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I. Introduction

The class of MIG/1 queueing models with a server who pertodically

goes on "vacation" is frequently offered as a tool to understand

congestion phenomenon in local area networks. A central or common server

appears to the user to disappear or "go on vacation" whenever the central

server performs background or service which is alternative relative to

the observer. This model applies as well to manufacturing processes

which exhibit uninterruptible maintenance tasks such as tool changes or

alterations of a flexible manufacturing system. Service processes

subject to periodic breakdowns and interruptions are further examples of

potential application.

Host vacation models of this type exhibit an interesting

decomposition property. The number of customers in the system in the

steady state can be interpreted as the sum of the state of a corre-

sponding model with no vacations and a second nonnegative discrete random

variable. In other words, the vacation model's limiting state distri-

bution can be found by convolving the distribution in the non-vacation

system with a second distribution. Sometimes one can interpret this

second variable as the number of arrivals during the residual of a

vacation period. A corresponding decomposition result occurs for the

waiting time distribution as well.

Gaver [1962] first noted this decomposition. A few of the

generalizations were presented in Cooper [1970], Levy and Yechiali (

[1975], Scholl and Kleinrock [1983], Fuhrmann [1984], and Fuhrmann and

Cooper [1985]. Cases of GIG/1 vacation models were developed in Doshi

[1985) and Keilson and Servi [1986). The latter cases are more difficult
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as size at the departure epochs are then not necessarily a Markov chain

as is typical of the H/G/l models. A complete survey of all of these

works may be found in Doshi [1986].

II. Definitions and Other Preliminaries

In this paper, we study the H/G/1 queue with server vacations whose

distributions can be considered state dependent. The flexibility

afforded by the introduction of state-dependent vacation distributions

allows us a more general approach than previous H/G/l vacation models,

which may provide a particularly useful perspective in their design and

control.

A major element in our work is the formulation of this problem as a

departure-point, state-dependent-service queue, in the sense of Harris

[1967], and as also discussed in subsequent papers, like Harris [1969],

.~and in Gross and Harris [1985). These models assume that customer

service-time distributions are indexed on the state of the system at

service initiation. The Harkovian character of the departire points of

the regular H/G/l is preserved, but the service times of successive

customers need no longer be identically distributed. We focus on the

stationary system-size probabilities, rather than the waiting times,

since the former come more naturally out of the imbedded chain and there

'." is the easy derivation of the one from the other in the H/G/. Note that

: the general-time probabilities are equal to the imbedded departure-point

probabilities here just as in the usual H/G/l.

In this work, then, we suppose that customers arrive to the system as

a Poisson process with rate A and have independent, identical service
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times with cumulative distribution function B(t). These service times

are also independent of the arrival process and of the vacation

lengths. The line discipline is assumed not to depend upon service

times, and vacations commence only at the completion of a service. In

other words, no customer's service is interrupted or preempted.

Let Vn(t) represent the cumulative distribution function for the

length of a vacation which begins immediately after a service completion

when there are n customers present. The specific quantity Vn(O) denotes

the probability that the server will not take a vacation given there are

n in the system. We define Vo(O) - 0, while Vn(O) could be non-zero for

any n > 0. We shall use vi to denote the mean length of a type I

vacation.

By taking Vo(t) - V(t) (0) and Vn(O) - 1 for all other n, we get

what is called the "exhaustive server-vacation policy," that is, the

server vacates for a random time only when all present customers have

been served and the system has gone idle. On the other hand, when Vi(t)

= Vj(t) - V(t) for all i and J, we have the classical "one-at-a-time"

server-vacation policy. All other "Markovian" server-vacation policies,

which depend only on the state of the system at a customer departure

point, can be represented by an appropriate choice of JVn(t) ). Further-

more, the state space could be supplemented to model even more complex

behavior with some kind of "finite" memory. We note that the Bernoulli

switch vacation discipline of Keilson and Servi [1986] is a special type

of "one-at-a-time" policy where V(t) has a jump at the origin.

Since the state-dependent vacation model is defined to permit the

server (with probability 1 - Vn(O)) to take leave after each service, our
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p model is a variation of the one-at-a-time vacation policy. Each service

of the classical M/G/l is replaced by a cycle which consists of one

service and one (possibly zero length) vacation, with an allowance for

repeated vacations when the server finds the queue still empty upon

return. The transition matrix A of the state-dependent-vacation Markov

chait imbedded at customer departure points has the structure

7 a 10  al0  a20  a30  • "

a01  a11  a21  a31

0 a0 2  a1 2  a2 2  . •

A 0 0 a03  a13  •

For j > 0,

aij f e-t((t)it) Pr{i arrivals occur during a type j cycle}.

where B*Vj denotes the distribution which is the convolution of B(t) and

Vj(t).

A unique cycle begins from a completely empty system. We have

denoted this as a type 0 (zero) cycle. When the server begins this type

of vacation, there are no customers present and it is conceivable that he

might return before any have arrived. In that case, it is generally

assumed that he takes another vacation which follows the same probability

distribution, namely VO(t). Because there are no departures when this
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occurs, the imbedded Harkov chain is unaffected. However, the aio

probabilities are implicitly conditioned on the fact that at least one

arrival has occurred during the vacation. Actually, aio is the

probability that (i + 1) arrivals occur during a cycle, given at least

one arrival occurs during the vacation period. Otherwise, the server

would not have terminated his vacation. Thus

f e-t(Xt) i+ L d[B*Vo](t ) -f etdVo0)M f e-t (t)i+l dB(t)
a -o (i +1)! o o (i +l)!

io
1 - f e-tdV 0 (t) (1)

The first term in the numerator of (1) measures the likelihood of (i + 1)

arrivals during a cycle. The second term precludes the possibility that

all the arrivals could occur during a fictitious sevice time. Finally,

the denominator guarantees that at least one arrival has occurred during

the vacation.

III. Central Results

In the following, we represent the stationary distribution of the

H/G/l state-dependent vacation queue by the vector w - (wo, 0 w 2'

and its generating function as 1(z). We shall write the generating

function associated with the row probability vectors of the transition

matrix A as

K I(z )  a ji ajzJ

J.0 iz
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g The expected value ( JaJi) Of the 4th row distribution is defined

as P1, 1 0,1,2,..**. It is then easy to show that

Pi E[arrivals during a type i cycle]

X x( *+ (i > o)

and

o = P(O)

where

P(O) f e-ItdV (t)
0

is the conditional probability of no arrivals during an arbitrary type 0

vacation. We shall retain the usual convention for p - X/u as the

j traffic intensity of the M/G/l without vacation.

For later reference, we note the Pollaczek-Khintchine formula for the

steady-state system-size generating function

) i(1 - z) K(z)H(z) 0

K(z) - z

Crabill [1968] demonstrated that a sufficient condition for

ergodicity of the H/G/l queue with state-dependent service times is

lim sup {pil < 1. In this application this is equivalent to requiring
i

that lim sup {: + vi}} < 1, or limsup IX V} < 1 - p. In other words,
i

only a finite number of the state-dependent vacations can have a mean

greater than (1 - p)/X.

A necessary condition for ergodicity is the somewhat weaker

requirement that lim inf 1P.1< 1. This follows from Theorem 4 of

i
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Sennott et al. [1983] when you recognize that Pi - 1 is the mean "drift"

of the Markov chain from state i and you reason from contraposition. In

words, for every state of the system i, an infinite number of states

j ) i must have the property that vj < (1 - p)/X.

v These conditions become important when there is operator discretion,

for example, to alter vacations with state size, in an attempt to use the

server effectively elsewhere, as in a local area network. But one cannot

let the server stay away very long when system sizes are growing, for

then ergodicity might be violated.

Now, under the assumption that a stationary distribution for the

system size does indeed exist, a standard generating function argument

(see Harris [1967]) leads to the relation

H(z) 0 K 0(z) + V lizi-1Ci(z). (2)

(For a discussion of the derivation of the system-size probabilities in

an analogous H/G/l model, consult pages 289-290 of Gross and Harris4 .

V. [1985].)

The nert observation is so important that we label it here as a

theorem.

Theorem: If the probability generating functions, (Ki(z)1, for the rows

(i ) 0) of the departure-point Markov chain of a state-dependent M/G/1

queue can each be expressed as a product of two generating functions, one

of which is common to all rows, such that Ki(z) - K(z) e Di(z), and if

there exists some j such that Di(z) - D(z) for all i ; J, then the

stationary system size decomposes into the sum of the stationary system

-*IL~



size for a non-vacation variant of H/G/l with a second discrete non-

negative random variable.

Proof: Since Ki(z) -K(z) - Di(z) for all i, it follows from (2) that

H1(z) - 0K(z) D (z) + Iizi -'K(z)D (z)

+ ~z i K(z)D(z)
i-i

K(z) [w D(z) + . - z

+ Dz) 11z) :I i)]
Combining and simplifying gives

[z -D(z)K(z)]n(z)

-K(z)[w zD 0(z) + 7FiJDfz

-D(z) 7 izi]
i-o
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or K(z) w [zD0 (z) - D(z)] + J 1z [D ( ) D( )]j

11(z) -
-I.

z - D(z) K(z)

K(z)(z - 1) io

z - D(z)K(z)

1 0 [zD0(z) - D(z)] + i zii[Di(z) - D(z)]
x 1 (3)

z-1

From (2), the first term of (3) is the generating function of a

state-dependent M/G/l where v is the equilibrium empty probability and

K(z) is the generating function for the top row of the imbedded matrix,

while the product D(z)K(z) is the generating function for all other

rows. The second factor of (3) is the generating function for another

counting process whose precise interpretation is more easily seen in a

vacation format, as in the following.

Q.E.D.

Two special cases for (3) are of special interest. For the first

special case (related to one-at-a-time service), let Di(z) - D(z) for all

i > O. Then

--z K(z)(z - 0)i°

z - D(z)K(z)

1 [zD0 (Z) - D(z)]
Sz-

0
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gThe second (related to exhaustive service) requires D(z) - 1. Then

K(z)(z - 1) vo 0 o [zDo(z) - ij
11(z)-

z K(z) I z-1
o

To apply the theorem to.the general, state-dependent vacation model,

we first define Ci(z) to be the probability generating function for the

number of arrivals during a type i (>0) vacation, with Ci(z) - C(z) for

all i ; j and Co(z) defined as the (conditional) generating function for

arrivals during the "final" vacation after idleness. In addition, let

Fo(z) be the (unconditional) generating function for the number of

arrivals during an arbitrary type 0 vacation. Since, for I > 0, Ki(z) is

the generating function of the number of arrivals during a cycle of type

i created by the sum of a service time and a type of i vacation, it

follows that

Ki(z) - K(z) - Ci(z).
A )

For the case 1 0, we observe from (1) that

z[1 - P(o)]Ko(Z) - z[1 - P(O)] : aiozi

&irno
a e-t (At)i+lzi+ld[B*Vo](t)

i=O o (i + 1)1

S- t -(t) i+l zi+dB(t)
P i-o 0o (i + 1)1

SK(z)F0 (z) - P(O)K(z)

m. - K(z)[Fo(Z) - P(0)1.



Thus

K () F(Z) - P(O) Kz
0 Z1l - P(0)]

But it is easy to show that

F 0(z) - P(0)
C o(z) - 0 PO

and therefore

K 0zW - C.2.. K(z).
z

Thus we see that all IK i(z)} can be written as products, and thus

C(Z) (i )J

D i(z) : i(Z) (0< i< J)) (z) (i-O0)
z

(Note that the classical one-at-a-time discipline has Ci(z) - Cz) for

all i > 0 and F0(z) - C(z), while the exhaustive discipline requires that

Ci(z) - 1 for i > 0.)

The application of the theorem and Equation (3) for the state-

15 dependent vacation model then gives our fundamental decomposition result:

K(z)(z 0 )
zlz - C(z)K(z)

I [C0 zw - C(z)J + I 1 i [C i(z) - CWz)
x1  0 - (4)

1! - -1
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where i is the stationary probability that the non-vacation H/G/i is

empty.

Clearly, the state-dependent model can be specialized to either the

usual one-at-a-time or exhaustive disciplines. As noted, the one-at-a-

time approach has Ci(z) = C(z) for all i > 0. Thus (4) simplfies to

K(z)(z - 1) to
11(z) - z - C(z)K(z)

" I o(Z) - P(O)

xi '01 7 -P(O) -C(z)]

M0 z-1

The first factor of this product corresponds to a simple state-dependent

H/G/l as in Equation (3). The second factor can be re-written as

Sw °  P(O) 1- C(z)
t0 - • [because F (z) - C(z)].

T 0 1 - P(O) 1 - 0

Then one can recognize the probability generating function for the number

of arrivals during a residual vacation, namely,

1- C(z)

72 v(1-z)

When Ci(z) - 1 for i > 0, we get the exhaustive discipline. Then,

(4) simplifies to

K(z)(z - 1) w F (z) -1
11(z)- 0 0 0

z -K(z) 0 (1 - P(0)(z -1)

I
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K(z)(z - l)w o Co(z) - 1

z - K(z) 1°  z-

Now this Is precisely the expected decomposition, as, for example, found

in Cooper [1970]. The first term is the exact P-K result for the M/G/i,

while the second term is the probability generating function for the

number of arrivals in a residual "last" vacation time before the start of

the busy period.

A more complete interpretation of the decomposition in Equation (4)

requires a careful analysis. The first factor is again the probability

generating function for simple state-dependent M/G/l whose top row has

, :generating function K(z), while all others have generating function C(z)
K(z). This product function results from an effective service time equal

to the sum of the actual service time and the vacation time.

The second factor of (4) can be rewritten as

I ,iz iCi(z) I iz iC(Z)

(5)i=O z - 1 i=O z - I

since Ci(z) - C(z) for all i > J. This is the difference between two

probability generating functions. The first term of (5) is for the

number of customers the server would see in queue at the very beginning

of a fresh service just after returning from a state-dependent

vacation. This is so because Ci(z)/(z - 1) is the generating function

for the number of arrivals during a residual vacation of type i, that is,

during the time left after the first arrival in vacation. (Note that

Co(z) - C(z) implies that Co(z) - Fo(z), which is true if and only if

C(z) B 1 and there are no vacations.)
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3 Now, the second term of (5) is the generating function product

R(z) * C(z)/(z - 1), which corresponds to the steady-state departure size

plus the number of arrivals during a residual vacation taken according to

the asymptotic distribution V(t), that is, as if the state dependence had

not occurred. This corresponds to the number in queue at the start of a

service in a system with no state dependence. Thus we see that the

difference of Equation (5) is a measure of the effect of the state

dependence.

IV. Some Sample Problems and Comments on Computations

A few particular examples may illustrate the theoretical results and

the necessary computations. First, in the non-state-dependent "one-at-a-

time" case with exponential service and vacations with rates u and v,

respectively, we have from Equation (4) that

Uv(1 - z)w°
zv - z[P + A(1 - z)][v + A(1 - z)]

v ( l - z ) 0°

To jPv - X(P + v +X)z + X2z

To get w we recognize that A(1) 1 1 and thus

or v - X( + v)

Pv - X(P +) A
I - -1----0 liv ja y

I
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3 Therefore
Piv - )(i + v)

U lAY -v )(i + V + A)z + A 2z2

From this we can compute the mean system size as

Lv -1() X- +VY
Ui v

Now if W*(s) denotes the Laplace transform of the sojourn

distribution, we know that

liv -A(U + v)

a +(61 + v- )s + Uv - (U+ V)

j Let a, and 82 (*s1) be the denominator's roots. Then the transform has

the product form

W*(s) - - X(iz + V)

(s -1( - a-2

lv-A( + V) 11

1 - 2 1l 2

So the sojourn-time density is

vv) - (ia + V) a t a52t)

81 2

Suppose P' 1/2, v -1, and X - 1/4. Then It follows that w - 1/4

and L - 5/2. The appropriate quadratic is s2 + 59/ + 1/8, with roots

a- (v/17 - 5)/8 - -0.109612 and s 2 - -17 - 5)/8 -- 1.140388, so that
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1 - 82 - 17/4. Hence the system waiting-time distribution is the

simple generalized Erlang given by

w(t) - 1 (ealt - es2t) - 0.121268 (e-0 109612t e-1.14 3884 t

As a second example, consider the particular state-dependent case for

which the vacation is different (say at rate vo ) when the server leaves

from an empty system. As before, suppose the service and both vacation

distributions are exponential. Equation (4) leads to the slightly more

complex generating function expression

V0 [Vv - (Voz - v)[ v - )(P + v)]

Iv + XA( - z)][vvo - X(vo - v))[Rv - X( + v + X)z + X 2z )]

00Now let p=1/2, v - 1, X - 1/4 and v0  1/2. Then

11(z) - 4(6 - z)

5(24 - 29z + lOz )

We see that wo  1/5 and L - 14/5. In contrast to the first example, the

longer vacation in the "zero case" decreases the proportion of time that

the server leaves an empty system and increases the average system size

from 2.5 to 2.8. Here, the waiting-time transform is

2s/5 + 1/2W*(u)- (s + 1/2)(s - s)(s -s2)

where sI = (i 7 - 5)/8 and a2= l - 5)/8.
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A partial fraction expansion is again available to give

W*(s)m A + B + C

where as+1/2 a 1

A in- Z6- , 1 1/ 1.133578, and C 51 - l(- 0.066422.

Zi Finally,

w(t) - l.133578e-0h109612t + 0.06642e-11 4O 388t

which is seen to be a three-term generalized Erlang distribution. As

expected, we note that the first two exponential scale parameters are the

* same as encountered in the previous example.

In the exhaustive-service version of these problems, the generating

function is

K(z)(z - l)zo C0(z) - 1

wihz-K(z) z -1

K(z) z+(1-)

and
v z

C (z) -0

Thus

11(z) UT0 (v 0 + A

11(z)- - z)[vo +-x(i -or~

Since

U(P + A):_
0



18

3 it follows that

*1 - _)V__ - ___v°

S (v° + A) and f(z) = m 0 • 0 + ( )

The first factor of this is proportional to the generating function of an

ordinary M/G/l, while the second is [Co(Z)/Z].

For the waiting-time distribution of this exhaustive-service problem,

the decomposition is immediate, giving

W*(s).f(X!) A V0
p-A+s v +s

and

w(t) = vj - +A -v

i - ;0 :je(I - )t e- o

since vo n 1/2, A - 1/4, and p - 1/2.

IThese sample computations were particularly easy because the
probability generating functions were low-order rational functions

(specifically, with quadratic and cubic denominators). In the general

case, it is apparent from Equation (4) that if the service and vacation

distributions lead to rational functions (with possibly complex poles)

for K(z) and the ICI(z)1, the system-size generating function 11(z) will

also be rational. Clearly, the rationality of the service distribution

and the vacation distributions is sufficient for this to occur. The

1order of the denominator polynomial of 1(z) relates directly to the
degrees of the denominators in K(z) and the {Ci(z)I. Likewise, the

U
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a sojourn time in syste has a rational transform with order no greater

than the degree of the denominator polynomial in 1(z). Similar

statements can be made to allow the system waiting times to have phase-

type distributions. The closure of phase types under convolutions and

finite mixtures (as documented in Neuts 1981)) gives a totally parallel

series of sufficient conditions for w(t) to be phase.

V. Concluding Remarks

The central insight of this study is that the state-dependent model

is an efficient way to consolidate server vacation models with

exhaustive, "one-at-a-time", Bernoulli, and related vacation disciplines

into a single comprehensive model. In fact, the state-dependent M/G/l

server-vacation models are a subclass of the state-dependent-service

M/G/i models. Hence classical Markov-chain analyses apply With only a

moderate amount of additional computational effort.

Possible future extensions of this work include an examination of the

existence and computation of an optimal control policy selected from a

menu of vacation policies under some cost structure. Proper formulation

of the vacation model as a state-dependent-service M/G/l is expected to

lead to conditions which are necessary for the existence and calculation

of a vacation policy which is a function of the queue-length distribution

at the imbedded departure points. The computation of optimal policies

for non-state-dependent M/G/l queues has already been addressed in this

open literature.

IM
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