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A custom integrated circuit with applications to computer vision has been designed and fabricated. It
is the first generation of a series of circuits that can act as specialized hardware for finding maxima in a
distribution that is constructed by vote tallying. Many applications in artificial intelligence use peaks of
histograms or areas of high density in distributions as the basis for decisions. This series of designs is meant
to operate in those domains where histograms are constructed by tallying samples. The current design -

simply constructs the histogram given a stream of samples. An extension of content addressable memory is
used to tally the samples. The design has been made fast by extensive use of pipelining.

- ' -

This material is based on work supported under a National Science Foundation Graduate Fellowship grant
number SPE-8350104. This work was supported in part by NSF Grant MCS-8203028 and a Defense
Advanced Research Project Authority grant number N00014-g2-K-0193.

M O°-;.-' ",. - -" n..

Rppiovod for ;rubik rlcO .
Disttibution Uni.ln i tod

. - *. -

.- '- % .' .. -. - - ... .- .. . '. ." .'.'. *- ..... . .-. .....- -. ...... .... . ...-.-....-.... . . .. . - -. , " .-. ' ' '



SECURITY CLASSIFICATION OF THIS PAGE (lshon Dole .Enfered)
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
TR 144""".-

4. TITLE (and Subtitea) S. TYPE OF REPORT A PERIOD COVERED

The Vote Tallying Chip: A Custom Integrated technical report .
Circuit S PERFORMING ORG. REPORT NUMBER %%

7. AUTHOR(a) I. CONTRACT OR GRANT NUMBER(a)

David Sher and Avadis Tevanian N00014-82-K-0193

19. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKAREA & WORK UNIT NUMBERSComputer Science Department AE OKUI UER

University of Rochester
Rochester, NY 14627

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency November 1984
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209 18
54. MONITORING AGENCY NAME A ADORESS(Il dillerent from Controlling Oflice) 1S. SECURITY CLASS. (of thia report)

Office of Naval Research -unclassified 'A
Information Systems -Inorinon Systems7 a. DECLASSIFICATION/DOWNGRADiNG

Arlington, VA 22217 SCHEDULE

iS. DISTRIBUTION STATEMENT (of thin Rpout)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of Oh abtract entered In Block 20, It diferent Imm Report)

II. SUPPLEMENTARY NOTES

None

It. KEY WORDS (Continue on tape-r aide It neceaa y iand identify by block nmber)

VLSI, Hough Transform, Cluster Analysis, Histogram, Artificial Intelligence,
Computer Vision, Systollic Array , _

20. ABSTRACT (Continue on reverae side It naceaary and Identify by block number)

A custom integrated circuit with applications to computer vision has been
designed and fabricated. It is the first generation of a series of circuits
that can act as specialized hardware for finding maxima in a distribution
that is constructed by vote tallying. Many applications in artificial intelli
gence use peaks of histograms or areas of high density in distributions as
the basis for decisions. This series of designs is meant to operate in those
domains where histograms are constructed by tallying samples. The current
design simply constructs the histoqram given a stream of samples. An ."

DD ,FO""N.1 1473 EDITION OF I NOV 65 IS OBSOLETE unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Ent ra



SECURITY CLASSIFICATION or THIS PAGE(Wfhon Data Entoted)

20. Abstract (cont.)

extension of content addressable memory is used to tally the samples. The
design has been made fast by extensive use of pipelining.

'I%

. ~ ''~'I

K.4

SEUIYCASFCAINO(HS1r,,hnDt ned



1. Introduction

Traditional computer architectures supply particular primitive functions such as add. load, or jump.
Artificial intelligence applications demand different primitive functions. Usually these primitives are
calculated using software on traditional hardware. This has made most artificial intelligence programs slow
and inefficient. Custom VLSI can supply many of the primitives that artificial intelligence applications
require.

In computer vision it is common for systems to receive information as votes (that are samples from
some distribution). These votes must be tallied to build a histogram. The local maxima of the resulting
histogram is usually the statistic of interest. Clusters, which form the basis of traditional pattern recognition,
are areas of high density. An area of high density on a continuous distribution becomes a local maxima
when the distribution is discretized. Certain approaches to image segmentation use histograms to group
related pixels into regions. The hough transform (a popular technique for deriving high level image features
from low level ones) is based on local maxima of histograms.

The common alternatives to mode based techniques are based on the least square error. These suffer
serious degradation from outliers. The modes are more resistant to outliers.

The most common means of implementing tallying schemes is to have each possible element of the
sample space assigned a corresponding word of an array. This word is incremented when a vote is received
for that element. After voting the maxima are found in the array. For many applications the array can be
multidimensional and require huge amounts of memory if ordinary memory is used. Caching schemes can
reduce the amount of memory necessary especially if the voting is sparse in the accumulator array.

Accomimodating caching schemes leads to the use of content addressable memory with counters as the
basis of the design. Because the votes come into the array in a continuous stream the circuitry that was

* developed is pipelined. The circuit is laid out as a vector of memory units each of which receives signals
only from the adjacent units. This design allows one to cascade chips. Also the time the entire circuit takes
to accept a vote is only the time it takes for a unit to process the signal.

T1. memory units are a combination register and comparator to hold the location in sample space, a
counter w store the number of votes for that location, and a finite state machine to decode incoming signals
and courol the rest. The address register and counter also can take their value from the next unit. This is
done When the accumulated tallies are retrieved. The counter is a carry-save counter so that it can be
arbitraiy extended without affecting the speed or design of the circuit. The circuit takes as input from an
externi host two control lines and an address for input. It sends as output to the host an address, count
and a sipaI indicating the validity of the output.

Ou current layout explores the effectueness of the basic concepts. It was fabricated in April 1984,
and wa tested in June 1984. Five of the six chips fabricated worked perfectly according to the tests. The *--

sixth di not work at all and thus can be considered a fabrication error.________
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7-Task Description
The task of this hardware is vote tallying. Vote tallying is the process accepting a Stream of samplesr

and determining statistics about the resulting distribution. When a president is elected the samples are the
votes for the various candidates. The statistic that is being determined is the mode of the distribution. V

When vote tallying is used in the context of vision the votes arise from easily recognized elements of an
image, such as pixels or edges. The statistics, in this context, are the local maxima.

This paper describes a device that take as input a stream of samples from some distribution. The
:output is the exact histogram of the distribution. Later generations of this chip could generate a modified

histogram whose local maxima have a high probability of being local maxima of the original distribution.

2.1. Applications
There are many applications for such a device in computer vision. These applications use the local

maxima instead of the mean. Local maxima are unchanged by outliers and certain kinds of systematic
noise. Also a distribution can only have one mean but many local maxima. Three such applications are Z
the hough transform, clustering. and segmentation.

2.1.1. The Hough Transformation
The Hough transformation is an algorithm schema that takes advantage of the stability of local

maxima under noisy conditions. The Hough transform has been applied to finding shapes in images
* [Hough621Ballard8lal. finding the velocity from optical flow IBallard8lbI and in many other contexts.

Consider the application of finding shapes in images. Assume an array of directed edges is the input.
Each edge in the image can be a part of only a certain subset of the shapes. Thus each edge can be
considered evidence for some set of shapes. The Hough transformation takes each edge and transforms it

*into a set of votes for the shapes it can participate in. These votes once tallied form a distribution. The
- local maxima of this distribution are the shapes that are supported by the evidence unambiguously thus are
- the shapes that are likely to be in the image. The chip can be used for the vote tallying stage of this

algorithm. When using optical flow for rigid body motion one need only realize that the optical flow at
each point of an image can only be evidence for a constrained set of rigid body motions and then apply the
same reasoning.

- 2.1.2. Clusters
A prominent application for cluster analysis is pattern classification [Fukunaga72l. In the "training"

*phase of pattern recognition it is hoped that samples from the domain for clusters in feature space, with
* each cluster corresponding to a domain object to be recognized (classified). Later, in use, the pattern

recognition consists of deciding to which cluster a sample "really" relongs. The chips described in this
paper will be usefuil during the training phase (finding cluster locations) because a cluster of points in
continuous space produces a local mode in a corresponding discrete space.



2.1.3. Segmentation

The visual field often is composed of several objects with different colors or intensities [Ohlander79].

Many of the most successful approaches to image segmentation take advantage of this. Shading. lighting I -

variation, natural variation and other visual distortions will cause each object to appear with non-uniform

color. Never the less the colors in various regions should cluster about several specific values. These values

can be detected by having each pixel vote for its color into an accumulator array. Once again the chips

described here can act as such an accumulator array. Once these cluster points are detected they can be

used to create a first approximation towards an image segmentation.

2.2. Advantages of Content Addressable Memory
The hardware makes use of content addressable memory (with some modifications) to store the

distribution. This has these advantages:

(1) Only the actual points voted for need be stored rather than the entire address space. In applications

requiring multidimensional spaces this is important.

(2) There is a natural pipelined implementation for this task using content addressable memory.

(3) Further space can be saved by periodically flushing out low frequency points in the distribution.

2.3. Advantages of Cache Flushing
Later generations of this hardware will have the capability of flushing out low frequency votes.

Results on the efficacy of this technique for getting the modes and maxima of the distribution while often

saving more than an order of magnitude of space are documented in (Brown82bl and [Brown83a. In

circuitry featuring heavily pipelined content addressable memory the mechanism of flushing is

straightforward.

3. Implementation
The first generation of a series of vote tallying chips has been fabricated and tested. It is a simple

framework that can be embellished to produce time and space efficient hardware for detecting local maxima

and modes. In this section the framework will be described in increasing detail.

3.1. Serial Implementation

To decide whether a particular algorithm is worthwhile it is necessary to consider if there is another

algorithm that implements the same function faster or using less memory or both (depending on what is the

main cost in your particular system). In particular if there is a less expensive serial implementation of a

function than the proposed parallel implementation then using the parallel implementation is not
worthwhile.

:" . . . . . . . . .. ..... . .
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4 I.

The simplest serial algorithm assigns an element of an array to every location in the address space.
The collection of a sample increments the element whose address corresponds to the value of the sample.L
At the end of the sampling the local maxima are discovered. If the address space is multidimensional the
size of the array that is allocated and searched can become huge. A hash table can solve many of these
problems. Content addressable memory can speed many applications that use hash tables. When a single
image can generate 10.000 samples efficiency gains become important. Also flushing and sorting can be 'I done by special purpose hardware while the sampling continues. I

3.2. Operation of the Chip
This chip acts as content addressable memory with counters. Tere are three actions it can perform:

U(1) insert sample
*(2) retrieve data

(3) reset memory

The chip is implemented by an array of units each of which contain memory to hold a sample and a
count. Inserting a sample that has yet to be inserted allocates a unit with a count of I to it. If the sample
has been seen the unit originally allocated to that sample has its count incremented. The value of the first

* unit in the memory is always available for probing. The retrieve data signal causes the first unit in memory
* to be output and deleted. While there are units of memory available the second unit takes the place of the

first. In the next clock cycle this signal is then broadcast to the third unit that takes the place of the second
and so on till there are no more units with data in them. Thus the retrieve data causes the data in the
memory to shift towards the first unit. This can be recognized as a pipelined version of a hardware stack or
queue. retrieving data takes two clock cycles. The reset memory operation frees all units for further
allocation.

3.3. The Functional Unit
The central concept of this generation of chips is the use of an array of identical devices. Each of

these devices is one word of the content addressable memory. The first element is connected through a
decoder to the signals coming from the primary pins. The last element is connected through an encoder to
the pins for cascading. The layout of the functional units on the chip is shown in Figure 1. In the current L

- circuitry there are four functional units.

3.3.1. The Composition
The functional unit has three parts, a comparator, a counter, and a finite state machine. The 7

comparator stores addresses and compares an incoming sample with that address. The counter stores the
number of samples at that address. The finite state machine takes the control signals and sends the correct
signals to the comparator and the counter. The finite state machine also has a bit of memory that indicates
whether the address stored in the comparator is significant. A labeled functional unit is shown in figure 2.



Isp data
addresses onrl vldcounts

comparator finite state machine counter

comparator finite state machine counter

comparator finite state machine counter

comparcmare finimsare mcicounter

comparer compare compare compareIi bit bi bibibtt i

Figure 1: Floor Plan for Chip
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ComparatorCone
N Finite State Machine

Figure 2: Schematic for Functional Unit

3.3.2. The Comparator
The comparator accepts control signals from its associated finite state machine. It gets signals on 2

of the two phase clock. The comparison is done on q), of the two phase clock. The comparison is
performed by a single complex gate. The comparison circuitry is on the critical path of the chip. This L
means that the speed of the chip depends directly on the speed of this circuitry. Figure 3 is a a schematic
describing the comparison circuitry.

data current
input vai e

ref resh~ memory

accept next as value
I bit accept input as value

reset bit

XOR I compaion

value

Figure 3: Schematic for One Bit of Comparison Circuitry
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3.3.3. The Counter
The counter accepts control from the finite state machine to the left. It gets signals on q)2 of the two

phase clock. It is a carry save counter modified to allow parallel load (for the retrieve data command). To
send an increment signal the carry in input of the low order bit is set high. Figure 4 is a schematic

description of the counting circuitry.

3.3.4. The Finite State Machine
The finite state machine accepts input on 4p, and sends output on q2. Its input is four control signals

and a line that is high when the sample is equal to the comparator's address. It generates the signals to
comparator, counter and next unit's finite state machine. The data valid bit is the only bit of state. It was
designed as random logic to fit well between the counter and comparator. Figure 5 is a schematic
description of the finite state machine's functionality.

3.4. Pipelining
The counters are pipelined using carry-save logic. Another form of pipelining used by this chip is

that the signals as they pass from one unit to another are pipelined. This is because the finite state
machines take input on 4p, and output on T2. The samples as they pass down the chip are pipelined as well.
This means that the clock speed of the chip is the speed of a single unit. The pipelining of the retrieve
data command means that it takes two clock cycles to retrieve each piece of data. This slowdown is
predicted by the circuit retiming theorem [Leiserson8l] or the systolic conversion theorem [Leiserson83].

3.5. Physical Parameters
The first generation of this series was fabricated in 4 micron NMOS. The width of the first

generation is 3.326 micron and the length is 2.028 micron. It is perfectly rectangular. The static power
consumption is approximately 300 milliwatts. Using the timing simulator Lsim. designed by Christopher

current
count

carry in carry out

resetIbi

refresh soa

count

accept next
count xcount'

count Figure 4: Schematic for One Bit of Counter
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V(ote) P(op) (r)E t) R(efresh)

C(omare) - A = -S&V I = V&(C + -S) (ncrement)
A(ccept) 4,.

(re)F(resh) S = -R&(N&P + V + R&S) F=V+R re)F(resh)

(r)E(set) 4  L- s  (r)E(set)

P(op) 4- V=V&C&-S P=P E=E R=R+V&-S+V& P(op)

N(ext) S

Figure 5: Schematic of Finite State Machine Circuitry

Terman. some conservative estimates for the timing of my chip were generated. The longest delay between

clocks seems to be 428.3 nanoseconds in five random test cases. This would indicate a clock cycle of

approximately 1 MHz.

3.6. The Finished Product

This chip was designed using the Icarus and Caesar [Ousterhout83] vlsi design editors. It was

extensively simulated using esim (a transistor level simulator for digital NMOS, also designed by

Christopher Terman). It was then fabricated by MOSIS (A DARPA funded organization that arranges

fabrication of chips and pc-boards whose floor plan is sent to them in a foundry independent format) and

the resultant chips tested. Five of the six chips fabricated were found to be functional. This high yield is

attributed to the use of conservative design rules and the extensive simulation (and debugging) done before

fabrication.

3.6.1. The Simulation

Esim was used in the early design effort to simulate each of the components of the chip as they were

designed. When the entire layout was put together a program that cascaded 4 esim simulations of the

design was written and used to test the entire chip under realistic (for a prototype) conditions. It also

checked that the chips could be cascaded without introducing logical errors. Since the chip consists largely

of memory exhaustive testing of even one chip is not a possibility. Semi-random data was generated and
input to the simulation. When the design behaved properly for all the runs the chip was deemed ready for

fabrication. See Appendix I for sample test data.

1-. -........................... . . -*. . .

,. . * . . .
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3.6.2. Results from Fabrication and Testing a

In April 1984 the CIF description of the chip was sent to MOSIS for fabrication in 4 micron '.w

technology NMOS. In May 1984 the fabricated chips from the first fabrication run were received by the
authors of this paper. They were tested at Carnegie Mellon University using "The CMU Test Rig"
[Anantharam83j. Five of the six chips fabricated were found to have full functionality. The sixth was
unable to accept signals and its outputs were not acceptable for an NMOS device. This wsattributed to a
fabrication error. Thus the yield for this prototype was found to be 83%. Since speed was not an issue in

* this design there was no effort to determine the maximum clock rate for the chip.

* 4. Future Generations
The future generations of chips would make use of an architecture similar to this generation to detect

local maxima. Techniques for improving the flexibility and efficiency of these chips are described below.

*4.1. Weighted Votes
Weighted votes (or samples) are ordered pairs of sample and amount of evidence. Work has been

done with using the hough transform on weighted votes [Brown83a]. To tally weighted votes in this
* framework one need only replace the counters with full adders. The weights are added in by the full
* adders to their registers.

* 4.2. Sorting
Maintaining the data in order of increasing counts has many applications. Detecting maxima is

* simplified when the data is sorted. This can be done by running the data through sorting hardware after
* output. It is possible to build a sorter into an array of units. Building in a sorter keeps the votes sorted for

the most part while the voting is taking place. This makes certain flushing schemes much easier. Using the
result of ILeiserson8ll it can be shown that there is a method that ensures that to the host the array always
appears sorted. This method requires considerably more hardware (it would consume approximately five
times as much area). Using a modified compare and exchange sorting algorithm the sorting can be done
with twice as much hardware (as not sorting). Both methods spend two of every three clock cycles sorting.
The gains from sorting the array dynamically might justify this cost.

4.3. Flushing
The main motivation for this research was to create an architecture to support cache flushing.J

* Rlushing a cache is to remove certain entries in the cache periodically or on demand to keep it from filling
* up. The hardware described acts as a cache. There is evidence that with a good flushing scheme maxima

can be detected with much less memory than without [Brown82bj lBrown83aI A variety of flushing schemes
can be built into this hardware. The actual flushing of a unit can be performed simply by having the unit
act as if it received a retrieve data command, it deletes its entry and accept the entry of the next unit and
tell the next unit to do the same.

The addresses that have accumulated little evidence are good candidates for flushing. These are the
units with low values in their count registers. Dynamic sorting would make sure that most of these units
were together on the far end of the array. Research has been done on a variety of schemes that use this

K. ~ *- %,. X L
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idea.

If sorting is not to be performed dynamically then each unit must decide whether to flush based on
the number in its counter. One such scheme is to subtract one from the entire cache and then flush all the
addresses with zero weight. Several schemes for doing this were proposed in [Brown82b] and examined in
[Brown83a].

pI
If the units are dynamically sorted then flushing schemes can use order statistics. One such scheme is

to flush the bottom third of the array when full. This would be difficult to do to an unsorted array. It is
easy to do to a sorted array.

Schemes for flushing that use a low resolution histogram are being studied [Brown83b]. These
scheme involves having a command to flush all the votes in a rectangle received by the chip from the host.
A minor change to the comparator and finite state machine is required for such schemes.

5. A System that could Use the Chip
This section describes how this chip could be used in a special purpose vision system. The system

that will be described takes digitized images and searches them for a specified set of shapes. This
illustrative use is one of many possible uses, and has not been implemented.

5.1. A Short Description of G-Hough
The G-Hough is a technique for recognizing specified shapes in images developed by Dana Ballard

IBallardalaI. It is a fast table-based algorithm for correlation detection [Brown82a. This technique is used "
for determining the position orientation and scale of the shapes in an image from the line segments in the

* image. In this paper a modified algorithm that starts from edges rather than segments will be described.

From the prespecified shape a data structure called an R-table is built. An R-table has an entry for
* every edge orientation. Each entry contains a set of possible center points for shapes at a particular

orientation and size that might contain this edge. G-Hough proceeds by taking the edges of the input
image and iterating over the possible orientations and scales for the image. The R-table specifies how each
edge in the image should vote for the size and orientation of shapes that are consistent with the image data.
This is described more exactly by the pseudocode below.

For x = I to imagewidth ,.
For y = 1 to imageJength

If edge at xy Do
For scale = min scale to max scale

For orientation = 0 to 360 step orientationstep
With thing in R-tableforientation(x.yj+orientationj Do

votefor((x.y) + thing*scale)
End

End

%B
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End
End

End
End

5.2. The Components of the System
The system is connected to a camera and digitizer. The output of the digitizer is input to an edge

detector. Edge detection at video rates is commonplace today. The output of the edge detector is
connected to a set of shape recognizers. one for each shape to be recognized, that return good possible
positions for the shape. Then a simple post processor checks out these possibilities and returns the top n -..
shapes and their positions. A graphic representation of such a system is shown in Figure 6.

5.3. The Shape Recognizers
The shape recognizers each can detect good possible positions for a single shape. They are composed

of two processors. The first processor does the preprocessing to execute the G-Hough developed by Ballard
[Ballard8la]. This processor creates a set of votes for input to a vote tallying chip. The output of the vote

tallying chip is a set of possible positions for the shapes being detected and the strength of the evidence

'.' supporting the existence of the shape at that point. The top m of these can be found using a simple sorter
- (if the output is not already sorted).

6. Conclusion
In this paper an architecture has been presented that, suitably embellished, can be a useful addition

to many systems for computer vision. There are many different applications that can be speeded by
specialized hardware of this form. One particular way of using this device has been described. Other
statistical tasks that require mode based estimation or detection of local maxima can be speeded by use of

this technique. Hardware designed according to this architecture has been successfully fabricated. L
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APPENDIX

In this appendix examples of sample input and output of the test ro ;tines is given. The input was

generated by a program that took text samples and generated votes corresponding to the letters mod 16.
Mod 16 was chosen because the chip has a four bit address space. It generated a null signal when it
encountered white space. In the input files numbers from 0 to 15 are votes. -1 indicates a null signal. -2

indicates the end of input. Each input file terminates with an end of input. Each output file contains the
histogram in binary that is output by the chip in simulation. The first number after "popping:" is the

-o--7
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I DIGITIZER

Edge Detector I
Preprocessor for G-hough

RT RT RT RT RT RT RT RT ."

VTC VTC VTC VTC VTC VTC VTC VTC
- .

POST PROCESSOR

Figure 6: Scheme for Finding Shapes in Images

address. The second number is a bit signaling whether the output is significant. The third number is the
count at that address. Each entry is output twice for reasons described in the paper.

Input file I:
-13914312545-11234491514814-13914312545-12
13 1 32 1531482-1-19144-1 13351311161311-1-1131
9 14 8 9-111 -1 -12 5 79 345 2 -13 8 12 -13 11 -1 -17 8 9 12
5881557881311156154583-1 13-175438 128999
911-1-1029144158155788911-113-1-113 11156154

... .. . . -' -, .-. ,.- , .-.- ,- ..- . . - , . . z . . . .. -.
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5-2
[011
1118
1218
13114
[4110
[1J15
[61 3
[7 5

S1[81 15
.1. [9114

11010
[1118
[121 4
11318
1141 8
[1517
Output file 1:
popped: 0011 1 1110
popped: 1001 1 1110
popped: 1001 1 1110
popped: 11101 1000
popped: 1110 11000
popped: 1100 1 0100
popped: 1100 1 0100
popped: 0101 1 1111
popped: 0101 1111
popped: 0100 1 1010
popped: 0100 11010
popped: 1111 1 0111

,. popped: 111110111 ,%
popped: 1000 1 1111
popped: 1000 1 1111
popped: 0010 1 1000
popped: 0010 1 1000
popped: 1101 1 1000
popped: 11011 1000
popped: 0001 1 000 I"

popped: 0001 1 1000
popped: 1011 11000
popped: 311 1 1000
popped: 01101 0011
popped: 01101 0011
popped: 0111 1 0101
popped: 0111 10101 L
popped: ONO 1 0001
popped: ONO 0 0001
popped: ONO 0 0000
popped: O00 0 0000
popped: ONO 0 0000
Input file ":
43-11 -1200-14 11 -19-1050 111 -1 12-1 140 11 -12-12
4-1 24-112 -1 20 11 -112 -1 144 11 -12 -18 -1 40 -112 -12

.o. .. . .:..
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011-12-114911-12-1 16-128-1 12-11411-1 12-1142
11-12-1 24-1-2
[018
[117
(2115
[311
(418
[51 1
[61 1
171 0
1812
(912
[10] 0

* 11119[12] 4 .6,

[1310
(1414
[1510
Output file 2:
popped: 0100 1 1000
popped: 0011 1 0001
popped: 0011 1 0001
popped: 0001 10111
popped: 0001 10111
popped: 0010 1 1111
popped: 0010 1 1111
popped: 0000 1 1000
popped: 0000 1 1000
popped: 1011 1 1001
popped: lOll 1 1001
popped: 1001 10010
popped: 10011 0010
popped: 0101 1 0001
popped: 0101 1 0001
popped: 1100 1.0100
popped: 1100 1 0100
popped: 1110 10100
popped: 111010100 "
popped: 1000 1 0010
popped: 1000 1 0010
popped: 0110 1 0001
popped: 0110 0 0001
popped: 010 0 0000
popped: 0000 0 0000
popped: 0000 0000 -
popped: 00000 0000
popped: 0000 0 0000
popped: 0000 00000
popped: 0000 00000*popped: 0000 00000,---popped: WW0 0 000 W:'

popped: 0000 0000
Input file 3:
14494125-1485393-1 1415453-13112-1-1 15 34152

. . . .. ... . . ... .' '.. ". .. ..'' .'. ,' . . . .,.. , - . .. - . .. .. . . . . . -... .- ' .. .- " .,. -.

L" . .. . ..., . ., . ,, : .. , ,.. ,- ..- ._,= .: -.- ,, - ", , . " .- . , .. ",.: -,* _" ,"- ,-.'_..,-.' .' .'_. _,'z,,_', _-'-- ' --.p -'.. . .,-.. .".-. .-.. .--. .-
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5 2 -110 12 -1198 3 -114 30 135 -17 -1 -1143 5 144 5 2 -1
61912525-1253156529-1914-149342925454-1
315 1305414915 143-1-11435 144-2 ,

[013
1116
121 8
131 14
[4113[5] is ,

[612
1711
181 2
[91 9
[1010t11110[

[1214
[131 1
[1419
[151 6
Output file 3:
popped: 11101 1001
popped: 0100 1-1101
popped: 0100 1 1101 .
popped: 1001 1 1001
popped: 1001 11001
popped: 1100 10100
popped: 1100 10100
popped: 0101 11111
popped: 010111111
popped: 1000 1 0010
popped: 1000 10010
popped: 00111 1110
popped: 0011 11110
popped:1111 1 0110
popped: 1111 1 0110
popped: 0001 1 0110
popped: 0001 10110popped: 0010 1 1000
popped: 0010 11000
popped: 0000 10011

. popped: 0000 10011
popped: 0111 0001
popped: 0111 1 0001
popped: 0110 1 0010
popped: 0110 10010 F
popped: 110110001
popped: 1101 0 0001

popped: 000 0 0000
popped: ( 0 0000
popped: (ND 0 0000
popped: 00000 0000
popped: 00D 0000
Input file 4:

5--: .
.5.5* 5 *. *.'5*.5 -"*, **,°..]
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-1 -1 -113 3 9 9 8 7 9 -1 -1 -1 -1- -I - -1 -1 - -1 5 14 9 8
-1021572113135273-1131145112-1-1 -- 1 -- 1 -1-1
-1 -1 -1 -1 -113 3 9 9 8 7 9 -1 -1 -1 -1 14 113 5 1 -1 -- 1 -1 -1
13399-1 13-1 13 10-1 156-1 13399-1 3812 13452-1
S5 354-1 -1 39 14 150393 -1 -1 -1 -1 - -1 -2[03

1215
131 15
[412
[1516
[611
[71 4
[814
[9113
(1010

[121 1
[1316
(1414
(1513 --
Output file 4:
popped: 0001 1 1011
popped: 0011 11111

popped: 0011 11111
popped: 1001 1 1101
popped: 1001 11101
popped: 1000 1 0100
popped: 1000 1 0100
popped: 0111 1 0100
popped: 011110100
popped: 0101 1 0110
popped: 0101 1 0110
popped: 1110 1 0100
popped: 1110 1"0100
popped: 0000 1 0011
popped: 0000 1 0011
popped: 0010 1 0101
popped: 0010 1 0101
popped: 1111 1 0011
popped: 1111 1 0011
popped: 1101 1 0110
popped: 1101 1 0110
popped: 1100 1 0001
popped: 1100 1 0001
popped: 0110 1 0001
popped: 0110 1 0001
popped: 010 10010
popped: 0100 0 0010popped: OW0 0 000 -..popped: 0000 00000 'r
popped: OW0 0 W00O--.popped: 0000 0 0000
popped: 0000 0 0000

-1'

• .:-. . . -,. • .. . • - . . . . - . - . . . • . --. - : - . . .. . . . . - . . ". ,.• . . •,.-.•.-:. . . ,
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I

17

popped: 0000 0 0000
Input file 5:
-1-1 -1 -- 1 -1 -12 5 0 15 2 4 -115 14 -14 8 5 -13 4 14 5 3 -1
156-1485-19 1465235-14914113933-1131545125
-1156-1485-12152154-1 3913512 14152 -1 -1 -1 -1 -1" 1 -1 -1 -1 -1-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 4 1 6 9

4-13852-1-1-1-1158114-1-115891581415841582
15815-2
1011
[115
(218
[31 7
[41 13
15111
[614
[710

-s [8110
[91 6
[1010
[1110
11212
[1313
[1415
[15115
Output file 5:
popped: 0010 1 1000

i popped: 0101 L 1011
popped: 0101 1 1011
popped: 0000 1 0001
popped: 00001 0001
popped: 1111 1.1111
popped: 11111 1111
popped: 0100 1 1101
popped: 0100 1 1101
popped: 11101 0101
popped: 1110 10101

4o popped: 1000 1 1010
popped: 10M 1 1010

rpopped: 001110111
popped: 001110111
popped: 0011 1011
popped: GOS 1 0101
popped: 00l 1 0100

popped: 018 10100
popped: 013 1 0100

- popped: 101 10110
popped: 1I61 1011
popped: 1161 0011
popped: 1161 0011
popped: 11 0 0010 e.e

popped: OCR 0 0000
popped: Ol 0 0000
popped: 00110 0000 .- ,"

.- %...-.o.. .
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popped: 0000 0 0000
popped: 0000 00000
popped: 0000 0 0000
popped: 0000 0 0000
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