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g CONFIDENCE REGIONS FOR VARIANCE COMPONENTS
’ IN UNBALANCED MIXED LINEAR MODELS
by
f Alan P. Fenech and David A. Harville
2,

University of California-Davis and Iowa State University

(f ABSTRACT

) Ths Aoes Mi:i/
.i We-presentija general procedure for obtaining exact confidence
; regions for the variance components in unbalanced mixed linear models.
The procedure utilizes, as pivotal quantities, quadratic forms that may
depend on the variance components in a complicated way and that are dis-
tributed independently as chi-square variates. In the special case of
balanced classificatory models, the pivotal quantities simplify to scalar
multiples of sums of squares from the usual analysis of variance. The
procedure can be easily modified so as to obtain an exact confidence
“ region for ratios of variance components and can be regarded as a

j generalization of Wald's procedure for obtaining a confidence interval

for a single variance ratio.
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Confidence Regions For Variance Components 1

1. INTRODUCTION

Suppose that y is an n x } observable vector that follows the

general mixed linear model
(1.1) y = XOBO + xlbl + eee + xkbk + bk+1
where X, is an n x m, known matrix ({ = 0,...,k), and Bo is an m, x 1

i i

vector of unknown parameters, b1 is an m, X 1 unobservable random vector

el
whose distribution is N(O, o;I), that is, multivariate normal with

mean vector 0 and variance-covariance matrix ciI (4=1,¢44,k+1), and of,

are unknown parameters. Assume that bl""’b
2

are

2
...’ok+l k+l

independently and that o 2 0 (i=1,...,k) and 012<+1 > 0. Define
62 = (af, eeey oi, °i+l)T’ vy - di/°§+l (L =1,...,k) and
Y = (vl,...,yk)r.

We devise an exact 100 (1-a)” confidence region for the vector 02
of variance components. Essentially the same approach can be used to
obtain an exact 100 (1-a)Z confidence region for the vector y of variance
ratios. Confidence regions for 02 and vy can be of direct interest. They
can also be used to obtain (generally conservative) confidence intervals
for functions of 02 or y (Spjotvoll, 1972; Khuri, 1981) and for linear
combinations of the fixed and random effects, that is, linear
combinations of the elements of the vectors Bo, bl' ceey bk (Jeske,
1985).

Let xz(f) represent a chi-square distribution with f degrees

*
of freedom, and take L J to be the upper-a point of this distribution.
’

Under certain circumstances, there exist k+l quadratic forms

T T

AR RN A N .
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Confidence Regions For Variance Components 2

T T
y Aly,...,y Ak+ly' where Al,...,Ak+l are n x n symmetric matrices of

known constants, such that (i) yTAly....,yTAk+ly are distributed

independently, (11) y Aiy/(a c,) ~ xz(fi) for a positive integer f1

k+1€1

and a scalar ¢y that are necessarily given by f = rank (Ai) and

-1
and ¢, = f, (di,k#l + zjdijvj) with d1j = tr(Xinxj) (3=1,...,k) and

d = tr(A,) (i=1,...,k+1), and (111) the (k+1) x (k+1) matrix with
1,k+1 1

1jth element d,, 1s nonsingular. If the k+1 quadratic forms yTAly,...,

1]
YTAk+l y exist, then clearly, for 0 < a < 1, a 100 (1-a)X confidence

region for the vector 02 is given by the set S(y) consisting of those

values of the vector 02 that simultaneously satisfy the k+l inequalities

T
£ <V Aiy/("kﬂ 1) < x £ (1=1,...,k+1),

*
(1.2) Xy
1=a,). 6y @0ty

where T4y and ayy represent nonnegative constants such that

a +a

11 < l (1-l'uoo,k+l) and ﬂi(l-ai

12 1" %gp) = Lo

It is well known that, for balanced classificatory models, the
requisite quadratic forms exist and, in fact, can be taken to be those
sums of squares in the customary analysis of variance that correspond
to the random effects and errors, in which case f1 + eee + fk =qn -
rank(xo) (e.g., Broemeling, 1969). Other special cases for which such

quadratic forms have been found are treated by, for example, Broemeling

and Bee (1976).

A
PR

R ]

-l

Ly

~r L
(NSO )

.l"'. )
XN

<F -

AR ~ T
)
N

v -
"
AN AACAD

Vo
a0y

A

v -

RSN IS il WO

L]




- N

E ‘\“-' §

I’~$~
Confidence Regions For Variance Components 3 \ \§ ;4}

a4l

A )

XA :"S‘l :\E:

Unfortunately, in many cases, quadratic forms yTAly,...,yTAk+ly,
whose matrices Al""'Ak+l are matrices of known constants and that
satisfy the three desired conditions, may, if they exist at all, be hard
to find and/or may be such that I f1 <{n- rank(xo), in which case the
confidence region S(y) may be overly large. In what follows, we present
a general procedure for forming an exact 100(1-a)X confidence region for
the vector 02. Our approach differs from the aforementioned approach
in that we allow the elements of the matrix A1 of the {th quadratic form
yTAiy to be functionally dependent on the last k-i+1 variance ratios
°:+l""’7k - di/oi+l (i=1,...,k). By allowing this dependence, SIS

.......

Yy " af/
we are able to construct quadratic forms yTAly,...,yTAk+ly that satisfy
the three desired properties and which, in addition, are such that
Z f1 =qn - rank(xo). Then, as in the aforementioned approach, an exact
100(1-a)Z confidence region consists of the set S(y) of all values of
the vector 62 that simultaneously satisfy the k+l1 inequalities (1.2).
Our procedure can be regarded as an extension of Wald's (1940 and
1947) procedure. Wald's procedure, when extended along the lines
discussed by Thompson (1955), Spjotvoll (1968), Seely and El-Bassiouni
(1983), and Harville and Fenech (1984), covers the special case k=].
Hartley and Rao (1967,Sec. 9) proposed a general procedure for obtaining

an exact 100 (1-a)Z confidence region which, like ours, can be viewed as

a generalization of Wald's procedure. However, as can easily be TN
shown, it produces confidence regions of a seemingly unappealing form §§§§§§§i§
and, in fact, can with high probability produce confidence regions of gkjtixiti‘
infinite volume. :¢:; ;:, -
N
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Confidence Regions For Variance Components 4

In principle, the likelihood ratio could be used to generate a
confidence region (Hartley and Rao, 1967, Sec. 8). However, the
percentiles of its distribution are approximated on the basis of
asymptotic results. The accuracy of these approximations is
questionable and is not easily investigated. (What few asymptotic
results are available for mixed linear models--see, for example, Miller
(1977 )--seem unassuring, and, except in special cases, Monte Carlo

studies are computationally unfeasible.)

2. PRELIMINARIES

k
Define V1 1+ zs-1+lexsxs (1=0,...,k-1) and V K+l - Vk = ], and

let V = Vo= 1+ zs-lY X x:. Under the assumed model (1.1),

y ~ N(XOBO, a:+lv), and the parameter space for the vector 02 is

2 2
Q, = [¢° gy > 0s ¥4 2 0 (1=1,...,k)}.

Note, however, that the matrix V is positive definite for some values of
the vector y that include one or more negative elements.
Subsequently, we take the model to be the generalization of model

(1.1) that results from disregarding our original definitions of

2 2 2
ol,...,ak+l as variances and from assuming only that y N(XOBO, °k+lv)

and that the parameter space for the vector 02 is

2

2 T
Q= {c° : Or > 00 (Ypppseeesyy)

l"i (i-O,...,k—l)},
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Confidence Regions For Variance Components 5

T
where Fi is the set of all values of (yi+l,...,vk) such that V1 is

positive definite.

We shall have occasion to refer to a model, to be called Model {1,

ﬂ.x

in which

’ &
A

LX)

Y= XoBo * XyBy ¥ eee + KByt ey,

’
.

“~
‘l

where Bl,...,B1 are vectors which, like BO’ are composed of unknown

parameters, wvhere e, 1s an n x 1 unobservable random vector with

i

2
E(ei) = 0 and var(ei) = 0eVye and where Yippreooo Yy and hence V, are

i
assumed to be known (i=1,...,k). Model 1 is essentially the same as
model (1.1) except that the parameter vectors ﬁl,...,B1 appear 1in place
of the random vectors bl""’bi and the parameters YiepoooeoYy are taken
to be known instead of unknown.

For 1 = 0,1,...,k, define x: = (xo, xl,...,xi). Note that x: -
(X3_;» X) (4=1,000,00. let 1, = rank(X), r, = rank(X,) - rank(X, )
(i=1,...,k), and Teel =0 ° rank(x::). Subsequently, we assume that
r, >0 (i=1,¢0.,k+1).

We write A~ for an arbitrary generalized inverse of a matrix A,

that 1s, A" 1s any matrix satisfying AATA = A. Define

* 4T -] * *T -1
P,y = X (X2 Ve X )RV (=1, 000 ,k+1).
Note that
Pi—x BRIL PI—lv;l - (VIlPi-l’T - VIlpi-x
and that pi_lx:_l - x:_l and x:flvzlpi_l - (Pi_lxI_I)Tv;1 - x:flv;l,

. T TR T T e T e S T

. N e T S L
- T - Rl » o L s % n‘_.- LI R St T K R
AL 4 S YL S LML URLR DR TR S AL ERL L SRR LR
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+
.
2

E

implying that, for j = 0,....,1~1,

‘

s

s T -1 T ~1 * % AT -] *T -1
A PeogXy = Xpo XVE Ry = KGV, By XKoo= Xy, XOVUR ) o= XYY
i (i=1,...,k+1). Note also that, since the matrix I-Pk = I -

) X 1 ic and id

% xk(xk Xk) xk 8 symmetric an empotent, there exists an n x Tl
\A

t: matrix F such that I—Pk - FFT and FTF = ] and that FFTXi = (0, implying
'.' that FTx1 =0 (1=0,...,k).

h 3. QUADRATIC FORMS

3.1 Definition
We now introduce the quadratic forms on which the proposed
confidence region is to be based.
T, -1 T, ~1
Define C, = XV, (I-Pi_l)x1 and q = XV, (I-Pi-l)y (I=1,+00,k).

It is known tha® rank (Ci) = r and that there exists an m, x r, matrix

i i i
A1 of rank r such that, under Model i, T A}bi would be an estimable
parametric function. It 1is further known that Af = LIC1 for some matrix

L,, which is necessarily of rank r

{ » and that, under Model i, the

i

minimum-variance linear unbiased estimator of 11 would be

- (til,...,tiri)

T T
Liqi'

The proposed confidence region is based on the k+l quadratic forms
~T.. T 2 =1~
Q = Q(Ygsece,yysy) = TolL (€ + v, CHOL) TT, (d=1,...,K),

Qpt = Yoy () = 7 T2y = 27,

A s et e a v -
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Confidence Regions For Variance Components 7

/ 2 are

where z = FTy. As shown in Section 3.2, Ql/o s

2

k1277 Qs
distributed independently as chi-square random variables with degrees
of freedom TisesesTiar respectively. The quadratic forms Ql""’Qk+l

are invariant to the choice of the matrices Al,...,Ak, as is easily

verified.

3.2 Joint distribution

2

Under the assumed distribution for y, which is N(XOBO,dk+1V),

find that, for j < 1 =1,...,k, cov(qi,qj)

-1
j (I-p

2 T -1
s XqVy (I-Py_IVV j—l)xj

2 T, -1 k T\l
Oer1XqVy (TP )(I+T .y X X IV, (I-P, )X

s=]'8"8" 8"} j-1""3

2 [Tl Tyl
Oe1XqVy (I-Py_ DV XV, (1-P

3XgVy (7B X

+ij

3 3

k1 ¥1Vy (TP VY, 3-1%

3

2 Tyl
Olaq (XqVy (I-P,_ X

AT ] % kT ]

T, -1
XV, (1-P,_ )X ) X2V, X,

3 %Yy 1-17%51 X501 V5 X5
f3.1) =0-0=0.

It can be shown, in similar fashion, that cov(z,qj) = 0 (I=1,...,k).
Thus, Qyseeerqy,2z arE distributed independently, implying that

~ ~

Ty seresT, 2 aTE distributed independently and hence that Ql""'Qk’Qk+l

are distributed independently.
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Confidence Regions For Variance Components 8

Further, for i=],...,k, we find that

(3.2) E(q,) = xIvIl(I-Pi_l)xoBO =0,
var(q,) = of, X1v;'(1-p,_ W la-p,_ )%,

o2 T,,~1
sl v L1- PPV v X XDV, T (T-Py )Xy

~ 2
implying that T, ~ N[O, Ol 1 1(C + yic )L ] and hence that

Q1/°i+l ~ xz(ri). Also, z ~ N(O,oi+11), and, consequently,

2 2
Qa1 Fpay ~ X (Tpyy)e

3.3 Canonical representation

We now consider a particular choice for the parameter vectors

T
k.

This choice produces representations for the quadratic forms Ql""’Qk

TysecesTy OT, equivalently, for the coefficient matrices Af,...,A

that are, as we discuss in Section 4, informative about the nature of
the proposed confidence region, and that can be useful computationally.

Let Ail""’Air represent the nonzero, and hence positive,
i

characteristic values of the matrix C,, define D, = diag(a

i’ i

and take Ri to be an m1 x r1 matrix whose columns are orthonormal

11""'A1r1)'

characteristic vectors of C1 corresponding to the values Ail""’Air ,
i

......
o, 2t

]
""
l' l' LS
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Confidence Regions For Variance Components 9

regpectively. Thus, by definition,

RS
C,R, = R,D RIR, = I - :
11 11 11 ' - >
implying that :’\,a*x::
T Te2p T T 2 %
R1C1R1 = Di’ Rici 1 (C ) C1R1 D1R1R1Di Di' ';f
Consider the choice :?
T 1/2 T T
Ay =Dy RyCy = L4C
with LT = D_I/ZRT Note that this choice varies with It
i 1 10 C Yi"'l'...’vk.

leads to the representation

~2
r T
~T =1~ i 11
(3.4) Q, = t1,(1+y,D,) "1, =T
17RO R T Ry TR
1/2_T

with T D1 Riqi’

3.4 An alternative approach

The quadratic forms Ql,...,Qk+1 can be defined, and their
properties established, via a vector-space approach, as we now
demonstrate. Denote by R" the vector space consisting of all
n~dimensional real vectors, and let wl represent the orthogonal
complement of a subspace W of Rn with respect to the usual inner product,
that is, the inner product that assigns the value y'fy2 to any two
n~dimensional real vectors Yy and Yye Further, let wli represent the
orthogonal complement of W with respect to the inner product yfviyz.

Denote by C(A) the column space of a matrix A.

r.a._.(, ‘_J‘l" e A e B B A B e BB B B e B B -f -_d.--n‘s-m‘n-q‘u-g‘. --n_--A.A-_;A“_-_-n.-_-1~1‘1-A‘LJ.A.‘A4J|.LI')_ Lf-fh
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* 1
Define Uk+l = c(xk) and
- * 1 * 1,14 -
U, c(xi_l) n [c(xi) ] (1=1,¢.0,k).

Then, dim(U, . .) = r and

k+1 k+1

atn (v,) = dimlc(x;_ )'1-dtafcxp’)

- n-rank(xz_l)-[n-rank(xz)] =r (i=1,...,k).

i

Take H1 to be an n x r1 matrix whose columns form a basis for U1

(1=1,...,k+1). Derivations paralleling those of results (3.1), (3.2),

and (3.3) reveal that H}vuj = 0 (j<i=1,...,k+1), that HX_ = 0

1%o
(1=1 k+1), and that H.VH, = HL(V, + y.X,XDH, (i=1 k) and
seeesktl), (Vi = BV, + v X X R, seees

T T
Hk+IVHk+l = Hk+l“k+l' Note that Ul""’uk+l are orthogonal with respect

to the inner product ynyz and that their direct sum is C(xo)l.

We have, in effect, established that the vectors ny,...,ﬂ{+ly are

T 2 T T
distributed independently, with Hiy ~ N[O, °k+1“1(v1 + Yixixi)ﬂil

(i=1,...,k) and H§+ly ~ N(O, °i+lH:+lﬂk+l)' It follows that the k+l

quadratic forms

* T T T -1 T
Q =y Hilﬂi(vi + Yixixi)ﬂil Hy (1=1,+4.,k)

T

* " T
Qeer = Y ey

-1 T
Hi1 M) He?
*
are distributed independently, with Qiloi+l ~ xz(ri) (1=1,¢0.,k+1)e
These quadratic forms are invariant to the choice of the basis matrices

“l""’“k+l’ as is easily verified.

'y %y

TS

77"‘
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s

RS
D)

It is easy to show that one choice for the matrices HT,...,RT is

k+1
T T, T, ~1 T T
H Lixiv1 (1 Pi—l) (i=1,...,k), Hk+l = F, This result can, in turn,
* *
be used to show that the quadratic forms Ql""’Qk+l are identical to the
quadratic forms Ql""’Qk+l’ introduced in Section 3.1. The
representations Ql""’Qk+l are informative about the nature of the

computations required to evaluate the k+1 quadratic forms for specified

valués of YyseoosYpe

4. NATURE OF CONFIDENCE REGION

4.1 General case

The set S(y), consisting of those values of the vector 02 (02 € Q)

that simultaneously satisfy the k+1 inequalities

2 *
< Q1/Uk+l < xa (1’l,oot,k+l),

*
X
l=a 11 ,r1

12°74
is a 100(1-a)% confidence region for 02. We now present an alternative
degcription of this set, one which provides more insight into the nature
of the set and which 1s more useful computationally.

*
Let ki represent the maximum characteristic value of the matrix

T -1 *
Xiv1 Xi, and define A1 = nun((:i\“,...,Ah_1
*

*
show that A1 < ki. For any fixed value of (Yi+l""'vk) € Pi, the matrix

) (4=1,...,k). It is easy to

- V1 + yixixf is positive definite for those values of Yy belonging

*
to the interval -l/)\1 < Yy { », but the quadratic form Q1 is a well-

Via

*
defined function of y, over the more extensive interval -1/A, < y, < =, as
i i i

is evident from representation (3.4). Further, as a function of T Q1 is
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R
" *
strictly decreasing and strictly convex over the interval -l/A1 < Yy { =,
\; and
# limit . Q ==, limic Q, = 0
n 1 -l/Ai e
Y (Harville and Penech, 1984, Section 3). For convenience, define
::.; *
‘:: Qi(-l/Ai’ Y1+l'...’Yk;y) = @ and Qi("ovu,l""'ovk;y) = 0.
«
. Let X = (y) = Q /x and - (y) -
+ + :
. el e LS M Bt T Yl -
Qk+1/xl-a " Further, for any fixed value of (yiﬂ,...,yk) € I‘1 R
k+1,2° k+l 2 I"::'
*f::: and for any fixed positive value of O+l define 11 = li(yiﬂ,...,yk, ":F::
. 2 _2 oW
- °k+l’y) to be the unique value of y, that satisfies Q, °k+lxa“,ri and
2 g
X u, = ui(yiﬂ,...,yk,akﬂ,y) to be the unique value of \ that satisfies ::.:::_
2 & S
::_.. Qi = akﬂxl-aiz ’ri. Then, an alternative description of the 100(1-a)% \
- confidence region S(y) 1is S(y) = :‘:f
2 2,2 2 2 2 2 e
o
P "w;\
(A “n e
. 4.2 Special case
': The upper and lower bounds u, and % gony q were defined as solutions :?:::‘-:
o _'-’.‘1
_,s' to equations in y 1whic:h are, in general, inherently nonlinear and not :-:"‘3
-‘\ \-“}
- amenable to explicit solution. We now consider a special case where these
equations can be solved explicitly. '.-«‘_::-'.
- (0) N
o Let P:I.-l represent the value of the matrix Pi-l when Yiep ™ o0 " Yy L
» hat 1 (0) * AT * - & b;q
. = 0; that 1s, P, | = X, (X, X, ) X,_y{(1=1,+c0,k+1). Note that the
. AR
o quadratic form yT(I—P(()o))y represents the residual sum of squares obtained NN
e
:'- - . ~
:; from a least squares fit of the submodel y XOBO + bkﬂ' E:
~ =
a'; i.:-'.
= 3
e
,., ._-_.
;i O S S L L AL a0 S e U S R GO R W G L S S Loy, W0 JU 0 3 V) X
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Following Brown (1984), we define an analysis of variance for the

variance components to be a partitioning yT(I-PéO))y = yTAly + e00 + yTAsy,

where Al,...,As are n x n symmetric matrices of known constants, such that

(1) yTA y,...,yTA y are distributed independently, (ii) yTA y/(o2 c,) ~
1 8 i k+171

xz(fi) for a positive integer £, and a scalar g (i=1,...,8), and (1i1)

1
the scalars CpseeesCyr which are necessarily linear functions of YyseoosVyr
are distinct. Brown showed, in effect, that an analysis of variance for
the variance components exists if and only 1f the matrices

_p(0) T,._5(0) _o(0) T,._(0)
(1 Po )Xlxl(l Po Yjyeee,(I Po )xkxk(l Po ) commute in pairs, in which
case the sums of squares yTAly,...,yTAsy are unique up to order.

In the Appendix, we show, by construction, that, if an analysis of

variance for the variance components exists, then
Q, =1 yTA y/c (i=1,40.,k+1)
1 jeli j J ’ ? ?

where Il,...,l represents a partitioning of the integers l,...,s into

k+1
k+1 sets. We show further that, 1f s = k+l1, then, for i=],...,k,

(0)

T 50y,

y (P1

Q = X
1 + zj-ixjivj

where kji - r;ltrlxi(Pio)- Pigi

We see that, in the special case where there exists an analysis of

X1 (41,000,

variance for the variance components and where, in addition, s = k+l,

k

1 T (0)_(0)y 2
ey 2y = A Iy By Ry VG e ) = U+ TRy Y]

i 1 i-1 11°T¢

.- LY
Nt LS

} alaieaa
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and that, for balanced classificatory models, our procedure for forming a
confidence region reduces to the traditional procedure. Note that, in this
special case, 11 and u, are linear functions of LFVSTILTN and l/d:+l or,

L, and 02 u, are linear functions of az 2 2

2
equivalently, °k+l 1 *+1%1 1+l""’°k’ °k+l'

Even if an analysis of variance for all k+1 variance components does
not exist, there may exist a less extensive partitioning yT(I—Pi?))y -
yTAly + o0 + yTAsy such that yTAly,...,yTAsy are distributed independently

as distinct scalar multiples of chi-square random variables, in which case

formulas (4.1) and (4.2) are still applicable, at least for 1 = k'+l,...,k.

5. DISCUSSION
Some modifications of the proposed procedure for obtaining a
confidence region for the variance components of,...,di+l and some
considerations in 1its implementation are as follows:
1. The proposed procedure can be modified so as to obtain a
confidence region for the variance ratios YyseoerVye Define F1 =
(rk+l/r1)(xi/x:+l) (i=1,¢¢.,k), where xf,...,xi+l represent independently

distributed chi-square random variables with degrees of freedom rl""’rk+l’

respectively. Take Fix), Fiu) (1=1,...,k) to be any constants such that
(2) (W) .0 - 1=
pr[Fi < Fi < Fi (i l,ooo.k)] l-a.

Then, a 100(1-a)X confidence region for YyreeosYy is the set

* T * *
S (y) = {y : (Ygaeeor ) €T 1y 2 Sy, €Uy (1=1,...,K)}

I
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oe s

.

u-5$¢s

P Y
P

g

-
o
»

o,

Eo AR
s

h
.'u

e

»
. 0
;e

PIERS
o

AL

0.'* .-v v
I

's

e .

N LA
by g B
P ;" .'. "‘

v



e R T SR MR AR 4 e SR o i o S iy < b I ACR i Al I S I Yl Sk b S A i ."memtw‘wm\“

Confidence Regions For Variance Components 15

» *
where 11 - 11"1#1""'7k‘y) is the unique value of A that satisfies

* *
('h+1/'1)(°1/Qh+1) - Pi“) and u, = ui(yi+l,...,yk;y) is the unique value

i
of v, that satisfies (rk#l/rt)(qi/qkkl) - Fil). In the special case of a

'.
1)
. _

i Ly
1%

S

balanced classificstory model and for @y = oo = @y = 0, the confidence

s
region S (y) simplifies to that discussed by Sahal and Anderson (1973). . :
(1) RSt
1 - :

If k is sufficiently large, the determination of the constants P
Piu) (i=1,...,k) may be computationally unfeasible, in which case our
procedure for obtaining an exact 100(1-a)Z confidence region can not be

implemented. However, an approximate 100(1-a)Z confidence region can be

§ )] (u)

obtained by replacing F and F by the upper-(l-aiz) and upper-a,

1

points, respectively, of the marginal distribution of F It follows from

1.
Kimball's (1951) inequality that, for Bpy ™ eee =@, = 0, this region is
conservative; that is, its probability of coverage equals or exceeds l-a.

In the special case of a balanced classificatory model and for @, -
@y = 0, the approximate confidence region simplifies to that proposed by
Broemeling (1969).

2. The proposed procedure for using the quantities Ql""’Qkﬁl to
form a confidence region for the variance components Uf""'°§+l or the
variance ratios YyseeesY, can be modified, in an obvious way, to obhtain a

*
confidence region for the last k-k +2 variance components ai*,...,ci+l or

*
the last k-k +1 variance ratios Yicksooos¥yos based on the quantities

Qk*..."Qk+l.

----- I R L o
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. 3. By following the approach described, for example, by Spjotvoll Pig.
? (1972) and Khuri (1981), the proposed confidence region for the variance E?;E
b compounents °l"°"°:+l or variance ratios YyseeesY, can be transformed into i&i
v a generally conservative confidence region for a function of the variance . X

i components or variance ratios or, more generally, for a family of such ?iV%
i functions. For instance, let Rf(y) represent the range of a vector f = .

. f(af,...,oi+l) of functions of variance components when the domain of f éi;

ﬂ is restricted to the set S(y). Then, clearly, pr(fch(y)] » l-a; that {s, EEEE_
: Rf(y) is a generally conservative 100(1-a)Z% confidence region for f. ié};:
- 4. Often, the parameter space for the vector o 18 a proper subset :§5E
% Q' of the set Q, rather than Q itself. In particular, the parameter space ?éi;
- for o2 may be the set Q. fézi
A The confidence region S(y) may include values of o not belonging to -

3 Q'. Let S'(y) represent the subset of S(y) obtained by deleting all such

values. For o2: Q', prlo?e S'(y)) = prl[o2e S(y)] = 1-a. Thus, when the

parameter space for o2 is Q', S'(y), 1like S(y), is a 100(1-a)Z confidence
region for a?.
In the special case Q' = Q,, the 100(1-a)X confidence region S'(y)
is obtained from S(y) by deleting all values of o2 for which one or more
of the first k variance components af,...,ai is negative. Expanding the
set S'(y) slightly, we obtain the set S+(y) =-
{az- o2, >0, 2, <02, < 2. max(2,,0)<0%<c2. | max(u,,0) (i=1 x)}
"5 U i 75 Rt 7S B 3 LT | 1°°7%94 %%+ 1° peves)]e

: We have that pr[02 € S+(y)] equals l-a, {if ai > 0 for i=1,.¢.,k, and 1is

L N e v a'a” RPN L T ST SO DU SO S N SRR TR SO P : .. Yo N Tttt '.'.'.A"-‘.".‘
O LN AN -3 . R .. ~ . o L I e I A . R

RIS R S .'..-'.. -------
RIS I AR LR TR AT M I NI Ay a et
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greater than or equal to l-a, otherwise, as 1s easily verified. Thus,
when the parameter space for o2 is R4, S*(y) 1s a conservative 100(1-a)Z
confidence region. Unlike S'(y), the set S*(y) is nonempty, with
probability one.

5. There will generally be more than one way to express a
particular mixed or random linear model as a special case of the general
mixed linear model (l.1). Consider, for example, the customary additive
model for a two-way crossed classification with both factors regarded as
random. We can take the elements of b} to be the effects of the first

factor or, alternatively, the effects of the second factor.

It should be noted that, except for highly structured situations,
like those considered in Section 4.2, the confidence region S(y) will
vary with the order in which we assign the various sets of random effects
to the vectors by,...,by.

6. Note that, by exploiting general relationships between
confidence regions and tests of hypothesis or significance, the proposed
procedure for forming a confidence region can be used to test, against
appropriate alternatives, a null hypothesis of the general form

2

H:o -cl,...,d

2
o 1 K+1 ck+l or Ho. Vl cl,...,yk ck, where cl,...,ck+1

represent specified constants.

Also, following Harville and Fenech (1984, Section 7), we can

obtain point estimators of the variance components or variance ratios by

2

equating the pivotal quantities QI/akﬂ,...,Qkﬂ/oi+l or (tk+l/rl)Ql/Qk#l’

""(rk+l/rk)qk/Qk+l to appropriately chosen constants. In

e wta®a"
»!
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particular, if we equate Ql/°i+l’°"’ok+l/ 2

k+1’

respectively, we obtain estimators which, in the special case where
there exists an analysis of variance for the variance components and
where 8 = k+l, simplify to the usual analysis-of-variance estimators.
Alternatively, 1f we equate these quantities to the medians of their
respective chi~square distributions, we obtain estimators that can
be interpreted as the coordinates of a degenerate, single-point

confidence region.

7. Let Q, = Ql + see + Qk and r = r, + eee + Tyo and define F(z)and

(u) £)

F to be any constants such that pr{F CF« F(u)] = l-a, where F

represents an F random variable with degrees of freedom r and Ttl?

respectively. Clearly, the distribution of Q./oi is xz(t.), and Q, and

+1

Q are distributed independently. 1t follows that an exact 100(1-a)%
k+1

confidence region for yl,...,yk, alternative to the confidence region

*

S (y), 1is the set S#(y) consisting of those values of y that satisfy the
inequality

) (u)

F < (rk#l/rk)q-/Qkkl <F U,

€2)

It can be shown that, in the special case where F

(u)

= 0 (and hence
where F is the upper-a point of the distribution of F), the confidence
region S'(y) is the same as the exact confidence region devised by Hartley

and Rao (1967, Sec. 9). We do not recommend the confidence region s'(y)

C I VR SRS A ST,

JORACR 2t "R Sl N
=
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since, as previously indicated in the special case of the Hartley-Rao
region, it has a seemingly unappealing form and can, with high
probability, produce confidence regions of infinite volume.

8. 1In practice, we may want to display graphically the confidence
region S(y), or when k exceeds one or two, to display, for each of various

fixed values of the vector (02 2 2

1412 °°* %> °k+l) and the integer 1, the

interval of di values, or perhaps the two—- or three-dimensional set of

i—l’ oi or ci_z, oi_l, oi values, that are represented in S(y). We are

then faced with the computational problem of determining the numerical

2 2 2
corresponding to each value of (°1+l"'°’°k’°k+l)

[+

values of 11 and u,

and each value of 1.

In the special case where there exists an analysis of variance
for the variance components and where s = k+], this problem reduces,
in effect, to that of computing the entries in the analysis-of-variance
table. More generally, we can use the approach discussed, in the
special case 1 = k, by Harville and Fenech (1984, Section 4), to compute

the values of Ail""’A and of ?11,...,? and to then determine the

1r1 11-1
values of 11 and uy graphically or iteratively. How a series of such

2 2 2
1+1""’°k'°k+l)

and/or the integer 1, might be accomplished most efficently is a question

determinations, involving various values of the vector (o

for possible investigation.
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APPENDIX

Simplification of the quadratic forms

We now derive, for the special case where there exists an
analysis of variance for the variance components, the simplified

representations given in Section 4.2 for the quadratic forms Ql""'Qk'

Do cxy_pt nex] (1=1,0.,00, and o) =

(0)
Let U, C(Xy), U e+

* l - (0) - -
C(xk) , 80 that, for i=1,...,k+l, U1 represents U1 when Yiep "o Y
= 0. Define M1 to be an n x Ty matrix whose columns form an
orthonormal basis for UiO) with respect to the ordinary inner product.

*
Note that the columns of the matrix M1 - (HO""’Mi) form an

*
orthonormal basis for C(Xi) (1=0,+¢.,k) and that the columns of the

1
matrix M = (Hl""’Hk+l) form an orthonormal basis for C(Xo) . Note
also that, for 1=0,...,k,

* &T *T*-*T_ (0)
MM, 1 X)) X =Py

and that, for i=],,...,k,

* KT &k _—] KT *
Hi(M1 Hi) Moo= xi(x

T 5T W T (0 _ (0)
MM, = MMM M= P Py

Ty uly = xT(p{0)_p(0)ye o +Tryop(®
XMMX =X (P =P, )X, =X (I-P _ )X,

Ty «Tv y o Ty uIy ) = Ty_p(0)
(A.1) rank (nixixiui) rank (xiniuixi) rank (xi(l Pi-l

Suppose now that there exists an analysis of variance for the

)Xil = rio
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variance components. Then, the k matrices erixIM =

dia_.g[(Hl,u.,Hi)T xrxi(ﬂl,.u,ui), 0] (i-l,oou,k) commute in p‘ifs
(Brown, 1984, Corollary 2), which implies that, for i=1,...,k,

T, T T, T T, T
(A.2) MX, XM = diag(M X X M ,eee,MX XM, 0,00.,0),

as we now show.
Our proof of result (A.2) is by induction. The result is clearly
valid for i=1. Suppose that it 1is valid for i=l,...,1'-1. Then, since

MTX, XTM and M'X,,X],M commute, implying that the 1jth block of the

171
Te Tyl T T. T .T, T
matrix M xixiun xi,xi,u is the same as that of M xi,xi,nn xixin,
we have, for i=1,...,i'-1 and j=i+1,...,1', that
T, T, T T
M{X XMMX X My = 0
and hence, in light of result (A.1), that n'fxi.xf,uj = 0. Observing that RN

T,

M xixIn is symmetric, we conclude that result (A.2) is valid for i=i',

which completes the proof of this result.
T
i

1 M,...,M?xkxzn commute in pairs, we
T, T T, T
have, in light of result (A.2), that the matrices Mixixini,...,uixkxkni

commute in pairs. Consequently, there exists an orthogonal matrix that

Now, since the matrices MTX X

(O I
0
KL

(]
..

T, T Ty Ty .
simultaneously diagonalizes the matrices uixixiui,...,uixkxkni, that is,

there exists an orthogonal matrix 01 such that

OTMIX XM 0. = diag(A

1173314 )

Jil'...’kjiri

for some nonnegative real numbers (J=1,.04,k).

xjil’...,kjiri




Ba: £
i
- ".’
B
- o
::: Confidence Regions For Variance Components 22 Y
’\'
2 5
As a further consequence of result (A.2), we have that 4 ’
.~ ‘o
a T T, K o
q MOV Mgy seme st ) = MUy YR Meee i ) = 0, e
) "
X implying that the columns of Mi’ and hence those of Mioi, form a basis .
\:. for Ui (1-l,ooo,k). [--—'
_:::; For i=1,...,k, define
s T T
._' wi = (wil’...’wiri) (Mioi) y’ .
b
o define CiprecooSypt to be the distinct linear functions represented '-‘.'ft
- i .
\ among the rilinear functions 1+zj=1xjile""’sz-ikjiriyj’ and, for
e * - ,:.
", m-l,...,ri, take Tim to be the collection of values of the index t for e
: which l+l'.j -t jith = Com® take fim to be the dimension of this :._’:-'_':._
N 2 RS
( collection, and let “m zte‘l‘ Vi
- im S
3 2
It follows from the results of Section 3.4 that [
o Q = Q =y™M,0 (et .0 MIx XM, 0 O oyt :
™ i i 174 gt j j XMy o Miy o
. L
... * ‘..-.
. T e
L. = - e
- m=1 wim/cim (1=1,..0,k), ::".'{:
- * T T -1.T T T 2o
- QUrr ™ Uerr ™ Y M1 Mo Mer ) Mty = Y MMt 233
> £ 1
- Further we find that 1
2 * ]
- ki T (0) S
EiatPami¥im * Qy = VMY =y (-MMDYy = (I "By )y S
A i
*
z, and, proceeding as in Section 3.4, that wim(i'l""’k; m-l,...,ri),
. Qk+l are distributed independently and Wy /(cim I2(+l) ~ xz(fm),
;: implying that Wim(i-l,...,k; m-l,...,ri), Qk+l are the sums of squares "i
: N
t T
. O
. e
. 272 )
R
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in the analysis of variance for the variance components.

Now, suppose that the analysis of variance for the variance
components is such that s = k+l. Then, for i=1,...,k,
A = L., = A = A for some real number A 1 given by

jil _‘lir1 ji b

TyTx XM, 0 )

-1
= 1y tr(0 M X X M 0

-1 T T.T
r, tr(xjnioioiuixj)
T
h|

(0)_ (0

= rzltr[X (pg PopX ] (B=t,ee0k)

3

in which case
k

3=1*3173

k

T T, T
Q =W wi/(l+2jaihjiyj) =y MiMiy/(l+£ )

i

k
= yT(P(O)- P(O))y/(l+2

1 1-1 3=1t31Y30"

....................
....................

..........................
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