R - - .
esearch under Controct No. N@@@39-85~C-8313. suitable for many applications  Processor Nodes are
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tightly coupled by the Butterfly switch. Tight coupling

permits efficient interprocessor communication and
allows each processor to access all
Butterfly

expandable to 256 Processor Nodes and each processor

system memory

efficiently. The Parallel Proceusor 1s
node added to a configuration contributes processing
power, memory, switch bandwidth, and 1/0 capacity. As
a result, communication and 1/0

processing, memory,

capacity all grow with the size of the configuration.

Processor Nodes are all basically identical in this

architecture. As a result, every processor is capable of
performing any application task. This uniformity
simplifies programming since programmers need not

concern themselves with allocating certair tasks to
specific processors. Each Processor Node contains a
Motorola MC68000 microprocessor, from 1 to 4 MBytes of
main memory, & co-processor called the Processor Node
Controller, memory management hardware, an 1-0 bus,

and an interface to the Butterfly switch. Butterfly
Processor Nodes are currently being manufactured with
68020 microprocessors and a floating point co-processor

to replace the single 66000 processor.

The Butterfly
techniques to implement high performance. reliable, and
The switch is

a collection of switching nodes configured as a ''serial

switch uses packet switching

economical interprocessor communication.
decision” network.

There is a path through the switch

network from each processor node to every other

Processor Node. The name derives from the connection
of switch nodes, which resembles an FFT "butterily" flow
graph.

The particular machine that was wused for
development 1n this project was a 16 processor machine
with a 68000 microprocessor and 1 Mbyte of memory on
each Processor Node. As such, it did not have hardware

support for floating point arithmetic.

VORD RECOGNITION ALGORITHM

The problem of speech recognition requires that we
map an analog signal onto a sequence of words that
comprise seiitences however, the 1dentification of
particular speech sounds (phonemes) from this signal is
made difficult due to the vanabihty that occurs in
speech production. This variabtity 1s due to the effect

of neighboring speech sounds (coarticulation), and a

variety of other effects that all combine to make the

same speech unmit appear differently each time it occurs.

Our recognition algorithm is based on the expheait
r~4eling of variabity in speech thruugh the use of
probabihistic Hidden-Markov Models (HMMs) of phonemes
in various phonatic contexts {2]. Figure 1 illustrates
the hidden-Markov model

system. The

of a phoneme used in our

three large open circles are states

associated with acoustic events corresponding roughly to
The small

filled circles are the "imtial’ and "final” states and do

the beginning, middle and end of & phoneme.
not produce output symbols. There is associated with
each pair of states a transition probabihity a{jli) which
is the probability of going to state j given that the
process is in state i. The arrows between states
indicate the allowed (probability nonzero) transitions.
Unlike a
associated with it a single output, each HMM state has

an output probability density function {(pdf) P(x|i) that

Markov chain, in which each state bhas

gives the probability of each possible output symbol x,

given that the process is in state i.

Rather than use actual segments of the speech
signal as output symbols, we can represent the speech
signal as a sequence of spectra that occur at discrete
time intervals. Furthermore, each of these specira can
be approximately characterized as one of a s‘mall number
types (256 1n our

determined using a clustering procedure.

of spectral system), which are
The spectral
then become

characterizations, each a single number,

the possible output symbols. Given this phoneme model,
words can be modeled in turn as concatenations of
phoneme HMMs that have been modified to take 1into

account the contextual effects of the word.

One approach to understanding HMMs is to imagine

them 1n a synthesis role, where they are used to

produce spectral sequences. Starting from the imtial
state of the model, we randomly choose the next state
according to the transition probabihties on the arcs
leaving the mitial state. Whenever the process 1s 1n an

acoustic state (the open circles 1n the diagram), we
randomly pick an output symbol according to the state's
output pdf. As the process moves from state to state in
this manner, it produces a sequence of symbols (speech

spectra) as output.
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The recognition problem can be viewed as the
inverse of the synthesis problem: given a sequence of
input spectra and a set of models o all possible words,
we wish to find the sequence of models that 1s most
likely to have produced the spectral sequence. An
adaptation of the Viterbi algorithm [3] solves just this

problem, and 1s the basis for our recognizer.

The basic recognition algorithm finds the path
through the states that 1s most likely to have produced
the spectral sequence to be recognized. The algorithm
does this by finding the best path to every state at
every time given that the path to be previous state was
also "best”. Each step along these paths has associated
with it a "score”, which reflects the probability of the
step given the spectral sequence and the transition
probabihities of the model. The scores are accumulated
along the paths, so that, at every time, the best path to
any .ciate has a single score. The best path to a
particular state, S, at time t, 18 determined hy
considering all possible predecessor states (states which
have transitions to S) at time t-1 and the best path to
each of these. The score for a path to S 1s then the
combination of the path score to the precdecessor state
and the score for the step from the predecessor state

to S. The bes! of these scores indicates the best path to

are compared and . nly the maximum terminal score over
all words is saved, along with the word that produced 1t
and the start time for the word. The largest terminel
score for a time frame is used as the score for all
nitial states in the next time frame. In adation. the
best score at any state at a particulai time 1s found
and used to normalize all scores in the next time frame.
This normalization factor (NF 1n Figure 2) prevents

arithmetic determination of the
normalization factor 1s indicated at the right hand side

overflow. The

of Figure 2. The current state score, nn(t), 1s compared
against the largest state score, “Bu((t)' encountered so
far for the current time frame, and replaces it, if

appropriate.

When all the time frames in the utterance have
been processed 1n this way, the best sequence of words,
called a "theory”, for the content of the utterance can
be determined. The theory for the utterance is
determined by backtracking. The maximum terminal
score at the end of the utterance specifies the last
word of the utterance. The start time of this last word
is the end time for the previous word, so the maximum
terminal score at this time indicates which word should
be selected as the second-last word in the theory, and

so on, back to the beginning of the utterance.

S.

The central computation in the algorithm is. for SINGLE PROCESSOR IMPLEMENTATION

each time interval, update the scores for all states.
The first step toward a paralle] implementatior. was
Figure 2 schematically 1llustrates the scoring procedure
to bring up the speech recognition program on a single
for a single state 1n a word. In this figure, the score
processor of the Butterfly Parallel Processor. The
for state n at time t {(the n"(t) in the lower right )
existing VAX implementation, written in C, depended on
corner) 1s being computed based on the scores for three ]
) the file system to store the large amounts of data which
states computed at time t-1 (the three circles on the
inclnded the transition probabilities and the pdfs for
left of the figure) each multiplied by the corresponding
the word models. This data totaled 1.5 Mbytes. Storing
transition probabihity of going to state n. The new
this amount of data required using some parallel memory
score for state n 1s just the maximum of the entering
management techniques to allocate shared memory on
scores multipliea by the probabiity p{x/n) of the
multiple nodes.
spectrum x, at time t, at state n.

The VAX {(and the first Butterfly implementation)

This scoring procedure 1s applhed to all states 1n
used floating-point arithmetic. Because floating-point

each word for all time frames 1n the utterance. In the

L
el

arithmetic 1s performed in software in our Butterfly
general Viterbi decoding algorithm, the best path to

Parallel Processor it seemed lkely that the floating-

PR
20

each state would also be maintained. However, 1n the

point arithmetic would hide any overhead and task

speech recognition system. this detailed a record i1s not
We decided to

L
S )
.

granularity problems we encountered.

required 1t 1s sufficient to know the word and the time

T
" -!. "R

divert from the parallelization effort to investigate using

)
t

frame 1 which the word began. The scores computed
fixed-point arithmetic.

for terminal stetes (ends of words) are special They

A

-
»

“‘,\Zw T
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Fortunately, most of the data was represented as
into a table
This table contained 256 entries,

indices of probabilities for storage

efficiency. ranging

between zero and unity, quantized logarithmically.

the were scaled log

the

Therefore, indices themselves

probabilities. Multiplication of probabilities 1n

original program could, of course, easily be converted to
The Viterbi
the

addition of corresponding log probabihities.
algorithm finds the
probabilities to a node, which is equivalent in both log

also maximum of path

and linear domains. We converted the program to use

log probabilities, and obtained the same results as

before.

The next phase of the conversion, changing
floating—point to fixed-point, was straight-forward and
quickly completed, but the execution time remeained
disappointingly long. Butterfly measurement tools

allowed us to discover where most of the time was being

spent. To spesd up access to array data, we replaced
array subscripting with pointer arithmetic and
dereferencing. We also simplified the calling sequence
by defining many of the arguments globally. These

modifications caused the execution time to drop to
about two minutes for a 3.5 second utterance, which
seemed low enough to obtain reasonable parallehization

measurements.

UNIFORM SYSTEM

The Butterfly architecture provides a very uniform
The the

connections between all pairs of processors are the

environment. are 1dentical,

processors
same, and each processor's access to all locations 1s
Although a processor can access the
Node

fairly uniform.
memory that

somewhat faster than it can cross the switch to access

resides on 1ts own Processor

memory on another node, the difference 1n access times

1s not usually significant. Equal access to all memory

results in umform interprocessor communication

connections, because processors only communicate

through the memory.

The Uniform System was developed to exploit the

architecture of the Butterfly Parallel Processor It is a

programming methodology supported by a library of

high~level functions [4]. Its goal 1s to simphfy the

problem of load balancing for the memory as well as for

the processors. Balancing the load on memory 1s

L LA L L T L R L T A L R

accomplished by scattering the data evenly across the
different physical memories i1n the machine, under the
assumption that this will also spread the accesses fairly
evenly, reducing the 1nefficiency that results when many
the

The load on the processors is balanced

processors attempt to acccss same memory

simultaneously.
when all processors are equally busy and no processor

is waiting for another to finish.

The contains functions for

scattering data structures throughout memory.
which

Uniform Jystem
One of
allocates and
so that

If each

tnese is AllocateScatterMatrix,

scatters a two dimensional array, or matrix,
different rows reside on different memories.
processor uses a different row, there is no competition
for any of the memories. The Uniform System also
provides for processor private memories, as well as the
This

available to the processor for data that the processor

globally shared memory. private memory is

will access often, and is located on the same board as
the processor. This memory assignment reduces traffic
through the switch and therefore reduces the possibihty
of switch contention. Functions that perform block

transfers between this local memory and the shared

memory are included in the Uniform System, as are other
functions for allocating storage in the shared m=mory.

The philosophy behind the Uniform System

processor management methodology views the processors
as a umform pool of workers, each of which is capable
of executing any application task. Using this
methodology, the programmer 1s only required to supply
the that

executed simultaneously by multiple processors.

code for tasks operates correctly when

This is
synchromizing meany

usually easier than writing and

different sub-programs to run each on 1ndividual
processors. A program 1s copied to each of the
processors. In most cases, the program will begin with a

section of serial code that is executed on a single

processor. To begin executing a section of code on
FOR the
programmer can use a ''task generator” to replace the
FOR statement and =a

body of the FOR loop

multiple processors, a loop, for example,

"worker routine” to replace the
In this case, tiie task generator

would be GenOnlndex, which 1s used to apply the worker

routine for each value of the FOR loop index. The task
generator makes a task descriptor avuailable to all
processors, which use 1t, as they become free, to
generate calls to the worker routine. The task
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descriptor for GenOnlndex is very simple, consisting of The pertinent portion of the speech recognition program

the name of the worker routine, the range for loop can he abstracted as follows.
index, and a mechanism for determining the next
iteraticn of the routine to perform. Processors, using a. FOR all frames
this descriptor, execute .he routine repeatedlv for b. initialize frame
different 1ndex velues, until the index has run the
range. When all processors have finmished, the program, e FOR all words
once again serial, continues executing on a single d. initialize word
B e FOR all states

The programmer must supply a worker routine to f. compute state score
perform one instance of the task to be performed in g IF (new max score)
parallel. He must also provide a task generator of
determining the next instance of the task to begin h. replace max score
execution. The Uniform System Library includes i IF (i:ew max terminal)
generators such as GenOnlndex, for many common forms i replace max terminal
of program structures. A simple program might contain
only a single task generator, while a more complex k. RIS merEiEakien
program mght contain many, possible nested, 1. FOR all words
generators.

m. propagate scores

We decided to use the Umiform System for several n. determine theory
reasons. First, the speech recogmtion algorithm s
essentially & single task, executed many times. This fits The first parallel version combined lines d} through
the Uniform System paradigm very well. Second, being f) and parts of g) and h) into a single task and used
novices. we were attrocted by the simplicity of use of the generator GenOnlndex, which includes a prologue
the Uniform System. Third, there are functions available task and an epilogue task in addition to the main task
in the Umform System Library that allow automatic The prologue task 1s executed only once by each
timing of the same program run on various numbers of processor before that processor executes the main task
processors, and this provided an easy way of evaluating for the first time. In this version, the prologue included
the performance of the parallel implementation. Finally, line b). Similarly, the epilogue task is executed once by
because the same program can be run on oae or many each processor after all main tasks have been completed
processors, we believed that debugging the parallel by that processor. For this program., the central task
implementation would be simplfied. _determined the maximum state score and the maximum

terminal score seen by each processor. The epilogue

task compared these local maxima against global maxima,

PARALLEL IMPLEMENTATION AND RESULTS replacing the global maxima if necessary. The remainder
of the program, including the second FOR loop (line k)

In our speech recognition system, both
L7 s ystem, both the training was executed sequentially, on a single processor. Figure

and spectral analysis tasks are performed "off-line” and
7 V B 3-a shows thc execution times for various numbers of

the results stored as desciibed in Sectior 3. The
s e € n processors for lines a) though n). Figure 3-b shows the

recognition program itself begins bv reading 1n the word
L Bt & = effective number of processors vs. the cctual number of

models for a speaker. Then, for eacs utterance, the
processors used (execution time for one processor

spectral parameters for the utterance are read and
divided by execution time for P  processors).

stored At this point 1in the ram, the actual
° B LI Approximately 9 seconds was spent 1n the sequential

recognit task b Th rcognition task was th
CelAEs K R o SR ° as € portion of the program when 1t was run for a 3.5 second

only portion considered for parallel implementation. Our
utterance When run on 15 processors. this resulted 1n

execution time measurements began here and continued
less than 50% utilization of the processors
until the 1nput utterance had been rccognized, that 1s, a

theory for the complete utterance had been obtained. The next step was to attempt to reduce the
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We noticed that the
second FOR loop (lines k and 1). which propagates words

sequential portion of the program.

scores for terminal states in the current frame to initial
state scores for the next frame, could be incorporated

into the first FOR loop, effectively changing the program

to.
a. FOR all frames
b. initialize frame
c. FOR all words
d. propagate terminal scores from previous
frame
e. initialize word
1. FOR all states
g compute state score
h. IF (new max score)
i. replace max score
) IF (new max terminal)
k. replace terminal
1 determine normalization

m. determine theory.

This revision substantially reduced the time spent
The

processor utilization for this version of the program are

executing serial code. execution times and

shown in figure 4. For 15 processors, the execution
time dropped from 15 seconds to 11 seconds for a 3.5
the

proceszors rose from 6.9 to 11.2, or approximately 75%

second utterance, and effective number of
utilization.
CONCLUSIONS AND FUTURE RESEARCH

Our work on this project has shown that the
Butterfly architecture 1s suitable for continucus speech
word recognition The decomposition of the algorithm
into tasks that match one word to one frame of input
speech provided a granularity that made efficient use of
the processors. The memory and processor management
functions of the Uniform System made parallelization of

the algorithm surprisingly easy and rapid

In the near future, we hope to extend the current
research to include a grammar and larger vocabulary
tasks. The grammar will require search of a space that

1s much too large to search exhaustively. The search

will

have to be pruned, thus presenting a
challeng.ng parallel implementation task.
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A BENCHMARK FOR

SPEAKER-DEPENDENT RECOGNITION

JSING THE TEXAS INSTRUMENTS
20 WORD AND ALPHA-GET SPEECH DATABASE

bavid ¢.

Pallett

institute for Computer Sciences and Technology
National Bureau of sStandards
Gaithersburg, ™MD 20899

ABSTRACT

This paper presents the results of
rerformance assessment tests conducted on
one commercially available speaker-
dependent template-matching speech
recognizer, using a widely available speech
database. Test vocabularies include the
Texas Instruments 20 word test vocabulary
and the 26 letters of the spoken English
alphabet (the alpha-set). For the 20 word
set, overall recognition accuracy was
99.24%, and for the alpha-set it was
84 .88%. Comparisons are made with the
performance «of research systems which use
both template matching and feature-based
technoulogies, as well as with the results
of tests on commercially available
recognizers of %5-7 years agc. The intended
purpose of these measurements is to provide
a berthmark for comparing the results of
tests of more sophisticated systems.

INTRODUCTION
AS the performance of speach
recognition technology improves, more

chalienging test material is reguired 1in
order to demonstrate the capabilities of
improved systems. For speaker-dependent
isolated word recognition, widespread
dissemination and use of the 20 word Texas
Instruments (Tl) speech database (first
used in Doddington and Schalk's study of
the state-of-the-art in 1981 [1]), has
provided a valuable research resource and
measures of performance that serve as
benchmarks for this 20 word vocabulary.
However, as performance of the technology
has improved, the value of this database
has declined because it may no longer
provide substant ial challenge to the
current state-of-the art. More challenaing
specch test vocabularies and databases are
required in order to demunstrale improved
capabilities.

In large vocabiilary natural language
systems, the spoken letters cof the English
alphabet, ot the "alpha-set”, may be widely
used to introduce the spelling of new words
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in the lexicon. This application has been
termed "spellmode". In such an application,
the use of syntax to restrict the
vocabulary is obviously inappropriate, and
the required use of special-purpose
alphabets such as the International Civil
Aviation Phonetic Alphabet is probably
undesirable. The use of the alpha-set |is
natural in such an application.

At the time that the TI 20 word
database was collected, the same talkers
also provided tokens for the alpha-set [2],
and this speech database is now in  the
public domain. The availability of this
test material provides a means for
comparative tests on both the 20 word
database and the alpha-set for the same set
of talkers, and increases the value of the
wriginal 20 word database by providing more
challenging material from the same group of

©ast talkers that was obtained under
identical environmental conditions.
This paper presents preliminary

results on tests of performance on the TI
20 word vocabulary and the alpha-set for a

representat ive commercially avallable
speaker-dependent recognizer costing
approximately $1000. These data are
intended to provide benchmarks of
performance for comparison of the
performance of more sophisticated
recognition algorithms, using speech

database material that is widely avalilable.
More detailed analysis of this data is
being conducted and at least two other
commercially available recoynizers are to
e studied.

TEST PROCEDURES

The tests reported upon in this paper
were conducted using procedures outlined in
a recent paper [3]. They reflect
suygestions on experimental design, data
analysis and documentation from the IEEE
speech 1/0 Technology Performanrce
Evaluatlion Working Group. Material included
in this section follows the tformat
suggested in this reference.
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Exper imental Design

These tests were intended for
benchmark purposes. The TI 20 word
vocahulary and the alphaoet were used In
separate tests, with no use of syntax to
control the active recoanition vocabulary.
The use of these vocabularies may be

representative of an application such as
"spellmode", but no explicit effort is
taken to model an application.

Test Talker Fopulation

Eight males and eight females comprise
the test talker population, wlth no effort
taken to control dialect.

Test Vocabulary

The 20 word vocabulary consists cf the
words "yes, no, erase, rubout, repeat, go,
enter, help, stop, start" and the digits
"zero" through "nine". The alpha~set
consists of the letters "a" <through "z=".
All words were spoken as discrete
utterances. It is interesting to note that
the avallable tokens in the database could
be recombined to yleld an "alphadigit" set
as used in other studies [4,5], but this
study sought to direct attention to &
comparison of performance for the 20 word
and alpha-sets.

Tiaining

The database Includes 10 tokens of
2ach of the 46 words for each talker. These

tokens «re intended for use in training or
enrollment. This material was wused for
enrollment in accord with the
manufacturer's recommendations. Typically,

‘enrollment’',
additional tokens were used to

the first token was used for
and three

‘update' the resulting reference patterns
or templates. Training was implemented
automatically, and no attempt was taken to

optimize the reference tenplate set.

Environment
Test material was obtained In a quiet
sound-isclation booth with a cardiod

cdynamic microphone placed approximately 2
inches from the talker's mouth. The speech
signal-to-noise ratio 1s believed to exceed
40 dB, but (to date) has not been measured.

Recorded Test Material

speech signal was initially
with a 12-bit A/D converter at a
The digital data

The
digitized
12.5 kHz sanpling rate.
were made available to the National Bureau
of sStandards by Texas Instruments for use
in the puklic domain. An analog sianal was
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reconstructed using « D/A converter, using
a 6.3 kliz antlaliasing filter. This audio
signal was then recorded using compercialiy

avallabhle PCM/VCR technology with a
diglital maztering processor and a video
cassette recorder.

One audio channel on the PCM/VCR

recorded material provides & recorded modem
signal with ASCII character string data
that precedesz each utterance recorded on
the other audio channel. The use of this
format and 'l.eader’ data facilites
automatic enrollment and scoring [6].

Playback of the recorded matcrial
provides two line-level audio signals, one
for the modem and one with the test
material. The line-~level audic signal with
the test material was used as Input to a
mixer, with the microphone level output of
the mixer used as {nput to the recognizer.
Headphones driven by the mixer were used to
monitor the signal as desired.

Calibration tones provided on the
PCM/VCR recorded material were used to
establish system gains, and tests were
conductead using the recognizer
manufacturer's routines to establish
appropriate recognizer gains. Once gains
were established, they were fixed, and no
effcrt was take.n to optimize galns for
improved performance.

Statistical Considerations
There are a total of 5120 test tokens

for the 20 word vocabulary (16 test tokens
for each of the 20 woids for each of the 16
talkers). There are a total ¢f 6655 valid
test tokens foi the alpha-set. One test
token of one letter ("s") for one talker

(f5) has been found to contain only breath
nolse. For each of the 1¢ talkers, there
are 10 training tokens avallable for each

of the 46 words in the two vorabularles
the database,

of
for a total of 7360 training

tokens. The total numnber of tokens In the
database is thus 19135 tokens.

Since the total number of errors per
talker is small, the precision associated

with these data Is unknown.

Several repetitions of tests
individual talkers were conducted in order
to assess the variability between repeated
tests. These tests  Inclucded repeatedd
enrollment and repeated use of the of the
test material on a given tenplate  set, in
gerneral, there has been very oo
repeatablility, typically varying In one
count ot the total numher of substitutions.
Although Lhe number of erroras per talker is
larger for the alpna-set, the variability
in the count of the total number of

for
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substitutions is typically three or tour.

BENCHMARK DATA

20 Word Vocabulary

Overall Scores for 5120 tokens
for 8 males and 8 females

Correct Recognition Percent: 39.24% (5081)
Substitution Percent: 0.61i% (31)
Delet ion Percent: 0.06% (3)
(No Insertions)
Rejection Percent: 0.10% (5)
Ratio of total errors

to rejections: 6.8

Figure One indicates the distribution

of responses for the 20 word vocabulary. In
this matrix representation, the input
words are listed along the rows, and the
recognizer's responses are shown 1in the
appropriate column.
Alphe-set
Qverall scores for 6655 valid tokers
for 8 females and 8 males
Correct Recognition Percent: 84.88% (5649)
Substitution Error Rate: 14.92% (993)
Deletion Percent: 0.03% (2)
(No Insertions)
Rejection Percent: 0.17% (1)
Ratio of total errors

to rejections: 90.4

Figure Two Iindicates the confusion
matrix for the alpha-set.

The intended test procedure was to
disable the reject capability of the
recognizers under test to facilitate
comparisons. For this recognizer, it was
not possible to do so. Following the
manufacturer's recommendation, the

acceptance threshcold wac set to its maxinum
value, and no restrictions were imposed on
the '‘closeness' of best and next--best
scores. This results in a very 1low, but
non-zero rejection percent. FPerformance on
the alpha-set might be (mnproved by the
imposition of appropriate reject criteria.

For the 20 word set, there are S
rejections for the male talkers and oo
delet ions, and no rejections and 3
deletions for the female talkers. For the
males, recognition accuracy and
substitution error percents are,
respectively, 28.%94% and 0.80%, with
corresponding rata for the females 99.53%
And 0.35%,
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For
rejections

the alphda-set, there are io

for the nale talkers and no
vleletions, and i rejection and 2 deletions
for the female talkers. For the males,
recognition accuracy and substitution error
percents are, respectively, 83.4% and
16.3%, with corresponding cata for the
females 84.9% and 14.9%.

DIGCUGSION

In comparing error rates for the two

vocabularies, the substitution error
rate 1is approximately 20 times laruer for
the Aalpha-set, reflecting the areater
difficulty of recognizing a vocabul v
consisting exclusively of monosyllables
(with ihe scle exception of "Wy,
conteining several highly confusuble
subsets, and with a brenching factor that
s 30% larger.

test

The small number of substitution
errors observed for the 20 word vocahulary
(il) 1Is bhelieved to fairly represent the
state-of--the-4rt of currently availuble
low-cast recognizers. rFurther data are to
be obitalned on other recoginizers, including
the use of other approaches including
stochastic modelling., By comparison with
the results of Loddington and Schalk's 1981
benchmark data, the error rate is half that
of the second-best recognizer in  thelr
tests (a template matching unit then having
a nominal price of $65,000).

As previocusly noted for the TI 20 word
data base (1], there is considerable
veriation between individual talkers’
scores. For the 20 word set, {ndividuat
scores range from 97.5% to 100%, while for
the 4alpha-set the range is from 74.3% to
9l.8%. In general, "sheep” and "goats"
retain thelr relative rank-order places
when compdar ing results for the two
vocabularies. These variations underscore
the need for adequate population sampling
and large enough test data bases for
statistical validity.

In
results

studying the confusion matrix that
from separate consideration of
members of the E-set as input (Figure
Three), it is evident that the bulk of the
substitution errors occur for the E-set
(the letters "R®,C,0,E,G,FP,T,V" and '2").
There are a total of 2304 test tokens in
this subset. There are a total of 1546
corrtect responses and 754 substitution
errors, for a subset recognition accuracy
of 67.1% and a4 substitution percent of
32.7%. The 754 substitution errors for the

9 word E-set comprise approximately 75% of
errors for the
3%

input

20

of

woid
all
tokens

al!l  substitution
Alpha- set. Approximately
substitution errors for E-set
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fall within the E-set. These tests suga<st that the
performance of current low-cost commercial

prtoducts using template natching technolouy

With.n the E-s»:t, overall recoanition is slightly superior to results reported
accuracies tor individual letters range for reseatch systems of % to 7 yedrs ago
from 92.9% for "E" to 53.i% for "D", with and to that of commerciailly available

sigrificant variations occurting for  gystems coating as much as $65,000 of thut
different taikers. era. The tests  also  suggest  that
performance is interior to more

Previous measures of the ability of sophisticated systems usiine stochastic
template matching systems to perform fine modelling and/or acoustic-phonetic feature
rhone.ic distinctions as cited in Cole et based recognition.
al. [7]1 indicate recognition accuracy for

the E-set at about 060%. The present

neasurements on a comnercial product REFERENCES

suggest slightly better performance, with

considerably better performance for “E" (Y] G.R.Doddingtoiy and T.B.schalk, "Speech

(92.9%) and "G" (90.. Y than for other Fecognition: turning theory to practice”,
members of the subset s 'h as "B" (58.6%) IEEE Spectrum, September 1981, pp.26-31.
and "D" (53.1%).
{21 T.B.Schalk, "The Design and Use of

In Cole's work comparing template Speech Rec gnition Data Bases", Proceedings
matchiry and feature based recoynition, an  of the Workshop on  Stardardization  for
alpha-set data base of 2080 tokens was used Speech 1/0 Technology, D.S.Pallett, (ed.),
(4 tokens of each letter produced by 1i0 National Bureau of Standards, March 1982,
female and 10 male talkers). The system

under study was operated in a speaker- {31 D.S.Pallett, "Performance Assessment
independent mode, with a proceaure used to of Automatic Speech Recognizers", Journal
ensure +1hat the test talker's data were of Research of the National Bureau of
consictently deleted from the training Standards, Vol. 90, No. 5, September-

material. Withecut tuning (adaptation to October 1985, wp.271-387.

individual talker's speech), an overall

error rate for the alpha-set of 10.5% was (4] N.k.Dixon and H.F.Silverman, "What are

cktained, in contrast with the errtor rate the significant variables in dynamic

of 14.52% found for tte speaker-dependent programming for discrete utterance

recogniizer in this study. recoynition?", Froceedings of ICASSP'8l
(Atlanta), pp.728-731.

For the E-set, Cole cites an error rate of

14% in contrast with the 32.7% in this (51 L.F.Lamel and V.W.Zue, "Performance

study. Usirg tuning (on the limited number Improvement in a Dynamic-Programming-Based

of tokens available for each letter for Isolated Word Recognition System for the

each spcaker in his data base) and improved Alpha-Digit Task", Proceedings of ICASSP'82

algorithms, Cole indicates that an error (Paris), pp.558-561.

rate of 6% was obtained, approximately one-

fifth that of this commercially available (61 D.S.Pallett, "A PCM/VCR Speech

template-matching recognizer. This Datehase Exchange Format", to appear in

comparison suggests the strength of the Proceedings of ICASSP'G6 (Tokyo).

speakel —-independent feature-based

recognition  technology when compared with (7] R.A.Cole, R.M.Stern and M.J.Lasry,

current technology. Further comparisons *Performing Fine Phonetic Distinctions:

with the performance of speaker-dependent Templates vs. Features", in Conference

(or adentive) ocystems wusing stochastic Record of "Toward Robustness in Gpeech

models should be informat ive., Recognition”, W.A.Leda, (ed.), Santa
Barbara, CA November, i983.

SJUMMARY

Thiis papel  reports  on preliminary
tests conducted using a widely available
speech data base in the public domain and a
commercially avalilable reccgnizer using
template matcining technelogy. For che 20
word vocabulary used in these tests, a
rocoynit ton accu-acy of V0. 24% WaES
measured, while for the spoken English
alphabet, recognition accuracy was 84.88%
The 9 members of the E-set are responsiblie
for  79.9% of all substitution e-rer=s fcr
the 26 letters of the spoxken alphabet.
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SECTION 2

REVIEW OF NEW GENBRATION SYSTEM FOR
ROBUST SPERCH RECOGNITION
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ROBUST SPEECH RECOGNITION: INITIAL RESULTS AND PROGRESS

Periagaram K. Rajasekaran
and
George R. Doddington
Texas Instruments Inc.
Computer Sciences Center
P.0. Box 226015, MS 238
Dallas, Texas 75266, USA
Tel. (214) 995-0389

ABSTRACT 2. DATA BASES
: . o xas Instruments (TI) has collected

This paper descr}bes the initial a sezexg? tzge: data bases under the
efforts and results ,in the pursuit of auspices of the Darpa Robust Speech
rob?§t speech rgcogg1;19n for military Recognition program and other TI programs.
applications., The 1nitial goal of this A fourth data tase, which is the main data
prog ™ is 98%_correct recognition of 100 base to be used was defined by TI,
words . 1der noisy and stressful conditions Armst rong Aerospéce Medical Research
1; a speaker-depeqdent recognition mode. Laboratory (AAMRL) of Wright-Patterscn Air
The next goal 1is a s1m1}ay performapce Force Base (WPAFB) and Lincoln Laboratory
with 200 connected words, initially with (LL) and is being collected by AAMRL.
speaker-dependent recognition with The. four data bass are:
progress towards speaker independence. e )
The program is beipg executed along three 1. Simulated Stress Data Base
Interacting dimensions of data base, 2. Advanced Fighter Technology Integration
algorithm development and implementation. * (AFTI) Connected Word Data Base
Progress achieved along each dimension 3. LHX Vibration Data Base
promises the viability of robust

recognition within certain limitations. 4. Robust Recognition Data Base

2.1 Simulated Stress Data Base
1. INTRODUCTION

Establishing this data base was

This paper describes the initial motivated by the need to fuel the initial
efforts and results in the pursuit of algorithm development and experimentation
robust speech recognition for military efforts for robust recognition.
applications. The 1initial goal of this Psychological and physiological stress on
program is 98% correct recognition of 100 a speaker manilest themselves as
words under noisy and stressful conditions variabilities in the acnustic signal
in a speaker-dependent recognition mode. produced. Typical of the variabilities
The next goal is a similar performance are the changes in the spectral slope,
with 200 connected words, initially with fundamental frequency, formant locations,
speaker-dependent recognition with level and duration of the acoustic events
progress towards speaker independence. of the speech signal [1]. Stress-like

degradations of the speech signal were

Speech recognition is an empirical elicited by asking the speaker to produce
science and derives its power from speech with vocal efforts/effects
experimentation with large amounts of corresponding to Normal, Fast, Logd,
speech data that reflect the conditions of Shout, and Soft conditions as well as with
operation. This mandates the Noise Exposure (95 dB) in the ears. The
establishkment of one or more data bases vocabulary consisted of 105 word including
that will help devel!~p rohust recognition. monosyllabic, polysyllabic and confusable
Section 2 briefly describes the various words such as "one", "dest ination"”,
data bases that are available for this "advisory", "six", ‘"sixty", "fix" etc.
purpose. Section 3 describes algoritams Training data consisted of 5 samples of
that have heen developed and used by Teixas each of the 1725 words in a random order
Instruments and believed to be the initial under normal conditions, and test data
set from which the ultimate robust consisted of 2 samples of each word under
recognition system will be developed. each stress condition listed dbuve. Cata
Section 4 presents the various recognition were collected from 5 adult male and 3
experiments that have been conducted and adult female speakers, and digitized at a
the results obtained. Implementation sampliig rate of 20 kHz using a 16-bit A/D
aspects form the subject of Section 5. converter. The data used in our
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experiments were downsampled to 8 kHz from
20 kHz by means of a downsampling program.

2.2 AFTI Connected Word Data Base

This data base was established to
support the AFTI F-16 voice recognition
efforts in the government electronics
group at TI. The subject was asked to
wear typical F-16 helmet and an oxygen
mask with an embedded M 101 microphone. A
nominal level of F-16 spectrum noise (65
dB spl) or a higher level (80 db spl) was
played at the subject's ears along with
his own voice feedback. The utterances to
be said were prompted on a screen with the
subject in a quiet sound booth, Data were
digitized at 20 kHz and downsampled to 8
kHz. The speaker was subjected to a
variety of conditions to elicit the
effects of stress and noise. An initial
set of 87 isolated words and about 230
phrases, generated by an
appiication-specific finite state grammar,
were collected under normal conditions for
enrollment purposes. The test data
conditions were: (1) Normal with nominal
noise, (2) Normal with the higher level of
noise, (3) Normal with no noise, (4) Fast
mode of speech, (5) Loud level of speech,
(6) soft 1level of speech, (7)Deliberate
manner of speech f{clear enunciation), (8)
Twist, where the speaker had to turn his
head betwezn 90 and 180 degrees to look at
the prompt, and (9) Back, where the
subject was 1lying on his back while
uttering the prompts. Conditions ¢
through 9 also used nominal noise lev2l at
the subject's ears. The test data
consisted of 153 phrases, generated by the
application grammar, and the 87 isolated
words. The vocabulary conrtained typical
command control words wused 1in the AFTI
program.

2.3 LHX Vibration Data Base

Vibratior. conditions could alter the
acoustic characteristic of a speaker and
thereby degrade the performance of speech
recognizers, This data base was
established by TI's government electronics
group co evaluate the application
potential of TI speech recognizer for the
LHX helicopter. Two sets of vocabulary,
or.2 monosyllabic and another polysyllabic,

were chosen. There were 50 isolated words
in each set. The subject was seated in a
helicopter seat mounted on a vibration
platform and wore a helmet with army issue
M87 noise-cancelling microphone. A group
of four male speakers uttered tne first
vocabulary set, and another group of four
male speakers uttered the second set. The
vibration conditions were established by
choosing a spectra and amplitu@es
corresponding to the LHX vibration
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conditions. The most severe condition was
the right turn in which the helicopter is
turning against the direction of the rotor
blades. There were four training sessions
with one token per word, all in succession
and on the same day. The speakers were
not subjected to any vibration during the
training sessions. The test sessions were
collected the following day and the order
of the condition was randomized
individually for each subject. The
vibration conditions simulated the
following: (1) Right Turn, (2) Full Power
Climb, (3) Left Turn, (4) Hover, (5)
Approach, (6) Level Flight, and (7) No
Vibration. Data were collected wusing
PCM/VCR equipment, and is not available in
digitized form.

Figure 1 shows the spectrograms from
a male speaker saying the word "PLAN VIEW"
for no vibration condition and the severe
vibration condition, The waveforms
clearly show the modulating effect of
vibration.

2.4 Robust Recognition Data Base

This data base consists of 539
phrases (training) and 219 phrases (test)
generated by a fighter aircraft langquage
model described by a finite state grammar
and 207 words. The first phase consists
of ten Air Force qualified personnel as
the speakers uttering both discrete and
connected Jtterances under the following
training conditions: (1) Normal with no
noise or stress, (2) Lombard Effect, (3)
Loud, (4) Fast, and (5) Normal with no
flight gear. The test data conditions
will consist of (1) Normal with no noise
or stress, (2) additive noise conditions
of broadband and discrete noise, (3)
stress conditions due to vibration,
positive pressure breathing, work load,
and Lombard effect, and (4) simulated
stress by varying vocal efforts. In the
second phase a smaller set of speakers,
qualified as hazardous-duty pilots, will
be used to collect training data as in
phase 1, but test data will include
g-force loading effezts. A third phase
will establish a validation data base to
test the algorithms without the bias of
the data bases on which they were
developed. This data base is collected
using PCM/VCR data acquisition means, and
will be digitized by TI for further use
and distribution. Fifty percent of the
phase I enrolimert 1is complete at this
time.

3. ALGORITHMS

The baseline algorithm used is called
a Principal Spectral Component (PSC)
algorithm in which only spectral
information 1is wused [2]. In an enhanced
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system, the rms energy of a frame of
speech 1is wused as well and is called the
Principal Feature Vector System ([3]. A
frame-pair frame-specific (FPFS) PFV
system comprehends the nonstationarity as
well as spectral dynamics of speech
signals. This 1is described in [4].
Connected word recognition [CWR] is a high

level construct that supplements the
isolated word recognition to perform a
truly connected word recognition by

pruring sentence hypotheses according to a
grammatical structure.

3.1 Baseline Method (PSC)
Figure 2 shows the

diagram of the method.
vector characterizing a

generic block
The LPC parameter
frame of speech

(test or reference) is transformed to
spectral amplitudes (on a dB scale)
normalized to the frame energy using a
simulated filter bank. A critical-band

filter bank [5] was
The filter bank amplitudes constitute a
vector that may be characterized as
normally distributed with mean vector
depending on the word(hypothesis), and a
covariance matrix. This covariance ma.. X
may be estimated by pooling all available
data for the entire vocabulary. Implicit

in this process is the assumption that all
frames are statistically independent and
have the same covariance matrix. A
reference template, then, consists of a
sequence of hypothesis-dependent mean
vectors of filter bank amplitudes, and its
statistical wvariability is described by a
single covariance matrix. The recognition
problem is to compute, given the input
characterization, the likelihoods
corresponding to each word hynothesis, and

used in the study.

choose that with the largest likelihood.
This corresponds .o maximum likelihood
decision.

In general, the amplitudzs of

adjacent filters are highly correlated and
provide potential for reduction of
dimensionality of the feature vector. The
filter bank amplitudes are rotated by the
eigenvectors of the covariance matrix o
that the resulting transformed featuras
are statistically uncorrelated [6]. These
features are ranked in decreasing order of
statistical variance (eigenvalues), and
the least significant features are
discarded resulting in a dimensionality
reduction. Finally each of these new
features is .,caled so that its variance is
unity. The resulting features are called
principal spectral components(PSC), and
previous studies have established
correlations with perceptual space for
certain classes of sounde [71. A
Euclidean distance in this feature space
is used as the metric to compare :nput and
reference frames of speech data.

75

A W P PRI 0 . M A P A KN X OGN D T N e A

3.2 Enhanced Method (PFV)

The energy-time profile »f a speech

signal appears to be rich in information
for human recognition. It is  only
reasonable to include the rms energy of a
frame of speech signal as an additional
feature to the filter bank spectral

amplit.ides of the the PSC method. The
enhanced set can again be orthogonalized
statistically as in PSC method, and the
higher variance components chosen. The
resulting vector is called the Principal
Feature Vector (PFV). The Euclidean
distance metric and the statistical
optimality of maximum likelihood decision
is maintained.

3.3 Frame-Pair Frame-Specific  Methoad

(FPFS)

In the PSC and PFV methods, as in
most isolated word recognition algorith@s,
the feature vectors of successive

reference frames of a word template are
assumed to be statistically independent.
Further, they are assumed to be

identically distributed except for their
mean vaue. This is generally not true for
speech signals. Adjacent frames are not
spectrally (or acoustically) independent.
Further it is only reasonable to believe
that the covariances of the feature
vectors depend on the acoustic event (i.e.
*he reference frame under consideration)
thereby allowing a nonstationary model.
The effct of spectral dynamics is brought
out by considering a frame-pair vector
made up of concatenating feature vectors
from adjacent reference frames. The
concept of principal component analysis
can then be applied resulting in a FPFS
PFV system, This method has been
successfully applied to
speaker-independent recognition of digits

[4].
3.4 Connected Word Recogrition (CWR)

Figure 3 shows a block diagram of the

CWR  system. An isolated recognizer
outputs all the words that are
hypothesized alonq with corresponding

distance scores and durations. These form
inputs tou the sentence recoignizer which
invokes a grammar Lo compute distance
scores for all legal sentence hypotheses.
The distance measure for the sentence has

~hree parts: the first component is the
sum of individual word distance scores
multiplied by corresponding word

durations, the second 1is a penalty for
overlap or underlap »f adjacent words, and

the third is a silence inull speech)
distance measure., An important feature of
the recognizer 1is that the sentence

hypothesizer does not control the isolated
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word recognizer by any feed back.
all possible

It fits
sentences from the word
hypotheses and their time marks, and
invokes the grammatical constraints to
search only the legal paths to output a
recognized sentence.

4. EXPERIMENTS AND RESULTS

in all of the experiments, the front
"end signal processing 1is a 10-th order
autocorrelation method of LPC

characterization at a frame period of 20
ms with a window length (Hamming windowed)
of 30 ms. The sampling frequency is BkHz.
Except in the case of experiments with the
vibration data base, l6-bit data was used

and the results are for experiments
conducted on a VAX computer. In the case
of vibration data, a TIPC speech
recognition system with a codec
(equivalent ¢~ 13-bit dynamic range A/D
converter) operating nominally at B8kHz

sampling frequency was used. For all of
the experiments, TRAINING WAS DONE UNDER
NORMAL CONDITIONS, which are different
from the test conditions. This is deemed
important because of the general inability
and 1inconvenience of training under the
stress conditions., It 1is only believed
that training under operating conditions,
if possible, will impove performance.

4.1 Experiments with Similated Stress Data
Base

The baseline system (PSC), enhanced
system (PFV), and the FPFS PFV were used
for recognition, PSC algorithm used a
covariance matrix that was derived from an
entirely different data base, PFV
algorithm wused a covariance matrix from
all the simulated stress conditions pooled
over all speakers and words. In the FPFS
PFV system, the covariances were obtained
in a refer2nce frame-pair frame-specific
manner for each word over all conditions
from all speakers except the speaker being
tested.

The substituition rates are shown in
Table 1 for the various cases. It is

easily seen that the basic system that
parforms well wunder normal conditions
degrades rather rapidly under the

simulated stress conditions. The addition
of rms energy to the features reducess the

average substitution rate by about 30%.
Experiments performed with 10 ms frame
period characterizations have yielded

additional reduction of about 15% but at
the cost of quadrupling the computations.

The much expected improved performance
from [PFS system did not materialize,
presumably due to the poorer estimates of
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the covariance matrices due to inadequate
data. Further analysis of the results and
methods to improve the performance are
under investigation.

4.2 Experiments with AFTI Connected Word
Data Base

In CWR, an initial enrollment is done
on isolated words to create isolated word
templates. These are used to segment
connected word phrases with the guidance
of the task-grammar to perform enrollment
in the connected word mode. These
"connected" enrollment templates are
updated with additional training phrases
and grammar control to obtain stable
templates of the words in the connected
speech context. The word hypothesizer
used in this experiment was a PFV system,
The experiment has been completed with
only one speaker's data. The results are
shown in Table 2. Notice that the fast
connected speech is very poorly
recognized. This was not surprising for
two reasons: (i) the normal connected
speech is already rapid, and (ii) this
particular speaker misarticulated many
syllables in fast connected speech. The
results are very promising otherwise, and
the importance of this must be underscored
by the fact that connected utterance
modality is more natural than isolated
word modality. Any improvements in
isolated word hypothesizing will result in
increased benefits in the connected word
mode.

4.3 Experiments with LHX Vibration Data
Rase

PFV system as implemented on a TMS
32010 signal processor in a TIPC speech
recognition system was tested with the
vibration data. This obviated the need
for digitizing the sizable amount of data,
and provided means for quickly
establishing performance under one of the
stressful conditions, namely vibration. A
study of the tradeoff bhetween substitution
and rejection was performed for both
monosyllakic and polysyllabic

vocabularies. These are shown in Figures
4 and 5. An analysis of the results did
not show any trend with the conditions
leading to the conclusion that none of the

vibration conditions was particulary
severe for the recognizer. The poorer
performance with the monosyllabic

vocabulary was expected, but a significant
portion of the errors came from two naive
subjects whose vocal efforts varied almost
by 20 dB even within a session lasting
only five minutes.
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to determine the benefits of integrating
frequency measures along with spectral
amplitude features. The robust

The successful robust recognition o :
: - recognition data base, being cellected b
algorithm will be implemented on an AAMRE, will establish theg limits o¥

advanced multi-TMS32020 processor board, current technology and play catalytic role

called Odyssey board, with the TI ; ; q¢f
: - c tion
Explorer, a Lisp machine, as the host. in developing more robust recognitio

5. IMPLEMENTATION

Figure 6 shows the architecural block algorithms.

diagram of the Odyssey board. This board 7. REFERENCES

is capable of 20 million )

multiply-accumulates per second, and will [1] Pisoni, D., R.H. Bernacki, H.C.
be able  to  handle R LODS Nusbaum, and M. Yuchtman, Some Acoustic
(eI NI AN AN 5 . BEEEGe BN Phonetic Correlates of Speech Produced in
algorithms by concatenating additional Noise Proceedings of ICASSP 1985, pp.
boards. On-board memory of 512 kbytes 1581 - 1584 !
will be shared by all the four processors. )

Data acquisition is direct through the I1/0 [2] Rajasekaran, P.K. and G.R.
bus without the reed of communicating Doddington, Speech Recognition in the F-16
through the host. The system can be Cockpit using Principal Spectral

expanded up to sixteen hoards, with Components, Proceedings of ICASSP 1985,

communication through the signal -
processing bus (SPB). Host communications Epo  Blia = B
are through the standard NuBus. CWR code [3] Rai
< Y g ajasekaran, P.K. and G.R.
5:; TM§32220 has bgen d?VEIOPEddU°1n9 & Doddington, Recognition of Speech under
simulator & 1s undergoing Stress and in Noise, Proceedings of ICASSP
hardware/software debug. A basic 86, April 1986,

operational CWR system is now forecast for

mid-April 1986. 14] Bocchieri, E.L. and G.R. Doddington,

Frame-Specific Statistical Features for
Speaker-Independent Speech Recognition,
Trans. ASSP, 1986 (To appear).

6. SUMMARY

The initial efforts and progress in
the rqbusf speech recogptition program was [5] 2Zwicker, E. and E. Terhardt,
descr ibed. The ~various data —bases Analytical Expressions for Critical- band

currently available were presented along Rate and Critical Bandwidths as a Function
with results of the various recognition of Frequency, J Acoust Soc Am
0 o . . .

experiments conducted. Connected word 68(5), pp 1523-1525. Nov 1980
recognition appears to be a valuable ' ) ! ’ ’
approach 99 robust recognition by [6e] Pols, L.C.W., Real-Time Recognition of
harnessing the redundancy of speech input Spoken Words, IEEE Trans. comput., Vol.
through finite-state grammar models and it Cc-20 975-978 Sept 1971 !

will benefit significantly with » PP » S€pt. )
improvements in isolated word -ecognition [7] Pols, L.C.W,.,L.J.Th.v.d. Kamp, and R.
techniques. A powerful signal processing Plomp, Perceptual and Physical Space of
board under development at TI will support Vowel Sounds, J. Acoust. Soc. Am., Vol.
computationly burdensome recogntion 46, pp. 458-467, Aug. 1969.

algorithms. Investigations are underway
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Fig. 1.a. Wideband spectrogram and waveformof the word
"PLAN VIEW" spoken by an adult male (No vibration)
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Fig. 1.b. Wideband spectrogram and waveformof the word
"FLAN VIEW" spoken by an adult male (vibration)

DIGITIZED ‘RECOGNIZED’
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et ANALYSIS 1 FILTER BANK |~ AMPLTUDE |— TIME == LOGIC
AMPLITUDE TO PSC WARPING
REFERENCE
TEMPLATES

Fig. 2. Block Dia

gram of the Principal Spectral Component
Recognizer
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WORD SENTENCE DECISION 1
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SPEECH OUTPUT

WORD GRAMMAR
TEMPLATES

Fig. 3. Connected Word Recognizer

TABLE 1
SUBSTITUTION RATE (%) FOR SIMULATED STRESS DATA BASE EXPERIMENTS

METHOD NORMAL FAST LOUD NOISE  SOFT

PSC 1.1 10.2 24.4 13.8 11.9

PFV 0.9 8.9 19.9 9.2 4.6

¥PFS PFV 3.1 17.3 16.7 10.1 10.6
TABLE 2

AFTI CONNECTED WORD RECOGNITION PERFORMANCE

153 Phrases, 1 Speaxer

SENTENCE ERROR (%® WORD ERROR (%

CONDITION

SuUB REJ SUB INS REJ
Normal 2.0 0.0 0.5 0.0 0.0
NORMAL
(no noise) 3.9 1.3 1.1 0.0 0.2
Normal
(loud noise) 5.2 2.6 1.1 0.2 0.3
Deliberate 2.0 0.7 0.6 0.0 0.2
l.oud 6.5 2.0 1.3 0.0 0.6
Back 8.5 1.3 1.6 0.2 1.0
Twist 9.8 1.3 1.3 0.2 1.0
Soft 7.2 4.6 1.5 0.0 1.0
Fast 44 .4 30.1 12.5 0.0 33.3
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ROBUST HMM~-BASED TECHNIQUES
FOR RECOGNITION OF SPEECH PRODUCED UNDER STRESS AND IN NOISE

Douglas B. Paul, Richard P. Lippmann, Yeunung Chen, Clifford J. Weinstein

Lincoln Laboratory, Massachusetts lnstitute of Technology
Lexington, Massachusetts 02173-0073

ABSTRACT

Substantial improvements in speech recognition
performance on speech produced under stress and in
noise have been achieved through the development of
techniques for enhancing the robustness of a base-
line 1isolated-word Hidden Markov Model recognizer.
The baseline HMM 18 a continuous-observation system
using mel-frequency cepstra as the observation
parameters. Enhancement techniques which were
developed and tested include: placing a lower limit
on the estimated variances of the observations;
addition of temporal difference parameters;
improved duration modelling; use of fixed diagonal
covariance distance functions, with vsrianceu
adjusted according to perceptual considerations;
cepstral domain stress compensation; and multi-
style training, where the system 1s trained on
speech spoken with a variety of talking styles.
With perceptually-motivated covariance and a
combination of normal (single-frame) and differ-
rential cepstral observations, average error rates
over five simulated-stress conditions were reduced
from 20X (baseline) to 2.5% on a simulated-stress
data base (105-word vocabulary, eight talkers, five
conditions). With variance limiting, normal plus
differential observations, and multi-style train-
ing, an error rate of 1.8% was achieved.
Additional tests were conducted on a data base
including nine talkers, eight talking styles, with
speech produced under noise exposure (Lombard
condition), and speech produced under two levels of
motor-workload siress, Substantial reductions in
error rate were demonstrsted for the noise and
workload conditions, when multiple talking styles,
rather than oniy normal speech, was wused 1in
training. Tn experiments conducted in <imulated

ighter cockpit noise, it was shown that error
rates could be reduced aignificantly by trai.ing
under multiple noise expnsure conditinns.

. INTRODUCTION AND SUMMARY

Potential military cpplications of speech
recognition systems often 1involve harsh eaviron-
mental conditions and demanding tasks, where humans
may be exposed to high ambient acoustic noise,
encumbered by equipment such as an oxygen mask, snd
subjected to significant physiological and psycho-
logical stress [1,2]. Although current speech
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L

recognition technology can support restricted
applications 1in benign environments and wunder
low-stress conditions, recognition technology 1is
not sufficlently advanced to provide robust,
reliable performance in hostile and high-stress
environments [1-6]. Difficulties include
variabilities in the speech signal caused by stress
and by exposure to noise in the speaker's ears
[7,8], and additive noise at the input to the
recognition system [9,10]. A number of efforts
have recently beer. undertaken fro quantify these
problems [1-7, 9-12]. An 1important observation
{12], which 18 1in consonance with the results
reported here, 18 that the effects on speech
production of nois2 exposure at the ear (known as
the Lombard effect (8)) appear to be more
deleterious to recognizer performance than 1s the
level of acoustic noise which passes through a
noise-cancelling microphone. 1t also appears that
other types of stress—induced variabilities (see
[12], and results 1in this paper) have a more
aegative effect on recognizer performance than does
additive noise.

This paper describes work carried out in the
Speech Systems Technology Group of MIT Lincoln
Laboratory, which is directed at the development of
algorithms for robust, high-performance speech
recognition in the fighter cockpit and other severe
military eanvironments.

An essential part of this effort, described in
Section 2, has been the collection and analysis of
a data buse of speech proluced under stress and in
noise, and initial evaluation of the effects of the
resultins speech variaoility on recognizer
performa. ce.

{n developing techniques for robust recogni-
tion, we have chosen to build upon the Hidden
Markov Model (HMM) approach {13-16]. (For addi-

tional references see the bibliographies in
[13-15].) Reasoas for choosing this approach
include: excellent previously-reported recognition
performance results under a variety of system
constraints and in a variety of applications;
effective extendability from isolated-word
recognition to continuous speech recognitiun

(although the experiments described in this paper
are specifically focussed on isclated~word
recognition); and trainability from observed data
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by automatic methods. After a number of experi-
ments with various forms of HMM, and preliminary
investigations of potential HMM improvements [17],
a baseline hMM recognizer was developed and
implemented, as described in Section 3. This
bascline cecognition system was shown to perfocm
well for speech produced under normal conditions,
but to degrade significantly when presented with
speech produced with variations typical in stress,
or under noise exposure. Section 4 describes a
number of robustness enhancements to the baseline
HMM system, and a set of recognition results on a
“simulated-stress” data base provided by Texas
Instruments [12], which demonstrate the substantial
improvements achieved using these enhancements.
Section 5 describes an additional technique for
improving recognizer performance, by compensation
for stress effects [18] in the basic recognition
input parameters, which are mel-frequency cepstral
coefficients [19] ln our systen,

In Section 6 we focus on a technijue called
multi-style training [20] (also discussed {in
Section 3), which has been found to produce
dramatic improvements in recognition accuracy under
a variety of stress and noise exposure conditions,
Recognition experiments are reported on a stressed-
speech data base collected at Lincoln, where the
recognizer 1ls trained under stress conditi.ns
simulated by variation in speaking style, and
tested both for normal speech and under conditions
of Lombard effect and perceptual/motor workload
stress [21]. The results of these experiments were
that multi-style training produced substantial
error rate reductions relative to normal training
for all conditions tested. Section 7 reports
additional work on data collected in simulated F-16
noise conditions at the Alr Force Medical Research
Laboratory (AMRL). The data collected at AMRL
includes simultaneous recordings from additional
microphones mounted on the outside ol the facemask,
to be used in adaptive noises cancellation [22].
Experiments reported here were conducted on the
primary microphone signal only. The results show
that training wunder multiple conditions can
substantially improve recognition performance, and
indicate that the Lombard effect appears to be much
more serious than additive noise in the recognizer
input.

The statistically-based Hidden Markov Model {is
quite effective 1in 1ts capability to absorb (by
automatic training), and to make use of, the
characteriscics of speech, in the context of an
analyticsliy-trsctsble model. Effective use of
additional sources of acoustic-phonetic speech
knowledge [23] should produce additicral enhance-
ments in recognition performance and robustness,
particularly {f we can build on the success
already achieved ‘using HMM approaches. Section 8
describes initial efforts in using feature-based
discriminant anslysis [24], to focus attention on
the reglion of acoustic-plonetic distinction between
pairs (or larger sets) o’ words which are observed
to be ditficult to distinguish with strict reliance
nn an HMM approach, As a further aid to improving
racognition robustness in the fighter cockpit and
similar environmeats, efforts (summarized 1in
Section 9) have begun in utilizing articulatory
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sensors including accelerometers and air pressure
gaiges to derive new acoustic parameters for input
to the recognizer.

Finally, Section 10 summarizes conclusions
from the work carried out up to now, and outlines
areas for further work.

2. COLLECTION AND ANALYSIS OF A DATA BASE OF
SPEECH PRODUCED UNDER STRESS AND IN NOISE

Fsychological and physiological stress on a

speaker lead to significant variations in the
acoustic signal. Typicel changes include:
increased fundamental frequency, increase in the
frequency and amplitude of the first formant,

changes in overall spectral tilt, speech level and
timing variations, and phonological modifications.
Unfortunately, these vary significantly from
speaker to speaker, and can be very different for
the same speaker at different times. The effects
of noise exposure (Lombard condition) have been
obgserved [7] to produce slmilar changes to those
produced under stress.

Collection of a large, systematic data base of
speech produced under real stress conditions is a
very difficult task. Qur approach has been to
obtain samples of speech produced under stress from
a representative set of available sources, and to
supplement this with a new data base developed in
our Laboratory. This new data base, which we refer
to as the Lincoln stress/style data base, includes
speech produced during a difficult motor-workload
task, under the Lombard condition, and with eight
different Lalking styles designed to exhibit the
range of acoustic variation typical of stressed
speech,

The data base of speech produced under stress
and noise which we have collected from other
sources includes:

(1) the Advanced Fighter Technology Integra-
tor <(AFII) F-16 data base [2,4,5],
including effects of both roise and
acceleration;

(2) sentences produced at ‘MRL by hezardous
duty panel members before and &fter a
drop tower run [25];

(3) two video tapes (with audio) made on F-16
alrcraft during simulsted combat
exercises at Nellls Air Force Base [26];

(4) a tape containing the communication
between a pllot and a controller just
before a fatal hellcopter crash [27];

(5) tapes made by & talkers during a task
that induced vertign [28].
Geverally, the data showed the kind of

variability expected for stress conditions. For
some cases (c.g., drop tower) the changes seemed to
be 1less than expected, while 1in other cascs
(helicopter crash) the changes were extreme. As an
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example, Figure 1 showr spectrograms aud patauwcicLs
of two samples of a wuii recorded in an F-16
cockpit during simulated combat. The high stress
sample shows increases in fundamental frequency,
high frequency energy, frequency of first formant,
and duration, IListening to the two recordings even
indicates a dialect change, as the pilot's native
drawl becomes more pronounced under the high-stress
condition.

As we were beginning to develop our stress/
style data base, we learned that researchers from
Texas Instruments had independently produced an
extensive “simulated stress” data base [12],
including five talker styles (normal, fast, loud,
soft, and shout) and the Lombard condition. The TI
data base includes a 105-word "pilot" vocabulary,
spoken by 5 male and 3 female talkers, with 5
training tokens (normal speech)} per word per
talker, and 2 test tokens per word per condition
per talker., Their willingness to share this data
base with us has greatly facilitated our research.
Qur recognition experiments and results on the TT
simulated stress data base are described in
Sections 4 and 5.

NORMAL AND HIGH-G/WORKLOAD ““BROWN"

4

18¢ -1

Yeuo - -

NORMAL ANO STRESS /wW/
L) T T 1

NORMAL AND STRESS /W/

NORMAL FO : 13% Hz
STRESS FO - 215 Hs

F b

2 w00 NORMAL DUR - 230 ms
STRESS OUR = 330 ms

1200 - -4

1000 .

0 i I S |
ann 480 %00 800 700 800
[}
Fig. 1. Spectrograms and parameters of

the word “Brown," recorded in flight in an
F-16 cockpit under normal conditions ard
under high-G (~» 2.5) and simulated combat
workload conditions.

The Lincoln stress/style data base [29]
contains 10,740 utterances produced by 9 talkers
for 11 conditions: while performing a motor-
workload task [21] (at two calibrated levels of
difficulty) which has been used widely for workload
research; under a Lombard condition (speech chaped
notse presented binaurally at an overall level of
85 dB SPL); and with eight different talking styles
(normal, slow, fast, soft, loud, clear enunciation,
angry, and question pitch). The 35-word vocabulary
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(which 18 2 <abset of the 195-wovd T1 vocabulary)
was selected tn include a number of subsets which
are difficult for recognitiou systems such as: {go,
hello, oh, nol {six, fix} {while, widel. Initial
tests on this difficult vocabulary with a
commercial recognizer [30] known to perform well ou
standard small-vocabulary data bases, indicsted
that error rates, which were relatively high (as
expected) under normal conditions, increase sharply
under workload stress, the Lombard condition, and
under many of the style conditions. These tests
provided some contirmation that currently-available
speech recognition technology is not sufficiently
robust to deal with a large raige of stress-induced
and noise-induced s'.:ech variations. Our recogni-
tion experiments an. results on the Lincoln stress/
style data base are dascribed in Section 6.

3, BASELINE HMM SYSTEM DEVELOPMENT

The statictically-based Hidden Markov Model
approach has, until recently, been applied most
often to recognition tasks involving large
vocabularies and/or continuous speech. The
sustained effort and impressive results achieved at
IBM [13,14] over the past 15 years exemplify this
approach. Generally, limited vocabulary isolated-
word-reccgnition (IWR) efforts had used a template-
matching approach, combined with dynamic time
warping (DTW) [31]. 1Initial applications of HMM to
the IWR problem yielded results inferior to DTIW
approaches [32]; but later work [33] showed
equivalent IWR performance for the two techniques
when continuous parameters, rather than discrete,
vector-quantized symbols, were used as the input to
HMM. Recently, the HMM approach [16] has also been
applied quite successfully in a commercially-
available recognizer [30]. 1In addition to its good
performance, the HMM approach has a number of
advantages over DIW. These include: (1) better
extendability to continuous speech than corre~
sponding DIW techniques [34]; and (2) a convenient
capability for automatic training on large amounts
of data (including, for example, a number of tokens
of each word). For these reasons, we have chosen
HMM as our framework for developing robust recog-
nition techniques.

HMM represents a family of techniques, rather
than a single system, and therefore our initial
efforts involved exploration and comparison of a
number of HMM alternatives including  both
continuous-observation and discrete observation
systems, After preliminary investigation of a new
HMM training technique [35], a number of basic
improvements to HMM techniques were developed and
tested in preliminary form [17]. Discrete obser-
vation HMM systems generally use vector quantiza-
tion [36! of the input speech parameters, with the

vector quantizer being trained using the .‘-means
[37] technique. A modified K-means tachnique was
developed [17] for improved training of the vector
quantizer in discrete observation HMM., Additional
developments included: (1) imp:iuved smoothing «f
the observation probabilities in discrete
observation HMM; and (2) tests of full durational
models [38] and simplified durational models for
the residency time in each state. Best results
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[17) were obtained using a combination of these
techniques.

That system, however, was deemed too complex
for a baseline system. Therefore we applied some
of our eariier work on continuous otservation
systems to define a baseline isolated-word HMM
system, which is intenticnally very simple and
straightforward. The baseline system 1s a
continuous-observation HMM, wusing wmel-frequency
cepstra [19]) as its fundamental observation
parameters. Specifically, the observstions are the
first 12 mel-frequency cepstral coefficients
(without tne energy term), computed every 10 ms.

The joint probability density function of the
cepstrsl parameters is assumed to be a multi-
variate Gauassian distribution with diagonal

convariance wmatrii: (i.e., the individual cepstral
coefficients for any frame of speech are assumed to
be statistically independent). The word model
network for each word is a lirear sequence of
independent nodes with no skip paths. A fixed
number of nodes (ten) is used for each word., Since
this system is intended to be used on speech files
which consist of one word with some background
(silence) at each end, the rfirst and last nodes are
background nodes to provide a sewmi-open-endpoint
system. The system is trained wusing the
forward-backward algorithm. The recognizer
averages all initial background nodes and all final
background nodes to prevent biases due to unequal

endpoint nodes being carried over from training on
files with varying smounts of background. A
Viterbi decoder is used for recognition, and the
highest probability word is chosen as the
recognized word. Since the system assumes one word
per file, oniy substitution errors are alluwed.

Results obtained using the baseline HMM system
and a number of enhanced systems, on speech
produced under stress and in noise, are reported in
the sections to follow.

All the experiments described in the sections
to follow were performed using a Digital Equipment
Systems VAX-11/780 with an attached Floating Point
Systems array processor. This combination of
processors requires about 20 seconds for each
second of input speech to perform recognition on
the 105-word vocabulary for the simpler systems
(nuch as the baseline), and about 70 seconds for
recognition using the full duration model.
Computation time for training is also substantial.
It should be emphasized that recognition processing
requirements using Viterbi decoding with HMM will
be similar to requirements for a DIW system with a
similar distance metric., With current and emerging
technology, it should not be difficult to develop a
real-time HMM system of the type described here.
However, processing power required to obtain good
response times on the execution of recognition
experiments on large data bases with a flexible
facility is significantly larger than that required
for real-time recognition.
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4, ROBUST HMM SYSTEM DEVELOPMENT

A number of variations on the bateline system
hive been tried and some of them hive yielded
significant improvements in the recognition
performance on the TI simulated stress
("TI-stress") database. The following presents the
results of this work in three forms: a summary
graph (Figure 2) showing results for some of the
more important systems, a detailed table, and a
textual description with comments. In the text,
the results are presented in the form: (systeml: x¥%
vs. system2: y%). "Systeml: xX" represents the
name and the average error rate of conditions 1-5
(“"avg5" in the table) for the system currently
under discussion; and “"system2: y%" is the name and
avg5 for the minimal pair system, to which we are
comparing systeml.

Sub
100 ) . % Su sfitution Error§_ S
90!  [iBaseline: avg5 =20.49
vl: avg5 =15.92
so + +d2, vl: avg5 =10.50 N
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norm fast loid noise oft shout
Fig. 2. Substitution error rates for the

TI-stress data *1se. The codes for the
various HMM recognition systems are defined
in Table 1.

Avg5 is used for comparison rather than avgé
(the average error rate of all the test
conditions), since the first five conditions are
expected to be more indicative uf speech from
trained pilots than the shout condition. A full
breakdown of ti: results, including both averages,
is presented in Table 1.

The TI-stress data base [12]) has a 105 word
vocabulary, is recorded at a 4 kHz bandwidth, and
consists of 8 speakers (5M + 3F) uttering 5 tokens
of each word for enrollment, and 2 tokens of each
word spoken in each of sixconditions for testing.
This gives a total of 1680 test tokens per
condition. The conditions are: normal, fast,
loud, Lombard (noise presented to the speaker in
headphones, but not in the recorded speech), souft,
an  saoutb .
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The baseline system uses 10 nodes (actually 10
active nodes plus a degenerate absorber) in a
linear network (i.e., a path may only stay in the

current node or move to the next node with no
skips) and a trained diagonal covariance matrix for
the multivariate Gaussian observation probability.
(All systems described here use a diigonal
covariance matrix.) The observations are
mel-frequency cepstra [19]. This system yielded an
error rate of 20.49%,

Increasing the number of nodes to 14 gave only
an  insignificant improvement in  recognition
performance (nl4: 20.43% vs., baseline: 20.49%).
Placing a lower bound on the variances (variance
limiting, vl) ylelds a large improvement, probably
because it corrects occasional gross underestima-
tion of the variance as a result of the small
training set (vl: 15.92% vs., baseline: 20.49%).
The full duration model [38,15] (dur) also improves
recognition results because it contains a more
realistic duration model than does the standard HMM
cratem (dur, vl: 10.10% vs. vl: 15.92%).

Significant improvements resulted from adding
temporal difference parameters (+dl for 10 ms and
+d2 for 20 ms differences) to the standard
observation para-eter set (+dl, vl: 11,.76% vs, vl:
15.92%) and for the duration model (dur, +d2, vl:
7.87% wvs. dur, vl: 10.1u"). The standard
parameters contain only position and can convey
motion only by moving to the next node. These
difference parameters add the concept of motion to
each individual node. Note that we use difference
parameters 1in addition to the basic cepstral
parameters, so that the number of observations per
10 ms frame increases from 12 to 24 for the +dl and
+d2 experiments. This additional information is
used effectively by the system.

Dramatic improvements occurred with multi-
style training (mst). The test database was split,
and the first token of each word per condition was
added to the training data, giving 11 tokens per

word., The shout condition, even though it is not
included in the avg5 error rate, was also used in
the training. The second token was used for
testing, giving 840 test tokens/condition. The
standard observation (mst, vl: 3.48% vs. vl:
15.92%), differential observation (mst, +dl, vl:
2.21% vs. +dl, vl: 11.76%), and 20 ms differential
observation (mst, +d2, vl: 1.76% vs, +d2, vl:
10.50%) systems all showed large 1improvements.
Even the norm test conditions improved: .60% vs.
1.07%, .60% vs. .89%, and .60% vs. .65%,
respectively, in spite of the added non-normal
training data. Thus, the multi-style training not
only helped the added styles, but also helped the
norm condition which is similar to the standard
training style.

Two multi-speaker systems have been tested.
By "multi-speaker” system in this context, we nean
that the system was trained by using speech from
all eight speakers to yleld a single HMM model per
word for all eight speakers, and tested using
different speech tokens from each of the same eight
speakers. A normally-trained multi-speaker (msp)

AL AN ANA LAY

system performed quite well compared to the
corres;onding speaker-specific system (msp, +dl,
vl: 9.57% vs. 4dl, vl: 11.76%), probably due to the
large number of training tokens (40). It showed
degradation in the better conditions (norm and
fast) and improvement in the poorer conditions
(loud, Lomb., soft, aud shout). A second multi-
speaker system using multi-style training was
disappointing: (msp, mst, +dl, vl: 7.81% vs. mst,
+dl, vl: 2,21%).

Some closed tests ware performed using all
test data for both training and test to estimate a
lower bound on performance. As expected, the
performance (clo, +dl, vl: .40%) was better than
any of the open-test systeus. While closed-test
results are not indicative of operational
recognition system performance, they do suggest
that there 18 room for improvement. They also show
the impressive ability of these HMM systems to
incorporate widely varying speech styles into a
single model.

The above systems have no explicit method of
modeling phonological changes. A left-to-right
(1-r) multi-style trained system which included
single-node skip paths was tested to see if the
additional freedcm improved the recognition. The
result was a d~_.ease in performance (l-r, mst, vl:
4,64% error vs., mst, vl: 3.48%) Such a general-
ization requires more training data for accurate
estimation of its parameters and it appears that we
do not have sufficient data.

Several fixed diagonal covariance systems have
also been tested. Note that the weighting given to
each cepstral parameter in the distance computation
are determined by the corresponding variance term
on the diagonal of the covariance matrix (a smaller
variance results in a larger weighting of the
corresponding cepstral parameter), A unity
variance matrix (L2 norm) system offered an
improvement over the corresponding trained variance
system (L2: 13.58% wvs. vl: 15.92%). Somewhat
better performance occurred when covariance derived
from the enrollment data of all speakers was used
(fvs: 8.76%). An even greater improvement was
found when a covariance derived from perceptual
considerations was wused: (gfv: 6.13%). The
improvement continued when differential parameters
were added: (gfv, +d2: 4.99%), Finally, increasing
the number of nodes to 14 produced the best error
rate for a system trained only on tbe enrollment
data: (nl4, gfv, +d2: 2,54%).

Variance 1limiting, normal plus temporal
differential observations, and multi-style training
have been combined to improve the performance of
the HMM recognition system. The variance limiting
help to minimize the effects of limited training
data and the differential obsarvations give the
models more useful information about the speech.
The multi-style training, by dincluding word-
identirfication 1irrelevant variation, allov: the
models to focus on the invariant aspect:s ot each
word. The average error rate for the baseline HMM
recognizer is 20%. The combination of the three
techniques have reduced the average error rate by
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an order of magnitude to 1.8%, Siailar rcducticas

in error

rate were also achieved without multi-

style training. A normally-trained system using a
na-aanr .n‘l‘lu.—qul urad “*’c‘-cc.‘a:.ance distance
and normal plus differential observations achieved

an error
2.5%.

rate reduction from 20X (baseline) to

norm fast loud Lomb.  soft shout  avgh avgb
Normal training (1680 tokens/condition):
trained covar:
baseline 1.90 10.48 42.98 25.36 21.73 92.20 20.49 32.44
nl4 1.49 10.30 44.35 26.61 19.04 91.43 20.43 32.26
vl 1.07 7.14 32,50 21.43 17.44 89,52 15.92 28.18
+dl, vl .89 6.79 22,38 16.07 12.68 86.31 11.76 24.19
+d2, vl 65 7.14  19.76 14.70 10.24 84.94 10.50 22.91

dur, vl 54  10.18 17.62 12.32 9.82 79.58 10.10 21.68
dur, +d2, v1 .36 12.44 12.26 7.44 6.85 73.57 7.87 18.82

fixed covar:

L2 2,08 7.80 21.43 16.61 20.00 82.56 13.58 25.08
fvs .95 5.48 17.44 10.71 9.23 76.79 8.76 20.10
gfv 65 3.27 10.77 7.62 8.33 68.63 6.13 16.55
gfv, +d2 +36 2.32 7.68 4.82 9.76  59.17 4.99 14.02

gfv, +d2, nl4 .36 1.73 3.39 2.86 4.35  49.76  2.54  10.41

multi-speaker, trained covar (msp):
msp, +d1, vl 1.90 8.75 13.45 12.38 11.37 73.57 9.57 20.24

Multi-style training (mst) (840 tokens/condition):
trained covar:

mst, vl «60 4.17 3.93 2.50 6.19 40.83 3.48 9.70
mst, +d1, vl .60 2.86 2.38 1.79 3.45  35.95 2.2l 7.84
mst, +d2, v1 .60 2.98 1.43 .83 2.98 38.81 1.76 7.94

=
&)

ke
M.

multi-gpeaker, trained covav (msp):
msp,mst ,+d1,vl 2.98 8./5 7.26 8.21 12.14 46,19 7.81 14.21

o

mﬂwiygmth

left~to-right, trained covar:
1-r, mst, vl .83  4.52 6.07 3.21 8.57 41.19 4.64 10.73

Closed test, trained covar (1680 tokens/condition):

clo, +d1, vl 224 1.19 212 .12 +36 1.43 40 .58
TABLE 1
% SUBSTITUTION ERRORS FOR THE TI-STRESS DATA BASE:

vl=variance limiting

nl4=14 nodes

+d1=added temporal difference parameters (10. ms)
+d2=added temporal difference parameters (20. ms)
dur=full durational model

L2=unity covariance matrix (equivaleat to L, > ncrm) -~
fvs,gfv=fixed variance

msp=multi-speaker

mst=multi-style trained

l-r=left-to-right model

avg5=avarage of conditions 1-6

avgb=average of all conditions

e
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5. CEPSTRAL DOMAIN STRESS COMPENSATION

The success of tne multi-style tratining
experiments described iii the previous seciion led
us to investigate the comparative statistics of the
cepstral parameters anong the different
conditions. Motivatiors were both to gain insight
into the effects of different talking styles, and
to investigate whether 1t would be possible to
compensate for the cepstral changes through simple
transformations un the cepstral means and variances
obtained using normal training., Such
transformations, if effective, could avoid the need
for multi-style training.

The differences among normally-trained,
single-style-trained, and multi-style-trained word
models are partially reflected 1in the overall
average shifts in the means and changes in the
vaviances of the cepstral coefficients. To study
such differences, we examined seven different sets
of word models, trained under six 4individual
conditions (norwal, fast, loud, Lombard, soft, and
shout), and wunder a composite of all these
conditions (multi-style). The cepstral means and
variances, averaged over 2ll 105 words in the TI
vocabulary and over all 10 nodes in euch word, were
computed for each of the models.

Figure 3(a) plots mean cepstral shifts (i.e.,
mean of the given model minus the mean of the
normal model) for each of the cepstral
coefficients. Shifts are shown for four cases:
soft; shout; average of fast, loud, and Lombard;
and multi-style. Figure 3(b) plots the corre-
sponding spectra of these mean shifts, contrasting
the effects on spectral tilt of low vocal effort
(soft) versus higher vocal effort (fast, loud,
Lombard, and shout). Increased voral effort
increases the relative high frequency content,

where.s the opposite occurs with low vocal effort.
It appears that these effects could be compensated,
to some extent, by adding the appropriate cepstral
compensation (Figure 3(a)) to normally-trained
data.

Figure 3(c) plots the ratios of the cepstral
variances of the multi-style-trained model to the
cepstral variances of the normally-trained model.
It appears that the major style-induced variations
occur in the most slowly-varying spectral
components (corresponding to lowest order cepstral
coefficients) and in the most rapidly-varying
spectral romponents (corresponding to the highest
order coefficients). ’

A number of recognition experiments have been
run to {investigate the feasibility of improved
recognition under varying conditions by means of
cepstral domain compensation. In all these
experiments, normally-trained word models were
ugsed, with mean and variance compensation (the same
compensation for all words and nodes) applied
according to smoothed versions of the data
degscribed above. Types of experiments included:
(1) single-model compencation, where a set of
cepstral mean differences observed in multi-style
models (represented by filled squares in

R

Figure 3(a)) were applied as compensation in

recognition tests on all styles; and
(2) multi-mode! compensation, where four word
models - corresponding to normal speech and to

models compsnsaied for low vocal effort, high vocal
effort, and shout, were used for each vocabulary
word., Note that the multi-model system requires a
correspondiug amount of extra computation to carry
out the recognition. Error rates, averaged over
the five conditions excluding shout, improved from
13.0% (for a baseline HMM system with varlim and
additional spectral fectures [18]), to 9.7% for
single-model compensation, and to 4.5% for
multi-model compensation.

These results appear quite promising, although
some 1ssues remain, which are the subject of
current investigation. First, cepstral domain
compensation has not yet been combined with the
other HMM improvements described in Section 4.
Secondly, an experiment should be performed where
the cepstral statistics are gathered on a data base
separate from that used in recognition tests., In
addition to investigation of these issues, we are
currently pursaing some new and promiaing ideas in
cepstral domain stress compensation, which do not
require multiple word models, or computation of
cepstral statistics over a large data base,

1.0
0.5
0
-0.5
-1.0 4
+ soft
A multi-style
I average of
=2.0 - fast, loud, A
and Lombard
o shout
=3.9
Jlljlllll_zo 1 1 1
12345678 910112 O 10C0 2000 30004000
(a) mean shifts in (b) spectra of
cepstral domain cepstral mean shifts
(dB scale)
2.2 tral variance ratio
2
; (c) ratios of
mst 1.8 multi-styvle cep-
1.6 stral variances to
norm normal cepstral

variances

1.2 | O DI N COU T 'S T N
1234567 8 910112
Fig. 3. Variations of cepstrai means and variances
for simulated stress and Lombard conditions.
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6. MULTI-STYLE TRAINING FOR IMPROVED RECOGNITION The results demonstrate that multi-style

UNDER WORKLOAD STRESS AND UNDER THE LOMBARD training can provide a large performance advantage
CONDITION under stress conditions, without training under
those conditions, Multi-style training reduces the
Multi-style training can be applied effec- error rate by more than a factor of two under the
tively to the recognition-in-stresc problem by Lombard condition (talker in noise), and provides
training the system under a variety of talking large reductions 1in error rates under other
styles and/or a variety of conditions, and then conditions. An interesting, and perhaps surprising
using the system under stress conditions. Training result 1s that error rates also dropped substan-
tokens can be obtained under the same conditions tially for normal speech. The fact that overall
experienced during use (if possible), or they can error rates in Figure 4 are generally significantly
be obtained by instructing talkers to speak with higher than in Figure 3 can be attributed to the
different styles. For the results presented in difficult conditions " the highly confusable
Section 4 on the TI-stress data bsse, .raining vocabulary,
tokens were obtained under the same set of
conditions (style and Lombard) as those used for The large reductions in error rate with multi-
testing. This strategy 1s not possible in many style training are presumably due to the fact that
operational conditions, such as 1in a fighter the forward-backward training algorithm is able to
cockpit, where training would have to be performed collect better statistics concerning the
during landing and during times of high workload. variability of different acoustic-phonetic
In chis section, results are presented for the more features. Performance improves for normal speech
general situation where training tokens are not presumably because there ig insufficient
available under testing conditions. variability 1in the five normally-spoken training
words to characterize the variability that occurs
All experiments were performed using the in normal speech spoken over a period of a few
Lincoln stress/style data base, and the baseline days. Performance improves under vorkload stress
HMM recognition system with variance limiting. The and with the Lombard conditfon (1) because the
recognizer was trained with normal speech (five multi-style training conditions provide a better
training tokens for each vocabulary word), and match to the test conditions than does normally-
using multi-style training (one normally spoken spoken speech; and (2) because the HMM recognizer
training token, and one token each from the fast, gseems to focus on those characteristics of speech
clear, loud, and question pitch style conditions). that are invariant across talking styles.

The recognizer was then tested using normally-
spoken words (different tokens from those used in

training), and using speech produced wunder the 7.  MULTI-CONDITION TRAINING FOR IMPROVED
Lombard condition and under the two workload stress RECOGNITION IN SIMULATED F-16 NOISE
conditions. Each condition was tested using 70 ENVIRONMENT
tckens (two samples of each vocabulary word).
Results for five talkers from the Lincoln data base Background noise in a fighter cockpit has two
are presented in Figure 4. major effects. First, it causes the pilot to speak
louder and more distinctly (the so-called Lombard
40 T T effect). Second, it leaks into the microphone,
mixes 1in with the speech signal, and degrades the
sl D input signal-to-noise (S/N) ratio. The relative

importance of these effects was 1investigated
recently using recordings made at AMRL. Words 1in

30L Five Talkers . the 25-word AFTI vocabilary w:re produced by one
210 Tokens Per Point talker wearing a facemask and helmet in an ambient
Lincoln Stress/Style Data Base condition and with simulated AFTI F-16 background

= noise levels of 95 dB, 105 dB, and 115 dB sound
pressure level (SPL).

ERROR RATE (%)
™
*

[
(=]

Recognition experiments ware conducted using
our baseline HMM 1solated-word recognizer with

1s 4 variance limiting, Experimcnts were carried out

with normal training (five tokens from the ambient

condition) of the recognizer, and with a new type

10 e of training which we refer to as multi-condition

trainin: (two tokens from the ambient condition and

. mﬁi;‘fg“ one from each noise condition). Multi-condition

E 7 training is distinguished here from wmulti-style

&" training in that training is done by subjecting the
é,-l: o { | talker to different noise exposure conditions,
;"2 NORMAL COND-50 COND-70 LOMBARD rather than asking the talker to speak with a
§x B Oy (0 Qo) C5oeen roEis e oo Tl variety of talking styles. Results are presented

in Figure 5. Signal-to-noise ratios presented at
the top of this figure are obtained by determining
the ratio between the 95 perceat and 5 percent

workload stress and Lombard condition speech
data, with normal training and with multi-style
training.
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cumulative RMS levels measured across the waveforu
file for each word, using a 100 ms rectangular
averaging window to determine RMS.

As can be seen in Figure 5, with normal train-
ing the error rate ranges from zero in the ambient
condition to greater than 60 percent with 115 dB

SPL of background noise. Multi-condition training,
however, provides a dramatic Improvement in
performance. The error rate is reduced to zero
except for the 115 dB SPL condition. Objective
measurements of the S/N ratio (noted in Figure 5)
and careful 1listening to the recordings strongly
suggest that degraded performance was caused by the
Lombard effect, and not by additive noise. These
results, which are congistent with those presented
in {12), thus indicate that research emphasis
shouid be placed on compensating for the Lombard
effect and not on compensating for a degraded S/N
ratio. Some compensation for a degraded S/N ratio
will still be necessary under very high noise
conditions, but such cowmpensation will not be
sufficient for good recognition. These results
also demonstrate that multi-condition training in a
HMM recognizer 1is an effective technique to
compensate for the Lombard eftect.

SIGNAL-TO-NOISE RATIO (dB)
40.6 34.2
T T

ONE TALKER L
1C0 TOKENS PER CONDITION "
25-WORD F16 VOCABULARY -~

43.4 23.2

80 -~

50 |- .~ -]

NORMAL TRAINING /’ —

/

/
20+ / -1

/

// MULTI-CONDITION TRAINING
o————___ g

AMBSIENT 95 106 118
BACKGROUND NOISE LEVEL {dB SPL)

30

ERROR RATE (%)

10—

Fig. 5. HMM system performance in simulated F-16
noise environment, with normal training and with
under multiple noise conditions.

8. FEATURE-BASED D1SCRIMINANT ANALYS1S

Most isolated-word speech recognition systenms
weigh all paits of a word equally when comparing an
input unknown word to stored-word models. This may
lead to errors for words such as "go" and “no" that

differ only 1n one temporal region. Discriminant
analysia [24], as described here, is a technique
that can overcome this problem by focussing

attention on parts of words determined to be most
important in discriminating between a small set of
word candidatecs. The approach described here is
similar in some respects to that proosed in [39].

AN A AR AL AL SR,

"in each node.
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A difterent  approach  to  discriminant analysis,
where analysis of recognition errors is used to
select an optimum set of “features” wused to

characterize spectral characteristics, is described
ia [40}.

We propose to build on our successful HMM
systems and use discriminant analysis in a second
analysis stage. The first stage of analysis will
include a maximum-a-posteriori probability Hidden
Markov Model recognizer. The output of this stage
will consist of overall word probabilities, node
residency times from the Viterbi backtrace, and
information concerning the distribution of spectra
The second discriminant stage will
use this information, along with information from
additional acoustic-phonetic [eature neasurements
designed to improve discrimination decisions
between specific word pairs. Statistics required
for the discrimination stage will be obtained
during training by: (1) passing each training word
through feature, measurements to deternine
statistics of these measurements; and (2) passing
each training token through the word models for all
voccbulary words, rather than only through the word
model for the corresponding word.

Our plan is to carry out a second-stage
discriminant decision only if likelihoods from the
first-stage HMM recognizer indicate that no clear
decision can be made. This strategy is designed to
prevent the second stage anslysis from degrading
the good performance of existing HMM recognizers.
Results obtained with the Lincoln stress/style data
base with multi-style training for the Lombard and
workload conditions suggest that a relatively
simple decision rule based on the difference
between the log likelihoods of the first two word
candidates is effective in determining whether to
perform a discriminant analysis. This rule
correctly identified roughly 90 percen:t of the
trials where an error occurred and incorrectly
identified 24 percent of thoss trials where the HMM
recognizer made a correct decision.,

A second-stage discriminant decision will
initially be performed using a two-way discriminant
between only the top two word models. Data shown
in Figure 6 illustrate that a two-way discriminant
could substantially reduce error rates, Data in
this figure represents all the multi-style training
conditions in Figure 4. Figure 6 indicates that
perfect discrimination between the top two word
candidates would reduce the error rate by more than
a fsctor of two. N-way discriminations between the
top three or more candidates would provide smaller
incremental reductions in error rate.

lnitial results with the abuv2 discriminant
strategy, using only duration information as a
discriminant, have been encouraging. Further work
is currently 1in progress that wuses gpectral
features, computed from the cepstral parameters
already available in the baseline system, in the
discriminant decision.
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Fig. 6. HMM system error rate considering the top

N word candidates, using multistyle training on the
Lincoln stress/style data base.

9.  APPLICATION OF ARTICULATORY SENSORS

The goal of experiucnts with articulatory
sensors 1s to determine whether the outputs of
small, non-lavasive sensors can be used to
supplement the microphone signal and improve speech
recognition performance 1in noise and stress.
Rather than focussing on obtaiuing a signal that is
more noise-free than a wmicrophone signal, our
primary focus here 1s on obtaining a signal that
provides additional information concerning
articulatory movements which are consistent for
specific pho.~tic events. Two types of sensors
will be used: miniature accelerometers and a static
pressure gauge transducer. Miniature accelerom~
eters can be positioned on the nose [4l), throat
{42], and forehead of a talker to detect voicing
energy and nasal energy. In a cockpit, the nasal
accelerometer could be mounted in the soft rubber
of a facemask and the accelerometer on the forehead
could be mounted in' the helmet on a foam pad. The
static pressure gauge monitors pressure within the
facemask via a piece of short flexible tubing that
runs through the facemask. It can be used to
detect the rapld increase in pressure associated
with plosives [43].

A sketch of a multi-sensor system, including
articulatory sensors and a secondary microphone for
possible application in adaptive noise cancella-
tion, 1is shown Jua Figure 7. Preliminary
articulatory sensor recordings have been made by

simultaneously sampling the outputs of three
accelerometers (nasal, throat, forehead) of the
static pressure gauge, and of the facemask

microphone. After creating a small multi-sensor
data base,we will investigate the feasibility of
processing the vutputs of these sensors to provide
features which can enhance recognition robustness.

T

_~— FOREHEAD ACCELEROMETER
NASAL ACCELEROMETER

PRESSURE GAUGE
(Fricatives, Stops)

L SECONDARY

i - MICROPHONE

‘/ PRIMARY

THROAT MICROPHONE
ACCELEROMETER
h—— PARSMETERS,
SPEECH AND M”;’.gj;‘f” % RECOGNITION
SENSOR INPUTS e SYSTEM

Fig. 7. System structure for potential application
of multisensor signal processing to robust speech
recognition.

10. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

Substantial improvements in speech recognition
performance on spewch produced under stress and in
noise have been demonstrated, through the develop-
ment of techniques for enhancing the robustness of
a baseline 1isolated-word HMM recognizer. The
performance achieved - about 2% error rate for a
105-word vocabulary, under a varlety of stress and
noise conditions - should be sufficient to support
a reasonable range of speech recognition applica-
tions 1in stressful environmente, where limited
vocabularies and speaker-specific training can be
used. This performance represents an
order-of-magnitude reduction in error rate relative
to a baseline HMM system, and compares favorably
with the best results previously reported using DTW
techniques. The capability of the HMM system to
train effectively on multiple talking styles, aund
thus to become mure tolerant to speech variations
due to stress and noise exposure, 1s an extremely
encouraging result.

Based on the results obtained so far, we see a
large number of arzas for current and projected
future work in robust recognition, including:

(1) more work on HMM robustness improvements,

including  augmented parameter sets,
durational models, better use of energy,
minimization of the effects of limited

training data, and use of word models

with different number of nodes for
different vocabulary words;

(2) further development of cepstral domain
stress compensaticn techniques;

(3) extensive tests of robust recognition

techniques on additional data bases,
including physical stress, and eventually
data collected in flight;

(4) development and test of techniques,
including discriminant analysis, for
integration of acoustic-phonetic features
with H'M systems;
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(5) 1investigation of feature extraction from
articulatory sensor data;

(6) dynamic adaptation techniques for
updating training while the recognition
system is in use;

(7) extensions from 1isolated-word to
connected-word recognition systems in the
context of high stress and noise,
including subword HMM models;

(8) efforts 1in talker-independent recogni-
tion, taking advantage of the
techniques for dealing with speech
variability that have been .Jeveloped for
the recognition-in-stress problem; and

(9) eventual integration into application
systems, and test on-board high-
performance sircraft and in other severe
environments.

Finally, although our efforts have focussed on the
stress and noise problem, we feel that the
technijues applied to deal with the variations in
speech due to stress should be applicable to more
general recognition problems.
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folded into the acoustic-phonetic data

base, becoming one of the later phases.
The acoustic-phonetic data base is

phased so that a small amount of speech is

ABSTRACT initially recorded from a large number of

subjects, fonllowed by successively larger

This paper describes general specifi- durations of speech from fewer subjects,

cations and current status of the speech culminating in two hour. recorded from

databases that Texas Instruments (TI) is each of two subjects. MIT and SRI have

collecting to support the Darga speech helped ue design the mate-ial to be read

recognition research effort. Emphasis is by subjects. Figure 1 beiow shows the

placed on the portion of the database current general specifications for this
development work that TI is specially data base.

responsible for. We give specifications

in general, our recording procedures,
theoretical and practical aspects of sen-
tence trelection, selected characteristics
of selented sentences, and our progress in
recording.

3. RECORDING PROCEDURES
3.1 STEROIDS

Tnis large scale database collection
would be difficult or impossible to col-
lect without the VAX Fortran automated
speech data collection system developed

Go YIS0 here at TI, called the SiERe0 automatic
This paper is a report on the speci- Interactive Data collection System, or

fication and current status of the work STEROIDS. Use of STEROIDS requires a

done by Texas Instruments, Inc. (TD stereo DSC 200 sound system directly

on
- : connected tc 2 DSC 240 audio control
Darpa-funded Acoustic Phonetic Database boxes, one for each of the 2 chanmels of

development as of the eurl art  of q
February, 1986, It is meant te be comp)e- TR0 CT, LTI S0 DAt
mentary to similar reports from other Vocabulary Master Library (VML). The VML
(eIt Sl ehl Ui T lo file is a formatted direct access file
which contains records holding data for
Ho @Azl EASAGNY LS each utterance in a recordingg session:
the text of the prompt, a speech file
name, and variables lholding the number of
recorded versions and which one is best.
A promy- nay be any text string less than
122 cha. .cters long.

When STEROIDS is executed, it first
r.ads in values for several parameters
that effect its decisions about when each
utterance begins and ends, and a name for
the subject. It then, under the control
of tune dirzctor, displays prompts to the

+ 44 subjest and records his responses in
providing data for the study of the effect ; ] 3
on speech recognition of limiting dJomain G g ST Uit d1;ectoi'm§y JSECH, U
of discourse, would be defined later. At recorded versions, decide which version is
our last meeting, there was a consensus best, and re-prompt.
that the task-specific data base should be

Originally three data bases were
planned: "stress," "acoustic-phonetic,"
and "task-specific." The stress data base
was to investigate variations of speech
with stress, and would be dcne primarily
by AFAMRL. The acoustic-phonetic data-
base, to be done by TI in collaboration
with MIT and SRI, was intended to uncover
gensral acoustic-phonetic facts about all
major dialects of con%inental U.S.
English. And the vask-specific data Lase,
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Recording conditious:
o Low noise (acceptable to NP-®
o 2 channel recording: 1 noise-cancelling (Sennheiser) mike,
1 far-field pressure (Bruel and Kjaer) mike.
o Subjects exposed to 75 dB SPL noise through earphones

Style:
o Read from prompts
Material:
Phase Speech/Subject # Subjects Contents, etc.
1 30 sec. 630 Broad Phonetic Coverage
2 2 min. 160
3 8 min. 40 W/Standard Paragraph
4 30 min. 10 W/Explicit Variations
5 2 hrs. 2 Interview Format

Figure 1. General Specifications of Acoustic-Phonetic Database.

3.2 GENERAL PROCEDURE below 500 Hz for a 5 second segment of

"silence". The spectrum is flat from 300

We created and ran a program vwhich Hz up to 10 kHz. (The spectrum of the

read sentences and sen <nce assignments sign2zl from the Sennheiser noise-cancel-

and made 630 VMI. files. Our recording ling micropnone is flat from DC to 10 kHz,

procedure then takes five steps: 1. At which indicates that the noise-cancel-

the beginning of each day, calibration lation property and the low-frequency

tones are recorded from both channels; 2. roll-off of the Cennheiser is adequate to

For each subject, one of the 630 VML files render the acoustic rumble of no
is copied to his named sub-directory and consequence for this microphone.)

STEROIDS is used to collect his data; 2.
At the end of the day, a REDUCE procedure
is run on all data collected that day,
which produces the files that we send out,
by splitting the initial stere 'ile into
two mono files, Ze-biasing each, "igh-pass
filtering the BK file at 70 .., and
down-sampling each to 16,000 samples per
second; 4. A backup procedure is then
run, which makes three tape copies of the
VML files, the calibration tone files, and
all the speech files recorded on that day; c
and 5. The disk is cleaned up for re-use
by deleting the files that were put onto
tape. One copy of the back-up tape is
then sent to NBS. "

Data on each subject recorded in each
session is added to an ASCII text file for

100 v

—
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documentation. "<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>