
■'**•--■•* -■      .   -~=     ■-.**** ^.i-. -.•-—.ryr^-st ■^^■^wrTJg^ v-Pf-f* & «s« «a w JSIA it? p 

^ 

R O D N G 

->% /F"^ 
■ sniti 

en 
in 
CD 

< 
i a 
< 

a. o 

I JL. 

era 

February 1986 

.A 

-—   ."'•>_ 

'ATV; 

DTIC 
ScLECTE 

APR 0 11986] 

D 

r/ //CS 

£ I sr e 

Sponsored by. 

66    3 3i 

Defense Advanced Research Projects Agency 
Information Processing Technique.s Office 

ääH"^M:^äH^ 



SPEECH RECOGNITION 

Proceedings of a Workshop 
Held at 

Palo Alto, California 
February 19-20, 1986 

Sponsored by the 
Defense Advanced Research Projects Agency 

Science Applications International Corporation 
Report Number SAIC-86/1546 

Lee S. Baumann 
Workshop Organizer 

This report was supported by 
The Defense Advanced Research 
Projects Agency under DARPA 

Order No. 3456, Contract No. MDA903-84-C-0160 
Monitored by the 

Defense Supply Service, Washington, DC. 

APPROVED FOR PUBLIC RELEASE 

The views and conclusions contained in this document are those of fhe authors and should not be interpreted as 
necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects 
Agency or the United States Government. 

r-f^ttM^^^^^-^-v^ 



r mm^^Kmmma 

DISCLAIMER NOTICE 

THIS DOCUMENT IS BEST QUALITY 
PRACTICABLE. THE COPY FURNISHED 
TO DTIC CONTAINED A SIGNIFICANT 
NUMBER OF PAGES WHICH DO NOT 
REPRODUCE LEGIBLY. 

- 

i 

j 
» 

ft 

m.^wy^iX)^jAuo-Xü#Jö'j.>>>^^^^>>>j<Nx^>^^ 



1  •   ^   .L_-   ^i"!   -.-*±--, -i-.;-    ,: :1   ü    n.  n, -; 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PACE (Whan DM« Enfrid) 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

I.   REPORT NUMBER 

SAIC-86/1546 

2. OOVT ACCESSION NO 3.   RECIPIENT'S CATALOG NUMBER 

4.   TITLE (and Subtltt») 

SPEECH RECOGNITION 
■Proceedings of a Workshop, February 1986 

S.   TYPE OF REPORT » PEBIOO COVERED 

ANNUAL TECHNICAL 
September 1985-February 1986 
6. PERFORMING ORG. REPORT NUMBER 

8. CONTRACT OR GRANT NUMBER^) 

MDA903-34-C-0160 

T.   AUTHCRW 

LEE S.  BAUMANN (Ed.) 

>.   PERFORMING ORGANIZATION NAME AND ADDRESS 

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION 
1710 Goodridge Drive, 10th Floor 
McLean, Virginia 22102 ; 

10. PROGRAM ELEMENT, PROJECT, TASK 
AREA S WORK UNIT NUMBERS 

ARPA ORDER No. 3456 

H,   CONTROLLING OFFICE NAME AND ADDRESS 

Defense Advanced Research Projects Agency 
1400 Wilson Boulevard 
Arlington, Virginia 22209 

12. REBQRT DATE 

February 1986 

         -' —' : •   j —-w-"^  
14.   MONITORING AGENCY NAME ft ADDRESV" dUUtuat tnm Conlrolllng Oltict) 

IS-   NUMBER OF PAGES 

120   DPS. 
IS.   SECURITY CLASS, (ol Oil» rmpon) 

UNCLASSIFIED 
IS«.   DECLASSIFIC ATI ON/DOWNGRADING 

SCHEDULE 

tS.   DISTRiaUTIOH STATEMENT (S ildi, Slfart) 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

17.   DISTRIBUTION STATEMENT (ol Ihn mbttrmct •n(*»d In Block 20, H <f »«rant tnm Report) 

IB.   SUPPLEMENTARY NOTES 

19.   KEY WORDS fConl/nu« rn ravorta alda It naca<«ary and Idtntlly by block numbar; 

^Speech Recognition; Signal Processing; Acoustic Phonetics; Intelligent 
Systems; Cochlear Models; Speaker-independent vowel recognition; Pitch 
tracking; Vowel Coarticulation; Phonological studies; Continuous word 
recognition; Robust HMM-based techniques for speech recognition. ^ - 

20.   ABSTRACT CConllnua on ravaraa ildw It nacaaaaqr and Idtnllty by block numbmr) 

^ This document contains the technical papers for the Speech Recognition 
Program which were reviewed by the key research specialists from the 
research activities participating in the program sponsored by the 
Information Processing Techniques Office, Defense Advanced Research 
Projects Agency.-.The reviews of these papers were presented at a workshop 
conducted on 19-20 February 1986, in Palo Alto, California. 

DO FORM 
1 JAM n 1473 EDITION OF  I NOV SS IS OBSOLETE 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (Whtn Data Enlmimd) 

MU^.XAWAXm>m^^ 



TABLE OP CONTENTS 

FOREWORD   

AUTHOR INDEX 

Page 

i 

iv 

SECTION 1 - REVIEW OP NEW GENERATION SYSTEM POR 
SECTION    CONTINDooS SPEECH RECOGNITION 

Status of the C-MÜ Phonetic Classification System    1 
R Cole, M. Phillips, B. Brennan, B. Chigier, 
R. Green, B. Weide, J. Weaver 
Carnegie-Mellon University 

Building Parallel Speech Recognition system3 ^^.!1!!...  6 
Agora Environment • *"' 

R. Bisiani, A. Forin 
Carnegie-Mellon University 

Speech Recognition Experiments with a Cochlear Model ... 

R. Lyon , 
Schlumberger Palo Alto Research 

An Auditorv-Based Speech Recognition Strategy: 
JSplieation to Speaker-Independent Vowel Recognition ... 

13 

17 

25 

30 

Appl 

Massachusetts Institute of Technology 

Recognition of Nasal Consonants in American English ., 
j. Glass, V. Zue 
Massachusetts Institute of Technology 

Pitch Tracking, Pitch Synchronous Spectra and 
Formant Tracking   

W. Majurski, J. Hieronymus 
National Bureau of Standards 

Compensating for Vowel Coarticulation:^ a Progress   ^ 

Report   • '.'"i'  
j.   Hieronymus-   "    Ma^ursKi 
National  Bureau of  Standards 

Phonological  Studies  for  Speech R^c^nit^on   •;•::•' 
j.   Bernstein,   G.   Baldwin,  M.   Cohen,   H.   Murveit, 
M.   Weintraub 
SRI   International 

Accesion For 

NTIS   CRA&I 
OTIC   TAB 
Unannounced 
Justification 

* 
a 
a 

By  
Dist ibutlon / 

Availability Codes 

Dist 

/?-/ 

Avail and/or 
Special 

^3 

rinnnf-mftnpj-ii'Jmnr-' 
Timsfiiyr^ip^mr^nr^riJimmamjriuriiKiU .^^^nsjATJ^v^tytu^^^ 



i 

TABLE OP CONTENTS 
(Continued) 

it mm 

Page 

The   Role  of Word-Dependent  Coarticulatory  Effects   in  a 
Phonetne-Sased  Speech Recognition  System         49 

Y-L.   Chow,   R.   Schwartz,   S.   Roucos,   0.   Kimball, 
P.   Price,   F.   Kubala,   M.   Dunham,   M.   Krasner, 
J.   Makhoul 
3BN Laboratories 

Recognition Performance and Grammatical Constraints ....  53 
0. Kimball, P. Price, S. Roucos, R. Schwartz, 
P. Kubala, Y-L. Chow, A, Haas, M. Krasner, 
J. Makhoul 
BEN laboratories 

Implementation of Continuous Speech Recognition on a 
Butterfly" Parallel Processor    60 

L. Cosell, 0. Kimball, R. Schwartz, M. Krasner 
BBN Laboratories 

A Benchmark for Speaker-Dependent Recognition Using 
The Texas Instruments 20 Word and Alpha-Set Speech 
Database    67 

D. Pallett 
National Bureau of Standards 

SECTION 2 -  REVIEW OP NEW GENERATION SYSTEM FOR ROBUST 
SPEECH RECOGNITION 

Robust Speech Recognition:  Initial Results and 
Progress    73 

P. Rajasekaran, G. Doddington 
Texas Instruments, Inc. 

Robust HMM-Based Techniques for Recognition of Speech 
Produced Under Stress and in Noise    81 

D. Paul, R. Lippmann, Y. Chen, C. Weinstein 
Lincoln Laboratory 

SECTION 3 - REVIEW OP SUPPORTING INPRASTROCTDRES 

The DARPA Speech Recognition Research Database: 
Specifications and Status    93 

W. Fisher, G. Doddington, K. Goudie-Marshall 
Texas Instruments, Inc. 

^^^s^r^^^^m'%xmmmum»txm-mmf^T-^f^t-MRmiirri:'i nmjmumM^jpifuy^mnfjV-jv'Jifu'tPj -iftjMMtika&iieu wv w-nAi mnÄ/iRj'iftnRr«uwifw *•* ifv wv 



TABLE OP CONTENTS 
(Continued) 

Pacjo 

Speech Database Development:  Design and Analysis of the 
Aconatic-Phonetic Corpus   100 

L. Lamel, R, Kassel, S. Seneff 
Massachusetts Institute of Technology 

The Development of Speech Research Tools on MIT's LISP 
Machine-Based Workstations   110 

D. Cyphers, R. Kassel, D. Kaufman, H. Leung, 
M. Randolph, S. Seneff, J. Unverferth, III, 
T. Wilson, V. Zue 
Massachusetts Institute of Technology 

Optimal and Suboptimal Training Strategies for Automatic 
Speech Recognition in Noise, and the Effects of 
Adaptation on Performance   116 

J. Baker, D. Pinto 
Dragon Systems, Inc. 

KKNasammmtm^wmmmmmmtf^^ 



■«^W III  ■(■•P>r 

FOREWORD 

A workshop for research personnel involved in the 
DARPA program on Speech Recognition was held on 19-20 
February 1986 in Palo Alto, California. The purpose of the 
workshop was to review progress on the technical aspects of 
the work being done by researchers at Carnegie-Mellon 
University, MIT, BBN, TI, MIT-Lincoln Laboratory, NBS, SRI 
International, Schlumberger Palo Alto Research, and the Air 
Force Aerospace Medical Research Laboratory. Also in 
attendance were personnel from Dragon Systems who hav» 
recently been added to the research team; SPAWAR - the 
contractual monitoring organization; and NOSC, RADC, CIA and 
NSA - government laboratories and organizations interested in 
the research. 

Comruander Allen Sears, the program manager for the 
DARPA Speech Recognition Program, welcomed the more than 
forty-five attendees to the workshop. He thanked Gary Kopec 
of Schlumberger for conducting a hands on working session for 
interested researchers on the Signal Representation Language 
(SRL), and Integrated Signal Processing System (ISP) on the 
previous day, 18 February 1986. SRL and ISP, he noted, are 
fundamentally programming environments for LISP-based signal 
processing and may be key tools for researchers in the DARPA 
program. 

Cdr. Sears noted that the essence of the program 
was cooperation and tnat all groups were expected to 
contribute to the successful end results and were not to 
duplicate research techniques but to use successfully devel- 
oped items in their systems regardless of who did the 
original work. Also, he indicated, we must get the service 
laboratories, like AFWAL and NOSC, involved in demonstrations 
of the maturing technology. Cdr. Sears reviewed the results 
of his recent visit to Carnegie-Mellon university to view a 
demonstration of their speech recognition system. The 
progress being made was impressive; the next demonstration is 
scheduled for September 1986 where the goal is to show an 
order of magnitude improvement in processing performance. In 
closing. Sears enjoined the group to keep the end objective 
in mind - a relevant demonstration of results and to observe 
the essence in this research program — cooperation. 

This proceeding consists of seventeen technical 
reports which were reviewed by the key individual for that 
program at the workshop. Also appended is a companion paper 
by Dragon Systems concerning their work in speech training. 
The papers are arranged in the order the subjects were 
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presented using three qenoral groupings: review of new 
generation system (NGS) for continuous speech recognition, 
review of NGS for robust speech recognition, and review of 
supporting infrastructures. 

In addition to the government and research 
attendees, four guest experts were inv'.ted to visit the 
sessions and to present their reactions to the material 
discussed during the workshop.  The invited guests were: 

Steven F. Boll  - ITT-DCD 
Jordan Cohen    - IDA 
Bruce T. Lower re - Hewlett-Packard Labs 
Pred Jelinek    - IBM - TJ Watson Research Center 

All four reviewers gave their impressions of the 
research program in a give and take session on the afternoon 
of day two of the workshop. The reviewers indicated they 
were impressed by the progress made to date. In general, 
they expressed satisfaction with the aims and objectives of 
the program, with the cooperative nature of the research, and 
with the tight, but realistic, schedule as outlined in the 
program plan. Also, it was stated that good and sufficient 
test data would be required in order to insure the robustness 
of the resultant systems. The group advised all researchers 
to include in their plans sufficient flexibility as they are 
sure to find that the environment at the end of the project 
will be vastly different from that envisaged at this point in 
the evolution of the projects. Also, it was stressed that 
sufficient training time must be built into any schedule for 
installation and use of a speech system. For, it was stated, 
a speaker can always make the system fail - sometimes even 
when not trying to do so. Finally, Dr. Jelinek of IBM warned 
that the not-invented-here syndrome is hard to break and the 
research teams need to accept the selected techniques and 
proceed with new research regardless of which group developed 
th«? algorithm or the particular processing code. Cdr. Sears 
expressed the appreciation of the Defense Advanced Research 
Projects Agency for the candid and informed remarks of the 
group which; he stated, would be taken to heart for the good 
of the program. 

The final session was devoted to integration plans 
and several groups met separately to discuss collection and 
distribution of data bases; production, distribution and use 
of tools; and integration of new research into the NGS. Cdr. 
Sears closed the general session by announcing that David 
Pallett of NBS would manage the performance evaluation and 
the data base collection efforts, and that James Hieron^us 
of NBS would manage the technical integration and transition 
issues involved in the speech recognition program. 

ii 
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SECTION   1 

tfVIBW OF NEW GENERATION SYSTEM  FOR 
CONTINUOUS SPEECH RECOGNITION 
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Status of the C-MU Phonetic Classification System 

The Feature Group1 

Computer Science Department 
Carnegie-Mellon University 

' bstract 

The C-MU phonetic classificption system is designed to provide 
a speaker-independent phonetic transcription of an unknown 
utterance. The system uses perceptually motivated features of 
speech to locate and classify phone'.ic segments. This report 
desci-ibes the current system configuratinn, the research that is 
performed to develop and improve the system, and the most 
recent perfoimapce evaluation. 

System Overview 

The input to the phonetic classification system is a spoken 
utterance. The output is a lattice of phonetic segments with 
probabilities assigned to each segment. Begin t 'd end times for 
pach segment are determined by (ocafor algorithms. Phonetic 
label probabilities arc assigned to each segment location by 
classification algorithms. 

At the present time, the segment lattice is .reatcd by Tour 
separate modules. Each module is designed to locate and c'ssdify 
a particular set of target eegmentt; phonetic segments vivh 
common acoustic properties. The four modules are: 

• Stop Module: Designed to locate and classify slop aad 
affricate consonants before sonorants (vowels, liquids, nasals 
and glides). 
The target segments include (b, d, g, p, t, k, ch, jh] and the 
stop-like allr"'hone of /dh/. 

• Fricative iVloduIe: Designed to locate and cbissify phonetic 
segments that are accompanied by fricatlon noise. 
"he target segments include (s, sh, z, A, f, th, ch, jh]. 

• Closure Module: Designed to locate and classify closures, 
background noise and pauses. 
Target segments include voiced closures, voiceless closares, 
epinthetic closures, background noise anJ pauses. 

• Sonorant   Module:   Designed   to   locale   and   classify   all 
v jiced segments. 
Targets include vowels, dipthongs, liquids, glides   nasals and 
flaps. 

Research Process 

This section provides an overview of the research process for 
(a) developing locators, (b) developing classifiers, and (c) 
analyzing and improving classifier performance. Those familiar 
with the research process should proceed to the following section, 
which describes the four modules. 

Approach 

The general approach is to use perceptually motivated features 
of speech to make phonetic decisions. This process requires 
examining speech spectrograms and other visual displays to 
determine U,; features of speech that are needec to discriminate 
among o given set of segments. Feature ' .oasurement algorithms 
are then developed and the resulting feature mea-irr nent v: lues 
are combined to make phonet.»: decisions. 

There are two major advantages to this approach. First, 
decisions about phonetic segments are based on all available 
information. It is well known that the perceptual ^ues for 
pnonelic segments are distributed across both frequency and 
time, and that perceivers make use of all available information. 
Vor «ample, cues for inter-vocalic [t] vs. [k] may include 
features in th" preceding vowel, features in the closure interval, 
features in the burst und aspiration and features in the 
subsequent vowel. The current approach allows us lo measure 
and combine these features to nnake phonetic decisions. 

A sec mu advantage of the approach is the ability to 
understand and correct errors. By studying pictures of segments 
that are incorrectly classified, it is possible to understand why 
misclasslfications occur and what can be done to eliminate them. 

L'evelopment of Location Algorithms 

The location algorithms use rules to hypothesize the location of 
target segments. Location algorithms are evaluated in terms of 
(a) the percentage of target segments correctly detected in a 
database of hand-labeled speech, (b) the accuracy with whith the 
left and right boundaries are located, and (c) the number of 
additional firings produced by the algorithm (an additional firing 
is any locator firing thp.t does not correspond to a target 
segment). 

The Feature Group Is Ron Cole, Mike Phil 
Green, Bob Weide and Jr-el Weaver 

lips Bob Brennan, Ben Chigier, Rich 
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The goal of the research is to develop location algorithms that 
accurately locate each target allophone. The process proceeds as 
follows: 

1. Create   pictures   of   the   targ< i   allophones   showing   many 
different parameters. 

2. Select the best parameter(s) for locating the allophones. 

3. Develop an algorithm to locate every target allophone in a 
training database of hand-labeled speech. 

4. Evaluate the algorithm in terms of hits, misses, accuracy of 
boundary location and number of additional firings. 

5. Make pictures showing the behavior of the algorithm. 

6. Refine the algorithm to eliminate misses, improve boundary 
location and reduce the number of additional firings. 

7. Repeat this process until satisfactory results are achieved on 
the training database. 

8. Test on a new database. 

9. Iterate steps 4 through 8, 

Development of Classification Algorithms 

Classification algorithms use perceptually motivated features 
and multivariate classifiers to separate additional firings from 
the targe' segments, and to discriminate among the target 
segments. Classification algorithms are evaluated by comparing 
the segment probabilities produced by the classifier to a database 
of hand-labeled speech. 

The process of building a classifier proceeds through the 
following stages: 

1. Make a picture of each firing of the location algorithm. 

2. Sort the pictures into different pile; based on acoustic 
features. For example, pictures of locator firings for each 
occurrence of [t] may be grouped into separate piles for 
aspirated [t]s, [t| in (st| clusters, and unaspirated [tls before 
unstressed vowels. "Extra firings" are also grouped into 
categories based on common acoustic features. 

3. The locator firings are now given new labels; e.g., "aspirated 
t", "cluster t", "short t". 

4. The pictures arc studied to determine the features needed to 
di5crimin..te among the category labels. 

5. Feature measurement algorithms are developed and feature 
measurement values are collected for each category label. 

6. A classifier is built that provides the best possible 
discrimination of the labeled categories. 

7. The classifier is tested on a new database of hand-labeled 
speech. 

Classifiers are created using an interactive graphics program 
called "Classgraph." Classgraph allows the researcher to design 
a classifier that incorporates knowledge about how features 
interact to define phonetic categories. Classgraph is a tool for 
both understanding the feature relationships in a particular 
classification and for creating the classifier structure and 
boundaries. It allows the user to look at hand-labeled training 
data in two-dimensional projections of the original feature space. 
These projections can be selected by hand or computed 
automatically. 

The user nwy create regions in Classgraph by drawing a set of 
boundaries. Additional regions may be created within the new 
region, or in the region excluded by the original region, allowing 
the user to create a tree structure of regions. This process is 
guided by the user's knowledge of how the decisions should be 
structured and how the projections should be made at each node 
of the decision tree. 

The goal when using Classgraph is to create regions containing 
the correct proportion of category labels given the available 
featural information. Thus if the featural information shown on 
the visual displays is sufficient to uniquely identify the segment 
[•], we attempt to use these same features to create a region in 
Classgraph containing only labeled samples of |s]. Similarly, if 
the features are sufficient to determine that the segment was 
either [t] or [th) but not [f|, then the feature measurement values 
are used to create a region that contains labeled samples of [sj 
and [th|, but no labeled samples of \(\. 

Error Analysis 

The classifier is then tested on a new set of utterances to detect 
misclaasifications. Misclassifications are eliminated using the 
following procedure; 

1. Determine    the    regions    in    Classgraph 
misclassified segment was assigned. 

to   which    each 

2. Analyze pictures of each type of misclassified segment in each 
region. 

3. Compare the misclassified segments to other segments in the 
region. Ask the following questions; 

• What   features   were   supposed   to   discriminate   the 
misclassified segment from the segments in the region? 

• Why did they fail to do so? 

• What  additional   features  are  needed   to  redirect   the 
misclassified segments to the appropriate region? 

4. Refine   the   existing   feature   measurement   algorithms   or 
develop new featui; measurement algorithms. 

5. Compute measurement values. 

R  Create   a   new   Classgraph   structure   that   eliminates   the 
misclassifications. 

7. Run the system on a new set of utterances. 

8. Continue  this   process  until   the  classifier   performs  in   an 
acceptable manner. 
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The Modules 

Before describing the modules, a few general points should be 
made. First, algorithms in all modules were designed to look no 
more than 250 msec ahead of the currer' time frame. This 
constraint was imposed so that the modules could be 
implemented to perform in near real time. Second, at the 
present time, the four modules operate independently. In future 
iterations, the modules will share information. Finally, in each 
module, the locator algorithm produces additional firings; that 
is, segments are hypothesized that do not correspond to the 
target segments. Additional firings fall into two categories. 
"Bad firings" are spurious hypotheses that are not useful for 
word recognition. "Good firings" correspond to phonetic 
categories (other than the target categories) and may provide 
useful information to other modules in the system. For exa.nple. 
the closure module locates many of the intervocalic weak 
fricatives that are not found by the fricative module. We use 
features and clausif-rs tc eliminate bad firings from further 
consideration and to eorrcctlj classify good firings. 

Stops 

The Stop Module is designed to locate and classify [b|, |d], |g], 
[p], [t], [k], [ch], |jh] and stop-like [dh] before any sonorant 
(vowels, nasals, liquids, and glides). The components of the 
module are (a) a locator algorithm that finds stop bursts and 
soncrant onsets and hypothesizes segments between the two, (b) 
a classifier that discriminates among target segments and bad 
firings, and (c) a classifier that discriminates among the target 
segments. 

The stop locator detects stop bursts followed by sonorant 
onsets. A stop burst is defined as any jump in high frequency 

energy greater than a threshold value. Sonorant onsets are 
detected by finding significant changes in low frequency peak to 
peak amplitude following each possible stop burst. Target 
segments are then hypothesized between each stop burst and 
each sonorant onset within 200 msec. Target segments that do 
not have a preceding closure are eliminated from further 
consideration. 

Next, a classifier eliminates 1 ad firings. Bad firings include 
categories such as "better burst later," "better burst earlier," 
"nr real sonorant present," and so forth. This classifier was 
designed to eliminate bad firings without losing any target 
segments. 

A final classifier assigns a phonetic label probability *,o the 
remaining segments. The first stage of this classifier assigns each 
segment to one of seven categories based on two features; The 
duration of the segment and the average high frequency energy 
in the segment. Finer distinctions are then performed using 
features appropriate to the individual segments. At this time, 
only the obvious features have been used to perform fine 
phonetic distinctions, such as the spectra! properties at burst 
onset, spectral center of gravity, and relative amplitude 
differences. More sophisticated features (such as formant 
transitions in the adjacent sonorant) will be included in the next 
iteration of the module. 

Fricatives 

The Fricative module is designed to locate and classify the 
fricatives [s], [sh|, [z], [zh], [f], [thj and the affricates |ch] and |jh] 
in any context. The module consists of (a) a locator algorithm, 
and (b) a classifier that discriminates among target segments and 
additional firings. 

The locator algorithm uses zero crossings and low frequency 
peak-to-peak amplitude to find fricatives. Local maxima in zero 
crossings of the waveform trigger segment hypotheses. Segment 
bourdaries are determined by a significant drop in zero crossings 
or a significant increase in low frequency peak to peak 
amplitude. 

Segments are then classified as targets or additional firings. 
Additional firings include aspirated stop consonants, unaspirated 
stops, syllable-final stop release bursts, and weak voiced 
fricatives ([dh] and |v]). The main features used in classification 
include spectral center of gravity, presence of voicing during or 
preceding the segment, zero crossings, and amplitude onset 
characteristics. At present, contextually important features 
(such as the spectral broadening caused by a subsequent [1] or |r]) 
have not yet been incorporated into the classifier. 

Closures 

The closure module locates and classifies closure and nonspeech 
intervals based on dips in two parameters; energy and overall 
peak to peak amplitude computed from the waveform. The 
threshold values used to postulate closures and nonspeech 
intervals are normalized to the maximum energy and peak to 
peak values observed thus far in the utterance so that 
hypothesized segments are based on relative changes. 

Locator firings are classified as targets or additional firings. 
Targets include voiced, voiceless and eointhetic closures, pauses 
and nonspeech intervals. Additional firings are classified as weak 
fricative, weak sonorant, aspiration, or glottalization. 

The classifier was developed one category at a time, starting 
with the target categories (voiceless closures, voiced closures, 
pauses). The main features used to classify target categories are 
pitch within the segment (implies voiced closure), zero crossings, 
high frequency energy and low frequency peak to peak 
amplitude. The main features used to classify glottalized 
additional firings are the standard deviation of the low frequency 
energy and the presence of low peak to peak "humps." The 
main features used to classify weak fricatives arc zero crossing 
and high frequency energy. 

Sonorants 

The sonorant module locates and classifies all voiced sections of 
speech including vowels, nasals, liquids, glides, flaps, voiced 
closures, and voiceJ fricatives. 

Sonorant regions are located using low frequency (0 - 700 IIz) 
peak to peak amplitude. The algorithm is designed to find all 
sonorant stretches of speech, and therefore includes voiced 
fricatives and other phonetic events.   Within each voiced region. 
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possible segmentation events are found. These events are: dips 
in low frequency amplitude, changes in low frequency amplitude, 

and changes in the ratio of mid frequency (500 - 3500 Hz) 
amplitude to low frequency amplitude. Each possible 
segmentation event is classified into one of three classes: not a 
segment boundary, msybe a segment boundary, and definitely a 
segment boundary. A lattice of possible segments is created 
using rules about the combination of these classified 

segmentation events. 

The segments in the la tice are then classified. A separate 

classifier was developed for each sonorant label. In addition, a 
classifier was developed for each type of additional firing. Each 
of these classifiers discriminates between the target label and all 
other firings. The claasifier probabilities are combined by taking 
the probability of each label from it's classifier and 
renormalizing to make the probabilities of all labels sum to one. 

The features used include formanl frequencies and trajectories, 
duration, relative amplitudes in various frequency bands, and 
spectral center of gravity in different frequency bands. 

Evaluation 

Evaluations were performed for each module, and for the 

combined output of the modules. The evaluations were 
performed on 100 sentences produced by 10 speakers: 50 
phonetically balanced sentences and 50 sentences from an 
Electronic Mail task. These sentences were not used to train the 
modules. 

hand-labeled    phonetically, 
comparing   the   locator/classifier 

The 100 test sentences were 
Modules were evaluated by 
output to each occurrence of a hand-labeled target segment. The 
following tabulations were made: (a) percentage of targets 
located (hits), (b) percentage of targets missed, (c) left and right 
boundary alignment, (d) rank order of the target label provided 
by the classifier and (d) additional firings. 

A target was scored as a hit if the hypothesized segment 
overlapped the hand-labeled target. If more than one segment 
was hypothesized for a target, the hypothesized segment with the 
best boundary alignment was selected as the correct firing. The 
remaining hypotheses were classified as "additional firings". If 
no hypothesized segment overlapped the hand-labeled target, the 
target was missed. Classification performance was evuluated in 
terms of the rank order of the target label provided by the 
classifier. 

Stop Module 

The stop module located 96% of the 314 targets in the 100 
sentences. The majority of the missed segments were voiced 
stops preceded by nasals. In this context, there is minimal 
closure information; the closure was not detected and the 
segment was rejected as a stop. 99% of segments located were 
within 20 msec of the hand-labeled boundaries, 

Of the 301 targets that were located, 54% were correctly 
classified as the top choice, with 77% in the top three choices. 

There were 247 additional firings: 0,8 for each hit. 69% of 
these firings corresponded to stop-like events (glottalized vowel 
onsets or fricatives following slop closures) while 31% were 
judged to be "bad" firings. More work is needed to correctly 
classify these additional firings. 

Fricative Module 

The fricative module located 96% of the 361 targets in the 100 

sentences. All of the missed fricatives occurred in fricative- 
fricative or affricative-fricative contexts (e.g., the |f| was missed 
in "messages from"). 98% of the located segments were within 
20 msec of the hand-labeled boundaries; for those segments with 
bad boundaries, the average left-boundary error was 40 msec and 
the average right-boundary error was 80 msec. 

Of the 346 fricatives found, 51% were correctly classified as the 
top choice, with 74% in the top three choices. 

There were 326 additional firings; 0,95 for each hit. Additional 
firings were classified as stop, aspirated stop burst, dh, v, and h. 

78% of the additional firings were correctly classified. 

Closure Module 

The closure module located 98% of the 628 targets in the 100 
sentences. 95% of all segments located were within 20 msec of 
the hand-labeled boundaries; for those segments with bad 
boundaries, the average left-boundary error was 80 msec and the 
average right-boundary error was 55 msec. 

Of the 613 closu.us that were located, 95% were correctly 
classified as the top choice, with 99,5% in the top three choices. 

There were 408 additional firings: 0,85 for each hit. Additional 
firings were classified as aspiration, weak fricative, glottalization, 
v or weak sonorant. 93% of the additional firings were correctly 
classified. 

Sonorant Module 

The sonorant module located 98% of the 1209 targets in the 

100 sentences. 88% of segments located were within 20 msec of 
the hand-labeled boundaries,; for those segments with bad 
boundaries, the average left-boundary error was 65 msec and the 
average right-boundary error was 55 msec. 

Of the 1179 sonorants correctly found, 56% were correctly 

classified as the top choice, with 79% in the top three choices. 

There were 2283 additional firings: 1,9 for each hit, 97% of 
the additional firings were correctly classified. We also scored 
the above additional firings for those occurring within a segment 
and those spanning two or more segments; 30% of these 
additional firings occurred within a segment. 

Coverage Across Modules 

The above evaluation examined the percentage of target 
segments located and classified by each module. However, this 
evaluation is incomplete for two reasons; 

1, A target segment missed by one module may be located and 

correctly classified as an additional firing by another module, 

2. A segment not targeted by any module may be located and 
correctly classified as an additional firing by another module. 
For example, flaps were not targeted by any module, but 
were classied as additional firings by the sonorant module. 

An additional Tiring was considered to be correctly classified if a 'abel in the 
lattice corresponded lo the broad class ol" the hand-labeled segment 
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Twenty sentences were analyzed to determine the amount of 
coverage provided by the combined output of the four modules. 
This analysis yielded 604 hand-labeled segments. Of the 604 
segments, 97% were located and correctly classified by one of the 
four modules.  The missed segments were distributed as follows: 

• 1% of the 604 segments were targets missed by all modules. 

• 2% of the 604 segments were not  targets,  and  were  not 
found by any module. 

Reading Experiment 

An experiment was also performed to test the "readability" of 
the phonetic segment lattice. The question asked in this 
experiment was; "How well can a person who is familiar with 
the Electronic Mail task (i.e., the vocabulary and grammar) read 
sentences from this task given only a segment lattice generated 
by the phonetic classification system?" 

In the experiment, a member of the research team (JW) was 
presented with segment lattices for 17 different sentences. The 
sentences were created for the experiment and were unknown to 
the subject. The sentences were selected from a set of twenty 
sentences recorded by 10 male and 10 female speakers (3 
sentences were used for practice). For each sentence, the subject 
was presented with the segment lattice produced by the four 
modules and a list of the 243 vocabulary words used in the 
Electronic Mail task. 

Of the 100 words in the 17 sentences, only two were missed. 
Both errors consisted of confusions between the words "two" and 
"ten". This result suggests that the current system output is 
nearly sufficient to recognize words from continuous speech in a 
highly constrained task when higher level constraints can be used 
as efficiently as a human problem solver. 

Assessment 

All of the modules need a great deal of improvement. Only 
stop consonants are located well and only closures are classified 
well. It is likely that classification performance must be 
improved by at least 15% to 20% to achieve acceptable word 
level accuracy for a vocabulary of 1000 words. 

Fortunately, there are many obvious ways to imp- ve the 
performance of the locators and classifiers. The research process 
allows us to understand misclassifications, develop the 
appropriate feature measurement algorithms and improve 
claasification. We therefore hope to achieve significant 
improvement in classification performance in subsequent 
iterations of each module. 
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Abstract 

Agoia is an enviromnent that supports the construction of large, 
looscly-structurcci programs that manipulate complex data 
structures, e.g. knowledge based systems. Agora can be 
customized to support die programming model that is more 
suitable for a given application. Agora has been designed 
explicitly to support multiple languages and highly parallel 
computations by means of memory caching and patient directed 
invocation. Systems built with Agora can be executed on a 
number of general purpose multiprocessor architectures. 

1. Introduction 

Our long-term goal is to develop a software environment that 
meets the need of application specialists to build and evaluate 
their own parallel processing systems quickly and efficiently. To 
this effect we arc developing a set of tools called Agora 
(marketplace) that can be used to implement custom 
environments (called frameworks) for describing, executing, and 
evaluating parallel systems. 

Numcimis existing lnngua«e extensions and programming 
environments provide abstractions tailored to the incremental 
design and implemcnl.ition of large systems, e.g. 1001*8 [8], 
STRORIi[VJ. Other language exlenlions deal with general 
purpose parallel processing, e.g. Mullilisp [6], LINDA [4]. Still 
others deal with the needs of intelligent ami lieterogcnous 
systems design. c.g.AUl'[5]. These languages and environments 
have dilTercnt characleiistics and capabilities because they have 
difTcrcni goals. Agora shares some but not all of their 
characteristics: 

-Agora is a complete environment, not just a language. 
-Agora docs not dcllne a new language but rather extends the 
capabilities of existing languages. 

-Agora  can   be  used   to   build   lieterogcnous  systems  on 
heteiogcnous machines. 

'This rcsenrdi Is sponsored by (he Defense Advanced Research Projects 
Agency, DoD. Ihrough ARPA Order 5167, and monitored by the Space and 
Naval Warfare Systems Command under conlracl N0l)O39-85-C-0163. Views 
and conclusions contained in this document are ihose of ihe authors and should 
not be inlerpieteif as representing official policies, cither expressed or implied, 
of Ihe IX'fensc Advanced Research I'rojccts Agency or of the United States 
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Agora is not an "environment in search of an application" but is 
"driven" by the requirement of supporting the implementation 
of the CMU distributed speech recognition syslem [3], During 
the past year, we designed and implemented an initial version of 
Agora and successfully used it to build two prototype speech- 
recognition systems. Our experience with this initial version of 
Agora convinced us that when building parallel systems, the 
effort invested to obtain a quality software environment pays off 
manyfold in productivity. Agora has reduced the time to 
assemble a complex parallel system and run it on a 
multiprocessor from more than a man-year to about one man- 
month. The main reason for this has been that the interfacing 
between user programs has been taken care by Agora. 
Application research, however, calls for still greater 
improvement. Significant progress in evaluating parallel task 
decompositions, in CMU's continuous speech project, for 
example, will ultimately require that a single person can 
assemble and run a complete system within one day. 

Agoia's relationship to user code and operating system functions 
can be explained by using an "onion skin" model: each 
successively higher layer provides increasingly sophisticated 
abstractions and tools, relying on die layer below for luncüons it 
requires. Figure 1 shows how Agora lies above Mack's 
facilities [1] and below application-specific abstractions. The 
Mach layers provide three major abstractions: message passing, 
shared memory and "threads". Message passing is the main 
communication mechanism: all Agora implementations can run 
on machines that provide message passing as the only 
communication mechanism. Shared memory (when availble in 
the underlying computer system) is used to improve 
performance. Threads (processes that share the address space 
with other processes) arc used to support the fast creation of 
processes (a useful but not always necessary characteristic), 

Ihe Agora layers correspond lo different needs: 

■The framework layer is the level at which most of Ihe 
application researchers will program, A framework is like a 
speciali/ed environment thai has been built lo interact with the 
user in lamiliar lerms. The description, assembly, debugging 
and production run of an application sysiem arc all performed 
through the same framework. 

-The agent layer represents Ihe "assembly language level" of 
Agora, Since all the details about the control and data 
structure of the system arc available at this level, parallelism 
can be expressed in a convenient way. Although systems can 
be fully described at the agent level, this level is best used to 
describe "frameworks" rather than lo program user 
compulations. Computations expressed at this level are 
machine independent. 
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-the cluster layer maps the "agent layer" into a specific 
computer system, it is in this layer that the most suitable Mach 
primitives arc selected, the code is compiled and linked, tasks 
assigned to machines, etc. 

While Agora can offer general support for constructing parallel 
systems, our work tracks closely the particular needs of CMU's 
continuous speech recognition system. In Figure 1 and 
throughout our discussion, we frequently illustrate Agora 
features by referring to the speech system. To introduce Agora's 
role in developing a specialized application we next summarize 
the development steps for a parallel speech recognition system. 

Application engineers first program one or more "frameworks" 
that implement the computation environments that an 
application requires. In the case of the continuous speech system 
we currently iutve a different framework for each of the major 
components and a "global" framework that ties the components 
together (see Figure 2). In the case of Figure 2 the framework 
provides data flow and "remote procedure call" communication 
mechanisms. A framework provides all the tools to generate and 
maintain framework instantiations, i.e. frameworks with user 
provided code and data 

Researchers can then use frameworks to create framework 
instantiations. An instantiation of the framework is generated by 
describing the computations (the blocks in Figure 2 ), the data 
(the arcs in Figure 2) and the communication (the 

iiKerconncctions between nodes ami arcs). Convonenis of a 
framework insiamiaiion can themselves be instantiations of some 

other fratnewnrk, In the speech system, for example, the word 
hypotlicsi/cr is described by using a framework that embodies 
the asyiuiironous control necessary to run the word hypothesi/.cr 
in parallel together with code to display the data processed; a 
user need only be familiar with the algorithms and the language 
in which they are written, kcseaivhcrs can then instruct the 
framework to map agents (via resource-sharing clusters) to 
processors, The framework, under user control, can then execute 
one or more system agents while the user can iivnect the 
elements generated by means of an element editor. Finally, a 
framework can be instructed to run the complete system. 

Frameworks are described In terms of C or Lisp procedures 
{called agents) that communicate with the rest of the system only 
through streams of typed data elements (called element streams, 
or FS) whose type is globally defined. An element might 
contain, for example, Infbrmution postulating candidate 
phonemes and their likel'hoods for a given time interval. The 
code provided by the application builder can also be in cither C 
or Lisp. 

This paper is an Introduction to some of the ideas underlying 
Agora. The current design of Agora is the result of the 
experience acquired with two designs and implemenlalions 
carried out during 1985. One of these implementations is 
currently used to support the execution of a prototype speech 
recognition system on a network of Perqs and microVaxes. The 
design described in this paper is expected to be running on a 
shared memory multiprocessor by the end of the second quarter 
of 1986. 
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Figure I: Onion-skin Model of Agora and its Interfaces 
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2. The Framework Level 

The framework level is the primary interface for describing, 
starling up and running an application. Different applications 
require different computational models and a different style of 
interaction with the user. A framework unifies all tiie necessary 
tools within a single gnvironment so that they can all benefit 
from knowledge of the task. Most of this knowledge is built into 
a framework by its designer, e.g. by adding a display procedure. 

Agora contains a number of tools thai can he used when building 
a framework. Eacii tool can be parametrized to fit the 
requirements of the framework. Tools arc controlled through a 
common graphical user interface. Agora contains tools to 
support: 

•Task dtscriptlun. The systems thai we envision building with 
Agora corualn up lo 50 independent compulalions). Systems 
of this si/e contain a large number of interconnections and are 
complex cittmgh to make a impossible tothock the correctness 
of the description by hand. Agora provides a graphic 
structured ediinr thai performs a number of checks on the 
correctness of the system structure. This editor am be 
paramelri/cd lo 111 a given framework as a VLSI editor can be 
paramclh/cd to fit a given technology. This editor also 
contains functions to start up a syslcm and perform some 
checks of die structure of the system at run time. 

-Custom displity of user data. When debugging an application it 
is useful to examine the data that How within the system in a 
compact, graphic form. Agora provides a number of facilities 
that let a framework builder specify "display functions" and 
then attach them to data communication paths. 
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■Editing of tienifnts.Strcams of data can be generated from 
(lies and edited interactively by means of a "stream editor". 
The editor is automatically configured by ihe information 
provided by Hie task description editor. The user can read 
hypotheses from files or from streams, write hypotheses to files 
or insert them into streams, or just browse through the 
elements, 

-Multiprocess dcbugglng.Agora contains a debugger that 
continuously traces memory activity in a non-obtrusive way, 
performs controlled replay of a particular stream of agent 
activations and can start a number of element stream and 
language debuggers in parallel on multiple element streams 
and agents. 

-Performance nionitoring.Agora provides performance statistics 
that can be displayed in real time or sent to user code to be 
used as the input of load balancing procedures. 

2.1. Example 
We will use as example the description of a realistic (although 
simplified) component of the CMU speech recognition system: a 
word hypothesi/er that computes word hypotheses "anchored" 
at specific times in the utterance. 

At the framework level this component is charactcriired by three 
data types: anchors that specify when a word matching should 
occur, phonetic hypotheses that arc used to perform the match 
and word hypotheses that are the result of the match. Two 
functions arc required: the matching function that hypothesizes 
words from phonemes and the condition function that checks if 
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I'igurc 2:  Pictorial Representation of the Distributed 
Speech System framework 
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there arc cnougti pliuncmcs wiihin ;i lime interval IVom the 
anchor. The winl hy|iuihesi/er nmsl he able lo rucctvc anchore 
and phonemes in any order and peii'orm a word matching 
around each anchor after having cheeked thai all Ihc necessary 
phonetic hypotheses are available. 

The word-hypothesi/er framework lets a user specify the two 
fundiuns and binds them with Hie agent level description that 
provides the parallel implementation (sec Section ). The 
fi amework also contains a display function that can be altered by 
a user. 

3. The Agent Level 

Agora (as any other environment) cannot provide optimum 
performance independently of the style of computation that a 
task requires and independemly of the architecture and 
implcmenlation of the computer system on which it runs. 
Agora's agent level is particularly suitable to tasks where the 
processing that is required i" almost but not completely known in 
advance and some latency in setiing-up a computation can be 
tolerated. Agora also has explicit support for pipeline and 
parallel/pipeline computations, 

These arc the main features of Agora: 

-Caches. Agora manages on behalf of the user a "global" 
memory that is organized in streams of records. Dynamically, 
part of this memory can be "cached" into the address space of 
a particular computation. Caches: 

'define a convenient model of structured and protected 
shared memory; 

"can only be accessed through appropriate primitives that 
guarantee synchronization; 

*am be implemented regardless of the fact that the computer 
system used has or not a physical shared memory; 

♦allow automatic optimization of data distribution. 

Analogies can be drawn to Ihe hardware caches in 
multiprocessors. Agora's model resembles ownership caching 
schemes, see [7]. 

-Hidden parallelism. Computation descriptions are independent 
of the fact that parallelism is available in the underlying 
computer system. In many cases parallelism and pipelining can 
be automaticallv Rcncratcd by the system. 

3.1. Main Abstractions 
The main ahsUactions thai Agora presents tu Ihc framework 
builder are: 

ITenients: ihe (only) form in which data are transported 
and stored; 

r.lemcnt Streams: sequences ol'elcmcnls; 

Agents: the    unit   of   processing    that   executes 
concurrently with other agents, exchanges 
data using element streams and is activated 
when certain patterns of elements are 
generated; 

We will describe each of these components and explain how they 
interact. 

3.1.1. Elements 
Agora is cemered around representing data as streams ot 
elements of the same type (element can be regarded as variable- 
size records), In a speech recognition system, for example, an 
element could be a phoneme, word, sentence or some other 
meaningful inlermediate representation of speech. Each stream 
has a name that completely idenlifies the stream, a type (from a 
se' of globally-denned types) and is ordered by the lime of 
"arrival" of its elements. Any agent that knows the name of a 
stream can perform operations on it since Agora "registers" the 
name of each stream when it is created. Since "names" are 
global the only condition for sharing a stream between agents is 
that a stream be first "created" by an agent (the agent cache 
becomes then the "owner" of the slreani) and then declared 
"shared" by another agent. Ownership can be transferred from 
agent to agent 

Element types arc described within the agent code by using the 
syntax of the languages that are used the program the agents with 
very few additions. This means that users need not learn a 
different language. The additional information is stripped from 
the source code by Agora before the code is handed to the 
compiler or interpreter. This is in contrast witli other language- 
independent data transport mechanisms, like the mechanism 
described in [2], that use a separate language to define the data 
The type declarations can contain extra information for 
debugging purposes, e.g. the legal values that elements can 
assume, display procedures, etc. 

Agents can  rcfcr_ to subsets of element streams by using 
capabitities, Capabilities are identifiers that contain three pieces 
of Infomuttion: the stream name, and two indexes that identify a 
number of contiguous elements by their first and lasl element. 

Capabilities are manipulated by Agora functions and can be used 
to "copy" from a cache into the address space of an agent and to 
copy IVom the agent space into a cache (often no real copy will be 
necessary). There arc three "modes" of access; Raul-only: the 
data cannot be written back into the cache. A<ld-eimeni: data 
can be added at the end of a stream. Replace: elements can be 
replaced by an equal number of new elements. 

3.1.2. Ayonts 
Agora Ibices the user to split a compulation into separate 
components called agents. Functions (called agent functions) are 
incapsulaled in a module (called agent) that executes 
concurrently with other agents. Agent functions are completely 
independent of the topology of the system they are used in and 
must only bo able to deal with ihe element types that ihey 
declare. An agent call contain mere lhan one agent function, 
each activated by a different pattern (see later). Only one agent 
function is active at any given time. Examples of agents in a 
speech system include n vowel dnssifier in the phonetic classKicr 
cluster and a matcher in the word hypotliesizer. 

Agents are created by an Agora function {build), cadi call to 
build potentially generates muliiple instances (called clones) of 
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the same agent. If an agent is programmed as a set of state-less 
functions the number of instances does not affect the 
compulation but for the fact that some agents computations 
might he executed In different order (which, in turn could affect 
the outcome of die computation). 

Agents are associated with a pattern that is checked every time 
one of the streams mentioned in the pattern changes. Multiple 
paiterns that refer to the same stream are evaluated sequentially 
in the order they were declared but starting from the last pattern 
that successfully matched. Only the streams that have been 
"cached" in the agent in which the pattern is specified can be 
used within a pattern. 

The pattern is expressed in terms of "arrival events" (the fact that 
an clement has entered a stream) and in terms of the values of 
the element fields. For example, one can specify a pattern that is 
matched cv-;ry lime a new clement enters the sfcam or that only 
matches if a field in the clement hits a specific value. More than 
one stream can be mentioned in the same pattern but no 
varinhlcs arc pcrmiiled in the pattern (i.e. there is no binding), It 
U also possible to specify if an event must be considered 
"consumed" by a successful match or if it can be used by other 
patterns (this can be very useful to demultiplex a stream into 
different agents or to guarantee nuitual exclusion when needed). 

This is how a "typical" agent will look (the syntax has not been 
formally specified yei): 

»Utiit ro''(list of ci;.;il)ililic,s am! parai.ictcrs); 

entry imiiil al crtirthM tirac: 
<caAe> 

crc.ilinn ol Ben and sh.mil clement strenins; 

<coilc> 
mi ofltCBl lanilinir, 

iMilrj iminl triggered lij a iiattcm: 

<coilc> 

ciiil of agent funclion; 

<iiiorc entry poinls> 

c.ül of agent foo; 

<code> can contain any statement in die language that is being 
used and any of the following Agora functions, expressed in a 
way that is compatible with die language used, 

l)uil(!(...) -> agent forks another agent, specifics when the agent 
should be activated, specifies capabilities to be 
passed to the agent trnon activation, specifies 
the desired multiplicity of the agent (clones). 
The agent instantiation^) remains active and 
can be re^Jlivated an unlimited number of 
times. The user can explicitly allow or 
disallow Agora to "clone" an agent (use die 
same address space) when it is built more than 
once. 

creatc(...) ■> capability 
creates an element stream{L6) with a global 
name and a global type, li also specifies the 
legal operations on the ES. 

slure(..,) •> capability 
binds a local capabilny with a previously 
declared ES and specifics the operations that 

can be performed on the ES (read, write, 
read/write) by the local agent. The operations 
specified must be consisient wilh the 
attributes of the stream as specified in the 
corresponding create(), 

adivatioii() •> cupability 
returns a capability to the clcmeiu(s) that 
caused an activation. If elements from more 
than one stream are involved successive calls 
to activaiion will return all the capabilities. 

gci(capiil)ility) -»ocul variable 
copies the elements specified by the capability 
into the agent address space, 

rc|)lai,c(capal)ilily, local variable) 
replaces the elements pointed to by titc 
capability with the same number of elements 
contained in the local variable. 

add(p,capal)ility) adds the data to the clement stream pointed to 
by the capability. 

tcrininatc(ai>ciit) terminates all die active instances of the agent 
effectively canceling the effect of build. Can 
be used by an agent on itself (and its siblings). 

uptlate(ageiit. pattern) 
changes the pattern matching clause. 

regulate(agcnt! new-power) 
controls the resource allocation. 

3.2. Example 
This fragment of code describes the agent level implemcnUition 
of the work hypothesi/.cr framework. Please note that the use of 
Agora's constructs and not the syntax or the (c-like) language are 
important llie time when to compute a word hypothesis is 
generated elsewhere and added to a stream called anchor-points. 
A word-hypothesization can only be performed if all the 
acoustic-phonetic hypotheses within delta time units from anchor 
are available. Phonetic hypotheses arrive at unpredictable time 
and in any order. 

First, a few (six) agents that wait for "anchor points" are created. 
When any of diese agents receives an "anchor" it checks if there 
are enough phonetic hypotheses and, if so, executes the match 
function, If not enough hypotheses are available, it creates 
another agent that will wail for the phonemes. 

Type anelnif { 
Anclmi time : Integer; 

I 

Begin! line, rmiiime; Integer; 

t 
type won! | 

/♦,*k-i,*+*^  :-'t»+* M*/ 
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Cv agent sctu|i-«im!-lijp() 

(inch is cu';i(('(an'.li(ir, "iiiiluir-points"); 
plmn := ereflM ihwirac. "iilinnrnic-lntlicc" ); 
>»or<l := vriMtt'C nonl, "woiil'-ltllicc"); 
tpuilil(tti)ril-liH)i'tl,i''.i/c(),;Kli»alecin:li-iiriiviilofanch, 

6 cloms); 

i'nil-of-agfnl; 

ngent ivoiil-liyiiotlieslic() 

phon:«? >,Iiiire("phunfra«-liitlicc"); 
ancii:= i!?l(iirli»nlion{)); 

/♦ grti the last I'Umcnt in llic stream pointH lo by plion and checks 
its t'mc */ 
if conditionC anch •> Anchortlme, get - last- (!emenl( phon) •> EndTlme) 
then | nwtch( nnch •> AnchorTiine); 

udd- clemcnK sliarc("«flnl--lattice"), matched - word); ] 
else build (wait( nnch •> AnchurTlme, actiyate iiewarrival-of phon), sliarable) 

end-or-agent; 

»gent wall( mnrkor: Integer) 
If condltioii( marker, gel - ncllnaf ion() ■> EndTIm« ) 
then { 

mntch( marker); 
add - clenient( 5h«re("wonl - lattic'"), matched - word); 
tcnninate(mysell); 

} 
end-of-ngent; 

function match (time-reference; integer, matched-word: word) 

end; 

/*•**•••*****•«****/ 

functiun comlllionf tl,n : iHtegef): buoliMii 

eml; 

Although clusters could also be implemented MS Mach tasks, 
iharing the address space between "rnndom" tasks can be very 
dangerous. Clusters can be implemented (in decreasing order of 
efficiency) as multiple processes that share memory or as 
multiple processes interconnected by messages. 

The Agora mode! of computation provides a variable degree of 
multiprocessing: agents can be executed by separate processors 
and clusters can be used to dynamically control the allocation of 
processors. 

One of the characteristics of "intelligent systems" is that the 
effort expended to find a satisfactoiy solution can depend on the 
order in which different activities are scheduled. Agora provides 
all the components necessary to implement focus-of-attention 
policies within a system, but the responsibility of designing the 
control procedures remains with the user. The Agora cluster 
run-time support procedures match the scheduling requests 
performed by the agents with the reality of the underlying 
ompuler system. For example, if a user indi'-n-'S that an agent 
can be replicated and run in parallel. Agora .an replicate it and 
attempt to execute It in parallel with other instantiations of the 
same agent. 

4.1. Example 
I he mapping ol'lhc word hypothesi/cr framework into a parallel 
system shows how Mach primiiivos can be used. The agent 
wurd-hyi'olhrsise will be built as a task if the target machine does 
not have slnred memory. I he pragma "6 clones" (in the call lo 
build) indicates to the cluster level that the framework builder 
believes six copies of the ngciU can be efficiently used. If the 
machine has shared memory then threads Gin be used and the 
pragma becomes irrelevant since new threads can be generated 
wiliiout incurring too much cost. The cluster layer is instructed 
(by using the pragma "sharable" In the call to build) to build the 
mil agents as threads of tlu same task. This is possible because 
Hie agent wai! and the functions it calls do not use any global 
data. 

4. The Cluster Level 

Clusters are collections of agents that can benefit from sharing 
some of the compuier resources. F;or example, a cluster will 
contain agents thai slnre an element stream or agents that should 
be scheduled (i.e. execute) together. An example of a cluster 
could be a set of agents that accept parameters such as pilch, 
amplitude, zero crossings and energy levels and produce 
phonetic units. Agora maintains information on which agents 
are runnable and on how much of the duster cuiiipntation power 
each agent should be receiving, the "agent power" can be 
indii'Miced by all the agents in a cluster by using Agora 
piii.iilives. 

Clones {multiple instances of the same agent) have a very 
effective and simple implementation on the Mach operating 
system [1] as a single process (task, in Mach terminology) in 
which multiple "threads" of computation (basically stripped- 
down sub-processes that share the address space) implement the 
agents. 

5. Conclusions 

Agora has a number of characteristics thai make it particularly 
suitable for the development of complex systems in a 
multiprocessor environment, 'these include: 

-the complexity of parallel  processing can be hidden  by 
building "reusable" custom environments that guide a user in 
describing, debugging and running an application without 
getting involved in parallel processing programming; 

-computations can be expressed in different languages; 
-the system topology can be "computed" in real time; 
•data are dynamically "cached" to minimize data transfer; 
-agents can explicitly and dynamically declare how they interact 
as far as memory is concerned; 

-agents are activated by pattern matching on the element 
streams; 
agents are described in a way that allows Agora to match the 
available resources with ihc requirements of the computation. 
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Main  Mmny 

The Organiation oFtlie Agent Level 
of the Word-Hypolhesizer 

Agora also provides a way of describing the task at hand without 
any concern for the kind of physical distribution that will be 
possible en a given computer system. Thus, a system description 
will not change whether the system is run on a network of 
workstations, on a shared memory multiprocessor or on a 
hypcrcube-nelwork multiprocevsor. 
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Speech Recognition Experiments 
with a Cochlear Model 

Richard F. Lyon 
ScKamberger Palo Alto Research 

3340 Hillview Ave. 
Palo Alto, CA 94304 

Abitract 

There arc several ways that a computational model 
of auditory processing in the cochlea can be applied as 
the front end of a speecn recognition system. For an ini- 
tial round of experimentation, the fine time structure in 
the model's output has been used to do spectral sharpen- 
ing, yielding a "cochleagranT representation analogous to 
a short-time spectral representation. In later experiments, 
fine time structure will be exploited for a more detailed 
characterization of sounds, and for sound separation. 

So far, experiments have been done with only two words 
("one" and "nine") spoken by 112 talkers, to limit the range 
of phonetic variation to simple voiced sounds, while provid- 
ing a good sample of inter-speaker variation. The structure 
of the vector space of "auditory spectra" has been exam- 
ined through vector quantization experiments, which yield 
a measure of information content and local dimensionality. 

The inclusion of more dimensions of perceptual varia- 
tion, such as pitch and loudness, in a speech front end rep- 
resentation is both an opportunity and a problem. Much 
larger vector quantization codebooks and more training 
data may be needed to take advantage of the extra in- 
formation dimensions. A product-code approach and an 
improved algorithm for finding the nearest neighbor code- 
word are suggested to help cope with the problem and take 
advantage of the opportunity. 

Preliminary recognition experiments using a single code- 
book per word and no lime sequence information have shown 
a performance of about 97% correct one/nine discrimina- 
tion for talkers outside the training set, und 100% correct 
for second repetitions from talkers in the training set. Fur- 
ther experiments are currently underway. 

Introduction 

Our experimental cochlear model has been most re- 
cently described in terms of its performance on simple "phys- 
iology'' eAperiments [lj, Those experiments concentrated 
on the role of the AGC stages, which serve to partially 
normalize the output representation in the face of a wide 
dynamic range of overall amplitude and overall spectrum 
variations. The dynamics of the gain control process help 
to preserve perceptually relevant information about loud- 
ness and spectrum, emphasizing short-term changes. 

The output of the model is regarded as a sequence of 
vectors in n-space, reniesenting n-channel perceptual spec- 
tra. Silence maps to the zero vector, and perceptually 
louder sounds map to points further from zero. But de- 
tailed characterizations of this pattern space are difficult, 
due partly to its high dimensionality. 

The number of important dimensions of variation due 
to phonetic and talker identity is an important issue in 
designing recognizers to work in this space, and is discussed 
in the next section. The following section discusses a set of 
recognition experiments, including comparisons with LPC. 
Finally, improved vector quantization techniques to work 
in this pattern .'pace are suggested in the last section. 

The Space of Cochlear Spectra 

In the current version of the model, 92 bandpass chan- 
nels are used to span t range of about 23 barks (about 
100 Hz to 10 kHz). By modeling hearing, it is hoped 
that sounds will map into 92-space in such a way that 
a simple Euclidean distance in that space will correlate 
well with perceptual distinctions. Therefore, it is expected 
that a low-distortion vector quantizer designed to minimize 
mean squared Euclidean error will preserve most of the rel- 
evant information in a cochlear spectra. To explore this 
notion, codebooks of different sizes and distortions were 
constructed from various training corpora. 

To make codebooks, a modified k-means algorithm was 
used. In each pass over the training data, new crdewords 
were added to the codebook whenever the distortion to 
a training vector exceeded a desired distortion bound; at 
the end of a pass, each codeword was moved to the aver- 
age of the vectors that were closest to it. Comp.u-ed to 
a straight k-means with codebook size doubling, we found 
convergence to about the same rms distortion for a given 
codebook size, but in fewer iterations. Having maximum 
distortion as an independent variable is also useful. 

The resulting data on codebook size vs. rms distortion 
and max distortion for a training corpus of 112 talkers say- 
ing "one" and "nine" are shown in Figure 1. The desired 
value of m.dX distortion, such that reconstructed cochlea- 
grams have clear and continuous formant and pitch tracks, 
is probably less than the lowest tried so far. 
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Figure 1: Codebook rms distortion (filled symbols) and 
maximum -listortion (empty symbols^ n. codebook size. 

The slope of the size vs. distortion curves (on a log-log 
plot) should reveal the dimensionality of the subspace thai, 
the codewords are packing into. Cutting the distortion by 
a factor of two will requiia a factor of sixteen in codebook 
size increase if there aro four diiiwnsions of variation to be 
covered. 

The data show slopes corresponding to about 6 dimen- 
sioris. Since the phonetic variation in tha test corpus is 
quite small, much of this variation is probably due to talker 
differences. Since lower pitch harmonics are resolved in the 
spectrum, and loudness is not completely normalized out, 
these perceptually important dimensions contribute impor- 
tant dimensions of variation in the data that would not nor- 
mally be seen in LPC and other common repre?«ntations. 

For the one/nine data, a codebook size of 1801 Is barely 
adequate for high-fidelity coding of cochleagrams of the 
talkers in the training set. For the complete digit vocab- 
ulary, a codebook about five times larger would probably 
perform similarly. The distortion caused by various code- 
books is apparent in figure 2. 

Based ca these observations, it appears that represent- 
ing a complete range of phonetic variation (eight or more 
dimensions), with reasonable fidelity would require a code- 
book size around 50,000 to 1,000,000. These sizes are far 
beyoi > normal practice in the speech recognition field, and 
require new techniques if they are to be useful. 

R.jrognition Experiments 

Since training our existing recognizer [2] to use the 
c Dchlear spectrum pattern space will take considerable time, 
•• much simpler test was undertaken first. Using the tech- 
riique of Shore and Burton [3], a codebook was designed 
for "one" and another codebook was designed for "nine", 
using a single repetition of each vord from each of the first 
5" if the 112 talkers. Setting maximum distortion to 140 
for both cases, the codebook for "one" reached a size of 
261 and an rms distortion of 45.2, while the codebook for 
■'nine" reached a size of 272 and a 5% higher rms distortion 
of 47.3. 

Recognition proceeded by comparing quantization dis- 
tortions (rms or total squared distortion) using the two 
cndebooks, without compensation for the different code- 
book characteristics. No endpoint detection weis done, so 
the generous amount of silence and noise at both ends of 
the words was included in the distortion measurements. 

Testing on the second repetition of the same words from 
the training talkers led to no errors (in 100 trials). This 
result is encouraging, since this recognition technique has 
not previously been very successfully applied to speaker- 
independent or multi-speaker problems. 

Testing on the other 62 talkers showed a serious bias: 
there were no misrecognitions of "one" as "nine", but ten 
misrecognitions of "nine" as "one" (5 on first repetition, 5 
on second repetition, mostly from different talkers). Over- 
all, on this speaker independent condition, there are 10 
errors in 248 trials, or 96% correct. While this does not 
approach the performance of a good speaker independent 
isolated digit recognizer on the "one/nine" discrimination 
task, it is quite respectable for this simple algorithm. 

Using order 11 LPC aa a parameterization for compar- 
ison, with an Itakura distortion measure, we obtained at 
best 2 errors in 100 trials from talkers in the training set 
(98% correct), for various codebook sizes, a"d 14 errors in 
248 trials on the other talkers (94.4% correct). Surprisingly, 
emi very small codebooks (2 to 16 codewords) performed 
well with LPC, so it was decided to go back and try the 
cochleagrams with small codebooks. 

Mth cochleagrams, it was found that for talkers in the 
training set, larger codebooks work best (sizes 32 and up 
gave no errors), but that nmaller codebooks do a better 
job of generalizing to talkers outside the training set (size 
32 was optimal with 7 errors in 248 (97.2% correct), while 
sizes 16 and 64 both were both slightly be*ter than the ini- 
tial large-codebook experiment, with 9 errors each. These 
differences may not be significant. 

For every codebook size except size 2, the cochleagrams 
gave fewer errors than the LPC, usually by more than a 
factor of two. 

VQ Algorithm Improvements 

In spite of the encouraging results with small code- 
books, it seems that to take full advantage of the infor- 
mation in cochleagrams with large talker populations will 
require very large codebooks. There are (at least) two alter- 
native approaches to making very large vector codebooks 
practical. First, better fast quantization algorithms can be 
used to reduce the time cost. Second, codebooks can he 
conslructed as product codes built from a small number of 
moderate-size codebooks. 

O^r present quantization algorithm takes advantage of 
the triangle inequality that applies to the Euclidean dis- 
tance metric, so that codewords too far from a current best 
guess need not be examined; this unfortunately requires a 
table of JV

2
 inter-codeword distances, and so is impractical 
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Figure 2: Cochleagram and vector quantized cochleagrams of "nine" and "one". From top: 
original, size 383 codebook, size 879 codebook, size 32 "nine" codebook, size 32 "one" codebook 

(talker outside the training set). 
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for much larger codebooks. The FN algorithm [4] uses a 
tree structure with a branch-and-bound search algorithm 
to take advantage of the same inequality with less stored 
information. Another approach which looks promising is 
to store the dual of the multi-dimensional Voronoi diagram 
[5] of the code vectors, so that each code vector is linked to 
its neighbors; in this case, when the current best guess is 
better than any of the neighbors, no further codewords need 
be examined. Using the last frame's quantization index as 
a first guess is very effective in these algorithms. In any 
case, the auxiliary data structures should be designed such 
that they aie easy to modify when expanding or iterating 
the codebook. 

The product code approach [6] is an alternative way to 
encode many bits of information per symbol with low dis- 
tortion and small codebooks. The code space is the direct 
product of smaller codes, each of which encodes a separate 
part of the information in the original vector. In the sim- 
plest case, the original vector to be encoded is simply split 
up such that some components (i.e., cochleagram channels) 
are used as a small vector in one codebook, and the other 
components are used with one or more other small code- 
books. But other vector processing operations coald also 
be used to try to separate the information more cleanly 
into feature vectors of lower dimensionality. For example, 
one process could attempt to capture pitch information, 
another could try to capture first formant information, etc. 
As long as these "feature extraction" processes don't lose 
information, the overall vector quantization distortion can 
be mad« as low as desired (even if quantizing sub-optimally 
by independently quantizing with each small codebook). If 
each feature detecting process captures only one or two im- 
portant dimensions of variation, the resulting codebooks 
could be quite small. The structure imposed on the code 
space by the product code may also be useful in sume kinds 
of recognition algorithms. 

Conclusions 

The cochlear model produces a spectral representation 
that captures important dimensions of speech signals. Pre- 
liminary experiments show that cochlear spectra lead to 
about 50% ftwer errors in a very simple recognition tech- 
nique, compared to LPC. Taking full advantage of the ex- 
tra dimensions of information in cochlear spectra with a 
wide range of phonetic material and a wide range of talkers 
may yet require very large vector quantization codebooks 
or other techniques to extract the relevant features. 
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AN AUDITORY-BASED 
SPEECH RECOGNITION STRATEGY! 

APPLICATION TO 
SPEAKER-INDEPENDENT VOWEL RECOGNITION* 
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ABSTRACT 
This paper describes a new system for speech processing that 

it guided by knowledge about the human auditory system. A 
bank of critical band filters defines the initial spectral analy- 
sis. Filter outputs are subjected to an adaptation model that 
introduces features such as enhanced onsets and compressed dy- 
namic range. The adaptation outputs are delivered to two par- 
allel channels, each of which produces outputs appropriate for 
distinct subtasks of the recognition process. One path yields an 
overall energy measure for each channel, an envelope response 
that can be identified with "mean rate." The outputs of this 
path appear useful for locating acoustic events and assigning 
segments to broad categories. 

The extent of dominance of periodicities at each channel's 
center frequency is captured by a synchrony measure in the 
other path, whirh yields a spectral representation with enhanced 
spectral contrast but with "amplitudes' that are only vaguely 
related to energy in the corresponding frequency band. The 
outputs of this stage show clear formant peaks, with smooth 
transitions over time. These outputs were applied to the task 
of speaker-independent vowel recognition, using an intermediate 
"line-formant' representation that is derived by applying tech- 
niques similar to those used in vision research. The formant 
data are first reduced to fuzzy descriptors such as "rising for- 
mant over the second half of the vowel centered at 12 Barks." 
The recognition process involves specifying for each vowel the 
tolerance ranges for the first two formants, and then searching 
the list of the line-formants of au unknown token for appropriate 
matches. Once the line-formants are abstracted, the recognition 
process is extremely fast, and performance compares favorably 
with other results reported in the literature for similar tasks. 

studies of auditory physiologists, we now know quite a bit 
about the kinds of transformations that take place, at least 
at the peripheral level, and it is feasible to build computer 
models that take these effects into account. 

The outputs of such models can often be represented 
in a spectrogram-like form, such that resonances of the 
vocal tract show up as peaks at the appropriate frequen- 
cies. It may be appropriate to use techniques nmilar to 
those used in vision research [7] to abstract fiom such 
spectrogram-like representations the relevant information 
necessary for phoneme identification. By first construct- 
ing a "primal sketch" of an auditory-based spectrogram, 
it is then possible to identify such prominent features as 
a rapidly falling formant in a form that readily leads to 
a subsequent straightforward phoneme recognition proce- 
dure. Specialized frequency-modulation detectors in the 
central auditory system [13] lend further credibility to such 
an approach. 

This paper is divided into two major units. The first 
half focuses on the model for speech processing, which pro- 
duces two spectrogram-like representations, from which 
appropriate features could be extracted. The second half is 
concerned with a proposed new speaker-independent vowel 
recognition strategy, based on formant trajectories. Fea- 
tures for recognition are abstracted from the synchrony 
spectrogram obtained as an output of the auditory model. 
A set of 16 vowels and diphthongs of American English is 
selected as a small recognition task to serve as a testbed 
for the proposed method. 

INTRODUCTION 
The human auditory system is an existing speech rec- 

ognizer with excellent performance If we could build com- 
puter models that adequately reflect the transformations 
that take place in the ear, then the resulting "spectral" 
representations should be superior to other ropresentations 
for computer speech recognition.   Due to the extensive 

•This research was supported by DARPA under Contract N00039-85- 
C-0254. monitored through Naval Electronic Systems Command. 

PERIPHERAL MODEL 
Auditory neurophysiologists have gathered consider- 

able drtta describing how nerve fibers in the eighth nerve 
of the mammalian auditory system respond to tone stim- 
uli, tone complexes, and synthetic speech stimuli [1,3,5,6]. 
From these data it is clear that the ear performs a fre- 
quency analysis of auditory stimuli, but that nonlineari- 
ties, such as saturation at high stimulus levels, and dy- 
namic effects, such as adaptation, are prevalent in the 
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measured responses. These data were used for guiding the 
design of a computer simulation for the peripheral stage 
of auditory processing. 

The analysis system consists of a set of 40 indepen- 
dent channels, which collectively cover the frequency range 
from 130 to 6400 Hz. A block diagram is given in Figure 
1. Each channel consists of a linear critical-band filter, fol- 
lowed by a nonlinear stage (Stage 11), intended to capture 
the prominent features of the transformation from basilar 
membrane vibration to nerve fiber probabilistic response. 
The Stage II outputs include the detailed waveshape of the 
response to individual cycles of the input stimulus; they 
are still sampled at the original 16 kHz sampling rate. The 
outputs are delivered to two parallel noninteracting mod- 
ules. One module determines the envelope response, cor- 
responding to "mean rate response* of auditory neurons. 
The other module measures to what extent the informa- 
tion near the center frequency (CF) of the linear filter 
dominates the output; i.e., determines the "synchronous 
response." 

We believe that these two representations are useful 
for different aspects of the problem of speech recognition. 
The envelope response tends to show enhanced sharpness 
of onsets and offsets, relative to the outputs after only the 
linear stage, and therefore should be useful for determin- 
ing acoustic boundaries. Furthermore, due in part to sat- 
uration phenomena, steady state formants tend to become 
broader in frequency, which should make it easier to group 
segments into broad acoustic classes. The synchrony mod- 
ule measures the extent of dominance of information near 
the filter center frequency in the channel response. This 
module is described in [10,11]; the only significant mod- 
ification reported here is the extension of the frequency 
range from 2700 Hz to 6400 Hz. The outputs of this stage 
generally show narrow peaks at the formant frequencies, 
and thus should be suitable for making fine distinctions 
among within-category competitors. 

Filter Bank Design 
The filter bank consists of 40 overlapping critical-band 

filters spanning the frequency region from 130 to 6400 Hz. 
Their frequency response is shown in Figure 2a, plotted 
on a linear frequency scale, and in Figure 2b, on a Bark 
scale [15]. The analog speech is initially filtered at 6.5 kHz 
cutoff and sampled at 16 kHz. In the interest of efficiency, 
the filter bank system was designed as a cascade of com- 
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plex high-frequency zero pairs, with taps after each zero 
pair to individual tuned resonators. Each individual res- 
onator consists of a double complex pole pair at CF and 
a double complex zero pair at half CF. The choice of a 
double complex pole pair was motivated in part by obser- 
vations of phase data on basilar membrane vibrations and 
nerve fiber responses, suggesting a 2z phase shift through 
resonance [2,8]. The double zero pair at half CF is neces- 
sary in order to produce broad low-frequency tails on the 
high-CF filters, such as are observed in neural data [6]. A 
complex zero pair at half CF has been previously proposed 
by Allen [1|. 

To specify the critical bandwidth criterion, the fre- 
quency scale in Hz wis first converted to a Bark scale 
through a nonlinear mapping function. The conversion 
was defined by the following set of equations derived by 
Goldhor [personal communication]: 

B(/)- 
.01/, 
.007/ + 1.5, 
6 In/-32.6, 

0 < / < 500 
500 </ < 1220 
1220 < / 

(1) 

where / is the frequency in Hz, and B is the frequency 
in Barks. For a given filter, centeied at frequency /0, 
the critical bandwidth in Hz is obtained by first evaluat- 
ing Bo = B{fo), and then inverting the process to obtain 
/(Bo - 1/2) and /(flo +1/2). The difference between these 
two frequencies is then the critical bandwidth in Hz. 

Bark 

Figure 2: Frpqncnry response chnracteristirs of filter bank. 
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The major design task was to determine the radius of 
the double complex pole pair in the z-plane that provides 
the critical bandwidth, given the existence of the zeros. 
This was accomplished through linear approximations as 
follows: * 

1. Compute the slope, m, of the frequency response of 
the filter near center frequency (/,) when all poles 
and zeros are included except the double pole at +/t, 
and the two poles at —/, are assumed to have a ra- 
dius of 1.0. 

2. From a linear approximation to the slope, and us- 
ing Equation 1 above to determine critical band- 
width, BW, compute two locations above and be- 
low ft where the 3dB points should be. These two 
frequency locations are separated by a critical band- 
width but may not be equidistant from /,. 

3. By linearizing the unit circle near /„ use geometric 
considerations to determine the radius of the poles 
that will yield critical bandwidth as follows. Let 
Tf(= \/2) be the ratio of the amplitude at the center 
frequency to the amplitude at the edge of the critical 
band. 

IN- 

Define: 

Then, 

/? = 
7-1 

|mn 

z = ß + BW 12 - \J{BWI2Y + /JJ 

r = 1.0 - 
BW -2z 

mTf 

In traditional spectral analysis, speech is typically pre- 
emphasized prior to Fourier analysis. Some form of pre- 
emphasis can also be motivated from an auditory stand- 
point. It has been determined experimentally that broad 
outer ear resonances should result in a boost in energy 
above about 1500 Hz by roughly 10 to 20 dB [14]. The 
gains of the filters in the model are set so as to reflect 
these resonances, as shown in the figure. 

Hair-Cell/Synapae Model 
Following the linear filtering stage, aach channel is pro- 

cessed independently through a nonlinear stage, to model 
the transformation from basilar membrane vibration to re- 
sponses in the eighth nerve. The model incorporates such 
nonlinearities as dynamic range compression and half-wave 
rectification, and also captures effects that resemble short- 
term adaptation and rapid adaptation. No attempt was 
made to model any long-term adaptation phenomena. The 

'For a derivatiua of this method for determiDing critical bandwidth, 
see Appendix 1 of |10|. 
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Figure 3: Three-stage hair-cell/synapse model. 

output of this stage represents a probability of firing, cor- 
responding to a period histogram. 

The model consists of three substages, as shown in Fig- 
ure 3. The first substage compresses the amplitude at high 
signal levels and performs a half-wave rectification, based 
on a raised hyperbolic tangent function. The output of 
this substage becomes the variable resistance in an adap- 
tation model in the second substage, which is similar to 
the one proposed by Schroeder and Hall [9]. The "current" 
through the variable resistance in the membrane becomes 
tne input to the third substage, which is simply a linear 
lowpass filter to model the partial loss of synchrony with 
increasing frequency. The shape of this lowpass filter was 
JerivtH from relevant data obtained by Johnson [5]. 

In the S-uroeder-Hall model, "quanta" of an electro- 
chemical agent are generated at a fixed average rate, r 
quanta/sec. The probability of firing of an attached nerve 
fiber is directly proportional to the number of quanta cur- 
rently in existence and to a permeability function, p(t), 
that is related to the instantaneous input stimulus level. 
The quanta are "used up" in direct proportion to the prob- 
ability of firing, and there is also a certain amount of "leak- 
age," such that a small percentage of the total quanta 
available disappear without causing a nerve fiber to fire. 

Thus, the following equation describes the number of 
quanta as a function of time: 

dn[t)ldi = r-\g + p{i)\n[t) 

where n(t) is the number of quanta at time t, r is the 
constant quanta generation rate, g is the leakage factor, 
and p(t) is the permeability function, which depends upon 
the input stimulus. 

The model can be described by an electrical analog as 
follows: 

C^ = ,''"[Gl+GV(<)1Vr(<J 
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where C, a free variable identified with capacitance, can 
arbitrarily be set to 1.0; j,, a current source, is the quan- 
tum generation rate r; and CL and Gy{t) are conductances 
associated with g and p(t) respectively. 

The model proposed here is similar to the Schroeder- 
Hall model, but with one important difference: the quan- 
tum generation rate is not fixed, but rather adapts so as 
to try to regenerate on the average the same number of 
quanta that have been "lost" through the two conduc- 
tances. Thus r(t) becomes a dependent current source, 
i,[t), determined by passing the current flowing through 
GL and Gv{t) through a leaky integrator. 

The current, io(<), through the conductance Gv{t) varies 
over a wide range with each cycle of the stimulus, whereas 
«',(<) tracks only the average value of this current. An ef- 
fect much like adaptation then occurs in the model because 
of the delay inherent in the averaging process. Thus the 
dependent current source becomes the dominant factor in 
controlling the adaptation rate of the circuit. The time 
constant of the lowpass filter should therefore be set to a 
value appropriate for short-term adaptation, i.e., around 
30 ms. 

Some Examples 
Figure 4 shows the outputs of intermediate substages of 

the hair-cell/synapse model shown in Figure 3, when the 
input signal consists of a sequence of 2-kHz tone bursts of 
50 ms duration, that double in amplitude halfway through, 
interspersed with equal intervals of silence. The envelope 
response is apparent on the left, and the detailed wave- 
shape near the cursor is shown on the right. Saturation 
and half-wave rectification are evident in G„, whereas the 
effects of adaptation become apparent in to, after substage 
B. The final output is simply t'o, lowpass filtered. 

Figure 5: Responses of 800 Hz channel to first two sylla- 
ble» of "satisfy," spoken by a male speaker, before and after 
hair-cell/synapso model. Time-expanded response during /se/ 
shown on right. 

Figure 5 shows the response of the channel tuned to 
800 Hz to a segment of natural speech. The response is 
shown after only the linear filter [top] and after the hair- 
cell/synapse stage [bottom]. The first formant of the vowel 
/a/ is close to the center frequency of the peripheral filter; 
hence the response is very strong. The time-expanded dis- 
play on the right shows the detailed shape of the response 
near the midpoint of the vowel /«/. One evident effect of 
saturation is that the periodicity at the formant frequency 
becomes enhanced relative to the periodicity at the funda- 
mental frequency of voicing. A uimilar effect is observed in 
auditory nerve fiber responses to speech-like stimuli [3]. In 
the weak second syllable, on the other hand, the periodic- 
ity at the fundamental is enhanced by the nonlinearities. 

Figure 6 illustrates the effect of the hair-cell/synapse 
stage on the envelope response, for a segment of natural 
speech. Each waveform is the smoothed output of one of 
the 40 channels as a function of time, with low-frequency 
channels at the bottom. The original speech waveform 
and the phonetic transcription are displayed underneath 
each set, aligned in time. The left panel shows the log 
magnitude of the smoothed channel outputs, after only 
the linear filtering stage, hereafter referred to as "Stage I 
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Figure 4: Responses at intermediate snbntagcs of hair-ceil/synapse 
model to 2-kH'. tone with varying amplitude.  Time-expanded 
response at vertical bar shown on right. 
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m- 
Figure 6; Envelope response of 40 channels for word "cele- 
brate," spoken by a male speaker, after Stage I [left] and after 
Stage II [right]. 
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Figure 7: Left; Wide-band spectrogram for word 'bite," spo- 
ken by a female speaker. 
Middle: Synchrony spectrogram for same word. 
Right: Narrow-'-.and spectrum and synchrony spectrum at time 
of vertical bar. 

outputs." The r ght panel shows the smoothed magnitude 
response, after Stage II. Acoustic boundaries in time are 
generally better demarcated after Stage II. For example, it 
is very hard to Fee the boundaries of the /I/ in the Stage I 
outputs, whereas these boundaries are much clearer on the 
right, particularly in the higher frequency filters. Silence 
intervals, such as the closure for the /b/, show up as a 
constant value at the spontaneous rate in Stage 11, whereas 
the Stage I outputs during silence or background noise are 
much less consistent. Rapid formant movements are also 
better preserved after Stage 11, as shown by the rapid rise 
of F2 in the /re/ of "-brate." 

The Synchrony Spectrogram 
The synchrony computation that is performed in the 

bottom branch of Figure 1 is described in detail in [10] 
The output of each channel is subjected to an amplitude- 
normalized scheme for detecting the extent of dominance 
of energy at the channel's center frequency in the chan- 
nel output. The frequency resolution is such that the 
pitch information, in the form of harmonic structure, is 
lost for male voices but typically retained in the first fo.- 
mant region for female voices. Harmonics between Fi and 
F2 are typically suppressed, because prominent energy at 
the first formant frequency in the channel output destroys 
synchrony to the intermediate harmonic. Pitch striations 
over time are usually absent, due to the amplitude nor- 
malization process. Peaks at the formant frequencies are 
much narrower than in the envelope representation, thus 
making the synchrony spectrum more suitable for fine dis- 
tinctions. 

The features of the synchrony branch of the system are 
illustrated in Figure 7. A wide-band spectrogram for the 
word "bite" is compared with a synchrony spectrogram of 
the same word, where the latter is displayed on a Bark 
scale. The synchronous "amplitude" is a highly nonlin- 
ear function of the local prominence of a given spectral 
peak. A narrow-band spectrum in the /a/ portion of the 
diphthong is compared with a synchrony spectrum on the 
right. 

The synchrony algorithm works surprisingly well in 
sounds with predominantly high-frequency energy, such 
as the /t/-burst, because the synchrony measure incorpo- 
rates energy at d.c. as well as energy at CF. Any strong 
energy concentration in the signal at high frequencies is 
mostly converted to d.c. energy, which is passed by the 
synchrony measure. Prominent peaks in the input wave- 
form well below the CF of high-frequency filters appro- 
priately reduce the synchronous response of such filters, 
because significant synchrony to the wrong frequency is 
present. 

VOWEL RECOGNITION SYSTEM 
After arriving at the speech analysis method outlined 

above, we then sought to test the applicability of the syn- 
chrony outputs to recognition problems. We defined a 
specific task and developed a complete recognition system 
for this task, based on the synchrony spectrogram repre- 
sentation. Instead of choosing traditional methods such 
as dynamic time warping and template matching, we de- 
cided to pursue novel alternative methods, motivated in 
part by vision research. The task is the recognition of the 
following 16 vowels and diphthongs of English, spoken by 
multiple native-American speakers, both male and female: 
/I, e, yu, I, e, «c, a, o, o, A, U, u, o)r, a u, or, »/. 

The first step in recognition is to describe spectral 
peak contours over time in such a way as to conveniently 
describe formant frequencies and trajectories. The typ- 
ically two-stage process of (1) formant tracking and (2) 
abstraction of rates and directions of formant movements 
is collapsed into a one-step process of directly assigning 
straight-line segments to the resonance contours in the 
frequency-time space. The computational procedures are 
straightforward, leading to a description of the formant 
information for a given vowel by a list of oriented straight- 
line segments. These line segments lead naturally to de- 
scriptions such as "rising formant," with the slope of the 
line conveying the degree of rise. No attempt is made to 
assign the line segments to particular formants, such as 
Fj. Instead, the recognition process is hypothesis-driven. 
For each vowel or diphthong to be recognised, a short de- 
scription of expected ranges of frequency and orientation 
in the time-frequency dimensions for the first two formants 
is given. 

Line Formant Extraction Process 
Figure 8 illustrates the process to obtain a list of straight- 

line segments describing the formant patterns in a given 
sonorant segment of speech. The synchrony spectrogram 
for the word "Burt," spoken by a male speaker, is shown 
in part (a) of the figure, with the frequency axis repre- 
sented on a Bark scale. A nonlinear filter-and-quantize 
procedure defines "On" and "Off" contour regions in time 
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and frequency, shown in part (b). These correspond ap- 
proximately to regions where the instantaneous amplitude 
is greater [On] or less [Off] than the local average. 

Each robust peak in a given synchrony spectral cross- 
section is allowed to vote for a best-fit line segment, re- 
stricted to stay within an "On* region and to pass through 
the time-frequency location of the peak. The selection pro- 
cess, as illustrated in Figure 9, is realized by "drawing* a 
finite set of straight lines of differing orientations through 
the sample peak. The average amplitude of all samples 
on each line, as well as the line's total duration, are de- 
termined. The "longest and strongest" line segment is 
selected as the vote for the given peak. In the figure, only 
seven different orientations are shown, whereas a total of 
11 orientations were used in the system. The votes of the 
robust peaks are accumulated in a list giving information 
about the orientation, center-points in time and frequency, 
duration, and mean amplitude of each line. 

The next step is to consider collectively the list of can- 
didate lines over a time interval defined by the unknown 
vowel's extent. Usually, several peaks vote for the same 
line or very similar lines. A heuristic algorithm was devel- 
oped to collapse the list of lines into a new list. "Equiva- 
lent" lines are merged into a single representative, and a 
count of the number of votes being merged is accumulated. 
Finally, the list is further p. aned, and line segments that 
appear to be insiguificant are discarded. Elimination is 
based on threshold requirements for the number of votes, 
the minimum allowable duration, and the mean ampli- 
tude. In the example, the line segments that remain after 
pruning are shown in Part (c) of the figure. 

The final step in the formant extraction process is to 
convert the list of line segments into a fuzzy descriptor 
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Figure 8: Illustration of Linc-formant Abstraction Procea» (a) 
Synchrony spectrogram for word "Burt"; (b) One-bit enhanced 
spectrogram defining allowable regions for line segments; (c) 
Resulting line segments describing formants of vowel. 

Figure 9: Schematic diagram of process of determining best 
line candidate to describe possible formant passing through a 
single peak. Black region denotes "On" contour. Lines at sev- 
eral pre-specified orientations are "drawn" on the synchrony 
spectrogram, and the strongest (defined by mean amplitude of 
spectrogram along the line) and longest (where lines are re- 
stricted to remain within "On" regions) line segment is selected 
as the vote for the given peak. 

format. The temporal extent of a given line is converted 
to a verbal description of its extent relative to the vowel 
end points, such as "first half." Similarly, the strength 
and orientation of the line are quantized to a small set of 
possibilities. Only the center frequency is retained as a 
number. Table 1 lists allow ible categories for each item. 

Recognition Procedure« 

The line formant representation was applied in a speakei 
independent recognition task for the following 16 vowels 
and diphthongs of English, restricted to /bVt/ context: 
/i, e, yu, I, e, a, a, o, o, A, U, U, o?, au, o^, ar/. The 
only step used for speaker normalization was to reference 
each line formant's center frequency in Barks to an imagi- 
nary "zero line" defined as the median frequency in Barks 
of Fo over the duration of the vowel. Fo was determined 
automatically using the method described in [10]. This 
normalization procedure resembles the method used by 
Syrdal [12] except that all formants, as opposed to only 
Ft, are defined relative to FQ. 

Each vowel candidate is associated with a descriptor 
list of line-segment specifications for acceptability limits 
for the first two formants. An example of the descrip- 
tor list used for the diphthong /oV is given in Table 2. 
For /o^/ to be a candidate solution, the list of line seg- 

Orientation Temporal Strength 
Rapid Rise Rapid Fall 

Rising        Falling 
Slight Rise Slight Fall 

Steady 

At Start      At End 
First Half Second Half 
In Middle Throughout 

Strong 
Medium 

Weak 

Table 1: Categories for descriptors of line formants. 
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1 1 

Freq[Bark] Orientation Temporal Strengthj 
Fl 3.1-4.6 any not at end any 

F2 
or 

6.9-10.0 
10.1-11.6 

rapid rise, rising 
rapid rise, rising 

in center 
second half 

any 
any 

Table 2: Descriptor list for scceptability of diphthong /o'/. 

ments for a given unknown vowel must contain at least 
one line that matches the descriptor for Fi, and at least 
one line that matches one of the descriptors for F?. The 
Ft descriptor is very general in its requirements, whereas 
the Fi descriptors both demand a rising formant over a 
restricted frequency region, whose range is defined differ- 
ently depending upon whether the line segment is located 
in the center of the vowel or toward the latter half. 

Each vowel is specified by "approval" requirements for 
the first two formants, and validity tests for the 16 vowels 
yield a list of potential candidates. A two-stage pruning 
process ensues. The first stage is a mandatory elimina- 
tion of certain candidates if certain other candidates are 
present. This stage is necessary because the synchrony 
spectral representation for high-pitched voices may show 
individual harmonics of the fundamental up to the first 

formant frequency. In certain cases, a harmonic below Fi 
could be an acceptable first formant for /!/, and the un- 
derlying Fj could be an acceptable second formant. If a 
back vowel such as /o/ also passed its requirements, then 
the vowel is assuredly not /i/. Rather than require that 
the /i/ approver look for line segments in a reject region, 
it is simpler to suppress /i/ on conditions of acceptability 
of certain back vowels. 

The second stage involves a verification step, which 
may include information about other formants, such as 
Fj for /»/. Often the task is to decide between two com- 
peting candidates, such as /!/ and /e/. Durational rules 
may be invoked to make a decision between a short vowel 
such as /e/ and a long vowel such as /sc/. Such rules in- 
clude an overlap region where both candidates are allowed 
to survive. 

Recognition Resnlts 
The system was trained and tested on a set of 272 to- 

kens, with each vowel spoken once in bVt context by each 
of nine male and eight female native-American speakers. 
The system gave a single correct choice 89.6% of the time. 
A single incorrect choice was given 3% of the time. The 
remaining 7.4% of the time, there were two choices, one of 
which was correct. No attempt was made to order these 
two choices. 

Three out of eight errors and nine out of 20 double 
choices involved the vowels /o/ and /a/. Most of these 
could be considered as pronunciation errors, for many of 
the speakers did not make a distinction between these two. 
Thus if these two are combined into the same class, then 
94.7% of the time a single, correct answer is given, 2% 
of the time a single, incorrect answer is given, and 3.3% 
of the time two choices are given, one of which is correct. 
The five errors were /yu/ -» /i/, /«/ -» /o u/, /A/ -» /u/, 
/o/ -. /o/, and /u/ -» /o/. 

It is perhaps surprising that the harmonic structure in 
the Fi region for female speech did not present a serious 
problem to the recognition algorithm. While the frequency 
of F, is quantized in such cases to the nearest harmonic of 
FQ, such quantization is usually adequate to make a correct 
decision about the vowel. Such structure also necessitated 
very unrestricted descriptions of allowable orientations for 
Fi. For example, although Fi should be falling for the 
diphthong /a u/, it was not possible to require a falling 
line segment because of the possible interference of the 
harmonic structure. 

Results based on training data are obviously suspect, 
particularly in a case like this where hard decisions are 
made. The system was therefore tested on the 16 words 
spoken by four new speakers, one male, one female, and 
two boys, aged 13 and 15. Results are summarized in 
Table 3, where /a/ and /o/ are collapsed into a single 
category. Performance for the two teenagers [Bl and B2] 
was somewhat worse than for the adults, but for the most 
part vowels for the new speakers fell within the ranges 
determined from training data. It is significant, however, 
that after minor rule adjustment, performance for the new 
data could be impioved to the level indicated after the 
/, without any performance degradation for the training 
data. Thus, while 16 tokens for each vowel is not enough 
data to determine the extreme formant positions for those 
vowels, it requires only minor adjustments of the system 
to correct errors that occur when new data fall outside the 
defined ranges. 

I.D. Errora Two Choices Count 
Ml 
PI 
Bl (16 yr) 
B2 (IS yr) 

0/0 
1/0 
2/0 
2/1 

0/0 
1/0 
2/3 
2/0 

16 
16    j 
16 
16 

Total 5/1 5/3 48    j 

Table 3:  System recognition results for 16 vowels spoken by 
four new speakers. 
Key: 2/1 -* Two errors before and one error after rule modifi- 
cation. 
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SUMMARY AND CONCLUSIONS 

It is still premature to know whether an auditory-based 
speech analysis system will pay off in speech recognition. 
There are emerging, however, strong indications that au- 
ditory based representations are interesting and worthy of 
further study. We have described here two such represen- 
tations for the speech signal, one based on mean rate re- 
sponse and the other based on synchronous response. The 
mean rate response outputs have been used successfully 
for locating acoustic boundaries and making broad cate- 
gory decisions [4]. Preliminary results using these outputs 
for syllable detection in continuous speech are encourag- 
ing. We are also exploring their utility in fricative identifi- 
cation, and they appear to enhance the differences among 
the fricative sounds of English, relative to standard Fourier 
techniques. 

We have demonstrated the potential utility of the syn- 
chrony spectrogram by means of a speaker-independent 
vowel recognition task. The method chosen for the por- 
tion of the recognizer concerned with extracting features 
from the auditory representation is similar to strategies 
used in vision resea ch to cartoonize pictures [7]. By re- 
ducing formant information over vowel portions of speech 
to a small set of fuzzy descriptors, it becomes feasible to 
require a recognizer to use hard decisions, thus simplify- 
ing enormously the computations involved. In spite of the 
fact that the recognizer makes use of no statistical infor- 
mation and obtains no scores other than "in* or 'out,* the 
system has excellent performance on a relatively difficult 
classification task. The training set used here is not yet ad- 
equate to predict the variability of all new data; however, 
minor rule adjustments could yield improved performance 
for the test set without changing the original results for the 
training data. We anticipate that with sufficient training 
data, it will be possible to capture nearly all of the within- 
phoneme variability (in this limited bVt context). 

The spectral representation, the synchrony spectrogram, 
chosen for extracting the line formants used for recog- 
nition, is particularly well suited to that task, because 
the formant peaks tend to be well-defined and continuous 
across time. While it may be feasible to use other rep- 
resentations, such as the LPC spectrogram, as inputs to 
the line-formant detector, it is not clear that resultb, ei- 
ther at the level of extracting the lines or at the level of 
recognizing the phonetic content, would be as good. It 
is particularly encouraging that the presence of harmonic 
structure in the first formant region for female speech did 
not cause problems in vowel recognition. 

[2] Allen, J.B. (1983) "Magnitude and Phase-Frequency Re- 
sponse to Single Tones in the Auditory Nerve," J. Acoutt 
Soc. Amer. 73, 2071 2002. 

[3] Delgutte, B. (1980) "Representation of Speech-like Sounds 
in the Discharge Patterns of Auditory-nerve Fibers," J, 
Acoutt. Soc. Amer. 08, 843 867. 

[4] Glass, J. R., and V. W. Zue (1986) "Recognition of Nasal 
Consonants in American English," paper 51.5, Proceeding» 
oflCASSP-Se, Tokyo, Japan. 
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ABSTRACT 
This paper presents a progress report on the recognition 

of nasal consonants, /m, n, I]/, in American English. Our 
present effort is focused on the detection and recognition of 
nasal consonants using acoustic information in the nasal mur- 
la a, Presentlv, we make no use of nasalisation information in 
adjacent vow' . Our immediate goal is to locate and identify 
only those nasals in continuous speech that have a clear mur- 
mur, leaving the ambiguous ones for future analysis. A nasal 
detection algorithm based on a local derision criterion has been 
developed, using the outputs of an auditory model. Evaluation 
of its performance on 365 sentences indicates that 70% of the 
nasals are correctly located, with one impostor accepted for ev- 
ery nasal. Most of the missed nasals occur in a small number of 
well defined phonetic environments in which the nasal murmurs 
are typically articulated poorly. Nasal identification is based on 
a set of five acoustic measures and a strategy that combines a 
hierarchical decision tree with the likelihood measures for each 
feature. Evaluation of the classifier performance on the same 
database indicates that 80% of the nasals and impostors are 
correctly id ntified, yielding an overall nasal recognition rate of 
56% with an insertion rate of 15%. In order to improve system 
performance, we must make use of acoustic information from 
adjacent vowels. 

INTRODUCTION 
This paper describes our effort in recognizing nasal con- 

sonants, /m, n, r)/, in American English. Nasal conso- 
nants are difficult to recognize for several reasons. First, 
the characteristics during oral closure, often referred to 
as the nasal murmur, differ significantly from speaker to 
speaker because of individual differences in the size and 
shape of the nasal and sinus cavities. Second, a nasal 
murmur can be affected drastically by the phonetic envi- 
ronment. In some cases, as in "camp," the nasal murmur 
is almost entirely absent. In such cases, the detection of 
the nasal consonant depends almost entirely on the degree 
of nasalization in the adjacent vowel. Finally, the complex 
production mechanism makes acoustic characterization of 
nasals difficult. 

•This research was supported by DARPA under Contract N00039-85- 
C-0254, monitored through Naval Electronic Systems Command. 

The goal of our research ii to develop algorithms that 
recognise nasal consonants in continuous speech. Realiz- 
ing that in some phonetic environments the presence of a 
nasal consonant is almost entirely encoded in the adjacent 
vowel, our strategy utilizes acoustic cues from both the 
nasal murmur and the adjacent vowel. The recognition 
strategy is as follows. First, regions in the acoustic signal 
that potentially contain nasal consonants are delineated. 
Next, acoustic measurements made in each region are used 
to decide whether the region corresponds to a nasal mur- 
mur or an impostor. Measurements are also made in the 
adjacent sonorant regions to decide whether or not they 
are nasalized. Finally, the independent decisions based 
on the consonantal and vocalic portions are combined to 
provide a single indication of the presence of a nasal con- 
sonant. 

Our present emphasis is on the detection and recog- 
nition of nasal consonants based solely on acoustic infor- 
mation in the nasal murmurs, and not on the degree of 
nasalization in adjacent vowels. Our immediate goal is to 
locate and identify only those nasals in continuous speech 
that have a clear murmur, leaving the ambiguous ones for 
future analysis. We will first describe a nasal detection 
algorithm that attempts to delineate regions in the acous- 
tic signal that may contain a nasal murmur. Next we will 
deserve the identification algorithm and evaluate the sys- 
tem performance. We have not yet completed the nasal 
recognition system outlined above; therefore, this paper 
should be viewed as a progress report. 

NASAL DETECTION 
Potential nasal murmur regions in the acoustic signal 

are detected in several steps. First, the speech signal is au- 
tomatically delineated into stable acoustic regions. Next, 
each region is classified into one of four broad phonetic cat- 
egories, using measurements derived from the gross spec- 
tral shape within the region and from the energy contour 
around a region. Finally, seveial simple parameters are 
used to rule out obvious impostors. 
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Signal Representation 
The algorithm for finding stable acoustic regions uses 

a spectral representation that incorporates known proper- 
ties of the human auditory system, such aa critical-band 
filtenng, half-wave rectification, adaptation, saturation, 
spontaneous response, and synchrony detection [6]. Specif- 
ically, we use the envelope of the output of the filter chan- 
nels of t hair-cell model, corresponding to the "mean rate 
response* of the auditory neurons. The model consists of 
40 filters equally spaced on a Bark frequency scale, span- 
ning a frequency range from 130 to 6,400 Hs. The hair-cell 
outputs are represented as a 40-dimensional feature vec- 
tor, computed once every 5 ms. 

We find this representation desirable for several rea- 
sons. The hair-cell model tends to enhance the onsets 
and offsets in the critical-band channel outputs. For low- 
amplitude sounds, the output corresponds to the spon- 
taneous firing of the neurons, and is greatly attenuated. 
These two effects combine to sharpen acoustic boundaries 
in the speech signal. Furthermore, due to the saturation 
phenomena, formants in the envelope response appear as 
broad-band peaks, obscuring detailed differences among 
similar sounds. As a result, we surmise that this repre- 
sentation may be appropriate for broad phonetic classifi- 
cation. 

Figure 1 compares the hair-cell envelope response (on 
a Bark frequency scale) with a wide-band spectrum (on a 
linear frequency scale) computed during an /s/ (left) and 
at a /k/ release (right). For these examples, the hair-cell 
output generally enhances important acoustic cues while 
suppressing irrelevant information. Note that the outputs 
of the low-frequency channels of the hair-cell model show 
only the spontaneous rate response. 

Finding Stable Acoustic Regions 
Our next objective is to establish stable acoustic re- 

gions for further phonetic analysis. Realising that certain 
acoustic changes are more significant than others and that 
the criteria for boundary detection often change as a func- 
tion of context, we adopted the strategy of measuring the 
similarity of a given spectral frame to its immediate neigh- 
bors. The algorithm moves on a frame-by-frame basis, 
from left to right, and attempts to associate a given frame 
with its immediate past or future. Specifically, each frame 

Figure l! A rompariaoo. of hair-cell versus DFT outputs. 
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builds up forward and backward cumulative distance con- 
tours /?F(n,t) and DD{n, -i) respectively, with D{n,i) de- 
fined as: 

D(n,i) = i2d(n,}) 
it 

whe'e d(n,j) denotes the Euclidean distances between the 
featui^ vectcr of the current frame, t7(n), and that of the 
n + }"* frame, t7(n + j). Then the decision strategy is: 

Loop for i from 1 to Ima, 
until | DF(n.i) - DB[n,-i) \> Dmin 

finally 
if I>F(n,t)-Z>B(n,-i)>0 

then associate frame n to its past 
else associate frame n to its future 

Thus Ima, constrains the observation range. Currently 
this value is set to 50 ms. The threshold Dmin is a min- 
imum distance threshold indicating when the difference 
between the two cumulative distance functions is signifi- 
cant enough to form an association. By terminating the 
search as soon as the threshold is exceeded, the algorithm 
self- adapts to capture short regions that are acoustically 
distinct. In addition, the algorithm assigns an association 
strength, A(n), to each frame, which measures the maxi- 
mum difference between Dp and Do in the range of asso- 
ciation. An example of the association waveform is shown 
in the top part of Figure 2. The positive-to-negative «ero- 
crossings of the waveform correspond to potential acoustic 
boundaries. To minimize the effect of detecting small and 
insignificant acoustic changes, this association waveform 
is smoothed with a gaussian filter with sigma 0.005. For 
the example shown in Figure 2, this smoothed waveform 
is shown just below the association waveform. 

The information in the smoothed association waveform 
can be captured in the form of a pulse train, also shown 
for the example in Figure 2. The pulse train provides in- 
formation not only on the location of the acoustic bound- 
aries, but also V<: boundary strength (by the height of the 
pulse) and abruptness (by the width of the pulse). In par- 
ticular, we found that the height of the pulse is well corre- 
lated with the significance of the acoustic change. In other 
words, smaller pulses typically correspond to insignificant 
acoustic changes, or false boundaries. This observation is 
demonstrated in Figure 3, which compares the histogram 
of the pulse height for legitimate boundaries to that for 
false boundaries. Thus it is possible to set a boundary 
threshold and consider ' nly those spikes whose height ex- 
ceeds this threshold. 

By /arying both the boundary threshold on the pulse 
height, and the amount of smoothing performed on the 
association waveform, we can control the system's senai- 
tivity to detecting acoustic boundaries. If the sensitivity 
is set too low, then the system may miss some of the le- 
gitimate boundaries. On the other hand, a high sensitiv- 
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ity would tend to insert false boundaries. In our present 
implementation, the threshold and the amount of smooth- 
ing performed have been set to minimize the insertion and 
deletion error, based on a training sample of 200 sentences 
from 10 male and 10 female talkers. For the sentence 
shown in Figure 2, the acoustic boundary locations are 
superimposed as dotted vertical lines on the spectrogram. 
By comparing with the time-aligned phonetic transcrip- 
tion above the spectrogram, we see that most of the major 
acoustic boundaries have been located accurately. 

Segment Olaisiflcation 
Once the boundaries have been determined, the regions 

within a set of boundaries are classified by a set of energy- 
related measures into one of four categories: sonorant-like 
(S), obstruent-like (O), silence-like (-), and murmur-like 
(M). To establish the general context of the region, the 
detection component next examines the energy contour 
and determines whether a given region signifies an en- 
ergy peak, a valley, or a plateau. A murmur-like region 
is labeled prevocalic if it is followed by an energy peak, 
postvocalic if preceded by an energy peak and medial li 
it i'epresentH an energy dip. Note that any isolated nasal, 
such as a syllabic nasal or a schwa nasal that has been 
labeled a single acoustic region will be labeled as S (about 
S% of the detected nasal., fall in this category). Currently, 
we make no attempt to recover these nasuls since we are 
trying to label only murmurs adjacent to a vowel. 

The broad classifier locates many nasal impostors be- 
cause it utilizes a very straightforward context-independent 
algorithm with little speech knowledge. On both training 
and test data, the impester to nasal ratio is approximately 
two to one. However, it is possible to rule out many impos- 
tors with several simple measurements before any detailed 
analysis of the murmur-like segments is made. This re- 
duces the imposter to nasal ratio to approximately one to 

Figure S: Histograms of pnlse hright for legitimate and false 
acoustic boundaries. 

Boundary Height 

one, eliminating only a a 
dates in the process. 

all fraction of tne nasal candi- 

Reanlta 
The nasal detection algorithm was evaluated on two 

separate databases. The first database consisted of 200 
phonetically balanced sentences collected at MIT from '0 
male and 10 female talkers. The recording was made in a 
sound-treated room with a lapel microphone. The second 
database of 165 phonetically balanced sentences was col- 
lected at C-MU from eight male and nine female talkers. 
The sentences were recorded in a computer room with a 
hand-held omni-directional microphone. All in all, there 
were 10 sentences each from 36 talkers and S additional 
sentences from 1 female talker in the C-MU corpus. None 
of the speakers or sentences were used for system training. 

Figure 2; The nasal detection component. 
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In order to evaluate the effectiveness of the nasal detec- 
tion component, all labeled acoustic regions were mapped 
onto the time-aligned phonetic transcription. A phonei'c 
label was associated with each region based on the phoneme 
that most overlapped the acou? "c region. Using the crite- 
rion that a nasal has been detected if it overlaps a legion 
by more than 50%, the system detects 70% and 71% of 
the nasals for the MIT and C-MU databases, respectively. 
For every potential nasal that the system detects, it also 
proposes 1.1 and 1.0 impostors for the two databases, re- 
spectively. A breakdown of the errors as a function of 
the phonetic context is shown in Table 1. We see that 
most of the detection errors occurred when the nasal was 
in a syllable-final position followed by an obstruent (as in 
"camp"), in a syllable-initial position preceded by an ob- 
struent (as in "snap"), or between two vowels and realized 
as a nasal flap (as in "any"). 
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Table 1: Error Analysis for the Detection Algorithm 

Phonetic 
[Context 

MIT Database 
(% of Error) 

C-MU Database! 
(% of Error) 

V _ Obs 72 66 
[Obs. _ V 14 17 
|V_V 10 10           i 

NASAL RECOGNITION 
St/ategy 

The detection algorithm delineates regions in which 
a nas ' murmur can potentially exist. However, some 
of turtle re '•.* may indeed contain an impostor, i.e., a 
speech scut "t is acoustically similar to a nasal mur- 
mur. The ui ge of our recognition system attempts 
to separate the ^.---ils from lirpostors, which include front 
vowels, semivoweis, voice bars, and weak voiced fr'catives. 

The classification system inco-porates five robust sets 
of measurements on nasal murmurs, as suggested by an 
earlier acoustic study [2]. The five measures are: 

• Strength: the average energy in very-low frequency 
band relative to the energy in low and medium-low 
frequency bands, 

• Sthility: the change in low-frequency and mid-frequency 
energy throughout the consonant, 

• Energy: the difference in average energy between ihe 
consonant and the adjacent vowel, in both low and 
medium frequency bands, 

• Transition: the maximum rate of energy change be- 
tween the consonant and the adjacent vowel, in both 
low and medium frequency bands, 

• Change: the amount of spectral change both within 
the consonant and between the consonant and the 
adjacent vowel. 

Our earlier investigation revealed that the usefulness of 
the attributes depended on knowledge of the broad pho- 
netic context. As a result, the broad phonetic context was 
used to divide the data into three categories: prevocalic, 
medial, and postvocalic. Further splits were also made in 
orde; to divide the imposter set into those which were more 
obstruem-like versus those which we-; more sonorant-like. 
This facilitated the subsequent dacisioj-miking process by 
allowing each classifier to select the features that best sep- 
arated the nasals from the impostors for the given context. 

Once the murmur-lika segment had been sorted into 
a particular class based on its context and low resonance 
frequency, it was passed through a log likelihood classifier 
to produce a nasality score. The classifiers were trained 
on 400 sentences from an MIT database, containing 10 
sentences from 20 ma.le and 20 female speakers. 

In order to avoid the difficuul-js of estimating multi- 
dimensional densities with a small nv :nber of tokens, and 
to avoid assuming some underlying distribution shape, the 
classifier assumed that the feature sets were statistically 
Independent and estimated tin density of each feature in- 
dividually using a k-nearest neighbor approximation [1]. 
The nas?.! classification score, S, was produced by sum- 
ming up individual log likelihoods for each feature. 

where PN{J) and P/(y) are the estimated probabilities of 
the /'* feature for nasals and imposters respectively. J 
was typically around five for each classifier. 

Retnlts 
As was the case for the evaluation of the nasal detection 

system, each acoustic region was assigned a phonetic label 
based on a 50% overlap criterion. Using this procedure, 
the classifier was able to correctly identify 80% and 79% 
of the murmur-like segments from the MIT and C-MU 
databases respectively. A breakdown of the performance 
is shown in Table 2. 

To evaluate the performance of the entire system, tak- 
ing into account both the detection and recognition parts, 
we compared the final output to tho original time-aligneu 
phonetic transcription. This evaluation produced two mea- 
sures of the accuracy of tht syftem, the hit rate and the 
insertion rate. The hit rate is defined as the percentage 
of time that an underlying nasal is detected and classified 
correctly (and overlaps with the time-aligned transcrip- 
tion). The insertion rate is defined as the number of im- 
postors identified as nasal for each nasal in the database. 

Evaluating the recognition system on the same 365 sen- 
tences produced hit rates of 54% and 59% and insertion 
rates of .12 and .18 per nasal for the MIT and C-Ml) 
databases respectively. 

DISCUSSION 

Nasal Detection 
From Table 1, we see that the nasals missed by the de- 

tection algorithms consistently fall into several oroad pho- 
netic contexts. Nasal murmurs in these environments are 
typically articul led poorly. This is illustrated in Figure 4, 
which compares the duration of the nasals detected to that 
of the nasals missed. We see that the missed nasals are 
typically shorter thon I , ^e detected. The missed nasals 
with durations of 50 ms or more either had a transcrip- 
tion error or had a subtle transition between the vowel and 
the nasal. Since our strategy is to locate only the robust 
nasals, we are not particularly concerned with these missed 
nasai consonants. As we can see from the 8pectro;{raphic 
examples in Figure 5, vowels adjacent to poor'' rticu- 
lated nasals are usually heavily nasalized, sugge      j that 
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Table 2: Error Analysis for the Classifier Algorithm Figure B: Spectrograms Illustrating the Missed Nasal Murmurs 

MIT Database 
Output (%) 

C-MU Databaaej 
Output (%) 

Input Nasal Imposter Nasal Impo?ter | 
, Nasal 
llmposter 

75 
15 

25 
85 

79 
20 

21 
80 

acoustic information in adjacent vowels may carry the pri- 
mary information on the presence of the nasal consonants. 

Nasal Recognition 
The majority of the recognition errors for the MIT 

database are due to confusion? between nasi£ and semivow- 
els, or between nasals and front vowels. In both cases, we 
suspect that information on formant frequencies and tra- 
jectories in adjacent vowels may be helpful. Over half of 
the errors in the C-MU database are di'e to confusions be- 
tween nasals and front vowels. In this case we suspect the 
difference in the microphone may also play a role. Recall 
that the MIT data were collected using a lapel microphone, 
which tends to emphasize the low-frequency portion of the 
spectrum, whereas the C-MU data were collected with a 
far-field microphone. If microphone differences were in- 
deed the source of this confusion, we may be able to im- 
prove system performance by including in the training set 
data collected from both microphones. 

The present recognition algorithm utilwes only infor- 
mation in the nasal murmurs. In a previous study [3], we 
were able to determine vowel nasalization with some suc- 
cess. By incorporating acoustic information from both the 
nasal murmur and the adjacent vowel, we should be able 
to further improve system performance. 

Figure 4: Histograms of the duration of detected and missed 
nasal murmurs. 

Duration (sec) 
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SUMMARY AND FUTURE PLANS 
In summary, this paper presents a progress report on 

our effort to detect aud recognize nasal consonants in con- 
tinuous speech. Preliminary evaluations suggest that the 
algorithms are accomplishing what we expected, although 
further evaluation is definitely needed. Future work to 
improve system performance will include: 

• refinement of acoustic features for recognition, in- 
cluding the use of formant frequency information, 
and 

• the incorporation of information regarding the de- 
gree of nasalization in adjacent vowels. 
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Pitch Tracking, Pitch Synchronous Spectra and Formant Tracking 

by 
William J. Majurski and James L. Hieronymus 

National Bureau of Standards 
Gaithersburg, Md. 20899 

Abttraei 
A complr.e system for deriving fonnants from contin- 

uous speech is presented. The system contains a pitch 
tracker optimized for finding analysis frames which provide 
good spectra. The pitch tracker also provides a sonorant, 
obstruent decision and a voicing decision which is used by 
other components. The anharmonic pitch sychronous spec- 
tra UK. based on Hanning windowed regions of the pitch pe- 
riods. Exactly which regions are analyzed is dependent on 
whether the region is an obstruent or a sonorant. Finally 
these spectra are used to drive a formant tracker based on 
the prindp"a of maximum continuous length. The resulting 
system is being developed as part of the vowel recognition 
module at NBS. 

Introduction 

There have been a number of pitch trackers developed 
over the past 20 years. [l]-[7] Each one has been de- 
signed for a particular application. Some applications re- 
quire smooth pitch frequencies, even though the real pitch 
of the first pitch period at the start of voicing is often 
low. The pitch tracker which is discussed here has been 
optimized for finding pitch periods which produce good 
spectra. In glottalized regions, it will find pitch periods of 
approximately the length of regular pitch periods in that 
part of the sentence. In the course of developing this pitch 
tracker, many very strange looking waveforms were exam- 
ined. In each case the pitch period boundaries are se- 
lected which produce the best spectra. We built our own 
pitch tracker because our sonorant identification modules 
account for cuarticulation by looking at formant transi- 
tions between the sonorant and adjoining obstruents. The 
pitch in the transition region is difficult to track accurately, 
but is of great importance for our pitch synchronous anal- 
ysis of these regions. 

Pitch Tracker 

The goal of the pitch tracker is to produce high qual- 
ity spectra suitable as input to a formant tracker based 
on peak finding. The algorithm used is fast, at an early 
stage performing data reduction on the input speech and 
using only reduced data thereafter. Detecting the true 
pitch produced by the talker is not a goal of this project. 
Only those measures with increase the performance of the 
formant tracker are used. Particular emphasis is given the 
the edges of voiced regions where transitional information 
may be present in the resulting formants. As byproducts 
of pitch detection, a measure of sonority and an estimate 
of syllable boundries are produced. 

A pitch period is the amount of time between subse- 
quent excitations of the vocal tract during voicing. The 
exponential waveform decay during the pitch period is a 
commonly recognized feature of a voiced region of speech. 
The algorithm employed by this pitch tracker [7] utilizes 
this exponential decay of amplitude to detect the presence 
of voicing and the alignment of the pitch period. 

This algorithm uses a parameterized representation of 
the input speech. The speech waveform is low-pass filtered 
so as to include approximately the lowest two formants. 
Using the filtered waveform, zero crossing locations arid 
peak heights between zero crossings are computed. All 
calculations are based on zero crossings and peak heights 
with one exception. The transition between voiced and 
unvoiced regions is detected using a sum of squares energy 
calculation on the original waveform. 

This algorithm detects the pattern of decaying ampli- 
tudes which appear at decending steps on a plot of peak 
heights. [Figure lb] Each flight of steps represents a pitch 
period. Within a pitch period the largest peak is either 
the pitch pulse or the glottal opening, the opposite signed 
peak preceding the pitch pulse. Using apriori knowledge of 
the orientation of the pitch pulse the pitch peak is labeled. 
This algorithm alone correctly labels pitch periods within 
open vowels. Pitch labels in other voiced regions typically 
require one or more forms of correction. Pulses which do 
not represent pitch pulses can be labeled, valid pitch pulses 
can go unlabeled and occasionally the pulse following the 
pitch pulse will be labeled instead. In order to clean up 
the mislabelings, an overall estimate of pitch is made by 
finding the largest region of constant pitch. Restrictions 
on feasible pitch range are used to restrict the choices. 

The most frequent labeling error is marking non-pitch 
pulses as pitch pulses. This is corrected by identifying and 
deleting the errant label. Pitch periods containing an extra 
labeled pulse within it are frequently adjacent to periods 
with correct pitch. This is the easiest case to detect and 
correct. [Figure 2] In other places an entire voiced re- 
gion will be labeled with double pitch marks and thus not 
supplying a easy starting point for correction. Lacking an 
appropriate neighbor, canidate pitch pulse amplitudes are 
investigated. A correlation of canidate pitch peak ampli- 
tude is used to choose peaks for deletion. [Figure 1c] 
When every second canidate is significantly lower in am- 
plitude than its neighbor the higher amplitude pulses are 
labels as pitch pulses and the lower amplitude pulses are 
deleted. 

If the amplitude difference betwee.i neighboring peaks 
is not significant (roughly 30 percent) then the extra peaks 
are labeled as pitch pulses. This produces an abnormality 
in the pitch frequency but has been found not to signifi- 
cantly degrade the resulting synchronous spectra. 
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Figure la.    Original  haveform with pitch pulses labeled. 

Peak heights - Time aligned with original waveform 

Figure 1c.    Pitch Pulse magnitudes.    Incorrectly labeled pulses 
are identified by their magnitudes. 

Other areas require interpolation or extrapolation of 
pitch marks. Voiced obstruents typically produce a wave- 
form which shows little amplitude decay and as few as two 
peaks, one full cycle, per pitch period. These do not trigger 
the amplitude decay based detector and must be detected 
seperatly. [Figure 3] If the voiced obstruent has adjacent 
to it a more open voiced region containing well formed 
pitch periods then pitch labeling is extrapolated into the 
voiced obstruent. As before, zero crossings from the fil- 
tered waveform are used to align the pitch marks. The 
pitch labeling is extended until it joins another already la- 
beled region or an energy threshold detector indicates the 
end of voicing. 

Formant Tracker 

The pitch synchronous spectra are derived from an- 
harmonic analysis. Pitch synchronous spectral analysis of 
various types has been developed over the past 25 years. 
Anharmonic piixh synchronous analysis was first discussed 
by Hess [15]. In the simplist case, the waveform is win- 
dowed with a Banning window which begins at the zero 
crossing before the principal excursion or excitation pulse 
and ends at the zero crossing before the next principal 
excursion. Then the windowed waveform is padded with 
zeros to form a window long enough to give the frequency 
resolution desired in the FFT. 
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Figure 2.  Original waveform above and peak heights below showing 

mislabeled pitch pulse. 

Figure 3.  Original waveform above and peak heights below showing 
transition into a closure causing ramp pattern to 
deteriorate. 
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Figure 4.      Spectrogram showing calculated formant tracks. 

In our implementation, the spectral analysis of the 
sonorants and obstruents are done differently. The Han- 
ning window for the sonorants is approximately 75roughly 
to the gloltis closed portion of the waveform. For obstru- 
ents there is very little energy in the waveform, other than 
the principal excursion. Therefore the window is moved 
forward co that the principal excursion in in the middle 
of the Hanning window. This differentiation between the 
processing for sonorants and obstruents leads to superior 
spectra and thus makes the task of formant tracking easier. 

The formant tracker is based on the idea of mimicing 
the way a human spectrogram reader finds the formants. 
Humans seem to look for more or less continuous dark re- 
gions lu the spectrograms, and labe! these formant*, Many 
formant finding algorithms have been developed in the past 
based on as many models of what a formant is. These for- 
mant trackers had varying degrees of success. Our algo- 
rithm works by finding the main peaks in the spectrum in 
a sonorant region and then extending these peaks into less 
sonorant regions. After a structure which represents the 
length of the regions with continuous spectral peak trails 
has been built, then these trails are examined and assigned 
to the formants. Currently up to six peak trails are found 
in each sonorant region. 

The formant tracker uses synchronous spectra calcu- 
lated using pitch labels computed by the pitch tracker. 
Regions of contiguous pitch periods are labeled voiced re- 
gions with all other time being accounted for as unvoiced 
regions. Formant tracking is restricted to voiced regions. 

Formant tracking proceeds in three stages: peak pick- 
ing, peak tracking and formant tracking. Peak picking 
finds the major peaks hi the synchronous spectra. Peak 
tracking finds ridges in the spectra within a voiced region 
which correspond to formants. Formant tracking takes the 
pnr voiced region peak tracks and combines them and as- 
signs formant number labels (ie. Fl, F3 ...) to each for- 
mant. 

In the first stage, peaks representing vocal tract reso- 
nances are extracted from each synchronous frame in each 
voiced region. Peaks are chosen in amplitude decending 
order to insure the major resonances are extracted. Even 
with synchronous spectra, closely spaced peaks whose spec- 
tral skirts overlap significantly are difficult to discriminate. 
As each peak is identified, a parabola is fit to the peak us- 
ing a leart squares calculation. The parabola is subtracted 
from the spectra. This leaves any overlapping peaks intact 
for subsequent extraction. 

In peak tracking, spectral peaks within a voiced region 
are linked to form peak traces. Peak tracking is performed 
in a way which is analogous to what we do when look- 
ing at a spectrogram. Peaks are linked to peaks of simi- 
lar frequency in adjacent frames. Since this must operate 
on glottalized regions, peaks are matched with adjacent 
frames and with frames two away. The peak lists are then 
pruned to exclude nonesential tracks. 

In the formant tracking stage, each voiced region is di- 
vided into thirds. Peak tracks which are present in the 
third closest to an unvoiced region are considered to bor- 
der the unvoiced region. Unvoiced regions will be refered 
to as breaks. Canidate pairs of peak tracks for match- 
ing are found. To be considered, a track must boarder 
the break and be the best match in frequency. To qual- 
ify, both border tracks must choose the other as its best 
match and the next closest track must be greater than dou- 
ble or less than half in frequency. Less stringent rules are 
then applied to complete the matching. Finally, a consis- 
tancy check is made on the matches. This section looks for 
formant tracks which change formant affiliation thus indi- 
cating a bad match was made between peak tracks. Shifts 
in match assignments are made to correct the inconsistan- 
cies. We have not yet considered cavity affiliation switches 
in this algorithm. 

Work on the pitch tracker and formant tracker is not 
yet complete. This paper is intended as a progress report 
of ongoing work. 
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Compensating for Vowel Coarticulation: a Progress Report 

by 
James L. Hieronymus and William J. Majurski 

National Bureau of Standards 
Gaithersburg, Md. 20899 

Abstract 

Seven English monothong vowels were studied in con- 
tinuous sentences. The purpose of the study was to de- 
termine what methods are likely to be successful in com- 
pensating for coarticulation in all vowel and consonantal 
contexts. A method by Kuwabara has been examined in 
detail. The Kuwabara compensation improves the sepa- 
ration of the vowel regions in a space composed of the 
first and second formant in Japanese. Important issues 
are where to measure the formant "target" frequencies, 
how to obtain good formant tracks, measuring speaking 
rate accurately, and how to label vowels accurately. 

Introduction 

VoweF wticulation, that is the propensity of nearby 
phonemes to alter the characteristic frequencies of vowels, 
is a problem in continuous speech recognition. The ef- 
fect of a nearby liquid or glide (i.e., /I/, /r/, /y/, or /w/) 
is very large. Some back vowels are actually effected so 
much by a consonant thai they become "fronted." Using 
a conventional classifier on these vowels results in a mis- 
r.lassification. Also continuous speech tends to centralize 
the formant frequencies of all vowels, especially those with 
secondary stress. 

Coarticulation has been studied by several groups in 
the last 15 years using isolated CVC or VCV words and 
these words embedded in carrier phrases. Stevens and 
House [2] studied the perturbation of vowel formant tar- 
get frequencies by consonantal context. They studied yy 
American English vowels. They concluded that vowels in 
symmetrical CVC environments are centralized relative to 
their formant target frequencies in isolation or in the hVd 
context. 

Lindblom [3] studied vowel reduction in Swedish. He 
concluded that the effect of coarticulation could be mod- 
eled by a decaying exponential. The constant multiplier 
aad decay time constant were dependent on the vowel 
and consonant. The longer the vowel (more stress), more 
closely the normal vowel targets were reached. This study 
was done on CVC words (where the beginning C and the 
following C were the same consonant) embedded in carrier 
phrases. The data was provided by one talker. 

Ohde and Sharf [4] studied the effects of voiced stops 
on vowel formant targets. They found that the effect of 
voiced stops on vowel reduction was greater for preceding 
consonants than for following consonants. Once again this 
work was done on isolated CVCV utterances. 

Broad and Fertig [5] studied vowel coarticulation for 
the vowel /I/ in CVC monosyllables consisting of all pos- 
sible combinations of 23 consonants plus a silence element. 

Analysis of variance showed that the superposition prin- 
ciple characterized the results very well. The transition 
functions for initial and final consonants were in general 
asymmetric. 

A major difference between CVC words in isolation 
or in carrier phrases and continuous speech is that the 
timing of the articulators can be more carefully planned 
in the CVC case. This means that symmetric CVC's are 
more nearly symmetric, and the vowels in CVC's are longer 
than in connected speech. Consonant clusters in continu- 
ous speech can have a cumulative effect on the vowel for- 
mants. These complex interactions must be studied in con- 
tinuous speech, using the results from the CVC studies as 
a guide. Also prepausal lengthening and duration changes 
due to stress mean that the vowel durations are much more 
variable than the isolated CVC word case. 

Several methods of compensating for vowel coarticula- 
tion have been proposed. However, none of these methods 
has been tested on large amounts of speech data. The most 
promising methods use some measure of the formant slopes 
near the vowel to compute an adjusted formant frequency. 

A recent paper by Kuwabara [l] tested coarticulation 
renormalization for vowels in Japanese sentences. Since 
Japanese is a CV language, these results may not hold for 
a language with a more complicated syllable structure like 
English. This method used a symmetric Gaussian function 
in time to compute a renormalized formant trajectory for 
the first and second formants. The technique was moti- 
vated by perceptual studies of vowel sequencies and audi- 
tory modeling. Using the 5 vowels /i/. Je/, /a/, /o/, and 
/u/ from Japanese, the method was successful in eliminat- 
ing most of the confusion of these vowels in F1-F2 space. 
Before the method was applied there was considerable con- 
fusion due to centralization. 

A similar schem» Ifca used by us to compensate for 
vowel coarticulation in American English. Seven American 
English monothong vowels (/i/, /I/, /eh/, /ae/, /a/, /o/, 
and /u/) were studied. Two continuous speech data bases 
were used which contained 1853 exemplars of these vow- 
els. The data shown in this paper is for 225 vowels out of 
the 1853. The formant tracks obtained automatically were 
examined for accuracy. Approximately 50 of these vowels 
were not used in the study because of formant tracking 
errors due to nasalization. The major questions to be an- 
swered by this study are 1) Does this method work well for 
English? 2) Does it compensate adequately for coarticula- 
tion from semi-vowels? 3) Can the use of other functions 
than Gaussians improve the performance of the compen- 
sation? 4) Do adjustments of the width of the Gaussian 
have to be made to account for coarticulation at different 
speaking rates? 
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Some other compensations are also being tested. One 
uses decaying exponentials to compensate for coarticula- 
tion. Another one uses different curves derived from the 
work of Broad [6] for compensation. Broad proposed sev- 
eral families of decaying exponentials for each class of con- 
sonants and the principle of superposition for the effects of 
preceding context and following context. None of the data 
from these other compensations is shown in this paper. 

The compensations have the potential to improve the 
vowel recognition in continuous speech. 

Speech Data Bases 

Two data bases of continuously spoken sentencen were 
used in the experiment. The first, the CMU Coca-Cola 
Database, was collected and labeled at Carnegie-Mellon 
University by the Speech Recognition Group. It contains 
600 sentences from the Harvard list, 10 spoken by each 
of 32 male and 28 female speakers. The speech was di- 
rectly digitized using a 16 bit AD converter sampling at 
16 k samples/second. A cardioid microphone 'vas used in 
f. computer terminal room, which provided fan noise and 
some low level background speech. 

The second speech data base was collected and labeled 
at NBS. It contains 20 sentences spoken by 5 male and 
3 female speakers. The sentences contain words with the 
seven vowels /i/, /I/, /eh/, /ae/, /a/, /o/, and /u/ in 
most contexts from the neutral h.d context to glides and 
semivowels. The speech was collected in a sound isola- 
tion booth using a Shure SM-10 close talking microphone 
on one channel and a B&K pressure microphone on the 
other channel of a Sony PCM-Fl digital audio processor. 
The output of the close talking microphone was direct dig- 
itized using a 16 bit AD converter sampling at 16 k sam- 
ples/second. The talkers produced the sentences at their 
normal speaking rate and at a "fast" rate. The fast speech 
resulted from instructing the talkers to speak as rapidly as 
possible without obvious mispronunciations. A list of the 
sentences is given in Table 1. 

1. He led the hot head to the yacht. 
2. The rat rode the door to the weedy lot. 
3. The rude lad had hoped to wed the doll. 
4. Yes, the yak wore a red yoke. 
5. He wooed her with his lewd wit. 
6. She woke hearing a roar in her ear. 
7. The yeast dough rose against the lid. 
8. You'd better load the real gun. 
9. We'll lead them to the lead rod. 
10. You're getting rid of this wad. 
11. The deer wagged its tail and ran to the well. 
12. The crude fiber deal yielded no profit. 
13. The doll liked the yacht tour very much. 
14. The well rod rode against the rule. 
15. The old yoke decorated the room. 
16. The wad of gum was on a lid behind the door. 
17. Will we dare hold the rally next year? 
18. That year the Dallas gang war was in a tar yard. 
19. The rule was yelled by the leering judge. 
20. According to lore Dirty Larry wallowed in the rill. 

Table 1. Sentences in the NBS Coarticulation Data Base 

The number of exemplars of each vowel in the two data 
bases is shown in Table 2. 
The CMU and the NBS data bases had only a small num- 
ber of /uw/ vowels, so we were not able to study these as 
extensively as the other vowels. 

Distribution of Vowels             | 
Vowel Sex CMU NBSn 
N m 

f 
208 
193 

98 
88     1 

m m 
f 

226 
204 

80 
84 

/eh/ m 
f 

173 
163 

81 
88 

/ae/ m 
f 

134 
122 

42 
41 

N m 
f 

148 
149 

63 
64     | 

M* m 
f 

30 
23 

0      j 
0 

/ow/ m 
f 

68 
65 

53 
51 

/u/ m 34 
28 

25 
27     j 

* (non-dipthongized /ow/) 

Table 2. Number of exemplars of each vowel 

Formant Tracking 
Automatic formant tracking is a difficult task which 

requires care at every step of the procedure. The formant 
tracker which we have developed uses anharmonic pitch 
synchronous Fourier transforms as the input data. Major 
peaks in the log magnitude squared spectrum are selected 
using amplitude and area. Data structures which retain 
the time history of the peak frequencies are searched for 
continuous formants. Only as a last step in the process 
are the formants assigned labels as first formant, second 
formant, etc. Since the data used in this paper only re- 
quire first and second formants, only this data is shown 
here. A detailed discussion of this formant tracker and its 
performance will be presented in a later paper. Figure 2 
shows the output of the formant tracker superimposed on 
a wide band speech spectrogram. 

0.0000       Wide-Band Spectrogram       0.9739 

figure 2. Formant Tracker Otuput 

At present strongly nasalized vowels with split first for- 
mants can have the nasal formant identified as the second 
formant. A special technique is being developed to elimi- 
nate this error. 
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Vowel Formant Targets 

In order to find the vowel target frequencies, two tech- 
niques were used. The first replicates the usual technique 
of taking the temporal midpoint of the region with the 
vowel label. Figure 3 shows the male data with 225 vowel 
targets using this technique. 
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Figure 3. Male Vowel Target Frequencies Method 1 

The second technique is to take the target to be the 
place with the minimum ave7age slope for the first and 
second formant. Thus if the "steady state" region is shifted 
due to coarticulation, it will be captured in this technique. 
Figure 4 shows the result of using this technique on the 
vowels presented in Figure 3. 

Figure 4. Male Vowel Target Frequencies Method 2 

The first technique seems to produce better results in 
that the vowels of the same identity cluster in more com- 
pact regions. However the effect is not so pronounced to 
clearly indicate that the first technique is best. The verti- 
cal rows of labels in the figures are due to the quantization 
of the FFT, which has a resolution of 60 Hz. The results 
for the females is similar but will not be shown because of 
the size limit for this paper. 
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RenormalUed Vowel Fortnant Targets 

The Kuwabara method was applied to the vowel for- 
mant trajectories and the resulting renormalized vowel for- 
mants obtained. Only method 1 for determining the vowel 
target frequencies is shown, since method 1 seems to give 
superior results. One detail of our present implementa- 
tion differs from the original Kuwabara method, we do not 
extrapolate the formants into the consonants for voiceless 
consonants. This should effect a maximum of 1/3 of the 
data. Instead we do a linear extension of the formants into 
the neighboring unvoiced regions. This discrepancy will be 
corrected in future work. Figure 5 shows the male vowels 
with targets obtained from method 1. 
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Discussion 

By examining Figures 3-5 in detail we see that the 
Kuwabara method does not produce the same spectacu- 
lar results for American English that it does for Japanese. 
Figures 6-9 show the Kuwabara results from Japanese 
for comparison. Figure 6 and 7 are for vowel - vowel tran- 
sitions and Figure 8 and 9 are for vowel - consonant tran- 
sitions. 

500- 500 
FIRST  FORM ANT (Hz) 
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Figure 6. Target Frequencies for 5 Japanese Vowels 
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Figure 5. Renormalized Target Frequencies Method 1 
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Figure 7. Renormalized Japanese Target Frequencies 
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Figure 8. Target Frequencies for 5 Japanese Vowels 
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Perhaps this difference in performance is due to the 
CVCV structure of the Japanese language. The Kuwabara 
renormalization shifts some of the target frequencies in the 
direction of the usual regions for these vowels. The /I/ 
vowels which are mixed with the /iy/ vowels are moved 
to regions of higher Fl and thus generally out of the /iy/ 
region. However the separation between the regions is not 
large. On the other hand one of the /ow/ vowels was moved 
into the /uw/ region. The separation between /iy/ and 
/uw/ were made less by the renormalization. The vowel 
/iy/ was shifted to a second formant frequency above 3000 
Hz. in many cases. Thus, this method does not consis- 
tently shift the vowel target into its canonical pcsit ion in 
F1-F2 space. 

It is possible that the Kuwabara renormalization will 
be useful in improving the first choice performance of a 
vowel classifier, because on the average it throws the vowel 
formants in the "right direction." To see this more clearly 
Figure 10 shows a scatter plot of the difference between 
the Kuwabara formant and the normal formant frequency 
for the first and second formant. 
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i 
From the plot we see that the Kuwabara renormaliza- 

tion gives generally symmetric correction to the formants. 
The corrected values are not large. Figure 11-12 shows 
a blow up of the most central region of the Fl - F2 vowel 
spare for the ordinary formants and the renormalizcd ones. 
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We will examine the possibility of adding the Kuwabara 
renormalization ^o a CMU style classifier in the next two 
months. 
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1. INTRODUCTION 

This report presents some results of the first nine months work at 
SRI International on the problem of how to accommodate dialectal 
and phonological variation in American English pronunciation in the 
design of large vocabulary speaker-independent speech recognition 
systems. The particular system component that we are focusscd on 
is Lexical Access (or Word Hypothesizing), although differences in 
pronunciation between and within speakers need to be taken into 
account in the design of many components of a recognition system. 

Lexical access involves associating a string (or lattice) of input sym- 
bols with sequences of lexical items. Designing a recognition system 
component that accomplishes this association can be seen in two 
parts; empirical and algorithmic. Empirical studies are needed to 
determine, for example, the circumstances in which /sr/ palatalizes 
or in which schwa devoices or leletes. Algorithms need to be 
designed to support the empirical studies and to use the empirical 
knowledge within a system. SRI's research plan has been to pursue 
the facts first and work on implementations and system integration 
second. Our empirical results should be generally useful, and are not 
necessarily tied to any particular system approach. 

This report covers three tasks of our first year's work: a database 
study; a rule-tool system; and t-rules across three speakers. 

2. DATABASE STUDIES 

Our concern was with phonological and phonetic di(Terences between 
spontaneous speech and the speech produced when people read from 
prepared text. A prime motivation for studying these differences is 
the use of read speech to train speech recognition systems. Systems 
are being designed to adapt to a new speaker on the basis of an brief 
enrollment passage that is read. In principle, a read passage should 
be adequate to delineate many aspects of a person's speech, including 
oral and nasal resonant frequencies, prosodic parameters, dialect 
fuatures such as vowel inventories and qualities, and phonological 
style. Presumably, the physical properties of the vocal tract will be 
about the same in reading as in spontaneous speech. However it may 
be that linguistic aspects of speech are systematically diflercnt in the 
two modes. 

For collecting a database of speech samples on which to train and 
test speech recognition systems, it is more efficient to collect specific, 

prepared materials, rather that the very large samples of spontaneous 
speech needed to encounter specific phonological phenoineiia. If one 
is recording read speech, what elicitation procedure will yield speech 
that is most like spontaneous? Examples like the one shown in Fig- 
ure 1 very easy to generate. An educated woman produced the wort! 
<conipetilive> with two flaps in spontaneous speech, yet when 
asked to read the same words, she does not flap the second /t/ even 

when reading quite fast, and she consistently flaps the first /t/ even 
when reading very carefully. This behavior suggests two things; (1) 
for some phenomena and some speakers, reading may not yield the 
same forms found in normal speech, and (2) the probability that an 
underlying segment will be realized in a certain form (in a particular 
environment) may be much more stable for one segment-in- 
environment than for another over a range of speaking modes. 

COMPETITIVE 

tTOIi SSira Arlglnal RKSKHM Tf 

Spontaneous [flap]    (flapl 

8.oi5«|0.ar««) 

TTTTT "SSBCTW 

Fast Reading 

Orlfllnal Wavafortn" 

[flap)  |t| 

2.1g2g<Q,Bg«3) 

Urlglnal WivafonT, 

Normal Reading [flap]    |t) 

2-??5^{0.?34 71 

Original Wivaform 

Careful Reading [flapl    [t] 

Figure 1. 
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We set out to measure speaking rale and deletion of phonetic seg- 
ments in read vs. spontaneous speech and to use these measures to 
find out which reading mode (if any) is closest in form to spontane- 
ous speaking. This paper reports data from three speakers who were 
employees at SRI. These three are one fast talker (Ml), one precise 
talker (F) and one more or less neutral talker (M2). Each speaker 
was recorded in a interview-like exchange for 30 minutes. The 
conversation wa« conducted in a quiet room with the interlocutors 
sealed about ß feet apart; the subject was wearing a head-mounted, 
noia» cancelling microphone. The conversation was then transcribed 
by i »cretary and searched for items of interest like frequently used 
words that contain consonant clusters. The most frequently used 
clustery words in written Englis. include ''problem, probablv, ques- 
tion" . 

About 30 sentences were selected from the transcriptions for each 
speaker. These sentences included words of interes* and according to 
the sccratary's transcription they were well ionied grammatically 
and would not embarrass the s' 'ker when askei to read them. Of 
these 30 sentences, about. 20 j .! speaker turned out to be fluent in 
the spontaneous record'ng. These 20 sentences were then typed on 
cards and the euch speaker was asked to read the 20 sentences from 
l' r own coi . ersatirn. Following this reading, they were asked to 
read the same sentences "very fast", and last they were asked to read 
the sentences in a slow and careful manner as if they were "speaking 
to a hard-of-hearing person over a poor telephone connection". 
These three instructions define normal, fast and slow reading. Of the 
20 sentences, only aLjut 15 per speaker were replicated word for 

word in all four conditions (spont., fast, normal, and slow). Typi 
ally, in one or more of the read versions of an excluded sentence, 

the speaker had changed, reversed or left out a word, ihus the 
materials reported here are 180 sentences (3 speakers x 15 sente'ices x 
4 versions). 

A precise phonetic/acoustic transcription of the four versions of the 
15 sentences VTS made for each of the sentences. An example "prob- 
ably something to do with the government" is displayed in Figure 3. 
The top transcription is of the spontaneous version. The 2nd, 3rd 
and 4th are fa-', normal and slow reading respectively. The top 
(spontaneous) version is missing any sequence of segmcntal events 
corresponding to "-thing to", although when the utlcrunce is heard, 
it is very clear that this is what the speaker said. Perhaps the dura- 
tions of the [m] and the |d| subsume the rhythmic place of "-thing 
to"; however there is no glottal slop in the [m] that would yield a 
clear percept of "sump'm". In most cases sonorant nuclei are 
counted as one segment, since it is very hard to decide on the pres- 
ence or absence of pre- and post-vocalic sonorants next to an 
obstruent. For instance, it is very hard to difTerentiatc [od] from 
|old). Note also in Figure 3 that the three read versions of the sen- 
tonce have a full slop and burst transcribed for the /g/ in "govern- 
mw. ", but the spontaneous version has a velar approximant 
'gamma'. This does not count as a deletion; the three microsegments 
of the /g/ count, as one realization of „he /g/, as does the voice velar 
approximant, 'gamma'. 

Percent Phonemes Deleted 

20 

% 
10' 

spont 

fast 

normal 
fast 

spont 
spont 

\        slow slow/normal fast 
normal 

slow 

M1 
480 sags 

M2 
474 segs 

F 
522 segs 

Figure 2. 

All the durations and rates cited here are for actual speaking time; 
pauses greater than ,25 seconds in length were subtracted out. Since 
sentence prosody n ainly alfects durations in the region from the last 
stressed syllable to the end of the sentence (Klatt 1976,1979; ' leda 
1976), the measurements excluded the tail-end of each sentence from 
the onset of the last stressed vowel. The sentence displayed in Fig- 
ure 2, "Probably after the baby is born, we'll go back", was meas- 
ure ' from tho burst of |p'| in "probably" to the onset of the [a] in 
back, with the "Againsi the callousness" would be measured from the 
Ig] burst in "a      ist" to the [a] onset in "callousness". 

Figure 4. 

Figure 4 chows the percentage of segments mat were deleted in the 
various versions of the material. The fast male sp-aKcr (Ml) deleted 
18^ of the segments in spontaneous speech, 15% in fast reading, 9% 
in normal reading, and 4% in olow, careful reading. The precise 
female speaker (F) showed the same ordering of the speaking condi- 
tions,   bui   the  magnitudes  arc  less.    The   'neutral-ish'  male  (M2) 

deleted abo it the same number of segments ill fast and spontaneous, 
and a much smaller number in normal and slow reading. For two of 
the three spe;kers, no reading condition was phonologically similar to 
their spontar eous speech by the deletion measure. But perhaps dele- 
tion is a fupjlion of speaking rate, and the spontaneous speech is fas- 
ter. 

□   p' p" a   b" b" i'   s   A   m C  d" u   i    S   a   ö   A   v   m  / n   tk t" o 

u pVr a bl  i'sAmSVoi <] at'd'd'u wi e'e'e'a o"g'g"A v ma n ft'fn 

o p'bt o bill I': A ms'fll 1 t't'fdVu wi 9 S'S'b g"g'g"* v !fma n t't'fo 
»   ■    ■    ■    ■    ■    »-♦   tut*-*   ♦-»■»••>   ♦-♦   •- 4.-^  •   •   »*.*••   •   •   *-•    t    •    •   »-♦-« 

D p'p'r a b'b'B hi i's A em j;1] t't"a d'U'ü wi e Sb g^V« vv^man t't'fo 

Figure 3. 

The d:. i displayed on Figure 5 show that for speaker Ml (and the 
others as will ' .J seen M the next two slides), the spontaneous speech 
is like the fit reading in absolute d.iration, but more like the rmal 
reading when measured in phonetic segments per second. Phils, 
assuming that deletions are simply a functiun of speaking rate won't, 
work. 

In Figure 5, the values displayed are medians and quartiles. The 
leftmost mark represents the values found if you measure the slow 
reading rate of each s ntence and subtract from It the rate (in 
scgmcnls/sec) of the normal reading of that sentence.   Thus, for sub- 
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Sub|ect Ml 
Speech Rate 

(segments/second - normal reading rate) 

in percent deletions, fast reading is most like spontaneous speech; but 
in the rate of production of articulated sounds, the normal reading is 

most like her spontaneous speech. 

•A 

IK 

Norma 
Read 

i   o 
$ 

slow      last     spont 

phonemic 

stow      fast     spont 

phonetic 

Figure 5. 

ject Ml, the slow readings tend to be about 3.5 segments/second 
slower than normal reading, when counting PHONEMIC segments. 
The phonemes, the linguistic elements, in each version of the sen- 
tence are the same, so the segments per time in the left side of Fig- 
ure 5 are just a scaling of time. On the right side of the slide, the 
values shown are differences in PHONETIC segments per second. 
Here, if one version of a sentence is completed ir. a much shorter 
time than another version, the speech rate in segments per second 
may not be any different, if some number of segments in that version 
of the sentence were skipped (or 'deleted'). Thus the phonemic rate 
approximates linguistic material per time, and the phonetic rate 
approximates th( articulation rate per time. 

The normal reading rate for the first male speaker, Ml, averaged 
about 16 phonemic segments per second, witl. the fast and slow read- 
ings about 4 segmentsper second faster and slower, respectively. In 
elapsed time or phonemic rate, his spontaneous productions were 
most like his fast reading. However, referring back to Figure 5, since 
his average rate of segment skipping was quite different in the four 
conditions, the situation looks different when you measure phonetic 
segments per second. Although fast, normal and slow reading keep 
their relative positions, the rate differences are less when counting 
phonetic segments. More importantly, in phonetic segments per 
time, the spon'npsous speaking rate is most like the normal reading 
rate. That is, in elapsed time or linguistic material per time, the fast 
reading is most like spontaneous speech, but in articulation timing, 
normal reading is most like the spontaneous material. 

Subject F 
Speech Rsfc 

(segments/second - normal reading rate) 

I CD -5- 

slow      fast     spont slow      fast     spont 

phonemic phonetic 

Figure 6. 

The female speaker, F, shows a similar pattern;   In elapsed time and 

Subject M2 
Speech Rate 

(segments/seco.id - normal reading rate) 

o 

slow      fast     spont 

phonemic 

Figure 7. 

"5- 

slow      fast     spont 

phonetic 

The second male speaker shows no differences between slow and nor- 
mal reading, and other differences are somewhat attenuated. Noth- 
ing is very clear cut in Figure 7, but the data are not particularly 
inconslstant with tue pattern of the o'Vr two speakers. 

People cover more linguistic material per time in spontaneous speak- 
ing than in normal reading. However, when instructed to read faster, 
they mostly increase rale by speeding up each segment that is spo- 
ken. This is in contrast to spontaneous speech, where fast rate is 
accomplished more by skipping segments. 

With regard to selecting a procedure for recording read materials to 
train speech recognizers, normal reading may be the best for studies 
of phonetic durations and coarticulatory phenomena, but fast reading 
will most likely yield a better approximation of the phonological pat- 
terns of the speaker.   NJ reading seems to yield both. 

Relevant to the design of lexical access with a speech recognition sys- 
tem, we need to know where and in what circumstances people are 
likely to delete segments. None of the reading material provides an 
acurate or complete picture of this aspect of people's speaking 
habits. 

3.  NETWORKS AND RULE TESTING 

SHI has constructed a facility for the study of phonological variation. 
The tools include: 

(I) an interactive facility to write phonological rules and apply them 
to baseforms, change rules and le;>t their effects on the phonological 
representation, transcribe speech using phonological rules, and test a 
set of rules on a database of transcribed speech. 

and (2) a graphical facility to display and manipulate network 
representations of possible phonetic realizations. 

These tools can be used with a database of transcribed sentences to 
iteratively update and test the adequacy of a set of phonological 
rules. This facility separates the linguistic knowledge that goes into 
a set of phonological rules, and the actual programs that use these 
phonological rules. In this way, the linguistic knowledge of a system 
is explicity represented We describe both of these aspects of the sys- 
tem: the form of the phonological rules and networks, their imple- 
mentation. 

Networks  consisting  of nodes  and  arcs are  used  to  represent   the 
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pronunciation utterances, Phonological alternations can be 
reprcsentfd by the application of rules to a network. Such networks 
and rules can serve several purposes, including a« a framework for 
letter to sound conversion, the enumeration of possible pronuncia- 
tions, Htting duration models, and for advanced data-base searching. 

For instance, rules can be used to transcribe speech if there is a dic- 
tionary of haseforms for words and a set of rules to transform this 
ba-seform into a network of possible pronunciations. Using the 
interactive network facility, one can select those labels that were in 
the actual recorded pronunciation. When the labeling is complete, a 
menu pops up to provide a file name for storing this transcription. 
Integrated with an automatic alignment program, this process can be 
made semi-automatic. 

If the actual pronunciation is not allowed in the pronunciation net- 
work, the user can pop into the rule editor, write the appropriate rule 
to generate this pronunciation and then restart the above procedure. 
In this way, a person can transcribe speech and at the same time 
develop the set of rules that can account for the observed speech 
data. 

3.1. Form 

3.1.1.  Pronunciation Network Representation 

The network representation used by SRI consists of a data structure 
composed of nodes and arcs. Each symbol in the network is con- 
tained as the label on an arc in the network. An arc's label can be 
used to represent words or phonemes. If the arc's label is NIL, then 
it is treated as a null arc. The purpose of a null arc is to allow this 
arc to be skipped. A series of arcs (with phonetic labels) is displayed 
in figure 8. 

p 0       0        0 0       0 

Figure 8. 

The above network represents the word <outside>. 

The data structures that are used to represent the network, nodes, 
and arcs, are NETWORK, NODE and ARC, The NETWORK not 
only ha-s lists of nodes and arcs, but various pointers into SPIRE data 
structures. Each NODE belongs to a NETWORK and keeps track of 
its own ARCs in and out. The ARC' structure itself embodies the 
most interesting new features of these networks. Beside the usual 
'from and 'to and Mabel, each ARC has slots to identify the arc and 
rules from which it was generated in the current network, a time 
alignment with a SPIRE file, and pointers to corresponding ARCs in 
higher or lower level NETWORKS that represent, the same material. 

3.1.2.   Rule Editor 

In order to facilitate the writing of rides, a "rule editor" has been 
constructed. A picture of this facility can be seen in Figure 9. It 
consists of a regular zniacs editor, along with several stationary 
menu's. By clicking on any of the menu's, corresponding "rule text" 
will appear in the zmacs window at the location of the cursor. By 
moving the e-irsor around and clicking on the appropriate menu's, 
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Figure 9 

The rules are saved to a file just like a'.y other lisp file. If one wishes 
to modify a rule, one simply changes the text of the rule, and then 
recompiles the rule. Then, if this rule set is applied to a network, all 
earlier versions of this rule arc automatically deleted. 

3.1.3.  Rule Syntax 

When one uses the rule editor, the following default display is pro- 
vided to the rule writer: 

(defrule 
:naine 
:rule-documentation 
;core 
deft-environment 
:right,-environmcnt. 
:action 
:rulc-type 
xopy-matching-arcs 
:application-ordcr-number 

SRI-1 
T 
0 

The contents of each rule is organized in four slots which are the: 
"left environment", "core", "right environment", and "action". 
Each of these four slots can contain a series of clauses. Each clause 
consists of a test that is applied to an arc, to determine if that arc 
satisfies that clause. There exist a predefined series of clauses that 
are available to the rule writer. The following predefined clauses are 
can be used ONLY in the left, core, or right environments: 

1. (feature foo) e.g. (feature voiced) -- This tests the arc's feature 
structure to determine if the arc is voiced. If it, is desired to test that 
the arc is not voiced, one would write: (Feature (voiced nil)) Only 
one feature may be present in this clause. 

2. (feature-and foo foobar) e.g. (feature-and voiced (stress 2)) - This 
tests the arc's feature structure to determine if all the features listed 
are satisfied. The above clause would test an arc lo determine if it 
was voiced and had a stress level of 2. All the features are either T 
or Nil, except for stress, which is 0. 1, or 2. 

3. (feature-or foo foobar) e.g. (feature-or voiced (sonorant nil)) -- 
This tests the arc',? feature structure to determine if any of the 
features listed are satisfied by this arc. 

,'.,'. 

tofisct^c^^ 



■ ■HUI I WWOTW 

."• 

m 
m 

4. (phoneme "string") e.g. (phoneme "p") -- This test the arc's label 
to determine if it is the same as the phoneme in the clause. Distinc- 
tions are made between upper and lower case. 

5. (phoneme-or "si" "s2" "s3") e.g. (phoncme-or "p" "t" "k") - This 
test the arc's label to determine if it any of the following phonemes. 

6. (boundary foo-boundary) e.g. (boundary morpheme-boundary) - 
This tests the arc's feature structure to determine if it is a morpheme 
boundary. This is very similar to the "feature" clause. The 
difference between this and the feature clause is in the way that the 
clause is compiled. The rule compiler (discussed in a later section) 
automatically inserts the clause (optional (feature morpheme- 
boundary)) everywhere, except when it sees a boundary clause. 

7. (no-automatic-boundary) ~ This is an instruction to the rule com- 
piler for it not to insert the clause (optional (feature morpheme- 
boundary)) between this clause's two neighboring clauses. It does not 
translate into a clause itself. 

8. (optional (clause)) e.g. (optional (feature voiced)) - The optional 
clause may be followed by any test, except for clause- 6 and 7 (this is 
because 6 and 7 are instructions to the rule compiler). In addition to 
containing any predefined clause type, this may contain any lisp code 
(see example below). 

9. In addition to these predefined clauses, the user can combine the 
first five clauses in any lisp function that he desires. Predefined 
clauses "boundary" and "no-automatic-boundary" cannot be con- 
tained in lisp expressions.   For example: 

(optional (or (feature-and nasal dental) (phoneme "th"))) 

For each clause in the core environment, there must be a correspond- 
ing clause in the action environment (except for the "no-automatic- 
boundary" clause in the core, since it docs not generate any code). 
For each optional clause in the core, there must be a corresponding 
optional clause in the action environment. Insertions have no 
corresponding clause in the core. Each corresponding clause deter- 
mines the action that is to be performed on the arcs that match the 
core clauses. If the arcs are copied, the action is taken on the copied 
arcs. If the arcs are not copied, the action is taken on the matching 
arcs. The following predefined clauses are can be used ONLY in the 
action environment: 

(renbee-phoneme "foo") 
(change-features foo foobar ...) 
(delete-phoneme) 
(do-nothing) 
(insert "foo") 
(optional (delete-phoneme)) 

Additional predefined clause ty^cs can be written. Some possible 
new clause types might include (Part-of-speech-p foo) to test if Too 
is the grammatical class of the word dominating the current node, or 
(tri-morph-frequency-greater constant) to test if the arc is part of a 
three morph sequence with frequency of occurence greater than 'con- 
stant. Another more immediately useful addition would be (replace- 
phoneme-lis» "foo" "fool" "foo2"). 

The following sample rule demonstrates the syntax: 

(dofrule 
ttiame 
irule-docu mentation 
:core 
ilefl-environment 

:rjghl-^nvirunnn*iit 

: action 

:iulp-typ*! 

:copy-matching-aros 

:ap|>lication-ordpr-nurnbpr 

) 

1)7 

'expands unstrpsses initial-sy! 1Y to IH" 

falifl {phnnpniP "IVHrpaturp (strpss nit)}) 

({rpatiifp wonl-boundary) 

fnptinnal (fpat.urp-aiid  spgnipnt (syllabic nil); 

(I'paturp (syllabic nil)) 

(replace-phoneme "IH") 

CMU 

T 

(1 

Note that for the core, right, and action environments there is only 
one clause and it appears by itself. When more than one clause is 
present (as is shown in the left environment), they must be enclosed 
in a list. 

3.1.4.   Interactive Interface for Examining Networks 

In order to facilitate the examination of networks, a "network exa- 
miner" has been constructed. This facility can be seen in Figure 9. 
It consists of a graphics pane in which the networks are displayed, a 
notification pane which prints out instructions, a command menu 
pane which provides menu commands to manipulate the networks 
and their corresponding displays and a lisp pane for lisp expressions. 

3.2.  Implementation 

3.2.1.   Rule Compiler 

The rule compiler takes the information contained in the rule and 
compiles it in a form that is used by the rule application program. 
Each clause in the rule is compiled into a "rule-clause" lisp structure. 
One of the slots of this clause is called "match-compiled-function". 
The rule clause that the person writes will typically contain a macro 
such as (phoneme "p"). The function "phoneme" is a macro that 
expands out into code that tests the label of the arc that is currently 
under consideration. This code is compiled using the following lisp 
code: 

(compile (gensym) '(lambda (arc) ,clause)) 

This creates a random function (which is bound to the variable 
returned by gensym), which contains the compiled code that is to be 
applied to an arc. Therefore, any clause that the person writes can 
assume that it will be applied with the variable "arc" bound to the 
arc that we are currently testing. When the rule clause is applied to 
an arc, the following lisp code is used: 

(funcall (match-noncompiled-l'unction clause) arc) 

If this returns T, then the arc successfully satisfies the rule clause's 
require nent. If this returns nil, then the arc did not satisfy the 
clause requirement. 

3.2.2.   Rule Application Strategy 

3.2.2.1.   Rule Ordering 

For each rule set, the rules in that set are ordered by the rule 
number specified in the rule. However, taking a fixjd set of rules, 
there are several different strategies by which they can be applied to 
a network. 

1. Loop Tor pach rulp in thp list-or-ordered-rulps 

Loop for pach an: in thp network 

Tpst if the rule applies to thp network starting 

at this arc. 

If rule is siiccpssfnlly applied. 

*hpn modify th- nptwork, 

2. Loop for pach arc in the network 

Loop for each rule in the list-of-orderpd-rulps 

Teat if thp rule applips to the network 

starting at this arc. 

if rule is successfully applied, 

then modify the network. 
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This is a choice of algorithms if the rule set is to only be applied 
once to the network. The current rule application program uses algo- 
rithm number i. Algorithm number 2 is also available if desired. 
The rule application program keeps count of the number of rule that 
have been applied in a variable called •rule-applied-count*. The 
actual algorithm that is used to apply the rules is listed below 

1. Loop selecting the Krst rule remaining in the List-of-ordere^-rulcs 

2. Collect all the rules that have the same application 

order number aa this rule into Tenip-rule-list 

3. Set •rule-applied-count* to 0 

4. Loop for each rule in Tcmp-rule-list 

f). Loop for each arc in the network 

6. Test ii the rule applies to the network 

starting at this arc. 

7. If rule is successfully -pplied, then modify the 

network, and increment •rule-fti'pMtd'Couol* 

8. If •rule-applied-count• > 0, Go to step 3 

9, Delete all the rules of tcmp-rule-list from the list of 

remaining rules and iterate. 

3.2.2.2.  Matching a Rule to a Series cf Arcs in a Network 

When a rule is applied to an arc in a network, this arc is tested 
against the first clause in the rule. If this arc successfully matches 
the first clause, then we want to proceed onto testing the next clause. 
However, if there are several arcs which follow this first successful 
arc, a recursive algorithm is used, where the next clause is applied to 
each of the following arcs. If any of these arcs successfully satisfy 
the clause, then the system recurses with the next clause test on the 
früowing arcs, A simplified version of the algorithm is described 
"conceptually" below: 

(dtfun test-rule (remaimng-claiise-liat laat-positive-arc] 

(cottd {(null remaining-clausf-liat} 

;; there are no clauses remaing to be matched 

(poasihiy-apply-rule-to-net work rule)) 

(t 

(loop for arc in (following-arcs last-positive-arc) 

with clause ^- (first remaining-clause-list) 

do 

(cond ((funcall (ruatch-compiled-futiction clause} arc) 

;; the arc successfully satisfies the clause 

(store-arc-as-matched arc clause) 

(test-rule (cdr remaining-clause-tist) arc))))))) 

The actual algorithm used is somewhat more complicated to take 
care of optional clauses, Null arcs and the possibility of applying 
rules across word boundaries where each network is one word long. 

When there are no more clauses left, the rule is potentially applicable 
to the network. Sin the rules are it'ratively applied to the net- 
work, a test must be performed to determine if this rule has already 
applied to this same series of arcs in the network. If it already has 
applied to the same series of arcs, then the rule is not applicable to 
be applied again.   Otherwise, the rule is applied to the matching arc 
list. 

o1 i   s   n Q" ?  I  ^■'k'k'k-Q""« o^d'h-b'T'n  s   ahmt   a LJC 

3.2.2.3.  Applying a Rule to a Matching Series of Arcs 

When a rule is applied lo a matching series of arcs, if the arcs are to 
be copied, then all the arcs matching left, core, and right clauses are 
copied. Then, for all the arcs that match core clauses, the 
corresponding "action" is taken on each of these arcs, as specified in 
the action clause and the appropriate bookecping is perfomed. 

3.2.3.  Testing Rules 

Given a series of rules and a database of transcribed speech, one can 
test that the rules can account for all the observed pronunciations in 

the database. This is done by a process which is similar to the pro- 
cess of transcribing speech described in a previous section. The pro- 
cess of testing a rule set involves (1) producing the baseform pronun- 
ciation from the dictionary, and then applying the relevant rules to 
the baseform sequence to produce a fuller network that represents all 
the pronunciations consistent with the baseforms and rules, (2) use 
the interactive network facility to find the longest path through the 
network of possible pronunciation that matches the actual pronuncia- 
tion network. This path is highlighted on both networks. If this 
path does not reach the end of the network, then the user knows that 
additional rules are needed to account for the observed pronuncia- 
tion. The user can then go into the rule editor and write the 
appropriate rule, recompile and reapply the rules. 

An example of rule testing is shown in Figure 10. The upper net- 
work is a hand transcription of the spontaneous utterance "It's not 
like outside businesses that I've worked with." The second network 
is the string of baseforms automatically retreived for that sentence, 
and the third network is shows all the possible phonetic sequences 
that can be derived from the application of the phonological rules for 
this speaker to the second, 'baseform', network. The path through 
the third network that corresponds to the hand transcription has 
been automatically identified and highlighted. 

4.  /T/ACROSS SPEAKERS 

We are studying the phonology of /t/ across three speakers in year 
one so that we might develop a model of ac-oss- and within-spekker 
phonological variation for a limited environment. With this model 
and the model derived from our complete phonology of one spe iker, 
we hope to estimate the size and complexity of a model of general 
phonological variation. 

4.1.  Issues 

The basic issues involved in this study are: 

• What forms are realized for /t/s? 

• What environments are correlated with these forms (phonemic 
environment, speech rate, word or word frequency, speaker, 
speech siyle)? 

• What types of functions can be derived that estimate the pro- 
bability of !.n observed form given the environment of a /t/? 

• How can these probabilistic estimates be improved by observa- 
tions of other near-by forms observed in the speech' 

v w 3" t" t' f w i   BE 

|&.;tiS|&n|o;ti&lin
>k.&Q-t.»a;d&b|.;zTnBS.BZi&8»t-&o;v &WA;r-kt-&wjj^& 

0        0 0 0       0 □ 
/^ i-A^A-s/fr n a-r t; t^ I. a'kVkfta ctf "^ w\ ^v'"/"^' *' ^w'- ^ 

Figure 10 
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Dasic  issues needed to be resolved in order to complete the 
above are: 

• How do we define a form in an objective manner? For instance, 
what differentiates a flap from a d-stop? 

• How are speech rate, speech style, and word frequency defined? 

4.2.  Materials 

For an initial study of /t/ across speakers, the spontaneous speech 
forms realized by three carefully chosen speaker-! are being studied. 

The speakers used were among 20 speakers chosen from 150 speakers 
in an earlier study (Bernslein, Kahn and Poza; 1985). The 20 speak- 
ers were chosen to represent the range of speaker characteristic and 
speech styles evident in the 150 speaker sample, and the three speak- 
ers used here were one fast male speaker (JK), one neutral male 
speaker (SH) and one precise female speaker (SS). JK is subject 
"Ml" in the database study reported in Section 2; the other two 
speakers are different from subjects "M2" and "F". These speakers 
were interviewed in half hour sessions. Spontaneous speech was 
chosen because the phonclogical processes in effect in spontaneous 
speech differ significantly from that of read speech (see section 2, 
above), and should be similar to preferred manner of speaking com- 
mands to speech recognition systems. 

4.3.  Tools 

We have developed several tools to aid us in observing the /t/-forms 
and to help gather statistics about their occurrence. The first is a 
digital tape recorder based on the Symbolics 3600 LISP Machine. 
This allows us to keep a session of recorded speech (one of the inter- 
views) on line. The speech is recorded direct to disk and played back 
from it. Recording requires a Digital Sound Corp. A/D converter 
attached to the LISP Machine, but playback does not. This tool aids 
in quickly locating and transferring portions of the spontaneous 
speech to another tool for classification and data collection. 

The orthographic record of the recorded session;, was manually typed 
into text files. This text was converted to an approximate phonemic 
representation by the use of the PROSE-2r00 text to speech con- 
verter. 

Given the text and he phonemic transcriptions, the speech can then 
be searched for phonemic environments under study. A facility to 
compute a no mnal speech rate for that context will also be 
developed. The speech rate will be defined as the phrase duration 
predicted by Klatt's (1979) model phonetic durations, divided by the 
observed duration. Thus, if a speaker produces a sequence of words 
in half the time that Klatt's rules would predict, th- nominal rate 
would be 2.0. 

All the above tools are integrated into a data collection facility. The 
goal of this tool is to collect data of discrete variation of A/, making 
the categorical decisions necessary in an objective manner. A secon- 
dary goal is to facilitate the quick collection of such data, as a large 
amount of speech must be analyzed in order to compute meaningful 
statistics. Also, time offsets in the disk recording files are stored so 
that particular data points can be recovered and reanalyzed quickly. 

The are several important issues relevant to the design of such a data 
collection too1. The most meaningful way such data could be col- 
lected for a particular speech recognition system would be to '•atcgor- 
ize the /'t/ realizations based on the recognition components of that 
speech recognition system. However, to make the conclusions 
obtained from such data of general use, somewhat more general 
measures should be used. Further, in order to accommodate certain 
non-categorical hypotheses about phonological variation (i.e. that 
there is a continuum of possible realizations from canonic-t through 
d-stop, glottal-stop and llap to uektion) certain continuous measures 
should be collected in addition to the categorical measurements. 

Our philosophy, in relation to the above problems, has been to ini- 
tially collect data making the categorical decisions by eye. When the 
point is reached for the initial three speakers that the types of forms 
realized arc known and hypotheses are proposed about their distribu- 
tions, the categorical decisions made will be semi-automated. (For 
instance a user may indicate that there is a /t/ in the following 
phonetic context somewhere in a small region and the machine will 
search for it and define its (component) durations and take certain 
continuous measures. 

4.4.   Results 

4.4.1.  Distribution of contexts in the spontaneous speech 

Up to this point, we have recorded the speakers and collected some 
data on the observed forms of /t/ in the intervocalic /t/ context 
(with optional word boundaries). There are several observations to be 
made regarding the distribution of forms in spontaneous speech (and 
how that impacts the amount of speech Tquired to be collected for 
reasonable statistics). 

The table below shows the distribution of contexts for each speaker 
(speakers SH and JK are male, SS is female) based on phonemics 
generated by the PROSE-2000. Note that below V=Vowel for left 
contexts. For right contexts V = stressed vowel, V = unstressed 
vowel (including reduced vowels unless v is given too), and v = 
reduced vowels.  When not in contrast to V", V refers to all vowels. 

DISTRIBUTION OF /T/ ACROSS CONTEXTS 
(30 minutes of speech) 

Context                                      Speaker 
SH                     JK                     SS 

S TV 4                     11                         6 
S_TV 5                       15                         14 

ST V 3                         1                           5 
ST_V 12                       16                         17 

STV 0                        0                          0 
STV 10                        5                           7 
STv 12                        6                         15 
V TV 32                       30                        37 
V_TV 28                       20                         23 

VT V 50                       37                         40 
VT_V 109                       58                       136 

VTV 20                        8                         23 
VTV 62                       99                         71 
VTv 48                       56                         65 
vT a 30                       24                         31 
VTS 72                       65                         97 
N TV 9                        4                         11 
N_TV 3                          7                             8 

NT V 7                          4                             4 
NT_V 18                         10                           12 

NTV Ü                         10                             8 
NTV 11                       11                         35 
NTv 7                          6                             9 
V TJ 0                          0                            0 
VT J 26                         12                          21 
VT.I 0                          0                            0 
V TN 0                          0                            0 
VT N 6                         7                           9 
VTN 8                          3                             9 
V TW 0                          3                             4 
VT W 46                        54                           39 
VTW 1                           0                             2 
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Ignoring word boundaries the following distributions occur; 

DISTRIBUTION OF Itl ACROSS CONTEXTS 1 
(Ignoring word boundary) 

(30 minutes of sneechl 
Context Speaker 

SH                     JK ss 
5rv 52 59         1 
STS 4                      13 7 
srw 3                         3 5 
VTV 258                    302 316 

1 VTS 97                       88 120 
VTW 47                      54 45 

INTV 58                       51 81 
\NTS 8                       13 12 
\NTW 7                         4 3 
\LTV 10                         9 14 
ILTS 1                          1 0 
\LTW 0                         0 o      1 

This data, which was chosen for preliminary study because it was the 
easiest to analyze, shows few differences among these three speakers. 
In general, the "flap" form and the "d-stop+t-release" form are both 
heard as flaps, but speaker SS seems to differentiate the two in final 
/t/s depending on the stress of the following vowel. SS also seems 
more likely to asperate the ft/ in the word <to>. This kind of 
anaysis is continuing. 

6.  SUMMARY 

This paper has covered three activities at SRI, all related to the goal 
of accommodating within and across speaker variation in speech 
recognition design. The network and rule manipulation tools are still 
evolving, and the study of /t/ allophonics across speakers is in pro- 
gress. Several key issues remain in all of these endeavors, including 
technical question like how to merge processes and still recover the 
probabilities of the events, and system issues like how to integrate 
this knowledge in a lexical access algorithm. 

It is clear from the above data that it will be difficult for realiiation 
probabilities to be estimated for many context from spontaneous 
speech, and a strategy of "going to more general contexts when 
insufficient data is available for a current context" will have to be 
adopted, as has been used in the IBM and BBN speech recognition 
efforts. 

4.4.2.   Realised /T/ form« for VTV 

A small study of intervocalic /T/ for the first 10 minutes of each 
speakers first session was performed. This study and others like it 
will be used to guide the construction and the areas of application for 
the semi-automated data collection tool described above. The data 
collected (limited to about 10 data points from any given context) 
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REALIZATIONS OF /T/ ACROSS CONTEXTS      1 
(up to 10 minutes of speech per speaker) 

Context Delete     Glot     Flap     D-stop+T-rel     Canonic 
T V 
SH 2                   2 
JK 12           2 
SS 2           6                   1 
T V 
SH 3                          4                   2                               | 
JK 3             13 
SS 1                    5 

lo-word 
.SH 1 
JK 3                          1                                            1 
SS 1                       3 

TV 
\SH 5 
JK 10 
SS 10       j 
VTV 

{SH 
IJK 2                            4                    3 

SS 4                   5                       2 
VT-ate 

\SH 3                          1                                            2 
\JK 3 

SS 1                         4 
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ABSTRACT 

This paper describes the results of our work in 

designing a system for large-vocabulary word 

recognition of continuous speech We generalize the use 

of context-dependent Hidden Markov Models (HMM) of 

phonemes to take into account word-dependent 

coarticulatory    effects Robustness    is    assured    by 

smoothing the detailed word-dependent models with less 

detailed but more robust models We describe training 

and recognition algorithms for HMMs of phonemes-in- 

context On a task with a 334-word vocabulary and no 

grammar (it., a branching factor of 334). in speaker- 

dependent mode, we show an average reduction in word 

error rate from 24/5 using context-independent phoneme 

models, to 10S when using robust context-dependent 

phoneme models. 

1. INTRODUCTION 

It is well known that the acoustic realizations of 

phonemes in continuous speerh vary with the phonetic 

context that the phoneme is in. The resulting 

coarticulatory effects are most pronounced for 

immediately adjacent sounds, but have been known to 

extend to several phonemes away from the observed 

phoneme In     our     continuous     speech     phonetic 

recognition work [l. 2]. we have modeled these 

coarticulatory effects by using context-specific phoneme 

models In particular, we have defined a unique model 

for a phoneme in each of its different phonetic 

environments (as determined by the context of 

immediately adjacent phonemes) We call this context- 

specific model a "phoneme-in-context" model Since 

this set of models is very large (in principle, the cube of 

the number of phonemes) we cannot expect to model all 

of them very well with a limited training set In general, 

these models are combined (smoothed) with less detailed 

(but more robust) models with weights that depend on 

the amount of training of each model 

In    our   phonetic    recognition    experiments   we    have 

observed that the improvement in performance due to 

using diphone-dependent models of phonemes instead of 

context-independent models, for example, is smaller 

when the test vocabulary was different from the training 

vocabulary - even though the diphones in the test set 

had   occurred    frequently    in    the    training    set We 

hypothesized that contexts beyond the immediate 

phonetic contexts are important and affect recognition 

results This may be a main reason why speech 

recognition systems that model whole words typically 

outperform those that use a phoneme model, as long as 

the amount of training for each word is sufficient and 

the effects between words are not severe. However, 

word-based systems cannot easily take into account 

word boundary effects and are not easily extensible to 

vocabularies of thousands of words. The problem then 

is to model phonemes in context to maximize recognition 

performance on a particular large vocabulary, especially 

when not all the words in the vocabulary appear often 

enough in the training set to allow the estimation of 

robust models 

In this paper, we demonstrate the effects of word- 

level contexts on recognition performance We describe 

a method for incorporating word-dependent 

coarticulatory effects in a phoneme-based speech 

recognition system 

The paper is organized as follows Section 2 gives 

an overview on the modeling of phonemes in context. 

accompanied by a description of training and recognition 

algorithms. Section 3 describes the recognition task 

domain and the database used for the experiments 

presented here. Section 4 contains performance figures 

for using different levels of context, «long with a 

discussion of the results. Finally, Section 5 presents 

conclusions drawn from this work 

2. FRAMEWORK FOR MODEUNC COARTICULATION 

In a phoneme-based  speech  recognition  system,  each 
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word in the lexicon is decomposed into phoneme 

subumts, each of which can be modeled by a single HMM 

We have previously argued, however, that performance 

can be improved by taking into account immediate 

phonetic context. In this paper we have extruded this 

concept to incorporate the greater detail of word- 

dependent contextual models Each phoneme within a 

word is, in principle, modeled as depending on the word 

in which it occurs However, if the word has not been 

observed a sufficient number of times, information about 

the acoustic realization of the same phoneme in similar 

phonetic environments can be generalized from other 

words in the training set In fact, we combine these 

several hierarchical models of a phoneme (word- 

dependent, tnphone context, left and right context, no 

context) with continuous linear weights that depend on 

the number of occurrences of each type of unit, the 

location within the phoneme, and the relative importance 

of each unit on the acoustic realization of the phoneme 

Training and Recognition 

The different context-dependent models together 

form a unique expanded HMM network for each phoneme 

of each word in the lexicon, where the less detailed 

models are shared across different words These models 

are trained jointly using the Forward-Backward 

algorithm to obtain the maximum likelihood estimate of 

the HMM parameters for all the different context models 

given the training data 

Once the training is completed, we precompute a 

single model for each word in the lexicon from a 

complete set of these phoneme-in-context models 

acquired during training, given the pronunciations for 

the word We combine all relevant context models that 

were observed with appropriate weights to obtain a 

robust model for each phoneme in the context of the 

particular word 

The combined model should achieve the high 

performance of word-based recognition systems for 

words that have been observed sufficiently, while 

allowing reasonable performance for less frequent words 

or words that have never been observed 

3. EXPERIMENTAL CONDITIONS 

In this section, we describe the database and the 

task domain for the recognition experiments described 

below 

Databaie 

The  vocabulary  used  in  this  study  was  from   a   334- 

word electronic mail task. A total of 400 different 

sentences were generated covering ESO words of the 

vocabulary (200 words of the vocabulary and 100 of 

the sentences were supplied by CMU.) The sentences 

were each recorded by three male speakers in sessions 

of 100 sentences, separated by a few days The first 

three sessions were designated as training data, and the 

last as test material. The total duration of the training 

material was thus about IS minutes for each speaker 

The teat material used in the experiments below included 

30 of the test sentences, with a total of 1S7 word 

tokens covering 80 different words Each test word 

occurred at least once in the training set 

A dictionary of phonetic pronunciations was 

constructed for this 334-word vocabulary without 

listening to either the training or test material, but by 

trying to account for the most frequent phonological 

variations for each word. The average number of 

different pronunciations per word was 2. Word boundary 

phonological variations were not included. 

AatlyiU 

The sentences were read directly into a close talking 

microphone in a natural but careful style in a normal 

office environment The input speech was lowpass 

filtered  at   10  kHz  and  sampled   at   20  kHz.     Fourteen 

Mel-frequency cepstral coefficients (MFCC) were 

computed every 10 ms on a 20 ms analysis window 

Some of the training data was used with a k-means 

clustering algorithm to produce a representative set of 

MFCC vectors The k-means clustering was found to 

result in slightly better performance than a nonumform 

binary clustering procedure These experiments were 

performed using a codebook size of 2S6 MFCC templates 

Each MFCC vector in the training and test sets was then 

classified using vector quantization (VQ) [3], as one of 

the 256 template vectors To save computation, strings 

of up to 3 identical vector cedes were compressed to 1 

observation (This simple variable frame rate scheme 

was found not to affect performance ) 

Training 

To obtain the necessary initial estimate for the 

probability density functions (pdfs) for each state of the 

phonetic HMM we use a bootstrapping technique A 

separate passage (5 minutes of speech of a different 

vocabulary) spoken by one of the talkers was carefully 

labeled, indicating the beginning frame of each phoneme 

The hand-labeled speech was then quantized using the 

VQ codebook for each particular talker in the 

experiment        Normalized    histograms    of    the    observed 
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vector-quantized spectra for each phoneme were 

computed from the labeled data to form an initial 

estimate of the pdf for that phoneme for that talker 

This bootstrapping technique of using a single talker s 

speech as an initial estimate for all talkers seems to 

work quite well. All the pdfs for the different states in 

the HMM for a phoneme are set to this initial estimate 

Finally, all the pdfs for the context-dependent models of 

a phoneme are set equal to the single, context- 

independent model of that phoneme 

The 15 minutes of training data per talker is 

transcribed with the sequence of words spoken (no time 

labels and no phonetic labels) The training data is 

then processed with five passes of the Forward- 

Backward algorithm. In the cases where context- 

dependent models of the phonemes are used the 

training algorithm maintains separate models for each 

observed phonetic context 

Prior to recognition, word models are precomputed 

for each word in the vocabulary from the appropriate 

phoneme-m-context models with weights depending on 

the number of occurrences of each model and the 

position within the phoneme (as used in training) 

Recognition 

The recognition algorithm used is a time- 

synchronous procedure [2], which attempts to find the 

sequence of words that are most likely given the 

observed sequence of vector quantized spectra in a test 

utterance At present, no grammar is used, tnus making 

the effective branching factor or perplexity equal to the 

vocabulary size (334) 

The recognized sequence of words is then compared 

automatically to the correct answer to determine the 

percentage of correct, deleted and inserted words Word 

substitutions and deletions are tabulated as errors, 

while insertions are counted separately 

4. EXPERIMENTAL RESULTS 

In this section we present results on several word 

recognition    experiments    on    continuous    speech As 

described in the previous section, the results were 

produced for the following set of conditions 3 speakers, 

speaker-dependent. 334-word lexicon, electronic mail 

task, no grammar, 15 minutes of training, and 30 lest 

utterances totaling  187 words 

Table   1   gives   a  detailed   description   of  the  various 

system configurations for the different experiments 

• ytt«ni  name word modelt  ort  constructed  utmg 

PH contot-indipendtnt phontmt model» 

W only word-dependent phoneme modele, 

regordltst of whether training it 

luff icient for the word 

PH+W linear interpolation of 

conte«t-indep«ndent and word-dependent 

phoneme modele 

PH+L+« linear interpolation of 

context-independent, 

lef t-context-dependeiil and 

right-eonte»t-dap»nd«nt phoneme modelt. 

PH+L-m+W 1 inear interpolat ion of 

context-independent, 

left-eont»xt-dep«n*»nt. 

right-conlext-dopondent, 

and word-dependent phoneme modelt. 

Table 1:     Different System Configurations for Word 
Recognition. 

Table 2 shows word recognition error rates obtained 

for many different configurations of the system A 

complete set of results was obtained for three speakers, 

RS, FK, AW. Also shown is the average error rate /or 

the three speakers, and the difference in error rates 

from the best to the worst speaker for each system 

The word insertion rates are not given for each speaker 

and system below However, for systems PH and W. the 

insertion rate ranges from 5-10", while for the other 

systems, which use combinations of models, the range is 

from 2-4S in all cases 

RS AVC 

Bett mi nut 
Wont 

Error Rote 

PH 

W 

PH+W 

PH+L+R 

15 25 32 24 17 

11 17 14 14 6 

8 11 12 18 4 

ie 12 14 12 4 

Table 2.     Experimental Results 

The  first  experiment   (PH).  with  word  models   derived 

from   context-'ndependent   phoneme   models,   constitutes 
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our baseline result The word recognition error rate is 

24" averaged across the three talkers The second 

experiment (W) using word-dependent phoneme models 

only, resulted in an average error rates of 14" In the 

remaining experiments, the model of each word was 

constructed from combinations of several models with 

appropriate weights, in an attempt to improve 

performance over using the word-dependent model by 

itself The error rates are as follows PH + W - 103. 

PH+L+R -  123 

From the results given above, we make the following 

observations First.      the      systems      that      model 

coarticulatory effects clearly result in better recognition 

performance For     example,      system     W     achieves 

significantly better performance than system PH This 

result is due to the facts that each word in the test set 

has been observed at least once in the training, and 

that word-dependent coarticulatory effects are 

important Although some words are poorly trained, the 

overall performance is improved Note that for larger 

vocabularies, many words would not occur in training, 

making this system (W) inappropriate A system that 

uses a subword context-dependent model will be 

necessary Second, the systems that use less detailed 

models to smooth the highly context-dependent models 

result in better performance than those that attempt to 

use the context-dependent model by itself For example 

system PH + W outperforms system W Third, the range in 

performance across the three speakers (17") is large for 

the context-independent (PHi system We conjecture 

that this is due to a difference in the degree of 

coarticulatlon      present Speaker      RS      has      been 

subjectively judged to speak more carefully than the 

other two speakers However the range in perfcrmance 

for the context-dependent systems (4-631 is greatly 

reduced - a desirable attribute We believe this 

behavior is due to the fact that these systems are 

better able to model coarticulatlon 

As as side note, we tried combining all four models 

(PH + L+R + W) in a single experiment but (ound that 

Performance did not improve over the PH + W system We 

presume that this is due to the fact that most words in 

the test  set were well trained 

5. CONCLUSION 

In conclusion, we have mod/ two major extensions to 

concepts that were introduced to our previous work 

First, we have extended the use of context-dependent 

phoneme models to the case of continuous speech word 

recognition Second, we have extended the phoneme- 

in-context models to account for word-dependent 

coarticulatory effects Our method, based on a context- 

dependent phonetic hidden Markov model, automatically 

uses information «bout adjacent phonetic context only 

to the extent that it has seen examples of that context 

in training, and combines this information with less 

context-specific models for the phoneme Systems that 

make use of robustly combined (smoothed) word- 

dependent models of the phoneme are demonstrated to 

have the best performance 
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ABSTRACT 

We describe the integration of grammaticnl with 

acoustic knowledge sources in the BBN contiguous word 

recognition system, and the resulting effects on 

performance. This combination decreases the total 

number of insertions, deletions and substitutions by a 

factor of more than 6 compared to the system with no 

grammatical constraints, and yields a word accuracy of 

better than 98" We show that constraining the set of 

possible word sequences can improve performance even 

when the amount of training per lexical item remains 

fixed. In addition, we address the issues of estimating 

from limited data the degree of constraint imposed by a 

grammar and Lie importance of incorporating acoustic 

similarity m such measures.1 

grammatical constraint are perplexity and branching 

factor, decreasing these characteristics of a grammar 

should lead to improved performance We shall discuss 

how these measures can be estimated when only a small 

set of representative sentences are available. 

In the following section we describe our 

recognition system in section 3, we describe a set of 

experiments designed to demonstrate the relationship of 

performance to branching factor when the amount of 

training per item remains constant. We then address 

the issue of estimating degree of grammatical constraint 

from limited data (section 4). In section 5, we describe 

the incorporation of various grammars ir our 

recognition system and the resulting effects on 

performance 

1 INTRODUCTION 
In this report we describe the development and use 

of various finite stale grammars in the BBN continuous 

speech recognition system In particular, we investigate 

the relationship between recognition performance and 

the degree of constraint imposed by a grammar V,'f feel 

that understanding such relationships is crucial to 

evaluating how well specific techniques of linguistic 

modeling can be generalized to larger and more complex 

tasks 

It is well known thai recognition performance 

improves as vocabulary size decreases Similarly, when 

syntactic and semantic information are used to reduce 

the number of words that can legally follow a given 

sequence of words, a recognizer is expected to make 

fewer   errors       Two   related   measures   of   this   type   of 

This work was sponsored by the Defense Advanced Research 
Projects Agency and was monitored by the Office of Navai 
Research  under  contract  number N00B39-85-C-8423. 

2 THE SPEECH RECOGNITION 
SYSTEM 

The speech recognition system consists of a 

feature extraction stage, an acoustic scoring und a 

linguistic     scoring. The     feature     extraction     stage 

computes the short-time spectral envelope eveiy 

centisecond and represents it by 14 Mel-warped 

cepstral coefficients A vector quantizer discretizes the 

spectral envelope to one of 256 spectral templates using 

Euclidean distance The sequence of discrete spectra is 

used to compute the likelihoods of all possible 

hypotheses in the acouslir und linguistic si onng 

modules Recognizing    an    input    utterance    involves 

finding the sequence of words Wj  ... w    that maximizes 

PU,i i^a *„) P(w J 

and 
where Xj...xn is the sequence of quantized spectre 

wl •• "m ls a sequence of words The first term, 
the acoustic score, is derived from a hidden-Markov 

model    (HMM)   for   each    word        The    second    term,    the 
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linguistic score, is. in onnciple, a model of the expected 

syntax and semantics This tern includes a model of 

duration (longer sequences are less likely), and a 

grammatical store At present, due to limited data, the 

grammatical score is simply set to 1 for sentences 

allowed by the grammar and to 0 otherwise. 

The dictionary used was developeo and made 

available to us by the speech g-oup at Carnegie-Mellon 

University We expanded It (frnm aboutSOO words) to 334 

words in c^der to fül out categories that were 

represented in the original version. In particular, our 

version includes all months, all days of the week, 

possessives for all proper nouns and plurals for all 

other nouns, and cardinals and ordinals to cover 

numberrup to 999 

The training for our system was on 300 sentences 

(about 15 minutet) for each talker These sentences 

were syntacticclly and lexically based on 100 example 

sentences also provided by CMU We reserved the set of 

100 sentences for testing. The sentences were designed 

to be representative of human-machine interaction in 

an electronic mail task, referrprf to as the Emml task 

Our word models are phonetically based and 

capture the acoustic coarticulatory effects within a word 

to the extent that they can be estimated reliably from 

available training data In short, to obtain robust 

estimates of I tie transition and output distributions of 

the HMM for a phoneme-in-context we use a weighted 

average of the parameters of models with v irying 

amount of context The details of these word models 

are discussed in [2] 

The linguistic model, which computes the a priori 

probability of a word sequence, uses one of two types of 

models for the language The first model has no grammar 

and allows any word sequence In this case, the 

probability of a word sequence is determined by its 

length 

P^i •■   "J = c a"k 

where a is just an insertion penalty that is chosen 

empirically to control the insertion rate of the 

recognizer output and c is a normalizing constant The 

second language model is a finite state automaton We 

describe in a later section how we generated the fmn j 

state grammars from a small corpus of sentences At 

present, sentences are either accepted or rejected as 

grammatical depending on whether the automaton parses 

them or not Given sufficient data to determine th* 

likelihood of different word sequences, the paths of the 

automaton could be modified to impose probabilities on 

sentences of the grammar 

3 RECOGNITION ACCURACY AND 
BRANCHING FACTOR 

It is well known that recognition performance 

improves with smaller vocabulary size, with or without 

grammatical constraints The improved performance may 

stem from two factors (1) the smaller set of elements 

thai need to be distinguished, and (2) the greater 

amount of training that can be devoted to each of the 

items As vocabulary size increases, comparable training 

becomes    more    difficult Since    our    goals    involve 

increasing vocabulary size, we felt it was important to 

establish that the first of the above factors alone. I.e., 

smaller vocabulary size (which can be simulated by using 

a grammar), is sufficient to improve performance without 

increasing the amount of training per lexical item. 

Further, we would like to investigate the relationship 

between performance and constraints such as vocabulary 

size or graramaticality A set of experiments was 

designed to simulate the effect of grammatical 

constre.ints over a range of branching factors This was 

done by restricting the set of lexical items to the words 

appeunng in a given test sei tence plus additional words 

selected randomly from the dictionary until the total 

number of words is equal to the desired branching 

factor. 

3,1 Methodology 

We Investigated branching factors of 10, 20, 50, 

100, 200, and 334. The last figure includes the entire 

dietioneiry Performance was assessed for the task of 

recognizing 30 of the 100 test sentences, described 

earlier, as produced by three male talkers Since we 

had previously made changes in our system baF-'d on 

recognition of these 30 sentences, we repeated the 

experiment for the smallest and largest branching 

factors on the 70 previously unused sentences Since 

performance at these points for the new sentences did 

not differ greatly from the results based on the 30 

sentences (performance was actually about 1" better on 

the new sentences), we present the results based on the 

30 sentences. 

In order to achieve ccmparable statistical 

significance across the tests at various branching 

factors (BK), that is, to aJequately sample the dictionar;' 

for each, we increased the number of repetitions for 

experiments at lower BF. BF of 1U was repeated at istst 

10 times per talker pei sentence. BF 20 (11 times). BF 

50 (6 limes). BF 100 (3 tiroes). BF 200 (twice) and BF 334 

(once) 
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Word 
«•cognition 
Accuracy 
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Branching Factor 

Figure  1:    Performance and Branching Factor. 
Plotted Is word accuracy,   (substitutions 
+ deletions)  dlvidfd by the total number 
of words In the test sentences,  averaged 
across 3 male speakers,  as a function 
of branching factor. 

3.2 Results and Discussion 

Figure 1 shows the error rate averaged across the 

3 talkers' productions of the 30 test sentences. 

Performance is plotted as a function of branching factor 

on    a    log-log    scale It    is    seen    that    performance 

mcrepses (linearly on this scale) with smaller branching 

factors word accuracy improves from about 90% for the 

full dictionary to about 98.5% for the branching factor 

of 10 As mentioned earlier, performance on the 

remaining 70 test sentences was about 1% belter for 

branching    factor    of     10. The    repetitions    of    the 

experiment allow us to sample the effects of various 

choices of vocabulary items, but not the effects of 

variability in articulation In fact, our entire set of 

errors for the branching factor of 10 correspond to one 

or two words produced by each talker. Given this 

distribution of errors and the difference between the 

pv-centage of errors on the two sets of sentences, we 

conclude that L'O test sentences (187 words per talker) 

are not sufficient to reliably estimate performance in 

this case The experiment has, however, confirmed our 

hypothesis that reduction of the number of allowable 

words    is    sufficient    to    i/nprove    performance    without 

increasing training, and we feel that the methodology 

may prove useful for estimating the performance of a 

recognition algorithm on tasks differing in the 

complexity required of the grammar. In order to 

quantify this complexity, we present several methods for 

estimating the amount of constraint imposed by a 

grammar 

4 ESTIMATING GRAMMATICAL 
CONSTRAINT 

When recognition is performed without a grammar, 

the set of possible outcomes is the set of all possible 

combinations of the lexical items. The role of a 

grammar is to disallow some of those combinations This 

means that at any point the grammar has to choose not 

from the entire set of lexical items, but from a smaller 

set By reducing the legal possibilities the grammar 

imposes a constraint which makes the recognizer's task 

easier How does one measure the constraint imposed 

by the grammar'' One would like to average the number 

of choices at various points and weight them according 

to how likely they ar^' to occur Such a measure, based 

on the information theoretic concept of entropy, exists 

and is called "perplexity" [l]. For a deterministic finite 

state automaton we iefine its entropy, H, by 

H £ PW MO 

where p(i) is the probability of node i, and h(l) is 

the entropy of the set of choices emanating from that 

node.    The perplexity, Q is 

Q = 2H 

The perplexity of a grammar is determined by the 

network connectivity and the probability assignment of 

the different transitions. In our case, the network 

connectivity is determined by the types of linguistic 

phenomena captured in a particular grammar The 

probability assignment of the transitions is, however, 

more difficult Th ? basis for our grammar was a set of 

100 sentences intended to represent rather than to 

define the language In fact, many different grammars 

can be built to cover all or most of these sentences 

while differing greatly in the number and type of 

additional sentences covered, and, more importantly, 

differing in their perplexity The problem now becomes 

the estimation of perplexity given a set of 

"representative"  sentences.     We  propose  three  methods. 
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The first  is the maximum  perplexity of a finite language 

[6] which '13 obtained by solving for the positive root XQ 

of i 
'max 
V 

Nv x_k = 1 

whe-e Njj is the number of rentences of length k 

in the language. lmBlI is the length of the longest 

sentence in the language, and IQ lb the desired 

maximum perplexity. 

A second measure, which we will call the uniform 

branching estimate of perplexity, is obtained bv 

assuming all transitions from a node in the grammar to 

be equally likely 

The third measure, called test set branching 

factor, uses the set of test sentences to estimate the 

average branching factor encountered by traversing the 

FS network along the paths corresponding to each 

sentence We use tne geometric mean of the number of 

branches at each node over all the test sentences as an 

es'iiate of task perplexity. 

All    the     ubove     measures    ignore    the acoustic 

similarity  of  the  words,  an  important  factor Me  sures 

including    this    factor    have    been    proposed, sec     for 

example, [3] 

5.1 Integration of Grammatical Constraints in the 

Recognition System 

We approached the implementation of a grammar in 

our recognition system in two steps First we created a 

description oi the Email task language in a modified 

context-free notation This description was based on 

the 100 sentences mentioned earlier, and was designed 

to capture generalizations of the linguistic phenomena 

found    in    them Second,     we     created     tools     that 

transformed this description into structures in our 

recognizer that provide the corresponding grammatical 

constraint. These tools provide us with a general 

facility for capturing in our recognition system an 

approximation of any language expressible in context- 

free rules We chose to implement th. constraint- in 

the recognition system in the form of a finite autor'aton 

(FA) similar to those described in [4] and [l] 

At the first stage in generating t gramme , we use 

a context-free notation augmented with variables in 

order to simplify the process of describing a language 

For example, this nctation would allow i rule that says 

a neun phrase of aay number can be replaced by ^n 

article and a noun of the same number, whereas 

ordinary context-free notation would require two rules 

that are identical except that one would he for singular 

number end the other for plural 

5 RECOGNITION ACCURACY AND 
GRAMMATICAL CONSTRAINTS 

In this section, we conpare recognition 

performance using grammars d'fenng in the degree to 

whic.i the^ constrain the set of allowable word 

sequences We began with a grammar designed to cover 

a structural subset of the Email sentences, tfie 

conmands A goal of this grammar was to maximize 

coverage of these sentences plus logical extensions 

suited to the Email task environment Equally important 

in the desi^ n of this grammar was the minimization i! 

"over-generation", i.e., the generation or acceptance of 

many ungrammatical sentences. 

Our interest in grammars is broader than simply 

improving performance on a given task In addition, we 

would like to investigate the trede-off in performance 

versus over-generation, and to estimate performance on 

more diffic ult tasks, i e . tas..3 rrquinng a larger number 

of    choices    at    various    points    in    the    grammar We 

therefore  designed  a  second  grammar  for the  commands, 

a    grammar    with    greater    perplexity Similarly,     we 

designed   two   grammars   differing   in   perplexity   for   the 

entire set of sentences (commands es well as questions) 

Our system first translates the augmented notation 

into ord nary context-free rules and then constructs a 

FA based on these rules. While it is true that context- 

free grammars can accept recursive languages which 

finite automata cannot, finite automata can approximate 

recursion by setting upper limits on the number of 

levels of recursion allowed Such an approximation is 

reasonable for most task languages, since spoken 

sentences do not ordinarily use more than a few levels 

of recursion 

In our recognition system, the automaton is used 

as follows. Associated with each transition in the FA is 

a hidden-Markov word model that is used to compute 

the probability of a spectral sequence given the 

occurrence of the wed at that place in the grRmmar. 

The recognition algorithm with this graraniHr is only 

slightly different from the version of the algorithm that 

allows any sequence of words [2] For each 10 ms frame 

of the input speech, the scores for all the word models 

in the FA network are updated according to a modified 

Bauw-Welch algorithm The score for the start state of 

the FA is unity ind the score for every other FA slate 

is simply the maximum of all the word model scores that 

enter  the e   along   FA  transitions      This   state   score, 

in  turn,  is propagated  to the  beginning  of  all  the  word 
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models on transitions leaving the state, to be used as 

the new initial score for those models In this way the 

recognizer only considers grammatical sequences of 

words. Maintained throughout this scoring process are 

traceback primers that indicate for each state and each 

time the word model that produced the best score to 

enter the slate Oncp an utterance is thus processed, it 

IF a simple matter to follow theje pointers back through 
1 ic network to find the highest scoring sequence of 

words 

One potential difficulty with a FA grammar for 

recognition stems from the fact that, ordinarily, 

computation is proportional to the number of transitions 

in the FA This number can become quite large for 

complex 1 .juages. However, in our experience with 

grammars for the Email task, a simple time-synchronous 

search with pruning [5] effectively reduces the 

computation to less than that for the algorithm that 

does not use a grammar, without affecting performance. 

5.2 Description of the Grammars and Methodology 

We compare here the effects on performance of 

grammars differing in which set of sentences they are 

intended to cover (the full set of test sentences or the 

commends only) and along a dimension we call tight- 

loose, which refers to an estimate of how much over- 

gtneration    is    produced    by    the    grammar "Tight" 

grammars have very little over-generatioi; (generation of 

sentences that are considered ungrammalical) and, 

because of these tighter constraints, tend to have fewer 

choice, at various pointr in the grammar, I.e., smaller 

perplexity "Loose" grammars, on the other hand, have a 

great deal of over-gtneration and greater perplexity 

(larger sets of choices at various states) The loose 

grammars developed here are loose in that, for example, 

no number, tense, case or semantic agreement is 

required 

The grammars we have investigated so far include 

a tight and a loose grammar for commands (COM-T aid 

COM-L, respectively) and a loose grammar that covers 

both commands and questions (SENT-L). In addition, we 

have used another grammar that is tighter than SENT-L 

(and hence is called SENT-T). but only in aspects that 

would otherwise put into similar grammatical distribution 

large sets of minimal pairs. For example, singular 

versus plur nouns, the cardinals versus ordinals, or 

verb tenses all involve large sets of acoustically similar 

items This fact can pose a problem for recognition if 

the grammar allows many sequences in which one 

member   of   the   pair   can  be   substituted   for   the   other 

On the other hand, distinguishing verbs on the basis of 

which objects they take reduces perplexity without 

necessarily reducing the number of acoustically similar 

competing words 

Table I shows the relevant attributes of the 

grammars investigated. For comparison, the results for 

no grammar (the trivial grammar that allows any lexical 

item to occur anywhere) are also included The table 

includes: the number of arcs (a rough measure of size, 

and is related to computation time), the three estimates 

of perplexity (Maximum Perplexity, Test Set Branching 

Factor, and Uniform Branching) This table also shows 

the number of words and number of sentences on which 

each grammar was tested, and the performance for each 

Word accuracy here is computed as the sum of all errors 

(insertions + deletions + substitutions) divided by the 

sum (total words + insertions) Sentence accuracy is 

also included in order to show that a few percentage 

points difference in word accuracy can result in much 

larger differences in the number of correctly recognized 

sentences a number that is no doubt very important to 

potential users. 

Since we had used 30 of the 100 test sentences in 

previous experiments and modified our pyslem as a 

function of those results, we used only th' subset of 70 

remaining sentences for the performance figures 

reported here In order to compare the tight and loose 

versions of the grammars, performance was assessed 

using the intersection of the sentences parsed by each 

grammar Results are based on using the phone-left- 

and-right word-model discussed in [2] 

5.3 Results and Discussion 

Figures 2a (commands only) and 2b (commands and 

questions) show graphically the word accuracy figures of 

Table 1 associated with each grammar. Performance is 

plotted as a function of the perplexity estimates used 

As can be seen these grammars differ in their effects 

on performance Further, when two grammars that cover 

the same set of sentences are compared (COM-T versus 

COM-L or SENT-T versus SENT-L). the mor? constrained 

grammar has significantly better word accuracy than the 

less    constrained    one tightening    of    the    command 

grammar improved performance from 95.5" to 98 4^. 

lightening of the sentenre grammar improved 

performance from 96.2" to 98.2" Word accuracy, again, 

includes as errors all insertions. deletions and 

substitutions Further, it appears that grammatical 

constraints   that   take   into   account   acoustic   similarity 
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TABLE   I 

Properties   of   the  Grammars 

GRAMMAR COM-L  COM-T  SENT-L  SENT-T NONE 

Number of arcs 

Maximum Perplexity 

Test Set Branching 

Uniform Branching 

Words in test set 

Sentences in test set 

Sentence accuracy 

Word Accuracy 

836 7167 2547 3771 

58 19 75 no 

40 18 47 31 

19 9 22 19 

183 183 438 438 

27 27 63 63 

72 9%   90.1%   80.5^   90.25 

95.5%  98.4%  96.2%  98.2% 

334 

334 

334 

492 

70 

36.7% 

86.6% 

Comparison of the various grammars used for the commands (tight 
coverage,  COM-T;  loose coverage,  COM-L)  and  the  commands plus 
questions (tight coverage, SENT-T; loose  coverage,  SENT-L).   Word 
accuracy here is computed as (insertions + deletions + substitutions) 
divided by (total words + insertions). 
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Figure 2:  Performance with Grammars.  Plotted is performance, (insertions + deletions + substitutions) 
divided by (number of words + insertions), as a function of perplexity as estimated by the 
uniform branching assumption (X), the test set branching factor (squares), and the maximum 
perplexity (circles).  (.-) The tightly constrained command grammar (COM-T) and its loose 
counterpart (COM-L).  (b) The tightly coratrained sentence grammar (SENT-T) and its loose 
counterpart (SENT-L), which considers acoustic similarity. 
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improve performance more than those that do not for 

comparable estimated perplexity the SENT-L grammar 

improves performance more than its estimated perplexity 

would predict if acoustic similarity had not been an 

important factor. 

An analysis of the recognition errors using these 

various grammars reveals that, in general, acoustically 

similar items are cenfused. it does not appear that 

function words are more often involved in the errors 

than content words. A large percentage of our errors 

(32% for SENT-T) involve "the" and "a", which happen to 

be function words However, no other function words 

show this pattern We believe that "the" and "a" show 

up more often in the errors NOT because they are 

function words, but because they are (1) acoustically 

similar, (S) have similar grammatical distributions, and 

(3) are very frequent words in these sentences 

Assuming thul we cannot change their acoustic similarity 

or their lexical frequency, improving performance on 

these words requires a more constrained specification of 

their distribution in the linguistic model. It is possible 

that semantic, pragmatic or discourse models could 

separate the two distributions, given a well-defined task 

environment. 
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6 CONCLUSIONS AND FUTURE 
RESEARCH 

We have implemented and tested methods of 

combining grammatical and acoustic knowledge sources 

in our recognition algorithm We ?ind that the use of 

grammatical constraints can decrease the error rate by 

a factor of more than six This result corresponds to a 

word accuracy (counting all insertions, substitutions and 

deletions as errors) of more than 98% for the Email 

task. Reducing the number of words considered by the 

recognizer boosts performance, even when the amount of 

training per word is fixed We have presented various 

estimates of grammatical perplexity and shown that 

performance improveb QE estimated perplexity decreases 

for a given task Our experience with a grammar that 

focuses only on syntactic constraints in acoustically 

confusable portions of the grammar demonstrates the 

importance of acoustic similarity in predicting 

performance accurately and in improving recognition 

performance 
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ABSTRACT 

This    paper    describes    the    implement'ition    of    a 

continuous   speech   recognition   algorithm   on   the   BBN 

Butterfly™    Parallel    Processor The    implementation 

exploited the parallelism inherent in the recognition 

algorithm to achieve good performance, as indicated by 

execution     time     and     processor     utilization. The 

implementation process was simplified by a programming 

methodology that complements the Butterfly 

architecture. The paper describes the architecture and 

methodology used and explains the speech recognition 

algorithm, detailing the computationally demanding area 

critical to an efficient parallel realization The steps 

taken to first develop and then refine the parallel 

implementation are discussed, and the appropriateness 

of the architecture and programming methodology for 

such speech recognition applications is evaluated. 

INTRODUCTION 

prior experience on this or any other parallel machine 

The outline of this paper is as follows section 2 

describes the Butterfly, section 3 explains the BBN word 

recognition algorithm, section 4 describes the single 

processor version of the program, section 5 present.! the 

parallel programming methodology used, section 6 

explains the parallel versions and the final sei-tion 

contains results and future work 

BUTTFRFLY 

The Butterfly Parallel Processor [1] is composed of 

multiple (up to 256) identical nodes interconnected by a 

high-performance     switch. Each     node     contains    a 

processor     and     memory. The     switch    allows    each 

processor to access the memory on all other nodes. 

Collectively, these memories form the shared memory of 

the machine, a single address space accessible to every 

processor. All     interp-ocessor     communication      is 

performed using shared memory. From the point of view 

of a program,  the only difference between references to 

memory on its local node and memory on other nodes is 

This paper describes research to investigate the that remote references take a little longer to complete, 

uses of parallel computation for continuous speech word Typical memory referencing instructions accessing local 

recognition Our goal in this work is to determine the memory take about 2 microseconds to complete, whereas 

extent to which continuous speech recognition those acCeSsing remote memory take about 5 or 6 

algorithms can make use of parallel processing to microseconds The speeds of the processors, memories 

achieve real time speeds Our approach has been to and swltch ftt.e balanced to permit the system to work 

develop parallel versions of an existing recognition efficiently in a wide range of configurations, 

algorithm      on     BBN's     Butterfly     Parallel     Processor 

Additionally, this work provided a chance for  us to learn The     Butterfly     has     a     number     of     interesting 

about    the    Butterfly    Parallel    Processor    and    parallel       architectural      chartctenstics 11      is      a      multiple 

algorithms in general, we approached the project with no       instruction   multiple   data   stream   (M1MD)   machine   where 

each    processor    node    executes    its    own    sequence    of 

' — instructions,     referencing     data     as     specified     by     the 

instructions The M1MD architecture permits a variety of 

approaches to programming the machine, making it 

suitable   for   many   applications        Processor   Nodes   are 

Thi« work »as »pornored by the D«fen3« Advanced Reaearch 
Projtct» Agency and »as moniloreo by the Office of Naval 
Research under Contract  No.   Neee39-8S-C-e313. 
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tightly coupled by the Butterfly switch Tight coupling 

permits efficient interprocessor communication and 

allows each processor to access all system memory 

efficiently The     Butterfly     Parallel     Proceüsor     Is 

expandable to 256 Processor Nodes and each processor 

node added to a configuration contributes processing 

power, memory, switch bandwidth, and I/O capacity As 

a result, processing, memory, communication and 1/0 

capacity all grow with the size of the configuration 

Processor Nodes are all basically identical in this 

architecture As a result, every processor is capable of 

performing any application task. This uniformity 

simplifies programming since programmers need not 

concern themselves with allocating certair tasks to 

specific processors Each Processor Node contains a 

Motorola MC88000 microprocessor, from 1 to 4 MBytes of 

main memory, a co-processor called the Processor Node 

Controller, memory management hardware, an 1-0 bus, 

and an interface to the Butterfly switch. Butterfly 

Processor Nodes are currently being manufactured with 

68020 microprocessors and a floating point co-processor 

to replace the single 68000 processor 

The Butterfly switch uses packet switching 

techniques to implement high performance, reliable, and 

economical interprocessor communication The switch is 

a collection of switching nodes configured as a "serial 

decision" network There Is a pnth through the switch 

network from each processor node to every other 

Processor Node. The name derives from the connection 

of switch nodes, which resembles an FFT "butterHy" flow 

graph 

The particular machine that was used for 

development in this project was a 16 processor machine 

with a 68000 microprocessor and 1 Mbyte of memory on 

each Processor Node As such, it did not have hardware 

support for floating point arithmetic 

TORD RECOGNITION ALGORITHM 

The problem of speech recognition requires that we 

map an analog signal onto a sequence of words that 

comprise    sentences However,    the    identification    of 

particular speech sounds (phonemes) from this signal is 

made difficult due to the variability that occurs m 

speech production This variability is due to thP effect 

of   neighboring    speech   sounds   (coarticulation),   and   a 

variety   of   other   effects   that   all   combine   to   make   the 

same speech unit appear diffsrently each time it occurs 

Our recognition algorithm is based on the explicit 

n. deling of variability in speech through the use of 

probabilistic Hidden-Markov Models (HMMs) of phonemes 

in various phonetic contexts [2] Figure 1 illustrates 

the hidden-Markov model of a phoneme used in our 

system. The three large open circles are stales 

associated with acoustic events corresponding roughly to 

the beginning, middle and end of a phoneme. The small 

filled circles are the "initia!" and "final" states and do 

not produce output symbols. There is associated with 

each pair of states a transition probability a(j|i) which 

is the probability of going to state j given that the 

process is in state i The arrows between states 

indicate the allowed (probability nonzero) transitions 

Unlike a Markov chain, in which each state has 

associated with it a single output, each HMM state has 

an output probability density function (pdf) P(x|i) that 

gives the probability of each possible output symbol x, 

given that the process is in ctate 1 

Rather than use actual segments of the speech 

signal as output symbols, we can represent the speech 

signal as a sequence of spectra that occur at discrete 

time intervals. Furthermore, each of these spectra can 

be approximately characterized as one of a small number 

of spectral types (256 in our system), which are 

determined using a clustering procedure The spectral 

characterizations, each a single number, then become 

the possible output symbols Given this phoneme model, 

words can be modeled in turn as concatenations of 

phoneme HMMs that have been modified to take into 

account the contextual effects of the word 

One approach to understanding HMMs is to imagine 

them in a synthesis role, where they are used to 

produce spectral sequences Starting from the initial 

stale of the model, we randomly choose the next stale 

according to the transition pribabihties on the arcs 

leaving the initial slate. Whenever the process is in an 

acoustic state (the open circles in the diagram), we 

randomly pick an output symbol according lo the stale's 

output pdf As the process moves from state to state in 

this manner, it produces a sequence of symbols (speech 

spectra) as output 
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m The recognition problem can be viewed as the 

inverse of the synthesis problem, given a sequence of 

input spectra and a set of models o/ all possible words, 

we wish to find the sequence of models that is most 

likely to have produced the spectral sequence An 

adaptation of the Viterbi algorithm [3] solves Just this 

problem, and is the basis for our recognizer 

The basic recognition algorithm finds the path 

through the states that is most likely to have produced 

the spectral sequence to be recognized The algorithm 

does this by finding the best path to every state at 

every time given that the path to be previous state was 

also "best" Each step along these paths has associated 

with it a "score", which reflects the probability of the 

step given the spectral sequence and the transition 

probabilities of the model. The scores are accumulated 

along the paths so that, at every time, the best path to 

any .^ate has a single score. The best path to a 

particular state, S, at time t, is determined by 

considering all possible predecessor states (states which 

have transitions to S) at time t-1 and the best path to 

each of these The score for a path to S is then the 

combination of the path score to the predecessor state 

and the score for the step from the predecessor state 

to S The best of these scores indicates the best path to 

S 

The central computation in the algorithm is for 

each time interval, update the scores for all states 

Figure 2 schematically illustrates the scoring procedure 

for a single state in a word In this figure, the score 

for state n at time I (the f>n(t) in the lower right 

corner) is being computed based on the scores for three 

states computed at time t-1 (the three circles on the 

left of the figure) each multiplied by the corresponding 

transition probability of going to state n The new 

score for state n is just the maximum of the entering 

scores multiplied by the probability p(x|n) of the 

spectrum x( at time t, at state n 

This scoring procedure is applied to all states in 

each word for all time frames in the utterance In the 

general Viterbi decoding algorithm, the best path to 

each state would also be maintained However, in the 

speech recognition system, this detailed a record is not 

required It is sufficient to know the word and the time 

frame in which the word began The scores computed 

for   terminal   states  (ends   of  words)   are  special      They 

are compared and . nly the maximum terminal score over 

all words is saved, along with the word that produced it 

and the start time for the word The largest terrainel 

score for a time frame is used as the score for all 

initial states in the next time frame In addition, the 

best score at any state at a particulüi lime is found 

and used to normalize all scores in the next time frame 

This normalization factor (NF in Figure 2) prevents 

arithmetic     overflow. The     determination     of     the 

normalization factor is indicated at the right hand side 

of Figure 2. The current state score, an(t), is compared 

against the largest state score, aBeStH). encountered so 

far for the current time frame, and replaces it, if 

appropriate. 

When all the time frames in the utterance have 

been processed in this way, the best sequence of words, 

called a "theory", for the content of the utterance can 

be determined. The theory for the utterance is 

determined ny backtracking The maximum terminal 

score at the end of the utterance specifies the last 

word of the utterance. The start time of this last word 

is the end time for the previous word, so the maximum 

terminal score at this time indicates which word should 

be selected as the second-last word in the theory, and 

so on, back to the beginning of the utterance 

SINGLE PROCESSOR IMPLEMENTATION 

The first step toward a parallel implementation was 

to bring up the speech recognition program on a single 

processor of the Butterfly Pai allel Processor. The 

existing VAX implementation, written in C, depended on 

the file system to store the large amounts of data which 

included the transition probabilities and the pdfs for 

the word models This data totaled 1.5 Mbytes Storing 

this amount of data required using some parallel memory 

management techniques to allocate shared memory on 

multiple nodes. 

The VAX (and the first Butterfly implementation) 

used floating-point arithmetic. Because floating-point 

arithmetic is performed in software in our Butterfly 

Parallel Processor it seemed likely that the floating- 

point arithmetic would hide any overhead and task 

granularity problems we encountered We decided to 

divert from the parallelization effort to investigate using 

fixed-point arithmetic 
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Fortunately, most of the data was represented as 

indices into a table of probabilities for storage 

efficient y This table contained 256 entries, ranging 

between zero and unity, quantized logarithmically. 

Therefore, the indices themselves were scaled log 

probabilities Multiplication    of    probabilities    in    the 

original program could, of course, easily be converted to 

addition of corresponding log probabilities The Vilerbi 

algorithm also finds the maximum of the path 

probabilities to a node, which is equivalent in both log 

and linear domains We converted the program to use 

log probabilities, and obtained the same results as 

before. 

The next phase of the conversion, changing 

floating-point to fixed-point, was straight-forward and 

quickly completed, but the execution time remained 

disappointingly    long. Butterfly    measurement    tools 

allowed us to discover where most of the time was being 

spent To speed up access to array data, we replaced 

array subscripting with pointer arithmetic and 

dereferencing We also simplified the calling sequence 

by defining many of the arguments globally. These 

modifications caused the execution time to drop to 

about two minutes for a 3.5 second utterance, which 

seemed low enough to obtain reasonable parallelization 

measurements 

UNIFORM SYSTEM 

The Butterfly architecture provides a very uniform 

environment. The     processors     are     identical,     the 

connections between all pairs of processors are the 

same, and each processor's access to all locations is 

fairly uniform Although a processor can access the 

memory that resides on its own Processor Node 

somewhat foster than it can cross the switch to access 

memory on another node, the difference in access times 
is not usually significant Equal access to all memory 

results in uniform interprocessor communication 

connections, because processors only communicate 

through the memory 

The Uniform System was developed to exploit the 

architecture of the Butterfly Parallel Processor It is a 

programming methodology supported by a library of 

high-level functions [4] Its goal is to simplify the 

problem of load balancing for the memory as well as for 

the    processors Balancing    the    load    on    memory    is 

accomplished by scattering the data evenly across the 

different physical memories in the machine, under the 

assumption that this will also spread the accesses fairly 

evenly, reducing the inefficiency that results when many 

processors attempt to access the same memory 

simultaneously. The load on the processors is balanced 

when all processors are equally busy and no processor 

is waiting for another to finish. 

The Uniform Jystera contains functions for 

scattering data structures throughout memory One of 

tnese is AllocateScatterMatnx, which allocates and 

scatters a two dimensional array, or matrix, so that 

different rows reside on different memories If each 

processor uses a different row, there is no competition 

for any of the memories The Uniform System also 

provides for processor private memories, as well as the 

globally shared memory. This private memory is 

available to the processor for data that the processor 

will access often, and is located on the same board as 

the processor. This memory assignment reduces traffic 

through the switch and therefore reduces the possibility 

of switch contention Functions that perform block 

transfers between this local memory and the shared 

memory are included in the Uniform System, as are other 

functions for allocating storage in the shared memory 

The philosophy behind the Uniform System 
processor management methodology views the processors 

as a uniform pool of workers, each of which is capable 

of     executing     any     application     task Using     this 

methodology, the programmer is only required to supply 

code for the tasks that operates correctly when 

executed simultaneously by multiple processors This is 

usually easier than writing and synchronizing many 

different sub-programs to run each on individual 

processors A    program    is    copied    to    each    of    the 

processors In most cases, the program will begin with a 

section of serial code that is executed on a single 

processor To begin executing a section of code on 

multiple processors, a FOR loop, for example, the 

programmer can use a "task generator'' to replace the 

FOR statement and a "worker routine" to replace the 

body of the FOR loop In this case, the task generator 

would be GenOnlndex, which is used to apply the worker 

routine for each value of the FOR loop index The task 

generator makes a task descriptor available to all 

processors, which use It, as they become free, to 

generate     calls     to     the    worker    routine The     task 
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descriptor for GenOnlndex is very simple, consisting of 

the name of the worker routine, the range for loop 

index, and a mechanism for determining the next 

iteration of the routine to perform Processors, using 

this descriptor, execute i,he routine repeatedly for 

different index vrlues, until the index has run the 

range When all processors have finished, the program, 

once again serial, continues executing on a single 

processor 

The  programmer   must   supply  a  worker  routine   to 

perform   one   instance   of   the   task   to   be   performed   in 

parallel       He   must   also   provide   a   task   generator   of 

determining   the   next   instance   of   the   task   to   begin 

execution. The    Uniform    System     Library    includes 

generators  such as GenOnlndex,  for many common forms 

of program struciurec     A simple  program  might  contain 

only a single task generator, while a more complex 
program      might      contain       many,      possible       nested, 

generators 

We decided to use the Uniform System for several 

reasons First, the speech recognition algorithm is 

essentially e single task, executed many times This fits 

the Uniform System paradigm very well Second, being 

novices we were attracted by the simplicity of use of 

the Uniform System Third, there are functions available 

in the Uniform System Library that allow automatic 

timing of the same program run on various numbers of 

processors, and this provided an easy way of evaluating 

the performance of the parallel implementation. Finally, 

because the same program can be run on one or many 

processors, we believed that debugging the parallel 

implementation would be simplified 

PARALLEL IMPLEMENTATION AND RESULTS 

In our speech recognition system, both the training 

and spectral analysis tasks are performed "off-line" and 

the results stored as described in Section 3 The 

recognition program itself begins bv reading in the word 

models for a speaker Then, for eac.i utterance, the 

spectral parameters for the utterance are read and 

stored At this point in the program, the actual 

recognition task begins This recognition task was the 

only portion considered for parallel implementation Our 

execution time measurements began here and continued 

until the input utterance had been recognized, that is, a 

theory   for   the   complete   utterance   had   been   obtained 

The pertinent portion of the speech recognition program 

can he abstracted as follows 

a FOR all frames 

b initialize frame 

c FOR all words 

d initialize word 

e FOR all states 

f compute state score 

8 IF (new max score) 

h replace max score 

i IF (new max terminal) 

j replace max terminal 

k. determine normalization 

1. FOR all words 

m propagate scores 

n.    determine theory 

The first parallel version combined lines d) through 

f) and parts of g) and h) into a single task and used 

the generator GenOnlndex. which includes a prologue 

task and an epilogue task in addition to the main task 

The prologue task is executed only once by each 

processor before that processor executes the main task 

for the first time In this version, the prologue included 

line b). Similarly, the epilogue task is executed once by 

each processor after all main tasks have been completed 

by that processor For this program, the central task 

determined the maximum state score and the maximum 

terminal score seen by each processor The epilogue 

task compared these local maxima against global maxima, 

replacing the global maxima if necessary The remainder 

of the program, including the second FOR loop (line k) 

was executed sequentially, on a single processor Figure 

3-a shows the execution limes for various numbers of 

processors for lines a) though n) Figure 3-b shows the 

effective number of processors vs the rctual number of 

processors used (execution lime for one processor 

divided by execution time for P processors) 

Approximately 9 seconds was spent in the sequential 

portion of the program when it was run for a 3 5 second 

utterance When tun on 15 processors, this resulted in 

less than 50% utilization of the processors 

The    next    step    was    to    attempt    to    reduce    the 
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sequential portion of the program We noticed that the 

second FOR loop (lines k and 1), which propagates words 

scores for terminal states in the current frame to Initial 

state scores for the next frame, could be incorporated 

into the first FOR loop, effectively changing the program 

lo 

a    FOR all frames 

b initialize frame 

c. FOR all words 

d propagate terminal scores from  previous 
frame 

e. initialize word 

f. FOR all states 

g. compute state score 

h. IF (new max score) 

i. replace max score 

j. IF (new max terminal) 

k. replace terminal 

1 determine normalization 

m. determine theory. 

This revision substantially reduced the time spent 

executing    serial    code. The    execution    times    and 

processor utilization for this version of the program are 

shown in figure 4. For 15 processors, the execution 

time dropped from 15 seconds to 11 seconds for a 3.5 

second utterance, and the effective number of 

processors rose from 6 9 to 11.2, or approximately 75% 

utilization 

CONCLUSIONS AND FUTURE RESEARCH 

Our work on this project has shown that the 

Butterfly architecture is suitable for continuous speech 

word recognition The decomposition of the algorithm 

into tasks that match one word to one frame of input 

speech provided a granularity that made efficient use of 

the processors The memory and processor management 

functions of the Uniform System made parallelizalion of 

the algorithm surprisingly easy and rapid 

will    have    to    be    pruned,    thus    presenting    a    more 

challenging parallel implementation task 
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FIGURES 

Fig. I. Phoneme Model 

In the near future, we hope to extend the current 

research to include a grammar and larger vocabulary 

tasks The grammar will require search of a space thai 

is   much   loo   large   to   search   exhaustively      The   search 
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FIG. 3  INITIAL PARALLEL IMPLEMENTATION 

A. Execution time in seconds for a speech utterance 
of 3.5 seconds. 

B. Processor Utilization, The dashed line represents 
100% utilization. 
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BENCHMARK   FOR    SPEAKER-DEPENDENT RECOGNITION 
JSING THE TEXAS INSTRUMENTS 

20 WORD AND ALPHA-SET SPEECH DATABASE 

David £. Paliett 

Institute for Computer Sciences ^nd Technology 
National Bureau of Standards 

Gaitheisburg, MO 20899 

ABSTRACT 
This paper presents the results of 

performance assessment tests conducted on 
one commercially available speaker- 
dependent template-matching speech 
recognizer, using a widely available speech 
database. Test vocabularies include the 
Texas Instruments 20 word test vocabulary 
and the 26 letters of the spoken English 
alphabet (the alpha-set). For the 20 word 
set, overall recognition accuracy was 
09.24%, and for the alpha-set it was 
84.88%. Comparisons are made with the 
performance of research systems which use 
both template matching and feature-based 
technologies, as well as with the results 
of teats on commercially available 
recognizers of 5-7 years age. The intended 
purpose of these measurements is to provide 
a ber hmark for comparing the results of 
tests of more sophisticated systems. 

in the lexicon. This application has been 
termed "spellmode". In such an application, 
the use of syntax to restrict the 
vocabulary is obviously inappropriate, and 
the required use of special-purpose 
alphabets such as the International Civil 
Aviation Phonetic Alphabet is probably 
undesirable. The use of the alpha-set is 
natural in such an application. 

At the time that the TI 20 word 
database was collected, the same talkers 
also provided tokens for the alpha-set [2], 
and this speech database is n JW in the 
public domain. The availability of this 
test material provides a means for 
comparative tests on both the 20 word 
database and the alpha-set for the same set 
of talkers, and increases the value of the 
origin«! 20 word database by providing more 
challenging material from the same group of 
• ast talkers that was obtained under 
identical environmental conditions. 

INTRODUCTION 
As the performance of speech 

recognition technology improves, more 
challenging test material is required in 
ordei to demonstrate the capabilities of 
improved systems. For speaker-dependent 
isolated word recognition, widespread 
dissemination and use of the 20 word Texas 
Instruments (TI) speech database (first 
used in Doddington and Schalk's study of 
the state-of-the-art in 1981 [1]), has 
provided a valuable research resource and 
measures of performance that serve as 
benchmarks for this 20 word vocabulary. 
However, as performance of the technology 
has improved, the value of this database 
hap declined because it may no Longer 
provide substantial challenge to the 
current state-of-the art. More challenging 
speech test vocabularies and databases ate 
required in order to demunsirate imptoved 
capabilit ies. 

In large vocabulary natural language 
systems, the spoken letters cf the English 
alphabet, oi the "alpha-set", may be widely 
used to Introduce the spelling of new words 

This paper presents preliminary 
results on tests of performance on the TI 
20 word vocabulary and the alpha-set for a 
representative commercially available 
speaker-dependent recognizer costing 
approximately $1000. These data are 
intended to provide benchmarks of 
performance for comparison of the 
performance of more sophisticated 
recognition algorithms, using speech 
database material that is widely available. 
More detailed analysis of this data is 
being conducted and at least two other 
commercially available recognizers are to 
he studied. 

TEST PROCEDURES 

The tests reported upon in this paper 
were conducted using procedures outlined in 
a recent paper [3]. They reflect 
suggestions on experimental design, data 
analysis and documentation from the IEEE 
Speech   I/O Technology    Performance 
Evaluation Working Group. Material included 
in this section follows the format 
suggested in this reference. 
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Exper I.mental Design 

These tests wi?ie intended for 
benchmark purposes. The TI 20 word 
voccibul<9ty and the? alph.aoet were used in 
separate tests, with no use of syntax to 
control the active recognition vocabulary. 
The use of these vocabularies may be 
representative of an application such as 
"spellmode", but no explicit effort is 
taken to model an application. 

Test Talker Population 

Eight males and eight females comprise 
the test talker population, with no effort 
taken to control dialect. 

Test Vocabulary 

The 20 word vocabulary consists cf the 
words "yes, no, erase, rubout, repeat, go, 
enter, help, stop, start" and the digits 
"zero" through "nine". The alpha-set 
consists of the letters "a" through "z". 
All words were spoken as discrete 
utterances. It is Interesting to note that 
the available tokens in the database could 
be recombined to yield an "alphadiglt" set 
as used in other studies [4,5], but this 
study sought to direct attention to a 
comparison of performance for the 20 word 
and alpha-sets. 

Tiaining 

The database includes 10 tokens of 
each of the 46 words for each talker. These 
tokens are intended for use in training or 
enrollment. This material was used for 
enrollment in accord with the 
manufacturer's recommendations. Typically, 
the first token was used for 'enrollment', 
and three additional tokens were used to 
'update' the resulting reference patterns 
or templates. Training was impüemented 
automatically, and no attempt was taken to 
optimize the reference template set. 

Environment 

Test material was obtained in a quiet 
sound-isolation booth with a cardiod 
dynamic microphone placed approximately 2 
inches from the talker's mouth. The speech 
signal-to-noise ratio is believed to exceed 
40 dB, but (to date) has not been measured. 

Recorded Test Material 

The speech signal was initially 
digitized with a 12-bit A/U converter at a 
12. "5 kHz sampling rate. Ttv- digital data 
were made available to the National Bureau 
of Standards by Texas instruments for use 
in the public domain,  An analog signal was 

reconstructed using a D/A converter, using 
a C.J kHz antialiasing filter. This audio 
signal was then recorded using commerciaiiy 
available PCM/VCR technology with a 
digital mastering processor and a video 
cassette recorder. 

One audio channel on the PCM/VCR 
recorded material provides a recorded modem 
signal with AGCII character string data 
that precedes each utterance recorded on 
the other audio channel. The use of this 
format and 'header' data faciiites 
automatic enrollment and -scoring 16}. 

Playback of 
provides two llne- 
for the modem 
material. The lin 
the test material 
mixer, with the m 
the mixer used as 
Headphones driven 
monitor the signal 

ehe  recorded 
evel audio sic 

and one with 
e-level audio s 
was used as in 
icrophone level 
input to th*> r 

by the mixer we 
as desired. 

material 
nals,  one 
the test 
ignal with 
put  to a 
output of 
ecognizer. 
re used to 

Calibration tones provided on the 
FCM/VCR recorded material were used to 
establish system gains, and tests were 
conducted using the recognizer 
manufacturer's routines to establish 
appropriate recognizer gains. Once gMns 
were established, they were fixed, and no 
effcrt was take.i to optimize gains for 
Improved performance. 

Statistical Considerat ions 

There are a total of S120 test tokens 
for the 20 word vocabulary {lb test tokens 
for each of the 20 words for each of the 16 
talkers). There are a total of G055 valid 
test tokens foi the alpha-set. One test 
token of one letter C"s") for one talker 
(f5) has been found to contain only breath 
noise. For each of the 16 talkers, there 
are 10 training tokens available for each 
of the 4G words in the two vocabularies of 
the database, for a total of 73G0 training 
toKens. The total number of tokens in the 
database is thus 191JS tokens, 

Liince the total number of errors pet- 
talker Is small, the precision associated 
with these data is unknown. 

Several repetitions ot tests for 
individual talkers were conducted in order 
to assess the variability between repeated 
tests. These tests included repeated 
enrollment and repeated Übe of the of the 
test material on a given template set. m 
general, there ha? been very good 
repeatability, typically varying in one 
count of the total number ot substitutions. 
Although the number of errors per talker is 
larger for the alpha-set, the variability 
in  the  count  of  th"-  total  number  of 
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substitutions is typically three or tour. 

BENCHMARK DATA 

20 Word Vocabulary 

Overall Scores for 5120 tokens 
for 8 males and 8 females 

Correct Recognition Percent: 
Substitution Percent: 
Deletion Percent: 
(No Insertions) 
Rejection Percent: 
Ratio of total errors 

to  rejections: 

30.24% (5081) 
0.61% (31) 
0.06% (3) 

0.10% 

6.8 

(5) 

Figure One indicates the distribution 
of responses for the 20 word vocabulary. In 
this matrix representation, the input 
words are listed along the rows, and the 
recognizer's responses are shown in the 
appropriate column. 

Alpha-set 

Overall scores for 6655 valid tokens 
for 8 females and 8 males 

Correct Recognition Percent: 84.88% 
Substitution Error Rate: 
Deletion Percent: 
(No Insertions) 
Rejection Percenti 
Ratio of total errors 

to  rejections; 

Figure Two indicates 
matrix for the alpha-set. 

14.92% 
0.03% 

0.17% 

90.4 

(5649) 
(993) 

(2) 

(11) 

the confusion 

The intended test procedure was to 
disable the reject capability of the 
recognizers under test to facilitate 
comparisons. For this recognizer, it was 
not possible to do so. Following the 
manufacturer's recommendation, the 
acceptance threshold war set to its maximum 
value, and no restrictions were imposed on 
the 'closeness' of best and next-best 
scores. This result? in a very low, but 
non-zero rejection percent. Performance on 
the alpha-set might be improved by the 
imposition of appropriate reject criteria. 

For the 20 word set,  there 
rejections for the malfy talkers 
deletions,   and  no  rejections 
deletions  for the female talkers. 
nwies,    recognition 
substitution    error 
respectively,   08.94% 
corresponding  data for 
and 0.35*. 

accuracy 
per cents 

and   0.80%, 

are  t, 
and , io 
and  J 
for  the 

and 
are, 
with 

the females  99.53% 

For the alpha-set, there are 10 
rejections for the male talkers and no 
deletions, and 1 rejection and 2 deletions 
for the female talkers. For the males, 
recognition accurary and substitution error 
percents are, respectively, flj.4% and 
16.3%, with corresponding data tor the 
females 84.0% and 14.9%. 

DICCUCSION 

In comparing error rates for the two 
test vocabularies, the substitution error 
rate is approximately 20 times larger for 
the alpha-set, reflecting the greater 
difficulty of recognizing a vocabul v 
consisting exclusively of monosyllables 
(with the sole exception of "W"), 
containing several highly confusable 
subsets, arid with a branching factor that 
Is 30% larger. 

The small number of substitution 
errors observed for the 20 word vocabulary 
(311 is believed to fairly represent the 
State-of-the-irt of currently available 
low-cost recognizers. Further data are to 
be obtained on other recognizers, including 
the use of other approaches including 
stochastic modelling. By comparison with 
the results of Uoddinqton and Schalk's 1981 
benchmark data, the error rate is half that 
of the second-best recognizor in their 
tests (a template matching unit then having 
a nominal price of $65,000). 

As previously noted for the TI 20 word 
data base Li], there is considerable 
variation between individual talkers' 
scores, for the 20 word set, individual 
scores range from 97.5% to 100%, while for 
the alpha-set the range is from 74.3% to 
91.8%. In general, "sheep" and "goats" 
retain their relative rank-order places 
when comparing results tor the two 
vocabularies. These variations underscore 
the need for adequate population sampling 
and large enough test data bases for 
statistical validity. 

In studying the confusion matrix that 
results from separate consideration of 
members of the E-set as input (Figure 
Three), it is evident that the bulk of the 
substitution errors occur for the E-set 
(the letters "B, C , l.',E,G, P, T, V" and '2"). 
There are a total of 2304 test tokens in 
this subset. There are a total of 1546 
correct responses and 754 substitution 
errors, for a subset recognition accuracy 
of 67.1% and a substitution percent of 
52.7%. The /S4 substitution errors for the 

',) word E-set comprise approximately 75% of 
all substitution errors for the 2C. word 
alpha-set. Approximately 98% ot ail 
substitution errors foi E-set inpL,t  tokens 
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tall within the E-set. 

Wlth.n the E-sst, overall recognition 
accuracies for individual letters range 
ftoni 92.9% for "E" to 53.1% for "D", with 
significant variations occurring for 
different taxkers. 

Previous measures of t 
teinpldite matching systems t 
phonemic distinctions as ci 
al. [7] indicate recogniti 
the E-set at about. 00%. 
neasurements on a comme 
suggest slightly better per 
considerably better perfor 
(92.9%) and "G" {90... 1 t 
members of the subset. s> h 
and "D" (53.1%). 

he ability of 
o perform fine 
ted in Cole et 
on accuracy for 

The present 
rcial product 
formance, with 
mance for "E" 
han for other 
as "B"  (58.6%) 

In Cole's work comparing template 
matching and feature based recognition, an 
alpha-set data base of 2080 tokens was used 
(4 tokens of each letter produced by 10 
female and 10 male talkers). The system 
under study was operated in a speaker- 
independent mode, with a proceaure used to 
ensure ■Lhat the test talker's data were 
consistently deleted from the training 
material. Without tuning (adaptation to 
individual talker's speech), an overall 
error rate for the alpha-set of 10.5% was 
obtained, in contrast, with the enor rate 
of 14.92% found for tt.° speaker-dependent 
recognizer in this study. 

For the E-set, Cole cites an error rate of 
14% in contrast with the 32.7% in this 
study. Uslrg tuning (on the limited number 
of tokens available for each letter for 
each speaker in his data base) and improved 
algorithms. Cole indicates that an error 
rate of G% w&s obtained, approximately one- 
fifth that of this commercially available 
template-matching recognizer. This 
comparison suggests the strength of the 
speaker-independent feature-based 
recognition technology when compared with 
current technology. Further comparisons 
with the performance of speaker-dependent 
(or adept ive) systems using stochastic- 
model s should be informative. 

SJMMARY 

This paper reports on preliminary 
tests conducted using a widely available 
speech data bdse in the public domain and a 
commercially avaiicäbLe recognizer using 
template matching technology. For ehe 20 
word vocabulary used in these tests, a 
recognition accuracy of 99.24% was 
measured, while for the spoken English 
alphabet, recognition accuracy was 84.Bß'.. 
The 9 members of the E-set cite responsible 
for 75.9% of all substitution errors for 
the 20 letters of the spoKen alphabet. 

These tests suggest that the 
performance of current low-cost commercial 
products using template rnatchiug technology 
is slightly superior to results reported 
for research systems of 5 to 7 years ago 
and to that of commercially available 
systems coating as much as $G5,000 of th^t 
era. The tests also suggest that 
performance is inferior to more 
sophisticated systems usinc stochastic 
modelling and/or acoustic-phonetic feature 
based recognition. 
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Figure One: Confusion matrix representing responses for the 20 word vocabulary. 
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ROBUST SPEECH RECOGNITION; INITIAL RESULTS AND PROGRESS 
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ABSTRACT 

This paper describes the initial 
efforts and results in the pursuit of 
robust speech recognition for military 
applications. The initial goal of this 
prog Ti is 98% correct recognition of 100 
words ider noisy and stressful conditions 
in a speaker-dependent recognition mode. 
The next goal is a similar performance 
with 200 connected words, initially with 
speaker-dependent recognition with 
progress towards speaker independence. 
The program is being executed along three 
interacting dimensions of data base, 
algorithm development and implementation. 
Progress achieved along each dimension 
promises the viability of robust 
recognition within certain limitations. 

2. DATA BASES 

Texas Instruments (TI) has collected 
a set of three data bases under the 
auspices of the Darpa Robust Speech 
Recognition program and other TI programs. 
A fourth data tase, which is the main data 
base to be used, was defined by TI, 
Armstrong Aerospace Medical Research 
Laboratory (AAMRL) of Wright-Patterson Air 
Force Base (WPAFB) and Lincoln Laboratory 
(LL), and is being collected by AAMRL. 
The four data bases are: 

1. Simulated Stress Data Base 
2. Advanced Fighter Technology Integration 

(AFTI) Connected Word Data Base 
3. LHX Vibration Data Base 
4. Robust Recognition Data Base 

1. INTRODUCTION 

This paper describes the i 
efforts and results in the purs 
robust speech recognition for mi 
applications. The initial goal o 
program is 98% correct recognition o 
words under noisy and stressful cond 
in a speaker-dependent recognition 
The next goal is a similar perfo 
with 200 connected words, initially 
speaker-dependent recognition 
progress towards speaker independenc 

Speech recogn 
science and de 
experimentation w 
speech data that r 
operation. Th 
establishment of 
that will help dev 
Section 2 briefl 
data bases that a 
purpose. Section 
that have been dev 
Instruments and be 
set from which 
recognition syst 
Section 4 presents 
experiments that 
the results obt 
aspects form the s 

it ion is an emp 
rives its power 
ith large amount 
eflect the conditi 
is    mandates 
one or more data 

el^p robust recogn 
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re available for 

3 describes algo 
eloped and used by 
iieved to be the i 
the  ultimate 

em will be deve 
the various recog 
have been conduct 

ained. Implemen 
ubject of Section 

2.1 Simulated Stress Data Base 

Establishing  this data  base  was 
nitial motivated by the need to fuel the initial 
uit of algorithm development and experimentation 
litary efforts    for    robust   recognition. 
f this Psychological and physiological stress on 
f  100 a   speaker   manifest  themselves  as 
itions variabilities  in the  acoustic  signal 
mode. produced.  Typical of  the variabilities 
rmance are the changes  in the spectral slope, 

with fundamental  frequency, formant locations, 
with level and duration of the acoustic events 

e. of the speech signal  [1].  Stress-like 
degradations of  the speech signöl were 

irical elicited by asking the speaker to produce 
from speech   with   vocal   efforts/effects 

s  of corresponding  to  Normal,  Fast,  Loud, 
ons of Shout, and Soft conditions as well as with 

the Noise Exposure  (95 dB) in the ears.  The 
bases vocabulary consisted of 105 word including 
ition. monosyllabic,  polysyllabic and confusable 
arious words such  as  "one",   "destination", 

this "advisory",  "six",  "sixty",  "fix"  etc. 
rit.ims Training data consisted of  5 samples of 
Texas each of  the 105 words in a random order 
nitial under normal conditions,  and test data 
robust consisted of 2 samples of each word under 
loped, each stress condition listed dhow.       Cato 
nition were collected  from 5 adult male and 3 
ed and adult female speakers, and digitized at a 
tation sampling rate of 20 kHz using a 16-bit A/D 
5. converter.   The  data  used   in  our 
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experiments were downsampled to 8 kHz from 

20 kHz by means of a downsampling program. 

2.2 AFTI Connected Word Data Base 

This data base was established to 
support the AFTI F-16 voice recognition 
efforts in the government electronics 
group at TI. The subject was asked to 
wear typical F-15 helmet and an oxygen 
mask with an embedded M 101 microphone. A 
nominal level of F-16 spectrum noise (65 
dB spl) or a higher level (80 db spl) was 
played at the subject's ears along with 
his own voice feedback. The utterances to 
be said were prompted on a screen with the 
subject in a quiet sound booth. Data were 
digitized at 20 kHz and downsampled to 8 
kHz. The speaker was subjected to a 
variety of conditions Lo elicit the 
effects of stress and noise. An initial 
set of 87 isolated words and about 230 
phrases, generated by an 
application-specific finite state grammar, 
were collected under normal conditions for 
enrollment purposes. The test data 
conditions were; (1) Normal with nominal 
noise, (2) Normal with the higher level of 
noise, (3) Normal with no noise, (4) Fast 
mode of speech, (5) Loud level of speech, 
(6) Soft level of speech, (7)Deliberate 
manner of speech (clear enunciation), (8) 
Twist, where the speaker had to turn his 
head between 90 and 180 degrees to look at 
the prompt, and (9) Back, where the 
subject was lying on his back while 
uttering the prompts. Conditions 4 
through 9 also used nominal noise lev«! at 
the subject's ears. The test data 
consisted of 153 phrases, generated by the 
application grammar, and the 87 isolated 
words. The vocabulary contained typical 
command control words used in the AFTI 
program. 

2.3 LHX Vibration Data Base 

Vibratior. conditions could alter the 
acoustic characteristic of a speaker and 
thereby degrade the performance of speech 
recognizers. This data base was 
established by TI's government electronics 
group i.o evaluate the application 
potential of TI speech recognizer for the 
LHX helicopter. Two sets of vocabulary, 
or.s monosyllabic and another polysyllabic, 
were chosen. There were 50 isolated words 
in each set. The subject was seated in a 
helicopter seat mounted on a vibration 
platform and wore a helmet with army issue 
M87 noise-cancelling microphone. A group 
of four male speakers uttered tne first 
vocabulary set, and another group of four 
male speakers uttered the second set. The 
vibration conditions were established by 
choosing a spectra and amplitudes 
corresponding  to  the  LHX  vibration 

conditions. The most severe condition was 
the right turn in which the helicopter is 
turning against the direction of the rotor 
blades. There were four training sessions 
with one token per word, all in succession 
and on the same day. The speakers were 
not subjected to any vibration during the 
training sessions. The test sessions were 
collected the following day and the order 
of the condition was randomized 
individually for each subject. The 
vibration conditions simulated the 
following: (1) Right Turn, (2) Full Power 
Climb, (3) Left Turn, (4) Hover, (5) 
Approach, (6) Level Flight, and (7) No 
Vibration. Data were collected using 
PCM/VCR equipment, and is not available in 
digitized form. 

Figure 1 shows the spectrograms from 
a male speaker saying the word "PLAN VIEW" 
for no vibration condition and the severe 
vibration condition. The waveforms 
clearly show the modulating effect of 
vibration. 

2.4 Robust Recognition Data Base 

This data base consists of 539 
phrases (training) and 219 phrases (test) 
generated by a lighter aircraft language 
model described by a finite state grammar 
and 207 words. The first phase consists 
of ten Air Force qualified personnel as 
the speakers uttering both discrete and 
connected utterances under the following 
training conditions: (1) Normal with no 
noise or stress, (2) Lombard Effect, (3) 
Loud, (4) Fast, and (5) Normal with no 
flight gear. The test data conditions 
will consist of (1) Normal with no noise 
or stress, (2) additive noise conditions 
of broadband and discrctt- noise, (3) 
stress conditions due to vibration, 
positive pressure breathing, work load, 
and Lombard effect, and (4) simulated 
stress by varying vocal efforts. In the 
second phase a smaller set of speakers, 
qualified as hazardous-duty pilots, will 
be used to collect training data as in 
phase 1, but test data will include 
g-force loading effects. A third phase 
will establish a validation data base to 
test the algorithms without the bias of 
the data bases on which they were 
developed. This data base is collected 
using PCM/VCR data acquisition means, and 
will be digitized by TI for further use 
and distribution. Fifty percent of the 
phase I enrollmert is complete at this 
t ime. 

3. ALGORITHMS 

The baseline algorithm used is called 
a Principal Spectral Component (PSC) 
algorithm in which only spectral 
information  is  used [2].  In an enhanced 
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3.2 Enhanced Method (PFV) 

3.1 Baseline Method (PSC) 

Figure 2 shows the generic block 
diagram of the method. The LPC parameter 
vector characterizing a frame of speech 
(test or reference) is transformed to 
spectral amplitudes (on a dB scale) 
normalized to the frame energy using a 
simulated filter bank. A critical-band 
filter bank [5] was used in the study. 
The filter bank amplitudos constitute a 
vector that may be characterized as 
normally distributed with mean vector 
depending on the word(hypothesis), and a 
covariance matrix. This covariance ma,., x 
may be estimated by pooling all available 
data for the entire vocabulary. Implicit 
in this process is the assumption that all 
frames are statistically independent and 
have the same covariance matrix. A 
reference template, then, consists of a 
sequence of hypothesis-dependent mean 
vectors of filter bank amplitudes, and its 
statistical variability is described by a 
single covariance matrix. The recognition 
problem  is  to  compute,  given the input 
characterization, 
corresponding to each 
choose that with the 
This corresponds  LO 
decision. 

the     likelihoods 
word hypothesis, and 
largest  likelihood. 
maximum  likelihood 

In general, the amplitudes of 
adjacent filters are highly correlated and 
provide potential for reduction of 
dimensionality of the feature vector. The 
filter bank amplitudes are rotated by the 
eigenvectors of the covariance matrix .".o 
that the resulting transformed features 
are statistically uncorrelated [6], Thf.se 
features are ranked in decreasing order of 
statistical variance (eigenvalues), and 
the least significant features are 
discarded resulting in a dimensionality 
reduction. rinally each of these new 
features is ,caled so that its variance is 
unity. The resulting features are called 
principal spectral components(PSC), and 
previous studies have established 
correlations with perceptual space for 
certain classes of sounds [7]. A 
Euclidean distance in this feature space 
is used as the metric to compare input and 
reference frames of speech data. 

The energy-time pro 
signal appears to be r 
for human recognition, 
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3.3  Frame-Pair 
(FPFS) 

Frame-Specific  Method 

In the PSC and PFV methods, as in 
most isolated word recognition algorithms, 
the feature vectors of successive 
reference frames of a word template are 
assumed to be statistically independent. 
Further, they are assumed to be 
identically distributed except for their 
mean vaue. This is generally not true for 
speech signals. Adjacent frames are not 
spectrally (or acoustically) independent. 
Further it is only reasonable to believe 
that the covariances of the feature 
vectors depend on the acoustic event (i.e. 
the reference frame under consideration) 
thereby allowing a nonstationary model. 
The effct of spectral dynamics is brought 
out by considering a frame-pair vector 
made up of concatenating feature vectors 
from adjacent reference frames. The 
concept of principal component analysis 
can then be applied resulting in a FPFS 
PFV system. This method has been 
successfully        applied to 
speaker-independent  recognition of digits 
[4]. 

3.4 Connected Word Recognition (CWR) 

Figure 3 shows a block diagram of the 
CWR system. hn isolated recognizer 
outputs all the words that are 
hypothesized alonq with corresponding 
distance scores and durations. These form 
inputs to the sentence recognizer which 
invokes a gramm;"- ^o compute distance 
scores for all legal sentence hypotheses. 
The distance measure for the sentence has 
-hree parts: the first component is the 
aLim of individual word distance scores 
multiplied by corresponding word 
durations, the second is a penalty for 
overlap or underlap of adjacent words, and 
the third is a silence (null speech) 
distance measure. An important feature of 
the recognizer is that the sentence 
hypothesizer does not control the isolated 
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word recognizer by any feed back. It fits 
all possible sentences from the word 
hypotheses and their time marks, and 
invokes the grammatical constraints to 
search only the legal paths to output a 
recognized sentence. 

4. EXPERIMENTS AND RESULTS 

In all of the experiments, the front 
end signal processing is a 10-th order 
autocorrelation method of LPC 
characterization at a frame period of 20 
ms with a window length (Hamming windowed) 
of 30 ms. The sampling frequency is 8kHz, 
Except in the case of experiments with the 
vibration data base, 16-bit data was used 
and the results are for experiments 
conducted on a VAX computer. In the case 
of vibration data, a TIPC speech 
recognition system with a codec 
(equivalent c 13-bit dynamic range A/D 
converter) operating nominally at 8kHz 
sampling frequency was used. For all of 
the experiments, TRAINING WAS DONE UNDER 
NORMAL CONDITIONS, which are different 
from the test conditions. This is deemed 
important because of the general inability 
and inconvenience of training under the 
stress conditions. It is only believed 
that training under operating conditions, 
if possible, will impove performance. 

4.1 Experiments with Simi'lated Stress Data 
Base 

The base 
system (PFV) 
for recogniti 
covariance ma 
entirely di 
algorithm us 
all the simul 
over all spe 
PFV system, t 
in a refer? 
manner for ea 
from all spea 
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line system (PSC), enhanced 
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ed a covariance matrix from 
ated stress conditions pooled 
akers and words. In the FPFS 
he covariances were obtained 
nee frame-pair frame-specific 
ch word over all conditions 
kers except the speaker being 

The substituition rates are shown in 
Table 1 for the various cases. It is 
easily seen that the basic system that 
performs well under normal conditions 
degrades rather rapidly under the 
simulated stress conditions. The addition 
of rms energy to the features reducess the 
average substitution rate by about 30%. 
Experiments performed with 10 ms frame 
period characterizations have yielded 
additional reduction of about 15% but at 
the cost of quadrupling the computations. 

The much expected improved performance 
from FPFS system did not materialize, 
presumably due to the poorer estimates of 

The results are 
that the fast 
very poorly 

surprising for 
normal connected 
and (ii)  this 

the covariance matrices due to inadequate 
data. Further analysis of the results and 
methods to improve the performance are 
under investigation, 

4.2 Experiments with AFTI Connected Word 
Data Base 

In CWR, an initial enrollment is done 
on isolated words to create isolated word 
templates. These are used to segment 
connected word phrases with the guidance 
of the task-grammar to perform enrollment 
in the connected word mode. These 
"connected" enrollment templates are 
updated with additional training phrases 
and grammar control to obtain stable 
templates of the words in the connected 
speech context. The word hypothesizer 
used in this experiment was a PFV system. 
The experiment has been completed with 
only one speaker's data, 
shown in Table 2, Notice 
connected speech is 
recognized. This was not 
two reasons: (i) the 
speech is already rapid, 
particular speaker misarticulated many 
syllables in fast connected speech. The 
results are very promising otherwise, and 
the importance of this must be underscored 
by the fact that connected utterance 
modality is more natural than isolated 
word modality. Any improvements in 
isolated word hypothesizing will result in 
increased benefits in the connected word 
mode. 

4.3 Experiments with LHX Vibration Data 
Base 

PFV system as implemented on a TMS 
32010 signal processor in a TIPC speech 
recognition system was tested with the 
vibration data. This obviated the need 
for digitizing the sizable amount of data, 
and provided means for quickly 
establishing performance under one of the 
stressful conditions, namely vibration. A 
study of the tradeoff between substitution 
and rejection was performed for both 
monosyllabic      and      polysyllabic 

vocabularies. These are shown in Figures 
4 and 5, An analysis of the results did 
not show any trend with the conditions 
leading to the conclusion that none of the 
vibration conditions was particulary 
severe for the recognizer. The poorer 
performance with the monosyllabic 
vocabulary was expected, but a -.ignificant 
portion of the errors came from two naive 
subjects whose vocal efforts varied almost 
by 20 dB even within a session lasting 
only five minutes. 
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5. IMPLEMENTATION 

mhe successful robust recognition 
algorithm will be implemented on an 
advanced multi-TMS32020 processor board, 
called Odyssey board, with the TI 
Explorer, a Lisp machine, as the host. 
Figure 6 shows the architecural block 
diagram of the Odyssey board. This board 
is capable of 20 million 
multiply-accumulates per second, and will 
be able to handle even more 
computation-intensive recognition 
algorithms by concatenating additional 
boards. On-board memory of 512 kbytes 
will be shared by all the four processors. 
Data acquisition is direct through the I/O 
bus without the need of communicating 
through the host. The system can be 
expanded up to sixteen boards, with 
communication through the signal 
processing bus (SPB). Host communications 
are through the standard NuBus. CWR code 
for TMS32020 has been developed using a 
VAX simulator and is undergoing 
hardware/software debug. A basic 
operational CWR system is now forecast for 
mid-April 1986. 

6. SUMMARY 

The initial efforts and progress in 
the robust speech recogntition program was 
described. The various data bases 
currently available were presented along 
with results of the various recognition 
experiments conducted. Connected word 
recognition appears to be a valuable 
approach to robust recognition by 
harnessing the redundancy of speech input 
through finite-state grammar models and it 
will   benefit    significantly    with 

improvements in isolated word recognition 
techniques. A powerful signal processing 
board under development at TI will support 
computationly burdensome recogntion 
algorithms.   Investigations are underway 

to determine the benefits of integrating 
frequency measures along with spectral 
amplitude features. The robust 
recognition data base, being collected by 
AAMRL, will establish the limits of 
current technology and play catalytic role 
in developing more robust recognition 
algorithms. 
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Fig. 3. Connected Word Recognizer 

TABLE 1 

SUBSTITUTION RATE <») FOR SIMULATED STRESS DATA BASE EXPERIMENTS 

METHOD NORMAL FAST LOUD NOISE SOFT 

PSC 1.1 10.2 24.4 13.8 11.9 

PFV 0.9 8.9 19.9 9.2 4.6 

FPFS PFV 3.1 17.3 16.7 10.1 10.6 

TABLE 2 

AFTI CONNECTED WORD RECOGNITION PERFORMANCE 

153 Phrases, 1 Speaker 

SENTENCE ERROR (JE) WORD ERROR(Ä) 

CONDITION 
SUB REJ SUB INS REJ 

Normal 2.0 0.0 0.5 0.0 0,0 

NORMAL 
(no noise) 3.9 1.3 1.1 0.0 0.2 

Normal 
(loud noise) 5.2 2,6 1.1 0.2 0.3 

Deliberate 2.0 0.7 0.6 0.0 0.2 

Loud 6.5 2.0 1.3 0,0 0.6 

Back 8.5 1.3 1.6 0.2 1.0 

Twist 9.8 1.3 1.3 0.2 1.0 

Soft 7.2 4,6 1.5 0.0 1.0 

Fast 44.4 30,1 12 5 0.0 33.3 
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ROBUST HMM-BASED TECHNIQUES 
FOR RECOGNITION OF SPEECH PRODUCED UNDER STRESS AND IN NOISE 

Douglas B, Paul, Richard P. Lippmann, Yeurumg Chen, Clifford J. Weinstein 

Lincoln Laboratory, Massachusetts Institute of Technology 
Lexington, Massachusetts 02173-0073 

ABSTRACT 

Substantial Itnprovementa In speech recognition 
performance on speech produced under stress and in 
noise have been achieved through the development of 
techniques for enhancing the robustness of a base- 
line isolated-word Hidden Markov Modtl recognizer. 
The baseline HMM is a continuous-observation system 
using mel-frequency cepstra as the observation 
parameters. Enhancement techniques which were 
developed and tested include: placing a lower limit 
on the estimated variances of the observations; 
addition of temporal difference parameters; 
improved duration modelling; use of fixed diagonal 
covarlance distance functions, with varianceu 
adjusted according to perceptual considerations; 
cepstral domain stress compensation; and miltl- 
style training, where the ayptem is trained on 
speech spoken with a variety of talking styles. 
With perceptually-motivated covarlance and a 
combination of normal (single-frame) and differ- 
rentlal cepstral observations, average error rates 
over five simulated-stress conditions were reduced 
from 20% (baseline) to 2.5% on a simulated-stress 
data base (105-word vocabulary, eight talkers, five 
conditions). With variance limiting, normal plus 
differential observations, and multi-style train- 
ing, an error rate of 1.8% was achieved. 
Additional tests were conducted on a data base 
including nine talkers, eight talking styles, with 
speech produced under noise exposure (Lombard 
condition), and speech produced under two levels of 
motor-workload stress. Substantial reductions in 
error rate were demonstrated for the noise and 
workload conditions, when multiple talking styles, 
rather than only normal speech, was used In 
training. Tn experiments conducted in "Imulated 
fighter cockpit noise, it was shown that error 
rates could be reduced significantly by trailing 
under   multiple   noise   exposure   conditlins. 

1. INTRODUCTION AND SUMMARY 

Potential military applications of speech 
recognition systems often involve harsh environ- 
mental conditions and demanding tasks, where humans 
may be exposed to high ambient acoustic noise, 
encumbered by equipment such as an oxygen mask, and 
subjected to significant physiological and psycho- 
logical stress [1,2].   Although current speech 

recognition technology can support restricted 
applications in benign environments and under 
low-stress conditions, recognition technology is 
not sufficiently advanced to provide robust, 
reliable performance in hostile and high-stress 
environments [1-6]. Difficulties include 
variabilities in the speech signal caused by stress 
and by exposure to noise in the speaker's ears 
[7,8], and additive noise at the input to the 
recognition system [9,10]. A number of efforts 
have recently been undertaken to quantify these 
problems [1-7, 9-12]. An important observation 
[12], which is in consonance with the results 
reported here, is that the effects on speech 
production of noise exposure at the ear (known as 
the Lombard effect [8]) appear to be more 
deleterious to recognizer performance than is the 
level of acoustic noise which passes through a 
noise-cancelling microphone. It also appears that 
other types of stress-induced variabilities (see 
[12], and results in this paper) have a more 
negative effect on recognizer performance than does 
additive noise. 

This paper describes work carried out in the 
Speech Systems Technology Group of MIT Lincoln 
Laboratory, which is directed at the development of 
algorithms for robusc, high-performance speech 
recognition in the fighter cockpit and other severe 
military environments. 

An essential part of this eff )rt, described in 
Section 2, has been the collection and analysis of 
a data base of speech produced under stress and in 
noise, and initial evaluation of the effects of the 
resulting speech varlaoility on recognizer 
perf orma. ce. 

In developing techniques for robust recogni- 
tion, we have chosen to build upon the Hidden 
Markov Model (KMM) approach [13-16]. (For addi- 
tional references see the bibliographies in 
[13-15].) Reasons for choosing this approach 
include: excellent previously-reported recognition 
performance results under a variety of system 
constraints and in a variety of applications; 
effective extendablllty from isolated-word 
recognition to continuous speech recognition 
(although the experiments described in this paper 
are specifically focussed on isolated-word 
recognition); and tt alrmbt lity from observed data 
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by automatic methods. After a number of experi- 

ments with various forms of HMM, and preliminary 

Investigations of potential HMM Improvements [17), 
a baseline HMM recognizer was developed and 

Implemer.ted, as described In Section 3. This 

basillne recognition system was shown to perfoi-m 

well for speech produced under normal conditions, 

but to degrade significantly when presented with 
speech produced with variations typical in btress, 

or under noise exposure. Section 4 describes a 
number of robustness enhancements to the baseline 

HMM system, and a set of recognition results on a 

"simulated-stress" data base provided by Texas 

Instruments (12), which demonstrate the substantial 

improvements achieved using these enhancements. 

Section 5 describes an additional technique for 
Improving recognizer performance, by compensation 
for stress effects [18) in the basic recognition 

Input parameters, which are mel-frequency cepstral 

coefficients U9) In our system. 

In Section 6 «e focus on a technique called 
multi-style training [20] (also discussed in 

Section 3), which has been found to produce 
dramatic improvements in recognition accuracy under 

a variety of stress and noise exposure conditions. 

Recognition experiments are reported on a stressed- 
speech dnta base collected at Lincoln, where the 
recognizer Is trained under stress conditi.ns 

simulated by vatiation in speaking style, and 
tested both for normal speech and under conditions 

of Lombard effect and perceptual/motor workload 

stress [21|. The results of these experiments were 
that multi-style training produced substantial 

error rate reductions relative to normal training 
for all conditions tested. Section 7 reports 

additional work on data collected in simulated F-I6 
noise conditions at the Air Force Medical Research 

Laboratory (AMRL,). The data collected at AMRL 
includes simultaneous recordings from additional 
microphones mounted on the outside oi the facemask, 
to be used In adaptive noise cancellation [22] . 

Experiments reported here were conducted on the 
primary microphone signal only. The results show 
that training under multiple conditions can 

substantially Improve recognition performance, and 

indicate that the Lombard effect appears to be much 
more serious than additive noise in the recognizer 
input. 

The statistically-based Hidden Markov Model is 
quite effective in its capability to absorb (by 
automatic training), and to make use of, the 

charactei isclc» of ppeech, in the context of an 

analytically-tractable model. Effective use of 

additional sources of acoustic-phonetic speech 
knowledge (23] should produce additional enhance- 

ments In recognition performance and robustness, 
particularly If we can build on the success 

already achieved using HMM approaches. Section 8 
describes initial efforts In using feature-based 

discriminant analysis [24], to focus attention on 

the '■eglon of acoustic-phonetic distinction between 
pairs (or larger sets) o.= words which are observed 
to be difficult to distinguish with strict reliance 

on an HMM approach. As a further aid to Improving 
recognition robustness In the fighter cockpit and 

similar envlronmeits, efforts (summarized In 

Section 9) have begun In utlllzlni» artlculatory 

sensors including accelerometers and air pressure 

gaiges to derive new acoustic parameters for input 

to the recognizer. 

Finally, Section 10 summarizes conclusions 

from the work carried out up to now, and outlines 

ireas for further work. 

2.   COLLECTION AND ANALYSIS OF A DATA BASE OF 

SPEECH PRODUCED UNDER STRESS AND IN NOISE 

Psychological and physiological stress on a 

speaker lead to significant variations in the 
icoustlc signal. Typical changes include: 

Increased fundamental frequency, increase in the 
frequency and amplitude of the first formant, 

changes in overall spectral tilt, speech level and 
timing variations, and phonological modifications. 

Unfortunately, these vary significantly from 
speaker to speaker, and can be very different for 

the same speaker a1, different times. The effects 

of noise exposure (Lombard condition) have been 
observed [7] to produce similar changes to those 

produced under streos. 

Collection of a large, systematic data base of 

speech produced under real stress conditions Is a 
very difficult task. Our approach has been to 

obtain samples of speech produced under stress from 

a representative set of available sources, and to 
supplement thlj with a new data base developed in 
our Laboratory. This new data base, which we refer 

to as the Lincoln stress/style data base, includes 

speech produced during a difficult motor-workload 
task, under the Lombard condition, and with eight 

different Lalking styles designed to exhibit the 
range of acoustic variation typical of stressed 

speech. 

The data base of speech produced under stress 
and noise which we have collected from other 

sources includes: 

(1) the Advanced Fighter Technology Integra- 

tor (.AFII) F-16 data base [2,4,5], 
Including effects of both i.olse and 
acceleration; 

(2) sentences produced at 'MRL by ht.zardous 
duty panel members before and sfter a 

drop tower run [25]; 

(3) two video tapes (with audio) made on F-16 
aircraft during simulated combat 

extrclses at Nellls Air Force Base [26]; 

(4) a tape containing the communication 
between a pilot and a controller Just 
before a fatal helicopter crash [27]; 

(5)  tapes nade by 4 talkers  during 

that Induced vertigo [28]. 

a task 

Gererally, thn data showed the kind of 

variability expected for stress conditions. For 
some cases (e.g., drop tower) the changes seemed to 

be less than expected, while In other casos 
(helicopter crash) the changes were extreme.  As an 
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example. Figure i shows.- speccrogtauib and paiciuieLtiö 
of two samples of a woiM recorded In an F-16 
cockpit during simulated combat. The high stress 
sample shows increases in fundamental frequency, 
high frequency energy, frequency of first formant, 
and duration. Listening to the two recordings even 
indicates a dialect change, as the pilot's native 
drawl becomes more pronounced under the high-stress 
condition. 

As we were beginning to develop our stress/ 
style data base, we learned that researchers from 
Texas Instruments had independently produced an 
extensive "simulated stress" data base [12], 
including five talker styles (normal, fast, loud, 
soft, and shout) and the Lombard condition. The TI 
data base Includes a 105-word "pilot" vocabulary, 
spoken by 5 male and 3 female talkers, with 5 
training tokens (normal speech) per word per 
talker, and 2 test tokens per word per condition 
per talker. Their willingness to share this data 
base with us has greatly facilitated our research. 
Our recognition experiments and results on the TT 
simulated stress data base are described in 
Sections 4 and 5. 

NORMAL AND HIGH-G/WORKLOAD "BROWN" 

P JORMAL AND STRESS  /W/ 
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i        i        1 

NOHMAl AND STRESS   /W. 

NORMAL FO      13t Hi 
STRESS FO - 215 HJ 

NORMAL OUR      330 mt 
STRESS OUR      330 mi 

Fig. 1.  Spectrograms and parameters of 
the word "Brown," recorded in flight in an 
F-16 cockpit under normal conditions and 
under high-G (" 2.5) and simulated combat 
workload conditions. 

The Lincoln stress/style data base [29) 
contains 10,740 utterances produced by 9 talkers 
for 11 conditions: while performing a motor- 
workload task [21] (at two calibrated levels of 
difficulty) which has been used widely for workload 
research; under a Lombard condition (speech shaped 
noi=e presented blnaurally at an overall level of 
85 dB SPL); and with eight different talking styles 
(normal, slow, fast, soft, loud, clear enunciation, 
angry, and question pitch). The 35-word vocabulary 

(which is 5 ■•■jbi'j! of the 105-worJ Tl vocabulaiy) 
was selected to include a number of subsets which 
are difficult for recognition systems such as: (go, 
hello, oh, nol | six, fixl (while, wide!. Initial 
tests on i:his difficult vocabulary with a 
commercial recognizer [30] known to perform well o.i 
standard small-vocabulary data bases, indicated 
that error rates, which were relatively high (as 
expected) under normal conditions. Increase sharply 
under workload stress, the Lombard condition, and 
under many of the style conditions. These tests 
provided some confirmation that currently-available 
speech recognition technology Is not sufficiently 
robust to deal with a large r« ige of stress-Induced 
and nolse-lnduced s . jech variations. Our recogni- 
tion experiments an. results on the Lincoln stress/ 
style data base are described In Section 6. 

3.  BASELINE HMM SYSTEM DEVELOPMENT 

The statUtlcally-based Hidden Markov Model 
approach has, until recently, been applied most 
oftpn to recognition tasks involving large 
vocabularies and/or continuous speech. The 
sustained effort and Impressive results achieved at 
IBM [13,14] over the past 15 years exemplify this 
approach. Generally, limited vocabulary Isolated- 
word-recognitlon (IWR) efforts had used a template- 
matching approach, combined with dynamic time 
warping (DTW) [31]. Initial applications of HMM to 
the IWR problem yielded results inferior to DTW 
approaches [321; but later work [33) showed 
equivalent IWR performance for the two techniques 
when continuous parameters, rather than discrete, 
vector-quantized symbols, were used as the Input to 
HMM. Recently, the HMM approach [16] has also been 
applied quite successfully In a commercially- 
available recognizer [30]. In addition to Its good 
performance, the HMM approach has a number of 
advantages over DTW. These include: (1) better 
extendabillty to continuous speech then corre- 
sponding DTW techniques [34]; and (2) a convenient 
capability for automatic training on large amounts 
of data (Including, for example, a number of tokens 
of each word). For these reasons, we have chosen 
HMM as our framework for developing robust recog- 
nition techniques. 

HMM represents a family of techniques, rather 
than a single system, and therefore our initial 
efforts Involved exploration and comparison of a 
number of HMM alternatives including both 
continuous-observation and discrete observation 
systems. After preliminary investigation of a new 
HMM training technique [35], a number of basic 
improvements to HMM techniques were developed and 
tested in preliminary form [17]. Discrete obser- 
vation HMM systems generally use vector quantiza- 
tion [36] of the Input speech parameters, with the 

vector quantizer being trained using the .'.-means 
[37] technique. A modified K. üiea-s technique wa« 
developed [17] for improved training of the vector 
quantizer in discrete observation HMM. Additional 
developments included: (1) impiu^ed smoothing ',i 
the observation probabilities in discrete 
observation HMM; and (2) tests of full duratlonal 
models [38] and simplified duratlonal models for 
the residency time in each state.  Best results 
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[171 were obtained using a combination of these 
techniques. 

That system, however, was deemed too complex 
for a baseline system. Therefore we applied some 
of our earlier work on continuous observation 
systems to define a baseline isolated-word HMM 
system, which is intentionally very simple and 
straightforward. The baseline system is a 
continuous-observation HMM, using mel-frequency 
cepstra [19] as its fundamental observation 
parameters. Specifically, the observations are the 
first 12 mel-frequency cepstral coefficients 
(without tne energy term), computed every 10 ms. 
The Joint probability density function of the 
cepstral parameters is assumed to be a multi- 
variate Gaussian distribution with diagonal 
convariance matrix (i.e., the individual cepstral 
coefficients for any frame of speech are assumed to 
be statistically independent). The word model 
network for each word is a linear sequence of 
independent nodes with no skip paths. A fixed 
number of nodes (ten) is used for each word. Since 
this system is intended to be used on speech files 
which consist of one word with some background 
(silence) at each end, the first and last nodes are 
background nodes to provide a seml-open-endpoint 
system. The system is trained using the 
forward-backward algorithm. The recognizer 
averages all initial background nodes and all final 
background nodes to prevent biases due to unequal 

endpoint nodes being carried over from training on 
files with varying amounts of background. A 
Viterbi decoder is used for recognition, and the 
highest probability word is chosen as the 
recognized word. Since the system assumes one word 
per file, onxy substitution errors are allowed. 

Results obtained using the baseline HMM system 
and a number of enhanced systems, on speech 
produced under stress and in noise, are reported in 
the sections to follow. 

All the experiments described in the sections 
to follow were performed using a Digital Equipment 
Systems VAX-11/780 with an attached Floating Point 
Systems array processor. This combination of 
processors requires about 20 seconds for each 
second of input speech to perform recognition on 
the 105-word vocabulary for the simpler systems 
(fjuch as the baseline), and about 70 seconds for 
recognition using the full duration model. 
Computation time for training is also substantial. 
It should be emphasized that recognition processing 
requirements using Viterbi decoding with HMM will 
be similar to requirements for a DTW system with a 
similar distance metric. With current and emerging 
technology, it should not be difficult to develop a 
real-time HMM system of the type described here. 
However, processing power required to obtain good 
response times on the execution of recognition 
experiments on lai'ge data bases with a flexible 
facility is significantly larger than that required 
for real-time recognition. 

4.  ROBUST HMM SYSTEM DEVELOPMENT 

A number of variations on the baseline system 
have been tried and some of them hive yielded 
significant improvements in the recognition 
performance on the TI simulated stress 
("Tl-stress") database. The following presents the 
results of this work in three forms: a summary 
graph (Figure 2) showing results for some of the 
more important systems, a detailed table, and a 
textual description with comments. In the text, 
the results are presented in the form: (systeml; x* 
vs. system2: y%). "Systeml: x%" represents the 
name and the average error rate of conditions 1-5 
("avg5" in the table) for the system currently 
under diccusslon; and "system^: yZ" is the name and 
avg5 for the minimal pair system, to which we are 
comparing systeml. 

100 ""1                   I 
i   SUD! tirutl on  trrc 

90 [iBasellnHi avg5 =20.49 
evil avq5 =15.92 

80 ■1 ■•d2.   vl: avg5 =10.50 
• dur,   +d2. vl : avg5 =  7.87 

70 
gfv,   *d2. nl4; avgS =   2.54 

vmst,   *d2. vl: avgS =   1.76 

50 

40 

30 

20 

10 

) clo. 

fast 1 oud nmse        soft shout 

Fig. 2.  Substitution error rates for the 
Tl-stress data l »se. The codes for the 
various HMM recognition systems are defined 
in Table 1. 

Avg5 is used for comparison rather than avg6 
(the average error rate of all the test 
conditions), since the first five conditions are 
expected to be more Indicative of speech from 
trained pilots than the shout condition. A full 
breakdown of tl i results, Including both averages, 
is presented in Table 1. 

The Tl-stress data base [12] has a 105 word 
vocabulary, is recorded at a 4 kHz bandwidth, and 
consists of 8 speakers (5M + 3F) uttering 5 tokens 
of each word for enrollment, and 2 tokens of each 
word spoken in each of sixconditions for testing. 
This gives a total of 1680 test tokens per 
condition. The conditions are: normal, fast, 
loud, Lombard (noise presented to the speaker in 
headphones, but not in the recorded speech), soft, 
an  snout. 
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The baseline system uses 10 nodes (actually 10 
active nodes plus a degenerate absorber) in a 
linear network (i.e., a path may only stay in the 

current node or move to the next node with no 
skips) and a trained diagonal covarlance matrix for 
the multivariate Gaussian observation probability. 
(All systems described here use a diagonal 
covarlance matrix.) The observations are 
mel-frequency cepstra [19J. This system yielded an 
error rate of 20.49%. 

Increasing the number of nodes to 14 gave only 
an insignificant improvement In recognition 
performance (nl4: 20.43% vs. baseline: 20.49%). 
Placing a lower bound on the variances (variance 
limiting, vl) yields a large improvement, probably 
because it corrects occasional gross underestima- 
tion of the variance as a result of the small 
training set (vl: 15.92% vs. baseline: 20.49%). 
The full duration model [38,15] (dur) also improves 
recognition results because It contains a more 
realistic duration model than does the standard HMM 
f/stem (dur, vl: 10.10% vs. vl: 15.92%). 

Significant improvements resulted from adding 
temporal difference parameters (+dl for 10 ns and 
+d2 for 20 ms differences) to the standard 
observation parameter set (+dl, vl: U.76% vs. vl: 
15.92%) and for the duration model (dur, +d2, vl: 
7.87% vs. dur, vl: 10. lu"). The standard 
parameters contain only position and can convey 
motion only by moving to the next node. These 
difference parameters add the concept of motion to 
each Individual node. Note that we use difference 
parameters in addition to the basic cepstral 
parameters, so that the number of observations per 
10 ms frame increases from 12 to 24 for the +dl and 
+rt2 experiments. This additional information is 
used effectively by the system. 

Dramatic Improvements occurred with multi- 
style training (mat). The test database was split, 
and the first token of each word per condition was 
added to the training data, giving 11 tokens per 

word. The shout condition, even though it is not 
included in the avg5 error rate, was also used in 
the training. The second token was used for 
testing, giving 840 test tokens/condition. The 
standard observation (mst, vl: 3.48% vs. vl; 
15.92%), differential observation (mst, +dl, vl: 
2.21% vs. +dl, vl: 11.76%), and 20 ms differential 
observation (mst, +d2, vl: 1.76% vs. +d2, vl: 
10.50%) systems all showed large improvements. 
Even the norm test conditions Improved: .60% vs. 
1.07%, .60% vs. .89%, and .60% vs. .65%, 
respectively, in spite of the added non-normal 
training data. Thus, the multi-style training not 
only helped the added styles, but also helped the 
norm condition which is similar to the standard 
training style. 

Two multi-speaker systems have been tested. 
By "mult^-speaker" system in this context, we mean 
that the system was trained by using speech from 
all eight speakers to yield a single HMM model per 
word for all eight speakers, and tested using 
different speech tokens from each of the same eight 
speakers.  A normally-tralnu1 wjlti-speaker (rasp) 

syatem performed quite well compared to the 
corres,onding speaker-specific system (msp, +dl, 
vl: 9.57% vs. +dl, vl: 11.76%), probably due to the 
large number of training tokens (40). It showed 
degradation In the better conditions (norm and 
fast) and improvement in the poorer conditions 
(loud, tomb., soft, and shout). A second multi- 
speaker system using multi-style training was 
disappointing: (msp, mst, +dl, vl: 7.81% vs. mst, 
+dl, vl: 2.21%). 

Some closed tests ware performed using all 
test data for both training and test to estimate a 
lower bound on performance. As expected, the 
performance (clo, +dl, vl: .40%) was better than 
any of the open-test systems. While closed-test 
results are not indicative of operational 
recognition system performance, they do suggest 
that there is room for improvement. They also show 
the impressive ability of these HMM systems to 
incorporate widely varying speech styles Into a 
single model. 

The above systems have no explicit method of 
modeling phonological changes. A left-to-right 
(1-r) multi-style trained system which included 
single-node skip paths was tested to see If the 
additional freedom Improved the recognition. The 
result was a d-.^ease in performance (1-r, mst, vl: 
4.64% error vs. mst, vl: 3.48%) Such a general- 
ization requires more training data for accurate 
estimation of Its parameters and It appears that we 
do not have sufficient data. 

Several fixed diagonal covarlance systems have 
also been tested. Note that the weighting given to 
each cepstral parameter in the distance computation 
are determined by the corresponding variance term 
on the diagonal of the covarlance matrix (a smaller 
variance results in a larger weighting of the 
corresponding cepstral parameter). A unity 
variance matrix (1,2 norm) system offered an 
improvement over the corresponding trained variance 
system (L2: 13.58% vs. vl: 15.92%). Somewhat 
better performance occurred when covarlance derived 
from the enrollment data of all speakers was used 
(fvs: 8.76%). An even greater improvement was 
found when a covarlance derived from perceptual 
considerations was used: (gfv: 6.13%). The 
improvement continued when differential parameters 
were added: (gfv, +d2: 4.99%). Finally, increasing 
the number of nodes to 14 produced the best error 
rate for a system trained only on the enrollment 
data: (nl4, gfv, +d2: 2.54%). 

Variance limiting, normal plus temporal 
differential observations, and multi-style training 
have been combined to improve the performance of 
the HMM recognition system. The variance limiting 
help to minimize the effects of limited training 
data and the differential observations give the 
models more useful information about the speech. 
The multi-style training, by Including v/oid- 
identiticatlon irrelevant variation., -ill.n;,- the 
models to focus on the Invariant aspects ot oach 

word. The average error rate for the baseline HMM 
recognizer is 20%. The combination of the three 
techniques have reduced the average error rate by 
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an order of aagr.ltudc to l.SX. Giallar reductions 
In error rate were also achieved without multi- 
style training. A normally-trained system using a 
percept'jally-aotlvated, flr.cd-covarlance distance 
and normal plus differential observations achieved 
an error rate reduction from 20ÜI (baseline) to 
2.5X. 

fast loud Lomb. soft   shout  avg5   avgb 

Normal training (1680 tokens/condition); 
trained covar 
baseline 1.90 10.48 42.98 25.36 21.73 92.20 20.49 32.44 
nl4 1.49 10.30 44.35 26.61 19.04 91.43 20.43 32.26 
vl 1.07 7.14 32.50 21.43 17.44 89.52 15.92 28.18 
+dl, vl .89 6.79 22.38 16.07 12.68 86.31 11.76 24.19 
+d2, vl .65 7.14 19.76 14.70 10.24 84.94 10.50 22.91 
dur, vl .54 10.18 17.62 12.32 9.82 79.58 10.10 21.68 
dur, +d2, vl .36 12.44 12.26 7.44 6.85 73.57 7.87 18.82 

fixed covar: 
L2 2.08 7.80 21.43 16.61 20.00 82.56 13.58 25.08 
fvs .95 5.48 17.44 10.71 9.23 76.79 8.76 20.10 
gfv .65 3.27 10.77 7.62 8.33 68.63 6.13 16.55 
gfv, +d2 .36 2.32 7.68 4.82 9.76 59.17 4.99 14.02 
gfv, +d2, nl4 .36 1.73 3.39 2.86 4.35 49.76 2.54 10.41 

multi-speaker trained covar (msp): 
map, +dl, vl 1.90 8.75 13.45 12.38 11.37 73.57 9.57 20.24 

Multi-style tralnlr.e (mst) (840 tokens/condition): 
trained covar 
mst, vl .60 4.17 3.93 2.50 6.19 40.83 3.48 9.70 
mst, +dl, vl .60 2.86 2.38 1.79 3.45 33.95 2.21 7.84 
mst, +d2, vl .60 2.98 1.43 .83 2.98 38.81 1.76 7.94 

multi-speaker trained cova r (msp): 
msp.mst ,+dl jv: 2.98 8>5 7.26 8.21 12.14 46.19 7.81 14.21 

left-to-rlght trained covar: 
1-r, mst, vl .83 4.)2 6.07 3.21 8.57 41.19 4.64 10.73 

Closed test,  trained covar (1680 tokens/condition): 

clo, +dl, vl   .24  1.19 .12    .12 

TABLE 1 

.36 1.43 .40 .58 

X  SUBSTITUTION ERRORS FOR THE TI-STRESS DATA BASE: 

vl-varlance limiting 
nl4»14 nodes 
+dl-added temporal difference parameters (10. ms) 
+d2=added temporal difference parameters (20. ms) 
dur-full durational model 
l,2»unlty covarianct matrix (equivalent to 1^ > norm) 
fvs,gfv«fixed variance 
msp=raulti-speaker 
mst»multi-8tyle trained 
l-r=left-to-right model 
avg5=avarage of conditions 1-6 
avg6"average of all conditions 
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5.  CEPSTRAL DOMAIN STRESS COMPENSATION 

The success of the multi-style tri\nlng 
experlaencs descrlbeu In tue previous seccion led 
us to Investigate the comparative statistics of the 
cepstral parameters among the different 
conditions. Motivatiors were both to gain insight 
into the effects of different talking styles, and 
to investigate whether it would be possible to 
compensate for the cepstral changes through simple 
transformations un the cepstral iLeans and variances 
obtained using normal training. Such 
transformations, if effective, could avoid the need 
for multi-style training. 

The differences among normally-trained, 
slngle-style-trained, and multl-style-tralned word 
models are partially reflected in the overall 
average shifts in the means and changes in the 
variances of the cepstral coefficients. To study 
such differences, we examined seven different sets 
of word models, trained under six individual 
conditions (normal, fast, loud, Lombard, soft, and 
shout), and under a composite of all these 
conditions (multi-style). The cepstral means and 
variances, averaged over all 105 words in the TI 
vocabulary and over all 10 nodes in ei-ch word, were 
computed for each of the models. 

Figure 3(a) plots mean cepstral shifts (i.e., 
mean of the given model minus the mean of the 
normal model) for each of the cepstral 
coefficients. Shifts are shown for four cases: 
soft; shout; average of fast, loud, and Lombard; 
and multi-style. Figure 3(b) plots the corre- 
sponding spectra of these mean shifts, contrasting 
the effects on spectral tilt of low vocal effort 
(soft) versus higher vocal effort (fast, loud, 
Lombard, and shout). Increased vocal effort 
increases the relative high frequency content, 

whereas the opposite occurs with low vocal effort. 
It appears that these effects could be compensated, 
to some extent, by adding the appropriate cepstral 
compensation (Figure 3(a)) to normally-tralued 
data. 

Figure 3(c) plots the ratios of the cepstral 
variances of the multi-style-trained model to the 
cepstral variances of the normally-trained model. 
It appears that the major style-induced variations 
occur in the most slowly-varying spectral 
components (corresponding to lowest order cfipjtral 
coefficients) and in the most rapidly-varying 
spectral "omponents (corresponding to the highest 
order coefficients). 

A number of recognition experiments have been 
run to investigate the feasibility of improved 
recognition under varying conditions by means of 
cepstral domain compensation. In all these 
experiments, normally-trained word models were 
used, with mean and variance compensation (the same 
compensation for all words and nodes) applied 
according to smoothed versions of the data 
described above. Types of experiments included: 
(1) single-model compensation, where a set of 
cepstral mean differences observed In multi-style 
models  (represented  by  filled  squares  in 

Figure 3(a)) were applied as compensation in 
recognition tests on all styles; and 
(2) multi-model compensation, where four word 
models - corresponding to normal speech and to 
models compensated for low vocal effort, high vocal 
effort, and shout, were used for each vocabulary 
word. Note that the multi-model system requires a 
corresponding amount of extra computation to carry 
out the recognition. Error rates, averaged over 
the five conditions excluding shout, improved from 
13.OX (for a baseline HMM system with varllm and 
additional spectral features [18]), to 9.7% for 
single-model compensation, and to 4.5!t for 
multi-model compensation. 

These results appear quite promising, although 
some issues remain, which are the subject of 
current investigation. First, cepstral domain 
compensation has not yet been combined with the 
other HMM improvements described in Section 4. 
Secondly, an experiment should be performed where 
the cepstral statistics are gathered on a data base 
separate from that used in recognition tests. In 
addition to investigation of these issues, we are 
currently pursuing some new and promising ideas In 
cepstral domain atress compensation, which do not 
require multiple word models, or computation of 
cepstral statistics over a large data base. 
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Fig. 3.  Variations of cepstral means and variances 
for simulated stress and Lombard conditions. 

87 

Ss^sökK^N^^'i^^^^^ 



b.  MULTI-STYLt XRAINING FÜR IMPROVED RECOGNITION 
UNDER WORKLOAD STRESS AND UNDER THE LOMBARD 
CONDITION 

Multi-style training can be applied effec- 
tively to the recognition-in-8trepc problem by 
training the system under a variety of talking 
styles and/or a variety of conditions, and then 
using the system under stress conditions. Training 
tokens can be obtained under the same conditions 
experienced during use (if possible), or they can 
be obtained by instructing talkers to speak with 
different styles. For the results presented in 
Section 4 on the TI-stress data base, uraining 
tokens were obtained under the same set of 
conditions (style and Lombard) as those used for 
testing. This strategy is not possible in many 
operational conditions, such as in a fighter 
cockpit, where training would have to be performed 
during landing and during times of high workload. 
In this section, results are presented for the more 
general situation where training tokens are not 
available under testing conditions. 

All experiments were performed using the 
Lincoln stress/style data base, and the baseline 
HMM recognition system with variance limiting. The 
recognizer was trained with normal speech (five 
training tokens for each vocabulary word), and 
using multi-style training (ont normally spoken 
training token, and one token each from the fast, 
clear, loud, and question pitch style conditions). 
The recognizer was then tested using normally- 
spoken words (different tokens from those used in 
training), and using speech produced under the 
Lombard condition and under the two workload stress 
conditions. Each condition was tested using 70 
tokens (two samples of each vocabulary word). 
Results for five talkers from the Lincoln data base 
are presented in Figure 4. 

m 

25 

- Five Talkers 
210 Tokens Per Point 
Lincoln Stress/Style Data Base 

c 

20 

15 NOIMAL 
TKAININC 

MULTI-STYLE 
TRAINING 

NORMAL C0ND-5O COND-70 LOMBARD 

Fig. 4. HMM (vl) system performance on Lincoln 
workload stress and Lombard condition speech 
data, with normal training and with multi-style 
training. 

The results demonstrate that multi-style 
training can provide a large performance advantage 
under stress conditions, without training under 
those conditions. Multi-style training reduces the 
error rate by more than a factor of two under the 
Lombard condition (talker in noise), and provides 
large reductions in error rates under other 
conditions. An interesting, and perhaps surprising 
result is that error rates also dropped substan- 
tially for normal speech. The fact that overall 
error rates in Figure 4 are generally significantly 
higher than in Figure 3 can be attributed to the 
difficult conditions the highly confusable 
vocabulaty. 

The large reductions in error rate with multi- 
style training are presumably due to the fact that 
the forward-backward training algorithm is able to 
collect better statistics concerning the 
variability of different acoustic-phonetic 
features. Performance improves for normal speech 
presumably because there is insufficient 
variability in the five normally-spoken training 
words to characterize the variability that occurs 
in normal speech spoken over a period of a few 
days. Performance improves under workload stress 
and with the Lombard condition (1) because the 
multi-style training conditions provide a better 
match to the test conditions than does normally- 
spoken speech; and (2) because the HMM recognizer 
seems to focus on those characteristics of speech 
that are invariant across talking styles. 

7.  MULTI-CONDITION TRAINING FOR IMPROVED 
RECOGNITION IN SIMULATED F-16 NOISE 
ENVIRONMENT 

Background noise In a fighter cockpit has two 
major effects. First, it causes the pilot to speak 
louder and more distinctly (the so-called Lombard 
effect). Second, it leaks into the microphone, 
mixes in with the speech signal, and degrades the 
input signal-to-nolse (S/N) ratio. The relative 
importance of these effects was investigated 
recently using recordings made at AMRL. Words in 
the 25-word AFTI vocabulary w-re produced by one 
talker wearing a facemask and helmet in an ambient 
condition and with simulated AFTI F-16 background 
noise levels of 95 dB, 105 dB, and 115 dB sound 
pressure level (SPL). 

Recognition experiments Wisre conducted using 
our baseline HMM isoJated-word recognizer with 
variance limiting. Experiments were carried oat 
with normal training (five tokens from the ambient 
condition) of the recognizer, and with a new type 
of training which we refer to as multi-condition 
train^Ti; (two tokens from the ambient condition and 
one f'M each noise condition). Multi-condition 
training is distlns^itihed here from multi-style 
training in that training is done by subjecting the 
talker to different noise exposure conditions, 
rather than asking the talker to speak with a 
variety of talking styles. Results are presented 
in Figure 5. Signal-to-nolse ratios presented at 
the top of this figure are obtained by determining 
the r&tio between the 95 percent and 5 percent 
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cimulatlve RMS level« measured across Che waveiuria 
file for each word, using a 100 ms rectangular 
averaging window to determine RMS, 

As can be seen in Figure 5, with normal train- 
ing the error rate ranges from zero In the ambient 
condition to greater than 60 percent with 115 dB 

SPL of background noise. Multi-condition training, 
however, provides a dramatic improvement in 
performance. The error rate is reduced to zero 
except for the 115 dB SPL condition. Objective 
measurements of the S/N ratio (noted in Figure 5) 
and careful listening to the recordings strongly 
suggest that degraded performance was caused by the 
Lombard effect, and not by additive noise. These 
results, which are consistent with those presented 
in [12], thus indicate that research emphasis 
should be placed on compensating for the Lombard 
effect and not on compensating for a degraded S/N 
ratio. Some compensation for a degraded S/N ratio 
will still be necessary under very high noise 
conditions, but such compensation will not be 
sufficient for good recognition. These results 
also demonstrate that multi-condition training in a 
HMM recognizer is an effective technique to 
compensate for the Lombard effect. 

SIGNAL TO NOISE RATIO IdB) 
43.4                              40.6                                  342                             23.2 
r ■                     i                         i 

ONE TALKER 
ICO TOKENS  PER  CONDITION                                                         ,. ( 

60 26 WORD E16 VOCARULAR"                                                   ^ 

50 ^                            -. 
£ R- 

/ 
1- 40 / 
< / 
cc ,' 
o 30 NORMAL TRAINING  / 
cc / 
oc 
UJ / 

20 / 
/ 

10 /          MULTI-CONDITION TRAINING^ 

01 1- "~J~"* fr           
AMBIENT 96 106 116 

BACKGROUND NOISE LEVEL (dB SPL) 

Fig. 5.  HMM sysCera performance in simulaCed F-16 
noise envlronmenC, wich normal Craining and wich 
undue mulclple noise conditions. 

8. FEATURE-BASED DISCRIMINANT ANALYSIS 

Most IsolaCed-word speech recognition systems 
weigh all paits of a word equally when comparing an 
input unknown word to stored-word models. This may 
lead to errors for words such as "go" and "no" that 
differ only m one temporal region. Discriminant 
analysis [24], as described here, is a technique 
that can overcome this problem by focussing 
attention on parts of words determined to be most 
Important In discriminating between a small set of 
word candidates. The approach described here is 
similar in some respects to that proosed in [39J. 

i\ .11M .'i-fiii rtuornach to dlsrrdminant analysis, 
where analysii of recognition errors is used to 
select an optimum set of "features" used to 
characterize spectral characteristics, is described 
i.. [40]. 

We propose to build on our successful HMM 
systems and use discriminant analysis in a second 
analysis stage. The first stage of analysis will 
include a maximum-a-posterlori probability Hidden 
Markov Model recognizer. The output of this stage 
will consist of overall word probabilities, node 
residency times from the Viterbi backtrace, and 
information concerning the distribution of spectra 
In each node. The second discriminant stage will 
use this infortaation, along with information from 
addltiona] acoustic-phonetic feature measurements 
designed to improve discrimination decisions 
between specific word pairr.. Statistics required 
for the discrimination stage will be obtained 
during training by: (1) passing each training word 
through feature . measurements to detenuine 
statistics of these measurements; and (2) passing 
each train'ng token through the word models for all 
vocabulary words, rather than only through the word 
model for the corresponding word. 

Our plan Is to carry out a second-stage 
discriminant decision only if likelihoods from the 
first-stage HMM recognizer indicate that no clear 
decision can be made. This strategy is designed to 
prevent the second stage analysis from degrading 
the good performance of existing HMM recognizers. 
Results obtained with the Lincoln stress/style data 
base with multi-style training for the Lombard and 
workload conditions suggest that a relatively 
simple decision rule based on the difference 
between the log likelihoods of the first two word 
candidates is effective in determining whether to 
perform a discriminant analysis. This rule 
correctly identified roughly 90 percent of the 
trials where an error occurred and incorrectly 
identified 24 percent of thosa trials where the HMM 
recognizer made a correct decision. 

A second-stage discriminant decision will 
initially be performed using a two-way discriminant 
between only the top two word models. Data shown 
in Figure 6 illustrate that a two-way discriminant 
could substantially reduce error rates. Data in 
this figure represents all the multi-style training 
conditions in Figure 4. Figure 6 indicates that 
perfect discrimination between the top two word 
candidates would reduce the error rate by more than 
a factor of two. N-way discriminations between the 
top three or more candidates would provide smaller 
incremental reductions in error rate. 

Initial results with the abu1 a discriminant 
strategy, using only duration information as a 
discriminant, have been encouraging. Further work 
is currently in progress that uses spectral 
features, computed from the cepstral parameters 
already available in the baseline system, in the 
discriminant decision. 
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Error Rat« Conaldarlng Top N C»n<Ud«t«» 
 -1 1 1 1  

Five Talkers 
. 1400 Tokens 
Lincoln Stress/Style Data Base 

FOREHEAD ACCELEROMETER 
NASAL ACCELEROMETER 

PRESSURE GAUGE 
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SECONDARY 
MICROPHONE 

THROAT 
ACCELEROMETER 
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MICROPHONE 
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FE   TURES  s HECOQNITION 

SYSTEM 

2       3        4 
Nuabar of Candida tu (M) 

Fig. 6. HUM system error rate considering the top 
N word candidates, using multlstyle training on tne 
Lincoln stress/style data base. 

9.  APPLICATION OF ABTICULATORY SENSORS 

The goal of experiiucnts with articulatory 
sensors is to determiae whether the outputs of 
small, non-lnvaslve sensors can be used to 
supplement the microphone signal and improve speech 
recognition performance in noise and stress. 
Rather than focussing on obtaining a signal that is 
more noise-free than a microphone signal, our 
primary focus here is on obtaining a signal that 
provides additional Information concerning 
articulatory movements which are consistent for 
specific pho.-»tic events. Two types of sensors 
will be used: miniature accelerometers and a static 
pressure gauge transducer. Miniature accelerom- 
eters can be positioned on the nose [41] , throat 
[42], and forehead of a talker to detect voicing 
energy and nasal energy. In a cockpit, the nasal 
accelerometer could be mounted in the soft rubber 
of a facemisk and the accelerometer on the forehead 
could be mounted in the helmet on a foam pad. The 
static pressure gauge monitors pressure within the 
facemask via a piece of short flexible tubing that 
runs through the facemask. It can be used to 
detect the rapid increase In pressure associated 
with plos'.ves [43). 

A sketch of a multi-sensor system, including 
articulatory sensors and a secondary microphone for 
possible application in adaptive noise cancella- 
tion, is shown J.i Figure 7. Preliminary 
articulatory sensor recordings have been made by 
simultaneously sampling the outputs of three 
accelerometers (nasal, throat, forehead) of the 
static pressure gauge, and of the facemask 
microphone. After creating a small multl-senoor 
data base,we will investigate the feasibility of 
processing the outputs of these sensors to provide 
features which can enhance recognition robustness. 

Fig. 7. System structure for potential application 
of nultisensor signal processing to robust speech 
recognition. 

10.  CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK 

Substantial improvements in speech recognition 
performance on speech produced under stress and in 
noise have been demonstrated, through the develop- 
ment of techniques for enhancing the robustness of 
a baseline isolated-word HMM recognizer. The 
performance achieved - about 2% error rate for a 
105-word vocabulary, under a variety of stress and 
noise conditions - should be sufficient to support 
a reasonable range of speech recognition applica- 
tions in stressful environments, where limited 
vocabularies and speaker-specific training can be 
used. This performance represents an 
order-of-magnitude reduction In error rate relative 
to a baseline HMM system, and compares favorably 
with the best results previously reported using DTW 
techniques. The capability of the HMM system to 
train effectively on multiple talking styles, and 
thus to become more tolerant to speech variations 
due to stress and noise exposure, is an extremely 
encouraging result. 

Based on the results obtained so far, we see a 
large number of arsas for current and projected 
future work in robust recognition, including: 

(1) more work on HMM robustness improvements, 
including augmented parameter sets, 
durational models, better use of energy, 
minimization of the effects of limited 
training data, and use of word models 
with different number of nodes for 
different vocabulary words; 

(2) further development of cepstral domain 
stress compensation techniques; 

(3) extensive tests of robust recognition 
techniques on additional data bases, 
including physical stress, and eventually 
data collected in flight; 

(*) development and test of techniques, 
including discriminant analysis, for 
integration of acoustic-phonetic features 
with H'lM systems; 

90 

Ka^Kw^or^M^^ 



*^**^.     ■  IB 

(5) investigatlun of feature evtraction from 
articulatory sensor data; 

(6) dynamic adaptation techniques for 
updating training while the recognition 
system Is In use; 

(7) extensions from Isolated-word to 
connected-word recognition systems In the 
context of high stress and noise, 
Including subword HMM models; 

(8) efforts In talker-Independent recogni- 
tion, taking advantage of the 
techniques for dealing with speech 
variability that have been ieveloped for 
the recognltlon-ln-atress problem;  and 

(9) eventual Integration Into application 
systems, and test on-board high- 
performance aircraft and in other severe 
environments. 

Finally, although our efforts have focussed on the 
stress and noise problem, we feel that the 
techniques applied to deal with the variations In 
speech due to stress should be applicable to more 
general recognition problems. 
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ABSTRACT 

This paper describes general specifi- 
cations and current status of the speech 
databases that Texas Instruments <T1) is 
collecting to support the Darpa speech 
recognition research effort. Emphasis is 
placed on the portion of the database 
development work that TI is specially 
responsible for. We give specifications 
in general, our recording procedures, 
theoretical and practical aspects of sen- 
tence (election, selected characteristics 
of selfc'-ted sentences, and our progress in 
recording. 

1. INTRODUCTION 

This paper is a report on the speci- 
fication and current status of the work 
done by Texas Instruments, Inc. <TI) on 
Darpa-funded Acoustic Phonetic Database 
development as of the eu^ly part of 
February, 1986. It is meant to be comple- 
mentary to similar reports from other 
groups included in this volume. 

2. GENERAL SPECIFICATIONS 

Originally three data bases were 
planned: "stress," "acoustic-phonetic," 
and "task-specific." The stress data base 
was to investigate variations of speech 
with stress, and would be done primarily 
by AFAMKL. The acoustic-phonetic data- 
base, to be done by TI in collaboration 
with MIT and SRI, was intended to uncover 
general acoustic-phonetic facts about all 
major dialects of conMnental U.S. 
English. And the t.ask-specific data tas<3, 
providing data for the study of the effect 
on speech recognition of limiting domain 
of discourse, would be defined later. At 
our last meeting, there was a consensus 
that the task-specific data base should be 

folded into the acoustic-phonetic data 
base, becoming one of the later phases. 

The acoustic-phonetic data base is 
phased so that a small amount of speech is 
initially recorded from a large number of 
subjects, followed by successively larger 
durations of speech from fewer subjects, 
culminating in two hour recorded from 
each of two subjects. MIT and SRI have 
helped ue design the mate 'ial to be read 
by subjects. Figure 1 below shows the 
current general specifications for this 
data base. 

3. RECORDING PROCEDURES 

3.1 STEROIDS 

Txiis large scale database collection 
would be difficult or impossible to col- 
lect without the VAX Fortran automated 
speech data collection system developed 
here at TI, called the SIEReO automatic 
Interactive Data collection System, or 
STEROIDS. Use of STEROIDS requires a 
stereo DSC 200 sound system directly 
connected to 2 DSC 240 audio control 
boxes, one for each of the 2 channels of 
stereo input.  (No multiplexor is used.) 

STEROIDS uses a file called the 
Vocabulary Master Library (VML). The VML 
file is a formatted direct access file 
which contains records holding data for 
each utterance in a recording session: 
the text of the prompt, a speech file 
name, and variables holding the number of 
recorded versions and which one is best. 
A promf" aay be any text string less than 
1;? cha, _cters long. 

When STEROIDS is executed, it first 
r ,ads in values for several parameters 
that effect its decisions about when each 
utterance begins, and ends, and a name for 
the subject. It then, under the control 
of the diractor, displays prompts to the 
subject and records his responses in 
speech files. The director may listen to 
recorded versions, decide which version is 
best, and re-prompt. 
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Recording conditions: 
o Low noise (acceptable to NP""1 

o 2 channel recording: 1 noise-cancelling (Sennheiser) mike, 
1 far-field pressure (Bruel and Kjaer) mike, 

o Subjects exposed to 75 dB SPL noise through earphones 

Style: 
o Read from prompts 

Material 
Phase Speech/Subject # Subj 

i 30 sec. 630 
2 2  min. 160 
3 8 min. 40 
4 30 min. 10 
5 2 hrs. 2 

Contents, etc. 
Broad Phonetic Coverage 

W/Standard Paragraph 
W/Explicit Variations 
Interview Format 

Figure 1. General Specifications of Acoustic-Phonetic Database. 

3.2 GENERAL PROCEDURE 

We created and ran a program which 
read sentences and sen ^nce assignments 
and made 630 VMI. files. Our recording 
procedure then takes five steps: 1. At 
the beginning of each day, calibration 
tones are recorded from both channels; 2. 
For each subject, one of the 630 VML files 
is copied to his named sub-directory and 
STEROIDS is used to collect his data; 3. 
At the end of the day, a REDUCE procedure 
is run on all data collected that day, 
which produces the files that we send out, 
by splitting the initial stere .ile into 
two mono files, de--biasing each, ligh-pass 
filtering the BK file at 70 ... and 
down-sampling each to 16,000 samples per 
second; 4. A backup procedure is then 
run, which makes three tape copies of the 
VML files, the calibration tone files, and 
all the speech files recorded on that day; 
and 5. The disk is cleaned up for re-use 
by deleting the files that were put onto 
tape. One copy of the back-up tape is 
thea sent to MBS. 

Data on each subject recorded in each 
session is added to an ASCII text file for 
documentation. 

3.3 NOISE 

After the sound booth was moved to 
the third floor of the North Building, a 
very large nois's signal was observed 
coming from t. i combination BK power 
supply and pream; lifier. At first this 
noise was thoi.v it to be the result of a 
defect in the i.mplifier, but the BK 
service center could find no problam. It 
was then that we realised that the noise 
was actually an acoustical signal being 
picked up by the microphone. Figure 2 
shows the spectrum of the noise signal 

below 500 Hz for a 5 second segment of 
"silence". The spectrum is flat from 300 
Hz up to 10 kHz. (The spectrum of the 
sign?! from the Sennheiser noise-cancel- 
ling micropnone is flat from DC to 10 kHz, 
which indicates that the noise-cancel- 
lation property and the low-frequency 
roll-off of the fennheiser is adequate to 
render the acoustic rumble of no 
consequence for this microphone.) 

100 T 

FHEOUOICY • 
(H2) 

Figure 2. Amplitude Spectrum of 
Acoustic Rumble. Recorded in the 
TI sound booth over a 5 second 
period of "silence." 
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With consultation from an acoustical 
engineering consultant it was judged that 
the acoustical noise in our double-walled 
ccund booth is being introduced by 
mechanical vibrations transmitted through 
the floor. Opinion varies as to the 
amount of reduction that may be achieved 
by better isolation from the floor, from 
less than 3 dB to more than 20 dB. 
Current plans are to Install an air sus- 
pension vibration isolation mount system 
under the sound booth to reduce the rumble 
as much as possible. 

As an interim solution, a 1581-point 
FIR filter has been designed to provide a 
high-pass filter function, with a cut-off 
at 70 Hz and an in-band ripple of less 
than 0.1 dB above 100 Hz. Using this 
filter, reasonably acceptable S/N ratios 
have been achieved during data collection. 
The following S/N ratios have been 
measured, using seventeen subjects' (nine 
men and eight women) utterances of sen- 
tence SA1. 

Condition ENrms SNavg SNpk 

Condition ENrms SNavg 

No HP 
70 Hz HP 
200 Hz HP 

421 
95 
4 

8 dB 16 dB 
21 dB 29 dB 
48 dB 56 dB 

Table 1. Raw S/N Ratios. 

Explanatory notes for Table 1: 
ENrms is the RMS energy of the noise; 
SNav^, is the average S/N ratio, signal 
energy being commuted as the average 
RMS signal value over the entire 
utterance; SNpk is the peak S/N 
ration, signal energy being computed 
as the peak RUS signal value in a 30 
msec. Ilimmirg-weighted window slid 
across the utterance. 

During this tabulation it was noticed 
that the RMS energy for men's utterances 
averaged 4 dB greater than that for women. 
There are variations of signal level with 
speaker and with utterance, of course, and 
the weakest of the seventeen utterances 
used for this tabulation showed an average 
S/N ratio of minus 1 dB for the original 
signal. 

The effective S/N ratios for speech 
processing and listening or perceptual 
purposes will be somewhat higher for the 
no high-pass and 70 Hz high-pass results 
listed above, because typically a pre- 
omphasis is performed on the speech signal 
before further processing, and because the 
humar ear is progressively less sensitive 
to sound at frequencies below 200 Hz. For 
a preemphasis constant of 1.0 (at a 
sampling frequency of 16 kHz), the S/N 
ratios were measured as follows: 

No HP 
70 Hz HP 
200 Hz HP 

6 
4 
3 

35 dB 46 dB 
39 dB 50 dB 
41 dB 52 dB 

Table 2. Pre-emphasized S/N Ratios. 
Symbols are same as in Table 1. 

4. ACOUSTIC-PHONETIC DATA BASE PHASE 1 

4.1 G^'ERAL 

"^ i sentences constituting the phase 
1 material will have a mean value of 
expected reading time of 3 seconds, so 
that each of the 630 subjects reading ten 
sentences will give us the specified 30 
seconds per subject of speech data. 

Altogether 630x10=6300 sentence 
tokens will be collected. The sentence 
types are divided into three sorts: 1. 
Two "dialect" or "calibration" sentences; 
2. 450 "MIT" sentences; and 3. 1890 "TI" 
sentences. Each subject reads both the 
dialect sentences, a selection of five of 
the MIT sentences, and a selection of 
three TI sentences. Each MIT sentence 
will be read by seven speakers and each TI 
sent3n^e bj one. This variation in the 
nuinbe- of subjects reading different sen- 
tences is a compromise between the 
desiderata of breadth and depth of phonet- 
ic coverage across subjects. 

The dialect sentences were devised by 
SRI and the MIT sentences by MIT, who will 
report separately on their design. 

4.2 THE TI NATURAL PHONETIC SENTENCES 

Our strategy in selecting our 1890 
sentences was almost identical to one we 
reported on earlier Cl]: use a computer 
procedure to select from a large or 
infinite set of sentences a subset that 
meets certain feasibility criteria, trying 
to optimize an objective function of the 
selected sentences. The ideal set of sen- 
tences to draw from in this case is the 
set of normal, acceptable American English 
sentences. Lacking an off-the-shelf gram- 
mar of sufficient generality, we ap- 
proximate this set with the largest set of 
American English sentences in computer 
readable form that we know of, the "Brown 
Corpus C2]." Responding to concerns of 
some in the DARPA Database SIG that these 
sentences were "written" English instead 
of "spoken" English, we augmented our 
final pool of sentences from this corpus 
with 136 sentences of playwrights' dialog 
from the corpus published by Hultzen et 
al. [3]. (We are not concerned that our 
sentences are too "written": the 
alternative, naturally "spoken" sentences, 
are replev.e with run-on sentences, 
self-corrections,  and ungrammaticality.) 
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There may be some slight discrepency 
between the original written form of these 
Hultzen sentences and the form in which we 
use them, since we reconstructed their 
spellings from the phonemic transcriptions 
published in the Hultzen book using TI 
off-the-shelf speech-to-text technology. 

A series of programs was executed 
that produced a file of pointers to the 
beginnings of sentences in the Brown 
corpus, then filtered out sentences from 
this set until about 10,000 were left in 
the selection pool. Sentences were 
eliminated if they were over 80 characters 
long, included any proscribed words, or 
included characters other than letters and 
punctuation. This pool was augmented with 
136 Hultzen sentences. 

The fixed set of sentences — the two 
dialect sentences and the revised set of 
450 sentences that TI received from MIT in 
the middle of November — were transcribed 
phonemically by TI's best off-the-shelf 
text-to-phoneme program and, after careful 
checking by two experts in phonetics and 
phonology, files of allophonic transcrip- 
tions of them were computed as described 
below. The selection program assumed this 
set of utterances as a base to build on in 
the selection of the 1890 TI sentences. 

The selection pool of 10,000 sen- 
tences was prepared in a similar way, 
except that it was not feasible to 
hand-check the transcriptions. 

The selection program accesses these 
allophonic transcription files, in addi- 
tion to a file of pointers to sentences 
that have previously been selected and one 
of pointers to sentences that have been 
manually zapped (ruled out). It produces 
a ßCF version of the sentence selection 
file. ijc+h the sentence selection file 
and the zapped rontence file are in ASCII 
text file format ^o that they can be 
manipulated with a text editor. One of 
the program's typed-in parameters tells it 
how many sentences to select. The program 
was run in a series of batch jobs, each 
typically selecting an additional 100 or 
so sentences. The additional sentences 
selected in each batch run were examined, 
and unacceptable ones were stricken from 

selected sentence file and added to 
zapped sentence filo before the next 

the 
the 
run. 

The internal procedure 
program is this: 

used by the 

1. Build the initial version 
of the data structura holding pho- 
netic data on tii«, selected sen- 
tences by rei ding in the dialect 
sentences weighted by 630, the MIT 
sentences weighted by 7, and the 
previously selected TI sentences 
weighted by 1; 

2. Repeat this until this 
run's quota of sentences has been 
selected: 

a. Scan through a list of 
prospective sentences from the 
pool of unselected and unzapped 
sentences, calculating for each 
the increase in the phonetic ob- 
jective function under the 
hypothesis that the sentence is 
added to the selected set, 
remembering the one producing the 
highest value; 

b. Add the renumbered sen- 
tence to the selected sentence 
list. 

3. Write out the new version 
of sentence selections. 

The program knows two basic ways of 
making a list of sentences from the pool 
for examination: 1. take N (typically 
400) random grabs; and 2. look at them 
all. This option is selectable by the 
user, and both were used in actual runs 
selecting sentences. The first is faster 
and less optimal than the second. 

4.3 CONTROL OF AVERAGE UTTERANCE DURATION 

In order to control the average 
duration of utterances, a heuristic was 
used. The expected speech duration of 
each sentence vas calculated using the 
formula 

SPDUR - -0.0928 + .06302 * NLETTS 

where NLETTS is the number of letters in 
the spelling of the sentence and SPDUR is 
the speech duration of the sentence in 
units of seconds. This formula was 
derived by the least-squared-error fit of 
a linear function to speech duration data 
obtained from a previously collected data 
base of continuous speech: 750 sentences 
from each of eight subjects, half male and 
half female. The mean value of speech 
utterance duration of the current selected 
sentence set was kept track of, tnd if it 
was lower than the target duration (three 
seconds) minus a tolerance, the next sen- 
tence selection was taken from a list of 
longer-than-average pool sentences; if the 
mean speech duration was greater than the 
target plus a tolerance, the next selec- 
tion was from the subset of short pool 
sentences; and if within the tolerances, 
any of the 10,000 pool sentences could be 
selected. The tolerance use^ in the final 
selection was 1%. 

4.4 OBJECTIVE FUNCTION 

The function that is used to measure 
the aggregate phonetic coverage of the set 
of selected utterances, called "r.llophone 
information", is: 

Ial= SUM(Ni*L0G2(Ni/Ntot)) 
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where Ni is the frequency of phonetic 
unit i and Ntot is the total number of 
phonetic units in the utterance set. A 
user-specified switch determines whether 
the function is used in its absolute form 
as given above, or normalized by dividing 
by the number of letters in the sentences. 
Most of the later runs were made using the 
relative form of the function. 

Following most authorities on phonet- 
ics, we take the relevant set of phonetic 
units to be phones, allophones or variants 
of phonemes of American English [4,5], 
roughly ^uivalent to Pike's "speech 
sounds" [6, pp. 42]. The problem of 
calculating or defining the complete set 
of allophones is equivalent to defining 
the set of possible phonological rules. 
The first-order approximation to this that 
was used is: an allopbone is a variant of 
a phoneme that is distinguished by the 
phone on its immediate left, the phone on 
its immediate right, and, if it is 
syllabic, by a binary mark of stressed or 
non-stressed; part of the allophonic 
representation, also, is whether there are 
word boundaries on its immediate right or 
left before the adjacent segments. For 
the purposes of this specification, left 
and right environmental phones are the 
segmental phonemes with vowels marked as 
stressed or nonstressed and the complex 
phonemes /ch/, /jh/ written as Ct sh] and 
Cd zh]. (This is a correction and 
generalization of a proposal for psycho- 
linguistic units of speech recognition 
made by Wickelgren some years age t7, 
chap.  6,7].) 

It is important to use phones instead 
of phonemes as possible phonetic 
conditioning environments for several 
reasons. 

Complex phones condition phonetically 
according to their separate parts. If you 
think, as we do, that the vowels of "chew" 
and "shoe" are phonetically identical, 
then always counting phones as different 
if they have different adjacent phonemes 
won't work: the two vowels have different 
phonemes on their left — /ch/ vs. /sh/ 
— but the identical phone, [sh]. And 
/oy/ and /aw/ probably cause rounding 
assimilation on different ends, /oy/ at 
the beginning and /aw/ at the end, 
although there is no principled way to 
distinguish them with the phonological 
feature of rounding if they are regarded 
as holistic segments. 

In general, conditioning phones 
should also be marked redundantly for 
features that can assimilate over an 
intervening segment. Only if the /t/ of 
"stew" is marked for lip rounding will the 
/s/ be in an enviroruTient that will cause 
it to become rounded, but lip rounding is 
not phonemic in English consonants. If 
you think, as we do, that the /s/'s of 
"stew" and "sty" are phonetically dif- 

ferent, then the relevant conditioning 
environment cannot be just the immediately 
following phoneme. 

Of course, supra-segmental features 
affect phonetics also. As a first 
approximation to this, we mark vowels as 
being stressed or non-stressed and include 
word and utterance boundaries in 
conditioning environments. Something like 
this must be done if you think, as we do, 
that the /t/'s of "deter" and "veto" are 
phonetically different, and that the 
/ay/'s of "Nye trait" and "night rate" are 
also different. 

Because of exigencies of time and 
resources available, the allophonic codes 
actually used were 4-byte integers 
consisting of these bit patterns: 

EACH ALLOPHONE CODE: 

o 6 bits for segmental phone code 
o 6 bits for segmental phone on left 
o 6 bits for segmental phone on right 
o 1 bit for word boundary on left 
o 1 bit for word boundary on right 

where segmental phone codes are 
classical phonemes except: 

o Vowels marked stressed/unstressed 
o Complex phonemes are split: 

/CH/=[T SH], /JH/=[D ZH] 
o Utterance begin/end mark used: /$/ 

Figure 3. Allophone Codes. 

The simplest way to decode and write 
one of these allophone codes is as a phone 
with an environment specified as in 
linguistic phonological rules. Here is an 
example from the log of a computer program 
run testing allophone coding and decoding 
that shows how this method of counting 
phonetics handles three well-known phrases 
that are distinguished by allophones of 
/T/: 

0RTH="Nye trait/nitrate/night-rate" 
PR0N=/- N AYl - T R EY1 T - - N AY1 

T R EY1 T - - N AY1 T - R EYi T -/ 

THESE ARE THE PHONETIC UNITS: 

I ALLO(I) DECODED: 
1 868422 N /   [$]     [AYl] 
2 292253 AYl  /   [N]     [# T] 
3 643562 *      T /   [AYl  #]  _   [R] 
4 960268 R /   [T]      CEY1] 
5 64156 EYI /   [R]    [T] 
6 639957 T /   [EYI]    [# N] 
7 878406 N /   [T #]     [AYl] 
8 292252 AYl  /   CN3    [T] 

(continued on next page) 
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(continued from previous page) 

9 643560    * T /   CAYID _  CR] 
10 960268 R /   [T]  _ .  [EY13 
11 64156 EY1  /   CR] _  [T] 
12 639957 T /   [EY1] _  C# N] 
13 878406 N /   CT #] CAY1] 
14 292252 AYi / m _  CT] 
15 643561     • T /   CAY1] .  C# R] 
16 960270 R /   [T #] __  CEY1] 
17 64156 EY1 /   CR] _  CT] 
18 639745 T /   [EY1] _  C$] 

•! 3 DIFFERENT ALLOPHONES OF /T/. 

Figure 4. Allophone Encoding/Decoding 

4.5 RESULTING SENTENCES 

The sentences resulting from this se- 
lection process wore checked for 
accepability by two experts with Ph.D.'s 
in Linguistics with major areas of Phonet- 
ics and Phonology (WMF and KGM), and one 
Registered Speech Pathologist (Jane 
McDaniel), who has been hired as a con- 
sultant to help record the data base. The 
only area in which there was some 
disagreement was on whether or not to 
allow utterances consisting of just a 
well-formed noun phrase. The decision was 
made to allow such fragments if they were 
not otherwise unacceptable, because they 
are perfectly common and normal in speech, 
according to such authorities as Sledd 
C8,p.  1691: 

"We often say things, in 
perfectly normal speech, which do 
not contain a complete subject and 
a complete predicate. We might 
very well say, possibly in answer 
to a question, 

the choir ♦ 

just as we might say, 

the choir -* will sing now V 

BotI\ answers are correct English 
utterances, and both end in the 
terminal .* 

Figure 5 below shows some character- 
istics of the sentences finally selected: 

# Allophone   I 
SENTENCES #Utts. lal Types Tokens| 
DIA+MIT 4410 1584 7:296 -147k 
DIA+MIT+TI 6300 25ß2 19.953 "212lel 

4.6 SENTENCE-TO-SUBJECT ASSIGNMENT 

Sentences were assigned to subjects 
represented as indices; as particular real 
subjects a-e chosen they are assigned a 
subject index arbitrarily. The initial 
assignment of sentences to subject indices 
was made by a looping program that assign- 
ed consecutive sentences from the selected 
sentence set to different subjects. 

Another program then re-assigned sen- 
tences to subjects in order to reduce the 
range of expected total speech durations 
assigned to subjects. The program used a 
simple fast repetitive heuristic of 
finding the subjects with the longest and 
the shortest assigned speech durations, 
then interchanging the two sentences 
between them that make the greatest re- 
duction in the difference of their speech 
durations, respecting the constraints T>i 
the experimental design (dialect sentences 
1
i.?ierchanSe only with dialect sentences, 
MIT only with MIT sentences, and TI only 
with TI sentences). I.ef ore this program 
ran, the minimum, average, and maximum 
speech durations assigned to subjects were 
23, 30, and 37 seconds respectively; 
running the program increased the minimum 
to 28,5 and reduced the maximum to 32. 

4.7 RECORDING PROGRESS 

Last fall TI made a commitment to 
send a sample of at least ten speakers' 
recordings to NBS for evaluation by 
December 21, which was dore. In addition, 
we made a commitment to record and send 
out an average of 20 speakers per week 
beginning January 1. Figure 6 below shows 
how well we have met that commitment. 

5  13  20  27  3  10 17  24 
JANUARY FEBRUARY 

TIME  

Figurn 6, Recording Progress, Phase I. 

Figure 5. Phase I Utterances Summary, 
Allophone information, lal, is in kbits. We expect to finis> 

Phase 2 recording during 
iase 1 and start 

ipril 1986. 
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Figure 7 below shows the geographical 
distribution of speakers we have recorded 
as of February 16, 1986, along with the 
definition of the assumed dialectal areas 
we are using in an attempt to get more 
even numbers of speakers from all major 
dialects. Table 3 below gives a numerical 
summary of this same information. 

C6] Phonot-irfy Kenneth L. Pike, The 
University of Michigan Press, Ann Arbor, 
1966. 

[7] Speech and Cortical Functioning ed. 
John H. Gilbert, Academic Press, New 
York, 1972. 

[8] A ShSiXl. Introducti OT^ tQ English 
Grammar.. James Sledd, Scott, Foresman and 
Company, Chicago, 1959. 

Figure Current G«ogr»phic»l/Dial*ct Distribation of  Speakers 

AREA» AREA NAME NMALES NFEMALES TOTAL 
1 New England 6 <60S) 4 (40!5) 10 ( 4«) 
2 Northern 25 (64!« 14 (36R) 39 (17Ü) 
3 North Midland 29 (76S) 9 (24«) 38 (178) 
4 South Midland 34 (67») 17 (33Ü) 51 (23!?) 
5 Southern 25 (63S) 15 (38«) 40 (18!?) 
6 New York City 4 (57») 3 (43«) 7 ( 3!?) 
7 Western 23 (77») 7 (.23%) 30 (13Ü) 
8 Army Drat 5 (66«) 4 (44Ä) 9 ( 4!» 

TOTAL: 151 73 224 
(67») (33«) 

Table 3. Breakdown of Subjects (2/18/86) 
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SPEECH DATABASE DEVELOPMENT: 
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ABSTRACT 
The need for a comprehensive, standardized speech 

database is threefold: first, to acquire acoustic-phonetic 
knowledge for phonetic recognition; second, to provide 
speech for training recognizers; and third, to provide a 
common test base for the evaluation of recognizers. There 
are many factors to consider in corpus design, making it 
impossible to provide a complete database for all poten- 
tial users. It is possible, however, to provide an acceptable 
database that can be extended to meet future needs. Af- 
ter much discussion among several sites, a consensus was 
reached that the initial acoustic-phonetic corpus should 
consist ot calibration sentences, a set of phonetically com- 
pact sentences, and a large number of randomly selected 
sentences to provide contextual variation. The database 
design has been a joint effort including MIT, SRI, and TI. 
This paper describes MIT's role in corpus development 
and analyzes of the phonetic coverage of the complete 
database. We also include a description of the phonetic 
transcription and alignment procedure. 

INTRODUCTION 
The development of a common speech database is of 

primary importance for continuous speech recognition ef- 
forts. Such a database is needed in order to acquire acoustic- 
phonetic knowledge, develop acoustic-phonetic classifica- 
tion algorithms, and train and evaluate speech recogniz- 
ers. The acoustic realization of phonetic segments results 
from a multitude of factors, including the canonical char- 
acteristics of the phoneme, contextual dependencies, and 
syntactic and extralinguistic factors. A large database will 
make it possible to examine in detail many of these fac- 
tors, with the hope of eventually understanding acoustic 
variability well enough to design robust speech recogniz- 
ers. A complete database should include different styles 
of speech, such as isolated words, sentences and para- 
graphs read aloud, and conversational speech. The speech 
samples should be gathered from many rp^akers (at least 
several hundred) of varying ages, both male auü female, 

'This research was supported by DARPA under c.ontratt N00039-85- 
C-0341, monitored through Naval Electronic Systems Oommand. 

with a good representation of the major regional dialects 
of American English. 

DESIGN CONSIDERATIONS 
There are many factors to consider in designing a large 

corpus for speech analysis. Unfortunately, some of the 
goals are limited by practical considerations. Ideally we 
would like to include multiple samples of all phonemes in 
all contexts, a goal that is clearly impractical for a man- 
ageable database. 

At the last DARPA review meeting it was decided vnat 
an initial acoustic-phonetic database would be designed 
to have good phonetic coverage of American English. It 
was agreed that the initial acoustic-phonetic corpus wculd 
include calibration sentences (spoken by every talker), a 
small set of phonetically compact sentences (each spoken 
by several talkers) and a large number of sentences (each 
to be spoken by a single talker). This combination was 
chosen to balance the conflicting desires for compact pho- 
netic coverage, contextual diversity, and speaker variabil- 
ity. Another requirement of the corpus was that the sen- 
tences should be reasonably short and easy to say. 

The database design is a joint effort between MIT, 
SRI, and Tl. Tue speaker calibration senfence«, provided 
by SRI, were designed to incorporate phonemes in con- 
texts where significant dialectical differences are antici- 
pated. They will be spoken by all talkers. The second 
set of sentences, the phonetically compact sentences, was 
hand-designed by MIT with emphasis on as complete a 
coverage of phonetic pairs as is practical. Bach of these 
sentences will be spoken by several talkers, in order to pro- 
vide a feeling for speaker variation. Since it is extremely 
time-consuming and difficult to create sentences that are 
both phonetically compact and complete, a third set of 
randomly selected sentences, chosen by TI, provides alter- 
nate contexts and multiple occurrences of the same pho- 
netic sequence in different word sequences. 

A breakdown of the actual sentence corpus is shown 
in Table 1. This arrangement was chosen to balance the 
conflicting desires for capturing inter-speaker variability 
and providing contextual diversity. Since the calibi ition 
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No. Talkers No. Sentences Total 
Calibration (SRI) 
Compact (MIT) 
Random (TI) 

640 
7 
1 

2 
450 

1890 

1280 
3150 
1890 

Total — — 6320 

Table 1; Breakdown of Frequencies of Occurrence of Sentences 
in Corpus 

sentencea are spoken by all of the speakers, they should 
be useful for defining dialectical differences. For multiple 
instances of the exact same phonetic environments, but 
with a much richer acoustic-phonetic content than in the 
calibration sentences, the MIT set would be appropriate. 
The TI sentences, to be spoken by one talker per sentence, 
should provide data for phoneme sequences not covered by 
the MIT database. 

pus consisting of the combined MIT and TI sentences. 
This analysis does not include the calibration sentences 
as we consider their use to be of a different nature. 

POCKET HL MIT-450 APDB 
# sentences 720 450 5040 

# unique words 19,837 1894 1792 5107 
# words 19,837 5745 G403 41,161 
ave # words/sent 7.9 7.6 8.2 
min # words/sent 5 4 2 
max # words/sent 12 13 19 
ave # syls/word 1.38* 1.1 1.58 1.54 
ave # phones/word 3.34* 2.97 4.0 3.89 

* The ave # syls/word and ave # phones/word have been 
weighted by Brown Corpu8(l] word frequencies. 

Table 3: Dercrlption of Databases 

DESIGN OF THE COMPACT 
ACOUSTIC-PHONETIC SENTENCES 

A set of 450 sentences wss hand-designed at MIT, us- 
ing an iterative procedure, to be both compact and com- 
prehensive. We made no attempt to phonetically bal- 
ance the sentences, We used A Lexis and the Merriam- 
Webster Pocket Dictionary (Pocket) to interactively create 
sentences and analyze the resulting corpus. We began with 
the "summer" corpus created for the MIT speech spectro- 
gram reading course to include basic phonetic coverage 
and interesting phonetic environments. We initially aug- 
mented these sentences by looking at pairs of phonemes, 
trying to have at least one occurrence of each phoneme 
pair sequence. ALexis was used to search the Pocket dic- 
tionary for words having sequences that were not repre- 
sented and for words beginning or ending with a specific 
phoneme. We then created sentences using the new words 
and added them to the corpus. Certain difficult sequences 
were emphasized, such as vowel-vowel and stop-stop se- 
quences. Some phoneme pairs are impossible; others are 
extremely rare and occur only across word boundaries. 
For example, /w/ and /y/ never close a syllable, except 
as an off-glide to a vowel, so many /w/-phoueme pairs are 
impossible. After filling some of the gaps in coverage, we 
reanalyzed the sentences with regard to phoneme pair cov- 
erage, consonant sequence coverage, and the potential for 
applying phonological rules both within words and across 
word boundaries. In a final pass through the sentence set, 
we modified and enriched sentences where simple substi- 
tutions could introduce variety or generate an instance of 
a rare phoneme pair. 

ANALYSIS OF PHONETIC 
COVERAGE 

This section discusses the phonetic coverageof the com- 
pact sentence set developed at MIT and the resulting cor- 

Table 2 compares some of the distributional properties 
of the Pocket Lexicon (Pocket), the Harvard Li=» (HL)[2], 
the MIT-selected sentences (MIT-450), and the Acoustic- 
Phonotic Database selected sentences (APDB). The APDB 
includes seven copies of each MIT-450 sentence, to account 
for the number of talkers per sentence, and a single copy of 
each randomly selected sentence (TI-1890). Since we were 
given only the orthographies for the TI-1890 sentences, we 
generated phonemic transcriptions by dictionary lookup, 
by rule-based expansion of the dictionary entries, and, as 
a last resort, by a text-to-speech synthesiser. We expect 
that there are pronunciation variations between the dictio- 
nary and the iext-to-speech synthesizer, particularly with 
respect to vowel color. There may also be some pronun- 
ciation errors, but we think these will be statistically in- 
significant. 

The proportion of unique words relative to the total 
number of words is substantially larger in the MIT-450 
than the APDB, probably due to the selection procedure. 
We tried to use new words in sentences and to avoid dupli- 
cation when at all possible. Roughly 50% of the MIT-450 
words are unique, as compared to only 25% of the APDB 
words. The TI-1890 sentences are, on the average, slightly 
longer than those in the MIT-450. The 10 most frequently 
occurring words for all of the corpora are function words or 
pronouns. In both the MIT-450 and the APDB corpora, 
the most common word is "the," accounting for roughly 
7%of all words. 

The average numbers of syllables and phones per word 
are longer for the MIT-450 aud the APDB than for the 
HL. This is presumably due to the higher percentage of 
polysyllabic words. 

Figure 1 shows the distribution of the number of sylla- 
bles per word for the two corpora. The distributions are 
quite similar, with the majority of the words being mono- 
or bi-syllabic. The MIT-450 corpus has a slightly higher 
percentage of polysyllabic words than does the combined 
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Figure 1: Histograms of the number of syllables per word. 

corpus. We specifically tried to include polysyllabic words 
in the sentences, since these are likely to be spoken with 
greater variability. 

Distributions of the number of phonemes per word are 
shown in Figure 2. The 10 most common phonemes and 
their frequency of occurrence are given in Figure 3. 

Table 3 shows the distribution of within-word conso- 
nant sequences for the four databases. The MIT-4S0 sen- 
tence set covers most of the consonant sequences occurring 
within words. The APDB h»a more complete coverage, 
particularly for the word-final and word-medial sequences. 
We examined a list of all of the word-initial and word-final 
clusters in the sentence list, and compared these with the 
occurrences in Pocket. We verified that essentially every 
initial cluster that occurred more than once in the Pocket 
lexicon was included at least once in the APDB, and that 
most of the final „lusters were covered. Often, if a word- 
final cluster did not occur in word-final position in the 
APDB, the sequence did occur within a word or acro.is 
a word boundary. Generally, the sequences occurring in 
Pocket that are not covered by APDB are from borrowed 
words such "moire" and "svelte." 

The APDB includes many word-final consonant sequen- 

2J45S7 189       10 

33.7 APDB 

16.0 

±0    3,5 

204567        169       10 

Figure 2: Histograms of the number of phonemes per word. 

APDB 

t      n      »      r      s      i      d      I      I'     is 

Figure 3: Histograms of the 10 most common phonemes. 

POCKET |   HL| MIT-450 APDB 
# uaique words 19,837 1894 1792 6103 
#WI 75 59 64 68 
#WF 129 105 102 146 
#WM 608 123 228 388 
# boundaries 4305 2953 36,121 
#WB 976 805 1639| 

Table 3: Distribution of Consonant Sequences 

ces that were not present in MIT-450. In fact, there are 
more word-final consonant sequences in the APDB than 
actually occur in Pocket. The reason is that the Pocket 
lexicon does not include suffixes. 

A more detailed phonetic analysis of all phoneme pairs 
is included in Appendix 1 in tabular form. The tables are 
broken down into phoneme subsets, and data are included 
for both the MIT-450 and the APDB. Some of the gaps in 
the MIT-450 table have been filled in by sentences in the 
TI-1890 corpus (e.g., the syllabic /I/ column of the vowel- 
sonorant pairs table and the /y/ column of the vowel- 
sonorant pairs table). Note also that some gaps occur in 
both tables. Such gaps are expected, since some phoneme 
sequences are impossible or quite rare. For example, the 
lax vowels (excluding schwa) are never found in syllable- 
final position in English. As a consequence, table entries 
requiring lax vowels as the first member of a pair have 
many gaps (see for example, the vowel-vowel entries in 
the pair tables.) 

Fipire 4 compares histograms of the sentence types for 
the MIT-450 and the APDB. Simple sentences (Simple S.) 
and questions (Simple Q.) have no major syntactic mark- 
ers. Complex sentences (Complex S.) and questions (Com- 
plex Q.) are expected to have a major syntactic boundary 
when read. As can be seen, the APDB has a wider vari- 
ety of sentence types, with 75% being simple declarative 
sentences. In the MIT-450, almost 85% of the sentences 
are of the simple declarative form. Questions form about 
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Simpl« S, Con '    .. Slmpli Q. Comp, Q. 

Figure 4: Histogram of sentence types. 

1056 of both corpora. 
Figure 5 »hows counts of environments where major 

phonological rules may apply. We chose to gather infor- 
mation on the following possibilities: 

- gemination (GEM) , 
- vowel-vowel sequences (WS) 

- vowel-schwa sequences (VSS) 
- schwa-vowel sequences (SVS) 
- flapping of /t/./d/, and /n/ (FLAP) 
• homorganic stop insertion (HSI) 
- schwa devoicing (S-DVC) 
- fricative devoicing (F-DVC) 
- /s/-/i/ and lil-llj palatalization (PAL) 
- y-palatalisation: /dy/-»/)7 (DY-Jh) 
- y-palalalization: /ty/-»/8/ (TY-Ch) 
- y-palatalization: /sy/-/?/ (SY-Sh) 

The histograms show that both corpora have many po- 
tential environments for flapping and homorganic stop in- 
sertion. The vowel-vowel environments are also well cov- 
ered. The analysis for phonological rule application is diffi- 
cult, because of the difficulties in predicting what different 
speakers will say. 

RECORDING, LABELING, AND 
ALIGNMENT 

The recording of the sentences is currently under way at 
TI. Speech is recorded digitally at 20 kHz, simultaneously 
on a pressure-sensitive microphone and on a Sennheiser 
close-talking microphone. Digital tapes are shipped to 
NBS, where they are filtered and downsampled to 16 kHz. 
The «sampled tapes are then shipped to MIT wher« the 
orthographic and phonetic transcriptions are generated. 

Transcriptions are generated using the Spin facility, 
in conjunction with the automatic alignment system pro- 
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Figure 6: Histogram for potential application of phonological rules. 
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Figure 6: Phones used for labeling. 

vided by Leung [3].   The tranBcription process involves 
three steps: 

1. A "Phonetic Sequence," which consists of a list of 
he phones of the utterance in correct temporal order 

but with no boundaries marked in time, is entered. 

2. The utterance is run through an automatic system 
to generate an alignment for the sequence. 

3. The automatically generated alignment is hand- 
corrected. 

Only the data recorded through the pressure micro- 
phone are transcribed. Transcriptions for the close-talking 
version are generated by duplicating the results for the 
pressure microphone. 

The phones used in the labeling are shown in Figure 
6. In many cases, it is not possible to define a boundary 
between two phones, such as /or/, because features appro- 
priate for both phones often occur simultaneously in time. 
When no obvious positioning of the ooundary is apparent, 
arbitrary rules, such as an automatic 2/3:1/3 split, are in- 
voked. There are also some cases in which none of our 
standard phones are appropriate for a given portion of the 
speech, primarily because of severe coarticulation effects. 
In svch cases, the segment is labeled as the nearest phone 
equivalent, according to the transcriber's judgment. There 
are other difficult cases, such as syllable-initial /pi/, where 
the /I/ is devoiced at onset. Should the portion before 
voicing begins be thought of as part of the aspiration of 
the /p/, or as part of the /I/? We have decided, somewhat 
arbitrarily, to define the onset time of the phone following 
an unvoiced stop as coincident with the onset of voicing. 
These remarks serve simply as examples of some of the dif- 
ficulties that arise in transcribing continuous speech. We 
are mainly interested in using consistent methods of tran- 
scribing in situations where ambiguity exists. Currently 
the transcription rate is 100 sentences per week. 

dard for comparison exists. We have chosen to compare 
the phonetic coverage of the database to two well-known 
sources, the Merriam-Webster Pocket Dictionary of 1964 
and the Harvard List sentences. The dictionary does not 
reflect spoken English very well, and can only guide us 
in judging the possible phonemic sequences within words. 
The Harvard List sentences, while phonemically balanced, 
consist primarily of very simplistic sentences and monosyl- 
labic words. In addition, they are balanced for phoneme 
occurrences, whereas ws tried to account for occurrences 
of phoneme pairs. 

We believe that we have adequate coverage of most 
phonemes and phoneme pairs. In cases where the phoneme 
pairs are scarce, there are often other phoneme pairs that 
will provide similar information. For example, the class 
sequence [alveolar consonant] [back vowel] is more 
general than /t/ /o/, and has a higher frequency of occur- 
rence. 

We hope that the APDB database will provide guide- 
lines for the development of future databases. An analy- 
sis of the spoken corpus will enable us to judge our pho- 
netic analysis procedure. In particular, we will be able 
to evaluate the relationship between our phonological rule 
predictions and the frequency with which a phonological 
modification actually occurred. 
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SUMMARY 
We have described various camponents of the prelimi- 

nary acoustic-phonetic database and discussed some of the 
issuej in its design. Evaluating the phonetic coverage of 
the database is difficult primarily because no 
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MIT'S LISP MACHINE-BASED WORKSTATIONS* 
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Hong C. Leung, Mark A. Randolph, Stephanie Seneff, 

John E. Unverferth, HI, Timothy Wilson, and Victor W. Zue 
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ABSTRACT 
In recent years, a number of useful speech- and language- 

related research tnols have been under development at MIT. 
These tools are aids for efficiently analyzing the acoustic charac- 
teristics of speech and the phonological properties of a language. 
They are playing a valuable role in c tr own research, as well as 
in research conducted elsewheie. This paper describes several 
of the systems being developed for use on our Lisp Machin<! 
workstations. 

INTRODUCTION 
In many areas of speech research, ranging from speech 

analysis to synthesis to recognition, researchers often fol- 
low a common set of analysis procedures. Specifically, 
there is frequently a need to: 

• record and digitize utterances, and define and com- 
pute various attributes of the speech signal, 

• display and perform interactive measurements of these 
attributes, 

• i btain statistical descriptions of the interrelation be- 
tween acoustic and phonetic events by examining a 
large speech database, 

• investigate the phonological properties of the lan- 
guage at the symbolic level, using large lexicons and/or 
printed text, and 

• interactively synthesize speech in order to study the 
relative merits of acouotic cues for phonetic con- 
trasts. 

The ability to perform these tasks with ease will greatly 
facilitate the gathering of information and the correspond- 
ing improvement of our speech knowledge. One of our 
ongoing activities at MIT is the development of a speech 
research tools to satisfy these needs. This facility has al- 
ready proven so useful that the necessary hardware and 
software have been acquired by many laboratories around 
the world. This paper is intended to provide a progress 

'This research was supported by DARPA under contrart N00039-85- 
C-OZOn. monitored through Naval Electronics Systems Command. 

report on the development of these tools. It begins with a 
discussion of hardware requirements and then focuses on 
software tools. 

HARDWARE REQUIREMENTS 
The speech workstation that we are refining centers 

around a Symbolics 3600 psries Lisp Machine with 4 Mbytes 
of main memory, a 474 Mbyte disk, a floating-point accel- 
erator, and a FEP or Generic-Bus Unibus interface. The 
Lisp Machine's high-resolution graphics console and mouse 
provide extremely convenient user interfaces. 

The Lisp Machine may be augmented with a Float- 
ing Point Systems FPS-100E or FPS-5100 array processor 
for speed-up in numerical computations, and with a Digi- 
tal Sound Corporation DSC-200/240 A/D and D/A con- 
verter for data input/output. The workstation also has 
a shared Versatec V-80 electrostatic printer/plotter, and 
assorted audio equipment such as a microphone, a set of 
headphones, and a tape recorder. The Lisp Machine work- 
stations are connected to one another and to central file 
servers via a packet-switched local area network. 

SOFTWARE SYSTEMS 
Several interactive speech research tools are under de- 

velopment on the Lisp Machine workstation. In this sec- 
tion we will describe four such systems: Spire, Search, 
ALexiS, and Synth. 

Spire 
Spire (Speech and Phonetics Interactive Research En- 

vironment) is a software package that enables users to dig- 
itize, transcribe, process, and examine speech signals. A 
variety of different computations can be performed on the 
signal, and the results can be conveniently displayed and 
measured. 

5pire organizes an utterance as a collection of attributes. 
The attributes may be either symbolic (e.g., phonetic tran- 
scription) or numeric (e.g., RMS amplitude). Some of the 
attributes are one-dimensional (e.g., speech waveform), 
while others are multidimeasional (e.g., a series of short- 
time spectra). Spire has knowledge of the properties and 
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parameters of the attributes. As a result it is convenient 
to redefine parameter values (such as LPC order) and to 
define an attribute that depends upon another attribute. 

Displays in 5pire are organized in the form of lay- 
outs. The recording and transcription layouts are pro- 
vided by 5pire, since these are almost always needed by 
users. Other frequently used layouts can also be pre- 
defined. Many of the commands in i?ptre are given with 
the hand-held mouse pointer. The mouse can be used 
to configure a layout, play a section of the utterance, edit 
waveforms, examine data values, alter display options, and 
perform other functions. 

Spire has been designed with two general goals in mind. 
First, it is intended to provide an extremely interactive en- 
vironment and a basic set of capabilities such that speech 
scientists, even those with little or no programming experi- 
ence, are able to collect and analyze speech data. Second, 
Spire is designed for easy customizing: users can readily 
add new attributes to suit their research needs. Currently 
the core of 5ptre defines default computations for approx- 
imately 40 attributes of the speech signal, whereas a cus- 
tomized version can define any number of attributes. Some 
of the customized 5p«r« systems in our research group have 
as many as 300 attributes. The remainder of this section 
gives some examples of the operation and capabilities of 
Spire. For a detailed description of 5pire, see Cyphers [2]. 

Collecting Speech Speech can be sampled at any 
rate up to 75 kHz, with appropriate anti-aliasing filters 
selected by the user. Up to 60 seconds of speech (the 
maximum is controlled by a parameter) can be digitized 
at a time. Currently the speech samples are transferred to 
virtual memory. In the near future, speech will be trans- 
ferred directly to disk so as to permit the digitization of 
much longer samples of speech. An automatic end-point 
detector attempts to locate each utterance. The user can 
listen to the located utterance, modify the endpoiuts, and 
accept the utterance into the database, all with several 
clicks of a mouse button. 

Information about the talker, sampling rate, file name, 
and orthographic transcription can be changed easily with 
a click of the mouse. Alternatively, an agenda file can ba 
set up to sequentially change these parameters automati- 
cally. This latter option is particularly useful for bulk data 
input when a list of the recorded utterances already exists 
on-line. 

Signal Processing Since most signal processing is 
computationally expensive, 5pire provides mechanisms for 
reducing unneceEsary processing. One way this is done is 
by ensuring that nothing is computed until it is needed. 
Once something has been computed, 5p«r« remembers the 
value for the duration of the user's session, and will reuse 
that value if it is needed again, unless the user specifi- 
cally forces it to be recomputed. All of this happens in a 
way that is virtually transparent to the user.  Whenever 

the amount of overhead involved in data transfer is justi- 
fied, computations are done on the FPS. Most of the basic 
analysis procedures are also written to run (albeit more 
slowly) in Lisp when the machine is without an FPS. 

Attributes may also be saved in parameter files and 
reloaded during future sessions. When there are multi- 
ple parameter files associated with a particular utterance, 
Spt're reassocistes the parameters with the appropriate ut- 
terance as they are loaded. Several attributes can be pre- 
compute«' on a large database (which may take many hours 
or days), and retrieved later as they are needed. 

Look ing at Data The Lisp Machine provides a high- 
resolution monitor that is useful for displaying data. A 
layout is a collection of displays of information that oc- 
cupy an entire screen. Associated with each display are a 
number of overlays, which may be graphs, scales, or other 
attributes, such as a phonetic transcription overlaid on a 
spectrogram. 

5pire allows users to compose their own layouts for spe- 
cific research needs. Figure 1 shows an example of such 
a layout. The figure displays the wide-band spectrogram 
of the utterance, the zero-crossing rate, the original wave- 
form, the orthographic and phonetic transcriptions, the 
narrow-band spectrum, and the LPC spectrum. This lay- 
out illustrates some of the interactive features of Spire. 
First, the user has direct control over all relevant display 
parameters. Thus, for example, the zero-crossing rate is 
displayed on the same time scale as the wide-band spectro- 
gram. Second, all displays are time-synchronized. Moving 
a cursor in one display causes the other displays to change 
accordingly. Third, displays can be overlaid, and the dis- 
play parameters of the overlay can be changed as well. For 
example, the LPC spectrum, overlaid on the narrow-band 

Ht-5-'-M-fH 

Figure 1: A Spire layout. 
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Figure 3: A high-quality spectrogram produced by 5pire. 

spectrum, is distinguished from the latter by a difference 
in line thickness. 

Hard copies of displays can be obtained by a screen 
hardcopy command. In addition, a special higher-resolution 
hardcopy spectrogram format is available. Standard Lisp 
Machine hardcopy protocols are used, so the printer may 
be of any type. MIT has a Versatec V-80 printer/plotter 
with a resolution of 200 pixels per inch. Figure 2 is an 
example of a Versatec spectrogram. 

Labeling Data Spire provides a convenient mecha- 
nism for users to enter a.L. orthographic or phonetic tran- 
scription and time-align it with the speech waveform. The 
mouse is used to mark specific regions of the waveform 
and to associate each region with a label. An experienced 
acoustic phonetician can align a two-second utterance us- 
ing 5pire in about five minutes. 

While manual time-alignment using Spire is quite effi- 
cient, it still requires tL knowledge of a small group of ex- 
perts. As a result, the amount of data that can be collected 
and aligned is greatly limited. In addition, phonetic align- 
ment is often subjective, leading to inconsistencies among 
transcribers. The tedious nature of the task also tends 
to introduce human errors. We have recently extended 
Spire's basic capabilities by developing a semi automatic 
system to perform the time alignment. The results of our 
preliminary evaluation are encouraging. For a description 
of the alignment system, see Leung and Zue [4j and Leung 
[31. 

Search 
In the search for relationships between the acoustic 

properties of speech and the underlying linguistic forms, 
speech esearchers typically begin by examining a small 
number of utterances using tools such as Spire. Guided 
by their knowledge and intuition, they may propose an 
acoustic measurement that is potentially useful for identi- 
fying a particular phonetic event. Once such a hypothesis 
has been established, they must then apply the measure 
to a large body of data, either to validate assumptions de- 
rived from the limited data set, or simply to characterize 

the performance of the features. At this point, a relatively 
sophisticated battery of statistical techniques is most use- 
ful. 

Search (Structured Environment for Assimilating the 
Regularities in speeCH] is an interactive tool designed for 
exploratory analysis of speech data. Search consists of a 
set of statistical tools that operate on data generated by 
Spire. This software allows the user to gather statistics on 
thousands of tokens taken from hundreds of utterances. 
It has extensive graphics capabilities for displaying the 
data in various forms, including histograms, scatter-plots, 
and a bar-like display that allows users to view univariate 
distributions of data as a function of categorical variables 
(e.g., speaker sex or phonetic environment). Search also 
features a set of extensible data structures that form a 
convenient workbench for the design, implementation, and 
testing of various statistical algorithms. 

The basis of Search is a set of algorithms for automat- 
ically designing classification trees from a learning sam- 
ple. The primary method is the CART (Classification 
And Regression Trees] algorithm [1], a supervised clas- 
sification algorithm that generates a binary decision tree 
using a maximum-entropy reduction criterion. An alterna- 
tive method is an ISODATA cluster analysis routine that 
features a k-Means clustering algorithm. Both of these al- 
gorithms are optimization techniques that attempt to or- 
ganize speech knowledge automatically. They reflect our 
emerging philosophy that researchers should approach the 
speech analysis problem with as much intuition as they 
can develop, and then allow the data and statistics to fill 
in any gaps in knowledge. 

Search can also be used simply as a program for par- 
titioning the data in terms of a set of criteria, and then 
displaying the data in a variety of ways. Figure 3 compares 
the distribution of duration for voiced and voiceless frica- 
tives. The mean, the standard deviation, and the sample 
size for each class are indicated next to the bar-like dis- 
plays. The data confirm the fact that voiced fricatives 
are generally shorter than voiceless ones, although there 
is substantial overlap due to the phonetic environments 
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Figure 3: Duration distribution produced by Search. 
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Figure 4: Zero-crossing rate/energy scatter plot produced by 
Search. 

in which the fricatives appear. Figure 4 shows a scat- 
ter plot of zero-crossing rate versus total energy for the 
voiceless fricatives. We see that these two parameters are 
highly correlated; the strident fricatives /s/ and /i/ ap- 
pear mostly in the upper right quadrant, and weak frica- 
tives /f/ and /6/ appear mostly in the lower left quadrant. 

ALexiS 
A language is limited not only by the inventory of basic 

sound units, but also by the frequency of usage and the 
allowable combinations of these sounds. With the avail- 
ability of large and powerful computers, it '.* now possible 
to discover and quantify such distributional and sequential 
constraints using a large body of speech data. 

ALexiS is an interactive system that provides many 
options for studying and displaying the constraints of a 
lexicon. ALexiS enables users to determine the frequency 
with which sound patterns occur, to study the phonotac- 
tic constraints imposed by the language, and to test the 
effectiveness of phonetic and phonological rules. In addi- 
tion, users can define new operations and integrate them 
into the program. 

y4Z,«M.5 operates on a corpus consisting of a list of words 
or a set of sentences. Words in the lexicon are usually 
represented in terms of spelling, pronunciation (including 
syllable and stress markers), and other corpus-specific fea- 
tures such as the frequency count based on the Brown 
Corpus. User-specified constraints can be applied for each 
of these features, leading to a list of all words in the corpus 
matching the constraints. 

Once the lexicon is specified, ALexiS can analyze the 
corpus in a number of ways. For example, users can gen- 
erate a frequency distribution of words in the corpus in 
terms of the number of syllables, the stress patterns, or a 
particular sound pattern. As an example. Figure 5 shows 

Figure 5: Histogram of word length in phonemes produced by 
ALexiS. 

a histogram of the number of phonemes per word for the 
Merriam-Webster Pocket Dictionary. 

Synth 
Synth is the Klatt cascade/parallel speech synthesizer 

implemented as a Spire subsystem. Parameters that can 
be manipulated include fundamental frequency; formant 
frequencies, bandwidths, and amplitudes; amplitudes of 
voicing, frication, and aspiration; and frequencies and band- 
widths of nasal and glottal poles and zeros. 

The computations are done mainly in the FPS, and 
therefore the synthesis process is reasonably fast (approx- 
imately 15 times real time). The user interface is a special 
Spire layout, as shown in Figure 6. The user specifies time- 
value pairs for the parameter tracks, either with the mouse 
or from text. For example, to enter a track for Fj, the user 
selects Ft from the menu on the left, and a display of the 
three formant tracks appears.   The user can then enter 

a new track for F2 or modify the existing track. Default 
parameter track layouts satisfy most users' requirements; 
however, users are also free to design their own special- 
purpose layouts. Once a set of tracks has been completed, 
the user selects "Synthesize" on the synthesizer menu, and 
a speech waveform is generated from the track data. This 
waveform is now available on the Spire utterance list and 
can be treated like any other 5pfre utterance. Thus, for 
example, a wide-band spectrogram and LPG spectrum of 
the synthetic utterance can be displayed, along with the 
same attributes for a similar natural utterance. 

STATUS REPORT 
Spire 

Spire has been carefully evaluated and refined over the 
last several months. A number of improvements have been 
made to the system, including the following: 

• It is now possible to save computed parameters sepa- 
rately from permanent parameters such as the wave- 
form. This reduces the chance that "permanent data" 
will be accidentally destroyed (as has happened) and 
also reduces name conflicts among different users. 

• Each Unibus interface now has better support. The 
FEP interface code has been modified to make it 
more stable in shared Unibus environments (such 
as a Lisp Machine or a Vax). The G-Bus interface 
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Table 1: Timing Comparison for Lisp Machine with Different 
Configurations 

Figure 6: Typical Synthesiser Layout 

seems to transfer data twice as quickly as the FEP 
interface. 

• Utterances can now be played through the console 
when the Lisp Machine has audio capabilities, al- 
though the method used does not provide accurate 
reproduction. 

• Lisp-based FFT and LPC are now available. With 
the availability of these programs, it is now possible 
to run .Spire on a stand-alone Lisp machine with no 
array processor. 

• A simple waveform editor has been added. 

• The hand-alignment of transcriptions has been greatly 
simplified. 

• The user interface is more consistent, making it eas- 
ier for users to extend ^pire by adding commands. 
The same command processor used by the Lisp Ma- 
chine is now used by 5pir«. 

Another task we have completed is evaluation of the 
FPA. Although for straight signal processing the FPS is 
still much faster than any other alternative, an FPA does 
cut times roughly in half. Table 1 gives some illustra- 
tion of the relative timing for a Lisp Machine with dif- 
ferent configurations. The energy computation is based 
on the computation of the energy in the range from 0 to 
5,000 Hz, computed ouce every 5 ms. from speech sam- 
pled at 16,000 Hz, The spectrogram was computed from 
the speech waveform with a 383-Hz analysis rate. The 
numbers in Table 1 represent processing time (in seconds) 
per second of speech. 

Finally, two documentation efforts for 5pir« are under 
way. A user's guide to Spire, aimed at the beginning user, 
has been written and is currently being reviewed. The 
final version should be available within the next month. 

Configuration Energy Spectrogram 
LM alone 27.6 63.0 
LM + IFU 24.0 53.1 
LM + FPA 11.8 31.5 
LM + FPA + IFU 8.3 21.8 
LM + FPS 1.6 3.5 

A reference manual has also been prepared; a copy of this 
document, along with the source codes, is to be distributed 
with the current release of .Spire. 

Search 
Search has undergone extensive redevelopment in re- 

cent months. Although the exterior aspects of the pro- 
gram (i.e., the graphical displays and the user interface) 
have remained more or less unchanged, we have redesigned 
a major portion of the system internals, including a com- 
plete overhaul of basic data structures. In instituting these 
changes, we have made every effort to keep major differ- 
ences from affecting the user. For example, our basic data 
structure is the sample, which contains a collection of to- 
kens. Although the sample has been reimplemented, most 
previous code written to extract data from samples and to 
manipulate samples should still work. 

At present, the system is considered experimental and 
still somewhat fragile. We are now making Search available 
to other users in our own laboratory, so that we may get 
feedback and correct problems before beginning wider dis- 
tribution. We expect that in two to three months. Search 
will be ready for release to other sites. 

We are, however, only now starting to create docu- 
mentation for the software. As this is expected to be a 
somewhat lengthy process, it is likely that early releases 
of Search will not have accompanying documentation. 

ALexiS 
Although ALexiS is still in the developmental stage, 

it has been used for a number of tasks. In addition to 
use with Japanese lexicons and in teaching, it provided 
the framework for the design and analyms aids used in 
the acoustic-phonetic database project. These applica- 
tions helped test the design of ALexiS for extensibiDty and 
uncovered a number of weaknesses. 

In the near future these design flaws will be corrected 
and the implementation will continue. By using the pro- 
gram in its uncompleted state, we hope to provide a bet- 
ter, more flexible system while avoiding untested design 
hypotheses. 

Synth 
The Synth system is nearing its final stage of develop- 

ment. It is currently being evaluated by a number of users 
at our laboratory and should be ready for release by mid- 
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to late spring. Documentation and a user's guide are be- 
ing developed concurrently, but may not be available at 
the time of the initial release. However, user interaction 
with the system is essentially the same as user interaction 
with Spue and should require little new instruction. 

While Synth is limited at present to systems whose 
hardware includes an FPS, future revisions should remove 
this constraint. A further change in Synth that is now 
under discussion is improvement of the system's modular- 
ity, i.e., allowing user-designed modules to replace those 
provided. 

Leung, H. C, and V. W. Zue, "A Procedure for Auto- 
matic Alignment of Phonetic Transcription with Contum- 
ou» Speech," Proc. ICASSP Sf- IEEE Internationc! Con- 
ference on Acouitici, Speech, and Signal Proeeiiing, 1984, 
pp. 2.7.1-2.7.4. 

SUMMARY 
This paper describes a set of research tools being de- 

veloped in the Speech Group at MIT. Together these sys- 
tems provide a unified environment that enables speech 
scientists to move from one task to another. For exam- 
ple, users can explore the statistical properties of a large 
body of data using Search, and then directly enter Spirt 
to examine specific outlier tokens. An integral part of the 
system is the maintenance of a large database of more 
than three hours of digitized speech. Most of the utter- 
ances have been transcribed, and the transcriptions have 
been time-aligned with the corresponding waveform. 

The development of these research tools is an ongo- 
ing process. Our goal is to create a research environment 
that is easy to use, thereby increasing the amount of data 

that speech scientists can examine and, as a consequence, 
extending our knowledge about speech. The Lisp Ma- 
chine workstation and related software systems are playing 
an important role in advancing our understanding of the 
acoustic properties of speech sounds. 

While these systems are still being actively improved, 
and not all the software is widely available, members of 
the Speech Subsystem of the DARPA Strategic Comput- 
ing Program may contact us directly to obtain further in- 
formation on acquiring the software. 
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RECOGNITION IN NOISE, AND THE EFFECTS OF ADAPTATION ON PERFORMANCE 

Janet M, Ba^er and David F. Pinto 

Dragon S'»tt«s, Inc. 
Chapel Bridge Park 
55 Chapel Street 

Newton, Massachusetts, 0215B, U.S.A. 

The seven American English-speaking subjects (4 
male, 3 female) included in this database, exhibit 
diverse voice qualities, dialects, speech 
recognition familiarity, etc. A total of over 20,000 

training and test utterances were collected for this 
database. 

The results of this series of experiments 
demonstrates the effects on recognition performance 

of different training sets on the same test sets, 

and the effects of adaptation (in a supervised 
learning mode), both for speaker-dependent and 
cross-speaker modes. For all speakers and both 

vocabularies, the best speaker-dependent recognition 

is consistently obtained when training and test 
materials are recorded at the same noise level. 

Much of the deterioration of performance across 
different training and test conditions can be 

reduced by emploving supervised adaptation during 
the course of the recognition tests themselves, with 

each new test token subsequently being used as 
additional training to adapt its model. 

Empirical data denonstrates the high variabilitv of 
Performance on cross-speaker rtcognition where a 

given speaker's test sets are recognized using a 
different speaker's training data. More interesting, 

though, is that the cross-speaker performance 

obtained by using on-line supervised adaptation 

during recognition tests, can readilv approach or 

equal eure speaker-dependent performance, after 
adaptation on only a very few tokens.   Furthermore, 

preliminary evidence indicates that speaker- 

dependent patterns generated for a given speaker, 
and then adapted with a comparable amount of speech 

training data from another speairer, may continue to 

be used to achieve good Performance on the initial 

speaker, 

In short, the experiments presented here demonstrate 
the effects of alternative training protocols on 

recognition performance under operationally-oriented 

conditions. The effects on performance of even 
severe deleterious training-test mismatches due to 

noise, microphones, and speakers may be 

substantially reduced by applying supervised 
automatic adaptation techniques during recognition. 

This paper further shows that using even quite 

limited amounts of speaker-specific information for 
adapting pre-existing patterns derived from other 

speakers, can provide striking performance 

improvements. These experiments indicate that 
speaker-independent or cross-speaker systems without 
adaptation, are likelv to perform mucn more poorly 

than similar systems capable of capturing new speech 

data and automatically adapting to new speakers as 
they use the system. As with other endeavors, 

learning from experience improves future performance 

expectations' 

BACKGROUND 

There  are two major types  of  speech  recognition 

tests;  1)  benchmark  tests  (often with verv quiet 

sound booth recordings),  and  2)  operational  or 

applications-oriented tests designed to understand 
and  predict performance  under  actual  field  use. 

Although  these may  in part  overlap,  both  have 

distinctive roles and values associated with  them. 

Benchmark  tests  typically   assess   a  well- 
circumscribed  capability that is  acknowledged to 
i-idicatt certain basic  technology  strengths and 
weaknesses.   Furthermor?, these tests often  derive 

additional value  because  the«  lend  themselves to 
appropriate  comparisons  of  alternative  technical 

approaches and implementations. 

The 20-word discrete utterance Texas Instruments 
database Clj is an example of just such a benchmark 
test. Benchmark tests also may push svsteu limits 
along certain d-tensions somewhat further than mav 
be encountered under normal operational use. For 
speech rscoani-e-s. this may require the 
discrimination of r'igh 1 v confusable or «inita 11 y 
distinctive acoustic cues, without the conte 'tua 1 or 
other information  usually  available  in  a typical 
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application, 

Applications-o 

test specific 
operational' /, 

s e r i p 111 n 19 • d 
representative 

applications 

software. Thre 
of the two srr 

obtained  und 

severelv noisv 

to speal: utter 
a  niDnitor, 

participate in 
with regard 
recognizers, 

cooperative, 
such as cognit 

physiological 

diff iculties, 
For all si« of 
data were rec 

test sessions 
on different d 

nenteri databases, on the other  hard, 

conditions anticipated or  encountered 

For  this  study,   two  different 
"Menu" and "DOS", were selected as 

of different tvpical end-user 

for voice command/control of popular 

e databases were constructed for each 

ipts with training and test utterances 

er  moderatelv  quiet  to much  more 

conditions. Speakers were instructed 
ances as soon as they were prompted on 
Although  the  7  speakers  chosen to 

these databases varied signiricantlv 

to their previous experience with 

all participants were judged 
The effects of additional variables 

ive loading, explicit psychological or 

stress, speech pathologie;, language 

etc. were not assessed by these tests. 

these databases, training and test 
orded at different sessions: multiple 

at any given noise level were recorded 

avs. 

Both the Menu and DOS training 
recorded for all speakers in 

i55dB and 65dBl with an inesp 
recorder hand-held microphone, 

more severe noise (85dB) with 
cancelling headset microphone, 
generated by exposing the s 
levels of competing bsckgroun 

noise. At audible levels, sue 
be far more problematic and ch 
speech recognizers, than "whi 

steady state noise types at hi 

and test scripts were 

moderate ambient noise 
ensive cassettes tape- 

as well as in much 
a high quality noise- 

The noise itself was 

peakers to specified 
d trade show and other 
h competing speech can 

alienging to automatic 
te", "pipi'", or other 

gher levels. 

Digital Audio Processor PCM-F1. was sntered througii 

a Radio Shack microphone 133-10400 at le.els s< 55 
and 63dB, and a Shure 3M-12A microphone at 85dB. An 
Apple HE computer was useo to prompt the speakers 

and control a Panasonic NV82Ö0 Video Cassette 

Recorder, for recording the speech data on Maxwell 

Epitaxial HGX video tape. Testing was also performed 

on the Texas Instruments isolated word database by 

converting analog tapes to digital format by playing 
the tapes on a Tandberg Two-track Series 15 reel-to- 
reel tape recorder to the Sonv PCM-F1. The 

recognition tests were performed by playing the 
video cassettes on the Panasonic VCR through the 
Sony PCM-F1 to an IBM PC/AT with the IBM PC Voice 

Communications Option board and software installed. 

The digital processor and board were connected 

through an attenuator. Attenuation settings were 

adjusted once separately for the T.I. database and 
the Radio Shock and Shure microphones, so that the 
amplitude coming in to the IBM Voice Communications 
Option card would be comparable to the amplitude 

produced bv a live speaker. 

Once sessions were recorded on tape, fhe IBM Voice 
Tool Kit was used to digitize these results at BkHz 

onto the AT's hard disk, so that recognition tests 

could be run quickly, accurately, and reproducibly . 

Digitizations were also stored on high density 

floppy disks. 

Competing speech at progressively higher levels has 
the potential for progressively greater 

interference, especially as the signal-to-noise 
ratios degrade. Human speakers trying to communicate 

verbally under noisy conditions, routinely modify 
their speech to help ensure its intelligibility. 

Spsakino louder, more slowlv, and articulating more 
carefully, are well-known con-pensatory behaviors. 

For superior recognition performance, the speech 
data obtained during training should be sin.ilar to 

that anticipated under normal use [2,31. An 

appreciation of this phenomenology explains whv 

gross mismatches of training and test conditions, or 

"additive-noise test simulations" (using "quiet" 
speech training for recognizing test data 

artificiallv mixed with additive noise) in the 
absence of adaptive training mechanisms, almost 

invarieblv lead to suboptimal rscogmtion 
performance bearing little relevance to "state-of- 

the-art" applications. The negative effects of 
levtre training-test mismatches (across verv 
different noise levels, microphones, and speakers) 
are shown bv this series of experiments, as are the 

substantial improvements that can be realized 
through on-line adaptation even under such 

undesirable conditions. 

RECORDING/RECOGNITION EQUIPMENT 

For the Menu and DOS databases, live input to a Sony 

SCRIPTS 

The Menu and DOS scripts represent two vocabularies 

typical of those used for actual command/control and 

data entry applications. The DOS vocabularv contains 

utterances of varying lengths; e.g. "tree" and 
"make_directorv". Some explicitly confusable word 
pain and multiples have been deliberately included, 
such as 1)"directory", "»ike.directory", 
" change_di rectory" , and "remove directorv", and 

2)"copy", "compare", "disk_copy", "disk compare", 
"checkdisk",  etc. In  all  of  these,  significant 
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portions of coipeting function names are identical, 
thereb*' increasing thPir potential for acoustic 

confusabi1itv with each other. The potential for 
recognition errors is enhanced in the presence of 
noise, especially speech noise, which can best mast! 

the remaining acoustically distinctive portions. On 
the other hand, to comply with high performance 
application design principles, the highly confusable 

rhyming letter names of the natural alphabet were 
replaced by the corresponding international 

coumunications alphabet designations 

("alpha",'bravo",.,.,"zulu") in tht  Menu script. 

/control  words 

enter, help. 

through nine, 

ers (8 males, 8 

For each of 

provided (3200 

ts of 16 tokens 
of  5120 test 

vironment  was 
the   speakers 
variations in 
preparation of 

silence were 

ances creating 

The TI script contains  10 coinmand 

(yes, no, erase, rubout,  repeat,  go 

stop, start) and the 10 digits zero 
spoken in a sound booth,  by lb  speak 
females) during 8 recording sessions 

the 20 words, 10 training tokens are 
training tokens); the test set consis 

for each of the 20 words for a total 

tokens.  Although the recording en 
exceptionally  quiet,  some  of 
deliberately  introduced significant 

pronunciations and prosodies. In the 
this data,  splices  of  digital 
interspersed between the speech utter 

occasional soft clicks. 

RECORDING PROCEDURE 

Subjects sat in a typical, acoustically untreated 

office, 2 feet from the noise source, and watched an 
ßpple IIE monitor for prompts. The noise speaker 

itself faced the wall at a distance of 7.5 inches to 
reflect the noise from multiple room surfaces. 

Prompts were spaced at 2 second intervals. After 

each Sixth prompt, the system paused to allow the 
user to re-record the last sis utterances (to 
correct speaking  errors)  or  to  continue.   Each 

session tvpicallv consisted of six recordings, for 
the 2 scripts at each of the 3 noise levels. At the 

35dB level, most subjects chose to wear simple 

moldable was ear plugs. Although discomfort due to 

the high noise wss somewhat alleviated thereby, the 
perceived noise level, even with ear plugs, was 
significantly higher than at 65dB, without ear 
plugs. All subjects participated  in  fro*  three to 

six separate recording sessions, varying between 

morning and afternoon sessions on different days. 
Two of the subjects BP (»ale1 and HM (female) did 

not participate in the 85 dB recording sessions, 

SUBJECTS 

Participants included 4 males and 3 females ranging 

in age from 25 to 42 years, with dialectical 
characteristics ranging from east coast to midwest. 
These individuals were specifically chosen for their 

diversity of speaking styles, rates, voice 
qualities, and their prior experience with speech 

recognizers (2 none, 2 some, 3 extensive), 

BASE PERFORMANCE RESULTS 

Dragon Systems discrete recognition implemented on 

the IBM Voice Communications Option board and 

software, has been tested on 3 scripts, under widely 

variant noise conditions. These databases were 
selected and designed to provide coiaplementary 
information on multiple aspects of recognition 

relevant to a range of benchmark and operationally 

oriented conditions. The following table summariies 

these results. 

SUMMARY TABLE 

TABLE I 
DRAGON RECOGNITION RESULTS (t CORRECT) 

MEAN SPEAKER 
MEDIAN SPEAKER 

T 
T 
.1, 
I, 

99,5 
loo.o 

*     *     * * * * * 
MEAN SPEAKER 
DOS 
MENU 

SSDB 
99,4 
99,1 

65DB 
99,6 
99,1 

65DB 
99,4 
99,2 

•     *     « • * * * 
MEDIAN SPEAKER 
DOS 
MENU 

99,6 
99,5 

99.6 
99,7 

100,0 
100,0 

To obtain these results, a total of 10,302 training 

utterances and 18,075 test utterances were 
processed. Both median and mean performance results 

are provided here for comparison. From a 

statistical point of view, the results of all these 

tests are so close to 100'/., that statistically 
significant differences between the individual tests 
cannot be reliably observed [51. Several interesting 

data tendencies oear discussion, however. 

On the T.I. 5120 token test database, 25 errors were 

observed; il of the 25 errors were confusions 
between "no" and "go". On 8 of the speakers, no 

errors were observed. The observed er-ors were 
divided equally between 4 men (13 errors) and 4 
women '12 errors). 

Test results en the Il-nord DOS scriot were 
consistently higher over the 55dB, 65dB, and 65dB 
ambient noise levels than the results obtained on 
the 24-word Menu script. Although the DOS script has 
a higher branching factor, it has only 4 

sonosvll«biC words as compared to 8 in the Menu 
script, and nay be easier to recognne. 

One also notes th»t for both of these scripts, the 

observed performance actuallv improves at the higher 
background noise levels' An appreciation of human 

coüffiunicatory   behavior   mav    exolain   this 
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counter iruui U ve result. When people coimnunicste 

verbally in noisy environments, they can inprove the 
intelligibility of their speech by speaking more 

loudly and slowly, as we!1 as articulating »ore 

carefully. Given an adequate signal-to-noise ratio, 
the utterances spoken by people eiaploying such 

coitipensatory behaviors, may Hell contain more 
acoustic information, and therefore be easier to 

recognize for both human listeners as well as speech 
recogniters, as compared to more casual speech 
spoken in quieter environments. 

SUBOPTlHflL TRAINING 

The results reported above, indicate recognition 
results when both the training data and the test 

data are collected under similar conditions. The 

question is frequently raised re: the performance 
cost of using recognition under conditions not 
actually represented in the training data. The DOS 

and Menu databases collected here. reflect 

separately, in their training and test sets, 3 

distinttive noise levels and 2 microphones with 

very different design characteristics. These 
provide an opportumtv for addressing sucn issues. 

The second question is, despite severe deleterious 

effects resulting from inadequate/inappropriate 
training, what can be done to improve recognition 
per formance. 
Response to Question 1; The following tables list 
the mean percentage of errors observed speaker- 

dependently, with each training set (at 55, 65, and 

85 dE noise levels» tested against each test set 

(at 55, 65, and 85 dB noise levels), E« -1 table 

entry represents the results on »1 "^e collscted 

data, with 
set si:es ranoinci frc» 1608 to 2552 test tokens. 

TABLE 1] 

Mean Recognition Error rercentages 

Menu  (24 word."-) 
Ttst Noise;  5Mj 8MB BMj 

Training 
Noise: 

SSdB 
6SdB 
esdB 

.9     1.6     30.3 
1.7        .9     27.6 

18.7   22.6 .8 

DOS    (29   words) 
55dB     65dB     85dB 

.6 
1.2 

15.0 

.6       20.0 

.2       27.0 
17.6 .6 

is a Shure noise-cancelling headset mike). The worst 
results of all are obtained with training at 55 dp 

(Radio Shack, mike) and testing at 85 dB (Shure 

mike). 

sst» 

Shac 

oft       severe   degradations  occur  when  the 
ph-nes used in recording the  training and test 

are different designs (i.e.  one  is  the Radio 
omnidirectional hand-held mike, and  the other 

The  result»  of  running  «utomatir.  super 

adaptation  on-line,  during recognition,  are 
effective in reducing the percentage of e 

observed under  the 55 dB training/ 85 dB 

paradigm described above. The amount  of improv 
obviously  can  vary according  to • number 
criteria. The number of  additional  speech t 

adapted in, appears to steadily improve perfor 
for  the  5  speakers  represented  here, 

individual test sets provided a maximum of 6 
new speech tokens for adaptation. However, even 
estensive adaptation, resulting in major reduc 

in  the percentage  of  errors  observed, 
degradation in performance is quite marked, rel 

to properly matched training and test condi 

with the same microphone type and noise level. 
TABLE in 

55dB Training/SS'iB Test.   With and Without Adaptation 

MEAN   HECOCN1T1UN   EPBUfi   PERCENTAGES 

vi sed 

very 
rrors 

test 
ement 

of 
okens 

nance 
Their 

to 20 
with 

tion» 

the 

ati ve 
tions 

UUS tUMi 
1 «dajjt. Wltll w.o. tt 8Sdb/ 1 adapt. with w.o. tt 65dB/ 
tokens adapt. adapt. teat eSuli tokens adapt. aaapt. test 85dB| 

OP 1 3».7 49.4 o.o 6 48.6 0.0 
u V 8.0 13.S 0.0 9 23.1 0.0   1 
GL U 4.1 It.4 2.6 16 1.1 3.4 
AJ 16 i.S IB.7 0.0 19 26.6 0.0 
PD 20 .2 16.4 0.0 ■  20 S.I 0.0   | 

CRGSS-SFEAKER TESTING 

Another means of mismatching training and test 

conditions, is to recognize one speaker with models 
derived from another. As such, this is speaker- 

independent recognition, but there is no presumption 
that the initial models used for recoamtion, 
adequately represent any given, let alone broad, 
population of speakers. 

In this set of espenments, recognition tests will 

be run first without, and then with supervised 

adaptation. All training and test sets are those 
collected under the 55 dB conditions. It is well 
known that performance results on a speaker using 
models from (anJother speaker is) are likely to be 

highly variable. This is easily demonstrated. Less 

well appreciated is the non-commutabi1itv in 
nerformance of recoqnijing soeaker A with speaker 

B s models, as compared to recognning speaker B 

with speaker A's models. Examples are furnished in 
the following  table  (  Menu database  )  for male 
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speaktr 6L tested with another nale speaker BP, and 
then tested with a fenale speaker HM. Controls are 
provided by ^sting each of the speakers Hith their 
own mcdels, as noted, 

TABLE   IV 

55dB MEAN  RECOGNITION  ERRDR  PERCEWAGES 

MENU CROSS-SPEAKER SPEAKER- DEPENDENT 

(No adapt! tion) 
TEST 
SPEAKER 

ENROLLED             ERROR 
■SPEAKER               PERCENTAGE 

EIIRULLEP 
SPEAKER 

ERROH 
PEBCENW-E 

GL 
BP 
HM 
GL 

BP                            4.71 
GL                          17.4 
GL                         33.3 
HM                          15.8 

GL 
BP 
HM 

.3 
1.4 

.5 

1 

ADAPTING TO A NEW SPEAKER - QUICKLY 

With supervised adaptation, as previously described, 
each test token is first subjected to testing, and 
then it is used as a training token for increnental 
model updating. All test tokens are presented once 
and only once, whether or not they are subsequently 
used for model refinement. In running these 
esperiments, it quickly became apparent that even a 
small amount of adaptation rapidly improved 
recognition. Marked reduction« occurred in the 
number of observed errors despite the conservative 
weight accorded to additional incremental training 
tokens. Recall that the original speaker models were 
generated from 6 tokens, and that consequently the 
first new token from a different speaker would only 

be Id ed a weight of one seventh, the second 
token   »ight of one eighth, etc. 

The following table records for both the Menu and 
DOS databases, the number of observed errors after 
each new "run". A run contains 1 instance of each 
vocabulary word, with a run containing a total of 24 
utterances for the Menu vocabulary, and 29 
utterances for DOS. Note that for all of the nine 
cross-speaker tests noted here, recognition 
performance with adaptation appears effectively to 
have converged to typical speaker-dependent 
performance after 5 or fewer new tokens. Furthermore 
after onlv 1 new token is adapted in, the error rate 
(coipared to that obtained without adaptation) is 
halved; after the 2nd token is adapted in, the error 
rate is halved again1 

I ERRORS RECORDED ON A RUN-Dy-RUN BASIS FOR 
CROSS-SPEAKER RECUGMT1ÜN WITH ADAPTATION 

ENROLLED        ADAPTED 
SPEAKER          SPEAKER 

»   TOKENS  ADAPTED   TO  :.EW  SPEAKER 
0  1     2     3     4     5     6     7     6     S     10 

MENU 
AJ                         BP 
BP                      GL 
AJ                      HM 
GL                      BP 
GL                      HM 

DOS 
GL                       HM 
GL                      BP 
GL                       HM 
AJ                       BP 

Total 1 ertots 

331-11----- 
9222  
4   3     -     -     1     1     -     -     -     -     - 

4211 - 

46343:1-1-- 

42--------- 

33   16  7     7     6     3     1     -     1     -     - 

Another Question to ask is what haopens to 
recognition perfor manes on a given speaker after 
their models have been adapted In varying degrees,to 
another speaker. Some data is provided indicating 
degradation in performance, gradually increasing as 
the total number of adapted foreign speaker tokens 
appreciably supersedes the nuJbtr of speaker- 
dependent tokenc. It is worth noting however, that 
as seen in the immediately preceding experiments, 
these adapted models also provide for speaker- 
dependent-like performance for that other speaker. 
As previously shown, cross-speaker recognition 

without adaptation, is far worse, of course. It is 
our view that understanding the limits on 
adaptation, and performance trade-offs in extending 
multi-speaker models to larger speaker populations, 
should form the basis for future research 
investigations. 

TABLE VI 

ERROR PERCE1.TAGE OBTAINED BV 
RERUNNING INITIAL SPEAKER AFTER 

N RUNS OF ADAPTATION TO SPEAKER 3L 

mm 
RERUN 

1   RUNS  ADAPTED  TO GL 

5              10              15 

SPEAKER  -  DEPENDENT 
CONTROL W.O.  ADAPT. 1 

HM 
BP 

.5              .7            .9 
2.1           2.1         4.1 

•5                  1 
1.4 

CONCLUSIONS 

These experiments obviously have a number of 
inherent limitations re: number/choice of speckers, 
specific recording conditions, etc. Nonetheless the 
results obtained here strongly suggest that under 
traininq/test mismatch situations, especially 
across different speakers, the recognition 
performance obtained in the absence of supervised 
adaptation is far inferior to that obtainrd with 
even a small amount of adaptation. Alternatively, 
significantly higher recognition performance can be 
achieved by butomatically integrating new 
infortation as it becomes available during actual 
system use. Adaptation thus provides an 
operationally effective bridge spanning the extremes 
of speaker-dependent and speaker-independent 
recognition. This productive continuum richly 
deserves to be better explored1 
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