
AD-R165 937 BASIC INSTRUCTIONAL PROGRAM: SYSTEM DOCUMENTATION(U) 1/1

STANFORD UNIV CA INST FOR MATHEMATICAL STUDIES IN THESOCIAL SCIENCES N L DRGEFORDE NAY 78 NPRDC-TN-78-i2

UNCLASSIFIED N88t23-76-C-t543 F/G 9/2EEElllEEllliE
EEEElllEEEllEIlflflflllll

Lmp

S1.0 , .

MICROCOPY RESOLUTION TEST CHART
NAONAI RUREAU OF STANDARDS 1961 A

.3'.3I

(")

DTIC
w ELECTE

MAR 24USE5Sj
NPRDC TN 78-12 MAY 1978

71

BASIC INSTRUCTIONAL PROGRAM:
SYSTEM DOCUMENTATION

ft.'

ll,,Ji 'ill

862-05

88 2 28 058 :-.

Technical Note 78-12 May 1978

BASIC INSTRUCTIONAL PROGRAM: SYSTEM DOCUMENTATION

Mary L. Dageforde

Institute for Mathematical Studies in the Social Sciences
Stanford University

Stanford, California 94305

Reviewed by

John D. Ford, Jr.

.I

Navy Personnel Research and Development Center

San Diego, California 92152

FOREWORD

This research and development was conducted in response to Navy

Decision Coordinating Paper, Education and Training Development (NDCP-

Z0108-PN) under subproject Z0108-PN.32, Advanced Computer-Based Systems

for Instructional Dialogues, and the sponsorship of the Director, Naval

Education and Training (OP-99). The overall objective of the subproject

is to develop and evaluate advanced techniques of individualized instruction.

This is one in a series of six reports dealing with the BASIC

(Beginner's All-Purpose Symbolic Instruction Code) Instructional Pro-

gram (BIP), which is a "tutorial" programming laboratory designed for the

student who has had no previous training in programming.

Previous reports in the program are concerned with conversion of BIP

into the MAINSAIL programming language (Note 1, 1978), the BIP supervisory-

level manual (Note 2, 1978), BIP student manuals (Notes 3 and 4, 1978), and

curriculum information networks for computer-assisted instruction (Beard,

Barr, Gould, & Wescourt, 1978). This report is intended for use by individuals

involved with the system-level support of the BIP system.

The work was performed under Contract N00123-76-C-1543 to Stanford

University. The contract monitors were Dr. John D. Fletcher and

Dr. James D. Hollan.

J. J. CLARKIN

Commanding Officer

Accealon For , ..

,TI CRA 'd
•DTIC TAB 13

Unannounced
Justification .

Dist-ibution I
Availability Codes

Avail and I or

Dist sma

I ALL~ .'rtD

.

r -*' -ii-~-. . *. *. ~ .% " :?

SUMMARY~

The BASIC Instructional Program (BIP) is a "hands-on laboratory" that
teaches elementary programming in the BASIC language. This report docu-
ments the BIP system as implemented in MAINSAIL. MAINSAIL is a machine-
independent revision of SAIL which should facilitate implementation of
BIP on other computing systems. Each of the modules which make up the
system is described in detail.

.4-

v4

74

CONTENTS .

Page

SECTION 1. INTRODUCTION 1

SECTION 2. ONOFF MODULE 3

2.1 Checking that Student is Enrolled in Course 3
2.2 Setting up the Curriculum Data Structure 3
2.3 Reading From and Writing to the History File 6

SECTION 3. BIP MODULE 9

3.1 Execlin Procedure 9
3.2 Dealing with Student Files 9
3.3 Executing Programs 10
3.4 The Help System and the MSGS File 10
3.5 Protocol Saving 11

SECTION 4. PARSE MODULE 13

4.1 Recursive Control 13
4.2 Types and Tokens 14
4.3 Poliqh Notation 16
4.4 Format of the Code Produced.......... 17
4.5 Arrays Affected by the Parser 18

SECTION 5. XERS MODULE 19

SECTION 6. ERRDOK MODULE 21

SECTION 7. TEACHR MODULE 23

SECTION 8. VERFY MODULE 27

SECTION 9. MSRECS MODULE 29

REFERENCES 31

REFERENCE NOTES 31

APPENDIX-LIST OF TECHNIQUES AND SKILLS IN TECHNIQUES A-0

vii

% %-

LIST OF FIGURES

Page

1. Data structures for lists of skills in techniques. 4

2. A simplified portion of the curriculum network 24

3. Selecting the next task 25

A.

viii

SECTION 1. INTRODUCTION

The BASIC Instructional Program (BIP) is an interactive problem-solving
laboratory that teache-elementary programming in the BASIC language. It
was developed on the.MSSSPDP-lO research computer facility in a specialized
high-level language called SAIL (Reiser, 1976), which is presently avail-
able only on PDP-10 computers. During the year starting in October 1976,
BIP was rewritten -Dagato ,-Not"e in the programming language called
MAINSAIL (MAchine-INdependent SAIL) (Wi-1c-x,- l97-7a)-eing developed at
the Stanford University Medical Experimental (SUMEX) Computer Facility.
MAINSAIL, as reflected in its name, provides capabilities similar to those
in SAIL independently of the underlying computer system 4Wl1eex, 1977b).
It is designed to be powerful and efficient, with a high degree of por-
tability on a broad class of computers. Thus, BIP was rewritten in MAINSAIL
so that implementation on other (notably smaller) systems would be possible.

BIP was written in eight separately-compiled models (ONOFF, BIP, PARSE,
XERS, ERRDOK, TEACHR, VERFY, and MSRECS) that are brought into memory (by
the MAINSAIL runtime system) during execution as needed. The following
sections describe the workings of all those modules as well as the cur-
riculum data structures and the information saved in student histories.

I

.qi

1.

SECTION 2. ONOFF MODULE

The ONOFF module performs three major tasks at student sign-on or
sign-off:

1. Checks that the student is enrolled in the course.
2. Sets up the curriculum data structure.
3. Reads from and writes to the student's history file.

2.1 Checking that Student is Enrolled in Course

The text file WHO contains each BIP student's number and name. When
a student signs on by typing his number and first name, BIP searches the
WHO file for a line with that information. If no such number is found,
or if the name typed does not match the name in the appropriate line, BIP
tells the student that the number and/or name are incorrect, and logs him
of f.

2.2 Setting Up the Curriculum Data Structure

The curriculum for BIP is contained in a text file called TASKS. Be-
4 fore any students run BIP, the TODATA program is run to compress certain

essential information from TASKS and write it onto a data file called INIT.
When a student signs on, the INIT data is used to initialize the curriculum
data structure. Throughout a student's session, BIP reads from the TASKS
file to access the text of the current task, its hints and model, etc.
The pointers that were initialized from the INIT data give BIP efficient
access to the text in the TASKS file. There are two data structures that
need to be initialized: one for the techniques, and one for the tasks.

The pointer array technique has an element for each of the 16 pro-
gramming techniques in the curriculum (see Barr, Beard, & Atkinson (1976),
for a description of the curriculum structure). Each element points to
the start of a linked list of the numbers of the skills found in that
technique. (See the appendix for a list of the techniques and the skills
within those techniques.) This information about the sets of skills in
each technique is used by the task-selection algorithm (see Section 7).
As shown in Figure 1, the first technique includes skills 1, 2, 5, and 8;
the second, skills 3, 4, 6, 7, 9, 10, 11, and 12, etc.

3

lh

technique
array Linked lists of skills in each technique

~-------------------- --------------------

r ------- L------- r ------- ------- I -----------------1 , __1 2 - - 5 I - + I8 1 NULLPOINTER,

L I L ------ I I ------- L ------ ------------ I

2' , -- +1,3 NULLPOINTER
.... 1L..-------I--------------I --------------

3

4

r - r -----------------
16 :-- - 72 1 NULLPOINTER

Figure 1. Data structures for lists of skills in techniques.

ti

?%4

m ss ~ ' gnw w

The data structure for the tasks is a linked list of records, one
for each task. Each record has 13 fields:

1. "link," a pointer to the next main task in the linked list.

2. "name," the name of the task.

3. "tasklndex," the task number.

4. "taskPos," the start position (in the TASKS file) of the task
*description.

5. "modelPos," the start position (in the TASKS file) of the model
solution.

6. "firstHintPos," the start position (in the TASKS file) of the first
hint. If there are not any hints, it is set to zero.

7. "nextHintPos," initially, the start position (in the TASKS file)
of the first hint (if any). If there are no hints, it is set to zero.
During a BIP session, after the student has seen a hint, nextHintPos is
set to the start position of the next hint, if it exists, and to zero
otherwise.

"moreTask," a pointer to the start of a linked list of the "moreTasks,"
or extensions, of this task (if none exist, it is set to NULLPOINTER). Each
moreTask record is exactly like a main task record, except that the "link"
field is not used, and the "moreTask" field points to the next record in the
linked list of moreTasks of the current main task.

9. "reqOps," which has a bit turned on for each BASIC operator re-
quired in the student's solution to this task (see below).

10. "disOps," which has a bit turned on for each BASIC operator
that the student may not use in the solution to this task (see below).

11. "reqFns," which has a bit turned on for each function (INT, RND,
and/or SQR) required in the student's solution to this task (see below).

12. "disFns," which has a bit turned on for each function that the
student may not use in the solution to this task (see below).

13. "skills," a pointer to a linked list of the programming skills
used in the solution to this task.

Each "reqOps" and "disOps" field consists of 16 bits, one for each

BASIC operator that can be required or disabled in a student's program:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INPUT IF DIM FOR GOSUB READ REOPEN ENSUB
LET GOTO REM STOP NEXT RETURN DATA BEGINSUB

5

Thus, if LET, GOTO, and STOP were required in the solution to a particular
task, the reqOps bits for that task would be 1010001000000000, where a
1 indicates that the bit is turned on and a 0 that it is turned off.

Each "reqFns" and "disFns" field uses 3 bits, one for each function
that could be required or disabled in a student's program:

2 1 0

INT RND SQR

Thus, if INT were disabled in the solution to a particular task, the disFns
*. bits for that task would be 100.

2.3 Reading From and Writing to the History File

Each individual student has a personal history file, a data file used
to store information about the student's current state (what task he is
currently working on, how many tasks completed so far, etc.), and past per-
formance on tasks and skills. At sign-on, this file's information is read
into variables and arrays whose elements are modified during the BIP session.
At sign-off, and at numerous other points during the session, the updated
information is written back out to the history file.

The history files contain the following information:

1. The History Summary

integer
variables information

studentNum student number
lastDateSignon date of last session
lastTimeSignon time of last session
totTimeOn total time on (minutes)
totNumSessions total number of sessions
numTsksDone total number of tasks completed
lastTnqUsed highest technique used in last task selection
numTnqToStayln 0 - if no technique to "stay" in

n - if task-selection algorithm should stay at
technique n, since student had trouble with
last task at that level

chronIndex Index into chron array (see below)
mainNum number of last main task seen
taskNum number of last task seen (either the same as

mainNum or the number of a moreTask of the last
main task seen)

bits
variable information

tnqWord 16 bits, one for each technique (bit 0 for
tnq 1, 1 for tnq 2, ..., 15 for tnq 16). A
bit is off if corresponding technique has never

been seen, on if it has.

6

2. The Task History--BITS array tsklnf. Two bits-elements per task.
(BITS is a MAINSAIL data type for representing a short sequence of bits.)

1st
BITS contents changed in routine

0 never see task again upVer, enufo, verOption
1 ever passed verifier upVer (called by moreo)
2 passed on first try? upVer
3 ever said he understood task postTasklnt
4-8 of failures in verifier moreo
9 chose to leave after failure? verOption (called by verfy)
10 disagreed with verifier? verOption

11 saw the model modelo
4 12 saw all the hints hinto

13-15 number of hint requests hinto

2nd
BITS

0-2 free
3-7 times task was seen finTask (called by moreo, enufo)
8-15 minutes on task addTime (teacho, moreo, enufo)

3. The Skill History--BITS array skllnf. Three bits-elements per
skill.

ist
BITS contents changed in routine

°----

0-5 times seen finTask
6-10 times task passed verifier upVer (called by moreo)

11-15 times passed verifier in a row upVer & downVer

2nd
BITS

0-5 free
6-10 skill "ok" in post-task int. postTasklnt
11-15 skill "ok" in a row postTasklnt

3rd
BITS

0-7 free
8-15 minutes on skill addTime

S 7

v..

4. The Chronological Order of Tasks--BITS array chron. Two bits-
elements per task, in the order the student completed the tasks.

ist
BITS contents changed in routine

0 on if task was specifically teacho
requested by student

1 ever passed verifier upVer
2 passed on first try upVer
3 on if "understood" task postTasklnt
4-8 number of failures in verifier moreo
9 chose to leave after failure verOption
10 disagreed with verifier verOption
11 saw the model modelo
12 saw all the hints hinto
13-15 number of hint requests hinto

2nd
BITS

0-7 task identification number
8-15 minutes on task addTime

5. The Data and Time Each Task was Started--integer array chronDaTime.
There are two elements per task, the first telling the date, and the second,
the time of the start of the task, referenced by the corresponding elements
of the chron array.

6. The Student-assigned File Names--string array stuFile. The ASCII
character codes of the characters in the student-assigned file names are
saved at the end of the student history, with the different names separated
by 32, the character code for a space.

SECTION 3. BIP MODULE

The BIP module contains the main BIP program procedure execlin, which
scans each line typed by the student to decide whether it is a BIP command,
a BASIC statement, a request for help, or an error. Execlin then calls
an appropriate procedure to either follow the command, to parse the state-
ment, or to print a help or error message.

The BIP file's other main procedures handle student files, execute
programs, print help messages when requested by the student, and save pro-
tocols of the BIP session (when desired by the supervisor).

3.1 Execlin Procedure

When a student signs on, the BIP program performs some initializa-
tion and preparation for the session. Then it repeatedly calls the main
procedure execlin to handle each input line, calling appropriate procedures
depending on whether the line is a BASIC statement, a BIP command, an
error, or a request for help.

If the first character of the line is a "?," the help procedure
(described below) is called.

If the first character is a number, execlin expects the line to be a
BASIC statement. It scans over the line number and expects the next se-
quence ot nonblank characters to be a BASIC operator (LET, INPUT, PRINT,
etc.). If it is a BASIC operator, then the procedure syntax is called to
parse the statement. If it is not, execlin checks to see if the line is
a user-function definition or a LET statement without explicit use of the
word "LET," and if so, calls syntax. Othetwise, the line has an error:
either it is missing a valid BASIC statement, or it contains a BIP command
following a line number.

If the input line does not start with a number, execlin expects it to
be a BIP command. If it is, the appropriate procedure to carry out that
command is called. Otherwise, the line has an error: either it is an
illegal command or it has a BASIC operator which is missing a line number.

If any of the above-mentioned possible errors occurs, execlin calls
the procedure msgTxt to get the appropriate error message, prints that
message, tells the student that the input line was not accepted, and in-
dicates that he may type "?" for help.

3.2 Dealing with Student Files

Students are allowed to save up to 10 of their programs for later use.
At any point, they can save the current program under a name that they
assign. Later they can retrieve that program with the -GET- command, or
delete it with the -KILL- command. At any point, the -FILES- command will
list the names of the files currently stored.

The name students think their program is saved under and the name
it is actually stored under are two different things. It is necessary to

9

7 -

assign the programs unique names so that they are not confused with rther
programs saved under the same names by other students. Also, in order
for a file name to be truely machine-independent, it should consist of
no more than six characters. Therefore, the format of the name under
which the program is actually stored is

S<student number>F<file number>

where <file number> is a number between 0 and 9.

During a BIP session, the student file names are in the string array
stuFile. If the student's number were, say, 88, then stuFile[0] would be
the student-assigned name for the file S88F0, stuFile[l] would be the name
for S88F1, etc. Between sessions, the student file names are stored at the
end of the student history.

When a student asks to save a program, the procedure saveo searches
the stuFile array for the next null element, assigns it the name the student
gave his program, creates a new file whose name is in the format described
above, and copies the student program to that file.

To retrieve a file, geto searches stuFile for the appropriate student
file name (and tells the student if that name does not exist), opens the
corresponding file, and copies the saved program into the student's working
space.

To delete a file, killo searches stuFile for the appropriate student
file name, deletes the corresponding file, and then sets that element of
stuFile to null, so that it can be subsequently used when the student
wants to save another program.

To list the saved student files, fileso simply steps through the
stuFile array and types out the nonnull elements.

3.3 Executing Programs

The procedure runo is called to execute a program. First it calls
doktor (the main procedure in the ERRDOK module--see Section 6) to check
the program for structural errors. If none exist, it commences interpre-
tation of the program. For each statement, runo sends xcute, the main
XERS procedure, the BASIC operator used in the statement, and then xcute
calls the appropriate procedure to interpret it. Runo keeps track of the
number of statements that have been executed and warns the student when it
is excessive, since the program may be in an infinite loop. At that point,
the student has the option of either stopping execution or continuing and
telling runo the maximum number of further statements to execute.

3.4 The Help System and the MSGS File

At any point, the student may type a "" for help. The procedure

help is called to decide what type of help the student needs. If the "?"

10

Si,. , - * . % - . .% .. - . . %. .. .

is typed immediately following a syntax, structural, or execution error,
help will give the student further information about the type of error
made and tell him to type "?" for more help (as long as it is available--
there are up to four different help messages available for each error).
If the student types "?REF," help refers him to a section of the Student
Manual.

If the student types "?" at any other time (i.e., not after making an
error), help will simply state that BIP is expecting either a BIP command
or a BASIC statement and that he can type "?BASIC" to see a list of the
statements and commands.

How does help know which help message to give at any point after an
error has been made? First of all, it knows which type of error was made,
since exactly one of the variables synerf, dokflg, or xerflg (for a syntax,
structural, or execution error, respectively) will be nonzero and will
tell the error number. Help keeps track of how many "?"s have been typed
directly after an error so that it knows which message (in the sequence of
different help messages for the error) to 'rint out.

The help messages are all in the file MSGS, along with the error
messages, the manual reference messages, and the skill descriptions. Each
group of messages is on a separate page of MSGS, in order. The beginning
of each page has pointers to the start of all the messages on that page.
Given a page number and a message number, the procedure msgTxt will re-

trieve the appropriate message from the file MSGS. Help knows the page
number for each type (syntactic, structural, or execution) of error made,
and the error number from synerf, dokflg, or xerflg. So it simply computes
which message number should be presented (based on the number of times
the student has typed "?") and calls msgTxt with that number and the appro-
priate page number to get that message.

3.5 Protocol Saving

The Supervisor at each BIP implementation has the choice of whether
or not to compile the code for protocol saving. This is done by setting
the macro "canSaveProtocol" (in the file MACROS) to TRUE or FALSE just
before compiling the BIP modules. If it is TRUE, then the Supervisor
may save "protocols," or records of all that happens during student
sessions, for some or all BIP students. Whether or not they will in fact
be saved for individual students is determined during the creation of
student histories, by an option in the newHst program.

The protocol-saving code is scattered throughout the BIP modules.
The BIP file contains two procedures that are often called by that code
to write various information to the protocol file. One, writeTasks, writes
the name and number of the task the student is currently working on. The
other, writeProg, writes the current student program.

If the protocol-saving code was compiled and the Supervisor said he
wanted protocols saved for a specific student, then a protocol of each
of that student's BIP sessions will be saved on his personal protocol
file, whose name is of the format DAT<student number>.

% .e ME11

-~~~~'~ -~ -

SECTION 4. PARSE MODULE

The purpose of the procedures in the PARSE module is to examine each
line of BASIC code that the student types and to produce a line of inter-
nal code that can be read by the procedures in the XERS module.

4.1 Recursive Control

The parser uses a very common method called top-down parsing with re-

cursive descent to scan the input line and to produce an argument line for
XERS (the interpreter). The best way to explain this method is with an
example. Suppose the statement to be parsed is a LET statement, which
has the following syntax:

<variable> - <expression>.

In this case, the parser first looks for a legal BASIC variable. If it
finds one, then it examines the input string, expecting an "-." If it does
not find it, an error has obviously occurred. Otherwise, the parser goes
ahead and looks for an expression.

Thus, the first action of the parser is to call the procedure
variableParse. In the same way that lets (the procedure called by
syntax, the parser control procedure, to parse a LET statement) "knows"

the legal syntax of a LET statement, variableParse "knows" what the
4 correct syntax of a variable is:

<variable> = <string variable> or <numeric variable>

<string variable> f <string id> or <string id> (<arith.exp>)

<numeric variable> = <numeric id> or <numeric id> (<arith.exp>)
or <numeric id> (<arith.exp>, <arith.exp>)

Hence, it checks the first part of the line to see whether the variable
is string or numeric. In either case, the parser then looks for a "(,"
because the variable might be an array element. If no "(" is found, con-
trol returns to lets, because the parser assumes the variable has been
found. If a "(" is found, however, variableParse passes control to aExp,

the arithmetic expression parser. Upon return from aExp (in the case of
a string variable), variableParse looks for the closing parenthesis. If
one is found, control is passed back to lets. If not, then a syntax error
has occurred--either a parenthesis mismatch or an illegal arithmetic ex-
pression.

The process continues in this manner. AExp immediately passes con-
trol to aTerm which passes control to aFactor, because of the syntax of
arithmetic expressions:

<arith.exp> - <arith.term> or <arith.term> + <arith.term>

<arith.term> <arith.factor> or <arith.factor> * <arith.factor>

<arith.factor> = <arith.primary> or <arith.primary> ^ <arith.primary>.

13

%v-.

•* Finally, in aPrimary the parser looks for an arithmetic primary such as
*" a numeric constant, a numeric variable, or a user-defined function. If

it finds a legal primary, it returns control back to aFactor. Otherwise,
a syntax error must have occurred.

Eventually, control will be passed back up the line to lets (unless
a syntax error occurs), which will then look for the "=" symbol, call the
expression parser, and return back to syntax. For example, the statement

Z (X + 2) = INT (Y) would be parsed as follows:

<LET statement>
<variable> = <expression>

<num var> (aExp) = aExp
Z (aTerm + aTerm) = aTerm
Z (aFactor + aFactor) = aFactor
Z (aPrimary + aPrimary) = aPrimary
Z (X + 2) = INT (aExp)
Z (X + 2) = INT (aTerm)
Z (X + 2) = INT (aFactor)
Z (X + 2) = INT (aPrimary)
Z (X + 2) = INT(Y)

This inLdicates exactly which procedures would be called in the
parsing of the statement. Each procedure calls the one beneath it in
the hierarchy and returns control back to the procedure which called it
if it finds what it expects. (Thus, the name "recursive descent" for this
parse method, because the parser descends through levels of procedures
until it finds a match for the part of the statement it is looking at.)

4.2 Types and Tokens

However, the parser must know exactly how much of the line is to be
examined at any given time. To do this, it uses a procedure called getToken,
which takes the next syntactically meaningful part of the input string and
puts it in the variable token. At the same time, it "types" this token--

that is, it assigns to it a number that indicates what its meaning is.
These types are defined as macros in the file MACROS (e.g., intev is de-
fined as 17) so that they can be used in CASE statements. The use of mne-
monic macro names instead of integers makes the code more readable. The
macro names for the types are listed on the following page.

14

nid numeric variable
sid string variable
strcon string constant
numcon numeric constant
oper +-*/&() ;
function a user-defined function
eqal an = or
noteq <>
less <
leseq <=

greq >=

greater >
nott boolean not
andd boolean and
orr boolean or
root square root
inteqv truncated integer
rndnum random number
lengt length of a string
bad illegal character
narray one-dimension numeric array
dnarray two-dimensional numeric array
sarray string array

For example, if the input line were Z (X + 2) = INT (Y), the procedure
getToken would pass the line to the other procedures of the parser as follows:

nid Z, oper (, nid X, oper +, numcon 2 oper), eqal =,

inteqv INT, oper (, nid Y, oper).

(Later, during the variable-parsing routine, the variable Z is recognized
as an array variable, so its type would be changed to narray for the inter-
preter.)

Hence, each time getToken is called, it gets a new "meaningful syntac-
tical entity" from the input string, types this "entity," and places the
values into the variables token and type. GetToken first gets the next
nonblank character on the string. Then, depending on what the character is,
getToken assigns it a "preliminary type" obtained directly from the array
typetable (initialized in the module Pcom, which is listed in the file
PARSE), which has an entry for every ASCII character (e.g., typetable[+] =
oper, typetable[X] - nid, typetable[i] - bad).

GetToken then uses this preliminary type to decide what to do next.
For example, if the character is a letter, it scans the input line until
a nonalphanumeric character is encountered, and passes the resulting
string to another procedure typeId, which determines if the correct type
is a numeric variable, string variable, user function, etc. If a " is
encountered, then getToken scans the line for another ", and assumes that
whatever lies between the two is a string constant. If the character is
a +, I, *, or -, nothing is done.

15

The parser then uses the information passed to it by getToken to decide
what to do next. For example, in the procedure aPrimary, if the current
typ is inteqv, the parser assumes (perhaps erroneously) that a value for
the INT function is forthcoming. Hence, it calls getToken to be "("O after
the call. Then It calls get Token again, and then aExp, because it assumes

A the argument for the INT call will be an arithmetic expression. Upon return
from A! xp, it expects that token will be ")"-if not, a syntax error has
occurred.

The main problem with this type of parsing algorithm occurs when it
is not immediately obvious what to do next even knowing what the current

* token is. In BIP's parser, this situation occurs while trying to parse
general expressions (in PRINT statements) and Boolean expressions. For

K example, suppose we are attempting to parse an expression in a PRINT
statement, and the current token is X. Although this eliminates a string
expression from consideration, the parser does not know yet whether the
expression is arithmetic or Boolean; the statement could be PRINT X or
PRINT X=Y. Normally parsers try to solve this problem with a method called
backup, perhaps trying to parse an arithmetic expression first. If this fails,
the input string can be restored to its original state, and a Boolean parse
tried.

BI1''s parser uses methods that try to determine the type of the expression
without parsing it. For example, to determine whether the expression is
Boolean, the line is scanned, breaking on 11=11 or "1>0 or "< "-which must be
present 'n a _ Boolean expression. If one is found, the expression is assumed

V. to be Boolean; otherwise, it must be arithmetic or string. In either case,
the line is restored to its state before the scan, and the parse proceeds
correctly.

The same type of problem can occur while parsing a Boolean expression,
where the parser expects to find a string or arithmetic expression followed
by a Boolean symbol and then another arithmetic or string expression. If
the token is a "(" or a user-defined function, the parser has no way of
telling at that point whether the expression is string or arithmetic. Again,
the input string is scanned for the type of expression it contains.

4.3 Polish Notation

In the process of parsing the line, the parser transforms it from infix
(normal parenthesizing) to polish notation, in which operators follow their
arguments. For example, the expression

INT (SQR (X * (2 + Y)))

becomes

X 2 Y + * SQR INT

in the polish notation. Also standard delimiters are used to signal the
* beginning of an array subscript and the end of an expression. For example,

16

A (3, Y + 2) becomes A (3, 2 Y +),

[(used to denote beginning of an array or substring]
[, used to separate subscripts or string characters]
[) used to denote the end of an array or substring]

For the separation of expressions in a PRINT statement, the nonprinting
character whose character code is 30 is used. For the separation of varn-
ables in an INPUT, DIM, or READ, and the separation of data, a ";" is used.
As an example,

INPUT A, A$, B$ (J) becomes A; A$; B$ (J).

The way the parser transforms the line from infix to polish notation
is rather straightforward. In the "INT (SQR (X * (2 + Y)))" example above,
while parsing the INT," instead of generating the code for the "INT" be-
fore aExp is called, the parser waits until after the return from aExp.
Hence, the code for everything else has already been produced and the "INT"
is tacked on the end. The same thing is done whenever any operator is en-
countered.

Thus, the code for "SQR" is tacked onto the end of X 2 Y + *. In the
case of a binary operator (one that has two arguments, such as + or *),
basically the same thing is done. The code for the X is produced in aPrimary,
and then control passes back to aTerm. Instead of making the code for the
* at this stage, aTerm calls aPrimary a second time, which then calls aExp
to parse the parenthesized expression. __xp calls aPrimary which adds the
code for the 2, but when control returns to aEx, it does not generate the
code for the +, but waits until after the second call to aPrimary (which
adds the code for the Y). Hence, at this point the code is "X 2 Y +."
Finally, control passes back to aPrimary, which finds the end of the par-
enthesized expression, and then to aTerm, which finally generates the code
for the *. (What actually happens is probably less confusing than this
description.)

4.4 Format of the Code Produced

The code has a special format (accumulated in the string variable
kode and then stored in an element of the argz array) so that it can be
easily scanned by XERS. An element of code has the format

<type><token><delimiter>

and elements of code are strung together to form the complete expression.
Each complete line of internal code, corresponding to a BASIC expression
typed by the student, it stored in an element of the argz array, which is
interpreted a line at a time, by the procedures in the XERS module.

Nonprinting characters whose ASCII codes are 1 through 23 are used
for the <type> and the nonprinting character 29 is used for the <deliminter>

17

* in the above format specification. Using lower-case letters (a = 1, b = 2,
etc.) to indicate the <type> and the] character to indicate <delimiter>
the internal code produced by the parser for the example discussed above
is:

a X] b 2] a Y] e +] e*] p SQR] q INT]

4.5 Arrays Affected by the Parser

Finally, the parser updates five arrays (prgtxt, linNums, opers,
argz, and order) each time a BASIC statement is parsed. Prgtxt holds the
exact text that was typed; linNums, the input line numbers; opers, the
BASIC operators; and argz, the code (as produced by the parser) for the
line. Every time a new (syntactically correct) line is typed by the student,
the next element of each of those four arrays is assigned (in the procedure
putLin) appropriate values from the information in that line. The integer
array order tells the numerical (by line number) order of the lines. The
value of the first element of order is the index into the other four arrays
of the line with the lowest line number; the value of the second element is
the index of the line with the next higher number, etc.

For example, if the student input the following lines as a solution
to the simple task "SPOON""

. J. ,order typed numerical order
i0 - - ----

10 READ X$ 10 READ X$
20 READ Y$ 20 READ Y$
100 DATA "SILVER", "SPOON" 30 PRINT X$ & " " & Y$
30 PRINT X$ & " " & Y$ 100 DATA "SILVER", "SPOON"

999 END 999 END

then the values of the prgTxt, linNums, opers, and order array elements are:

index prgTxt linNums opers order

1 10 READ X$ 10 READ 1
2 20 READ Y$ 20 READ 2
3 100 DATA "SILVER","SPOON" 100 DATA 4
4 30 PRINT X$ & " " & Y$ 30 PRINT 3
5 999 END 999 END 5

18

SECTION 5. XERS MODULE

The workings of the interpreter are relatively simple when compared
with the parser. Because the argument code generated by the parser (and
stored in the array argz) is in polish notation, it is simple to use stacks
to evaluate expressions. Again, an example is appropriate. Suppose we
wish to evaluate the polish expression

X 2 Y + * SQR INT.

The heart of XERS, the procedure evalToken, is designed to perform certain
actions depending on what type the current token in the args string is.
(To get another token off the args string, the procedure nextx is called.
It scans to the next I delimiter, putting a new token and type in the
variables of the same name.) In this example, evalToken would do the
following as each token is scanned:

X Push the value of X onto the real stack.
2 Push 2 onto the real stack.

Y Push the value of Y onto the real stack.
+ Pop the top two values off the real stack, add them,

and push the result onto the real stack.

• Pop the top two values off the real stack, multiply
them and push the result.

SQR Pop the top value off the real stack, take its square
root, and push the result onto the stack.

INT Pop the top value off the real stack, truncate it, and

push the result back onto the real stack.

Hence,

INT (SQR (X * (2 + Y)))

has been evaluated.

Any expression is evaluated in the same way. A slight complication
occurs if we wish to evaluate the value of an array variable. In this
case, we make use of a procedure called goUntil, which calls the token
evaluator (evalToken) until a specified delimiter character is reached.
For example, suppose we wish to evaluate the value of

A$ (X + 2) & X$, in polish form: A$ (X 2 +) X$ &.

Upon getting AS, since the interpreter realizes it is an array variable,
it does not try to push its value onto the stack. Rather, it scans past
the "(" symbol, and then calls goUntil to call the token evaluator until a
")" is reached. Hence, the following occurs:

X Push the value of X onto the real stack.
2 Push 2 onto the real stack.
+ Pop the top values off, add them, push the result.
) Stop.

19

m%

AL tLh1s point, iLhe value of X + 2 is sitting on top of the stack. So the
interpreter pops its value off the real stack, pushes the value of A$
(X + 2) onto the string stack, and then does the following:

X$ Push the value of X$ onto the string stack.
& Pop the top two values off the string stack,

concatenate them, and push the result back onto
the string stack.

Assignments are made in a similar manner. One important thing should
be noted--the interpreter assumes that the value we wish to assign to the
variable is the top element of the stack just before the assignment is to
be made.

Suppose, for example, that we want to make the following assignment:

A = B (J) + INT (Y) which has the following polish form:

-I B (J) Y INT + = A

In this case, the interpreter's first instruction is goUntil("="), which
causes the evaluator to be called until a "=" is reached. At this point,
the value of B (J) + INT (Y) will be on top of the stack. Upon examining
the A, the evaluator will pop the stack, and store that value in the vari-
able A.

2

1

.J.

~20

SECTION 6. ERRDOK MODULE

When a student gives the RUN command to BIP, the ERRDOK module checks

the student's program for a number of possible structural errors.

ERRDOK employs a two-pass algorithm. If, at any point, an error is
encountered, an appropriate error message is given and the program is not
executed.

ERRDOK initially makes sure that there exists a program to be run in
the first place, and that the last line is an END statement. If so, it
then checks the program line by line for further possible errors.

There are a few key variables and record lists employed by ERRDOK
in its first pass through the lines of the program.

1. inSub is a BOOLEAN that is TRUE whenever a BEGINSUB has not yet
been followed by an ENDSUB.

2. loopLevel tells the number of FOR statements that have not yet
been followed by NEXTs.

3. forVar is a STRING array with the names of the FOR loop index
variables.

4. usersFns is the record class for a linked list of records, one
for each function defined in the program. It has three fields: "name,"
for the function's name; "index," telling the location of the function
definition in the program; and a link to the next record.

5. SUBclass is the record class for a linked list of records, one
for each subroutine in the program. It has four fields: "subStart,"
for the BEGIN line number; "subEnd," for the ENDSUB line number; a
BOOLEAN "referenced," set only when a GOSUB references the subroutine;
and a link to the next record.

6. FORclass is the record class for a linked list of records, one
for each FOR loop in the program. It has three fields: "forStart," for
the FOR line number; "forEnd," for the NEXT line number; and a link to the
next record.

If the line being checked in the first pass gives a function defini-
tion, ERRDOK checks the already existing userFns records (if any). If

the "name" field of any of them is the same as the name of the function
being defined, then the function has been defined twice, and an error
message is given. Otherwise, a new userFns record is created.

An END statement that is not the last line of the program produces
an "Illegally located 'END"' error message.

If the line being checked is a FOR statement, the loopLevel number
is incremented and the array element forVar[loopLevel] is set to the FOR
loop's index variable. A new FORclass record, with the "forStart" field
set to the current line, is created.

21

7:*T

When a NEXT statement is encountered, loopLevel is checked. If it

is zero, then the program has a "'NEXT' without a preceding 'FOR"' error.

Otherwise, forVarfloopLevel] is checked. If It is not the same as the
v;iriahle In the NEXT statement, an "Illegally nested FOR...NEXT loop"
error has heen detected. Otherwise, the "forEnd" field of the FORclass

record for the loop just ending is set to the NEXT statement's line num-

ber and loopLevel is decremented.

If the line being checked is a BEGINSUB statement and the BOOLEAN

variable inSub is TRUE, then an "Illegally imbedded subroutine" error has

been found--a subroutine has begun inside another subroutine. Otherwise,
inSub is set to TRUE, and the previous non-REM statement is checked.
If it is not a STOP, a GOTO, or an ENDSUB statement, then there is an

error: execution of the student's program could illegally fall through
into the subroutine. Otherwise a new SUBclass record, with the "subStart"
field set to the current line number and the "referenced" field initialized
to FALSE, is created.

When an ENDSUB statement is encountered, if inSub is not TRUE, then

the program has an "'ENDSUB' without a preceding 'BEGINSUB"' error. Other-
wise, the "subEnd" field of the SUBclass record for the subroutine just
ending is set to the ENDSUB statement's line number, and inSub is set to
FALSE.

Other statements are ignored during the first pass.

If the first pass is complete and the variable inSub is TRUE, then

a '"Missing 'ENDSUB' after 'BEGINSUB"' error has occurred. And if loopLevel
is not zero, then a "'FOR' statement without matching 'NEXT"' error has

*occurred.

Otherwise, everything is all right so far, and all GOSUB, GOTO, and IF

statements are checked in the second pass.

GOSUB statements are checked to make sure that they branch only to

BEGINSUBs. And if the GOSUB is located within the subroutine branched
to, an error has occurred, since recursive subroutines are not allowed.
(This error has occurred if the GOSUB's line number is between the
called subroutine's beginning and ending line numbers--its SUBclass
record's "subStart" and "subEnd" values.) If all is well, the "referenced"

field of the subroutine called by the GOSUB is set to TRITE.

GOTO and IF statements are checked to make sure that the line to
which they branch exists and is an executable statement (any statement

other than a DATA or a DIM). Then an illegal branch into the middle of
a FOR loop or into or out of a subroutine is checked for.

Once the second pass is complete, the "referenced" field of each
SUBclass record is checked. If it is not TRUE, then an error has occurred,

since all subroutines must be referenced by at least one GOSIB.

7. Finally, if no structural errors have been detected by ERRDOK, the

program is allowed to run.

22

.7.

SECTION 7. TEACRR MODULE

TEACHR's main procedures handle task selection, the post-task interview,
updating of the student history, and stepping the students through their
first session.

In order to understand how task selection is done, it is necessary to
understand the definition and use of skills and techniques. BIP's cur-
riculum goals are the mastery of certain programming techniques, including
simple output; using loops, conditional branches, and arrays; assignment
to variables, etc. The techniques are linked in a linear order, each having
but one "prerequisite" (the previous technique), based on dependence and in-
creasing program complexity.

The techniques are interpreted as sets of skills, which are very spe-
cific curriculum elements like "printing a literal string" or "using a
counter variable in a loop." The skills are not themselves hierarchically
ordered. The appendix lists the techniques and skills within them. The
programming problems or "tasks" are described in terms of the skills they
use, and are selected on the basis of this description, relative to the
student's history of competence on each skill. Figure 2 shows a simplified
portion of the curriculum network, and demonstrates the relationship among
the tasks, skills, and techniques.

The algorithm by which BIP selects a next task when the student re-
quests it is shown in Figure 3. The selection process begins with the
lowest (least complex) technique. The procedure setUpSets puts all the
skills in that technique into a "set" (actually, a linked list of skill
records) called MAY, which will become the set of skills that the next
task "may" use.

SetUpSets then examines the student's history on each of the skills
associated with the technique, to see if it needs further work. Two key
counters in the history (see documentation for ONOFF) are associated with
each skill. One is based on the results of the solution checker, and
monitors the student's continuing success in using the skill. The other
is based on the student's self-evaluation, and monitors his own continuing
confidence in the skill. The current definition of a "needs work" skill
is one on which either counter is zero. For each successful use of a
skill, both counters are incremented (in upVer). If the student quits
a task requiring a particular skill, the first counter is decremented;
if the student requests more work on a skill (during the post-task inter-
view, described below), the second counter is zeroed. Any such "not yet
mastered" skills are put into the MUST "set" (linked list of skill records).
Eventually the program will seek to find a task that uses some of these
MUST skills.

23

A I

4' TECHNIQUES
OUTPUT SIMPLE SINGLE
SINGLE VARIABLES VARIABLE
VALUES READ & INPUT

SKILLS
Print Print Print Assign Assign
string string numeric numeric string
literal variable variable variable variable

with LET with INPUT

TASKS
Write a program that Write a program that

Write a program that uses INPUT to get a first assigns the value
prints the string string from the user 6 to the variable N,
"HORSE" and assign it to the then prints the value

variable W$. Print W$. of N.

TASK HORSE TASK STRINGIN TASK ASSIGN

Figure 2. A simplified portion of the curriculum network.

24

student requests
TAISK

St reat thees techiqu moeithex

Pi1~re 3 ~e1ct igthernx ts.

tehnqu

a skils fro

cu r n techniqued~

*

If no MUST skills are found (indicating that the student has mastered
all the skills at that technique level), the search process moves up by
one technique, adding all its skills to the MAY set, then seeking MUST
skills again. Once a MUST set is generated, the search terminates, and
all of the tasks are examined by the procedure select. Those considered
as a possible next task for the student must require (a) at least one
of the MUST skills, and (b) no skills outside of the MAY set. Finally,
the task in this group that requires the largest number of MUST skills is
presented as the next task. Thus, in the simplified scheme shown in
Figure 2, assuming that the student had not yet met the criterion on the
skills shown, the first task to be presented would be HORSE, because its
skill lies in the earliest technique, and would constitute the first MUST
set. Task ASSIGN would be presented next, since its skills come from the
next higher technique; STRINGIN would be presented last of these three.

An interesting curriculum development technique has evolved naturally
in this scheme. If BIP has selected the MUST and MAY sets, but cannot
find a task that meets the above requirements, then it has found a "hole"
in the curriculum. After writing a message to the HOLES file (see Section
3.4 of Dageforde & Beard, Note 2) describing the nature of the missing task
(e.g., the MUST and MAY skills), the procedure adjust examines the next
higher technique. It generates new, expanded MUST and MAY sets, and then
the procedure select again searches for an appropriate task. If none is
found, a new search begins based on larger MUST and MAY sets. The only
situation in which this process finally fails to select a task occurs when
the student ha3 covered all of the curriculum.

The first task a new student gets is not selected in this manner;
it is automatically task GREENFLAG, which requires a two-line program
solution. Because this is expected to be thi student's first programming
experience, and perhaps his first interaction of any kind with a computer,
he is led through the solution to the task in very small steps. GREENFLAG
is the only task in the curriculum that presents text (from the file GREENF),
asks questions, and expects the student to type "answers," all of which
alleviates the trauma of being told to write a program in the first session.
However, since the student's responses are frequently commands that are
passed to BIP's interpreter, he can see the effects of the input, and emerge
from GREENFLAG having written and executed a genuine program.

When a student has finished GREENFLAG or any other task by success-
fully running his program, he proceeds by requesting '"ORE." The procedure
moreo first looks through the student's program for the BASIC operators
and functions (if any) required in the solution to the task. If any re-
quired element is missing, he is asked to add it to the program and rerun
it before again requesting "MORE." If the program contains all the required
operators and functions, the procedure verify is called to evaluate it by
comparing its output with that of the model solution run on the same test
data (see Section 8), and the results are stored (in the student history)
with each skill required by the task. Also, in the post-task interview,
the student is asked to indicate whether or not he needs more work on the
skills required by the task, which are listed separately. Thus, as mentioned
above, BIP has two measures of the student's progress in each skill: its
own comparison-test results, and the student's self-evaluation.

26

JUL 111111111W I

SECTION 8. VERFY MODULE

VERFY is the solution-checker module. Basically, it evaluates the
student's program by comparing its output to that of the model solution.
First, the procedure verify calls vinit to initialize variables, based on
the coding line that precedes the model solution in the TASKS file. (See
Section 5.2 of Dageforde & Beard, Note 2, for a detailed description of
the coding line.) If that coding line does not start with a semicolon,
then the student's program is not checked; it is assumed correct. Other-
wise, the rest of the line is scanned for option code characters and value
lists. If there is an "e," the variable wantExact is set to TRUE, since the
"e" signifies that the student's program must produce the exact same number
of output lines as that of the model. An "n" signifies that numeric ex-
pressions are to be stored for comparison (otherwise they are ignored), so
the variable wantNumCon is set to TRUE. An "r" signifies that there are
random numbers used in the programs, and the "random" numbers to be plugged
in during the solution checker's invisible (to the student) execution of
the model and of the student program are stored in the variable savrnd.
An "s" signifies that string expressions are to be stored for comparison
(otherwise they are ignored), so the variable wantStrCon is set to TRUE.
A "v" signifies that all leading spaces should be discarded before output
is saved for comparison, so the variable vacuum is set to TRUE.

Next, if there are any INPUT statements in the model (and thus presum-
ably in the student program as well), havelnput is set to TRUE. The first
few lines of the model solution are scanned, since for each INPUT statement,
there must be a REM at the beginning of the model solution describing the
use of the input variable. The format of each of those REH statements is:

<line #> REM <variable name> IS: <description> .

(For example: 10 REM X IS: THE USER'S FIRST ADDEND
20 REM Y IS: THE USER'S SECOND ADDEND)

A linked list of inputVars records is created, one for each INPUT variable
expected. Each inputVars record has four fields: "name," for the variable
name; "vals," for the value(s) to be assigned to the variable during execu-
tion; "description," for the description of the variable; and "link," for
the pointer to the next record. The "name" and "description" fields are
assigned according to the information in the REM statements, and the "vals"
field is assigned by the appropriate value lists given at the end of the
coding line.

After the initialization, the model solution is executed (invisibly),
and every line of output is stored (in the array printl) for comparison,
with the following exceptions. Any expression containing a quoted string
or a numeric constant will not be stored, unless wantStrCon or wantNumCon,
respectively, is TRUE. If vacuum is TRUE, all leading spaces are deleted
before a line is stored. The integer variable outl tells the number of lines
of model output stored.

If there is an execution error during the execution of the model, then
the student is told so, and his program is assumed correct. Otherwise, the
solution checker prepares to execute the student's program and compare its

27

J"

output to that of the model. If there are any INPUT variables (if havelnput
is TRUE), then the procedure kidputs is called to find out what variable
names the student used. Kidputs goes through the linked list of inputVars
records and asks the student "What variable do you use for ... ?", where the
"..." is replaced by the "description" field of the record. The variable
name typed in by the student is checked to make sure that it is a valid
variable name, that it is of the correct type (numeric or string), and
that the student has not already said he used that variable name. If it
is invalid for any reason, the student is told why and asked to retype the
variable name. When a valid name is typed, it is compared to the "name"
field of the record. If they are not the same, then the "name" field is
replaced by the student's variable name. Once again, as before execution
of the model solution, the "vals" field is set to the values to be assigned
by INPUTs of this variable.

After finding out the student's input variable names, the elements
of a Boolean array called matchup, which is parallel to the array printl,
are initialized to FALSE. Then the student's program is executed (invisibly)
and given the same "random" numbers and INPUT values (if any) as the model
solution. Each line of its output (with the same vacuum, wantStrCon, and
wantNumCon restrictions as for the model solution) is stored in the array
printk and compared to the stored output from the model (prLintl). If the
line matches the ith element of printl, then matchup[i] is set to TRUE.
The variable outk tells the number of lines of student output stored. If,
after the student's program has completed execution, any of the elements
in the model-output array (prLntl) have not been matched (i.e., if matchup~i]
= FALSE for any i, i = 1,2,...,outl), he is told that the program "does not
seem to solve the problem," and the unmatched elements are listed. Or if
wantExact is TRUE and outk is greater than outl, the student is told that
the program produced too much output. In either case, the procedure verOption
is called to determine whether or not the student wants to continue work on
the task, and, if not, whether or not he disagrees with the solution checker.
(If this is the case, this fact and the student's program are recorded in
the file ARGUE). In addition to listing the output not found, verOption
tells what values were assigned to INPUT variables, and which types of
constants (numeric and/or string), if any, the solution checker ignored.
If, on the other hand, all the model outputs have been matched (and outk
= outl if wantExact is TRUE), the student is told that the program "looks
ok," and the post-task interview (see Section 7) is presented.

28

SECTION 9. MSRECS MODULE

There are a number of linked lists of records built up and used through-

out a BIP session. In particular, there is a linked list of records for every
type of variable (numeric, string, one-dimensional numeric array, two-dimen-
sional numeric array, one-dimensional string array) used in the student's
current program. There is also a linked list of records for the user-defined
functions, and the solution checker utilizes a list of the expected INPUT
variables.

The first two fields of all these records are the same: "name" for

the variable (or function) name, and "link" for a pointer to the next record
in the linked list. In addition, the numeric and string variable records

have a "val" field holding the current value (numeric or string) of the
variable; the one-dimensional array variable records (numeric and string)
have an "upperBound" field for the upper bound of the array (the lower
bound of all BIP arrays is 1) and an "array a" field for the actual array.
The two-dimensional numeric array records have the same fields as the one-
dimensional ones plus a "secondUpperBnd" field for the upper bound of the
second dimension of the array. INPUT variable records have a "vals" field
for the values to be successively assigned to the INPUT variable by the

solution checker. Finally, user-function records have an "index" field
for the index into the argz array (see Section 4) of the line in the pro-
gram containing the function definition.

Further examples of the extensive use of linked lists of records

are:

1. The data structure for the main tasks (as described in the documen-
tation for ONOFF) is a linked list of records, each with 13 fields.

2. The MUST and MAY "sets" of skills used in task-selection (see
Section 7) are actually separate linked lists of records, each with two

fields: "sklndex" for the skill number, and "link" for a pointer to

the next record in the list.

3. The MAYBE "set" of possible next tasks to be presented by the task-
selection algorithm is a linked list of records, each with three fields:
"task" for a pointer to the task (in the linked list of main task records),
"numMustSkills" for the number of skills in the MUST set that the task
uses, and "link" for a pointer to the next record.

The MSRECS module contains procedures useful for handling records and

linked lists of records. The "is" procedures (isnal, issa, etc.) check (at
execution time) to see if a given variable is in the appropriate list (e.g.,
the one for one-dimensional numeric array variables, or the one for string
variables). The "create" procedures (nvCreate, nalCreate, etc.) create a
record of the desired class and initialize various fields according to the
information passed to the procedures.

PutInMaybe adds a task to the MAYBE "set" described above. RemoveFromMaybe
eliminates inappropriate tasks (those with skills outside the MAY "set")
from that list.

29

i(e
d *V *

w%
44*%r0

ReqCreate creates a new record to be added to the linked list of
operators or functions required in the solution to the current task.
Each record has two fields, "name" for the name of the operator or
function that is required, and "link" for a link to the next record
in the list. ReqRemove removes a record from the list, isRequired
checks to see if a particular operator is required (i.e., in the linked
list) and listRequired simply steps through the list and types out the
"name" field of each of the records (see Section 2).

SkCreate creates a new skill record and initializes its two fields:
"sklndex" for the skill number, and "link" for a pointer to the next
skill record in the list. AddtoList adds a new skill record to a linked
list of skills (note that they are in numeric order, by skill number),
and empty tells whether or not a particular skills list is empty. As
mentioned above, the MUST and MAY "sets" used in task-selection are both
linked lists of skills.

Insert inserts a record at the beginning of a linked list. Inlist
checks to see whether or not a particular string is the same as the "name"
field of any of the records in a specific linked list. All of the "is"
procedures call inList with parameters telling which linked list (the one
for numeric variables, or the one for string variables, etc.) to check
and what "name" to search for.

30

REFERENCES

Barr, A., Beard, N., & Atkinson, R. C. The computer as a tutorial
laboratory: The Stanford BIP project. International Journal of
Man-Machine Studies, 1976, 8, 567-596.

Beard, M., Barr, A. V., Gould, L., & Wescourt, K. Curriculum informationnetworks for computer-assisted instruction (NPRDC Tech. Rep. 78-18).

San Diego: Navy Personnel Research and Development Center, April 1978.

Reiser, J. SAIL user's manual (Artificial Intelligence Memo 289).
Stanford, CA: Stanford Artificial Intelligence Laboratory, Stanford
University, 1976.

Wilcox, C. R. MAINSAIL language reference manual. SUMEX Computer
Project, Stanford University Medical Center, 1977. (a)

Wilcox, C. R. The MAINSAIL project: Developing tools for software
portability. Proceedings of the First Annual Symposium on Computer
Application in Medical Care, IEEE Catalog No. 77CH1270-8C, pp. 76-83,
Washington, D. C., 1977. (b)

REFERENCE NOTES

1. Dageforde, M. L. The BASIC Instructional Program: Conversion into
MAINSAIL Language (NPRDC Tech. Note 78-11). San Diego: Navy Personnel
Research and Development Center, April 1978.

2. Dageforde, M. L., & Beard, M. The BASIC Instructional Program: Super-
visor's Manual (NPRDC Tech. Note 78-10). San Diego: Navy Personnel
Research and Development Center, April 1978.

3. Beard, M. H., & Barr, A. V. The BASIC Instructional Program Student
Manual (NPRDC Special Rep. 77-2). San Diego: Navy Personnel Research
and Development Center, October 1976.

4. Dageforde, M. L., Beard, M. H., & Barr, A. V. The BASIC instructional
program student manual: MAINSAIL conversion (NPRDC Special Rep. 78-9).
San Diego: Navy Personnel Research and Development Center, April 1978

-
t

31

APPENDIX

LIST OF TECHNIQUES AND SKILLS IN TECHNIQUES

A-0

LIST OF TECHNIQUES AND SKILLS IN TECHNIQUES

Technique 1. Simple output-first programs.

1 Print numeric literal
2 Print string literal
5 Print numeric expression (operation on literals]
8 Print string expression [concatanation of literals]

Technique 2. Variables-assignment.

3 Print value of numeric variable
4 Print value of string variable
6 Print numeric expression [operation on variables]
7 Print numeric expression [operation on literals and variables]
9 Print string expression [concatanation of variables]
10 Print string expression [concatanation of variable and literal]
11 Assign value to a numeric variable [literal value]
12 Assign value to a string variable [literal value]

Technique 3. More complicated assignment.

34 Assign to a string variable [value of an expression]
35 Assign to a numeric variable [value of an expression]
69 Re-assignment of string variable (using its own value)
70 Re-assignment of numeric variable (using its own value)
82 Assign to numeric variable the value of another variable
83 Assign to string variable the value of another variable

Technique 4. More complicated output.'4

28 Multiple print [string literal, numeric variable]
29 Multiple print [string literal, numeric variable expression]
30 Multiple print [string literal, string variable]
74 Multiple print [string literal, string variable expression]

Technique 5. Interactive programs-INPUT from user-using DATA.

13 Assign numeric variable by -INPUT-
14 Assign string variable by -INPUT-
15 Assign numeric variable by -READ- and -DATA-
16 Assign string variable by -READ- and -DATA-
55 The REM statement

Technique 6. More complicated input.

17 Multiple values in -DATA- (all numeric]
18 Multiple values in -DATA- [all string]
19 Multiple values in -DATA- [mixed numeric and string]
22 Multiple assignment by -INPUT- [numeric variables]
23 Multiple assignment by -INPUT- [string variables]
24 Multiple assignment by -INPUT- [mixed numeric and string]
25 Multiple assignment by -READ- [numeric]
26 Multiple assignment by -READ- [string]
27 Multiple assignment by -READ- [mixed numeric and string]

A-1

I j 11j

N Technique 7. Branching-program flow.

36 Unconditional branch (-GOTO-)

37 Interrupt execution

* Technique 8. Boolean expressions.

38 Print Boolean expression [relation of string literals]
39 Print Boolean expression [relation of numeric literals]
40 Print Boolean expression [relation of numeric literal and variab 'le]
41 Print Boolean expression [relation of string literal and variable]
75 Boolean operator -AND-
76 Boolean operator -OR-
77 Boolean operator -NOT-

Technique 9. IF statements-conditional standards.

42 Conditional branch [compare numeric variable with numeric literal]
43 Conditional branch [compare numeric variable with expression]
46 Conditional branch [compare two numeric variables]
47 Conditional branch [compare string variable with string literal]
48 Conditional branch [compare two string variables]
59 The -STOP- statement

Technique 10. Hand-made loops--iteration.

44 Conditional branch [compare counter with numeric literal]
45 Conditional branch (compare counter with numeric variable]
49 Initialize counter variable with a literal value
50 Initialize counter variable with the value of a variable
53 Increment the value of a counter variable
54 Decrement the value of a counter variable

Technique 11. Using loops to accumulate.

51 Accumulate successive values into numeric variable
52 Accumulate successive values into string variable
71 Calculating complex expressions [numeric literal and variable]
78 Initialize numeric variable (not counter) to literal value
79 Initialize numeric variable (not counter) to value of a variable
80 Initialize string variable to literal value
81 Initialize string variable to the value of another variable

Technique 12. Using "dummy" value to signify end of data.

20 Dummy value in -DATA- statement [numeric]

21 Dummy value in -DATA- statement [string)

Technique 13. BASIC functionals.

56 The -INT- function
57 The -RND- function
58 The -SQR- function

A-2

- - -- W

Technique 14. FOR ... NEXT loops.

61 FOR . NEXT loops with literal as final value of index
62 FOR . NEXT loops with variable as final value of index
63 FOR . NEXT loops with positive step size other than 1
64 FOR . NEXT loops with negative step size

Technique 16. Arrays.

31 Assign element of string array variable by -INPUT-
32 Assign element of numeric array variable by -INPUT-
33 Assign element of numeric array variable [value is also a variable]
60 The -DIM- statement
65 String array using numeric variable as index
66 Print value of an element of a string array variable
67 Numeric array using numeric variable as index
68 Print value of an element of a numeric array variable

Technique 16. Nesting loops (one loop inside another).

72 Nesting loops
73 Subroutines (-GOSUB- and friends)

A-

I

I
I

'C

~

