10

165 547

D) S

Technical &mx

13132

Theoretical Development and Application
of Discrete Time Quantized Data Controllers

(Phase 1)
Contract Number DAAE07-84-C-R0O55

January 1986

Dr. R. P. Judd and P. L. McIntosh
School of Engineering & Computer Science
Oakland University

By Rochester, MI 48063

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION IS UNLIMITED

dD0A033A\D

| vt
t“‘
i

U.S. ARMY TANK-AUTOMOTIVE COMMAND
RESEARCH, DEVELOPMENT & ENGINEERING CENTER
Warren, Michigan 48397-5000 , oy

Reproduced From
Best Available Copy -y

NOTICES

This report is not to be construed as an official Department of the Army
position.

Mention of any trade names or manufacturers in this report shall not be
construed as an official indorsement or approval of such products or
companies by the U.S. Govermment.

Destroy this report when it is no longer needed. Do not return it to the
originator.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION . 1b. RESTRICTIVE MARKINGS
nclassified
a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUT!OI\!/AVAILABI!.ITY OF REPORT
Approved for Public Release:
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution is Unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
13132
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Oakland University (If applicable)
School of Engr & Cmptr Science
6¢c. ADDRESS (Gity, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Rochester, MI 48063

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
orGanizaTioN Analytical & (If applicable)

Physical Simulation Branch AMSTA-RYA

8¢ ADDRESS (City, State, and ZIP Code) , 10. SOURCE OF FUNDING NUMBERS

USATACOM PROGRAM PROJECT TASK WORK UNIT

Bldg 215 ELEMENT NO. | NO. NO. ACCESSION NO.

Warren, MI 48397-5000

11. TITLE (Include Security Classification)
Theoretical Development and Application of Déscrete Time Quantized Data Controllers (Phase I)

B2 R "Yidd"&hd P. L. McIntosh

a. TYPE OF REPORT 13b. TIM ERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
Pinal FROM B784 10 _6/85 Jan 186
16. SUPPLEMENTARY NOTATION -
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by b{ock number)
FIELD GROUP SUB-GROUP Controllers Discrete Time Quantized Data
Table Look-up Technique DTQD Controllers
M60 Elevation Controller Grid Embedding

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

A new approach to feedback control based on a table look-up technique is developed. A grid
embedding technique is used which maintains high accuracy with minimal table size. This
report describes the use of the new control scheme as a regulator. A circuit which imple-
ments the control scheme is developed. This circuit is simpler, cheaper, faster, and more
reliable than circuits developed for comparable controllers using traditional control theory.

This report is divided into four major sections. The first section derives the theoretical
foundation for the new control techniques. Next, the operaticn of a computer program which
aids. in the design of these controllers is decribed. The last two sections develop a con-
troller for the gun elevation system of an M0 tank. Finally, a complete listing and docu-
mentation of the computer program used in the design of the controller are included in the
appendices.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CJuncLAsSIFIED/UNLIMITED [same As RPT. [Joric users | Unclassifi
2a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢c. OFFICE SYMBOL
Uames L. Overholt (313)574-5378 AMSTA-RYA
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete. Unclassified
1

SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OF THIS PAGE

g
.
o

mr\)wr\)mmr\)mwmmmmm NPV VUMD NON = m om0 O

U’\U‘I U'IU'I UTU1 UTUT BT UTU1 U101 UTOT 0T DTUT UTUT 1ol QT Ut UTUl o glol Tl V1ol v gl bt
—*O

TABLE OF CONTENTS

Page

INTRODUCTION .. ievetnnrnnnennnas B eetaiseereecterteenenenans 11
OBJE CT IVES . s ittt v v e enenessnsassaosesnssonsossnnsssanssasnasass 11
CONCLUSIONS........ e se e a e et et e eeea e 1M
RECOMMENDATIONS.....v.. . Ceerierenes e 12
DI S CUSSION . 4 ettt ssrsneeassecesotooannoosssannoceseesnnnnnnens 12
DTQD Theory...eveveeeens seseeseeenans ceesen Gt seset e esasenn 12
Introduction.ioveeeenen.s e e s e escrseenseea ettt e ne e 12
Quantization Theory....ceee... et sesessassesas e et enensesens 12
CONErol LaW.eevoesoesesesssosoessonnncnnoen s es e s et s st 17
Dimensionalify.v.eeieereeneereessonsenasnnnns et eeseset e 19
Implementatlion. e et iieeneeenieeeeeonnnonenennesssenonoens 19
Non-Linear SystemS....ceiesevevenacas e et 21
=1 1§ o = U Ceeessesatsreaananaanes 23
User Manual for the Program "DTQD".....ceieveeoreresncnannss .. 25
Introduction...cveceeeeennn. ceees e ns e eesaesseetransaenane 25
Initialization....... ceeereeas Cereesarecnana e es e eetanenn 26
Open an 01d fillEiuveienreernnnnnonnnnns Ceeriecaeees et 26
Open a new Filuiuieeeenneeeennn Gt ee i cteaeenanaann Cereeans 26
Copying an old file into @ New Fileu.e e eeerinneeeoneasncnnns 26
Quit..... Ceeeeaen “en bt teeietsecaraaenanna et etecitee e 26
Command Level....oeveeeeans C et et ceae s acat it ee sttt et 26
Initialize.sssieveenecneanns Ceetereresan e Ceeenn Ceeseseaenae 26
Parameter modification...... ceersiuces Ceereean et eaaes 27
Displayeceeeees Ceseaccannne ceetesessteenns et rieereesne e 27
Control law.esveeeeeeeees Cheaserasese et eav sttt aet e 27
Simulate....ciivinnenennes cereeenen P s s e et enestsasass e e 27
Quitiseiienenean.., e teerttee e Gttt teeiebt et 27
Parameter Modification....cieeirerieenercrnsosncnensnonsncnsans 27
0 V0 = . 28
Continuous parameters.....cece.. e sttt eseasaren e a s aaeaan 28
Number of states.....iviiininernnnens. e et teence et 28
Number of inputs........ it reesnnea et taeestic et 28
System matrixX..oeeeieeieinerneoanannns f et s reaeeet et e 28
INPUL MBEPIXe.eeeeeveeenoeronesonnnnanas et teeeresetssesaanns 28
/Lo B = U T 28
Modify none..... Gttt eca b esee st eca ettt 28
Discrete parameters......cveeeeeeneen. Ceeeeseseerentasasennan 29

. Discrete model generation....... et tetsesessesestaennseaneas 29
Discrete model MOdifiCalion. et ee et nnneneensoneennnees 29
2 Quit........ cerseen cheeeaaaa. et e sessaaseseaese st eaene e 29
3. Quantized ParamelerS . vttt etoeeoenennenerenreasesesnnnnnss 29
4, EXxample 1.eeeeeveeennns Cersesetsesateertacsannans ceseeenarees 30
5. Quit..... S oo oot oessossassecaansesesssaacesessascsasesssoncace 31

TABLE OF CONTENTS (Continued)

Section Page
5.2.5. Display Level.iu.eieeeeiessoesensooaaansneneensnssonssnsnnnens 31
5.2.5.17. Check status...eeivsrennans et e e ettt s et 31
5e2.5.2. DalaA Fille.iiuerineiieeansensseranssanensassssssnassaossnnsanas 31
5.2.5.3. Next-stale array....iceeeeeriesseessesossesessnssnsnssassnsons 31
2.5l EXAMPle 5.2t ittt ertoseisornsanessonsssetocsossssseseasssnsasas 33
5.2.5.5. Check quantization level...e..reiireenenannanacenorons RN 35
5.2.5.0. EXAMPLleE 3.ttt ineersesannesosoonasssasssonnsssonnsssnanssssonnas 34
5.2.5.7. Control law file display...... e eet et ee ittt 34
5.2.5.8., Quit......cen.... et e et s e e et et e st asa et 34
5.2.6. Control Law Development.....ceeecees e iseseaaaonns ceeenen 34
5.2.6.1. Minimum time..... e eeaneesa et et eat e e eener e 35
5.2.6.2. QuadraticC...cieeeescncenconanns Creaeeae Ceeteeeeeenaana e 35
5.2.6.3. Minimum control effort 35
5.2.6.4. Custom cost function..... et eceeeenar et e PP 35
5.2.6.5. Access a fil€.viurrenernonnnnns PP 35
5.2.6.6. Quit.......... ererttae e Cheeeeranaa e e 35
5.2.7. Slmulatlon Level P ce e 30
5.2.7.1. Simulating.....ceevevennnns et tescesenecottaaat e nanennannn 36
5.2.7.2. Example 4. ..iieeernnenreracnnnenn Cee e eeacetaereaaracenar s 38
5.2.7.3 Plotting...ceveuees ceaeaenn ceeraeanas ceeceeneans ceeees cerenes 38
5.2.7.4 L s 38
5.2.8. An Overall EXaAmMPle.....ceeeassososonsessessosassosnnnnssssons 38
5.3. Modelling the Elevation Stablllzatlon SYySteM. . uvrerinenannonnn 52
5.3.1. IntrodUuCtion. e s it eeeieeensnssosssscscarvosnensossosssenson 52
5.3.2. MOodelling Che BUN. ... ieitioneesorosoeraaasasersanesscanosanss 52
5.3.2.1. Gun KinematicsS...vieeeernonsnns Chsecetses et aeeoe cer e 52
5.3:2.2. GUN DYNamMicCS.ueieeeeeceersotennsssesetosnssnssssosesssss e 54
5.3.2.3. Linearizing the gun model.....oevvenesesnennsccnsennns ceenaan 55
5.3.2.4. Obtaining steady-state valueS......ieeeeneeencncscnsanronnsens 56
5.3.2.5. Transfer Function of the gUn......ovvevrviennennss Ceeev e 57
5.3.3. Modelling the trunnion damping.....veeeesienosesseosanonennss 57
5.3.3.7. Viscous friction....veeeveeeanees e et ecscasenataasatasraenns 57
5.3.3.2. Coulomb friction.cceveieasns Ceeeetbeateaetae ettt 58
5.3.4. Hydraulics Of Lhe gUN....evererenerenoosonsonsosasesosassassns 58
5.3.4.1. Elevation load pressure - fluid flow relationsnip............ 58
5.3.4.2 Pressure control Servo valve...iieeuieeesesosessacnosssonaonns 538
5.3.4.3. Combining pressure - fluid flow relationship with valve...... 58
5.3.5. OpEN LOOD SYSLEOM. .t e eeeeeeenesossaaesasasssosassssssssssonnes 61
5.3.6. Simplified MOGELS.ee e eneereeonsoeeaesconsoesnsasnsensnosasnans 63
5.3.6.1. First order approXimalion...ceseeesrosesoseenssnnsonnnosanens 63
5.3.6.2. First order system with Coulomb friction.........vevieeeeenn. 63
5.3.6.3. Third order MOdel....eeeeereneaenoseseoneassnssanssscaasssonns 64
5.3.6.4. Models with @ "DisStUrbancCe™ ... u.veeeiiieersosenesoseaasonenss olU
5.3.7. Using "DTQD" .. iiiiennnnnnns e et eesaesacecesasiesacsanasasne s 64
5.4, Simulation ReSULLS. . t.eieerennseseenesonnetonnaannnnns cheeen 66
5.4.1. The MOGEl. it eeteiineseeooonsooseonssennnsssssnanessaanssenes 66
5.4.2. The CONLPrOl LaAW...eeieeeeoeeeasenseaesoseasososonesosasnossnns 66

TABLE OF CONTENTS (Continued)

Section Page
5.4.3. Sl D P OO DONI S .t ittt et tnenveonneseonesoneeeenseesonoenssnnees 68
5.4.3.1, First Order MOGel. ..t eeeeeureeeneeeeeeseenneeennnsanansennnns 68
5.4.3.2. Third Order System.......... ettt ettt ettt e 70
5.4.3.3. CoUlOmb Frichion, .ceieeeeeneeeenenereeanssennsssonnseonnnenns 73
5.4.4, Disturbance Rejection...... Gttt e ettt ae ittt e 75
5.4.4.1 First Order Model......vvevn.. ettt et e e e et et 76
5.4.4.2 Third Order Systam. ..o eriieenneeneoeereennneeeneeesnannss 79
LIST OF REFERENCES. ... iveerieeennens e s et seesraes st st r s st seas e aenan 85
APPENDIX A. PARAMETER VALUES. .. uueerrvenennosocenns che ettt A-1
APPENDIX B. PROGRAM DOCUMENTATION FOR "DTQD"....... checaierteanen s B-1
APPENDIX C. PROGRAM LISTING FOR DT QDM sttt eveneeeeeeseeennennnnnensns C-1
DISTRIBUTIONLIST.eeeeennnse Ceeseneaane vesensennae Cecescesessaases s DIST-1

THIS PAGE LEFT BLANK INTENTIGONALLY

LIST OF ILLUSTRATIONS

Figure Title Page
51, System MOAELl .. it eeeireteoeenessostoeeessoessonasetnssennonsasnssnss 13
5-2. Quantization of a Two Dimensional SpPaCe...eiiessrerenseenonancass 16
5-3 Digraph Representation..cee. e e eeeeeeeeeeeaeeeosasonsosesensanes 17
5-4, The Grid Embedding Technique....... et csacs e 20
5-5. Hardware Implementalion. . ieeee it eerinseroneerosonrsossosnonoasss 22
5-6. Simulated System....... cheeeae R R EE TR E R 24
5-T. QUantization GridS..veiseiieeeeenesieieeetseasoraeeassanarsnneesns 32
5-8. Model for deriving Kinematics Of GUN.ueeeeeveeecenoneoncnacnnanss 53
5-9. Model for deriving dynamics of gun....... G h e es ittt et ettt 53
5-10. Modelling viscous friction...ieeeeeeeeseecooncannnnns et eaeeeaees 59
5-11. Modelling Coulomb frictioN..eeeeeeeeerenseesneenonnsnsansssosss .. 59
5-12. Hydraulic SySteM..c.eeeeeeerercecennvesnssnsnscens Cereaeecenens 60
5-13. Elevation Servo Valve....... et aii et Ceeeeaan 60
5-14, Block Diagram of Elevation Stabilization System.......cci.vvevens 62
5-15. First Order System with Zero Embedding ProcCesSsSeS.....eeeeeeeesan. 69
5-16. First Order System with One Embedding ProCesSS......uveeeeceenonens 69
5-17. First Order System with Two Embedding ProCessSeS....eeeeneneesnnn. 70
5-18. Third Order System with Zero Embedding ProcessesS.......eeeeeeeens 71
5-19. Third Order System with One Embedding ProCesS....veeeuieeneeeeenn. 71
5-20. Third Order System with Two Embedding ProcessesS......eeeveeccsess 72
5-21. Third Order System with Three Embedding ProcessSeS.......eeeevnen. 72
5-22. First Order System with Coulomb Friction and Zero Embeddings..... 73
5-23. First Order System with Coulomb Friction and One Embedding....... T4

Figure

5-2K4,
5-25.
5-26.
5-27.
5-28.
5-29.

5-30.

5-31.

5-32.

5-33.

5-34,
5-35.

5-36.

5-37.

LIST OF ILLUSTRATIONS (Continued)

Title Page
First Order System with Coulomb Friction and Two Embeddings...... T4
Disturbance Model....vvvvienrrinennnnn f e et sassesaseeaenanes e 75
First Order System with Zero Embeddings, d(t) = 0.1sin(2nt)...... 76
First Order System with Three Embeddings, d(t) = O.1sin(27t)..... 77
First Order System with Zero Embeddings, d(t) = 0.1sin(10%t)..... 77
First Order System with Three Embeddings, d(t) = 0.1sin(10wt).... 78
Disturbance Frequency Response of the First Order System
Without Embedding PrOCESSeS. i vt rsennnsesnoesssesaoanensacsos 78
Disturbance Frequency Plot of the First Order System with
EmMbedding ProCESSeS . et eneeeeeanseesoenonesononasnnssnoasssneans 79
Third Order System with Zero Embeddings, d(t) = O.1sin(2%t)...... 80
Third Order System with Three Embeddings, d(t) = 0.1sin(2%t)..... 80
Third Order System with Zero Embeddings, d(t) = 0.1sin{(107t)..... 81
Third Order System with Three Embeddings, d(t) = 0.1sin(10nt).... 81
Disturbance Frequency Plot of Third Order System without
Embedding ProCesSSesS ..t ieetieeeeeereninesaetosenssosesacsnasanesas 82
Response of the System with Scaling Factor Increased to 20%...... 83

Table

5-1.

Control Law

LIST OF TABLES

--

THIS PAGE LEFT BLANK INTENTICNALLY

10

1.0. INTRODUCTION

This report summarizes the work done by Oakland University on Army
contract DAAE07-84-Q-R083. 0Oakland University explored a new method of
state feedback control designed to regulate the output of continuous
systems. The new approach, based on a table lookup technique, results in
a controller which is faster, less complicated, less expensive, and more
reliable than present military controllers. Since the new method models
both the discretion of time and the quantization of state, it is referred
to as Discrete Time Quantized Data (DTQD) system theory. This theory is
still being developed. The main objective of the first stage of the
research effort is to develop the theory so controllers can be designed to
requlate systems. This has been done.

The discussion portion of the report is divided into four major sections.
The first section develops the theoretical foundation needed to design
controllers based on the new technique. Next, the software package which
has been developed to aid in the design of these controllers is outlined.
The last two sections apply the theory to a typical military application.
The first of these two sections derives a mathematical model of the gun
elevation system of the M60 tank. The next section uses the model to
develop and simulate a controller for the elevation system. The response
of the controller 1is examined. As might be expected, the controlier
responded quite favorably as a requlator. However, when sinusoidal
disturbances are applied to the tank hull, the controller did not damp the
disturbances as well as current technology. It was not designed to.
Research is continuing in the area to improve the disturbance canceling
characteristics of the controller and provide tracking abilities. The
software package used to design the controllers is completely documented
in an appendix. Finally, the complete source 1listing of the software
package is provided in another appendix.

2.0. OBJECTIVES

The objectives for this research are as follows:

1) Develop and refine a new application of control theory based on
Took-up table techniques and the effects of state quantization in
digitally implemented control.

2) Develop DTQD analogs of controllability and observability of
systems.

3) Determine the improvements in system response, ease of
implementation, and system reliability given this methodology.

3.0. CONCLUSIONS

This research is very promising. The theory needed to design a DTQD
controllier has been completed. A computer program to aid in the design of
these controllers has been developed. The theory has been applied to a
military application and the system simulated. The results showed that
the theory worked quite well 1in regulating the system, but when

11

disturbances were added the response became noisy. This was not entirely
surprising since the theory behind the design of the controller was not
developed to reject disturbances. However, a slight modification of the
scaling algerithm should reduce the magnitude of the noise. This idea is
suggested within the report and should be further developed.

The analogs to controllability and observability for DTQD systems are not
addressed 1in this report. This area 1is currently being explored and
results will be forthcoming.

The regulation of systems without system or measurement noise using DTQD
controllers seems to be comparable to traditional control methods. A
complete discussion on the implementation of the technology into digital
hardware is in the body of this report. Since this circuitry is extremely
simple, the resulting DTQD controller will be more reliable, less
complicated, faster, and cheaper than the controllers using traditional
technology.

4.0. RECOMMENDATIONS

Because of the success of initial research into DTQD controllers, a follow
on project should be conducted. The research should focus on noise
rejection, tracking abilities, output driven controllers (instead of the
current state feedback structure), and application of the theory to large
scale systems. After the research is completed, a particular application
should be designated by the military to implement a DTQD controller, and
an actual controller should be built and tested.

5.0. DISCUSSION

5.1. DTQD Theory

5.1.1. Introduction.

Traditionally there have been two approaches to the digital control of
systems. The first method finds the discrete time model of the plant and
then determines a controller which will regulate the output. Both
classical (using Z transforms) and optimal control techniques have been
well developed for this approach. 1In the second method, usually reserved
for converting existing continuous controllers to digital controllers, the
designer tries to emulate a continuous controller by digital circuits. It
is not clear that either of these methods is the best strategy for using
digital electronics to control a plant.

An alternative approach [1-3] to controlling digital systems is presented
here. The prime consideration in deriving the new control structure is to
develop a circuit which naturally dincorporates the unique features of
digital electronics. The new approach creates a "digital model" for the
system. This new model describes the relation between the digital inputs

12

and outputs of the system. That is, the effects of the data converters
are an integral part of the modeling process, see Fig. 5-1. Once this is
done, the controller for the system could be naturally implemented by a
digital circuit. The controliler is essentially a table look-up technique
easily constructed from digital circuit elements.

Zero
t (1) Ideal x(k) X (k)
UL D/ ulk) Order U(). Plant . Samepaler A/D
Hold

Figure 5-1. System Model

Other authors [4-6] have explored developing a digital model for continous
systems. They have given up for two main reasons. First, there is the
famous problem of the ‘“"curse of dimensionality." That is, the size of the
control table will increase exponentially with the number of states. To
accurately control even a second order system by this method requires huge
tables. However, this problem can be minimized by using the grid
embedding technique proposed in this report. The second problem with
digital models 1is that in general its output will diverge from the actual
system output. However, with proper selection of the quantization levels
and sampling interval, the rate of divergence can be controlled. Since
the primary purpose of the current research is to develop a feedback
controller for the digital system, then a model which adequately describes
the system for only one sample increment will be sufficient to develop a
good responsive controller.

This portion of the report is divided into several sections. Section
5.1.2 develops the digital model for a continuous linear plant. It also
shows that a digraph can be used to represent the digital model. Once
this is done, the classic graph theory algorithms can be used to determine
the control law. This 1is examined in Section 5.1.3. Section 5.1.4
discusses the dimensionality problem and suggests a solution. Section
5.1.5 1illustrates the electronics needed to implement the controller.
Finally, the last section suggests how this method might be extended to
nonltinear systems. An example is also presented.

5.1.2. Quantization Theory.
Consider the system illustrated in Fig. 5-1. We wish to find the relation
between the digital signals U(k) and X(k). First, assume that the plant
is a linear system, that is

x(t) = Ax(t) + Bu(t) (5-1)

13

u:Rp

Modeling the effect of time discretation is quite easy. Using standard
linear system theory the relation between x(k) and u(k) is represented by

x(k+1) = &x(k) + Du(k) (5-2)
where

3 = eAT

T

=1 e AT-S) ggs
0

(]

T = the sampling period

Now the data converters must be included into the model. To do this a
convention must be established to represent digital signals. Suppose

there are j bits in a digital signal, then there are 23 unique pieces of
information that can be represented by the digital signal. We shall use

the set of integers [(-23-1),...-1,0,1,...(2j—]-1)] to denote each piece
of information.

Now examine the D/A converter. Its job is to convert p digital signals to
p discrete signals. This can be easily done by multiplying each element
of the U(K) vector by an appropriate scaling factor.

u(k)

U(k) (5-3)

r u(k)

Recall that the digital input is modeled by a set of 1integers, that is
U(k) is a vector of integers. Therefore, all the D/A converter is doing
is mapping the integers U(k) to a vector of real numbers u(k) according to
the scaling law represented in (5-3). Combining (5-2) and (5-3) we obtain

14

x(k+1) = &x(k) + Dru(k) (5-4)

The A/D converter does the reverse job - it must convert the real numbers
in the state vector to integers. For most converters, this process can be

represented by
X(k) = floor (x(k)/8) (5-5)
or if X is a vector

Xi(k) = floor (xi(k)/si)

i=1,2,...n (5-6)

Many converters may also include an offset p, i.e. X = floor ((x+p)/S.
For the purposes of this paper p is assumed to be 0. This is done for
clarity only. It does not alter any of the results. Let A designate
this quantizing operation, that is X(k) = Ax(k), then

X(k+1) = Ax(k+1) = A[®&x(k) + Dru(k)] (5-7)
Unfortunately, A is not a linear operator, therefore the right side of

(1-7) cannot be reduced. In fact the following argument will show that
X(k+1), in general, cannot be represented as a function of X(k) and U(k).

Consider a system with only two states, then the data quantization process
can be thought of as overlaying a lattice on top of the state space.
Every state x(k) which resides in a single cell of the resulting grid
belongs to the same quantized (or digital) state. The quantized state
X(k) is then the n-dimensional integer vector representing the address of
the cell. For example, examine the situation in Fig. 5-2. Here all of
the states in the shaded portion of the state space are assigned the same

quantized state X(k) = (2,3)t. The problem comes after the system makes
its transition to x(k+1). Suppose we trace each state in the shaded cell
for one transition under a given input U(k). If x(k) was in the shaded
cell at time k, then at time k+1 it must be in the parallelogram abcd.
Unfortunately, this parallelogram overlaps four distinct cells. So, the
X(k+1) cannot be deduced from knowing only U(k) and X(k). In other
words, we do not have a state-determined system. However, knowledge of
X(k) does reveal quite a bit about what X(k+1) can be. For example, in

Fig. 5-2, if X(k) = (1,3)t then X(k+1) must be either (3,1)t, (3,2)t,

(4,1)t or (4,2)t. Now if the quantization is small enough, then
transition can be modeled fairly accurately by picking any one of the four
cells as the actual transition. It can be shown [3] that the number of
cells that are overlapped, after a cell makes a transition, can be limited
with proper selection of the sampling interval T and the quantization step
size 61. Thus, we can develop a digital model of the system which,

15

although not exact, will never be more than one cell in error 1in
predicting the state for the next transition.

) N ;

Figure 5-2. Quanization of a Two Dimensional Space
To formalize the mathematical definition of the model, we will trace only
a single point in the cell, namely the center. So, for modeling purposes
only, we will let

X(k+1) = A(®y + Dru(k)) (5-8)
where

y = the center of the cell X(k).

Using this we can develop a state determined digital model ¢ for the
system.

X(k+1) = w[X(k), U(k)] (5-9)

As was mentioned before, this model is not exact but with appropriate
selection of T and 61'5 will predict X(k+1) to within one cell. This

16

reseach is primarily concerned with developing a state feedback controlier
for the system. Since the controller can sense the state at every time
interval, developing the control law based on this approximate model
should yield satisfactory results. 1In fact, this model provided good
results in the systems we have applied it to.

5.1.3. Control Law.

Consider a graph S whose vertices (nodes) are used to represent each cell
in the discretation lattice. The edges in S then form the set of all
possible transitions between the cells. For example, look at the digraph
in Fig. 5-3. This graph represents a simple system. If the state is

(0,1)t at time k and an input of 0 is applied, then the state will be
(0,0)t at time k+1.

Figure 5-3. Digraph Representation

We now examine the possibility of controlling the system. Using the
example presented in Fig. 5-3, we see that a good control law might be

17

]; if X(k) = (]!])9(—]1])’(]r’])1
U(k) ={ (-1,-1) (5-10)
0; otherwise

Using this law, the system reaches and remains in state (0,0) in minimum
time.

To formalize an algorithm to determine the control 1law, consider the
following cost functional

N
I= 3 Cuu(k)) + Cy(X(K)) (5-11)
k=0

where CU and Cx are two non-negative functions of U and X respectively.

The optimal control law of the sytem U(k) = F (X(k)) is then defined as
the control U(k) which must be applied at each time k = 0,1,...N so that J
is minimized. This formulation resembles traditional optimal control.
This was done intentionally because we can use the same interpretations of

CU and Cx to come up with suitable control algorithms. For example, if
Cy(U(k)) =1
(5-12)
Cy(X(k)) = 0

then we have a minimum time system. If

€, (U(K))

"

abs(U(k))
(5-13)

CX(X(k)) 0

then we will have a minimum energy system. Finally, even a linear
quadratic regulator problem can be formulated by

ut (k) R UCK)

€y (U(K))
(5-14)

€y (X(K)) = X*(k) Q X(K)

where R is a positive definite matrix and Q is a positive semidefinite
matrix.

The choice for representing the digital model now becomes apparent. The
optimal control law formulation presented by (5-11) is exactly the same

18

problem graph theorists refer to as the "optimal spanning tree" problem,
where CU is used to weight each of the edges and CX weights all of the

vertices in the graph. Already, there are well-defined algorithms to
solve this problem [7-8]. We can use these algorithms directly to find

F(X(k)).

The calculation of F(X(k)) can all be done off 1line. Once F(X(k)) is
known, it can be stored in a PROM. The optimal control can then be found
by addressing the PROM with the measured state X(k). This leads to an
extremely simple implementation of the control law.

5.1.4. Dimensionality.

This approach suffers from the "curse of dimensionality." For example,
suppose we have a system with three states, where each state is quantized

into 1024 = 2]0 levels. Then the capacity of the PROM needed to store the

control algorithm is (210)3 or roughly one billion words. This is clearly

too much memory to expend for the control of a relatively simple system.

This difficulty can be overcome by a grid embedding technique. Initially
the state space is divided into a rather course grid. When the state is
far from the origin, these large divisions are adequate. As the state is
driven toward the origin, however, greater accuracy is required. This is
achieved by mapping a small central region near the origin of the state
space into the structure of the original discrete configuration. The
process is continued until the desired accuracy is obtained.

This situation 1is depicted in Fig. 5-4. As the state moves into the
center sixteen cells, the quantization level is cut in half, which results
in the center 16 cells being mapped into the 64 cell structure of the
original system. Since the embedding process will not occur until the
state is within the specified central region, then the state must be
somewhere in the 64 smaller cells created after the embedding process.
So, at any time the controller needs to examine only 64 cells to derived
its control strategy; however, after each embedding the size of the cells
are cut by one-fourth. Thus the controller can achieve high precision
with a relatively small table.

The embedding process will provide sufficient precision, even with
relatively few cells in the state space. However, when the system is to
be represented by just a few cells, the non-linearities of the quatization
become significant. A way of modeling the non-linearities must be
developed. The digital model proposed in this paper describes these
non-linearities.

5.1.5 Implementation.

Suppose we wish to implement a controller for a second order system in
which each state is divided into 16 divisions, j.e., there are a total of

‘19

Figure 5-4.

s i«
T \ t
t L 1k
\ o
4
1 \ -
H 5
‘ IR
0 ‘N - o N’ ‘
Vo o T
R B !
1 [}
\x \ -
° \
Y \‘ i - o
* \ ! -
\ f
\ / °
! \ _

The Grid Embedding Technique

20

256 cells representing the entire state space. Embedding will take place
whenever the state is within the center 16 cells. Each time the embedding
process takes place, assume the quatitization levels are halved. Under
these assumptions the embedding process can be easily implemented in
hardware with shift registers.

To see this, examine Fig. 5-5. Both states are sampled and quantized to
10 bits of precision. The shift registers are set to pass the four most
significant bits to the PROM which stores the control law. As the state
is driven towards the center of the state space, the most significant bits

of X] and X2 are zeroed out. (If the A/D converters output numbers in

two's compliment format, then the most significant bits become either
zeros, for positive numbers, or ones, for negative numbers. 1In either
case the circuit could tell when the system is approaching the center
cells by exclusive-oring the most significant bits of x] and XZ') When

the two most significant bits of both X] and X2 are all zeros or ones,

then the Shifter Control Unit will instruct each register to shift right
one bit. That is, bits b1 - b4 of x1 and X2 are used to drive the PROM
instead of bits b0 - b3. This 1is equivalent to scaling each state
quatization level by one half. The shift register to the right of the
PROM will appropriately scale the input to the system. So, the grid
embedding process can be easily implemented using a simple shifting
technique.

It can be shown, [3], that the same control PROM can be used before and
after embedding. Thus, a PROM which contains 256 words is sufficient for
this controller. Also, the shifter control unit should be designed to
continously monitor all the bits coming out of the A/D converters. This
is needed for the following situation. Suppose a disturbance is
encountered which will drive the state outside the bounds of an embedded
grid. 1If the controller can detect this situation, it can expand the grid
(by shifting left) to an appropriate size to capture the disturbance, and
then procede as normal.

5.1.6. Non-Linear Systems.

In the development of this theory we explicitly assume that the system to
be control is linear. However, this is not necessary. We can, with only
a slight modification, use the theory on non-linear systems. The states
still can be discretized and the digital model found by tracing the
transition of the center of each cell. Furthermore, the optimal spanning
tree algorithm makes no assumption about the graph it is being applied
to. The only change which is necessary for non-linear systems exist in
the grid embedding technique. For the non-linear systems, a new control
law (PROM) may have to be switched in each time the embedding process is
done.

21

Hun

pIoH
1apiQ
0197

¢~

B

19)s
-16ay
Hys

ar

WOHd

|011U0)
1331)14s
133)s
-16ay
)
us . 0, dwes
< Toi/ 183P) [112y
13})s
-16ay
uopm v 1eap1 [(3ytx

Hardware Implementation

Figure 5-5.

22

5.1.7. Example.

This control algorithm has been applied to the following system, in which
the state x(t) is to be regulated to the zero state.

0.0 1.0 0
x(t) = x(t) + (t) (5-15)
0.0 -10.9 10.9
We choose:
T = 0.1 sec
6] = 2%/32 rad (5-16)
62 = 1.5 rad/sec

Yy = 1.25 volts
and impose the following bounds on the states and inputs:

Ix;l £ =« rad

y

Ix,| < 12 rad/sec : (5-17)

ol
lu] < 10 volts

the digital model for this system was derived, and using the "“optimal
spanning tree" algorithm with the following weights:

o
]

u(k)2
(5-18)
c

. = 20, (0% + x,(k)?)

the control law was developed. The embedding process was designed to
proceed whenever the system is in any of the 32 center cells.

Figure 6 illustrates the simulated runs of this digital control strategy.
For comparision, the trajectory for an optimal linear regulator using
continuous state feedback is included. The performance index used for the
continuous controller is given by

23

3= (i)l + 2x.|(t)2 + 2x2(t)2)dt (5-19)
0

which roughly approximates the weighting scheme used for the controller
derived from the digital model. Two strategies yield similar results.

A - Optimal Digitol Controller
B - Optimal Linear Regulator

ZOH—FKNOT

-4 + + + + —+ — — —

0 .5 1 1.5 2
8.25 .75 1.25 1.75

TIME (SECSD

Figure 5.6. Simulated System

24

5.2. User Manual for the Program "DTQD"

5.2.1, Introduction.

The program "DTQD" is an aid in developing controllers for discrete-time
quantized data (DTQD) systems.

"DTQD" is a menu-driven program with a hierarchial structure. It is
divided into six basic parts, each being described in the following
sections. A command level, the main menu, is used to access each of the
five other levels: 1initialization, pararmeter modification, display,
control law development, and simulation.

The program is coded in PL1. It was designed to be run on Honeywell 68-
DPS-2 MULTICS system computers, but without serious modifications could be
implemented on any system. The user need only type "DTQD" to execute the
program. The program starts out at the initialization sub-level and
proceeds to the command level after the job has been designated. From that
point on, the user has control and may go to any of the five sub-levels.

The status of the current "job" is monitored by five flags. When a flag is
Set it indicates that that part of the job has been developed. The five
flags designate whether or not a continuous-time and/or a discrete-time
model of the system exists, whether a quantized model exists, if a control
law has been developed, and whether or not a file containing a simulation
of the controlled system has been made.

During the run, the user may be asked to input three different types of
responses: a yes/no answer, a number from a multiple choice menu, and
numerical data. If a yes/no answer is required, the following are
acceptible answers: "y", "yes", or "n", "no". If a choice from a menu is
requested, only an integer is considered a proper response. Finally, when
inputting a numerical piece of data, only numbers, decimal points, and
minus signs are acceptible. 1In case of a mistake, MULTICS allows a "#"
sign to "erase" the previous character inputted, and a "@" sign to "erase"
the entire line.

5.2.2. Initialization.

The first menu displayed is the initialization menu. It gets the user to
open a data file. This may be a new file, an old file, or the user may
wish to take the data from an old file and copy it into a new file and work
Wwith the new file. The data file is referenced by a "job" name. This name
may be any one word with a maximum length of 50 characters, and is inputted
by the user. It may be any combination of numbers, letters, and
underscores; however, the first character must be a letter ("$" is
considered to be a letter) and the name may not contain blanks or periods
(.). The job name will also reference all other files made concerning the
job: the quantized data file, also called the next-state file, which
contains the coded version of how each state is affected by each input (See
section 5.2.4.13. for coding procedure), the control law, and the

25

simulation file. The initalization menu appears as follows:

1. Access an old job file

2. Create a new job file (init. menu)
3. Modify an old job file

b, Quit

5.2.2.1. Open an old file. If a "1" is entered, the user is prompted to
enter a job name. The data file job_name.DATA is accessed. If the flag
which monitors the existence of a quantized model is set, but a file
containing the model does not exist, the program proceeds to automatically
build the next state array. If, however, the quantized model does exist in
a file, that file is accessed in addition to the data file. Similarly, if
the control flag is set, the program accesses the file containing the
control law. After completing this process, the Main Menu appears and the
user 1s at the Command level.

5.2.2.2. Open a new file. The program prompts the user for a job name and
then a title for the data file. The title may consist of up to 70
characters. However, if it is made up of more than one word it needs to be
entered within quotation marks ("). The user is then sent to the
parameter modification level. (See section 5.2.4.) At that level the user
is prompted to enter any/all of the parameters concerning the model of the
system and the A/D converter. After the models have been bullt the user is
sent to the Command level.

5.2.2.3. Copying an old file into a new file. By entering a "3" the user
is able to access an old file, copy the data file from it into a new file,
and work with the new file. In this way the user may modify existing data
and yet not destroy the original data. The user must enter the job name Of
the old file and then a new name for the new file. The program then
proceeds as in case (1) above (accessing an old file) by building or
opening the files containing the quantized model and the control law if the
status flags are set.

5.2.2.4, Quit. If a "4" is entered it is assumed that the user does not
want to initialize a new job, and the user is sent to the command level.

5.2.3. Command Level.

The Command Level is primarily the "main menu" which consists of the
fecllowing options:

1. Initialize

2. Modify Data File

3. Print files

4, Develop Control Law

5. Simulate (main menu)
6. Quit

5.2.3.1. Initialize. This level allows the user to choose a different job

26

file to work with. (See section 5.2.2.) Thus, the user is essentially re-
executing the program. Before re-starting the initialization process, all
modifications to the current job are saved and the data file is closed.

5.2.3.2. Parameter modification. At this level the user is able to modify
any of the parameters in the data file: the continuous-time, discrete-
time, or quantized system parameters. (See section 5.2.4.)

5.2.3.3. Display. This response allows the user to examine other files
(See section 5.2.5.) The display level is entered, and the user can look
at the data in the job file as well as the next-state array, and/or the
control law., The status of the job, and a summary of the quantization
levels can also be examined.

5.2.3.4. Control law. This choice executes the control law development
level (See section 5.2.6.)

5.2.3.5. Simulate. This selection simulates the controlled system (See
section 5.2.7.)

5.2.3.6. Quit. This choice ends the program. If a quantized model of the
system exists for the job, the user can save this model in a file. The
status flag for the quantized model is not affected by this decision. If
the data is not saved, then the next time the job is accessed, the
quantized model will be automatically rebuilt instead of read in from the
file. Finally, all files are closed and the program is exited.

5.2.4, Parameter Modification.

This level may be accessed via the command level or by the initialization
level if a new job is created. The parameter modification level is made of
three sub-levels, each accessing even further sub-levels. The user may
enter or modify the continuous-time model for the system. The program can
then generate a discrete-time model or allow the model to be entered by the
user. Similarly, the quantized model may be generated or a file containing
the quantized model may be accessed.

When the continuous system is modified, the discrete and quantized models
are no longer valid and so their status flags are cleared. Similarly, the
control law and simulations can no longer be associated with the model and
their status flags are also cleared. This process is continued throughout
the program: when a model or file is modified, all models and files
generated from it are invalid and hence their status flags are cleared.

Upon entering this level, the following may be modified or created.

Title of the job file

. Continuous system parameters

Discrete system parameters (param menu)
Quantized system parameters

None of the above

m:wm.—*

27

5.2.4,1. Title. The user is prompted to enter a title., It can have a
length of up to 70 characters; however, if it is more than one word it must
be entered inside quotation marks (").

5.2.4.2. Continuous parameters. As soon as a continuous model of the
system is created or modified, the status flags for the discrete-time and
quantized models, the control law, and any simulations are cleared. If a
continuous system already exists, the user may choose the parameters which
need to be modified.

Number of states

Number of inputs

System matrix, A (param.2 menu)
Input matrix, B

811 of the above

. None of the above

[o2NNE S — R VTN \ G Il

This menu will continue to re-appear until a "6" is entered. If a
continuous system does not currently exist, this menu does not appear; it
is assumed that the user wishes to enter all of the parameters (i.e, that a
"S5 was entered).

5.2.4.3. Number of states. The user is asked to enter the number. It
must be an integer and have a value no larger than ten. Since the number of
states affects the dimensions of the system and input matricies, the user
is also prompted to enter all of the components of each of these matricies.
The above menu (param.2) is then re-displayed so that other changes may be
made if desired. ‘

5.2.4.4, Number of inputs. The number of inputs must be an integer. As
in the above case, a change in the number of inputs will cause a change 1in
the dimensions of the input matrix, B. For this reason, the user is then
automatically asked to enter the entire B matrix.

5.2.4.5. System matrix. The program prompts the user to enter the A
matrix. After entering all the components, the above menu (param.2) is
again displayed.

5.2.4.6. Input matrix. As in the above case, the program prompts the user
to enter each element of the input matrix, B.

5.2.4.7. Modify all. The user is prompted to enter all of the above
parameters in the order in which they appear in the menu param.2. After
entering the data, the menu is displayed, giving the user an opportunity to
re-modify any of the new data in case a mistake was made.

5.2.4.8. Modify none. If a"6" is entered it is assumed that the user has
completed all the desired modifications of the continuous-time system. The

user is returned to the (param) menu and can modify or create another model
of the system.

28

5.2.4.9. Discrete parameters. If the user wishes to modify or create the
discrete-time parameters, a "3" should be entered when the menu (param) is
displayed. Upon generating, creating, or modifying the discrete model, the
quantized model, control law, and simulation status flags are deleted for
the current job. If a continuous model of the system exists the user can:

1. Generate a discrete model from the continuous model
2. Modify the discrete model
3. Quit (param.3a menu)

If, however, a continuous model does not currently exist, the following
menu is displayed:

1. Create a continuous model first
2. Modify/Create a discrete model
3. Quit ~ (param.3b menu)

5.2.4,10, Discrete model generation. If a continuous - time model exists,
the user is asked to enter the time constant tau, and then the program will
automatically discretize the continuous model and display the new discrete-
time system and input matricies. If, on the other hand, a "1" is entered
when menu (param.3b) is displayed, the program will prompt the user for the
continuous - time parameters. Thus, the user is sent to another level, and
is then able to enter the continuous system.

5.2.4.11. Discrete model modification. A discrete-time model of the
system may be entered independently from the continuous model. Caution: If
this is done when the menu (param.3a) had been displayed, (i.e, when a
continuous system exists) the user will be making the continuous model
invalid since it will no longer represent the same system.

The user is asked to select the parameters to be modified.

Number of states

Number of inputs

Discrete system matrix (param.3.1 menu)
Discrete input matrix

A1l of the above

None of the above

O‘\U'\J:UJI.\)—‘

This menu is very similar to menu (param.2) for the continuous-time case;
thus, a description is omitted here.

5.2.4.12. Quit. This entry will cause the menu (param) to be displayed.
5.2.4.13. Quantized parameters. There are two methods of obtaining a
quantized model of the system. When a new model is generated or accessed,

the control law and simulation status flags are automatically cleared.

If a discrete model of the system exists, the user may generate a quantized
system from the discrete model. The following parameters of the A/D

29

-

converter must be entered: the number of quantization steps for each state,
the upper and lower voltage bounds for each state, the number of
quantization steps for each input, and the upper and lower voltage bounds
for each input. If, on the other hand, thne user does not want the
quantized system generated, a separate file which aliready contains a
quantized model of the system can be accessed. If a discrete model of the
system does exist and the user accesses this file, the discrete mocel may
no longer be valid.

If a discrete model does not exist, the user can create one or access a
separate file containing a quantized model of the system. If it is desired
to create a discrete model, the menu (param) appears. The user may tnen
input a "3" and begin to generate or create a discrete-time model. If the
user wishes to access a file containing the quantized system (i.e, a next-
state file containing the affects of each input on each state), the program
asks for the name of the data file.

After modifying, creating, or generating the quantized model of the system,
the user can have the next-state array displayed. (See section 5.2.5.3.)
The states and inputs are each coded. The codes are used throughout the
program and, more importantly, are used to represent the states and inputs
when printing out the next - state array, the control law, and cell status
array. The states and inputs are coded in the following manner: the
smallest possible state has a code of 1; the first state is increased to
its next possible value and then coded with a 2; the first state continues
to be incremented until it reaches its largest possible value minus one
step. Next, the second state is incremented by one step and the process is
repeated. The coding continues until all possible state combinations have
been coded. The procedure for coding the inputs is similar.

5.4.4,14. Example 1: Coding the states and inputs. Assume that the user
inputs the following A/D parameters:

number of states = 2;

number of inputs = 1

number of quantization steps for state 1 b
number of quantization steps for state 2 = 8

upper and lower voltage bounds for state 1 =4, -4
upper and lower voltage bounds for state 2 = 2, -2
number of quantization steps for the input = U4

upper and lower voltage bounds for the input 1, -1

Now, the program can code the states and inputs in the following manner:

number of state combinations = 4 x 8 = 32
the step size for state 1 = (4 - (-4)
the step size for state 2 = (2 - (-2)

number of input combinations = U4
the step size for the input = (1 - (-1)) / 4 = 0.5

) /U4 =
) /8

Thus, there are 32 state codes and 4 input codes.

30

The smallest possible state =j -U J; it has a state code of 1
-2

Increasing state 1 by 1 step size [-2 1; it has a state code of 2

A, -2 .
Similarly, the code for [O}= 3, 2J= 4 .
P ~2 -2
Note the case of 4 | is not included; the process codes the states from

-2
lower voltage level to the (upper voltage level - 1 step).

Next, the process_is repeated after first incrementing the second state by

one step. Thus ~4 has a code of 5, -2] has a code of 6 ...
-1.5 -1.5
The process continues until finally, [2 } has a code of 32.
1.5

“ <

The quantized model of the second order system may be thought of as a cell
plane, with first state along the horizontal axis and the second state
along the vertical axis. The two cell planes for this example (See Figure
2-1) graphically illustrate the discrete states and their codes. A similar
process is used to code the inputs.

5.2.4.15. Quit. This selection returns the user to the command level.
5.2.5. Display Level.
At this level the user may choose to have any of the following displayed:

Status of the job

Data file

Quantized data (next-state) file

Summary of quantization levels

Control Law (display menu)
. None of the above

o

O\kﬂ;r:w(\)—a

The above menu may vary depending on the validity of the files. For
example, if a control law does not exist yet for the job, choices 4 and 5
are omitted.

5.2.5.1. Check status. This option allows the user to see which
representations of the system are valid: the continuous-time, discrete-
time, and/or the quantized model. Also, two checks are made to see whether
or not a control law exists for the job and if a file containing simulation
data exists.

5.2.5.2. Data file. This choice tells the program to display the
continuous-time, discrete-time, and the A/D converter parameters. (Note:
at the present time this option does not work.)

5.2.5.3 Next-state array. The next-state array is two dimensional, and
displayed such that the code for each state is on the vertical "axis" and

31

=4 -2 0 2
1.5 1.5 1.5 1.5
-4 =2 0 2
1.0 1.0 1.0 1.0
-4 -2 0 2
0.5 0.5 0.5 0.5
-4 =2 0 2
0 0 0 0
-u -2 0 2
~0.5 ~0.5 ~0.5 -0.5
-4 ~2 2
-1 =1 -1 =1
ot! -2 0 2
~-1.5 -1.5 ~1.5 -1.5
-4 -2 0 2
-2 -2 -2 -2
Crid 1
Figure 5-7. Quantization Grids

32

29 30 31 32
22 23 24 25
18 19 20 21
17 18 19 20
13 Th 15 16
9 10 11 12
5 6 7 8
1 2 3 4
Grid 2

the code for each input is printed along the horizontal. Lying within the
matrix are the codes representing the states to which the corresponding
state would move, given the corresponding input. The coding procedure is
discussed is section 5.2.4.13. If the code is a zero (0), it implies that
the given state is saturated or leads to a uncontrollable cell., An
uncontrollable cell is one which leads to a saturated state for all
possible inputs. After printing the next state array for ten states the
user 1s given the option to continue displaying the array. This question
is asked after every ten states.

5.2.5.4. Example 2: Format of next-state arrays. The next state array is
a two-dimensiconal array of dimension number of state combinations by number
of input combinations. If the user enters the A/D parameters as described
in Example 1, the first part of the quantized data array could appear as
follows:

1 9 9 17 T
2 10 10 18 18
3 0 0 0 0
y 0

12 12 20 2

32 17 7 9 9

In this example, as in example 1 of section 5.2.4.14., there are 32 state
combinations and 4 input combinations. The first row of the array tells
the user that if the current state, x(k), has a code of 1 and an input is
applied which has a code of 1 or 2, then the next state, x(k+1), will have
a state code of 9. Similarly, if an input is applied whose code is 3 or 14,
the next state's code will be 17. Any input will cause the third cell to
Saturate or become uncontrollable.

5.2.5.5. Check quantization level. This option allows the user to make
some crude checks regarding the quantization. Two basic checks are done.
The first is a summary of the cells moved from each state with a zero
input. The number of cells moved in each direction and the total number of
cells moved are computed and displayed.

The second part of the report checks the number of cells moved from the
Zero state for each input at its smallest value. If the smallest value
results in saturation, the smallest value which results in a non-saturated
next state is used. The results are reported for each input. In this
part, unlike the first, the cell movement is described by an absolute and
average value. The absolute value represents the number of cells moved in
the given direction, while the average value is the ratio of the number of
cells moved to the number of steps between the smallest non saturating
input and the zero input. These absolute and average values are recorded,
as in the first part, for cell movements in each direction as well as the
total number of cells moved. (See Example in section 5.2.5.6.)

After displaying the summary, the user has the option to have the

33

saturation edge array printed. This array has the same matrix format as
the next state array, but elements are displayed as either an "F" or a "T."
A "T" is displayed if the cell leads to saturation or to an uncontrcllable
cell when the corresponding input is applied. For instance, if the
beginning of the array appears as:

=W N -
)3 3
Mmoo
a1 mm
Mo om o

it implies that any input will cause the state whose code is 3 to lead to
saturation or to an uncontrollable cell. This result also occurs if an
input which has a code of 1 is applied to state code 2.

If some of the cells are uncontrollable, the user has the opportunity to
print out the uncontrollable cell array. This array contains the codes of
the cells which are uncontrollable.

5.2.5.6. Example 3: Calculation of cell movement. Using the second cell
plane, Figure 5-7, assume that the state with a code of 10 moves to the
state coded by 19 when the zero input is applied. The movement in tne
direction of the first state (horizontal movement) is 1 cell and the
movement in the second direction is 2 cells. Thus, the total number of
cells moved is 1 + 2 = 3 cells.

From Example 1 of 5.2.4,14., the zero state has a code of 19, and the zero
input has a code of 3. Assume that the smallest input (-1 volts) leads
the zero state into saturation but the next smallest input (-0.5 volts)
leads the zero state to the state whose code is 15. The number of steps
between the zero input and the minimum non-saturating input is one, since
there is only one step between 0 and -0.5. The absolute movement then, is
0 cells in the direction of state 1 and is 1 cell in the direction of state
2. The average movement is 0/1 = 0 cells in direction 1, and 1/1 = 1 in the
second direction.

5.2.5.7 Control law file display. The control law file for the job is
printed. The display is an array giving the appropriate input code for
every possible state combination to obtain the desired controller. (See
section 5.2.4.14. for an explaination and example of the coding process.)

5.2.5.8 Quit. This choice causes the program to exit the display level
and return to the command level.

5.2.6. Control Law Development.

Upon entering this level, the user is asked to enter the type of cost
function to be used in developing the control law.

1. Minimum Time
2. Quadratic

34

Minimum Control Effort

Custom Cost Function (control menu)
None -~ Access a control law file

. None of the above

(€20 6) IR = PV

5.2.6.1. Minimum time. The program attempts to build a control law which
satisfies the requirements of a minimum time cost function. Thus, the
controller will be one such that the control input will take the current
state to the origin in the least amount of time,

5.2.6.2. Quadratic. If this cost function is chosen the user is asked to
enter the state and input cost matricies (the "Q" and "R" matricies). These
weighting matricies are assumed to be diagonal, so only the diagonal
elements are needed.

5.2.6.3. Minimum control effort. As in the case above, the user is asked
to enter the input weighting matrix ("R"). Again, this is assumed to be a
diagonal matrix.

5.2.6.4. Custom cost function. If none of the above choices are
desirable, the user may write a custom cost function. To do this, a
procedure should be written in PL1 and named custom cost function. The
discrete state and input arrays are passed to custom_ cost function and the
procedure should compute and return the cost. All three parameters need to
be declared as floating arrays/numbers. o

5.2.6.5. Access a file. The user may choose to implement an already-
developed control law by entering the name of the file so that the program
can access it.

5.2.6.6. Quit. This is the correct choice if the user does not wish to
build a control law, but does want to return to the command level.

After choosing the cost function (if a "6" was not chosen), the user is
prompted to enter the center and edge cell tolerances. The center cell
tolerance is used by the program to determine the tolerant region which
surrounds the origin. Within this tolerant region, the program checks to
see if any cells exist which can not reach the origin with any of the
possible inputs, yet other cells which are also unable to get to the origin
are able to reach them. These cells are called root cells. So, if a
center cell tolerance of 1 is entered for the system discussed in Example
1, the program would check to see if any of the following cells were root
cells: 14, 15, 16, 18, 20, 22, 23, and 24,

The edge cell tolerance is used to compensate for edge irregularities. If
this tolerance is input to be 1, for the system described in 5.2.4.14.,
the edge cells would be: 1 - 4, 5,8, 9, 12, 13, 16, 17, 20, 21, 24, 25,
28, and 29 - 32. Both the center and edge cell tolerances must be entered
as integers.

The program continues by attemting to build the cell status array; it finds

35

all root cells and the cells which are reachable to them. If successful,
the tolerant region is built. If the tolerant region control law can be

constructed, the program then builds the control law and sets the control
law status flag.

If the status flag for the control law is set, the user can have the cell
status array and control law printed. The cell status array is an array
which codes each state in the following manner:

0: Unmarked cell

1: Cell is uncontrollable

2: Cell is in the edge tolerant region

3: Root Cell - the zero state cell

4: (Cells which can reach the Root cell coded with a 3
5: Root Cell

6: Cells which can reach the root cell coded with a 5
7: Root cell

8:

Cells which can reach the root cell coded with a 7

i: Root Cell
i+1: Cells which can the root cell coded with an "i"

The control law is printed out just as in the Display level (See section
5.2.5.7.) The appropriate input code which has been found to satisfy the
chosen cost function is printed for each state code.

5.2.7. Simulation Level.

After the control law has been developed for the job, the user may wish to
simulate the controlled system. To simulate the system, the program calls
an IMSL routine, DVERK, which solves the system of differntial equations or
OWN SYS TO SIM if a system other than the one in the job file is to be
simulated.” A simulation of the system may only be obtained after the

parameters for the quantized system have been entered and a control law has
been developed.

Upon entering this level, the following menu or question is displayed,
depending whether or not a simulation file exists for the current job:

If a simulation does not exist:
Would you like to simulate the system?

If a simulation file does exist:
Would you like to:

1. Modify the simulated data file
2. Plot the existing simulated data (Sim. menu)
3. Quit

5.2.7.1. Simulating. This response lets the user start the simulation

36

process. The program then gives the user various parameters needed for the
simulation. First, the user can have any continuous model of the system,
not necessarily the one in the data file, be simulated. This is desirable
if the user wants to see how the control law works on slightly permutated
systems. With this option, the user can take a nonlinear system, find a
linear representation of it and use DTQD to develop the control law, and
then simulate the nonlinear model using this control law. If this is
desired, the user must write a PL1 routine, and name it own sys to sim.plt.
Note: the states to be accessed by the control law must be the first states
in the system of equations. This limitation implies that the number of
equations in own sys to sim be equal or greater than the number of states
used in the development of the job file. The procedure own_sys to_ sim
should have the following parameters:

num_of equations - fixed binary (35) - the number of simultaneous
differential equations to be solved (i.e. the number of states);

time - float binary - the current time; ’

time_end - float binary - the time after doing subroutine;

state - (10) float binary ~ the state array upon entering routine;

state after - (10) flocat binary - the state array after subroutine;

time;Tnit ~ float binary - the initial time for the entire simulation;

time_end - float binary - the final time of the simulation;

It should also call a subroutine which will determine the next state.
(e.g. DVERK) Whether or not the user accesses a separate file, the user
is asked to enter the number of steps per time constant. This number
should be an integer and not zero. At each step the program will call
IMSL_DVERK or OWN_SYS TO SIM and have the next state determined. In this
way the continuous-time model is simulated and the user can observe what is
happening between sampling intervals. The number of embedding levels must
be entered next. This value should also be a integer. The number of
embedding levels is the number of times the controller is allowed to "zoom
in." A zero (0) should be entered if the user does not want to access any
other levels. If an integer other than zero is entered, the user is asked
to enter the scaling factor, This value should be greater than zero and
less than or equal to one. The program progresses to a different region,
J, whenever the state is less than (the upper bound for the state) x (scale
factor)l, or greater than (the lower bound for the state) x (scale
factor)J. After the region is determined, the control law is accessed such
that each of the control law inputs are also "scaled down" into the
appropriate region. (See section 5.2.7.2. for an example)

Next, the user can have the simulated data displayed while running. A
response of "yes" causes all the simulation data, time, states, and control
inputs, to be printed on the screen. If at any time during the simulation
one or more of the states becomes greater than its upper bound or less than
its lower bound, the simulation is ended and a warning appears to let the
user know that system has gone unstable. Whether the simulation is
successful or not, the user can save the simulated data in a file and plot
the data. If the data is saved in a file, it may opened later to study the
data. If a file is made, the simulation status flag is set.

37

5.2.7.2. Example 4: Recursion levels and scaling factor. Using the A/D
parameters of Examples 1 and 2, recall that in the previous examples, tne
voltage bounds for each state were as follows:

upper and lower voltage bounds for state 1
upper and lower voltage bounds for state 2

nou

N I
ot

n =

If the user enters "3" for the number of recursion levels, and 0.1 fcr the
step size, the program will "zoom in" whenever the first state becomes
smaller in magnitude than (0.1 x U4) = 0.4, or when the second state becomes
smaller in magnitude than (0.1 x 2) = 0.2. If the states become smaller in
magnitude than 0.04 or 0.02, respectively, the controller will zoom in a
second time. If state 1 had a value of 0.3, smaller than 0.4 but greater
than 0.04, the state would be at the first level. The control law would Dbe
accesssed as if the state had a value or 3 instead of 0.3, the control
input would be found, and then scaled down to size. Thus, if the control

law listed 5 volts as the proper input for a state of 3, the input that
would be used would be 0.5 volts.

5.2.7.3 Plotting. If a simulation file exists for the job, a plot can be
made immediately after entering the simulation level. Otherwise, the plot
can pe made following a simulation. Several parameters must be entered if
the user wishes to make a plot. The user can make several plots on top of
one another. Also, any state, any input, or the time can be plotted on
either axis. The user may have any ascii keyboard character symbolize each
data point or may opt to have no symbols at all. If symbols are used, the
user may or may not choose to have them connected by vectors. In additiou,
the user may have the graph made with tick marks, a dotted grid, or a solid
grid. Also, a title and axis labels may be entered. These labels have a
maximum length of 25 characters. Finally, the user may have the progran

automatically scale the plot or opt to choose and enter the upper and lower
bounds for each axis.

5.2.7.4. Quit. The user returns to the command level if this choice is
selected. .

5.2.8. An Overall Example.

As an example, consider a d.c. servomotor. To find a control for the
motor, the program DTQD could be implemented as follows. First, a linear
model of the system must be developed to represent the motor. For this
example, we will use the following, second order system as the model:

X = o) = o 1o} + Jo] u) (5-20)
6 (t) o 206 (r) 1

DTQD can now be used to determine the discrete-time modael using the above
model and a chosen time constant t. (The following pages contain the

actual program run.) With 1t = 0.25 sec™!, the discrete-time model was
found to be:

38

x(k+1) = [1.00 o0.20][e 0 | + Toos]uw (5-21)
0.00 0.61]] & (k+1) 0.39

From this model, the user can make a quick estimate of how state 1 and 2
are related by looking at the state trajectories. Assume that the voltage
bounds are +4 volts for each state and 10 volts for the input.

If x(0) = e(ofl - 0], then from (5-21) x(1) = [0.80 . The initial cell

o(1) y 2.4

moved 0.8 cells in the direction of the first state and 1.6 cells in the
direction of the second state (a 1:2 ratio). Therefore, an estimate for an
average cell movement can be made. Using the 1:2 ratio as a guide and the
voltage limits, an estimate can be made regarding the number of steps
needed for quantizing the state and input.

Using 16 steps for the first state, 8 steps for the second and 8 for the
input, DTQD can be implemented to determine the quantized model. Next, the
user may opt to have DTQD breifly summarize the quantization and cell
movement. From this summary, the user can determine whether of not the
initial estimate for the number of steps was satisfactory.

After the user is satisfied with the quantized model, a control law for the
system can be developed. In this example a minimum time cost function was
chosen. Finally, the system may be simulated.

The following pages contain the program run for this example. An
exclaimation point (!) before a word or number implies that the entry was
input by the user.

' DTAaD
Would you Llike to :

- 1. Access an cld:job file
2. Create 3 new job file
3. Modify an old job fil
4. Return to Main Menu

o

Please choose one of the abecve => 1t 2

Enter name 0of the new job file => ! gervo motor

Enter a title for the data file

Note: Quotes ares required 1f more than one word is used
This ’ i

is an EXAvPLE"

Which of the following would you like to modify/create?

1. Title of the job file
2. fContinuous system pirameters

39

3. Discrete system parameters
4, Quantized system parameters
S. None of the above

Please choosa one => ! 2

Enter number of states => ! 2

Fnter number of inputs => ! 1

Enter values for the A matrix
A (’, 1Yy => v 0
A C 1., 2) => ' 1
A (2, 1) => 1 0
A 2. 2) => 1V =2

Enter values for the 8 matrix
3 (1, 1) => ' 0
3 (2, 1)y => ! 1

Which parameter(s) would you Llike to change?

Number of states
NMumber of inputs
System matrix., A
Input matrix, B
ALl cf the above
Yone of the abhove

1
2
3
4
S
6
Please choose one => ! 4

Which o0¢ the following would ycu Like to modify/create?

1. Title of the job file
Continuous System parameters
Discrete system oarameters
Quantized system parameters
Mone of the above

LN SN

Please choose one => ! 3

A coantinuous model exists, woulc you Llike to:

1. Generate 3 discrete model from the continucus

2. Enter a new discrete system
30 1U1t

System

Please chonse one => ! 1

Enter tau =>! 0,25

oI “ATRIX =

1.7170nN2NNe+N00 1.967346453e~C01
0.3117191000%2%e+1090 6.76530674e~0C01
LASNDA MATRIX =

5.3265326%e-1N02

3.934603246e=7101

40

Ahich of the following would you Like to modify/create?

Title of the job file
Continuous system parameters
Piscrete system parameters
luantized system narameters
Norne of the above

SN
s o 8 8 o

Please choose one => ! §

1) Initialize

2) Modify Data File

3) ®rint Files

4) 3yild Control Law

S) Simulate

A) Quit

Enter chojce ==> 1 6

r 15:32 2.5693 132

DTAQN

Would you Llike to :

1. Access an old job file
2. Create a3 new job file
3. Modify an old job file
4, Return to Main Menu

Please choose one of the above => 1 1
Enter the job name => ! servo_mctor
itle of this data file is:
This is an EXAMPLE
is the correct file? !y

The current status of this job is:

A continuous systam exists
A discrete system exists

1) Initialize .

2) Mogdify Data File

3) Print Files

4) 3yild Control Law

5) Simulate

6) Quit

Enter choice ==> | 2

Which of the following would you Llike to modify/create?

Title of the jot file
fontinuous system parameters
Discrete system parameters
Quantized system parameters
None of the above

[V, PR USTAN Y
e ¢ o &

Please choose onre => ! 4

Wauld you like to ge

nerate a quantized system
from the di e Yy

screte system? =>

41

Ent t mbar of
number

numher

e 1
nunxy

r e nNnu
or tate
or tate
Enter the uoper and

for state number
for state number

€nter the number of
for input number

Enter

the upoer and
for

YWould you like the next state file built!

Building xt
Would you like the

inout nNnumber.

quantizaticn steps
1 => 1 8§
2 => 1 4
lower voltace bounds (u, 1)
1 => 1V 4,~4
2 => 1 b4,=4
quantizaticr steos
1 => 1 4
lower voltage bounds (u, U)
1 => ' 1C,-10
Y
te file) .
xt state file printed? => t 1

Which of the following would you like to modify/create?

Ssystem parameters

=> 15

1. Title of the job file
?2e Continuous system parameters
3. DNiscrete
4, Quantized system parameters
Se Mone of the above
©lease choose one

1) Initialize i

2) "odify Data File

3) 2rint Files

4) 8uild Control Law

5) Simutate

6) Quit

Enter choice ==> '

the following would you like printed?

next state file

Which of

1. Status of the job

2. Data file for the job
3. Quantized data file =~
4, Auantizati

S. ‘fone of the above
Eater choice Vo4

Woul il you Like

Mumber of controllable
Total numbher of cells

Number
0 1

1 24 7
2 15 16
MNymhar

num] 1
g8 23

f
d
on level check
e
=>
to check the

of cells moved

quantizatior leyel 7?2 ! vy

cells =

NN

32
3

in each direction

of cells mnved total

42

Inout Inout Num Total Cells Cells Moved

Status Input Movec . in
Steps Abs Avq1 o Dir Abs Avg
1 max unsat . 2 of ; 0 0.00
2 2 1.00
would you like the saturated edce array printed? ''n

Which of the following would you like printed?
Status of the job

1.

2. Data file for the job .
3. Quantized data file = next state file
4, Auantization level check

5. None of the above

Enter choice => ' §

1) Initialize

2) ﬂoi1fy Data File

3) Print Files

4) Build Control Law

S) Simulate

6) Quit

£

ntar choice ==> !

N

Which of the following would you like to modify/create?

1. Title of the job file

2e Continuous system parameters
3. Discrete system parameters
b4, Quantized system parameters
S. None of the above

Please choose one => ! 4.

A quantized system currently exists
Do you still wish to modify the quantized system? =>

~

Would you like to generate a quantized system

from the d1screte system? => ! vy
Enter the number of auantlzat1on steps
for state number 1 => 1 1¢
for state number => t 8
"Enter the upper and lower voltagce bounds (u, L)
for state number 1 => V' 4,~4
for state number 2 => v 4,-4
Enter the number of cuantization steps
for input numter 1 =>1 28
Enter the upoer and lower voltace bounds (u, L)
for input number 1 => 1 1(,~-1C
Would you Llike the next state file ilt! y
Building next state file . .
Would you Like the next state file printed? => ! y

43

—ONMINOMN000O
00 ©C 00 60 00 60 00 00 00 O~

OV OO0
NC OO O PP

OO O N\IMFTUVOM
S Nnnnnnnin

OM N0 00O«
M MMM MM ST

QOMNCOO—NIMT
NN

OO —OIMFNON 00

QCCOoOOO00000o

>
OO0 OoOOCOOCOOO-:
A

[+ X3
—NIMINO000O o
-— L

o]

x

— M-I O—NIMNM T
OO~ OO ONON OO 00 00 00

2N O™ 00 OO R 00
PPN 0000

OO O NMOO O
Ualialielioh ofle BENES g Vol Ty

ANM PO MNOM TN
NI T MMM

WO OOMNCOo
NN e

OO =M ONoCOn
T re e

COOCOCOO

2N
OO0 OoOO00O00CO-"
A

e
AN VOMN00 O v
e eercrereenN L
o
x

NOMNOOO NN
0000 00O ONO~ONOn

O ONIMTWNON 00
ON NP ISP -

NN OMNO O e
VINININININININNO O

O 0O Qe 0NN N
MINMIMINISNE ST ST ST ST

O NMTNOMN 00
AN

Q= NSO 000
NN NN NN

MITNONCOO N
e

>
COOO0O00QOO0O-"

A
n

o-
OISO 0NO O
NI NN L
O
x

OO O — NNt
o000 0O 0000
Ll ol kol o

OGN0 0
- 00 00 00 00 00 00 00 00 00

NMINONO OO
OO OO 00O

OO M INO
A A A Tal7alValValvalvalval

C e OMTINON 000N
MM MMM

O OO T 0IMN
MM e NI

M3 O IMTINON
-

b
OCOO0O0O000O0-
A

«-
LA s A TV T o Te N I 1}
MMM MM MST L
o)
=

INOMNOO O NN
OOO0OCO
Aol el andh sed mall sl sl sl sl ol

O Cr—OIM N0 N0
<o 0000000

MITNON 00O~
NN N A= - 00 0000

NOOO O NN NO
VNN O O OO OO0

CeAIMTNOMNOCO
A2 ECA RN SN 45 St g Vol

SO0 O 0OmM
NIV N

OO e IMITINON
Lokl ok ol S o

>

[oleloleolelaalel Lty

N
[}

o
—ONMINOMNN0CO @

R A 25 X S SX R IVl &

O
¥

O~
-
—

99
100

M3
(o] o]

)
NONO

«—0J
[7alVal

[V)t
MM

oo
—

0N
[ValVal

44

0OON Oe—NIMIFIN
—r— NN
Ll el ol ol ol e

=0 PN OR 00
oC oCccooo
Lol el ol ok o o

nNO M~OONOenN
0000 00 DOC ONONON

O O~ M FIN0
Vol A N N NN NN

M~F N O 00O
(Yol alVaRTalValValVotVe)

O 00 OO0
LALMN SRS X LN SN o

O~ MO
(S LAV N VR oV g VYoV T o N7 oV

>

NN ONOONO -
-

A

"

(413
M N OO O o
[Talalalal7a ¥ 7al7atVe W
O
=

NOMN-00 O+ NO MO0
NOUA e
A2l nad . ol el X S

CCO—NOOO NI
OO0 0o 0oCo
Lol ol R o -t

MINONMGT N O
OO~ O~ O~ 00 0Q 00 00 00 00

MOOONONON OO
PP 000 \NONO OO

—ANMST OO ONIMT
OO OO S NI NN

FNOM-MMTINON N
N F MMM MMM

COO—NOONOn
NOAIMM — =N

>

NMFNO~NIM SN -
—r e
A
"

[X3
—ANMSETINONOCO o
OO0 OO OO OON L

(o]

x

O~-UMITNON00
[ANIANT QN T QNI VT NT NTNTN
Ak anl ok ol ok T o

NNOMN00 Qe-NO
COCAO0O v
Lok ad ok ol b R

WO O—NMFNO0O
Lol ST0 o Yo Ne Vo No Yo

= ONM N OGO O
[N S N AT NPt

Lal oo efo N an R NT Vo RCS
NN ININ O O000O0

OO OIM SN0 N0
MT SIS

MO 00O~y
NNNIN NN MMM

>

O 0O =M N -
Lkl ol ol ot

A

"

[X3
—AMNONN0O o
[T N N NN NN

o

=

olalelslalalele]ole)]

SO0 ONO M
Aanh al oad sudl oud oud aNT o NT SN T V]
Lol ol el e o e

0O O NMFINON
(glelelelelelslele)]
Lad ot ol ol ol o o

ANMINOMO0 O
00 & 0 0V B0 00 00O BU O LN

WINOMNOO Cr-tum g
NONOONOO M-I

OO NIMFINOR 00
SFninnnnnnin

MM O 00NC N
MMM T

>

MO O—NMFT N O

NN NN
A
"

o
—AMITNONCOO ©
0000 0000 00 0000000 O™ L.

O
=

CO0COoOoDOOQ

N0 N COWNO N0
NN e~
T

VOO NCOONC —
OO0~ v~— Ooo0Co
Lt ad el 2% o v

CIMI N COCONO
oo OO
e

N0 000N OIS IN
P~ - 00 00 00 00 00

(ol ol o QVI A RN JVeT . o N
W00 0000000

MINOMNOONO e
A A A i L8 J VoY VaTVeY

>

P00 C e~ (M F D =

NONMM MMM Y
A
"

[X3
—ONMFNOMNONO o
[e Yot Yo N0 ¥e NoNo Vo Na WS

«— O
=

elalelnle]

[ed @l oV o]
L VI ANTANT oV}
T T

NM TN NO
COOQO
Lt X o

MO
covou
Lot and ok ool ol

OO0 O
©C00 00 00 O~

OIS
[and At Al SN

MTWINO M
["alial7alVal’l

NOOONO
MMMST 3

—OIMg N
[e/e]o/ele]
e

45

[o]]l

2O -0
[aVT V] aNY o N1 p)
L 2l and sndl aud and

~o0 Qe
[@laslen] g oo

— -

[~ ol o8 wnl o
OO0 —
Laall aal ol oulh od

— UM SN
[o2¥ e No Yoo

YO OO
[N N NS

[LeXo N an R o o¥]
["allal alled e}

NPT NO -~

T T

oroNnoO
QOCCr
—vere—0

[elolalaleleNelaleln)

(elalolaleiaNololele)

OO0 O O 0N
- e NN
o [ook ol ek ol oudh il g

NOO O™ SN0
- 0OV VOO
- e e

O ONMTIN O M- 0Th
O 00000000 6Q 00000

OOON0ON O =M
0 OOVON NP

T O =M S N0
OO N NN

>

MOMINON OO =

T SEMMNM N NS
A
L

o-
—ANMIFINON OO o
Pk el ek kol ol ol VIR SH
—reree e O

x

[alolelalelelelo]

[winlele/ elelele)

M~HINOM 000
NN
e

NCONO—NOO
OO
Lt kol ol ol oo

Oe—=IMT N0
(oY e Yo Yo N o o0

FWNOMNOONOC
P N N A N

WO O—NMTO
NN 00000

—ONM N0 00
NN TN T

—OIMGNON 00
NN Ny
Lot el el and ol ool g

5

job file
=>

ontinuous system parameters

Discrete s
Quantize

ystem parameters
above

following would you Like to modify/create?
ystem parameters

d s
choose2 ane

Title of the

C
None of the

WAich of the

Pleasae

x
L1 L)
-
R ad
W -
C
mun L
Gve o
N = C
-0 QO Q
- O
o > L]

=N bt T -
Pom C ~— D
T - e
COoOw 3= 3
=T a mounce

P tala R atatael

« NM SN0

46

Which of the following would ycu like printed?

Enter choice

3. Quantized data file - next state file
4, Quantization level check
S. Mone of the above

Enter choice => ! 4
Would you like to check the quantization level 7?2 ! vy
Numbher of contraollable cells = 128
Total numbar of cells = 128
Mumber of cells moved in each direction
Dir N 1 2
1 48 60 14
2 45 61 15
Number of cells moved total
num 0 1 2
16 62 15 29
“Input Inout Num Total Cells Cells Moved
Status Input Movecd in
Steps Abs Avg Dir Abs Avg
1 max unsat 4 S 1.25
1 1 0.25
2 4 1.00

Would you Like the saturated ecgce array printed? ! n

Which of the following would you like printed?

1. Status of the job

2. Data file for the job .
2. Quantized data f1le - next state file
4, Quantization level check

S. Yone of the above

Enter choice => ! §

1Y Initialize .

2) YModify Data File

3) Print Files

4) Byitd Control Law

5) Simulate

6) AAuit

Enter choice ==> t 4

Would you Llike to build the control law file? ! vy

Which type of cost function woulc you like to use ?

1) “inimum Time
2) Quadratic
3) Yinimum Control Effort
4) Custom Cost Function (use procedure custom cost funct1o .ol
5) None - Would like to access a control law Fil
A) Ncne of the abhove
Please choose one => 't 1
Fnter the center ¢coll tolerance => ! 2

47

Enter

Tree

the edqge cell tolerance

Sucessfully built tolerant

ABuilding control

law

=> ! 2

sucessfully completed

regqion control law

Woul 3 you

Would you

Control

AN D00 O UL BN~ O 20 N0 BN 2OV NN I D00 NN B WA= 00NN NN -

VTN U &S SRS EW WWWNWWMWWNNNNNNNNNNA—S_|-l._l_l J S QU YUY

like the cell status array orinted ?

like the control law printed? => ! y

Law:

20 -0 NS ~JOMNININI NNINHAN N OWU JOUNI00 V100 NN NININ W N OO NN O NN AA wvub\:mommm&md\m

48

.

n

NN A OO O DN e e e 0NN OINONS v~ N e e IR N AN N NN - e = e e e e e DDA NN NP o=

TGO O NMINORM00 O ANMIINOMNGCO O NMINONOOC N MENONC O S NI N0 000N C NN F N0 0C O O v
NN NAO 0000 OO0 OP AR P A N0C 00 6C 00 0CC G 0000000 O 0N 0 00000 OO O OO O OO0 T v — v “— I

T A T A T T e T T e e T e

49

File

ol Law

Enter choice == 15

Would you Llike to simulate the system? => | y

Would you Llike to simulate:

1. The continuous system in the job
2. A continuous system in another f

.

file
ile

Please choose one => ! 1

Enter number of steps per time ccnstant => ! §

Enter the number of recursion levels => 1 3

Enter the scaling factor => ! 0.2
Enter initial state

initial state => 3
. initial

1 !
state 2 => 1 3
=>

Enter initial time

o

Enter final time => ! 10

Would you like the simulation printed while running => !

Simulating system
Would you like to save the simulated data in a file? =>
Would you Like to plot the simulated data? => ! y
Would you Like multiple oloté on one graph? ! n
What would you like to plot on the y axis?
1« A state
2. An input
2. Time

Please choose one => ! 1

Which state do you wish to plot cn the y axis? | 1

What would you like to plot on the x axis?

1. A state

2e An 1nput

3. Time

Please choose one => t 3

Would you like a symbol to represent each data point? =>

The graph will have tick marks, te automatically scaled.,
and have no labels

Would you like to change any of these default options? =
50

>

n

n

~ w
n w v w

ol
©n

gular Displacement (rad)
o n -

)
[
wn

An

! 3 S 7 9
4 L] 8 19

Time (sec)

[}
~N

Would you like to plot the simulated data? => ! p

1) Initialize

2) Modify Data File

3) Print Files

4) 3uild Control Law

S) Simulate

6) Quit -
Enter choice ==> 1 4

Would you like to save the quantized state file? =>

r 14:36 0.070 0

51

R

n

5.3. Modelling the Elevation Stabilization System

5.3.1. 1Introduction.

The following sections describe the process of modelling the elevation
stabilization system of the M-60 tank and determining the parameters needed
to implement the controller design program, "DTQD."

The first step in the process involved modelling the gun and hydraulic
sServo system to obtain the open loop transfer function. The models were
simplified to develop three representations of the system: two first order
approximations, one with the trunnion damping modelled as viscous friction
and the other with it modelled as coulomb friction, and a third order
approximation.

In modelling the system, several assumptions were made. First, the gun was
considered to have only a single degree of freedom, and the gunner was not
included as part of this model. It was later assumed that because the
distance between the trunnion and the mass center of the gun was relatively
small compared to the length of the gun, for small angular velocities the
velocity and acceleration of the mass center and trunnion could be
considered equal. In linearizing the gun model, a first order Taylor
series approximation was done. The nominal values for the angular velocity
of the gun and hull acceleration was considered to be zero. Finally, the
model of the fluid flow relationship in the hydraulic system was taken
directly from manufacturer specifications.

Using the program "DTQD," the control law was developed for the first order
system in which the trunnion damping was modelled as viscous friction. The
three models of the system were then simulated using this control law.

5.3.2. Modelling the gun.

5.3.2.1. Gun Kinematics. From the dimensions of the gun, the kinematics
could be analyzed. (See Figure 5-8) The relationship between all the
necessary "angles" and "sides" were determined using some simple
trigonemetric identities.

The angle © can be expressed in terms of the length of the actuator % using
the law of cosines.

c = sqrt [(4.5)2%2 + (14.1)2] = 14.8 (5-22)
£2 = (38.28)2 + (14.8)2 - 2(38.28)(14.8)cos0 (5-23)
22 - (38.28)% =~ (14.8)°
Thus, cos0 = 2(38.28)(14.8) (5-24)

The angle ¢ can be found in terms of @ and ¢ using the law of sines:

sin y = (sine)(14.8/9) (5-25)

52

b
38.4 |y

!
f
&<
I
|
>
<
!
|
!
|

4.5

Figure 5-8. Model for deriving kinematics of gun

i,
I
h,
/et
i,

Figure 5-9. Model for deriving dynamics of gun

53

Finally, the angle ¢ can be determined in terms of G as follows:
a = arctan [U4.5/14.1] = 0.309 rad = 17.7° (5-26)
=180 -0- a - 90 = (1.26 - @) rad = (72.3° - 0°) (5-27)

5.3.2.2. Gun Dynamics. The gun is treated as a rigid beam supported at the
trunnion, and considered to have a single degree of freedom. To formulate
the dynamic equations of the gun, define three coordinate systems: "H", the
coordinate system fixed in the hull of the tank; "B", the body fixed
system with the coordinates being the principal axis of the gun; and "I"
the inertial reference frame. (See Figure 5-9) The angular coordinates
are ¢ for the gun, and g for the hull. Thus, the angular velocities may
be expressed as:

Hze - angular velocity of the gun wrt. the hull = o 3
Iay . : : i
w' = angular velocity of the hull wrt. the inertial ref. frame = g j

Assuming that the forces on the gun due to the hull are Fy and F,, and that
the force due to the linear actuator is f, the equation for linear motion
can be written as follows:

- - - -

a I2B
Fy i + Fpk + fe - mgi, = m-a (5-28)

where,
m = mass of the gun,
g = acceleration due to gravity,
IéB = acceleration of the gun with respect to the inertial reference
frame, qu
the coordinate i, of the "I" reference frame and the coordinate
31 can be written in terms of the "B" reference frame by,

e, - cos ¢ ? - siny K, (5-29)

i, cos (8+a)i - sin(0+ a)k. (5-30)

Thus, equation (5-28) can be separated into two equations,

Fy - f cosy + mgcos (0 + a) m ay (5-31)

F, - f siny - mg sin (0 + a)

m a, (5-32)

Because the distance between the trunnion and center of gravity of the gun
is small compared to the length of the gun, it is assumed that the velocity
and acceleration of the mass center is equal to that of the trunnion. This
is of course justified for small angular velocities. With this assumption,
the expression for the acceleration can be simplified, since the terms
representing the Coriolos acceleration and the relative acceleration of the
gun with respect to the hull can be neglected. Thus, the accelerations,
a, and ay, are the accelerations of the hull in the z and x directions,

54

respectively. However, this distance between the mass center and trunnion
Will remain in the equations which calculate moments. Therefore, any
forces applied to the gun by the trunnion will be included in the dynamics
and result in a net torque about the y axis.

From Euler's equations, the equation of motion due to rotation can be
determined.

Iyy ((I) + B) + (IXX - Izz) u)z (L)X = My (5—33)
where,
Wy, wy = the angular velocity of the hull about the x and z axis,
respectively,
Ixx: I v I,, = the principal moments of inertia,

My = the moment of the total external forces about the y axis.
The moment can be expressed in terms of the forces as follows:

My = -0.12 F, + (384) f sin y - fric () (5-34)

where fric is a function of & and represents the damping in the trunnion.
This function can be expressed as Y% when modelled as viscous friction
(See section 5.3.3.1.) with the coefficient Y having a value of 42,000 in-
1lb/rad/sec.

Substituting equation (5-34) into (5-33) and modelling the damping in the
trunnion as viscous friction, the equation of motion for the system can be
rewritten as:

Iyy (¢ + 8) = -0.12m la, + gsin(6+ a)] + (38.28) f siny

“ (Igx = Igzzduguwy ~ YO (5-35)

Substituting equation (5-25) into (5-35) and solving for the angular
acceleration of the gun with respect to the hull, ¢, we get:

.. -0.12m _a, + 566.54 sine® f - 0.12m g sin (0 + a)
¢ = Tyy Iyy ¢ Lyy
- .Y__é - (Tyx - 1zz)wgwy - B
Iyy Tyy (5-36)

5.3.2.3. Linearizing the gun model. The equations for the gun can be
simplified by using the first two terms of the Taylor Series to linearize
the model. ¢ is a function of six variables: a,, £, ¢, ¢, wy, and wy.
After taking a first order approximation of the Taylor series about the
points 0, f,, ¢,, O, O, and 0, respectively, and substituting equations (5-
23) and (5-27) into equation (5-36) we can write ¢ and & as linear
differential equations.

- Ao + BP + Ca, - F& + G (5-37)

= Do (5-38)

oo

55

where,
P = the pressure which causes a force in the actuator (P = f/Ap)
where Ap is the area of the piston.
A = 0.12mg sin (¢,) - 566.54 £, cos (1.26 - ¢,)
Lyy Iyy {sart [1684.4 - 1131.1 cos(1.26 - ¢4}]}
* (566.54)2 £, sin® (1.26 = ¢,)
Iyy {sart [1684.4 - 1131.1 cos(1.26 - ¢,)1}
B = 566.51U Ap sin (1.26 - ¢,)
Iyy {sqrt [1684.47- 1133.1 cos(1.26 - &,)]}
C = -0.12m
lyy
D = -566.54 sin (1.26 - ¢,)
{sqrt [1684.4 - 1133.1 cos (1.26 - ¢,)1}
F o= -7
IYY
G = -0.12mgecos (&,) - 0.12m g sin (&,) ¢,
Iyy Lyy
+ 566.54 £, cos (1.26 - &,) ¢,

Iyy {sqrt [1684.4 - 1131.1 cos(1.26 - ¢,)1}

- (566.54)2 £, sin? (1.26 - &,) &,
Tyy (sart [1684.5 - 1131.1 cos(1.26 - 9,01}

5.3.2.4. Obtaining steady-state values. The values for the coefficients
in expressions (5-37) and (5-38) were obtained by using a small program
"eval" which was written to compute the average of steady -~ state values
for a chosen range of ¢. The program asks the user to enter the value (or
range) of ¢. It then determined the actuator length, &, using equation (5-
23). The steady - state force, f, needed to obtain a gun displacement of ¢
was then computed using equation (5-36) with the assumption that ¢, a,, wy,
w,, and g have a value of zero at steady - state. Since the actuator
force, f, 1s just the pressure times the area of the piston (f = PA)
"eval" actually determines the steady - state pressure necessary to obtain
an angle ¢. "eval" then calculates the coefficients by setting the steady
- state values for the force equal to f,, and the user - selected value of
¢ equal to ¢, in equation (5-37) and (5-38). The coefficients were
averaged for a range of ¢, between -10 and 45 degrees and found to be:

= =4.040 x 10°"% 1/s?

1.405 x 10°® 1/(psi s?)
-4.847 x 107° 1/in
13.631 in
0.917 rad/sec
-1.647 x 1072 1/s?

QMmoo Ow e
I

56

Thus, the equations become:
¢ = (-4.04 x 107°) ¢ + 0.00145 P + (-4.88 x 107°) a, - 0.917 ¢ ~ 0.0164
L = (13.631) ¢ (5-39, 5-40)
5.3.2.5. Transfer function of the gun. The transfer function for the gun

can be determined by representing equations (5-37) and (5-38) in the
frequency domain, where "s" is the LaPlace operator.

o(s) = B s P(s) + Cs a,(s) + G s
s? + Fs ~ A s2 + Fs - A s?Z + Fs - A (5~U1)

Using the values for the coefficients as described in the previous section
(e.g., in equations (5-39) and (5-40)), the value of A is very small and,
more importantly, is much less than the value of F. For this reason, the
coefficient A has little effect on the poles of the gun and so will be
neglected in the following analysis. With the value of A assumed
negligable, 1t can be easily seen that the poles due to the gun are at s =
0 and -0.917 rad/sec. However, the pole and zero at the origin cancel,
leaving a single pole at -0.917.

5.3.3. Modelling the Trunnion Damping.

5.3.3.1. Viscous friction. If we assume the gun is level (e.g., @ = 0),
then the actuator length, %, and the angle between the actuator and the
gun, ¥, can be calculated using equations (5-23) and (5-24) from section
5.3.2.1.

£ = sqrt { (14.1)2%2 + (38.28 - 4.5)2} = 36.6 in.

Since (@ + a) =90°, and o was calculated tobe 17.7° in equation (5-26), 0
must have a value of 72.3° Now, from equation (5-25) we can determine the
value of ¢

Yy = arcsin [14.8 sing | = 22.6 °
L

The next step involves determining what force or torque is needed to move
the gun from its horizontal position. The pressure necessary to move the
gun is about 60 psi. Using this nominal pressure, the force can then be
calculated.

f = PA = (4.72)(60) = 283.2 1lb.

Using the notation of section 5.3.2., the force can be represented with

respect to the "B" coordinate system as follows:
2 T - sinyK) = -261.41 - 108.7 &

fe = f (-cos vy

57

The necessary torque to move the gun can now be computed using the distance
between the point of application of the force and the trunnion, and tne
cross product.

Torque = r x f = 38.41 x (-261.471 - 108.7 X) = 4200 in-1p 3

We can now use this value to represent the damping in the trunnion as
viscous friction. A simple way of doing this is to assume that thne
friction has a coefficient of 4,200 when the angular velocity of the gun is
at half of its maximum value, and a value of -4,200 when the velocity half
of its minimum value. The rate sensor which measures the gun elevation rate
saturates for inputs greater than 0.175 rad/sec. So if we assume that the
angular velocity of the gun, ¢, has a magnitude less than 0.2 rad/sec, we
can model the damping as viscous friction, 42,000¢. (See Figure 5-10)

5.3.3.2. Coulomb friction. On the other hand, it is also possible to
represent the damping as coulomb friction. To model nonlinear friction, we
can assume a steep slope for angular velocities near zero and a constant
magnitude opposing the relative gun motion for all other velocities. Using
1/20 of the maximum velocity (0.01) as the bounds on the linear portion,
the steep slope is calculated to have a value of 42,000 in-1b/rad/sec for
angular velocities of magnitude less than 1/100 rad/sec. For larger
magnitudes, the friction may be modelled as a constant of + 4,200 in-1b, of
magnitude opposing the relative motion of the gun. (See Figure 5-11)

5.3.4, Hydraulics of the Gun.

5.3.4.1. Elevation load pressure - fluid flow relationship. The hydraulic
system for the gun is modelled and a block diagram is shown in Figure 5-12.
The variable Q represents the flow out of the pressure control servo valve,
£ is the piston rod velocity, and P represents the 1load pressure. The
other variables involved are defined in Appendix A. From the diagram, it is
possible to find the equation which determines P from ¢ and 4.

P(s) = (Q(s) - A &) 28
Vs + 28 KL (5-42)

5.3.4.2. Pressure control servo valve. A block diagram of the elevation
servo valve is in Figure 5-13. The model is identical to that found in the
catalog supplied by the manufacturer, MOOG, for the Series 15 Pressure
Control Servovalve. Using the nominal parameters given by the manufacturer,
the relationship between the output flow of the valve, Q, and the two
"inputs" (the input current to the valve, I and the load pressure P whicn
is fed back from the gun itself) can be expressed as:

Q(s) = (5(11 KQQ KIM A]z) I(s) - (KC)] Q’N AN + KPQ] KF) KQ2 A2 P(s)
fr A7 s+ Ky (Kqy Ay By ¥ Kpgy Kf)

(5-43)

5.3.4.3. Combining pressure - fluid flow relationship with servo valve.
Block diagrams 5-12 and 5-13 can be combined to determine the total

58

friction (in-1b)

4200

+

-0.2 0.2 ¢ (rad/sec)

Figure 5-10. Modelling viscous friction

friction (in-1b)
4}200 hi -~
- ;
-0.01 0.01 & (rad/sec)
-4200

Figure 5-11. Modelling Coulcmb friction

59

0il Compliance

\/ \, _ TV 1s , ’
Flow from ’] Differential
Servo Valve Pressire
K, [
Leakage coefficient
Ap S %
(from gun)

Cylinder area

Figure 5-12. Hydraulic System

K aeil
_:Q__,KF

Figure 5-13, Elevation Servo Valve

60

transfer function for the hydraulics of the system. Therefore,
substituting equation (5-43) into (5-42), and solving for the pressure, the
relationship between load pressure and input current and actuator velocity
can be determined.

P(s) = 2 8 <KQ] Koo Ky A1) I(s) - 2 B Ay (Kp A4?2 s + KK Kg) &
U/\F A]z S + KB KK} Vs + 2 R KQZ A KK + 2 & K‘L\AF A]" S+ Ko, r\B)

(5-44)
where KK = (KQ1 Q,N AN + KPQ‘I KF).

Substituting in the values as listed in Appendix A, the transfer function
for the hydraulics of the system can be written as:

.

P = 39,573,170.73 I - (36,307.69 s + 6,294,281.76) %
s + 181.05s + 139,777.47
(5-145)
where,
I = the input current (mA),
2 = the actuator velocity (in/sec).

Thus, the poles of the servo valve are located at s = -90.53 x 362.74 i.
5.3.5. Open Loop System.
From the above sections a block diagram of the open loop linearized system

can be constructed. (See Figure 5-14). The voltage representing the
velocity of the gun can be expressed das:

wy, = Kr (0 = B) (5-146)
where,

KT = the gain of the rate sensor = 150 volts/rad/sec

B = the velocity of the hull as defined in section 5.3.2.2.

= w(s) =150 (Bz I(s) + (Cay(s) + G)(s2 + K, 5 + K,)
(s + F)(s®+K, s+ K,) + BD(xs +y) \

(5-47)

where,

S = the LaPlace operator,

B, C, D, F, and G are the averaged parameters of the gun as defined in
section 5.3.2.4:
= 1.405 x 107%* 1/(psi s2)
= -4.847 x 107% 1/in
= 13.631 in
= 0.917 rad/sec
= -1.641 x 1072 1/s?

Mmoo Qw

61

Z

d %910°0 - #£16°0 - qu

AR TR

01 X 88°%=) + d S%100°0

1"

]

LY LLL6ET + S 60181 + Nm

d €9L°182°%62°9 + S69°£0€°9¢E) - 1 mm.ONﬁ.MNm.mA

. =R

13711013U0)

UOT3IRAI [

0S1

Block Diagram of Elevation Stabilization System

Figure 5-14,

62

X, ¥, 2, K;, K, are the elevation servo valve parameters as found in
section 5.3.4.3.
x = 36,307.69 psi/in
y = 6,294,281.76 psi/in sec
z = 39,573,170.73 psi/s? mA
K, = 181.05 1/sec
K, = 139,777.47 1/sec?

1]

The program "eval" (See section 5.3.2.4.) not only computes the average
parameters for the gun, but also determines the open loop poles for the
system. The poles were found to be at -90.1 + 363.6i and -1.78. Also,
"eval" was used to compute the dc gain of the system, which was 0.22217.

5.3.6. Simplified Models.

5.3.6.1 First order approximation. The above system can be simplified to
a first order system by "ignoring" the complex poles (-90.1 + 363.61 i).
Keeping the dec gain constant, the first order system can be represented by:

w (s) = 0.395 1I(s)
s + 1.78 (5-48)

This model has a pole at -1.78 as desired and a dc gain equal to that of
the orginal third order system. The input to the system is the current
into the valve. The constant input denoted by G in the above sections has a
value of only 1.714 x 10-2 and so it shall be neglected. Also, the
coefficient of the input a, is only 5.410 x 1073, Unless the acceleration
is very large, which is impractical, this factor will also be small
compared to the input due to the current. For instance, even if the tank
is accerating at 1 g (32.2 ft/sec) and we assume that this acceleration is
completely in the "z" direction (this is not necessarily the vertical
direction since "z" is a body fixed axis in the gun itself), the term due
to the input a, would only have a value of about 2.1 sec™'. Thus, this
input is also neglected.

This is the system that was used to develop a control law using the program
"DTQD" (See section 5.2.) It may be expressed in state-space notation as:

& = -1.78 ¢ + 0.395 I (5-49)

5.3.6.2. First order system with Coulomb friction. 1In the previous models
the damping in the trunnion has been treated as viscous friction. In
particular, the modelled friction has had a coefficient of (MapOO/Iyy) in-
1b/rad/sec. Friction is the primary parameter which causes the dominant
pole to lie at -1.78.

A second representation of the first order system can be made by modelling
the damping in the trunnion as nonlinear friction. In section 5.3.3.2.,
friction was modelled as nonlinear coulomb friction with a magnitude of
4,200/Iyy in-1b for gun velocities greater than 0.01 rad/sec. For
magnitudes less than 0.01 rad/sec, friction was essentially modelled as

63

viscous friction with a very large coefficient. In fact, using this model
for friction, the entire system can be described by:

y 0.395 I - 0.0917; for ¢ > 0.01
> = 0.395 I + 0.0917; for ¢ < -0.01 (5-50)
-9.17 & + 0.395 I; for -0.01 < ¢ < 0.01

5.3.6.3. Third order system. Another model of the system used to "check"
the control law was the model of the complete third order system. Thnis
model is very similar to that of equation (5-46) except the velocity of the
hull, é, is omitted and only a single input, the current into the valve, is
modelled. Systems implementing B are considered in section 5.3.6.4. The
other inputs, denoted by G and a, above, are ommitted for the reasons
explained in 5.3.6.1. The model can be represented by:

55493,2 I(s)
w(s) = [s + (90.1 % 363.61)1[s + 1.78] (5-51)

Using w, w, and w as states, the state - space representation of the system
is :

0 1 0 0
w = 0 0 1 w + 0 I

-249778.14 ~140645.60 -181.98 | — '55u93.2}
' i

(5-52)

5.3.6.4. Models with a "Disturbance". In all the simplified models
derived thus far, the term B8, the angular velocity of the hull of the tank
in the "y" direction, has been neglected. This term may be added to any of
the above three models to create three more representations of the system.
B is simply treated as an uncontrolled input (i.e., a disturbance) into the
System, as seen in Figure 5-14. In our case, we set 8 equal to a
sinusoidal waveform whose amplitude and frequency could be arbitrarily
chosen.

5.3.7. Using "DTQD".

To obtain a control law for the original simplified model - the first order
system with linear friction and no "disturbances," the program "DTQD" was
implemented. To use "DTQD," we first had to determine various parameters
of the system including the sampling time, 1, and the number of
quantization steps.

Keeping in mind that our actual system did have a "disturbance" which
caused the occurance of g, the angular velocity of the hull, we determined
the appropriate value for t. It was assumed that the highest frequency for
the hull velocity is approximately 15 Hz. The sampling rate was chosen such

that it would be possible to sample about six times per cycle. Therefore,
T = 0.01 was picked.

64

Thus, the discrete-time representation of this system is:
x(K+1) = 0.982 x(K) + 0.00392 I(K) (5-53)

To determine the number of quantization steps, we first had to know the
upper and lower limits for our state and input. Because the rate sensor
which measures the gun elevation rate saturates for inputs greater than
0.175 rad/sec, we chose + 0.2 rad/sec as our upper and lower bound for the
state. The input bounds were given by the servo valve manufacturer to be +
10 mA.

In choosing the number of quantization steps, the following "rule" was
implemented: Use twice the number of steps which takes the state from its
maximum value down to 10% of its upper bound.
(-1.78)(0.01)x
0.2 e = 0.02 ==> x = 129

Thus, the desired number of quantization steps was chosen to be 256.
In quantizing the input, it was desired that a change of one step in the

input would approximately cause a change in one step of the state. Thus,
the following ratio was desired:

0.2 = 10 (0.00392)
256 X

Wwhere 0.2 and 10 represent the upper bounds of the state and input,
respectively; 256 and x represent the number of quatization steps for the
state and input, respectively; and 0.00392 is the input "matrix" for the
corresponding discrete-time model. Solving the ratio for x we find that the
number of input steps is approximately 32.

65

5.4.0. Simulation Results

5.4.1. The Model.

The previous section developed a mathematical model for the elevation actuator
of the M60 tank. After the system was linearized, the actuator was a third order
system with a pole at -1.78, and two complex poles at -90:360j. If the two
complex poles are ignored, the resulting model of the elevation dynamics becomes
a simple first order system with a pole at -1.78. This simple first order system
was used to derive the control law for the elevation system. After the
controller was developed, it was simulated using more accurate models of the
elevation dynamics. The resulting response should be a reasonable approximation
of the actual response expected if the controller was used on the vehicle. As
might be expected, there were significant deviations from the response of the
idealized first order system. However, with careful selection of the controller

parameters some of these problems can be minimized. These relations are
explored in the text that follows.

5.4,2. The Control Law.

A control law can be constructed using the theory presented in section 1.0 for
the system

dx/dt = -1,78 x(t) + 0.395 u(t) (5-54)

The particular gyro used on the the elevation controller saturates at Vgyt =
+0.2 volts. So these were used as the limits on the state for building the
control law. Likewise the hydraulic servo valve saturates at Iin = * 10 ma.
Thus this was used to define the limits on the input to the system. Considering
the expected range of frequencies of the disturbances to the vehicle, a sample
time of T = 0.01 sec, or 100 Hz was used. Finally, the state was divided into 256
levels and the inputs into 32 levels. Although these parameters could be
changed the resulting system response seems to be well controlled.

Using the system (5-54) and the parameters presented above, a control law based
on DTQD system theory can be derived using the program described in 2.0. For
this example a minimum time strategy was adopted. Table 5-1 summarizes the
results of the control law. The bang-bang characteristiic is quite evident.

66

table 5-1.

Control Law

Quantized State Discrete State Quantized Discrete
(volts) Input Input
(mA)
1 to103 -.198 to -.038 32 10.00
104 -.038 31 g.38
105 -.036 30 8.75
106 -.034 31 9.38
107 -.033 29 8.12
108 -. 031 29 8.12
108 -.030 28 7.50
110 -.028 27 6.88
111 -.027 28 7.50
112 -. 025 26 6.25
113 -.023 25 5.62
114 -.022 26 6.25
115 -.020 24 5.00
116 -.019 24 5.00
117 -.017 23 4.38
118 -.016 22 3.75
119 -.014 23 4.38
120 -.013 21 3.12
121 ~-.011 20 2.50
122 -. 009 21 3.12
123 -. 008 19 1.88
124 -. 006 19 1.88
125 -. 005 18 1.25
126 -.003 17 0.62
127 ~. 002 18 1.25
128 0.0 16 0.0
128 . 002 15 -0.62
130 . 003 16 0.0
131 . 005 14 -1.25
132 . 006 14 -1.25
133 . 008 13 -1.88
134 . 009 12 -2.50
135 .0 13 -1.88
136 .013 11 -3.12
137 .014 10 -3.75
136 .016 11 -3.12
139 .017 g -4.38
140 .018 g -4,38
141 .020 8 -5.00
142 . 022 7 -5.62
143 .023 8 -5.00
144 . 025 6 -6.25

67

145 . 027 5 -6.88
146 . 028 6 -6.25
147 .030 4 -7.50
148 . 031 3 -8.12
149 .033 3 -8.12
150 .034 2 -8.75
151 to 256 .038 to .200 1 -9.38

5.4.3. Step Response.

The closed-loop system driven by the control law presented in table 5-1 was
simulated. This section reports some of the characteristics that were observed
in the simulations. The portion is divided into several sections. The first
section looks into how well the control law acts on the first order system it was
designed to control. As expected it performs quite well. The next section
examines how well the controller works on the more realistic third order model
of the elevation dynamics. Finally, the changes in the response when coulomb
friction replaces the linear viscous friction term are examined.

5.4.3.1. First Order Model.

Figure 5-15 shows the response of the system being regulated by the DTQD
controller. The system is perturbed by an initial condition of 0. 17 rad/sec and
the resulting response is plotted. In the early part of the response, a clear
minimum time trajectory is shown. (The system is being driven to zero velocity
at its maximum acceleration.) After the initial phase of the response, a limit
cycle is evident in the output of the system. This is an expected result
considering the size of the quantization levels that were used.

Recall from the theoretical development of DTQD system theory, that the grid
embedding process allowed large quantization levels without sacrificing
accuracy. Figure 5-16 shows how the embedding process improved the response of
this first order system. In this example embedding takes place whenever the
state is within $0. 02 rad/sec from the origin (the inner 10% of the state space).
When this occurs the state and input are scaled by a factor of ten. The effect of
the embedding process on the response of the system is clear from the figure. As
the system approaches the origin from 0. 17 the response is indentical to that of
a system without embedding (Fig. 5-15) until the state reaches 0.02. At this
point the embedding takes place and the system is slowed. However, since the
quantization levels are cut by ten, the system is under the influence of a much
more accurate control law, and therefore, the 1limit cycle behavior is
eliminated. As might be expected, adding more embedding cycles does not improve
the system response, see Fig 5-17. Therefore, it can be concluded that
configuring this system with an embedding process with one or two embedding
levels is the best solution for the controller in this situation.

68

[]
[+~
=3

«
o
EY

8.02

Angular Velocity (rad/sec)

~8.92 0_B5 9.15 8.25

Time (sec)

Figure 5-15. First Order System with Zero Embedding Processes

8.18 4

Angular Velocity (rad/sec)

Time (sec)

Figure 5-16. First Order System with One Embedding Processes

69

9.82

Angular Velocity (rad/sec)

0.0z 8.05) 9.15) 9.25 K

2] 8.1 0.2 8.3

Time (sec)

Figure 5-17. First Order System with Two Embedding Processes
S5.4.3.2. Third Order System.

The response of the third order model of the gun elevation dynamics for the
control law developed in section 5.4.2 is presented in Fig. 5-18 thru Fig 5-21.
Again the minimum time response is evident in the graphs. However, the
magnitude of the limit cycle has dramatically increased. This is expected since
the other two poles are due to a combination of the lag in the valve and the
compressibility of the hydraulic fluid. Once again the simulations show that
the embedding process will eliminate most of the undesirable characteristics of
the response. But, in this case it is advisable to have about 3 to 4 embeddings
to damp out all of the limit cycle behavior.

70

9.18 7
0.16
6.14 4

8.12

8.08 1
9.06 1
0.84

8.02

Angular Velocity (rad/sec)

802 s 8.15 9.25

Time (sec)

Figure 5-18. Third Order System with Zero Embedding Processes

Angular Velocity (rad/sec)

0.96
0.04
0.02
8
-e.e2 805 0.5 8.25
o 0.1 8.2 8.3

Time (sec)

Figure 5-19. Third Order System with One Embedding Processes

71

Angular Velocity (rad/sec)

Time (sec)

Figure 5-20. Third Order System with Two Embedding Processes

[+
£

@
nN

-~

(-
[+~]
-

()
[
=3

[
]
o

©
o
~N

Angular Velocity (rad/sec)

[\]

-0.8 — + ' N —
2 9.9S 8.15 8.25

) a.1 8.2 0.3
Time (sec)

Figure 5-21. Third Order System with Three Embedding Processes

72

S5.4.3.3. Coulomb Friction.

Finally, Fig. 5-22 thru Fig. 5-24 illustrates the response of the first order
system with the trunnion modelled with coulomb friction instead of viscous
friction. It does not make a large difference whether the friction is modelled
with either coulomb or viscous characteristics. This is due to the extremely
large gain of the system. The same conclusions can be drawn as for these cases
as with the first order system with linear friction. Because of the large
quantization levels, a limit cycle will exist unless embedding is used. Two or
three embedding levels should be adequate to control the system.

.12 1

Angular Velocity (rad/sec)

-6.e2 8.05 8.15) 8.25

%] . 2.1 9.2 8.3
Time (sec)

Figure 5-22. First Order System with Coulomb Friction and Zero Embeddings

73

Angular Velocity (rad/sec)

Time (sec)

Figure 5-23. First Order System with Coulomb Friction and One Embeddings

8.18 1

Angular Velocity (rad/sec)

9.2 ' 9.3

@
o

Time (sec)

Figure 5-24. First Order System with Coulomb Friction and Two Embeddings

74

5.4.4. Disturbance Rejection.

The disturbance rejection of this controller will be examined as a final
exercise to evaluate the performance of the DTQD controller. In this case the
disturbance will be considered to be the velocity of the hull. Although the
controller was not specifically designed to reject distubances, it is an
interesting excercise to examine its performance in this capacity.
Unfortunately, it did not perfom as well in this area as it did as a regulator.
This problem will be examined more closely in the follow-on project. Figure
5-25 illustrates the model used to check the rejection capabilities of the
controller. As with the step response, we will examine both the first and third
order models.

Hull Velocity

Dynamics

Gun and Valve /~+ 7\ Gun Velocity

DTQD
Controller

Figure 5-25. Disturbance Model

75

5.4.4.1. First Qrder Model.

Figures 5-26 through 5-29 shows a typical response of the first order system
with a sinusoidal disturbance, of different frequencies, amplitudes and
embedding levels. The amplitudes of the disturbance are attenuated by the
controller. Figure 5-30 is a plot of the frequency response of the system due
to a sinusoidal disturbance input, without embedding being used. As expected,
the lower frequencies (0-5 Hz) are attenuated more than the higher ones (greater
than 5 Hz). A second plot of the distubance cancelling effects as a function of
frequency of this system is given in Fig. 5-31, however, in this system the
embedding process was engaged. The rejection of the sinusoidal inputs for the
system with or without embedding are comparable. However, the actual time
domain response of the system (Fig. 5-26 thru Fig 5-31) is considerably smoother
for the system with embedding. Therefore, embedding improves the rejection
capabilities of a system controlled by a DTQD regulator. Only the regulation
properties of DTQD controllers have been fully developed. Therefore, it is not
surprizing to see the poor rejection responses below. However, the follow on
project will look into disturbance rejection extensively.

9 088

il [

0.062

e

-0.002 ,

-9.004
-2.806 }5\/
-9.008

-0.01 + + ———t—

Angular Velocity (rad/sec)

Time (sec)

Figure 5-26. First Order System with Zero Embeddings and d(t) = 0.1 sin (2nt)

8.025 {
6.82.
8.615
e.01.

0.088S

-9.805
-0.01

-0.015

Angular Velocity (rad/sec)

-08.02

-0.025 + + ——t- + + —

Time (sec)

Figure 5-27. First Order System with Three Embeddings and d(t) = 0.1 sin (2ut)

8.04.

—~ 0.03

(8]

[¢8]

(%]

~ 0.082.

©

[1e]

p -

— 0.8l

>

4

o

5)

(@]

g

2 e

S

[5+]

~— -0.02

>

m]

oy

=< -9.03 \

-0.04 2.2 8.6 1 1.4

e 9.4 0.8 1.2 1.6

Time (séb)

»)
a

n

Figure 5-28. First Order System with Zero Embeddings and d{t) = 0.1 sin (

|
I
i
]
i
H
|
i
i
i
i
!
b
1
I

I!!V
3
1
P
|
|
I
]I
!
]
I

|
[
!
i
}
|
i
i

1

¥
y
i

t
f|IDisturBan¢e: !

..100 .

|

0.04

8.83
.02,
0.01

-0.81

-9.02

-0.03

-0.84

(03s/pea) A3LI0|3A Jenbuy

Figure 5-208. First Order System with Three Embeddings and d(t) = 0.1 sin (10mt)

Frequency of Disturbance (Hz)

Disturbance Frequency Response of the First Order System without

Figure 5-30.
Embedding

78

. ... 100 :
- N |
; H 'y
o SE A
i i
s
-6 4. ’
;z ; ‘ i |
5 . i
—~=12 4 RO I
o) , ' AR
A ’ i
| | K
g-18 - £ Fmbeddings
o p : b
o ?, A
-24 P B
(i
=30 RN I
j SERnEE SR H AN R

Frequency of Disturbance (Hz)

Figure 5-31. Disturbance Frequency Plot of the First Order System with
embedding

5.4.4.2. Third Order System.

Figure 5-32 thru Fig. 5-35 are plots of the response of the third order model of
the elevation dynamics to a sinusoidal disturbance. The limit cycle behavior of
the system is greatly reduced by inceasing the number of embedding levels. As
with the step response, about three embedding levels are needed to adequately
damp out the high frequency oscillation. A plot of the distubance cancelling
effects as a function of frequency of this system is given in Fig 5-36.
Remember that at this point in time that only the regulation properties of DTQD
controllers have been fully developed. Therefore, it is not surprizing to see
the poor rejection responses below. However, the follow-on project will look
into disturbance rejsctian extensively.

79

Angular Velocity (rad/sec)

0.008

0 006

8.004

0 032

-0 @82

-0 004

-@.006 f;

-0.208

~8.8!

-0.812

~-9.814

fb

Time (sec)

Figure 5-32. Third Order System with Zero Embeddings and d(t) = 0.1 sin (2nt)

Angular Velocity (rad/sec)

Figure 5-33. Third Order System with Three Embeddings and d{i) = 0.

8.02S

8.02. 1

9.91S

8.081

9.085

-8.805

-9.91!

-0.01S

-0.92

-0.025

r

|

9.8 1.2
Time (sec)

80

1

.6

8.84 7
0.03
9.82 1

0.01

-8.01
-0.082

-8.03

Angular Velocity (rad/sec)

-8.04

~0.85 0z . 86 1 1.4
a . 8.4 9.8 1.2 1.6

Time (sec)

Figure 5-34. Third Order System with Zero Embeddings and d(t) = 0.1 sin (10mt)

[[
[+~ =
N W

Angular Velocity (rad/sec)

-8.81
-0.62
-0.03 L
~0.04 0.2 o886 1 1.4
8 0.4 9.3 1.2 1.6
Time (sec)

Figure 5-35. Third Order System with Three Embeddings and d(t) = 0.1 sin (10mt)

81

1 10 100
RN '! frffer[T-f R | gl'"ng L
! LR E e T
T
-6 i ‘Al | | 1] ‘,4 ; : 5 !
! : L o il f
; . | \CD ' [Q! !
~ -12 | g ﬂig fl.-%; : Nun@qr;)i Eﬁbedd{ngSEEEEHE
T RN I A A I
CRSEEEEN AT P AN b
» e ‘ aE RSN EEIH o
S I R R R R R RS
24 1l e LR I | O A !
AN AR EE INEINE !ﬁ N
P b : oA T
]) S {i Rl ' 3 :i e
Y, U R N il L T HN A R o Dot
I e e e REINEIS
SRR AT L
b bl L Ll ‘:' Jl BATA N RE] ‘lf_l‘f.‘r

Frequency of Disturbance {i'z)

Figure 5-36. Disturbance Frequency Plot of Third Order System without embedding

Compare Fig. 5-33 with Fig. 5-37. The amplitude of the high frequency
oscillation is greatly reduced in 5-37, although the same sine wave is forcing
the two systems. The reason for this is the embedding process takes place at
different times for the two systems. In Fig 5-33 embedding takes place when the
system is within the center 10X (.02 rad/sec) of the state space. Fig 5-37, it
takes place in the inner 20% (.04 rad/sec). The steady state response of the
system in Fig 5-33 is little greater than 0.02 rad/sec. This means the system is
constantly jumping from one embedding level to another as the response passes
through 0.02 rad/sec. This explains the somewhat erratic behavior of the
response in Fig 5-33. With a larger embedding region the steady state response
does not cross the the boundary for embedding, and therefore, the response for
this system (Fig 5-37) is much smoother.

To obtain the smoother response for all amplitudes of disturbances it is
necessary to insure that the response never crosses a boundary for embedding.
This is impossible if embedding is done at discrete intervals, since a
disturbance can always be found that will have an amplitude which will cross the
boundary. For example, if the controller was programmed to embed whenever the
state was in the center 20 cells, then a disturbance can be found that would
continuously enter and leave the center 20 cells. A method to correct this
problem is to use a continucus embedding system. This technique would measure
the distance that the state is from the origin and then scale the the states and

82

the inputs by an amount proportional to this distance. Thus, the quantized
states would always appeared to the controller to be at approximately the same
position from the origin. Also, since embedding takes place continuocusly, there
will be no discrete boundaries will have been shown to add noise to the response.
Therefore, it is suggested that this technigque be explored in a follow-on

project.

2.015
2.0125
S e M
9 i
v @.0075 i ﬁﬂ
~
-
S 0.0805 I
~
Sr”
0.2025
Fey
s e
S
2 -a.0025
O
= -9.005
S
o -0.8875 , |
=
2 |
o> -0
[y
< _g.ei2s
-9.015 -
8.2 0.6 t 1.4 1.8
) 9.4 8.8 1.2 1.6 2
Time (sec)

Figure s5-37 Response of the System with Scaling Factor Increased to 20%

83

THIS PAGE LEFT BLANK INTENTIONALLY

84

LIST OF REFERENCES

Falkenburg, D.R. and Judd, R.P., "A New Approach to Digital Optimal
Control of Linear Systems," Proceedings of the 1980 IEEE Midwest
Symposium of Circuits and Systems.

Falkenburg, D.R. and Judd R.P., "Optimal Control of Discrete Time
Quantized Data Systems with Inaccessible States," Proceedings from
the Eleventh Pittsburg Conference on Modelling and Simulation.

Judd, R.P., Analysis and Control of Discrete Time Systems with Quantized
States, Ph.D. Dissertation, Oakland University, 1981.

Kalmay, R.E., SM Thesis, MIT Department of Electrical Engineering, 1956.

Weng, P.K.C., "A Method for Approximating Dynamical Processes by Finite
State Systems", Int. J. Control, Vol. 8, No. 3, pp.2385-296, (1968).

Kornoushenko, E.K., "Finite Automafion Approximation to the Behavior of
Continuous Plants," Automatika Telemakhanika, 12, pp.150-157,
(1975).

Primm R., "Shortest Connection Networks and Some Generalizations," Bell
System Tech. J., pp.1389-1401, V. 36, (1957). o

Nijenhais, A, and Wilif, H.S., Combinatiorial Algorithms, Academic
Press, pp. 283-287, (1975).

85

THIS PAGE LEFT BLANK INTENTICONALLY

86

APPENDIX A

PARAMETERS VALUES

THIS PAGE LEFT BLANK INTENTICNALLY

A-2

1.0.

2.0.

3.0.

GUN PARAMETERS

M = mass = 18.5 1b s?/in

W = weight = 7141 1b.

I¢x = moment of inertia about x axis = 100 in-lb-s?
Iyy = moment of inertia about y axis = 45800 in-lb-s?
1,7 = moment of inertia about z axis = 45800 in~lb-s?

See alsoc Figure 5-8 in section 5.3.2.

HYDRAULIC CYLINDER PARAMETERS

R = 0il compliance = 200,000 1lb/s?

V = Volume of Hydraulic system = 52 in?®
Ap = Cylinder area = 4.72 in?2

K;, = Leakage factor = 0.001

ELEVATION SERVO VALVE PARAMETERS

I = Input current = + 10 mA rated

T = Torque on armature flapper = % 0.165 in-1b rated

Q, = Hydraulic amplifier flow to drive the spool = + 0.23 cis max
Q, = Servo valve flow, no load = + 55 cis rated

Xy = Spool displacement = + 0.020 in rated

P, = Hydraulic amplifier differential pressure = + 890 psi rated
P = Load differential pressure = + 3000 psi rated

Kty = Torque motor gain = 0.0165 in-1b/ma
Hydraulic amplifier motor gain = 65 cis/radian
Kgo = Spool flow gain, no load = 8850 cis/in

=
Q
1

KpQ1= Hydraulic amplifier loading effect = 1.26 x 107" cis/psi
Kg = Spool Bernoulli force gradient, no load = 1040

Kp = Net stiffness of armature/flapper = 45 in-1b/rad

A, = Spool driving area = 0.041 in?

A, = Spool feedback end area = 0.0122 in?

Ay = Nozzle frontal area = 3.14 x 107* in?

&y = Moment arm to nozzles = 0.34 in

A-3

THIS PAGE LEFT BLANK INTENTICNALLY

A-4

APPENDIX B

PROGRAM DOCUMENTATION FOR "DTQD"

B-1

THIS PAGE LEFT BLANK INTENTICONALLY

B-2

1.0. INTRODUCTION

The program, "DTQD," aids the user in designing a controller for a discrete
time quantized data system. The user enters informatiocn regarding the
system and data converters, and the program creates the DTQD model of the
system. If the quantization levels lead to an acceptible model of the
system, the user may then have "DTQD" develop a control law for the system
using any desired cost function. Finally, the program lets the user
simulate the controlled system, and plot any combination of states, inputs
and time.

The program is being developed. Although each stage works, modifications
are still being made to make it simpler.

The program is coded in PL1. Although it is currently being run on the
Honeywell 68-DPS-2 MULTICS system computer, with slight modifications it
could easily be implemented on most main frames. The program consists of
the main procedure, DTQD, and 11 external subprograms which are called by
DTQD. Each of these procedures may call internal subroutines as well.

2.0. EXTERNAL VARIABLES

The following is an alphabetical list of the external variables used in the
program.

a matrix - A (n x n) array and is the system matrix. (input by user)

b _matrix - A (n x p) array, the input matrix for the system. (input by
user)

control law file _ptr - A pointer to the beginning of the control law

file. (corresponds to the based variable control_ law)

cost_function code - An integer code representing which cost function is
to be used. (input by user)

flagown quant file exists - A one bit variable which designates whether
or not a file contalnlng the quantized model exists.

input_cost_matrix - This (p x 1) array is the diagonal elements of the
1nput welghtlng matrix (i.e. the "R" matrix), which is assumed to be
diagonal. It is entered by the user if a quadratic or minimum-control-
effort cost function is desired.

Job_name - A user-inputted variable representing the name of the current
job. It must be one word and contain less than 50 characters., These
characters may be any combination of letters, numbers, and underscores;
however, the first character must be a letter.

lambda matrix - A (n x p) array, the discrete - time input matrix for the
system. (may be input by user of calculated by program)

B-3

n - The number of states. (input by user)

next state file ptr - A pointer to the beginning of tne quantized data
file. (corresponds to the based variable the_next_state_mapping)

next state_map - A (num state combs x num input_ combs) array wnich
contains the code of the next state for each state/lnput combination.

num_controllable_cells- The number of controllable cells

number_of steps_i - A (p x 1) array containing the number of steps of the
A/D converter for each input. (input by user)

number_of steps_s - A (n x 1) array containing the number of steps of the
A/D converter for each state. (input by user)

num_input_combs - The number of input combinations.

num_state_combs - The number of state combinations.

offset 1 - A (p x 1) array used in computing the coded version of the
input.

offset s - A (n x 1) array used in computing the coded version of the
state.

p - The modified number of inputs. This value is identical to the

variable "p_real" above except in the case where "p_ real" is zero in which
the value of "'p" becomes 1.

p_real - The number of inputs (input by user)

phi_matrix - A (n x n) array, the discrete - time system matrix (may be
input by user or calculated by program)

quantum_step size i - A (p x 1) array containing the quantum steps size
of the A/D converter for each input. It is used to convert the continuous
- time arrays into dlscrete_tlme arrays and vice-versa.

quantum step_size s - A {(n x 1) array containing the quantum step size of
the A/D converter for each state. It is used to convert the continuous -
time arrays into discrete time arrays and vice-versa.

sat_edge - A (num_state combs x num_input combs) one bit array. The
elements of the array are "1" if the corresponding cell is lead into

saturation or to an uncontrollable cell given the corresponding input, and
"0" otherwise.

state_cost_matrix - This (n x 1) array is the diagonal elements of the

state weighting matrix (i.e. the "Q" matrix), which 1is assumed to bDe
diagonal. It is entered by the user if a quadratic cost function for the

B-4

controller is desired.

status flags - The following one bit variables which are used to record
which part of the program has been completed for the current job -
flag.cont _exists, flag.discrete exists, flag.quantized exists,
flag. control law_valid, and flag.sim_ valid.

tau - The sampling period. This value is used to calculate the discrete
- time model of the system. (input by user)

title - A user - inputted variable containing the title for the specific
job. It may contain any keyboard characters and have a maximum length of
70 characters; however, if blanks are used, the entire variable must be
enclosed in quotation marks (M).

uncontrolilable cell - A one bit array of dimension (num_state_combs x 1).
An uncontrollable cell is a cell which despite the given input will always
lead to a saturated state. An element is "" if the corresponding cell is
an uncontrollable cell and a "0" if it is controllable.

voltage lower bound i - A (n x 1) array containing the minimum voltage of
the A/D converter for each input. (input by user)

voltage lower_bound s - A (n x 1) array containing the minimum voltage of
the A/D converter for each state. (input by user) o

voltage upper bound i - A (n x 1) array containing the maximum voltage of
the A/D converter for each input. (input by user)

voltage upper bound s - A (n x 1) array containing the maximum voltage of
the A/D converter for each state. (input by user)

3.0. FILES
Four files may be created during the execution of "DTQD."

3.1. Jjob name.DATA

This file contains all of the above external variables which may be entered
by the user, except job_name. The file is created via the subroutine
CREATE DATA FILE of the procedure DTQD. Although the procedure
CHANGE PARAMETERS is designed to allow the user to enter or modify the data
in this file, minor changes can be made easily using the text editor.

3.2. Jjob name.NEXT STATE

This file is actually just a way of preserving the variable next state map.
As stated in the previous section, this file contains the next state for
each state/input combination. The next state is stored in coded form as an
integer and is retrieved via the coded state and input.

B-5

3.3. job name.CONTROL LAW

This file contains the optimal control law for the system. Tne file is in
the form of a one-dimensional array of length equal to the number of cells
(i.e. the number of state combinations). The control law is stored as an
integer-coded input.

3.4. job name ts.PLOT

This file contains each state and input for every time interval that the
system was simulated. It is this file that is used to make plots of the
simulation.

4,0, PROCEDURES

The program is divided into six basic procedures, each part containing
several sub-procedures. Figure B-1 is a flow diagram of the program whicn
describes the interaction between these processes. Each of the six main
routines as well as their respective internal subroutines are discussed in
separate sections below.

4.1. DTQD

This procedure calls 10 subroutines, six of which are external procedures.
It is one of the six basic sections of the entire program, the Main Menu.
The purpose of this routine is to act as a menu so that the user can access
the other five parts of the program. The internal subroutines,
(CREATE DATA_FILE, FREE_CONTR_EXTERN_VARS, SAVE QUANT_FILE, and
CLOSE FILES), “are called when the user is preparlng £o : stop execution of
the program.

4.1.1. CREATE DATA FILE. This internal subroutine is called by DTQD to
save the data pertalnlng to the current job in a file named job_name. DATA.
(See section 3.1 of this appendix) The variables are saved only if they
have been allocated and set for the current job, either by accessing a
previous data file or creating them in an appropriate routine. The
variables which are always saved in this file are: title,
flag.cont_exists, flag.discrets_exists, flag.quantized_ _exists,
flag.control law valid, flag.sim_ leld flag.own _quant_ flle exists. If any
model of the system is valid or if a control law has been accessed, the
variables n and p are saved. If a continuous model of the system exists,
a_matrix and b_matrix, are recoreded in the file., Similarly, if a
discrete time model exists, phi matrix, lambda matrix, and tau ere saved.
If a quantized model exlsts, number of steps s, number of steps i,
voltage_upper_bound_s, voltage lower bound s, voltage _upper_ bound i, and
voltage lower bound i are saved. Flnally, if a control law is valid for
the current job, cost_function code, state_cost_matrix, and
input_cost matrix are saved “in the file job_name.data as well.

4.1.2. FREE_CONTR_EXTERN_VARS. This routine frees all of the controlled
external variables used in the program.

B-6

LIXAd

HWALSAS
ALVINWIS

/|

MV'1
TOYLNOD SATITA
amnga INTHd

/

SYALARNVIVAI
ADNVHD

A

5 UK utTel °o4lL,,

adira

LINI

MMHzm%

Flow Diagram for "DTQD"

Figure B-1.

B-7

4,1.3. SAVE QUANT FILE. In this subroutine, the user has the opportunity
to have the next - state array saved in a file. The advantage of hnaving a
file saved is that it need not be rebuilt, just read in, the next time that
the job is accessed. However, if the file is very large, it may not be
advantageous to have it take up so much space, and the user may opt to
rebuild it each time. If the user does choose to have the array saved in a

file, the variable flag.own quant file exists is set to m.

4o1.4, CLOSE_FILES. This suboutine closes the next - state and control
law files by adjusting the bit count for the for tne files
job_name.next_state, and job_name.control law.

4,2. INIT

The second basic part of the program is INIT. This procedure is called by
DTQD when the program is initially executed and any time that the user opts
Lo re-enter the initialization process. In this section the progranm
prompts the user to enter the job name. The user can start a new job,
access an old job, or modify an old job file. If the user accesses an old
job file, GET_DATA FILE is called. If the user starts a new Jjob,
GENERATE_PARAMETERS is called. If the user modifies an existing job, the

data file from the old job is copied to create a new file and GET_DATA_FILE
is called.

h.2.1. GENERATE PARAMETERS. This subroutine prompts the user to enter the
title for the job file, and then calls CHANGE_PARAMETERS.

4,2.2. GET DATA _FILE. This subroutine is called to read in the data from
the data file JOb name.data. The title of the job or data file is printed
on the screen and the user is asked if it is the correct file. If so, the
data may be read in, depending on the value of the five status flags. Just
as in CREATE DATA FILE (See section 4.1.1. of this appendix), if a certain
model of the system has been created, or if a certain piece of the job has
been completed, then the corresponding data may be read in. A subroutine of
CHANGE PARAMETERS called BUILD MISC_ARRAYS is also called. Depending on
the value of the variable flag. own quant file exists, a file containing the
next - state array is accessed or the subroutine of CHANGE _ PARAMETERS,
BUILD NEXT STATE FILE, is called to generate the array Also the
procedure, BUILD CONT_REG_SAT_EDG_ARRYS, another subroutine of
CHANGE PARAMETERS, is called.

4.3. CHANGE PARAMTERS

The third basic section of the program is the data modification section.
In this procedure, the user can change the parameters of the continuous -
time, discrete - time, and/or the quantized models of the system. This
routine may be called by DTQD or by the subroutine of INIT,
GENERATE PARAMETERS.

Upon entering the program the user is asked which model is to be modified.
If the continuocus - time model is chosen, the user is asked which

B-8

parameters of the model are to be changed. If the continuous - time model
does not currently exist for the job, the program assumes that the user
wants to create the continuous system and so the user will be prompted to
enter all the parameters for the model.

If the discrete - time model is chosen to be modified, the user may change
the parameters of the discrete system as can be done in the modification
process of the continuous - time model. If, however, the continuous - time
model for the system currently exists, the user can have the program
generate the discrete - time model by asking the user to enter the sampling
period, tau, and calling the subroutine BUILD_DISCRETE_MATRICIES.

If the user chooses to modify/create the quantized model of the system, the
parameters of the A/D converter must be entered. Next, the subroutine
BUILD MISC ARRAYS is called. The user is then given two choices: have
the program generate the next - state array, or access a file containing a
next - state array. The subroutine BUILD CONT_REG_SAT_EDG_ARRYS is then
called.

4.3.1. BUILD DISCRETE MATRICIES. This subroutine creates the discrete
system matricies (ph1 matrix and 1lambda matrlx) from the continuous - time
matricies (a_matrlx and b_matrlx) The discrete ~ time system matrix, phi,

is created by setting all the inputs and states equal to zero except the
ith state which is set to 1. The value of the state after one time
constant is then determined and the new state is set equal to the ith
column of phi matrix. To find the discrete -~ time input matrix, a similar
procedure is followed. However, this time the ith input is set to 1
instead of the ith state. The change in state is found using the sixth
order Runga-Kutta differential equation solver IMSL DVERK.

4.3.2. BUILD MISC_ARRAYS. This subroutine initializes the variables
quantum_ step size S, quantum_step size i, offset_s, offset_1i,
num_ state combs, and num_input_combs.

4.3.3. BUILD_CONT_REG_AND SAT EDG_ARRYS. This procedure builds the
uncontrollable cell and saturated edge arrays. The wvariable
num controllable cells is set to the number of controllable cells.

4.3.4. BUILD_NEXT_STATE FILE. This procedure builds the quantized data
array, next_state map. The routine runs through every possible state and
input combination, converts the state/input coded version to its discrete -
time state and input arrays respectively, and determines the next state
using the equation:

x{(k + 1) = @ x(k) + A u(k)
where,
x(k) and u(k) are the discrete - time state and input arrays
respectively,

¢ is the discrete - time system matrix, phi_matrix,
A is the discrete - time input matrix, lambda matrix,

B-9

Each next - state is checked for saturation. if saturation is found, the
next state is converted to the coded form and is added to the array,
next state map. Otherwise, a zero is added to the file signifying
saturation.”

y.4, PRINT IT

The fourth basic section is basically a menu which allows the user to
examine various arrays and files. The subroutine DISPLAY JCB_FILE, 1S
called to display the parameters of the continuous- time model, discrete -
time model, or the A/D converter, PRINT_NEXT_STATE_FILE and
PRINT CONTROL LAW are called to display the next - state array and control
law, respectlvely CHECK QUANTIZATION LEVEL 1is called if the user wisnes
to have a check done on the quantization levels of the system.

h.u,q, DISPLAY JOB_FILE. This procedure has not yet been written.
However, when completed, it will allow the user to display any of the
parameters saved in the data file job_name.data.

L.4.2. PRINT_NEXT _STATE FILE. This procedure prints the next state code
for each state/input combination.

L.4.3. CHECK QUANTIZATION_ LEVEL. This subroutine the user make a crude
check on the quantization of the system. The check is done in two parts.
The first is a summary of the cells moved from each state given a zero
input. The number of cells moved in each direction and the total number of
cells moved are computed and displayed. The second part of the report
checks the number of cells moved from the zero state for each input at its
smallest value. If the smallest value results in saturation, the smallest
value which results in a non-saturated next state is used. The results are
reported for each input, with the number of cells moved in each direction
and the total number of cells moved being printed out. In this part,
unlike the first, the cell movement is described by an absolute and average
value. The absolute value is just the number of cells moved for each
input. The average value is the absolute value divided by the number of
steps between the smallest non-saturating input and the zero input.

After displaying the summary, the subroutine PRINT_SAT EDGE ARRAY is called
and the user can have the saturation edge array prlnted This array has
the same matrix format as the next-state array, but the elements are
displayed as either an "F" or a "T." A "T" is displayed if, given the
corresponding input, the cell leads to saturation or to an uncontrollable
cell. If not every cell is controllable, the user can print the
uncontrollable cell array which will print the codes for each
uncontrollablecell.

4.4,4, PRINT CONTROL LAW. This subroutine allows the useéer to print the
coded form of the control 1aw.

4.5. BUILD TOL REG AND CONT LAW

This is another basic section of the program. It is this procedure which
builds the tolerant region and the control law.

4.5.1. BUILD COST_FUNCTION. This is the first subroutine called if the
user wishes to build a control law. The user is prompted to enter the
desired cost function and if necessary the state and input weighting
matricies. The user can use a minimum_time, minimum control effort, or
quadratic cost function. If none of these are desired, an external file
containing a control law may be accessed, or the user may write a routine
containing a custom cost function for the control law to implement.

4,5,2. GET TOLERANCES. 1In this procedure, the user is prompted to enter
the tolerances necessary to find the tolerant region
(center cell tolerance) and to compensate for edge irregularities
(edge_cell tolerance).

4,5,3. INITIALIZE CELL STATUS_ARRAY. The array cell status is initialized
in this procedurg This array is one dimensional with length equal to
num_state_combs. The procedure uses the variable edge cell tolerance set
in GET_TOLERANCES to determine the "edge cells." The array is then
initialized, giving each element one of the following values:

2: if the cell is an edge cell
1: if the cell is uncontrollable
0: otherwise

As in section 5.2.4.13., the quantized model of a second order system may
be thought of as a cell plane. Keeping this in mind, a typical second
order system with a edge cell tolerance of one might have an initialized
cell status array ressembling the following:

|

= oo -
N OO0 I
o Ic|oi
O |O1O
= NN

4.5.4. INITIALIZE CENTER _DIST_ARRAY. Another book-keeping array,
center dist, is initalized in this procedure. This routine uses the
variable center cell tolerance which was set in GET TOLERANCES to determine
the tolerant region. The one dimensional array of length equal to the
num state combs is then initalized. Each of the elements (i.e. state
codes) is a551gned a value equal to its distance from the origin. If this
distance is greater than the center cell tolerance, however, the element is
set equal to zero.

If the value of center cell tolerance was chosen to be two, the initialized
center dist array for a two dimensional system might look like:

B-11

i

O{N|—= == O

O S—

-

olroiro i o o
o= | i—=v o
B O

olv|—lol=|v]o
olviv v |o,
ololololojolo

4.5.5. FIND ROOT_CELLS. This procedure finds the roots cells to creats the
tolerant region and control law. Each zero-valued element of the array
cell status is considered unmarked. This procedurs marks eacn of the
elements by implementing the following integer codes:

cell is unmarked

cell is uncontrollable

cell is in the edge tolerant region

cell is the zero state cell

cell is reachable to a cell coded with 3
cell is another root cell

cell is reachable to a cell coded with 5

AUVl WD — O

cell is another root cell
i + 1: cell is reachable to a cell coded with "i"

[ST R
.o

4.5.6. OPEN_CONTROL_LAW FILE. This routine opens the control law file and
initializes the control law array.

4.5.7. FIND LOOPS AND CONTROL_LAW. In this procedure, the loops within
each subtree (denoted by a separate root) are looked for within the center
cell tolerant region. If a loop is found, the control law for the tolerant
region 1s defined. If this c¢an be done the procedure
BUILD OPTIMAL CONTROL LAW is called.

4.5.8. BUILD_OPTIMAL CONTROL_LAW. This procedure builds the control law
one cell at a time for the remainder of each of the subtrees by creating an
optimal spanning tree based on the weighting matricies and cost function
previously defined by the user.

4.6 SIMULATE SYSTEM

The procedure SIMULATE_SYSTEM simulates the closed loop system and
implements the imbedding process. The user is first prompted to enter
necessary parameters such as the number of imbedding levels, the scaling
factor, the initial state and time, and the final time. Using the external
subroutine OWN SYS TO SIM.pl1, the user can simulate a continuous system
which is different from the original system that the control law was
developed for. The system used in OWN SYS TO SIM must have at least as many
states as the original system that the controller was designed for. If it
has more states, the states which were initially used to develop the
controller must be the first states of the new system.

B-12

The simulation starts with a check for saturation and controllability.
Next, the magnitude of each state is studied and the proper imbedding level
i1s evaluated by calling the subroutine FIND REGION. If one sampling
interval has elapsed, the control law is accessed to obtain the proper
inputs. The control inputs are scaled to the proper size for the
corresponding imbedding level. The sixth order Runga-Kutta differential
equation solver IMSL DVERK is then called to find the value of the state
after one simulation step. The process is repeated until the final time is
reached or until a state saturates. After the simulation is completed the
subroutines BUILD SIM DATA FILE and CHOOSE_YOUR PLOT are then called.

4.6.1. BUILD SIM DATA FILE. This subroutine puts the simulated data in a
file title job_name_ts.plot if the user wishes. The simulation status
flag, flag.sim valid, is set only if the data is saved.

4,6.2. CHOOSE YOUR PLOT. Whether or not the simulation was successful,
this subroutine is called and the user can plot the data. If the user
wishes to make a graph, the program will ask for the other parameters to be
entered. Any state and/or input, as well as time may be plotted on either
axis. Also, more than one plot can be made using the same title, axis
labels, and grid. Using the MULTICS procedures PLOT, PLOT_$SCALE, and
PLOT_$SETUP, the program will proceed to plot the desired simulation data.

4.7. Miscellaneous Routines

Many of the procedures listed above call the following miscellaneous
external subprograms: NUM_ANSWER OK, YN ANSWER OK, and CONVERT_.

h.7.1. YN _ANSWER OK. This procedure checks the response by the user
whenever a yes/no answer is required. The routine will only accept "y",
"yes", "n", or "no". If an incorrect response is entered, the program
prompts the user to try again.

4,7.2. NUM_ANSWER OK. This procedure checks the user's response whenever
a menu selection is expected. The program only accepts an integer which
represents a possible choice. If an incorrect response is entered, the
user 1s asked to re-enter his choice.

4.7.3. CONVERT . This procedure consists of six entries. An entry is
called to convert the current representation of the state or input array
into another representation. The arrays may be in a continuous, discrete,
or coded form. The continuous version is that which has a range of
lowen_voltage_bound to upper_voltage bound. The discrete form takes on
distinect values in the range of 0 and number of steps for each state or
input. Finally, the coded version gives each possible state combination
and input combination a distinct integer code.

B-13

THIS PAGE LEFT BLANK INTENTIGNALLY

B-14

APPENDIX C

PROGRAM LISTING FOR "DTQD"

C-1

THIS PAGE LEFT BLANK INTENTIONALLY

C-2

1.0 PROGRAM LISTING FOR "DTQD"

The following pages contain the pl/1 code for the program DTQD. The
listings are organized into six basic procedures as discussed in Appendix
B. DTQD is first followed by init, change parameters, print 1it,
build tol reg and cont_law, simulate_system, and finally some miscellaneous
routines.

For reference, the above procedures as well as their major subroutines are
listed below in alphabetical order with corresponding page numbers.

Duild cont reg sat edg arrys......c.ceevcncencencroreaensenonans c-28
build cost function....... e iteeececstceeen st nan e e Cc-42
build_discrete_matricies e st eesreseaseneasanas cessenenn Cc-2

build miSC _arrays....cececececncncnens ettt eneaeaenans Ceeceenenan c-27
bulld next state flle. . iiesreiieeninneniereeneeacnoenenenannnans C-29
build . optlmal control laWeeeseoaas e teceeseceneaes e C-53
bu1ld sim_ data file. .;.; Ceetrescsaeaannns ceeraeeaanC-64
build tol_reg and cont law............ S L
change parameters........eceeee. T e b
check quantization level..... et ttereeeenereaaaaas N L
ChOOSE yOUr PLOT..tvueevunsionneennnnenns et eeetenceraeeeaaeC-66
close f1leSeveeeeroaannsnae Ceecevesstessensenotnssesresnacccan s Cc-7

CONVEPL vvvivieiiveninnnnnnns ettt eieeenaretiee e, Cc-76
create data Fi1l@uuueusveeesossansnsssonsosssssssssassssssavacassslC™2

dlsplay JOb filee.evieevoenanns e eeseessrceestssensseenssnesaaenaen c-32
DTQDeeeereennnnn Gt e ceeeretasseeses st aatasacssaasns oo ve..C-2

find loops_and cont law.....ccoeeieun.. ceesessensans cerrasesanes C-50
find root CellS..eeeeavessasnnann erseaeeenanas e ebteceeeeana ..C-46
free_contr extern vars........... et eiee et et eeeeeeeaas c-5

generate_parameters ceesseccensa cesssanss cesseaans ceeeaes c-10
get_data file............ e o L
get LOLEranCesS .o eeeeerennsenns . et ereenetreee s C-uk
INiCeeeeneennneneinnnns Cereaenees Ceerecesens Ceetereeriieceacarnnn c-8

initialize_cell status _array.ceceeeieen.. e et eerseaeaeanns C-u4
initialize_ center dist . Arrayii.ieeeses eesecarena Cecsrreenee e C-U5
num_answer_ OKevonons et eeeseeeesevecaasannona Ceeeesresaa i ..C-78
open control law file.iiiveaans. et eiesiereeease et senns C-50
own_sys to_ SIMes s evennnnnnnnnn teeeisesasaearaseans eeeesnaaaanas Cc-72
prlnt itevens. cenenn I teeseeterenaan C-31
print control_law........ cesessesereses Ceeesstresaeennen C-57
Print next_state File....eeiusivieeeinneivenioannireannneannanns c-33
save quant file..........0vnnnn. et erensectenanane Cerssesaeennue C-6

Simulate SYSLemM..uiveveueeenneenneeeenionenneeanns C et c-58
yn_answer_OoK....... Ceetaessecsreaasesssanannne Ceeeretsseneennens C-79

C-3

<
—
[»]
o
..

procedure opticrs (main);

choice fixed.,

choice_char character (1)
range ftixed

done bit(1)
first_init_

s EaNas NaNe]
~—rr—

flag bit(1):

sysin file;
sysprint fil
data_file fi

aaQa Qaaaaa
[N aNa)

—r~—

r—m

e

e
num_answer _ok entr
init entry (bit(1)
print_it entry:

chang parameters entry.

build_tol_reg_and_cont_law entry’
simulate_system entry,"

L
1

ry g T racter (1), fixed, fixed)’
4 ’

aaaaaaQ
s NsNaNaNsNal
- -~

. =.l01."b: .
_init_flags, data_file);

- "‘O "b):
Initialize") (skip, a);
Modify Data File") (skips, a)°
Print Files") (skip, a):
Build Control Law") (skips, a)’
Simulate”) (skipo., a)’
Quit") (skips, 3);)
ter choice == ") (skip (2), a):
ice_char);

-l -
=3
T
nQ

(a4

O
c
(ad
Pr~PBO®BPPIS—~ I
fan Yo]
ago~

Y St mmam A D S W)

~3
own

ssSsS3 s3I
T MOAN S UWN 20

- TE Q o I

00

-« @ % & @ * =

~QaaQaaaqaqaan

ADEC HN =t bt d i
(9]

call n k (choice_char, range, choice):

-y

)’

irst_init_flag = "“0"b) then do’
Lt save_qguant_file’

Ll create_data_file’

el -0-0‘.0

init (first_init_flag, data_file)’

(2]

change_parameters.

o n
* QwoOoOgOoOnNny O

‘OW e~ OQUNNIVNBNINLDD

print_it;

build_tol_reg_and_cont_law’

(9]

sirulate_system;
= "1"b:

(]
® Ser—NSer—Se—~Ne—er~Q OO ~O}

2~~~ e~ ~3

en | oeef o8] el o}

PV

"b) then do:

(2]

[+Y)

(%)

»
[NI i oY oY Ra¥t Ia¥: Ral:]
W tts R NI I NI NND
O3~ wawavwas-awva

~% %0
7.
T erEL W
I Qe
.acy
3~
TR XY
[T+
- W
~r-
om 3
vewe D

Rl

(4]
1]
o
O
r'
.,

- xtern_vars;
lose_fvte

e_data_f1l e: procedure;

ob_name character (50) varying external’
itle character (7C) varying external,

L (1755

1al ("0"b);
t¢
S

-—d it r’u

u
L
f

2 quantized_exists bit(1),
2 control_taw_valid bit(1),
2 sim_valid Bit(1),
2 own_quant_file_exists bit(1);
del next_state_file_ptr pointer external’
dcl own_quant_data_title character (70) external.,
acl n fixed external;
del p_real fixed external;
dcl p fixed external’
del a_matrix (1:n, 1:n) float controlled external.
dcl b_matrix (1:n, 1:p) float controlled external’;
del tay float external.
dcl phi_matrix (1tn, 1:n) float controlled external;
dcl Lambda_matrix (1:n, 1:p) float contrelled external:;
dcl number_of_steps_s (1:n) fixed controlled external;
det voltage_upper_bcund_s (1:n) float controlled external.
del voltage_lower_bcecund_s (1:n) float controlled external’
del number_of_steps_i (1:p) fixed controlled externat:
del voltage upper_bcund_i1 (1:p) float controlled external’
del voltage_tower_btcund_i1 (1:p) float controlled external’
dcl cost_function_cgde fixed external’; :
decl state_cost_matrix (1:n) float controlled external;
del input_cost_matrix (13:p) float controlled external’
del data_file file;
é**;he above variables are stored in the same order as decla
re
dcl skip_amount fixed;
det 1 fixed;
del j fixed;
/k hxkkk k[

open file (data_file) title ("vfile_ "Iljob_namell”.data") s
tream output.,

/ * ke x *]

put file (data_file) edit (title)(skip, a(70)):

put file (data_file) edit (flag.cont_exists)(skio, b(1));
put file (data_file) edit (flag.discrete_exists)(skips b{(1))

e

put file (data_file) edit (flage.quantized_exists)(skion, b(1)
put file (data_file) edit (fltag.control_law_valid)(skip, b(1

put file (data_file) edit (flag.sim_valid)(skips, b(1));
put file (data_file) edit (flag.own_quant_file_exists) (skip,

b(1))?
- it (flag.cont_exists = truelflag.discrete_exists = truelflag
«quantized_exists = truelflag.control_taw_valid = truelflag.si
m-va(;d = true) then

0,

put file (data_file) edit (n)(skip,f(S5)):

C-5

out file (cdata_file) edit (p)(skips, f(S));

end’
if éflag.cont-exists = true) then
o,
do 7 =1 to n,
do j =1 tc n2
out file (data_file) edit (a_matrix (i,j))(skio,
$£(12, 402
end,
ena,
do i = 1 to n:
do j =1 to p-
put file (data_file) edit (b_matrix (i,j))(skips
f(12l A))l
end,
end.
end;
if (flag.discrete_exists = true) then
do.,
put file (data file) edit (taul)(skip, f(12, 4));
do ¥+ = 1 to n;
do j: =1 to n’) .) .
) put file (data_file) edit (phi_matrix (i, j))(sk
ips fC12, 4)):
end;
end;
do i+ = 1 to n’
do j =1 tc p: . . o
put file (data_file) edit (lambda_matrix (i, j))
(skips, (12, 4))2
end’
end.,
end;

if (flag.quantized_exists = true | flag.own_quant_file_exist
S = true) then

do-
do ¥ = 1 to n:]
. put file (gata_file) edit (number_of_steps_s (i)) (s
kin, f(5)).
end;
do 1 = 1 to n’) . .
ut file (cata_file) edit (voltage_upper_hound_s(i)
s voltage_ lo wer_bound_s(iY)
(Skipo (12, 4), x(3), £(12, 4));
end;
do 1 =1 to g2 .) . .
] p file (data_file) edit (number_of_steps_i (i))(s
kip, f(S))2
end,

do ¥+ = 1 to p’ . . .
put file (cata file) edit (voltage_upper_bound_i (i

)s» voltage_tower_bounc_i (i))
(Skioo (12, 4), x(3), f(1
2. 4L))?
end;
if (flag «0WN quant file_exi ts = true) then
ayy: out tile ({data_Vile) edit (own_quant_data_title)(skio, af
else

put file (data file) skip’

end.;

C-6

if éfgag.controL-Law_valid = true) then
[o I
put file (data_file) edit (cost_function_code) (

skips, f(5)):
if (cost_function_code = 2) then

do-
de i = 1 to n? . .
put file (data_file) edit (state_cost_m
atrix (i))
, (skipe f(12,4)
end?
end; . .
if (cost_function_code = 2 | cost_function_code
= 3) then
do-
¢de i = 1 to p/ . .
put file (data_file) edit (imput_cost_m
atrix(i))
ys (skips f(12,4)
end’;
end.,

end;

close fite (data_fite) s

end create_data_file;
free_contr_extern_vars: procedure’;

dcl n fixed external;,

del p fixed external:

dcl num_state_combts fixed external,

dcl num_input_combs fixed external’

del number of steps_s (1:n) fixed controlled external’

dcl number_ of ste s 1 (1:p) fixed controlled externat:

del offset_ 5 Fixed controlled external’

del offset_ (1 p) fixed controlled external’

del quantum step_size_s (1:n) fixed controlled external’

del qQquantum_step_size_i (1:p) fixed controlled external-

del voltage_upper_tound_s (1:n) float controlled external;

dcl voltage_lower_bound_s (1:n) float controlled external:’

del voltage_upper_bcund_j {(1:p) float controllied externatl’;

del voltage_Lower_btcund_i (1:p) float controlled external’

dcl phi_matrix (1:n, 1:n) float controlled external’

del lambda_matrix (1:n, 1:p) float controlled external’

dcl next_state_map (l:num_state_combs, 1:num_input_combs) fi
xed controlled external’

dcl uncontrollable_cetll (1:num_state_combs) bit(1) controlle
d externals,
del sat_edge (1:nur_state_combs, T:num_input_combs) bit(1) ¢
ontrolled external:

..free number of_stecs_s» number_of_steps_i, offset_s, offset_

1
free quantum_step_ SiZQ S, quantum_step_ s*ize

free voltage_upper_tound_s, voltage_lower_bound_s~
free voltage_upper_ bound_i. voltage_ Lower_baund_ ‘:
free phi_matrix, lambda_matrix;

free next state_macg.,

free uncontroltable cell, sat_edge-

end free_contr_extern_vars,

c-7

save_quant_file: prccedure;

del nmext_state_file_ptr pointer external;

del num_State_tcombs fixed external.’

ccl num_input_combs fixed external’

dcl next_state _map (1:num_state_combs, 1:num_inout_combs) fi
xed controlled exterral’ _

del the_next_state maop1ng (1:num_state_combs, T:num_inout_c
ombs) fixed binary(1% unsigned based (next_state_file_otr);

del job_name charact {

50) varying external’
dct own_quant_data_tit

(
e character (70) external’
a
1

del true bit(1) initial ("1"b);
del false bit(1) initial ("0"b)’
del 1 flag external.,
2 cont_exists bit(1),
2 discrete_exists bit(1),
2 quantized_exists bit(1),
2 control_Llaw_valid bit(1),
2 sim_valic E7t(1),
2 own_quant_file_exists bit(1);
decl working_dir character(148) external’
del bit_count fixed bin(24);
del code fixed bin(25); .
del answer character(3) varying:
del 1 fixed;
del } fixeds
del hes_Sinitiate_ccunt entry (char(*),char(x),char(*), fixe
d bin(24),) . ‘
1533 fixed bin(2), ptr, fixed bin(
14
(ggl hcs_$make_seg entry (char(x), char(*), char(*), fixed bi
n ’
| ptr., f1xed bin(35));
! dec!l delete entry cgtions {(variable)
del yn_answer_ok entry (character(3) varying)’
del sysin file input’
ccl sysprint file output’
if (flag.quantized_exists = true) then do:
put edit("Would you Llike to save the aquantized state file? =
> "Y(skipsald?’
get list (answer).
call yn_answer_ ok (answer)’
if éansuer = "y" | answer = "yes") then
o,
if (flageown_cuant_file_exists = false) then
own_quant_data_title = job_namell”.next_state”’
) call hes_Sinitiate_count (working_dir, own_quant_data_
title, "%,
bit_count, N, next_state_fil
-ptr, code);)
call delete (own_quant_data_title, "=bf")?’ _
. call hcs_S%Smake_seg (working_dir, own_quant_data_title,
r 4
. 01010b, next_state_file_otr, code)
do ¥+ =1 to num_state_combs’
do j = 1 tc num_input_combs’
.y the_next_state_mapping(i,j) = next_state_map (i,
1)7

c-8

end,
d; . .
g.own_quant_file_exists = true’

Sey

e

fL

end
end’;

end save_qguant_file;
clLose_files: procedure’

dcl job_name character (S0) varying external’

del 1 flag external.,

2 cont_exists bit(1),

2 discrete_exists bit(1),

2 quantized_exists bit(1),

2 control_law_valid bit(1),

2 sim_valid Bit(1),

2 own_quant_file_exists bit(1);

decl adjust_bit_count entry options (variable):

if (flag.quantized_exists=s "1"b) then
call adjust_bit_count (job_namell”.next_state”, "=-ch")?;

it (ftagecontrol_tlaw_valid = "1"b) then
call adjust_bit_count (job_namell”.control_Llaw", "“~ch");
end close_files;

end DTQD/

C-9

in

~
W
sQaaw a agQaaa o a4 aQ aaancaaa a

[Pe]
3

it: procedure (first_init_flags, data_file)’
gcl first_init_flag bit(1)’
cel data_Ttile Files
cdecl job_name character (50) varying external’
del workwng_dir character (1468) external:
dcl next_state_file_ptr pointer external’
del control_law_file_ptr pointer external’
dcl 1 flag static external.,
2 cont_exists bit(1),
2 discrete_exists bit(1),
2 quantized_exists bit(1),
2 control_law_valid bit(1),
2 sim_valiec £t (1), _
2 own_quant_file_exists bit(1)’
dcl true bit(1) initial ("1"b);
det false bit(1) inmitial ("0"b);
del 1 flagl,
2 done_init Eit(1),
2 build_mode bit(1),
2 good_Jjob_rame bit(1)’
¢l good_job_title bit (1),
cl choice fixed,
cl ¢ character (1):
cl range fixed’
cl job_name_new character (50) vary1ng.
cl answer character (3) varying’
cl bit_count fixed bin(24):
cl code fixed bin(35);
sysin file input’;

o0

sysprint file cutput’

null builtin?

(2]
L U e et 2t el sl e el sl st sak sl anet secl sl and o BENE and

undefinedfile condition’

(2]

num_answer _ok entry (character (1),

c
cl print_it entry;
¢l change_parameters entry’
cl yn_ansuer ok entry (character (3) varying
c hcs $initiate_count entry {(char(*), char(
)y fixed bin(24), fixed bin(2), ptr,
’
cl copy entry opticns (variabtle)’
cl get_wdir_ entry returns (character (168))
g convert_status_code_ entry (fixed bin (35
char (100) L
on yndefinedfile (data_file) flag2.g00d_job_n
Wworking_dir = get_wdir_ ()7
flag2.done_init =" false’
do while (done_ init = false),
aood job_title = true:
lagg.goodn&ob nare = true;)
put edit ("Would you Llike to :")(skips, a)’
put skip’

C-10

fixed,

fixed)’

).

x*x), char(*x),

fixed bin

Y, char (8) alj
igned) .

ame false:

put

Access an old job file”)(skins,a):
Create a new job fite ")(skip,a)’
¥ccify an old job file")(skiprad’
Return to Main Menu")(skips,a)’

tease choose one of the above => ")(skip,a)’

call num_answer_ck (¢, range, choice)~’

edit ("1,
out edit ("2,
put edit ("3,
put edit ("4,
put skip-
put edit ("P
get list (c)
range = ;
if (choice = 1
dos
flagl.bu
put edit
get Llist
open fil
.data")
nput: .
if (flag
catl
. put e
skipead-
put s
if (f
. Pu
kipesads
if (f
pu
paa):
if (f
. pu
ipesad;
if (f
pu
23);
if (f
pu
")(skipead:
if (f

sts = fatse g

ol_law_valid = false

. . . pu

is job™)(skipera)’
put s

end;

H

end
if é hoice = 2

oon>

put edit
pea).
et List
Lag?l .bu
call gen

.. ends
if (choice = 3
do: .
. put edit
"Y(skips al; .
get Llist

put edit
),

) then

ilec_mode = false;

("Enter the job name => ")(skip, a)’
(job_name)’ .))
e (data_file) title ("vfile_ "lljob_namell™
stream i
2.good_job_name = true) then do;)
get_data_file (data_file, good_job_title)’
cit{"The current status of this job is: ") (
kips)
lagecont exists = true) then)
t edit (A continuous system exists') (s
lag.discrete_exists = true) then)
t edit (" A discrete system exists")(ski
lac.quantized_exists = true) then
t edit (" A quantized system exists") (sk
lagescontrol_law_valid = true) then
t edit (" A control law is valid ")(skip
tagesim_valid = true) then))
t edit [A simulation of the job exists
lag.cont_exists = false & flag.discrete_exi

flag.quantized_exists = false & flag.contr

.flagesim_valid = false) then
t edit (No models or files exist for th

kips

) then
("Enter name of the new job file => ") (ski
. {(job_name):
ild_mode = true’
erate_parameters.,
) then
("Enter name of job file to be modified =>

(job_name); i - .
("Enter name of new job file => ")(skip, a

(job_name_new) .,

open file (data_fiTe) title ("vfile_ "lljob_nameli™

«.data") stream inp

id-mode = false;

C-11

if (flag2.cooc_job_name = trye) then
do-,

[rx*/ call copy (job_nameli”.data", job_name_newl|"”
.data", "-bht");

openr file (data_file) title ("vfile_ "1ljob_n

ame_new

) I1".data") streanm
tnput., . .) .
).' call get_data_file (data_file, good_job_title
”

if (control_law_valid = true) then do: .
calt hecs_Sinitiate _count (working_dir, job_

"o

namell”,control_law"

sbit_count, 0, control_LlLaw_file_ptr,
code)’

name = job_name_new,

. end.
1f (cho1ce = 4) then
) flag2.done_init = true:;
if (dfta92 .good_job_name = false) then
0,
put edit(job_name, ".data does not exist.")(skip,

ar a)s o
flag2.done_init = false’
end; .
jf é good_job_title = false) then
O
tlag2.good_job_name = false’
dflagZ ore_1nit = false’
end;
it éflagZ.good job_name = true % choice < 4) then
o’
first_init_flag = false’
flag2.done_init = true’
end’
end,

generate_parameters: procedure,

dc!l 1 flag external,

2 cont_exists bit(1),

2 discrete_exists bit(1),

2 quantized_exists bit(1),

2 control. lau,valxd bit(1),

2 sim_vallic E7t (1),

2 own_quant_file_exists bit(1)?
del title character (70) varying external’
del true bit(1) initial 1"5);
acl false bit(1) iritial (”O"b):
del sysin file input’
dcl sysprint file outout,
decl data_file file
dcl change_parameters entry’
flage.cont_exists = false,
flag.d1screte exists = false’
flag.quantized_exists = false’
flag.control law_valid = false;
flagesim_valid =" false:
flage.own_quant_file_exists = false’

put skip/;

C-12

put edit("Enter a title

put edit ("Note: Quote
is used")(skips a)d:

put skips .

qet List (title);

call change_parameters:

end generate_parameters;
get_aqata_file: procedure

"Y(skinsad,
than one

for the data file

es are required if more word

(data_file, good_job_title)’

dcl data_file file’
det good_job_title Bit(1);
dcl job_name character (50) varying external’
dcl title character (70) varying external’
del true bit(1) dinitial ("1"b);
det false bit(1) iritial ("0"b)?
del 1 flag static external,
2 cont_exists bit(1), -
2 discrete_exists bit(1),
2 quantizec_exists bit(1),
2 control_law_valid bit(1),
2 sim_valid Bit (1),
2 own_gquant_file_exists bit(1);
del next_state_file_ptr pointer external’
dcl own_quant_data_title character (50) external’
del n fixed external’
del p_real fixed external’
del p fixed external’
del a_matrix (1:n, 1:n) float controlled external.
del b_matrix (1:n, 1:p) float controlled external:
del tau float external’
del phi_matrix (132n, 1:n) float controlled external’
del lambda_ matr1x (1:n, 1:p) float controlled external:
dcl number_of_steps_s (1:n) fixed controlled external’
dcl voltage_upper_bound_s (1:n) float controlled external:
decl voltage_tower bcund-s (1:n) float controlled external’
del number_of_steps_i (1:p) fixed controlled external:’
dcl voltage_upper_ bOund i (1:p) float controlled external’
del voltage_lower_bcund_i (1:p) float controlled external:’
del num_state_combs fixed external’;
dcl num_input_comks fixed external’
dcl the_next_state_mapoing (T:num_state_combs, 1:num_inout_c
ombs) fixed binary (78)
, unsigned based (next_state_file
_ptr):
del next_state_map (1:num_state_combs, 1:num_input_combs) fi
xed controlled external:
gcl control_Llaw_file_ptr pointer external’
acl cost_function_ ccde fixed external:’ .
del state cost_matrix (1:n) float controlled external’
dcl input_cost_matrix (Jl:p) float controlled external’
/* The above variakbles are stored in the same order as decla

red *x/

C-13

del still_data_left bit(1);

del skip_amount fixed’

get v fixed,

del j fixed:)

del answer character (3) varying:

del sysin file ingut,

dcl change_parameters$Sbuild_n

de!l change_parametersSbuild_m

dcl change_parametersSbuild_c

del change_parameters entry.,

del yn_answer_ok entry (character(3

del sysprint ile output’

dcl undefinedfile cendition’

dcl working_dir character (

dcl bit_count fixec bin(24)

decl code fixed bin(35):

dcl hcs $1n1taate ccunt entry (char
xed bin(23)

fixed bin(2), ptr.,

J* kkxkxk k[

ext_state_file entry;
isc_arrays entry;
ont_reg_sat_edg_arrys entry;

) varying);

]68 external,

(*), char(*}), char(*x), fi

fixed bin (35));

get file (data_file) edit (title)(skip, a(70)),
put edit (“The title of this data file is: ")(skipr,a)’
put edit (title)(skin,x(3), a)’ _
put edit ("Is this the correct file? ")(skip,a):
get List (answer);
~catl yn_answer_ok (answer).,
if éaqswer =z "y" | answer = "yes") then
Q. :
)y get file (data_file) edit (flag.cont_exists){(skio, b{1
b;1))' get file (data_file) edit (flag.discrete_exists)(skip.,
b”)).ge file (data_file) edit (flag.quantized_exists){(skio
, 4
b(1))9 file (data_file) edit (flag.control_law_valid) {(ski
De
. get file (data_file) edit (flag.sim_valid)(skip, b(1))
. file (data_file) edit (flag.own_qguant_file_exists)
(skips b 1)).
if (flag.cont_exists = truelflag.discrete_exi ts = truelfla
.quantized_exists = true |flag.control_law_ vaL = truelflag.
1m3vat1d = true) thenr
o’
get file (data_file) edit) Sklg »f(5));
get file (data_file) edit eal)(skip, f(5))2
if (p_reat = Q) ther
p = 17
else
p = p_real;
end’
if (;lag.cont exists = truye) then
o
allocate a_matrix;
atlocate b_ratrix’
do 1+ = 1 to n;
do j =1 tec n?

: get file (data_file) edit (a_matrix (i,j))(skips
f(12, 4)) 7

end.,
ends
do 1+ =1 to n’
do j = 1 to ps
get file (data_file) edit (b_matrix (i,)))(skio.
f(12, 4)) 7
end’
end,
end.,
if éf&ag.discrete-exists = true) then
Or
allocate phi_ratrixes Lambda_matrix;
get file (data_file) edit (tau)(skip, f(12, 4))’
do 1 = 1 to n;
do j = 1 tec n’ : . . . o
. get file (data_file) edit (phi_matrix (i, j))(sk
ips, (12, 4))2
end;
end:
do i+ =1 to n-
do j =1 tc p» .) o
?et file (data_file) edit (lambda_matrix (i, j))
(skips, f(12, 4))
end’
end,
end,

if (flagequantized_exists = true | flag.own_quant_file_exist
s = true) then

do; o
allocate number_of_steps_s», voltage_upper_bound_s, vol
tage_Llower_bound_s~
allocate numter_of_steps_i» voltage_upper_bound_i, vol
tage_lower_bound_1i.

deo i = 1 to n’ . . .
get file (cdata_file) edit (number_of_steps_s (1)) (s

kipe f(5)):

end.’
do i+ = 1 to n; . .
get file (data_file) edit (voltage_upper_bound_s (i)
’ voltage_louer_bounc-s(ifz

skips (12, 4), x(3), f(12, 4)):

end;
do t+ = 1 to p- .
. get file (cata_file) edit (number_of_steps_i (i)) (s
kipo, f(5))2

end.,
do i =1 to p’ " . . .
et file (data_file) edit (voltage_upper_bound_i (i

), voltage_lower_bounc_i Ti))
(skipes f(12, 4, x(3), f(1

2, 4))2
end.

call change_parameters3build_misc_arrays’

if (fta$,0un quant_file_exists = true) then do’
1

70)).get te ({data_%ile) edit (own_auant_data_title)(skips, af(
) call hcs_$initiate_count (working_dir, own_quant_data_tit
Qs
", bit_count, 0, next_state_file_ptr. ¢
ode)’

C-15

locate next_state_map;
i =1 to num_state_combs’
do j= 1 to num_input_combs’
next_state_map (isrj) = the_next_state_mapping(i,j)s

en nd,

al
do

el

end

;

e do~ .
all change_parametersSbuild_next_state_file,
(4

nc
s
c
nd

call change_parameterssbuild_cont_reg_sat_edg_arrys’

end’

if (flag.control_law_valid = true) then

do’
all hcs_Sinitiate_count (working_dir, job_namei|

"o
’

".control _ Lau"
de);

bit_count, 0, control_Llaw_file_ptr, co

get file (data_file) edit (cost_function_code) (s

kips, fC(5)):;
if écost function_code = 2) then
ors
al locate state_cost_matrix’
do i =1 to n;, .
?eg file (data_file) edit (state_cost_ma

trix (i)){skip, f(12,4

enc’;
enc,
if (cost_function_code = 2 | cost_function_code
= 3) then
do~
aLlocate input_cost_matrix.,
i=11to ps . . .
? et file (data_file) edit (input_cost_
matrix (i))(skip, (12,4));
end;
ndg -
end.,
end’;
else

good_job_title = false’
close file (data_file);
end get_data_file’

end init;

change_parameters: procedure;

decl job_name character (50) vary1nq external;
acti worE1ng dir character (163) external:
dcl next_state_file_ptr poxnter external;
det n fixed externals
decl o fixed external;
del p_real fixed external’
dcl number_of_steps_ s (1:n) fixed controlled external’
del number “of_stegs_i (1:p) fixed controtled external:
del voltage_upper_bound_s (1:n) float controlled external;
decl voltage_lower _bcund_s (1:n) float controlled external’
dcl voltage_upper_tcund_i (1:p) float controlled external’
dcl voltage_Llower_tcund_i (1:p) float controlled external’
del a_matrix (1:n, 12n) float controlled exterral.,
del b_matrix (1:n, 1:p) float controlled external’
del tau float exterral’
del phi_matrix (1:n, 1:n) float controlled external’
det lambBda_matrix (1:n, 1:p) float controlled external:;
dcl offset_s (1:n) fixed controlled external;
del offset_i (1:p) fixed controlled external:
del num_state_combs fixed external:
del num_input_combs fixed external?
del quantum_ step_size_s (1:n) float controlled external’
del quantum_step_size_i (1:p) float controlled external’
decl num_controllable_cells fixed external’
del uncontrollable,cell (1:tnum_state_combs) bit(1) controlle
d externat.,
del sat edge (T:num_state_combs, 1:num_input_combs) bit(1) ¢
ontrolle
external;
del the_next_state_rapping (1:num_state_combs, 1:num_input_c
ombs) fixed binary 2)
: unsw?ned based (next state file_ptr)?
dcl next_state_map {1:num_state_combs, 1:Rum_input_combs) fi
xed controlled externat.
¢ct title character (7C) varying external’
del oun_quant_data_txtle character (70) external:
del bit_count fixed bin(24);
dcl code fixed bin(35):
del v fixed?
del j fixed?
dcl answer character (3) varying’
del ¢ character (1),
del choice fixed,
del ¢2 eharacter(1):
del choice?2 fixed:’
det ¢3 character (1)7
del choice3 fixed’
dcl range fixegd-
del col_min fixed’
del col_max fixed’
del true bit(1) dinitial ("1"h);
del false bit(1) initial ("0"b):?
del 1 flag external,
2 cont_exists bit(1),
2 discrete_exists bit(1),
2 quantizec_exists bit(1),
2 control_law_valid bit(1),
2 sim_valire bit (1),

2 own_quant_f

del 1 flag2.,
% changed_n t

2

modity_disc
2

file_not_ex

dcl data_file file’
acl Syswn file input;
del sysprint file ou

dcl convert_Scont_st
ixed)’
) dcl convert _$dis_sta
I

del convert_Scode_to_

decl convert des Sta
loat)?

dcl convert_3%code_to_

del _convert “$dis_

dcl num_answer_ok entry (character (1),

cl yn_ answer_ok ent
c prlnt next state_

(2]

in (24),

)

3

h
n
)
h

VIO (N

4

delete entry ogt
copy entry optic

aaQa ~a~ aa aqQ

an

L
L
b
5
L
)
L
L
L

del null builting

PARMS

M WAV
—as x
-t
~00
Qs
7~ b
E 34
-
-’)
o ~-

dify/cre

al,

x
-
s
-
-

3
tO rerrtt0

raYalalatel
33

TSN —
e o & 2 0

we

PN IRNN
axadaa
-ttt e i

(" pPlL
(c);

l

put

list
e-

get

ran

cal

flagl. need set

goto casel(choi
case(1): put skip,
put edit
gut edit
ne word."”)(skipsa)
put skip

("E
("N

-
4
.
[4

need_set bit(1

1nput to cont

num_answer_ok (ce

ile_exists bit(1);

1t (1),
),
rete

bit
ist it

1.,
b 132

’

tDUtl
ate_to_dis_state
te_to_code entry

dis_state entry (

te to cont_state
dis_input entry
~input

ry (character
file entry’

cs_Sinitiate_ccunt entry (char(x),
fixed bin (2),

ions (vari
ns (variab

~Q

F®n

[}
Q"
-~
a1l

itle of the job

T
Ccntinuous system

Discrete system parameter

R

Quantized system
None of the above”
ease choose one =>

range.,

false,

ce),

nter a file title
ote:

c-18

entry

entry ((*)

entry ((x*x)

(fixed,
entry ((*)

") (skip.,
Quotes are required

((+*) float,
fixed,

Yfixed) !
fixeds

fixed).,
fixed, (

fixed):

fixed, (=
(*)

fixed,

(3) varying).

char(*), char(x)

ptr.,

fixed bin(35));

(*)
fixed

(*)

*)

f

’

f

f

f

i

fixed bi

;
cs_Smake_seg entry (char(*), char(*), char(*x), fixed bi

wing would you like to mo

(skips

file") (s
paramet

I 4
(1)

ip
rs
"

O X v

k a),
e (sk1
s kios
' skip

arameters
Y(skips, a)

"Y(skipr,ad:’

-

’

-
N T~

choice)?

a):

p

s3a)
al,
a)

e

e

if more than o

get list (titte)?
goto PARMS/
case(?2): put skip- .
if éf}ag.ccrt,exlsts = true) then
[e IV
put ecit ("Which parameter(s) would you Like
s ys to change?"}) (s
TPe aAl.
put ecit ("1, Number of states”)(skivs,a):
put ecit ("2, Number of 1nputs ') (skipra);
put edit ("3, System matrixs, A")(skipesa)’
put ecit ("4, Input matrix, B")(sk1o,a),
put eait ("5. AlLL of the above”)(skipra):
put egyt ("6, None of the above"”)(skion,a)’
put skip.
put edit E"S%ease choose one => ") (skips,a)’
get st (-
ran?e = 4
cat num answer_ok (c2, range, choice2)?’
if (chouceZ == 6) then
flag2.need_set = true’
dgoto case_2(choice2)’
ena.
else
dos;
flag.cont_exists = true’
féan.geea set = true’
choice2 =
alltocate a ;atr1x, b_matrix,
dgoto case_2(1);
end’
case_2(1): oput skip’
, put edit ("Enter number of states => ") (skip»,
a Ll
’ get list (n);
1 f écho1ce2 = 5) then
[¥
if (flag2.modi f{ discrete = true) then
o put edit ("The discrete system and inpu
t matricies must now ?e modvf1ed:')(sk1p'a).
else
put edit("The system matrixs, A, and inp
ut matrix, B, must now bhe mod1f1ed:')(sk p.a)
flag2.changed _n = tru
gcéo case_ (37:
en
else

gcto case_2(2);

case_2(2): put skip’ .)
5_ put edit ("Enter number of inputs => ") (skip.
ale
get list (p_real);
1f (o_real > Q) then
g = p_real;
else 1
jf (choléeZ "= 5) then
cao’
if (flag2.modify_ discrete = true) then
o put edit ("The discrete input matri
X must now be mod1f1ed:"){skxo; a):
else
put edit("The input matrixs, B, must
now be modified:")(skip, a)’

C-19

gqoto case_2(4).
end’
else
goto case_2(3);/

case_2(3): q%t skip,
1

(flag2.modify _discrete = true) then do:
free ohi_matrix,

allocate phi_matrix’

cut edit ("Enter values for the discrete s

ystem matrix, ohi")(skvo;a).
end’
else do.,
free a_ matrix/,
Ceki s put ecdit ("Enter values for the A matrix")
Sk1pDes al.»
allocate a_matrix’
end’ i
put skip’
do i 21 to n?
dec j = 1 to_n; .
4 1f (flag2.modify_discrete = true) then
o
put edit ("phi (", 1, ", ", je)y =>
"Y(x(3), a2, t(3)s a, £C(3)s a):
get list (phi_matrix(ie, j))7;
end.,

put edit ("A (", i, "» "» jb0 ") => "
Y(x(3), a, f(3), a, f(3),) . .
dget list Ca_matrix(ir, j))2
na.

choice2 “= 5) then do;
f éflagZ.changed_n = true) then
o’

flag2.changed_n = false’
goto case_2(4

e

end
els

[l

e
1f (flan modify_discrete = true) then
goto Mod1fy dis?
else
goto case(2)

, to case_2(4)7
case_2€4): oput sk
i f P.

ip-s
reat > 0) then
if

(fLagZ modify_discrete = true) then

Q

free lambda_matrix,

allocate Lambda_matrix’
) . . put edit ("Enter values for the d
iscrete input matrix., lambda”)(sktp,a),

end’
else

dos
free b_matrix:
allocate b_matrix;

. . put edit ("Enter values for the 8
matrix")(skip, ad)’
end.

put skip;/

C-20

i =1 to n;

do j =1 to_p; | .

1f (flag2.modify_discrete = true)
then do-

. put edit ("lambda (", i, ", ",
Jl Dl) => ")

(xC4), a» f(3), a, f(3), a):;
. get list (lambda_matrix(i, j))
: end.
else do-

put edit ("8 (", i, ", "4 jo "
Y => "M (x(4), a, f(3), 3, f(3), a): . . .
get list (b_matrix(i, })):

end,
end’;
end’
end’
else
des .
free b_matrix;
allocate b_matrix;
b_matrix = 0
.. end; .
if (flag2.modify_discrete = true) then
gcto Modify_dis,
else

_ gocto case(2):
case_2(S5): goto case_2(1)’

case_2(6): i; (flag2.need_set = true) then

c-
flag.cont_exists = truye;
flage.discrete_exists = false;
flag.quantized_exists = false;
flag.control_taw_valid = false’
flagesim_valid = false’

end’;

gotc PARMS;

case(3): /* Discrete Parms *x/
put skip’
f[a?Z.modify_disgrete = true;
if dfgag.cont-estts = true) then
Qe
,put ecit("A continuous model exists, would you
lLike to: ")(skiprad:

put skip:
- put ecit("1, Generate a discrete model from t
he continuous system”){(skip, a):
if (flag.discrete_exists = true) then
put edit ("2, Modify your existing discret

e system™)(skipera)’
else . .
. put edit(™2., Enter a new discrete system”)
(skipera): . .
put ecit(”"3, Quit")(skipsad’
put skip- i
put ecit("Please choose one => ")(skiosa)’
get list(c2)~, .
ran?e = 3;
call num_answer_ok (c2, range, choice?2)?;

if (choice2 = 1) then do:

flag.discrete_exists = true;
flag.guantized_exists = false’

c-21

flag.control _law_valid = false:
flag.sim_valid = false’
if (flag.discrete_exists = true) then
free phi_matrix, lambda_matrix’
call build_discrete_matricies’
chcice?2 = 3;
end;
if (choice2 = 2) then do,
tau = 0.0/
goto Modify_dis~/
end., .
if (choice2 = 3) then
gcto PARMS;
end;
else
do.,

put ecit("A continuous system does not exist,
would you Llike to'")
(skipera)d,
: put ecit ("1. C(Create a continuous system firs
t¥){skips,a)’)
if (flag.discrete_exists = true) then
' . put edit ("2. “Modify the existing discrete
system”)(skipsa).
else)
) put eqgit ("2, Enter a new discrete system"”
)(skipera)d~’
put ecit ("3, Quit™)(skipra)’

put skip.

get Llist (c2).

ran?e =

call rum ansuer ok (c2s range, choice2):’

if (cho1ce2 = 1) then do-
flag2.modif dvscrete = false’
goto case(Z

end.,

if (choice2 = 2) then do/
tavu = 0.0/
goto Modify_dis-

.eng;

if (choice2 = 3) then
gcto PARMS;

end.
Modify_dis: if (flag.discrete_exists = true) then
do.,

put edit ("Which of the following wou
ld you like to mod1fy°")(sk1poa).
put skip’)
y: put edit("1, Number of states")(skip
T E- PR
) put edit("2., Number of inputs”)(skip
2a),
. put edit("3, Discrete system matrix"
Y(skipsra)’) _ '
put edit("4, Discrete input matrix")

put edit("”S, ALl of the above”™)(skip

{(skipra);

oa);

cut edit("6, None of the above'”) (ski
peral;’

put skio’
. put edit ("Please choose one => ")(sk
iprad:

get List (c3);
range = §6;

C-22

call num_answer_ok (c3, range, choice

3);
if (choice3 "= 4) then
' do.,
flagl.need_set = truye-,
cho1ce2 = choice3:
goto case_2(choice?)’
end,
else
do-,
if (fLagZ need_set = true) then
flag discrete_exists = tr
ue s .
flagequantized_exists = f
alse: .
flage.control_tlaw_valid =
falses

flag.sim_valid = false’
end.
goto PARMS?

allocate ohi_matrix, lambda_matrix;/
flag2.need_set = true;

flag. d1screte exists = true/
choice?d =

goto case_ 2(1).

case(4): /* Quantizec Parms */
put skip’
fla? own_qguant _file_exists = false;
dflag.quant1zed exists = true) then
o,
put edit ("A quantized system currently exists
")(skipra)s
. put edit ("Do you still wish to modify the qua
ntized system? => ")(skipsra);
get list (answer);
call yn_ answer_ ok (answer):
if (ansWwer =2 "R"| answer = "no") then
gaoto PARMS,

;
ag.discrete_exists = true) then

o

nd
if (fL
do.,

put edit{("Would you like to generate a guantiz
ed system")(skipra)’

put edit (" from the discrete system?
=> ")({skipsa)d?

get lList (answer);

call yn_answer_ ok (answer),

i f éarsuer = "Y") answer = "yes") then
o
if (flag.quantized_exists = true) then
do~/

free next_state_map.

free number_of_steps_s» number_of_
steps_1i

free voltage_Llower_bound_s», voltag
e_upper_bound_s.

free voltage_Llower_bound_i, voltag
e_upper_bound_n

free offset_s»,» offset_31s, quantum_s

C-23

tep_size_s» quantum_steo_size_i’
. free sat_edge, uncontrollable_cell
end;
allocate number_of_steps_s-
i i put edit ("Enter the number of quantizat
ion steps”)(skipr,a)’)
put skip,
do0 7 = 1 to n:
put edit ("for state number”, i, " =>
"Y(x(3), a, f(5), a):

get Llist (number_of_steps_s (i)):
end,
allocate voltage_upper_bound_ssvoltage_t
ouwer_bound_s’;

out edit ("Enter the upoer and lower vol
tage bounds (u, L)")(skip., a):
put skip:
do 3 = 1 to n;
put edit ("for state number', i, " =>
"Y (x(3), a, f(5), a):
..get Llist (voltage_upper_bound_s (i),
voltage_Llower_bound_s (1))’
end:
allocate number_of_steps_i~’
1f é p.real > 0) then
[+ 24

. g’ . put edit ("Enter the number of qua

ntization steps™)(skipra)d’]

put skips

do 1+ = 1 to
t

put edi
e " => "MY(x(3), as f(5), a):
),

D,
("for input number", i
get list (number_of_stepos_i (i)

end;
end,
else .
number_of_steps_i1 (1) = 12

atlocate voltage_upoer_bound_i, voltage_

if é p_real > 0) then
(e}
put edit ("Enter the upper and low
er voltage bounds (u, L)")(skip, 3)°’

lower_bound_i~

put skip’
do i = 1 to p:/ .
put edit ("for innut number”™, 3

s " => MY (3, a, f(S5), a); .
.) .. get list (voltage_upper_bound_i
(i), voltage_lower_bcund_i (1)_;

end’
end.,
else
do.,
voltage_upper_bound_i (1) = 0°
dvoltage_louer_bound_i (1) = 0
end.,

.)) put edit ("Would you Llike the next state
file built”)(skipsa): .

get list (answer);
1f (answer = "y* |

answer = "yes"”) then
do-,

call build_misc_arrays:

call hes_Sinitiate_count (working_dir

C-24

job_name||".next_state", "", hit
~count,
0, next_state_file_ptr, code).
call delete (job_namel|".next_state"”
“~bf");
: call hes_%make_seg (working_dir, job_
namel |
Y.next_state”, """, N11010b, next_stat
e_file_ptrs, code)’)
call build_next_state_files
end:
end;
else
dos
put edit ("Do you have a data file conta
ining the guantized")(sk1poa).
out edit (" system that you would
like to access? => ")(sk1paa),
get List (answer);
call yn_answer ok (answer):

if (answer = "y" | answer = "yes") then
flagsown_quant_file_exists = true’
else
goto PARMS;
end’;
end,
else
do~

put edit ("A discrete system does not exist,")

(skiprad’ . .
. put ecit ("Would you Llike to create one? => "

Y(skipsra)d;

get List (answer):

call yn_answer_ok (answer);

if (answer = "y" | answer = "yes") then

gcto PARMS;

put "edit ("Do you have a quantized system data
file that you would Llike to access? => “)(skipra)’

get List (answer).,

call yn_ answer_o (answer);

if (arswer = "y" | answer = "yes") then
flag.own_quant_file_exists = true’
else
goto PARMS;
end’
if (flag.own_quant_file_exists = true) then
dos
if (flag.cuantized_exists = true) then

de-
free number_of_steps_s, number_of_steps_i

“e

free voltage_Llower_bound_s, voltage_upper
_bound_s~
free voltage_Llower_bound_i, voltage_upper
bound_i;
. free offset_s, offset_i, quantum_step_siz
e_sSs, Quantum_step_size_i~/
free sat_edge, uncontrollable_cell?
free next_state_map.,
enc, . _
. put ecit ("Enter the name of the file to be re
ad in => ")(skip, a):

[x*xx/ get List (own_quant_data_title)’
call Pcs_Sinitiate_count (uork1ng dir,
cwn_guant_data_title, """, bit_count, 0, ne

xt_state_file_ptr,

C-25

ccde);
if énext_state_file_otr = null) then
c’
put edit ("The file", own_guant_data_tit
le, "does not exist")(skipsra)’
put edit ("Try Again => ") (ski
get list (own_nuant_data_title
catll hecs_Sinitiate_Zount (JOP;

0 own_quant_data_title, "" -
.

next state_fvle ptrs, coce);
if (next state_ file ptr = null) then
goto PARMS;~

end,

put edit(”The follou1ng information is need
ed to suppliment the cua:t1zat1on modedl : J(skipra);
put ski .
put edxt ("the number of states => ") (skip,

als
get Llist (n);))
Fut edit ("the number of inputs => ") (skip,
al:
.get list (p_real)’;
it (p_real > 0) then
p = p_real:
else
p = 17
at locate number_of_steps_s’
_) put edit ("Enter the number of quantizat
ion steps”)(skipora)’)
put skip’
do 1 =1 to n;
put edit ("for state number”", i, " =>

"I (x(3), a. f(S), a):
get List (number_of_steps_s (i))’
end
oo : allocate voltage_upper_bound_s,voltage_t{
ower_bound_s’
put edit ("Enter the upper and lower vol
tage bounds (us, L)")(skip, a)’
put skip.,
do i = 1 to n
put edit (
(

5for state number'”, i, " =>
"I{x(3), a, f(S), a);

. ?et list (voltage_upper_hound_s (i),
voltage_Llower_bound_s (i)}
end;
allocate number_ o steps_i
if é p_real > 07) then
o-

put edit (“Enter the number of qua
ntization steps”)(skipsa)’]
put skip’
do i = 1 to p’;]
put edit ("for inout number”, i
s " => "M¥U(x(3), as f(S), a):)))
; get Llist (number_of_steps_i (i)
end’
end;
else)
number_of_stens_i (1) = 1;

allocate voltage_upper_bound_i, voltage_
lower _bound_i

1f (p_real > N) then
dos

C-26

put edit ("Enter the upper and low
er voltage bounds (us, L)")(skip, a)’
put skip’

do i = 1 to p-/]
put edit ("for input number', i
s " => ") (x(3), as, f(S), a).
. ~get Llist (voltage_unper_bound_i
(i, voltage_lower_Etcund_i (i));
end.,
end;
else
da,

voltage_uoper_bound_i (1)
vol tage_Llower_bound_i (1)

end:.)
call build_misc_arrays’

OO0
e va

allocate next_state_mao./
do i = 1 to num_state_combs’

do j = 1 to num_input_combs’
next_state_map (i,)) = the_next_st
ate_mapping (i,j)7

end/
end;
end»
call build_cont_reg_sat_edg_arrys;
call print_next_state_file.,
flag.quantized_exists = true;
flag.contraol_Llaw_valid = false.,
flagesim_valid = false’
goto PARMS;
case(5): /*Quit*/
put skip~/
build_discrete_matricies: procedure;
dcl n fixed external’
del p fixed external’
del tau float exterral:
dct phi_matrix (1:n, 1:n) float controlled external’
det lamBda_matrix (1:n, 1:p) float controlled external’
del i fixed’,
del j fixed: .)
del matrix_dim fixed binary (35)7
dcl ind fixed binary (35)/
del ier fixed binary (35);
del time float binary’
del time_end float kinary’
dcl tol Float binary’
del ¢ (1:24) float tinarys |
decl cont_state (1C) float binary:
del cont_inout (1:p) float binary controlled external’
del w (13n, 1:9) flcat binary controlled’
dcl temp_prime (1:r) float controlled external’
del imsl$dverk entry (fixed binary (35), entry, float binary
» (*x) floa

) binary, float binary, float binary, fi
xea binary (35),

(*) float binary, fixed binary (35), (
*, *) float

binary, fixed binary (35))7;

cdel sysin file inout?
gcl sysprint file cutput:

allocate cont_inout, temo_prime, ws phi_matrix, lambda_matr:

put edit ("Enter tau =>")(skip,x(4),a);
get list (tau):
do i = 1 to n;

cont_state = 07

cont_state (i) = 1;

matrix_dim = n2’

time = 0,

time_end = tau,

tol = .0001;

ind = 17 i

call imslsdverk (matrix_dim, equation_a, time, cont_state,
time_end,

) tols, inds c», matrix_dim, w, ier);
do g_= 1 to n; .
phi_matrix (j, 1) = cont_state (j).,
end;
end;
do 1 = ;
cont_state =
cont_input ?

-
(ad
Q

he]

_ catl imsl$dverk (matrix_dim, equation_b, time, cont_state.,

time_end., . . .
) tols, inds c», matrix_dim, ws, ier);
do j = 1 to n; L

lambda_matrix (j, i) = cont_state (j);

end’
end; .
put edit ("PHI MATRIX = ")(skip(2), a):
de 1+ = 1 to n/

put skipg;

de j =1 to n2 .)

put Llist (phi_matrix (i, j)):

end’
end’ .
put edit ("LAMBDA MATRIX = ")(skip(2), a)’
do i = 1 to n/

put skip’

do j = 1 to p’] o

put List (lambda_matrix (i, j)):

end’

end;

free cont_input, temp_prime, w’

?,a: procedyre (matrix_dim, time, cont_state, cont_st

C-28

dcl matrix_dim fixed binary (35);

dcl time float birary.,

decl cont_state (1C) float binary:?

dcl cont_state_prime (10) float binary:’

dc! n fixed external:

del a_matrix (1:r, 1:n) float controlled external’
del 1 fixed:

decl j fixed,

do + =1 to n’

cont_state_prire (i) = 07

do j°=1 to n’ _ _ '
cont_state_prime (1) = cont_state_prime (i) + (a_matri

1y *]

cont_state (j));

end;

da’

end equation_a-

equation_b: procedure (matrix_dim, time, cont_state, cont_st
ate_prime).;

del matrix_dim fixed binmary (35)’
dctl time fTloat birary;
dcl cont_state (1C) float binary’
dcl cont_state prwme (10) float binary;
decl cont_input(1: float binary controlled external:
del n fixed external:
decl p fixed external.,
dectl temp_prime (1:n) float controlled external’
del a_matrix (t:ns, 1:n) float controlled external?’
del b_matrix (1:n, 1:p) float controlled externat;
det i fixed’
del j fixed.
decl k fixed:
do i = 1 to n;
temp_prime (1) = 0,
do k =1 to p~
. temp_prime(i) = temp_prime(i) + (b_matrix(is,k) * cont
input(k));
end.
end;
do i = 1 to n’
cont_state _prime (i) = 0;
do j =1 to n;
. cont_state_prime (i) = cont_state_prime (i) + temp_pri
me (i) + (a_matrix (i, j)
cont_state (j)):
end’
end:

end equation_b/
end build_discrete_matricies’

goto skip_the_entry’
build_misc_arrays: ertry.

C-29

altocate offset_s» cffset_i, qQuantum_step_size_s, quantum_st
ep_size_
auantum step_size_s = (voltage_upper_bound_s = voltage_lower
bound_s) /

(nu
mber_of_steps_s)~’
of?set s 0157271
do i 2 to n;
offset s (i) = cffset_s (i=1) * number_of_stepns_s (i=1)/
end-

num_state_combs = offset_s (n) * number_of_steps_s (n);
if 1 _p_real > 0) then
do ,
auantum step_size_1 = (voltage_upper_bound_i = voltage_l!
ower _bound_

(num
ber_of_steps_1i)~/
offset_1 (1) = 1
do i =2 to p» . L
. offset_i (1) = offset_i (i=1) * number_of_steps_i (i-1
’
end’ .
gum_inout_combs = offset_i (p) * number_of_stepos_i (p)~/
end,
else
do-s
num_input_combs = 1/
offset_i (1) = 1;
quantum step_size_1 (1) = 1;
end’;
return;

goto skio_the_entry;
build_cont_reg_sat_ecg_arrys: entry’

found_sat ed?g kit (1)2
state_ “code ixed,
input_codel fixed,
next_state_codel fixed/
num_sat_edges fixed’

aqgaaqaa
X2 NN Ns}
ol and anl aul aud

allocate uncontrollable_cell, sat_edge-

do state_code?l = 1 to num_state_combs’
uncontrollable cell (state codel) = false’

end,
found_sat_edge = false’
do state Code?l = 1 to num_state_combs/

do input_codel = 1 to num_input_combs; .
next_ state_codel = next_state_map (state_codel, input_co

de1):
1fd(next_state_codel = (0) then
o/
sat_edge (state_codel, input_codel) = true’,
found_sat_ecdge = true;
end,
else)
4 sat_edge (state_codel, input_codel) = false’
enag.,
endg.;
d0 while (found_sat_edge = true)~
do0 state_codel = 1 7to num_state_combs’
1fd(uncontrollable_cell (state_codel) = false) then
o’
0

C-30

if (sat_edge (state_codel, input_codel) = true)

then
num_sat_edges = num_sat_edges + 1:

end:

1fd(num_sat_edges = num_input_combs) then
o,

uncontrcllable_cell (state_codel) = true;
end’
end;
end’;

found_sat_edge fa
do state codel 1
do input_codel =

= se;, -
1
if (sat_edge (

L
to num_state_combs:
1 to num_inout_combs’
state_codel, input_codel) = false) the
n
do’

next_state_codel = next_state_mao (state_codel, 1in
put_codel);

if (uncontrollable_cell (next_state_codel) = true

) then 4
Ov
sat edge (state_codel, input_codel) = true’;
found_sat_edge = true;
end;
ends
end.
end’
nd>-
num _controtlable_cells = (7
do State_codel =1 to num_state_combs/
if (uncontrotlable_celT (state_codel1) = false) then
4 num_controllable_cells = num_controllable_cells + 1’
end-
return;

goto skip_the_entry., :
build_next_state_file: entry;

next_state_code fixed,
state_code fixec’
input_code fixed,
state code_tenmg f1xed
input_ “code_temg fixed
dis_state {1:n) fixed controlled’
next dis_state (1:n) fixed controlled’

dis_Tnout (1:p) fixed controlled’

Nen,

) float controlled’
) float controlled’
cat controlled,
cat controlled;

cont_state (1:n
coant_input (1:p
temp_1 (1:n) fl
temp_2 (1:n) fl

b

Qa aqaa aqaanoaaqa
0O 000000

o
I el et et i e o e e

not_saturated

out skip/ . .
put edit ("Buildirg next state file")(skip, x(4), al)z
atlocate dis_state, dis_input, next_dis_state, cont_state,

cont_inputy, :
temp_1, temp_2°

allocate next_state_map/,
do state_code = 1 tc num_state_combs’/

do input_code = 1 to num_ input_combs?’
state_code_terp = state_ code.’

C-31

input_code_terp = input_code’

call convert_%code_to_dis_state(state_code, dis_state)

~e

call convert_%code_to_dis_input (input_code, dis_input

= state_code_temp-
= input_code_temp.
try,

_ free dis_state, dis_inputs, next_dis_state, cont_state, cont
LInpute

temp_1, temp_2;

add_entry: proceduyre;
del v fixed;

catl convert_%dis_state_to_cont_state ((dis_state), cont_s

tate):;
do i = 1 to n;
temp_1 (i) = 0
do) =1 to n.,) i . i
(i) temp_1 (i) = temp_1 (i) + phi_matrix (i,j) * cont_stat
e H
) end’
end’;
galt convert_$dis_input_to_cont_input ((dis_imput), cont_i
nput)’;
do i = 1 to n’
temp_2 (i) = C;
do j =1 to p’
temp_2 (i) = temp_2 (i) + lambda_matrix (i, j) * cont_
input (j).
end/
nd.
emp_1 = temp_1 + temp_2: _
?gl convert_Scort_state_to_dis_state ((temp_1), next_dis_

ot_saturated = true.,
01 =1 to n while (not_saturated = true)’
if (next_dis_state (i) > number_of_steps_s (i) = 1 |
next_dis_sta
te (i) < Q) then
not_saturated = false’
end’;
if (not_saturated = true) then
call convert_Sdis_state_to_code ((next_dis_state), next_
state_code);
else
next_state_code = (2
next_state_map (state_code, input_code) = next_state_code’
1fd(next state_coce “= (0) then do-
end’

end add_entry.,
retyrn,

skip_the_entry: put skip,
ena change_parameters;

C-32

it: proceduyre.

me character(50) varying external;
le files
external,

0 s
—

[ASIaVTANTAN FAN JEN 1<V)
o]
[«
Y]
po |
(ad
-
N
(1]

done bit(1); i
answer character(3) varying:
choice fixed:?

choice_c character (1),

range ftixed,

o000 nn

fixeds, fixed),

num_answer_ok entry (chara
arying)’

ct
yn_ answer_ck entry (characte
print_next .State_file entry:;
build_tol reg and_cont_Llawlpr
check quant1zat1on Level entr
sysin file input’

sysprint file output’

"t <N

_law entry;

= = - - —— — - ——

oo agaaqaaao aadaaQ
OO O

one = "0"b
o wh1le = "C"b)»
put ed hich ef the following would you Like orinted?”
J(skipsra)’

put ski

1. Status of the job
2. Data file for the
antizec_exists = "1"b

= 5;
it ("3, AQuantized data file - next state file

d
dit ("4, AQuantization lLevel check™)(skipsa):
Lag. cortrot taw_valid = "1"b) then

« Control law")(skip

I X:]
None of the above')(

)s
skipsra)d:

put edit ("S5, None of the abaove™)(skip.,a)’

f‘an? =
flaq.contrc[taw_vatlid = "1"b) then

range = 4;
put edit ("3, Control law") (skip,
d:_aut edgit ("4, None of the above®)
end.,

else .
put edit ("2, None of the above")(skipra):

a):
(skiperal:

end,;

put skip?

put edit ("Enter choice => ")(skipsa)’;

get List (choice_c):

call num_answer_ok (choice_c, range, choice);

if (choice = 1) then
do’,

C-33

put skip/
1f (flag.
put ed
xists")(skipra),
if (flag.
put ed
sts”)(skipsad’
1f (flag.
put ed
ists"”)(skipsad:
it (flag.
put ed
Y(skiperads
i (flag.
put ed
imulated”) (skips,a):
end;
if (choice =
if (choice = 3)
dos
if (range
if (range
pr_cont_Llaw~
. if (range
e_file’
end?
if (choice = 4)

do: |
if (range

if (range
n_level’

end;
if(choice = 5)
do’;
if (range
if (range
pr_cont_Llaw,
end;
if (choice = §)

end; /* while =x/
goto endit,

display_job_file:
put edit ("00Ps I

return,

endit:

end print_

ccrt _exists = "1"b) then
it (A continuous model of the system e
discrete_exists = "1"b) then)
it (" A discrete model of the system exi
quantized_exists= "1"b) then
it (" A quantized model of the system ex
control_law_valid = "1"b) then .
it (" A control Law exists for the job"
sim_valid = "1"b) then
it (" The system has been successfully s
2) then call display_job_file~
then
= 3) then done = "1"b’
= 4) then caltl build_tol_reg_and_cont_Llaw$
= 5 | range = 6) then call print_next_stat
then
= 4) then done = "1"b’
= Sirange = 6) then call check_quantizatio
then
= 5) then done = "1"b?
= 6) then call build_tol_reg_and_cont_Llaws
then done "1"b;

entry;

haven't written this aone yet!")(skips,a):’

-
L4

it

C-34

print_next_state_file: procedure:’

del num_state_combs fixed external.,
decl num_input_combs fixed external:’
del next_state_file_ptr pointer external;
del next_state _map (12num_state_combss, 12num_input_combs) fi
xed controlled external:
del the_next_state_mapping (1 num_state_combs., 1:num input_c
ombs) fixed binary g
unsigned based (next_state_file_ptr)?
del yn_answer_ok entry (character(3) varying)’
del sysim file input’
dcl sysprint file cutput’
del i fixed’
dct j fixed;
del count fixed:
dcl answer character (3) varying,
Egt edit ("Would ycu Like the next state file printed? => ")
(skipsra)
get l1st (answer);
call yn_ answer_ ok(arswer).
if (answer = "yes” | answer = "y™) then
do,
count = 07
do 1= 1 to nur_state_combs’/
count = count + 1’
if (count = 11) then
dos
count = 1;
put edit ("More? 2> ")(skipsa)’
get list (answer)’
call yn -answer_ ok (answer);
put skips
. if (answer = "n" } answer = "no") then goto nomor
e
end’
put edit (i) (skiperf(4));
do j = 1 to rum_input_ combs.
gut edit (next_state_map (i, j))(x(2), f(?)):
ends
end’
end’

nomores put skip’)
end print_next_state_file’

C-35

check_quantization_Llevel: orocedure’

n fixed external.,

p fixed external’

p_real fixed external.,
num_state_cambks fixed external’
num_ |nput “combs fixed external:;
offset T1:n) fixed controlled exter
offset (1:p) fixed controlled exter
number of stegs_s (1:n) fixed control
number_of_steps_i (1:p) fixed control

Qaaaaqaaa
L N L)
(N1]

voltage_Llower_tcunc
voltage_lower bound_
quantum_step_ s1ze s
quantum step_size_ ‘l
e

) L
) L
float controlle
f e
num_controllable_t e

aoOonn
= OV~ e = e~ r——r— - —

S
i
(
(
L

W —

d external;

(2}

next_state_file_ptr pointer external’

state (1:n) fixed controlled’
input (1:p) fixed controlled’
next_state (1:n) fixed controlled’

o0n

[2]

next_state_magr (1:num_state_combs, 1:num_inout_combs) fi
ontrolled external’

»
1]
oa aa aqaa a aaqaa

the_next_state_rapping (1:num_state_combs, 1:num_input_c
fixed binary (T2)

(]
3
wo

unsigned based (next_state_file_ptr)’

(2]

answer character(3) varying.

convert _Sdis_state_to_code entry ((*)
convert_Sdis_irput_to_code entry ((*)
convert Scode te_dis_state entry (fixed, (%)
convert_3Scode_to_dis_input entr{ (fix
yn_answer_ok entry (character(3) varyi

PN
-, e s e
o X X X
"®m®®
aaaa
s s
SevENg w,

sysin file input’
sysprint file cutput’

o0 0600

edit ("Would you lLlike to check the quantization tevel ?
ipea)ds

list (answer)’;

l yn_ answer_ ok (ansuer):

(answer = "yes" | answer = "y") then

o]

-~
«“Hhia A0 QOO aaaaa a

-0 %W C
Q /XY M~~~ e e~

put edit ("Nymkter of contro cells = ") (skipra);
put tist (num ccntrcllable : .
put edit (" Total numbg tls = ")(skipra):

put l1st (num_state_combs

atlocate state, inputs next_state;

tt find_ zero input_ dists:”

p_real > T) then call find_zero_state_dists’
tate, 1ncut: next_ state,

rint_sat_edge_array.’

m_controllable_cetls "= num_state_combs) then do’
L prlnt ccntrollable_cetlss”

Ll print_uncontrollable_cells’

find_zero_input_dists: orocedure,
del 1 fixed’

C-36

s_level fixed’

state code fixed:
state code temp fi
next_ State_code fi

xed

xecd

zero_input_ccde fixed
9

4

YR TAY]

sum_ num stecs fixe
max_num_steos fixed
num_tot fix

e
zero_input () fixed controlled’
n 1

aaQaaacaanonaan
X R N W s Xa N N N W o)
ek adat ekt adade X ol o ol

Qr—'v_;a

o}
num_dir (1: fixed controlled’
celTs_moved_tct (OJ:sum_num_steps) fixed controlled’
4 cells_moved_dir (1:n, O:max_num_steos) fixed controlle
’
max_num_steps = number_of_steps_s (1)’
sum_num_steps = 07
do ¥ =T to ns
iy max_num_stecs = max (max_num_stepss, number_of_steps_s
] ’ -

sum_num_steps sum_num_steps + number_of_steps_s (i)’

end.;

d_d allocate zero_irput, num_dir, cells_moved_tot, cells_mov
e ir?

zero_input = floor (=-voltage_lower_bound_i / quantum_st
ep_size_i)7
call convert_%dis_input_to_code ((zero_input), zero_inpu
t_code);
do state_code =1 to num_state_combs’
state_code temp = state code;”
call convert_ $code_to_dis_state (state_ coder state)’
state_code = state_code_temp’ »
call compute_zero 1nput “dists’
end’ . .
call print_zerc_input_dists>

. free zero_inputs num_dirs, cells_moved_tot, cells_moved_d
1re

compute_z2ero_input_dists: procedure;

h if (next_state_map (state_codes, zero_input_code) > 0)
en
dos

next_state_code = next_state_map (state_code, zero_
nput_code);

call convert_sScode_to_dis_state ((next_state_code).,
next_state). .

num_dir = ats (state - next_state)’

num_tot = C;
do ¥ = 1 te n:?
cells_moved_dir (isnum_dir(i))= cells_moved_dir (i
enum_dir(id))y + 1;°
num_tot = num_tot + num_dir (i),
end’;

y 4 13 cells_moved_tot (num_tot) = cells_moved_tot (num_tot
end,
end compute_zero_input_dists’/
print_zero_input_dists: procedure’

del i fixed’

C-37

del j fixedq:

decl max_cells_moved fixed:)

decl most_cells_roved (1:max_num_steps) fixed controlled;
dcl zero_cells_movec bit(1);?

del true bit(1Y initial ("1"h):

del false bit(1) initial ("0"b)’

allocate most_cells_moved’

do i+ =1 to n’
zero_cells_moved = true; .
do j = max_nur_steps by =1 to O while (zero_cells_move

d = true)’ . .)
ifd(gells_mcved_d1r (i, §j) > 0) then
(s 17
zero_cells_moved =
most_cells_moved (i
end’
end.

end.

max_cells_movec = most_cells_moved (1);

do ¥ = 1 to n;

4 N max_cells_moved = max (max_cells_moved, most_cells_mov
e i ;

end.,
put'edit ("Number of cells moved in each direction”) (ski

pex(6)sad.’
put edit ("Dir”)(skiprarx(3));
%g_moved;

false,
) = 37

do i = 0 to 'max_cel
put edit (i) (F(4)
end.
do i =1 to n; .
put edit (i) (skiprf(b4),x(3)
do j = 0 to max_cells_moved
put edit (cells_moved_dir
end.
end.,
zero_cells_moved = true;)
?o i = sum_num_steps by -1 to 0 while (zero_cells_moved
= true)’ :
ifd(cells_moved_tot (i) > 0) then
o,
2ero_cells_mcved = false’
max_cells_moved = i,

):

Cirjd) C£C4Y):

end/

end’
put skip:)
put edit ("Number of cells moved total”")(skip,x(6),a):
put edit ("num™)(skipsa):
do i = 0 to max_cells_moved’

ut edit (i)(f(4));
end: .
put edit (" ")(skipsad:
do i = 0 to max_cells_moved?

gut edit (cells_moved_tot (1)) (f(4)):
end.,

free most_cells_moved’
end print_zero_input_dists’
end find_zero_input_dists./
find_zero_state_dists: procedure;

fixed,

dcl 1 fi
dectl j fixed:,

C-38

decl input_code fixed,

del next_State_ccde fixed,

dcl zero_state_coce fixed’

del zero_ state (1:n) fixed controlled’

dcl zero_input (1:p) fixed controlled’

del num_Tnput_steps (1:p) fixed controlled?

del cetTs_moved_tot_abs (1:p) fixed controlled.

del cells_moved_ d1r abs (1:ps 1:n) fixed controlled’;
del cells_moved_tct_avg (1:p) float controlled?

dectl cetls_moved_dir_avg (1:p, 1:n) float controlled’
del input_ status (12p) character(9) controlled’

dct found_not_sat bit(1);

del true Bit(T) initial ("1"b):

detl false bi1t(1) invtial ("0"b)?!

allocate zero_ state, zero_input, num_input_steoss, cells_mo

ved_tot_abs., i
cells_mcved_tot_avgr, cells_moved_dir_abs, cells_
moved_dir_avge,

input_status.

. ze;o,state = floer (-voltage_Llower_bound_s / quantum_step_
size_s): :)

. zg;o_lnput = ftoor (-voltage_Llower_bound_i / quantum_step_
size_1)2

4 ggll convert_%Sdis_state_to_code ((2ero_state), zero_state_
code)?

.

catl comoute -zero_state_dists:
call print_zero_state _dists’

free zero_state, zerco_inputs, num_input_stepss, cells_moved_
tot abss
cells_moved_tot_avgs, cells_moved_dir_abss, cells_move
d_dir_avg.,
input_status.,

compute_z2ero_state_dists: procedure’

do i =1 to p’
input = zero_input,
found_not_sat = false’
input (i)~ = 0
do while (input (1) < zero_input (i) & found_not_s
at = false);
call convert_3dis_input_to_code ((input), input_code

if (next_state_map (zero_state_codes, input_code) >

0) then
found_nct_sat = true;
else . . .
input (1) = input (i) + 1;
end.
1fd(found_nct_sat = true) then
o
if (input (i) = 0) then input_status (i) = "max
unsat™;

else input_status (i) = "max satur
num_input_steps (i) = zero_input (1) - input (i),
next state code = next_ state map (zero_state_code,
input_code);
catl convert_3%code_to_dis_state ((next_state_code)
» Nnext_state);
cells_moved_dir_abs (i,%) = abs (next_state - zero

C-39

end;
put skip’

end print_zero_state_dists’

end find_zero_state_dists’/

print_sat_edge_array: procedure’

del num_state_combs fixed external
del num_input_combs fixed external

.
’
-

’

C-40

_state); . .
y cells_mcved_dir_avg (i1,%x) = cells_moved_dir_abs (i
o *
3 num
~input_stens (i), i
cells_moved_tot_abs (i) = 07
do j = 1 to n>;
, cells_moved_tot_abs (1) = cells_moved_tot_abs (i
+
. L cells_move
d_dir_abs (i, j);
end., .
y cells_moved_tot_avg (i) = cells_moved_tot_abs (i)
’ . num
-input_steps (i),
end’
else)
input_status (i) = alL satur”;
end’
end compute_zero_state_dists’
print_zero_state_cists: procedure;
put skips
put edit ("Input Input Num Total Cells Ce
tis Moved")(skvp'a),
put edit (" Status Input Moved
in")Y(skipsa)’
. put edit (" Steps Abs Avg b}
ir Abs ; Av?)(sk1naa).
to o~/
out skip/)
ifd(.input_status (i) = "all satur”) then
[« 7
) put edit (i, input_status (i))(x(4),f(4),x(3),a(?)
end,
else
do’ . .
, put edit (i, input_status (i), num_input_steps (i)
- (fC4)s, x(3), a(9), x(3), f(4)):
. put edit (cells_moved_tot_abs (i), cells_moved_tot
-avg (i), ™ ")
(x(4)s FC&Y, x(2)s F(6,2)s a)s
do j = 1't0 ns
put edit (j, cells_moved_dir_abs (irj)s, celis_mo
ved_dir_avg (ir,j), * ™)
. (skipes x(42)s f(4), x(2)s (&), x(5)s £(6,2), a)
end;
end’;

at_edge (1:num_state_combs, 1:num_input_combs) bit (1)
led
externals

del yn_answer_ok entry (character(3) varying)’
del sysin file input’
del sysprint file cutput’
det i1 fixed:
del j fixed:
dcl count fixed,
del answer character (3) varying’
put edit ("Would you Like the saturated edge array printed”?
"Y(skipsra):
get List (answer)’
call yn_answer_ok (answer)’; .
if (answer = "yes” | answer = "y") then
dos
count = @7/
do i = 1 to num_state_combs’
count = count + 1;
if (count = 11) then
do;
count = 1; .
put edit ("More? => ") (skipra)’
get List (answer),
call yn_answer_ok (answer)’
put sktp,
if (answer = "n" | answer = "no™) then goto nomor
e:
end; .
put edit (i)(skip,f(4)):?
do j = 1 to num_input_combs’/ .
o) i¥ (sat_edge (is, jJ = "0"b) then put edit (" Fr
a):
else put edit (" T")(a)’
- end:
end.
end’

nomore: put skip’

end print_sat,edge_arfay:

print_controllable_cells: procedure’;
decl num_state_combs fixed external’

del uncontrollable_cell (1:num_state_combs) bit(1) controlle
d external:

del 1 fixed’

count fixeds .

answer character(3) varying;
sysin file input’

sysprint file output:)
yn_answer_ok entry (character(3) varying)’

e?it ("Would ycu Like the controtlable cells Listed 2 ")
a);:
li;t (answer);
yn_answer_ok (answer);
,answer = yes" | answer = "y") then

~
["J
-0 XTD anaaqa

AW 4C OONOND
Q ~20 v r~r~r~r~r

O~~~ s

count = 0 .
put edit ("Controllable Cells")(skipsrad’
do i =1 to num_state_combs’

C-41

ifd(uncontrotlable_cell (i) = "0"b) then
o,
put skip list (i);
count = count + 1;
if (court = 10) then
do.
count = 1,

put edit ("More? => ")(skipsra)’
get List (answer).’
call yn_answer_ok (answer):;

put skwp'
if (answer = "n" | answer = "no") then goto
nomore:
end;
end;
end’;
nd:

nomore° put skip’

end print_controllable_cells’

print_uncontrollable_cells: procedure;
del num_state_combs fixed external’

dcl uncontroltable_cell (1:num_state_combs) bit(1) controlle
d external’;

dcl count fixed’
del ¥ fixed? .
del answer character(3) varying:
del sysin file input,
del sysprint file cutput’
del yn_answer_ok entry (character(3) varying):’
put edit ("Would you lLike the uncontrollable cells Llisted ?
")Y(skipead:
get list (answer),
call yn_answer_ ok (ansuer).
\fd(ansuwer = "yes”" | answer = "y") then
o,
count = 0,
put edit ("Uncontrollable Cells”")(skipsral:
do v = 1 to num_state_combs,
if é uncontrallable_cell (i) = "1"b) then
os
put skip Llist (1),
¢ogunt = count + 1.
1f (count = 11) then
dos
count = 1;
put edit ("More? => ")(skipsr,a)’
get List (answer):
call yn_answer_ok (answer);
put skip/
if (answer = "n” | answer = "no") then goto
nomore.
end’;
end.,
end;
end’

nomore: put skip’
end print_uncontrollatle_cells’

enc check_guantizaticr_Llevel;

C-42

build_tol_reg_and_conrt_Llaw: procedure:

del nu state_comts fixed external;

m

del 1 flag external,

2 cont_exists bit(1).,

2 discrete exists bit(1),

2 quantized_exists bit(1),

2 control_law_valid bit(1),

2 sim_valid ETt (1),

2 own_quant_file_exists bit(1);
del cost_function_ccde fixed external’
acl cell_status_inrdex fixed;
dcl center_cell_tolerance fixed’
acl edge_cell_tolerance fixed;
decl cell_status (l:num_state_combs) fixed controlled:’
dcl center_dist (1:num_state_combs) fixed controlled’
decl found_all_Lloogs bit(1):
cet control_Llaw_file_ptr pointer external:’
del control_law (1:num_state_combs) fixed based (control_Llaw

~fite_ptr);

del 7 fixed;
acl answer character(3) varying’,
del min_time_opt_cont_taw entry ((*) fixed, fixed):
del yn_answer_ok"™ entry (character (3) varying)’
det sys1n-f1le inputs
dcl sysprint file cutput?

allocate cell_statuss center_dists

if (flage.control_tlaw_valid = "1"b) then
put edit ("Would yYyou Like to rebuild the control Law file
? ")(sk1p (2)s,3)°
else
put edit ("Would you like to build the control law file?
")(sktp(Z)' a):
get list (answer)’
call yn_answer_ ak (answer)?

;f.(ansuwer = "y" | answer = "yes") then
[+ 2
call build_cost_function’ .
dos if (cost_functicn_code = S | cost_function_code = 6) then
O
goto dont_build’
end;

c§Ll get_tolerances (center_cell_tolerance, edge_cell_tole
rance);

call initialize_celtl_status_array (cell_status, edge_cell_
tolerance)’

catl 1n1t1at1ze center_dist_array (center_dists, center_cel
L_tolerance).,

catl f1nd roct_cells (cell_status, center_dist, center_cel
L_tolerance,

cell _status_ index):®

call open_control_Llaw_file

call find_Loops_and_cont_ lau (celi_status, center_di
Ll_status_index, center_ cell tolerance, found -all_loops)

if (found_all_Lloces = "0"b) then goto dont_buitd’

sts ce
;

] calt build_optimal _control_law (cell_status, cell_status
- index);

flag.sim_valid = "0"b;
flag.control_Llaw_valid = "1"b;

C-43

call print_cell_status ((cell_status))’
dont_builds

if Tcost_functicn_coage “= 46 &% flag.control_Llaw_valid = "1"
b) then
call print_control_laws
end’

free cell_status, center_dist’

build_cost_function: procedure.,

del 1 flag external,
2 cont ex1sts ‘bit(1),
discrete_exists bit(1).
2 quantizec_exists bit(1),
2 control_law_valid bit(1),
2 sim_valid bit(1),)
2 own_quant_file_exists bit(1)/
del true bit(1) initial ("1"b)?
del false bit(1) initial ("0"b)/
dcl working_dir character(148) external’
del n fixed external.
dcl o fixed exterral’
del p_real fixed external:
del cost_function_code_char character (1)
dcl cost_functicn code fixed external:
del control_law_file_ptr pointer external;
dct state_cost_matrix (1:n) float controlled external.
dcl input_cost_matrix (1:p) float controlled external,
decl range fixed:’
del 7 fixed:
del bit_count fixed bin(24),
dcl code fixed bin(35);
gcl own_control_Llaw_file character(70) external:.
dcl control_tlaw (1:num_state_combs) fixed based (control_1l
aw_file_ptr):’
decl nutl builtin’
del num_answer_ck entry (character (1), fixed, fixed):
dcl hes_Sinitiate_count entry (char(*x), char(*), char(*),
(35)): fixed bin(24), fixed bin(2), ptrs, fixed bin
del sysin file input:’
dct sysprint file output’
if (flag.control_law_valid = "1"b) then do’
flag.control_law_valid = "0"b’
if cost function_code = 2) then do’
free State_ cost matrix,
dfree input_ccst_matrix;
oNnNdgde
d}f (cost_function_code = 3) then free input_cost_matrix,
end.,
put edit ("Which type of cost function would you like to u
se ?")(skipesal)’
put skip/
put edit (1) Minimum Time")(skip, x(4), al):
put edit ("2) Quacratic”)(skip, x(4), a)’
put edit ("3) Minmimum Control Effort”)(sk1o: x(4), a)d:
put edit ("4) Custom Cost Function (use procedure custom_c

C-44

ost_function.pl1™)
(skips x(&), 2a):

put edit ("S) Nene = Would like to access a control law fi
Le")(sk1o"x(4 e 2);

put edit ("6) Ngne of the above”)(skips x(4), a):’

put edit (" "Y{(skipsa);

put edit ("Please choose one => ")(skipsa)’

get list (cost function_code_char);

range =

call num ansuer -0k (cost_function_code_char, range, cost_f
unction_code .
goto case (cost,functxon_code):
case (1):go0to done;

case (2): altocate_state_cost_matrix, input_cost_matrix-

put skip/ .
put edit ("Enter the value O0f..."){(skipesea)’
put skigs
do 1+ = 1 te n:
put edit ("state cost matrix (",i,’ ,';i.") => ")
. (x(4), as f(3), a2, f(3), a);
get List (state_cost_matrix (i));
end,
put skip?’
1fd(p_real > 0) then
o

do i = 1,to ; . .
put edit ("input cost matrix (",i,"0",1,") =

. (x€(4)s a2, f(3), a, f(3)
et List (input_cost_matrix (i))

s 3)s
g ’
end
end’,
else ;
input_cast matr1x (1 = 02 \

goto done,

case (3): 1fd(p_real > 0) then
o,
allogcate input cost matrix.
if (p_real > T then

dcs
put skip’
put edit ("Enter scaling factor for...")(
skipesadz
put skip’
¢o i = 1 to R’ .
) put edit ("Input (",i,") => ")(a,f(3),a
”
get list (input_cost_matrix (i));
end;
end.s
else
input _ cost _matrix (1) = 1;
el’\c:

else
put edit ("System has no input, This control m
akes no sense”). i
(skipr, x(4), a);
goto done?
case (4): goto done:
case (5): put edit ("Enter the name of the control file to

be read in => ")(skigra)’)
get Llist (own_contraol_Llaw_file)’

C-45

"saLL hes_Sinitiate_count (working_dir, own_control_law_file.,
4

bit_count, 0, control_Llaw_file_ptr, ¢

ode);
1f (control_taw_file_ptr = null) then
407
put edit ("The file", own_control_Llaw_file, "does not ex
1st")(sk1p,a):
put edit ("Try Again => ")(skipsa)~’
get list (own_centrot_Llaw_fite):
. call hcs_Sinitiate_count {working_dirs, own_control_Llaw_f
1ie,
"",bit_count, 0, control_Llaw_file_ptr,
code):)
if (control_law_file_ptr = null) then goto done:;
else do-
flag.control_taw_valid = true’,
end,
end’
else dos)
flag.control_tlaw_valid = true’
ends

case (6): goto done’;

done: put skip.,

end build_cost_function’

et_tolerances: prcoccedure (center_cell_tolerance, edge_cell_
tolerance):

decl center_cell_tolerance fixed;
dct edge_cell_tclerance fixed:

del sysin file input’
dcl sysprint file outout’

put edit ("Enter the center cell tolerance => ")(skip, a)’
get List (center cell_tolerance);

put edit ("Enter the edge cell tolerance => ")(skips, a)’
get list (edge_cell_tolerance)?

end get_tolerances.

initialize_cell_status_array: procedure (cell_status, edge_c

ell_tolerance):

decl cell_status (#*) fixed’

dcl edge_cell_tolerance fixed’

det n fixed externrnal.

dcl num_state_ccombs fixed external’

decl numbBer_of_stecs_s (1:n) fixed controlled external;

dcl uncentrollable_cell (1:num_state_combs) bit(1) control
led external’

dcl state_code fixed:

dcl recurse_Llevel fixed’

del dis_state (1:n) fixed controlled.

del true bit(1) dritial ("1"hH)2

C-46

dcl convert_3dis_state_to_code entry ((x) fixed, fixed):

allocate d4is_state;

cetl_status = 27

recurse_LlLevel = n;

catl clear_all_but_edges:

do state_code = 1 To num_state_combs/
if (uncontrollable_cell (stTate_code) = true) then
4 cell_status (state_code) = 1;

end;

free dis_state’
clear_atl_but_edges: procedure recursive’
if (recurse_level <= 0) then

do-
call convert_$dis_state_to_code ({(dis_state), state_

code):
cell_status (state_code) = 0;
end’
else , .
do- . :
do dis_state (recurse_level) = edge_cell_tolerance ¢t
o

(number_of_steps_s (recurse_level) ~ (edge_cell_
tolerance + 1));
recurse_level = recurse_level - 1;
call clear_all_but_edges’
end’
“ends
recurse_{level = recurse_Llevel + 1;

end clear_all_ but edges,

end initialize cell status array.

tize_ center dist_array: procedure (center_dist, center

initia
_cell_tolerance)’
dcl center_ d1st (%) fixed;
dcl center_cell_tclerance fixed?
del n fixed externals
det i fixed;
dct recurse_Llevel fixed; .
del center_cell_tel_index fixed’
dcl state_ code fixed:
dcl dis_state (1:n) fixed controlled’
dcl zero_dis_state (1:n) fixed controlled’
det L_bound U1:n) fixed controlled’
dcl u_bound (1:n) fixed controlled’
decl cont_state (1:n) float controlled’
‘s dgg.convert,5cont_state_to_dis,state entry ((*) float, (*)
1Ixe ’ '
del convert_%$dis_state_to_code entry ((*) fixed, fixed)’

allocate dis_state, zero_dis_state, cont_state, L_bound, u
bound;

center_dist = 07

C-47

cont_state = (; .

call convert_Scont_state_to_dis_state ((cont_state), zero_
dis_state),)

do center_cell_tol_index = center_cell_tolerance by -1 to

0:
do i+ = 1 to n: . . .
L_bound (i) = zero_dis_state (i) = center_cell_tol_ind
exs
u_bound (i) = zero_dis_state (i) + center_cell_tol_ind
ex;
end’
recyrse_Level = n;
call add_cent_tcl_code’
end;
4 free dis_state, zero_dis_state, cont_state, l_bound, u_bou
nds
add_cent_tol_code: procedure recursive;
ifd(recurse_level <= 0) then
o’
de) call convert_$dis_state_to_code ((dis_state), state_
code)
center_dist (state_code) = center_cell_tol_index’
end,
else
do. .
) do dis_state (recurse_LlLevel) = | _bound (recurse_Lleve
to

u_bound
(recurse_Llevel);
recurse_Llevel = recurse_level - 1
call add_cent_tol_code;
end’
end’
recurse_level = recurse_tlevel + 1

end add_cent_tol _code;

end initialize_center_dist_array.

find_root_cells: greccedure (cell_status, center_dist, center
.cell_tolerance,

cell_status_index)’

del cell_status (*) fixed/

dcl center_dist (#*) fixed:

decl center_cetl_tclerance fixed;

dcl cell_status_index fixed’

decl n fixed external’

dcl num_state_corts fixed external’
del 1 fixed?’)

dcl max_num_cells fixed’,

dectl num_celTs_reachable_to fixed:

del best_root_coae fixed’

dc!l zero_state_ccce fixeds

del center_celTl_tol_index fixed’

dcl dis_state (T:n) fixed controlled;
del cont_state (1:n) float controlled;
dcl unmarked_cells bit(1)?

C-48

dcl possible_root bit(1);
del true bit(1) initial ("™1"b);
det false b1t(1) initial ("0"b)~;

‘ dg% convert_3Scont_state_to_dis_state entry ((*) float, (x)
ixe ,
del convert_%$dis_state_to_code entry ((*) fixed, fixed);

altocate dis_state, cont_state;

cont_state = 07 .
§all convert_Scort_state_to_dis_state ((cont_state), dis_s
tate) .,
5)calt convert_Sdis_state_to_code ((dis_state), zero_state_c
ode) .,
cell_status_index = 3’
cellTstatus (zerc_state_code) = cell_status_index’;
catlTadd_cells_reachable_to (zero_state_code, cell_status)

call check_for_unmrarked_cells (unmarked_cells, cell status

do center_cell_tcl_index = 1 to center_cell_ toterance
hile (unmark
ed_cells = truye)’)
call check_for poss1ble root (possible_root, center_cell
tol_index,
) cell_stat
uss, center_dist)’
do white (possible_root =
max_num_cells = 7
do 1 = T to num_state
. if (center cist (i)
atus (i)= 0) the
dos
call find_num_cells_reachable_to ((i), (cell_sta

tr
mbse
enter_cell_tol_index & cell_st

-
-
-

tus).»
num_cells
-reachable_to);
if (num_cells_reachable_to > max_num_cells) th

en
do., N
best rcot_code = 1,
max_num_cells = num_cells_reachable_to’
end,
end:
end’; :
cell_status_index = ceLt status_index + 27
cellTstatus (test_root_code) = cell_status_index’
s call add_cells_reachable_to (best_root_code, cell_stat
uslo,
call check_for_possible_root (possible_root, center_ce

Li_tol_index,
celli_stat
use. center _dist);
end;

ys call check_for_unmarked_cells {(unmarked_ cetls' cell_stat
usJo.
end.,
call check_for_unrarked_cetls (unmarked_cells, cell_status

1fd(unmarked_cells = false) then
o, -
gut edit ("Tree sucessfully completed”) (skip,x(8),a)’
end;
else
do: .
put edit ("Trees Unsucessfully completed”)(skip,x{(8),a

C-49

end;

free dis_state, ccnt_state.

theck_for_unmarkec_cells: procedure (unmarked_cells, cell_
status).

de!l unmarked_cells bit(1);
del cell_status (x) fixed:’

del num_state_ccmbs fixed external’
del i fixed,

del true bit
dct false bi

unmarked_cells = false?
, do 1+ = 1 to nur_state_combs while (unmarked_cells = fals
el
if (cell_status (i) = 0) then
q unmarked_cells = true;
end’;

end check_for_unmarked_cells’

check_for_possible_root: procedure (possible_roots pos_roo
t_code, .
cell_status, center_di

st),
dcl pos_root_ccce fixed’
dcl possible_rcct bit(1);
del cell_status (*x) fixed:
dcl center_dist (*x) fixed.
del num_state_ccmbs fixed external’
del i fixed?
del true bit(1) initial ("1"bh):
decl false bit(1) initiatl ("0"b);
possible_rocot = false’ .

) do 1 = 1 to num_state_combs while (possible_root = false
’ if (center_dist (i) = pos_root_code & cell_status (i)
= 0) then

possible_rcct = true’
end;

end check_for_possible_root’

find_num_cells_reachable_to: procedure (¢ell_code, temp_ce
lLi_stat, num_cells)’
del cell_code fixec’ .
dcl temp_cell_stat (x) fixed’
decl num_cells fixed’

C-50

decl num_state_ccmbs fixed external;

del 1 fixed,

temp_cell_stat (cell_code) = 99;
call add_cells_reachable_to (cell_code, temp_cell_stat)’
num_cells = 0;
do 1 = 1 to numr_state_combs.,
if (temp_celT_stat (i) = 100) then num_cells = num_c
ells + 1;
end,

end find_num_cells_reachable_to’

add_cells_reachatle_to: pbrocedure (root_code, cell_status)

e

dcl root_code fixed’;,
del cell_status (x) fixed:
del num_state_combs fixed external:
del num_input_ccmbs fixed external’
del sat_edge (1:num_state_combs, 1:num_input_combs) bit({
1) controlted
external,.
dcl next_state_file_ptr pointer external;
del state_code fixed:
dcl input_code fixed’
dcl next_state_code fixed’
del root_ status _code fixed:
dc!l next_state_map (l1:num_state_combs, J1:num_input_combs) fi
xed controlled external;
decl the_next_state mapp1ng (1:num_state_combs, 1:num_ino
ut_combs) fixed binary(1)
_ unsvgned based (next_state_file_ptr):
del found_reachable_to_cell bit(1);
del found_good_inout bit(1);
del true bit(1) initial ("1"b);
del false bi1t(1) initial ("O"b):
root_status_code = cell_status (root_code)’
found reachable_to_cell = true’
do while (fourd_reachable_to_cell = true):
found_reachaktle_to_cell = false’
do state_code = 1 to num_state_combs’

a
if (cell_status (state_code)= 0 | cell_status (stat
e_codel)= 2) then
do»
found_gqood_input = false; .
. do input_code= 1 to num_input_combs while (found
-good_input= false); o
if (sat_edge (state_code, inout_code) = false
) then
do-
. next _state_code = next_state_map (state_co
de, input_code)?’ .
1f (cell_status (next_state_code) = raoot_

status_code |

C-51

cell_status (next_state_code) = root_
status_code + 1))
rhen found_good_input = true;
end’

end, i
ifd(fcund_good_input = true) then
o

cell_status (state_code) = root_status_code

+ 17
found_reachable_to_cell = true;
end.
end;
end’
end’,
end add_cells_reachable_to’

end find_root_cells’

open_control_law_file: procedure:
del num_state_comrts fixed external:

del job_name character (50) varying external;
del working_dir character (168) external:

decl control_Llaw_file_ptr pointer external;

dcl i fixed:]

dcl code fixed binary (35)2 .

del control_law (1:num_state_combs) fixed based (control_l
aw_file_ptr),

dcl delete entry cpticns (variable)’]

decl hcs_Smake_seg entry (char (*), char (%), char (%), fix
ed bin (S), .)

ptr, fixed bin (35))°

call delete (job_namell”,control_Llaw", "-bf");

call hcs_Smake_seg (working_dir, job_namell” . control_Llaw",
"*", 01010b.)

control_law_file_ptr, code)’
do i = 1 to num_state_combs’
control_Llaw (1) = (.,
end,

end open_control_Llaw_file’

find_loops_and_cont_Llaw: procedure (cell_status, center_dist
’
. cel
l_status_indexs, center_cell_tolerance, found_all_Lloops)’

cell_status (*) fixed’
center_dist (*) fixed.,

cell_status_index fixed:
center_cell_tolerance fixed;

num_input_corts fixed external:

sat_edge (1:num_state_combs, T:num_input_combs) bit(1)

L
L
l
L
t num_state_conrks fixed external.,
L
olled

external’

C-52

next_state_file_ptr pointer external?
control Law file_ptr pointer external’

s N3]

ladad el o Yo e d ol alaallN o Vo

i fixed,
state_code fixed,
input_ “code fixed’
next_state_code fi
root_code tixed’ .
root “status_ccde fixed’
min_ cent_dist fixed’
hest_cell_to_add fixed’
best_control Linput fixed:
control_law_Jinout (1:num_state_combs) fixed controlled

aaagaaaaaa aaQ

OO0

AT

del next_state_map (1:num_state_combs, 1:num_input_combs) fi

xed controlled external}
det the_next_state mappxng (1:num_state_combs, 1:num_inp

ut_combs) fixed binary(1
unsvgned based (next_state_file ptr),

del controt law (1:num_state_combs) fixed based (control_
aw_file_ptr):

decl found_alt_Llocps bit(1);

dcl found_root_ccce bit(1)?

det found_loop bit(1): .

dcl added _cell _to_tree bit(1);
del true bit(1) iritial ("1"b);
del false bit(1) inttial ("0”b)?

allocate control_law_input;

found_alti_Lloops = true;

do root_status_ccde = 3 by 2 to cell_status x

s_inde
white (found_al
L_loops = true)’
found_root_coce = false’
ys do i = 1 toc num_state_combs while (found_root_code = fal
se).,
ifd(cell_status (i) = root_status_code) then
o
root_code = i;
found_root_code = true’
end;
end;
control_Law_input
found_Lloop = false
control_Llaw_ingut (root_code) = 9999;
do input_code = 1 to num_input_combs’ .

, next_state_code = next_state_map (root_ code; input_cod
e):
ifd(next_state_code = root_code) then

o
found_loce = true;
ontrol law_input (root_code) = input_code’;

ue’
false & added_ cell to_tree = tru

st = ¢
de = 1 to num_state combs.
_status (state_code) root_status_code + 1

aw_input (state_code) = 0 %
st (state_code) “= 0) then

C-53

) then

de, input_code)’

status_code |

1 to num_inout_combs.
(state_codes, 1nput_code)

false

e =
dge

next _state_code (state_co

it (

next_state_map

cell_status (next_state_code) root_

cell_status (next_state_code)= root_status

_code + 1) then
do. .
- if (control_law_input (next_state_code
) = 0) then
do.
if (center_dist (next_state_code)
< min_cent_dist)
then
do-
min_cent_dist = center_dist (n
ext_state_code);
best_cell_to_add = state_code;
best_control_input = i1nput_cod
e,
end;
end;
end:
end’
end.,
end’;
end.
ifd(.min_cent_dist < center_cell_tolerance + 1) then
O«
added_cell_to_tree = true’
. control_law_input (best_cell_to_add) = best_contro
lL_input’

do input

ut_code)’;

_code =2 1 to num_input_combs. .
next_state_code = next_state_map (root_code, inp
if (next_state_code = hest_cell_to_add) then

do-

fourd_Lloop =
ccntrol_Llaw_input

end;

.
”

end
if

(.f0und_looo = true)

O+
found_atl _

true,

(root_code) input_code.

false;

then

lcops = true.;

de): control_law (root_code) = control_Llaw_input (root_co
e,
state_code= next_state_map (root_code,control_Llaw_in
out (root_code)):
do while (state_code "= root_code)
control _law (state_code) = control_law_input (stat
e_code);

state_ccde

aw_tinput

(state_cod
en
end;

e));
d.;

next_state_map (stafe_codep control _1L

C-54

else
found all_loocps = false’

if (found_all_Llceps = true) then
do0-
"y ¢ k'OUt ?zjt ("Sucessfully built tolerant region control |
aw skips x ’

al);
end?
else
dos
put edit ("Tclerant region control law cound not be bu

ilt")Y(skipsr x(8),

a),
end.,

free control_Llaw_input’

end find_loops_anc_cont_Llaw,
?gtimal_contrcl_tau: procedure (cell_status, cell_stat
celt_status (*) fixed’

d_
ex
t
L cell_ status index fixed’
L
L
ct
ro

num_state_corkts fixed external’
num_input_ “combs fixed external’

tfat _edge (1:num_state_combs, 1:num_input_combs) bit(1)
ed
external:’

next_state_file_ptr pointer external;
control_law_file_ptr pointer external’

o0

state_code fixed;

input _ “code fixed:
next_State_coce fixed’
root status ccde fixed;

Q aaanqa aq
2 X2 K2 N2
r~ - e

1 min_path,
2 cost float,
2 sta_code fixed,
2 inp_code fixed:

(2]

ol_law {(1:num_state_combs) fixed based (control_L

ate_magpg (1:num_state_combs, 1:num_input_combs) fi
d exterral’

next_state_mapping (1:num_state_combs, 1:num_inp
ed binary(1®)

Kf‘(lr"\‘-)

unsigned based (next_state_file_ptr):

dcl ¢cost float,

dcl path_cost (1:rum_state_combs) float controlled’
del found_cell_to_add bit(1);

del trye Bit(1) iritial ("1"b);

dcl false bit(1) initial ("0"b):

dcl sysprint file output’

allocate path_cost’

C-55

put edit ("Buitlding control law”")(skio, x(4), a);
path_cost = 07)
do root_status_code = 3 by 2 to cell_status_index,
found cell_to_acd = true’
do uh1le (T fourc_cell to add= true),

min_path.cost = le3
do state_code = 1 to num_state_combs’
if (cell _status (state code) = root_status_code + 1

2
control_Llaw (state_code) = 0) then
do.
do input_code = 1 to num_input_combs’
if (sat_edge (state_codes, input_code) = false
} then
do-
rext_state_code = next_state_map (state_co

de, input_code):;
if (cell_status (next_state_code) = root_
status_code | :
cell_status (next_state_code)= root_stat
us_code + 1) then
do-
if (control_law (next_state_code)

0 2
next_state_code "= state_code) t
hen
do; .
cost = compute_cost (state_code, 1
nput _code) s
cost = cost + path_cost (next_stat
e_code);
ifd(cost < min_path.cost) then
o/
min_path.cost = cost’
. min_path.sta_code = state_code
I
min_path.inp_code = input_code
[4
end,;
end’
end.
enc,
end,
end’
end’
fd(min-oath.cost < 1¢38) then
o,
found_cell_to_add = true’;) .
. control_law (min_path.sta_code) = min_path.inp_cod
e’
path_cost (min_path.sta_code) = min_path.cost~/
end’
else
found_cell_to_add = false-~
end’
end,

free path_cost,

£l c?mpute cost: prccedure (state_code, input_code) returns ¢
ocat). .

del state_code fixed.
decl input_code fixed’
del n fixed external’
del p fixed external’

C-56

del cost_functicn_code fixed external’

del state_cost_ratrix (1:n) float controlled external;

del input_cost_matrix (1:p) float controlled external’

del i fixed: .

del dis_state (1:n) fixed controlled’

del dis_input (1:p) fixed controlted;

decl cost float?

del cont_state (1:n) float controlled’

del cont_input (1:p) float controlled,

dcl convert_Sccce_to_dis_state entry (fixed, (*) fixed):

dcl convert_Sccce_to_dis_input entry (fixed, (*) fixed):

del convert_$dis_state_to_cont _state entry ((*) fixed, (
*) float): o .)
£ f1 dc} convert_$d1s_1nput to_cont_input entry ((*) fixed, (

cat): :

del custom_cost function entry ((*) float, (*) float) re
turns (float):

goto case (cost_function_code)’

case (1): cost = 17
goto dore;

. case (2): allocate dis_state, dis_input, cont_state, cont_
input;
call convert_Scode_to_dis_state ((state_code), d

is_state)’ o) :
: call corvert_Scode_to_dis_input ((input_code), d

input)?) .
call convert_Sdis_state_to_cont_state ((dis_stat

e), cont_state);
call convert_%$dis_input_to_cont_input ((dis_inpu

t)s cont_input).

cost = (7
do i = 1 to n; .
. . cost = cost + ((cont_state (i) *% 2) * state_c
ost_materix (1))
end’;
do i = 1 to p’ . .
cost = cost + ((cont_input (i) ** 2) * input_c

ost_matrix (i))/
end; 13 . ») .
free dis_state, dis_input, cont_state, cont_inpu

t;
goto dcre’

case (3): allocate dis_input, cont_input’ .
. . call convert_ _Scode_to_dis_input ({(input_code), d
is_input);) L
. call convert_Sdis_input_to_cont_input ({(dis_inpu
t)s, cont_input)’
cost =
do i =) .
t + (input_cost_matrix (i) * abs (co

free dis_inputs, cont_input’
goto dcne;

) case (4): altlocate dis_state, dis_input, cont_state, cont_
input;
] : call convert_Scode_to_dis_state ((state_code), d
1s_state):

C-57

catl convert_Scode_to_dis_input ((input_code), 4
is_input)’ .

call corvert_S$dis_state_to_cont_state ((dis_stat
e), cont_state); . .

call convert_S$dis_input_to_cont_input ((dis_inpu
t), cont_input);)]

cost = custam_cost_function (cont_state, cont_in

put);)) _
free dis_state, dis_input, cont_state, cont_inou
ts
goto dcne.
dene: return (cost)’;

end compute_cost~

end build_optimal_ccntrol_Llaw’

print_cell_status: grocedure {(cell_status)’

del cell_status (*) fixed’

del n fixed external’
dcl num_state_corbs fixed external’
decl number_of_stegs_s (1:n) fixed controlled external’
del + fixed,
del { fixed:
det fixed’
del L fixed?;
del yn_answer_ok entry (character (3) varying):’
del sysprint file outout’
"y put edit ("Would you Like the cell status array printed ?
. (skipr a)l’
get list (answer):
call yn_answer_ok (answer);
1fd(.ansuer = My" | answer = "yes") then
O
if (n = 2) then
do-
k = 05
put skip (2):
do i = 1 to number_of_steps_s (2)’
put skig:
dok] = 1 to number_of_steps_s (1)
= H
put egit {(cell_status (k))(f(5));
end.,
end’;
end;
else
do~,
if (n = 3T) then
do-
L = C’
do i = 1 to number_of_steps_s (3)7;
put skio (2)°
do j = 1 to number_of_stepy_s (2)/
put skip/)
cclk =l1+t?‘number_of_steos_s (12
put edit (cell_status (L)) Cf(5));
end;
end;

C-58

ao i 21 to num_state_combs.,
put edit (i, cell_status (i))(skipsr f(3h), f

(6)):

end print_cell_statys’

print_control_law: gprocedure;

del 1 fixed;

del num_state_combs fixed external:?

dcl control lau file_ptr pointer external’
dcl answer character (3) varying?

det yn_answer_ok entry (character(3) varying):

dctl sysin file input?

dcl sysout file outcut’ .

decl control_Law (1:num_state_combs) fixed based (control_Llaw
~file_ptr); . .

p?t edit ("Would you like the control law printed? => ")(ski
prad.;

get List (answer)’
call yn_answer_ok (answer),
if C(answer = "¥" | answer = "yes™) then
call pr_cont_law’
end print_control_law’

goto endit;
pr_cont_Llaw:

0 num_state_combs./

b4

(G4 Control Laws")(skips, a)’

t

t (is, control_Llaw (i))(skips, x(&)s f(4), f(6)

end;
put skip~

return;

endit: put skip:

end build_tol_reg_and_cont_law’

C-59

simulate_system: prccedure;

del n fixed external’
L p fixed external;
p_real fixed exter
number_of_steps_ s
number_of_steps._
vottage uoper boun
voltage_lower_bound_
voltage _upper_ bcund_‘
voltage_Llower_ktcund_
num_state comkts f1xed
num_sim_ data fixed ext

I Y1)
1. 3= AN

i Xi Halalatab A d
L Y ST Y RIS QRN

LY EaKaXaXaNa XaNaNs)
—— e p——
QaQ ~~3
]
- es e —
o I T RTINTNT RSN
LWPVTV I I =
— e X
—~——r——r

tau float external:;

aa aaaaaqcaaoaaQ

a0

2 time float.,
2 con_state (102 float,
2 con_input (1:input_dim) float’
del 1 flag external,

2 cont_exists b

2 discrete_exis

2 quantized_e

2 control_Llaw

2 sim_valid t

2 own_quant_f

true bit(1) initi
false bit (1) init
own_cont_sys_exists

L

aaa
0oaon
—r-r

del uncontrollable_cel
ed external,

del control_Llaw_file_ptr pointer external;

-

i fixed’
j fixed?
answer character (3) varying’
save_it character (3) varying,
choice character(1);
choice_value fixed’

range fixed;

max_num_steps fixed’

num_step fixed’
num_recurse_levels fixed?
regign fixed
matrix_dim fixed binary (35)7;
input_dim fixec external:

ind fIxed bimary (35)7
ier fixed binary (35);

~«QgaQaaaqcaqQqoaaqaaaaacaoaqgaqQaa
~OO0O000DANNADNOONOOOOAN
1N

o g g (= - ;',_,_,-—-,-,_,_.,..,_,_.,_,—,—.,_,_,-,.,..,—,—,—,_

state_code fixec;
input_code fixeag:
temp_state_code fixed.
dis_state T1:n) fixed controlled;
dis_input (1:p) fixed controlled’
temp_dis_state (1:n) fixed controlled’
control_Taw (1:num_state_combs) fixed
_f ptr);

del tim e float binary’

del time_init float:

de txme “final float:

dcl step float:

del step_end float tinary.

de¢ tolerance float binary’

dcl scale_factor flcat:/

C-60

ocat contro
oat contro
’

1:num_state_combs)

controlled axternal’
controlled external’
oat controlled
oat controlled extern
lLled
lled

based (control_

1 simylation_cata (l:num_sim_data) controlled external,

L

Ny we™Nave

bit (1) controll

aw

del ¢ (1:224) float binary;

decl cont_state (10) float binary’

del state_temp(10) float binary:

det input_to_use (1:input_dim) float controlled external:
del cont_3Tnput (1:input_dim) float controlled external’
del temp_cont state (10) float binary-’

del w (1Tmatrix_dim, 1:9) float binary controlled;

del orint_data character (3) varyings
del system_unstable bit (1);

dg; convert $cont ~State_to_dis_state entry ((*) float, (*) f
ixe ;

del convert_$dis_ state to_code entry ((*) fixed, fixed):

del convert_Scode_to_dis_Tnput entry (fixed, (*) fixed):
\ dc% convert_3dis_input_to_cont_input entry ((*) fixed, (
cat

del choose_your_plot entrK

del yn_answer_ok entry aracter(3) varying):

del num_ansuer _0k entry (character (1), fixed, fixed):

del own_sys_to_sim entry (fixed binary(35), float binary, fl
t binary, (*) Tloat binary, (*) float binary, float binary,
cat b1nary).

del
(%)

c
*

r-a

slfdverk entry (fixed binary (35), entry, float binary
oca :
binarys, float binary, float binary, fi

xed binary (35),

*, %) float

(*) float binmary., fixed binary (35), (
binary, fixed binmary (35))’

del sim_cont_file file;
del sim data file file?
del sysin file input’

del sysprint file cutput’

del mod builtin;

if (ftag.control lau valid = false) then do-
)8 put edit (™A control law does not exist for this job") (ski
Ppras., ,
ggto done;

if (flag.swm“val!d = false) then do:
:)gut edit("Would you Llike to simulate the system? => ") (sk
lp:a ,
get list (answer)’
call yn_answer ok (answer).
if (answer = "A" | answer = "no™) then
goto done;

end’;
else do; . .
put edit (" Would you Like to = "™)(skipsra):’
put skip’; .
put edit ("1, Modify the simulated data file")(skipsra)’
ys put edit ("2, Plot your existing simulated data")(skio.,a
L4
put edit ("3, Quit")(skipsa)’
put skip:
put edit ("Please choose one => ")(skip,a)’
get list (c h01ce)
range = 3;
um_a

call num_answer_ck (gho'
t

- ice, range, choice_value)’
if (choice_value = 1 hen

C-61

flag,sim_valiad = fa
if (choice_value = 2)
do-,
call choose_your_
goto done:
end.,
if (choice_value = 3) then
goto done:

lse.;
then
plot

end.
if (flagequantized_exists = false) then do-/
put edit ("The parameters for the continuous system are ne
eded”)(skipesa)’
put edit ("The system can not be simulated”)(skips,a).’
goto done;
end.
if (flag.cont_exists = true) then do:’)
put edit ("Would you like to simulate: ")(skipra)’
kqut sdwt & 1« The continuous system in the job file")(
skipral,]) .
. Du§ edit (" 2. A continuous system in another fite")(sk
tprsal;
put skip’ .
put edit ("Please choose one => ")(skipsra)’
get List (choice):
ran?e = 27 . .
cgl num_answer__ ok (choice, range, choice_value):
ena.

2z

if (choice_value = 2) then do;
own_cont sys exists = true; .
put edit ("Enter the number of states => ")(skipsra)’
get tist (matrik_cim); - . .
put edit ("Enter the number of inputs => ")(skipsra)s
get list (input_dim);
end.
if (choice_value = 1) then do’
own_cont_ -.Sys_exists = false;
matrwx dim ="n;
input_dim = p;

else choice_valuye

end’

i¥ (tau = 0) then do’
put edit ("Please enter tau => ")(skipr,a)’
get Llist (tau):

end;

allocate dis_state, dis_inpute temp_dis_state, cont_input, in
put_to_use.,

nut)edwt ("Enter nurber of steps per time constant => ")(sk
TDO als
get list (max num_steps)?)
)out edit ("Enter the number of recursion tevels => ")(skip,
a
get List (num_recurse_levels);
it (num recurse levels “= 0) then do’]
put edit ("Enter the scaling factor => ")(skip, a);
get list (scate factor). .

else
scale_factor = 1e-20/
put edit ('E er initial state")(skipo, a):
put skip’
do 7 = 1 to matrix_cim;

C-62

put edit ("initial state ",1," => ") (x(4), a, f(3), 2):
get list (cont_state (i)):
state_temp (1) = cont_state (i),
end. .]
put edit ("Enter initial time => ")(skips a)’
get {tist (time inwt):
put edit ("Enter final time => ")(skips, al)’
get Llist (ime_fwnal);)
put edit ("WOuld ycu Like the simulation printed while runni
ng => ")Y(skip, a)’
get list (orant_dara)g
call zn_answer_ok (print_data);
put skip.,
put edit (" Si mutat1ng system")(skvpo x(2)a a):
it (print_data = y ! pr1nt data = { then
put edit ("time ‘state”, "Tnput™){(skip(2), x(3), ar,x(12),
ar,» x(10), aj:
put skip; L
time = time_init;
step = tau 7/ max_nur_steps; . .
num_sim_data = ceil ((time_final -~ time_init) / step)’
if (num sim_data + 1) * step <= time_final) the
num_sim_data = npum_sim_data + 1.

allocate simulation_data’

num step = 0’
ind = 1: - g
tolerance = ,0001:

system_unstable = false’)
dodw =1 %o num_sim_data while (system_unstable = false)’
j = to ne
if (cont_state (j) < voltage_lower_bound_ 1) |
cont_state (j) > voltage upper_bound_s (})) then
system_ unstatle = true’
end’ N
1fd(system_ unstatle = false) then
0s)

call convert_%fcont_state_to_dis_state ((cont_state), d

is_state):
de) call convert_%dis_state_to_code ((dis_state), state_co
e)s

1fd(uncontrcllabte cell (state_code) = false) then
Oo
if (num_step = 0) then

call find_region (cont_state, num_recurse_Lleve
ls; scale_factor,

region)
. temp_cont_state = cont_state / (scale_factor =*
* region)’/ :

call convert_Scont_state_to_dis_state (temp_co
nt_state.,

temp_dis_state);]]
call convert_$dis_state_to_code (temp_dis_stat

t

er

e

emp_state_code)
nput_caode = cantrol_law (temo_state_code)’
. . LL convert_3%$code_to_dis_input ((input_code),
dis_input);
call convert_3dis_inout_to_cont_input ((dis_in
put)scont 1nout),

] , cont_input = cont_input * (scale_factor **x reg
ion).,

C-63

end;)]
simulat -data (i),time = time,
simulat ~data (i).con_state (%) = cont_state (*)

~e

simulaticr_data (i).con_input (=*) cont_input (%)

.e

1fd(print_data = "y" | print_data = "yes") then
o/
put edit (time)(skip, f(8,3)):
put edit (" ")(a):
do j = 1 to matrix_dim,
gut edit (cont_state (j))(f(14,3));
eng.,
put edit (" *")(a):
do0 j = 1 *o input_dim’
put edit (cont_Tnput (j))(f(14,3));
end’
end.
step_end = time + steo;
ts
in

if (own_cont_sys_exis = true) then do;
1nput to_ use = cant_inoput,
call owr_sys_to_sim (matrwx dim, time, step_end,
state_temp, cont_ state: time_init, time_Final);
end;
else do.

allocate w’ .
call imslSdverk (matrix_dim, cont_system, time,
state_temp, step_end.,

tolerance, inds, c, matrix_dim, w,

ier);
cont_state = state_temn;
free w:
if (inc < 0 | ier > 0) then do;
put edit (“ERROR using IMSL")(skip,a)’
put egit ("ind = ")(skipsa)’
put tist (ind)’ .
put edit ("ier = ")(skipsa)’
put List (ier)?
end;
end.
end’
else
system_unstable = true;
end’ :

num_sten = num_step + 1; -
if Tnum_step = max_num_steps) then
num_step = 0

’
(system unstable = true) then
o,
put edit ("The system has gone unstable”) (skip(2), a)2
call build_sim_data_file’
call choose_your_plot:
end’
else
call build_sim_cata_file;
all choose_your_plot’
free dis_state, dis_input, temp_dis_state, cont_input, simul
ation data' input_te use,
done: put skip (2)?

find_region : orocedure (cont_state, num_recurse_levels, sca

C-64

le_factor,

region);

cont_state (*) float:
num_recurse_levels fixed’
scale_ factor float;
region fixed’

n fixed external:

float controlled axternal;
float controlled external.

1
voltage_lower_bound_s (1

i fixed;
j fixed:

N aa aa a aaaq

O s

-
’

t

t

L

L

L

t voltage _upper_bound_
t

t

o] s
n 0) then do-

-y
-~ ®

n = num_recurse_Llevetl

um_recurse_Llevels ~=

i =1 to n; -

f (cont_state (i) >= 0) then
o . .

1 to num_recurse_levels while (cont_state (i

Q s
o]
Nt
]

) < .
(voltage_upper_bound_s (i) * (scale_

e
~
e

1 to num_recurse_Llevels while (cont_state (i

Q

o

]
]

) > .
(voltage_lower_bound_s (i) * (scale_

-+
o
(3]
(o d
(]
]
*
*
[
~
~s
St
s

-
-
~

'
-
A

qe?jon } then

end find_region:

cont_system: procedure (matrix_dim, time, state_temp, state_
temp_prime):

dcl matrix_dim fixed binary (35);

del time float bvnary.

del state_temp (1C) float binary’

del state_temp_prime (10) float binary’

del n fixed external:.

del p fixed external’

del cont_input (1:p) float controlled external’
del a_ matr1x (12ns 1:n) float controlled external’
del b_matrix (1:n, 1:p0) float controlled external:
del i fixeds

del j fixed:

do i =2 1 to n:
state_temp_ pr1me (i) = 0,
do j = 1 to n’ ']))
G .)state_temp_prxme (i) = state_temp_prime (i) + (a_matri
X 1o) *
state_temp (j)):

C-65

end’
end;
do ¥+ =2 1 to n’

o j =1 to o

state_temp_prime (i) = state_temp_prime (i) + (b_matri
x (3, j) =%
cont_input (j))?

end.

end’;

end cont_system;
build_sim_data_file: procedure;

del n fixed externals
decl p-fixed external,
del num_sim_data fixed external.,

del 1 simuylation_data (1:num_sim_data) controlled external,
time float,
con_state (1:n) float,
2 con_input (1:p) float,

del true bit(1) initial ("1"b);
dcl false bit(1) initial ("0"b):
decl 1 flag external,
2 cont_exists bit(1),
2 discrete_exists bit(1),
2 quantized_exists bit(1),
2 control_ lau valid bit(1).,
2 sim_valid byt (1), .
2 own_quant_file_exists bit(1);

del job_name character (50) varying external.’
del width_sim_mat fixed’

dcl sim_data_materix (1:num_sim_data, T:width_sim_mat) float
controlled external’

del answer character (3) varying.

del 1 fixed’

del j fixed,

del fixed’

del yn_answer_ok entry (character(3) varying)’
del sim_data_Tile file;

decl sysin file input’

del sysprint f1le output.,

width_sim_mat = n 4+ p + 1;

allocate sim_data_matrixs

s1m,data matrix (*,1) = simulation_data (*).time;
do) 2 to (n+1);
sim_data_matrix (*,j) = simulation_data (*).con_state

do k = (n+2) to (n+p+1); .
- 1) sim_data_matrix (*,k) = simulation_data (*),con_input
-n=1)’

end~’
put edit ("Would yecu Llike to save the simulated data in a fi
Le? => ") (skipea):
get list (answer);
call yn_answer_ok (answer):

C-66

if (answer= "y" | answer = "yes") then do’

open file (sim_data_fi&e) title ("vfile_ name| |

“l1ljob_
_ts.plot”) stream output’;

do i = 1 to num_sim_data-
do j = 1 to width_sim_mat; _
dput file (sim_data_file) list (sim_data_matrix (i,j))’
end’;
end’

free sim_data_matrix;

flage.sim_valid = true,

end,

close file(sim_data_file);
end build_sim_data_file;

end simulate_system;

C-67

(3]
o
-0

TAasQa Qo Qaoaaacaaqaaag 3a

aaqQn 60 0oono0onn

—
— -

Ser~%er— — poa o o g e i p -~

P
acaaaa a aaaQ

.0 aoon
(el e B

NOHOO

your_plot: prccedure;
n fixed external:
o fixed external;
num_sim_data fixed external:
job_name character (50) varying external;
true bit(1) iritiatl ("1"b):
false bit(1) initial ("0"b):
1 flag external,
cont_exists bit(1),
2 discrete_exists bit(1),
2 quantized_exists bit(1),
2 control_law_valid bit(1),
2 sim_valic bit(1),)
2 own_quant_file_exists bit(1):
sim_data_matrix (1:num_sim_data, 1:width_sim_mat) float
olted external:’
range fixed’
y_axis_choice fixed.
y_.axis_c character(1);
x_axis_ “choice fixed.
x_axis_c character(1);
width_sim_mat fixed:
number_of_plots fixed;
answer “character(3) varying’
plot_x fixed,
plot_y f:xed.
x_array (1:number_of_plots, 1:num_sim_data) float contro
y.array (1:nuerter_of_plots, 1:num_sim_data) float contro

i fixed
t fixed

fixed
plot_data character (3) varying:

SeSeve

sim_data_file file;

sysin file tnput’

sysprint file cutput’

num_answer _ok ertry (character(1), fixed, fixed):
yn_answer _ok entry (character(3) varying):’

width_sim_mat = n + p + 1;

put edit ("Would ycu like to plot the simulated data? => ")

~ts.pnlot

a)s

List (plot_data)’
L yn_answer_ ok (plot_data):

(plot_data = "yes" | plot_data = "y") then do’
if (flag.sim_ valid = true) then do.

allocate sim_data -matrix; .
pgn file (sim_data_file) title ("vfile_ “tljob_namel |
') stream input’

do i = 1 to num_sim data:

do j = 1 to width_sim_mat’ . _
get file (sim data_f le) list (sim_data_matrix (
end;
end~s

C-68

do while (ptot_data = "yes" | plot_data = "y")
v; (plot_data = "yes”" 1 plot_data = "y") then
0
put edit ("Yould yocu like multiple plots on one graph? "
Y(skips, al)s;
get list (answer):,
call yn_answer_ck (answer)’
if (answer = "y" | answer = "yes") then

da’
put edit ("How many plots would you like to put on t
he graph? => ")(skiperad;
get List (number_of_plots)’;
end,
else

number_of_plots = 1,

allocate x_array.
allocate y_array,

do L = 1 te number_of_plots’
if (number_of_plots > 1) then
out edit ("PLOT ", L, ":")(skips ae x(1), f(1), x(

1), a)d’

?ut
")Y(skipera)s
out edit("1., A state")(skiora):’
put edit(”"2. An input”)(skipra)’
put edit("2, Time")(skipsra):
put skips .
put edit ("Please choose one => ")(skipra)’
get List (y_axis_c)/
range = 3; . .)
catl num_answer_ok (y_axis_cs» range, y_axis_choice)’

edit("What would you Like to plot on the y axis?

if (y axis_choice = 1) then
Qs
if (n = 1) then
plect_y = 1/
else
do’

) pcut edit("Which state do you wish to plot
on the y axis? ")(skiprad;
get Llist (plot_y)?
end., :
plot_y = plot_y + 1;
end’;

if éy_axis_choice = 2) then
0.,
if (p = 1) then
plet_y = 1.

. cut edit("Which input do you wish to plot
on the y axis? "){skips, 3)’ :
cet List (plot_y):
end?
oplot_y = plot_y + n + 1;
end’

if (y_axis_chcice = 3) then

C-69

plot_y = 17

put edit ("What would you like to plot on the x axis?
"){skips,ad:s
put edit("1, A state")(skipsral;
put edit("2, An input™)(skipesa)l’
put edit("3, Time")(skipsra)s
put skip; .
put edit ("Please choose one => ")(skip.,a)’
get list (x_axis_c)’)))
call num_ansuer ok {(x_axis_cs, range, x_axis_choice)’;
if (x_axis_choice = 1) then
do.,
if{(n = 1) then
plot_x = 1;
etse
do~s

put edit("Which state do you wish to plot

on the x_axis => "){skipra):
.get Llist (plot_x)’

plot_x =z plot_x + 1/
end.,
if éx,axis_choice = 2) then
Qs
if (g =2 1) then
plot_x = 1;
else

dos

put edit("Which input do you wish to plot

on the x axis?")(skigra)d’
get list (plot_x)’

end., .
plot_x = plot_x + n + 1,

if (x_axis_choice = 3) then
plot_x = 1,

x_array(les*) = sim_data_matrix(*, plot_x)’
y_array (l,*) = sim_data_matrix(*x, plot_vy)’

end; /* do locp */

call plot_the_sim (x_array, y_array, number_of_plots)

e

free x_array;
free z,arrag:
put skip (3);

[4

put edit ("Would you like to plot the simulated data?

=> ")(skipas a);
get list (plct_cata)’
call yn_answer_ok (plot_data)s

end’

end; /* while =/
ctose file (sim_data_file),

plot_the_sim: procecdure (x_array, y_arrayes number_of_plots)’

C-70

del x_array (*,*x) float parameter,
del y_array (x,*) float parameter:
decl number_of_plots fixed parameter:’
decl num_sim_data fixed external:
| del x(1s:num_sim_data) float controlled external;,
| del y(ltnum_sim_data) float controlled external’
del vec_sw fixed tir; : :
dcl symbol (1:number_of_plots) character(1) controlled’
dcl symbol_mark character(1);
del _char character(1);
dcl scale_auto bit(1);
del true Bit(1) initial ("1”"b):
del false bit(1) initial ("O"b);
decl xmin float bin’
del xmax float bin/
del ymin float bin,
det ymax float bin,
dcl U fixed: : .
del answer character (3) var;vng:
del graph_title character (25)7
dcl xlabel character (25):
del ylabet character (25)2
del graph_type fixee bin:
dcl base Ffloat bin’
decl grid_sw_char character (1)’
dcl grid_sw fixed bin;
dcl eg_scale_sw fixed tin;
del sysin file input:’
del sysprint file outout.
del num_answer_ok entry (character(1), fixed, fixed):
del yn_answer_gk entry (character(3) varying)’ . . .
det plot_ entr{ ((*) loat bin, (%) float bin, fixed bin, fi
xed bin, char(1)) .
ggl)plot $scale entry (float bin, float bin, float bin, floa
t in);
dcl plot_Ssetup entry (char(*), char(*), char(*), fixed bin,
float bin, fixed bin, fixed bin)’

" (L]
»

graph_title =
xtabel = " "
ytabetl = " "
scale_auto =
graph_type =
base = 0’
grid_sw = 07
eq_scale_sw = 07

2P Neve
~e™y

c

o

.-e

allocate symbol’
SYMbOl = "+".

put edit ("Would ycu Like a symbol to represent each data po
int? => ")(skipesea)’

get list (answer) .

call yn_answer_ok (answer)’

if éansuer = "y" | answer = "yes") then
o :

do L = 1 to number_of_plo
if (number_of plots < 2) then do’]
put edit (MEnter the desired symbol => ")(skips

c-71

get list (symbol(l))?

end,
else do-)
put ecit ("Fnter the desired symbol for Plot ",t
" 2> ")(skips, a, f(1)s ad.
get Ltist (symbol(L)).
end.,
end;

put edit ("Would you like the symbols to be connected
by vectors? => ")(skigesa)’;

get List (answer):

call yn_answer_ok (answer);

1f (answer = "y" | answer = "yes”) then
vec_sw = 27

else
vec_sw = 3,

end’;
else

vec_sw = 1,

put edit ("The graph will have tick marks, be automati
cally scaled,”)(skifpoa).’)

put edit (" and have no labels ") (skiperad’ :

. put edit ("Wculd you like to change any of these defau

Lt options? => ")(skigra)-

get Llist (answer)’

calt yn_answer_ok (answer)’

if éansuer = "y" | answer = "yes'") then

o-

put edit ("Would you Llike: ") (skipra)’

put skigs .

put ecit ("1, Tick marks and values”")(skip,a)’
put edit ("2. Dotted grid and values”)(skips,a)’
put edit ("3, Solid grid and values”™)(skion,a)’
put skigps -)

put ecit ("Please choose one => ") (skiposa)’

get List (grid_sw_char);

ran?e = 37 . .

call nus_answer_ok (grid_sw_char, ranges, grid_sw

grid_sw = grid_sw - 12

. put edit ("Would you like to enter a title and a
xis labels for your plot? => ")(skip, a)’

get Llist (anmswer);

call yn_answer_ok (answer):

1 f éansuer = "y" | answer = "yes") then
o

. put edit (“"Enter the desired title for you
r plot")(skipesa);

put skip.)
get lr;t(?raph_tvtle); .
. gut edit ("Enter the label for the x-axis”
Y(skipsrsa)’ i
put skip~
get Llist(xlabel)’ .
. gcut edit ("Enter the label for the y-axis"”
J(skipsad:
put skip.
get list(ylabel);
end:’

put ecit ("Would you Like to set the scate of th
e graph? => ")(skip,a)’
get Llist (answer);

C-72

call yn_ answer_ok (answer)’
if (answer = %" | answer = "yes") then
dos
scale_auto = false:?
. put edit ("Enter the lower bound of the x-
axis => ") {(skiperald):
get Llist (xmin).’
. . put edit ("Enter the upper bound of the x=- .
axis => ")(skips,al); .
get List (xmax)3:
. . put edit ("Enter the lLower bound of the y=-
axis => "){(skips,ad;] - .
get List (ymin);
. . put edit ("Enter the upper bound of the y-
axis => ")(skipsral); .
get list (ymax),
end,
end;
catl plot_Ssetup (?raph titler xlabel, ylabel, graph_t
ype, base, grid_sw, ea_scale_sw)

1 f (scale autg =
catl

allocate x;
atlocate y-/

rray(

"'0

“e

free x» y, symbol’

end nlot_the_sim’

end choose_your_plot’

plot_S$scale (xmina,

false) then

xmax, ymino,

number of plots.

»*Y;

-a

Carray(l,%);

rk = symbol(l);
{xs Yo num_sim_datarvec_sw,

C-73

ymax).,

symbol_mark)

own_sys_to_sim:

orocedure (matrix_dim,
temp.,

time,

cont_state,

-
’

(2]

inout_dim fixed external’

pi float’
amplitude float’
freg float:
disturb float;

j fixeds:

OO0

disturb_data file;

sysprint file output’ .

;TSLdeerk entry (fixed binary (35), entry.,
oat

xed binary (35),
*,x)float

~QQQn aaddaa O aaaad aaaaaaa

»ONO
g r—r—r— =~ = r— i~ e -

-

binary, float binary,
(x) float binary,

binary,

pi = 3.1415927;

amplitude_ = 0.1~/

freq = 207

tolerance = 0.0012

ind = 1;

if (time = time_init) then do.
disturb = amplitude * sin(2*pixfregxtime)’
put edit ("AMPLITUDE = ")(skipra)’
put list (amplituce)’
put edit ("FREQ = ") (skipr,a):
put list (freq)’

end’
allocate w’,

call

imslSdverk (matrix_dim, own_cont_systeml,
emos,

step_end,

tolerance, ind, c.

disturb = amplitude * sin(2*xpi*xfreg*xtime).;
cont_state(1) =

state_temp (1)
free w-’

- disturb?

if (ind < 0

ier > 0) then do~
put edit (“"time = ") (skipsra)>’
put List (time)’ . .
put edit ("ERROR!'! using IMSL ")(skip.,a)’
put edit ("ind = ")(skipsa)’

C-74

steo_end.»

time_init,

cl matrix_dim fixea binary (35);
cl time float binary’

¢l step_end float tinary,

o state_temp (10) flcat binary:
cl cont_state (10) flcat binary:
cl time_init float binary;

cl time_final flcat birary’

cl ind fixed binary (35);)
cl w(lzmatrix_dim, 1:9) float binary controlled’
cl tolerance float binary;

cl ¢ (1:24) float bwnar;;

¢l ier fixed binary (35):

time,

matrix_dim, wes

state_

time_final)

float binary
float binary, fi
fixed binary (35), (
fixed binary (35));

state_t

ier).,

put Llist {ind)’)
put edit ("ier = ")(skipsra):’
put Llist (ier);
end;
awn_cont_systeml: procedure (matrix_dim, time, state_temp, s
tate_temp_prime);
/* third order */
del matrix_dim fixed bimary (35);
det time float birary’ .
del state_temp (1C) float binary’
dcl state_temp_prime (10) float binary:
del input_to_use (1:input_dim) float controlled external.
dgl cont_input (1:input_dim) float controlled external’
del input_dim fixed external?
del own_n fixed’
del own_p fixed.,
del own_a_matrix (l:ouwn_ns 1:own_n) float controlled’
det own_b_matrix (1:own_nes 1:own_p) float controltled:
del i fixed;
del j fixed;
own_n = 3;
own_p = 1,) .
allocate own_a_matrix, own_b_matrix’
own_a_matrix (1.,1) = 0/
own_a_matrix (1,2) = 1.
own_a_matrix (1.,3) = 0;
own_a_matrix (2,1) = 07
own_a_matrix (2,2) = 0
own_a_matrix (2,2) = 1, -
own_a_matrix (3,1) = -249778.147
own_a_matrix (3,2) = =140645,6"
own_a_matrix (3,3) = -181,98?
cwun_b_matrix (1,1) = (7
cwn_b_matrix (2,1) = Q-
own_b_matrix (3,1) = 55493,2;

do i = 1 to own_n’
state_temp_prire (i) = 07
do j = 1 to owr_n:
. - state_temp_prime (i) = state_temp_prime (i} + (own_a_m
atrix (i, j) =*
state_temp (j));

end;
end.
do i = 1 to own_n’/
do j = 1 to own_p;
. .State_temp_prime (i) = state_temp_prime (i) + (own_b_m
atrix (i, j) *

input_to_use (j)):
end,
end’,
free own_a_matrix, own_b_matrix’
end own_cont_systerl:’

own_cont_system2: procedure (matrix_dim, time, state_temp, s
tate_temp_prime);
/* fric system =/

C-75

del matrix_dim fixed binary (35)7
det time float tirary’ ,
ccl state_temp (1() float binary,
dcl state_temp_prime (10) float binary.’
del n fixed external.
del p fixed externals
del input_to_use (1:p) float controlled externatl.,
decl cont_input (1:p) float controlled external’
del own_a_matrix (l:n, 1:n) float controlled.’
dcl own_b_matrix (1:n, 1:p) float controlled’
del fric float;
dect 1 fixed:
decl j fixed’
allocate own_a_matrix, own_b_matrix,
own_a_matrix = C;/
own_b_matrix = ,2G5;
if (state_temp(1) > 0.01) then
ric = 0.0917°
else do;
if (state_temp(1) < -0.01) then
fric = -0.0917/
else do’
own_a_matrix = =9,17;
fric = 0>
end;
end’,
do i = 1 to n’
state_temp_prime (i) = 07
do = to n; : . i
. state_temp_prime (i) = state_temp_prime (i) + (own_a_m
atrix (i, j) »* i
state_temp (j))°
end;
end’
do i = 1 to n/;
do j =1 to p, . v
. state_temp_prime (1) = state_temp_prime (i) + (own_b_m
ateix (i, j) *
input_to_use (j)) = frics/
end;
end’

free own_a_matrix, own_b_matrix;

end own_cont_system2;

ouwn_cont_system3:
tate_temp_prime);

time float birary’
state_temp (10)
state_temp_prime

3 X2 X2 X2J

fixed exterral

t
L
L
L
L -
t fixed external

a0

AT Y]

Q
(2]
3

aaa~ aa aqaaa
oenNn0 ©OD

o000
= b

crocedure (matrix_dim, time,

[¢)
o]

C-76

state_temp, S

matrix_dim fixed binary (35)?

float binary?
(10) float binary;

I3

ontrolled external’
ontrolled externat,;
t controlled externa
t controlled externa

.
»
-
r

do i = 1 to n?
state_temp_prire (i) =
do j =1 to n; .
state_temp_prime (i)
x (i, j) *

o
~

state_temp_prime (i) + (a_matri

state_temp (3j));

O
[
0
]
-
3
(1]
~
-
~
"

state_temp_prime (i) + (b_matri

input_to_use (j))’

end owun_cont_systen3;

end own_sys_to_sim’

C-77

convert_: pracedure;
delt n fixed external’
dcl p fixed externat.,
dcl offset_s (1:n) fixed controlled external’
cdcl offset i (1:p) fixed controlled external;
dect voltage_lower_bcund_s (1:n) float controlled
del voltage_lower_bcund_ 1 (1:p) float controlled
del quantum_step_ s1ze s “(1:n) float controlled ex
del guantum_step_size_1 (1:p) float controlled ex
del 1 fixed:)
dcl state_code fixed’
del input_code fixed’
del dis_state (x) fixec,
dect d1s input (*) fixed-
decl cont_state (*x) float.,
decl cont_input (*) float~’

cont_state_to_dis_s
do i = 1 ne
dis_ state(x) = fl
-stiMN
m_step_size_s(i))~
ena,
return,

dis_state_to_code:

state_code = 17
do i =1 to n’
state_code = st

e

end’

return;

code_to_dis_state:

state_code = stat
do i = n by =1 . to
dis_ stare (V) =
state code = mo
end’

return.

dis_state_to_cont_s

do i = 1 to n’
cont_state(i)
s(i))

=

ower_bound_s (i),
end,

return;,

external .
external.,
ternal’
ternal,

tate: entry (cont_state, dis_state);

cor ((cont_state(i) = voltage_lower_bound

entry (dis_state, state_code)’

ate_code + (dis_state (i)

* of

entry (state_code, dis_state);

e code - 1.
f[oor (state_code / offs
d (state_code, offset_s (

/ quantu

fset_s (1))

tate: entry (dis_state, cont_state):

{(dis_state(i) + 0.5) * guantum_step_size_

C-78

+ voltage_\

cont_input_to_dis_irput: entry (cont_input, dis_input)’

do 1 = 1 to ps . . '
dis_input{(i) = flcor ((cont_input(i) = voltage_Llower_bound

IREEED)

m_step_size_i(i))’
end;

/ qQuantu

return.,

dis_input_to_code: entry (dis_inout, inout_code):
input_code = 1/
do i = 1 to p;) .
input_code = input_code + (dis_input (i) * offset_1 (i)}))

e

end’;

return;

code_to_dis_input: entry (input_code, dis_input):’

input_code = input_code = 17

-
3

do 1 3 p by ~1 ta 1

dis_input (i) = floor Cinput_code / offset_ i (i))’;
;nput_code = mod (input_codes offset_i (i)7:
end’
return;

dis_input_to_cont_input: entry (dis_inputs, cont_input)’

do 1 3= 1 to'?;
cont_input(i
igiy)

= ((dis_input(i) + 0,5) * quantum_step_size_
- . + voltage_L
ower_bound_i(i) >
end,
return,

end convert_’/

C-79

num_answer_ok: procedure (c» range, choice).’

decl ¢ character (1).

del range fixeas

del cholce fixeds

del 1 fixed; :

del good_answer_flag bit(1);

del trye bit(1) initial ("1"b);

dcl false bit(1) initial (*0"b):

del sysin file input’

del sysprint file output?

oocd_answer_flag = false’,

o while (good ansuer_ftaa = false):
if (c >= "0™ & ¢ <= "9") then

do, .
choice = ¢.
do i =1 bty 1 to.range:
if (choice = i) then
good_answer_flag = true’
end;
end,
if éqood_answer_flag 2 false) then
0.
put edit ("Incorrect Response”,"Try Again => ")
(skips, a, skips, a)’
get List (¢l
end.,
else
choice = ¢/
end; /*whilex/

end num_answer_ok.

C-80

yn_answer _ok: procedure (answer); .

dcl answer character (3) varying’

decl good_aosﬁer_flag bit(1);

del true bit(1)" initial ("1"b)?
del false bit(1) initial ("0"b)>
del sysin file ingut’ :

del sysprint file cutput’
ix)(ansuer = "y | answer = "yes"
n

then gogd_answer_flag = true:

else
good_answer_flag = false’

do while (good_ansuer_flag = false):’
put edit ("Incorrect Response’”,

get list (answer):
1f (answer = "y" | answer = "
good_answer_flag = true;
else : ‘
goad_answer_flag = false’
end; /*whilex/ '

end yn_answer_ok’

C-81

yes

answer

-
=

"Try Again

no

=>

(skip.,

| ansuer
answer

.l')
§'

"nll)

Skipr

answer

then

al)s

DISTRIBUTION LIST
Copies

Commander 12
Defense Technical Information Center

Bldg. 5, Cameron Station

ATTN: DDAC

Alexandria, VA 22314

Manager 2
Defense Logistics Studies

Information Exchange

ATTN: . AMXMC-D

Fort Lee, VA 23801-6044

Commander 2
U.S. Armmy Tank-Automotive Command

ATTN: AMSTA-TSL

Warren, MI 48397-5000

Commander 1
U.S. Amy Tank-Automotive Command

ATTN: AMSTA-CV (COL Burke)

Warren, MI 48397-5000

Chief 23
System Simulation and Technology Division

ATTN: AMSTA-RY

Warren, MI 48397-5000

Dist-1

