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ABSTRACT

Team pursuit-evasion games are studied here with one performance index

for the team as a unit in competition with one common opponent. Particular

structures of team games are discussed after a brief introduciton of the two-

player differential games. The classical calculus of variations is used to

derive the feedback strategies for team linear, quadratic pursuit-evasion

games. Several definitions of the performance index that correspond to dif-

ferent levels of cooperation and hierarchical organization in the team are

investigated. The game of kind analysis partitions the players and the space

according to their role in the team. Practical solutions to these complex

problems rely best on suboptimal schemes. Thus a structural analysis is

presented with the intent to simplify the computation of optimal decision and

communication processes. Then approximated solutions as well as suboptimal

hierarchies for linear quadratic team games are derived. Two-player games

provide a great deal of information concerning the solution team games, allow-

ing to compute an approximate solution of a three-player game using a composi-

tion method and to derive exactly the solution of a complex linear quadratic

team game from a controllability study by providing terminal-time criteria of

selection of unknowns. Rierarchical structures naturally arise; in particu-

lar, different filtering structures for a stochastic team game are compared. -

Detection and localization of the opponent players requires processing from

several sources. In the underwater case, direction finding techniques may

fail because of the environment (multipath propagation) or, in competitive

situations, because of jamming signals. The nonlinear processing method

developed to alleviate these difficulties also increases the class of problems

*.'i solved by a given aperture, and is based on the eigenstructure method applied '

to Mth-order multiplicative signals. ..-
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TEAM DIFFERENTIAL GAMES AND NON-LINEAR SIGNAL PROCESSING

I. INTRODUCTION

Many control problems involve the modelling of some unknown,

possibly deterministic, processes, as the signal processing of

measurements from a target, performed by one or more channels. In

the absence of knowledge of the target motion, most models assume

4 either a stochastic type of dynamics or a given simple motion, such

as a constant course. Then various techniques are used to recover

from unexpected target maneuvers, including input estimation, variable

dimension filtering approaches, white noise models with adjustable

level or with several levels (Reference [1] provides further biblio-

graphy). The signal processing task could be made easier if some

knowledge of the behavior of targets were known. But, usually, in a

hostile environment, the target expects to be tracked or chased, thus,

a competitive situation arises between the various observing channels

i processing the data and the unwilling target, requiring the study of

a team pursuit-evasion game problem.

Formerly introduced by the pioneering work of Von Neuman and

i Morgenstern [2] the discrete game analysis embodied most of the prin-

ciples of the game theory yet recognized as important. But it is not

until the concurrent development of the optimal control theory and the

I.. introduction of the differential games by Isaacs [3] that the game

theory came of age.

,. . .. . . . . . . .
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After a ten year initial surge triggered by the publication of

Isaacs' work, the study of the games was mainly captured by mathemati-| ,-
cians rather than engineers. A more mathematical approach of the

games emerges; the early results were given a more solid theoretical

support and were extended, as in Friedman [4]. In particular, bar-

gaining games, in which N players individually attempt to achieve

some optimal performance by contracting alliances, were advanced to a

better understanding. Nevertheless, the last few years experienced a

renewed interest from the engineering community for differential games,

a typical problem being the stochastic missile versus airplane control

problem viewed as a game (Jarmark [5], Shinar (6]). Together with the

progresses made in multi-target tracking (Bar-Shalom [7]), the l-vs.-N

game where a single missile faces several possible targets was also

considered (Breakwell [8]).

This brief history of the games is herein schematically parti-

tioned into four different "eras"; though questionable, this classifi-

cation has the merit of enhancing the various N-player games consi-

dered. First came, as a generalization, the games in which the N

players compete individually, then a few particular games were solved

relying on geometrical or intuitive remarks, as in the game where two

cutters attempt to prevent the escape of an evader (Isaacs [3]). Then

came the bargaining games and coalition formation problems, both with

a clear economical or political ulterior motive, and last came the one r
versus many games where a single pursuer must choose between several

possible evaders as a first target.

Team differential pursuit-evasion games studied here involve

coplayers who strive against a common opponent, such as an athletic
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team with a common goal. The individual performance is superseded by .

that of the team as a whole. Clearly, this is not a typical N-player

game of the more common variety. Nor can it be treated as a second

phase of a bargaining game with coalitions already formed, such as

studied by Von Netman and Morgenstern [2], since the principle of

optimality does not apply to the individual players but only to the

team as a unit.

In the literature, team decision theory refers to the games

where a group of agents, acquiring different information, work to-

gether in a coordinated effort to achieve a comon goal, as in Bagchi

and Basar [9], but the competitive aspect is missing in these games.

Hereafter, the common opponent game is referred to as the team

game or the N-versus-one game. The players of the game are called

"pursuers" and the common opponent, "evader", in keeping with the

spirit of "sink the Bismark".

Solving even the simplest team game is a very difficult task,

and to cope with the curse of dimensionality, analysis of the simpler

l-vs.-i game will be taken advantage of. Long before the battle of

Salamis (480 BC), the need for a strict organization in obtaining

optimal results from individual elements was recognized. Therefore,

hierarchical structures are introduced and sometimes simplified, as

early as possible; decentralized and suboptimal structures are looked

for because they usually yield tractable solutions or more robust

schemes.

In Chapter II, matrix games and the well known homicidal chauffeur

game are used as a guideline to present a few concepts about '

..... .... .... ..... .... .... -. .. -
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differential games whose understanding is required. Chapter III dis-

cusses various pitfalls and underlying assumptions in the formulation

of a team game; the calculus of variations is applied to yield the

necessary conditions of optimality for team games. The game of kind,

partitioning the pursuers and early structural game solutions is the

object of Chapter IV. The next chapter focuses on the linear quad-

ratic team differential games, expressing the solution in a compact

3form and deriving C (command, control, communication) suboptimal

structures. A composition approximation to reduce the computations

required for linear quadratic team games is presented in Chapter VI.

Chapter VII studies a fixed terminal time quadratic game from a con-

trollability point of view to provide criteria to select the terminal

time unknowns, and shows how it yields the solution to a complex

problem of optimal location of a pursuer in a team. Stochastic team

games are envisioned in Chapter VIII, for which hierarchical options

prove fundamental. The next chapter features a non-linear signal

processing technique to detect and locate the various players in an

unfriendly environment, where multipath propagation and jamming

either force the classical, linear methods to fail or, at best, to

considerably reduce the effective array aperture.

..

- . . f..S.* ,, k k . % , o |-



II. TWO-PLAYER DIFFERENTIAL GAMES

1. INTRODUCTION "

Let S be a system including two variables u and v controlled by

two distinct parties P1 and P2 who strive to maximize two corres- .--
1~'..""

ponding performance indices Jl and J2. Then, a game siutation arises

whenever the control policies of either player at the present time is

not known by both parties, hereafter named "players".

When each player has all information about the system to control,

the form of the performance indices and the other player's choice of

strategies, the game is a perfect information game. A."

Particular games for which only one player is aware of the

other player's strategy are called hierarchical or Stackelberg games.

One player, the leader, announces his strategy first and the other

player, the follower, reacts accordingly. When both maximizing

players have identical performance indices and goals, a Pareto game

is defined. Otherwise, whenever Jl and J2 differ, conflicting inter-

ests create a competitive situation. The game is a zero-sum game if

Jl + J2 = 0, that is, when the interests of the players are opposite;

otherwise, a non-zero-sum game is defined. Competitive games are

usually defined in terms of a miximizing and a minimizing player.

When the number of strategies available is countable, the game

is said to be discrete. If there is a finite number of possible

strategies, a payoff can immediately be associated with each playable

control pair (u,v) and the game can be put under a convenient matrix

Mail -..
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form. On the other hand, an uncountable number of possible strategies

characterizes continuous games. A differential game is a continuous

game for which the system on which the controls apply is defined in

terms of a set of lumped differential equations. Classical examples

are Lanchester's equations and the predator-prey equations.

The study of gambling gave game theory its name, but the most r,.

obvious application of game theory is to clear competitive situations

such as pursuit-evasion games, combat models and macro-economic be-

havior and strategies. Yet, a very important domain of application .

of game theory is in optimization problems with unpredictable para-

meters or forcing functions. The classical method solves that prob-

lem as a stochastic control problem, modelling the unknown as a

random parameter, provided that the statistics of the unknown be

a priori specified. Otherwise, a worst case study might be neces-

sary. This conservative approach assumes that the unknown parameter
or forcing function is controlled by an intelligent adversary, in a

zero-sum game formulation. The method can be used to replace a

stochastic problem by a deterministic one. Problems such as ship

collision avoidance or games against nature are treated this way.

A few of the important concepts concerning two-player game I

theory are introduced below, rather informally, in order to provide

a basis to the study of team games. A more complete study of dis-

crete games can be found in [21; (31 introduces differential games,

and pursuit-evasion games are focused upon in [10].

2. DISCRETE GAMES

In the following perfect information, zero-sum competitive

% •N

S * .4 . . . . . . . . ..- C. .-
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discrete game, the maximizing player P1 has two available strategies:

u and u2 that select a row in the matrix, when P2, the minimizing

player, can choose either column 1 or 2.

Table 1. Matrix game with a pure strategy.

Player P1

U 1 23

Player P2 U"..'~ 1 4 ,'-'

The payoff corresponding to the play (u., v.) is the matrix co-

4 efficient L... Since both players must announce their strategy at
1]

the same time, it seems natural for P1 to choose the row with the

smallest maximum and for P2 to choose the column with the largest

minimum. Then:

max min Li = 3, P1 plays first

v. U.

and a
min max L.. = 3 , P2 plays first.

U. V. e- "

When both expected payoffs match, the result is called "value of the

game". The strategy (u =U,V --v2 ) is an equilibrium solution, named
1. 2

"minimax stragegy".

The main problem with the minimax strategy is that it requires

an exhaustive search over all the possible strategies. Clearly,

this is unsuitable to large dimensioned matrices or to continuous

~~~~~~~... ... ,.. . . . . . .... . .. ... °. .... . . . . .. . . .- - - ° .-. . . . . - - - - ° . ., ° o °
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games. A quicker converging strategy is the Nash equilibrium .1
strategy. It is defined as:

u -arg( max L(ui,v))

ui

v = arg( min L(u ,v.))
vj J

The two above equations must hold simultaneously, and the search is -

made for a fixed assumed optimal strategy for the other player. It

can immediately be understood that a Nash strategy corresponds to a

local equilibrium concept, when the minimax strategy corresponds to 0r,

a global equilibrium. Consequently, uniqueness is not ensured, as

the following example shows, in which both minimizing players P1 and

P2 face two possible Nash equilibria, namely (u I , vI ) and (u ,v2),
1 2" 2

and a minimax (u 2 ,v I ).
2'.o.

Table 2. Matrix game with a mixed strategy.

Player P1

vI v2
1 2 o

u 1
E

Player P2 u2 1 0

25"

Moreover, games for which no unique choice, named pure strategy, *. .

can satisfy min max L.. - max min Lij, do not have a Nash strategy in

. pure strategies. Then, as the game repeats itself, the controls must e F
4.IN

be chosen in a probabilistic way, defining a "mixed strategy". The

corresponding averaged payoff then satisfies min max L. . max min L .

G..

Vi
5, 2
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A well known theorem states that the value of a game always exists in

pure or mixed strategies for matrix games.

Though simpler in their definition, discrete games show many of

the important characteristics of continuous games, such as the infor- i
mation structure, the various equilibrium strategies, the definition

of a unique quantity called the value of the game, and the possible

occurrence of a mixed strategy.

3. A PURSUIT-EVASION DIFFERENTIAL GAME,
THE HOMICIDAL CHAUFFEUR GAME

3.1 Presentation of the game

A general form for the performance index of a zero-sum game is

tf ' '
J(u,v) = g(x(tf),tf) + ftf h(x,u,v,t)dt (1)

f f to
,- °

If g(x(tf) tf) = 0 and max rin h(x,u,v,t) > 0, the game is said to
V U

be a generalized pursuit-evasion game.

It is assumed that the differential equations describing the

motion or policy of the various players as well as the initial posi-'*- *

tions, are given. Then, as the game proceeds, the evader attempts

to avoid the various capture zones related to the pursuers. The

classical method divides the game initially at t = t , into two
0

distinct phases, named the game of kind and the game of degree.

The game of kind can be summarized as finding the answer to the

question: is capture possible? Once capture is assumed to be possi-

ble, the game of degree attempts to find the optimal way to conclude

the game. Three approaches are used here to solve the game of degree; "-

.- o-. . . .
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i.e. classical optimal control theory, heuristic approaches relying

on simple geometrical considerations and approximation methods tail-

ored to specific games. -

To illustrate further definitions and remarks, a specific example '

is treated. The homicidal chauffeur game, also known as "the two-

car problem", is one of the best examples of pursuit-evasion games.

Both its simplicity and its versatility are remarkable. The deriva-

tion of the classical one-pursuer-one-evader solution borrows heavily

from Isaacs 3].

A pursuer P, of speed p and control u, attempts to capture, in

minimum time, an evader E of speed e and control v. The heading

angle rates are subject to the controls. The dynamics obey the fol-

lowing lumped differential equations

kip = psin(0p) ,

• =  pcos(O ) , (2)
2p p['[ 6 = u ,'. :
p

for the pursuer, and the dynamics of the evader are

* l = esin( )
le e

k 2 = ecos() (3)

o
e = o

In an unconstrained space, only the relative position of the two

players matter. The classical approach reduces the game by fixing P

at the origin, defining the new coordinates, according to Figure 1,

as , 4

.4

'-

.-..-. .-. .-F ". ,". .",". ."' . , . . . " "•"4.... ",". " . """ """' " ,., , '''''''2 ''¢'; "'''''v ... ," ." ." , .. . , .... '.,'., " .";.''. .',' ":".' .'..'.-'. .','.',," ',''.'', '-.-'. ,>--.--. ,,I'-'-L I>'' ";J:.;h.'L: '.L-,- ,-',5 ','%€2 -'- .- ',-.,
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=, ( )sin(e ) - (X - x )cos(e)
lXe Xip p 2e 2p p(4

= (Xile - X l )cos(e ) + (x2 e - X 2 )sin(6 )

2p p2

al -.x 2 + e in~ -

e It
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1 = 2ux + esin(v) ,
(6)

2 = ux1 + ecos(v)-p

In general, p > e is enforced, thus the pursuit-evasion game represents

a study of the speed versus maneuverability type.

Capture is achieved whenever E is forced within the terminal

manifold, or lethal area, of P, described by a matrix M and a scalar

r as

T 2
x < r (7)

In the sequel, M - I, and the lethal area is a circle of radius r;

the terminal manifold is described by

2 . 2 2
x + x r < 0 (8)

1 2

3.2 Solution of the game by the calculus of variations

The performance index

J(uv) = tf dt = tf t (9)

to f 0

is associated with the state (6) in the Hamiltonian

H(u,v) 1 + X (-Ux 2+esin(v)) + 2 (uX +ecos(v)-p) , (10)

by adjoining the costate vector A (iA2). The costate variables

propagate according to

* 1 ax 2
1 • - (11) """ X

2 x 2 1

,'". ., .-" ". " - ' .-.'- ' .. . -.', -. .- , ', .", "- - -.. . -. .- ..,'"-....- ., - .' .... .., "- .' . . • 2..

.l'.(, , _fi ~ l. %.i _" ., --. --___-.,. ..,.'.'.u .u _._ _. ...... ... .. . ..- -. .. "j
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and the transversality condition provides a terminal time relation-

ship as

2 2 2
3(x + x r

X(t) =x V (tf1 lf ax 1

a 2 +x2 2 (2

)2(t) = 1 +x2 2 -x 2 (tf)
2 f-o. -a

2J

expressing the orthogonality of the costate vector with the terminal

manifold at the terminal time; V is a Lagrange multiplier whose value

must be such that

H(tf) = 0 (13)

f

holds.

The optimal controls corresponding to a Nash equilibrium strategy,

or defining a game theoretic saddle-point, are computed by applying

the minimum (and maximum) principle as

* *

u = arg(min H(u,v )) ,

. . (14)

v = arg(max H(u ,v)) (14)
V .. °°

Generally, a game theoretic saddle-point does not exist unless the

Hamiltonian is separable, that is, unless Isaacs' condition

H(u,v)= H (u) + H (v) , (15) "
U V

is satisfied.

The knowledge of the initial state together with (12) allows

classification of the one-pursuer-one-evader homicidal chauffeur game

as a classical two-point boundary-value problem.

.. . . . .. _.... . ... ......... . ........- . ... . ... .- - .. . ... _ . .? .; .. ,. ;.,-
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Developing the above equations, introducing a reverse time

T = t - t and a terminal hit angle a, the optimal policies can be

derived as

u = Usign(x 2 sin(UT+a) - X1 cos(UT+c))

. ut~a (16)v = ,T~

where sign is the signum function.

The retrograde path equations, integrated from a terminal hit

point in the reduced coordinate system are

x (T) = p-pcos(UT) + e(r-T)sin(UT+a) ,
1

(17)

x (T) = psin(UT) + e(r-T)cos(UT+)
2

Equations (17) are valid up to the first switch in u, then, according

to the new value of u, a new set of differential equations are to be

integrated until the next switch. A trial and error procedure must

be used to find the proper hit angle that corresponds to the initial

condition (x (t ),x 2 (t )).

Due to the particular example, the exact value of the Lagrange

multiplier v is irrelevant. In most games, finding a suitable value

of V that satisfies (13) is an acute problem since the multiplication

of the costate vector by the controls yields, even in the simplest

case, a second-order equation in V, often including non-linear ele-

ments such as absolute values, which may produce zero, one or two

possible solutions. Though a global study, even for the simplest

linear game is nearly impossible, only one value of v at a time seems

a,..

6 .. -. .- . .. .. .... . .....-
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to be the rule since possible values of v are checked against two 6.'.

important conditions: the playability and capturability conditions.

The playability condition states that, if pursuer P captures

E at t = tf, and if g(x(tf))<O describes the terminal manifold, then

the scalar product

grad(g(x(tf)))"x(tf)<0 (18)

is negative. The playability condition expresses the simple fact that,

in order for capture to be performed, the evader must penetrate into

the terminal manifold. When the terminal manifold is a circle, x(tf

is a normal vector to the terminal manifold, parallel to the costate

vector since the transversality condition holds. Then, an equivalent

form is

X(tf )"x(tf)< (19)

The capturability condition is defined as

H(tf) - k<O (20)

with k, a positive constant. Compared with (13), the capturability

condition appears trivial. For minimum-time problems, it is con-

venient to choose k = 1. Then, (20) and (19) are equivalent con-

ditions for one-pursuer-one-evader games.

Nevertheless, the capturability is a global condition on the

game, when the playability condition must be respected by every single

pursuer actively participating in the capture, thus, for team games,

these two conditions are clearly different. The distinction between

capturability and playability has been overlooked so far in the study

of the one-versus-one games.

*. -r i
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For the two-car problem, the condition expressed by (19) gives

e < p, the obvious requirement that the pursuer be faster than the

evader.

When the capture area is defined by a time-invariant equation,

it is convenient to apply the playability condition to the terminal

manifold. In some instances, it defines the portion of the terminal

manifold that can be used in order to capture the evader, named "the
'4 .4

usable part of the terminal manifold". The usable part is not a

characteristic of the game studied but depends rather on the way the

game is studied. For the homicidal chauffeur game, the usable part

can easily be computed as the part of the circle for which
14

x (t > re/p . (21)
2 f)

The optimal trajectories conducted from the two points

x2 (tf) = re/p are referred to as "semi-permeable lines". These lines

separate capture from escape and are best characterized by the fact

that the payoff is discontinuous across them. Permeability ensures

that only under a non-optimal play can the trajectory cross that

border line. If the semi-permeable lines intersect, the capture zone

is finite. Solving = 0 with (21) and (17) gives the condition

r < r under which the semi-permeable lines intersect.
-0

Figures 2 and 3 show two possible sets of trajectories. In the

more interesting case of Figure 2, singular behaviors are numerous.

The semi-permeable lines stop at point C and C', consequently, if the

evader is located around point E, a swerve motion is adopted by P,

turning left, away from the evader at first, in order to go around C,

* r l



C

9.2

Switching line in u.

Usable part of the terminal manifold.
Semi-permeable line.

---- Trajectory.

Figure 2. Homicidal chauffeur game with infinite capture zone.

,PP

rr-

- Usable part of the terminal manifold.
~ Semi-permeable line.

-~--- Trajectory.

Figure 3. Homicidal chauffeur game with restricted capture zone.
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Si- ' -



18

and then right to face the evader and achieve capture in a linear

course. At points B and B', an infinite number of optimal strategies -

are avilable. Along the lower half of axis x the optimal value

for u is U or -U, whereas the upper half corresponds to a more clas-

sical singular solution u = 0. Thus, the study of the singularities

nearly represents the whole effort in solving the two-car problem.

3.3 Further studies of the homicidal chauffeur game

Unlike the choice made so far, an obvious reduction choice to

study the N-versus-one homicidal chauffeur game is to position the

evader at the origin. If all the capture sets are circles of iden- -

tical radius, an equivalent "safety set" surrounding the evader can

be defined. Then, the state equations are

x v + psin(u)

(22)
-xlv + pcos(u) -e "

2 1*

When p > e, the usable part of the terminal manifold is not restricted,

and consequently, the part of the study involving singular behavior

such as the semi-permeable lines cannot be conducted. Trajectories,

from a hit angle a, are integrated as

x I  -e+ecos(VT)+p(r+T)sin(-VT+a)

(23)

x 2  -esin(VT)+p(r+T)cos(-VT+a)

and are plotted in Figure 4.

Jr

• . ..,-.
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19

Figure 4. Reversed homicidal chauffeur game.

Trigonometric functions as in (6) are quite cumbersome to deal

* with, a linear or bilinear set of differential equations to approxi-

mate the exact game would simplify the study of the team game. The

homicidal chauffeur game is equivalent to an extended-state bilinear

xmdel if the control v is constrained as

lvi < V =0.3 .(24)

Then, the state equations for that game are

Ax + Bxu + Cv

0 0 eel=~ = ~ j (25)

A deviation of the solution can be conducted in a similar fashion as

* ".' °

previously. The trajectories, shown in Figure 5, are sections of

circles whose centers and radii change at every switchings of the

control variables u and v.

....................... . ........ ,
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b a

zezmUsable part.
..... Constant terminal time.

Optimal trajectory."-"
Semi-permeable line.•
switching line of u.

Switching line of v.

.i.

Figure 5. Bilinear approximation of the homicidal chauffeur game.

The non-reduced trajectories would show that the evader adopts

a nearly parallel course to the pursuer, because of the constraint

on v. Nevertheless, it is remarkable that the same type of trajec-

tories and policies are found for the bilinear approximation of thehc hf g

homicidal chauffeur game even outside the area defined by IvI < 0.3,

in which the approximation is valid. On the other hand, the validity d

band only includes the terminal end game maneuvers, thereby excluding

the interesting phases of the pursuit.

0-.
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Actually, the vectogram corresponding to the original homicidal h
chauffeur game is given by the vector (sin(v),cos(v)), when for the

bilinear approximation, it is given by the vector (l,v) for Ivi < 0.3.

As Figure 6 shows, it is a rather poor approximation. A better

approximation is the square vectogram approximation. To give a more

*: convenient set of state equations, the circle is approximated as

closely as possible with the simplest form possible. The new

equations are

x1 =-ux2 + av

(26)
X2 = 1 +av 2 p,

where the controls are constrained as

lul < u,

(27)

IVll + IV21 < a

Actually, only the four vectors corresponding to the corners of the

square (vl-v2 = 0) are used, the evader switching from one to the

other, as Figure 7 shows. The results show the same general behavior

as the exact solution. The discretization performed by the approxi-

mation on the control v, causes some troubles in the stabilizations

of the trajectories about the semi-permeable line. In particular,

the use of the Euler formula to integrate the differential equations ",,"

produces cleaner switches than the fourth order Runge-Kutta method,

because of the important number of switches required. In order for

this vectogram approximation to be an optimal fit, the parameter a

can be optimized. Dolezal [i addresses this type of parameter

" ,r "• ..I:. > ," " - . :>. / -.$ .,is ," ," - .. . ,." - •. " .". " * ." • - . :-.'... . .* .- ." , .- . .'-, .,
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E e Ee~&

A. Original game. B. Bilinear approx. C. Square vectogram approx.

Figure 6. Vectogram approximations.

C XtS

- I-

- , ,,

" = Usable part.
-* Optimal trajectory.

Semi-permeable line.
Switching line for u.

----- Switching line for v.

Figure 7. Square vectogram approximation of the homicidal chauffeur. game.

-. . . . ... . . .
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optimization problem prior to the completion of a game. The perfor-

mance index to be minimized may become complex. By changing the value

of a, simulation shows that it seems to be always possible to approxi-

mate fairly closely parts of the exact solution, but significant

deviations always occured at some point.

The difficulties to approximate the equations of the homicidal

chauffeur game are quite typical to the differential games. Lineari-

zations around open-loop trajectories are hazardous since the other

player may choose a tailored (closed-loop) strategy such that the

result will significantly deviate. Local minimax properties cannot

be claimed safely, due to this generic unstable behavior of differ-

ential games. Open-loop strategies are not interesting from a

practical point of view. Closed-loop, or feedback strategies are

more useful, not only because they allow to cope with uncertainties

in the position, parameters, etc., but in order to recover from a

deliberate non-optimal play of the opponent or to take advantage of

an error committed by the other party. Minimum time, one-versus-one

pursuit-evasion games, that have a convex terminal manifold can

easily be studied globally, the trajectories being, in essence, closed
..-

loop. This is not the case of games involving a fixed terminal time

or integral constraints on the controls or states. In this latter

case, a particular trajectory corresponds to each point, a complete

state-plane representation of the trajectories is impossible, and,

in the event of a detected non-optimal play, a new open-loop solution

must be recomputed. '

The classical method uses the calculus of variations to solve

the game of degree, thus, the game of kind must have been solved first.

.• . . . . . . . . . .
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Hence the weakness of the method proposed so far, that requires a

qualitative study beforehand. A global study of the problem has been

suggested, applying the Lyapunov theory operating together with

dynamical systems. Unfortunately, quoting Skowronski [12], the quali-

tative study is still at an infancy stage.

Classical results are extended by Simaan and Cruz (13] to the

continuous games in which the state is available only at discrete

instant of time, when Regade and Sarma (141 show that the optimal

payoff of linear differential games under partial observation is not

altered from the complete observation case, an obvious property of

open-loop policies.

3.4 Two-pursuer-one-evader homicidal chauffeur game
., ,

Two-pursuer-one-evader homicidal chauffeur games ameanable to a

solution by ways of simple heuristic geometrical considerations are

studied here, in an attempt to demonstrate what can be done without

any thorough or even partial study of team games.

The reversed one-versus-one homicidal chauffeur game is solved

classically as above; cases where the two pursuers are symetrically

disposed according to the orientation of the evader, are investigated.

A direct pursuit occurs when E is located on the median of PIP2, and

properly oriented, according to Figure 8. Then, the game is symmetri-
"'4

cal and the optimal play for E is to move straight along x2. This

articular two-versus-one homicidal chauffeur game is equivalent to

the one-versus-one case of the "wall pursuit game" in Isaacs [31,

where E, constrained to x2, is chased by P alone. Trivial geometrical "

considerations are used to solve that game according to Figure 9.

o ".
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* A collision dilemma arises whenever E and the symmetrical pair

face each other. Then, E must compare its payoff for two strategies:

going straight ahead or turning either right of left, as sharp as

possible. If E decides to turn, say to the right, he will favor one

of the pursuers, namely PI. and the game will be concluded by that

very pursuer. Though inactive, P is responsible for having forced
2

E to turn towards P and not away from him. That optimal trajectory

is given by the one-versus-one game in which the regressive path

trajectories from the terminal hit points, are not stopped from

symmetry reasons, along the axis x2  Two examples of the collision

dilemma to be solved by E are shown in Figure 10.

X z - '

-- P alone ....... . : tf 2.67
P1 &P2' E turns : tf = 2.09 E must turn.
P1 &P2  E moves straight: tf = 1.

0+- P1 alone .. ....... tf = 1.34 Emstov
-4- &P,, E turns ..... : tf 1.02 staigh1 f straight ." " "
-4---- P&P 2 , E moves straight: tf = 1.07

Figure 10. The collision dilemma.

7,C .. . . * . ." . '
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When the pursuers are not symmetrically disposed, a straight :4.

optimal trajectory of E is possible if PI and P2 are located on the

circle of center (Oetf) and radius (r+t ). Then, E oriented away
f f

from the line P P is an obvious condition to ensure the straight line
1 2

play. For P1 fixed, three possible situations can arise, depending

on the location of P, along the circle, two of which are solved,

i.e. the straight-line play and the sharp-turn play, when the third

situation corresponds to a "moderate" turn of E. Figure 11 depicts-,

these three possibilities.

Even though a wide variety of cases can be solved using simple

considerations as above, a method to solve general situations for

team games is wanting.

"I -

•. - -•.
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, U ... %U-.. . .



* 28

4 %

*01*
.4.

JA %

A f'0 
2

r~ll~t 1 aone.............: tf = . ~ (%

P 1 1 ifEawy trsrgt:t2 2 7

-4*--at P1& 22 aoe moe straight. .: tf4 = 2.205 C3

b ~.. P1 0P21, E turns right. . . : tf3 = 3.17 (2)
4 P*- 1, E moves straight .: tf4 = 2.25

(2) 2 E moves strai caght by P1 4 an 2 .

P( 02) E turns right .aught by P22.
(4) 3 E turn s sytrteaight tf4 = f22 cugt5yP

Figure 1 ) Thre-eprtiular gaymetrclg.ns
(2)~~~~~ ~ ~ ~ ~ E oe sriht agt*yP adP1

(3 un rgt agh yP2

(4 Eru n l ~ t y t h i h tf tf a g t b
and P23.
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29

III. INTRODUCTION TO TEAM DIFFERENTIAL GAMES

1. INTRODUCTION

Not very many team games are analyzed in the literature; to name

a few, Isaacs [3] derives sufficient conditions in order for a team

of patrollers to block a channel, Hagedorn and Breakwell (15] study

the game in which a fast evader attempts to pass between two pur-

suers, dividing the game into two distinct phases, one in which the

three players move in a straight course, and one in which the evader

stays at a constant distance from its closest pursuer.

The same partitioning of the game into distinct phases allowed

Foley and Schmitendorf [161 to solve a differential game with two

pursuers and one evader, but in a non-zero sum game formulation, with

a performance index for each pursuer. On the other hand, linear one-

pursuer, one-evader games are studied by Pshenichnyi, Chikrii and

Rappoport [17], with a unique performance index, but where all pur-

suers must capture the evader individually, and thus the evader

strives against the slowest pursuer. These team games are solved d,

because a convenient mapping from the one-versus-one game is possible,

not unlike the example of the two-pursuer one-evader homicidal

chauffeur game in the previous chapter.

Together with a discussion of the major difficulties in the -

statement of team differential games, this chapter formally applies ...

the calculus of variations to derive the necessary conditions of %

optimality for team differential games.

3.--

. . ...
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2. FACTORS TO CONSIDER TO STATE A TEAM GAME

In most practical situations, the controls are physically bounded,

notable exceptions being systems without inertia that are controlled %

directly through their heading angle as in the homicidal chauffeur

game. Unbounded controls are more suitable to derive the feedback

strategies and to avoid the switching functions that come together

with bang-bang controls, hence the popularity of quadratic performance

indices that provide a self-limitation in the controls. However,

not every type of quadratic game is suitable to a deterministic pursuit-

evasion game study. As an example, the following bilinear quadratic

game has a relative state

x Ax + Bxu + Cv, (28)

a quadratic performance index

1 tf 2 2
- t (I lul 1R -i 1v1i )dt , (29)

and capture is achieved whenever the evader is forced within the

circle of radius r. A complete study of this two player game would

show that the capture zone is finite and that the Nash equilibrium

strategies within that zone are u = v = 0. Thus, either capture is

impossible, or it is bound to happen, such that no action is to be

taken by either player. It is quite a paradox to find such a trivial

solution to such a seemingly complex game. The difficulty is in the ,2°

merging of the pursuit-evasion concept with the quadratic performance

index. If capture only matters, the value of the control used by

the evader becomes infinite, but so would immediately be the pur ;uer's

-7



31P

control. It would achieve the same result as choosing u = v = 0 but

for a possibly different value of J. This is an example of a game in

which the perfect information structure prevents any evolution and

hampers the interpretation of the results.

It seems that a better approach is to apply integral constraints

on the controls. The first effect is to allow only open-loop solu-

tions since, in most cases, the players try to spend their whole con-

trol capabilities and then, capture zones, singular behaviors etc,

become very fuzzy. If the bilinear quadratic game above is used as a

representation of the homicidal chauffeur game, according to the

previous chapter, then, the controls are, in fact, angles, and the

very definition of an integral constraint of an angle is rather

peculiar. On the other hand, the previous chapter shows that sub-

stitution of the original controls by a vectogam approximation is an

unsafe manipulation for differential games.

An easy generalization from the one-versus-one games can be

done if the performance indices of the team games include summations

of the controls, states, etc.- merely adding the various energies etc.

spent by the team. While no particular problems arise for minimum-

time team games, and even quadratic team games, fixed terminal-time

games that include a terminal miss distance are more difficult to

generalize since the distance between the evader and the closest

pursuer is to be considered. Thus, most fixed terminal-time team

games include a cumbersome minimum operator in their performance

index as

J f tf (min g(xi(t)) + L(u.,v,t))dt , (30) "
to .,1"" • - .

.~Z 11%.%S S
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where the reduced state equation for that game is

. f(xi,uiv,t) (31)

for pursuer Pit and x. is the relative distance between the evader E
1

and P.. An equivalent form for a two-versus-one game is

tf
J f (wg(xI (t))+(l-w)g(x (t )+L(uiv,t))dt (32)

by introducing the switching variable w, such that

w = I for g(x (t)) <g(x2(t)) and
(33) -

w = 0 for g(x (t)) >g(x 2 (t))
12 t

w can be viewed as a control variable belonging to a mythical mini-

mizing third party, such that (33) is a Nash strategy. It can be

shown that the equivalent game requires the adjunction of a state y

such that

y w(g(xl(t)) - g(x (t))) , (34)
2

and the new performance index is

J y(t) + ft (g(x (t)) + L(xi,ui,v,t))dt . (35)

f to 2 1a

Here w is constrained to the interval [0,1]. Thus, the two-versus-

one team game with the non-linear minimum operator in the performance

index, is equivalent to a three-versus-one augmented team game with

the simplified performance index (35).

Actually, it can be proved that N-versus-one team games in which

a term such as min(ala ... am) is included in the performance index,

2"m

.. . . . . . . ..................................................-.

~~. . . . . . . . . . ..... .-.......... .... ... . . ...
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where ala 2 ,..,a are m independent linear functions of the states,2" F

are equivalent to simpler forms of (N + m - l)-versus-one team dif-

ferential games. If ala 2 ..,a are not linearly independent, then

it is possible to find a set (blb 2. ,b e ) of independent vectors such

that for 1 < m, (

min (alla) = min (bl ,be ) (36)

On the other hand, particular games for which the control of the

evader affects independently (m-1) of the state components of the I,

functions (al,a2 ..,a), proceed according to m distinct phases:

first E plays according to the "closest" pursuer in the sense of the

minimum function, until a second pursuer is just as close, then, E

plays to keep both pursuers equally distant until a third pursuer

becomes equally distant and so on. At the terminal time,

al=a =... =a . The games studied by Hagedorn and Breakwell [15] and12 m ::::

Foley and Schmitendorf [16] belong to this category. If the above

is not met, then chances are that, for some initial conditions,

a. < a. holds for some pair i,j, thereby reducing the number of1 J ,.

arguments of the minimum operator.

The proof of this theorem is rather easy and will not be pre-

sented here, it provides a tec'xnique to put team games under more

classically tractable forms, at the expense of an increase in the

dimensionality. In the sequel, team games are assumed to have been

put under this form, thus, cumbersome minimum operators are not con-

sidered in further studies.

Another problem is the definition of the differential equations

describing the game. In a pursuit-evasion game, only the relative
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state between the evader and the pursuers is important in an uncon-

strained space. Therefore, there is no need to carry the equations

of motion of every single player, when a so-called reduced state is

simpler. The reduction is long recognized as one of the major steps

in studying such a differential game as a pursuit-evasion game, as,

for example, Pontryagin (181 shows clearly.

Nevertheless, various approaches are possible. First is the

brute force manner whereby the equations describing the motion of

each player are kept, at the expense of an unwelcomed increase in the

dimensions of the game. Moreover, keeping track of the positions of

the players and of their associated terminal manifolds is a lot more

difficult, as the guessing of the terminal state, so important in

the solution of the N-point boundary-value problems, using optimal

control theory. An excellent way to avoid any trouble is to start

from a reduced set of equations. Sometimes, a proper choice of

coordinate systems can simplify the problem or the controls, but this

depends on the type of study conducted.

3. NECESSARY CONDITIONS OF OPTIMALITY FOR
GENERALIZED TEAM GAMES

3.1 Presentation

In the following, the notations and the general method adopted

are borrowed from Bryson and Ho [191. The free terminal time game

obeys the differential equations

% .61%i

= f(x,u,v,t) , (37) S
SOran
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and x(t ) = x is given. The unconstrained controls are u for the .

pursuer and v for the evader. State constraints

f(x(t ,tf) = 0 , (38)

are adjoined to the performance index by the set of Lagrange multi-

pliers v and v e The more general non-zero sum game is studied;
4p e

then the performance index for the pursuer takes the form

=J (x(t )t +V T (X(tf)Itf + ftf (L(x,u,v,t) +
p p ftf) + (ff to

(39) - .TA (f (x,u, c, t) -x))dt
p

and for the evader

J -(~tT tf
f xt)Itf V (x(tf)Itf -f (L (xFuFv,t) +

e p e p

AT(f (x,u,v, t)-x) )dt I4).

The Lagrange multipliers Vp and V have the dimensions of the vector i.

From now on, the various arguments are omitted for brevity.

For minimum-time linear team games where only the pursuers that

perform capture are present, the results derived by Pshenichnyi,

Chikrii and Rappoport [17], further generalized by Satimov, Azamov

and Khaidarov [20], can be referred to, stating sufficient conditions

that ensure the existence of a solution in finite time.

3.2 Stationarity for the one-versus-one game

Stationarity of dJ and dJ is expressed taking into account
e p

differential changes in the terminal time.

" .3-, ' % - - " " ' ' .- . " " " ' ..- ' . . . - " - . - . . • : . . - - -" . - . " ' . - . . . . ' . ---. " .. '
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For the pursuer, it yields

dJ~ = af pt+__2d+V2x)+ (L~ t

di dt+v' dt-(L )dt+

T -T t 3L Taf
(X (f-x)) dt -(A (f-x)) dt + f( f(P 6x+X -6x-

St ff p t 0 o to ax pax

X uxTfU) + (-.265v+x T L v) ) t (1

Ap xau Pau av pay

At time t =t 0and t =tf

0

XT(f (xUVt), 0 ,(42)

p

and, introducing the Hamil1tonian

T*H =L + X f, (43)
P p p p

together with the function

p

(41) simplifies into

dJ -( +L )dt +-- d x -(L) dt +
P at + f ax tf p to 0

tf H DH 311
f (-2.6x+--P-6u+--Av-X 6x)dt
to ax au av p

From Figure 12,

dx(tf= 6 x(tf + i(tf)dtf

(46)

6x =dx - dt -
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"" ~Figure 12. Terminal time differentials. .-.
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to IThen, integrating by parts, the following equality olds:-

.[5.

T T- T
fJ p at x p+ -( dx) +f (faxt + (X )x) f+X6)t

p p p f

(47)

*. tH *T ID

together with (45), it yields

dJ P x) dt( +( 6 x) -

e at e p ff T-' ~xt- to

(48)

t H ali DH
(L ) dt + f e- +k 6 e-u-- 6vdt

pto 0 to x p u- "5v

-when a similar derivation yields

TT _(T~x _ i-'. -dJ = (- LeL-A x) tdtf+ ((x-4-+ ) dx) -(f ex -

e-[ e ,tff x ettf"e't

2:-: (49) ,

o ,_ e(L)odto ft +e e6 u 6v)dat.

*.S... . . * * '..* *.
.A 4. * .pS.A-
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In order for the game to have a stationary value, the coefficients of

dtf and dx must vanish for both di and dJ , regardless of t. There-
fp e

fore, these terms must be individually set to zero, that is

XT e - T
x p ax e

tf P 'tf[ p e =(Ttf (0

e

(-- + He) tf 0 -""-

or, since

DO d P a(

at dt ax x " (51

an equivalent condition is

(t + Lp)tf= (--+ Le)tf =0 (52)

Then, if the above holds, dJ and dJ are left to be
p e

tf aH 3H "-*
dJ P 6u---- 6v)dt + (X dx) - (H )dtoau av p to p to

(53)

tf 3Hl alulH T
dj = f (- 6u 6v)dt + (X dx) + (H ) dto.

e t eto

..............

C--~~. 
"." "2 _- .'r -
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A stationary value for both J and J requires that

p eaH aH

au 6u + a 6v = 0

and (54)

,H 3H
e 6 + e v =0p, aT ~~u + av =o.-..

The Nash equilibrium strategy is defined by

H 0 with v v given
givue

and (55)

3H*F
-- 0 with u u given.

It achieves the desired stationarity, but it must be understood
* *,. o.

that the controls u , v that satisfy the above are candidates that

must also verify the Nash inequality:7
, * * -,. o

v u 6 U H (u ,v ) < H (u,v)
p

and (56)

V v E V H (u ,V) < H (u ,V ) . L
ex

The necessary conditions applied to the one-versus-one differential

game define a two-point boundary-value problem. For a generalized

* pursuit-evasion game, p = = 4' L = L = L hold and the equations
p e p e

describing the terminal manifold are usually one-dimensioned; then,

V P and V are scalars, moreover X =-x , e =-v =V and H =-H =H..p e p e p e p e ...

. . .. ., ."

%... ............ ..
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Then, together with the Nash inequality, the necessary conditions

of optimality are

+ V +L+XTx)tf ( - + V + H)t 0

3 =  T
axX

(57)

a+ = (XT)

3H 1H"" "

T7 0 ,- 0au av

3.3 Stationarity for the N-versus-one team game

For the team game opposing the pursuers P. to E according to the

state differential equations p.

x.=fi (xi. ui' v, t) (58)

J and J are defined as
p e

tP ) + i + tf(L +EXT (f ))dtp p. ((tf),tf) p. 2. .+2 ,..,JP i Pi f f i Pi i  to p i Pi

(59)
tf .

J = -4 (x(tf),tf) -i. + f (-L + T (f.-x.))dt
e ie. f f .e i to e e 11

and the Hamiltonians are

TH L + EX f. ,
p p .p~ip-i i

H = -L +' T f. (

e e. i

<_) :.---:-,:. ,,:,: .. ,:,.w --.-. .:,> ,-. "- --.-:-v .--.-----.--.--- ,-.--:-: :-...v - .... .. . .. ...2..... .. 1.
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when the relation between the one-versus-one and the N-versus-one

game is

L = (L -L + L=p r Pi PV" P\). ' J-

(61)

L Z (L -L )+Le e ev eV

with, in the one-versus-one case of P. -vs.-E:

J -- (x.(tT (x. ttfSP(x i (f) +P Pxi ( t3. to P i

L (xiv,t)+ 1T (f.-x.))dt , (62) 4,

P. e

J e =(e (xi(tf)Itf)+V ei.' (x .ttf),t f (Le u (xi'ui't)-

eei.f 3e . i.f~f+ ( .~ 3..
3. 3. 3.

T
-L (x i ,v,t)+X (f. -x. ))dt.eV. . e. i33. 3. -'.

A step by step derivation identical to the one conducted in the

two player case, yields the necessary conditions of optimality for

the team games, as

D L 4) T a(Pe T
pL EX .itf 0 (E.- 1 +L -EX x.)t =0f 3. tf i f i e. I-t'

i -T uHei *T
x. p aX. e.

(63)

( -L)t= (Ar) ' -- = ;e
aXi =f Pi tf .A )

• ( e. t- -

°. ..
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alp 3He 3 a~Lev.

-=O if v given, 1 -+ -- OvE -=0if u given, 4

in which some equations are expressed N times, one for each pursuer.

For this team game, the Nash strategy is expressed as

V (Ulf u2,.uN) £Ul.U2... UN

(64)

e (Uu t.uN'v) <J(U ,u
eu1 1 21.. fNe 1 2' UN' V v EV

when, in the general N-player case, it would have been

(Vi~l,..,N) J~ 1 .IifUi +.,u

(65)

* * * * ) (V U. E U)
J(u,.~f .,u. , u .,-u N1 1

The distinction between a team game and an N-player game appears

clearly.

For a generalized team pursuit-evasion game, *= =1

L =L =Land phas dimension one. ThenA .- . and
p e pi el I

-V.=V = V..
el pi 1

UThe necessary conditions of optimality are summarized below:

~. S~p.3H.
(.- V~ ) +H)t = 0 , --

t sif ax

i Ti T(66)

ax . ia. t .f a. .
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The first equation in (66) can only determine one of the N scalars

V. The remaining scalars must be chosen so that the solution to the

equations matches the initial conditions of the game. The (N-1)

unknowns, called strategic variables are defined as

V - V., Z. = 1 (67)

Utilizing this formulation, the first equation in (66) is used to

determine the unique Lagrange multiplier v.

The strategic variable z, is such that, when z. is small, P.

has nearly no effect on the game as seen from (43) and because i -

has a module proportional to z.. On the other hand, if z. is large,

then, P. is more important than other players. Thus, there is a clear
1

relation between the importance of a pursuer and the value of its

strategic variable. Conversely, the value of z. can be used a-

posteriori as a selecting device to choose the relevant players to

simplify a game and to compute approximate solutions.

The strategic variable is not constant when the evader is sur-

rounded by the pursuers. That possibility exists whenever there are

at least N pursuers for an evader moving on a space of dimensions

(N-l). Then z. adopts a value such that the control of the evader
1

disappears from the Hamiltonian.

The main problem in solving the team games, with this approach,

is to guess- properly the strategic variables. The capturability and

playability conditions can be used to restrict the domain of defini-

tion of z.. When a given level of cooperation is required from a ...

pursuer, the value of its associated strategic variable is necessarily

- '9. %
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restricted. However, finding the exact value of the strategic .'N-_

variable z. usually requires a painstaking trial and error procedure.

Thus a formula to give a first approximation of z. is desired. The'
3.'.

correspondence between z. and the effect of the pursuers suggests

formulae such as

(P E)z. = (68) -.- "
1 P.E) ,-

1 ]

or PE- rl)P Up-
i (P.E - r.)/p

where P.E is the distance separating the evader from pursuer P.,
11

of maximum speed pi.

Also, it can be shown easily that, under favorable initial con-

ditions, two slow pursuers can catch a faster evader. Also, if the

one-versus-one game (PIE) admits a solution from xl(tf), then, the

two-versus-one game with x (tf) is possible under any value of the

strategic variable. Conversely, for any pair (x (tf),x 2 (tf)), there

exists a value of the strategic variable such that the necessary

conditions of optimality are satisfied. Then, it is clear that

restricted usable parts of terminal manifolds can no longer be found F
and, consequently, the convenient use of the singularities to study

the boundary of the usable part, barriers, capture zones and par-

ticular trajectories do not apply to team pursuit-evasion games.

Feedback solutions can only be given relatively to the other

pursuer, thus, the added dimension due to the strategic variable

prevents the global solution to be represented by a unique state

: ::--.--:-.", -:." -."...................................
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portrait, since trajectories corresponding to different values of z.

do intersect. IF

The most crucial point in this study is that an N-pursuer team

game is not a classical (N+l) point boundary value problem because

another (N-l) unknowns, modelled as strategic variables, are to be

found. The team of pursuers minimizes a common performance index;

it defines a single Hamiltonian for the team, and then, whenever a

pursuer is added to the team, one equation is missing. Nevertheless,

the general structure of the equations enables one to take advantage

of the individual 1-vs. - games to derive structures of team games.

* 2I

• ° a

S. * .* .
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IV. THE GAME OF KIND

1. INTRODUCTION 1'

By analogy with the 1-vs.-i game, the game of kind study for

team differential pursuit-evasion games could be summarized by find-

ing the answer to the question "can the pursuit team catch the evader

in finite time?" Sufficient conditions ensuring the existence of a

control to achieve capture in finite time are stated by Satimov,

Azamov and Khaidarov [20]. But another dimension to the game of kind

has to be added, and the next question is "which are the relevant

pursuers?" In other words, how to distinguish the pursuers whose

presence is required from those whose effect on the optimal solution

is null. %

A pursuer P., attempting to capture an evader E, is expecting

some cooperation from other pursuers. Fixing Pi. it is convenient _A:

to partition the space into various zones in which a copursuer would

be expected to behave in a particular way. As the game proceeds, the

zones evolve dynamically. The possible zones of interest are numerous,

therefore the pursuers will be assumed to play optimally, reducing

the number of the zones of interest.

After the various definitions of the zones for the minimum time

problem, a parallel with the game of degree allows computation of the

most useful zones, the help zones. Approximated formulae are also of

interest since the computation of the exact zones is, at best, diffi-

cult. Finally, an example is treated to illustrate the procedure.

1 .omL
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2. PURSUER CLASSES

Generally, three classes of pursuers can be distinguished as

follows:

i) The first is made of the pursuers that are irrelevant to the

game because of their initial position, their dynamical character-

istics (speed, maneuverability, etc.) or because other pursuers are

located in positions that completely cover the possibilities of these

pursuers.

ii) The second class includes the pursuers that have a temporary

effect on the game. The typical example is a very slow pursuer lo-

cated on the course of the evader. This pursuer will deny a direct

course, but once passed, its effect will be null. State constraints

like islands can be modeled as a pursuer of speed equal to zero, with

a lethal area covering the island.

iii) The third class consists of the pursuers that actually per-

form the capture. It is often implicitly assumed that the pursuers

belong to this class.

The three classes must be studied in both events: an optimal as

well as a non-optimal play of the evader. The actual control that a

pursuer should adopt in the (unlikely) event that the evader would

not play optimally, when such an optimal play of the evader would

not allow this pursuer to be useful, is difficult to find since the

very definition of the criteria to optimize is problematic. -very.

The study of class two partitions the game into several sequen-

ces divided by time t s from which the pursuer of class two has no

. 4 -. - ,
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effect any more. Very often, the evader is on the border of the

lethal area of this pursuer at time t.

The global study of the game of kind helps in finding the con-

ditions under which capture is possible. These conditions on the

relative speeds and maneuverability, ensure capture independently of

the initial state (capture condtion) or not (playability condition).

Under particular initial conditions, it is possible for two slow

pursuers to catch a faster evader.

3. TNO-VERSUS-ONE PURSUIT-EVASION ZONES

The zones represent a parametric study of the pursuit-evasion

game. Many parameters are candidates but the one used is the initial

position of an eventual copursuer. Thus, the other parameters such

as the position of the evader at t = t and the characteristics of
0

the various players are assumed to be known. Another assumption is

the optimality of the strategies of the pursuers.

The specific pair (Pi,Pj) is separately studied. To a pursuer

Pit six zones, corresponding to six possible cases, are relevant.

The following notations are used:

xTM.x. < r2 is the capture condition corresponding to
pursuer P..

The control vector of pursuer P. is u., defined on the set of

admissible control functions U. The control of the evader is v,

defined on V. Usual definitions of U. and V are the set of control "-.

vectors bounded by a given maximum norm.

p'.=;

~ ~ ..- : > .. ~-: . -. -~*., .&%iz-
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tpi (v) is the capture time of the one-versus-one game
p (piE).

where E applies the control v, and P., initially located at xi (t )

. plays optimally. v is the optimal strategy of E. To each pair

(v, x. (t)) thus corresponds a time tp (v).
,10O

tp (v) > tP. (v) means that the optimal game (P.,E) finishes '

in a longer time than the optimal game (Pi,E). Then P. is a more

dangerous player than P. and z. < z. is likely in the 2-vs. -l
* * * *".

(Pi,Pj,E) game. Note that one of the times t (v) or tPi (v) may

be infinite if the corresponding pursuer is unable to catch, alone,

the evader.

zip (P/P is to be interpreted as zone number 1 where the

parameter of study is the position of pursuer P. at time t = t , in
J 0

which P. is located such that P. has no effect on the game, given

that P. plays optimally.

In the following, x i(t ) is given and the parameter describing

the zones is the initial position x. (t) of an eventual copursuer.

i) ZiP 0 (Pi/Pj) = ) x>ri vEV,V tE

[to, tp. (v) ,V ui i  •.
0 P. 1 1.

If P. belongs to this zone at t = t , and the game (P.,E) is finishedJ 0 J
*

in t (v), then P. will not play any role in any game involving P.,
P.4

provided that P plays optimally. In this game, a strategic variable

associated with P. is z. = 0, and P. is of class one as defined

earlier.

4. . . . . . . . . . .. 4

.. ".
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ii) Z2Pj (P./P j ) = {x. ( t  J (t)Mixi(t)>r V uui

VtC~to~t P (v] and .3u.eUi. aVEV, ,.

I.- . •%

* T 2 1
atE[t ,t (v)J;x.(t)M.x.(t)<r. .

b 0 P. 1 1

P. cannot catch an evader playing optimally according to P. but there

exists at least one play of the evader that would enable P. to cap-

ture before P. does. P. can play a role in a game involving P. only

if E does not play optimally or if the presence of other pursuers

forces E to deviate from the (PjE) optimal strategy. If pursuer P.

is of class two as defined earlier, then P. is able to intercept the

trajectory of the l-vs.-i (Pj,E) game in the prescribed time other-

wise P would not be able to deny the evader a course. The fact

1that P. might not achieve capture is here irrelevant: the other .

member of the team, namely Pj, will do it; the question is to know
J.% J

if P. plays a role in the team effort. A pursuer P. of class two1 1•

belongs to the next zone.

iii) Z3Pj (Pi/Pj) = {x (to)Ia u. EU.i t[to't (v)];
Jo 1 0 Jo 11 J

T 2 * * * *
x (t)Mixi (t)<r and (v)<t (v-

If P' belongs to this zone, then P. will play a role in the (P.i,PjE)

game, in which P. is the primary threat.

. * * , *%.

iv) Z4P. (Pj/P') = {x.(t )Ia u. U.,2 tE[t ,t (v )]
Jo J 0 P ...

xT(t)M.x.(t)<r 2 and t Cv)<t (v)}v <t
1 3 -- '-

S. .

%:"
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If P belongs to this zone, then P. will play a role in the (Pi,Pj.,E)
game, in which P. is the primary threat. A pursuer of class three

would belong to Z3 or Z4.

* 2v) Z5Pj (P/P i ) = {x.(t )Ix (t)M.X.(t)>r, VujCUj, V te

[t o t (v)] and au. U.,.vEV,.t

* T 2
to tp. (v)]; x (t)Mjxj(t)<r 2 }.

1--

P. cannot catch an evader playing optimally according to P. but there
- 1.

exists at least one play of the evader that would enable P. to cap-

ture before P. does. If P. belongs to this zone, then P. can play a

role in a game involving P. only if E does not play optimally or if

the presence of other pursuers forces E to deviate from the (P ,E)

optimal strategy.

.vi) Z6Pjo(P./P i ) = {x.(t)Mjxj(t)>rjvujsUjVvV,
v)ZPjo) 1 J 3 )>j 3 u 3 Ju V

If P. belongs to this zone, then P. will not play any role in any

game involving Pi provided that P. plays optimally. In this zone,1

the strategic variable z. associated with P. is zero, and P. is of•3 3 3 " .

class one.

Section 6. shows an example of the derivation of these zones 7,77

for the problem of the cutters vs. railroad.

The definitions above concern the 2-vs.-l game (P.,P.,E). The

zones are the same for every pursuer identical to P. but depend on;" ~3,%.
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the position xi (t ) of Pi at t = t , i.e. to a new initial position

xi (t o ) corresponds a completely new set of zones. The same kind of

definitions can be derived for a three-vs.-one game as:

ZlPko (P k/Pi,P.) etc. The derivation of these zones is, of course,

more complex than in the two-pursuer-versus-one evader game.

In solving a N-pursuer game, it is hoped that the simple case

by case study of the zones associated with the possible pairs allows

selection of the relevant players. P-.

4. THE HELP ZONE

The help zone HP jo(PiE) = Zl U Z2 U Z3 U Z4 is the zone in which

P. plays a role in the (Pi,PjE) game where P. and E play optimally.

The first way to compute the boundary of the help zone is by

remarking that this boundary separates the optimal 2-vs.-l game

(P.,P.,E) in which P. plays a role with the 2-vs.-I game in which P.

does not play a role; this latter game is, thus, equivalent to the .- J.

1-vs.-l game (Pi,E), since P. is irrelevant. Therefore, if pursuer

P., at t = t , is located on this boundary, then the equations of
j 0

the necessary conditions of optimality describing the 2-vs.-l (P.,P.,E)

game and the equations describing the l-vs.-l (P.,E) game both hold,

and consequently, the boundary of the help zone is determined by all

the possible x.(to ) that satisfy these conditions. Then all the

equations must be jointly solved; this control approach seems heavy,

but is easily shown to be equivalent to the solution of the equations

of the 2-vs.-l game and letting the strategic variable z. approach

zero, since P. has less and less influence while reaching the boundary

L " L " , .- -It -_ -' ,

- . t- - - - -

o ' .I."
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of the help zone, beyond which P. becomes useless. This is a rela-.,
tively easy task. That smooth transition between the 1-vs.-l and

the 2-vs.-l games is ensured by z.. The absence of the strategic

variable prevents any attempt to define a help zone for fixed

terminal-time games.

The second way to derive the help zone is a gaming approach.

The Hamiltonian of the 2-vs.-l game is H, and the Hamiltonians of

the 1-vs.-l games (Pi,E) and (P.,E) are Hi, H.. Then it is always

possible to set H = H. + H. + C.. where C.. is a correction term
1 J 1J 1

such that the equality holds. If P. collaborates with P. in theJ 1 . .

capture, then H # H. must hold. Thus, H. + C.. p 0 is the coopera-

tion condition, and conversely, H. + C.. = 0, with the controls u.

from the l-vs.-l game, gives the boundary of the help zone. Though

different in their approaches, both methods are, in fact, equivalent.

5. APPROXIMATIONS OF THE NO-HELP ZONE
N

Zone Z6 is important because a pursuer located in zone Z6 of

another pursuer can immediately be eliminated. Unfortunately, if

the derivation of the help zone is more or less possible, Z6 is more

difficult to compute since a non-optimal play of the evader (optimal

in the 2-vs.-l sense) must be accounted for.

From the definition of Z6 given above, three simplifications

that yield approximated results can be made.

i) Z63Pj (Pj/P.) ={ )iYT(t)Mjy (t)>r2, vu.cU.,
jo J 1 J0 3 .-I I

0 .. r.7'

r.. .
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where y. is the state vector corresponding to the Pareto game (P.,E)

in which E is willing to be caught (rendez-vous game). y (t) obeys

the same dynamics as x. (t) and yj (t) = x. (t ), but during the develop-

ment of the game, the evader uses its control v to help P. in the

capture. If P.3 is not in the area of constant terminal time tP. (v)

in the Pareto game (PjE), then P. belongs to Z6. The idea is that

(P.,E) lasts at most t (v); if the game (P.,E), with the cooperation
1 Pi 1

of E, cannot be ended within this time, then, for sure, P. cannot

help P. in catching E. Z63 is, of course, a coarse approximation of

Z6; also Z63CZ6.

ii) Z62Pj (Pj/P i ) = {x.(t o ) W T2x.t)yjT(t)Mjyj (t) >rj,V ujEUj, i

v , V [t o rt (v) ]

where y. is the state vector corresponding to the Pareto game (P.,E).

Z62 uses the same approach as Z63, but now, E is constrained to the -

reachable zone of the evader allowed by P. In the 1-vs.-l game

(PiE) where P. plays optimally, E, playing all the possible policies

v, can cover, before capture, a zone named reachable zone of the
* * -'".

evader allowed by Pi' and the largest time to capture is t P. (v)

In Z62, E is constrained to this zone that P. attempts to reach.
J

Z62 is a better approximation that Z63 at the expense of some more

computation; Z63C Z62C: Z6.

iii) Z61P. (P./P. ={x.(t )y()M (t)>r., VuSU.,.j..o Mjyj0 3 3 i

vVEV, tE[t o ,tp (V)]}

o P. .-..
."1

'" -' ' "'.. '- " ' -..' .. " . "...- . -. - : " -"-, -" ."-. -" -"-. -" ." ."-. -"- -. .- -'-."-- -" ."-.? .,-" .'..*-"*.".." , - -" "-. -" . " .
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3.3

where y. is the state vector corresponding to the Pareto (P.,E)

game. In Z61, E is also constrained to its reachable zone but the

exact time t (v) allowed by P. associated with every policy v of
1 

I

E, is computed and fixes the maximum duration of the Pareto game

(P.,E) during which P. attempts to reach E.

For those game in which the l-vs.-l game (Pi,E) lasts long

enough compares with the inertia of P., a major simplification can

be made if the control u. considered is fixed to be a trajectory

orthogonal to the trajectory of the evader at time t (v). .3
P.

Z63 is to be used when t (v) only is available, Z62 when the
P.

reachable zone of E according to the 1-vs.-l game (PiE) is known,

and Z61 when the exact timing of this reachable zone is known. -

6. TWO-CUTTERS VS. RAILROAD EXAMPLE

6.1 Time-optimal conditions

The cutters P. attempt to intercept in minimum time a train E, . .

constrained on a railway (axis x2). The lethal area of the cutters

is a circle of radius r.; the cutters of speed P. control their

heading angle ui, and the evader controls its speed v, bounded by e.

The 1-vs.-l version of this game has been referred to as "the wall

pursuit game" by Isaacs [3], or sometimes as "ICBM vs. railroad".

Due to its simplicity, this game can be solved geometrically or

using control theory. The important case where E is between or

surrounded by its two opponents as well as its implications on the .3..

strategic variable z2 (z = 1) are investigated.
1

rr

* - 3 . ~ .3~ . 3 . .. .

*~./>* ~ ~ .'J.Yt ..3 . *'*..& '- ~~~*°***.°



56

The game of kind will be studied through two examples.

The Hamiltonian, the optimal policies (u.,v ), the costate

vectors A. = (i'2and the states (x.) are given by

3.~ ill i

=-AIIpICOs (uI ) + 12 1v-psin(ul)) - 2 1P 2 cos(u2) +

(70)
X2 2 (v-P2 sin(u2) + 1

cos (ui) = Aill 2 (71)

sin(u.) = /2 + 2
1 i2/il i2

v= e'sign(X1 2 + X2 2 )

where "sign" is the signum function,

kil = 0 ,<

(72)

i2

at tt A =r Cos (t X A vr oaf 1 1)1 1 21 2 2 cs( 2)

X12 1 1sin(cc 1 22 2 22sin(a2)

and z2 vr l - v 2 r2

12 1 1 73)

xi2 = r. sin(a i ) + Tpisin(i) - Te.sign(sin( .)) + TeC. ,

with C. = l-sign(sin(ct.)) - l-sign(sin( ) + z 2sin(a2)) .1'

'-p

• " "" " " "" - " " ", -" - " " "° '". ". '" " . '.' .' . " - .. , 'J -" . -'.-'.-',-"' "'. -'.-',- . "" "" . ". " ". , '. ", "' . - -. -. "" "" -" ,"
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C. are line of sight angles relative to x axis at the terminal time;

T is defined as tf - t. The strategic variable z2 appears in (73) °

only in a signum function, therefore has a switching effect.

The capture condition is expressed by

P 1 2 - elsin(a 1 + z2sin( 2 )1
> 0 (74)

Three inequalities restrict the strategic variable: the capture

condition, expressed at the terminal time and the playability con-

ditions applied to each pursuer, which state that the trajectories,

as T increases from zero, must go away from the terminal manifold.

Defining d. as the tangent vector to the trajectory at time T = t - t,
1 f

this geometrical condition is expressed by

d. = (x - r cos(ct.) x. - r.sin(Ca.))
. il i i 12 2. 1

(75)

(xil - rcos(a ))cos(a.) + (x 2  - rsin(a))sin(c)> 0

The strategic variable is not constant when, for example, the

common opponent is surrounded by the pursuers. That possibility

exists whenever a team of at least N members faces an opponent moving

on a space of dimension N - 1. Then z. adopts a value such that the

control of the evader, v, disappears from the Hamiltonian at the last

moments of the game.

6.2 Game of kind analysis

The trajectories are given by (73), the limit of the help zone

for P is obtained by letting z2 approach zero in the trajectory (73)

-- .
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for P2" The result is given below; the variable is a2, T = tf and

M are given by the l-vs.-l game (PI, E).

X, r cos( ) + TPC°S(a1 2~ 2 zpcc 2)
(77)

x2  r2sin(a2 1 + Tp2sin( 2 ) - Tesign(sin(l))

From the above computations, various significant zones of cap-

ture and help for location of P2 at t = to, may be computed, relative2 0.

to x (t ). For example, with p1 = e, e = 1, r1  1, r 2 = o.5 and

xl(t) = (4 ;-4). Figure 13 presents the zones for p2  1.5 and

Figure 14, for p2 = 0.5, is an example where P2 is unable to capture

E in the game (P ,E) and t P ) is infinite. Z6, the zone of cap-

ture by P alone, is the most difficult to calculate. The three
1

approximations are computed according to their definitions in

Section 5.

The interval given by x2 s[3.95,-1.79] in Figures 13 and 14

provides the segment that E can reach when P1 plays optimally.

,.
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.Je.

Z26

Zi:PO P2 aln wil ct ur o)W E.

Z6: P1 alone will capture E.

Approximations of Z6:

Z61.
-----------------Z62.

Z63.

Figure 13. Cooperative zones for 2-vs.-l example with pursuer speed

P 1.5.

.7-*
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3.35

4 Z4.

,Z5 '-
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, iII

C. 

o.o

Zi, Z2, Z3 are identical to the capture area of P2Z4 P1 will be helped by P2 in capturing E.2

Z5: P1 alone will capture an optimal E.
Z6: P1 alone will capture E.

Approximations of Z6: -

- -- Z61.
Z62.
Z63.

Figure 14. Cooperative zones for 2-vs-i example with pursuer speed

P2 0.5.
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V. THE LINEAR QUADRATIC GAME OF DEGREE

1. THE QUADRATIC TEAM GAMES

- The hierarchical command and communication structure for a linear

quadratic game of N pursuers and 1 evader is derived. The optimal

solution and a simpler form of this solution are given yielding the

general solution to the N-pursuer vs. one-evader game. A sensitivity

study leads to a simple hierarchical structure which greatly reduces

the amount of computation required.

Two-player, linear, quadratic games have been extensively studied

in the literature. According to Clemhaut and Wan [21], conceptually,

a linear quadratic model may be regarded as a Taylor approximation

to more general models. Another advantage is that, computationally,

the closed-loop control can, in principle, be numerically determined.

On the other hand, two main disadvantages must be overcome. A

quadratic objective function implies satiability at some finite state -.

vector. Unbounded controls make any pursuit-evasion, game-of-kind

type of analysis impossible. More importantly, even for a two-person,

two-state problem, the solution involves a Ricatti system including

six second-order differential equations.

Team games emphasize these disadvantages; the very definition F

of the performance index actually defines the type of cooperation t

between teammates; this issue is addressed in Chapter VII. The

game becomes an N+l point, boundary-value problem 4nvolving heavily

.r.. .

|...
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interrelated Ricatti equations and has a complex hierarchical •-

structure.

2. 1-vs.-1 LINEAR QUADRATIC GAME OF DEGREE

The game studied is a linear, quadratic, generalized N-pursuer,

one-evader game with the reduced state given by

x. = A.x. + B.u. + C.v , (78)1 11 1 1 1" t

nfwhere i = 1,2,..,N; x uER u u. is the control of pursuer P. and .

vERn is the control of the evader; Ai, Bi, C. are matrices of appro-

priate dimension.

The terminal condition is given by a manifold g(x (tf)) < 01 f

or again more specifically

T 2
x (t f)M x (t f) < r. (79)

and the performance index, to be minimized by the pursuers and maxi-

mized by the evader, is

J= 0. [ 1 T + , .5.

(xiQix + u.R.u. ) - v Sv)dt , (80)
to . 11 11

where M., Qi' Ril S are appropriate, positive definite, symmetric 1%

matrices.

Let X.cR be the costate vector required by the game solution

with the minimum principle such that the transversality condition is h" "

given by the relation S-

Si (t f ) = VziM ix i t) , (81)

_-.. 5

[; -..

...................-......... "-". ---"--.- ' " ' ""-"-"-" "-" "." ..-' . . " - -""""-.Z"-..J-.-.-''.'. J' ' -"J-
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where v, a Lagrange multiplier, satisfies the terminal Hamiltonian

T 1 T TH(tf) = [Z(Aixi+Biui+Cv) X -4(X. +u.R u.)+ii i 2. iii 1iii

(82)
IT-sv)] =-0
2 Sltf 0

The strategic variable, =i 1 for a l-vs.-l game, and it can

be assumed that z= 1 (most effective pursuer) and z. < 1 for

j =2, ...,N in general.

The open-loop Nash solution according to the minimum principle

for the one-pursuer case (i=l) is given by

* -i T
u. R. BiTi. (t,t )X (t o )

1 1 2.11 0 1 0
(83)

V S-CT..(t,t)x. (t)

v =

where the state transition matrix,

$i(t,t o ) = (A. + N.T. + L.T.)$.(t,t
1 0 1 11 1 1 0

(t1 )=1(4

-IBT -IcT . '
N. = BiR.B , L. = C.S C.; -1 1 1 1

T. is the solution to the matrix Ricatti equation,
1

T -A.T. --T.A. - T.(N. + L.)T. +Q

(85)

T.(t f ) = Vz M.
1'f i -
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The solution is classical. The non-zero-sum game formulation,

in which P and E do not have a similar performance index is treated

by Mohler, Kolodziej and Bugnon [221. The vector X. and the matrix

T. are duplicated; (85) becomes a system of coupled Ricatti equations.
1

A procedure to decouple the Ricatti equations is given by Simaan and

Cruz [23], taking advantage of a preliminary solution common to

several initial conditions, reducing the problem to the computation

of successive linear equations.

A complete derivation of the two-player, linear, quadratic game

is given by Ichikawa [24] and Hamalainen [25].

3. TWO-vs.-ONE-GAME SOLUTION

The two-pursuer, one-evader game requires two costate vectors

with transversality condition (81) for i = 1,2. ui , i = 1,2, is

given by (83) and

v -1S[ C. Ti.i(t, tolxi(to) (86) -
, .'. .

1 0 1 0

The state transition matrices are given by (84), and H(tf) by

(82).

T. on the other hand, is computed from
1-

T -1 T
Tx = [-TIAI-AITI-T (NI+L TI+Q xl-TiCiS C2T x

1 1 ~~~~1 1 1 1 1N1 LT+QxTCS C2 T2 x2 (87)

T x [- = T T1CTT 
X2 2 [- 2 A2 -A 2 T2 -T 2 (N 2 +L T 2 +Q 2 x 2 -T 2 C2 S

1 T

where Tl(t = M (tf)= Vz M
Ilf 11 2 f 2'~'M

: ;". .. ..

. . .. . . . . . . . . . . . . . . . .

," . . .- -.-- -, . , " -' -- .- --- . -. ' - . .' - .. ,. -,--. ,---'. " " -- .. ." ,/ . - ." . -,:- " - .. - . -.. -'"," '. '-.2 .' '':-."'. -.- '
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The solution is very complex compared to the l-vs.-l game. The p'

differential systems, (84) and (87), are tightly coupled, requiring "

parallel computation whereas the solution to the l-vs.-l game could

proceed in several steps.

z2 must be selected properly to correspond to the initial con-

ditions of the game. It might require a trial and error procedure

whose computational burden would be somewhat reduced using the

method described by Simaan and Cruz [23]. .

By analogy with the strategic variable, a strategic matrix Z.

is defined as a symmetric, non-singular matrix satisfying the rela-

tion

ZTx = T xi (88)

and ZI (= I.

The solution, while (85) and (86) provide u,v is given by '"

T1= _TAIATIT 1 (NI+LI)T -ITICIS -IC zTIZT+Q IT l"'

(89) 

T 1° T 1

?.with T1 t f ) = Vl 1 ..

2 f 2M2
" (9) 90)

Z = (AT+Q Tl (A+ T _ -Z
2 21 1 2  )z 2

S) (A +Q T

2 Z2 (A2+Q2T2  ( 1+Q1T1  2

*.-0*

do"
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and Z2 (tf)M l x l (t) - (z /Z )M x (t 4.
an i 1f 2 1 2 2 f)

Z21 (tf) = [Z2 (tf)] -

The similarities with the 1-vs.-1 game are now obvious; the

equations are decoupled and can be solved in turn. However, the

problem of guessing the strategic variable remains. Note the sim-

plification that Q1 = = 0 would introduce.

4. STRUCTURE OF AN N-IDENTICAL-PURSUER,
ONE-EVADER LINEAR QUADRATIC GAME

The solution for Q=O takes the form given by

* T
im xiu. -- BTT. x..-' .

1 1 1 '(5 '<
(91)

v* N
v = C 7. T~x= i Xi

i=1
l,N -l

T. = -T.A-A T. -T. (N+L) Ti-TiL( Z.Z ) T. (92)

and T. (t f) = ziM , V given by H(tf) = 0

Z.AT T

1 11

(93)
z-l -iT T -1Z. =Z.A - AZ

with Z. (tf)MX (t) = (z/z) Mx (t)
i 1f i 1 i f

z i (t f) = zi (t f) -

The summation sign (E) on the control of the evader v , and

the independence of the controls u. as well as the form of the

solution show that each pursuer P. needs to receive information about

- "- . -- ."....................... . .I -



67

the optimal control, v , about the strategic matrices Z. and the

strategic variables z. in order to carry out its own optimization -F-

algorithm. This results in u. while providing information about

T.x. (to compute v ) x (tf) (to compute Z.) and J. = f t(uR.u.)dt
ii i f i 2 to ii1

(to compute z. and z.).2. J

It can be viewed as the nesting of three hierarchical structures

that must iteratively be optimized, going from the lowest one to the

highest one. Figure 15 shows that structure.

First, according to a given pair (Z.,z.), the loop involving1 1• -

ALl is taken into account, each pursuer producing x (tf). Then,
i f

according to these x. (t ), the new Z. are to be computed by AL2

according to (93), and so on until the point where the new values of
Z. match the old ones. As a last step, J. are analyzed in AL3 to

produce the new strategic vector z = [zZ 2,.. ,ZN] . Consequently,
* N

i) ALl is purely deterministic: v = CET.x. -

ii) AL2 is tactical: the main strategic option being defined "'.-

by the strategic vector z, AL2 merely computes the trajectories,

1lN
etc. to perform the capture. Z. must be computed according to

j#i -
the differential equations given for Z. which depend on x (tf). An

jf

algorithm that ensures the convergence of Z. to yield the values of

x. (tf) produced by the pursuers, must be added.

iii) AL3 is strategical. The values in the strategic vector

define early strategical choices viz. which is the most important

player representing the main threat to be considered by the evader,

which are the irrelevant pursuers (of class one), etc... z. must be

determined according to both the a priori information and the a

posteriori information based on J. for the previous vector z.

16
r!
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p lo
.............

ALII

Cx 1.

Puse I

v* CxZ

* Figure 15. Nesting hierarchical structure for N-vs.-1 linear quad-
ratic game.
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ALl is known; AL2 is a simple converging algorithm, but so far,

little is developed to ivoid an exhaustive search for AL3.

A few fules in finding AL3 are as follows:

i) Study the game of kind, trying to select the relevant 6

pursuers to the game.

ii) Attempt to guess the value of z. according to the initial

positions and some simple geometric rules.

iii) The capturability and playability conditions that must be IL

satisfied by zi, delimit the hyper-volume of definition of the

vector z.

iv) A heuristic decomposition approach to the solution that

will be introduced in the next chapter.

5. A SUB-OPTIMAL STRUCTURE

Equation (92) can be redefined as ..-

+ -T.A -AT. -T. (N + L)T -i  -. , (94)11 1 1 1 1

if i-i
= T.L( z )Z Ti

j=l
(95)

.= T.L( Z Z.)Z. T.
1 i j=i+l J 1 1

Except for the addition of 8i and w. in (94) and the summation

sign in (91), the N-vs.-l game solution is identical to the l-vs.-l

solution.

This suggests a sensitivity study of both 8i and w.. In some1 1

instances the 8i are nearly equal and the wi are negligible when

the pursuers represent equal threats to the evader. In this case,

the difference between the 1-vs.-l game and n-vs.-1 game is seen to

ir
.'.,'" .. '. .. ",""J° -,'%- ' - *"" J .' ,," , -"". . .5 ,"'. .. -. ,." .' ' " ,. -. '. % ' . .-. ' ' . .-.- " * ' ,.,' .'.v... .. .. - .
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come hardly from the controls adopted by the pursuers but from the

controls adopted by the evader. 0i is an important term if P. plays1 1 1

a minor role in the capture. On the other hand, for all cases con-

sidered, w. is negligible when the playability condition is not
1

violated, provided that the pursuers be classified in order of

importance, P1 being the most important one (the closest one to E

for the minimum-time problems).

Consequently, the result is shown in Figure 16, where each

pursuer solves (91) - (93), finding the couple x (t ),z correspon-
i f

ding to x (t O ), and passes this information forward.
1 0

.U.

Ui

ct.) PursuerrZ

Figure 16. Sub-optimal simple field hierarchical structure for the
N-vs. -1 linear quadratic game.

1 °°°°.*r
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This structure takes advantage of the autonomy of the pursuers,

breaks the complex solution into simpler steps, and, to an individual

pursuer, the number and class of the co-pursuers is completely

irrelevant.

The previous structure of Figure 15, though exact, is inferior

in that the search of the optimal solution is quite tedious, AL3, in

particular, is vague. The information passed (matrices Z., vectors

z and xi , Cx.T.) is substantial compared to the new structure.

A parallel structure is derived from this "ripple" structure

in Figure 17, enhancing the independence of the individual pursuers

with respect to the team, but at the expense of an increased number

of equations to solve. A "minor" pursuer can be added but the gain

produced by this pursuer must be weighted against the amount of

delay or computation that this very pursuer will have to cope with.

The structure depicted in Figure 17, and implemented for the

examples considered does not show any variation in state, control or

performance superior to 0.1% of the rigorous solution.

::- 

-Sj

X.(tS
xz (t, usu, .

Figure 17. Independent hierarchical structure for the N-vs.-l linear
quadratic game.

.. ' '. --.- - .-: v. ', .- ., : -.,. .. ... . ...*'; , . , - .,-- , ,. -.. . . . .. ., , ... .. , - , .. ..-.. : . ' .-'.,•
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5I.'

S-

VI. A COMPOSITION APPROXIMATING ALGORITHM
-.

1. INTRODUCTION

The main difficulty in solving an N-vs.-l pursuit-evasion game,

using the necessary conditions of optimality, is to guess properly

various variables such as the terminal hit points and the strategic.

variables. This problem gets more and more difficult as the number

of pursuers increases. The 1-vs.-1 problem, though complex, is often

solvable whereas the 2-vs.-i problem is nearly impossible to derive

globally.

In this section, the solution to the 2-vs.-l linear, minimum-

time, team game is simplified using a composition approach. The

two individual 1-vs.-l games are assumed to be previously solved.

The approach consists of the computing of an intermediate stage in

which an "equivalent" 1-vs.-l game is defined. The solution to this

equivalent 1-vs.-l game is used to find, in a similar way, the

solution to the 2-vs.-1 game.

The study of the 2-vs.-l game of kind done so far corresponds

to a direct optimal approach. The direct composition is defined

first; i.e., the problem addressed is how to compute the equivalent

l-vs.-l game solution from the two 1-vs.-l games.

The first step is to prove that such an equivalent game exists;

therefore the composition is first derived analytically from the

results of both the 1-vs.-l and the 2-vs.-l games.

rQ.
"". . . . . . ..- .-. "., ","- - "- " """"", - '""" ""." V .. , . . -""" ''' ''' -;'' '" "\ '. ." """" - . ''

": " ' '""" ""' """•.*- :.,-.-.?-.-".-""".--'..-. ;-" ..-. :'.. : ---- " . - ' , <
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* b. -' "

2. ANALYTIC COMPOSITION

The computation of the initial position, dynamics and terminal

manifold of pursuer P whose effect on the game studied (P,E) is MN"

identical to the effect of the pair (PIP 2), is named composition.

Three major properties of the ideal composition must be relaxed:

i) P must be equivalent to P and P for every optimal and
1 2

non-optimal play of the pursuers. So far, in every problem studied,

the optimality of the pursuers was assumed since the main goal is

to study the team and not the escape maneuvers. Thus, optimality

will be assumed for the pursuers, even though a problem is to get

rid of a non-optimal play of a (PI,P ,E) game that might, in fact,
12

correspond to an optimal play of a (PI,P2P3E) game.
1 2, 3 FE ae

ii) P must be equivalent to P1 and P2 for every optimal and

non-optimal play of the evader. This is a reasonable request, but

for the sake of simplicity, the evader will be assumed to behave

optimally.

iii) To every position of P and P there corresponds a position
1 2

of the equivalent pursuer P. Enforcing this property would solve the

2-vs.-i game globally. The study of this functional will not be

undertaken.

By composition, all the above simplifications are assumed. The

scope of interest of the composition operator is considerably re-

duced, but, as shown, existence is the main obstacle to a broader . *.'

definition. ..

. .. . . . . . . . . ..

. . . . . . . . . . . . ..... .
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In the following equations, the 2-vs.-l game is written with

indices when the equivalent 1-vs.-1 game has none. The pursuers

are identical. The minimum-time problem, where v, the control of

the evader, is constrained by Ivi < V and u., the control of pursuer

P., by Ivil < U., is analyzed.

The reduced states, the Hamiltonians and the optimal controls

are given by

x = Ax Bu Cv,

Ax + Bu + Cv (96)

x 2 =Ax2 + Bu 2 + Cv

T
H = AT(Ax + Bu + Cv) + 1

(97)
HI, = I(Ax + Bu + Cv) + (Ax + Bu + Cv) 1

1, l 1 1 2 2

Vl, 2  V'sign((AT + X )C)

(98)

* T
v = V"sign(A C)

and the capture condition by Fl

T 2 C99)
x (tf)MX(tf) < r (99)

By definition of the composition, in (99), both lines are riu
T T T

identical. Thus, A C and (AT + A )C must be identical switching

functions in order for the composition to exist.

r

(-..- -,'.. - -p ---..--. - -.' -. ...- -. . ; - ;. > - - ; - ; i --'" - - • - --- - - " -- " " . . - - -'- ". . . . -
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A simple possible choice is 75 . *4

X T =k(XT + XT (100)
1 2?

in which k is a positive constant. -4

Both the 2-vs.-l and the l-vs.-l game must verify the necessary

conditions of optimality when (100) is verified.

The maximum principle, that gives the control policies, is

obviously verified, the costate dynamics given by

T _XIA .

*T TA ,

Al= ,

2 2

do not conflict with the time derivative of (100) expressed as

A = k(A1 'A) (102)

At t = tf, the transversality conditions

T T
X (tf) = \xTM,

TTX (tf) = (103)

T T
X2 (tf V

2 "f1,2 AZ~M'

must be verified; (100) and (103) yield r

T T T T Tk (A(t ) + X2(tf)) = x = V 2 (z 1x + z2x2)kM (104)
12f, 1 2

,,r

.. . . o° . . °. o - ° - .° , ° . . .°. ° . ° °- - , .. ° . , ° . •- ° . ,. - - .° - - , °° . , ° .- 4. ° .°. . - 7 .'-'-"* -...................................................................................................-............................................................................................................................
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or, defining

x (t) = z x (t) + z2 x (t) (105)e 11 2

(104) becomes

VT (tf)M V 1 ,x e(tf)kM , (106)

where the Lagrange multipliers V and V must verify the terminal
1,2

time conditions

H(tf) = 0

(107)

H1,2 (tf 0

It can be shown that the choice made in (100) is a valid choice,

summarized by

x(tf) = x(tf)/a

-1/k = 2V (x TMAx /a + xT Cv- x TMBUsign(x TMB)) (108)
1,2 e e e e e

a + xT t)MX (tf) /r'.. a = + e fx e  f r.":'[

a is chosen so that k is positive, and then, V akvl, 2 .

Note that, in finding x(tO ), the position of the equivalent
0

pursuer at time t - t , only "a" really matters. Thus, provided that
0

the 2-vs.-1 game be solved first, finding the equivalent pursuer V

(i.e., composing) is an easy procedure for the linear system (96),

(100) is, in particular, a valid choice.
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A%

3. AN APPROXIMATION PROCEDURE ..'[-

The game is solved in two steps, according to Figure 18. The

first step is to compute the 1-vs.-1 equivalent game, namely x(t )0

and z2 to find tf, v and then, as a second step, the complex 2-vs.-l

game is transformed into a two-dimensional, time-varying, one-sided

control problem with fixed terminal time, much simpler to solve than

the original game.

The procedure is mainly concerned with the so-called direct

composition. The two main phases of the problem are to find x(t
0

and to estimate z 2 .

initial lv 1. n Como ti .- -

2**

cawtin ;rn Dircut I '

cr"l 1

A Al

....... ....... .......

Figure 18. Composition approximating algorithm for 2-vs.-l game.

77-
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The composition is performed using backward integration from a %.NJ

terminal hit point given by

, x(tf) = x (tf)kv/, (109)f ef 1,

N.

where xe is defined in (105). This relation merely expresses the

colinearity between x and x at t = tf, the constant term kV/%,
e 1f2

simply adjusts the modules in order to satisfy the terminal condition

(99). If r = 1 then it is readily seen that Ixe (tf) i = Vl,2/(kV). Lk

Then, integrating backwards in time, the state of the 2-vs.-l

and the equivalent 1-vs.-l games is given by

t tx(t) - D(ttf)x(tf) + 4f (tT)Bu(T)dT + ft P(t,T)Cv(T)dT

x (t) = (l(t, t )x (tf) + ftD 1(t,T)Bu(T)dT + -"
1 1 f 1 f tf"

f p (t, T) Cv (T) dT , (110)tf
64'

x2 (t) = #2 (t tf)x 2 (tf) + t ((t,T)Bu(T)dT +
f

t
It P2_ (t, T) cv(T)d Tii

tf2

where (, i' (D are the corresponding state transition matrices, and

A,B,C are time-invariant matrices.

P, P1 and P2 have the same homogeneous part in their differential

equation (96), therefore L

D(t, ) = D (t, t ) = 2(ttf) = exp(A(t - tf)) (Iii) ,;44
f I f 2 'f f

* ....

%a

%44

.4L
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The optimal controls areJ.

ul = -U sign(X B)

* T

u = -U *sign(X B) ,(112)
2 2 2

* =V-signA 1C + A 2 C)

* T

v =V-sign(X C)

Using

A(tf (x (tf + z x (t.))/a x x(tf)/a ,(113)

with (100) and (110), U =U = U 2 1, V =1, then

x(t)- exp(A(t-tf))x(tf + f TT(~-))-in(X+ Bd

(114)
tf T T

-f texp(A(t-T))C-sign((X 1 +X 2 )C)dT

is derived. (114) can be expressed as

tf T
x(t) =exp(A(t-t f))x 1(t )/Ua + f texp(A(t-T))B-sign(X 1B)dT/a

tf T T
-fexp(A(t-T))Csign((X +k )C)dT/a
t 1 2

(115)
tf T T

-z 2f texp(A(t-T))C.sign((X 1 X0 )C)dT/a

+ z exp(A(t-tf))x (tf)/a A'.
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tf
+ Z exp(A(t-T))B-sign(A2B))dT/a

2 2t 2

tf T T T+ If exp(A(t-T))B(sign((X +X 2)B)-sign(X B)/a

-z sign (XTB))d /a tf exp(A(t-t))C(sign((X1T+X2T)C)
"T TT T '"

" - sign((AI+XT)C)/a - z sign((X I +X2 )C/a)dT

2 1

In (115), terms x1(t)/a and z2x2 (t)/a can be recognized. Thus (115)

equates

x(t) = x (t)/a + ER
e

(116) V";-2.
tf T T s T (116)

ER = exp(A(t-r) [B(sign((A +A)B - B)/.t 1, 2.

z2 sign(X B)/a) c(1- C(l

T T(l+z2)/a)sign (X1+A2 )C)]dT .

Now, (116) is an important result, from which the procedure is

derived. ER, in particular must be carefully studied: similar terms

subtract from each other and the result, a switching function, is

integrated against the exponential matrix. Thus, a small value of

ER is likely, especially when the number of switches is important.

In the sequel, ER will be assumed to be negligible compared to

x (t)/a, thus, an estimate on the upper bound of ER is of interest.

Such a bound can easily be obtained by squaring ER and using Schwartz's

inequality. Unfortulately, such an inequality has the drawback of

-. . . ........ . ..- -- -........................ ..- > ... . ..
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totally suppressing the compensations in ER, resulting in a very bad P. -

upper bound.

Since (116) holds at any time, it holds for both t = t and
0

t = tf where ER equals zero, thereby verifying hypothesis (113).
f .i

As a conclusion, the approximated method performs the composi-

tion from the 2-vs.-l game, therefore requiring the estimation of

Z2 and then, according to (116) the initial position of the equivalent '.

. -/-i
pursuer is X(to ) (t)/a. Then, the l-vs.-i game is solved, v

the optimal control of the evader and t the terminal time, are com-
f

puted. As a last step, the control problem of finding the trajector-

ies and controls of the two pursuers, knowing v and tf is solved.

The estimation of z is the most delicate problem in the
2

method; the information available consists of the 1-vs.-l games. The

estimate of the strategic variable will take full advantage of the

whole prior information of the game: the l-vs.-l Nash and Pareto ,.$,

(i.e., cooperative) game solutions, the study of the game of kind

and, particularly, the computation of the help zones.

Let t and t be the terminal times of the individual l-vs.-l
1 2

(P1,E) and (P2,E) games. Let t and t be two limits such that,

because of the very position of P2' cooperation is possible with P1

only if t < t < t. Then, if t < tl, z 2 = 0 (Pl is so close

to E, that P is useless) and if t > t , = (P is so far away
2 1-lM, -K 1

from E that P2 does need any such help).

The simplest formula verifying the above requirements is

1 - lm)/lM- ) 1
z 2  k(t 1  , mUtIM (117)

where k is a constant.

... '. .
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Using the same approach, if t and t canbe found such that
2m 2Mca

cooperation is possible with P only if t < t
2 2m-L t2 t2M' then

z2 = k(t -t m) (t 2M-t / (t M-t 1(t 2-t 2m), (118)

respects the limit conditions, but the problem is to fix k. When

t 1 = t both pursuers are likely to be equally dangerous to the

evader, therefore z2= 1 should be enforced. This remark yields the

formula that will be used for z2 . I. e.

z 21 (tl-tlm, HtlM-t2 Ht2M-t 2 ) (t1- t2m) /(tlM-tl ) (t2-tl) '

(t -t (t -t I ) (119)2 2m 2m 1

If none of the four limits t tm, t and t can be com-
lxal lm"i 2M

puted, then t = t 0 and t t 2 0 is assumed, the estimatepuete lm t2m 0 lndtM 2M

becomes

^2
z22 (tI/t 2) 2 (120)

whereas the simplest estimate for z2 is

z23 = 1l/t2 (121) ".-

The four time limits are computed as follows:

i) When tI < tiM, then P2 does not play any role (z2 = 0). The

best case for P2 is when E is willing to be caught: the correspond-

22ing time is the terminal time of the Pareto (P2,E) game. "If t1 is"'.-"

even smaller than this time, then, for sure, P2 is useless.

• . . o*:

" :..r:.;-.2

z2I
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Thus: tlm is the terminal time of the Pareto (P2,E) game.

t2m is the terminal time of the Pareto (P1 ,E) game.

ii) When t > tim , then P does not play any role, and z2 be-1 1
comes infinite. When t1 = tiM ' then P1 is located on the limit of

the help zone of P2' limiting, by definition, the cooperation zone.

Thus a possible bound is to take the maximum of the terminal times

of the (PIE) games with P located on the help zone. The help zone

is usually assymetrical, since, for a given distance x (t ), the
l o

cooperation is best when the evader is surrounded by the pursuers.

Thus, every 1-vs.-l trajectory intersects with the boundary of the

help zone at a very different time, depending on the position of

the intersection. Thus, t will be taken as the terminal time on
lM

the limit of the help zone, along the trajectory going through

x (t ) (an example will be shown). tiM - tI represents the time

separating x (to) from the help zone. A similar definition is1.0

adopted for t2M.

4. TIME OPTIMAL EXAMPLE

The game studied has the reduced state equations

x. =Ax. + Bu + Cv , (122)
1 1 2.

0 , I-J c= , ui < 1, lvI < 1
-2 -3] ..,

and capture is achieved whenever .
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T 2x. (t )Mx (t )< r. (123)
3. f i f-i

with M I, r. = 1.

The minimum-time problem with identical pursuers is considered. %%.

Applying the necessary conditions of optimality yield the optimal

controls, the costate dynamics and the formula for the Lagrange

multiplier as

* T
u. = -l-sign(lTB)

* T
v = -sign (EX "C)

T sA. = A.A ,(124)

T TX (tf) = 2Vz x (t )M.
2. f i i f

V>0 - - Z.XYAX. + IzixTBi - V/2

V _0 E-* Xx + E JZiX~T - ZiXiCI V/2

For a fixed xl(t), Figure 19 shows the possible locations

of x2 (to) according to the amount of cooperation allowed by z2.

It is remarkable that the trajectory of P1 is not at all

affected by z2. Since this trajectory is fixed, and differs from

the equivalent 1-vs.-l trajectory, the cooperation of P2 is required,

defining a minimum for z2 equal to 0.38 in this case.

Figure 20 shows that, when P is chosen very close to the

equivalent l-vs.-i trajectory, then P (t ) is constrained to a very
2 0

limited arc, because the requested help is very specific.

C-i

a..

* ~ ~ ~ ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.____•
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1-vs.-1 game. xl (tf) = -0.27.
-')-- 2-vs.-l game. Trajectory of P1 for xll(tf) = 0.1.

2-vs.-i game. Trajectory of P2 for xll(tf) = 0.1, z2 = 0.38.
-- -- 2-vs.-i game. Trajectory of P2 for xll(tf) = 0.1, z2 = 1.

--- 2-vs.-1 game. Trajectory Of P2 for x].1 (tf) =0.1, z2 =100.

Location of P2 (to) as a function of z2 , for tf = 0.5.

Figure 19. Time-optimal solution sensitivity to cooperation by z2.
2.

0: :"S. i*
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Xil

A'

-4- -vs.-l game. xl(tf -0.27.
-4w- 2-vs.-l game. Trajectory of P1 for xll(tf) = -0.25.

IT 2-vs.-l game. Trajectory of P2 for xll(tf) =-0.25, z2 =0.38.

- Location Of P2 (t )as a function of z2 for tf 0.5.
0

Figure 20. Sensitivity relative to second pursuer close to I-vs. -l
game.

%A -A
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The solution to the 1-v6.-1 game is given in Figure 21. The

area in which capture can be avoided is very small. This is due to

the stable eigenvector of the matrix A added to the advantage in

control of the pursuer with respect to the evader, illustrated by

the matrices B and C. The lines of constant terminal time tend to

be disformed along the unstable eigenvector xi2  (-3-V'I7)xii/2, .,-.
i2l

more favorable to the escape.

Io &,\\ \%I'

-p "2

-Semi-permeable line.

ZCEZ== Usable part of the terminal manifold. -_
-9--Trajectory.

Constant tf.
Switching line. !.i.

Figure 21. Time-optimal solution for l-vs.l game. '[

* p°.."

° ,""

-*-- Smi-pemeabl line

-'- " "..'v .,-.",", ,.".-. Usable. ."- part-: .. -. of .- the .ter ina manifold--. ...-..-. ". .- ".. -. - -i'-.- .,-V
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The game is symmetrical, the trajectories and the constant

terminal time lines are plotted only over half of the space. IF

The solution to the cooperative (Pareto) game is given in

Figure 22.

1~it. it

b / o th tanifold.

- C on It , '-I" [

Switching line.

Figure 22. Time-optimal solution for .-vs-l Pareto game.

.

"i .

.- - . . . . . . . .. . .
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The lines of constant terminal time are wider apart and there

is no place where capture is impossible; this is expected since, in

the Pareto game, E collaborates with P.

The computations for three cases are summarized in Table 1.

Cases 1 and 3 correspond to a low and a high value of z2, quantifying

the cooperation. Case 2 corresponds to the worst possible case,

both z2 = 1 and a = 0 force a bad result. But the expected failure

of the method in that case is not a problem since it can be computed

that v = 0, this corresponds to a case of maximum advantage of the

pursuit team, and this case is treated in Chapter VII.

The controls corresponding to the three cases are plotted in

Figure 23. In Case 1, the equivalent pursuer has the same control

as P2; in case 3, the same as PI. when case 2 corresponds to an equal
2*

threat from both pursuers. Of course, both v and tf are identical

since it is the goal of the procedure to estimate those variables.

P1 and P2 ' trying to collaborate as much as possible, adopt opposite .

1 2'4

controls, so that E, playing a control opposing one of the pursuers,

then plays in favor of the second pursuer.

The three different estimates of z are given in Table 3. z

gives excellent results in cases 1 and 3, but fails in case 2, where

z is superior. z corresponds to z when the various limiting

times are not available. The results are centered around z = 1; in

case of uncertainty, the best estimate is a rather equal cooperation

between the pursuers.

Figure 24 shows, as an example, how t is computed for case 1.
lM

S. .'. . . . . . . . . . . . .
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U Case 1 Case 2 case 3

vs.I IL 1,

game *i

IVSA t

• ." Figure 23. Time-optimal control approximations for Table 1.

Ito

Fiue2 . eopia cnro-proiatosfo abe1

I. -- " .1 "-.

... 5 . . . ,, .

-P4

l-vs.-l trajectory.
-- Limit of the help zone.

Figure 24. Computation of cooperation-time limit.

°°o , . ."
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T 3. Time-optimal approximate solution comparisons for three

different degrees of cooperation.

Case 1 Case 2 Case 3

Examples P1 (to) (-5.36,13.0) (-7.67,19.2) (-7.79,19.4)
P 2 (to) (7.78,-19.4) (5.47,-12.5) (5.35,-13.0)

2-vs.-i P1 (tf) (-0.2,0.98) (-0.20,0.98) (-0.20,0.98)
exact P2 (tf) (0.2,-0.98) (0.20,-0.98) (0.20,-0.98)
solution z2  0.2 1. 5.

tf 1.00 1.00 1.00

Exact P(to) (-5.38,13.08) (4.27,-16.16) (5.38,-13.08)
composition P(tf) (-0.20,0.98) (-0.98,-0.20) (0.20,-0.98)

tj 1.0025 1.100 1.1075
t2  1.1075 1.0425 1.0025

tlm 0.860 0.780 0.7525
t2m 0.7525 0.850 0.860

Estimating tiM 1.40 1.27 1.32
z t2M 1.32 1.40 1.40

z21 0.199 1.85 3.007
z23 0.905 1.05 1.105 le-
z22 0.811 1.103 1.22

= .. -'''

Estimated I x It =a 0.787 0.943 4.03

Exact a 0.8 0. 4.

Approximated P(to) (-4.81,11.61) (2.618,-4.412) (4.71,-11.34)
composition: 0

Switch in v: tv  0.589 0.44 0.584
Exact switch: t v  0.602 -- 0.602

-I-

-. . '.,
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VII. A CONTROLLABILITY STUDY FOR LINEAR QUADRATIC TEAM GAMES
'.9

1. INTRODUCTION

Sl.?

The fixed terminal time aspect of the linear, quadratic team

games is studied in this chapter. A controllability study of the

l-vs.-l version of the problem was made by Behn and Ho (26]. These

results are adapted to suit the N-vs.-l team game under study, and

the controllability of the team is used as a measure of the efficiencyi %....

of the individual pursuers, providing a sufficient condition for a

p ursuer to be useful to a team.

The evader is shown to be neutralized by the maximum control- "

lability strategies. In cases where these strategies are game-

optimal, it yields a simple method of solving the difficult problem

of optimal disposition of a team of pursuers by providing a choice of

optimal conditions to simplify the search for the optimal solution.

2. FORMULATION OF THE GAME

The state of pursuer P., controlling u_, is defined by the_1 1

linear dynamic system

F. (t) x. + (t)u. (t)

(125)

0X (t) = x. ,

1. O .

4,..

4°

4, . -
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* The state of the evader, controlling v, takes a similar form:

x=F(t) x + ii (t) v (t)e e e e
(126)

x (t)=x -

e o eo

where i 1, 2,..., N; x., x ERr7, u.eR , veRP, and F.(t), G (t), F (t),
1 e 1 1 1 e

G (t) are matrices of appropriate dimensions.
e

The performance index is given in terms of a miss distance at

the fixed terminal time tf and an energy integral component as

1 2 2 tf 2
i a El Ix .LfJ xe(tf) I IIui + - 1 1

- ~t ~)dt ,(127)

e

where ATA selects the relevant components of the state; R., R are
1 e

appropriate positive-definite matrices, and a is a weighting factor

2 bb
such that, if a -~,the problem is to capture the evader with mini-

mum energy. Here a2-is used in the sense 1 2 EIxi tf)-

(t 2 =0 if 2lx~ f 1tel f) II AT A1t),12 =0and -otherwise.

Such a performance index, including a summation of the pursuer's
S.'

achievements does not favor as much cooperation between teammates

as a performance involving a minimum operator on the miss distances

would, as discussed in Chapter VIII.

A reduced state vector is defined, for each pursuer, as

y.i(t) =A ( t ft)x e (t ft) x e(t)] *

(128)

i =1, 2, .. ,N

.~..- ______________ WK)_

,-. .. . * 9. ~.. * .- *: .9 ... * *. * *~* .- ~ - - - .. ~~:7
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where (D and (D are the state transition matrices corresponding to

(125) and (126). y .(t) is the terminal miss A(x . (t f) X e(t f)) pre-

dicted at time t, on the basis that no control will be applied during

the interval Etlt f]. Consequently, a new set of state differential

equations is defined by

y.(t) G G(t ,t) u (t) -G (t ,t) v(t)
Sif i e f

(129)

y. (t 0 y. , i =1, 2,... ,N , .

where G. and G are time-varying matrices satisfying

Gi(tf t) A)i ft) i()

(130)

G(t tft) A= A'(tf t)G~t W

and the p-- .rmance index is restated as

a 2 Ellyi(tf) 112 +l1tf(E2 .~t .*

(131)

- Hv(t)Ii1e dt

Then, applying the classical calculus of variations, and without

lumping the controls of the pursuers into a single control vector,

the open-loop optimal controls can be shown to be

*2-71 T
u 1 t i() i (fty if r

(132)

*2 21 T t)
v (t) =-a R (t)G (te)(Y(

e e r i f
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The optimal controls are a function of the terminal misses, multiplied

by a gain which varies according to a position estimate. The form of

the control of the pursuers is irrelevant to the number of the team-

mates, enhancing the relative independence of each pursuer; on the -

other hand, the evader must compound the various threats represented

by the pursuers.

To derive the feedback solutions, two approaches are possible.

The first one defines the controls, for a = 1, as

* -i -T-i .li

uv R GTK ly i )

(133)

T1i ,..,.e EK .

where matrix K. obeys

Ki(tf't)K-l(tf't)y = -G,(tf-t)R.l(t)G (tf t -l (tft)y (t)

+ G (t t)R e(t)G T(t ,t) Z (K- (tft)yj(t)).
, (134)

efV e ef V

K (tff = I.

I is the identity matrix. (134) can inmmediately be simplified for a

two-player game, i = j = 1, but for the team game under study, sim-

plification of (134) requires the introduction of a strategic matrix

Zi (t) according to Chapter V, defined as a symmetric, non-singular 6.

matrix which satisfies

K.- ( t f , t)y i (t) Zi (t)K1 (tft)yl (t) (135)

• ~4

K.%

~ .*-*. 6.*,6 .,..[,,.-.*
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Then the propagation of K. simplifies into

(t t Gf t) i to (ft
116

+ G (t ,t)R 1 tG T (t - (t) (

By e e

By differentiation of (135), Zi(t) can be shown to be null--a direct

consequence of the reduction chosen in (128). Then Z. (t) is a con-

stant matrix, which might be a bit surprising, but is true only for

the game-optimal strategies.

This approach to the solution is used by Behn and Ho (26] for

the simpler two-player case; its advantage is to lend itself to nice

controllability interpretations. The major drawback is the inversion

of K. required to compute the controls. A better computational form

was adopted in Chapter V, where

* -iT
2. 1i

6IR~ GTi Yi"-".

(137)
--

1 Tv* = - R-IGT (7 T.y.) ,
v Re Ge (E i 1

and T. propagates according to Riccati equations that are readily
1

simplified, using the same strategic matrix approach, into

(t) =T (t)[G (tft)R(t)GT  T

(138)

-1 T -lG e (t f, t)R R-(t)GTe(tf, t) (EZj(t)) z il(t)]T. (t W;
e e e f j i.

2
T.(tf) = a I

if

rn.



97

This form is computationally superior, and a strict derivation of
,J.

the simpler two-player, linear, quadratic games of this kind can be

found in Ichikawa [24].

using Zi, the optimal control of the evader can be restated as

v*(t) -a 2R-1 (t)GT(tf t)(.Z (t))K (tf rtly l (t )  (139)
e ei(

The computation of the optimal controls requires that the N

matrices K. be inverted. According to Ho, Bryson and Baron [27],

the non-singularity of K. is equivalent to the non-existence of a1

conjugate point, in the one-vs.-one case. Existence of K.1 is studied

in terms of the team controllability.

3. CONTROLLABILITY STUDY OF THE TEAM DIFFERENTIAL GAME

From (136), the N matrices K. are integrated, from the terminal

time, as

2 tf -1 TK.(tft) = I/a + f'G (t,T)R. (T)G(,,)d-
t i f 3 fiTd

(140) ..

- Getf' )R ()Ge(tf,) Z.¢)Z.-  )d."

Matrices Z. (t) being constant, a more compact notation is
1

Ki(tft) = I/a2 + Mr(tf, t) -Me(tt) ( . Z.)Z. -I  (141)
if rif e f .J

j$1

where -

. . .o" .

-. Pb 4'b. *'.~. - . . ~
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r.( i ef

tf
M (t ,t) =fG (t IT)R.1(T)G. (t ,T)dT 1 (142)

M (tilt) f G t T)- MG(tfIT)dT

From [ 26], M. and M are the reduced controllability grammians
1 e

of the pursuer and of the evader, and, for the l-vs.-l game, where

P. faces E, M .is called the relative controllability graxmmian of
I1 ri

pursuer P.. It expresses the control superiority of pursuer P. over

the evader, in the l-vs.-l game.

A sufficient condition to ensure existence of matrices K.' is

* the semi-positive definiteness of the N matrices

Mr .(tfit) - M (tfit) C zz > 0 ,(143)

where, for the l-vs.-l case, a sufficient condition is

M '(t It) > 0 .(144)

ri f-

If all the pursuers are playing a ".positive" role in the game, pur-

suer P. must be better off as a team member than playing alone.

Therefore a sufficient condition for pursuer P. to be efficient is

that

IvM (tf t) (~Z.)Z. > 0 ,(14E)

eJ 1

holds. Since M is positive definite, another sufficient condition
e

is

SZ.)Z.l < 0 .(146)

j 1
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Both conditions provide criteria to select the relevant pursuers to

form a team.

(143) can also be expressed as (4

S. (tf, t) - S e(tf, t) (EZj)Z - I > 0 (147)

Then a possible strategy for P., to which corresponds a strategic

matrix Z., is to try and mazimize (147), in order to be as "efficient"

as possible. This strategy is named the maximum controllability

strategy since it is related to the relative controllability grammians.

If all the pursuers play a maximum controllability strategy, then

the sum of the terms as (147), i.e.

N
-l 2. ((M (tft) - M (t ,t)(ZZj)Z. ))Z. (148)

l if e f i i_i=l 3..

2is also maximized, since Z. is a non-singular, positive-definite *

3.

matrix. (148) can be reorganized as

2.(~itf~t)Z2 - M(t, t) (7Zj) (7.Z.l.l)  (149) "--

.1 fi. e f * .

(149) is named the team controllability grammian. Due to the symmetry

of the strategic matrices, the product

2 _
(EZ.)(EZ.) z) (150)jJ i I  ii '

2
is positive definite, and so are Mi, M and Z.. Then, in order toe 1"..

play a maximum controllability strategy, (150) must be maximized and

(CZ.) = 0 must hold or, for all i = 1.... N, the pursuers must play

a strategy such that

Z.=- Z. , (151) .

r

i- -,.. ,. .- . -, 2 i - . -. - . .-. . -. . --. - - --. -.- -. . s S... s. .- - - .a .., . - i. .: .. . - . s .- ---. - . - - . -- - . - .. '.- . . -
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From (151) and (139), the optimal control of the evader corresponding

to the maximum controllability strategy of the team, is identically
F

null. If the game is to be played, the best strategy of the evader

is to do.. .nothing! The evader is denied any incentive to move and

is said to be neutralized by this (possibly non-game optimal)

strategy played by the team.

4. MOST CONTROLLABLE DISPOSITION OF PURSUIT TEAM

The most controllable disposition of a pursuit team is such that

the maximum controllability strategy is also the game-optimal strategy

for the team of pursuers. And, as shown, the evader is neutralized

by that disposition. Then the team is said to be optimal. -.

If the matrices defined in (145) are positive definite, then

multiplying each end by the vector K- (tfft)Yi (t) and using defi-

nition (135), yields the scalar inequality

T -T-yi (t)K (tf ' t)M ( t f t) E K-l(tf't)yj(t) > 0 (152)
Si f e f (tft~it

and, as t-*tf, M (tf t) is proportional to

C(tf) = AG (t )R ( t )G ( t )A (153)
f e f e f e f(13

Then, since Kj(tf, t) = I/a2 at t tf, (153) becomes

TLY.(tf)C(tf) y.(tf) < 0 , (154)
j3 i

where a is a positive constant.

In order for pursuer P. to play a maximum controllability
i

strategy, and for a given miss distance, y. (t )must minimize the
Sf
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vector product (154); it expresses the fact that an efficient team-

mate Pi must, at the terminal time, face the vectorial sum of the .

miss vectors of the remaining pursuers, modified by the constant .-

matrix C(tf), expressing the evader's interest and capabilities, to
f.,,

cut the evader's main exit direction.

If a pursuer P. is to be joined to the team (P.), i j, to
3. J

provide a maximum controllability strategy over the evader, then

(154) must be minimized. Or, in order for a team of pursuers to be

optimal facing an evader, then the set of equations (154) must be

jointly minimized. (154) provides N - 1 independent terminal time 5._.

equations for N pursuers, greatly simplifying the formidable task

of finding the optimal controls of this (N + 1) point, boundary-

value problem.

One important consequence for two-identical pursuer games is

that (151) becomes Z1 = = I, because of the very definition of

the strategic matrices (135). Then, for a fixed xl(t), x2 (tf) is

chosen as to minimize (154). The trajectories corresponding to the

two-player game (PI,E) and the trajectory of P1 in the three-player

game (PIP 2 ,E) must match at t = t . Due to the symmetry of the
1 2 0

differential game, to locate "optimally" P as to obtain the most
2

controllable of the pursuit team, the two-pursuer game does not need

to be studied at all i.e., the one-pursuer game (P2,E) equations are

merely integrated backwards in time from the terminal state y2 (tf)

given by (154), to find, at t = to , the position of P2 which is

optimal.

'p'
..
o. , -,S, . . . . . . . - , , .. . . . . . - ., ., . - . . - . . . , . . . . - . . . . .-., . . -
dZ ; -.-,o :-,:-.. < .: .:. ....,. . .-. , .. . .: . .. .. . .. . . . , ..
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The above procedure applies, in fact, whenever N-I pursuers

are already located, then the study of the (N-i)-pursuer game gives

the solution. Then the trajectories and controls of the N-pursuer 6

game are computed from a simple one-sided, control problem, since

the game-optimal strategy is a maximum controllability strategy for

the optimal team, and, as shown, it implies that the evader is
6 1,

neutralized, i.e., v = 0 and N-I independent terminal-time relations

minimizing (154) are known to hold.

5. EXAMPLE

A second-order, two-pursuer game is studied, in which both

pursuers are identical, with A = I, R = R. = I, . = I, G I,
e I e 2

tf = 0.75 and

-0.1 0.1
F. =F = (155)0.1 -0.2

Figure 25 shows the real trajectories, with x (t )= (0, 0). Thee o.. .

line is traced which corresponds to every possible position x2 (t)

for a fixed x (to) and such that the terminal optimal condition (154)

is minimized. This line of perfect help passes exactly through the

point -x (to), as expected. This line is limited because the miss
o o

distances o. P and P must be positive. Considering x2 (t ) as a

parameter, the line of perfect help can be thought of as separating

the area in which P2 strives to decrease the terminal miss from the "'

area in which t is large enough to allow P to primarily think of * ,-%
f 2

reducing its energy spending.

• : . ..... _ .,. . .. . . . . . ... .. .. . . ..... .. .... . . . . .



-, r - .- " . - . ._7" . - - -" %. ,, m -r

103

130-, %

s+ I
-1- 2 vS I OPTI14AL

t -t

10 0

010

S. --:

I, -20. ,.

"', / LINE Or PtLrr WILP *-° .

Figure 25. Most controllable two-pursuer team.

A more painstaking study, to compute the lines of constant *,'*.

terminal payoff, is required to use the 1-vs.-1 trajectory to locate

optimally pursuer P2 ' constrained to a zone at t = t , in order to
2P 0

minimize the terminal payoff. This task is more feasible concern-

ing minimum time problems.

WE .

..... .... .... .... .... .... .... .... -- , ..-. ,,.%
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VIII. STRUCTURAL CHOICES OF A SOCHASTIC-
DIFFERENTIAL TEAM GAME

1. INTRODUCTION

Stochastic differential games in which both parties make noisy -. 4..

measurements of the state have a closure problem due to the fact that .1o

an optimal control should take advantage of the estimate of the error
".'i" .i.

made by the opponent in its own estimate, but this estimate, in turn,

is not exact and must be estimated by the former player, etc.

On the other hand, games in which only one party makes perfect

measurements do not have such problems. Moreover, the separation

principle, dividing the stochastic game into an estimation problem

followed by a game analysis, can easily be studied. In the problem

studied below, the evader makes perfect measurements.

The team stochastic differential game arises between two sonars

(or radar) systems and a target. The target uses a mixed strategy

by adding white noise into its controller to hamper the tracking of

the sonars. The study, relying on the classical calculus of vari-

ations, provides insight into the solutions of difficult problems

specific to team games. In particular, various cooperative modes

between the two sonar systems are shown to produce different results.

The game is studied according to a centralized or a decentralized

organization which are equivalent for passive targets that do not

use their white noise control capabilities. Conditions are derived

under which the Nash-optimal choices of a structure are demonstrated.

• . . . . .

. .. .. . . . . . . . . . . . .
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* To illustrate further team-game problems, a non-optimal, generated,

scalar case is presented in which the decentralized structure is

proven superior, and where singularities are studied. Due to the

open-loop nature of the problem, a Stackelberg (hierarchical) game

can be defined in the same context.

2. GAME STATEMENT

Two ships, equipped with sonar (or radar) systems are tracking

a target whose dynamics are assumed to have the linear form

x = F(t)x + G(t)v , (156)

where F(t) and G(t) are known matrices of dimension n.n and n.p; x is

an n-vector of state variables, and v is a p-control vector.

The action of the ships as a team is not the a posteriori result

of a coalition dictated by a common interest but an a priori assump-

tion whereby the overall performance of the team supersedes the

individual payoffs.

The target, detected at time t , is tracked up to time tf. In
o f.

the mean time, it uses its control capabilities to achieve both

good accuracy in reaching its destination and a maximum in the

tracking error estimate made by the ships.

Ho [28] suggests a control law of the form u = K(t)x + . K(t)

is a p.n feedback matrix and C a p-vector of Gaussian white noise

components with statistical parameters E(W(t)) = 0 and

E( (t) (T)) = T(t)6(t-T), where T (t) is a p.p matrix used by the '.

target as a control variable. Through the control of the statistical

- . . . . . . . . . . .

. . . . . .. . - ... . •.. - .. .. '
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parameters in the matrix T, the target is able to play a mixed

strategy to complicate the estimation algorithm of the tracking

team, but at the expense of self-inflicted perturbations.

The ships simultaneously, but on an independent basis, record

continuous noisy measurements of the state x of the target, in the

following form:
%.'* ),'

z H. (t)x + s., i = 1,2. (157)

H. is a known q.n matrix, and s is a q-vector containing Gaussian3. H isakon3. ariads

T
white noise components such that E(si) o and E(s i (t)S (T))=S (t)6(t-T)

where Si (t) is given. For convenience, s I and s2 are assumed to be

statistically independent, i.e., S E(S (T))

From these two measurements, and knowing the target dynamics

(156), the tracking team is able to design a (Kalman) filter by

optimizing its gain according to the performance index. If T(t)

were known by the team, then C could be treated as a mere corrupting

noise of given characteristics, to be averaged out by the filter.

Unfortunately, the actual characteristics of the corrupting noise

are unknown to the pursuers since it is controlled by the target.

At this point, two approaches are possible. The brute-force method

assumes in (156) a value T of maximum corrupting-noise covariance,
max

covering the worst possible case, and performs the state estimation

on that basis. This method has the obvious advantage of great sim-

plicity but might be overwhelmingly penalizing if the target decides

not to use a mixed control at all.

Consequently, the second method, namely the gaming approach, is

considered here. The overall problem might be decomposed into two

q--..

N 71: A k N %. J1
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steps: first, the game is solved by the tracking team which com-

putes the game-optimal controls played by the target. Then, on line,

when the target is actually detected, the tracking is performed

according to these assumptions. Of course, the actual target might

not adopt the controls predicted by the game analysis, but the

tracking team is guaranteed a minimum payoff by playing according to

the game-optimal controls. The same type of approach is used by

the target to predict the optimal filter gains on which to base its

optimal control strategy.

A remark of importance is that neither the tracking team, nor

the target is able to compute the exact performance. Actually, the

error estimate covariance computed on line by the tracking team cor-

responds to the truth only in the physically improbable event of an

optimal play made by both parties. Throughout, it will be assumed

that a referee has access to both sides to compute the real perfor-

mance. 0".

Therefore, the problem as introduced is a game and not a

classical estimation problem. In the sequel, the optimality of the

filters does not refer to the control actually played by the target

but the filters are to be understood as game-optimal filters.

Team game analysis, as opposed to the 1-vs.-l game problem,

such as studied by Speyer [23] is the main objective. In particular,

the various communication structures that define cooperation levels

reflected by the very choice of the performance index, together with

structural choices that supersede control strategies, are examined.

.............................................. ......
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3. COMMUNICATION STRUCTURE

Perfect information is assumed; in particular, the form of the
target dynamics and control, the measurement equations, the form of

the estimator filters as well as the statistical parameters of the

various random variables and the initial states are known by both

parties.

Several filtering structures to estimate the state of the target

from the measurements are discussed but, throughout, the various fil-

ters have the linear form

x.= (F + GK). + L. (z -Z) , (158)2. 1 1 1 i

where z. = H.x. and L. is the filter gain (control) to be optimized.1 11 1 "'

- The linear form of the equations and the Gaussian assumptions

d.. allow a restatement of the game in terms of a differential equation

governing the propagation of the covariance of the state variables

by

T TX - (F + GK)X + x(F + GK) + GTG

(159)

X = E(x(t)x (T))

The target makes perfect measurements of its own state; the

separation principle holds, and the stochastic game is reformulated
?%

as a deterministic game of perfect information, belonging to the .-. ,.

class of problems investigated by Isaacs (31.

Similarly, a linear estimator based on measurements z.=H.(t)x+s. "

has an error-covariance matrix propagating as

p.".
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P. = (F+GK-LiH.)P + (F+GK-L'H)T P + L.S.LT + GTG T  (160)

The cooperation levels between the members of the team are re-

lated to the density of their communication network. For example,

when the two ships are not allowed, or do not possess the ability, to

improve their estimate by comparing their results, then the target

strives to increase the uncertainty of the best performer according

to the performance index

J = tr{0.5 AA-X(t 0.5 ftf min(P (t),P (t))dt} , (161)
1,2

with AAT an n.n weighting matrix and tr the trace operator. Though

playing independently, it can be shown that teammates cannot solve

the game unless they can compare P1 with P2 to compute the target

control that is used. The operator "min" can be eliminated by

defining an equivalent 3-vs.-i game, somewhat as suggested by Z.

Gourishankar and Salama [30], as shown in Section 111.2.

On the other hand, a fairly easy generalization of a result S%

due to Speyer (29] can be derived by defining J as

J = tr{0.5 AA x(tf) - 0.5 ft P. (t)dt} (162)
toi

In that case, it can be shown that no communication is required

between teammates; therefore, the structure of the game does not

possess feedback links. Though in a simpler form, this performance

index is ill defined since, from the target's point of view, a

large P1 does not compensate for a small P2'

!r&

....................... . ....
•. . "a'..,. .-. _ "
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When a permanent link is established between the pursuers,

then cooperation can be total. The tracking team comes up with a

unique estimate and associated covariance P(t) according to the per-

formance index, adopted from row on: ..

J -tr{.5 ATx(t) - 0.5 tfp (t)dt} (163)

Computing directly the overall optimal tracking strategy will

not be attempted, but rather, structures are defined a priori in

order to compare the classical 1-vs.-l game with the more peculiar

team games. Two filtering structures are developed in detail in the

next section. In the first one, referred to henceforth as the cen-

tralized structure, the two input measurements are merged together

using a zero-memory filter to produce a unique early estimate; this

is conceptually equivalent to a measurement which is the object of

the study. Therefore, the game becomes a 1-vs.-1 game of the

classical type, such as studied by Speyer (29].

In the second case, named decentralized structure, each team

member optimizes its very own filter gain, producing an estimate

which is, in a later stage, combined with that of its copursuer to

produce the overall team estimate. This 2-vs.-l game structure is

compared to the previous one.

The estimation counterpart to this game problem, i.e., the

brute-force method proposed earlier, is also interesting. Both

structures can be compared with the overall optimal linear filter '.-

based on the optimization of the gains L1 and L as

1"

jV %



x =(F + GK) x + L (z -z )+ L (z -Z), (164) -

1 11 2 22

z. H. x

1z 1

On the other hand, the decentralized structure, because of the corn-

mon information it is based upon, is not to be compared with a decom-

position scheme, such as arises when the optimal smoothing solution

for linear dynamic systems is derived as the combining of two Kalman

filters working on intervals (tot) and (t tf) for non overlapping L
measurement subsets.

4. THE TWO STRUCTURES

4.1 The centralized structure

Figure 26 shows a block-diagram representation of the centralized

structure. The two measurements zI and z2 collected from the sonar

channels are merged in a zero-memory, linear filter (LF) of the form

Z z + C(z - z ) (165)

C is to be computed as to minimize the mean square error:

S E ((z-z) (z-z) T (166)

where z=Hx. For H.=H, S can be computed as

T T TS = + S1 2 C -S C +C 1 2 - CS + C(S + S 2S )C
1 21 1 2 1 1 2 12

(167)

or alternatively as

K'. -.
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S = S1 -M 1 (Sl-S1 2) + (C-M )(S +S2-2S 12 (C-M T

(168) I.
M. = (Si-S )(S +S -2S

i 12 1 2 12

Now, since M1 and (S 1+S22S12) are positive definite, (168) is

minimized for C = M1 , and then, using (157), (165) can be expressed

as

z Hx + (M1s + M2s) . (169)

An equivalent noise s is defined as

s =M1s2 + M2s 1  (170)

It can be verified that E(s) = 0 and the covariance of s, i.e.,

TS = E(s(t)s (T)), is -1k
S = (S +S) S

1 1 2 2
(171)

S-1 -1 -1-,-
or S S +S

1 2'

since S = 0 is assumed. Thus, the result of the merging of the

to measurements is conceptually equivalent to a single measurement

vector z, corrupted by the Gaussian white noise s. By using the

zero-memory linear filter, the problem is reduced to a simple

1-vs.-i game. Thus 1-vs.-l game is then solved using calculus of

variations. The performance index and the variational Hamiltonian F-

are defined as

".."tf

JCK ,T )=tr{x (t ) 0.5ft P~t)dt} (172)
11 f to

-7-7

" '-" " " '" "," ".t *,-", b .'- -.:-:-,-'-.. *....,... . .."." ". . . ... .."...-'. . . . .' .'''-.."... . .. '.' ..-.'' "''. . ". ..
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H =tr{-0.5 P+ A ((F+GK1)Xl+X (F+GK)
T + GTIG)

(173)

+ Ap((F+GK -I--)P+P(F+GKI-LH) + LSL + GT GT)}
p 1 1 1

A and A are the Lagrange-multiplier matrices associated with the
x p1

covariances X and P. T is the target variance control and P is
1.

the estimator error variance. K is the feedback-control matrix.

The costate variables propagate as

Ax = Ax(FGK1 ) (F+GK1) TA

A (t
x f'"

A= 0.5 I - A (F+GKl ) - (F+GK) TA (174)
P P 1 p

A (t ) 0
p f

The necessary conditions of optimality yield the optimal con-

trol gain L as

3H T= (-2HP + 2SL A 0 (175)

and since it can be checked from (174) that A is non-singular except
p

at t = tf, the optimal control L for this 1-vs.-l case is

T -l
L =PHS (176)

Substituted back into (160), this yields the familiar Kalman-filter

formulation,

P = (F+GK )P + P(F+GKI)T pHTs-IHp + GTIGT , (177)

optimized according to the given couple (KI,T

* . * . * *..-* *i-.
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The target control T takes values in the interval (0,T i
1 max

and the feedback matrix K1 is bounded by the matrices Kmn and Kmax

The optimal control law K is computed as

> 0 - Kli j = Ki

3K = {(2XA + 2PA )G} i ijmin (7
Kli j  x ji (178)

< 0 Klij i Kjmax: ":

and T1 is

> 0 T_ = 0 "'

3H1 T l
- '[ = {G (A + A )G}
Ti x ji (179)

< 0 Tlij Tijmax 
"

The above generalizes the results obtained in (29] where, for"

the scalar case, it is proven that no singular arc can occur in (178).

However, singularities play a major role for T in the derivation of

the solution of the 1-vs.-i game. This point is illustrated by an

example in [29] which is unfortunately in error.

4.2 The decentralized structure

In the 2-vs.-l team game depicted in Figure 27, each ship com-

putes its own estimate x. and associated error covariance P which
i

are then combined by the same type of zero memory linear filter as

in the previous structure. Each ship is given more processing power

but the task of the higher hierarchical level is a lot simpler than

for the centralized structure.

The processing algorithms P1 and P2 associated with the ships

include the sonar channel, a Kalman filter and a model of the target

dynamics. Feedback, under the form of the output covariance Q is ,

°,.. ° •. •.: ; ~ , . . . .* ....-.. ,..•.. *.
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required by the individual ships to compute their optimal controls.

Elaborated information is passed on to the higher level whereas,

previously, raw measurements are communicated. a

According to section 4.1, the output covariance is

Q = P - (PIT- P I 2 ) T (P 1+P2 -2P 12 (PI-PI2 (180)

T T
or Q= 0.5 (PlM + P2M + P (181)

1 2 21 121-..

where M. = (P. - P ) (P + P - 2P1) (182)
1 12 1 2 12

,TP1 2 is the cross covariance defined as P1 2 = E((x-51 )(x-x 2) ) and can

be shown to propagate as

P1 2  TG ' (183)

where

P (t) = E(x(t )-x (t ))(x(to)-x (to))T )

12o0 0 1 0 0 20o
(184)

= E (tS)s t)) (t 0 "

Thus, it can be seen that, through the use of the mixed strategy T2,

the target is able to control directly the amount of cross covariance

or redundancy in the computation performed by the teammates.

Then, the game is solved using the calculus of variations

approach. The performance index is

I(K 2 ,T 2 ) = tr{X 2 (tf) - 0.5 ft Q(t)dt} (185)

where Q is given by (181). The state equations are

.7 .7:
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2 = (F+GK )X +X (F+GK )T + GTGT
2 2 22 2 2 _

P' = (F+GK2)Pi+Pi (F+GK2) - L.H.P. P.HTLT + L.S.L T + GT GT  :z i"

P = GT2G (186)

12 2

The Hamiltonian is,- -,

T GT TT)+(FG)+GT2G) +ApIGT2GT  "-
H = tr{-0.5 Q+Ax ((F+GK 2 ) 2+X2 (F+GK2  2 p12 2

T T T T T+A ((F+GK2 ) x 2 +X2 (F+GK) - H P -P H L+LSL +GTG)
p 1  222 2 1 11 1 11 1 11 2

+A (~TT T T T+2 ( (F +G K
2 )X2 +X2 (F+GK2 ) -L2H2P2-P2H2L L2S2L2+GT2G

(187)

where the Lagrange matrices Ax, A i A and A obey

x ~p1 2 p12 oe

= -A X (F +GK2 )- (F+GK2)TA A(tf) = I

T T
A1  -0.5 (M1M2  + M M1) A1 2 (tf 0

A 0.5 (M MT+M MT+M MT)A (F+GK )(F+GK TA (188)p 11 21 12 pI 2 2 p1

T TT T+A PH L + LHPA A (tf)= ,p1 1 1 1 p1f

2--0.5 (MM T +MTMM+MIM T A (F+GK2)-(F+GK2)TA
0.5 ( 2 2 2 1 1 2 A 2 FG 2)-F 2) p

T T T T
+A P H L + L H P A A (tf) = 0
p2 22 2 2 2 2p2 p2 f

and

M ( (P 2 ) +P2 1-2P 2) (182)

........................ i , ill,' , i
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The necessary conditions of optimality yield the optimal controls

L1 and L2 as

-- (-2H P + 2S LT )A = 0 (189)
L i  ii i i pi ' -'.

or

T -1
L. -P.H.S. (190)

The target controls are given by

4'.~3 p ."- 2ij  = K jmin  [ .
= {(2X A +2P A +2P A )G}I >..-

2K~ 2x lpl 2 p2 ji 0- K2ij (191)." < 0 K~i K.••
2ij ijmax

and
> 0 Ti=0,""."

3H T2 "
T2i j  {G (A +A +A +A)G}ji (192)

2ij ijmax,

4.3 Comparison of the structures

In order to make a decision concerning the choice of structure,

I(K2,T2 ) is to be compared with J(KI,TI). A possible way involves

extensive simulation for the very example under study. Here, an

analytical method aimed at deriving sufficient conditions is chosen

instead. For all (K,T), the Nash optimal inequalities,

I(K2 ,T2 ) < I(K,T)

(193)

J(K1 ,T I) < J(K,T)

' -. ''
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hold since the target, controlling K and T, is the minimizing

player; in particular

-< 'Z
I(K2,T 2 < IIKIT l ,

A
(194)

J(KlFTl ) < J(K 2 ,T2 )

and the above problem is solved if I(KI,T 1 ) and J(KI,T I ) or I(K2 ,T 2 )

and J(K2'T 2 ) can be compared. The four payoffs of (194) can be

rearranged according to the matrix form in Table 4. If I(KI,T ) <
1

J(KT), then, considering (194), the above matrix game admits a

Nash equalibrium in pure strategies corresponding to the centralized

choice of structure. On discrete games, among others, Luce and

Raiffa (31] can be referred to. Conversely, if J(K2 ,T2 ) < I(K 2 ,T2.

then the decentralized choice made by both parties is the Nash

optimal.

Table 4. Payoff matrix.

Tracking structure:
centralized decentralized .

Structure of the centralized J(KI,T1 ) I(KI,T )
(minimizing) 1
target. decentralized J(K 2 , T2 ) I(K T2)

Consequently, by studying the perfect information game in which

both players are bound to jointly choose either structure, and using

the above approach, the solution of the non-perfect information game

in which neither player is sure of the other's choice of structure

is also solved.

'-pi'

• -
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I(KI,T I) is the performance achieved when the target plays the

strategies KI, TV, optimal if the tracking team adopts the centralized

structure when, actually, the tracking team adopts the decentralized

structure, based on the assumption that the target plays accordingly.

Therefore, the tracking filters are not fitted to the real control

policy K1, T1 . Let I (K,T) be the payoff of the filter optimized with

respect to the very pair (K,T). Then, due to optimality,

I(K,T) < I (K,T) (195)

holds for the maximizing tracking team. And, in particular,

I(KI,T I ) < I (KI,Tl ) (196)

which, together with (194) yields

I(K2,T ) < I (K 1,T ) (197)

(K2 ,T2 ) is the control pair assumed by the tracking team to optimize

I. Therefore,

I (K2 ,T2 ) = I(K2 ,T2 ) (198)

and, eventually

I (K2 ,T 2 ) < I (K1 ,T) (199)

Similar demonstration performed on J(K2 ,T 2 ) gives 2f 2

J ) (K ,T ) (200)

1- 20 2

(199) and (200) form a set equivalent to (194). Therefore, r

/' -
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• ~ ~~~I (K1, l  J WK1 T )  I(K1,T l < J(J1,Tl),(0) "

(201)

J (K2 ,T 2 ) < I (K2 ,T2 ) + J(K 2 ,T 2 ) < I(K 2 ,T 2 )

Though more restrictive in the conclusions, working with I and J

has the advantage that the performance computed by the tracking

team and the real performance do coincide, thereby simplifying the

computation task attempted in the next section.

As pointed out previously, neither the target nor the tracking

team has access to the real value of I(KIT I) or J(K2,T2) during the

actual tracking phase; only a referee, having free access to both

sides could compute these values. The performances computed by

either side differ since they are based upon different assumptions.

If a decision had to be taken according to these quantities, it would

define a non-zero sum game which translates into a bimatrix game.

This approach, a little more involved, though more satisfying for

the players, is the one adopted in the example of Section 7.

5. COMPARING I(K,T I) WITH J(KT

The target plays according to the centralized structure, cor-

responding to equations (159), (160), (172) to (179). It thinks it

achieves a payoff computed on the basis of X (t f ) and P(t).
1 f

The tracking team, on the other hand, plays according to the 4 :

decentralized structure, described by equations (180) to (191),

T -1 T -1adopting the control policy L1 = P1 HISl and L2 = P2H2
2  defined

in (190), and assuming an achievement I(K2,T 2  computed after X2(t f

and Q(t) as in (185).

.'.



123

Nevertheless, the true performance achieved is

I(KT) = tr{i(tf) - 0.5 f'o(t)dt} (202)

where the over bars denote the true values, such that

x= (F+GKI)x + X(F+GK) T + GTIGT

(203)

= 0.5 (F M + P 2M1 + , ,

where P and P propagate as
1 2

+ P(FGKT Tl -1 - T S-1
p=(F+GK )P + 1 FG P H 1S 1H P-PHSHP

TT+ PHSHP +GT GT (204)

-- Ts-1 2  - T2-1. -
p (+K) + P(F+GKT -PH TS -1HP -PH TS -1HP2 2(F2G2)2 2 22 2 2 2 22 2 2

+ -- G T 
"-1 

H-TGT
2 22 2 2 1

- TP GT G .12 1

The initial conditions are identical. Computing I(K1 ,TI) amounts to

solving in parallel three differential games, some equations being

interdependent as (204) shows. When I (KITI) is studied, the per-

formance computed by the tracking team is the real performance;

therefore equations (202) to (204) are irrelevant, resulting in con-

siderable simplifications. -- a

.... . . .-...- .-... .

g~ * *** -~.~ ~ - - -' . -~ - -& - -
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I(KIT I) is to be compared with J(KI,T I) which actually cor-

responds to the performance assumed by the target and expressed by

(172). Simulation of the above, for even a two dimensional case,

amounts to 68 scalar differential equations, 16 switching functions

and 24 parameters from trial and error (the 2-vs.-1 game is a 4-point

boundary-value problem). This task must be somewhat duplicated to

compute J(K 2 T2 ). The complexity is a characteristic of team games.

Since X(t 0 X(t 0), (203) and (159) are identical propagation

functions, therefore, X(tf) X(tf). In other words, since, in both

cases, the target plays the same strategy, it alters its strategy the

same way. Thus, the two integral terms in (202) and (172) are to be

compared. As a sufficient condition, their differential elements

Q(t) and P(t) are compared. If Q(t) - P(t) is positive definite for

* all t in the interval considered (i.e., Q(t) > P(t)), then

I(K1,T l ) < J(KIT l ) , and the centralized structure is to be chosen.

If Q(t)-P(t) is negative definite, then the decentralized structure

is best. Since Q(t) = P(t ) the study focuses on P and Q.

Next, the identities

M +M M T+ MT I
1 R2 1 2 (205)

(P. P, 2~ 'M -M(P 1+ P 2 2P 12)M + M. (P. -1

are recognized, and AP. P . is introduced as the difference

between the covariance computed by the trackers and the real one.

Then, after some cumbersone algebra,

,.A-'°' a . . . . . . . ... . . . . . . . . . . " ". " " 'I
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- S(F+GK1 ) + -(F+GK lH + .
1 (206)

• " (207). ".-

-MT 'r ( B T -MB - MP -T T
M B1 1 M2 M1 B1 12 M2 221212M M

11 22121

where

B =F +GK, -PR 0 M 1 M(P R + APRLP -

12 12122 11

(207)

B =F + GK -P R -0.5 M M (P R + AP R AP P)
2 1 1 1 2 1 12 1 2 2 2 12

and R. H HS.- H.

(206) is to be compared with

(GKT T-1 T
p= (F+GKI)P + P(F+GK) -PH S-IHP + GTG T (177)

Two remarks are in order at this point. First, the difference be-

tween both equations is seen to come from the feedback control and

from the quadratic term. Then, when the target decides not to use

its mixed strategy, P1 2 remains zero and Q is identical to P; thus,

both structures perform equally.

Matrices Mi , P are positive definite, therefore, if B and B
12 1 2.

are negative definite then Q(t) > P(t) is ensured and the centralized

. structure chosen.

Except for the term (F+GK , both B and B2 are negative

definite terms; thus, in order for the centralized structure to be

chosen, F+GK must not be so positive definite .as to force the

max

integral of Q to be larger than the integral of P. Since it is

difficult to estimate bounds on B. - (F+GK unless performing

the actual simulation, a sufficient condition to ensure the choice A

of the centralized structure is F+GK < 0 or GK < - F. As an
max max -

.'.J.-'.. .~ ~ ~ ~ ~ ~ ~ ~~~~S .. .. -......°-.....,..--.- -........-.....-...-............. ,'-'... ....-.. '.',

•~~~~~- - - - -- - - -.. ... . "-,. .'...°"%.."... .'-.. .... -. "°, . -- .. .. ".....- - ... .... ,".. .. "- ..-. . ......
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example, if F is negative definite and little positive feedback is

used, then the centralized structure is chosen.

When I (K1,T1) is compared to J (KI,TI) then P. = P. and LP.=0;

thus it is more difficult for B1 and B2 to be negative definite.

6. COMPARING J(K2,T2) with I(K2 ,T2)

This is the dual case to the one developed previously. The

actual covariance is P, where

P= (F+GK2)P + P(F+GK )T PHTs -PHT-HP

2 2 H-HSH

(208)

+ PH S-HP + GT2G
2

The target assumes a decentralized structure, computing K2, T2

and a covariance Q according to equations (180) to (192) when the

tracking team computes its control L PR according to the central-

ized structure described by equations (159), (160), (172) to (179).

is compared to P, using a similar derivation; i.e.,

-TTT -1 T"T

(F+GK2)Q + Q(F+GK) GH S HQ + GTG - MIBP M
2 2 2 1 112 2

(209)

T T TT-(MBPIM2 M B P M '( B P M
11122 2 22121 2 .121

where

B, M - -0. R1  APR APP~1
1 (F+GK2 ) - 2R . 1 2 (P 1 2 R 2  1 12

2 1 1
B (G PR 05 M-M (P R-APR A PPl (20
2 2  -.. .. 1  1 2 1 12 1 2 12. -.(210)

AP P -P
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A sufficient condition for the decentralized structure to be

chosen is that B1 and B2 be positive definite. Confronting (210) r
and (207), the term involving AP plays, in both cases, a favorable

role in forcing a definite conclusion, when, if J (K2 T2) and

I (K2,T2) are computed, then AP = 0 and that factor disappears.

Again, it is difficult to evaluate (210). The decentralized struc-

ture is adopted, for example, when F and GK. are positive definite

matrices of fairly large norm.

As a last remark, at t = tf, T = 0. Thus, for games of short

total duration tf - to, no switch in T can occur; then P 0 and,
f 0 12

consequently, both structures are identical. Otherwise, depending

on the very game studied, in particular the target capabilities

and the initial state, either structure might be chosen.

7. A MODIFIED SCALAR CASE

A simplified scalar, and slightly modified example is developed

here to illustrate further some particularities of team games.

TO focus on the sole study of the effect of the mixed strategy,

the feedback control K is forced to zero; also F = 0, G = 1,

H1 = H2 = 1, and T is constrained to [0,1], where the maximum toler-

able self-added noise in the target's dynamics is 1.

Then, the state and observation equations for the centralized

case are

z X + s, (211)

z 2  x + s 2  -
z2  2

. .•. "
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The two measurements z and z2 are combined into the equivalent

measurement z:

z = x + s, (212)

where the equivalent noise s has covariance S =S S /(S + S ). The
1 2 1 2

covariances associated with x and the error estimate propagate as

XT,

(213)

P = - 2LP + L 2S + T

The performance index and Hamiltonian are

J(T1 ) - X(t ) - 0.5 Ptf P(t) dt
1 f to

(214)

2
H = -0.5 P + AxT + A (-2LP + L S + T

and the necessary conditions of optimality yield the optimal control

variable L as

= ( -2P + 2SL) = 0, or L = P/S (215)
p

Substitution back into (213) yields

p= /S + Ti (216)

when the costate variables propagate as

S =,0 .'. (tf) = 1 (217)x ' X ' (217) """

= PAp 0.5, A (tf) = 0.
P p *'P f

-. .--.. <.-.".* .|
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The Pontryagin maximum principle is applied to find the optimal

control T as
1

A + A < 0 T=1,
x p

(218)

A + A > 0 T=0, 0x p

Singularities play an important role whenever bang-bang pol-

icies are present for differential games. A reference on the sub-

ject is provided by Forhouar and Leondes [32].

A singularity of order n at the switching point arises when-

ever the generalized Legendre-Clebsch condition is met, i.e.,

n. 2

aan
._ < 0 .(219)

3Tn  at 2  

.T

Furthermore, stationarity along the singular arc implies that

a [ H .'".t -0, (220)

and

t2[T 0 (221)

Together with the switching condition, this yields three equations to

fix the three unknowns P, A and T. Then, the equations are solved
p

forward in time and backwards in time on either side of the singular

arc, yielding the solution.

The decentralized structure has the performance index
1. *

r4%
J., . . .. ._ .. . ... . ..... . . .. i :- .

,- , _. '- _ . ." " '- t.'-' .'._'.._:','_. "'. '-' ' : .'. . - ' - . ".:: . "''-: ' .-'' -r ''
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J (T2  x X(t )-0. 5 tf P (t) P (t)/(P (t) + P (t))dt. (222)

It differs somewhat from (185) and (180). This modification of the ~-..

decentralized structure is assumed by both parties. Such an assumpt-

ion over a non-optimal structure might be questioned as far as the

target is concerned, but the purpose here is to study the team game

peculiarities rather than choosing a given tracking structure. A

study similar to the previous one yields the equations for the two

Kalman filters and target policy as

=, x +s, (211)

X=T2  X(t 1
2 0

P1  2 -P/S1 + T2 , P(t) =P 10  (223)

2.
P /S + T2  P (t) = 20

2

A 1 = 2P A 1/S + 0.5 2 ( + P A (t 0 , (224)

22 (f

A 2P A 2/S +0.5 P /(P + P)2, A (t)0

A + Al + A 2<o T 1
x (225)

> o- T =0
2
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A possibility for a singular arc arises again whenever the switching /4

function is equal to zero. Stationarity along the singular arc implies -

that the first two time derivatives of the switching function be zero.

These three equations cannot fix the five unknowns, namely Pit P2 '

AP1, AP2 and T2. In the five-dimensional space spanned by the

unknowns, a manifold is defined of two dimensions, constrained fur-

ther by the restrictions on time, t C[totf] and on T2 (Ol].

Reaching such a manifold happens under rarely met initial conditions,

as the simulation proved. The conclusion is that the singularity

does not play a major role in the decentralized structure, unlike the

centralized structure.

To compare both structures, the differential equation govern-

ing the propagation of the error covariance of the decentralized

structure can be computed as __

2(2 2
Q -Q/S+T2 - 2T2PIP2/ (P1 + P2)2

and is compared with (213).

If the target is passive, then T = 0 and both structures are
2

equivalent. Otherwise, for T2 = Ti, P(t) > Q(t) due to the fact
2

that the term P P /(P + P ) 2 is bounded by 0 and 0.25. Thus,
1 2 1 2

I (T) > J (T) for any given policy T, and, as shown previously, it

implies that the decentralized structure is to be chosen.

Simulation was performed for noise levels S1 = 8 and S = 4.

Figures 28 and 29 show the optimal solutions corresponding to two

different initial conditions. The resulting control policies differ .

widely but a higher covariance in the centralized case is compensated -

r%.

4* 4. -- .- ~ *4 .* .4 *.-".**
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to some extent by an increase in X(t f). As expected, I(K2,T 2  >

J(K1,T ) is verified.

More cooperation, resulting in a larger difference in J(KI, 1T)

and I(KT2 , 2 ) would have happened if both measurements had identical

noise levels as previous results by Mohler, Kolodziej and Bugnon
V.

[221 show.

Thus far, the target and the ships were assumed to play accord-

ing to either the centralized scheme or the decentralized scheme.

When the choice of the opponent is unknown, both parties must choose

a structure and play accordingly. As explained earlier, in that

non-perfect information case, the performance indices differ and the

game is of the non-zero sum type. It defines a bimatrix game which,

for the case of Figure 28, is given by Table 5.

Table 5. Performances for non-perfect information game.

Target strategies Target strategies

a b a b

Ships a v.4 .96 Ships a 0.94 1.04

strategies b 0.84 U. strategies b 0.76 0.73

Ships performance Target performance

A Nash equilibrium in pure strategies exists for this example.

It is unique and corresponds to the assumption of a decentralized

structure made by both parties.

Actually, the open-loop nature of the structures depicted in

Figures 26 and 27 allows an implementation of both strategies in

parallel by the tracking team, a simple device could compare the '-

....................
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performance indices obtained from both schemes in order to select

the best choice.

Viewed from such a perspective, the above bimatrix game becomes

a Stackelberg or leader-follower game in which the target (the

leader) announces its strategy first, and the ships (the followers)

react accordingly. The Stackelberg equilibrium and the Nash equilib-

rium coincide for all five examples run in simulation. The conclusion

is that both the target and the ships should play according to the

decentralized structure, even in the event of non-perfect informa-

tion.

8. CONCLUSION

A stochastic team differential game is presented, in which the

target, by the use of a mixed strategy, has a direct control over

the cross correlation between the members of the tracking team. The

study is conducted in the general case and two important features of

team games are demonstrated; they are as follows:

i) Depending on the kind of cooperation allowed between the team

members, various games can be defined. It ranges from independent

players up to totally collaborating members. In the latter case,

certain choices must be made in the game structure which are not

readily apparent in the l-vs.-l case.

ii) Hierarchical structures naturally arise with the classical r..

trade off between performance and computational burden.

% Two particular game structures, i.e., a centralized and a de- V

centralized one, are compared, yielding a matrix-game study in a -i

~r"
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non-perfect information frame. The choice of structure can be

expressed as a (hierarchical) Stackelberg game due to the open-loop

nature of the problem. It is remarkable that the same problem can

be studied as a zero-sum matrix game, a non-zero sum bimatrix game

and a StackelL."g game.

Ccmplexity and dimensionality are major issues in team games.

For example, to use the same approach as in this chapter, there are

15 ways to combine the measurements of a 4-vs.-i team game, resulting

in a 15 by 15 matrix game!

Both structures yield equivalent results whenever the target

does not use mixed strategy, or is passive. Otherwise, sufficient

conditions, that depend on the game dynamics, are derived under

which one or the other structure is to be chosen.

The centralized structure might be viewed as a convenient way

to alleviate difficulties by rejecting the game study up to a unique

higher player in the hierarchy. Nevertheless, the advantages of

the decentralized structure are numerous. Among others, the structure

is more practical, by distributing the computational burden among

the players. Thus it can be adapted to several team configurations

or can recover better from individual failures. Also, the example

shows that it is a lot less likely that a singularity will be encount-

ered in a team game.

7Tr
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IX. A NONLINEAR APPROACH TO THE

DIRECTION-FINDING PROBLEM

1. INTRODUCTION

Deterministic team games presented in the first chapters are of

perfect information. That is, the number of players is common know-

ledge, the state of the pursuers and evader is perfectly known by

both parties. In stochastic team games as the one studied in

Chapter VIII, the second requirement is relaxed somewhat, since the

players are measuring the opponent's state corrupted by additive

noise. Nevertheless, at time t = t , the game is clearly defined in
0

terms of the number of the players. In a practical, competitive

situation, both the pursuers and the evaders, before the theoretical

beginning of the game and as the game evolves, are searching for in-

formation about the other party. Then the problem is one of detection,

localization and identification. In the underwater case, from a set

of spatially distributed measurements, high resolution techniques

such as the direction-finding techniques allow retrieval of both the

number and the direction of arrival of incident waves. These waves

are unwillingly emitted by the pursuers (machineries, communications,

etc.), or, in a competitive situation, by potential jammers. Obviously

high-power jamming can be used, to hide a given source. But even a

low power jammer, which emits an identical signature away from the

source, is efficient since classical, i.e., linear, direction-finding

."-.,

°~~~~~~~~~~~~~~~~~. .°.°. °.°......... o........... .. .-.. .--. ...... . ....-... ... °°1 ... P .' ' ' . ,. '.'. - ,* -" ...- : . ." ' .. " .- -" - . -, . • ." .- . " " -, -, -. . -.-, -.. ~ ** * , .. -' -, ., , .., . , , . . ° . , , ,,
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methods fail in the case where coherent signals are received, as

shown below.

Eigenstructure based methods have been successfully applied to

the harmonic retrieval problems (Pisarenko (33]). Likelihood methods

are used to derive detection tests for the number of sources, as

studied by several authors: Bienvenu and Kopp (34], Rissanen (35], 4X

Wax and Kailath (361. On the other hand, the related problem of

estimators for the location of the sources has been studied by

Bienvenu and Kopp [34] and Henderson [37].

These direction-finding method; based on the eigenstructure

usually rely on the hypothesis that the signals are not coherent, i.e.

not fully correlated. Unfortunately, coherent sources occur fre-

quently in practical problems, in case of jamming or in case of

multipath propagation. When this hypothesis is no longer valid, the

spectral density matrix of the sources becomes singular. This re-

sults in an inconsistency in the eigenstructure method: though u

sources are detected, the associated direction vectors are not

proper. Then, for example, linear processing techniques performed

by Henderson (37] propagate the singularity of the source spectral

density matrix, and the methods described fail. .

Shan, Wax and Kailath [38] propose a method to recover from

coherent sources by averaging spectral densities computed from dif-

ferent linear subarrays, taking advantage of the regular spacing of

the sensors. This spacial smoothing approach trades off, in fact,

half the effective aperture to recover from the possible coherence of

the sources.

~ *~-. . . -.-
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The nonlinear approach developed below solves the case where

all the sources are coherent. It can be applied to any type of

array and shows drastic improvements in terms of minimal aperture

when the number of coherent sources is high. Multiplicative nonlinear

signals are built by convolution operations on the data to provide a

sufficient number of Mth-order direction vectors to solve the

problems. In general, the minimum number of sensors required to

solve a particular problem is theoretically independent of the total

number of sources, but rather depends on the number of uncoherent

sources. The nonlinear method also provides the coherence coefficients

between the sources, unlike the method by Shan, Wax and Kailath (38].

Formulae relating the number of sources to the order of the nonlinear

method required are also provided. A brief discussion of the

practical limitations of the method concludes the chapter.

2. PROBLEM STATEMENT

n wideband sources sk are impinging on a linear array from

directions " The linear array consists of d sensors located at

distances D. of sensor 1, such that 0 = D1 < < Dd . Then the

signals received at sensor r. are14

n
r. (t) = Z s (t - D.sinek ) + n.(t) (227)

1 k -:. kk=l c

where c is the speed of propagation, and the additive noises at the

ith sensor, n. (t) are independent, identically distributed,

Gaussian noises. When the noise field is unknown, techniques des-

cribed by Paulraj and Kailath [39] can be applied.

. [' i~ir
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For a finite observation time, the vectors R, S, N are defined

as

RT ( ) = [R ( ) , .... ()]

d%*p.

T
s (w) = MS(w),...,Sn(w)] , (228)

T(w)- [Ni(W),...,Nd()] ,

where R (w), S () and N. (M) are the Fourier transforms of r. (t),

Sk(t) and n. (t). Then the Fourier transform of (227) yieldsk1

n
R. (w) = k e-JTik Sk(w) + N. (w) M (229)

1 k k"'

where T ik D i sin e More generally,

R(W) = A (w) S(w) + N(w) , (230)

and matrix A (M) is the (first-order) direction matrix

e-jWT .... e-JWTln

Aw M (231)

-jWT W
eJdl... .eJTdn

rJ
whose columns are the direction vectors of sources sk:

nT e j T lk  e.... e(232)dl k(w
Multiplying (230) by its conjugate transpose, and taking ",

expectations, for a sufficiently long observation time, the result

converges in the mean to the spectral density matrix with the usual

-. *i** *::--. -



140

covariance problems associated with the periodogram estimate for ..

finite-length samples. Now this estimate of the (first-order)

spectral density L1 (w) is given by

1~

L (W) A () E(S(W)S(W)) AI(W) + E(N(W)N(w)) , (233)
1 11

where the overbar denotes the conjugate transpose. Or, dropping the

arguments for short,

L1  A P 2 1 (234)
1 11

with

P1  E(S(W)S(w)) (235)

2
and G is the Gaussian noise spectral density coefficient.

Equation (234) has the desired structure to apply the eigen-

structure method. If P has rank n, i.e., if no two sources are
1

coherent, the d by d spectral density matrix L has n eigenvalues

2 2
larger than a and d - n identical eigenvalues equal to a . The

associated eigenvectors are orthogonal to the columns of the direction

matrix A1, i.e., to the direction vectors.

If two sources are coherent, e.g., s= as1 , then P1 has rank

n - 1 and the d - n + 1 eigenvectors are not orthogonal to the dir-

ection vectors as defined in (232) but are orthogonal to the

d by (n - 1) direction matrix

1 +c 1 1

e-jTl1 + ae-JWTl2 eJWT13 . . .e -jwTln-

A, (236)

e - jWI dl + jjTd2 e- WTd3 . . e 'jWT "

. . . . . . . . . . .. . . . . . . . . . . . . .,. . .

jW~~dl d2 e-e
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with a compound direction vector in the first column, as a function

of three unknowns, namely e and a. A1 has one less column com-

pared to (231).

If there are only d = n + 1 sensors, then there are only two

eigenvalues equal to 02 with eigenvectors that are orthogonal to the

compound direction vector. This provides two equations that cannot

fix the three unknowns and the problem cannot be solved using this

method, as pointed out in [38].

3. THE EIGENSTRUCTURE GENERATING FUNCTION

Mth-order signals, from ri lt) = r.(t) down to r.Mt) are

constructed from the definition

r (t) rM (t) r. (t) , (237)
I'M IM-l 1

where * denotes the convolution operator. Then, the corresponding

Mth-order vector RH is

T M M 14R (Rif R, ..., Rd , (238)

and it follows that the Mth-order spectral density matrix is defined

as

LM(w) = E[R 4 (w) R(w)] , (239)

or

(RR)M (R2R) '-M -14
(RR) (RR)2 1 2

L E (240)

,-:-~~~~~~~~~~.-."-.. -.- , ... ".--"..-..... -. . ...--..-.--...--.....-.. "..-".-...-. .....- ,'- .
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Introducing a new matrix operator A, RM is defined as the

integer Mth power of R,

AmR.M(w) = R(w) , (241)

in terms of A products. E.G. when M = 2, each matrix element is

simply squared.

A performs a component to component mulitplication, i.e.

A A B =- c.i =a. bij , (242)
1]J 13 3.3

where it is implicit that matrices A, B and, of course, C are of

identical dimensions.

Applied to p by q matrices, useful identities are

AA B= BAA

A A (B A C) = (A A B) A C

AABAAB , (243)

(A + B) A C = A A C + B A C

and for n by 1 vectors,

(A A B) C A D) = (AC) A (BD) = (AD) A (BC)

(244)

AM AMA
(AB) A B

and, by definition, it is assumed that

U-

.. ?.-,r
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(AD) A (BC) = AD A BC. (245)

Applied to complex scalars, A is the regular scalar multiplication,
pie

tAM =tM (246)

The A-exponential of matrix A takes a form analogous to the

classical matrix exponential:

AM
eA(A) = Z A /M! , (247)

M=0"

where the regular matrix product has been replaced by the A-product.

Let an Mth-order spectral-density generating function be given

by

= E [eA (RRt) ] (248)

Then, using definition (248) and properties (244), (248) yields

A (  =0o E((RR )t /M! , (249)

where

LM  E((RR) A) (250)
1M

is immediately identified. Thus

ARR(t) M=0 L~tM/M' , (251)

and hence the name of Mth-order spectral-density generating function.

As an example, L2 is computed as

4.°
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L E((R)2 E((A S~g + ASN+NSi + NN)A2  (252)2 11 -

Then, using the independence of the noises with respect to the sources,

for Gaussian noises, odd powers of N and N are averaged out. More-

over, terms as E(N A N) and E(N A N) go to zero since

E(N. AN.) = Y(E(n. (t) * ni(t)) , (253)

where Fis the Fourier transform operator. E(n. (t) * n. (t)) is the
1 1

correlation estimate between n. (t) and n (-t) and is expected to be

zero since, for any time shift T, at most one point is correlated.

Thus L is equal to

2 - A2L =B + 4 BIAG2I + E((NN) 2) , (254)
2 2 1

where

-AMBM = E((AlSSA1 ) , (255)

and, for Gaussian noises,

-AM (2M)! 2ME((NN) ) = 1 I2M (256)
M!2

More generally, it can be shown that

M (P) 2 A (M-p)
L = E B M AE(( ) , (257)
M=0 p

with B I, and (p) is the binomial coefficient, or

M- BA 2 2 (M)), 2(M-p)
=B + B p 1 (258)

p=O (M-p) ! p. 2

Let K be the Mth-order eigenstructure matrix defined as

KM BM +0 2MI (259)

€= .
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Then K can be computed from L by the recurrent relation

K, LK1 = 1

M-1 2 S

M KO~2 (M-p)M. (2(M-p)). A I +KM LM - p ( (MI 3A2 2MPp~l p  (Mp)V 3. 2i -

(260)

M-1 2
2(M-p) M!2(2(M-P))! 2M (2M)! 2MG I --- I + Cy I .

,3p,3 22M -p 2 - .'
p=l (M-p) _ 2  M'2M

2
KM and LM differ only by their diagonal components 0 is estimated

as the smallest eigenvalue of L

Then, the eigenstructure generating function is defined as

_(t) = - ,itM = E(e C(RRt)) , (261)
CIRR M

or

KM E((RR)OM , (262)

'...-..

where the [ -operator is defined a posteriori from relations (260)

and (262).

When all the sources are coherent, A is composed of a unique

compound vector and

-AM -
BM  E((A SSAI) = AMPMAM , (263)

where M

AM.
A AlUM (264)
M 1

is the Mth-order compound vector and
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M 1 (265)

is now a scalar (dimension 1).

Then the d by d Mth-order eigenstructure matrices K have the

prescribed structure

K= AMPA 2M+ G 1 (266)

Thus 1 of the d eigenvalues is larger than 2M, the remaining d - 1

eigenvalues are equal to a2M and the associated eigenvectors are

orthogonal to the columns of matrices AM, i.e. to the Mth-order

direction vectors, thereby yielding, for each other M = 1, 2,...

another set of equations which are functions of the unknown para-

meters.

Moreover, the Mth-order direction vector has for components the

components of the corresponding first-order direction vector

raised to power M. Thus they are, in general, independent vectors

and functions of the very same parameters.

The Mth-order eigenstructure method is applied to matrices KI,

K2 " ... FKM. Consequently there are no theoretical limitations to M,

nor to the number of equations provided by the method. The only

constraint is that there must be at least one eigenvalue equal to

2M,
a , and thus d - n > 1 is enforced, i.e. d > 2 where n = 1 is now

the order of the source spectral-density matrix, which is the number

of non-coherent sources, 1 in the case where all sources are coherent. 77.

4. MINIMUM SENSOR CONFIGURATIONS

The incident source signals impinging on the array are classified

i ". r
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by (n:u,c,k) where

n is the total number of sources,

u is the number of non-coherent sources,

c is the number of coherent sources, R 6P.-

k is the maximum number of coherent sources present in

uncorrelated groups of sources, and k is smaller than

n.

Then it can be shown that
n = u + c, d

k + 1 EL (n/u), c + ] for u > 1, (267)

k + 1 = c + 1 for u = 1,

and L is such that L(n/u) is the greatest integer smaller or equal

to n/u.

For an array of d sensors, receiving signals from n directions,

the classical, i.e. first-order, method is applied first. If coherent

sources are present, the u non-coherent sources are detected and only

q < u orthogonal proper direction vectors are computed. Then there

are n - u = c coherent sources that are a function of the u - q non-

coherent ones. It must be emphasized that, at this point, c is to

be guessed by the experimenter. Nevertheless, a large value for c

solves all problems where c is smaller but at the expense of more

computation. A trial and error procedure, choosing first c = 1

and increasing to c = 2 if no match is found is also possible.

The nonlinear method if applied when all the sources are coherent.

In that case u = 1 and k = n - . The sources are

si(t) a i (t), (268) 7,

'-I°

''a
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i = 1, 2,..., n, a. are complex constants, i = 1. The compound

direction vector is

nn _. 4*_

A I= = d I. da. ' (269)

i=1

where d are the uncompounded direction vectors as defined in equation

(231). d is a function of 2n - 1 unknowns: n - 1 coherence co-

efficients a. and n direction parameters e..

In the minimum configuration case, there is only one eigenvalue

2M
equal to a and thus, each order produces one more equation from

the orthogonality of the corresponding eigenvector with the com- - -

pound eigenvector dI

Consequently, the minimum configuration to solve the problem

is

d =u + 1= 2

(270)
M = 2n - 1

When d = n + 1, then there are at least n minimum eigenvalues

2Mequal to aG, as a consequence, n new equations are produced from

each order. Thus the second-order nonlinear method produces 2n

equations that solve the problem in its entirety.

More generally if d is the minimum number of sensors required
1

by the method described in (38], d by the second-order nonlinear
*

5
*-

method and dM by the Mth-order nonlinear method, then

M

N;

dI = 1 =2 -.... ,

d2 = n +l, (271)

;" ~~dM = u+l1= 2 .:.'

4.,-..



N 149

solve the problem for these three methods. Gains in terms of sensors .

are substantial for high number of coherent sources. The required

value of M in the Mth-order method is indicated in parenthesis.

dM

(3) (5) (7) (9) (11) (13) '.-

23 45 6 n

Figure 30. Minimum sensor configuration for n coherent sources.

5. CONCLUSION

The Mth-order nonlinear method yields, theoretically, the receiv-

ing angles and the coherence coefficients in the case of coherent

sources. For a constant number of sensors, an increased number of

coherent sources is usually followed by an increase in the order of

the non-linear method requested to solve the problem.

Practically, for a finite observation time T, the Mth-order

signals have lengths M.T, but even though they are longer, they do

not converge any better than the first-order signals to the Mth-

order spectral-density matrices. Actually, for a short observation

7 . -
ILI,'
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time, the repeated convolutions have the drawback of enhancing the

irregularities in the noise. This clearly sets a limitation on the

practical order of the method, for a given observation time, added

to the computational requirements to derive the Mth-order matrices.

Nevertheless, it must be underlined that, for each order, the

2Msmallest eigenvalue is a ; which provides a convenient way of

checking degree of convergence for the corresponding estimated Mth-

order matrix compared to the first order.

The most serious limitation of the method is that, so far, it

can only be applied to the particular case where all the sources are

coherent.

-b !
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X. CONCLUS IONS

Team differential games feature several particular problems.

Classical N-player games are, generally, N point boundary value

problems but an (N-l)-pursuer-l evader team differential game

includes N-2 extra unknowns due to the fact that optimality applies -

to the team as a unit and not to individuals. For minimum-time

problems, these unknowns are modeled as strategic variables whose

values quantify the activity of the pursuers. Singularities that

play a major role in the solution of a two-player differential game

-S. do not appear nearly as important for team games. On the other

hand, the study of the game of kind is a lot more complex and crucial.

Early choices on the kind of cooperation allowed between team-

mates are reflected in the form of the performance index, simpler

choices yield formulae easily generalized at the expense of a re-

duced interaction level in the team, hampering the result. More ..-

powerful team structures can be treated classically only by increas-

ing the dimensions of the game. Through a suitable definition of

the reduced coordinates, convenient studies of team games can be

conducted but depend on the type of analysis conducted for the very

type of game.

Due to its relative simplicity, the one-versus-one game can

often be studied quite extensively. In most instances, the addition

of an extra pursuer to a team is not directly reflected on the form

of the controls of the pursuers as it is on the control of the evader.

%r
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Moreover, useful time and performance limitations to the team game

can be derived from the 1-versus-i game. Then, it allows a study of 4

the team game from geometrical analogies or the computation of approxi-

mate solutions which are tailored to a given game as the composition -

approximation or the simple suboptimal solution to the linear quad-

ratic team game. The same approach can even yield the exact solution

to the otherwise untractable problem of optimal location of a pursuer

in a team. Maximum team controllability criteria though generally

non-game optimal, still provide with handy relationships to approxi-

mate terminal time state unknowns.

Because of the complexity of team differential games, structures

and hierarchies arise naturally. Analysis or computational burdenSt
is the reason for introducing structures that break the solution

into easier steps, as in the games involving a minimum operator in

the performance index that show two distinct phases or as the com-

position approximation. When the hierarchy that corresponds to the

complete solution is prohibitively complex, a careful sensitivity

study can yield suboptimal hierarchies to reduce both the informa-

tion structure and the computations required.

The stochastic team differential game investigated shows that

hierarchical choices must be made beforehand that reflect a team

philosophy or an early strategic option. Decentralized structures -

are probably more adequately adapted to team games but optimality is

usually not achieved.

The nonlinear approach to the direction finding problem addresses

the problems of jamming and multipath propagation. Although

... "...
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computationally costly, it shows great improvements when the coher-

ence level of the received signals is high. For a given number of

* sensors, it enables the solution of a wider class of problems, but

the observation time sets a limitation on the order of the method,

thereby limiting the possibilities. I.;
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