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Preliminary Investigation Of
A Calculus of Functional Differences:

Fized Differences

B. J. MacLennan
Computer Science Department

Naval Postgraduate School

A ractMonterey, CA 93943

-We-introduce a no ion of functional differences in which the difference 4 a function f with respect to a
function h is that fun tion 9 that describes how the value of f changes when its argument is altered by h:
f((h z) g(f z). We also introduce the inverse operation of functional integration and derive useful pro-
perties of both operations. The result is a calculus that facilitates derivation and reasoning about recursive
programs. This is illustrated in a number of simple examples. Tht..pA ereportpresents preliminary
results pertaining to fixed differences, that is, functional differences that do not depend on the value of the
argument z.

1. Motivation

Simple recursive definitions often take the following form:

f to - go

f(h z) = g (f z), for zszo

The assumption here is that an arbitrary domain value r can be reached by finitely many applications of

h. That is, for all acceptable z there is an n such that z = h" t0. More general patterns of recursive

definition will be considered later.

In deriving a recursive definition for a particular f, there are four unknowns that must be found, g, h,

* 20 and go. Since h and 20 are usually determined by the domain in question (e.g., they are zero and the

successor function for the domain of natural numbers), and go is usually easily determined from the

definition of f, the main problem is determining the function g.

To see how this can be done consider the second equation above:

f (h z) = g (f z)

The function g tells us how much the value of the function f changes when its argument is changed by h.

That is, if f's argument is changed by h, then its value is changed by g. This equation is analogous to the

" ,,3 " ", " . ",. . ' " " ~~~- I-'""""": """ , '" ' ' "'



finite difference equation

f(h+z) = g+(Uz)

The difference is that in the first equation the "amounts of change" are expressed as functions rather than

numbers, as they are in the finite difference equation. This is because we want to be able to deal with

functions whose domains and ranges are nonnumeric (e.g., lists, sets, relations).

Based on this analogy we introduce

Definition 1: We define p to be the functional difference of f with respect to h if and only if it

satisfies

f(h z) = g(f z).

We also call g "the change in f with respect to " or "the change in f given the change h."

The next several sections will investigate the properties of functional differencesi.

The above equation defines the functional difference implicitly; to get an explicit definition we need to

solve it for g. Therefore, eliminate z by use of the composition operation:

f. = -- f

This can be solved by composing the inverse of/,/-', on both sides of the equation to yield:

g= f .
-

This seems to yield an explicit formula for the functional difference, but it is necessary to be more careful.

First, f- will not be a function unless f is an isomorphism (one-to-one). Therefore we will assume this for

the time being. Second, f - f-' is not the total identity function; rather, it is Ing I, the identity function

restricted to the range of I. Hence, doing the derivation more carefully, we have:

go =f f -h

g° ff-' = f'h f -'

g" Ij = f h f-I

Therefore, any solution to the difference equation, when restricted to rng f. will be f o f-i. This is

1. A different notion of functional differences is described in jPaige&Koenig82j.

-2-
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summarized in

Theorem 1: Let f be a one-to-one function. If there is a relation g satisfying the equation

f " h = g . f, then g ! = I . . -

Proof: Presented above. o

Thus f - h o f-1 is a subfunction of every solution to the difference equation. Note that this theorem

does not say that f • h - f-I is itself a solution. This result is proved in

Theorem 2: Let f be a one-to-one function. If the functional equation f • h = g • f has a solution,

then f • h - f-1 is a solution.

Proof. For convenience we represent composition by juxtaposition when no ambiguity will result. By

hypothesis the difference equation has a solution, so let a solution g be chosen; we must show that

Al = (flf)f

We simplify the right hand side as follows:

(Jhr 1 )f = lh(f-if) = / Ido. I

Since Jh = g/" we know dom fh = dom g!. But dom gf 9 dom f for all compositions, so

dom fl c dom f. From this it follows that restricting the domain of flh to dom f is in fact no restriction,

so we have flJdo. I - fh and the corollary is proved. o

This result permits us to call flu- the minimum solution of the difference equation. In the future, when

we speak of the functional difference of f with respect to h, we will mean the minimum solution 9 of

1h = g/. which is fy -i'.

Note however that Jhf- I being a solution is contingent upon the existence of some solution to the equa-

tion. The conditions for a solution existing are stated in

Theorem 3: Let f be a one-to-one function. The difference equation f . h = g - f has a solution if

and only if dom (f* h) C dom f.

Proof. To show the "if" part we assume dom flh doam . Then, substituting fhf - ' for g in the

difference equation we have (as in the proof of Thin. 2):

._g -3-



(/hfl')f = A(F*i) = fhl&.! = A

The rightmost equality follows from the assumption.

To show the "only if" part we assume that 1h = gf has a solution. Then, as in the proof of Cor. 1-1,

we have

domJh = domgf _ dom f

Hence dom 1h _ dom f . o

We observe in passing that none of the preceding results depend on h being one-to-one, or even a func-

tion. Indeed. they apply to any relation h. This leads us to investigate, in the next section, the isomorphic

images of relations.

2. Isomorphic Images

In [MacLennan83] we define the isomorphic image of a relation R under a function f by

fS R = I <f, y>I<z, V> ER)

This can be read "the f isomorphism of R" or "the isomorphic image under f of R." Note however that

f S R is isomorphic to R only if f is defined for all members of R, otherwise f $ R is isomorphic to a

subrelation of R. Hence we introduce:

Definition 2: The members of a relation is the union of its domain and range:

memR f= dom R U rng R

Definition 3: The isomorphism f is defined on R if and only if mem R C dom I.

If f is treated as a relation, and composition is allowed between relations, then we can derive an expres-

sion for the isomorphic image in terms of composition:

<u,v > E (J S R)

*so. 3z, V [<z, v>E E R u =fIz A v = f]

3 z. y I<z, y> R A <z. u> E/ A < y. v>E E f

3 yz, <u, z> E f' A <z, y> E R A <, v> E f]

3 V [<u, V> E (R * f') A <v, v> E fj

.4-



<M, v> E (f R •f-)

Hence we have

fSR = f-R.-

This is of course exactly our formula for the functional difference. Note however that f $ h is defined for

all f and h, but that it is a solution to fi = gf only if that equation has a solution. This is summarized

in

Theorem 4: Let f be an isomorphism. Then

f.h = (fth). f

if and only ifdom (f - h) _ doam .

Proof: This follows from Thm. 2. o

Corollary 4-1: If f is one-to-one and dom h C dom f, then f S h is the functional difference of f

with respect to h.

Proof: Since dom 1h C dom h C dom f we can apply the preceding theorem. o

Corollary 4-2: If f is one-to-one and defined on h, then f $ h is functional difference of f with respect

to h.

Proof: Since f is defined for h, mem h C dom f. But dom h C memh, so dom h C dom f and the

previous corollary applies. o

Corollary 4-3: The functional difference of f with respect to h, if it exists, is f $ h, the f isomor-

phism of h.

Notice again that these results apply to any relation h; thus we will be able to take functional

differences with respect to any relations (i.e., regardless of whether they are one-to-one or even functions).
S

We will exploit this generality in the later development of the calculus. On the other hand. we still require

f to be one-to-one.



Because isomorphism satisfies the difference equation (if anything does) we can read 'f S' either as

"the isomorphic image under f of h," or as "the functional difference of f with respect to h." We call

f S h the functional difference regardless of whether the existence condition, dom fh 9 dom f, is satisfied.

That is, the functional difference exists, even if there is no functional difference equation that it satisfies.

3. Hasse Diagrams

We will exploit the relation between isomorphic images and functional differences so as to better under-

stand the latter. In particular we can learn a lot about functional differences by looking at their Hase

diagrams.

The Hasse diagram of a relation R is constructed as follows. The diagram is a directed graph that has

a vertex for every member of R (i.e., for every domain or range element of R). An edge goes from vertex z

to vertex y if and only if <z, y> E R.

If R is a function then there is at most one edge leading out of each vertex in its Hasse diagram.

Further, if R is an isomorphism, then there is also at most one edge leading into each vertex. We will be

most interested in a restricted class of isomorphisms called sequences, which are connected one-to-one func-

tions. The Hasse diagram for a finite sequence has the form:

Z 0  1  2  
• . . X fn _ 1  Z n

We will often write such a relation in an abbreviated form:

(0, -', Z2, • . . , Zn-, n)

If R is an infinite sequence, then its Hasse graph must be a sequence that is infinite on either or both ends.

We will be most interested in the case in which the sequence is well founded, that is, has an initial member:

Zo XI Z2  ..

z0 is called the initial member [Carnap58, MacLennan831 of the sequence. It will also be convenient to

write these relations in an abbreviated form:

(zo , X , - 2 ,

This case is of most interest to us, for it represents a function h such that any z, can be reached from z0 by

-6-



a finite number of applications of h. In particular

Zi -- h
i 

Z0

This is exactly the situation we postulated in our discussion of functional differences.

Next we consider the Hasse diagrams of functional differences. Therefore, suppose that h is a finite or

infinite sequence and that z0 is the initial member of h. This relation can be diagramed:

z o h z, h z2 h z3 h ...

For each i define yj = fz. We can diagram f:

ZO X1 X2  
Z3

YO I Y2 Y3

By applying f to each member of h we get the isomorphic image f $ h:

It is easy to see that this relation represents the functional difference of I with respect to h. Call the

diagramed relation g and observe y, = g yj. Then.

f (h z) = += = ga , = g(f 6Z)

Thusl = gf. -

Combining the diagrams for f, g and h we have:

h z0  zI  Z2  Z3

= YO Y1 Y2 Y3

This diagram makes it apparent that g = f h o f-, since to get from y, to yii we go backwards along

an f arrow, forward on an h arrow, and forward on an f arrow. Notice however that if f is not defined for

-7-



some z then will be isomorphic to a part rather than all of h. In fact g is isomorphic to all of f only if f

is defined for all zi (i.e., mem h C dom f).

4. Properties of Differences

We develop a number of simple, useful properties of functional differences.

Theorem 5: The functional difference of the total identity with respect to any function is that func-

tion:

Ith = h

Proof: DeriveI$h = I. h - I = h. I = h. 0

Theorem 6: The functional difference of a function with respect to itself is itself (but restricted to its

range):

h Sh = h .m

Proof: We derive: h$h =h h h -  = ho Ir

This result is easily understood from the diagram:

h = z o h r, h _ 2 h_

h=

h°- Irg = x, h z 2 h z h ...

Corollary 6-1: The difference of a power of a function with respect to that function is that function

(restricted to the range of the power):

h"$ h = h - I

Proof: Derive h" $ h = h~hh-n hh'h -" = hi( rg h')

For the case n = 2 this result is made clear by the diagram:

I- -

- -J 0_



h - Z 0  Z 2 2 . . .

h -

hI (f,2) Z Z3 -z4 Z5

Theorem 7: The inverse of the difference of one function with respect to a second is the difference of

the first with respect to the inverse of the second:

(f$ h)-' = f$h-'

Proof: For the equality result we derive:

(f$ h)-' = (lhf-')-' = (r-)-'h-1 -' = l-I-I = / $ h-'

The theorem is obvious if we consider differences as isomorphic images: the inverse of the isomorphic

image of a relation is the isomorphic image of the inverse relation.

Corollary 7-1: If mem h C dom f, then (f$ h) - I = f S h- .

Proof. Under the given condition,

dom f(h U h- ) _ dom (h u h- ') = mem h C dom f

Alternately observe that the existence of the two differences follows from these inequalities:

dom fl C dom h C mem h C dom f

dom A -i C dom h- ' - rngh C memh C domf

Theorem 8: The difference with respect to a composition of functions is the composition of the

differences with respect to each of the functions:

L I" %-9-



f S(g * ) -(f Sg) * (f $h)

provided dom g 9 dom f or mng h C dom f.

Proof: We begin with the right-hand side:

(f $ g)(f $ h) = M (A-

= MgItVAhP

f f(gld.. Ih) f'

f f$ (91d.. h)

Now, if dom g 9 dom f then 91 d.J = g, whereas if mng ha C dom f then Id.. fh h . So in either case

91d.. fh = gh and we have (f $g)(f Sh) is fSgh. o

This theorem provides a kind of chain rule for evaluating differences.

Corollary 8-1: The difference with respect to the nath power of a function is the nth power of the

£ difference:

f n= (f h)

provided dom h C dom f or rng h C dom f.

Proof: This is an inductive application of the previous theorem. c

The case where n = 2 is obvious from the diagram:

Y 0 & YI 9 Y2 h YS & Y4 &

1 2=

We use a product notation for compositions:



fl Fi F1 . F2 . - * -F.-..F

Using this notation we can express

Corollary &-2: The difference with respect to a product of functions is the product of the differences

with respect to each of those functions:

provided either the domain or range of each of those functions is a subset of the domain of I

Proof: This is just an inductive application of the theorem. a

Corollary 8-3: If z. = Vt zo, then

A.~ - (f 0 h)'(ZO)

That is, if Vi - fzi then y. = (f $ h)" o.

Proof. This is an induction based on

f f(h z..) - (f1S h) (fz,..I) - (f S h)y 5

Theorem 9: If z.= fl H ,zoand y = F;x then V flq F NHo, provided that

dom (F -H,) 9 dom F, for I <, i < n.

Proof: The notation implies that H1 H2 ... H., is a function. Expanding the product we have:

F:,,= F fiI H5) IFf H)j z0 = (FH1 H2 .. -H)ZD

We know from the definition of functional difference that F~JI= (F S H,)F so we can push the F to the

right through the H,:

F.11
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FH 2 .. H.-j... = (F S H)FH2 .. H-H

= (F S 4 1 )(F S H2)F ... H-H

=(F SHI) (F 8H 2) .. (FS H.)F

Thus we have

Hence,

=Fr, F~ FS (F x0 ) JF H)J YO

which proves the theorem. :3

This theorem tells us how to use functional differences to get from fzo to fx,,, provided x., is reachable from

z0. It is a functional difference analogue of Taylor's Theorem.

'4 Let 'if $I' denote a prcaection jWile73I of the isomorphism operator; that is,

If $1 h = f $h

Since If $1 leaves h unspecified, we call If $I the indefinite functional difference of f.

Theorem 10: The indefinite difference of the composition is the composition of the indefinite

differences:

I(f -g)S$] = If IS $1l

That is, (f - g)S$h = f S(9 $h).

Proof: The derivation is direct:

fg $ h = (fg) h(fg)1

= fghgIf-'

f 1( S h)f-'

f $S(g Sh)

.12-



The theorem is obvious from its diagram:

h -X X2~i Z

Vs '91 Yi2 ...

The preceding theorem is a kind of chain rule for functional differences. It leads to

Corollary 10-1: The indefinite difference of the nth power is the nath power of the indefinite

difference: [mj=i~

That is, f* $ h = [f $1"h.

Proof:- This is just the inductive extension of the previous theorem. o

Corollary 10-2: The indefinite difference of the product is the product of the indefinite differences:

[(fif.J ~ [ $1=flfS

That is,(l. 8k h $11 I. ]

4 ~ Proof:- This also follows inductively from the theorem. o

-13-



S. xmples of Differences

In this section we give several examples of functional differences. We begin with numerical functions,

since they are most familiar. Let a, be the successor function:

o - (0,1,2, ... )

Using the presection and postsection notations ([a +1 z = a + z, b] z = z - b, etc.) we have the fol-

lowing differences (where we let 'T' represent exponentiation, a T n -a):

[a +] = a

[ax = Ia +1

laT!So = Oxo

[a -1 = o-'
~[- a]$o -- a

The first of these equations follows from Corollary 6-1 and the observation that ja +] = o'. The next

two equations follow from the definition and theorem below, which generalizes Corollary 6-1.

Definition 4: We write '(power. f) n' for the nth power of function f applied to initial value a:

(power. f) n = fm a. This is defined recursively:

(power. f) 0 = a

(power. f) (n+l) = f (power. f) n], for ni0

We call power. f 'the power from a of f'.

Theorem 11: The difference of the power (from a) of f with respect to successor is f:

(power. f) $a = f

Proof: This follows directly from the definition of 'power':

(power. f) (o n) = I (power. f) nI

Therefore, (power. f) a , = f • (power. f). o

Now observe that

-14-



Ia +I - power. a

LB x] - power0 [a+]

[a TJ - power, La x]

[a -] - power.

The differences of these functions then follow from the theorem.

6. Recursive Definitions

Consider the following equations, which define the length function on LISP-like lists:

length nil = 0

length (z & y) = I + length y

(Here 'z & V' denotes the result of prefixing z on the list g - the LISP 'cons' operation.) The second equa-

tion is a functional difference equation, as can be seen by writing it in the form:

length- [z &I = u . length

Hence it is easy to see that the change in length with respect to prefixing is the successor:

length$ [z &] - u.

On the other hand, if we were to define length recursively, we would write something like this:

0t, if L nil
length L f 11+ length (rest L), ifL nil

This corresponds to the equations

length nil = 0

length L I + length (rest L), for L nil

The second equation here is also a sort of difference equation, but it does not fit our earlier form. Written

in terms of compositions it is:

length * IN - a . length - rest

where we have composed length with IN to restrict its domain to nonnull lists (taking N to be the set of

nonnull lists).

_= -15-



What is the relationship between the two difference equations satisfied by length? Consider the first

difference equation:

length. I &] = a . length

Compose with the inverse of [z &I on both sides:

length * Iz &I Iz &] = - length - Iz &]-

Now [z &] • jz &]- is the identity restricted to the range of [z &I, which in turn is the set of lists begin-

ning with z. Hence, if N. is the set of nonnull lists beginning with z, then

length * IN. = a - length Iz &I-'

This looks almost like our second difference equation:

length * IN = a. length - rest

We can see their relationship as follows.

The meaning of [z &I is to put z on the front of its argument. Hence, the meaning of jz &[-1 is to take

z off the front of its argument. On the other hand 'rest' takes the first thing off the front of its argument

no matter what it is. Hence Iz &I-1 is like 'rest' except that it's defined only on lists whose first element is

z. That is, Iz &I is a proper subfunction of 'rest', [z &]- C rest.

Now we make two simple observations. First, the set of all nonnull lists is the union, for all z, of the

nonnull lists that begin with z:

N = U N.

Second, the 'rest' function, which deletes the first element of a list no matter what it is, is the union of all

the functions iz &I', which delete z from the front of a list:

rest = U It &I

It is now easy to show the two difference equations are equivalent.

Theorem 12: Suppose that

length • IN = o length Iz &-'

-18-



is true for all z. Then

length- IN = u length rest

The converse also holds.

Proof: To prove the first implies the second we have:

length N = length - U IN.

= (length - )

= U (a • length - fz &1)

= u- length - U fz U J -

a - length * rest

To prove the second implies the first we restrict both sides to N,:

length IN - IN, = a length • rest IN,

Observing that rest -N, I= 1z &J-1:

length . Iv a • length ° 1z &-'

7. Definition of Integral

In this section we consider a functional integration operation that is inverse to the functional difference.

That is, given isomorphic functions g and h we want to find an f that satisfies the functional difference

equation

g = f$h

Since this equation states that g is the isomorphic image under f of h, our goal can be viewed as finding an

isomorphism between g and h.

In general there may be many isomorphisms between two relations. Since this implies that the solution

to a functional difference equation is often underdetermined by the equation, to determine a particular

-17-



solution it's necessary to specify a boundary function b contained in the solution. Thus the solution to the

equation is required to be an extension of the boundary function (i.e., b C f).

As we did for functional differences, here also we want to permit the case where g is isomorphic to a

part of f; that is, the case in which f is not defined for some members of h. This leads us to:

Definition 5: Let arbitrary relations g, h and b be given. If there is a minimum isomorphism f, with

b C f, satisfying the equation

f.&h = g.f

then we call f the definite functional integral with respect to h, from b, of g. We write f:

h b g

This is read "the h integral from b of g."

Theorem 13: If the definite functional integral exists, then it satisfies the equation:

Proof: Follows immediately from definition. 0

Next we explore the conditions under which functional integrals exist.

Lemma 13-1: R and S are isomorphic relations if and only if there exists a one-to-one function q such

that S = .0$RandmemR = dom.andmem S = rng#.

Proof: This follows easily from the definition of isomorphic relations in ICarnap58]. 0

The preceding lemma says that two relations are isomorphic if there is a one-to-one function (isomor-

phism) between them that preserves all the structure of both. Following [Carnap58 we call such a func-

tion a correlator between the relations. In the following definition we give a name to the case in which the

correlator does not preserve all the structure of one of the relations.

Theorem 14: If g and h are isomorphic relations, and b is a subset of exactly one isomorphism

between g and h, then h CIh g exists.
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Proof: We know (by hypothesis) that there is a unique f such that b C f and f is an isomorphism

between g and h. Note that since f is a correlator between g and h, g = f S h and mem h = dom f.

Hence we can apply Cor. 4.1 and conclude that f 8 h satisfies the difference equation 1h = gf. This f is

minimal, since eliminating any element of f would result in f not being defined for all members of h (and

hence not an isomorphism between g and h). Hence f is the functional integral h 41 g. o

8. Examples of Integrals

We can perform a number of functional integrations based an previously established functional

differences. First note

Theorem 1: The power operator satisfies the difference equation:

(power. f ) • a = f . (power. f)

Proof: We have already shown (Theorem 11) that (power. f) $ o = f, so it remains to show that the

difference equation has a solution. But we know a solution exists if and only if

dom (power. f)a C dom (power. f)

But since dom o = dom. (power. f) the above condition holds. 0

Corollary 15-1: The a integral from (0, a) of f is the power from a of f:

a 4(0, .) f = power. f

Proof: Since (power. f) 0 = a we know that the boundary relation (0, a) C power. f. The result

follows because, by the preceding theorem, the power operator satisfies the difference equation (and it is

clear that it's the only isomorphism to do so). in

Corollary 15-2: We have the following functional integrals:

01~~ ~ 4@(a6 Il +1

)ooaioj = [a

a$(oI)[axJ -- [aT!
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Proof.- Immediate application of preceding corollary and definitions of the integrand:. 0

9. Computing Integrals of Sequences

Consider the difference equation f At = 9 f and suppose that we are given g and h and want to

determine f. We begin by investigating a restricted class of equations: those in which both g and h are

well-founded sequences. So further suppose that h is the sequence (10 z1 , '-)and g is the sequence

(yfo, M1, - - ). Thus zi h ' 10 and y, = g yio. Finally suppose that solution is required to extend

the boundary function b =(1o, yo) that maps zo into yo.2 This situa an be diagramed:

10 h z, h z2 h..

Yo g Yi g V2 g .

Our goal is to find an isomorphism f connecting each z, with the corresponding V,, that is, V, = fIa, We

will construct f inductively.

Referring to the above diagram it can be seen that we can get from ze to V0 by following edge 4 Whe

can get from z, to V, by following h- (i.e., At backward), then 6, then h Similarly, to get from z2 to gj

we follow h-' twice, then b, then h twice. Thus f can be expressed as the infinite union of the paths

(;i, yj, which can be expressed in terms of h-', & and A:

f = (Z0, MO) LU (ZI, Mi) U (Z2, V2) U (ZnI, Ps)-

= b U(g . b . h-1)U (g2 . b * h-2) U(is A-')

Hence,

f = b U 96h-1 U glbA'3 - glbIu' b U g'bA-

2. Actually, in this case there is only one possible isomorphism between the relations and 4. so the specification of the, boundary
function is redundant. However, we are trying to develop a general method
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We would like a finite representation for f. Therefore compose on the left with g and the right with h-I' to

get:

gjh-I = gbh - 1 U g2bh- 2 U Ubh-S U ...- U g bh -j

i-!

This is the original equation except for the b term, so it is easy to see

f = b U gj-1

Thus we have a recursive definition of f, the solution to the functional difference equation. Our next goal

will be to obtain a finite, nonrecursive expression for the solution.

Define the functional product f I g between two functions:

S( IIg) <z, y> = <f z, g y>

Thus, if f: D -. R and g: D -. R', then

(f II g): (D x D) -. (R X R')

Now it is easy to see that

<za, Fi> - (h It g) <zo, yo>

<z-1, 12I> = (h g) <z,, 3V> (l g)2 <zo, Vo>

<Zs, g,> - (h II g) <z3, Y2> (h i g) <zo, yo>

<z,, Y,> - (h II g)' <zo, o>

Hence,

f { <zo, yo>, (h 11 9) <zo, o>, (h ig)2 <zo, yo>, (h 9) <zo, yo>, }

It can be seen that f results from applying all the functions (h II g)0 , (h 11 g)1, (h 11 g) 2, to the initial

pair < s , yo> We will show that this is the image of the relation (z0 , yo) under the transitive closure:

(h I I g)"* = (h 9[ )o u (h IIgsU (h It ...u •

Therefore define the image function:

imgfS = '1 3 z2E S <z, y>E fI)

- 21-
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We begin by proving

Leimma 15-1: For any relations f and g and any set S,

img fS U img g S = img (ju g) S.

Proof:

yE img (jUg) S 4 3 z E SI<z, y> E jUg]

3 z E S J<z, y> E f V <z, y> E g]

4=> 3z E S ]<z, y> E f I V Iz E S j<z, y> E g]

- yEimgfrS V yEimggS

y E (imgf S u img g S)

Note that this lemma applies when f and g are functions, although in that case f u g will not be a

function unless f and g have disjoint domains.

We already know that

f = (Xo, yO) u (Z,, Y,) U (-2, Y2) U .

Now observe that

(Xi, Y.) = {<2;, 1,>)

= {(h II g)' <xo, yo>}

= img (h II g)' {<o0, Yo>l

= img (h 1i g)' (xo, yo)

Hence, taking b = (z0, yo),

f = [img(h!Ig)0 bU img(h 9)'blu img (h II )2 b] U U [img (h II9)
i=0

which by the lemma iss

imgI(h Il g) 0 u(h lg)''J(h 1 g)2 L . b img g)] b

3. Actually, by a transfinite extension of the lemma.
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But the expression in brackets is just the transitive closure of (h I[ g), so we have

f = img (h II g) b

as a solution to the functional difference equation

f.h = .

This result is summarized in

Theorem 16: If h and g are well-founded sequences and b = (z0 , yo), where z0 and yo are the initial

members of h and g, respectively, then the definite functional integral with respect to h of g, generated

from boundary isomorphism b, is

h 1) b 9 = img (h I g) b

Proof: The proof is clear from the derivation. c3

Therefore we introduce

Definition 6: If g and h are well-founded sequences then the indefinite functional integral with respect

to h of g is:

h 4D g - img(h II g)(

This is read "the h integral of g."

Our next task must be to prove that this solution satisfies the difference equation.

Theorem 17: If g and h are well-founded sequences, then the definite functional integral satisfies the

equation

Proof: As shown in the proof of Lemma 15-1,

h C p = (zo, yo) U (zi, Y,) U (z2, Y2) U ...

Hence the left-hand side of the difference equation is:

(h O, g) • h (zo, Yo) u (z,, ,) u (Z, v)u ... h

-23-



= (o, V,) U (Z,, N2) U (=2, y,) U ...

The last equation follows from zj,+ = hzi. Now we turn to the right-hand side of the equation:

g • (h @1 g) = g• -(o, Vo) u (,, g,) u (Z2, V2) u ...

= (zo, V,) U (zi, V2) U (:,, ys) U ...

The last equation follows from yi,, - gy,. The identity of these results proves the theorem. E3
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