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1. Introduction

The Harkovian "memoryless" property of the exponential

probability distribution simplifies many conditional probability

calculations. Exponential functions are also the solution to many

natural elementary differential equations which model a broad range

of applications. As such, the exponential distribution is a

"workhorse" of applied probability.

A first attempt to generalize the exponential family was

undertaken by Erlang and extended by Jensen [1954]. Erlang

considered a series of independent exponential distributions all

Owith the same parameter. Then Jensen defined the generalized

Erlang (GE) family of probability distribution functions, which

0have the interpretation that the modeled process consists of

successive independent stages each having an exponential

i distribution. The resultant mathematical operation is seen to be a

convolution since the duration is distributed as the sum of

several, not necessarily identical, exponential random variables.

*The GE family increased modeling flexibility, but has the

restrictive property that all GEs have a coefficient of variation

less than one. To create probability distribution functions whose

coefficient of variation exceeds unity, one considers mixtures in

contrast to convolutions of exponential distributions. This leads

to the hyperexponential family of probability distribution

functions.

Schassberger [1970] showed that a sequence of mixed Erlangs

can be found which will converge weakly (that is, it converges at

every point of continuity) to any arbitrary distribution

function. In the sense of pointwise convergence at points of

continuity, we can then say that the class of mixed generalized K
Erlangs (MGEs) is dense in the class of all distribution

functions. The denseness of this family gives an indication of the E
theoretical comprehensiveness of the MGEs as a practical modeling

tool.

In parallel with the above developments, computational

techniques related to transform methods from complex analysis have

psi'
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emerged. While the interpretation of transform methods is not

always clear, the methods frequently reduce computational effort.

The Laplace transform of the exponential is, of course, the

reciprocal of a first-degree polynomial. Smith [1953] considered

the family of distributions whose transforms are the reciprocal of

an nth degree polynomial (Kn). This is a natural extension of the

generalized Erlang in transform space. It further admits of the

interpretation as successive exponential stages in which the

exponential parameters are possibly complex.

The inverse polynomial approach was extended to the rational

transform (Ru) case by Cox [1955]. He showed that the formal

solution methods are still valid, even though the intermediate

interpretation is a bit awkward. The exponential stages may have

complex valued parameters and the "probabilities" associated with

the mixture interpretation may be negative. It is worth observing

that the set of distribution functions with rational transforms is

dense in the set of distribution functions.

3 While the method of rational transforms may lead to a

distribution function which is as close as desired to an arbitrary

distribution function, the degree of the denominator polynomial may

be quite high. From a computational viewpoint, determining all the

roots to a reasonable degree of accuracy may not be possible.

Hence, alternative methods with reduced computational complexity

are needed.

Neuts [e.g., 1981] examined the phase-type (PH) class of

distribution functions, defined as the times until absorption in a

finite-dimensional Markov Chain. While this family of

distributions is not as comprehensive as the Rn family, it is still

dense in the space of all distribution functions. It also has the

computational advantage that matrix-vector procedures in the real

domain are used in lieu of transform methods.

The generalized hyperexponential (GH) family of probability

distribution functions is examined in detail in this paper. The GH

family has the same computational advantage over transform methods

that the PH family has, namely, avoidance of complex arithmetic.
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We will see later that it also has some other advantages over PH

representations. The GH family of probability distribution

functions is partially motivated as an extension of the notion of a

mixture of exponentials, where we, as Cox did earlier, permit the

intermediate mixing "probabilities" to have negative values.

Botta and Harris [1986] demonstrated the denseness of the Gi

family in the class of all distribution functions. The present

paper addresses several additional features of the GH family which

recommend it as a modeling distribution with high computational

tractability. A major feature of the GH distribution function is

its uniqueness of representation, which is discussed in detail in

the latter part of Section 2. Section 2 also provides a complete

picture of the position of the GH family relative to the other

families mentioned. Six closure properties of the family which

relate to the mathematical operations frequently performed in

applied probability are discussed in Section 3. A final section

illustrates some characteristics of the GH family which facilitate

numerical inversion for the determination of its quantiles. In

addition, the related problem of random variable creation is

addressed, using a special acceptance-rejection algorithm.

1,
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2. Relations Among Classes of Distribution Functions

Families of probability distribution functions that find wide

use as approximations to more general CDFs are defined and related

to one another in this section. The more obvious relations are

mentioned with the definitions, while others are presented in

following sections. Several of the definitions below are stated in

terms of the one-sided Laplace-Stieltjes transform of a CDF, F.

This transform, F*, is defined as

F*(s) f e-s t dF(t),
0

which is equivalent to the ordinary one-sided Laplace transform of

a PDF, f(t) - dF/dt, whenever F(t) is absolutely continuous.

* 2.1 Definitions

K Class
n

Smith [1953] defined the class Kn to be those distribution

Ifunctions whose Laplace transforms are the reciprocals of
polynomials of the nth degree. Not all reciprocal polynomials are

transforms of CDFs. For example, the real part of each polynomial

root must be negative, and while the roots may be complex, they

must occur in conjugate pairs since the corresponding CDF is

real. There are also additional constraints that are not so

obvious. Lukacs and Szasz [1951] have shown that one of the roots

with greatest real part must be real. Therefore, the simplest

member of Kn having complex roots is of the form
IN2 2

a(a + b2)
F*(s) -2 2(s + a)[(s + a)2 + b2

corresponding 
to the 

PDF

f(t) = ab-2 2  + b)e-at(1 - cos bt) (a > 0). (2.1.1)

The exponential distribution belongs to Kn . Since the Laplace

transform of the distribution of a sum of independent random
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variables is the product of the Laplace transforms of their

individual distributions, the generalized Erlang CDFs corresponding

to a sum of independent, exponentially distributed random variables

with distinct parameters are also in Kn. These generalized

Erlangs, denoted GE, have transforms of the form

n XT7- 10 > 0)
i-I s + i

where Xi/(s + Xi) is the transform of an exponential CDF having

mean 1/Xi . If all the random variables are identically

distributed, the resulting distribution is the (simple) Erlang of

degree n, En(X), and its Laplace transform is just An/(s + X)n.

Therefore, we see that En(M) C Kn and

GEC Kn • (2.1.2)

R Classn

While Kn contains GE, it does not contain mixtures of GE CDFs,

i.e., distributions of the form EaiFi with ai > 0, Zai - 1 and Fi e

GE. Suppose, for example, each Fi is exponential. By the

linearity of the Laplace transform, the transform of EaiFi is

n i

i-i s +A

When combined into a single fraction, a quotient of two polynomials

results, the degree of the denominator being n and the degree of

the numerator n - 1. This motivates the definition of Rn as the

class of distributions whose transforms are rational. The index n

is the degree of the denominator polynomial. Hence, the class of

mixed generalized Erlang distributions, denoted by MGE, is

contained in Rn . Cox [1955] points out that both the convolution

and the mixture of any pair of distributions in Rn yields another

distribution with rational Laplace transform. Furthermore, all

distributions in Rn are continuous except for possible atoms at the

origir ind the corresponding density function is positive every-

where in (0,-) except at isolated points. Finally, one sees that
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KnC Rn (2.1.3)

PH Class

Neuts [1975, 1981] has popularized a class of distribution

functions known as "phase" type, or PH, distributions. A CDF is of

phase type if it can be interpreted as the time until absorption in

a finite-state continuous-time Markov chain. That is, F is phase

type if it can be written as

F(t) - I - a ° eQt . e (2.1.4)

where Q is the generator matrix and has the form

-ql q -q* ... l

21 q22* q2n (qli > Oi qij > 0, i * J;
S• q: _2** -qii + j - qij 4 0, i - 1,2..,n).

n1 n2 nn jiJ*i

This generator matrix corresponds to an (n + l)-state Markov chain

with absorbing state (n + 1). The vector a = (1 1 0,12 ,...,cn) is

the vector of initial state probabilities at t - 0, and the vector

e is an n-dimensional column vector of all ones. The entries, qij,

in the generator matrix represent the instantaneous rate of the

transition from state i to state J. Each component of eQt * e

corresponds to a phase-type distribution that results from starting

in a particular state. Therefore, (2.1.4) can be interpreted as a

. mixture of phase-type distributions, that is,
F(t) =  aj[l - (eQt * e)iJ .

Two examples of distribution functions with PH representations
follow.

E ample 2.1.1 The GE distribution of order n with parameters

Xl,X2,*.,X n has the representation a - (1,0,0,...,0) and

X x1 o*.....* 0 1
0 _X2 X2....... 0iQ -I : :
0 0 . n-1  Ani

0 0 0 -Xn i
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Example 2.1.2 The mixed exponential distribution

U -'XtF(t) - t a(1 - e- lt

has the representation a (ctl,a2,.--,q n ) and a diagonal Q matrix

with elements -Xi .

Notice that PH representations are not unique. That is, there

may exist many different generator matrices of different orders

0, that lead to the same CDF. (We provide an example later in Section

2.5.) The problem of finding minimal representations of PH

Ndistributions (that is, where the order of Q is as small as

possible) is an open question. Neuts [1981] did show that the
'-V class of PH distributions is closed under convolution and finite

mixtures but not under infinite mixtures. It follows that MGE

distributions are phase type, i.e.,

MGEC PH.

The representation (2.1.4) of a PH distribution was obtained

from the distribution functions, v(t), of the individual states of

the underlying Markov chain which are the solutions of

*dv(t)
- v(t)-Q. (2.1.5)dt

The solution to this equation is v(t) - v(O)eQt - a eQt. Taking

the Laplace transform of (2.1.5) yields

sV*(s) - v(O) V*(s).Q

*- so that

V*(s).(sI - Q) v(O) a

or

V*(s) - a (sI -Q)-

Thus (sI - Q)-1 is the Laplace transform of eQt, and each term in

the inverse matrix of sI - Q is a rational expression.
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Multiplication by a yields rational expressions for each component

of V*(s). Therefore, the probability distribution of each state

belongs to Rn as does the distribution of the time until

absorption. Therefore, we see that

PHC Rn • (2.1.6)

Phase-type distributions exist which possess Laplace

" transforms that are not reciprocal polynomials, so that PH Kn.

But it is not possible for every Kn distribution to have a PH

representation. Corollary 2.2.1 in Neuts [1981] proves that any

non-trivial PH distribution has a corresponding density function

that is strictly positive for all t > 0. The PDF given in (2.1.1)

has a reciprocal-polynomial Laplace transform but the density

function is zero wherever cos bt = I. Therefore, the corresponding

distribution function is not in PH and Kn PH which implies that

Rn PH and that PH is thus a proper subset of Rn . Observe that,

for an arbitrary CDF, there is no easy way to determine if it is in

PH. One must search for a suitable generator matrix and set of

*initial conditions that will yield the desired distribution.

GH Class

The generalized hyperexponential distributions are CDFs of the

form

1 - n aie-Xit

n
with XI and ai real, Xi > 0 and ai = 1. Unlike the usual

hyperexponential distribution, we do not require that each ai be

nonnegative. This added freedom makes the GH distributions

extremely versatile. Indeed, Botta and Harris [19861 derived the

critizal characterization that any CDF on [0,-) can be approximated

by a member of GH as closely as desired with respect to an

appropriate metric.

The Laplace transform of a GH distribution is

-- ~~~~~~~......................--.. ... - -V.- ...
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n ai
~i-i s+A is+

so one notes that

GH C Rn "n (2.1.7

But not all functions of the form 1- ai-e it with Xi > 0 and
i-I.

ai = 1 are GH distributions. We do know, for example, that

n
the CDF's monotonicity requires that I aiXi > 0. Also, assuming

~i-I

An to be the smallest of the Xi, the corresponding coefficient an

must be positive to insure proper asymptotic behavior as t + m.

Bartholomew [1969] derived a number of sufficient conditions for a

linear combination of exponentials to be a GH distribution, but no

set of conditions that are both necessary and sufficient is

known. Dehon and Latouche [1982] have recently characterized the

class of GH distributions by deriving a parametric equation of the

boundary of the convex region constituting GH for the case n - 3.

The geometric representation is obtained by choosing a set of basis

vectors from the class of all GH distributions composed of linear

combinations of three exponentials. It does not appear that the

boundary equation can be easily used to determine if a candidate

exponential sum is, in fact, in GH. For sums of more than three

exponential terms, the boundary equation could be determined in

similar fashion but would be very involved and still not of much

practical use in determining membership in GH.

We next develop some additional relations among the classes

Kn , Rn, GE, MGE, PH, and GH.

2.2 GH and PH

From the preceding, we know that all PH distributions are in

Rn . From the discussion leading up to (2.1.6), it is clear that if

% the generator matrix has distinct real eigenvalues, then the

corresponding PH distribution also will be in GH. But if the

denominator polynomial has repeated or complex roots, the

.N~li ,l' ~ t - *-*,*' ,*'t-'_".. - -,".....: " -. ,V- ." *J, - - >,- - -. ,,.\, - ..
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corresponding distribution will not belong to GH. The following

example displays such a PH distribution.

Example 2.2.1 Consider the 3x3 generator matrix

Q= 1 -2 1.

1 0 -3

The eigenvalues of Q, which are equal to the roots of the

denominator polynomial of the Laplace transform of eQt, are

X1 " -.2307 ; 12,X 3 = -2.8846 ± .5897 i

where i - /-. The resulting PH distribution corresponding to an

initial state vector a - (1,0,0) is

F(t) -1 - 1.1729 e
- 23 0 7 t

- [.1729 cos .5897t + .3868 sin .5897t] e- 2 .g g 46 t .

Because of the trigonometric terms, F(t) is clearly not in GH so

PH tGH

But not every GH distribution has a PH representation. As

mentioned earlier, the density function corresponding to any PH

distribution is strictly positive for all t > 0. The following
.4, example exhibits a GH distribution that violates this condition.

Example 2.2.2 Consider the GH distribution defined by

F(t) - 1 - (4e- t -6e-2t + 3e-3t )

with corresponding density

f(t) - F(t) 4e-t - 12e - 2t + 9e- 3t

.4k
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It can easily be shown that f(t) - 0 for t - in (3/2) and that f(t)

> 0 for all other values of t. Therefore, F(t) is not PH and

GH PH

2.3 MGE and GH

Recall that the generalized Erlang (GE) distributions have

Laplace transforms n A
T7 +
i-l

where the X, are distinct. Using a partial fraction expansion,

this transform can be written as

n Ai

where the Ai are real. Any mixture of such distributions has a

transform of the same form. So, any mixed generalized Erlang

distribution is in GH and

MGE C Gil (2.3.1)

Based upon results in Dehon and Latouche [1982], we next
* demonstrate the existence of GH distributions that cannot be

represented as MGEs of the same order. They show that any GE

distribution constructed from a subset of exponential

distributions, IF 1, can be expressed as a mixture of the GE

distributions Fl, F12 ,*.*, FI2 ...n where F1 2 ...i is the convolution

of the first i exponential distributions from {Fj}. Each such

distribution function can be written as

J kF (t)- (k A) Fj(t) (t > 0), (2.3.2)
12seei I k-7 (A

k*j

' where F(t) - e-jt and it has been assumed without loss of

generality that X 1 > X2 >0'> X n" Since the {A } are constants,

(2.3.2) is in the form of a GH distribution whose coefficients are

determined by the I{X}, which agrees with (2.3.1). In order for a

~ W a
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GH distribution, F(t) - i - i a te it, to have a MGE

representation, there must exist a set of nonnegative numbers [bi,

i - 1,2,...,n} which sum to one and satisfy the equation

n It n
1- I aie i - I biF 12..(t) . (2.3.3)t-1 i-1

By substituting (2.3.2) into (2.3.3), collecting like terms and

then equating coefficients of each exponential term on the left and

right sides of (2.3.3), the following triangular system of linear

equations relating the Jail and 1bl results:

a-. b + b~

x -

k-2 j-2 j 1 Xi
(2.3.4)

n k
a i b k TJ Xj- (i-2,3, .. ,n).

k-i k 1 j i
J~i

This system of equations is readily inverted to yield the {b1j in

terms of the Jail as follows:

n )k n

k- 1 -1k-i

i-l (2.3.5)FT~-
"b I  ' k  Jl J- (i-2,3,...,n).

J-1

For the case n - 3, the above system of equations becomes

A' 2 X2 X3

a, b + X2 X1 b 2 + 2 3 bN 12 2 (12 - 11)(13 - 1I) b3'
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a82 Ix 1x __b_2_+_(X_1_1_3 b 3(2.3.6)

83in (A3 - 1)(X3 - X2) b

and thus

b X A1 -A 3(X - X3)2 -1 - 2  + -- --- a3  . (2.3.7)

1 12

From (2.3.7) b3 is guaranteed to be nonnegative since 83 > 0 f or

F(t) to be a distribution function and the Ai are positive with

X1> ) *2 .. > X.. The nonnegativity of b follows from noting

dt

Since F'(t) is the PDF corresponding to F(t), it must be

nonnegative for all t. Requiring that b2 )0 leads to the

condition

a~~~ ~ > l a ( -3)

82 1 2~--y3 23

The next example demonstrates that there exist GH

distributions for which condition (2.3.8) is violated.

Example 2.3.1 Consider the GH CDF

F(t) -1 (6e-4t -13e-
3 t + 8e-2t).

Here

and 8-6, a2 -13,8a3 8
Aand3 -2
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Therefore
X2(X1- X 3) 32

Since a2 < -32/3, we see that (2.3.8) is violated and thus that no

HGE representation exists for F(t). This example establishes that

G ¢ MGE,

and that the class of HGE distributions is thus a proper subset of

the class of GH distributions. However, it is sometimes possible

to obtain a HOE representation by embedding the problem in a

higher-order space even when there is no valid HOE representation

in the original space. An illustration is provided later in

Section 2.5 as Example 2.5.1.

2.4 MGE and PH

We established in Section 2.1 that all MGE distributions are

phase type. Since PH distributions may include trigonometric

terms, it is clear that the MGE distributions are a proper subset

of PH. But what if the PH generator matrix is allowed to have only

real eigenvalues? Is the resulting subclass of PH distributions

frJ contained in MGE? The answer is no. We obtain this result by way

of a counterexample.

Example 2.4.1 The PH distribution given by

F(t) - 1 - (1.293 e- 4 "846t - .343 e- 4 "1 95 t + .050 e-.959t),

(2.4.1)

was obtained from the generator matrix

4 -4 0 (2.4.2)

0 1 -1

with a - (1,0,0). As before, equating F(t) to b1Fl(t) + b2F12(t) +

b3F12 3(t) and solving for the tbil yields the result that b2
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-.0369. Since each bi must be nonnegative, we do not have a valid

MGE representation. Thus, PH distributions with real roots do not

necessarily belong to MGE. In other words,

PH (real roots) I MGE

and MGE is a proper subset of PH (real roots).

2.5 Uniqueness of Representation

For statistical applications, an important property of

mixture-type CDFs is uniqueness of representation, or

identifiability. Yakowitz and Spragins [1968) define the

identifiability of finite mixtures as follows. If {FIj is a

collection of CDFs, then the class of finite mixtures of

the {Fif is said to be identifiable if the convex hull of

{Fi} has the property that

N M
" iF cF i - ciFii-I i-I

where ci > 0, 1 ci M 1, implies N M H and that for each

i (1 i 4 N) there is some j (1 j 4 N) such that ci

cj and F, M FJ. A necessary and sufficient condition for

identifiability is that the class {Fi} be a linearly independent

set over the field of real numbers. This follows from the

uniqueness of representation property of a basis in a vector space.

Since any collection of distinct exponentials is linearly

independent, the class of finite mixtures of exponential CDFs is

identifiable. A broader concept of identifiability for generalized

mixtures also applies when the underlying family of CDFs is

exponential. A generalized mixture is one where the mixing

parameters sum to unity but can have any real values; the GH

distributions are of this form. Again, the uniqueness of the

representation of vectors with respect to a basis for the vector

space implies that GH distributions have unique representations as

linear combinations of exponentials.

I



Importantly, the other families of CDFs considered in this

work do not share the uniqueness of representation property with

the GH distributions. For example, consider the following two

distinct phase-type representations:

Q= 1 -4 2 a - (0,1/2,1/2)Q -3 1 1 ]
and

Q 0 -5 -2 (2/3,1/3)

Clearly the two representations are different and are not of the

same order. However, each results in the same CDF, namely,

F(t) - 1 - (2/3) e- 2t - (1/3) e-St. The second representation is

of minimal order since the CDF is a mixture of two exponentials.

Mixed generalized Erlang distributions also permit multiple

representations. From the notation of Dehon and Latouche [1982] we

may represent the CDF of the sum of n independent random variables,

each exponentially distributed with parameter Xi (i - 1,2,..,n),

by F1 2 .*n* Now consider the two CDFs defined by

F(t) - (1/3) F1 + (2/3) F13
~and

G(t) - (1/3) F1 + (4/9) F12 + (2/9) F123

OJ That these two CDFs are, in fact, the same can be seen by express-

ing each as a linear combination of the underlying exponential

distributions. The following unique representation is obtained:

F(t) = G(t) - (-1/3) F1 + (4/3) F3

As in the PH example, one of the MGE representations is not of

minimal order.

I



17

For most applications, such as curve fitting, non-uniqueness

of representation is a disadvantage. But obtaining a

representation of non-minimal order sometimes may be useful. For

example, suppose we have a GH distribution that does not have an

HGE representation of minimal order. It may be possible to embed

the distribution in a higher-order space in such a way that an HGE

representation is obtained. We illustrate the procedure via an

example.

KExample 2.5.1 Consider the GH distribution

13 -7t 77 -4t 35 -3t 1 -2tF(t) - 1 e (- -- + e + 2L -2e

15e 7, 4 -45

Here - 7,2 4, A3 3, A4  2. Dehon and Latouche [1982]

established that an MGE representation exists if, and only if,

there exists a set of coefficients 1bi, i - 1,2,3,41 such that

F(t) - blFl + b2F12 + b3F12 3 + b4F123 4

CA with the (bil nonnegative and summing to one. It can be shown that

such a set of coefficients does not exist (b3 is negative). Let us

now add an additional exponential term, e- 6t, and write

13 -7t -6t 77 -4t 35 -3t 21 -2tF(t) - L1-( - e + 0e + E e - - e + 1 e
15 12 4w 5-e )

Here, Xj 7, X- 6, A 4, ' - 3, A' U 2. We must now solve

for the coefficients {bi} from

"i F(t) - bFj + bF'F' 2 3 + ' + bF 2  + bsF1 2 3 4 5
2 b3F123 b4F1234 5 1234

A where the primes indicate that the corresponding terms are defined

with respect to the i[i}. It turns out that there is a solution

for the {bi} that results in the representation

F(t) - Fl + 1 F2 +1 F +1 F + F1
~* ~ 12 + 123 +W 1234 +- F12 34 5
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Not only does this give us an MGE representation, it also confirms

that the original F(t) is, in fact, a valid CDF since it can be

expressed as a mixture of CDFs.

Since all MGEs are of phase type and there exist GHs that are

not members of PH (see Section 2.2), it is not possible to obtain

an MGE representation for every GH distribution. A more complete

discussion of the representation of GH distributions as MGEs,

including a set of necessary and sufficient conditions that does

not require solving for the {b coefficients, is contained in

Botts [1986]. The uniqueness property provides a strong rationale

for our interest in the GH class of distributions. It is

unfortunate that the PH family of distributions does not have a

corresponding uniqueness property.

2.6 Summary of Set Inclusion Relations

The results of the foregoing sections yield the following set

of relations among the classes of distribution functions:

(I) GE C Kn C Rn

(2) GE C MGE C G UC Rn

(3) GE C MGE C PH C Rn

(4) PH Kn ;K € PH => Rn q PH

(5) PH GH ;GH q PH

(6) GH MGE (of same order)

These relations are depicted in the Venn diagram below.

~~1

* . i'%*

" . V NU ",' " ' y, ". M *.'
'v ',

(
' ' N ""-"' " ,



4.'

'4

~LO V
p.

4.

U,
Ii
U,
U,
U

LI

41
41 r
3'a
01

0

U,
C
0

'a
U

SI

Co
U, * 44

UU,
C La.-o

LI
'a
SI 'd-
'no 4,

* *1
* L.

IA.

4

C

4'

t

'V



19

3. Closure Properties

Closure properties guarantee that the result of performing

certain mathematical operations on members of a class will be

another member of the same class. For example, the set of positive

integers is closed under addition and multiplication. Closure is

useful in applications because the outputs of certain processes

will share the properties of the inputs. In this section we

present some closure properties of the GH class of distributions

arising in probability modeling, order statistics, reliability

theory, and queueing theory. These properties provide additional

Justification for using GH distributions as approximations to

arbitrary CDFs.

3.1 Probability Modeling

In probability modeling, mixtures of distributions and

convolutions of distributions frequently arise. Neuts [1975, 19811

has shown that the PH class is closed under convolutions as well as

under finite mixtures. The PH class is also closed under infinite

mixtures in the sense that an infinite mixture of successive

convolutions of a PH distribution, where the mixing parameters

constitute a discrete PH distribution, is itself PH. Since the GH

class consists of linear combinations of a finite number of

exponential terms, it follows immediately that GH is closed under

finite mixtures. An infinite mixture could involve an infinite

number of exponential terms and would then not be in GH, by

definition. Therefore, GH is closed under infinite mixtures only

when the number of distinct exponential terms contained in the

mixture is finite.

The GH class is not closed under convolutions. This can

easily be demonstrated by noting that the GH density f(t)

Ae- At convolved with itself yields the Erlang-2 density

f(t)*f(t) X A2 te-t (3.1.1)

V. p lC
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which is not in GH. While undesirable, this lack of closure under

convolution is not of much practical consequence, however. By

virtue of the denseness results, we can closely approximate any

Erlang distribution with a GH distribution.

The GH class of distributions is closed under

multiplication. If T1 and T2 are two random variables with

corresponding CDFs Fl(t) and F2 (t), then it is well-known that the

distribution of maX(Tl,T2) is Fl(t) • F2(t). When F1 and F2 are

each GH, it follows that

61 F~t •F2t (1 a e- i t) (1 bj e-o'Jt )

F 1 
(3.1.2)

a eX t b e- + I b -( a i)t,

i J ij

which clearly is also GH.

3.2 Order Statistics

If tl, t2 ,***, tn represent the values obtained by taking n

independent samples from the same distribution, the corresponding

order statistics, denoted t(l), t(2 ),@*., t(n) , are obtained by N

placing the samples in ascending numerical sequence; that is,

t ( t(2) ' **. ' t(n) * In applications it is frequently

required to calculate the distribution of the maximum or minimum of

the sample. Since the probability that the maximum value does not

exceed some value, say t, is equal to the probability that the

value of each random variable Tl, T2 ,.**, Tn does not exceed t we

have k.

F*(t) - Pr{max (T1 , T2,**, Tn) • t} = - Fi(t) - [F(t) n  (3.2.1)
i-i

where F* is the distribution of the maximum of the Ti and Fi - F is

the distribution function of the ith sample. It follows by

repeated application of (3.1.2) that F*(t) is also GH, so that the

nth order statistic corresponding to a sample of n observations

drawn from a GH distribution is also GH. From (3.2.1) note that

•



21

this result holds even if the T, are not identically distributed as

long as each one has a GH distribution.

The distribution of the kth order statistic, 1 4 k 4 n, is

well-known (see, for example, David [1981] or Guttman et al. V

[1982]) and is given by

,knt (n ,rft)n> tt - n -i.
F k(t) - Pr{T (n ti I i ()Fit(Ft)n-

i-k

Using (3.1.2) repeatedly, it follows that the class GH is closed

under the kth order statistic for 1 4 k • n. This is so because

the above summation always contains the term Fn(t) which ensures

that unity will be a term in the expanded expression for Fk.

GH is also closed under certain functions of order statistics

such as the difference between pairs of them. We will illustrate

for the special case, Xtn) - X(l) called the range of the

sample. The well-known expression for this CDF is

H(r) = PrIT (n)- T(1) I r} - n f f(t)[F(t + r) - F(t)]n - 1dt
0

For F in GH, the integrand consists of a linear combination of

exponentials so that H will also be in GH.

3.3 Reliability Theory

In reliability theory, one wishes to compute the overall

reliability of a system in terms of the reliabilities of its

component parts. Of course, the system reliability also depends

upon the way in which the components are connected. For example, a

series connection of components will fail when the first component

failure occurs while a parallel connection will function as long as

there is at least one good component. In general, systems consist

of complex structures having both series and parallel arrangements

of components so that finding the system reliability is difficult.

For each component in a system we define a binary function

F

- 1, if component i is functioning
0, otherwise .

%L~
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For a system consisting of n independent components we then define

a binary variable, 0, as

*(x, x **0 x) 1, if the system is functioning
2P P2' 0, otherwise

and + is called the structure function of the system. A component,

i, is said to be irrelevant if

o(Xl,...,xi 1 1l,Xi+l,*.*,xn) - (Xl,.,Xi-lO,Xi+l,.*-,Xn

for all combinations of the variables xj, j * i. It is intuitively

reasonable to expect a system to contain only relevant components

and for improvements in the components to result in equal or better

performance of the system. These ideas are formalized in the

following definition of a coherent system (see Barlow and Proschan

[19811).

Definition: A system of components is said to be coherent if

a) its structure function is monotonic, i.e.,

(xl,...,x n) > (yl,...,yn) for xi > Yi (3.3.1)

and

b) it contains no irrelevant components.

Now suppose that each component has an associated lifetime

distribution that gives the probability of the component

functioning at time t. That is, let Fi(t) - Pr{component i fails

prior to ti so that 1 - Fi(t) - Prfcomponent i is functioning at

time t}. We will now show that the GH class of CDFs is closed

under the formation of coherent structures. That is, if each

component has a GH distribution of lifetime then any coherent

structure formed from those components will also be characterized

by a GH distribution of lifetime. Assaf and Levikson [1982] have

shown a similar result for phase-type distributions. Because of

their simple structure, it is easier to demonstrate this result for

GH distributions.
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Let S - {(xl,...,xn) I xi  0 or x- 1, i - 1,2,oo°,n} be the

state space of the system. We denote the 2n states in S by s1,

82,* , S2n. By the law of total probability

Pr{system is functioningi Pr{*(x1 ,.-.,xn) ' 1}

(3.3.2)

I ) Pr{* - lls i} - Pris .si

For each state, the value of *(si ) is known since the state

determines whether the system is functioning or not. The

corresponding probabilities are therefore either zero or one. That

is, Pr{i - ltsi} is zero or one. Since the components are assumed

to be independent, Pr{siI is just the product of the probabilities

that each component is functioning or not, depending upon whether

the corresponding value of xj is one or zero for the state in

question. For example, in a three component system with s2 -

(1,0,1), we have Pr(s 2) - (1 - Fl(t))(F 2 (t))(1 - F3 (t)). For a

coherent system, *(O,...,O) - 0, for otherwise E I and all

components would be irrelevant. The probability of the

n
corresponding state, P(O,0,°*.,O) - T7 Fi(t) will therefore not

i-l

appear in expression (3.3.2) which will consist of a sum of

products of the form T7-(1 - T 7 Fj(t) where i ranges
i j

over all values for which xi 1 1 and j ranges over all values for

which xj - 0. Since the component distributions are GH of the form

Fi(t) - 1 - a e iJt , it follows that (3.3.2) will be a

linear combination of exponentials, so that the lifetime CDF of the

system will also be GH. We illustrate with a two-component system.

Example 3.3

Let Fl(t) =I - (1/3)e - t - (2/3)e -2 t and F2 (t) -I - 2e-t + e- 2 t.

V %I
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We therefore obtain from (3.3.2),

Pr{System is functioningj - *(1,1)(l - Fl)(1 - F2 ) + +(1,0)(1 - FI)(F 2 )

+ *(0,1)(Fi)(1 - F2)

- *(1,1)[(2/3)e -2 t + e- 3 t - (2/3)e- 4 t]  (3.3.3)

+ *(1,0)((1/3)e -t - e-3t + (2/3)e- 4t]

+ *(O,l)[2e- t - (5 /3)e
- 2 t - e-3t + (2/3)e-4 t].

For a coherent system, *(1,1) - 1. There are two possibilities:

the components are connected in series so that 0(1,0) - 0(0,1) - 0

or they are connected in parallel with 0(1,0) - f(0,1) - 1. The

corresponding results from (3.3.3) are:

a) series connection:

Pr{system functional - (2/3)e- 2 t + e
- 3 t - (2/3)e -4t

so that the lifetime distribution of the system is

Fs(t) - (2/3)e - 2t - e- 3t + (2/3)e - 4t.

b) parallel connection:

Fs(t) - 1 - (7/3)e- t + e- 2t + e- 3t - (2/3)e- 4t.

The closure result derived above applies to any coherent

structure however complex and includes arbitrary series-parallel

arrangements such as k out of n systems as well as bridge

structures.

3.4 Queueing Theory

The M/G/1 queue is characterized by exponential interarrival

and general service-time distributions. Here we will examine the

L nature of the steady-state residual service times and queueing

times when the service time distribution is GH.
The residual service time is the remaining service time of the

customer it. service at the instant a new customer arrives and the

waiting time (i.e., queueing time) is the time an arriving customer

must wait before receiving service. Denoting the GH service time

m e ;'.: p •C~T~~
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distribution by G(t), it follows from renewal theory (see Ross

[1970]) that the distribution of the residual service time is given

by t

R(t) = f [1 - G(x)] dx (3.4.1)
0

where 1/P is the mean of G(t). Since G is Gi, this integral is of
the formttthe fm p ft (I a e-iX) dx - I X ai f e-Xix dx.

0 0

Therefore, a ttR(t) e 1 -1 i - I b ie- i

so that R(t) is also GH.

A simple relationship exists between the Laplace transforms of

R(t) and the waiting time distribution, W(t). Denoting the

Laplace-Stieltjes transform of F(t) by F*(s), Gross and Harris

3 [1985] have shown that

W*(s) - 1 - p (3.4.2)

1 - pR*(s)

where p - X/P is the ratio of the average arrival and service

rates. By expanding the right-hand side of (3.4.2) in a geometric

series and taking inverse transforms it follows that

-m
W(t) - (1 - p) pn[R(n)(t)] (3.4.3)

0

where R(n)(t) denotes the n-fold convolution of R(t) with itself.

Since we have shown that GH is not closed under convolution, it

follows that (3.4.3) need not be GH. We will demonstrate this fact

with an example.

Example 3.4

Let G(t) - 1 - 3e-t + 3e- 2t - e- 3t with mean 1/p - 11/6. This

has Laplace-Stieltjes transform

1~ ~ ,
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G*(s) 6( + 1)(" 6 2)(" +3)

Corresponding to this,

R*(s) = i [1 - G*(s)] - i(s + 6s + 11)
s (s + 1)(s + 2)(s + 3)

which is seen to be GB by expanding in partial fractions.

UComputing W*(s) using (3.4.2) yields

( 1 - p) s(s + 1)(s + 2)(s + 3)W*(s) = (a + )(s + 2)(s + 3)(s - A) + 6A (3.44)

To have a steady-state queue, A must be less than p (6/11 in this

case). Letting X - 1/2, the denominator of (3.4.4) becomes

s(s3 + 11/2 s2 + 8s + 1/2).

The cubic expression in parentheses has a real root at

approximately -.0654 so this expression can be written in factored

form as

s(s + .0654)(s2 + 5.4346 s + 7.6445).

The discriminant of the quadratic term is less than zero, so that

the quadratic has complex roots. Therefore W*(s) has complex roots

which implies W(t) is not in GH, although from (3.4.4) it is

clearly in R3. We note from (3.4.3) and the fact that p < 1 for

equilibrium that W(t) consists effectively of a finite sum of

exponential and Erlang terms. Since the Erlangs can be well

approximated by GH distributions, from a practical viewpoint the

waiting time distribution can be treated as GH even though,

strictly speaking, we have seen that it is not.

By way of comparison, we note that Neuts [1975, 1981] has

shown that if the service-time distribution is phase-type then both

R(t) and W(t) are also phase-type.
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4. Numerical Inversion and Random Variate Creation

In applications it is often necessary to invert a probability

distribution function; that is, given a value for F(t), find the

corresponding value of t. For all but the simplest CDFs an

explicit inverse cannot be found. One must then resort to

numerical techniques, which may be particularly complicated when a

CDF type cannot be transformed back to a single standard form. A

related (and occasionally identical) problem is the derivation of

random variates following a specific distribution. The inversion

can itself be used, but, as is typical, there is a more efficient

way to generate the variates by using the distribution's properties

in a more direct way.

4.1 Inversion

Many techniques exist for solving for the (unique) root of

F(t)=p, including the bisection, false position, secant, and

Newton-Raphson methods. These and other techniqVes may be found in

3standard works on numerical analysis such as Conte and de Boor
[1980], King [1984], Ralston [1965] and Hamming [1971]. The

techniques differ in their rates of convergence, complexity or

computational efficiency, and the local or global nature of their

convergence. In practice, tradeoffs must be made between these

characteristics in order to choose the method most appropriate for

the application at hand.

All of the methods listed above are general in that they can

be used to find the roots of any function. We now propose a method

for inverting GH CDFs based upon their underlying structure, that

is guaranteed to converge, is simple to implement, and is free of

the drawbacks of some of the standard techniques. Its chief

disadvantage appears to be that convergence is only linear. We

will describe the method first, and then briefly compare its

features with those of the other techniques.

Our method belongs to the class of so-called "fixed-point"

iterations of the form xn+ 1- g(xn). We begin with the CDF
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-Xt a t --

F(t) a - ai e- i + I bj e- j , where ai, Ai, bi, 09 > 0.

Given a particular value F(T) we wish to determine T. We first

define two additional functions,

G(t) - F(T) + j ai e-Xi
t

and (4.1)

H(t) - 1 + I b e-J

Therefore G(t) - H(t) - F(T) - F(t). The desired value, T, is then

the abscissa of the intersection of the curves G(t) and H(t).

Since F(t) is uonotonic, there is only one such intersection.

Furthermore, G and H are each monotonically decreasing and have the

following properties:

G(t) > H(t) for t < T (4.2)

and

G'(t) - H'(t) - -F'(t) 4 0 for all t. (4.3)

The second of these relations follows from the nonnegativity of the

PDF. Since G' and H' are negative everywhere, (4.3) implies that

IG'(t)l > IH'(t)I for all t. (4.4)

The proposed technique for finding T is most easily explained by

referring to the graphs of G and H. These are shown in Figure 2.

*1* I.
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F(T) + Z a.

Z a -1 + Zb

, J

F(T)

0 t-

Figure 2: Geometry for Finding the Inverse of F.

Starting from any point tn < T, if t is incremented in such a way

that G remains greater than H, we will still be to the left of T.

Repeating this process, we will converge to T from below. We next

explicitly describe the procedure for incrementing t and prove

convergence.

For any tn < T, construct the tangent to G through the point

(tn, G(tn)). By the convexity of G (G" > 0 everywhere), this

Ctangent line is always below the graph of G. Construct the

horizontal line through the point (tn, H(tn)). By the monotonicity

of H, this line lies above H for all t > tn . Since G' < 0 and

G(tn) > H(tn), the tangent to G and the horizontal line intersect

at a point whose abscissa is greater than tn* Let this value be

tn+1 . Repeat the process beginning at tn+, . The sequence of steps

Is illustrated in Figure 3.

Mr
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"Ct))

(t n)

H+ (t n+

Figure 3: Iterative Scheme Illustrating Convergence.

Since the point of intersection of the tangent and horizontal lines3 lies on both lines we have

f~n, > ;n)>Htn,. 45

From the above construction ye obtain an explicit expression for

tn+, as follows:

li(tn) - G( tn)
f nl -tn -Gt(t n)

or

t t - G(t n H(t n)(46
tn+1 tn - G'(t a)(4)

We next prove that the sequence It ni converges to T. Since tn < T,

G(tn) -H(tn) > 0. From the definition of G In (4.1),

G'(t) a - a )I e-Ait is seen to be negative and finite for all

0ii
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values of t. Therefore, from (4.6) we have that tl > t. so that

the sequence {tnI is monotonically increasing. From (4.5) and
n

(4.2), {tnI is bounded above by T. Therefore, {itn} has a limit,

to. Using this fact together with the continuity of G, H, and G',

and taking the limit of (4.6) yields

lim G(tn) - lim H(tn)

to lim t lim t - l t n Gl(tn)
a+, n lim G'(t a)

G(lm t )- H(lim tn)

-to - G'(lim t n )

t G(to) - H(to)
-to- G,(to) • (4.7)

Therefore,

G(to) - H(to)
G,(to) 0 ;

since G'(to) * 0 for to finite, this implies that G(to) - H(to).

Since G and H have a unique point of intersection, to M T, and the

sequence itni converges to T, as desired.

Fixed-point algorithms, in general, have only linear

convergence and we now demonstrate this fact for our algorithm.

Denoting the error in the nth iterate by e n t - T, we writen n
(4.6) as

G(tn) - H(t n)

n+l n+l -T t - T - G'(t n)

G(tn) - H(tn)
-n (4.8)

I '
n G9; n
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As t. nears T, G'(tn) is approximately equal to G'(T). Using the

first two terms of the Taylor series expansions for G and H about

T, (4.8) becomes

_ G'(T) - H'(T Cn - T) e - Ke . (4.9)Cn+l = n G'(T) n T4 n n

This illustrates the linear nature of the convergence of {tn}

From (4.4) we see that en+l < £ except possibly when G'(T) -

H'(T). In that case F'(T) - 0 so that the solution corresponds to

a multiple root. To obtain an expression for e,+, under these

conditions, more terms must be used in the Taylor series expansion

in (4.8). With a triple root, we obtain

G'''(T) - H'''(T) n

n G'(T) T(.

Since G(t) - H(t) - F(T) - F(t), G'''(T) - H'''(T) - F'''(T). At

a triple root F''(T) - F'(T) - 0 so that F'''(T) must be positive

to prevent the PDF F'(t) from becoming negative. As a result

G'''(T) - H'''(T)- 0
G'(T) C > 0

since both the numerator and denominator are negative. Therefore,

from (4.10),

C €3

n+l  n I n

so that the error sequence is still decreasing but at an ever

diminishing rate. In a situation such as this with a multiple

root, even the Newton-Raphson algorithm slows from a quadratic to a

linear rate of convergence.

Our algorithm will converge to T when started at any value of

t < T. In particular, we can take t - 0 initially. Like other

globally convergent algorithms such as bisection or false position,

convergence is linear. With the false position algorithm,

however, as the solution is neared, a problem with step size may
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occur since the denominator of the step expression consists of the

difference of nearly equal numbers. Our algorithm does not have

that problem since the denominator of the step term, G', is non-

Szero and only approaches zero when F(T) is very close to unity.

Near the solution point, the bisection and false position

algorithms can suffer from underflow since the product of two small

numbers is used to determine the truncated interval containing the

solution. Also, each of these algorithms requires that a pair of

values bracketing the root be supplied to start the search

procedure. A separate computation will usually be needed to

produce such a pair of values. A slight drawback of our algorithm

relative to the bisection algorithm is that the solution is

approached from below so that we do not get an estimate of the

error at each stage of the iteration.

Locally convergent methods, such as Newton-Raphson and secant,

converge faster than our algorithm. However, convergence is not

guaranteed unless the starting point is reasonably close to the

solution. For example, the Newton-Raphson method may oscillate

between two values and if an iteration yields a negative value of t

or a zero-valued derivative, it is not clear how to proceed, short

of picking a new initial point and beginning again. The secant

algorithm can also produce negative values of t when both points of

the current iteration are to the right of the solution and the CDF

has a small slope in their vicinity. In addition, the secant
method may suffer from roundoff error in the computation of step

size resulting from a division by the difference of nearly equal

quantities. This situation can occur when both points lie on the

same side of the solution. These drawbacks offset the faster

convergence of the locally convergent methods.

In practice, one often starts with a globally convergent

method and switches to a more rapidly converging local method as

the solution is neared. The switch to the locally convergent

algorithm can be made when the step size using the initial

iteration method falls below some preset threshold value. Such a

hybrid scheme could be implemented by starting with our algorithm

I
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and then switching to Newton-Raphson. This would be particularly

easy since (4.6) is almost identical to the Newton-Raphson

algorithm. Indeed, by simply changing the denominator to G'(tn) -

H(tn) we obtain the Newton-Raphson iteration for finding the root

of F(T) - F(t) - 0, which is the desired equation. Finally, we

note that schemes exist for accelerating the convergence of linear-

rate algorithms. One such technique is Aitken's delta-squared

process (see, for example, Ralston [1965]). However, it is

generally just as effective to use a hybrid scheme as described

above.

4.2 The Generation of Random Variates

The decomposition of a generalized hyperexponential

distribution into "positive" and "negative" functions similar to

(4.1) allows an interesting application of the acceptance-rejection

method to generate random variates for simulation. Our approach is

a modification of the work of Bignami and de Matteis [1971], also

Wdiscussed in Everitt and Hand [1981].

Let the PDF from which samples are desired be given by

m n
f(x) I Pifi(x) - j q g (x) (4.1.1)

where fi and gj are PDFs, pi' qj > 0 and P - q. 1.

Rewrite (4.1.1) as

f(x) + ) qjgj(x) - I Pifi(x). (4.1.2)

Divide through by 1 + qk k p, to obtain

1q
f(x) + I gj(x) i(x) (4.1.3)

1 + Eq 1 + Zq EP,

Both the left and right sides of (4.1.3) now are legitimate

mixtures. Suppose a value of x is selected from the mixture on the

right side of (4.1.3). Since this observed value is compatible

with the density shown on the left of (4.1.3), it can be viewed as
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arising from either f or one of the gj. The posterior probability

that it came from f can be found from Bayes' rule to be

f(x) f(x)

f(x) + I qjgj(x) p Pif,(x)

This suggests that if the selected value is accepted with

probability given by (4.1.4), then the probability density

governing the accepted value will be f(x) as desired. To summarize

the procedure:

1. Generate y from the mixture (pi/Ep£)fi(y).

2. Generate u from U(O,1).

3. Compute t - f(y)/(Epifi(y)).

4. If u 4 t set x - y; otherwise discard y, return to

Step 1 and repeat the process until a value of x is

selected.

The discussion above is rather heuristic. We now prove in a

rigorous fashion that the accepted values come from the desired

distribution. Make the following definitions:

m

p,= 1/k
i-i

Spifi(x) = w(x), and (4.1.5)

f-i (x) - kw(x) = r(x) • (4.1.6)

P i

Further denote the event that a value of Y is accepted by A. We

show that the distribution of the accepted values is given by
X

Pr{X 4 x} - F(x) - f f(z)dz. Observe that the values of X are

a subset of the values of Y and that conditioned on A, values of X

and Y are the same. That is

Pr{X < x} - Pr{Y 4 xjAj . (4.1.7)
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By the definition of conditional probability, the right side of

(4.1.7) becomes Pr{Y 4 x,A}
pr{Y ( xlA} - . (4.1.8)

PrJA

Next evaluate the expressions in the numerator and denominator.

From the procedure for generating Y and (4.1.6) we have that the

PDF of Y is r(y). We obtain an expression for PrJA} by integrating

the joint distribution of A and Y over the domain of Y, as follows:

Pr{A} - f' Pr{A,yj dy - fm Pr{AIY - y}r(y)dy • (4.1.9)

From the acceptance procedure and (4.1.5),

PrIAIY - y} - Pr{U - f(y)/w(y)} - f(y)/w(y). (4.1.10)

Substituting (4.1.10) into (4.1.9) yields

Pr{A - f1 [f(y)/w(y)]r(y)dy - f* kf(y)dy - k, (4.1.11)

recalling that r(y) = kw(y). Next evaluate the numerator of

(4.1.8). Again, integrate the joint distribution over y:

Pr{Y < x,A} - f' PrY 4 x,AIY - lr(y)dy
-- W

. f Pr{Y 4 x,AIY - y}r(y)dy , (4.1.12)

where the second equality follows from the fact that the

event JY • x} has zero probability for Y - y > x. By the same

token, the event{Y 4 x} is certain when conditioned on Y = y 4 x so

(4.1.12) becomes, with the help of (4.1.10),

x
PrjY 4 x,A} - f PrjAjY - y~r(y)dy

a f [f(y)/w(y)jr(y)dy (4.1.13)

I
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" k f(y)dy

with the last equality following from (4.1.6). Finally,

substituting (4.1.11) and (4.1.13) into (4.1.8) yields

Pr{Y 4 xjAI - f f(y)dy

and this together with (4.1.7) establishes the desired result.

This proof is based on that given on p. 273 of Law and Kelton

[1982] for the general case of acceptance-rejection generation of

random variates distributed according to any continuous

distribution.

J.i

I.i

I t

ft
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5. Conclusion

Among the areas of future work that present themselves, an

obvious and practical question is that of deciding how many terms

to include in the GH mixture. This issue is related to the

denseness and identifiability notions. However, no general formal

procedure is found in the extant literature. Experience cited by

Harris and Sykes [19861 suggests that a relatively small number of

terms is often quite adequate for fitting raw data. However,

definitive guidelines for determining the precise number of terms

are needed.

This study has introduced the family of generalized

hyperexponential (GH) distributions and demonstrated desirable

properties of this class which make them attractive as

approximations to general CDFs. Among the features noted in this

work are:

1. The GH class is dense in the set of all CDFs defined

on [0,-) so that a GH CDF may be found that is as close as

desired (with respect to a suitable metric) to any

specified CDF.

2. GH distributions have a simple mathematical structure that

facilitates such operations as differentiating,

integrating, and taking Laplace transforms. These

operations frequently occur in application areas where GH

approximations can be used.

3. GH distributions have rational Laplace transforms and are

therefore Coxian.

4. A GH distribution has a unique representation as a linear

combination of exponential terms. This property is useful

both for identification of a CDF as a member of GH and for

such statistical procedures as parameter estimation.

5. Since GH CDFs are composed of exponentials, the vast

literature dealing with exponential and hyperexponential

distributions is relevant and techniques for these common

distributions can often be adapted for use with GH

distributions.

..
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6. A computer-based maximum likelihood estimation algorithm

exists for fitting a GH distribution to sample data. This

provides a practical advantage for modeling vith GB

distributions.

7. A simple globally convergent numerical algorithm exists for

inverting a GH distribution. Being able to invert a CDF is

important for statistical applications, such as calculating

distribution percentiles.

8. The GH class of CDFs is closed with respect to operations

occurring in a diverse collection of application areas

including basic probability and statistics, reliability

theory, and queueing theory.

gI
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