
No. 13132

Theoretical Development and Application
of Discrete Time Quantized Data Controllers

(Phase I)

Contract Number DAAE07-84-C-R055

January 1986

Dr. R. P. Judd and P. L. McIntosh
School of Engineering & Computer Science
Oakland University

By Rochester, MI 48063

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION IS UNLIMITED

U.S. ARMY TANK-AUTOMOTIVE COMMAND
RESEARCH, DEVELOPMENT & ENGINEERING CENTER
Warren, Michigan 48397-5000 (j-

Reproduced From

Best Available Copy

NOTICES

This report is not to be construed as an official Department of the Amy
position.

Mention of any trade names or manufacturers in this report shall not be
construed as an official indorsement or approval of such products or
companies by the U.S. Government.

Destroy this report when it is no longer needed. Do not return it to the
originator.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

nclassified
. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for Public Release:
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution is Unlimited

"4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

13132
"6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Oakland University (if applicable)

School of Engr & Cmptr Science
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Rochester, MI 48063

8a. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Analytical & (If applicable)

Physical Simulation Branch AMSTA-RYA
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
USATACOM PROGRAM PROJECT TASK WORK UNIT
Bldg 215 ELEMENT NO. NO. NO. ACCESSION NO.

Warren, MI 48397-5000
"11. TITLE (Include Security Classification)

Theoretical Development and Application of Discrete Time Quantized Data Controllers (Phase I)

r. N . A R P. L. McIntosh

,ina TY)'E OF REPORT 13b. TIMFrnVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
1 nal FROM 784- TO 6/85 86 Jan 186

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Controllers Discrete Time Quantized Data
Table Look-up Technique DTQD Controllers
M60 Elevation Controller Grid Embedding

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
A new approach to feedback control based on a table look-up technique is developed. A grid
embedding technique is used which maintains high accuracy with minimal table size. This
report describes the use of the new control scheme as a regulator. A circuit which imple-
ments the control scheme is developed. This circuit is simpler, cheaper, faster, and more
reliable than circuits developed for comparable controllers using traditional control theory.

This report is divided into four major sections. The first section derives the theoretical
foundation for the new control techniques. Next, the operation of a computer program which
aids in the design of these controllers is decribed. The last two sections develop a con-
troller for the gun elevation system of an M60 tank. Finally, a complete listing and docu-
mentation of the computer program used in the design of the controller are included in the
append ices.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
-UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. C DTIC USERS Unclassified

.2a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 122c. OFFICE SYMBOL
James L. Overholt (313)574-5378 AMSTA-RYA
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete. U n class if ied
1

SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OF THIS PAGE

TABLE OF CONTENTS

Section Page

1.0. INTRODUCT ION ... 11

2.0. OBJECTIVES .. 11

3.0. CONCLUSIONS ... 11

4.0. RECOMMENDATIONS ... 12

5.0. DISCUSSION .. 12
5.1. DTQD Theory ... 12
5.1.1. Introduction .. 12
5.1.2. Quantization Theory ... 12
5.1.3. Control Law ... 17
5.1.4. Dimensionality .. 19
5.1.5. Implementation .. 19
5.1.6. Non-Linear Systems .. 21
5.1.7. Example ... 23
5.2. User Manual for the Program "1DTQD". 25
5.2.1. Introduction .. 25
5.2.2. Initialization .. 26
5.2.2.1 Open an old file .. 26
5.2.2.2 Open a new file ... 26
5.2.2.3 Copying an old file into a new file 26
5.2.2.4 Quit .. 26
5.2.3. Command Level ... 26
5.2.3.1 Initialize .. 26
5.2.3.2 Parameter modification .. 27
5.2.3.3 Display ... 27
5.2.3.4 Control law ... 27
5.2.3.5 Simulate .. 27
5.2.3.6 Quit .. 27
5.2.4. Parameter Modification .. 27
5.2.4.1 Title ... 28
5.2.4.2 Continuous parameters ... 28
5.2.4.3 Number of states .. 28
5.2.4.4 Number of inputs .. 28
5.2.4.5 System matrix ... 28
5.2.4.6 Input matrix .. 28
5.2.4.7 Modify all .. 28
5.2.4.8 Modify none ... 28
5.2.4.9 Discrete parameters ... 29
5.2.4.10. Discrete model generation 29
5.2.4.11. Discrete model modification 29

5.2.4.12 Quit .. 29
5.2.4.13. Quantized parameters .. 29
5.2.4.14. Example 1 .. 30
5.2.4.15. Quit .. 31

3

TABLE OF CONTENTS (Continued)

Section Page

5.2.5. Display Level .. 31

5.2.5.1. Check status ... 31
5.2.5.2. Data file ... 31
5.2.5.3. Next-state array ... 31
5.2.5.4. Example 5.2 .. 33
5.2.5.5. Check quantization level 33
5.2.5.6. Example 3 .. 34
5.2.5.7. Control law file display 34

5.2.5.8. Quit ... 34

5.2.6. Control Law Development 34
5.2.6.1. Minimum time ... 35

5.2.6.2. Quadratic .. 35
5.2.6.3. Minimum control effort 35

5.2.6.4. Custom cost function ... 35
5.2.6.5. Access a file .. 35

5.2.6.6. Quit ... 35
5.2.7. Simulation Level ... 30

5.2.7.1. Simulating ... 36
5 .2.7 .2. Ex am p l e 4 .. 38
5.2.7.3. Plotting ... 38
5.2.7.4. Quit ... 38
5.2.8. An Overall Example ... 38
5.3. Modelling the Elevation Stabilization System 52

5.3.1. Introduction ... 52
5.3.2. Modelling the gun .. 52
5.3.2.1. Gun Kinematics ... 52
5.3.2.2. Gun Dynamics ... 54
5.3.2.3. Linearizing the gun model 55
5.3.2.4. Obtaining steady-state values 56
5.3.2.5. Transfer Function of the gun 57
5.3.3. Modelling the trunnion damping 57

5.3.3.1. Viscous friction ... 57
5.3.3.2. Coulomb friction ... 58
5.3.4. Hydraulics of the gun .. 58
5.3.4.1. Elevation load pressure - fluid flow relationship 58

5.3.4.2 Pressure control servo valve 58
5.3.4.3. Combining pressure - fluid flow relationship with valve 58
5.3.5. Open Loop System ... 61
5.3.6. Simplified Models .. 63
5.3.6.1. First order approximation 63
5.3.6.2. First order system with Coulomb friction 63

5.3.6.3. Third order model .. 64

5.3.6.4. Models with a "Disturbance" 64

5.3.7. Using "DTQD" ... 64
5.4. Simulation Results ... 66

5.4.1. The Model .. 66
5.4.2. The Control Law .. 66

24

TABLE OF CONTENTS (Continued)

Section Page

5.4.3. Step response ... 68
5.4.3.1. First Order Model ... 68
5.4.3.2. Third Order System .. 70
5.4.3.3. Coulomb Friction .. 73
5.4.4. Disturbance Rejection ... 75
5.4.4.1. First Order Model ... 76
5.4.4.2. Third Order System .. 79

LIST OF REFERENCES .. 85

APPENDIX A. PARAMETER VALUES .. A-i
APPENDIX B. PROGRAM DOCUMENTATION FOR "DTQD" B-I
APPENDIX C. PROGRAM LISTING FOR "DTQD". C-I

DISTRIBUTIONLIST ... DIST-I

5

THIS PAGE LEFT BLANK INTENTIONALLY

LIST OF ILLUSTRATIONS

Figure Title Page

5-1. System model .. 13

5-2. Quantization of a Two Dimensional Space 16

5-3 Digraph Representation .. 17

5-4. The Grid Embedding Technique 20

5-5. Hardware Implementation ... 22

5-6. Simulated System .. 24

5-7. Quantization Grids .. 32

5-8. Model for deriving kinematics of gun 53

5-9. Model for deriving dynamics of gun 53

5-10. Modelling viscous friction .. 59

5-11. Modelling Coulomb friction .. 59

5-12. Hydraulic System .. 60

5-13. Elevation Servo Valve ... 60

5-14. Block Diagram of Elevation Stabilization System 62

5-15. First Order System with Zero Embedding Processes 69

5-16. First Order System with One Embedding Process 69

5-17. First Order System with Two Embedding Processes 70

5-18. Third Order System with Zero Embedding Processes 71

5-19. Third Order System with One Embedding Process 71

5-20. Third Order System with Two Embedding Processes 72

5-21. Third Order System with Three Embedding Processes 72

5-22. First Order System with Coulomb Friction and Zero Embeddings..... 73

5-23. First Order System with Coulomb Friction and One Embedding 74

7

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page

5-24. First Order System with Coulomb Friction and Two Embeddings 74

5-25. Disturbance Model ... 75

5-26. First Order System with Zero Embeddings, d(t) = 0.1sin(27t) 76

5-27. First Order System with Three Embeddings, d(t) = 0.1sin(27t) 77

5-28. First Order System with Zero Embeddings, d(t) = 0.1sin(107,t) 77

5-29. First Order System with Three Embeddings, d(t) = 0.1sin(10Ot) 78

5-30. Disturbance Frequency Response of the First Order System
without Embedding Processes 78

5-31. Disturbance Frequency Plot of the First Order System with
Embedding Processes ... 79

5-32. Third Order System with Zero Embeddings, d(t) = 0.1sin(2'rt) 80

5-33. Third Order System with Three Embeddings, d(t) = O.1sin(2rt) 80

5-34. Third Order System with Zero Embeddings, d(t) = 0.1sin(10ft) 81

5-35. Third Order System with Three Embeddings, d(t) = 0.1sin(10t) 81

5-36. Disturbance Frequency Plot of Third Order System without
Embedding Processes ... 82

5-37. Response of the System with Scaling Factor Increased to 20% 83

8

LIST OF TABLES

Table Title Page

5-1. Control Law ... 67

THIS PAGE LEFT BLANK INTENTIONALLY

10

1.0. INTRODUCTION

This report summarizes the work done by Oakland University on Army
contract DAAEO7-84-Q-R083. Oakland University explored a new method of
state feedback control designed to regulate the output of continuous
systems. The new approach, based on a table lookup technique, results in
a controller which is faster, less complicated, less expensive, and more
reliable than present military controllers. Since the new method models
both the discretion of time and the quantization of state, it is referred
to as Discrete Time Quantized Data (DTQO) system theory. This theory is
still being developed. The main objective of the first stage of the
research effort is to develop the theory so controllers can be designed to
regulate systems. This has been done.

The discussion portion of the report is divided into four major sections.
The first section develops the theoretical foundation needed to design
controllers based on the new technique. Next, the software package which
has been developed to aid in the design of these controllers is outlined.
The last two sections apply the theory to a typical military application.
The first of these two sections derives a mathematical model of the gun
elevation system of the M60 tank. The next section uses the model to
develop and simulate a controller for the elevation system. The response
of the controller is examined. As might be expected, the controller
responded quite favorably as a regulator. However, when sinusoidal
disturbances are applied to the tank hull, the controller did not damp the
disturbances as well as current technology. It was not designed to.
Research is continuing in the area to improve the disturbance canceling
characteristics of the controller and provide tracking abilities. The
software package used to design the controllers is completely documented
in an appendix. Finally, the complete source listing of the software
package is provided in another appendix.

2.0. OBJECTIVES

The objectives for this research are as follows:
1) Develop and refine a new application of control theory based on

look-up table techniques and the effects of state quantization in
digitally implemented control.

2) Develop DTQD analogs of controllability and observability of
systems.

3) Determine the improvements in system response, ease of
implementation, and system reliability given this methodology.

3.0. CONCLUSIONS

This research is very promising. The theory needed to design a DTQD
controller has been completed. A computer program to aid in the design of
these controllers has been developed. The theory has been applied to a
military application and the system simulated. The results showed that
the theory worked quite well in regulating the system, but when

11

disturbances were added the response became noisy. This was not entirely
surprising since the theory behind the design of the controller was not
developed to reject disturbances. However, a slight modification of the
scaling algorithm should reduce the magnitude of the noise. This idea is
suggested within the report and should be further developed.

The analogs to controllability and observability for DTQD systems are not
addressed in this report. This area is currently being explored and
results will be forthcoming.

The regulation of systems without system or measurement noise using DTQD
controllers seems to be comparable to traditional control methods. A
complete discussion on the implementation of the technology into digital
hardware is in the body of this report. Since this circuitry is extremely
simple, the resulting DTQD controller will be more reliable, less
complicated, faster, and cheaper than the controllers using traditional
technology.

4.0. RECOMMENDATIONS

Because of the success of initial research into DTQD controllers, a follow
on project should be conducted. The research should focus on noise
rejection, tracking abilities, output driven controllers (instead of the
current state feedback structure), and application of the theory to large
scale systems. After the research is completed, a particular application
should be designated by the military to implement a DTQD controller, and
an actual controller should be built and tested.

5.0. DISCUSSION

5.1. DTOD Theory

5.1.1. Introduction.

Traditionally there have been two approaches to the digital control of
systems. The first method finds the discrete time model of the plant and
then determines a controller which will regulate the output. Both
classical (using Z transforms) and optimal control techniques have been
well developed for this approach. In the second method, usually reserved
for converting existing continuous controllers to digital controllers, the
designer tries to emulate a continuous controller by digital circuits. It
is not clear that either of these methods is the best strategy for using
digital electronics to control a plant.

An alternative approach (1-3] to controlling digital systems is presented
here. The prime consideration in deriving the new control structure is to
develop a circuit which naturally incorporates the unique features of
digital electronics. The new approach creates a "digital model" for the
system. This new model describes the relation between the digital inputs

12

and outputs of the system. That is, the effects of the data converters
are an integral part of the modeling process, see Fig. 5-1. Once this is
done, the controller for the system could be naturally implemented by a
digital circuit. The controller is essentially a table look-up technique
easily constructed from digital circuit elements.

DA Order Plant Sampler AD
• Hold

Figure 5-1. System Model

Other authors [4-6] have explored developing a digital model for continous
systems. They have given up for two main reasons. First, there is the
famous problem of the ucurse of dimensionality." That is, the size of the
control table will increase exponentially with the number of states. To
accurately control even a second order system by this method requires huge
tables. However, this problem can be minimized by using the grid
embedding technique proposed in this report. The second problem with
digital models is that in general its output will diverge from the actual
system output. However, with proper selection of the quantization levels
and sampling interval, the rate of divergence can be controlled. Since
the primary purpose of the current research is to develop a feedback
controller for the digital system, then a model which adequately describes
the system for only one sample increment will be sufficient to develop a
good responsive controller.

This portion of the report is divided into several sections. Section
5.1.2 develops the digital model for a continuous linear plant. It also
shows that a digraph can be used to represent the digital model. Once
this is done, the classic graph theory algorithms can be used to determine
the control law. This is examined in Section 5.1.3. Section 5.1.4
discusses the dimensionality problem and suggests a solution. Section
5.1.5 illustrates the electronics needed to implement the controller.
Finally, the last section suggests how this method might be extended to
nonlinear systems. An example is also presented.

5.1.2. Quantization Theory.

Consider the system illustrated in Fig. 5-1. We wish to find the relation
between the digital signals U(k) and X(k). First, assume that the plant
is a linear system, that is

x(t) = Ax(t) + Bu(t) (5-1)

13

where

x c Rn

u cRp

Modeling the effect of time discretation is quite easy. Using standard

linear system theory the relation between x(k) and u(k) is represented by

x(kil) = tx(k) + Du(k) (5-2)

where

AT1= e

T
0 = I e A(T-s) B ds

0

T = the sampling period

Now the data converters must be included into the model. To do this a
convention must be established to represent digital signals. Suppose

there are j bits in a digital signal, then there are 21 unique pieces of
information that can be represented by the digital signal. We shall use

the set of integers [(-2i-),...-I, 0 ,I,...(2J-I- 1)] to denote each piece
of information.

Now examine the D/A converter. Its job is to convert p digital signals to
p discrete signals. This can be easily done by multiplying each element
of the U(K) vector by an appropriate scaling factor.

Yl0

Y2
u(k) = U(k) (5-3)

0 Yp

= r U(k)

Recall that the digital input is modeled by a set of integers, that is
U(k) is a vector of integers. Therefore, all the D/A converter is doing
is mapping the integers U(k) to a vector of real numbers u(k) according to
the scaling law represented in (5-3). Combining (5-2) and (5-3) we obtain

14

x(k4l) = $x(k) + DrU(k) (5-4)

The A/D converter does the reverse job - it must convert the real numbers
in the state vector to integers. For most converters, this process can be
represented by

X(k) = floor (x(k)/6) (5-5)

or if X is a vector

Xi(k) = floor (xi(k)/6i)

i = 1,2,...n (5-6)

Many converters may also include an offset p, i.e. X = floor ((x1-p)/6.
For the purposes of this paper p is assumed to be 0. This is done for
clarity only. It does not alter any of the results. Let a designate
this quantizing operation, that is X(k) = Ax(k), then

X(k+l) = Ax(k+l) = A[$x(k) + DrU(k)] (5-7)

Unfortunately, a is not a linear operator, therefore the right side of
(1-7) cannot be reduced. In fact the following argument will show that
X(k+l), in general, cannot be represented as a function of X(k) and U(k).

Consider a system with only two states, then the data quantization process
can be thought of as overlaying a lattice on top of the state space.
Every state x(k) which resides in a single cell of the resulting grid
belongs to the same quantized (or digital) state. The quantized state
X(k) is then the n-dimensional integer vector representing the address of
the cell. For example, examine the situation in Fig. 5-2. Here all of
the states in the shaded portion of the state space are assigned the same

tquantized state X(k) = (2,3)t. The problem comes after the system makes
its transition to x(k.l). Suppose we trace each state in the shaded cell
for one transition under a given input U(k). If x(k) was in the shaded
cell at time k, then at time k4l it must be in the parallelogram abcd.
Unfortunately, this parallelogram overlaps four distinct cells. So, the
X(k4l) cannot be deduced from knowing only U(k) and X(k). In other
words, we do not have a state-determined system. However, knowledge of
X(k) does reveal quite a bit about what X(k~l) can be. For example, in

t t tFig. 5-2, if X(k) = (1,3) then X(k+l) must be either (3,1) , (3,2)
t

(4,1) or (4 , 2)t. Now if the quantization is small enough, then
transition can be modeled fairly accurately by picking any one of the four
cells as the actual transition. It can be shown [3] that the number of
cells that are overlapped, after a cell makes a transition, can be limited
with proper selection of the sampling interval T and the quantization step
size a i" Thus, we can develop a digital model of the system which,

15

although not exact, will never be more than one cell in error in
predicting the state for the next transition.

4

3a

2
bd

1
C

0

-1

-2

-3

-4

-4 -3 -2 -1 0 1 2 3 4

Figure 5-2. Quanization of a Two Dimensional Space

To formalize the mathematical definition of the model, we will trace only
a single point in the cell, namely the center. So, for modeling purposes
only, we will let

X(k+l) = A(ty + OrU(k)) (5-8)

where

y = the center of the cell X(k).

Using this we can develop a state determined digital model q for the
system.

X(k+l) = *[X(k), U(k)] (5-9)

As was mentioned before, this model is not exact but with appropriate
selection of T and a i's will predict X(k-l) to within one cell. This

16

reseach is primarily concerned with developing a state feedback controller
for the system. Since the controller can sense the state at every time
interval, developing the control law based on this approximate model
should yield satisfactory results. In fact, this model provided good
results in the systems we have applied it to.

5.1.3. Control Law.

Consider a graph S whose vertices (nodes) are used to represent each cell
in the discretation lattice. The edges in S then form the set of all
possible transitions between the cells. For example, look at the digraph
in Fig. 5-3. This graph represents a simple system. If the state is

(0,1)t at time k and an input of 0 is applied, then the state will be

(0,0)t at time k4l.

0 -1

0 1

-1 i0 0 1 -1

-1 -
0 0

Figure 5-3. Digraph Representation

We now examine the possibility of controlling the system. Using the
example presented in Fig. 5-3, we see that a good control law might be

17

I; if X(k) =(,) (I I , I -)

U(k) [1=f Xk (-1,-i) (5-10)
%=.; otherwise

Using this law, the system reaches and remains in state (0,0) in minimum
time.

To formalize an algorithm to determine the control law, consider the
following cost functional

N
: I Cu(U(k)) + Cx(X(k)) (5-11)

k=O

where CU and Cx are two non-negative functions of U and X respectively.

The optimal control law of the sytem U(k) = F (X(k)) is then defined as
the control U(k) which must be applied at each time k = O,l,...N so that J
is minimized. This formulation resembles traditional optimal control.
This was done intentionally because we can use the same interpretations of
CU and CX to come up with suitable control algorithms. For example, if

CU(U(k)) = 1

(5-12)
Cx(X(k)) = 0

then we have a minimum time system. If

CU(U(k)) = abs(U(k))

(5-13)
Cx(X(k)) = 0

then we will have a minimum energy system. Finally, even a linear
quadratic regulator problem can be formulated by

CU(U(k)) = U t(k) R U(k)

(5-14)

Cx(X(k)) = X t(k) Q X(k)

where R is a positive definite matrix and Q is a positive semidefinite
matrix.

The choice for representing the digital model now becomes apparent. The
optimal control law formulation presented by (5-11) is exactly the same

18

problem graph theorists refer to as the "optimal spanning tree" problem,
where CU is used to weight each of the edges and Cx weights all of the

vertices in the graph. Already, there are well-defined algorithms to
solve this problem [7-8]. We can use these algorithms directly to find
F(X(k)).

The calculation of F(X(k)) can all be done off line. Once F(X(k)) is
known, it can be stored in a PROM. The optimal control can then be found
by addressing the PROM with the measured state X(k). This leads to an
extremely simple implementation of the control law.

5.1.4. Dimensionality.

This approach suffers from the "curse of dimensionality." For example,
suppose we have a system with three states, where each state is quantized

into 1024 = 2 levels. Then the capacity of the PROM needed to store the

control algorithm is (210)3 or roughly one billion words. This is clearly
too much memory to expend for the control of a relatively simple system.

This difficulty can be overcome by a grid embedding technique. Initially
the state space is divided into a rather course grid. When the state is
far from the origin, these large divisions are adequate. As the state is
driven toward the origin, however, greater accuracy is required. This is
achieved by mapping a small central region near the origin of the state
space into the structure of the original discrete configuration. The
process is continued until the desired accuracy is obtained.

This situation is depicted in Fig. 5-4. As the state moves into the
center sixteen cells, the quantization level is cut in half, which results
in the center 16 cells being mapped into the 64 cell structure of the
original system. Since the embedding process will not occur until the
state is within the specified central region, then the state must be
somewhere in the 64 smaller cells created after the embedding process.
So, at any time the controller needs to examine only 64 cells to derived
its control strategy; however, after each embedding the size of the cells
are cut by one-fourth. Thus the controller can achieve high precision
with a relatively small table.

The embedding process will provide sufficient precision, even with
relatively few cells in the state space. However, when the system is to
be represented by just a few cells, the non-linearities of the quatization
become significant. A way of modeling the non-linearities must be
developed. The digital model proposed in this paper describes these
non-linearities.

5.1.5 Implementation.

Suppose we wish to implement a controller for a second order system in
which each state is divided into 16 divisions, i.e., there are a total of

19

LO

IF

FM IN o 41

I I

\ I I

\2\,,I /

00

I ,-

CV)

I ~ * I

Figure 5-4. The Grid Embedding Technique

20

256 cells representing the entire state space. Embedding will take place
whenever the state is within the center 16 cells. Each time the embedding
process takes place, assume the quatitization levels are halved. Under
these assumptions the embedding process can be easily implemented in
hardware with shift registers.

To see this, examine Fig. 5-5. Both states are sampled and quantized to
10 bits of precision. The shift registers are set to pass the four most
significant bits to the PROM which stores the control law. As the state
is driven towards the center of the state space, the most significant bits
of X and X2 are zeroed out. (If the A/D converters output numbers in

two's compliment format, then the most significant bits become either
zeros, for positive numbers, or ones, for negative numbers. In either
case the circuit could tell when the system is approaching the center
cells by exclusive-oring the most significant bits of X1 and X2 .) When

the two most significant bits of both X and X2 are all zeros or ones,

then the Shifter Control Unit will instruct each register to shift right
one bit. That is, bits b1 - b4 of X and X2 are used to drive the PROM

instead of bits b0 - b3 . This is equivalent to scaling each state

quatization level by one half. The shift register to the right of the
PROM will appropriately scale the input to the system. So, the grid
embedding process can be easily implemented using a simple shifting
technique.

It can be shown, [3], that the same control PROM can be used before and
after embedding. Thus, a PROM which contains 256 words is sufficient for
this controller. Also, the shifter control unit should be designed to
continously monitor all the bits coming out of the A/D converters. This
is needed for the following situation. Suppose a disturbance is
encountered which will drive the state outside the bounds of an embedded
grid. If the controller can detect this situation, it can expand the grid
(by shifting left) to an appropriate size to capture the disturbance, and
then procede as normal.

5.1.6. Non-Linear Systems.

In the development of this theory we explicitly assume that the system to
be control is linear. However, this is not necessary. We can, with only
a slight modification, use the theory on non-linear systems. The states
still can be discretized and the digital model found by tracing the
transition of the center of each cell. Furthermore, the optimal spanning
tree algorithm makes no assumption about the graph it is being applied
to. The only change which is necessary for non-linear systems exist in
the grid embedding technique. For the non-linear systems, a new control
law (PROM) may have to be switched in each time the embedding process is
done.

21

0 OS'0 M
1<

0 "r:1.E1. -
•c x

Figure ~ ~ ~~ cc 5-0Hrwr Ipeetto

2a

5.1.7. Example.

This control algorithm has been applied to the following system, in which
the state x(t) is to be regulated to the zero state.

x(t)] x(t) + L (t) (5-15)

0.0 -10.9 10.9

We choose:

T = 0.1 sec

61 = 21/32 rad (5-16)

62 = 1.5 rad/sec

y = 1.25 volts

and impose the following bounds on the states and inputs:

Ix 11 < rad

Ix2 1 < 12 rad/sec (5-17)

lul < 10 volts

the digital model for this system was derived, and using the "optimal
spanning tree" algorithm with the following weights:

C U = U(k)2

(5-18)

CX = 2(x 1 (k) 2 + x2 (k) 2)

the control law was developed. The embedding process was designed to
proceed whenever the system is in any of the 32 center cells.

Figure 6 illustrates the simulated runs of this digital control strategy.
For comparision, the trajectory for an optimal linear regulator using
continuous state feedback is included. The performance index used for the
continuous controller is given by

23

3 I (u(t)2 + 2xl(t)2 + 2x2 (t) 2)dt (5-19)

0

which roughly approximates the weighting scheme used for the controller
derived from the digital model. Two strategies yield similar results.

4

A - Optimal Digital Controller
3 B - Optimal Linear Regulator

2

B

0 A

-2

-3

0 0.5 2

0.25 0.75 1.25 1.75
TIME (SECS)

Figure 5.6. Simulated System

24

5.2. User Manual for the Program "DTQD"

5.2.1. Introduction.

The program "DTQD" is an aid in developing controllers for discrete-time
quantized data (DTQD) systems.

"DTQD" is a menu-driven program with a hierarchial structure. It is
divided into six basic parts, each being described in the following
sections. A command level, the main menu, is used to access each of the
five other levels: initialization, pararmeter modification, display,
control law development, and simulation.

The program is coded in PLI. It was designed to be run on Honeywell 68-
DPS-2 MULTICS system computers, but without serious modifications could be
implemented on any system. The user need only type "DTQD" to execute the
program. The program starts out at the initialization sub-level and
proceeds to the command level after the job has been designated. From that
point on, the user has control and may go to any of the five sub-levels.

The status of the current "job" is monitored by five flags. When a flag is
set it indicates that that part of the job has been developed. The five
flags designate whether or not a continuous-time and/or a discrete-time
model of the system exists, whether a quantized model exists, if a control
law has been developed, and whether or not a file containing a simulation
of the controlled system has been made.

During the run, the user may be asked to input three different types of
responses: a yes/no answer, a number from a multiple choice menu, and
numerical data. If a yes/no answer is required, the following are
acceptible answers: "y", "yes", or "n", "no". If a choice from a menu is
requested, only an integer is considered a proper response. Finally, when
inputting a numerical piece of data, only numbers, decimal points, and
minus signs are acceptible. In case of a mistake, MULTICS allows a "#"
sign to "erase" the previous character inputted, and a "@" sign to "erase"
the entire line.

5.2.2. Initialization.

The first menu displayed is the initialization menu. It gets the user to
open a data file. This may be a new file, an old file, or the user may
wish to take the data from an old file and copy it into a new file and work
with the new file. The data file is referenced by a "job" name. This name
may be any one word with a maximum length of 50 characters, and is inputted
by the user. It may be any combination of numbers, letters, and
underscores; however, the first character must be a letter ("$" is
considered to be a letter) and the name may not contain blanks or periods
(.). The job name will also reference all other files made concerning the
job: the quantized data file, also called the next-state file, which
contains the coded version of how each state is affected by each input (See
section 5.2.4.13. for coding procedure), the control law, and the

25

simulation file. The initalization menu appears as follows:

1. Access an old job file
2. Create a new job file (init. menu)

3. Modify an old job file
4. Quit

5.2.2.1. Open an old file. If a "I" is entered, the user is prompted to
enter a job name. The data file job name.DATA is accessed. If the flag
which monitors the existence of a quantized model is set, but a file
containing the model does not exist, the program proceeds to automatically
build the next state array. If, however, the quantized model does exist in
a file, that file is accessed in addition to the data file. Similarly, if
the control flag is set, the program accesses the file containing the

control law. After completing this process, the Main Menu appears and the
user is at the Command level.

5.2.2.2. Open a new file. The program prompts the user for a job name and
then a title for the data file. The title may consist of up to 70
characters. However, if it is made up of more than one wora it needs to be
entered within quotation marks ("). The user is then sent to the
parameter modification level. (See section 5.2.4.) At that level the user
is prompted to enter any/all of the parameters concerning the model of the
system and the A/D converter. After the models have been built the user is
sent to the Command level.

5.2.2.3. Copying an old file into a new file. By entering a "3" tne user
is able to access an old file, copy the data file from it into a new file,
and work with the new file. In this way the user may modify existing data
and yet not destroy the original data. The user must enter the job name of
the ol file and then a new name for the new file. The program then
proceeds as in case (1) above (accessing an old file) by building or
opening the files containing the quantized model and the control law if the
status flags are set.

5.2.2.4. Quit. If a "14" is entered it is assumed that the user does not

want to initialize a new job, and the user is sent to the command level.

5.2.3. Command Level.

The Command Level is primarily the "main menu" which consists of tne
following options:

1. Initialize
2. Modify Data File
3. Print files
4. Develop Control Law
5. Simulate (main menu)
6. Quit

5.2.3.1. Initialize. This level allows the user to choose a different job

26

file to work with. (See section 5.2.2.) Thus, the user is essentially re-
executing the program. Before re-starting the initialization process, all
modifications to the current job are saved and the data file is closed.

5.2.3.2. Parameter modification. At this level the user is able to modify
any of the parameters in the data file: the continuous-time, discrete-
time, or quantized system parameters. (See section 5.2.4.)

5.2.3.3. Display. This response allows the user to examine other files
(See section 5.2.5.) The display level is entered, and the user can look
at the data in the job file as well as the next-state array, and/or the
control law. The status of the job, and a summary of the quantization
levels can also be examined.

5.2.3.4. Control law. This choice executes the control law development
level (See section 5.2.6.)

5.2.3.5. Simulate. This selection simulates the controlled system (See

section 5.2.7.)

5.2.3.6. Quit. This choice ends the program. If a quantized model of the
system exists for the job, the user can save this model in a file. The
status flag for the quantized model is not affected by this decision. If
the data is not saved, then the next time the job is accessed, the
quantized model will be automatically rebuilt instead of read in from the
file. Finally, all files are closed and the program is exited.

5.2.4. Parameter Modification.

This level may be accessed via the command level or by the initialization
level if a new job is created. The parameter modification level is made of
three sub-levels, each accessing even further sub-levels. The user may
enter or modify the continuous-time model for the system. The program can
then generate a discrete-time model or allow the model to be entered by the
user. Similarly, the quantized model may be generated or a file containing
the quantized model may be accessed.

When the continuous system is modified, the discrete and quantized models

are no longer valid and so their status flags are cleared. Similarly, the
control law and simulations can no longer be associated with the model and
their status flags are also cleared. This process is continued throughout
the program: when a model or file is modified, all models and files

generated from it are invalid and hence their status flags are cleared.

Upon entering this level, the following may be modified or created.

1. Title of the job file
2. Continuous system parameters
3. Discrete system parameters (param menu)
4. Quantized system parameters

5. None of the above

27

5.2.4.1. Title. The user is prompted to enter a title. It can have a

length of up to 70 characters; however, if it is more than one word it must
be entered inside quotation marks (").

5.2.4.2. Continuous parameters. As soon as a continuous model of the

system is created or modified, the status flags for the discrete-time and
quantized models, the control law, and any simulations are cleared. If a

continuous system already exists, the user may choose the parameters which

need to be modified.

1. Number of states

2. Number of inputs
3. System matrix, A (param.2 menu)
4. Input matrix, B
5. All of the above

6. None of the above

This menu will continue to re-appear until a "6" is entered. If a

continuous system does not currently exist, this menu does not appear; it
is assumed that the user wishes to enter all of the parameters (i.e, that a
"5" was entered).

5.2.4.3. Number of states. The user is asked to enter the number. It

must be an integer and have a value no larger than ten. Since the number of
states affects the dimensions of the system and input matricies, the user

is also prompted to enter all of the components of each of these matricies.
The above menu (param.2) is then re-displayed so that other changes may be

made if desired.

5.2.4.4. Number of inputs. The number of inputs must be an integer. As

in the above case, a change in the number of inputs will cause a change in
the dimensions of the input matrix, B. For this reason, the user is then

automatically asked to enter the entire B matrix.

5.2.4.5. System matrix. The program prompts the user to enter the A

matrix. After entering all the components, the above menu (param.2) is
again displayed.

5.2.4.6. Input matrix. As in the above case, the program prompts the user

to enter each element of the input matrix, B.

5.2.4.7. Modify all. The user is prompted to enter all of the above

parameters in the order in which they appear in the menu param.2. After
entering the data, the menu is displayed, giving the user an opportunity to

re-modify any of the new data in case a mistake was made.

5.2.4.8. Modify none. If a "6" is entered it is assumed that the user has

completed all the desired modifications of the continuous-time system. The
user is returned to the (param) menu and can modify or create another model

of the system.

28

5.2.4.9. Discrete parameters. If the user wishes to modify or create the
discrete-time parameters, a "3" should be entered when the menu (param) is
displayed. Upon generating, creating, or modifying the discrete model, the
quantized model, control law, and simulation status flags are deleted for
the current job. If a continuous model of the system exists the user can:

1. Generate a discrete model from the continuous model
2. Modify the discrete model
3. Quit (param.3a menu)

If, however, a continuous model does not currently exist, the following
menu is displayed:

1. Create a continuous model first
2. Modify/Create a discrete model
3. Quit (param.3b menu)

5.2.4.10. Discrete model generation. If a continuous - time model exists,
the user is asked to enter the time constant tau, and then the program will
automatically discretize the continuous model and display the new discrete-
time system and input matricies. If, on the other hand, a "1" is entered
when menu (param.3b) is displayed, the program will prompt the user for the
continuous - time parameters. Thus, the user is sent to another level, and
is then able to enter the continuous system.

5.2.4.11. Discrete model modification. A discrete-time model of the
system may be entered independently from the continuous model. Caution: If
this is done when the menu (param.3a) had been displayed, (i.e, when a
continuous system exists) the user will be making the continuous model
invalid since it will no longer represent the same system.

The user is asked to select the parameters to be modified.

1. Number of states
2. Number of inputs
3. Discrete system matrix (param.3.1 menu)
4. Discrete input matrix
5. All of the above
6. None of the above

This menu is very similar to menu (param.2) for the continuous-time case;
thus, a description is omitted here.

5.2.4.12. Quit. This entry will cause the menu (param) to be displayed.

5.2.4.13. Quantized parameters. There are two methods of obtaining a
quantized model of the system. When a new model is generated or accessed,
the control law and simulation status flags are automatically cleared.

If a discrete model of the system exists, the user may generate a quantized
system from the discrete model. The following parameters of the A/D

29

converter must be entered: the number of quantization steps for each state,

the upper and lower voltage bounds for each state, the number of

quantization steps for each input, and the upper and lower voltage bounds

for each input. If, on the other hand, the user does not want the

quantized system generated, a separate file which already contains a

quantized model of the system can be accessed. If a discrete model of the

system does exist and the user accesses this file, the discrete motel may

no longer be valid.

If a discrete model does not exist, the user can create one or access a

separate file containing a quantized model of the system. if it is desired
to create a discrete model, the menu (param) appears. The user may then

input a "3'1 and begin to generate or create a discrete-time model. if the

user wishes to access a file containing the quantized system (i.e, a next-

state file containing the affects of each input on each state), the program

asks for the name of the data file.

After modifying, creating, or generating the quantized model of the system,

the user can have the next-state array displayed. (See section 5.2.5.3.)
The states and inputs are each coded. The codes are used throughout the

program and, more importantly, are used to represent the states and inputs
when printing out the next - state array, the control law, and cell status

array. The states and inputs are coded in the following manner: the
smallest possible state has a code of 1; the first state is increased to

its next possible value and then coded with a 2; the first state continues
to be incremented until it reaches its largest possible value minus one

step. Next, the second state is incremented by one step and the process is
repeated. The coding continues until all possible state combinations have
been coded. The procedure for coding the inputs is similar.

5.4.4.14. Example 1: Coding the states and inputs. Assume that the user

inputs the following A/D parameters:

number of states = 2;

number of inputs = I
number of quantization steps for state 1 = 4

number of quantization steps for state 2 = 8
upper and lower voltage bounds for state 1 = 4, -4

upper and lower voltage bounds for state 2 = 2, -2
number of quantization steps for the input = 4

upper and lower voltage bounds for the input = 1, -1

Now, the program can code the states and inputs in the following manner:

number of state combinations = 4 x 8 = 32
the step size for state 1 = (4 - (-4)) / 4 = 2

the step size for state 2 = (2 - (-2)) / 8 = 0.5
number of input combinations = 4

the step size for the input = (0 - (-1) / 4 = 0.5

Thus, there are 32 state codes and 4 input codes.

30

The smallest possible state = I-4];it has a state code of 1

L-2
Increasing state 1 by 1 step size = ; it has a state code of 2

Similarly, the code 'or []=3 , 2 4.

Note the case of 4- is not included; the process codes the states from

L•2
lower voltage level to the (upper voltage level - 1 step).

Next, the process- is, repeated after first incrementing the second state by
one step. Thus [-451 has a code of 5, [_-2 -1. has a code of6..

The process continues until finally, 25 has a code of 32.I

The quantized model of the second order system may be thought of as a eell1

Plane, with first state along the horizontal axis and the second state

along the vertical axis. The two cell planes for this example (See Figure
2-1) graphically illustrate the discrete states and their codes. A similar

process is used to code the inputs.

5.2.4.15. Quit. This selection returns the user to the command level.

5.2.5. Display Level.

At this level the user may choose to have any of the following displayed:

1. Status of the job
2. Data file
3. Quantized data (next-state) file
4. Summary of quantization levels
5. Control Law (display menu)

6. None of the above

The above menu may vary depending on the val idi ty of the f il1es. For

example, if a control law does not exist yet for the job, choices 4 and 5
are omitted.

5.2.5.1. Check status. This option allows the user to see which

representations of the system are valid: the continuous-time, discrete-
time, and/or the quantized model. Also, two checks are made to see whether

or not a control law exists for the job and if a file containing simulation
data exists.

5.2.5.2. Data file. This choice tells the program to display the

continuous- time, discrete-time, and the A/D converter parameters. (Note:
at the present time this option does not work.)

5.2.5.3 Next-state array. The next-state array is two dimensional, and
displayed such that the code for each state is on the vertical "axis" and

31

-4 -2 0 2
1.5 1.5 1.5 1.5 29 30 31 32

-4 -2 0 2
1.0 1.0 1.0 1.0 22 23 24 25

-4 -2 0 2 I

0.5 0.5 0.5 0.5 18 I19 20 21

-4 -2 0 2
0 0 0 0 17 18 19 20

-4 -2 0 2
"-0.5 -0.5 -0.5 -0.5 13 14 15 16

-4 -2 0 2
-1 -1 -1 -1 9 10 11 12

-4 -2 0 2
-1.5 -1.5 -1.5 -1.5 5 6 7 8

-4 I 2 0 2

"-2 -2 -2 1 2

Grid 1 Grid 2

Figure 5-7. Quantization Grids

32

the code for each input is printed along the horizontal. Lying within the
matrix are the codes representing the states to which the corresponding
state would move, given the corresponding input. The coding procedure is
discussed is section 5.2.4.13. If the code is a zero (0), it implies that
the given state is saturated or leads to a uncontrollable cell. An
uncontrollable cell is one which leads to a saturated state for all
possible inputs. After printing the next state array for ten states the
user is given the option to continue displaying the array. This question
is asked after every ten states.

5.2.5.4. Example 2: Format of next-state arrays. The next state array is
a two-dimensional array of dimension number of state combinations by number
of input combinations. If the user enters the A/D parameters as described
in Example 1, the first part of the quantized data array could appear as
follows:

1 9 9 17 17
2 10 10 18 18
3 0 0 0 0
4 12 12 20 20

32 17 17 9 9

In this example, as in example 1 of section 5.2.4.14., there are 32 state
combinations and 4 input combinations. The first row of the array tells
the user that if the current state, x(k), has a code of 1 and an input is
applied which has a code of 1 or 2, then the next state, x(k+1), will have
a state code of 9. Similarly, if an input is applied whose code is 3 or 4,
the next state's code will be 17. Any input will cause the third cell to
saturate or become uncontrollable.

5.2.5.5. Check quantization level. This option allows the user to make
some crude checks regarding the quantization. Two basic checks are done.
The first is a summary of the cells moved from each state with a zero
input. The number of cells moved in each direction and the total number of
cells moved are computed and displayed.

The second part of the report checks the number of cells moved from the
zero state for each input at its smallest value. If the smallest value
results in saturation, the smallest value which results in a non-saturated
next state is used. The results are reported for each input. In this
part, unlike the first, the cell movement is described by an absolute and
average value. The absolute value represents the number of cells moved in
the given direction, while the average value is the ratio of the number of
cells moved to the number of steps between the smallest non saturating
input and the zero input. These absolute and average values are recorded,
as in the first part, for cell movements in each direction as well as the
total number of cells moved. (See Example in section 5.2.5.6.)

After displaying the summary, the user has the option to have the

33

saturation edge array printed. This array has the same matrix format as
the next state array, but elements are displayed as either an "F" or a "T."

A "T" is displayed if the cell leads to saturation or to an uncontrollable
cell when the corresponding input is applied. For instance, if the

beginning of the array appears as:

1 F F F F

2 T F F F
3 T T T T

4 F F F F

it implies that any input will cause the state whose code is 3 to lead to
saturation or to an uncontrollable cell. This result also occurs if an
input which has a code of 1 is applied to state code 2.

If some of the cells are uncontrollable, the user has the opportunity to
print out the uncontrollable cell array. This array contains the codes of

the cells which are uncontrollable.

5.2.5.6. Example 3: Calculation of cell movement. Using the second cell

plane, Figure 5-7, assume that the state with a code of 10 moves to the
state coded by 19 when the zero input is applied. The movement in the
direction of the first state (horizontal movement) is I cell and the
movement in the second direction is 2 cells. Thus, the total number of

cells moved is 1 + 2 = 3 cells.

From Example I of 5.2.4.14., the zero state has a code of 19, and the zero
input has a code of 3. Assume that the smallest input (-1 volts) leads
the zero state into saturation but the next smallest input (-0.5 volts)
leads the zero state to the state whose code is 15. The number of steps
between the zero input and the minimum non-saturating input is one, since

there is only one step between 0 and -0.5. The absolute movement then, is
0 cells in the direction of state 1 and is 1 cell in the direction of state

2. The average movement is 0/1 = 0 cells in direction 1, and 1/1 = I in the

second direction.

5.2.5.7 Control law file display. The control law file for the job is

printed. The display is an array giving the appropriate input code for
every possible state combination to obtain the desired controller. (See
section 5.2.4.14. for an explaination and example of the coding process.)

5.2.5.8 Quit. This choice causes the program to exit the display level
and return to the command level.

5.2.6. Control Law Development.

Upon entering this level, the user is asked to enter the type of cost

function to be used in developing the control law.

1. Minimum Time

2. Quadratic

34

3. Minimum Control Effort
4. Custom Cost Function (control menu)
5. None - Access a control law file
6. None of the above

5.2.6.1. Minimum time. The program attempts to build a control law which
satisfies the requirements of a minimum time cost function. Thus, the
controller will be one such that the control input will take the current
state to the origin in the least amount of time.

5.2.6.2. Quadratic. If this cost function is chosen the user is asked to
enter the state and input cost matricies (the "Q" and I"R"t matricies). These
weighting matricies are assumed to be diagonal, so only the diagonal
elements are needed.

5.2.6.3. Minimum control effort. As in the case above, the user is asked
to enter the input weighting matrix ("lR"). Again, this is assumed to be a
diagonal matrix.

5.2.6.4. Custom cost function. If none of the above choices are
desirable, the user may write a custom cost function. To do this, a
procedure should be written in PLI and named custom cost function. The
discrete state and input arrays are passed to custom cost function and the
procedure should compute and return the cost. All three parameters need to
be declared as floating arrays/numbers.

5.2.6.5. Access a file. The user may choose to implement an already-
developed control law by entering the name of the file so that the program
can access it.

5.2.6.6. Quit. This is the correct choice if the user does not wish to
build a control law, but does want to return to the command level.

After choosing the cost function (if a "6" was not chosen), the user is
prompted to enter the center and edge cell tolerances. The center cell
tolerance is used by the program to determine the tolerant region which
surrounds the origin. Within this tolerant region, the program checks to
see if any cells exist which can not reach the origin with any of the
possible inputs, yet other cells which are also unable to get to the origin
are able to reach them. These cells are called root cells. So, if a
center cell tolerance of 1 is entered for the system discussed in Example
1, the program would check to see if any of the following cells were root
cells: 14, 15, 16, 18, 20, 22, 23, and 24.

The edge cell tolerance is used to compensate for edge irregularities. If
this tolerance is input to be 1, for the system described in 5.2.4.14.,
the edge cells would be: 1 - 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25,
28, and 29 - 32. Both the center and edge cell tolerances must be entered
as integers.

The program continues by attemting to build the cell status array; it finds

35

all root cells and the cells which are reachable to them. If successful,
the tolerant region is built. If the tolerant region control law can be

constructed, the program then builds the control law and sets the control

law status flag.

If the status flag for the control law is set, the user can have the cell

status array and control law printed. The cell status array is an array
which codes each state in the following manner:

0: Unmarked cell
1: Cell is uncontrollable

2: Cell is in the edge tolerant region
3: Root Cell - the zero state cell

4: Cells which can reach the Root cell coded with a 3
5: Root Cell

6: Cells which can reach the root cell coded with a 5

7: Root cell
8: Cells which can reach the root cell coded with a 7

i: Root Cell
i+1: Cells which can the root cell coded with an "i"

The control law is printed out just as in the Display level (See section
5.2.5.7.) The appropriate input code which has been found to satisfy the

chosen cost function is printed for each state code.

5.2.7. Simulation Level.

After the control law has been developed for the job, the user may wish to

simulate the controlled system. To simulate the system, the program calls
an IMSL routine, DVERK, which solves the system of differntial equations or

OWN SYSTOSIM if a system other than the one in the job file is to be
simulated. A simulation of the system may only be obtained after the

parameters for the quantized system have been entered and a control law has
been developed.

Upon entering this level, the following menu or question is displayed,

depending whether or not a simulation file exists for the current job:

If a simulation does not exist:

Would you like to simulate the system?

If a simulation file does exist:
Would you like to:

1. Modify the simulated data file

2. Plot the existing simulated data (Sim. menu)

3. Quit

5.2.7.1. Simulating. This response lets the user start the simulation

36

process. The program then gives the user various parameters needed for the
simulation. First, the user can have any continuous model of the system,
not necessarily the one in the data file, be simulated. This is desirable
if the user wants to see how the control law works on slightly permutated
systems. With this option, the user can take a nonlinear system, find a
linear representation of it and use DTQD to develop the control law, and
then simulate the nonlinear model using this control law. if this is
desired, the user must write a PLI routine, and name it own sys to sim.pll.
Note: the states to be accessed by the control law must be the first states
in the system of equations. This limitation implies that the number of
equations in own sys to sim be equal or greater than the number of states
used in the development of the job file. The procedure own sys to sim
should have the following parameters:

num of equations - fixed binary (35) - the number of simultaneous
differential equations to be solved (i.e. the number of states);

time - float binary - the current time;
time end - float binary - the time after doing subroutine;
state - (10) float binary - the state array upon entering routine;
state after - (10) float binary - the state array after subroutine;
time mnit - float binary -the initial time for the entire simulation;
time-end - float binary - the final time of the simulation;

It should also call a subroutine which will determine the next state.
(e.g. DVERK) Whether or not the user accesses a separate file, the user
is asked to enter the number of steps per time constant. This number
should be an integer and not zero. At each step the program will call
IMSL DVERK or OWNSYSTOSIM and have the next state determined. In this
way the continuous-time model is simulated and the user can observe what is
happening between sampling intervals. The number of embedding levels must
be entered next. This value should also be a integer. The number of
embedding levels is the number of times the controller is allowed to "zoom
in." A zero (0) should be entered if the user does not want to access any
other levels. If an integer other than zero is entered, the user is asked
to enter the scaling factor. This value should be greater than zero and
less than or equal to one. The program progresses to a different region,
j, whenever the state is less than (the upper bound for the state) x (scale
factor)J, or greater than (the lower bound for the state) x (scale
factor)J. After the region is determined, the control law is accessed such
that each of the control law inputs are also "scaled down" into the
appropriate region. (See section 5.2.7.2. for an example)

Next, the user can have the simulated data displayed while running. A
response of "yes" causes all the simulation data, time, states, and control
inputs, to be printed on the screen. If at any time during the simulation
one or more of the states becomes greater than its upper bound or less than
its lower bound, the simulation is ended and a warning appears to let the
user know that system has gone unstable. Whether the simulation is
successful or not, the user can save the simulated data in a file and plot
the data. If the data is saved in a file, it may opened later to study the
data. If a file is made, the simulation status flag is set.

37

5.2.7.2. Example 4: Recursion levels and scaling factor. Using the A/D
parameters of Examples I and 2, recall that in the previous examples, tne
voltage bounds for each state were as follows:

upper and lower voltage bounds for state 1 = 4,-4
upper and lower voltage bounds for state 2 = 2,-2

If the user enters "3" for the number of recursion levels, and 0.1 fcr t-ne
step size, the program will "zoom in" whenever the first state becomes
smaller in magnitude than (0.1 x 4) - 0.4, or when the second state becomes
smaller in mragnitude than (0.1 x 2) =0.2. If the states become smaller in
magnitude than 0.04 or 0.02, respectively, the controller will zoom in a
secona time. If state 1 had a value of 0.3, smaller than 0.4 but greater

than 0.014, the state would be at the first level. The control law would be
accesssed as if the state had a value or 3 instead of 0.3, the control
input would be found, and then scaled down to size. Thus, if the control
law listed 5 volts as the proper input for a state of 3, the input that
would be used would be 0.5 volts.

5.2.7.3 Plotting. If a simulation file exists for the job, a plot can be
made immediately after entering the simulation level. Otherwise, the plot
can be made following a simulation. Several parameters must be entered if
the user wishes to make a plot. The user can make several plots on top of
one another. Also, any state, any input, or the time can be plotted on
either axis. The user may have any ascii keyboard character symbolize each
data point or may opt to have no symbols at all. If symbols are used, the
user may or may not choose to have them connected by vectors. In addition,
the user may have the graph made with tick marks, a dotted grid, or a solid
grid. Also, a title and axis labels may be entered. These labels have a
maximum length of 25 characters. Finally, the user may have the program
automatically scale the plot or opt to choose and enter the upper and lower
bounds for each axis.

5.2.7.14. Quit. The user returns to the command level if this choice is
selected.

5.2.8. An Overall Example.

As an example, consider a d.c. servomotor. To find a control for the
motor, the program DTQD could be implemented as follows. First, a linear
model of the system must be developed to represent the motor. For this
example, we will use the following. second order system as the model:

(t) = [(t) 0 110 (t)) + u(t) (5-20)
~(t) [0 -2 [6(tj 1~

DTQD can now be used to determine the discrete-time mocel using the above
model and a chosen time constant T. (The following pages contain the
actual program run.) With T = 0.25 sec-1, the discrete-time model was

found to be:

38

X 100o0 0 10 (ko] + (00O Iu(k) -21)

From this model, the user can make a quick estimate of how state I and 2
are related by looking at the state trajectories. Assume that the voltage

bounds are ±4 volts for each state and ±10 volts for the input.
If x(0) = Fo(0)] = [0], then from (5-21) x(1) = [0.80]. The initial cell

le(1)/ 14J 2.4
moved 0.8 cells in the direction of the first state and 1.6 cells in the

direction of the second state (a 1:2 ratio). Therefore, an estimate for an
average cell movement can be made. Using the 1:2 ratio as a guide and the
voltage limits, an estimate can be made regarding the number of steps

needed for quantizing the state and input.

Using 16 steps for the first state, 8 steps for the second and 8 for the

input, DTQD can be implemented to determine the quantized model. Next, the
user may opt to have DTQD breifly summarize the quantization and cell

movement. From this summary, the user can determine whether of not the

initial estimate for the number of steps was satisfactory.

After the user is satisfied with the quantized model, a control law for the

system can be developed. In this example a minimum time cost function was

chosen. Finally, the system may be simulated.

The following pages contain the program run for this example. An
exclaimation point (!) before a word or number implies that the entry was
input by the user.

DT1D

Would you like to

1. Access an oad Job file
2. Create a new job file
3. Modify an oLd job file
4. Return to Main Menu

Please choose one of the abcve => 1 2

Enter name of the new job file => I servo-motor

Enter a title for the data file
Note: Quotes are reqjired if more than one word is used
"This is an EXAIPLE"

Which of the followinq would you like to modify/create?

1. Title of the job file
2. Cont inuous system parameters

39

3. Discrete system oarameters
4. Iluantized system parameters
5. None of the above

Please choose one => ! 2

Enter nurber of states => 2

Fnter number of inputs => ! 1

Enter values for the A matrix
A 1 I, 1) -> 0
A C 1, 2) => ! I
A 2, 1) => ! 0
A 2, 2) => ! -2

Enter values for the 8 matrix
3 (1 , 1) => ! 0
9 (2, 1) => ! 1

Which parameter(s) would you like to change?

1. Number of states
2. Number of inputs
3. System matrix, A
4. Input matrix, B
5. ALL cf the abnve
6. None of the above

Please choose one => ! 6

Which ol the following would ycu like to modify/create?

1. Title of the job file
2. Continuous system parameters
3. Discrete system oarameters
4. Quantized system oarameters
5. None of the above

Please choose one => ! 3

A continuous model exists, woulc you like to:

1. Generate a discrete model from the continuous system
2. Enter a new discrete systerr
3. 1uit

Please choose one => ! 1

Enter tau >! 0.?5

F)'1i 'A TP IX =
1*f.lfnnnl O e+qo0 1.06734663e-Crl
0. J0ldo70oe+q0, 6.'6530674e-C1l

LA'IRDA mATRIX =
5. 32653 61e-flO?
3. ')3460 326e-J0 1

40

Which of the foltowing would you Like to modify/create?

1. Title of the job file
2. Continuous system parameters
3. Discrete system parameters
4. luantized system oarameters
5. 4one of the above

PLease choose one => 5

1) Initialize
2) Modify Data File
3) "rint Files
4) 9uild Cont'ot ii Uaw
5) Simulate
6) Quit

Enter choice "> ! 6
r 15:02 2.693 132

SDTQ)

Wouli you like to :

1. Access an old job file
2. Create a new job file
3. Modify an old job file
4. Return to Main Menu

Please choose one of the above > !

Enter the job name => ! servo mctor

The title of this data file is:
This is an EXA!IPLE

Is this the correct file? y

The current status 'of this job is:

A continuous system exists
A discrete system exists

1) Initialize
2) Modify Data File
3) Print Files
4) 9uild Control Law
5) Simulate
6) Qu i t

Enter choice == ' •

Which of the following would you like to modify/create?

1. Title of the job file
2. Continuous system parameters
3. Discrete system parameters
4. Quantized system oarameters
5. None of the above

Please choose one => ! 4

Would you like to qenerate a auantized system
from the discrete system? => . y

41

En.er the number of ouantizaticn steos
for state number 1 "> ' 8
for state numl'er 2 => ! 4

Enter the uoper and Lower volt ace bounds (u, L)
for state number 1 => 4,-4
for state number 2 => 4,-4

enter the number of ou3ntizaticn stecs
for input number 1 => ! 4

Enter the upoer and Lower voltaqe bounds (u, 1)
for input number 1 -> ! 1C,-10

Would you like the next state file built! y

Bui Idinq next state file
Would you Like the next state file printed? => ! n

Which of the following would you like to modify/create?

1. Title of the job file
?. Continuous system oarameters
3. Discrete system parameters
4. Iuantized system parameters
5. None of the above

Olease choose one => ! 5

1) Initialize

2) Modify Data File
3) c•rint Files
4) auilI Control Law
5) Simulate
6) Qu i t

Enter choice -> ! 3

Which of the following would you like printed?

1. Status of the job
2. Data file for the job
3. Quantized data file - next state file
4. luantization level check
5. 'lone of the above

Enter choice => ! 4

Woul l you like to check the ouantizatio- level ? ! y

Number of controllable cells = 3?
Total number of cells - 32

Number of cells moved in each direction
Dir 0 1

1 24 7
Z 15 16

Number of cells moved total
n,j,,n 0 1

A 23
42

":n:ut Inout Num Total Cells Cells Moved
Status Inout Movec in

Steps Abs Avq Dir Abs Avg
1 max unsat 2 2 1.CO

1 0 0.00
2 2 1.00

,Aoull you like the saturated edge array printed? ' n

Which of the following would you Like printed?

1. Status of the job
2. Data file for the job
3. QuantizeAi data file - next state file
4. Quantization level check
5. Nlone of the above

Enter choice => ! 5

1) Initialize
2) Modify Dat- File
3) Print Files
4) Buil d Control Law
5) Simulate
6) Quit

Enter choice => ! 2

Which of the followini would yob like to modify/create?

I. Title of the job file
2. Continuous system parameters
3. Discrete system parameters
4. Quantized system parameters
5. None of the above

Please choose one => ! 4.

A quantized system currenttly exists
Do you still wish to modilfy the quantized system? => ! y

Would you like to generate a quantized system
from the discrete system? => ! y

Enter the number of quantization steps
for state number 1 -> ' 16
for state number 2 => ! 8

Enter the upper and lower voltace bounds (u, L)
for state number 1 > ! 4-4
for state number 2 "> ! 4,-4

Enter the number of quantization steps
for input number 1 -> '

Enter the upoer and lower voltace bounds (u, L)
for input number 1 -> ! 1c,-1C

Would you like the next state file built! y

9uildinI next state file
Would you like the next state file orinted? => y

43

1 0 0 0 0 0 0 0 812 0 0 0 0 33 49 65 82
3 0 0 1 1 7 34 50 66 834 0 0 2 18 35 51 67 845 0 0 3 1 9 36 52 68 85
6 0 0 4 20 37 53 69 867 0 0 5 21 38 54 70 87
8 0 0 6 22 39 55 71 889 0 0 7 23 40 56 72 89

10 0 0 8 24 41 57 73 90
More? > ! y

11 0 0 9 25 42 58 74 9112 0 0 10 26 43 59 75 92
13 0 0 11 27 44 60 76 9314 0 0 12 28 45 61 77 94
15 0 0 13 29 46 62 78 9516 0 0 14 30 47 63 79 9617 0 0 0 0 0 0 65 8118 0 0 17 17 33 49 66 8219 0 1 18 18 34 50 67 83
20 0 2 19 19 35 51 68 84

More? -> ! y

21 0 3 20 20 36 52 69 8522 0 4 21 21 37 53 70 86
23 0 5 22 22 3,8 54 71 8724 0 6 23 23 39 55 72 8825 0 7 24 24 40 56 73 8926 0 8 25 25 41 57 74 9027 0 9 26 26 42 58 75 9123 0 10 27 27 43 59 76 9229 0 11 28 28 44 60 77 93
30 0 12 29 29 45 61 78 94

More? => ! y

31 0 13 -30 30 46 62 79 95
32 0 14 31 31 47 63 80 96
33 0 0 0 0 49 65 81 9734 0 1 17 33 50 66 82 98
35 0 2 18 34 51 67 83 9936 0 3 19 35 52 68 84 100
37 0 4 20 36 53 69 85 1013.3 0 5 21 37 54 70 86 10239 0 6 22 38 55 71 87 10340 0 7 23 39 56 72 88 104

More? => ! y

41 0 8 24 40 57 73 89 105
42 0 9 25 41 58 74 90 106
43 0 10 26 42 59 75 Q1 107
44 0 11 27 43 60 76 92 10845 0 12 23 44 61 77 Q3 109
46 0 13 29 45 62 78 94 110
47 0 14 30 46 63 79 95 111
43 0 15 31 47 64 80 96 11249 0 0 0 49 65 81 97 11450 1 17 33 50 66 82 98 115

More? => ! y

51 2 18 34 51 67 83 99 116
52 3 19 35 52 68 84 100 117

44

53 4 20 36 53 60 85 101 11854 5 21 37 54 70 86 102 11955 6 22 38 55 71 87 103 12056 7 23 39 56 72 88 104 12157 8 24 40 57 73 89 105 12258 9 25 41 58 74 90 106 12359 10 26 42 59 75 91 107 12460 11 27 43 60 76 92 108 125More? => ! y

61 12 28 44 61 77 93 109 12662 13 29 45 62 73 94 110 12763 14 30 46 63 79 95 111 12864 15 31 47 64 80 96 112 065 0 17 33 49 65 82 98 11466 1 18 34 50 66 83 99 11567 2 19 35 51 67 84 100 11668 3 20 36 52 68 85 101 11769 4 21 37 53 69 86 102 11870 5 22 33 54 70 87 103 119More? => ! y

71 6 23 39 55 71 88 104 12072 7 24 40 56 72 89 105 12173 8 25 41 57 73 90 106 12274 9 26 42 58 74 91 107 12375 10 27 43 59 75 92 108 12476 11 28 44 60 76 93 109 12577 12 29 45 61 77 94 110 12673 13 30 46 62 78 95 111 12779 14 31 47 63 79 96 112 12880 15 32 48 64 80 0 0 0More? => ! y

81 17 33 49 65 82 98 114 082 18 34 50 66 23 99 115 083 19 35 51 67 84 100 116 084 20 36 52 68 85 101 117 085 21 37 53 69 86 102 118 086 22 38 54 70 87 103 119 087 23 39 55 71 88 104 120 088 24 40 56 72 80 105 121 089 25 41 57 73 90 106 122 090 26 42 58 74 91 107 123 0More? => ! y

91 27 43 59 75 92 108 124 092 28 44 60 76 93 109 125 093 29 45 61 77 q4 110 126 094 30 46 62 78 95 111 127 095 31 47 63 79 96 112 128 096 32 48 64 80 0 0 0 097 33 49 66 82 98 98 115 091 34 50 67 83 99 99 116 099 35 51 68 84 1CO in 117 0100 36 52 69 85 iCi 101 118 0More? => ! y

101 37 53 70 86 10? 102 119 0102 38 54 71 87 1C3 103 120 0103 39 55 72 88 14 104 121 0104 40 56 73 89 IC5 105 122 0105 41 57 74 90 IC6 106 123 0

45

106 42 58 75 91 1C7 107 124 0
107 43 59 76 92 1C8 108 125 0103 44 60 77 93 1C9 109 126 0
109 45 61 78 94 110 110 127 0
110 46 62 79 95 111 111 128 0

More? => ! y

111 47 63 80 96 112 112 0 0
112 48 64 0 0 0 0 0 0
113 33 50 66 82 99 115 0 0
114 34 51 67 83 100 116 0 0
115 35 52 68 84 iCi 117 0 0
116 36 53 69 85 102 118 0 0
117 37 54 70 86 1C3 119 0 0
113 38 55 71 87 1C4 120 0 0
119 39 56 72 88 15 121 0 0
120 40 57 73 89 106 122 0 0

More? -> ! y

121 41 58 74 90 107 123 0 0
122 42 59 75 91 1C8 124 0 0
123 43 60 76 92 1C9 125 0 0
124 44 61 77 93 110 126 0 0
125 45 62 78 94 111 127 0 0
126 46 63 79 95 112 128 0 0
127 47 64 80 96 0 0 0 0
12.3 48 0 0 0 0 0 0 0

Which of the following would you Like *to modify/create?

1. Title of the jo:b file
2. Continuous system parameters
3. Discrete system parameters
4. Quantized system parameters
5. None of the above

Please choose one => ! 5

1) Initialize
2) modify Data File
3) Print Files
4) 9uil- Control Law
5) Simulate
6) Ouit

Enter choice > ! 3

Which of the following would you like printed?

1. Status of the joh
2. Data file for the job

46

3. Quantized data file - next state file
4. Quantization level check
5. 10one of the above

Enter choice => ! 4

Would you like to check the Quantization Level . ! y

Number of controllabte cells = 129
Total number of cells - 121

Number of cells moved in each direction
Dir 0 1 2

1 48 6 0 14
2 46 61 15

Number of cells moved total
nun 0 1 2 3

16 62 15 29

Inout Inout Num Total Cells Cells Moved
Status Input Moved in

Steps Abs Avg Dir Abs Avg
1 max unsat 4 5 1.25

1 1 0.25
2 4 1.00

Would you like the saturated edge array printed? ! n

Which of the following would you like printed?

1. Status of the job
2. Data file for the job
3. Quantized data file - next state file
4. Quantization level check
5. ',one of the above

Enter choice => ! 5

1) Initialize
2) 'Modify Data File
3) Print Files
4) B3uili! Control Law
5) Simulate
6) Qu i t

Enter choice -=> I 4

Would you like to build the control law file? y

Which type of cost function woulc you like to use ?

1) '"inimum Time
2) Qua "ratic
3) "inimum Control Effort
4) Custom Cost Function (use orocedure custom cost-functio: .tl1
5) None - Would like to access a control law vile
6) Ncne of the above

Please choose one => ! 1

Enter the center cell tolerance) ! 2

47

Enter the edqe cell tolerance => ! 2

Tree sucessfulty completed
Sucessfully built tolerant reqion control law
Ruildin3 control law

Wouli you like the cell status array orinted ? ! n

Woull you like the control law printed? => y

Control Law:

1 8
2
3 8
4 6
5 8
6 6
7 8
8 6
9 8

10 7
11 4
12
13 3
14 3
15 3
16 3
17 719 6
19 7
20 6
21 7
22 6
23 7
24 6
25 7
26 3
27 2
29 2
29 2
30 2
31 2
32 2
33 5
34 9
35 5
36 1
37 5
3S
30 5
40 8
41 6
42 3
43 2
44.
45
46 2
47 249 24ý 2

50 7
51 3
52 7
53 8
54 ?7
55

48

56 7
57 5
58 2
59 1
60 1
61 1
62 1
63 1
64 1
65 7
66 6
67 7
68 6
69 7
70 6
71 7
72 6
73 5
74 1
75 1
76 1
77 1
78 1
79 1
80 1
81 6
82 5
83 6
84 5
85 6
86 5
87 6
88 5
89 4
o nI1
o1 2
92 1
93 1
94 1
95 1
96 1
97 5
9 3 7
09 5

100 7
101 5
102 7
103 5
104 3
105 1
106 1
107 1
108 1
109 1
110 1
111 1
112 1
113 5
114 5
115 5
116 5
117 5
118 5
110 2
120 3
121 1
122 1

49

123 1
124 1
125 1
126 1
127 1
121I

1) Initialize
2) Modify Data File
3) Print Files
4) Build Control Law
5) Simulate
6) Quit

Enter choice -> ' 5

Would you like to simulate the system? => ! y

Would you like to simulate:
1. The continuous system in the job file
2. A continuous system in another file

Please choose one => ! 1

Enter number of steps per time constant => ! 5

Enter the number of recursion levels => ! 3

Enter the scaling factor => ! 0.2

Enter initial state
initial state 1 => ! 3
initial state 2 => ' 3

Enter initial time => ! 0

Enter final time => ! 10

Would you like the simulation printed while running => 'n

Simulating system

Would you like to save the simulated data in a file? => ! n

Would you Like to plot the simulated data? => ! y

Would you like multiple plots on one graph? ! n

What would you like to plot on the y axis?
1. A state
2. An input
3. Time

Please choose one => ! 1

Which state do you wish to plot on the y axis? ! 1

What would you like to plot on the x axis?
1. A state
2. An input
3. Time

Please choose one => ! 3

Would you like a symbol to represent each data Doint? => ! n

The graph will have tick marks, be automatically scaled,
and have no labels

Would you like to change any of these default options? -> ! n

50

3.5

3

"*t 2.5

2

CU .5

-4
-0.
CJ2

Ca 6

r-4
c-e. 5

I 3 S 7 9
8 2 4 6 8 IO

Time (sed)

Would you Like to plot the simulated data? => i n

1) Initialize
2) Modify Data File
3) Print Files
4) 3ui ld Control Law
5) Simulate
6) Quit

Enter choice 6=> 6

Would you tike to save the quantized state file? => n

r 14:36 0.070 0

51

5.3. Modelling the Elevation Stabilization System

5.3.1. Introduction.

The following sections describe the process of modelling the elevation
stabilization system of the M-60 tank and determining the parameters needed
to implement the controller design program, "DTQD."

The first step in the process involved modelling the gun and hydraulic
servo system to obtain the open loop transfer function. The models were
simplified to develop three representations of the system: two first order
approximations, one with the trunnion damping modelled as viscous friction
and the other with it modelled as coulomb friction, and a third order
approximation.

In modelling the system, several assumptions were made. First, the gun was
considered to have only a single degree of freedom, and the gunner was not
included as part of this model. It was later assumed that because the
distance between the trunnion and the mass center of the gun was relatively
small compared to the length of the gun, for small angular velocities the
velocity and acceleration of the mass center and trunnion could be
considered equal. In linearizing the gun model, a first order Taylor
series approximation was done. The nominal values for the angular velocity
of the gun and hull acceleration was considered to be zero. Finally, the
model of the fluid flow relationship in the hydraulic system was taken
directly from manufacturer specifications.

Using the program "DTQD," the control law was developed for the first order
system in which the trunnion damping was modelled as viscous friction. The
three models of the system were then simulated using this control law.

5.3.2. Modelling the gun.

5.3.2.1. Gun Kinematics. From the dimensions of the gun, the kinematics
could be analyzed. (See Figure 5-8) The relationship between all the
necessary "angles" and "sides" were determined using some simple
trigonemetric identities.

The angle 0 can be expressed in terms of the length of the actuator 9 using
the law of cosines.

c sqrt [(4.5)2 + (14.1)2] = 14.8 (5-22)

2= (38.28)2 + (14.8)2 - 2(38.28)(14.8)cosG (5-23)

J2 - (38.28)2 - (14.8)2

Thus, cosO = 2(38.28)(14.8) (5-24)

The angle p can be found in terms of 0 and Z using the law of sines:

sin p (sino)(14.8/t) (5-25)

52

< ~38.4

\c 14.1

4.5

Figure 5-8. Model for deriving kinematics of gun

Sx. 'I•z, k

H
h1 -

h3

./ •i l

Figure 5-9. Model for deriving dynamics of gun

53

Finally, the angle P can be determined in terms of C as follows:

= arctan [4.5/14.1] = 0.309 rad = 17.70 (5-26)

S=180 - E-) - 90 =(1.26 -) rad =(72.3 0 - (O) (5-27)

5.3.2.2. Gun Dynamics. The gun is treated as a rigid beam supported at the
trunnion, and considered to have a single degree of freedom. To formulate
the dynamic equations of the gun, define three coordinate systems: "H", the
coordinate system fixed in the hull of the tank; "B", the body fixed

system with the coordinates being the principal axis of the gun; and "I"
the inertial reference frame. (See Figure 5-9) The angular coordinates
are ý for the gun, and 6 for the hull. Thus, the angular velocities may

be expressed as:

HWB = angular velocity of the gun wrt. the hull = 3

I-H = angular velocity of the hull wrt. the inertial ref. frame = B j

Assuming that the forces on the gun due to the hull are Fx and Fz, and that
the force due to the linear actuator is f, the equation for linear motion

can be written as follows:
""- - -4 "B

Fx i + Fz k + f el - mg i2 = m Ia (5-28)

where,
m = mass of the gun,

g - acceleration due to gravity,
IAB = acceleration of the gun with respect to the inertial reference

frame, and
-4the coordinate i 2 of the "I" reference frame and the coordinate

-4
el can be written in terms of the "B" reference frame by,

e, = - cos ý i - sini k, (5-29)

i2 = cos (0 + a) 1 - sin (E + a) k. (5-30)

Thus, equation (5-28) can be separated into two equations,

Fx - f cosy + mg cos (0 + a) = m ax (5-31)

Fz - f siny - mg sin (0 + cx) = m az (5-32)

Because the distance between the trunnion and center of gravity of the gun
is small compared to the length of the gun, it is assumed that the velocity
and acceleration of the mass center is equal to that of the trunnion. This
is of course justified for small angular velocities. With this assumption,

the expression for the acceleration can be simplified, since the terms
representing the Coriolos acceleration and the relative acceleration of the

gun with respect to the hull can be neglected. Thus, the accelerations,
az and ax, are the accelerations of the hull in the z and x directions,

54

respectively. However, this distance between the mass center and trunnion
will remain in the equations which calculate moments. Therefore, any
forces applied to the gun by the trunnion will be included in the dynamics
and result in a net torque about the y axis.

From Euler's equations, the equation of motion due to rotation can be
determined.

I (4) + ") + (Ixx - Izz) Wz x = My (5-33)

where,
Lx, Wz - the angular velocity of the hull about the x and z axis,

respectively,
Ixx, Iyg, Izz = the principal moments of inertia,

My - the moment of the total external forces about the y axis.

The moment can be expressed in terms of the forces as follows:

M = -0.12 Fz + (38.4) f sin i - fric ((D) (5-34)

where fric is a function of 4 and represents the damping in the trunnion.
This function can be expressed as YO when modelled as viscous friction
(See section 5.3.3.1.) with the coefficient Y having a value of 42,000 in-

lb/rad/sec.

Substituting equation (5-34) into (5-33) and modelling the damping in the
trunnion as viscous friction, the equation of motion for the system can be
rewritten as:

Iyy (' + "9) = -0.12 m [az + g sin (0 + a)] + (38.28) f sin

- (Ixx - Izz)WxWz - Y4 (5-35)

Substituting equation (5-25) into (5-35) and solving for the angular
acceleration of the gun with respect to the hull, 4, we get:

-0.12 m az + 566.54 sin 0 f - 0.12 m g sin (0 + a)
I) 1yy Iyy yy

-- x- IZZLWXZ --

Iyy Iyy (5-36)

5.3.2.3. Linearizing the gun model. The equations for the gun can be
simplified by using the first two terms of the Taylor Series to linearize
the model. (D is a function of six variables: az, I f, D, P, wx, and wz.

After taking a first order approximation of the Taylor series about the
points 0, f 0 , Do, 0, 0, and 0, respectively, and substituting equations (5-
23) and (5-27) into equation (5-36) we can write 4) and Z as linear
differential equations.

4) AO + BP + Caz - F; + G (5-37)
9. - D; (5-38)

55

where,
P = the pressure which causes a force in the actuator (P = f/Ap)

where A is the area of the piston.

A = 0.12 m g sin (•) - 566.54 fo cos (1.26 - P,)

Iyy Iyy {sqrt [1684.4 - 1131.1 cos(1.26 -

+ (566.54)2 f(sin2 (1.26 - (O)

Iyy {sqrt [1684.4 - 1131.1 cos(1.26 - o)]}

B = 566.54 A, sin (1.26 - (D)

Iyy {sqrt [1684.4-- 1133.1 cos(1.26 - o)]}

C = -0.12 m
Iy

D = -566.54 sin (1.26 - (Do
tsqrt [1684.4 - 1133.1 cos (1.26 - •o)}

F --Y
Iyy

G -0.12 m g cos (D) - 0.12 m g sin ((D) ¢D

Iyy Iyy

+ 566.54 f 0 cos (1.26 - ¢D) (D
Iyy {sqrt [1684.4 - 1131.1 cos(1.26 - D0)]}

(566-54)2 f 0 sin 2 (1.26 - (D) (D
Iyy {sqrt [1684.4 - 1131.1 cos(1.26 - 0o)]}

5.3.2.4. Obtaining steady-state values. The values for the coefficients
in expressions (5-37) and (5-38) were obtained by using a small program
"eval" which was written to compute the average of steady - state values
for a chosen range of D. The program asks the user to enter the value (or
range) of P. It then determined the actuator length, Z, using equation (5-
23). The steady - state force, f, needed to obtain a gun displacement of D
was then computed using equation (5-36) with the assumption that 1, az, CX,

Wz, and ; have a value of zero at steady - state. Since the actuator
force, f, is just the pressure times the area of the piston (f = PAp),
"eval" actually determines the steady - state pressure necessary to obtain
an angle D. "eval" then calculates the coefficients by setting the steady
- state values for the force equal to f0 , and the user - selected value of
D equal to 4o in equation (5-37) and (5-38). The coefficients were
averaged for a range of (o between -10 and 45 degrees and found to be:

A = -4.040 x 10"4 1/s 2

B = 1.405 x 10-3 1/(psi S2)
C = -4.847 x 10-5 1/in
D = 13.631 in
F = 0.917 rad/sec
G = -1.641 x 10-2 1/s 2

56

Thus, the equations become:

= (-4.04 x 10-6) D + 0.00145 P + (-4.88 x I0-') az - 0.917 • - 0.0164

S= (13.631) D (5-39, 5-40)

5.3.2.5. Transfer function of the gun. The transfer function for the gun
can be determined by representing equations (5-37) and (5-38) in the
frequency domain, where "s" is the LaPlace operator.

C(s) B s P(s) + C s az(s) + G s
s2 + F3 - 77 Fs - A s4 + Fs - A (5-41)

Using the values for the coefficients as described in the previous section
(e.g., in equations (5-39) and (5-40)), the value of A is very small and,
more importantly, is much less than the value of F. For this reason, the
coefficient A has little effect on the poles of the gun and so will be
neglected in the following analysis. With the value of A assumed
negligable, it can be easily seen that the poles due to the gun are at s =
0 and -0.917 rad/sec. However, the pole and zero at the origin cancel,
leaving a single pole at -0.917.

5.3.3. Modelling the Trunnion Damping.

5.3.3.1. Viscous friction. If we assume the gun is level (e.g., = 0),
then the actuator length, Z, and the angle between the actuator and the
gun, p, can be calculated using equations (5-23) and (5-24) from section
5.3.2.1.

Z = sqrt { (14.1)2 + (38.28 - 4.5)2 } = 36.6 in.

Since (0 + a) = 900, and .was calculated to be 17.70 in equation (5-26), 0
must have a value of 72.30. Now, from equation (5-25) we can determine the
value of 4

= arcsin [14.8 sine] = 22.6 0

91

The next step involves determining what force or torque is needed to move
the gun from its horizontal position. The pressure necessary to move the
gun is about 60 psi. Using this nominal pressure, the force can then be
calculated.

f = PA = (4.72)(60) = 283.2 lb.

Using the notation of section 5.3.2., the force can be represented with
respect to the "B" coordinate system as follows:

f e, = f (-cos 4, - sin 4 k) = -261.4 i - 108.7 k

57

The necessary torque to move the gun can now be computed using the distance
between the point of application of the force and the trunnion, and the
cross product.

Torque = r x f = 38.4 i x (-261.4 o - 108.7 k) 4200 in-lb j'

We can now use this value to represent the damping in the trunnion as
viscous friction. A simple way of doing this is to assume that the
friction has a coefficient of 4,200 when the angular velocity of the gun is
at half of its maximum value, and a value of -4,200 when the velocity half
of its minimum value. The rate sensor which measures the gun elevation rate
saturates for inputs greater than 0.175 rad/sec. So if we assume that the
angular velocity of the gun, $, has a magnitude less than 0.2 rad/sec, we
can model the damping as viscous friction, 42,000;. (See Figure 5-10)

5.3.3.2. Coulomb friction. On the other hand, it is also possible to
represent the damping as coulomb friction. To model nonlinear friction, we
can assume a steep slope for angular velocities near zero and a constant
magnitude opposing the relative gun motion for all other velocities. Using
1/20 of the maximum velocity (0.01) as the bounds on the linear portion,
the steep slope is calculated to have a value of 42,000 in-lb/rad/sec for
angular velocities of magnitude less than 1/100 rad/sec. For larger
magnitudes, the friction may be modelled as a constant of ±+ 4,200 in-lb, of
magnitude opposing the relative motion of the gun. (See Figure 5-11)

5.3.4. Hydraulics of the Gun.

5.3.4.1. Elevation load pressure - fluid flow relationship. The hydraulic
system for the gun is modelled and a block diagram is shown in Figure 5-12.
The variable Q represents the flow out of the pressure control servo valve,
Z is the piston rod velocity, and P represents the load pressure. The
other variables involved are defined in Appendix A. From the diagram, it is
possible to find the equation which determines P from Q and Z.

P(s) = (Q(s) - Ap 1) 2 B
V s + 2 6 KL (5-42)

5.3.4.2. Pressure control servo valve. A block diagram of the elevation
servo valve is in Figure 5-13. The model is identical to that found in the
catalog supplied by the manufacturer, MOOG, for the Series 15 Pressure
Control Servovalve. Using the nominal parameters given by the manufacturer,
the relationship between the output flow of the valve, Q, and the two
"inputs" (the input current to the valve, I and the load pressure P which
is fed back from the gun itself) can be expressed as:

Q(s) = (Ko 1 KQ2 KTM A,) I(s) - (K0 1 ZiN AN + KpQI KF) KQ2 A2 P(s)
&KF A l ' s + KB (KQI AN ZN + KpQI KF) (5 -43)

5.3.4.3. Combining pressure - fluid flow relationship with servo valve.
Block diagrams 5-12 and 5-13 can be combined to determine the total

58

friction (in-lb)

J4?00

-0.2 0.2 ¢ (rad/sec)

-4200

Figure 5-10. Modelling viscous friction

friction (in-lb)

4o00

-0.01 0.01 D (rad/sec)

- 200

Figure 5-11. Modelling Coulomb friction

59

Oil Compliance

Q +
p2 _ _ _

Flow from
Servo Valve DifferentialPress ire

KL

Leakage coefficient

(from gun)

Cylinder area

Figure 5-12. Hydraulic System

T

+ KQ1 +
P1

KF I Q

IANNKPQl

Figure 5-13. Elevation Servo Valve

60

transfer function for the hydraulics of the system. Therefore,
substituting equation (5-43) into (5-42), and solving for the pressure, the
relationship between load pressure and input current and actuator velocity
can be determined.

P(s) = 2 ' (KCi K0 2 KTM A,) I(s) - 2 ý AD (KF A1 2 s + KK KB)
A s + KB KK V s + 2 ý KQ2 A2 Kx + 2 'k1 :K.I aB)

(5-44)
where KK - (KQ1 ZN AN + KpQI KF).

Substituting in the values as listed in Appendix A, the transfer function
for the hydraulics of the system can be written as:

P = 39,573,170.73 I - (36,307.69 s + 6,294,281.76)
sZ + 181.05 s + 139,777.47

(5-45)
where,

I = the input current (mA),
S= the actuator velocity (in/sec).

Thus, the poles of the servo valve are located at s = -90.53 ± 362.74 i.

5.3.5. Open Loop System.

From the above sections a block diagram of the open loop linearized system
can be constructed. (See Figure 5-1I4). The voltage representing the
velocity of the gun can be expressed as:

v= KT (w) (5-46)

where,

T= the gain of the rate sensor = 150 volts/rad/sec
= the velocity of the hull as defined in section 5.3.2.2.

w= (s) = 150 (B z I(s) + (C a,(s) + G)(s 2 + K, s + K2)
(s + F)(s 2 + K, s + K2) + B D (xs + y)

(5-47)
where,

s = the LaPlace operator,
B, C, D, F, and G are the averaged parameters of the gun as defined in

section 5.3.2.4:
B = 1.405 x 10-' 1/(psi S2)
C = -4.847 x I0-5 1/in
D = 13.631 in
F = 0.917 rad/sec

G = -1.641 x 10-2 1/s 2

61

(:; Cn
-

cg •

0 -

I- +

O U)

~C

++

CO

C

x

I0 II

111

rn CO
C -

o -Zr

+ LL+

Figure 5-14. Block Diagram of Elevation Stabilization System

62

x, y, z, K1, K2 are the elevation servo valve parameters as found in
section 5.3.4.3.

x = 36,307.69 psi/in
y = 6,294,281.76 psi/in sec
z = 39,573,170.73 psi/s 2 mA
K1 = 181.05 1/sec
K 2 = 139,777.47 1/sec 2

The program "eval" (See section 5.3.2.4.) not only computes the average
parameters for the gun, but also determines the open loop poles for the
system. The poles were found to be at -90.1 ± 363.6i and -1.78. Also,
"eval" was used to compute the dc gain of the system, which was 0.22217.

5.3.6. Simplified Models.

5.3.6.1 First order approximation. The above system can be simplified to
a first order system by "ignoring" the complex poles (-90.1 ± 363.61 i).
Keeping the dc gain constant, the first order system can be represented by:

W (s) - 0.395 I(s)
s + 1.78 (5-48)

This model has a pole at -1.78 as desired and a dc gain equal to that of
the orginal third order system. The input to the system is the current
into the valve. The constant input denoted by G in the above sections has a
value of only 1.714 x 10-2 and so it shall be neglected. Also, the
coefficient of the input az is only 5.410 x 10-3. Unless the acceleration
is very large, which is impractical, this factor will also be small
compared to the input due to the current. For instance, even if the tank
is accerating at 1 g (32.2 ft/sec) and we assume that this acceleration is
completely in the "z" direction (this is not necessarily the vertical
direction since "z" is a body fixed axis in the gun itself), the term due
to the input az would only have a value of about 2.1 sec- 1 . Thus, this
input is also neglected.

This is the system that was used to develop a control law using the program

"DTQD" (See section 5.2.) It may be expressed in state-space notation as:

"D = -1.78 0 + 0.395 I (5-49)

5.3.6.2. First order system with Coulomb friction. In the previous models
the damping in the trunnion has been treated as viscous friction. In
particular, the modelled friction has had a coefficient of (42000/Iyy) in-
lb/rad/sec. Friction is the primary parameter which causes the dominant
pole to lie at -1.78.

A second representation of the first order system can be made by modelling
the damping in the trunnion as nonlinear friction. In section 5.3.3.2.,
friction was modelled as nonlinear coulomb friction with a magnitude of
4,200/Iyy in-lb for gun velocities greater than 0.01 rad/sec. For
magnitudes less than 0.01 rad/sec, friction was essentially modelled as

63

viscous friction with a very large coefficient. In fact, using this model
for friction, the entire system can be described by:

(C
= 10.395 I - 0.0917; for • > 0.01

0.395 I + 0.0917; for D < -0.01 (5-50)
-9.17 P + 0.395 I; for -0.01 < D < 0.01

5.3.6.3. Third order system. Another model of the system used to "check"
the control law was the model of the complete third order system. This
model is very similar to that of equation (5-46) except the velocity of the
hull, B, is omitted and only a single input, the current into the valve, is
modelled. Systems implementing 6 are considered in section 5.3.6.4. The
other inputs, denoted by G and az above, are ommitted for the reasons
explained in 5.3.6.1. The model can be represented by:

55493.2 I(s)
w(s) = + (90.1 ± 363.6i)][s + 1.78] (5-51)

Using w, w, and w as states, the state - space representation of the system
is

0 1 0 0
W 0 0 1 W + 0 i

-249778.14 -140645.60 -181.98 55493.2

(5-52)

5.3.6.4. Models with a "Disturbance". In all the simplified models
derived thus far, the term 6, the angular velocity of the hull of the tank
in the "y" direction, has been neglected. This term may be added to any of
the above three models to create three more representations of the system.
6 is simply treated as an uncontrolled input (i.e., a disturbance) into the
system, as seen in Figure 5-14. In our case, we set B equal to a
sinusoidal waveform whose amplitude and frequency could be arbitrarily
chosen.

5.3.7. Using "DTQD".

To obtain a control law for the original simplified model - the first order
system with linear friction and no "disturbances," the program "DTQD" was
implemented. To use "DTQD," we first had to determine various parameters
of the system including the sampling time, T, and the number of
quantization steps.

Keeping in mind that our actual system did have a "disturbance" which
caused the occurance of 6, the angular velocity of the hull, we determined
the appropriate value for -c. It was assumed that the highest frequency for
the hull velocity is approximately 15 Hz. The sampling rate was chosen such
that it would be possible to sample about six times per cycle. Therefore,
-c = 0.01 was picked.

64

Thus, the discrete-time representation of this system is:

x(K+1) = 0.982 x(K) + 0.00392 I(K) (5-53)

To determine the number of quantization steps, we first had to know the
upper and lower limits for our state and input. Because the rate sensor
which measures the gun elevation rate saturates for inputs greater than
0.175 rad/sec, we chose ± 0.2 rad/sec as our upper and lower bound for the
state. The input bounds were given by the servo valve manufacturer to be ±
10 mA.

In choosing the number of quantization steps, the following "rule" was
implemented: Use twice the number of steps which takes the state from its
maximum value down to 10% of its upper bound.

(-1.78) (0.01)x

0.2 e = 0.02 ==> x 129

Thus, the desired number of quantization steps was chosen to be 256.

In quantizing the input, it was desired that a change of one step in the
input would approximately cause a change in one step of the state. Thus,
the following ratio was desired:

0.2 = 10 (0.00392)
2 x

where 0.2 and 10 represent the upper bounds of the state and input,
respectively; 256 and x represent the number of quatization steps for the
state and input, respectively; and 0.00392 is the input "matrix" for the
corresponding discrete-time model. Solving the ratio for x we find that the
number of input steps is approximately 32.

65

5. 4. 0. Simulation Results

5.4.1. The Model.

The previous section developed a mathematical model for the elevation actuator
of the M60 tank. After the system was linearized, the actuator was a third order
system with a pole at -1.78, and two complex poles at -90±360j. If the two
complex poles are ignored, the resulting model of the elevation dynamics becomes
a simple first order system with a pole at -1.78. This simple first order system
was used to derive the control law for the elevation system. After the
controller was developed, it was simulated using more accurate models of the
elevation dynamics. The resulting response should be a reasonable approximation
of the actual response expected if the controller was used on the vehicle. As
might be expected, there were significant deviations from the response of the
idealized first order system. However, with careful selection of the controller
parameters some of these problems can be minimized. These relations are
explored in the text that follows.

5.4.2. The Control Law.

A control law can be constructed using the theory presented in section 1.0 for

the system

dx/dt = -1.78 x(t) + 0.395 u(t) (5-54)

The particular gyro used on the the elevation controller saturates at Vout =
±0.2 volts. So these were used as the limits on the state for building the
control law. Likewise the hydraulic servo valve saturates at Iin = ± 10 ma.
Thus this was used to define the limits on the input to the system. Considering
the expected range of frequencies of the disturbances to the vehicle, a sample
time of T = 0. 01 sec, or 100 Hz was used. Finally, the state was divided into 256
levels and the inputs into 32 levels. Although these parameters could be
changed the resulting system response seems to be well controlled.

Using the system (5-54) and the parameters presented above, a control law based
on DTQD system theory can be derived using the program described in 2.0. For
this example a minimum time strategy was adopted. Table 5-1 summarizes the
results of the control law. The bang-bang characteristiic is quite evident.

66

tdbh 5-i. Control Law

Quantized State Discrete State Quantized Discrete
(volts) Input Input

(mA)

to 103 -. 198 to -. 039 32 10.00
104 -. 038 31 9.38
105 -. 036 30 8.75
106 -. 034 31 9.38
107 -. 033 29 8.12
108 -. 031 29 8.12
109 -. 030 28 7.50
110 -. 028 27 6.88
111 -. 027 28 7.50
112 -. 025 26 6.25
113 -. 023 25 5.62
114 -. 022 26 6.25
115 -. 020 24 5.00
116 -. 019 24 5.00
117 -. 017 23 4.38
118 -. 016 22 3.75
119 -. 014 23 4.38
120 -. 013 21 3.12
121 -. 011 20 2.50
122 -. 009 21 3.12
123 -. 008 19 1.88
124 -. 006 19 1.88
125 -. 005 18 1.25
126 -. 003 17 0.62
127 -. 002 18 1.25
128 0.0 16 0.0
129 .002 15 -0.62
130 .003 16 0.0
131 .005 14 -1.25
132 .006 14 -1.25
133 .008 13 -1.88
134 .009 12 -2.50
135 .011 13 -1.88
136 .013 11 -3.12
137 .014 10 -3.75
138 .016 11 -3.12
139 .017 9 -4.38
140 .019 9 -4.38
141 .020 8 -5.00
142 .022 7 -5.62
143 .023 8 -5.00
144 .025 6 -6.25

67

145 .027 5 -6.88
146 .028 6 -6.25
147 .030 4 -7.50
148 .031 3 -8.12
149 .033 3 -8.12
150 .034 2 -8.75

151 to 256 .038 to .200 1 -9.38

5. 4. 3. Step Response.

The closed-loop system driven by the control law presented in table 5-1 was
simulated. This section reports some of the characteristics that were observed
in the simulations. The portion is divided into several sections. The first
section looks into how well the control law acts on the first order system it was
designed to control. As expected it performs quite well. The next section
examines how well the controller works on the more realistic third order model
of the elevation dynamics. Finally, the changes in the response when coulomb
friction replaces the linear viscous friction term are examined.

5. 4.3. 1. First Order Model.

Figure 5-15 shows the response of the system being regulated by the DTQD
controller. The system is perturbed by an initial condition of 0. 17 rad/sec and
the resulting response is plotted. In the early part of the response, a clear
minimum time trajectory is shown. (The system is being driven to zero velocity
at its maximum acceleration.) After the initial phase of the response, a limit
cycle is evident in the output of the system. This is an expected result
considering the size of the quantization levels that were used.

Recall from the theoretical development of DTQOD system theory, that the grid
embedding process allowed large quantization levels without sacrificing
accuracy. Figure 5-16 shows how the embedding process improved the response of
this first order system. In this example embedding takes place whenever the
state is within ±0. 02 rad/sec from the origin (the inner 10% of the state space).
When this occurs the state and input are scaled by a factor of ten. The effect of
the embedding process on the response of the system is clear from the figure. As
the system approaches the origin from 0. 17 the response is indentical to that of
a system without embedding (Fig. 5-15) until the state reaches 0.02. At this
point the embedding takes place and the system is slowed. However, since the
quantization levels are cut by ten, the system is under the influence of a much
more accurate control law, and therefore, the limit cycle behavior is
eliminated. As might be expected, adding more embedding cycles does not improve
the system response, see Fig 5-17. Therefore, it can be concluded that
configuring this system with an embedding process with one or two embedding
levels is the best solution for the controller in this situation.

68

0.18[

0.16

U w0.14

- ~0.12

0.0

- 0.06

0.04

S0.02

CC 0

-0.02 -0...0__5 0. 15 0.25

0 0.1 0.2 0.3

Time (sec)

Figure 5-15. First Order System with Zero Embedding Processes

0.18

0.16

U
0C 0.14.

0 ..12.

4-I-
.- 0.08

0
"- 0.06

0.04

S0.02

-00.5 .15 0.25

0 0.1 0.2 0.3

Time (sec)

Figure 5-16. First Order System with One Embedding Processes

69

0.18

0. 16

CU 0. 14

"-o 0.12.

0.1

*,- 0.08

0 ý06
C)
i-. 0.04

I 0
-0.02

-. 205 0.'15 0.25
0 8.1 0.2 0.3

Time (sec)

Figure 5-17. First Order System with Two Embedding Processes

5.4.3.2. Third Order System.

The response of the third order model of the gun elevation dynamics for the
control law developed in section 5.4.2 is presented in Fig. 5-18 thru Fig 5-21.
Again the minimum time response is evident in the graphs. However, the
magnitude of the limit cycle has dramatically increased. This is expected since
the other two poles are due to a combination of the lag in the valve and the
compressibility of the hydraulic fluid. Once again the simulations show that
the embedding process will eliminate most of the undesirable characteristics of
the response. But, in this case it is advisable to have about 3 to 4 embeddings
to damp out all of the limit cycle behavior.

70

0.18

0.16

0.14/
°-)

0.14

4o
tU 0.12 t

S0.06

S- 0.04

"= 0.02

0

0.05 0.15 0.25
0 O.I 0.2 0.3

Time (sec)

Figure 5-18. Third Order System with Zero Embedding Processes

0.18

0.16

"• 0.14

- ~0.124-)

.-' 0.08

C-,/

0
v-0.06

0.04

0.02

LS0.

-0.02 -- --------- ------- +--. --
8.05 0.15 0.25

0 0.1 0.2 0.3

Time (sec)

Figure 5-19. Third Order System with One Embedding Processes

71

Oý 18

016

0.14

"-0 0.12

v 0.1

. 0 8.08
u
C-- 8.06
w

-0.04

-8.82

-$.0. 2

8.05 8.15 0.25
a 0.1 0.2 0.3

Time (sec)

Figure 5-20. Third Order System with Two Embedding Processes

8.18

8.18

W 8 14

S8.12

8.1

S0 .

• 8.64

1- 8.84

e~i80282.

Time (sec)

Figure 5-21. Third Order System with Three Embedding Processes

72

5.4.3.3. Coulomb Friction.

Finally, Fig. 5-22 thru Fig. 5-24 illustrates the response of the first order
system with the trunnion modelled with coulomb friction instead of viscous
friction. It does not make a large difference whether the friction is modelled
with either coulomb or viscous characteristics. This is due to the extremely
large gain of the system. The same conclusions can be drawn as for these cases
as with the first order system with linear friction. Because of the large
quantization levels, a limit cycle will exist unless embedding is used. Two or
three embedding levels should be adequate to control the system.

0.18

0.16

0.14
V)

- 0.12
S..

0. -

4-)
.,..020.08

0,

S- 0.04

S0.02

-0.0

-8.02 ois .1 0.25
0 . 0.1 0.2 0.3

Time (sec)

Figure 5-22. First Order System with Coulomb Friction and Zero Embeddings

73

0.18

0.16

) 0.14

-c 0 12ro

0.1

-4-,
• - 00808

0
"- 0.06

S--r 0.04

0.02

€-00

0,05 0. 15 0.25
0 8.1 0.2 8.3

Time (sec)

Figure 5-23. First Order System with Coulomb Friction and One Embeddings

0.18 T

0.16

U
W. 0.14
U)

0 .1

•- 0.08
0
(- 0.06

S 0.04

0.0
- 0.02

0.05 0.15 0.25
0 0.1 0.2 0,3

Time (sec)

Figure 5-24. First Order System with Coulomb Friction and Two Embeddings

74

5.4.4. Disturbance Rejection.

The disturbance rejection of this controller will be examined as a final
exercise to evaluate the performance of the DTQD controller. In this case the
disturbance will be considered to be the velocity of the hull. Although the
controller was not specifically designed to reject distubances, it is an
interesting excercise to examine its performance in this capacity.
Unfortunately, it did not perfom as well in this area as it did as a regulator.
This problem will be examined more closely in the follow-on project. Figure
5-25 illustrates the model used to check the rejection capabilities of the
controller. As with the step response, we will examine both the first and third
order models.

Hull Velocity

Gun and Valve S+ Gun Velocity

Dynamics

DTQD
Controller

Figure 5-25. Disturbance Model

75

5.4.4.1. First Order Model.

Figures 5-26 through 5-29 shows a typical response of the first order system
with a sinusoidal disturbance, of different frequencies, amplitudes and
embedding levels. The amplitudes of the disturbance are attenuated by the
controller. Figure 5-30 is a plot of the frequency response of the system due
to a sinusoidal disturbance input, without embedding being used. As expected,
the lower frequencies (0-5 Hz) are attenuated more than the higher ones (greater
than 5 Hz). A second plot of the distubance cancelling effects as a function of
frequency of this system is given in Fig. 5-31, however, in this system the
embedding process was engaged. The rejection of the sinusoidal inputs for the
system with or without embedding are comparable. However, the actual time
domain response of the system (Fig. 5-26 thru Fig 5-31) is considerably smoother
for the system with embedding. Therefore, embedding improves the rejection
capabilities of a system controlled by a DTQD regulator. Only the regulation
properties of DTQD controllers have been fully developed. Therefore, it is not
surprizing to see the poor rejection responses below. However, the follow on
project will look into disturbance rejection extensively.

0 008

0.006 ll

a) o.o l08iZiW 0.00: n j

0.002-
-0.0

4-)
- 0.002

"" -0.008

-0 .001

.2 006 I 14 18
0 0.4 0.8 1.2 1.6 2

Time (sec)

Figure 5-26. First Order System with Zero Embeddings and d(t) 0 0. 1 sin (21it)

76

0.025

0.02.

U
(D~ 0.025

"0 .01,
fu

0.005

0
U

r -0.005

S- -0.02

=3 -0.025

-0.025

225 .0'6 1 '4 1.8
0 0.4 0.8 1.2 1.6 2

Time (sec)

Figure 5-27. First Order System with Three Embeddings and d(t) = 0. 1 sin (2lrt)

0.04.

S0.03
-,,/

- 0.02.

4-
' 0.01

:. -0.02

S'-

~--0.02

S-0 .03

-0 .04-. 4 0.2 0.6 2 1 .4

0 0 .4 0.8 2 .2 1.6

Time (sec)

Figure 5-28. First Order System with Zero Embeddings and dkt) 0.1 sUI. (,ulk)

77

0.04

~' 0.03
U

S 0.02.

S.-
0.01

4--)

U- 0

-0 .

S-0.03

-0.03

-. 4 0.2 0[6 t 4A
0 0.4 0.8 1.2 1.6

Time (sec)

Figure 5-29. First Order System with Three Embeddings and d(t) =0. 1 sin (1011t)

-6 ~ Itd '

V.- CI t ef,*

0 !0

I t _ _ i

Frequency of Disturbance (Hz)

Figure 5-30. Disturbance Frequency Response of the First Order System without
Embedding

78

- ~ -1 r 1 i ri ~ .100

-6 I T I!,:

!0

-12 f

-30 flIl

' !IiI : !I

5.4.4.2. Third Order System.

Figure 5-32 thru Fig. 5-35 are plots of the response of the third order model of
the elevation dynamics to a sinusoidal disturbance. The limit cycle behavior of
the system is greatly reduced by inceasing the number of embedding levels. As
with the step response, about three embedding levels are needed to adequately
damp out the high frequency oscillation. A plot of the distubance cancelling
effects as a function of frequency of this system is given in Fig 5-36.
Remember that at this point in time that only the regulation properties of DTQD
controllers have been fully developed. Therefore, it is not surprizing to see
the poor rejection responses below. However, the follow-on project will look
into ditturbane reqjution oxtsncivaly.

79

0.008 T

0 006

U ¶1
0- 002

>) -0 002 '

- -000 I
>.

6
-0 .01

.

-0.008

-0.02

8. 02S

-0.015

• o.o4
0.005

02 -0. 015

S- -0 01

0-.02S

-002 1 +- .I-0.2 0.6 I 1.4 I.
0 0.4 0.8 0.2 1.6 2

Time (sec)

Figure 5-33. Third Order System with Three Embeddings andu•t)"" : 3. 1 i r,- (,Ll)'-

80

0.04

0 .03
U
ai
"L 0.02,

-o
-. .01

-0.01

S- -0.02

• -0.03
c-

-0.04

0.2 0.6 1.4

0 0.4 0.8 1.2 1.6

Time (sec)

Figure 5-34. Third Order System with Zero Embeddings and d(t) 0 0. 1 sin (10yt)

0.04

U0.03
cu

S0.02.

Time 0. 1.1.

S-0.02

-0.03

0.2 0.6 1.4
0 0.4 0.8 1.2 1.6

Time (sec)

Figure 5-35. Third Order System with Three Embeddings and d(t) 0 0. 1 sin (lOlit)

81

1 10 100

0

-6 I

12 .. N* 4rQ rdd Ing s

-2 '

-3C

A -L

rreauenc\T of Disturbance /(,z)J

Figure 5-36. Disturbance Frequency Plot of Third Order System without embedding

Compare Fig. 5-33 with Fig. 5-37. The amplitude of the high frequency
oscillation is greatly reduced in 5-37,. although the same sine wave is f orcing
the two systems. The reason for this is the embedding process takes place at
different times for the two systems. In Fig 5-33 embedding takes place when the
system is within the center 10% (. 02 rad/sec) of the state space. Fig 5-37, it
takes place in the inner 20% (.04 rad/sec). The steady state response of the
system in Fig 5-33 is little greater than 0. 02 rad/sec. This means the system is
constantly jumping from one embedding level to another as the response passes
through 0.02 rad/sec. This explains the somewhat erratic behavior of the
response in Fig 5-33. With a larger embedding region the steady state response
does not cross the the boundary f or embedding, and theref ore, the response f or
this system (Fig 5-37) is much smoother.

To obtain the smoother response for all amplitudes of disturbances it is
necessary to insure that the response never crosses a boundary for embedding.
This is impossible if embedding is done at discrete intervals, since a
disturbance can always be found that will have an amplitude which will cross the
boundary. For example, if the controller was prograrmed to embed whenever the
state was in the center 20 cells, then a disturbance can be found that would
continuously enter and leave the center 20 cells. A method to correct this
problem is to use a continuous embedding system. This technique would measure
the distance that the state is from the origin and then scale the the states and

82

the inputs by an amount proportional to this distance. Thus, the quantized
states would always appeared to the controller to be at approximately the same
position from the origin. Also, since embedding takes place continuously, there
will be no discrete boundaries will have been shown to add noise to the response.
Therefore, it is suggested that this technique be explored in a follow-on
project.

8.815

o.0075

~ 80.0025

,• 0

0 -8.0025

:' -0.005

S-0.8075
•) -8.81

-0.0125

-0.015 -- ------44--8.2 0.6 1 I.4 t.8
a 0.4 0.8 1.2 1.6 2

Time (sec)

Figure 5-37 Response of the System with Scaling Factor Increased to 20%

83

THIS PAGE LEFT BLANK INTENTIONALLY

84

LIST OF REFERENCES

1 Falkenburg, D.R. and Judd, R.P., "A New Approach to Digital Optimal

Control of Linear Systems," Proceedings of the 1980 IEEE Midwest
Symposium of Circuits and Systems.

2 Falkenburg, D.R. and Judd R.P., "Optimal Control of Discrete Time

Quantized Data Systems with Inaccessible States," Proceedings from
the Eleventh Pittsburg Conference on Modelling and Simulation.

3 Judd, R.P., Analysis and Control of Discrete Time Systems with Quantized
States, Ph.D. Dissertation, Oakland University, 1981.

4 Kalmay, R.E., SM Thesis, MIT Department of Electrical Engineering, 1956.

5 Weng, P.K.C., "A Method for Approximating Dynamical Processes by Finite
State Systems", Int. J. Control, Vol. 8, No. 3, pp.285-296, (1968).

6 Kornoushenko, E.K., "Finite Automation Approximation to the Behavior of

Continuous Plants," Automatika Telemakhanika, 12, pp.150-157,
(1975).

Primm R., "Shortest Connection Networks and Some Generalizations," Bell
System Tech. J., pp.1389-1401, V. 36, (1957).

8 Nijenhais, A. and Wilif, H.S., Combinatiorial Algorithms, Academic

Press, pp. 283-287, (1975).

85

THIS PAGE LEFT BLANK INTENTIONALLY

86

APPENDIX A

PARAMETERS VALUES

A-1

THIS PAGE LEFT BLANK INTENTIONALLY

A-2

1.0. GUN PARAMETERS

M = mass = 18.5 lb s 2 /in

W = weight = 7141 lb.
Ixx = moment of inertia about x axis = 100 in-lb-s 2

I yy = moment of inertia about y axis = 45800 in-lb-s 2

zz = moment of inertia about z axis = 45800 in-lb-s 2

See also Figure 5-8 in section 5.3.2.

2.0. HYDRAULIC CYLINDER PARAMETERS

= Oil compliance = 200,000 lb/s 2

V = Volume of Hydraulic system = 52 in 3

A p = Cylinder area = 4.72 in 2

KL = Leakage factor = 0.001

3.0. ELEVATION SERVO VALVE PARAMETERS

I = Input current = ± 10 mA rated
T = Torque on armature flapper = ± 0.165 in-lb rated
Q, = Hydraulic amplifier flow to drive the spool = ± 0.23 cis max

Q, = Servo valve flow, no load = ± 55 cis rated
Xs = Spool displacement = ± 0.020 in rated
P, = Hydraulic amplifier differential pressure = ± 890 psi rated
P = Load differential pressure = ± 3000 psi rated

KTM = Torque motor gain = 0.0165 in-lb/ma
KQI = Hydraulic amplifier motor gain = 65 cis/radian

KQ2 = Spool flow gain, no load = 8850 cis/in
KpQI Hydraulic amplifier loading effect = 1.26 x 10-4 cis/psi
KB = Spool Bernoulli force gradient, no load = 1040
KF = Net stiffness of armature/flapper = 45 in-lb/rad
Al = Spool driving area = 0.041 in2

A2 = Spool feedback end area = 0.0122 in 2

AN = Nozzle frontal area = 3.14 x 10-4 in 2

ZN = Moment arm to nozzles = 0.34 in

A-3

THIS PAGE LEFT BLANK INTENTIONALLY

A-4

APPENDIX B

PROGRAM DOCUMENTATION FOR "DTQD"

B-I

THIS PAGE LEFT BLANK INTENTIONALLY

B-2

1 .0. INTRODUCTION

The program, "!DTQD," aids the user in designing a controller for a discrete
time quantized data system. The user enters information regarding the
system and data converters, and the program creates the DTQD model of the
system. If the quantization levels lead to an acceptible model of the
system, the user may then have "DTQD" develop a control law for the system
using any desired cost function. Finally, the program lets the user
simulate the controlled system, and plot any combination of states, inputs
and time.

The program is being developed. Although each stage works, modifications
are still being made to make it simpler.

The program is coded in PLI. Although it is currently being run on the
Honeywell 68-DPS-2 MULTICS system computer, with slight modifications it
could easily be implemented on most main frames. The program consists of
the main procedure, DTQD, and 11 external subprograms which are called by
DTQD. Each of these procedures may call internal subroutines as well.

2.0. EXTERNAL VARIABLES

The following is an alphabetical list of the external variables used in the
program.

a matrix - A (n x n) array and is the system matrix. (input by user)

b matrix - A (n x p) array, the input matrix for the system. (input by
user)

control law file ptr - A pointer to the beginning of the control law

file. (corresponds to the based variable control-law)

cost function code - An integer code representing which cost function is
to be used. (input by user)

flag.ownquantfile exists - A one bit variable which designates whether
or not a file containing the quantized model exists.

input cost matrix - This (p x 1) array is the diagonal elements of the
input weighting matrix (i.e. the "R" matrix), which is assumed to be
diagonal. It is entered by the user if a quadratic or minimum-control-
effort cost function is desired.

job name - A user-inputted variable representing the name of the current
job. It must be one word and contain less than 50 characters. These
characters may be any combination of letters, numbers, and underscores;
however, the first character must be a letter.

lambda matrix - A (n x p) array, the discrete - time input matrix for the
system. (may be input by user of calculated by program)

B-3

n - The number of states. (input by user)

next state file ptr - A pointer to the beginning of the quantized data

file. (corresponds to the based variable thenext state mapping)

next statemap - A (num state combs x num input combs) array which

contains the code of the next stat-e for each state/input combination.

num controllable cells - The number of controllable cells

number of stepsi - A (p x 1) array containing the number of steps of the

A/D converter for each input. (input by user)

number of steps s - A (n x 1) array containing the number of steps of the

A/D converter for each state. (input by user)

num input combs - The number of input combinations.

num state combs - The number of state combinations.

offset i - A (p x 1) array used in computing the coded version of the

input.

offset s - A (n x 1) array used in computing the coded version of the
state.

p - The modified number of inputs. This value is identical to the

variable "p real" above except in the case where "p_real" is zero in which
the value of "p" becomes 1.

p_real - The number of inputs (input by user)

phi-matrix - A (n x n) array, the discrete - time system matrix (may be

input by user or calculated by program)

quantumstepsize i - A (p x 1) array containing the quantum steps size

of the A/D converter for each input. It is used to convert the continuous
- time arrays into discrete time arrays and vice-versa.

quantum step size s - A (n x 1) array containing the quantum step size of
the A/D-conv-erter-for each state. It is used to convert the continuous -

time arrays into discrete time arrays and vice-versa.

satedge - A (num state combs x num input combs) one bit array. The

elements of the array are-"1" if the corresponding cell is lead into
saturation or to an uncontrollable cell given the corresponding input, and
"0" otherwise.

state cost matrix - This (n x 1) array is the diagonal elements of the

state weighting matrix (i.e. the "Q" matrix), which is assumed to be
diagonal. It is entered by the user if a quadratic cost function for the

B-4

controller is desired.

status flags - The following one bit variables which are used to record
which part of the program has been completed for the current job -

flag.cont exists, flag.discrete_ exists, flag.quantized exists,

flag.controllaw valid, and flag.sim_valid.

tau - The sampling period. This value is used to calculate the discrete

- time model of the system. (input by user)

title - A user - inputted variable containing the title for the specific
job. It may contain any keyboard characters and have a maximum length of
70 characters; however, if blanks are used, the entire variable must be
enclosed in quotation marks (").

uncontrollable cell - A one bit array of dimension (num state combs x 1).
An uncontrollable cell is a cell which despite the given input will always
lead to a saturated state. An element is "1" if the corresponding cell is
an uncontrollable cell and a "0" if it is controllable.

voltagelower bound i - A (n x 1) array containing the minimum voltage of

the A/D conver-ter for each input. (input by user)

voltagelower bound s - A (n x 1) array containing the minimum voltage of
the A/D conver-ter for each state. (input by user)

voltageupperbound i - A (n x 1) array containing the maximum voltage of
the A/D converter for each input. (input by user)

voltageupperbound s - A (n x 1) array containing the maximum voltage of
the A/D converter for each state. (input by user)

3.0. FILES

Four files may be created during the execution of "DTQD."

3.1. job name.DATA

This file contains all of the above external variables which may be entered
by the user, except job name. The file is created via the subroutine
CREATE DATA FILE of the procedure DTQD. Although the procedure
CHANGE PARAMEYERS is designed to allow the user to enter or modify the data
in this file, minor changes can be made easily using the text editor.

3.2. job name.NEXT STATE

This file is actually just a way of preserving the variable next state map.

As stated in the previous section, this file contains the next-state for
each state/input combination. The next state is stored in coded form as an

integer and is retrieved via the coded state and input.

B-5

3.3. job name.CONTROL LAW

This file contains the optimal control law for the system. The file is in

the form of a one-dimensional array of length equal to the number of cells
(i.e. the number of state combinations). The control law is stored as an
integer-coded input.

3.4. job name ts.PLOT

This file contains each state and input for every time interval that the
system was simulated. It is this file that is used to make plots of the
simulation.

4.0. PROCEDURES

The program is divided into six basic procedures, each part containing
several sub-procedures. Figure B-I is a flow diagram of the program which
describes the interaction between these processes. Each of the six main
routines as well as their respective internal subroutines are discussed in
separate sections below.

4.1. DTQD

This procedure calls 10 subroutines, six of which are external procedures.

It is one of the six basic sections of the entire program, the Main Menu.
The purpose of this routine is to act as a menu so that the user can access
the other five parts of the program. The internal subroutines,
(CREATE DATA FILE, FREE CONTR EXTERN VARS, SAVE_ QUANT_ FILE, and
CLOSE FI-LES),-are called when the-user is preparing to stop execution of
the program.

4.1.1. CREATE DATA FILE. This internal subroutine is called by DTQD to
save the data pertaining to the current job in a file named job name.DATA.
(See section 3.1 of this appendix) The variables are saved only if they
have been allocated and set for the current job, either by accessing a
previous data file or creating them in an appropriate routine. The
variables which are always saved in this file are: title,
flag.cont exists, flag.discrets exists, flag.quantized exists,
flag.control law valid, flag.sim rvalid, flag.own quant file exists. if any
model of the system is valid or if a control law has been accessed, the
variables n and p are saved. If a continuous model of the system exists,
a matrix and b matrix, are recoreded in the file. Similarly, if a
discrete time model exists, phimatrix, lambdamatrix, and tau are saved.
if a quantized model exists, number of stepss, number of steps i,
voltageupper bound s, voltagelower bounds, voltage upperbound_ i, and
voltagelower -bound i are saved. Finally, if a control law is valid for
the current job, cost function code, state cost matrix, and
inputcost matrix are saved in the file jobname.data as well.

4.1.2. FREE CONTR EXTERN VARS. This routine frees all of the controlled
external variables used in the program.

B-6

E-4

c -4

E-4

Fu z F

zB-
z C-• c
'.4 H- .

-4 -

Z

Figure B-i. Flow Diagram for "DTQD" t

B-7

4.1.3. SAVE QUANT FILE. In this subroutine, the user has the opportunity
to have the next - state array saved in a file. The advantage of having a
file saved is that it need not be rebuilt, just read in, the next time that
the job is accessed. However, if the file is very large, it may not be
advantageous to have it take up so much space, and the user may opt to
rebuild it each time. If the user does choose to have the array saved in a
file, the variable flag.ownquant-file exists is set to "Il."

4.1.4. CLOSE FILES. This suboutine closes the next - state and control
law files by adjusting the bit count for the for the files
jobname.next_state, and jobname.controllaw.

4.2. INIT

The second basic part of the program is INIT. This procedure is called by
DTQD when the program is initially executed and any time that the user opts
to re-enter the initialization process. In this section the program
prompts the user to enter the job name. The user can start a new job,
access an old job, or modify an old job file. If the user accesses an old
job file, GET DATA FILE is called. If the user starts a new job,
GENERATE PARAMETERS Tis called. If the user modifies an existing job, the
data file from the old job is copied to create a new file and GETDATAFILE
is called.

4.2.1. GENERATE PARAMETERS. This subroutine prompts the user to enter the
title for the job file, and then calls CHANGEPARAMETERS.

4.2.2. GET DATA FILE. This subroutine is called to read in the data from
the data file job name.data. The title of the job or data file is printed
on the screen and-the user is asked if it is the correct file. If so, the
data may be read in, depending on the value of the five status flags. Just
as in CREATE DATA FILE (See section 4.1.1. of this appendix), if a certain
model of the system has been created, or if a certain piece of the job has
been completed, then the corresponding data may be read in. A subroutine of
CHANGE PARAMETERS called BUILD MISC ARRAYS is also called. Depending on
the value of the variable flag.ownquant file exists, a file containing the
next - state array is accessed or the subroutine of CHANGE PARAMETERS,
BUILD NEXT STATE FILE, is called to generate the array. Also the
procedure, BUILD_ CONT_ REG SATEDGARRYS, another subroutine of
CHANGEPARAMETERS, is calfed.

4.3. CHANGE PARAMTERS

The third basic section of the program is the data modification section.
In this procedure, the user can change the parameters of the continuous -
time, discrete - time, and/or the quantized models of the system. This
routine may be called by DTQD or by the subroutine of INIT,
GENERATEPARAMETERS.

Upon entering the program the user is asked which model is to be modified.
If the continuous - time model is chosen, the user is asked which

B-8

parameters of the model are to be changed. If the continuous - time model
does not currently exist for the job, the program assumes that the user
wants to create the continuous system and so the user will be prompted to
enter all the parameters for the model.

If the discrete - time model is chosen to be modified, the user may change
the parameters of the discrete system as can be done in the modification
process of the continuous - time model. If, however, the continuous - time
model for the system currently exists, the user can have the program
generate the discrete - time model by asking the user to enter the samplin6
period, tau, and calling the subroutine BUILDDISCRETE MATRICIES.

If the user chooses to modify/create the quantized model of the system, the
parameters of the A/D converter must be entered. Next, the subroutine
BUILD MISCARRAYS is called. The user is then given two choices: have
the program generate the next - state array, or access a file containing a
next - state array. The subroutine BUILD CONT REG SAT EDG ARRYS is then
called.

4. 3 .1. BUILD DISCRETE MATRICIES. This subroutine creates the discrete
system matricies (phi matrix and lambda matrix) from the continuous - time
matricies (a-matrix and b matrix). The discrete - time system matrix, phi,
is created by setting all the inputs and states equal to zero except the
ith state which is set to 1. The value of the state after one time
constant is then determined and the new state is set equal to the ith
column of phimatrix. To find the discrete - time input matrix, a similar
procedure is followed. However, this time the ith input is set to 1
instead of the ith state. The change in state is found using the sixth
order Runga-Kutta differential equation solver IMSLDVERK.

4.3.2. BUILD MISCARRAYS. This subroutine initializes the variables
quantum_ step size s, quantum step size i, offset s, offset i,
numstatý_combs, and num input combs.

4.3.3. BUILD CONT REG AND SAT EDG ARRYS. This procedure builds the
uncontrollable cell- and sa-tur-ated edge arrays. The variable
num controllable cells is set to the number of controllable cells.

4.3.4. BUILD NEXT STATE FILE. This procedure builds the quantized data
array, next_s-tatemap. The routine runs through every possible state and
input combination, converts the state/input coded version to its discrete -
time state and input arrays respectively, and determines the next state
using the equation:

x(k + 1) = D x(k) + A u(k)

where,
x(k) and u(k) are the discrete - time state and input arrays

respectively,
D is the discrete - time system matrix, phi matrix,
A is the discrete - time input matrix, lambda matrix.

B-9

Each next - state is checked for saturation. if saturation is found, the

next state is converted to the coded form and is added to the array,

next statemap. Otherwise, a zero is added to the file signifying

saturation.

4.4. PRINT IT

The fourth basic section is basically a menu which allows the user to

examine various arrays and files. The subroutine DISPLAY JOB FILE, is
called to display the parameters of the continuous- time model, aiscrete -

time model, or the A/D converter. PRINT NEXT STATE FILE and
PRINT CONTROLLAW are called to display the next - state array and control

law, respectively. CHECK QUANTIZATION LEVEL is called if the user wishes

to have a check done on the quantization levels of the system.

4.4.1. DISPLAY JOB FILE. This procedure has not yet been written.
However, when completed, it will allow the user to display any of the

parameters saved in the data file jobname.data.

4.4.2. PRINT NEXT STATE FILE. This procedure prints the next state code

for each state/inpu-t combtination.

4.4.3. CHECK QUANTIZATIONLEVEL. This subroutine the user make a crude

check on the quantization of the system. The check is done in two parts.
The first is a summary of the cells moved from each state given a zero
input. The number of cells moved in each direction and the total number of
cells moved are computed and displayed. The second part of the report

checks the number of cells moved from the zero state for each input at its
smallest value. If the smallest value results in saturation, the smallest

value which results in a non-saturated next state is used. The results are
reported for each input, with the number of cells moved in each direction

and the total number of cells moved being printed out. In this part,
unlike the first, the cell movement is described by an absolute and average
value. The absolute value is just the number of cells moved for each
input. The average value is the absolute value divided by the number of
steps between the smallest non-saturating input and the zero input.

After displaying the summary, the subroutine PRINT SAT EDGE ARRAY is called

and the user can have the saturation edge array printed.-This array has
the same matrix format as the next-state array, but the elements are

displayed as either an "F" or a "T." A "T" is displayed if, given the
corresponding input, the cell leads to saturation or to an uncontrollable

cell. If not every cell is controllable, the user can print the
uncontrollable cell array which will print the codes for each

uncontrollable cell.

4.4.4. PRINT CONTROL LAW. This subroutine allows the user to print the

coded form of the control law.

B-10

4.5. BUILD TOL REG AND CONT LAW

This is another basic section of the program. It is this procedure which

builds the tolerant region and the control law.

4.5.1. BUILD COSTFUNCTION. This is the first subroutine called if the
user wishes to build a control law. The user is prompted to enter the
desired cost function and if necessary the state and input weighting

matricies. The user can use a minimum time, minimum control effort, or
quadratic cost function. If none of these are desired, an external file

containing a control law may be accessed, or the user may write a routine
containing a custom cost function for the control law to implement.

4.5.2. GET TOLERANCES. In this procedure, the user is prompted to enter
the tolerances necessary to find the tolerant region

(center cell tolerance) and to compensate for edge irregularities
(edge cell tolerance).

4.5.3. INITIALIZE CELL STATUS ARRAY. The array cell status is initialized

in this procedure. This array is one dimensional -with length equal to
num state combs. The procedure uses the variable edge cell tolerance set

in GET TOLERANCES to determine the "edge cells." The array is then

initialized, giving each element one of the following values:

2: if the cell is an edge cell
1: if the cell is uncontrollable
0: otherwise

As in section 5.2.4.13., the quantized model of a second order system may

be thought of as a cell plane. Keeping this in mind, a typical second
order system with a edge cell tolerance of one might have an initialized
cell-status array ressembling the following:

1 2 2 2 1

2 0 0 0 2
2 0 0#0 2

2 0 0 0 2
1 21 2

4.5.4. INITIALIZE CENTER_ DIST ARRAY. Another book-keeping array,
center dist, is initalized in this procedure. This routine uses the
variable center cell tolerance which was set in GETTOLERANCES to determine
the tolerant region. The one dimensional array of length equal to the
num state combs is then initalized. Each of the elements (i.e. state
codes) is assigned a value equal to its distance from the origin. If this
distance is greater than the center cell tolerance, however, the element is
set equal to zero.

If the value of center cell-tolerance was chosen to be two, the initialized
center-dist array for a two dimensional system might look like:

B-Il

0 o0o0 0o0 0o 0
0 2 2 21 2 2 0
0 2 1 1 1 2 0
o0 2 1 0 1 2 0
0 2 1 1 1 21 0
0' 2 27 2 2: 21 0
0 0 0 0 0 O' 0

4.5.5. FIND ROOT CELLS. This procedure finds the roots cells to create the

tolerant region and control law. Each zero-valued element of the array
cell status is considered unmarked. This procedure marks each of the
elements by implementing the following integer codes:

0: cell is unmarked
1: cell is uncontrollable
2: cell is in the edge tolerant region

3: cell is the zero state cell
4: cell is reachable to a cell coded with 3
5: cell is another root cell
6: cell is reachable to a cell coded with 5

i: cell is another root cell
i + 1: cell is reachable to a cell coded with "i"

4.5.6. OPEN CONTROL LAW FILE. This routine opens the control law file and
initializes the control- law array.

4.5.7. FIND LOOPS AND CONTROL LAW. In this procedure, the loops within

each subtree (denoted by a separate root) are looked for within the center
cell tolerant region. If a loop is found, the control law for the tolerant

region is defined. If this can be done the procedure
BUILD OPTIMAL CONTROL LAW is called.

4.5.8. BUILD OPTIMAL CONTROL LAW. This procedure builds the control law

one cell at a time for the remainder of each of the subtrees by creating an
optimal spanning tree based on the weighting matricies and cost function
previously defined by the user.

4.6 SIMULATE SYSTEM

The procedure SIMULATE SYSTEM simulates the closed loop system and

implements the imbedding process. The user is first prompted to enter
necessary parameters such as the number of imbedding levels, the scaling

factor, the initial state and time, and the final time. Using the external
subroutine OWN SYS TO SIM.pll, the user can simulate a continuous system
which is different from the original system that the control law was
developed for. The system used in OWN SYS TO SIM must have at least as many
states as the original system that the controller was designed for. if it
has more states, the states which were initially used to develop the
controller must be the first states of the new system.

B-12

The simulation starts with a check for saturation and controllability.
Next, the magnitude of each state is studied and the proper imbedding level
is evaluated by calling the subroutine FINDREGION. If one sampling
interval has elapsed, the control law is accessed to obtain the proper
inputs. The control inputs are scaled to the proper size for the
corresponding imbedding level. The sixth order Runga-Kutta differential
equation solver IMSL DVERK is then called to find the value of the state
after one simulation step. The process is repeated until the final time is
reached or until a state saturates. After the simulation is completed the
subroutines BUILDSIMDATAFILE and CHOOSEYOURPLOT are then called.

4.6.1. BUILD SIM DATA FILE. This subroutine puts the simulated data in a
file title Job_namets.plot if the user wishes. The simulation status
flag, flag.sim_valid, is set only if the data is saved.

4.6.2. CHOOSE YOUR PLOT. Whether or not the simulation was successful,
this subroutine is called and the user can plot the data. If the user
wishes to make a graph, the program will ask for the other parameters to be
entered. Any state and/or input, as well as time may be plotted on either
axis. Also, more than one plot can be made using the same title, axis
labels, and grid. Using the MULTICS procedures PLOT, PLOT $SCALE, and
PLOT_$SETUP, the program will proceed to plot the desired simulation data.

4.7. Miscellaneous Routines

Many of the procedures listed above call the following miscellaneous
external subprograms: NUMANSWEROK, YNANSWEROK, and CONVERT-.

4.7.1. YN ANSWER OK. This procedure checks the response by the user
whenever a yes/no answer is required. The routine will only accept "y",
"yes", "n", or "no". If an incorrect response is entered, the program

prompts the user to try again.

4.7.2. NUM ANSWER OK. This procedure checks the user's response whenever
a menu selection is expected. The program only accepts an integer which
represents a possible choice. If an incorrect response is entered, the
user is asked to re-enter his choice.

4.7.3. CONVERT . This procedure consists of six entries. An entry is
called to convert the current representation of the state or input array
into another representation. The arrays may be in a continuous, discrete,
or coded form. The continuous version is that which has a range of
lower voltage bound to upper voltage bound. The discrete form takes on
distinct values in the range of 0 and number of steps for each state or
input. Finally, the coded version gives each possible state combination
and input combination a distinct integer code.

B-13

THIS PAGE LEFT BLANK INTENTIONALLY

B-14

APPENDIX C

PROGRAM LISTING FOR "DTQD"

C-1

THIS PAGE LEFT BLANK INTENTIONALLY

C-2

1.0 PROGRAM LISTING FOR "DTQD"

The following pages contain the pl/1 code for the program DTQD. The

listings are organized into six basic procedures as discussed in Appendix
B. DTQD is first followed by init, change parameters, print it,

build tolregandcontlaw, simulatesystem, and finally some miscellaneous

routines.

For reference, the above procedures as well as their major subroutines are

listed below in alphabetical order with corresponding page numbers.

build contregsatedgarrys C-28

build cost function... C-42

build-discrete matricies 25

build miscarrays ... C-27
build-next state file... C-29

build optimal controllaw C-53
build sim datafile......... C-64

build-tol-reg and cont law C-41
change parameTers •..C-15
check -quantization level .. C-34

chooseyourplot .. C-66
close files ... C-7
convet .. C-76

create data file .. C-2
display job file. ...C-32

DTQD .. C-2
find loopsand-contlaw C-50

find root cells ... C-46
freecontr-extern vars ... C-5

generate_parameters ... C-10
get data file .. C-11
get-tolerances .. C-44
init C....................C-8

initialize cell status array.................................... C-44
initialize center-dist array C-45

num answer ok .. C-78
open control law-file... C-50

own sys to sim .. C-72
print it.............. C.......- 31
print control-law ... C-57
print next state file ... C-33

save_ quant file .. C-6
simulatesystem .. C-58

yn answer ok .. C-79

C-3

DrQD: procedure cot icr's (main);

dcL choice fixed;
d cL choi ce :c h ar c haracter (1);
dcL range lixed;
ccL dome bit(1);
ccL first...init-.flaq bitil);

dcl sysin file;
dct sysorint file;
ccl data-fiLe file;

ccl nunianswer ok entry (character (1) fixed, fixed);
ccl mint entry-(bit(1)., file);
dcl print~it entry;
dcL changeoarameters entry;
dct buiLd...toL..reg~ard..cont..Law entry;
dcl simutate~system entry;

f irs t mi nt f Lag "1"b~;
call Tnit Tfirst...nit~.ftago data~fiLe);
done = Ob
do while (dome = ýb)

put e d it ("1) InitiaLize") (skin.. a)
put edit ("2) Modify Data File") (skip, a);
out e d it ("3) Print Files") (skin, a);
put edit ("4) Suild Control Law") (skipp a);
out edi t ("5) Simulate") (skip.- a);
out edi t ("6)- Quit") (skipo, a);
out edit ("Enter choice = ")(skip (2), a);
get List (choice~char);
ran qe - 6;
call num~answer..ok (choice-char,. range, choice):
goto casse (choice);

case(1): if (f irst-init-.flag = "O"b) then do;
call save-quant .fiLe;
call create-.data..fiLe;

end;
call mrit (first~init~fLag,. data fite).

goto end~case;
case (2): call change~parameters;
goto end case;
c a se (3): call p r in t _.i t
goto end cause.
c a se (4):. c~all buiLd~..tot..reg~..and..cont..Aaw;
goto emd..case.:
case (5): call sirrulate~system;
goto end..case.:
case (6): done =219b

end-,cas e:
end; /* while *
if (first-.init-ftag = "O)"b) then do;

ca Ll save auant .f i Le;
c aL L creat;-.da ta~fi Le;

end.;
call free-contr extern-vars;
call cLose-fiLes;

c reat edat a-fi Ie: procedure;

dcl job name character (50) varying external;
dcl titTe character (7C) varying external;.
dcl true bit(l) initi al ("I"b)
dcl false bit (1) ini ti al ("O"b)
dcLi1 flag external,

2 cant-.exists bit(l),
2 di sc rete-.exi s ts bi t(1)

C-4

2 Quantized exists bit(1),
2 controlt law v valid bit(1),2 sim~valiod tt(1),

2 own-quant-file-exists bit(1);

dcl next-state file.ptr pointer external;
dcl own-quant adata-title character (70) external;

acl n fixed external;
dcl o.real fixed external;
dcl p, fixed external;

dcl a matrix (l:n, 1:n) float controlled external;
dcl bmatrix (1:n, 1:p) float controlled external;

dcl tau float external;
dcl ýhi matrix (1:rno 1:n) float controlled external;
dcl lam da-matrix (1:no l:p) float controlled external;

dcl number-of. .steps s (1:n) fixed controlled external;
dct wroltage uDpper-.bcund s (1:n) float controlled external;
dcl voltage:lowerbcund s (1:n) float controlled external;

dcl numberofste'ps i (l:p) fixed controlled external;
dcl voltage upper_bcund i (1:p) float controlled external;
dcl voltage.t ower-bcund i (l:p) float controlled external;

dcl cost-functionccde fixed external;
dcl state-cos-t matrix (1:n) float controlled external;
dcl inout-cost~matrix (l:p) float controlled external;

dcl data-file file;

/* The above variables are stored in the same order as decla
red */

dcl skipgamount fixed;
dcl i fixed,
dcl j fixed;

/* **** ,/

open file (data_file) title ("vfile_ "I fjobnamelI".data") s

tream output;

I* *** *I

put file (data-file) edit (title)(skip, a(70));

put file (data file) edit (flag.cont-exists)(skio, b(1));
put file (data~file) edit (flag.discreteexists)(skip, b(1))

put file (datafile) edit (flag.quantizedexists)(skio, b(1)

out file (data-file) edit (flag.control-law-valid)(skip, b(1

put file (data file) edit (flaq.sim_valid)(skip, b(1));
out file (data~file) edit (flag.ownquantfileexists) (skio,

b(1))

* if (flag.cont exists = truelfLag.discrete exists = truelflag
.quantized.exists = truelflag.controllawvalid = truelflag.si
mvalid = true) then

do;
put file (datafile) edit (n) (skip,f(5));

C-5

out file (data-file) edit (p)(skip, f(5));end;

if (flag.cont_exists = true) then
do;

do i = 1 to r;
do j = 1 tc n;

out file (datafile) edit (amatriv (ij))(skio,f(12, 4));

end;
end;
do i 1 to n:

do j = 1 to p;
put file (datafile) edit (b matrix (ij))(skio,f(12, 4));

end;
end;

end;

if (flaq.discreteexists = true) then
do;

put file (datafile) edit (tau)(skip, f(12, 4));do i 1 to m;
do j: = 1 to n;

put file (datafiLe) edit (phimatrix (i, j))(skip, f(12, 4));
end;

end;
do i = 1 to n;

do j = 1 to p;
put file (data-file) edit (lambda-matrix (i, j))

(skip, f(12, 4));
end;

end;
end;

if (ftag.quantizedexists - true I flag.own_quant file-exist
s = true) then

do;
do i = 1 to n;

put file (cata-file) edit (numberofsteos_s (i))(skio, f(5));
end;
do i = 1 to n;

out file (data file) edit (voltage upperbound_s(i)
P voltage_tower bounds(iT)

(skip, f(12, 4), x(3), f(12, 4));end;
do i = 1 to ;

put file (data-file) edit (numberofsteos_i (i))(skip, f(5));
end;
do i = 1 to p;

put file (cata file) edit (voltage_uo)oer boundi (i
), voltagetowerbounci Ti))
2, 4)); (skip, f(12, 4), x(3), f(1

end;

if (flaq.own quant file exists = true) then
out file Zdatalile)-edit (ownouant-data-title)(skio, a(70)) ;

else
out file (data-file) skip;

end;

C-6

if (fLaq.controLLaw~vaLid '2 true) then
d;put file (data~fiLe) edit (cost~function...code)C

if (cost-function~code =2) then
d;dc i = I to n;

out file (data-file) edit (state-cost-m
atrix (i))

(skip., f(12..4)

end;
end;

3) then if (cost-function-.code =2 1 cost.-function-code
3)~ ohe

cc i =1 to o;
put file (data~fiLe) edit (input~cost m

a t r i x())
(skipa. f(12..4)

end;
end;:

end;

close file (data-file) ;

end create..data- fiLe;
f ree-.contr-exte rn~vars: procedure;

dc L n fixed external;
dcL p- fixed external;
dcl numstate~comb-s fixed exter-naL;
dcl num..input~combs fixed external;
dcl numb-er -of- steors.,s C1:n) fix-ed controlled external;
dc L number of stesi(:p fixed-controLled external;
dc l of f-e-t..s -1 :n 7i x ed cont rotLled externa L;
dcl off'set-i (l:p) fixed controlled external;
dcl quantum..step...size..s (1:n) fixed controlled external;
dcl quantum~step~size~i (1:p) fixed controlled external;

dcl voLtage~upoer~bound s (1:n) float controlled external;
dcl voltage lower-bound~s (1:n) float controlled exte-rnat;
dcl voLtage~upper~bcundli (1:o) float controlled external;
dcl voltage..Lower -bcund ir (1l.p) float controlled external;
dcl phi.~matrix (1.:n, 1:) float controlled external;
dcl Lambda-matrix (1:no 1:p) float controlled external;

dcl next state map (1:num state combsp 1:num~.inout..combs) fi
xed controTLed external;

dcl unvontroLLabLe-cetL (1:num.,state,..combs) bit(l) controLLe
d externa-4.

dcl sat..edqe (1:nuw..state~combs,. 1:num..input~combs) bit(1) c
ontroLLed external;

free number-of-stecs-sp number-of-steos-ip offset-sp offset-

free quantum~steo size~sp quantum~step~size~i;

f ree vol taqe..up~e r~bound.s P vo Lt age-lower-bound s;
free voltage ooer bound .ip vo ltage..Lower~.bound i;
f ree phi matri x, Larbda_;atri x
free next. state emap;
free uncon;troL lab1e~ce II. sat-.edqe;

end free..contr-extern-va rs;

C-7

save...uant-..fi Le: orccedure;

dcL next..state fiLe~jtr Pointer externaL;
dcl num..state_7.ombs fixed externaL;
acc num~.inout~combs fixed externaL;
act next-.statejnap C1:num,_state comybs, 1:num~incout~corbs) fi

xed controlled exterraL;
dcL the..next state rraoping (1:num-.state-.combso 1 :num inout-c

ombs) fixed binary(111) unsigned based (next~state~fiLeotr);
dct job-.name character(50) varying external;

dcL own..quant..data..titLe character (70) external;

dcl true bit~l) ir.it ia L ("l"b);
dcl false bit(l) initiat ('"0b);
dcl 1 f- ag ex tern a L

2 cont .exists bit(l),
2 discrete exists bit(1)
2 quantizea exists bit(1)p
2 controL.,l tv a Li d b it (1)
2 sim-va~la btt(l),
2 own..quant..fiLe-.exists bit(1);

dcL work inq..di r character(168) externat;
dc L bit count fixed bin(24);
act code fixed bin(35);
dcl answer character(3) varying;
dc L i f ixed;
dc I j f ixed;

dcl hcs-Sinitiate..ccunt entry (char(*),char(*)Pchar(*)P fixe
d bi n(24)

fixed bin(2)p ptro fixed bin(
35)) ;

dcl hcsSmake~seg entry (char(*)o char(*), char(*), fixed bi
n (5) o

ptr, fixed bin(35));
dcL dlelete entry cptions (variable);

dcl yn~answer ok entry Ccharacter(l) varying);
dcL sysin file input;:
act sysprint file output;

if (fLag.ouantized..exists = true) then do;
out edit('Would you Like to save the auantized state fiLel

> ")(skipea);
get list (answer);
call yn...answer ok (answer);
if (answer ='"Ianswer = "Yes") then

do;
if (fag.own cuant file exists = false) then

own auant_2.,ata..tTtte !'job~namell".next~state"

call hcsSin itiate-.courit (working~di r, own~quant~data_
t itl e,

bit-count, 0, next-state-fiL
e-Ptr, code);

call delete (ow~n auant data _title, '-bf");
lot*call hcs-.Smake~seg (working~..diro own quant~data~ti te,

Ol010be next..state.-fi le-.otre code)

do i = 1 to num-~state-combs;
do j=1 tc num~.input combs;

);the..next-.state~rnapping(i~j) =next~.state~map (i,

C-8

end;
end;
fLag.ownaouant~fiLe~exists =true;

end;'
end;

end save quamt file;
c Iose-fiTes: Procedure;

dcl jobnmame character (50) varying external;

dct 1 flag externato
2 cont..exists bit(1)o
2 discrete exists bitC1),
2 Quantize2 .exists bit(1)o
2 controL law valid b it (1
2 sim-vaLid bl~t(1),
2 own..quant..fiLe~exists bit~l);

dc(adjust-bit~count entry options (variable);

if(lq.quantized~exists-z "1"b) then
call adjust~bit~count (job...ramell".next...state", "Co)

if (ftag~controtLlaw-vaLid = "1"b) then
call adjust..bit~court (job..nameII".contro~Law', -Ch");~

end cLosetfiles;

end DTQD;

C-9

init: porac edu re (f ir st..i n i t ft ag.- dat a fiLe);

oct fir-st init ftao bit(l);
Octc d a t a-Ti Le -Ti Le p

dcL jobrnrame character (50) varying externaL;
dcL workinq~dir character (168) external;

d c L ne xt- s t at ef i Le._p tr oo int er e xte rn a L;
dcl controLtlawfiLe,.ptr pointer external;

d cLi1 f Lag static e xt erna L
2 cont exists bit(l)
2 discrete-exi sts bit (1)
2 qanaftized.e'xists bit(1),
2 controL,Liw.,vaLi d b it (I)
2 sim-vat.ic tit(1),-
2 own....uant~..fite~exists bit(1);

dcl true b it (I) in it ial(("1 "b) ;
dcl false bit(l) initial ("0"b);
dcL 1 flag?.,

2 done mi nt b it (l)I
2 buiLg.rnode bit(1)f
2 good.job~.name bit(1);

dcl good~job~titLe bit(1);

dc L choice f-ixed;
dcL c character (1):
dc L range fixed;
dcL job~.name new character (50) varying;
dcL answer c~aracter (3) varying;
dcl bit count fixed binC24);
dcl code fixed bin(35);

dcl sysin file input;
dcl sysarint file output;

dcl null buiLtin;

dcl undefinedfiLe condition;

dcl num answer-ok entry (character (1), fixed, fixed);
dc L prrinAt..i t ent ry;
dcl change...arameters entry;
dcl yn~answer~ok entry (character (3) varying);

dcL hcs-~Sinitiate..ccunt entry (char(*), char(*), char(*),
(35));fixed bin(24), fixed binC2), ptr, fixed bin

dcl copy entry opticns (variable);
dcL get..wdir.. entry returns (character (168));
dcl convert~status.,code,. entry (fixed bin (35)p char (8) aLi

,g n d .char (100) aligned);

on undefinedfiLe (data~fiLe) fLag2.good...job~name = false;

working dir =get .wdir
fLag2.d"5ne...init = false;
do while (done .init = false)7o 1 j ob 6title true;

L ag, go d.job na rre = t rue;
out edit ("ould you like to :")(skip, a);
put skip;

c-10

put edit ("1. Access an old job fite")(skioa)"
out edit ("2. Create a new job file ")(skioa);
put edit ("3. lvccify an old job file")(skip,a);
put edit ("4. Return to Main lenu")(skip,a);
out skitp;
out edit ("Please choose one of the above => ")(skioa);
get list (c);
range = 4;
cal num-answer-ck (c, range, choice);

if (choice = 1) then
do;

flag2,builc-mode = false;
put edit ("Enter the job name => ")(skiD, a);
get List (*ob name);
open file (data file) title ("vfiLe_ "IljobnamelH".dat a")

stream input; if (flag2.good.job name = true) then do;
call get data-fTle (data file, good job title);
put ecitT"The current status of this job is: ")(skipsa) ;
Dut skip;
if (flac.cont exists = true) then

put edit (n A continuous system exists")(sk i Psa);
if (flag.discreteexists = true) then

put edit (" A discrete system exists") (ski

if (fLac.quantizedexists = true) then
put edit (" A quantized system exists")(ski o,a) ;

if (fLag.control-law-valid = true) then
put edit (" A control law is valid ")(skip

,a) ;
if (flag.sim valid = true) then

"put edit T90 A simulation of the job exists") (skip~a) ;
if (flag.contexists = false & flag.discreteexists = false &

flag.quantized-exists = false & flag.contr
of-law-vatid = false &

fla 2 .sim~valid = false) then
put edit (No models or files exist for this job") (skio,a) ;

put skip;
end;

end;
if (choice = 2) then

do;
put edit ("Enter name of the new job file => ")(ski

get list (job name);
la?2.buila-mode = true;

cal generateparameters;
end;

if (choice = 3) then
do:

put edit ("Enter name of job file to be modified =>
")(skip, a);

get list (job-name);
out edit ('Enter name of new job file => ")(skip, a

get list (job name new);
open file (data_fiTe) title ("vfiLe_ "I1job-namelH"

.data") stream input;
fLag2.buildmode = false;

C-11

if (ftag2.cooc..job.name = true) then
d;catL copy (job~namell".data", job-name-new~lV

.daa",open file (dataf i Le) title (#lvfi le_. 11lj ob'n
ame~ne I".data") stream

input;call 'jetdata...fiLe (data~fiLe,- good~job~titLe

if (controL law..vaLid = true) then do;
call hcs - init iate-.courlt (workirng dir, job-..

namell". cont roL._ Iaw".. #fogbi tcounto 0. controLLaw..fi Le..tro
code)

end;:
job~.name = job~name~new;

end;
end;

if (choice =4*) then
flag2.done .. init = true;

if (ftag2.good~job..name = false) then
d;put edit(job.,name, ".data does not exist.")(skio.,

ao a) ;
flag2.done..init =false.;

end;
i f (good~job~.ti tLe = fatlse) then

do;
fLag2.goodjob namle = false;:
ftag2.dore_..nit false.:

end;
if (flaq2.good..job..name = true &choice < 4)then

do;
first init flag = false;
ftag2-.done..init = true;

end;
end;

generate..parameters: procedure;

dct I fltag external..
2 Icont...exists bit(l).,
2 disc-rete..exists bit(l)o
2 quant ized; exist s bit (1),
2 controLt..,awvalid bit(l)o
2 sim-val 1c bit (1),
2 own..quant~fiLe.~exists bit(1);

dcl title character (70) varying external;

dc L true bi t(l1) i nitia L ('11"b);
ccl false bit(l) iritial (0C"b);
dcL sysin file input.;
dcl sysprint file output.;
dcl data-fiLe file;

dc L change..parameters entry;

flag.cont~exists = fatlse;
flag.ý.discrete..exists false;
flIag.quant izea .ex ists fa lse.
ftaq.controL.,Law-Y.~aLid =false;:
flag..sim.vaLid = false;
ftag..own-a~uant-.fiLe-.exists =false;

put sk ip;

C-12

put edit("Enter a title for the data file ")(skio,,a)
isut edit ("Note: Quotes are reauired if more than one word
isused")(skip.. a);
put skip;
get List (title);

call change...arameters;

endý generate eparame ters;
get....ata-.fiLe: procedure (dlata~fite, good..job..titLe);

dc L data file file;
dc-l good~job~titte bit(l);
dcl job name character (50) varying external;
ccl titTe character (70) varying externaL;

dc L t rue b it(1) inri t iaL ("l"b)
dc L false bit(l) iri t ial ("O"b)
dcL I flag static externalo,

2 cont-ex ist s b it (1
2 discrete-exists bit~l),,
2 quantizeecexists bit(1),.
2 control.,.aw~,vaLid bit(1),
2 sim-valid bit(1).
2 own~quant,.fiLe~exists bit(B);

dcL next...state fiLe..ptr pointer external;
dcl own- uant....ata..titte character (50) external;

dcl n fixed external,;
dcl p~reat fixed externat;
dcl p fixed external;

dcl a matrix (1:n.. 1:n) fl-oat controlted external;
dcl b~matrix (1:np 1:p) float controlled external;

dcl t-au float er-ternaL;
dc-I phi~jmatrix (1:np 1:n) float controlled external;
dcl LLambda-mat ri x (1:n P 1 :p) fltoat cont rollted externaL;

dcl number-ofst-eps-s (1:n) fixed controlled external;
dc-l voLta~geupper-batind s (1:n) float controlled external;
dcl voLtageltower~bcundls (1:n) float controlled external;

dcl number-of-steps~i (1:p) fixed controlled external;
dcl voltage~upper -bound i (1:0) float controlled exte~rnaL;
dict voLta'geower-bcund~i (1:p) float controLLed external;

dcl num..state...com-bs fixed externat;
dcl nurw..input~combs fixed external;

dcl the next .state mapoing (1:num..state combs, 1:num..innut~c
oinbs) fixed binar y (I P-)

_ptr);unsigned based (next~.state-fiLe
dcl next state map (1:mum..state~combso 1:num-innut-combs) fi

xed controTLed external;

cc L controL t.aw..fi le,ptr pointer external;
dcil cost-t.function code fixed external;
dc-L state-cost m atrix (1:n) flo-at controlled external;
dcl input~cost~.matrix (1:p) float controlled external;

/* The above variables are stored in the same order as decLa
red *

C- 13

dcl stitl..data..Left bit(l);
d c LSkiD amount fixed;
dcl i fiied;
d c L f ixed;
dcl answer character (3) varying;

dct sysinf iLe input;
dcL change, Darameters~buiLd next~state..fiLe entry;
dc L change...a rame tersSbui Id~misc~arrays ent ry;
dc L change~jparameterslbui Ld~cont~reg~sat..edg~arrys entry;
dcl change..parameters entry;
dcl yn~answer ok entry (character(3) varyinig);
dcl syspr'int TiLe output;

dcl undefinedfiLe ccndition;
dct working dir character (168) externat;
dclc bit..count fixec bin(24);
dcL code fixed bin(35);
dclc hcs Sinitiate~count entry (char(*)p char(*).. char(*),# fj

xed bin(2Z)o
fixed bin(2),, ptr, fixed bin (35));

get file (data file) edit (titte)(skipp a(7 0));
put edit ('The title of this data file is: ") (skip~a);
out edit (titLe)(skiro,x(3), a);
pu t edit ("Is this the correct file'l ')(skio,a);
get tist (answer);
call yn..answer~ok (answer);

if (answer = "Y" I answer = "Yes") then
do;

get file (data~fiLe) edit (fLag.cont..exists)(skiop b(l

b(1 get file (data~fite) edit (fLag.discrete..exists)(skior

b get),* f i Le (data~file) e d it (fLag.quantized..exists)(skio
qet file (data-fite) edit (fLag.controL...aw~vaLid)(ski

p . b(1))I
get fiLe (data~fiLe) edit (fLag.sim~vaLid)(skip., b~l))

esit b fi)) (data~file) edit (fLag.own...uant~fiLe~exists)

if (flag.cont exists= truelfLag.discrete~...xists = truelfLag
.quantized-exisis = true Iflag.controLltaw..vaLid =truelfLag.s
im valid = true) then

ge ie(atf c di n;si f5
get file (data file) edit (n)(sreal)(sk),f())
if (n reaL = 0) ther

p =1

p = p.reaL;
end;

if (flag.cont...exists =true) then
do;

atllocat e a..matr i x;
atllocat e b~matri x
do i =1to n;

do j 1 tc n

C- 14

f ~get fiLe (data~fiLe) edit (a-matrix (ii-j))(skiop#
f(12,e4))

end;
ed; on
do i = 1 to p;

get file (data-fite) edit (b~matrix (ioj))(skiop
f(12P 4));

end;
end;

if (fLag.discrete~exists = true) then
do;

al locate phi teatrixo Lambda .matrix;
get file (data..fiLe) edit (tau)(skip,. f(12- 4))
do i = 1 to m;

do j 1 tc n;

if(12,,4) ge file (data~fiLe) edit (phi..matrix (i, j))(sk
end;

end;
do i = 1 to n;

do j = 1 tc p;
et file (data-fite) edit (tambda~matrix (i.. j))

(skip., f (12..43
end;

end;
end;

if (ftag.cuantized..exists =true I ftag.own..quant..fite..exist
s = true) then

do;
atllocate number~of~..steps~s. voL tage..uppe r bound sr vol

t age... Iower..bound -s;:
al locate number-of~steps~ip voLtage..upper..bound..io vol

t age.,.Lower~bound~i;

do i = 1 to n;
get file (cata~fiLe) edit (number..of..steps..s (i))s

kiop, f(5));
end;
do i = 1 to n;

get- file (-data file) edit (vottage..upper..bound~.s(i)
volt age_.lower..boun_ c.s Ci i)

(skip, f(12, 4), x(3),p f(l2P, 4));
end;
do i 1 to p;

kip* (5) ge file (cata..fiLe) edit Cnumber~of~steps..i (i)(s
end;
do i = 1 to p;

get file (data file) edit (voLtage~upper~bound..i (i
)P v~tag_?oer~bunc~ TM(skip, f(12P 4)o x(3)p f(1

2, 4));
end;

call change~parameters~buiLd~mi sc~arrays;

if (ftag!own quant fiLe-.ex-ists = true) then do;
7);get f iledatajfiLe) edit (own_ auant..data~titLe)(skip,. a(

Lecall hcs-Sini tiate~count (working..dirp own Quant..data...tit

od);Pbit-.count, 0. next-.state...fiLe...tr, c

ode);5

atl~ocate next~state~jwap;
do i= 1 to nurr~.-state-combs;

do j= 1 to num i.nput combs;
next-state-rnap (i~j) = the~next-.state rnacoing~ioj);

end;:
end;
else do;

call change~paraweters$buiLd~next state-fiLe;
end;

call change~parameters$bui Ld.contreg~sat~edg~arrys;

end;

if (fLag.controL law vatid = true) then
dlo ;

call hcs...$init iate-count (workinq~dir,- job namell

de) ; o -La bit-counto 0P contro(_.law~fiLe~ tr, co

kip.- f()) get file (data~fiLe) edit (cost..function~code) (s
if (cost..junction-codle = 2) then

do;
allocate state-.cost-matrix;
do i = 1 to n;
qet file Cdata-fiLe) edit (state-.cost-ma

enc;
3 ten if (cost...function-codle =2 1 cost..function-.codle

allocate iflput-cost-matrix.:
do i 1 to P;

matri (i)(ski, f(2,et file (dlata-..fiLe) edit (inout~cost_

end;
endr;

endd;
elde

good..job~titte = false;

close file (datafi Le) ;

end get..data~fiLe;

end init;

C-16

change~paramete rs: procedure;

dcL job name character (50) varying external;
ccl worzing~dir character (168) external;
dcl next-state~file~ptr pointer external;

dc L n f ixed e xter na L;
dcl o fixed external;
dcl :)real fixed external;
dcl nzmber of ste~s~s (1:n) fixed controlled externaU;
dcl number~of..steps~i (1:p) fixed controlled external;

dcl voltage upper bound s (1:n) float controlled external;
dcL voltage lower bcund~s (1:n) float controlled external;
dcl voLtage~upper~.bcund i (1:o,) float controlled externat;
dcl vottage.Lower. bcund i (l:P) float controlled externaLU
dcl a matrix (1:n; 1l.n) float controlled exterral3L
dcL b~matrix (1:n., 1:p) float controlled external;
dcL tau float exterral;
dcl phi matr-ix (1:n, 1:n) float controlled external;
dcl lam~da matrix (1:n.. 1:p) float controlled external;
dcl offset~s (1:n) fixed controlled external;
dcl offset~i (1:p) fixed controlled external;
dcl num state..combs fixed external;'
dcl num..lnput,.combs fixed external;
dcl quamtum~step.size-s (1:n) float controlled external;
dcl quantum~step~size., (1:p) float controlled external;
dcl num .controllable ceLLs fixed external;
dct uncontroLLabte-ce;ll C1:num-state~combs) bit(1) controLLe

d external;
dcl sat..edge (l:num~..state..combs* 1:num~input~combs) bit(1) c

ontro l~ed
external;

dcl the..next state frapping (1:num~state~combso l:num-inout-c
ombs)fixedbinar igne)d based (next state..fiLe~ptr);

dcL next state map (1:num-state-.com~so 1:num inout combs) fi
xed controTled external,;

dcl title character (70) varying external;
dcl own..quant-data-title character (70) externaL;

dcL bit..count fixed binC24);
dc L code fixed bin(35);

dc L i f ixed;
dc L j f ixed;
dcl answer character (3) varying;
dcl c character (1);
dc L choice fixed;
dcl c2 character(1);
dcl choice2 fixed;
dcl c3 character (1);
dc L choice3 f ixed;
dc L range fixed;
dcl coL min fixed;
dc L coL...tax f ixed;

dcl true bit(l) initial ("I'b);
dc L false bit(l) inrit ia L ("0"b;
dcl I flag external,

2 cont-.exists bit(1),
2 discrete-exists bit(1),.
2 quantizec .exists bit(1),P
2 controL,.1 Law,vaLid bit(l),
2 sim-vaLi d bit(1),

C-17

2 own_quantfileexists bit(l);

dcl 1 flag2,
2 changed n tit(1),
2 need set bit(1),
2 modify_discrete bit(l),
2 filenotexist bit (1);

dcL data-file file;
Ocl sysin file input;
dct sysprint file output;

dcl convert_$Scont-state-todis-state entry ((*) float, (*) f
i xed) ;

dcl convert_$dis-state-to-code entry entry ((*) fixed, fixed

dcl convert_$codeto_disstate entry (fixed, (*)fixed);
dcl convertSdis-state-to-cont-state entry ((*) fixed, (*) f

Loat)
dcl convert_$code.,todisinput entry (fixed, (*) fixed);
dcl convert.Sdisinputtocont_input entry ((*) fixed, (*) f

Lo at);
dcl num-answer ok entry (character (1), fixed, fixed);
dcl yn.answer-ok entry (character (3) varying);
dcl print next_statef ile entry;

dcl hcs $initiate-ccunt entry (char(*), char(*), char(*), fi
xed bin (24),

fixed bin (2), otr, fixed bi
n (35));

dcl hcs_$makeseg entry (char(*), char(*), char(*), fixed bi
n (5),

ptr, fixed bin(35));
dcl delete entry options (variable);
dcl copy entry opticns (variable);

dcl null buittin;

PARMS: out skip;
flag2.modify ciscrete = false;put edit ("ich of the following would you like to mo

di fy/createl'') (ski o,
a)

put ski o
put edit ("1. Title of the job file")(skio, a);
put edit ("2. Continuous system parameters")(skipa);
put edit ("3. Discrete system parameters")(skio, a);
put edit ("4. Quantized system parameters")(skio, a);
Out edit ("5. None of the above ,)(skip, a);
put skip;
put edit (" Please choose one => ")(MskiD,a);

get list (c);
ranqe = 5;
call num answer ok (c, range, choice);
flag2.need_set - false;

goto case(choice);

case(l): 1ut skip;
out edit ("Enter a file title ")(skip, a);
out edit ("Note: Quotes are reouired if more than o

ne word.") (skip,a) ;
put s kip;

C-18

get list (title);
goto PARMS;

case(2): put skip;
if (flag.ccrtexists = true) then

do;
out ecit ("Which parameter(s) would you like

kip* a);
to change"") (s

put edit ("1. Number of states")(skioa);
put edit ("2. Number of inputs")(skipa);
put edit ("3. System matrix, A")(skip,a);
put ecit ("4. Input matrix, B")(skipa);
put edit ("5. All of the above")(skipa);
put edit ("6. None of the above")(skiooa);
put skip;
out edit ("Please choose one -> ")(skiopa);
get list (c2);
range = 6;
cal num-answer ok (c2o range, choice2);

if (choice2 -= 6) then
flag2.need set = true;

end? ato case_2(c oice2);
else

do;
flag.cont exists = true;
flag2.neea set = true;
choice2 = 5;
allocate a matrix, b-matrix;endOtO case- (1) ;

end.

case_2(1): put skip;
put edit ("Enter number of states => ")(skip,a);
get List (n);
if (choice2 -= 5) then

do;
if (flag2.modif y discrete = true) then

put edit ("Th discrete system and inou
t matricies must now be modified:")(skipa);

else
put edit("The system matrix, A, and inp

ut matrix, B1 must now be modified:")(skipoa);
flag2.chan ed n= true:
goto case- (3Y;
end;else
gcto case_2(2);

case_2(2): put skip;
put edit ("Enter number of inputs => ")(skipo,

a);
get list (p real);
if (o-reaL • 0) then

p = P real;else

p =1
if (choice2 ?= 5) then

co;
if (flag2.modify discrete = true) then

out edit ("The discrete inout matri
x must now be modified:")(skio, a);

else
put edit("The input matrix, B, must

now be modified:")(skio, a);

C-19

goto case-2(4);end"
else

goto case_2(3);

case_2(3): out skip;
if (flag2.modify discrete = true) then do;

free ohi-matrix;
albocate phi matrix;
Cut edit ("Enter values for the discrete s

ystem matrix, phi") (skio,a);
end;
else do;

free a matri x;
PDt edit ("Enter values for the A matrix")

(skip, a);
allocate a-matrix;

end;
put skip;
do i 1 1 to n;

dc j = 1 to n;
if (flag2.modifydiscrete = true) then

do;
Out edit ("phi ("> j, ", *, j, ") >

")(x(3), a, f(3), a, f(3), a);
endet List (phi matrix(i, j));

else do;put edit ("A (",. i, , , j, 0) => 09

)(x(3), a, f(3), a, f(3), a);
get list (a_matrix(i, j));

end;
end;

end;
if (choice2 "= 5) then do;

if (flag2.changedn = true) then
do;

flag2.chanqedn = false;
endoto case_2(4;

else do;
if (flaq2.modify discrete true) then

goto Modi fy_d.ds;
eLse

goto case(2);
end;

end;
el se

goto case_2(4);

case_2(4): put skip;
if (preal > 0) then

cc;

if (flag2.modify discrete true) then
do;

free lambda matrix;
allocate lambda matrix;
put edit ("Enter values for the d

iscrete input matrix, lambda")(skipa);
end;

else
do;

free b-matrix;
allocate b matrix;
put edit ("Enter values for the 8

matrix") (skip, a);
end;

put skip;

C-20

do i = 1 to n;
do j = 1 to p;

thn o;if (flag2.modify..discrete =true)

out edit ("Lambda (", i,

(x(4),, a.- f(3), a., f (3) , a)
get List (Lanibda-.matrix(i,. j))

eLse do;
put edit ("S9 V'P is, "s~

= > ")(x(4)p aj. f(3), ao f(3), a);
get List (b~matrix(io j)):

end;
end;:

end;

dc;
free b-.matrix;
a L~ocaTe b-matri x;
b.clýmatrix =0;

if (ftag2.modify discrete =true) then
gcto m dify~diTs

goto case(2);

case-.2(S): goto case...2(l);

case-.2(6): if (fLag2.need~set =true) then
do;

fLag cont-exists = true;
ftag~discrete~exists =faLse;
f Lag.puantized exi sts f false;
fLag-controL~taw-.vatid = faLse;
fLag..sim~vaLid =faLse;

end;:
qotc PARMS;

case(3): /* Discrete Parms *
out skip;
f La?2,modify..discrete = true;:
if (flag.cont~..exists = true) then

do;
ou-t ecit('A continuous model existso would you

Like to: ")(skipoa);
put skip;
put ecit("1. Generate a discrete modet from t

he continuous system")(skipp a);
if (fLag.discrete~exists = true) then

out edit V'2. Modify your existing discret
e system")(skip..a);

e Ls e
(skippa);Put edit("2. Enter a new discrete system")

put ecit("3. Quit")(skip~a);
put skip;
put ecit("PLease choose one => ")(skio~a);
get List(c2);
range = 3X;
call num-answer~ok (c2, rangep choice2);

if (choice2 =1) then do;
flag.discrete..exists =true;:
flag.ouantized..exists =false;

C-21

ftag.control law vaLid false;
fLagsimq aval-d = false;
if (flag.discreteexists = true) then

free phi-matrix, lambda matrix;
call bui ld-Aiscretematricies;
chcice2 3;end;

if (choice2 2) then do;
tau = 0.0;
dOto Modifydis;

end 'if (choice2 = 3) then
gcto PARMS;end;

else
do;

Put ecit("A continuous system does not exist,
would you Like to")

(ski p,a) ;
put ecit ("I. Create a continuous system first") (skip,a);

if (flag.discrete~exists = true) then
put edit ("2. Modify the existing discrete

system")(skio,a);
else

put edit ("2. Enter a new discrete system") Cskip,a);
Put ecit ("3. Quit")(skip,a);
put skip;
get list (c2);
rane = 3;
cal num-answer-ok (c2, range, choice2);

if (choice2 = 1) then do;
flag2.modify discrete = false;
dOto case(2)7

end,

if (choice2 = 2) then do;
tau = 0.0;
goto Modifydis;

end;
if (choice2 = 3) then

gcto PARMS;end;

Modifydis: if (flag.discrete_exists = true) then
do;

put edit ("Which of the folLowing wou
ld you like to modify?") (skipa);

put ski o
put edit("1. Number of states")(skip,a);

put edit("2. Number of inputs")(skip,a);

out edit("3. Discrete system matrix") (skip,a) ;
put edit("4. Discrete input matrix")(ski p,a) ;
put edit("5. All of the above")(skid.- a) ;

ppa); Put edit("6. None of the above")(ski

out skio;
put edit ("Olease choose one => ")(sk

i pa);
get list (c3);
range = 6;

C-22

call num-answer-ok (c3p range, choice

if (choice3 '= 6) then
do;:

fLaq2.rieed..set = true;:
choice? = choice3;

end oto case-2(choi ce2) ;

e t s e
do;

if (fLag2.need set =true) then
do;

fLag.discrete~exists =tr
ue;

ftag-quantized-.exists =f
a L se;

fas;ft.ag. con tro 1. Iaw~va Ii d

enfLag.sim~vaLid = faLse;

goto PARMS;
end;

end;:
e L. se

do;
allocate ohi-matrixp Lamnbda-.matrix;
flaq2.need..set = true;
fLag.discrete..exists = true;
choi ce2 =5;

en;goto case..2(1);

case(4): /* Quantizec Parms *
put skip;
f Laq own~auant~fiLe exists =faLse;
if fLag.quantizede;xists =true) then

do;
"Mskipra); put edit ("A quantized system currentLy exists

put edit ("Do you stiLL wish to modify the qua
ntized system? => ")(skippa);

get List (answer);
call yn.aseok (answer);
if(answer = `;i"I answer = "no") then
goto PARMS;

end;
if (fLag.discrete~exists = true) then

do;
put edit("WouLd you Like to generate a quantiz

ed system") (skippa) ;

=> ")Cskipoa); out edit(" from the discrete system"
get List (answer);
call yn~answer .ok (answer);:
if (arswer = "y"I answer ="Yes") then

do;
if (flag.ouantized~exists = true) then

do;
free next state~map;

step~i;free number-of.s-t eoss..s numbe rof..

free vol taqe..jower..bound..sp voLtao

e~upper..bounds.;

free offset~sp offset-iP quantum~s

C- 23

teosize_so quantum~steo size i;
free satedge, uncontrolLabLe_celL

end;
atlocate number-of-steos-s;
out edit ("Enter the number of auantization step)s") (ski p,a) ;
out skip;
do i = 1 to n;

put edit ("for state number", i, " =>
")(x(3)• a, f(5), a);

qet List (numberofstes.s_s (i)):
end;
al locate voLtaqe uoper bound sovoltaqelower...bound~s;
out edit ("Enter the uooer and lower vol

tage bounds (u, L)")(skip, a);
put skip;
do i a 1 to n;

"put edit ("for state number", i, " =>")(x3)• a, f(5), a);
get List (voltage_upperbound s (i),

vIt age_ ower_bound_s (i));
end:
allocate number of-step s-i;
if (p real > 0-- then

do;
put edit ("Enter the number of quantization steps") (skilp,a) ;
put skip;
do i = to p;

> ")x put edit ("for inout number", i> => (x(3), a, f(5), a);
get List (numberofsteosi (i)

end;end;
eLse

numberofstepsi (1) = 1:

allocate voLtage_upoerbound i• voltage_lower bound i;
if (preal > 0) then

do;
out edit ("Enter the upper and Low

er voltage bounds (u, l)")(skip, a);
put skip;
do i = 1 to p;

,, ")(Out edit ("for innut number", i

(i), voLtageLowerbcundi) List CvoLtage;uoper~boundi
end;end;

else
do;

voltage upper bound i (1) = 0;
voLtage:Lower~bound-i (1) = 0;

end;

put edit ("Would you like the next statefile bui Lt") (skip,a); .
get List (answer);
if (answer = "y" I answer = "yes") thendo;

call buiLrI.,misc-arrays;
call hcs_$initiatecount (working dir

C-24

job-namell".next state", "", bit
0, next state fileotr, code);

"call delete (job-nameII".next state",

call hcsSmakeseg (workingdir, job_namellna e c) ".next-state", "", 01010b, next-stat

e~file~pt r, code);
call build-next.state-file;

end;
end;else
do;

put edit ("Do you have a data file conta
ining the quantized")(skipea);

out edit (" system that you would
like to access? => ")(skipa);

get list (answer);
call ynanswer,,ok (answer);
if (answer = y I answer = "Yes") then

flag.own quant fileexists = true;
else

goto PARMS;
end;end;

else
do;

put edit ("A discrete system does not exist.")(skip,a) ;
put ecit ("Would you like to create one? => N) (skip,a);
get list (answer);
call yn answer ok (answer);
if (answer = I answer = "yes") then

gcto PARMS;
put edit ("Do you have a quantized system data

file that you would like to access? => ")(skippa);
get list (answer);
call ynanswer.ok (answer);
if (arswer = "'T 1 answer = "yes") then

flag.own-ouant-file-exists = true;
else

goto PARMS;
end;

if (flag.ownquantfileexists = true) then
do;

if (flag.cuantizedexists = true) then
do;

free number of stepss, numberof steps i

free voltagelowerbounds, voltage..uper
-boundsi; free voltagelower-boundi, voltaqe.uooer

_bound i;
free offsets, offset-i, quantumstepsiz

e sop quantum_step_size_i ;
free satedge, uncontroltablecelL;

free next-statejmap;
enc;

out edit ("Enter the name of the file to be re
ad in => ")(skip, a);

get list (own quant data-title);
call tcs_- init iate count (workingdir,

xt..state~fiLe~ptro c.n-uant-data~title, "", bit-count, O ne

C-25

c cde) ;
if (rext-state file otr = ull) then

dc;
Put edit ("The file", own-auantdatatit

le, "does not exist")(skioa);
out edit ("Try Again => ")(skiop.a);
get list (own quant-data-title);
call hcs SiniTtate count (workinq_dir,

own-ouant-data-title, ""P bit count,0,
next-state-fite .ptr, code);

if (next state fileptr = null) then
goto PAPMS;

end;

put edit("The following information is need
ed to suppliment the cuantization model:)(skipa);

put skip;
a); put edit ("the number of states => ")(skip,

get list (n);
put edit ("the number of inputs => ")(skip,a)

get list (p real);
i (p{}reaL > 0) then

p p_real;else

p = 1;
allocate number of steps s;
put edit ("Enter t~e number of Quantization steps") (ski p~a) ;

put skip;
do i = 1 to n;

put edit ("for state number", i, " =>")(x3),a, fC5), a);
get list (number of steps-s (i));

end"
allocate voLtageupper~bound s,voLtagelower..bound..s; put edit ("Enter the upper and lower vol

tage bounds (u, L)")(skip, a);
put skip;
do i = 1 to n;

"put edit ("for state number", i, " =>")(x3),a, f(5), a);

voLtageower~bound~s M?!t list (voltage upper bound s (i),

end;
allocate number of steps i;
if (preaL > 0-) then

do;
put edit ("Enter the number of aua

ntization steps") (skioa) ;
put skip;
do i = 1 to p;

=>) a, f(put edit ("for inout number", i, > "(x(3), a, f(5), a);
get list (numberofsteos_i (i)

end;end;
else

number-of-steos-i (1) = 1;

allocate voltaqe_upperbound i, voltage_lower~bound~i;
if (preal > 0) then

do;

C-26

put edit ("Enter the upper and low
er voltage bounds (u, l)")(skio, a);

out skip;
do i = 1 to p;

put edit ("for input number"• i
• => ")(x(3), aj, f(5), a) ;

(i)- voLtage.n et list (voltageuoperbound_i(i) vo tag _Lower_bcund-i (i));

end;
end;

else do; voltage_uooerboundi (1) = 0;

voltaqelower_boundi (1) = 0;
end;

call build miscarrays;

allocate next-state-man;
do i = 1 to num-state combs;

do j = 1 to num input combs.*
next.state~map (thenextst

ate_maoping (ij); end;
end;

end;

call build cont reg sat .edg arrys;
call print-next-.statefT le;

flaq.ouantized exists true;
flag.control.law-valid = false;
flag.sim _ vaLid =-false;

goto PARMS;

case(5): /*Quit*/
put skip;

buiLd-discrete-matricies: procedure;

dcl n fixed external;
dcl p fixed external;

dcl tau float exterral;
dcl ?hi matrix (1:n, l:n) float controlled external;
dcl aam damatrix (l:no I:p) float controlled external;

dcl i fixed;
dcl j fixed;
dcl matrix dim fixed binary (35);
dcl ind fi~ed binary (35);
dcl ier fixed binary (35);

dcl time float binary;
dcl time end float binary;
dcl tol 7loat binary
dcl c (1 :24) float inary;
dcl cont state (1C) float binary;
dcl cont-inout (1:o) float binary controlled external;
dcl w (1:n, 1:9) flcat binary controlled;
dcl tempprime (1:r) float controlled external;

dcl imsl$dverk entry (fixed binary (35)o entry, float binary
S(*) float

C-27

binary, float binary, float binary, fixed binary (35),

(*) float binary, fixed binary (35), (
*, *) float

binary, fixed binary (35));

Ccl sysin file inm ut;
ccl sysorint file cutput;

allocate cont-inout, temoprime, w, phimatrix, lambda-matri

Out edit ("Enter tau ->")(skipx(4),a);
get List (tau);
do i = 1 to n;

cont-state 0;cont.'state (i) - I

watr x-dim n;
time = 0;
time end = tau;
tol .0001;
ind I ;
call imsl$dverk (ratrix dim, eouation a, time, cont state,

timeend & tol, ind, c, matrix-dim, w, ier);

dojl z I to n;
p;himatrix (j, i) = contstate (j);

end;end;
do i = I to p;

contstate = 0;
cont.linout = 0;
cont.,input (i) = 1;
matrix-dim z n;
time = 0;
time-end = tau;
to(= .0001;
ind = 1;
call imslSdverk (fratrix dim, equationb, time, contstate,

timeendo toL, ind, c, matrix dim, w, ier);

do j = 1 to n;
lambdamatrix (j, i) = contstate (j);

end;
end;
put edit ("PHI MATRIX = ")(skip(2), a);
do i = 1 to n;

out skip;
do j = to n;

put list (phiwatrix (i., j));
end;

end;
put edit ("LAMBDA MATRIX = ")(skip(2), a);
do i = 1 to n;

put skip;
do j = 1 to p;

out list (lambdamatrix (i, j));
end;

end;

free cont inout, temp_prime, w;

equation a: procedure (matrixdim, time, cont state, contst
ateprime),

C-28

dcl matrix dim fixed binary (35);
dcl time float birary;
dcl contstate (IC) float binary:
dcl contstateprlme (10) float binary;

dct n fixed external;

dcl a.matrix (1 :r, 1 :n) float controlled external;

dcl i fixed;
dcl j fixed;

do i = 1 to n;
contstate-prirre (i) = 0;
do j = 1 to n;

contstateprime (i) -cont stateorime (i) + (a-matri
x (i, j) *

contstate (j));
end;end.:

end equation_a;

equation b: procedure (matrixdim, time, contstate, cont-st
at eprime) ;

dcl matrix dim fixed binary (35);
dct time ftoat binary;
dcl contstate (1C) float binary;
dcl cont.state prime (10) float binary;
dcl cont~input?1:c) float binary controlled external:

dcl n fixed external;
dcl p fixed external;
dcl tempprime (1:n) float controlled external;

dcl a-matrix (1:n, 1:n) float controlled e.xternaL;
dcl b-matrix (1:n, 1:o) float controlled external;

dcl i fixed;
dcl j fixed;
dcl k fixed;

do i = 1 to n;
temp-prime (i) 0;
do k = 1 to p;

temo-orime(i) = tempprime(i) + (bmatrix(i,k) * cont_
input (k));

end;
end;
do i = 1 to n;

contstate orime (i) = 0;
do j = 1 to n;

cont stateprime (i) = contstateprime (i) + temppri
me (i) + (a matrix (i, j) *

end;cont state (j));
end;end;

end equationb;

end build-discrete-matricies;

goto skip_theent ry;
bui 1d_miscarrays: ertry;

C-29

attocate offset-so cffset ip auantum step-size-sp auantum~st
eP-s i ze...i :

ouantum~steo~size.,s =(vottage-.Uoper.~.bound~s - vottaqeltower
-bound-s)

(nlu
mber of .steps s);
of~set s (17 = 1;
do i =-2 to n;

offset-s Mi = cffset-.s (i-1) *number-of-.steos..s (i-1);
end;:
nium state combs z offset..s (n) *number...of-.steos-s (n) ;
if T p~reaL > 0) then

do;
quantum step size~i = (voLtage-.upper~bound..i - vottage_.L

ower-bound-.i) / nmum

ber-.of .steps i);
offset i (1) =1
do i = 2 to P;

offset-i Mi offset-i (i-1) *number~of,.steps..i (i-I

e nd;
num-.input-combs =offsetji (p) *number..of..steos...i (o);

end;

do;
num-input combs 1;
offset-i (1) = 1
quantum~step~size~i (1) = 1;

end;

return;

go to ski o-the en try;
buitd~cont~reg~sat~edgarrys: entry;

dcL found-sat-edge bitdl);
dc t state..codel fixed;
dIcL inout-~.code1 fixed;
dcL next..state..codel fixed.;
dcL num~..at~edges fixed;

allocate uncontrol LabLeceLLP sat..edge;

do state-.codel = 1 to num .statecob,
uncontraLLabLe-celL (state.codel) = false.;

end;
found-sat edge = faLse;
do state...Eodel = 1 to num-state combs;

do input-codel = 1 to num..input combs.;
dl;next-state-.codel =next...state..map (state~code1, input~co

if C next-state-codel =0) then
do;

sat..edge (state~.codelp input...codel) = true;
found~sat..edge = true;

end;
e Ls e
en;sat..edge (state~codelp input~.codel) = false;

end;
do while (found sat~edge =true)

do state codel= 1 to num state-.combs;
if (uncontroLLabLe-ceLT (state..codel) =false) then

do;
num,sat~edges 0
do input~..cocel 1 to nun~i.nout~combs;

C-30

then if (sat-edge (state~codel,. inout~codel) =true

end: numsat..edges =num~sat~edges + 1:

if (numR~sat~edges num~input~combs)then
do;
uncontrctLabte-.cell (state-codel) =true;

end;
end;

found..sat..edge =faLse.? -
do state..codel 1 to num-state combs;

do input..codel =1 to num.~inout...combs;
if C sat..edge (state~codelp in;put~codel) = false)the

n
do;

Put-codel) next-state..codel =next-.state-mao (state-.codelp in

thenif C uncontroltabLe-ceLL (next-state,..codel) = true

sat..edge (state =codel, inout..codel) = true;
found,..sat~edge true;

end;
end;

end;
end;

end;
num-controLLabte-ceLts = 0;
do state-codel = 1 to num state-combs;

if (uncontroLLabte.,cetT (state-.codel) =false) then
en num..controLtabLe-ceLts = num-.controLtabLe..cetLs + 1;

return;

goto skip.~.the~entry.:
buiLd-.next-.statejfiLe: entry;

dcL next .state code fixed;
dc L state_ codef fixed;
dcL input code fixeo.
dcL state~code-.ten'. fixed;:
dcl input code ten'c fixed;
dct dis-.state Tl:n) fixed controlled.:
dct next 'Pdis state (1:n) fixed controlled.:
dcl dis~inouti (1:p) fixed controlled;

dcl cont state (1:r) float controlled;,
dcl co~nt~inout (1:c) float controlled;
dcL temp..1 (1:n) float controlled;
adL temp..2 (1:n) flcat controlled;

dcl not-saturated bit(1);

out sk ipr;
put edit ("Buildirg next state fiLe")(skip,. x(4).. a);
aLLocate dis-statee dis~input., next..dis..statep, cont~state.-

cont..inputo
temp-)# temp-2;

allocate next-statergap;

do state-code = 1 tc nurn state combs;
do input~code =1 to num-inaut-combs;

state-code-iteiwo = state-code;

C-31

input-code-t~ep =incut..code;

ca It convert-lcode-to-dis-state (state-code, di sstate)

calt covr-col-ods-inout (inout-coder dis-inout

state-code =state~code~temp;
input code = inout-code~temp;
caLt idd~entry;

end;
end;

free dis stateo, dis-inout,. next-.dis-.state, conttstate., cont
-input* temp.), temp_.2.:

add~ent ry: procedure;

dcL i f ixed ;

caL I convert-$d is~st ate~tocont..state ((di s.state)p cont-s

do i z 1 to n;
temp-1 (i) = 0;
do 3 = 1 to n;

(j;temp..1 Ci) =temp-1 Mi + phi-matrix Ci.-j) * cont~stat
end

end;
call convert..Sdis..input_ to_ cont~input ((dis~inout), cont-i

n o ut) ;
do i =1 to n.;

temp-2 Mi = C;
do j = 1 to p;

temp _..2 (i) =temo..2 Mi + Lambda-..matrix (iP j) * cont-
input (j) ;

end;
end;
temp,.. = temp..) + temp 2;
call convert-Scort-state-to..dis-state ((temo-1)p next-.dis-

not.,saturated = true;
do 1 1 to n while (not-..saturated = true);

if (next..dis-.state Mi > number-.of-.steps~s Mi - 11

te Ci) < 0) then nx-i-t
not...saturated = false;

end;
if C not-saturated = true) then

cal(convert-Sdis-state-to-code (Cnext~di sstate) , next-
state code);

eTs e
flex t.state..code = 0

next-state-mao (saecdinout..code) =next-state-code.;
if (next-state-coce '= 0) then do;
end;

end add~entry;
ret urn,

skipothe entry: put skip;
end chanie..parameters;

C-32

print-it: procedure;

dcl t ob name character(50) varying external
dcL data5-_file file;
dcLi1 f Lag external,

7 cont-exists bit(l),2discrete exists bir(1),

2 quantized exists bit(l),
2 control law valid bit(l),
2 sim-vaLId bit(l),
2 own-ouant-fiLe-exists bit(l);

dcl done bit(l);
dcl answer character(3) varying;
dcl choice fixed;
dcl choice c character(l);
dcl range 7ixed;

dcl num-answer ok entry (character(1), fixed, fixed);
dcl yn answer-ok entry (character(3) varying);
dcl orint next state.file entry;
dcl buiLd~tol reg andcontlaw$pr contlaw entry;
dcl check quantization-level entry;
dcl sysin-file input;
dcl sysprint file output;

done = "O"b;
do while (done = "C"b)

put skip(2);
put edit ("Which of the following would you like orinted?"

)(skip,a) ;
put skip;
range = 3;
put edit ("1. Status of the job")(skip,a);
put edit ("2. Data file for the job")(skip,a);
if (flag.quantizecexists = "l"b) then

do;
range = 5;
out edit ("3. Quantized data file - next state file

") (skip,a);
out edit ("4. Quantization level check")(skipa);
if (flag.cortrollawvalid = "1"b) then

do;
range = 6;
put ecit ("5. Control law")(skioa);
put edit ("6. None of the above")(skipa);

end;
else

out edit ("5. None of the above")(skio.a);
end;

else do;
ran-e = 3;
if •faq.contrcl-law valid = "1"b) then

do;
range = 4;
out edit ("3. Control law")(skioa);
out edit ("4. None of the above")(skip,a);

end;
else

put edit ("3. None of the above")(skip,a);
end;
put skip;
put edit ("Enter choice => ")(skip,a);
get list (choicec);
call num-answerok (choicec, range, choice);

if (choice = 1) then
do;

C-33

out skip;
if (f lag~ccrt exists = "1"b) then

out edit C" A continuous model of thp system e
x i st s) s k i p ,a) ;

if (flag.discreteexists = "1"b) then
put edit C" A discrete model of the system exi

sts°") (skip a) ;
if (flag.quantized exists= "1"b) then

put edit C' A quantized model of the system ex
i sts") (skiopa) ;

if (flag. control law valid = "1"b) then
put edit C' A control law exists for the job"

) Cskip,a);
if (flag sire valid = "1"b) then

out edit of The system has been successfully s
imulated")(skipa);

end;

if (choice = 2) then call displayjobfile;
if (choice = 3) then

do;
if (range = 3) then done = "1"b;
if (range = 4) then call buiLd-toltreqandcontlaw$

pr contlaw;
if (range = 5 I range = 6) then call printnextstate~fi te;

end:

if (choice = 4) then
do;

if (range = 4) then done = "1"b;

if (range = 51range = 6) then catl check auantizatio
n..evevet;

end;

if(choice = 5) then
do;

if (range = 5) then done = "1"b;
if (range = 6) then call buildtolregandcontlaw$

prc on t_ law;
end;

if (choice 6) then done = "1"b;

end; /* while */
goto endit;

displayjobfiLe: entry;

put edit ("OOPs I haven't written this one yet"M)(skip,a);

return;

endit: end print it;

C-34

print_nextstate fi le: procedure;

dcl numr state combs fixed external;

dcl num input.combs fixed external;

dcl next-stateffile_.ptr pointer external;

dcl next state map (1:numstatecombs, 1:num inputcombs) fi
xed controlted external;

dcl the.nextstate mapping (1:num state-combs, 1:num-input-c
ombs) fixed binary (T,)

unsigned based (nextstatefileptr);

dcl yn answer ok entry (character(3) varying);
dcl sysim file input;
dcl sysprint file cutput;

dcl i fixed;
dct j fixed;
dcl count fixed;

dcl answer character (3) varying;

ut edit ("Would ycu like the next state file printed > =)
(Sk io,a) ;

get list (answer);
call ynanswer ok(arswer);
if (answer = "yes" I answer = "Y") then

do;
count - a;
do i 1 to nu.istate-combs;

count = count + 1;
if (count = 11) then

do;
count = 1;
out edit ("More? => ")(skip,a);
get list (answer);
call yn-answer-ok (answer);
put sip;
if (answer = "n"I answer = "no") then goto nomore;

end;
put edit (i)(skipf(4));;
do j = 1 to rum input combs;

out edit (next-statemap (i, j))(x(2), f(7));
end;

end;
end;

nomore: put skip;
end printnextstatefiLe"

C-35

check auantization-levet: procedure;

dcl n fixed external;
dcl p fixed external;
dcl t p real fixed external;
dcl hum state-comts fixed external;
dct num inputcombs fixed external;
dcl offset-s (1:n) fixed controlled external;
dc(offset-) (1:p) fixed controlled external;
dcl number-of steps s (l:n) fixed controlled external;
dcl number-of.steps~i (1:p) fixed controlled external;

ccl voltage Lower tcunc s (1:n) float controlled external;
dcl voltagelower-bound i (l:p) float controlled external;
dcl ouantum steo-size s (1 :n) float controlled external;
dcl quantum step size.i (1:p) float controlled external;
dcl num-controllabLe-ZcelLs fixed external;

dcl nextstate_fileptr pointer external;

dcl state (1:n) fixed controlled;
dcl inout (1:p) fixed controlled;
dcl nextstate (l:n) fixed controlled;

dcl next state mar (1:num state combs, 1:num inoutcombs) fi
xed controTled external;

dcl the..next state mapping (1:numnstatecombs, 1:numinputc
oDrbs) fixed binary (8)

unsigned based (nextstatefieptr);

dcl answer character(3) varying;

dcl convertSdis state to-code entry ((*) fixed, fixed);
dcl convertSdis ircut. to code entry ((*) fixed, fixed);
dcl convert-Scode-tc disstate entry (fixed, fixed)
dcl convert $code.todsdisinput entr (fixed, (*) fixed);
dcl ynanswerok entry (character(3 varying);

dcl sysin file input;
dcl sysprint file cutout,

put edit ("Would you like to check the auantization level
") (skip.a) ;

get list (answer);
call ynanswer ok (answer);
if (answer = es" I answer = "y") then

do;
put edit ("Number of controllable cells = ")(skipa);
put list (numnccntrollable cells);
out edit (C Total number of cells ")(skipa);
put list (numnstatecombs);
put skip;
allocate state, input* nextstate;
call find zero inout dists;
if (preaL > C) thn call find-zero-state-dists;
free state, input, next state;
call print-sat edge array;
if (num.cont~roTLabL; cells -= um state-combs) then do;

call print ccntroTlable cells;
call or int_-uncontrol labTe-cells;

end;
end;

findzero_.input.dists: procedure;

dcl i fixed;

C-36

dc-L s-LeveL fixed;
acL state~code fixed;
dcl state-code .temo fixed;:
dcl next-state~code fixed;
dcl zero-.inout .ccde fixed;
dcl sum-num-stecs fixed.;
dcL max..mum steos fixed;
dcL num~tot-fixed;
dcL zerolinput (1:0) fixed controlled;
dc L num dir (1:n) fixed controlled;
dcL ceLTs .moved-.tot (O:sum nurm-.steos) fixed controlled;
dcL cetLs-moved~dir (1:,,, I:max-num-.steos) fixed controLle

ma x-ium-steos = riumbe r~of.st eps,.s (M;
sum~num steos = 0
do i = T to n;

Mi); max num_.Ster.S = max (max~..num..stepso mumber~of.steps~.s
sum -num.steps = sum~num~steps + number~of~steos~s Ci);

aLLocate zero..irnputo num~dir, cells moved tot. ceLLs~rnov
ed..di r

.zero,,input =floor C -voLtageLower~bound..i / quantum~st

call convert-Sdis~i nput..to~code C(zero~input), zero~inou

do state code = 1 to num..state-.combs;
state..code teip =state-,code;
call converFt-S.code-to dis..state Cstate-codep state);
state-code = state.,coge...temp;
call comoute-zero~i put~di sts;

end;
caLl print~zerc..input~dists;

i; free zero~inputo num-.dirp ceLLs..moved~totp ceLLs..moved-.d

compute..zero..input..di sts: procedure;

thnif C next-state~map Cstate..codep zero..input~code) > 0)

do;
next..state-codle = next~state~map Cstate codep zero..i

nout-code);
call convert-.Scode-to-di s.state (Cnext-state...code)o

n e xt-s t a te,) ;
num-dir z abs Cstate - next-..state);
num~tot z C;
do i = 1 to n;

ceLLs-.moved-dir (ionum-dir~i))= ceLLs...roved-.dir Ci
onum-dir~i)) + 1;

num-tot = num~tot + num~dir Ci);
end;

)+ c LLs-moved tot Cnum~tot) = ceLLs~moved~tot (num-.tot

end;

end comoute~zero in~ut-.di sts;

print-.zero i nout~.di sts: procedure;

dcL i f ixed;

C- 37

dc L j f ix e d;
dcL max ceLLs-mcved fixed;
dcl most...ceLLs..rvoved (1:max~num-.steps) fixed controlled.;

dcL zero-ceLLs ffoved bit(l);
dcL true bit(17 initial ("1"~b):
dc L faLse bit (1) initial ("O"b);

allocate most-ceLL s-.moved;

do i = 1 to n;
zero-ce~Ls-.moved =true;
do j=max-nurv-steps by -1 toO0 while (zero~ceLlsjnove

d =true);
if (ceLLs..rrcved..Air Cij, j) > 0) then

do;
zero-cetts..moved = faLse;
most~ceLLs.,moved Ci) =j

end.;
end;

end;
max~ceLLs-movec = niost-cells...moved (1);
do i a 1 to n;

ed);maE..cetts-moved =max (max-celts-moved,, most-cetLs-mov

end;
put edit ("Number of cells moved in each direction")(ski

p Px(6Pa) ;
out e d it ('Dir")(skiop.a,,x(3));
do i = 0 to-max cetts-..oved;

put edit iMOW4);
e nd ;
do i = 1 to n;

put *edi t i) (skip~f(4),,x(3));
do j = 0 to max~ceLls moved;

out edit (ceLLs..moved~dir Cijj)) Mf4));
end;

end;
zero-cetls-moved x true;
do i sum..num~steps by -i to 0 while (zero~ceLts..moved

=true)
if (ceLLs-moved-tot (i) > 0) then

do;
zero ceLts-.mcved false;
maxczetLs.moved i

end;
end;
put skip;
put edit ("Numrber of ceLls moved totaL")(skip..x(6).,a);
put edit ("num")(skiova);
do i =O0to nax-cel Ls-moved;

put edit (i(t4));
end;
put edit C' ")(skiopa);
do i = j to max..ceLls .moved;

out edit (ceLLs-moved-tot Ci)(f(4);

free most-.ceLLs..moved;

end print~ze ro input..di sts;

end find-zero...input..dists.

fi ndzero-sta te~d ists: procedure;

dc L i f ixed;
dclI j f ixed ;

C-38

dcL input-code-fixed;
dcl next-state-ccde fixed;
dcl zero-state-code fixed;:
dcL zero-state (1:n) fixed controlled;
dcL zero~inout (1:p) fixed controlled;
dcL nurn input steps (1:p) fixed controlled;
dc L ceLTs movd-tot.abs (I:P) fixed controlled.;
dcl cetts..-noved..dir..abs (1:ap 1:n) fixed controlled;

dcl ceLls moved .tot avg (1-.o) float controLLed;
dcL cetts~moved~dir~avg C1:pp 1:n) float controlled;

dcL input~status (1:p) character(9) controlled;

dcL found not sat bit~l);
dc L t rue ;i t () init ia L ("11"b);
dcL faLse bit(1) initial ("O'b);

allocate zero-statep zero~inouto num input-steosp ceLLs..mo
ved-ot-bs*cetLs..mc Ied..tot..avg,, cells-moved..dir-abso cells..

moved~di r.avg,
i n pu t-.s tatus

zero-state = floor C-voLtageLower~bound~s / uantum~step_

zero~input = floor (-vottage...ower...bound~i /quantum~step_
s ze.)i) ;

call convert-Sdis-state...to..code (Czero..state)o zero~state-.
c ode)

call comoute-zero state.,di sts;
call print..zero..state~dists;

free zero-stateo zero~inputo num..input~stepso ceLLs-moved_.
totab.,celts-moved...tot~avgo ceLLs-.moved-dir-..abss. celts-move

d~di r~avgý
i nput..status;

compute~zero~st ate..dists: procedure;:

do i = 1 to p;:
input = zero 'inout;
found-not-sat = faLse;
input (i) a0;
do while (input Mi < zero~input Mi & found...not-s

at =false);
call convert-.$di s..nput..to~code ((input), input-code

0 tenif < next-state.~wao (zero-state-.codep input-.code) >

found-.not-.sat = true;:

input (i) = input Ci) + 1;
end;:
if (found-not-sat = true) then

do;
unst"; if C input Ci) = 0) then input..status Ci) = "max

else input..status Mi = "max satur";
num-.input-steps Ci = -zero...input (i) - input Mi;
next state code a next~state~map (zero~.state,..code,

inout-code)P
call convert-.$code...to..dis-.state ((next-.state..code)

next-.state);
ceLLs-.moved-dir..abs Ci,*) =abs (next-State - zero

C -39

P /ceLts..mcved..dir~av'g (ip.*) = ceLLs-.moved..dir..abs (i

.input..steos (i) ;
u

ceLLs~moved~.tot~abs (i) = 0
do j -1 to n;

+cetLs-.moved..tot-.abs (i) = cetLs-.moved~tot~abs (i

d-dir-abs (i,- j); ctsmv

end;:
ceLts-.moved~tot-avg (i) = ceLLs-.moved..tot...abs (i)

num
-input-steps Ci);

end; input~status Ci) "at I satur";

end compute-zero-state-di st S.

print..zero..stat e~di sts: procedure.;

put skip.;
put edit ("Input Input Num Total Cel~ts Ce

I Is Moved") (skipia) ;
inout edit (" Status Input Moved
in) (skip,a) ;

out ed it (" Steps Abs Avg
ir Abs Avci)(skip.pa);

do i = to 0;
out skip;
if (input~status (i) = "at L satur") then

do.
put edit (i.- input..status (i))(xC4).-f(4),x(3),a(9)

end;
e Ls e

do;
out edi t (i.- input~status Ci), num..input steps Ci)

(fC4)P, x-(3), a(9)s, x(3), f(4));
put edit (ceILs-.moved-tot-abs Ci),- cells-moved-tot

..avg Ci)X, f(4
do j a1 to n;

out edit (j.- cetts~moved~dir..abs (i.-j),. cetts..no
ved...dir...avg (ipj), ")

(skip.- xC42)s, f(4), x(2)j, f (4), x(5), f (6*2), a)

end;
end;

end;
put skip;

end pr int~zero~state.di sts;

end I ind-.zero-..state..di sts;

or int..sat..edge..array: procedure;:

dcl num-state combs fixed exterrnat
dcl num~input~combs fixed externaL;

C -40

dcl satedge (1:num_statecombs, 1:num-inoutcombs) bit (1)
controlled

external;

dcl yn answer ok entry (character(3) varying);
dcl sysin file input;
dcl sysprint file cutput;

dcl i fixed;
dcl j fixed;
d cl count fixed;

dcl answer character (3) varying;

,,)put edit ("Would you like the saturated edge array printed)
"Cs k i p Pa) ;
get list (answer);
call ynanswer ok (answer);
if (answer = "yes" I answer "Y") then

do;
count 0;
do i = 1 to nurmstate-combs;

count = count + 1;
if (count = 11) then

do;
count 1;
put edit ("More? => ")(skipa);
get list (answer);
call •rnanswer-ok (answer);
put Si5
if (answer = "n" I answer = "no") then goto nomor

end;
put edit (i)(skipf(4));;
do j 1 to mum_.irput combs;

(fa sat~edge Cio ji = "O"b) then put edit C' F) (a):
else put edit C" T")a);

end;
end;

end;
nomore: out skio;

end printsat edgearray;

printcontrol lab lecelLs: procedure;

dcl num-state-combs fixed external;

dcl uncontroltable-ceLl (l:num-state-combs) bit(l) controlle
d external;

dcl i fixed;
dcl count fixed;
dcl answer chara'cter(3) varying;
dcl sysin file input;
dcl sysprint file output;
dcL ynanswerok entry (character(3) varying);

put edit ("Would ycu like the controllable cells listed "
(skJipa) ;

get list (answer);
call ynanswer ok (answer);
if (answer = yes" I answer = "y") then

do;
count = 0;
put edit ("Controllable Cells")(skioa);
do i = 1 to num-state-combs;

C-41

if (uncontrollable cell (i) = "0"b) then
do;

put skip List (i);
count = court + 1;
if (court 10) then

do;
c ount 1;
put edit ("More? => ")(skio,a);
get list (answer);
call yn.answer ok (answer);
put skip;
if (answer = "n" I answer = "no") then goto

no more:
end;

end;
end;end;

nomore: put skip;

end printcontrollable-cel.s;

orint-uncontrollable_cel Is: procedure;

dcL num-state-combs fixed external;

dcl uncontroltable-ceLl (1:num statecombs) bit(l) controlle
d external;

del count fixed;
dcl i fixed;
dcl answer character(3) varying;
dcl sysin file input;
dcl sysprint file output;
dcl ynanswerok entry (character(3) varying);

out edit ("Would you like the uncontrollable cells Listed?
") (skip, a);

get list (answer);
call yn_answer "ok (answer);
if (answer yes" I answer = "Y") then

do;
count = 0;
put edit ("Uncontroll-able Cetls")(skip,a);
do i 1 to num state combs;

if (uncontrotlable-celt (i) = "1"b) then
do;

put skip list (i);
;ount = count + 1;
if (count = 11) then

do;
count = 1;
put edit ("More? => ")(skipa);
get list (answer);
call yn answerok (answer);
put skip;
if (answer = "n" I answer "no") then goto

nomore;
end;

end;
end;

end;
nomore: put skip;

end printuncontrotlablecetLs;

end check cuantizaticr-Level;

C-42

bui Ld..to(_reg..and..cort_.Law: procedure;

dcl nuni~state~combs fixed externaL.;
acLi1 f Lag external,-

2 cont-exists bit(l).,
2 discrete exists bit~l),.
2 cquantize2-exi sts bit (1),P
2 control Law valid bit(l)g,
2 s i rva LTd bTt(1) ,
2 own~quant~fiLe-exists bit(l);

dc(cost function .ccde fixed external;
accl ceLL~.status -index fixed;
dc L center-cetL-toLerarnce f-ixed.;
ccl edge..cell tolerance fixed;
dc L cetiL,.status (l:num-state combs) fixed controlled;
dcl center .dist (1:num..state~combs) fixed controlled.;
dcl found a11,.LLLoops bi (1);
ccl controL .Law~.fiLe~.ptr pointer external;
dcl controLjLaw (1:num.,state~.combs) fixed based (control..Law

- f it.e-ot r) ;
dc L i f ixed;

ccl answer characterC3) varying;

dc L min~time..opt cant...Law e-ntry C()fixed.. fixed):
dcl yn~answer~ok-entry (character (3) varying);
dcl sysin file input.;
dcl sysprint file cutput;

al Loca te cetLL-sta tu~sp cente r-.dist;

if CfLagcontroL .Law valid ="1"b) then
put edit ("WouOld you Like to rebuild the control Law file

"")(skip (2)pa);
elIs e

put edit ("Would you Like to build the control Law file?
")(skip(2)o, a);
get List (answer);
call yn..answer~ok (answer).;
if (answer = Y" I answer ="Yes") then
do;

call buil d.cost-funct ion.;
d;if (cost-.functicn..code =5 1 cost..function-code = 6) then

goto dont~buiLd~;
end;

call qet~tolerances (center~cetL .tolerance, edqe..cetL .toLe
r a nc e) ;

callI initiatize-ceLL-.status..array (ceLL~statuso edge...ceLL_.
tolerance);

call initiaLize-center-dist-array (center dist.. center~ceL
I .t oLer an cc);

call find-root-cells (cell statuso center-disto center-ceL
L-ta~eancepcell status-index);

call open~controL_.Law.~fiLet
call findi...oonps..and.cont...Law (ceIL-status, center disto ce

I 1st atus index. center~ceLt tolerance, found a1L.,.oops) ;
if (found~aLL_..Loccs = "011b) then goto dorlT~buiLd;

call buiLd~optimaL~controLltaw (cclLtstatus, ceLL~status
nd ex);

fLag.sim valid= =1#b
fLaq.controL-..Law..waLid = "'b

C -43

c atLl print~ceII..status ((ceLL..status));

dont build:
if Tcost..juncticn-.coce -~6 & fLag.controK..law..vatid "1

b) then
caLLI print..cor'troL_.Law;

end;

free cetL-statusp center..dist;

buiLd-.cost-.fuflction: procedure;

dcLi1 f Lag externali,
2 cont-exists bit(l),r
2 discrete-.exists bit(l),,
2 quantizec .exists bit(l),P
2 c ontrotL~w valid bit(l)p
2 s i m valid b~t (1)
2 own..quant~fiLe..exists bit(l);

dc L true bit (1) i r it ia L 1 ("lb
dcl false bi t~l) mintiaL ("O"b);

dcl working...dir character(16 8) external;
dcl n fixed exterraL;
d c L o fixed exterraL;
dcL p..reaL fixed external;
dcl cost _ function..code char character (1);
dc L cost .funct I cn.,code f ixed external;
dcl controL_.Law-fiLe..ptr pointer external;

dcl state..costrIatrix (1:n) float controlled external;
dcl input..cost...matrix (1:p) float controlled external,

dcl range fixed;
dc L i f ix ed ;
dc L bit..count fixed binC24);
dcl code fixed bini(35);
dc l o wn-..c on tro L - Law- f i Le ch a ra ct e r(70) e xt e rnal;

dcl controtL...aw (1:nur,'..state..combs) fixed based (controtLl
aw~fi le.ptr);

dcl cInull buiLtin;
dcl nueu~answer..ok entry (character(l),. fixed, fixed);
dct hcs $initiate count entry (char(*)p char(*)o char(*)o

fixed bin(24),. fixed bin(2), ptr,. fixed bin
(35)) ;

dcL sysin file input;
dcl sysprint file output;

i f (f Lag.cont roL Law valid = "1"b) then do;
f L a ~ontroL Taw.vaLid= Ob
if ýcost..funcztio;code = 2) then do;

free sta te-cst..rat ri x
free input...ccst-m.atri x;

end.;
if (cost-.function-.code = 3) then free inout-.cost-.matrix;

end;

out edit ("Which type of cost function would you Like to u
se '")(skioja);

out s k i o;
out edit ('l) Minimum Time")(skip, x(4),. a);
put edit ("2) eluacratic")(skio, x(4) a);
out edit ("3D Minimum Control Effort")(skiop, x(4).. a);
put edit ("4) Custom Cost Function (use procedure custom..c

C -44

ost func ti on. pL1")
(skip. x(4), a);

put edit ("5) None - Would like to access a control Law fi
le")(skip, x(4), a);

put edit ("6) None of the above")(skio., x(4), a);

put edit (' ")(skia,a);
put edit ("Please choose one > ")(skipa);
get List (cost furction code~char);
range = 6;
caL num answer-ok (cost-functioncodechar, range, costf

unct i on..codeY;
goto case (costfunctioncode);

case (1):goto done;

case (2): allocate state-costmatrix, inputcostmatrix;
out skip;
put edit ("Enter the value of...')(skipa);
put skip;
do i = 1 to n;

put edit ("state cost matrix (",i,",",i,") => ")
(x(4), a. f(3), a, f(3), a);

get List (statecostmatrix (i));
end;
put skip:
if (preal > 0) then

do;
do i a 1 to P.;

put edit ('input cost matrix (",i,",")

(x(4), a, f(3), a, f(3), a);
get list (inputcostmatrix (i));

end;
end;

else
inputcostmatrix (1) = 0;

goto done;

case (3): if (preal > 0) thendo; allocate input cost matrix;
if (preal > T) t~en

do;
put skip;

sk ip.a) ut edit ("Enter scaling factor for...")(

put skip;
Co i 1 toR;

put edit (Input (",i,") => ")(a,f(3),a

get list (inputcostmatrix (i));
end;

e nd.;
else

inputcostmatrix (1) = 1;
enrc;

else
put edit ("System has no input. This controL makes no sense").

(skip. x(4), a);
goto done;

case (4): goto done:

case (5): out edit ("Enter the name of the control file to
be read in => ")(skica);

get list (owncontrollawfile);

C-45

caLl hcs-Sinitiate..count (workiiq dirr own-control-law-file.

ode);bit-counto 0, controLLaw..fiLe~ptr, c

if (controlltaw-fiLe..ptr = nuMl then

isvput edit ("The file",. own-controt..Law-file, "does not ex
i St Cs k i p a) ;

put edit ("T ry Aqa in => ") (skip,a);
get list (own controL Law file);

i~Pcall hcs..Sinitiate,..cozint Tworking~dir., own~controllaw~f

code); *off bit..countP 0P controLlaw~fi 1e.ptr,
if (controLLaw..fiLe~ptr = null) then goto done;
else do;

ftag.controLIaw...valid = true;
end;

end;
else do;

en;fLag.controtllaw~vaLid = true;

case (6): goto done;

done: put skip;

end bui Ld-.cost-function.;

tettolerances: Procedure (center..ce~l-ltolerance. edge~cel I.,

dcL center ceLL toLerance fixed;
dcl edge~ceLLtclerance fixed;

dcl sysin file input;
dcl sysorint file outout;

put edit ("Enter the center cell tolerance => ")(skip, a);
get List (center ceLltoLerance);
put edit ("Enter-the edge cell tolerance => ")(skip.. a);
get List (edge~ceLL.tolerance);

end get~toLerance s

initialize cetl status..array: procedure (ceLL..sta tus, edge..c
eL I .. t o Ie ra nc e);

dcl ceLL..status (*) fixed;
dcl edge...ceLL..toLerance fixed;

dcl n fixed external;
dcL num..state comibs fixed external;
dcl number-of -stecs-s (1:n) fixed controlled external;

dcl uncontrollable-cell (1:num-state-.combs) bit (1) control
Led external;

dc-l state code f ixed;
dcl recurse level fixed;
dcl dis-.staTe (1:n) fixed controlled;

dc l t rue bi t (I) iri ti al ("1"b);

C -46

dcL convert-..$di s..state..to..code entry ((*) f ixed, fixed);

atL~ocate di s.st ate.;

ceLL .status =2;
reCUFS e Leve L
cat t c tear a I but..edges;
do state .code =1to num state-.combs;

if (uncontroLtabLe ~ceTt (state-code) =true)then

en;cett..status (sta3tecode) = 1

free dis-state;

c tear-at t~but..edges: procedure recursive;

if (recurse....ewet <2 0) then
do;

coe;cat I convert-.Sdis..state-.to-~code ((dis-state)p state-~

cetLLstatus (state-.code) a 0;
end;

e Ls e
do;

do dis-state (recurse...LeveL) = edge~ceLLttoLerance t
0

(number~of.~steps~s (recurse_.Levet) - Cedge~cetL
tolerance + 1);

recurse,..Ievet recurse....evel - 1;
call ctear..atlLbut,.edges;,

end;
-end;

recurse-jLevel = recurse-LeveL + 1;

end cLear-altbut-edges;

end initjaL ize~ce I st atus~array;

initiaL ize center~dist~arrayi procedure (center-dist, center
..ceLL..toLerance);

dc L center-.dist (*) fixed.;
dcL center-ceLL-tcLerance fixed;

dcL n fixed externaL;

dc L i f ixed;
dct recurse,.jevet fixed.;
dcL center-ceLL teL~index fixed;
dc L state-,code fixed.;
dct dis-.state (1:r) fixed controlled.:
dcl zero dis state (1:n) fixed controlled.;
dct L-.boznd l1:n) fixed controlled.;
dcL u~bound C1:n) fixed controlled;

dcl cant-state (l:n) fLoat controlled;

dc L convert-Scont-.st ate-to-.di s.state entry f* floato *
f ix ed);

dcl convert-Sdis..state-.to..code entry ((*I fixedo fixed).;

allocate dis..statep zero-dis-statep cont-statep L,.boundo u
-bound.;

center-dist = 0;

C-47

cont-state = 0;
callI convertScort-state~to~dis~state ((cont..state) , zero_

di s state) ;
do cent er~ce L L-t aIindex = cen~terc ce L-to Ler an ce by -1 toa

0 ;
do i 1 toa n;

l..bound Ci) = zero~dis~state Hi) - center cell toLt md
ex; ubound (i) =zero..dis-.state (i) + center~ce11~totind

e x;
end;
recurseIevel = n
call add~.cemt~.tcl-code;

end;

dfree dis stateo zero..Ais..statep cont.,stateo L-boundp u-bou

add-cent-toL..code: procedure recursive;

if (recurse....evel <= 0) then
do;

call convert-$dis-state-to..code ((dis-state)o state-.
code);:

center~dist (state-code) = center-ceLL-toLindex;
end;

e Ls e
do;

L) todo dis-state Crecurse-Levet.) = l..bound (recurse-Leve

u-bound
(recurse. level);

recu rse- Leve L = recurs e-Lev eL -1I;
call add..cent-.toL-code;

end;
recurse-Level = recurse-teveL + 1;

end add-cen t-.t ol cod e

enid init jalize..center...dist~array;

find ...root .cells: ~recedure (ce~ll..statusp center~disto, center
.cetL toleranceo,

ce~l-.s t at u sindex)

dcl ce~l .status ()fixed;
dcl center-dist ()fixed;
dc L cent er..ceL L.tcLe rance f ixed;
dcl ce~l-status-index fixed;

dcl n fixed external;
dcl num-state-comts fixed external;

dc L i f ixed ;
dcl' m ax..num cells fixed;
dcl num..cLTs-.reachabl ofxd
dcl best-.root..ccae fIxe 0
d ct zero .state ccce f ixed;
dcl center ceLT tl-iridex fixed;
dcl dis~stite (Ttmn) fixed controlled.:

dcl cant-state (1:n) float controlled;

dcl unmarked-.ceLLs bit(l);

C -48

dcl possibLe..root bit(1);
dcL true bit(1) initial ("I"b);
dct false bit~l) initial ('"CYb);

dcL convert-..cont-state-.to-dis..state entry ((*) float, *
f ix ed);

dcL convert-...dis-.state-to.code entry ((*) fixed, fixed);

allocate dis-state, cont-.state;

cont-state = 0;
call convert-$cort-state-to-dis-state ((cont-.state)p dis-s

t at e) ;
call convert-Sdis-.state..to..code ((dis-state)p zero~state~c

ode) ;
Celt status index =3
ceLL,..sta-tus (zerc state code) = ceLL-status index;
call add~ceL Ls.reachable;to (zero-state-code, ceLL-status)

call check-for-uniarked-..ceLLs Cunmarked-ceL Is, ce LL-status

do center-ceIL-tcl-.index 1 to center-.ceLt-toterance
while (unmark

ed..ceLLs = true);
call check~.for~possibte~.root (possible..root, center~ceL I

tot-index

us, Center dist) eLsW

do while (possible-root = true
max ,num cell s = 0,.
do 0 T to num state..combs;

if (center_(dist Mi) center-ceLLtol-index & ceLt,.st
atus M=) 0) then

do;
tus)#, call, find-num-ceLLs-reachabLe-to (C)o (ceIK.,sta

-reachabLe-to); num-cel Is
if (nu ,ceLLs-reachable-to > max-num-ceLls) th

en
do;

best-root code i
max-num-c;L Is =num-ceLLs-reachabLe-to;

end;
end;

end;:
ceLL-.status-.index =ceLL status .index + 2;
cett-status (best root code) = ceiL-status index;

us;call add..ceLls~reichabte-.to (best..root code. cc(L .stat

ca ll check~forpossibLe~root (possibLe~root, center~ce
Il..tcl..indexp

esa
u s.. cent er .di st

end;-
us;call check-for.,tnmarked-ceL~s (unmarked-cells, ceL 1..stat

end;
call check-for-unwarked-cel Is (unmarked-ceI Is, cell-status

i f C unmarked.,ce Lls f fa Lse) then
do;

put edit ("Tree sucessfulLy compLeted")(skiao~x8).,a);
end;

el(s e
do;

out edit ("Trees UnsucessfuLLy compLeted")(skipox(8)oa

C -49

end;

free dis state, ccnt~state;

check~for~unmarkec~celts: orocedure (unmarked~ceL Iso cetll
status);

dcl unmarked~ce~ls bit(1);
dc L ceLL-.status (*) f ixed;

dcL num-state~ccmbs fixed externaL;

d cL i f ixed.:

dcL true bit (1) i nit iat I C'."b) ;
d c f a Lse b it(1 i nitial ("'O"b);

uiimarked-.ceLts =false;
do i =1 to nurr..st atecombs whi Le (unma rked-ce LLs f faLs,

if C cetl-.status Mi = 0) then
en;unmarked~ce~ls = true;

end check-for-unmarked-ceL s;

check for possi bte.root: procedure (possi bLe.root, pos~roo
t-code.-celL..statusp center-di

s t) ;

dct pas root ccce fixed;:
dc L posiib Le:rcct bit(1')
dcl celLL sta-tus ()fixed;
dcl center~dist ()fixed;:

dcl num-state-ccmbs fixed external;

dc L i f ixed;

dc L true bit-(l) in itial ("1'b)
dc L false bit(1) initial ("0'b);

possibLe-root = false;
do i 1 to num-state-combs while CpossibLe,.root =false

if Ccenter-dist Ci) = pos...root~code & celtLstatus Ci)
=0) then

en;possibLe...rcct =true;

end check..for~possib Le.root;

find-nuui cel Ls-.reachabte-to: procedure (teeLL-.codle, temo~ce
I Istat., num~ceL Is);

dcl ce~L..cod-e fixed;
dcl temo..ceLL stat (*) fixed;
dcL num _ ceLLs fixed;

C-50

dcL nurn~state~ccmbs fixed external;:

dc L i f ix ed ;

temo-..celL-stat (ce~llcode) =90;
call. add-ceLls-reachabLe..to CceLt~codep temp~ce(Llstat) ;
num~ceLLs =0;
do 1 1 to nurm state-combs;

if Ctemp..ceLT~stat Ci) =100) then num..ceLLs = num~c
eL Ls + 1 ;

end;

end f ind-.num-ce IIs-reachabLe.to,;

add-ceLLs-reachabLe-.to: orocedure (root-code, ceLt-status)

dc t root-.code f ixed;
dcL ceLL..status C*) fixed;

dcL num-state..combs fixed external;
dc L num.) nput _ccmb s f ixed ext erna L;

dcl sat..edge C1:num~state~conibso 1:num~input..combs) bit(
1) controlled

e xte rnal;.

dcl next-.statefiiLe~ptr pointer external;

dcl state code fixed;
dc-I inout..code fixed;
dcl next-state,,code fixed;:
dcL root-status-code fixed;

dcL next-state..map (1:num~state~combs,. 1:num-inout-combs) fi
xed controlled external;

dcl the next state mapping (1:num~state~combso, 1:num~ino
ut-.combs) fi xed bin;a ry(19)

unsigned based Cnext...state..fiLe~ptr);

dcl fournd,.reachabLe...to,,ceLi bit~l);
dcl found - ood-inout bit(1);
dcl true bit(1) initial ("1t'b);
dcl false bit~l) initial ("0"b);

root status..code =celtlstatus (root-code);
found..reachable to..ce~ll true;
do whiTle C found..reachable to cell = true)

found-reach-abLe;to-ceL L false;
do state-code =-1 to num..state-.combs;

if C cell-status Cstate-code)= 0 1 ceLL..status (stat
e-.code)= 2) then

do;
found..good..input =false;
do input .code= 1 to num..input..combs while (found

_good..input= false);:
thnif (sat~edge Cstate..codep, irnout-.code) =false

do;
der npu~coe); next-state..code = next~state~mav Cstate~co

detaitus-codeI if C ceLL-.status Cnext-state-code) =root-

C- 51

ceLL-status (next-~state..code) = root-.
status-codle + 1 then found,.good..jnout = true;

if (fcund~qood..inout = true)then
do;

ceLt-.status (state~code) =root-status code
+ i

fcund-reachabLe..to-ceLL= true;

end;
end;

end;

end add-ceLLs-.reachabLe-.to;

end find-root-cetts.;

open~control..Law~fi I: orocedure;

dcl num-state-comts fixed externaL;

dcl job Iname character (50) varying external;
dcl working.,.dir character (168) external;

dcL controtL..aw..fiLe..ptr vointer external;

dc L i f ixed ;
dc L code fixed binary (35);
dcL control...,aw (1:num-state,.combs) fixed based (controL-L

aw~fi Le.ptr);

dcL deLete entry cptions (variable);
dct hcsSmake~seq entry (char (*)P char (*), char (*).. fix

ed bin(5),,ptrP fixed bin (35));

call deLete (job..namell".controt .Law"j, '-bf");
caLl hcsSmake..seg (working..dir, job namell'.controtLaw",

"",0101 Ob.,
controL-Law-fiLejptro code);

do i = 1 to num-state combs;
controtLlaw (1)2a 0,

end;

end open...controLL.aw~fiLe;

find-.loops-.and..cort...aw: procedure (cel Lstatuse center.~dist

c e
L..status-index, center-cel 1toterance, found..a11.looos) ;

dcL ceLL status ()fixed;
dcL center..dist ()fixed;
dcl ceLL..status index fixed;
dcL center~.ceLL~toterance fixed;

dcl num-state-corvts fixed external;
dcl num,,input~.combs fixed external;

dcl sat...edge (1:num state combs, 1:num~..inout...combs) bit(l)
control led

external;

C-52

dc L next~sta te f i Lejtr pointer ext ernaLU
dcl control-Law.fite...tr pointer external;

dc L i f ixed ;
dcl state-.code fixed;
dct input-.code fixed;
dcl next-state code fixed;
dcL root-code lixed;
dct root..status ccde fixed;
dcl muin cent dist fixed.;
dcL best -celrto .add fixed;
dcL best controL,,input fixed;
dcL control-law- Inout (1:num-state...combs) fixed controlled

dc L ne xtstat e..map (1 :num-..sta te,~.combs P 1:num_ i nputcombs) f i
xed controrLed ext-ernaL;

dcL the, next~state muapping (1:num..state..conrbso 1:num~inp
ut-combs) fixed binaryC19)

unsigned based Cnext~state,.fit l.pt r);
dcl controL-Law (1:num..state-.combs) fixed based (control-..L

aw~fi le,.ptr);

dclt found~root...ccce bi-t(1);
dct foundjtoop- bit(1);
dct added ceLL to tree bit(1);
dct t rue Ei~t (1-7 iFi t iat ("1'b);
dct f a Lse b i t(1) ini t iat ("O"b)

allocate contro llaw-inout;

found..all..oops =true;
do root-status..ccde = 3 by 2 to celtlstatus index

LItoop~s = true) ; ýhi Le (found- aL
found .root-code =faLse,;

se;do i =1 to num-.state-.combs white Cfound..root..code =fal

if (cell status Mi root..status..code) then
do;

root code = i
foung-roat-code true;

end;
end;
controL..law .input = 0
f ound IL~o p S f a Lse ;
contr6L,..Law~.input (root...code) = 9999;
do input~cod-e = 1 to num~.input..combs.:

e); next..state-codle = next..state...tap Croot~codep inrput~cod

if (next-state-codle = root-code)then
do;

f ound .L ac- t true;
controtL.*aw.inout (root-code) =inout..code;

end;
end;
added-ceL L to-tree =true;
do while (founc-.loop = false & added...ceLL~totree =tru

e)
min...cent-dist = center-.ceLL-toLerance + 1;
do state .code = 1 to num-state combs;

if (cell-status (state..codeT = root..status~code + 1

ccntrct ,1aw~input (state~code) =0 &
center-list (state-code) 0)then

C-53

do;
do input~code = 1 to mum input comhs;

if (sat...edge (state-code,, inout-code) = false
)then

do;

dep inp~ut-code); next-.state-code =next-state~mao (state-co
if (cetLlstatus (next~state~code) =root_.

statuscode Icel lstatus (next~state~code)= root~status
-code + 1) then

do;
<~~i (controlst iw _ ntr-inot (next-.state-.code)
) = 0)tthn

do;
extstae-cif) (i-et-it=center-dist (nex.sae.~oe

< mincntdndt
thnd

endo;

e;d
eend;

eend;

if (min-cent-dist < center-ce11..loLerance + 1I then
do;

added ceLL-.to .tree = true;
L~inut; controtLlaw~input (best~ceLL~to~.add) = best..contro

do input..code = 1 to num~input~combs.

ut-.code); next..state-code =next~state~.map (root code, ino
if (next-state-code = best.ceIL-to-.add) then

do;
faiurd..loop = true;
ccntroL-Law-.input (root~code) input..code.;

end;
end;

end;
e Ls e

do;
added ce[Ltto tree = false;:
found..Aoc= -faLse;

end;
end;
if C found-Loco =true) then

do;
found aLL.,Lcops a true;

de); controL-Law (root~code) = controtLlaw-input (root-co

out(rotstate code= nex t~state..map (root..code~controL~taw..in
Out rootcode)T;

do while (state-code ^= root-code)
ecode) controL-taw (state-.code) =controL-t.aw-..inout (stat

aw~iputs'tate-ccde = rext-state..map (state..codeo controL_1

(st ate-.c ode));
end;

end;

C -54

en;found..a11.loccs =faLse;

if (found-alL..,ccps = true) then
do ;

out edit ("Sucessfully built tolerant reqion controtL
aw")(skip., x(4),

do;
put edit ("TcLerant region control Law cound not be bu

i 1t')(skip,. x (8

end;

free control-jaw~input;

end findjtoops~anc.cont...law;

buid doptimaL..contrcL_.law: procedure (cctl lstatus.. ceL Lstat
us-index) ;

dcl cett-status (*) fixed;
dcL ceLl..status..irdex fixed;

dcL num Itate comts fixed externaL;
dcL num~input~combs fixed external;

dcl sat...edge (1:num~state..combso 1:numn.input~combs) bit(1)
cont roLled

external;

dcl next-state...fite~jptr pointer external;
dcl controtLaw~fite..ptr pointer external;

dct state-code fixed;
dcl input~code fixed;
dcL next-state-code fixed;
dcl root..status-ccde fixed;

dcl 1 min,.patho
2 cost float,-
2 sta-code fixedp
2 inp..code fixed;

dcl control...law (1:num-state-.combs) fixed based (control...l
aw fiLe~ptr);

ý3 cL next state-.map (1:num-state-combso 1:num~.input..combs) fi
xed controlled exterraL;

dcl the .next state mapping (1:num-.state combs. 1:num-ino
ut-combs) fixed bi;;ary(lg)

unsigned based (next..state~.fi Le.ptr) ;

dcl cost float;
dc L path~cos t (C1:rum...state..combs) fLo at con trollLed;

dcl found .. eLL...to~add bit(l);
dc L true Si t (I) i itiaL ("1"b);
dc L false bi t(1) mintiaL ("O"b);

dcl sysprint file output;

allocate pa th~cost;

C-55

put edit ("BuiLdir'q controL taw")(skioo x(4),, a);
path..cost = 0;
do root-.status code = 3 by 2 to cetL~status..index;

found~ceLt..to acd =true;
do whiLe (four~c .ceLt to-add= true)

min.path.cost le3,8-
do state-.c-ode 1 to num-.state-combs;

if (cett-status (state-.code) =root-status-code + 1

controL-law (state-.code) = 0) then
do;

do input code = 1 to num~input .combs;
thenif (sat..edge (state..codep input~code) =faLse

do;
cleoinpu~cod); ext-state-codle = next..state-,mao (state..co
de, iput~ode) if (celt-status (next-state-.code) = root-

status-.code I
uscoe 1 ten ce Ll-status (next...state..code)z root-stat

0if (controt,...aw (next-.state-code)

hnnext-state..code - state~code) t

do;

nput~ode);cost = compute~cost Cstate..codep

npuCoue); cost = cost + path-.cost (next..stat

if (cost < min~path.cost) then
do;

tnin-.path.cost acost;
min~path.sta..code z state~code

min..path.inp~code x input~code

end;
end;

end;

end;
end.;

end;
if (min-Path.cost < 1e38) then

do;
found .ceLLto Idd= true;
contr;ottaw (;in~path.sta~code) =min.oath.ina-cod

e;
oath~.cost (min~path.sta..code) = min_.Dath.cost;

end;

en;found..cett-to..add = faLse;
end;

free path~cost;

compute~cost: prccedure (state code., input~.code) returns
f1L oat) ;

dcL state-.code fixed;
dcL innut-.code fixed;

dcL n fixed external.:
dcl p fixed externaL;

C-56

dcL cost...functicn code fixed external;

dcl state~costrmatrix (1:r,) float controlled external;
dcL input-cost rratrix (1:p) float controlled exterrnaL

dc L i f ix ed;
dcL dis-state (1:n) fixed controlled;:
dct dis~inout (1:p) fixed controlled;

dcL cost float;
dcl cont-state (1:n) float controlled;
dct cont~input (1:0) float controlled;

dcl convert Sccce to dis state entry (fixed,..* fixed);
dcl convert..sccce to~dis~input entry (fixed, * fixed);
dcL convert...$dis~.state...to cont-state entry (()fixed, (

f) float) ;
dcl convert-$dis-.input to-cont input entry (()fixed, (

f) float) ;
dcl custom~cost function entry ((*) float, * float) re

turns (float);:

goto case (co~stjfunction~code);

case (1): cost = 1;
goto dare.:

case (2): allocate dis~statep dis..inputo cont~statep cont_
mput c a LL conve rt-Scode-to-dis- state (st at e-code)o, d

is..state) ;
call corvertScode~to~dis~input C(inoutjcode)p d

is~inut); call, corvert-Sdis~state-to-cont-state C(dis-.stat
e), cont-state) ;

call. convert-Sdis input~to~cont input C~dis..inpu
t),- cont..input);

Co0S t =
do i =1to n;

ostmarix(i);cost cost + C(cont-state Mi * 2) * state-c

end;
do i = 1 to p;:

cost = cost + ((cont~input Mi * 2) * inout~c
ost-matrix (M);

end;
free dis,..stateo dis inout, cont statep cont..inou

goto dcre;

case (3): allocate dis -input* cont~inout;
is~inut); call convert-Scode~to~dis~input ((inout code), d

call convert-Sdis input-to cont input ((dis..inou
t), cont~input);

cost =
do i =1 to p;

mt-iput M);cost = cost + (input cost matrix Mi * abs (co

end;
free dis~inputo cont~..input;
goto dcne;

case (4): allocate dis..state,. dis-.input, cont..statep cont_
i nput;

call convert-Scode-to-dis-state C(state..code)p d
i5s-tate);:

C-57

is-inut); call corvertScode~to._dis input ((input code),. d

call corvert-Sdis~state~to..cont..st.te ((di s~stat
e), cont-state) ;

caLL convert...Sdis.i nput~tocont~ircout ((dis -in ou
t)o cont...imout)

c o st =custom..cost~.function (cont-state. cont-in
put) ;

freae dis-state., dis~input, cont state. cont~irnou

goto dcre;

dcne: return (cost);

end compute~cost;

end builtd_ oot ima L.ccnt rotLjaw;

print~cel L~status: procedure (ceLtl.status);

dc L cetL sta t us (*) f ixed;

dcL n fixed externat;
dc t num sta t e-corrbs f ixed external.;
dct num5er-.of..stecs..s (1:n) fixed controlled external;

dc L i f ixed;
dcl L f ixed;
d c Lkf i xed;
dct L fixed;

dcl yn~answer ok entry (character (3) varying);
dcl sysprint liLe output.;

put edit ("Would you like the cell status array printed

(sk iop a);
get List (answer);
call yn~answer In ok (answer); ")te

if (answer =y" I answer ="Yes")te
do;

i f (n 2)then
do;

k =0;
put skip (2);
do i = 1to number..of~steps s (2);

out skip;
do j =1 to number~of~steps~s (1);

k k + 1;
put edit (ceLL-status (k))(f(5));

end;
end.

end;
e Ls e

do;
if (n 3) then
do;

t C;
do i 1 to number.,of~stens-s (3);

put skip (2);
do j = 1 to number~of..sterpTs C)

put skip;
cc k = 1 to number..of-..steps-s (1);

L = L + 1;
out edit (ceLl..status (M)(f(5));

end;
e nd ;

C-58

end;end"
else

do;
do i 1 to num state_combs;

put edit (i, cell status (i))(skip, f(36), f
(6));

end;
end;.

end;
end;

end printcel lstatus;

print control law: procedure;

dcl i fixed;
dcl mum state-combs fixed external;
dcl control taw fileh ptr pointer external;
dcl answer character (3) varying;

dcl yn answer ok entry (character(3) varying);
dct sysin file input;
dcl sysout fi le outout;
dcl control-law (1:num-state-combs) fixed based (control-law

fit. e ptr);
put edit ("Would you Like the control law printed' => ")(ski

p,a) ;
get list (answer);
call yn answer ok (answer);
if (answer = "y- I answer = "Yes") then

call or cont law;
end printcont ro1 _Law;

goto endit;
pr-cont Law: entry;

put edit (" Control Law:")(skip, a);
put skip;
do i = 1 to num-stateý.combs;

put edit (i, controllaw (i))(skip, x(4), f(4), f(6)

end;
put skip;

return;

endit: put skip;

end buildtolregand_contlaw;

C-59

simulate system: procedure;

dcl n fixed external;
dcl p, fixed externaL;
dcL o~reaL fixed externaL;
dc(number of-.steps-.s (1:n) fixed controlled external;
ccL number of.stecs~i (I:p) fixed controlled externat;
dcL vo~tage~.uoper..bcund..s (1:n) float controLLed external;
dcL voLtageLower bound~s (1:r,) float controlled externat;
dcl vo~tage..upper..bcund.,i (1:a) float controlled externat;
dcl voLtage...Lower..bcund..i (1:p) float controlled external;
dcL num-state combs fixed exterriaL
dcl num-sim-.data fixed external;

dcl tau float external;
dcL 1 simuLation..cata (1:num-.sim-.data) controlled external,

2 time floato
2 con state (10) f loato
2 con~input (l:inout-dim) float;

dcLi1 f Lag external*
2 cont exists bit(l)s.
2 discrete exists bit(l).,
2 ouantizea..exists bit(l),p
2 control " La~w~vaLid bit(1)s,
2 sim.vaLid tit(M),
2 own~quant..fiLe..exists bit(1);

dcl true bit(1) initial ("1"b);
dcl false bit (1) initial ("J"b);
dcl own~cont..sys..exists bit(1);

dcl uncontroLLabLe-.ceLL C1:num-state...combs) bit (1) controLL
ed external;

dcl controL...Law..fiLe~.ptr pointer external;

dc L i f ixed;
dcl j f ixed :
dcl answer character (3) varying;
dcl save it character (3) varying.:
dc L choice character(1);
dc L choice value fixed;
dcl range 7ixed;
dcl max num steps fixed;
d~cL num~steB f ixed;
dc L num recurs e, level s f ixed;
dc L region fixea.:
dcl matrix dim fixed binary (35);
dcl input~,aim fixec external;
d c L d f ixed bintary (35);
dcl icr fixed binary (35);
dc L state code fixed;
dc L input~.code f ixc;.
dcl temp..state code fixed;
dcl dis-itate Tl:n) fixed contr-olled;
dcl dis input (1:o) fixed controlled;
dcl temB dis state (1:n) fixed controlled;
dcl control....aw (1:r'um-state-.combs) fixed based (control-law

- file-;t)

dclI time float binary;
dcl time init float;
dcl time~.finaL float;
dcl step float;
dcl step.~end float tinary;
dcl tolerance float binary;:
dc L s c aIe..fac tor f Lcat;

C -60

dcl c (1:24) float binary;
dcl contstate (10) float binary;
dcl stateLtemp(10) float binary;
dcl input~touse (1:input dim) float controlled external;
dcl continout (1:inout-dim) float controlled external;
dcl temo cont.state (10) float binary;
dcl w (1-matrix-dim, 1:9) float binary controlled;

dcl orint-data character (3) varying;

dcl system~unstable bit (1);

dcl convert-$cont-state-to-disstate entry ((*) float, (*) f
i xed) ;

dcl convert Sdis-..state to. code entry ((*) fixed, fixed);
dcl convert_-$code- to-d-is tnout entry (fixed, (*) fixed);
dcl convert-$disinu ut_tocontinput entry ((*) fixed, (*) f

oat) ;
dcl chooseyour plot entry;
dcl yn-answer.ok entry (cnaracter(3) varying):
dcl num-answer ok entry (character (1), fixed, fixed);

dcl own sys to sim entry (fixed binary(35), float binary, fl
oat binary, (*) 7Loat binary, (*) float binary, float binary,
float binary);

dcl imsl$dverk entry (fixed binary (35), entry, float binary
, (*) float

binary, float binary, float binary, fi
xed binary (35),

(*) float binary, fixed binary (35),)
*, *) float

binary, fixed binary (35));

dcl sim,.cont file file;
dcl sim..data file file;
dcl sysin fiTe input;
dcl sysprint file output;

dcl mod builtin;

if (flag.control law valid = false) then do;
out edit ("A control law does not exist for this job")(ski

p,a) ;

engOtO done;

if (flag.sim valid = false) then do;

Sout edit(" Would you like to simulate the system? > ")(sk
i pa);

get list (answer);
call yn.answer ok (answer);
if (answer = "'" I answer = "no") then

goto done;end;

else do;
put edit (" Would you Like to : ") (skipa) ;
out skip;
out edit ("1. Modify the simulated data file")(skioa);
out edit ("2. Plot your existing simulated data")(skio,a

put edit ("3. Quit")(skipoa);
put skip;
put edit ("Please choose one => ")(skipoa);
get list (choice);
range = 3;
call num answer ck (choice, range, choicevalue);
if (choice-value = 1) then

C-61

flag.simvalid = false;
if (choice-value = 2) then

do;
call chooseyour pLot;
goto done;

end;
if (choice value = 3) then

goto done;
end;

if (flag.quantizedexists = false) then do;
put edit ("The parameters for the continuous system are ne

eded ') (skipa);
put edit ("The systemr can not be simulated")(skipa);
goto done;

end;

if (flag.cont-exists = true) then do;
put edit ("Would you like to simulate: ")(skioa);
put edit (" 1. The continuous system in the job file")(

skip, a);
put edit C' 2. A continuous system in another fite")(sk

i poa);
put skip;
out edit ("Please choose one -> ")(skipa);
get list (choice);
ran e - 2;
ca num answer ok (choice, range, choice value);

end;
else choice-value = 2;

if (choice-value = 2) then do;
owncont sys exists = true;
put edit (Ester the number of states => ")(skipa);
get list (matrix kdim) ;
put edit ("Enter the number of inputs -> ")(skipoa);
get list (inout-dim);

end;
if (choice-value = 1) then do;

own-cont.rsys -exists = false;
matrix dim =n;
input-aim a p;

end;

if (tau = 0) then do;
put edit ("Please enter tau => ")(skipa);
get list (tau);

end;

allocate dis-state, dis_input, temp-disstate, continput, in
out-to-use;

put edit ("Enter number of steps per time constant => ")(sk
ip, a);

get list (max num steps);
out edit ("Enter the number of recursion levels => ")(skip,a) ;
get list (num recurse levels);
if (num recurse levels -= 0) then do;

put eait ("Ente-r the scaling factor => ")(skio, a);
et list (scaLe-factor);en ;

else
scale factor = le-20;

put edit ("Enter initial state")(skio, a);
put skip;
do i = 1 to matri xcim;

C-62

put edit ("initial state =,, > ")(x(4).. a.. f(3), a);
get List (cont..state Mi))
state..temn (i) =cont-state Mi;

end;
put edit ("Enter initial time => ")(skip* a);
get List (time imit).?
out edi t ("Ent r f ina L t ime 2> ")ski po a);
get List (time..finaL); tesmlto rne hl un
out edit ("Would ycu Like tesm~to rne h~ un

ng > ")Cskio..a);
get List (orint .data);
call yn..answerozk (rrint~data);
put skip;
1put edit C" Simulating sy'stem")(skipe x(2)p a);
if (print data = ~"Iprint dlata,= yes") then
p ut edit ("time",state" "'Tnput)(sk ipC2)., x(3), a,x(12),

a, X(10).- a);
puyt skip;
time =time init;-
step = tau 7 max nuwr steps;
num-sim-data = c"iiL (time-final - time~init) / step);?
if T(num Tsim .data + 1) * step <= time-.final) then

num-sirn data = ri~m-sim-data + 1;

at Locate si mu Iat ion..da ta;

Mum-step =0;
ind =.1 ;
toterance .0001;
systemi unstabLe =faLse;
do i 2-1 to num-sitwdata while C system~unstabLe = false)

do, I to n;
ifCcont..sta-te (j) < voLtageltower..bound .s (j) I

cont...state (J) > voltage...uoper~jbound-s (J)) then
system~unstabLe 2true;

end;
if Csystem..unstatte 2false) then

do;
Scall convert-'cont~state~to-.dis-state (Ccont..state),. d

i s-state) ;
de); call convert-Sdis,.state~to..code ((dis state), state~co

if (uncontrcLLabLe-cell (state-code) = false) then
do;

i f Cnum..steo = 0) then
do;

call find~region (cont..statep nun'recurse-Leve
Is, scaLe-factor,

region) :

region); temop~cont~state = cont~state / (scaLe-.factor

nt-satepcall convert-$cont-state-to-dis-state (temo-.co

temp~di sstate) ;
ca~l convert-$dis-state-to-code (temo-.dis-.stat

t
emp-state-code);

.input code = controtLlaw (temo-state-code);
di~ipu);calIl convertScode...to.dis~..input C(input,..code),

call convert-Sdis-inout-to-cont-inout <(Cdis..in
out)pcont-iflout)#

ion);cont~input = cont~input * (scaLe-.factor ** req

C -63

end;
simulation data (i.time = time;
simuLaticr'data (i).con~state () cont~state(*

simuLaticr-data (i).con..input () cont~input *

if (print-data = "Y" I orint~data "Yes")then
do;

put edit (time)(skip,. f(8,-3));
out edi t (C" ") (a);
do j =1 to matrix dim;

put edit (cont..state <j))(f(14P3));
end;
put edit (" ")(a);
do j =1 ?Oa input dim;

put edit (cont.Jnput (j))(f14P3);
end;

end;
step end =time + steo;
if (oBwný_cont..sys exists = true) then do;

lflput~tc~use =cant inout;
Call owr Sys to jirn(matrix dim, timep steo~endo

end;
else do;

allocate w;
call imsl~dverk (matrix-dim, cont~system.r time,

st ate~temp,, step..ernd,

i er); tolerance, indo co matrix-dim, wo
cont~state = state~temo;
f ree w;
i f (Ci n < 0 1 ier > 0) then do;

put edit ("ERROR usinq IMSL")(skiop.a);
put ecit ("ind =)si~)
out list (ind);
put e d it ("ier =")(skipoa);
put (ist (ier);

end;
end;

end;
elIse

end; system~unstabLe true;
mum step num steo + 1
if Tnum..step = n'ax...um_'.steos) then

end; num~step = 0;
if (system~unstabLe =true) then

do;
put edit ("The system has gone unstabte")(skio(2), a);

call, build sim dat fi Le;
en;catt. choose..your~plot;

do;
call buiLd-sim-cata file;
call choose~yourp lot;

end;

free dis-stateo d-isjinput,. temp dis state, cont..inout, simul
at ion data, input~t o..use;

done: out skip (2);

find..region : oroceaure (cont~statep num recurselevels, sca

C -64

t.e-factor,

region);

dc L cont~st ate f* fLoa t
dc t num M ecurse .Leve Ls f ix ed;
dc L sca-Te .factor fLoat;
dcl region fixed;

dc L n fixed external;

dcL voLtage..uop-er .bound-s (1:n) float controlled external;
dcl voLtage..lower..bound..s (1:n) float controlled external;

dc t i fixed;
dclt j f ixed;

reoion = um-recu-rse levels;
if Cnum recurse...eveTs -=0) then do;

do i =1 to n;
if (cont-.state (i) >= 0) then

do o j t t o num-...recurse..Levels wihiLe (cont-state (i

facto ** CvoLtage~ul~per..bound~s Ci) * CscaLe..
end;

end;
e Ls e

do;
do j = 1 to num~recurse~.levets while C cont~state Ci

factor * C; voLtage~tower.biound..s Ci) * (scale_.
end;

end;
if C j-1 < region)then
en region

end;

end f ind~regi on;

cont system: procedure (matrix-dim., time, state~tempo state_
temp~pri me);

dcl mat-rix dim fixed binary (35);
dcl time float binary;
dcl-state...temp (iC0 float binary;
dcl state..temo~prime (10) float binary;

dcl n fixed external;
dcl p fixed external;

dcL tont input (1:p) float' controlled external;
dcL -a mfaTrix Cl:n.. 1:n) float controlled external;
dcl b..matrix (1:nv I:o) float controlled external;

dcl i fixed-#
dc L j f ixed;

do i = 1 to n;
state~temp prime Mi 20;
do j 1 to n;

state~temp..prime Ci = state~temp~prime Ci) + Caniatri
x (io, P)

state..temp (j));

C-65

end;
end;:
do i to n.;

do j 1 to D-;
state~temp...prime Mi = state.,temp~prime (i) + (b~matri

ij) *cont~input (j));
end;

end;

end cont~system;

buitd-sim-data..fi I: procedure.;

dcl n fixed exter-nal;
dct o-fixed exter-nat;
dcl num-sim-data fixed external;

dcl 1 simuLation-.data (1:num...sim-.data) controlled external,
2 time float,
2 con..state (1:n) floato
2 con~inout 0l:0 float.;

dcl true bit(1) initiat ("1"b);
dc L false bit(1) init ia L ("0"h)
dc L 1 f Lag external.-

2 cont exists bit(I)j,
2 discrete exists bit(1),-
2 qjuantizeý3 exists bit(l)o
2 control law valid bit(1)p
2 sim-vaL-Id bit(1).,
2 own-quant-file-exists bit(1);

dcl job~name character (50) varying external;

dcl width-sim..mat fixed;

dct sim data.,matrix C1:num..sim...data,- 1:width..sim-mlat) float
contro tea ext rnal;

dcL answer character (3) varying.;
dcl i f ixed.;
dc L f ixed;
dc L f ixed.;

dcL ynanswer ok entry (character(3) varying);
dc LSim;.data liLe' file;
dcl sy sin fiTe input.;
dcl sysprint file output.;

width-..sim mat = n + p + 1;
allocate siim..data-nmatri x

sim data-.matrix (*,1) 2 simuLation-data (*).time;
do 3J.2 2 to (n+1).

sim data-matrix (*,j) = simuLation...data (*).con...state

end;
do k =(n+2) to (n+o+1)

end :
out- edit ("Would you Like to save the simulated data in a fi

Lc e=> ") (s k i ra);
get List (answer);
ca LL yn_ answe r..ok (an swer)

C-66

if (answer= "Y" I answer = "Yes") then do;

open file (sim~data..fi Ic) title ("vfi Le_. "lHjob,.namell
"_ts.ptot") stream output;

do i 1 to num ..sim data;
do 1 ito ;widtF-sim .mat;

put fite (sim..data~fite) List (simndata~matrix (ipj));
end;

end;

free s im-data-mat ri x;
f taq.sim..vati d true;
end;

close fiLe(sim-.data-fiLe);

end buiLd..sim-data-fiLe;

end simu Iate..system;

C-67

choose~your~pLot: prccedure~;

dcL n fixed externaL;
dcL o fixed extermaL;
dcl num..sim-data fixed external;

dcL job~name character (50) varying external;

dc L t rue b it (1) iri t iat ("l *b)
dc L f altse b it (1 init ialt ("O~b)
dc L 1 flag exter-naLo,

2 cont-exists bit(1),
2 discrete exists bi-t(1)o,
2 q~uantize; exists bit(1),.
2 control -"'Laiw v ati d bi t (1)
2 sim-vaLic b~t~l)p
2 own..quant..fiLe~.exists bit(l);

dcL sim data.,matrix (l:num-sim-datap 1:width..sim-mat) float
controiLca externaL;

dcL range fixed;
dcl y-axis choice fixed;
dcL y ax-isc character(1);
dcl x~axis choice fixed;
dcl x~axis-c character~l);
dcl widthsI im-mat fixed:
dcL numberof~pLots fixed;
dct answer character(3) varying;

dcl pLot-x fixed;
dcL pLot~..y fixed;

dcL x~array (1:number..of~pLots# 1:num~sim~data) float contro
L L ed;

dcl y~array (1:nu~t~er..of..ptotsP 1:num~sim~data) float contro
LiLed;

dc L i f ired;
d c-L f*I xed;
dcl 1 fxed;
dcl pLot..data character (3) varying;

dcl sint data fil-e file;
dclt sys in f ile input;
dc:L sysprint file ctutput~;
dcl num-.answer ok ertry (cttaracter(l), fixed, fixed);
dcl yn..answero5k entry (character(3) varying);

width-.sim,.mat = n + p + 1;

put edit ("Would ycu Like to plot the simulated data? => to)
(skip, a);

get List (plot..data);
calltyn..answer~ok (pLot~data);
if (olot~data = Iyes" I pLot~data = Oty") then do;

if (flag simviaLid = true) then do
allocate sm,.data .matri x;
open file (sim data-file) title ("vfiLe "Iljob~namell

"_ts~~ot) sreami npt;
do i = 1 to mum sim data;

do j = 1 to ZidtR sim mat;
i~j);get file (sim...ata~file) List (sim~data~matrix(

end;
endo

C-68

end;
end;

do while (plot-data = "yes" I plotdata = "y);
if (plot-data - "yes I plot data "y) then

do;
put edit ("Would you like multiple plots on one graph?

) (skip, a);
get list (answer);
call yn answer ok (answer);
if (answer - y I answer = "yes") then

do;
put edit ("How many plots would you like to put on t

he graph? => ")(skipa);
get list (number ofplots);

end;
else

numberof plots = 1

allocate x-array;
allocate yarray;

do -- 1 to number of plots;
if (number-of plots > 1) then

out edit ("PLOT ", l, ":")(skip, a, x(1), f(1), x(
1),, a);

",) skip a UtW., edit("What would you like to plot on the y axis?

out edit("1. A state")(skioa);
put edit("2. An input")(skipa);
put edit("3. Time") (skipa);
put sk i p.;
put edit ("Please choose one => ")(skipa);
g-e-t list (y axis c);
range = 3-;
cat num-answerok (yaxisc, range, yaxischoice);

if (yaxischoice = 1) then
do,

if (n = 1) then
plcty =- 1;

e Ise
do;

put edit("Which state do you wish to olot
on the y axis? ")(skipoa);

get list (ploty);
end;

plot.y = ptoty + 1;
end;

if (yaxis_choice = 2) then
do;

if (p -v 1) then
plcty = 1;

else
do;

put edit("Which input do you wish to plot
on the y axis? ")(skip, a);

cet list (ploty);
end',

oloty = ploty + n + 1;
end;

if (yaxischoice 2 3) then

C-69

ploty 1;

put edit ("What would you like to plot on the x axis?
")(skipa);

out edit("1. A state") (skipa);
put edit("2. An input")(skip,a);
out edit ("3. Time")(skip,a);
put ski p;
put edit ("Please choose one => ")(skipa);
get list (x ax is c);
call num-answerok (xaxisc, range, xaxis_choice);

if (x-axis-choice = 1) then
do;

if(n = 1) then
plotx t ;else
do;

put edit("Which state do you wish to plot
on the xaxis => ")(skipa);

end, get list (pLotx);

ptot-x = plot-x + 1
end;

if (x axis-choice = 2) thendo,
if (p x 1) then

plotx 1;else
do;

put edit("Which input do you wish to plot
on the x axis?")(skip.a);

endet list (plotx);

plot..x = plot -x + n + I;end;

if (x: axis choice = 3) then
plot-x 1;

xarray(l.*) simdatamatrix(*, plot x);

yarray (l,*) = simdatamatrix(*, oloty);

end; /* do locp */

call plot-the-sim (x array, yarray, numberofplots)

free x array;
free y~arrav
put skip (3;

put edit ("Would you like to plot the simulated data?
=> ")(skips a);

get list (plct oata);
call ynanswer.ok (plot data);

end;

end; /* while */
ctose file (sime data-file);

plotthesim: procedure (x array, yarray, numberof plots);

C-70

dcL x-array (*o,*) float parameter;
dcL y array (*P*) float parameter;
dcl number~of..ptots fixed parameter.;

dcl num-sim-data fixed externaLU

dcL x(1:num..sim..data) fLoat controlled externaL;
dcl y(l:num~sim~data) float controlled external;

ac L vec sw fixed bir;
dcl symbol (1:number of ptots) character(1) controlled;
dcl symboL"mark character~i);
dcL L-char character(l);

dcl scaLe .auto bit(1);
dc L t rue bi1 t (1) i n itia L ("1"b)
dcl false bit(l) initial ("O"b);
del xmin f-loat bin;
dcl xmax ftoat bin;
dcL ymin float bin;
dcl ymax float bin;

d cl (f ixed.:
dcl answer character (3) vrying;
dcL graph titLe character (25)
dcl xLabeT character (25);
dc L yLabeL charac ter (25);
dc L graph type fi xec bin;
dcl base TLoat bin;
dcL grid~sw..char character (1);:
dcl grid-sw fixed bin;
dcl eq..scaLe~sw fixed bin;

dcl sysin file inpu-t;
dcl sysprint file output;:

dcL num-answer~ok entry (ch-aracter(1), fixed, fixed);
dcL yn..answer~ok entry (character(3) varying);
dcl pLot '; entry (* float bin, (*) flo0at bin, fixed bin, fi

xed bin,. chr1 W)
dcl pLot..SscaLe entry (foat bin, float bin, float bin, ftoa

t bin) ;
dcL pLot $setup ent ry (char(*) char(*) , char() f ixed b in,
float bin,; fixed bin, fixed bin);

graph~titte
xLabeL =
ylabeL = 1

scaLe-auto =true;:
graph..type = 1
base = 0;
grid sw =0;
eq-scFaLe-sw 0;

allocate symbol;
symbol = 994.";

put edit ("Would ycu Like a symbol to represent each data po
int? => ")(skio,a);

get list (answer);
call yn answer .ok (answer).:
if (answer y "" I answer "Yes") then

do;
do L 1 to number of plots.:

if (number of "p'Toti < 2) then do;
put ediT ("Enter the desired symbol => ")(skip,

a)

C-71

get list (symbol(l));
end;
else do;

put ecit ("Enter the desired symbol for Plot ".l
," => ")(skio, a, f(1), a);

gd et list (symbol(l));

end !end;
out edit ("Would you like the symbols to be connected

by vectors? => ")(skipa);
get list (answer) :
call yn answer ok (answer);
if (answer "y" I answer = "yes") then

vec-sw = 2;else

end; vec-sw = 3;
else

vec-sw = 1;

put edit ("The graoh will have tick marks, be automati
calty scaled,")(skip,a);

put edit (" and have no labels ")(skio,a);
put edit ("Wculd you like to change any of these defau

It options" => ")(skic,a);
get list (answer);
call ynanswer,,ok (answer);
if (answer -" I answer - "Yes") then

do;
put edit ("Would you like: ")(skioa);
put skip;
put ecit ("1. Tick marks and values")(skip,a);
put edit ("2. Dotted grid and values")(skioa);
put edit ("3. Solid grid and values")(skioa);
put skip;
put edit ("Please choose one => ")(skipa);
get list (gridswchar);
rafne = 3;
cal mum-answer-ok (gridswchar, range, gridsw

grid sw = gridsw - 1;

put edit ("Would you like to enter a title and a
xis labels for your plot? x> ")(skip, a);

get list (answer);
call yn answer ok (answer);
if (answer - "i" I answer = "yes") then

do;

r pLot")(skippa); put edit ("Enter the desired title for you

put skip;
get list(graph.title);
Cut edit ("Enter the label for the x-axis"

) (skip,a);
put skip;
get list(xlabel);
put edit ("Enter the label for the y-axis") (skip,a);
Cut skip;
get list(ylabel);

end;

put ecit ("Would you like to set the scale of th
e graph? -> ")(skio,a);

get list (answer);

C-72

call ynanswer ok (answer);
if (ansi.er - "" I answer = "yes") then

do;
scale auto = false;
Out e it ("Enter the tower bound of the x-

axis => ")(skipa);
get list (xmin);
asput edit ("Enter the upper bound of the x-axis => ")(skip,a);
get list (xmax);

axis => ")(skipa) put edit ("Enter the lower bound of the y-

get list (.min);
put edit (Enter the upper bound of the y-axis:=> ")(skip,a);
get List (ymax);

end;

call plot_$setup (?raph title, xLabeL, ylabeL, graph_t
ype, base, gridsw, eo-sca eswY';

if (scale auto = false) then
call OTot_.scale (xmin, xmax., ymin, ymax);

allocate x;
allocate y;

do L = 1 to number of plots;
x(*) = x-array(T,*T.
y(*) = y.array(l,*);
symbol mark = symbol(l);
call prot_ (x, y, numsimdatavecsw, symbotmark)

end;

free x, y, symbol;

end oLot-thesim;

end chooseyourplot;

C-73

ownsys~to~sm: procedure (matrix~dimp time, steo~erdo state-.
temo..cont Statep time mintp time-.finaL)

dct matrix dim fixec binary (35);
dcL time froat binary;
dcl steo.,end float tinary;
dcL state...temp (10) float binary;
dcl comt state (10) float binary;
dcL time,..init float binary;
dct time,.finaL fLcat binary;

dcl ind fixed binary (35);
dcl w(l:matrix dimi, 1:9) float binary controlled;
dcL tolerance 7Loat binary;
dcl c (1:24) float binary;.
d c Lie r f ixed binary (35);

dcl inout-dim fixed externaL;

dcl pi float;
dc(amolitude float;
dcl freq float:
dcl disturb float;
dc L j f ixed;

dc L di sturb da ta fi le;
dcl sysprint fite output;
dcl ims L$dverk entry (fixed binary (35)#, entry, float binary

#(*) f loat
xed inay (3).-binary, float binary, float binary, fi

(*) float binaryo, fixed binary (35),(
0) f loat

binary, fixed binary (35));

pi = 3.1415927;
a moLitude =2 .1
Ifreq= 20;
tolerance 0 .001;
ind =1 ;
if (time time init) then do;
disturb =amplitude s in(2*oi*freo*time);
put edit (AMPLITUDE =")(skippa);
put List (ampLituce);
put edit ('FREQ) (skip..a);
put L ist (f req)

end;

allocate w;

call imslSdverk (matrix-dimi, own..cont..systeml, time, state..t
emoo stp~endotolerance, indo c, matrix-dimi, w, ier);

disturb = amplitude * sin(2*pi*freq*time);

cont-state(1) =state-temp (1) - disturb;
f ree w;

if (ind < 0 1 ier > 0) then do;
put edit ("t ime =)sk ip,a)
put List (time);
out edit ("ERROR!! using IMSL ")(skip,a);
put edit ("ind =')Cskip,a);

C-74

Put List (ird);
out edit ("ier=)sir;
put L~ist (ier);

end;

own~cont~systeml: procedure (matrix dim. time, state~temoo s
ta te-.temo-prime) ;

/* third order *

dcl matrix dim fixed binary (35);
dcL time fToat birary;
dcl state~temp (1C) float binary;
dcl state..temp,...rime (10) float binary;

dcL input~to use (1:input dim) float controlled external;
dcl cont~input (1:input...dim) float controlled externaL;

dcL inaut-dim fixed external;
dcL ow~n-fixed;
dc L own~p fixed;

dcl own a matrix (1:own n., 1:own...n) fLoat controlled;
dcL owm~b~matrix (1:own~n., 1:own..p) float controlled:

dc L i f ixed ;
dc L j f ixed;

own~n = 3;
own P = 1;
allocate own-a-matrixo own..b-matrix;

owna matri x (1 -l) = 0;
own a~matri x (1 ,2) = 1;
own.a-matrix (1.3) = 0;
own -a -mat rix (2.1l) = 0;
own :a matrix (2.2) = 0
own:a:watri x (2,.3) = 1
own -a - matrix (3#1) = -249778.14;
own a matrix (3.p2) = -140645.6;
own~a~ruatrix (3.3) = -181.98;

own-bmatri x (1 .1) = 0
own .b vnatri x (2.1) =0
own..b..ratrix (3,1) = 55493.2;

do i = 1 to own,.n.
state~temp prirre (i) = 0;
do j =1 to our n;

at .S tate~temp~prime M = state..temp~prime (i) + (w~~
atrixHl j)state~temp (j));

end;
end;
do i = 1 to own r;

do j = 1 to own~p;
atrixem-pim Mi = state.~temp~prime Hi) + (own~b~m

atrix i.- j)input~to~use (j));
end;

end;
free own~a..matrixo ow.n~b-.matrix;

end own..cont~systerl;

own..cont..system2: procedure (matrix~dimp time, state-temop s
tate..temp_5rime);

/*fric system ~

C-75

dcl matrix dim fixed binary (35);
dc(time ftoat binary;
dcl state-temp (IC) float binary;
dcl statetemoprime (10) float binary;

dcl n fixed external;
dcl o fixed external;

dcl inputIto use (1:r)) float controlled external;
dcl continput (I:p) float controlled external;
dcl own-a-matrix (1:n, 1:n) float controlled;
dcl ownrb-matrix (1:n, 1:p) float controlled;

dcl fric float;
dcl i fixed;
dcl j fixed;

allocate own a matrix, own.b-matrix;
own a matrix = C;
own b matrix = .395,
if Zstate temp(1) > 0.01) then

fric = J.0917;
else do;

if (state temt(1) <-0.01) then
fric = =0.0917;

else do;
own a matrix = -9.17;
fric - 0;

end;
end;

do i I to n;
state temp,.prime (M) - 0;
do j = 1 to n;

state_temo_prime M state tempprime Mi) + (own a_m
statetemp

(j));
end;

end;

do i = 1 t-o n;
do j = 1 to p;

statetempprime (i) statetemp_prime (i) + (own_b_m
atrix (i, j) *

inputtouse (j)) - fric;
end;end;

free own-a matrix, own-b-matrix;
end own-cont~system2;

owncont system3: procedure (matrixdim, time, statetemp, s
tatetemo_5rime) ;

dcl matrix dim fixed binary (35);
dcl time ftoat binary;
dcl statetemp (10) float binary;
dcl statetempprime (10) float binary;

dcl n fixed e~rternal;
dcl a fixed external;

dcl inputIto touse (1:p) float controlled external;
dcl cont input" (I:p) float controlled external;
dcl amnatrix (1:n, 1:n) float controlled external;
dcl b-matrix (1:n, 1:0) float controlled external;

C-76

dc L i f ixed ;
dc L j fi xed;

do i = 1 to m;
s t a t eteffl,.rime C)=0;
do j =1 ton ;

state~temo..prime M) state..temp..prime Mi + Ca..natri

state~temp (j));
end;

end;
do i 1to n;

do I to P;
state~temo~prime i)=state~temp~prime Mi + (b~matri

x (i," j) *
end; inout to use (j));

end;

end own..cont..syst em3

end own..sys..to~s im

C-77

convert_..: procedure;:

dcL n fixed external;
dcL r) fixed external;
dJcL offset.... (1:n) fixed comtrolled external;
dcL offset~i (1:p) fixed controlled external;

dcL voLtage..Lower-.bcund-..s (1:n) float controlled externaL;
dc L vo Lt aqe.,lowerb....cund..i (1: o) f Loat c ont ro Ll(ed e xte rna L
dcL quantum-.steQ,..size-.s (1:n) float controlled external;
dcl quantum..step~size.1 (1:p) float controlled external;

d cL i f ixed;
d cL state code fi xed;
dcl input-codle fixed;:
dcL dis..state ()fixed;
dc L d is:input f* fixed;:

dc L cont t at e f* float;
dc L cont-input f* float;

cont-state-to-dis~state: entry (cont statep di s..state) ;

do i = 1 to n;
dis-state~i) =floor ((cont-state(i) - voLtaqe_.Lower~bound

.si))
/quantu

m~.step size s Ci))
enas

return;

dis-state~to..code: entry (dis.,statep state-.code);

state code = 1;
Cto i ; 1 to n;

state-.code = state-code + (dis-state Ci) * offset-s Mi))

end;

return;

code-to-.dis-.state: entry (state~codep dis~state);

state~code =.state code - 1
do i = n by -1 to T

dis-state Ci) z floor (state-code / offset-.s Ci));
state-code = mod (state..codep offset-.s (i);

end;

return;

dis-state~to-cant state: entry (dis~statep cont~state) ;

do i = 1 to n;
cont-state(i) =((dis..state(i) + 0.*5) * auantumstep-size..

+ vol tage_.L
owe r-.bound-s Ci) ;

end;

return;:

C-78

cont~input..to..dis~irout: entry (cont,.inoutp di s.inout) ;

do i =1 to P;
dis..input(i) = ficor ((cont...inout(i) - vottageLower..bound

/quantu

end;:

return;

dis-inout~to-code: entry (dis..inouto inout~code);

input code = 1;
do i =1 to P;

input-..code = input-.code + Cdis~input Mi * offset~i (i))

end;

return;

code~to~dis~input: entry (inp~ut..codep disjinput);

inrout .code = incut c~ode - 1
do i ;p by -1 to,

dis in pt Ci ~o iptcode / offset i Mi);.
inp -.code mod (imput~code, offset~i MT);

end;

return;

dis,.input~to..cont..irput: en try (dis..input, contjinput);

do ilto1to
cont.- inputM,)= C(dis..input(i) + 0.,5) *quantum..step..size...

ii)
+ voLtage_.L

ower-.bound-i Ci);
end;

return;

end convert-;:

C-79

num.answer-ok: procedure (c, range, choice);

dcl c character (1);
dcl range fixed;
dcl choice fixed;

dcl i fixed;
dcl good answer-flag bit(1);
dcl true bit(l-) initial ("1"b);
dcl false bit(1) initial ("O"b).

dcl sysin file input;
dcl sysprint file output;

good answer flag = false;
o w~iLe (good answer" = fLa = false);

if (c > "0" & c <-) then
do;

choice - c;
do i = 1 by 1 to range;

if (choice = i) then
goodanswer flag = true;end;

end;
if (qoodanswer flag = false) then

do;
put edit ("Incorrect Response","Try Again x> ")

en t List (c);
(skip, a, skip. a);

endoe i t ()

else
choice = c;

end; /*while*/

end num-answer-ok;

C-80

yn-answer -ok: procedure (answer);.

dcl answer character (3) varying;

dcl good answer flag bit(l);
dcl true bit(1) i'n itial ("l"b)
dcl false bit(1) initial ("O"b);

dcl sysin file i-nput;
dcl sysprint file output;

if (answer = "y" I answer - "yes" I answer "no" I answer =
"n '1)

then good-answerflag - true;
else

good answerflag = false;

do whiLe (good answerflag = false);
put edit ("Incorrect Response", "Try Again >")

(skip, a, skip, a);
get List (answer);
if (answer = "y" I answer = "yes" I answer "no"

answer - "n") then
goodanswerflag = true;

else
giood answer flag = false;

end; /*while*/

end yn answer-ok;

C-81

DISTRIBUTION LIST

Copies

Commander 12
Defense Technical Information Center
Bldg. 5, Cameron Station
ATTN: DDAC
Alexandria, VA 22314

Manager 2
Defense Logistics Studies
Information Exchange
ATTN:, AMXMC-D
Fort Lee, VA 23801-6044

Commander 2
U.S. Army Tank-Automotive Command
ATTN: AMSTA-TSL
Warren, MI 48397-5000

Commander
U.S. Army Tank-Automotive Command
ATTN: AMSTA-CV (COL Burke)
Warren, MI 48397-5000

Chief 23
System Simulation and Technology Division
ATTN: AMSTA-RY
Warren, MI 48397-5000

Dist-1

