
-A165 955 THE BASIC INSTRUCTIONAL PROGRAM STUDENT MANUAL:
MAINSAIL CONVERSION.. (U) STANFORD UNIV CA INST FORMATHEMATICAL STUDIES IN THE SOCIAL S.-

UNCLASSIFIED M L DAGEFORDE ET AL APR 78 NPRDC-SR-78-9 F/G 9/2 WL

EEEEEEEEEEohEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEE
ll..EEEEEEEEEEE

Vs

~lift

"'1.0 LU 9.5*

W. L3

- 12.2'L I I

ff1125 111 '. 1.6

MICROCOPY RESOLUTION TEST CHART
N4r11)NA1 RURFAU O sTANDARpS A,

Ln
Lfl

Li)
(0

a DTIC
ELECES AR 2 0D

NPRDC SR 78-9 APRIL 1978

THE BA.UW INSTRUCTIONAL PROGRAM STUDENT
MANUAL: MAINSAIL CONVERSION

I UI11111W ATE3MW A

A moe.fmV,,...

F"Dtbutice un~iw.

86 2 28 055
.. t

NPRDC SR 78-9 April 1978

THE BASC INSTRUCTIONAL PROGRAM
STUDENT MANUAL: MAINSAIL CONVERSION

Mary L. Dageforde

Marian Beard
Avron V. Barr

Institute for Mathematical Studies in the Social Sciences
Stanford University

Palo Alto, California 94305

Reviewed by
John D. Ford, Jr.

Navy Personnel Research and Development Center
San Diego, California 92152

FOREWORD

This research and development was conducted in response to Navy Decision
Coordinating Paper, Education and Training Development (NDCP-Z0108-PN) under
subproject Z0108-PN.32, Advanced Computer-Based Systems for Instructional
Dialogues, and the sponsorship of the Director, Naval Education and Training
(OP-99). The overall objective of the subproject is to develop and evaluate
advanced techniques of individualized instruction.

This report is one in a series of six dealing with the BASIC (Begin-
ner's All-Purpose Symbolic Instruction Code) Instructional Program (BIP),
which is a "tutorial" programming laboratory designed for the student with
no previous training in programming. The others concern (1) the original
BIP student manual (Note 1), (2) the conversion of BIP into the MAINSAIL
programming language (Note 2), (3) BIP system documentation (Note 3),
(4) the BIP supervisor's manual (Note 4), and (5) curriculum information
networks for computer-assisted instruction (Beard, Barr, Gould, & Wescourt,
1978). This report differs from Note 1 in that it incorporates changes
resulting from the MAINSAIL conversion.

This report is intended for use by students using the BIP system. The
work was performed under Contract N00123-76-C-1543 to Stanford University.
The contract monitors were Dr. John D. Fletcher and Dr. James D. Hollan.

J. J. CLARKIN
Commanding Officer

lii

* .1 ;,

SUMMARY

The BASIC Instructional Program (BIP) is a "hands-on laboratory"
that teaches elementary programming in the BASIC language. This manual
is the student's main source of information about the BIP system and
the BASIC language. It is organized as a reference document aimed at
students with no previous programming experience.

0v

.

--.-- ,

. '.

CONTENTS

Page

SECTION 1. INTRODUCTION 1

1.1 The BASIC Language and the BASIC Instructional Program (BIP) . . . 1

1.2 Using the Manual 1
1.3 Signing On 1
1.4 Talking to BIP 2

1.5 A Sample Interaction with BIP 3

1.6 Some Helpful Keys to Know 8

1.7 Error Messages and Changing Your Program 8

SECTION 2. PROGRAMMING IN BASIC WITH BIP 11

2.1 Programming 11
2.2 Program Storage and Execution 12

2.3 Line Numbers 13
2.4 END. 13

2.5 Input/Output 14

2.6 PRINT 14
2.7 Data Types and Values 16

2.8 Primaries 16
2.9 BASIC Variables is
2.10 Assignment 18
2.11 LFT (Assignment) 19
2.12 Expressions and Operators 20
2.13 BASIC Operators 22

2.14 INPUT 24

2.15 READ . . DATA and REOPEN 25
2.16 DIM 26

2.17 Program Flow 28

2.17.1 Loops 28

2.17.2 Branch and Return 30

2.18 GOTO 31

2.19 Relational and Boolean Operators 32

2.20 IF . . THEN 34
2.21 FOR . . NEXT 35

2.22 GOSUB . . BEGINSUB . . RETURN . . ENDSUB 39
2.23 Functions, Arguments, and Returning Values 40

2.23.1 Built-in Functions 41

2.23.2 RND.............. 41
2.23.3 INT............... 41

2.23.4 SQR 43 0

2.23.5 LEN 43 03
2.23.6 User-Defined Functions..................... 44

Availability Codes

Q(A,T - Avail arid ar
vii 3TEO D-t Special

Ad4

* Page

2.24 Other Useful Statements........................45

2.24.1 STOP...............................45

2.24.2 REM 45

SECTION 3. BIP COMMANDS...........................47

3.1 Curriculum Manipulation 47
*.3.2 Program Manipulation...........................48

3.3 File Storage and Access................... 5
3.4 Dealing With the World.........................52

GLOSSARY . 5

REFERENCE 61

REFERENCE NOTES 61

DISTRIBUTION LIST...............................63

vii

*qAL

SECTION 1. INTRODUCTION

1.1 The BASIC Language and the BASIC Instructional Program (BIP)

-This course is designed to help you learn some fundamental program-
ming concepts through the BASIC language. BASIC is widely used; it is
probably available on almost any computer system you are likely to en-
counter. BIP is an acronym for "BASIC Instructional Program," the pro-
gram that runs this course. It is used only for this purpose and you
will never hear of it in another context.

The version of BASIC used in this course is not identical with the
many other versions you may find elsewhere. However, the fundamentals are
the same, and the transition to another version of BASIC will be easy.

1.2 Using the Manual

This manual is meant to be an easy and fast source of reference
material. It will be most effective if you have it with you while you are
working at the terminal. Try to become familiar with the manual, but do
not try to memorize it. Keep it handy and refer to it often.

The first section of the manual introduces you to BIP and some of the
keys on the terminal that you should know about. The main body of the manual
is the second section, which explains fundamental programming concepts and
structures andi describes the language in which you will write your own pro-
grams (namely, BASIC). The third section lists and explains BIP's special
commands. The glossary lists all the specialized terms used in the manual,
and refers to the appropriate sections for further information.

The manual is not intended to be a task-by-task guide to the course.
It is a reference manual that contains a complete description of all the
BASIC statements (the "sentences" of the language) and BIP commands.
Especially when you first start programming, a reference manual contains a
large amount of information that you are not ready to use. You must try to
isolate exactly what you're looking for, and to ignore information that
doesn't seem to relate to your immediate problem. This is not easy, but it
becomes easier with practice. The glossary is usually a good place to start.

Advice: Don't be afraid to make mistakes. A computer is a consistent
machine, and you can frequently discover what works and what doesn't by trying
different ways of doing something and watching the results carefully. The
manual is full of sample programs that illustrate how BASIC works. Copy and

* RUN these programs whenever you like.

1.3 Signing On

Whenever you want to use a computer, you always have to start by
establishing communication with the machine somehow, letting the computer
know who you are and what you want to do. Ask your supervisor how to
originally sign on to the computer and start BIP running. Then the terminal
will say

WELCOME TO BIP!!

Please type your number and first name.

Type your BIP number, a space, your first name, and a carriage return
(which is probably a key marked "CR" or "RETURN" on your keyboard, ab-
breviated by <cr> throughout this manual). The terminal will say "HI";

and you are signed on. You will sign on in this way every time you work
with BIP.

In case you make a typing mistake, there may be a key marked "DEL" or
"DELETE" on your keyboard that erases the last character you typed, like a
backspace. If not, go ahead and type a <cr>. BIP will tell you it doesn't
know who you are and will sign you off automatically. Then you can start
all over and do your sign on correctly.

Once you have signed on, you will be "talking" to BIP. You must type
<cr> to end each line you type. BIP reads and responds to your commands
after you type <cr>. BIP types a * every time it is ready for you to

type something.

It is not too soon to tell you about signing off. You must sign off

before you leave the terminal. Do it by typing BYE <Cr> to BIP. The terminal
should print a short message ending with GOODBYE.

Please do not leave a terminal that has not said GOODBYE to you.

Occasionally, you will be the victim of a "system error" or a "system
* crash." These are unexpected, unpredictable, unavoidable events. You will

know that one has occurred either because your terminal suddenly prints
something like "SORRY, SYSTEM ERROR" or because your terminal stops printing
anything at all. If you are near any other people using the same computer,
you can ask them whether they are still getting any response; if they are,
and you aren't, you should probably find the person who knows something about
BIP.

1.4 Talking to BIP

BIP does not present lessons on programming. It does not ask questions
and wait for you to type correct answers. It does present programming tasks

that require you to write BASIC programs. By writing, running, testing, and
fixing your own programs, you will learn a lot about programming. BIP will
help you, not by knowing the correct answers (many different programs can

produce the "right" result) but by identifying errors, giving you more in-
formation, and presenting tasks that build on the skills you have developed.

The pattern of the interaction between you and BIP generally goes like
this:

a. You ask for a task, by typing TASK. BIP prints out the require-
ments for a program that it expects you to write and run.

2
-' U1144" *5

b. You write the program, test it, fix it, test it, and complete
it. You will make a number of errors along the way, many of
which will cause BIP to print an error message, tellingII you that it can't understand what you typed, or can't do what

c. Having written the program required by the task statement,
'A' you type MORE, and BIP looks at your program to see that

it works as it should. BIP then completes the task by
giving you the "post-task interview." In some cases, the
current task will be extended with some additional requ ire-
ments.

Within that pattern, many additional things may happen. You may be
confused, either by the statement of the problem, by the error messages
printed by BIP, or by your program doing something you do not expect when
you run it. There are specific ways to deal with each kind of confusion.

a. If the task is not clear, you may request a HINT or use REP.
To get a better idea of the output your program should pro-
duce, you may run a DEMO.

b. If the meaning of the error messages is not clear, you may
type a question mark (?) just after the message is printed.
BIP will give you some brief information about that error.
Vol! sho~uld also look in the glossary for more information,
starting with the first word or phrase that you don't under-
stand. Use the cross-references to find the information you
need.

c. If your own program does not behave as you want it to, you
should first LIST it to see exactly what it says. You should

* also use the debugging option -TRACE- that will show you, in
detail, your program in action.

atteIf you are already confused just by reading this, go to the glossary
atteend of the manual and start looking up the words printed here in

upper case, like TASK. Do not try to memorize anything. Do try to get an
idea of how you can find information in the manual.

1.5 A Sample Interaction with BIP

This dialogue should give you an idea of what it's like to work with

BIP and illustrate how you can learn from your errors. The student' s typ-
ing is underlined; everything else in upper case is printed by BIP. (You
will never have to type underlines yourself when you use BIP.) Comments
and explanations appear at the right in lower case. Remember that each line
of student's typing ends with a <cr>.

Start BIP running, and sign on.

U WELCOME TO BIP

3

.%W

PLEASE TYPE YOUR NUMBER AND FIRST NAME.
123 CHARLES

HI CHARLES!

*TASK You ask for something to do.

BEGIN TASK: STRINGY
USE THE -SCR- COMMAND TO SCRATCH (ERASE) YOUR PREVIOUS PROGRAM, IF ANY.

WRITE A PROGRAM THAT PRINTS THE STRING "SCHOOL"; START WITH THE GLOSSARY

TO FIND OUT WHAT A STRING IS.

BIP describes a program for you to write.

*SCR First, get rid of any old program that's
left over from a previous task.

*HINT You're not sure how to start, so you
ask for a HINT.

HINT #1

YOUR PROGRAM SHOULD HAVE TWO STATEMENTS IN IT: ONE -PRINT- STATEMENT,
AND ONE -END- STATEMENT. DON'T FORGET ABOUT LINE NUMBERS, AND DON'T
FORGET THAT STRINGS MUST HAVE QUOTE MARKS AROUND THEM.

*DEMO You take a look at what the model does.

EXECUTION OF THE MODEL.

SCHOOL

EXECUTION COMPLETED AT LINE 99
* DEMO ENDED

As you thought, the model is a program
that prints "SCHOOL" FOR YOU.

*PRINT You type what you think is a -PRINT-
statement.

BASIC STATEMENTS MUST HAVE A LINE NUMBER
LINE NOT ACCEPTED. (TYPE ? FOR HELP).

And you are reminded that you need a
line number.

**10 PRINT When you use the line number, BIP
doesn't complain.

*20 "SCHOOL" Now you try to say what it is that you
want your program to print.

414

MISSING BASIC OPERATOR
LINE NOT ACCEPTED. (TYPE ? FOR HELP)

But that must not be the way to do it.
You ask for more help by typing a'T

CHECK TO SEE IF YOU HAVE A CORRECT BASIC STATEMENT ON THIS LINE

RIP can't tell what to do with "SCHOOL"
all by itself. You need a BASIC state-
ment that does something with the string
"SCHOOL"; you decide to consult the
manual.

*10 PRINT "SCHOOL The right idea: a -PRINT- statement
that prints something.

SYNTAX ERROR: UNMATCHED QUOTE MARKS
LINE NOT ACCEPTED. (TYPE ? FOR HELP)

But something is wrong, and you ask
4. for more help.

4*-

REMEMBER THAT ALL STRINGS MUST HAVE A QUOTE AT THE BEGINNING AND) END.

TYPE ? FOR MORE HELP

That makes sense.

10 PRINT "SCHOOL" You try again on the -PRINT- statement.

WAS: 10 PRINT
BIP didn't complain. It just reminded
you that you have replaced line 10.
Thtngs look good.

-*RUN So you try to -RUN- the program to see
if it works.

ERROR DOCTOR DIAGNOSIS: NO 'END' AT END
-. 4 LOOK AT LINE NUMBER: 10

TYPE ? FOR HELP
It doesn't even run. It needs to have
an -END- statement.

You ask for more help.

EVERY PROGRAM SHOULD HAVE EXACTLY ONE -END- STATEMENT-THE LAST LINE OF
THE PROGRAM

5

0

TYPE ? FOR MORE HELP
And you understand what it means.

*20 END So you type an acceptable -END-.

You think you have written a program

that does what the task asked for, so

you type -MORE- to go on.

*MORE

YOU DID NOT RUN THE PROGRAM.
But you didn't -RUN- the program. You
haven't actually seen it print "SCHOOL"
yet.

*RUN Try again.

EXECUTION OF YOUR PROGRAM

SCHOOL

EXECUTION COMPLETED AT LINE 20
Now it looks fine. Your program ran
without any errors, and it printed the
string.

*WHAT You want to make sure that you met the

requirements of the task, so you ask

for its text again.

I. YOU ARE IN TASK STRINGY.
DO YOU WANT THE TEXT PRINTED OUT? (Y OR N) Y

Yes, please.

USE THE -SCR- COMMAND TO SCRATCH (ERASE) YOUR PREVIOUS PROGRAM, IF ANY.

WRITE A PROGRAM THAT PRINTS THE STRING "SCHOOL"; START WITH THE GLOSSARY
TO FIND OUT WHAT A STRING IS.

As you thought. You can always use the
-WHAT- command to review the task.

*MORE You're ready to go on.

EXECUTION OF THE MODEL
EXECUTION OF YOUR PROGRAM

LOOKS OK!! BIP compares your program with the
model, and sees that yours is fine.
Now it asks you to evaluate yourself.

6

POST TASK INTERVIEW

HERE IS A TYPICAL SOLUTION TO THIS TASK:

10 PRINT "SCHOOL"
99 END

DO YOU UNDERSTAND THE SOLUTION? (Y OR N) Y

You understand why the model works.

THINK ABOUT THE SKILLS USED IN THIS TASK. FOR EACH SKILL,
TYPE Y IF YOU HAVE HAD ENOUGH WORK WITH THAT SKILL.
TYPE N IF YOU THINK YOU NEED MORE WORK ON IT.

PRINT STRING LTERAL (Y OR N) N

You think you'd like to do more
with strings and quotation marks.
BIP will remember that fact; you

4 can expect more strings later.

TASK STRINGY COMPLETED. The end of this task.

*TASK You ask for another.

BEGIN TASK: PLUSFOUR
THIS PROGRAM SHOULD ASSIGN THE VALUE 6 TO THE NUMERIC VARIABLE N,
THEN PRINT THE SUM OF N AND 4.

You see some unfamiliar terms, and
realize that you have to spend at
least a little time with the manual.

* BYE You also realize that you don't have
any more time, so you sign off.

SIGNOFF: 18-MAY-77 17:50:18

YOU HAVE COMPLETED I. TASK(S) THIS SESSION;

STRINGY

TOTAL TIME TO DATE: .800 HOURS
TIME ON TODAY: .067 HOURS
TOTAL SESSIONS: 2
TOTAL TASKS COMPLETED: 3

COPYRIGHT (C) 1973 BY THE LELAND STANFORD JUNIOR UNIVERSITY

GOODBYE, CHARLES.

And that's all.

7

1.6 Some Helpful Keys to Know

<Cr> Abbreviation f or the carriage return key, probably
marked CR or RETURN on your keyboard. Every line you
type must be ended with a carriage return.

DEL (or
DELETE) Erases the last character you typed.

HOLD Stops the screen so that you can read everything
before it disappears off the top.
There may be a key marked "HOLD" on your terminal.
If not, ask your supervisor what key or keys are used
for this purpose. If you have a HOLD key, just hitting
it once will stop the screen within a second or so.
When you want to start the screen moving, hit HOLD
again. Any other character will also start the screen
moving after you stop it, but that character will also

print on the screen. Ignore it.

1.7 Error Messages and Changing Your Program

"Errors" were mentioned earlier. In the context of this course, an
error is something that BIP knows it cannot handle correctly. For example,
if you type something like "RASK" when "TASK" was the work you meant to
type, BIP will give the error message ILLEGAL BIP COMMAND because it ca't
do anything with the incorrect word. There are three different kinds of
errors that BIP detects and tells you about:

a. "Syntax errors" are detected immediately after you complete your
A line. There are rules that you must follow when you give a BIP

command (like the one above) or type a BASIC statement. BIP
recognizes violations of those rules and complains immediately.
(An error you may make frequently is to misspell a word, as in
the example.)

b. "Error Doctor errors" are detected when you tell BIP to RUN your
program. A program is a list of instructions for the computer to
follow; if your program is missing some essential things, the com-
puter can't follow the instructions. BIP recognizes the absence

S." of these essential things, and tells you what's missing.

C. "Execution errors" are detected as your program is running. If
"'I your BASIC program turns out to be impossible to follow at some
V point, BIP will try to tell you what the problem is.

It is a good idea to LIST your program before you make any changes. You
must make some changes if BIP prints an error message, or if the program does
not produce the results you want. To make a change, either retype correctly
the line with the error or use the CHANGE command (see Section 3.2). Suppose
you had the line

50 PRINT "THE RESULT IN GALLONS IS "; X/Y

and you decided (or BIP forced you) to change it to

8

50 PRINT "THE RESULT IN GALLONS IS "; Y/X

instead. You could retype the line, changing the positions of X and Y,

or you could use the command

CHANGE "X/Y" TO "Y/X" IN 50

(or, since the "TO" and the "IN" are optional,

CHANGE "X/Y" "Y/X" 50).

BIP will always tell you what the line was before the change, as a
warning in case you didn't really want to change that line. (If this is
the case, you must change it back again.)

If you want to delete a line completely, type the line number and the
"CR" or "RETURN" key. Then LIST the program to be sure you have what you
want.

.99

SECTION 2. PROGRAMMING IN BASIC WITH BIP

This is the main body of the manual. It is organized by complexity

of concepts--the most fundamental first, the more advanced later. Since
programming concepts frequently overlap, however, you will have to bounce
back and forth to find the information you need in a particular situation.

Do not try to memorize the information, especially the first time

you read this section. You may not even want to read this entire section
of the manual at one time. Subsections that should be read together, if

you choose to read chunks at a time, are:

2.1-2.4--Some fundamentals of programming in BASIC.
2.5-2.11--Input, output, assignment, and variables.
2.12-2.13--Expressions.

2.14-2.16--INPUT and READ statements.
2.17-2.20--Sequence and control of execution.
2.21-2.23--FOR, GOSUB, and functions.

Read 2.24 the first time you see STOP or REM in the model solution.

2.1 Programming

A computer is not smart. It can only do what it is instructed to do,

and every tiny step must be communicated in a form that the computer can
understand. A program is a list of instructions to a computer.

Writing a program involves three big stages:

a. Specify in complete detail what the program is supposed to do.

b. Translate your statement of the problem into a language the com-
puter understands.

c. Check the program to be sure that it does everyting you want it

to do.

The difficulty of each stage relative to the others may vary, but none

of the three can ever be ignored just because the programmer thinks "it's
too easy." In particular, you must not neglect the first stage, the detailed
description of the problem. It is often useful to write out in English
exactly what you want the program to do, and in what order. You should
list the steps you would have to follow to solve the problem by yourself;
if you cannot do this, you will not be able to use a computer to solve the

problem. For example, you can ask a friend to give you two numbers, and you
can tell him the result of multiplying those numbers together. If you think
about it, you can see that there are a number of steps involved:

Ask for the first number.
Hear it and remember it.
Ask for the second number.

11
I

".I

Hear it and remember it.
Multiply and remember the res~ult.
Tell your friend the result.

The more specific you are in describing each step of the problem,
the easier it will be to complete the second stage, where you translate
your English into a programming language. A computer cannot understand

* English, nor can it guess at your meaning if you give it an instruction
that is only close to what you meant. The rules governing the syntax,
or grammar, of programming languages are rigid, and you must use the
correct words, the correct punctuation, etc. Just remember that your
English list of steps, although essential, is not yet a computer program;
you must translate each step into a series of symbolic instructions in
exactly the form that the computer, through a programming language, can
accept. This becomes much easier with practice, just as in any other
foreign language.

The third stage in writing a program, where you check everything
to be sure it all works as you want it to, is as necessary as the other
two. The computer will follow exactly the instructions you give it. If
these instructions do not say precisely what you meant, the program will
not quite do what you want. Because programs must be so precise, it is
easy to overlook small but important details, and very few programs run
correctly" the first time. No computer will make up for your negligence,

so you must check the results of your program at least as carefully as you
thought out the problem in the first place. This process, called "debug-
ging," is tedious but necessary. If a program doesn't work, it's usually
the programmer's fault, not the computer's.

2.2 Program Storage and Execution

In many programming languages, you first write your list of instruc-
tions, and then tell the computer to follow all the instructions in the
list. Your list is sometimes called a "stored program" because the computer
must store the instructions until you tell it to begin executing them.
Execution is called "running" the program.

Whether the purpose of the program is to perform complicated cal-
culations or to play a simulated card game, it must have some information

* on which to operate. This information is called data, and much of the data
required by a program can be stored in the program itself. In BIP, the
alternative to storing the data in the program is to have the user (the
person who runs the program) supply some data when the program stops and

* asks for it.

For example, a program whose purpose is to print a 10 by 10 multiplica-U tion table should have all its information stored within it. It is not
necessary to request information when the program is actually executed--the
user simply tells the computer to run that particular program. In contrast,
consider a program that plays a game with the user. Such a program needs
to get information as it runs, since the progress of a game cannot be plan-
ned in advance. The program must stop and ask the user for information--

Nil what move he wants to make, for example. This second kind of program is
called "interactive" because it requires the programmer to plan for inter-
action with the user of the program as it runs.

12

%1 VV- p I C~ V 4

In either type of program, the data that the program deals with must
be kept in the computer such that it is accessible to the program. This
is done by the use of variables of different data types, which are dis-
cussed specifically in Sections 2.7 through 2.9.

A word about "the user": Programmers usually write programs for other
people to use. Whether the program calculates payroll checks or plays a
card game, it will be used by someone other than the person who wrote and
debugged it. As you write your own programs, remember this hypothetical
person called "the user." Try to make your programs understandable and
complete enough so that a friend of yours could sit down and run them with-
out any trouble.

It's also a good idea to include "remarks" inside your program, with
the -REK- statement. A remark (also called a "comment") is very simple:
it's just a note to yourself that explains something about the program with-
out affecting the way the program runs at all. You will be surprised to
see how soon you can forget what an "old" program (a week old, for example)
is supposed to do. REMarks that are saved as part of the program itself
are handy notes to remind you.

It is not hard to write a program that does the same thing over and
over, never stopping. A program that never stops is in an "endless (or
"infinite") loop" which you must stop or "interrupt." BIP itself helps
you watch out for this. After executing a large number of statements, BIP
will stop execution, tell you it thinks your program may be in an infinite
loop, and ask whether or not you want to continue execution. You should
probably say "no" and -LIST- your program. Then try to figure out why it
may have been in an infinite loop.

The -GOTO- section (2.18) has an example of this kind of loop.

2.3 Line Numbers

Almost all implementations of BASIC require you to number each line
of your program. Each line, or statement, is an instruction to BASIC, tell-
ing it to do some specific thing. When you run a BASIC program, BASIC
finds and obeys the instruction with the lowest line number, then the one
with the next higher number, etc. You need not type in your statements in
order, because BASIC can sort them out by line number, but you must number
them in the order you want BASIC to follow. A general practice is to use
multiples of 10 as your line numbers so that you have plenty of numbers
available if you want to insert something between two already existing lines.
BIP allows you to have up to 500 lines in a single program, but most programs
will be much shorter.

2.4 END

Use: To tell the computer when it has finished executing your program.

1Example:
~99 END.

13

Remarks:

Every BASIC program must have an END statement. The END statement
must have the highest line number in the program.

9 See STOP (2.24.1).

2.5 Input/Output

This term refers to the problem of communicating with the computer--
how you tell it to do something for you, and how you make it deliver the

* results in a way you can understand. Most people communicate with computers
through programs, so the subjects of input and output really deal with pro-
viding information to your program that makes it provide meaningful informa-
tion to you.

Input is information that goes into the program. It can be stored (as
part of the program itself) when the program is written (see the -READ- and
-DATA- section, 2.15), or given by the user when the program is run (see
the -INPUT- section, 2.14).

Output is the visible result of a program's execution. It is frequently
in the form of information printed on the user's terminal (this will be the
case for all the RIP programs you write), or it may be transmitted to a line-
printing device, to a magnetic tape, etc. In the case of interactive pro-
grams, it is important for the programmer to remember that the output his
program prints will be read by someone else, and must be reasonably under-
standable. A dialogue between a person and a computer is pointless if

* neither understands what the other says.

*2.6 PRINT

Use: To get your program to type something on the terminal.

Examples:

40 PRINT 4
40 PRINT Y + 10
40 PRINT A$
40 PRINT "DOG"
40 PRINT 10 < 15

*40 PRINT "THE VALUE OF X IS "; X; " AND X SQUARED IS ";X^2

40 PRINT (prints a blank line.)

Remarks:

Use the PRINT statement whenever you want to have your program
S type something. Anything surrounded by quote marks is taken literally.

Anything without quote marks is "evaluated"--BASIC figures out what its
value is, and PRINT prints that value.

14

The statement

40 PRINT "X"

prints just the letter X, because of the quote marks. The statement

40 PRINT X

makes a BASIC look up the value of the variable X, then print that number.
There are no quote marks, so BASIC has to evaluate X. (Read about values,
variables, and evaluation in the next few sections.)

Boolean values can be printed too. The statement

40OPRINTl10> 9

prints TRUE on the terminal, because 10 is greater than 9.

40 PRINT 10 - 100/2

prints FALSE, because 10 is not equal to 100 divided by 2.

"Fancy" PRINT statements:

Using a semicolon between two expressions allows you to print more
than one Pxpresqicn on a single line. You may combine different types of
expressions in a PRINT statement. The semicolon allows you to PRINT both
literals and variables in one statement, which can make your program's
output look good. For example, you could use two PRINT statements like
this:

40 PRINT "Y IS"
50 PRINT Y

which would tell the user of the program the value of the variable Y, but
would take two lines of output to do it. A nicer way to do it would be like
this:

40 PRINT "Y IS "; Y

which would give the same information, but all on one line.

A more complicated example: Assume that the variable X has the value
4, and the variable Y has the value 5. The statement

40 PRINT "THE SUM OF YOUR NUMBERS IS "; X+Y

* will cause BASIC to print

THE SUM OF YOUR NUMBERS IS 9

The statement

40 PRINT "X + Y -15 IS ";X+Y-15

15

will cause BASIC to print

X + Y = 15 IS FALSE

Remember to use spaces inside your quotation marks where you need
them. Some implementations of BASIC insert a space for every semicolon,
but BIP's BASIC does not.

See Variables (2.8-2.11) and Expressions (2.12, 2.13, 2.19).

*2.7 Data Types and Values

Most programming languages operate on three different types of in-
formation: numeric, string, and Boolean. Many languages do not allow the
programmer to combine different kinds of information in a single expression,
and it is essential that you understand the differences.

Numeric information is easy to understand. A number or a numeric
expression is a thing that you can add, or find the square root of.

A string is a series of characters in a particular order. (A character
* is something a typewriter car generate, including letters, numerals, punctua-

tion, and spaces.) You cannot add or multiply strings as you can numbers,
* although most languages allow you to perform some operations on strings. In

the course you are taking, your name is stored in the computer as a string,
which is why the terminal can type your first and last name for you when you
give the -WHO- command. A string expression is a thing that has this kind of
value, as opposed to a numeric value.

Boolean information is understood by the computer to be either true or
false. In most programming languages, you can tell the computer to do one
thing if something is true, and another thing if it is false (see the -IF-

statement, section 2.20). The value of a Boolean expression is always either
true or false. (The word "Boolean" comes from the name of a mathematician
named Boole.)

A word about the size of numbers and the length of strings in BIP:
Although you can use very large numbers (20 digits, for example), BIP is

only accurate to 10 places, so very large numbers involve very large errors.
Your strings can be quite long (100 characters, for example), but you only
have room for about 60 characters on a line. So you should keep your numbers
to a size of 10 digits or less, and your strings to 60 characters or less.
Since Boolean information has no size to speak of, enough has been said.

2.8 Primaries

When your program is executed, the computer must be able to know, or
to find, the value of all the pieces of information in it. As described in
the previous section, these values may be numeric, string, or Boolean.

16

* The information that your program deals with can be extremely simple,
extremely complex, or anything in between. A primary is the simplest kind
of information that you can talk about, because the computer must go through
at most one step to find its value. Numeric and string primaries exist in
almost all programming languages, either as literals (also called constants)
or as variables, requiring assignment of values.

Literals are very straightforward. What you see is what you get; a
literal is taken literally. A numeric literal is what you immediately
recognize as a number: for example, 7 or -6.8. A string literal is enclosed
in quotation marks and is something you immediately recognize as a sequence
of characters (for example, "DOG" or "**!!"). The only slightly tricky
thing about string literals is that the characters may be numerals, but the
value of the string is still a string, not a number: for example, "6" can-
not be added or multiplied. "6"--like "A" or "XYZ"--is just something that
can be printed.

The other kind of primary is the variable. Variables are used as names
for values or as "boxes" to hold values. The value of a variable is either

N a number or a string, depending on what was assigned to the variable.

There are two kinds of variables. A simple variable is a "box" that
holds one value, either one string or one number. A subscripted variable
(often called an "array variable") can hold many values, in order, all under
the same name.

Simple variables are like the single boxes below. The first one is
a numeric variable, because the value in the box is a number. The second is

A a string variable, because the value in the box is a string.

N'_ 15' D$ "UH

In this example, the value of the variable N is 15, and the value of the
variable D$ is "OUCH" (BASIC string variables always have that dollar sign.
The variable D$ is pronounced "'D string" or "'D dollar").

Subscripted variables are like the multiple boxes below. Each box
has only one name, but (in this example) three "slots." Each slot can hold
a value of its own.

N 8 2 0 1 51 D I "H"'..

In this example, the value of N(l) is 8, N(2) is 0, and N(3) is 5. The
variable N is being used to hold a list (or "array") of numbers. The string
variable D$ is being used to hold a list or array of strings: the value of
D$(l) is "OH"; D$(2) is "1HI"1; and D$(3) is "OH" (see above). N(l) is pro-
nounced "IN sub 1" and D$(3) is pronounced "'D string sub 3."

17

NF q4 -R

Each of the elements in a subscripted variable can be treated as a
separate variable. Its value can be changed by an assignment statement,
compared to another value, printed, etc. Subscripted variables can have
as many elements or "slots" as you like. See 2.16 for more information

* about their use.

The important thing to remember about both literals and variables
is that they do not involve any operations or calculations. In the case
of literals, the value is simply the literal itself--nothing is hidden.
In the case of a variable, the computer can find its value immediately by
looking in the "box" named by the variable, where the value is stored.

See BASIC Variables and Assignment (2.9-2.11).

2.9 BASIC Variables

Use: To name locations (or "boxes") where values are stored.

Examples:

y

X2

Remarks:

A numeric variable names a "box" whose contents must have some
numeric value (e.g., -6 or 2.5) that can be changed by arithmetic opera-

* tions like addition or division. A numeric variable must be either a
single letter or a single letter and a single digit. In the above examples,
Y and X2 are numeric variables.

A string variable names a *'box" whose contents must have some
"tstring" value (e.g., "HORSE") that can be changed by the string operation
called "concatenation." A string variable must be a letter followed by the
$ character. In the above examples, B$ is a string variable.

See Primaries (2.8) and Assignment (2.10-2.11).

2.10 Ansignment

All programming languages make extensive use of variables, the "boxes"
used to hold values. A program that deals only with literals cannot be

*used in any kind of general way, since nothing within the program can ever
change. For example, a program that adds 2 + 4 has limited use, but a pro-
gram that uses variables to hold the values of two numbers, and then adds
them, is obviously more useful, since that program can add any two numbers.

The mechanism by which variables are given values is called assignment.
The simplest form of assignment is this:

<variable> -<literal>

J*O

18

A4

For example:

X - 5

After this assignment is done, the variable X "has the value" 5. Any
reference to X (like printing it, or adding 1 to it) is actually a
reference to the "box" whose name is X, the box that now has 5 in it.
The value of X can be changed by another assignment, after which every
reference to X will be taken as a reference to that new value.

The value assigned to a variable can be given as an expression com-
bining two or more values. Thus the value of X could be assigned as

X =5*4

or, assuming that the variable Y had already been assigned a value of its

X Y Y+ 1

When the computer executes an assignment statement, it follows these
steps:

a. Evaluate the expression on the right side of the "-" sign.
b. Put that value into the "box" named by the variable on the

left- zide of the "-"' sign.

Thus, the assignment X -Y + 1 means: "Find the value of Y, add I
to it, and then assign that result as the value of K." Note that the value
of Y is not changed by this assignment. Only the variable on the left side
of the - sign gets a new value. (Do not confuse your right and left hands,
or your variables will seem to have strange values.)

The assignment X - X + 1 means: "Find the current value of X, add 1
to it, and assign that new value to X." If X had the value 5 before the
execution of the assignment statement, it would have the value 6 after the

'S assignment.

The contents of the variable on the left side of the "-" sign are
always replaced by the value of the expression on the right side. The old
value of the variable (whatever value it had before the assignment statement)
is lost.

2.11 LET (Assianment)

Use: To give a value to a variable.

(Note: In BIP's BASIC, you may use either the ""sign or the "-

(a left-arrow) sign (if your keyboard has one) in assignment statements.
The ""will print as an underline or as a left-arrow on your terminal.)

19

Examples:

10 LET X = 5
10 B$ _ "HELLO"

S0 A2 = A2 + 1
10 X$ (1) = "RAINDROP"

(The word LET is optional.)

Remarks:

BASIC variables are assigned values as explained above in 2.10.
Note that the "=" sign does not indicate equality in this context; instead,
in assignment statements, "=" and " " mean something more like "becomes" or
"has the value of."

The assignment statement in BASIC is called the LET statement, to
remind you that

LET X _ 5 and X = 5

both mean "Let X have the value 5."

Remember that right and left are different, and that

i M$ = N$

"* means: "Find the value of N$, and assign that value to M$. This LET state-
ment will not change the value of N$.

A statement like

100 = X or "DOG" = M$

will cause a syntax error from BIP, because you can't assign a value to

100 or to "DOG" either. If you want the value of X to be 100-you should say
X = 100. If you want the value of M$ to be "DOG"-you should say M$ - "DOG"
to be correct.

See Data types, Primaries, and BASIC Variables (2.7-2.9). Also see

DIM (2.16).

2.12 Expressions and Operators

A primary (see 2.7) can be either a variable or a literal. In eithercase, the computer must go through at most one step to determine the value

of a primary. An operator is a symbol that tells the computer to combine or
compare two primaries in some way.

20

'4.)* ~ . *.. -....- *. * *.* **4*'.'**.* *,* ***. d

Using these definitions, an expression can be defined as either
a primary

Examples: "CAT"

B

or a primary followed by an operator, followed by an expression.

Examples: X + 1
W$ & "SONG"
(6+4) * 9
((6 + Y2) - (A + B)) / X
"DOG" & (F$ & W$)
R$ (1, 3) & R$
(A >= B) OR D$ = "DOG")

Using the term "expression" in its own definition means that an
expression can be almost infinitely complex. Programming languages follow.
a process of evaluating each part of the expression, and then putting it
all together to find the value of the expression as a whole. (Think of
how you determine the meaning of a complicated phrase like "the sister of
the father of my brother's sister's son's mother." A computer determines

* the meaning, or value, of each part of an expression in a similar way.)

More complicated expressions are evaluated from left to right and
according to the following rules:

a. Expressions within the innermost parentheses are evaluated first.
b. Exponentiation C)is done before any other operations.
c. Multiplication ()and division (/) are done next.
d. Addition (+) and subtraction (-) are next.

This means that you may need to use parentheses to make the computer evaluate
an expression correctly. In addition, you should always use spaces and
parentheses to make your expressions easy for you to read. Extra spaces or
extra pairs of parentheses will not cause errors.

Some examples:

5 + 3 / 2 ^2 is evaluated as 5 + (3 / (2^2)) =5.75
((5+3) /2 2 is eautdas (8/2) ^2 - 16

One essential thing to remember about using operators in programs is
that you must be explicit. Although a normal algebraic notation like

A + 2B

is clear to you and your algebra book, it is not clear to the computer. Any
time you want the program to perform multiplication, you must say so, usually

* with 'W" (the multiplication operator). The equivalent of the above algebraic
expression is

A -2*B.I 21

You will also quickly notice that your terminal cannot type exponents
up above the base. Exponentiation is always indicated on the same line,
usually with the "" operator. (On some terminals, there is a key with an
arrow that points upward. Otherwise, use 2 asterisks.) Thus, to get 17
squared, you must use

17 ^2 or 17 ** 2.

(Remember, spaces are optional. 17^2 is also 17 squared.)

See Operators and Operations (2.13, 2.19).

2.13 BASIC Operators

A BASIC operator can be one of many different things. The arithmetic
or numeric operators are

exponentiation
* Multiplication

/ division
+ addition

- subtraction

The arithmetic operators work in BASIC just as they do in other pro-
gramming languages, as explained in 2.12.

The BASIC string operators are

& concatenation
(X, Y) substrings

Concatenation is used to join together two strings. For example,
suppose the value of the string variable A$ is "HELLO "(notice the space

~ ., after the "0"). And suppose the value of the variable B$ is assigned this
p. way:

B$ =A$ & "THERE."

The concatenation of A$ and "THERE." would make the value of B$

"HELLO THERE."

Some advice about concatenating strings: If you are putting words
together (as in the HELLO THERE example), don't forget about the space
between the words. If you concatenate "CAR" and "WASH" this way

"CAR" & "WASH"

the result is "CARWASH"--which may be just what you want. If you say

"WELCOME" & "HOME"

you get "WELCOMEHOME"--which is probably not what you want. You can say
V either

22

"WELCOME " & "HOME" (space after "WELCOME")
or "WELCOME" & " HOME" (space before "HOME")
or "WELCOME" & " " & "HOME" (space quoted by itself)

all of which result in "WELCOME HOME"; this concatenation

"WELCOME"&" "&"HOME"

produces the same "WELCOME HOME" result, because the space is inside

the quote marks as in the other examples. A space inside quote marks is

just like any other character and becomes part of the resulting string just
as any letter would. Using spaces to separate different parts of your
expression makes your lines easier to read, but has no effect on how the
expression is evaluated.

A substring is a part of a string. In the example above, X and Y
refer to the "start" and "1stop" characters in the string. For example,
"PURPLE" (1, 3) means the first through the third characters in the word
PURPLE. The value of "PURPLE" (1, 3) is "PUR" and that of "PURPLE" (4, 5)
is "PL"; the numbers can be variables, so if the value of X were 3 and the
value of Y were 5, then "PURPLE" (X, Y) would be "RPL"; the string can be
a variable too, so if the value of H$ was "PHANTOM"--then H$ (X, Y) would
be the same as "PHANTOM" (3, 5) and "ANT" would be the value.

This substring "BEAN" (5,5)

would be the fifth character in the string "BEAN" if there were five

characters to begin with. If you specify a nonexistent substring like
this one, the result is nothing. (See 2.14 for an explanation of the "null
string.")

This substring "BEAN" (3,2)

would be the third through the second character in the string "BEAN"--
if BIP could count characters backwards, but it can't. An "impossible

substring" like this one will cause an execution error when BIP tries to
evaluate it.

BASIC cannot evaluate an expression that contains different types of
values. For example, this expression has no meaning

9 + "NINE"

because 9 is a numeric primary and "NINE" is a string primary.

See Data Types and Primaries (2.7-2.8), Variables and Assignment
(2.9-2.11), and Boolean Expressions (2.19).

-* 23

. .. .

N 2.14 INPUT

Use: To allow the user of the program to give a value to a variable.

Examples:

30 INPUT N (f or a number)
30 INPUT F$ (for a string)
30 INPUT X, B$ (for multiple input)

Remarks:

When the INPUT statement is executed, BASIC types a colon(:
and waits for the user to type something, ending with the RETURN key.
Whatever the user types becomes the value of the variable in the INPUT
statement.

The only limitation in the use of INPUT involves numeric variables
and is imposed when someone runs the program. If a numeric variable is
specified in the program, the user must type a single number, not a string
or any kind of expression. Numbers like 1492 or 6.25 will be accepted, but
an expression like 3*4 will not. BIP prints an error message and lets the
user try again.

This program doubles any number the user types:

10 PRINT "TYPE A NUMBER AND I'LL DOUBLE IT FOR YOU"
20 INPUT Y
30 Y -Y*2

* 40 PRINT Y
99 END

This program does something simple with a string typed by the user:

10 PRINT "TYPE A FEW WORDS AND I'LL REPEAT THEM"
20 INPUT W$
30 PRINT W$
99 END

Note. When typing a string in response to an INPUT the user should
not type quotation marks. Also, for strings, if the user types only the "CR"
or "RETURN" key, the string variable is assigned the value "". This is called
the NULL string. The null string is analogous to the number 0 (zero). It is
a known value, something that has meaning: It means the string version of
nothing just as zero means the numeric version of nothing. Do not confuse
the null string with the character ' '--which is a space.

One INPUT statement may be used to allow the user to give values to more
than one variable. For example, this program accepts two numbers and adds

* them.

* 10 PRINT "TYPE TWO NUMBERS, ONE AT A TIME."
20 INPUT X, Y
30 PRINT "THE SUM IS ";X+Y

99 END

24

You may specify as many variables in a "multiple input" statement
as you like, always separated by a comma. When BIP's BASIC executes this
statement, it prints a colon for each value to be typed by the user. Other
implementations of BASIC work in a different way.

See Input/Output (2.5) and Variables (2.9).

2.15 READ .. DATA and REOPEN

Use: To assign stored values to variables.

Examples:

10 READ X
50 DATA 200

10 READ P
-,2 OREAD Q

30 READ R
200 DATA 5, 20, 50

30 READ A, B$
80 DATA 60, "DOG"

60 REOPEN

Remarks:

Using READ and DATA combinations allows you to store values in
the program and to assign those values to variables at appropriate times.
The statement

READ X

causes BASIC to take a value from the DATA statement and assign that value
to the variable X. For every execution of a READ statement, there must be
a corresponding DATA value.

As shown in the second example above, a DATA statement may contain
more than one value. BASIC keeps track of the DATA values, and after a READ
is executed, BASIC moves a pointer to the next value in the DATA statement.
In that second example, the variable P would get the value 5, Q would get 20,
and R would get 50.

The third example shows a multiple READ statement. Execution of a
multiple READ assigns values to both variables, just as if one READ immediately
followed the other. In the example, execution of line 30 would result in the
assignment of 60 to the variable A and the assignment of "DOG" to the variable
B$. Use multiple READ statements whenever you want to assign values to more
than one variable, all at the same time.

25

If a READ] statement is executed, and all the DATA values have
* been "used," an execution error message will be printed (since no value

remains to be assigned). To avoid this error, use a "dummy" value at the
end of the DATA list and stop READing after that value has been used. In
this program, -1 is used as the "dummy" that marks the end of the list of
DATA values.

10 PRINT "THIS PROGRAM PRINTS SQUARES"
20 READ Y
30 IF Y = -1 THEN 90
40 PRINT Y^2
50 GOTO 20
60 DATA 5, 10, 15, 20, -1
90 PRINT "FINISHED"
99 END

* (This program contains a loop. Read about loops in 2.17.)

There are some limitations on the values you may use in a DATA
statement. First, such a value must be a literal or constant--not a variable,
and not an expression. The value must be a number or a string; if it is

a string, it must be enclosed in quotation marks. Second, any value given
in a DATA statement must be of the same type as the variable to which it
will be assigned. Note that in line 80 above the numeric value 60 cor-
responds to the numeric variable A, and the string value "DOG" corresponds
to the string variable B$. BASIC will give an execution error if, at the
time the READ is executed, the variable and the value are of different
types.

You may use as many DATA statements as you like in a program. The
values given in the statements will be "used""sequentially, as required by
the execution of READ statements. DATA statements can appear anywhere in
the program before the END, and it is a good idea to locate your DATA in a
place that makes sense to you. For example, if a section of a program re-
quires READing values from the DATA, put the DATA statements at the end of

* that section so that you can easily see where the DATA values will be used.

The REOPEN statement moves the "pointer" back to the first value in
the DATA list. The next READ statement will then take the first DATA value
in the lowest-numbered DATA statement in the program. REOPEN is useful in
situations where you want to use the same DATA values, in the same order,
more than once.

See Input/Output (2.5), Data Types (2.7), and Variables (2.9).

2.16 DIM

Use: To establish the size of an array (a subscripted variable).

DIM is short for DIMENSION.

4 Examples:

10 DIM L(15)I, ~ 10 DIM A$ (50) 2

I2

4' Remarks:

BASIC needs to know how long an array will be before you refer
to any elements or "slots" in the array (for example, before you assign
any values to elements of the array). The DIM statement establishes the
maximum length. The DIM statement must precede (i.e., have a lower line
number than) any statement that refers to an element of the array. Usually,
the DIM goes at the very beginning of the program. There must be one DIM
statement for every array used in the program.

Only one DIM may be executed for a given array. In the example
shown below, line 20 is executed only once each time you RUN the program.
BIP will stop execution and print an error message if two DIMs are executed
for the same array, or if one DIM for a given array variable is executed
twice. This means that you should locate all DIMs outside any loops in
your program, so that BASIC executes each different DIM only once.

Suppose your DIM statement is

10 DIM X (25)

This means that you may not use more than 25 elements in the array X. Using
fewer than 25 will not cause any problems.

This is a simple program using an array. It asks the user for
* three wcrdz, aad assigns each word to an element of the array. Then it

prints the words in the opposite order.

10 DIM L$(3)
20 PRINT "TYPE THREE WORDS, ONE AT A TIME."
30 INPUT L$(l), L$(2), L$(3)
40 PRINT "HERE'S YOUR LIST IN THE OPPOSITE ORDER."
50 PRINT L$(3)
60 PRINT L$(2)
70 PRINT L$(l)
99 END

vThe word "index" is used in connection with arrays to mean the
number that specifies each element in the array. (The word "subscript" is
also used.) For example, in line 50 above, the index or subscript is the
number 3, and it specifies the third element in the array L. "Index" is
also used in connection with loops (see 2.17) to mean the variable that
counts the number of executions of the loop. This program is like the pre-
vious example, except that it allows the user to say how long his list will
be, and then uses a variable as the index, both of the loop and of the array.
It also uses a variable in the -DIM- statement, after that variable has been
assigned by -INPUT-.

27

%

10 PRINT "HOW LONG IS YOUR LIST?"
20 INPUT N
30 DIM L$ (N)
40 PRINT "TYPE YOUR WORDS."
50 FOR I -ITO N
60 INPUT L$ (I)
70 NEXT I
80 PRINT "HERE'S YOUR LIST IN THE OPPOSITE ORDER."
90 FOR I = N TO 1 STEP -1
100 PRINT L$ (I)
110 NEXT I
999 END

See Primaries (2.8), FOR .. NEXT (2.21).

2.17 Program Flow

When the computer executes a stored program, it follows a predictable
path through the list of instructions that is the program. In some program-
ming languages, the order of instructions executed depends simply on the
order in which the computer encounters them from the input device (e.g.,

* card by card from a card reader or line by line from a disk file). Other
languages (including BASIC, as you know) use line numbers, and the computer
executes instructions in numeric order.

In either case, all languages have the ability to tell the computer
to follow a different order, to go to a different place in the list of in-
structions, and carry on from there. This is called "branching" and it can
be either unconditional or conditional. Unconditional branching refers to
a change in the sequence of execution that will always be carried out re-
gardless of anything else in the program. Unconditional branching is some-
thing like telling the computer, "Don't ask any questions, just go to a dif-
ferent part of the program." Conditional branching asks a question first;
whether or not the change in sequence is carried out depends on some con-
dition being true. Frequently it involves looking at a certain variable,
and executing the branch if the variable has a certain value. The program
specifies a decision to be made by the computer.

The ability to make appropriate decisions constitutes the "smartness"
of a program. Virtually no useful program runs straight through all its
statements, without ever changing the order of execution.

2.17.1 Loops

[1 A loop is a series of statements that is executed more than
once. It is an extremely useful programming structure. By using a loop,
you can make the computer do the same thing many times, but you give a set
of instructions only once. The general form of a loop is this:

28

1

Start the loop here.
Have the program do something.
Decide if the "something" should be done again.
If so, go back up and start the loop again.
If not, continue on from here.

The "something" can be very complex. It can be most of the
program; for example, a program that plays a game can start itself again
depending on what information the user gives after playing once--the whole
game is inside the loop.

A large category of loops follows this general pattern:

Set a ''start'' value.
Set an "end" value.
Set a counter equal to the start minus 1.
Increment the counter.
Do the work.
Look at the end value--if the counter is less than the end,

go back to the "increment" place and continue from there.
4 Otherwise (i.e., the counter is equal to the end value),

continue from here.

A "counter" is a numeric variable that you use to count something. In this
case, it counts the number of times the loop has been executed--you incre-
ment the counter (add 1 to it) each time you go through the loop. The
counter is also called the "index."

This pattern is used in situations where the problem can be
solved by performing the same sequence of steps, perhaps with some varia-
tions, a number of times. This is "the work." The number of times "the
work" is done depends on the "start" and "end" values. For example, the
following is a general program (in no programming language) that counts
from 1 to 5:

Start 1
End - 5
Counter -start - 1
* Counter -counter + 1)These three lines
Print value of counter are the loop. The
If counter less than end, go to * work is to print the

value of the counter.
Print goodbye

Different problems require different variations on this general
pattern. For example, the "work" may involve a more complicated set of opera-
tions, or the counter may be changed by some value other than 1, or the order
in which the pattern parts are executed may need to be different. Once the

* general pattern is understood, however, it is easier to see which details
must be changed to solve a particular problem. The following is a program
(in no programming language) that counts backwards from a number typed by
the user. Notice the ways in which it is different from the last example.

29

Print hello user, type me a number please
Start = whatever number the user types
End = zero
Counter - start
* Print value of counter
Counter - counter minus one
If counter greater than or equal to end, go to*
Print goodbye

Loops do work other than counting, of course. This final
example program (in no programming language) prints the user's name as many

* times as he or she chooses. This program doesn't need a start or end value,
because it isn't counting anything, but it does need to make a comparison
to decide whether or not to go through the loop again. It also needs two
string variables, one to hold the user's name, and one to hold the user's
answer to the yes-or-no question.

Print hello user, please type your name
Username -whatever string the user types
* Print shall I say your name? yes or no, please These five

4Answer -whatever the user types lines
If answer is no, then go to goodbye line are the
Print value of username loop.
Go to*
Print goodbye

This loop uses both a conditional branch ("if the answer is no,..") and an
unconditional branch ("go to *"). Sometimes it makes sense to put the con-
ditional branch at the top of the loop (i.e., before you do "the work"),
and then unconditionally go back up and start again once you have reached
the bottom, as in this example.

It is not hard to write a program that makes the computer do
the same thing over and over, never stopping, in which case your program is
said to be in an "infinite loop." After a large number of lines have been
executed, BIP will stop execution, mention that it thinks your program is in
an infinite loop, and ask you whether or not it should continue execution.
You should say "no" (unless you have a very long or complicated program that
you think really isn't in an infinite loop), check your program carefully to
see why it might be in an endless loop, change it, and then run it again.
An example of a program that has an infinite loop is given in Section 2.18.

See 2.18-2.21 for the BASIC statements used to construct loops.

2.17.2 Branch and Return

Frequently, the same set of instructions is used in many dif-
ferent parts of a program. An efficient way to use these instructions is to
set them up in one part of the program and to branch to that part from other
parts. The sequence of statements that is accessed from different parts of
the program is known as a subroutine.

30

Since a subroutine can be "called" from different places,
* it is important for the computer to know where to "return" to after the

statements in the subroutine have been executed. Most languages have
the ability to remember the place from which execution jumped to the sub-
routine and then to go back to that place to continue after the subroutine.

For example, consider a program that simulates a game of
blackjack. It might include a subroutine that "deals the cards" by generat-
ing random numbers and translating those numbers into cards from the deck.
In blackjack, the dealer deals cards in two different situations: either
at the beginning of a new hand, or when one of the players asks for another
card, in addition to those he holds already. So, in the blackjack program,
the card-dealing subroutine would be branched to (or "called") in those dif-
ferent situations. What happens afterwards depends on what was happening
when the dealer dealt a card. The branch-and-return capability allows the
program to go back to that place after the cards have been dealt, so that
play can continue appropriately. In the first case, the program would only
check to see if all the cards needed to start the game had been dealt. In
the second case, it would have to ask the next player if he wanted another

S. card.

See 2.22 for the BASIC statements used to set up subroutines.

2.18 GOTO

Use: To alter the sequence of execution of the program unconditionally.

Example:

70 GOTO 10

Remarks:

BASIC executes a program in the order of the line numbers.

4. When you say RUN, it finds the lowest-numbered line and executes that state-
ment. Then it finds the next higher line number and executes the statement
on that line. And so it goes--it's very simple. The above example would
change that order by sending BASIC back to line 10 every time line 70 was
executed.

* This program will repeat itself endlessly (until BIP tells the user
that it may be in an infinite loop and the user tells BIP to stop execution),
counting from 1 on up.

10 X - 1
20 PRINT X
30 X - X+l
40 GOTO 20
50 END

31

%- -- % ,. .*% - *. .* -* ~ * * * .

Note that once BASIC has executed the line specified in the GOTO statement,
it continues execution from that paint. In this example, the order of lines
executed would be

* 5 10,

20, 30, 40, (here GOTO changes things)
20, 30, 40, (GOTO 20 again)
20, 30, 40, (and again)
etc.

BIP helps you discover when your program is in an infinite loop by counting
the number of statement executions, stopping after a large number of them,
telling you it thinks your program is in an infinite loop, and asking you
whether or not to continue execution.

If your GOTO statement specifies a non-existent line, BIP will
'S print an error message before it allows you to RUN the program.

See Program Flow (2.17).

4r 2.19 Relational and Boolean Operators

The BASIC relational operators are

-equal to
1> not equal to
< less than
> greater than
<- less than or equal to
>- greater than or equal to

Relational operators are used to compare two values. This comparison is
called a Boolean expression, and its value is always either true or false.

In numeric expressions, the relational operators work as one normally
expects them to. In string expressions, relational operators compare the
strings f or alphabetic order. Thus:

6 -6 is true
8.7 >- 5 is true
4 <> 8/2 is false

"DOG" > "CAT"' is true
"ALPHABET" < "A"l is false

The Boolean operators are

NOT
AND
OR

a Boolean operators are used to combine or change Boolean expressions.
Say the variable X has the value 5,

A Y has the value 99, and
A$ has the value "YES"

%Ire,32

Now consider the following Boolean expressions:

a. NOT
The Boolean expression X >= 0 is true.
The Boolean expression NOT X >= 0 is false.

The expression Y < X*5 is false.
The expression NOT Y < X*5 is true.

The expression A$ <> "ONO" is equivalent to
-\ NOT A$ = "NO"

b. AND
An expression that includes AND is true only if all its parts

are true.

X <> 4 AND Y <- 100 is true.
A- "NO" and Y <= 100 is false.

c. OR
An expression that includes OR is true if any or all of its parts

are true.

X <> 4 OR Y> 100 is true.
A$ - "NO" OR X < 5 is false.

<> ~ 98 OR A$ ="YES" is true.

Unless parentheses are used, BASIC applies the Boolean operators
in this order: NOT, AND, OR. Thus,

.. NOT A$-"YES" AND Y< 100

is equivalent to

(NOT AS$ "YES") AND (Y < 100)

and the expression is false, because NOT A$ -"YES" is false.

A$ "NO" OR NOT X -6AND Y> 50

is equivalent to

(A$ - "NO") OR ((NOT X -6) AND (Y > 50))

* and the expression is true.

If you want to force BASIC to evaluate your Boolean expressions in a
different order, use parentheses as you would with numeric expressions. For

s example,

33

WP'

NOT A$ ="YES" OR Y < 100

* is equivalent to

N (NOT A$ = "YES") OR (Y < 100)
-~~ Wf t

and the expression is true, because Y < 100 is true.

However,

2% NOT (A$ = "YES" OR Y < 100)

Wt Wt

*is false, because (A$ - "YES" OR Y < 100) is true. Parentheses can make a
difference if you need to use complicated Boolean expressions.

See Data Types and Values (2.7).

2.20 IF .. THEN

2 Use: To modify the order of execution so that your program can do
different things in different situations.

Examples:

50 IF B > 5 THEN 150

50 IF X$ ="OXYGEN" THEN 300

50 IF A$ ="REPEAT" AND C > 0 THEN 10

Remarks:

The IF .. THEN statement is executed in the following way:

a. The Boolean expression following IF is evaluated as either
true or false, depending on the values and the relationship
within the expression.

b. If the Boolean expression is false, the sequence of execution
does not change, and the next line executed will be the line
after the line containing the IF. THEN.

C. If the Boolean expression is true, the next line executed will
be that specified by the line number after THEN. (One may say
that "control is transferred" to that different point in the
program, since execution will continue from that specified

line, not from the line following the IF . THEN statement.)

*2 34

SV

d 'I.........J

This short program uses an IF .. THEN to decide whether or not

to start itself over:

10 PRINT "TYPE YOUR NAME."
20 INPUT N$

*30 PRINT "HELLO, "; N$
40 PRINT "TO START OVER, TYPE 'YES'."
50 INPUT A$
60 IF A$ - "YES" THEN 10
70 PRINT "OK. GOODBYE."
999 END

Note that only the word YES from the user causes the program to
continue execution (again) from line 10. Anything the user types that is
not YES will be taken as a NO answer. This program is another example of
a loop. The number of times that the loop will be executed depends entirely
on what the user types when the program is run. Try this: Copy this program,
then RUN it. Use TRACE or FLOW to see how things work.

See Program Flow (2.17) and Boolean Expressions (2.19).

2.21 FOR .. NEXT

Use: To have BASIC do the counting, incrementing, and checking in
a loop, automatically.

Examples:

10 RE2, SQUARES FROM 1 to 5 See 2.24 about REM.
20 FOR N - 1 TO 5 Establish "~start"~ and "~end."
30 PRINT N Do something.
40 PRINT NA2 Do something else.
50 NEXT N Add 1 to N. If N is 5 or less,

go to 30 again. If N is more
than 5, continue to 99.

99 END

10 REK COUNT FROM 10 TO 1 !1 counts backwards because
20 FOR N -10 TO 1 STEP -1 the step is negative.
30 PRINT N
40 NEXT N
99 END

Remarks:

FOR . NEXT loops save the programmer some work by automatically
incrementing the counter and checking its value against the top value. The
general form of the FOR statement is

FOR <index'> <start> TO <end> STEP <howmany>

35

-4. A

FOR .. NEXT Loops are executed in this way:

a. The "index" variable is assigned the value of <start>.
> b. The statements following the FOR statement are executed

in order.
Ac. When the NEXT statement is encountered,

A (1) The value of <howmany> is added to the index.
If no STEP is included, 1 is added. (The value of
the index moves closer to <end>.)

A (2) If the value of the index has not passed the <end>
A value, the statements following the FOR
A statement are executed again--the loop is repeated
-<-<- with the new value of the index.

(3) If the value of the index has passed the <end>, the

loop is not repeated, and execution continues from
the statement after the NEXT statement.

The FOR statement sets up the "start" and "end" values for the
loop, and marks its beginning. The NEXT statement marks the end of the
loop. The value of the index variable (N in the examples above) is changed,
and checked against the "TO" value, when the NEXT statement is executed.
All the "work" lies between the FOR and the NEXT.

The following three programs illustrate how loops work. All three
*programs do the same thing: they all count by twos from two to twenty. The

first program is pretty silly, since it makes the programmer do more work
than is necessary:

10 PRINT "COUNTING BY TWOS"
20 PRINT 2
30 PRINT 4
40 PRINT 6
50 PRINT 8
60 PRINT 10
70 PRINT 12
80 PRINT 14

N90 PRINT 16
100 PRINT 18
110 PRINT 20
120 PRINT "WHEW"
999 END~

The second program is much better, since it makes the computer do
more of the work:

10 PRINT "COUNTING BY TWOS"
20 N - 2
30 PRINT N
40 N - N + 2
50 IF N <- 20 THEN 30
60 PRINT "FINISHED"

36

% %

The third program is even better, since it takes advantage of
the automatic features of the FOR .. NEXT structure:

10 PRINT "COUNTING BY TWOS"
20 FOR N - 2 TO 20 STEP 2
30 PRINT N
40 NEXT N
50 PRINT "THAT'S ALL, FOLKS!"
99 END

It is sometimes very useful to put one ioop inside another; that
is, to "nest" the two loops. The following program might be used by the
principal of a school to add up the number of students in each grade and
in the school as a whole. The "outer loop" is indexed by the variable I,
and the "inner loop" is indexed by J. The extra lines on the left show
you how the 3-loop is nested inside the I-loop.

20 S - 0
25 REM T IS FOR TOTAL. IN THE SCHOOL, S IS FOR GRADE SUBTOTALS
30 PRINT "HOW MANY GRADES DO YOU HAVE IN THIS SCHOOL?"
40 INPUT G

--- 50 FOR I - 1 TO G
60 PRINT "HOW MANY CLASSROOMS DO YOU HAVE IN GRADE ";I

-~g 70 TWPLT C
80 OFOR J Lo C
90 PRINT "HOW MANY i(IDS IN CLASS J; ; "IN GRADE ";I

100 INPUT K
110 S -S +K
115 REM ADD THOSE KIDS TO SUBTOTAL FOR THE GRADE
120 NEXT J
130 PRINT "IN GRADE "; I; " YOU HAVE "; S; " STUDENTS"
140 T-T + S
145 REM ADD TOTAL FOR THIS GRADE INTO THE TOTAL FOR THE SCHOOL
150 S - 0
155 REM SET THE SUBTOTAL BACK TO ZERO, READY FOR NEXT GRADE

*---- 160ONEXT I

170 PRINT "IN THE WHOLE SCHOOL YOU HAVE ";T; "STUDENTS"

999 END

One thing to remember when you nest loops is that the inner loop(s) must be
entirely contained inside the outer loop. BIP won't let you RUN the program
if it has loops like this:

10 FOR X - 1 TO 10

40OFORY - 10TO 100STEPl10

70 NEXT X

90 NEXT Y

37

The NEXT for the Y-loop is outside the X-loop completely, which
is not allowed.

See Program Flow (2.17).

Notice these requirements of each of the four statements:

GOSUB 50 GOSUB 800
jumps into the subroutine.
Line 800 must be a BEGINSUB.

BEGINSUB 800 BEGINSUB "NUMERO UNO"
beginning of the subroutine. The name
(whatever you like, enclosed in quotes) is
optional and has no effect except to help
you see what your program is doing.

RETURN 840 RETURN
jumps to the line following the GOSUB; in

this case, line 60. Use as many RETURNs
as you like, for conditional branching
out of the subroutine.

ENDSUB 870 ENDSUB "NUMERO UNO"
marks the end of the subroutine. It causes
an automatic RETURN to (in this case) line
60. The name is optional--use it to match
up with the BEGINSUB name if it helps you.

Notice that a BIP subroutine must begin with a BEGINSUB and end with an
ENDSUB, and that these statements must be accessed only by the GOSUB. A BIP

• .subroutine does not require you to use a RETURN, since ENDSUJB includes its
function. In BIP, RETURN and ENDSUB are similar to STOP and END: you may
use as many RETURNs and STOPs as you need (including none at all), but you
must use one END per program and one ENDSUB per subroutine.

p4. There are no jumps into a subroutine except by a GOSUB to its
BEGINSUB, and no jumps out of a subroutine except by a GOSUB (to another sub-
routine), a RETURN, or an ENDSUB. Look at these pairs of programs for
illustrations of the syntax of subroutines:

no jumping in ***
This example in illegal This example is legal
10 INPUT X 10 INPUT X
20 IF X - 1 THEN 100 20 IF X <> 1 THEN 40

30 GOSUB 100
40 STOP

100 BEGINSUB 100 BEGINSUB

38

. " e '"." "." ":"" e e~ ". " " ; "'- € 4'" " .' .'e." ', .' , .'.' .. ,%€

*. 2.22 GOSUB . . BEGINSUB . . RETURN . . ENDSUB

Use: To transfer execution to a subroutine, then to return back to
the same place.

Remarks:
A sequence of statements that is accessed from different parts of

the program is called a subroutine. BIP subroutines are somewhat different
from subroutines in other implementations of BASIC. A BIP subroutine is a
sequence of statements that come between a BEGINSUB and an ENDSUB. The
sequence is only "called" by a GOSUB. It can terminate either with a RETURN
or the ENDSUB, both of which cause a jump back to the line after the GOSUB
that called the subroutine.

-. Subroutines are useful in a program that uses the same sequence of
statements in a number of different situations, in that they allow the pro-
grammer to write the sequence only once and yet have it accessible from many
different parts of the program. When this sequence has been executed, con-
trol returns to the place from which the sequence was called. Complicated
programs are also much easier to debug if they have subroutines correspond-
ing to the different parts of the job the program is intended to do. See
"Branch and Return" in Section 2.17.2.

Example:

. (other lines of the program)

50 GOSUB 800
60 PRINT "WE RETURN FROM THE SUBROUTINE."
70 GOTO 999

800 BEGINSUB "NUMERO UNO"
810 INPUT X
820 IF X - 1 THEN 850
830 PRINT "X IS NOT 1. YOU LOSE."
840 RETURN
850 PRINT "X IS 1. YOU GET A STAR."
860 PRINT "* * * * *"
870 ENDSUB "NUMERO UNO"
999 END

When line 50 is executed, control is transferred to line 800. Execution
continues with 800, 810, and 820. If X equals 1, the next lines executed
are 850, 860, 870, and then back to 60. If X is not equal to 1 at line 820,
the sequence is 830, 840, and then back to 60.

39

. . '.-' -. 4 ".' '.' .. r < ' . _,. ,.-. . '.". ,, . ' -"""' . .. , -" ."""""""•"""••"""""

no "flow through" into the subroutine **
Illegal Legal
10 GOSUB 100 10 GOSUB 100
20 PRINT "X" 20 PRINT "X"

90 PRINT "Y" 90 STOP
100 BEGINSUB 100 BEGINSUB

(The problem with the illegal example is that, after executing the PRINT
statement in line 90, BASIC would reach and execute the BEGINSUB directly
in the sequence of line numbers, which is illegal. A BEGINSUB may only
be executed Immediately after its matching GOSUB.)

no jumping out *
Illegal Legal
10 GOSUB 100 10 GOSUB 100
20 STOP 20 STOP

100 BEGINSUB 100 BEGINSUB
110 INPUT X 110 INPUT X
120 IF X = 1 THEN 20 120 IF X 1 1 THEN 140
130 PRINT "X IS NOT l!" 130 PRINT "X IS NOT 1W"
140 ENDSUB 140 ENDSUB

*** no subroutine calling itself ***
Illegal There is no right way for this.
10 GOSUB 100 BASIC is not recursive (its subroutines

• cannot call themselves).

100 BEGINSUB
110 PRINT "IN THE SUBROUTINE!"
120 GOSUB 100
130 ENDSUB

*See Program Flow (2.17).

2.23 Functions, Arguments, and Returning Values

Imagine this exchange. You say, "Double this number: 6" and your
friend says, "Okay: 12." To double a number is to use that number in a
specific way and then to give the result back. In this example, "double"
is a function, the number 6 is the argument to the function, and the number
12 (the result of doubling 6) is the value returned by the function.

A function is some defined process that produces a result. It may
require no arguments, like the function that picks a random number (see
RND). It may require one argument, like the function that doubles a number--
you can't double something without knowing what that something is. Or it
may require more than one argument, like the function that finds the smaller
of two numbers--you can't say something about two numbers without knowing
what they both are.

40

A function always returns one value.

Keep the special meanings of argument and return in mind. Don't
confuse them with the regular English meanings of the words.

You may think of a function as a shorthand for some series of opera-
tions. The value returned by a function is used like any other value in
the programming language you are using: you may assign it to a variable,
use it in a Boolean expression, print it, etc. Some examples of functions
are given in the next few pages.

To generate a random number is simply to tell. the computer to pick a
number. One of the most interesting uses for random numbers is in programs
that play games: dealing cards, choosing a number for the user to guess,
or choosing a move in tic-tac-toe, for example.

2.23.1 Built-in Functions

BASIC has several built-in functions. That is, there are some
operations that are so frequently used by programmers that they have been
added to the commands that the interpreter understands. The exact list of
these functions will vary with the implementation of BASIC, and the list is
sometimes called a "library." The following functions are built into BIP's
BASIC:

2.23.2 RND

Use: To generate a random number

Examples:

20 X - RND

20 PRINT RND*10

20 B - INT (RND *10 +1)

Remarks:

The RND function returns a random number greater than 0
and less than 1. That is, it makes the computer "pick a number" at random
the way you might pick a card from a deck. RND always picks a decimal fraction
between 0 and 1, so read about INT for interesting ways to generate and use
random integers.

2.23.3 INT

Use: To convert a real number into an integer.

Examples:

* 30 X - INT(7.4)

30 PRINT TNT (-27.98)

V h30 R I NT (RND *10 +1)

41

.. J.V.V~ -.

I.

Remarks:

BASIC thinks of all numbers as real numbers (i.e., as numbers
with decimal fractions), not as integers. There are many situations in
which a program should work with only the "integer part" of a number, and
the INT function does the job.

BIP's BASIC, unlike some other implementations, interprets INT
to mean "return the largest integer that is not greater than the argument."
This means that:

INT (7.4) = 7
INT (-7.4) - -8

because -8 is the largest integer that is not greater than -7.4.

The argument to the INT function must evaluate as a number.
INT(Y*I0) is legal, but INT(A$) is not, because A$ cannot be a number.

Some uses of INT include:

a. Generating random integers (see RND).

The RND function returns a random number between 0 and 1--
a random decimal fraction. To create an integer, you must first multiply
the random number by 10 (an integer must be at least 1), and then convert
it to an integer:

INT (RND*l0)

will return a random integer between 0 and 9, inclusive. The value of
(RND*l0) will be greater than 0 and less than 10; it will range from a low
of 0.01 to a high of 9.99.

INT (RND*I0 + 1)

will return a random integer between 1 and 10, since the range of values
(before INT is applied) is 1.01 to 10.99. This BASIC statement assigns
that random value to the variable R:

R = INT (RND*I0 + 1)

In general,

INT(RND * (B - (A - 1)) + A)

will return a random integer between A and B inclusive.

b. Dividing "evenly."

If a number Y divides another number X evenly, then X/Y
4 is an integer with no decimal fraction or "remainder." The Boolean expression

X/Y INT (X/Y)

42

4"

will be true only if X is evenly divisible by Y. For example, the Boolean

expression

13/4 - INT(13/4)

is false, because 13/4 equals 3.25, and INT(3.25) equals 3.

But
16/8 = INT(16/8)

is true, because 16/8 equals 2, and INT(2) equals 2.

This program uses INT to determine if the first number given
is evenly divisible by the second number:

10 PRINT "TYPE THE DIVIDEND"
20 INPUT X
30 PRINT "TYPE THE DIVISOR"
40 INPUT Y
50 IF X/Y - INT(X/Y) THEN 80
60 PRINT "NOT EVEN! TRY AGAIN."
70 GOTO 10
80 PRINT X; " IS EVENLY DIVISIBLE BY " Y
99 END

2.23.4 SQR

Use: To return the square root of a numeric expression.

Examples:

30 S - SQR(25)

30 IF SQR (X*10) > N THEN 10

30 PRINT "THE SQUARE ROOT OF B IS "; SQR(B)

Remarks:

The SQR function finds the positive square root of its
argument. The only restrictions on the argument are:

a. It must be an expression that evaluates as a number.
b. It must be greater than or equal to zero, since negative

numbers do not have real square roots.

2.23.5 LEN

Use: To return the length of a string.

Examples:

30 INPUT T$
40 L - LEN (T$)

30 READ C$
40 X - LEN (C$)

43

'a%

Remarks:

The LEN function counts the number of characters in its
string argument. If the value of T$ was "TOMATO"-the function would re-
turn the value 6.

2.23.6 User-Defined Functions

Use: To return the value of any expression the programmer
wants to use often.

Examples:

30 TWICE (N) - N*2
40 IF TWICE (I) > 100 THEN 10
50 REM BACK TO 10 IF I TIMES 2 IS BIG

30 CONCAT (R$) - R$ & R$
40 INPUT D$
50 PRINT "I'LL REPEAT AFTER YOU - "; CONCAT (D$)

Remarks:

Most implementations of BASIC, including BIP, allow you to
define your own functions. In BIP, functions may have only one argument.
Both string and numeric functions may be defined. For example,

10 ADDER (K) - X+1

defines a numeric function named ADDER, whose argument is X, and whose value
is 1.

Defining a function to do something that you have to do more
than once saves you some trouble in writing your program. For example, if
your program had to generate lots of random numbers (see RND and INT, above),
you might define that function, then just call it each time you needed a
random number. This program is a simplified illustration:

10 PICKME (X) - INT (RND * X + 1)
20 REM "PICKME" WILL PICK AN INTEGER BETWEEN 1 AND X

% 30 PRINT "HERE'S A NUMBER BETWEEN 1 AND 10:"
%40 PRINT PICKME (10)

50 PRINT "AND HERE'S A NUMBER BETWEEN 1 AND 5:"
60 PRINT PICKME (5)
99 END

You might copy and run this program a few times to see how all these functions
work together.

44

4V.

You may define a given function only once in a program, but
you may use as many different functions as you like. The kind of expression
used in a function must match the data type of the argument: If the argument
is a numeric variable, the expression must be numeric, and if the argument
is a string variable, the expression must evaluate as a string. The name of
the function must be at least three letters long. It can be very long (20
letters), but since the purpose of functions is to save on typing, your
function names should probably be less than 10 letters long. You may not
use "1special characters" like periods, commas, or semicolons in the function
name.

2.24 Other Useful Statements

2.24.1 STOP

Use: To tell the computer that it has finished executing your
program.

Example:

50 STOP

Remarks:

4. Every BASIC program must have an END statement. The END
statement must have the highest line number in the program.

In addition, you may use as many STOP statements as you like.
STOP is equivalent to END, except that STOP may have any line number. STOP
statements are useful in programs that may terminate in many ways.

BIP's BASIC always prints the number of the last line executed
when a program terminates. Using STOP statements can be very valuable in de-
bugging a program that has many parts--it can help you locate problems by

A causing execution to terminate under certain conditions without confusing the
issue by continuing execution with wrong values. Then the line number at
which the program terminated can help you see what erroneous condition occurred.

See END (2.4) and GOSUB (2.22).

2.24.2 REM

Use: To write RMarks inside your program, making it easier

to understand.

Examples:

60 REM III STOP LOOPING IF X IS TOO BIG.

200 REM THE FOLLOWING 5 LINES CALCULATE THE AVERAGE:

Orr,
45

Remarks:

Use a REM statement whenever you like. It does not affect
*the execution of your program in any way, but it gives you a way to make

notes about the program as you go along, inside the program itself. You
* may also use a REM statement with a blank line just to make a break between

blocks of lines in your program.

46

SECTION 3. BIP COMMANDS

Whenever you deal with BASIC, you are really communicating with the
computer on two levels. One level connects you with the BASIC language
and the computer's ability to execute programs written in BASIC. The other
level connects you with a more general operating system, which allows you
some control over the world in whizh your own programs live. In this course,
the general system is BIP, the program that runs everything you see happening
at your terminal. Through BIP, you can write and execute programs in BASIC;
in addition, you are presented with programming tasks and you are allowed to
save and modify your programs. Some of the commands in this section are
identical to those in other implementations of BASIC and some are peculiar

% eto BIP. You will just have to learn other commands when you use other

versions of BASIC.

3.1 Curriculum Manipulation

These commands deal with the programming tasks that form the instruc-
O-t tional base of BIP.

TASK Start a new problem. BIP will select if for you.

HINT Print a hint. Some tasks have no hints; some have more

than one. Type HINT to help you understand what the
task requires.

MORE Continue the current problem. BIP does some checking
of your program before allowing you to continue.

ENOUGH End the current task immediately. BIP does not check
your program, and keeps no record of your having
entered that task.

MODEL Print out a model solution to the current task. The
model solution is not necessarily the only way to write

14 .the program. BIP does not take you out of the task.
9.

DEMO Execute the model solution. The demo should help you

write your own program by demonstrating one possible
solution to the task.

DEMO TRACE Execute the model solution and show what's happening at
the same time. BIP prints the number of each line of the
model solution as it is executed and prints the value of
each vriJ'le each time It Is assigned. Once you have
run the DFMO a few times, you know what the model solution
does. Then the DEMO TRACE will help you see how the model
works. See TRACE in Section 3.2. If the screen is

flashing by too fast, use the HOLD key. (See Section 1.6.)

47

S...

3.2 Program Manipulation

These commands do not deal with the curriculum, only with the program
you are currently writing and running.

LIST Print out the current program. Use this to see what
your entire program looks like--it helps. You may
also list just certain lines of your program by fol-

lowing the command LIST with either a single line
number or two line numbers, separated by dashes. For
example, LIST 50 would list just line 50; LIST 40-70
would list all lines with line numbers between 40 and
70, inclusive.

SCR Delete ("scratch") the current program, wiping the
slate clean so you can start afresh.

RUN Execute the program--have BASIC follow your list of
instructions.

SEQ <starting> <increment>
Renumber the lines of the program. <starting> is the
first line you want to have "reSEQuenced," and
<increment> is the distance you want to have between
the lines. For example,

SEQ 100 20

will renumber the lines in your program from line 100
upward, and each new line number will be 20 more than
the line number that precedes it. (The new numbers in
this example, starting at 100, would be 100, 120, 140,
etc.) Use SEQ when you want to reorganize your program
to make more space available between the existing lines,
so that you can insert new lines into the program.

SEQ also changes the line numbers specified in GOTO,
IF . . THEN, and GOSUB statements so that the program
executes exactly as it did before you decided to
reSEQuence the line numbers.

SEQ 10 10 is the default, meaning that if you type
just SEQ, it is assumed you mean SEQ 10 10.

CHANGE "<string 1>" TO "<string 2>" IN <line range>
Change part of a line or lines without typing them
all over again. This command will change every
occurrence of the characters in <string 1> to the
characters in <string 2> in all the lines given in
<line range>. The words "TO" and "IN" are optional.

48

<line range> can be (1) a single line number,
(2) specific line numbers, separated by commas, or
(3) two line numbers separated by a dash, in which
case all lines whose numbers are between those two
numbers are checked. If no <line range> is given,
then EVERY line in your program is checked.

This command is best illustrated by examples.
Consider the line

10 PRINT "THIS IS AN EXANPLE FOR THE CHANGE COMMAND"

with "EXAMPLE" misspelled. To fix it you could either
retype the whole line or give the command

CHANGE "NP" TO "MP" IN 10

(or CHANGE "NP" "MP" 10, since "TO" and "IN" are optional).
Note that if you had said

CHANGE "N" TO "M" IN 10

line 10 would be changed to

10 PRINT "THIS IS AM EXAMPLE FOR THE CHAMGE COMMAND"

which is clearly not what you'd want.

<string 1> and <string 2> do not have to be of the same
length. For example, if

"THIS IS AN EASY EXAMPLE FOR THE CHANGE COMMAND"

"1-~is what you wanted your statement to be, you could give
give the command

CHANGE " E" TO " EASY E" IN 10

and then later if you decided that the word "EASY"~ is not
what you wanted, you could eliminate it with the command

CHANGE " EASY" TO '"" IN 10.

If you wanted to change the number 10 to the number
20 in lines 30, 80, and 110 of your program, you could
give the command

CHANGE "10" TO "20" IN 30,80,110

You could also give the command

CHANGE "10" TO "20" IN 30-110
as long as none of the lines between 30 and 110 have
occurrences of "10" that you DON'T want to change.
To change "10" to "20" everywhere in your program simply
type the command

CHANGE "10" TO "20"1

and it would be done.

49

TRACE Execute the program and show what's happening at the
same time. BIP prints the number of each line as it
is executed, and prints the value of each variable each

time it is assigned. This is an extremely valuable
debugging tool. Use it on a simple program first, to
see exactly what it does. Then use it any time your
program does not seem to do what you intended.

TRACE <numberl>
Executes the whole program. The trace will start as

soon as the line numbered <numberl> is executed, and

the trace continues to the end of the program. Use
this command if you know that the first part of your
program is correct and you want to avoid taking the
time to trace through things that already work.

TRACE <numberl> <number2>
Executes the whole program. In addition, it TRACEs

execution of all lines whose numbers are between
<numberl> and <number2>.
For example,

-V TRACE 100 200

executes the entire program, and prints line numbers
and variable values between lines 100 and 200 inclusive.

Example of TRACE:

For the program:
10 FOR J = 1 TO 2
20 LET X = J
30 NEXT J
40 PRINT "FINISHED!"
99 END

Typing "TRACE" will produce this output:
TRACE STARTING AT LINE 10

10: J = 1
20: X =
30: J = 2

20: X = 2
30: J= 3

40: FINISHED!

99:
EXECUTION COMPLETED AT LINE 99

.45

-,,.,Cu%,- m W "' .' ," V ,-" ", ' ' ',. - - . ..--, .')'J -,- • " ,- " " .*L ,%

3.3 File Storage and Access

These commands allow you to keep your programs for later use. If
you do not save a program, it will disappear when you sign off. When you
save a program, you must give it a name. The name can be anything you
like, but it should not contain any "special characters" like periods,
commas, or semicolons. Once the program has been saved, it is called a
"f ile. "

FILES List the names and dates of all files currently
saved in permanent storage. The date and time
shown tell you when the file was last SAVEd.
The length is the number of lines in the SAVEd
program.

SAVE <name> Store the current program under the <name>
given. The name must not be longer than 30
characters. The program is not affected--it
is simply copied to a permanent storage area.

GET <name> Retrieve the file of the <name> given. The
current program is SCRatched and replaced by

.q the <name> file. The permanent storage of
<name> is not affected. (See comments below.)

MERGE <name> Retrieve the <name> file from storage and add
it to the current program, without SCRatching
the current program. BIP will print the
messages DUPLICATED LINE and WAS: . . . if the
MERGEd file and the current program have lines

r~~ with the same line number. The "~new"~ line from
the merged file will replace the "old" line that
was already part of the current program. See
comments below.

KILL <name> Erase the <name> file from permanent storage.
The current program is not affected.

It is a good idea to LIST your current program before you SAVE it,
to verify that it is what you want. Be careful with KILL, since it is
final.

Your"curen proramspae" ad "ermnentstoagearea ar tw

separate things that only communicate with each other when you use these
commiands. Remember that SAVE and GET make copies from the current program
to permanent storage and vice versa. When you GET a file, BIP copies the
file from permanent storage into your current program space, and leaves
the permanent file exactly as it was. If you then make some changes to the
program, you must SAVE it again if you want the changes to be permanent.

51

For example, suppose you have SAVEd a program under the name DOG,
4 and then sign off. The next day you GET DOG and make some changes to it.

If you then say SAVE CAT, your permanent storage will have both DOG (the
old version) and CAT (the new one). If you say, instead, SAVE DOG, then

* RIP will say "OLD VERSION DELETED" and you will have only the new version,
under the name DOG. The moral is: If you want to have two versions of
the program, SAVE the revision with a new name. If you don't need the old
version any more, SAVE the new version with the same (old) name. If you
don't SAVE it at all, the new version (your current program) will disappear

* when you sign off, and only the old version will be in permanent storage.

*3.4 Dealing With the World

WHO Print the name and student number of the person
using the terminal. Use this if someone has
left the terminal without signing off. (If you
sign him off, he may lose a program, so try to
find him first.)

WHAT Print the name of the current task you are in.
This also allows you to have the problem text
printed out for you again, without restarting
the task.

WHEN Print the date and time. Obvious use.

FIX Leave a message for your supervisor. Use this
whenever you have a problem that you think he
or she should know about. Please describe the
problem as thoroughly as you can. Type the
<Cr> key twice to end your message.

CALC Evaluates an expression. The expression can
be numeric, string, or Boolean. For example,

CALC 6+4

would make RIP print 10. Or

CALC "DOG" & "FOOD"

would make RIP print DOGFOOD. Or

CALC 5-6

would make BIP print FALSE.

CALC cannot evaluate expressions containing
variables.

52

GLOSSARY

Wards in UPPER CASE are either BIP commands or BASIC statements.

argument The value or values operated on by a function.
'Vi. See 2.23.

array Also called a "subscripted variable," a variable
that may have many distinct elements, each of
which can be treated as a separate variable.
See 2.8, 2.16.

assignment Associating a variable name with the contents
of a location. See 2.10, 2.11.

BASIC A widely used programming language: Beginners
All-purpose Symbolic Instruction Code.

BEGINSUB The BIP BASIC statement that starts a subroutine.
See 2.22.

BIP "BASIC Instructional Program" the program that
runs this course.

Boolean expressions Expressions whose value is either TRUE or FALSE.
Used in making decisions. See 2.19.

branching Transferring control to a different part of
the program rather than following the numeric
sequence of line numbers. See 2.17-2.20.

BYE The BIP command that ends your session with
the computer. See 1.3, 1.5.

CALC The BIP command that evaluates an expression.
See 3.4.

CHANGE The BIP command that makes it possible for you
to change a line or group of lines in your
program without typing them over. See 3.2.

character Anything a terminal can display: letters,
numbers, punctuation, or spaces. See 2.7.

concatenation The string operation that combines two strings
into one. See 2.13.

constant Another word f or "literal." See 2.8.

counter A numberic variable used to count something:
usually incremented every time some condition
is satisfied. See 2.17.

53

data In general, information used by program. See 2.2.

DATA The BASIC statement that provides values to
a READ statement. See 2.15.

debugging The process of finding and correcting errors
(which computer programmers call "bugs")
in your program. See 1.7, 2.24.1, 3.2.

decisions BASIC's ability to modify the order of
execution of your program, depending on

* certain conditions. See 2.17-2.20.

DEMO The BIP command that executes the model,
to show you how one solution to the current
task works. DEMO TRACE executes the model,
and traces the values of all its variables at

* the same time. See 3.1.

DIM The BASIC statement that specifies the maximum

number of elements in an array; usually goes
* at the beginning of a program using arrays.

See 2.8, 2.16.

END A required BASIC statement which must be the
last line in the program. It terminates
execution. See 2.4.

endless loop Another term for "infinite loop." See 2.2,
2.17.1, 2.18.

ENDSUB The BIP BASIC statement that ends a subroutine.
See 2.22.

*ENOUGH The BIP command that terminates the current
task without completing it. See 3.1.

error Something that BASIC knows it cannot handle
correctly. BIP prints out an error message
to tell you what it knows about the error.
See 1.7.

evaluation The process by which BASIC determines the
value of an expression. See 2.7-2.8, 2.19.

execute Make the computer do something. BASIC is said
to execute the lines of a program, i.e., to
follow each instruction in the program. See 2.2.

expression Part of a BASIC statement to be evaluated: A
primary or operations on primaries. See 2.12,
2.19.

54

FILES The BIP command that lists the names of the
files in permanent storage. See 3.3.

FIX The BIP command that allows you to leave a
message for your supervisor. See 3.4.

FOR .. NEXT The pair of BASIC statements that sets up
a machine-made loop. See 2.17, 2.21.

function A defined process that produces a result,
e.g., R!4D, INT, SQR, LEN. See 2.23.

GET The BIP command that retrieves a previously
SAVEd program so that you can work on it
again. See 3.3.

GOSUB The BASIC statement that causes a jump to a
subroutine. See 2.17, 2.22.

GOTO The BASIC statement that allows you to alter
the sequence of execution unconditionally.
See 2.17, 2.18.

HINT The BIP command that prints a hint to help
you with the current task. See 3.1.

HOLD key A key on your terminal that will stop the
screen so that you can read everything before
if disappears off the top. See 1.6.

IF .. THEN The BASIC statement that allows you to alter
the sequence of execution if some condition

* is true. See 2.17, 2.20.

increment To add to the value of a numeric variable,
frequently a variable used as a counter.

index In an array variable, the number in parentheses
that specifies each element in the list.
See 2.8, 2.16.

In a loop, the number (counter) that keeps
track of the number of times the loop has been
executed. See 2.17, 2.21.

Infinite loop A program is said to be in an "infinite loop"
when it does the same thing over and over,
never stopping. See 2.2., 2.17.1, 2.18.

Input The set of values supplied to the program; the
Information on which it operates. See 2.5.

5

INPUT The BASIC statement that allows the user to
assign a value to a variable during execution.
See 2.14.

INT The BASIC function that returns the integer
part of a real number. See 2.23.

KILL The BIP command that erases a file from
permanent storage. See 3.3.

LEN The BASIC function that returns the number of
characters in a string. See 2.23.

LET The BASIC statement that assigns a value to
a variable. See 2.11.

line number An integer that must precede each BASIC
statement; statements are executed in order of
increasing line numbers. See 2.3.

LIST The BIP command that prints out your program
in the order of the line numbers. See 3.2.

literal A primary whose value is itself (as opposed to
a variable). See 2.8.

location The place in the computer's memory where a
value can be stored; the place or "box" named
by a variable. See 2.10.

loop General term for a series of statements whose
4 execution is repeated. See 2.17, 2.21.

MERGE The BIP command that retrieves a file from
permanent storage and adds it to the current
program. See 3.3.

MODEL The BIP command that prints a typical solution
to the current task. See 3.1.

MORE The BIP command that presents the next part of
a task. Type it after completing a program.
See 3.1.

numeric Having to do with numbers and their values.
See 2.8.

operation The process by which two expressions are used
to specify a new value:

numeric: Addition, subtraction, multiplication, division,
exponentiation.

56

string: Concatenation, substring.

relational: An operation that compares two string or numeric
expressions in some way to produce a Boolean
expression.

Boolean: An operation that combines two Boolean expressions
into a new Boolean expression. See 2.12, 2.19.

operator The symbol for an operation:

Inumeric: + * /
string: & (start, stop)
relational: M <> < > <= >=

Boolean: NOT AND OR
See 2.12, 2.13, 2.19.

output The visible results of a program' s execution
on the terminal. See 2.5.

primary An expression without any operation--either
a literal or a variable. See 2.7-2.8.

PRINT The BASIC statement that produces visible
results by causing the terminal to type
something. See 2.6.

program A list of instructions for a computer to
follow, written in a language that the
computer understands. See 2.1.

READ The BASIC statement that assigns a value to
a variable; the value is stored in the program
in the DATA statement. See 2.15.

REM The BASIC statement that does nothing. It
simply allows the programmer to make notes
within the program. See 2.24.

REOPEN4 The BASIC statement that moves the "Read-data
pointer" back to the first DATA value in the
program. See 2.15.

return To determine and give back a value. All
functions return a value. See 2.23.

RETURN The BASIC statement that causes a jump back from
p. a subroutine to the place from which the sub-

routine was called. See 2.22.

p 57

RND The BASIC function that returns a random
decimal fraction between 0 and 1. It requires
no arguments. See 2.23.

RUN The BIP command that tells the computer to
execute your program. See 3.2.

SAVE The BIP command that puts your current program
into permanent storage for your next session.
See 3.3.

SCR The BIP command that erases your current
* . program. See 3.2.

SEQ The BIP command that renumbers the lines in your

program to give you more available space between
the existing lines. See 3.2.

signing off Ending a session on the computer. Signing off
is achieved with BYE. See 1.3.

SQR The BASIC function that returns the positive
square root of its numeric argument. See 2.23.

statement A single BASIC instruction occupying one
line of the program. See 2.1-2.3.

string A group of characters in a particular order.
See 2.7-2.8.

*STOP The BASIC statement that may appear at any
place in the program and terminates execution
of the program. See 2.24.

subscript a number or numeric variable in parentheses
that specifies an element of an array.

subscripted A kind of variable, one that can contain
more than one value at one time. See "array."
See 2.8, 2.16.

substring A part of a string. See 2.13.

subroutine A sequence of BASIC statements that can be

accessed and executed from different places in
the main program, returning back to the place
from which it is called. See 2.22.

TASK The BIP command that presents the next
programming task. Type it after completing
the previous task. See 3.1.

58

TRACE The BIP command that both executes a program
and prints out line numbers and variables
as execution progresses. See 3.2.

h~.user In general, the person who runs a program.
Frequently, also the person who wrote it.

user-defined function A function defined in your program, which returns
the value of the expression that you specify.
See 2.23.

value The result of evaluating an expression or a
function. Either a number, or a string,L or TRUE or FALSE. See 2.7, 2.12, 2.19.

variable A name for a location in the computer's memory,
a "box" that can hold a numeric or string
value. See 2.8-2.11.

WHAT The BIP command that tells you the name of your
current task and allows you to see the problem
text again. See 3.4.

*WHEN The BIP command that tells you the date and
time. See 3.4.

WHO The BIP command that tells you who is signed
on at the terminal. See 3.4.

59

f, I- 4. MAUV N

-.- ...-.. .-n-..r,. W - 1 .. ~l~.. - -.. ..

I.%

REFERENCE

Beard, M., Barr, A. V., Gould, L., & Wescourt, K. Curriculum information

networks for computer-assisted instruction (NPRDC TR 78-18). San Diego:

Navy Personnel Research and Development Center, April 1978.

REFERENCE NOTES

1. Beard, M. H., & Barr, A. V. The BASIC instructional program student
manual (NPRDC Special Rep. 77-2). San Diego: Navy Personnel Research

and Development Center, October 1976.

2. Dageforde, M. L. The BASIC instructional program: Conversion into
MAINSAIL language (NPRDC Tech. Note 78-11). San Diego: Navy Personnel
Research and Development Center, April 1978.

3. Dageforde, M. L. The BASIC instructional program: System documentation
(NPRDC Tech. Note 78-12). San Diego: Navy Personnel Research and
Development Center, April 1978.

4. Dageforde, M. L, & Beard, M. H. The BASIC instructional program:

Supervisor's manual (NPRDC Tech. Note 78-10). San Diego: Navy Personnel
Research and Development Center, April 1978.

.1J6

,2

I

DISTRIBUTION LIST

Chief of Naval Operations (OP-987PlO)
Chief of Naval Operations (OP-991B)
Chief of Naval Education and Training (N-5)

Chief of Naval Education and Training (N-7)

Chief of Naval Education and Training Support (01A), Ellyson Field,
Pensacola, Florida 32509

Chief of Naval Technical Training (Code 015)
Chief of Naval Technical Training (Code 016)
Chief of Naval Research (Code 450) (4)
Chief of Information (01-2252)

Commanding Officer, Naval Education and Training Program Development Center
Commanding Officer, Naval Training Equipment Center
Officer in Charge, Naval Education and Training Information Systems Activity
Director, Defense Activity for Non-Traditional Education Support

Technical Library, Air Force Human Resources Laboratory (AFSC),

Lackland Air Force Base
Technical Training Division, Air Force Human Resources Laboratory,

Lowry Air Force Base
Flying Training Division, Air Force Human Resources Laboratory,
Williams Air Force Base

Personnel Research Division, Air Force Human Resources Laboratory (AFSC),

Lackland Air Force Base
Superintendent, Naval Academy
Superintendent, Naval Postgraduate School
Superintendent, U.S. Military Academy

Superintendent, U.S. Air Force Academy
Superintendent, U.S. Coast Guard Academy

National Research Council
National Science Foundation
Science and Technology Division, Library of Congress

6

63

-. - - -. - - . -.-- -- -- '-V.

1.

h.,,

I,
*t

~.

U
p
4
4

I

