. AD~-A163 838 STABLE COMPENSATION OF NONLINERR CDMUIICRTIONS SYSTENS U%
C(USING YOLTERRA S.. (U)> UNIVERSITY OF SOU FLORIDA
TAMPA DEPT OF ELECTRICAL EIGINEER ﬁ"l E'l' ﬂL
UNCLASSIFIED DEC 85 RADC-TR-85-243-VOL-2 G 1772




R R e L T R TR R N

e,

. Sl XY

7 A

A

X .—'

FEE
dAaa
EEEF I
EE

P

P

A o

A | 2 i S e e e

x
6.5__ g~
— S8
= » &

al ¥

-4
<¢ z 7
. 8¢
— =
il 2
== G-

ad

[
Ue) z
~N g
- L7
-— g :
——— z

) ot

. -

I SR
" e
L

e B e

4
e

2

A A

-

%A e
. o
Sy

.,
A

RS TR Sl SN |
et e

SRR | 2R YN I~




00
00

AD-A165 83

>

O

3
=
(%)

RADC-TR-83-243, Vol Il (of three)
Final Technical Report

December 1983

< STABLE COMPENSATION OF NONLINEAR
COMMUNICATIONS SYSTEMS (USING
VOLTERRA SYSTEMS CHARACTERIZATION)

DTIC

-LECTE

University of South Florida

V. K. Jain and T. E. McClellan

APPROVED  FOR  PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

‘‘‘‘‘‘‘‘‘‘




R T e e e e A A A A S i s e Al At mat SR Y T e T W W T T T W T TR ey — =, — e .~y —a % - -~

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-85-243, Vol II (of three) has been reviewed and is approved for
publication.

e Fil

DANIEL J. KENNEALLY
Project Engineer

W. S. TUTHILL, COLONEL, USAF
Chief, Reliability & Compatibility Division

FOR THE COMMANDER: ?gh a 'W

JOHN A, RITZ
Plans & Programs Division

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (RBCT) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

J RN PRI TR S s~ . .. .
a_ ot atld P PP O\ PRI P S S W SN P B T T 7 A N

.



—— INCLASSIFIED . .. R
SECURITY CLASSIFICATION OF TriS PAGE

ADA 145 038

DNV S D Sal e e AR S et b Sl g oo o SRS

REPORT DOCUMENTATION PAGE

Ta REPORT SECURITY CLASSHICATION

b RESTRICTiIVE MARKINGS

UNCLASSIFIED N/A

73 SECURITY CLASSIFR ATION AUHORITY 3 DISTRIBUTION AVAILABILITY OF REPORT

N/A . ,
25 DECLASSIFICA HON DOWNGRADING SCHEDULE Approx.led for public release; distribution
N/A unlimited.

3 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

N/A

RADC-TR-85~243, Vol II (of three)

6b OFFICE SYMBOL
(If appflicable)

5a NAME OF PERFORMING ORGANIZATION
University of South Florida

7a NAME OF MONITORING ORGANIZATION
Rome Air Development Center (RBCT)

b ADDRESS (City. State, and ZIP Code)
Department ¢f Flectrical Engineering
Tampa FL 33620

7o ADDRESS (Gity, State, and ZIP Code)
Griffiss AFB NY 13441-5700

Aa HAME OF TONDING SPONSORING 4h OFFICE SYMBOL
OPGANIZA T ON (if applicable}

Rome Air Development Center RBCT

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F30602-82-C-0135

Bc AODARESS (City. State, and 2IP (ode)

Gritfiss AFB NY 13441-5700

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO  INO NO ACCESSION NO
62702F 2338 03 42

N Nt (Include Secunity Classification)

STABLE COMPENSATION OF NONLINEAR COMMUNICATIONS SYSTEMS (USING VOLTERRA SYSTEMS

approach is also presented.

CHARACTERIZATION)
12 PERSONAL AUTHOR(S)
lan
133 TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 5 PAGE COUNT
Final FROM Jan 84 TO Apr. 85 December 1985 102
16 SUPPLEMENTARY NOTATION
N/A
17 COSAT!I COOES Z 18 SUBIECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP -1 Communication Systems\ Intermodulation,
09 03 Frequency~Dependent Nonlinearity , IM Interference
09 01 Volterra Characterization _Compengator # o ’

19 ABSTRACT (Continue on reverse f necessary and «dentify by block number) /
JUsing a mean-square IM criterion, a new approach for the reduction of intermodulation

distortion is developed here. Advantages realized are:
by 15 to 50 dB, (2) guaranteed stability of the compensator, (3) a minimum pre-specified
damping ration of the blocks of the nonlinear compensator. A design program based on the

(1) reduction of IM distortion

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

CIuncLasSIFEDIUNLIMITED IR SAME AS RPT {3 onic usERs

21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

222 NAME OF RESPONSIBLE INDIVIDUAC
aniel J. Kenheally

220 TELEPHONE (include Area Code) [ 22¢ OFFICE SYMBOL
(315) 330-2519 RADC (RBCT)

DO FORM 1473, 8aMmaR

83 APR edition may be used urti exrausted
All other editions are obsolete

SECURITY_CLASSIFICATION OF THIS PAGE
UNCLASSIFIED




” b S i B Rt S s
ar St b S At .‘_v,_....\._..'. N
S .

..
s

IR

UNCLASSIFIED

M
»

L] Iy

17. COSATI CODES (Continued)

~Y

v

Field Grou LY
v =
-.‘b: 17 04 o
Y e
> P
v \
»
%‘ 3
9
l 18. SUBJECT TERMS (Continued)
o Nonlinear Transfer Function
Associated Response Frequency Space
e Post-Compensator
A Computer Program
Reparametrization
. Compensator

e SRt

.

C gt L

UNCLASSIFIED




-V Ny - r g Eladl S ) 4 - -
'
L)
¥
~
¥
[
ot
- ACKNOWLEDGEMENTS
- The authors wish to thank  Mr. D. J. Kenneally of Rome Air
= Development Center for his helpful comments and criticisms of this work.
. His comments on the research initiatives at RADC for C3I system
¥ interference suppression, based on Volterra identification and
t compensations, have lent invaluable insights to this research effort.
N
5 Accesion For \
NTis cradl 0N
2 pTIC TAB a
. U::annout.ced D
5 Justification . PR aeeeen —
\n
> BY e e memaee ]
Di.t ibution/
Availabitity Codes
L Avail andjof
- Spacial

All experimental work in this report was done at the Communications
and Signal Processing Laboratory of the University of South Florida.

. DRI R N a e - RS U AN ORI
O W R, ISP SOOI STy T GO ST T S 2 P iy R A Sy YR

P - . ) -, ~ LN
e - . LS
m e « v -
i <. LS - SN
PR - B LN « IS .
L IR T SN ~ .
-y L SN

-
- ..

- Y et «®a" N .

L PR YS FANA IS VRN VR WA

*
S .‘- “e K
A R .
_‘.‘.\'.\ -t oS
- k) . . AR
-\’\ A N LI T )
A VIS SR AR N e

..




‘. age 2 Ay D% T ) Yy o » Py », W LW > SRS Bk, .F‘L":\._"".V“
Ta ‘:*:; :: ::
v 1oty
O
fa?f:é;}
NN
_.)\.'sclf £
¥ _
A
. e
3 o
o WAl
TABLE OF CONTENTS €
- LIST OF TABLES. .. vuneunseunsennsenneennennnemneennneens ceee. i
LIST OF FIGURES....iveieineannns se et esesssceeseanecsansneana iv
- CHAPTER I INTRODUCTION. .. ..v.... e ceens 1 §;
E CHAPTER 1I REVIEW OF VOLTERRA BASED SYSTEMS......icveeusn 3 i .
. Volterra Representation of the Quadratic System.,......... 5 R,
- Second-Order Volterra System Response to the i 1
’ Sum of M Real SinusoidS....e.cveceesenss cessectssencenonss 9 RS
. Third-Order Nonlinear Response to the -
- Sum of Multiple Cosine Carriers....eeeeeeceecceases cenean 12
. Cascading of Nonlinear SystemS......eeeeeeeeseoscsnsoceons 18
. Application of Volterra Theory to Reduce
Nonlinear EffectS..viiveseeressssossnassssssnsssssssnsess 22
:j CHAPTER III INTERMODULATION AND CROSS~MODULATION
- ) IN NONLINEAR CHANNELS AND AMPLIFIERS.......¢... 25
~ i Cross-Modulation Distortion..... e eesteteeneaaes ceeenees 26
. "7 Cross—Modutation.for Nonlinearities with Memory .......... 32
f Intermodulation Distortion......... Cereereieeseesi i 34
.j CHAPTER IV COMPENSATION ..... D esase 36
g .A_Compensatlon of the Quadratic System.............ccccuue.. 39
. Examples on Quadratic Compensation via Program VCOMP2.... 53
- .Compensation of Cubic Nonlinearities.......icvevvevennnan 56
. Examples of Intermodulation reduction
- ° using the Program VCOMP3. ... it eernnnnennns cecsaneenann 73
: 'CHAPTER V CONCLUSIONS. . @vuvveenuansss e ererere e 80
: " REFERENCES. v v e vt vieesenenensnenesnencnensnnns e 82
APPENDIX...0ovveesnnnsns e s easesssesesseeres e s e e e ceesen 83
Simple Linear Compensator Design Example..... e 84




R A D E R S A I A ICIAR A A AR b L R e il S A b Sadad &0 Od 8 At SATLE AR OLOR aaa et § et £ o s o a-e oo R et

TAT WY T,
.
&

>
~
e
N,
w
.

L
NS

LIST OF TABLES

e . 1

f Table 1: Computation of Output Frequencies Generated
- by Third-Order Nonlinearities...........ccceu.... 30
i Table 2: Table of Compensator StrucCtUreS.....cceeeseecsoss 67
Mo
o Table 3: The Uncompensated System Frequency
n. Characteristics...c.cievieiiseennrnsonnnnsacencnne 85
’ Table U4: The Compensated System Frequency
i Characteristics (The Compensator Response)....... 86
E Table 5: The Compensated System Frequency
. Characteristics (The Final System Response)...... 87
5 Table 6: The Compensated System Frequency

Characteristics (The Compensator Response)....... 88
ﬁ Table 7: The Compensated System Frequency
- Characteristics (The Final System Response)...... 89
_
.
4
;
i
’
,
; iii
3
*

- " P . - PR PR . .
R R T A P T UL Y R A - .

R S PRIt S T A e N S U S e e e e e ; et . . . ORI

- N N NI, S A A A I A A T A et S D TR




NPT T T R T vy O O Y TP T Y Qe g By B yovrmrs I dh A Aok ¥ 0 h 0 ol AN AR Pt pAn. Jta e JpAe 4 N A

®

«TeTr g TANEER IV T V.

LIST OF FIGURES

FRVINCIFA 3 gaje > e PERLS J

- Figure. 1: Model of a weakly nonlinear channel using

j~ the Volterra series representation.......ecveves y

E: Figure, 2: Basic second-order Volterra system........coeese 6

! Figure. 3: Basic second-order nonlinear systemM............ 10
Figure. 4: Third-order nonlinear system.......coveevseccnss 13

. Figure. 5: Cascade of two nonlinear systems H and P........ 19

Figure. 6: Volterra model of transistor with

. linear feedbaCK..v.ivevererasnsnennssssansncanss 24
N Figure. 7: Spectrum of quadratic nonlinearily

N generated cross-modulation........oeevienveacaee 27
l Figure. 8: Nonlinear communications channel model.......... 40

Figure. 9: Spectra of the input and output

N of the quadratic nonlinear system........ecenese m
i Figure, 10: The Spectrum of the multiple
input to the quadratic nonlinear system....... 42
. Figure., 11: Post compensation of a communications
N system with quadratic nonlinearity.......oc... 4y
Figure. 12: Quadratic post-compensator structure.......... uy

Ci W

Figure. 13: The Wy s W, Plane..viveieennsnssnnvoccscnnnnnnns 49
i Figure, 14: Second-order distortion space....cecevnesnacse 50
i Figure, 15: Quadratic compensator Structure.......ceeeeesee 50
E Figure. 16: 3 x 3 point frequency grid of r(w1.w2)........ 54
2 Figure, 17: Compensated versus uncompensated distortion... 55
! Figure. 18: Compensated results of the second example..... 56
? iv

LY

JRESLRER - - .:' _; ~...' ‘ IR _.\"_ .- N N

.'q . = e -~ -~ .' - l\ Ol I\ .-' .t 4‘ . N

. R SRS - N A A A e T A ettt et e

RS . . . T R P -'-'..‘_-'..‘.-“:'_.‘ ".‘)"-'.. - B \.""".“‘“‘..‘.“.""' ..'.~‘.-_‘.,

[ EYLINY AL . et d .. LK) S et et N et - B . TN T et et et T S ~ e
AT e e e e e e A N e e g NP T A AN AT A At At AT AP At At AN AR ek e




| ARAAS

Ty
A
X
».

?
]

L .JP-
AP~k
b

0|
oo

‘l L
iy
[
AR
‘

o0

Figure. 19: Post-compensation of a communications
system with a cubic nonlinearity.......ceocus. 57

Figure. 20: Communications system model with
cubic nonlinearity . (SUC)....vevereeeoereconnne 58

RV oA M

Figure. 21: Cubic nonlinear compensator......veeeeveceasss 60

’ Ty e .
'-'l ¢
. s

Figure. 22: Spectral plot of a third-order
SUC OULPUL. . eueiieeeessenesosanconoonossannnae 63

Figure. 23: Spectral plot of a third-order
SUC output from an input consisting of
a carrier nc with a bandwidth T...eeeevneenne. 64

: i . 24 . 0
i Figure. 2 Ri,g,k grid 68
;%: Figure. 25: Location of the in-band interference ::
- X - .
5 region in Q3(w1,w2,w3)........................ 69 8
. Figure. 26: R, j,k Brid with one interference ¥
* ?

- SUPface SNOWM....ceeeeeoreesseacoseassascsannss 70
F-
ﬁ Figure. 27: Addition of phase delay to the cubic
.: COMPENSALOr . st vversvssosesasssccssasosssosnssss T

Figure. 28: Pole plot for modified Type I1Ib
- cubic compensator desSigns....ceevececcsesncass 73
)
R
R} Figure. 29 Compensated versus
. the uncompensated interference..........ceeeee. 76
f Figure. 30: Compensated versus
B the uncompensated interference.......c.e.eeeevee 77

Figure. 31: Compensated versus

the uncompensated interference.......ceeeseees 78

i Figure., 32: Compensated versus
~ the uncompensated interference......ccveeeeunns 79
"\ v
Fc
R R R S s S R R S R S S R R




INTRODUCTION

All communication channels suffer degradation from nonlinearities.
Analysis and correction of the nonlinear distortion thus produced is
seldom feasible with just linear methods, since they fail to capture all
of the phenomena involved. Because of this, the Nonlinear Transfer
Function (NLTF) approach, based on the Volterra theory of nonlinear
systems [1], has recently been applied for weakly nonlinear systems [2].

A weakly nonlinear system is one for which the response is dominated by

the linear contributions for (amplitude) ranges of the input which are
encountered in practice. Such systems are also sometimes referred to as
quasi-linear systems.

In communication systems many sources for nonlinear distortion
exist from nonlinear discrete devices in amplifiers, metal-to—metal
oxide junctions in aircraft shells, antenna structures, etc. The
susceptibility to interference can be especially pronounced when the
transmitter-receiver pair is located in an electronically dense command
platform having a profusion of RF emitters and receptors. For example,

when multiple carriers are amplified simultaneously by one transmitter, 5;5}3.1 3

Intermodulation (IM) products are generated due to the nonlinearities in R,

the power amplifier (TWT or Klystron). Similarly, a strong (locally)

L0
PR

transmitted signal leaking into a receptor can, when processed

Ty TV N i
e »

simultaneously with a weak but desired received carrier by a nonlinear

-1 -
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element, produce intermodulation effects.
This report introduces a practical method for compensating the un-

desirable nonlinear effects produced within such a communication link.

Using the known characteristics of the channel and an appropriately

selected post-compensator structure, optimum parameter values are found
for the compensator. The resulting design achieves significant reduction
of nonlinear effects.

As stated above, we cast the compensation problem in terms of a
Mean-Square (MS) intermodulation criterion. This MS-IM criterion,
formulated for a frequency band of interest, is minimized by the design
program VCOMP3. This program yields the optimum compensator parameters.
High reliability in the minimization process is achieved by use of a
powerful optimization package NL2SNO [4]. Clever parametrization of the
block Transfer Functions (TF) guarantees the stability of the complete
compensator over the entire parameter space., Examples provided in the
report demonstrate both the simplicity and the high degree of

effectiveness achievable through this new methodology.
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CHAPTER 11
REVIEW OF VOLTERRA-BASED SYSTEMS

In the analysis of wide band amplifiers, it is often assumed that
the output depends only on the input signal applied at the same instant
of time, The input/output relation can thus be expressed with a power

series expansion as follows:

y(t) = a x(t)sax’ (E)raxd(t)e +es ")

3
where x(t) and y(t) denote the input and output signals, respectively,

and the coefficients an are time-independent constants. In general,

however, the output y(t) is also dependent on the past input signal. An
output expression that includes the contribution of the previous input

variations is the sum of multidimensional convolution integrals

y(t) = ¥ v, (t) (2)
n=1
where
yn(t) = [ [ oo f hn(r1,12,°".Tn)x(t~11)x(t—tz)
~-ox(t~rn)dr1d12 R dTn (3)

and hn is a real-valued symmetric function of n real variables.

Expression (2) is usually referred to as the Volterra series.

This representation shows that a nonlinear system may be regarded as the
combination of a linear and a number of higher order nonlinear

-3 -
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2,
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ri
o subsystems. Each of these subsystems is characterized by a n-
- dimensional impulse response hn(rl’Te""'Tn)’ also called the nth order
:ﬁ Volterra kernel [1]. For a physically realizable system, hn is causal,
) i.e., it has the value zero whenever any of its arguments 1is negative.
e
N Also, these kernels must be absolutely summable for a stable system,
The nth order transfer function is defined as the n-fold Laplace
transform of hn' i.e.,
- ] 0 -(ST+ eee +8 T )
. 11 nn
R Hn(31’ :sn) = f f f hn(11.12, ,Tn)e
- -0 -
i dr, d d (4) ‘
ey 11972 Tn SeT e
. In particular, we shall call H1(s1) the linear transfer function.
In Fig. 1 a block diagram is shown representing the multi-order
;k: responses summed to produce the final system response.
- - y (v
1
H (s)
- 1
. y ()
- 2
- H(s ,3) y(t)
~ x(t) 2 1 2
- Fig. 1. Model of a weakly nonlinear channel using the
- Volterra series representation.
. -4 -
ER R R - . T N R,
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VOLTERRA REPRESENTATION OF THE QUADRATIC SYSTEM

In this section we will discuss in detail the second-order (i.e.,
quadratic) Volterra subsystems, Fig. 2 shows an example of a quadratic

subsystem where Ha(s), Hb(s) and Hc(s) are linear transfer functions.

This particular example represents the most basic second-order
subsystem and can be shown [2] to be characterized by the quadratic

transfer function

H2(51’32) = Ha(s1)Hb(32)Hc(sl+32) (%)
Note that in general

h2(11.12) * h2(12.11)

where h2 denotes the unsymmetric form of the kernel. The unsymmetric
kernel can be symmetrized by defining a new kernel as

h (1,,1,) = 1 [h,(1,,1,) + n (1, ,1.))

271772 2 Y2712 2° 2’1
Since it is not possible to measure 52(11,12) from only the system input

and output [1], it makes sense to consider only symmetric kernels in our

analysis without any loss of generality. In particular, we shall assume

. that Ha(s) =Hb(s) for the second-order subsystem shown in Fig. 2.

e

Pi Correspondingly the time-domain Volterra kernel can be shown to be [2]
:E' h2(o1,02) =_£ hc(T)ha(c1*1)hb(02~t)dr (6)

Associated Two-dimensional Response

The expression

ii Yoy tyaty) = {wf n, (1, ,1,)x(t, =1 )x(t,1,)dT, d1, (7)

is known as the associated two—-dimensional response. 1Its significance

-5 -
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arises from the fact that if we set t1=t2=t then,

y(z)(t,t) = yz(t)

- Hy(s)

x(t}
Hels)

- Hy (s)

yit)

Fig. 2. Basic second-order Volterra system.

(8)

e,

K
W
¥ M

»

.

P

That is, y(z)(t1,t2) contains the response yz(t) along the NSO line in

the t1~t2 plane. Further, this associated response can be computed

through linear operations on the input signal. Indeed, the two-

dimensional Fourier transform of y(z)(t1,t2) is
Y(z)(m1.w2) = HZ(w1,w2)X(w1)X(w2)
where X{(w) is the Fourier transform of the input signal.

two~dimensional inverse Fourier transform yields

1 o
(t1,t2) = Ez > IS Hz(w1.w2)x(w1)X(w2)
m) -

Yi2)

JCy, .+ t,)
171 Y272
-] dw1dw2

Hence, by setting t1=t2-t, we have

-6 -

(9)

Taking the

(10)
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1 ® J(w1*w2)t
(21)2 {“I Hz(“’r*z)’“"ﬁ)x("‘z)e dw1dw2 (11)

yz(t) =
Further, by taking the Fourier transform of (11) we obtain
1 w
Yz(w) = o7 {@f HZ(W1,WZ)X(W1)x(w2)6(w-w1-w2)dw1dw2 (12)

In view of (9) we can also write

1 [
Yz(w) = 5 I Y(z)(w1.wz)s(w—w1-w2)dw1dw2

1
= 2 L Yoy (e ddy, (13)

-

In other words, Y2(w) is the integral of Y )(w1,w2) along the line

(2

m=w1+w2; alternatively, Yz(”) is the profile of Y(2)(w1,w2) along the
line w1=w2.
Let us now consider two simple examples in order to better

appreciate the intermediate use of the associated response for finding

the nonlinear system response.

Example 1

Let us compute the quadratic system response to a single complex
sinusoid,

J91t

x(t) = Ae ()
Translated into the frequency domain the input is written as

X(w) = 2nA6(w'Q1) (15)

Then,

s 2 _
- Y(Z)(w1,w2) = (27) Hz(wl,mz)é(w1—91)6(m2 91)

2 " - - -
Y (w) = A {wf Hoy (g 0,809, =2, ) 8(0,70, ) 8(wv,-0, ) Ay, dy,




A2

2n

8 - 8

H2(W1.01)6(w1—01)6(w-w1~91)dw1

2
= A H2(91.Q1)6(w 291)

j291t

y,(t) = A2H2(91,Q1)e (16)

We note that the output frequency of the quadratic nonlinearity is twice

the input sinusoids's frequency.

Example 2

Suppose now that the input to the quadratic system consists of the sum
of two sinusoids, given by
Jn1t Jﬂzt
x(t) = Ae *Aje an

X(w) = 2w[A16(m—91)+A26(m-92)]

The corresponding output is

Y, (w) = !4 Hy (b o 0,) (A 600, -0, )+A, 60, —0,) ]
» (A, 80u,0,)+A,8(y,-0,) J6Cury, ~v, ) dy, dy,
» jeq, t j(a,+a,)t
yz(t) = A1H2(Q1.Q1)e +2A1A2H2(Q1.92)e
J2q,t

2 (18)

+ASH,(9,,0,)e
Thus an input consisting of the sum of two sinusocids results in an
output containing three frequencies.
The results of the above examples can be generalized to the case of
an input consisting of the sum of M sinusoids, expressed by
M Jnit

x(t) = ¥ Ae
i=1

(19)

.
* e
»
.

OO

"
[ X/
e

AV R R

+,
RN



MM TENT IR " TN L T ETA T R A IRy YUYV TV WLT Y

o

The quadratic response to this input can be shown to be

M 2! AA j(a,+q )t

) 1k Hy(2,00e = X (20)
Im.! eee 1

i m1.m2. mM.

y2(t) =
1
where

m1+m2+ cee +mM = 2

and mz is the number of ocecurrences of the &th frequency (as arguments of

HZ)'

SECOND-ORDER VOLTERRA SYSTEM RESPONSE TO THE SUM OF M REAL

SINUSOIDS

Multi-channel communication systems must necessarily employ
multiple carrier waveforms, In a linear environment no new frequencies
are produced which were not present in the input. Nonlinearities, even
of a mild nature, will generate new terms. We derive a closed form
expression for the response of a second-order system to an input
consisting of the sum of M sinusoids. Given the second-order symmetric
nonlinear system of Fig. 3, let the input be the sum of M cosine
waveforms

x(t) = A1cos(n1t)+Azcos(92t)+ s +AMcos(th). (21)
The output at va is denoted by

v (L) = v_ +v_+ eeo +y
a a, a, ay
= A |H (@) |cos(a t +8, Y+A,|H (0))]|cos(at +6, )+ -

8 2

+Ay[H_(9,) |cos(a,t +eQM) . (22)

. where 8. is defined as Phase{H (Q,)}
" 91 a1

3 }':5'2’_&1\{1\& SEC
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To proceed further with the analysis, let us compute the response

at w,
wit) = v_ov
M M
=) I v.v
i=1 k=1 2i %
M M 2!
=1 1 — vV,
< ces !
1 £1isk nm .m2. mM' i "k
Va
Hy(s)
x w Y
PRA— Hels) p—r—
H,(s)
Fig. 3. Basic second-order nonlinear system.
M M
= § 1 r. |H (@)]|H (9 )|cos(a .t +o_ )lcos(a t +6, ) (23)
1 51 <k ik'"a ' "i a 'k i Qi k Qk
where
1
A 2'A1Ak
I‘ =
1k m im,! eo- !
1°M2 My

A
and eni= Phase[Ha(Qi)}

Equation (23) may be simplified by using the trigonometric identity

cos(g, t)cos(E,t) = % [cos(51+£2)t +cos(£1-£2)t]
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Thus, we have

M
)

1 Sk

w(t) =

mnr~X

Tyl (2 )| [cos((a,+a )t +eﬂi+enk)

AV X b

i

+cos((ni-ﬂk)t *8, ~8 )] (24)
i k

The output is then written as

;M
y(t) = 5 %
2 s

M
I Ty lu (e ()]
s i
[

L[H (a;+a ) cos((a,+n )t +eni+enk+¢ni+nk)

+|H (-0 ) |cos((a,-n )t +eni—enk+¢ﬂk_gi)] (25)

To illustrate the use of this consider an input consisting of the sum of
two sinusoids,

x(t}) = A cos(91t)+Azcos(92t)

i

The output is then

1,2 2
y(e) = 5 AY|H (2)|7|H (20,)|[cos(2a, t +9201+2¢Q1)+1]

+A1A2|Ha(91)Ha(QZ)Hc(Q1+92)I[cos((QI*Qe)t *991’°a2*¢a1+92’
? +cos((Q, -2,0t +8, -6 +¢_ __ )]
F! 1 2 a9, *a-9,
3 1 a2l ()] |H (20,) | [cos(2a,t +20_ +4,_ )+1] (26)
[- 2 "2V a2 c 2 2 Q? 292
» 2
»
= & Phase(H (9,))
!! where %1 ase{H (q,
%

- Since H2(91,92) = Ha(91)ﬂa(92)Hc<91+92)’ the above expression simplifies

I! to

% y(t) = 5 AZ[|Hy(0,,0,)|cos(20,t +a ) +H, (R, ,~0,) ]

- 11 -




[0 WP O Bl W

DAL,

+A1A2[|H2(Q1,92)|008((Q1+92)t *a,)
+|H,(2,,-0,) |cos((a,-0,)t +a3)]

12
+ 5 AL[H,(a,,0,) [cos(2a,t +a))+|H (0,,-0,) |1  (27)

where

& Phase{HZ(ﬁl,Q )}

1

23
L}

A
Phase{H2(91,92)}

R
[}

A -
Phase{H2(91, 92)}

>

Phase{H2(92.Q2)}

THIRD~-ORDER NONLINEAR RESPONSE TO A SUM OF MULTIPLE COSINE CARRIERS

The cubic nonlinear response to a sum of M cosine carrier waveforms
is computed as above. Given the nonlinear system of Fig. 4 the response

to an input of M cosines is

S MoMoM
ye) = 21 1 1 oroo Q]
U EPEEPE S 1 B {3
(IR, _, _,lcos((a,-a -2t + 6_-6_-8_ +¢_. __ )
i,~k,~% "} QTR TR TR,R,0,
+|R _,]cos((Q,-2, -0,)t +6_ +6_ -6_ +¢ )
i,k,-% ) Q8 8 T8,0,70,
+|R; _ pleos((a;-a,+a))t +8, ~8, +6o *6g _o o)
7 Ks O S T R S )
+|R |cos((Q,+Q +Q,)t +8_ +8_ +8_ +¢ )]
i,k,1 ik e 9, R, 9 9,8,
(28)
1
3tA AN,
where Tigg = —————
1 Toeoe !
m,im m.M

- 12 -
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o 2 phase{H (2,)}
91 a i
¢ % Phase(H (o ,+q,+0,)}
Q.0 .0 da i %k My
ik
P Hyls)
x Yy
> H, (s x Hals) LN
o H,(s)

Fig. 4. Third-order nonlinear system.

This expression for the third-order response can be expressed more

concisely with the following notation,

MMM
yi&y =3y ¥ ¥ or Q.. ,|H (2. 42 +2 )|
Wyge g ke Tikela TR
+ cos((R,+0, +Q. )t +8_ +6_ 18, +¢ ) (29)
17k 9, %" *"a, " *a xa s,

To give the reader a feel for the complexity of the cubic nonlinearity
response to a sum of sinusoids, consider an input consisting of the sum
of three cosine waveforms, with distinct frequencies. In the real-world
such a signal might arise from an amplitude modulated carrier, wherein
the modulation signal is a low frequency sinusoid; and H3 might be the

- 13 =
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third-order nonlinear transfer function of the power amplifier. The

input is

x(t) = A

1cos(91t)+Azcos(92t)+A3cos(n3t)

Using expression (29) the output is

y(t) = % {F111IQ111,[3|Ha(91)l003((91)t +9n )
1

+|H (30,) [cos((3a)t +3en1+¢391)]

+r112|Q112|[2|Ha(92)|cos((92)t +2992)

+|Hy(29,-0,) |cos((29,-2,)t +20 0o *by0 o)

1 Y2 YT
+[Hy(20,+0,) [cos((20,+2,)t +20. +0, +é,0 ,o )]

1 Y2 ST
+r122|Q122||[|Hd(n1-292)|cos((91—292)t +8 1—2992

)

q 2

+¢n1~2n

+2|Ha(91)lcos((91)t +2GQ1)
+|H, (R +20,) |cos((a,+20,)t +°n,+2992

*To00| Qpp | [3[H,(2)) [ cos(ay)t ’en2)

+¢91+292)]

+[H,(30,) | cos((30,)t +3092+¢392]

+r113|0113|[2|Ha(ﬂ3)|cos((n3)t +2993)
+|Hd(291+93)|COS((291"’93)t +2991+ 993+¢291+Q3

)

+|Hy(20,-0,) |cos((20,-a)t +9291~993+¢291_Q3)]

Yt +8_ -8 -8 +¢. .
3 2, 9, 03 Q,-Q, 93

)

+F123|Q123|[|Hd(n1—92—93)|cos((Q1-92-Q

)t +8_ +8_ —8_ +¢ _
3 9, "8, "0y "Q,+0,70,

+ -
2*83)t +en1 992+993*¢n1—92+93

Jt+e . +8

+0_ +¢ )]
3 91 92 93 91"92*93

”"133|Q133|[Hd(‘71_293)|C°S(m1—293)t +991—2%3*%1—29

+|Hd(91¢92-93)|cos((91+92-9
+|H (2 —92+Q3)|cos((01—ﬂ

1 )

+|H (0

1+92+Q3)|cos((91+92+n

)
3

- 14 -
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+|Hd(n1*02*93)|cos((ﬂ1+92+03)t+en1*en 8 *00 4q *03)]

2 "3 172

)

[Hd(ﬂ1—2n3)|cos((ﬂ1—293)t +9 5

—290 +¢

"T1330 %33 ) 2%,

Y] 91-29

+2[Ha(ﬂ1)|cos((n1)t 4'2691)

3)t *60 +26n +

+|Hd(n1+293)|cos((91+29 1 ,

¢ )]
01*203

)t +28_ )

[2|Ha(ﬂ3)|cos((n3 a

*Top31 Q5]

+|Hy(20,-05) |cos((20,-03)t +20, ~8, +o,0 _o )

3 2 3 2 3
+|Hy(20,+0,) [cos((2a,+0,)t +Zen;en *030 +q.)]

3 %273
+r233|0233|[|Hd(92*2n3)|cos((92+2n3)t *°n2*2993’°nz+293)

*2|H_(2,)|cos((n,)t +2e92)

+|Hy(8,20,) [cos((@,-20,)t +0, ~20, *%,-2q )]

3 > % 3

)t +8_ )

+|Hd(3ﬂ3)|cos((393)t +3eg3+¢3ﬂ3)]} (30)

This output expression is only for the sum of three cosine inputs; if
the input were the sum of seven or eight cosine waveforms, one can see
the difficulty in calculating the response in terms of the frequencies

generated.

:

Conversion of The Third-Order Volterra System Response

Into The Third-Order Nonlinear Response

The response of a third-order Volterra operator can be expressed in

the functional form

R (CArRRURLENN] |

o
.

y3(t) = H3[x(t)]
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in which h3(11,12,13) is the symmetric third-order Volterra kernel of

the third-order Volterra operator H In this section, our objective is

3"

to express the Fourier transform of the response Y_(w) in terms of the

3

Fourier transform of the input X(w) and the third-order NLTF

H3(w1,w2,w3

). Note that the arguments are taken to be w, rather than jw
to simplify the notation. Earlier, we saw how the transformation of the
second-order Volterra associated response into the actual response Was
accomplished. We follow the same procedure for the case of the third-

order Volterra operator. The third-order associated response is defined

as
y(3)(t1,t2,t3) = {if h3(T1,T2,T3)X(t1"T1)X(tz‘IZ)X(t3"T3)

. d11d12d1 (32)

3

The third-order response y3(t) is readily obtained by setting each of
the arguments of y(3) equal to t. That is

= t
y3(t) y(3)(t.t. ) (33)
Let us next compute the three dimensional Fourier transform,
Y( (w1,w2,w3) of the associated functich y(3)(t1 ). Then compute

3) 18aits

Y3(w) from this Fourier transform of the associated response.

The three dimensional Fourier transform of the associated response
is,

Y H,(w w )X(w1)X(w2)X(w3) (3W)

(3) (@ ruprwg) = Halwy g
where X(w) is the Fourier transform of the input signal. Taking the

three~dimensional inverse transform yields
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® Jw, t, +u .t tw, t.)
. 1 171 7272 7373
Y(3)(t1’t21t3) 3 {ff Y(3)(w1,m2,w3)e
(2m) ®
. dw1dw2dw3 (35)
Setting t1=t2=t3=t in our previous equation we obtain,
1 © J(w1+w2+m3)t .
y3(t) = T3 {ff Y(3)(w1,w2,w3)e dwldwzdw3 (36)
(2m) @
The inverse Fourier transform of Y3(m) is by definition
y5(t) = L g Y3(w)ejwt duw (37)
(27) -=

Thus we wish to make a change of variable in the Fourier transform of
the associated response that will give us the Fourier transform of the

actual response. Let m1+w2+w3 = w, this enables us to obtain Y3(w)

from Y(3)(w’,m2,w3). We shall make the desired change of variable in

two steps. First, in eq.(38) we let m2+w3=w1 to obtain

1 ® j(w1+w1)t
Y3(t) = Zéﬂ)3 {if Y(3)(w1,w1"w3,w3)e dw1dw1dw

3 (38)

=y in (40) to have

For the second change of variable, let w1+w1

R
»
PN

1 > - _ Juwt
JIf Y(3)(w Yy ¥ w3,m3)e dw]dw dw (39

y,(t) =
3 (2“)3 e 3

I

Note that this triple integral is in the form of an inverse Fourier

transform of dimension one. From this observation we can rewrite it as

SRRN 1 LEEREE

1 ® B
Y3(w) = > 5 f / Y(3)(w-w1,w1 w3,m3)dw1dw3 (40)
. m) o
o 1 ®
o = A ¢ (w=y, , ¥, ~¥., ¥, )4y, dy (41)
- (2m)2 e (3077 17T T2rT2RTEITRR
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In other words, Y_(w) is the integral of Y )(w1,w2.w3) along the plane

3 (3

w =w1+w2+w3; alternatively Y

3(w) is the profile of Y(B)(w1,w2,w3) along

the line y =y,=y..

b RAAMMRALe I

CASCADING OF NONLINEAR SYSTEMS

'r'v'.
e

Before we deal with the matter of compensation of nonlinear

e
LY.

systems, we must first characterize a tandem connection of two general

nonlinear systems. Fig. 5 shows the cascade connection of such

o o
. s &9 v
RPN LN

- Volterra systems., In this section we wish to derive an equivalent
Volterra NLTFs description of the two nonlinear systems in tandem.

Suppose that the two subsystems are characterized by the NLTFs Hn and

Pn' n=1,2 ,.0., .

Then
w= Hx]= YH[x]= ) w (42)
and the output y is given by

y = Plw] = ) P [w] (43)

1

o~ 8

SEAREAS

To use the nonlinear current method [3], let us replace x with ex to

form a new output;
-]

y =3 P [ ) HCex]]. (44)
€ ka1 Kopay P

- 18 -

L e e et Ta™ e " e . DA R L U R U - TR SR SR W LT e . . IR ML - . - -
et e e e e T et e T e T e e T N T T e e T T T e e e T . VLT L
A A AC U AT SRR AR AT IR JAL YAL YA AL VRGN PLADL POV DR V. LV I L PEPE DTSR WU VIFSE W OE DY W VTSN o S Vv




‘.' ."
Y0
oy’

‘SQQRs
'y
LR N O N

I ARA
&
'y
Ayt

L]
AASE

)

-"‘.
A4
'-‘r’i\J

2
.
Y M

.
X
'v"'i-,‘-

Yy

o,
Py

ﬁlﬂu'

oy

;1'-4'.v"l’ o d’
[
s

I
|
I
I
l
(
|
|
-
|

[P ol

Fig. 5. Cascade of two nonlinear systems H and P.

Now, from the basic k-linear property [1] of the operator Pk' it is seen

that
- n . i n1 nk
N I R R A UAPITA (45)
n=1 n1-1 nk-1 1 k

in which Pk[’} is the k-linear Volterra operator

‘\ L] o _ _

N = I pk(t1""'tk)"n1(t 7y) nk(t 1,41, dr, (k6)
- Then

5 n o o ngeeeesn

.:_: y = z Z cese 2 € Pm{wn '-..'wn } (H'T)
- =1 n, =1 n_=1 1 m

:\ m 1 m

= This relationship can be re-expressed in terms of the "x~y transfer

function" Q as
- 19 -
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. P"\'\."\ln
a,
ek Q,[x] (48) Salitady

%
- NN
N

y =
 k

he~8

1 .

N
x

Now if like powers of e are collected, the Q's can be determined using

"operator notation" as

Q - PH (49)
Q, = PH, *P H,
03 = P1H3 +2P2{H1,H2} +P3H1

Qu = P1HH +2P2{H1,H3} +P2[H2] +3P3{H1,H1,H2} +PN[H1]

Q5 = P1H5 +2P2{H1,Hu} +2P2{H2.H3} *3P3{H1.52.H2}

+HPu{H1,H1,H1,H2} *P5H1

o e
[N/

‘: A, 'n

Fl
“

Qm

.
]

P.H + terms involving Pj for j £ (m-1) (50)
This relationship is needed in our discussion of the mth-order nonlinear
inverse.

These equations can be expressed in the Laplace—-domain as

Q,(s) = P (3)H,(s)
Q(sy08,) = Prls +8,)H,(8,,8,)+H, (8 )H,(s,)P,(s,,s,)

Q3(s1,32,s3) =

P1(s1+s +3_)H (s1,s (s

1
o830, 2,33) + 3 [H1(s1)H2 2,33)P2(s1,52+s3)

+H1(52)H2(s1,s3)P2(32,s +3 3)H2(s1,s2

1 3)+H1(s

)P2(83.s1+52)]

+H1(S1)H1(32)H1(S3)P3(S1,52,83)

. (51)

Our objective is to reduce the nonlinear response in a system without

- 20 -
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distorting the linear characteristics. Since the linear response must
not be changed, the form of Q1 should be H1; and therefore,

P1 = I (52)

where I is the identity operator., Furthermore, the second and third-

order net nonlinear transfer functions (02 and Q,)can be made zero by

3

choosing P2 and P3 as

-1
P, = P1H2H1

2 (53)

. -1
Py= ~(H, +2P,(H, H,})H,

Example
A simple example is used to show how a nonlinear compensator is
constructed. Only the second-order distortion is reduced in this

example, but in Chapter 4 we will address both second and third-order

nonlinearly generated distortion. Suppose the NLTFs of a circuit with a

single nonlinear device [3] are:

Ls

ne>

H1(S) = Cs Cs z(s) (54)

LCs +Lg1s +1
H2(s1,52) = "a22(31+sz) {H1(s1)H1(52)}
Then Pﬂbecomes
-1
P2(s1.52) = H2(81.32)H1(s‘+32)

LC(s1+32)
= a _————e e es— ==

2

5 ————— (55)
Lc(s1+32) +Lg](s1*52) +1

The algebraic expression for P (51,3 ) is determined by evaluating

3 2'%3
the second expression of equation (55). While this evaluation is

mathematically straight forward, the resulting expression is involved.

- 21 -
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S Therefore, the specific form of P3 will not be determined. This then
3

J completes this example,.

[+

o THE APPLICATION OF VOLTERRA THEORY TO REDUCE NONLINEAR EFFECTS

s

2 Volterra theory may be used to predict and diminish undesirable

N effects of the nonlinearity of a system. One possible approach

i suggested by Wiener [1] is to use linear feedback to reduce the

: nonlinear contributions. Let us review the feedback method briefly.
L. The reduction of nonlinear response by linear feedback was applied
;f to transistor amplifiers by Narayanan [5], In that paper the open-loop
: transfer function of a transistor amplifier is characterized by a sum of
2 Volterra kernels, shown in Fig. 6. These kernels take into account the
E{ frequency-dependent nature.of the nonlinearities,

: The basic closed loop equations for the circuit are:

e = Xx-V
‘; y = Hle]
v = Bly]

g y = G[x] (56)
E The closed loop system operator G, expressed so that it satisfies all
E input signals,

t' G = H [I-BG] (57)
k where I is the identity operator. The closed loop kernels for the

V] first, G1(m), second Gz(m1,w2), and third-order, G3(w1,w2,w3) are
~$ obtained by successively equating the linear, second and third-order

s
i: terms.

.,

i 6 (w) = __ Mt (58)
& T+ (wH (w)

g - 22 -
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H (UJ » W, ) 1
Gy su,) = 2 1 2 . (59)
[1+H‘(w1)B(m1)][1+H1(w2)B(w2)] 1*H1(w1*w2)B(w1+w2)

1
) = [H (v, ,0,,w,) T
37123 i=1 1+H1(w1)B(w1)

G3(m1.w2,w3

1
1+H1(w')8(w1)

= {34, (0 yuytw,)

1

o {BQw, *w, ) H,(w,,w ) H, (w,,w., ) ——————
172232t 1+H1(w2)B(w2)

— ) ! )]

1+H1(w3)8(m3) 1+H1(m2+m3)B(w2+w3)

. ! (60)

1*H1(w1+w +w )B(w1*w +tw,)

2 3 2 3

Where 53 is unsymmetrized. The application of feedback has reduced the

gain of the linear transfer function by the factor L(w)= 1*H1(w)B(w).

The second-order expression reveals that the application of feedback

reduces the gain by the factor of L(w1)L(w2)L(w1+w2). The third-order
term indicates that the feedback has reduced its gain by

L(w,)L(wZ)L(w )L(w1+w +w.) (and further terms at the frequencies of the

3 273
two possible second order kernels).

From the above discussion, several observations can be made.
First, the attenuation in each output term is related to its generating
kernel-order; The higher order terms are reduced significantly, however,
the reduction achieved for the lower order terms may not be

sufficient for certain applications. This approach is only useful to

systems in which feedback can be provided conveniently. Clearly,
- 23 <
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Fig. 6. Volterra model of a transistor with linear feedback.

. feedback is not easily implemented if the nonlinearity of the entire

link -- transmitter, channel and receiver -- is to be compensated.

:.“_- Finally, using linear feedback to reduce interference from the NLTFs

»

F} also reduces the gain of the linear TF.

»_

ﬁ In our method of post-compensation (to be discussed later) these A

O disadvantages are alleviated to a large degree. :‘: .
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CHAPTER III

INTERMODULATION AND CROSS~MODULATION IN NONLINEAR CHANNELS

AND AMPLIFIERS

The phenomena of intermodulation and cross-modulation occur when
two or more signals are mixed in a nonlinear element in such a way that
multiplicative combinations of these signals are produced. New
frequencies are generated {(intermodulation), and intelligence from one
carrier may jump on to another carrier (cross—-modulation). This occurs
in receiver input circuits, as well as in transmitters, and sometimes in
a nonlinear element in the channel. As far as transmitters are
concerned, the process involves the reception of an unwanted signal by
the transmitting antenna, which conducts it back to the final stage of
the power amplifier, where it is mixed with the transmitted signal. The
process is therefore of greatest significance when both the unwanted
signal and the nonlinear product are within the passband of the final
amplifier., This can only occur if the nonlinear device has a
characteristic of odd order. In this chapter several types of nonlinear

distortion will be discussed.

Distortion Caused by Static Nonlinearities

Static nonlinearities may be characterized by a power series with
constant coefficients, For example, a single input, single output static

nonlinearity may be characterized as
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y(t)

x3(t)+ .o +anxn(t)+ ces

a1x(t)+a2x2(t)+a

3

I ax'(t). (61)
n=1

This type of nonlinearity is sometimes referred to as a memoryless
nonlinearity, which is to say that the present output is only a function
of the present input values and does not depend upon the past input

values. A nonlinear resistor is an example of a static nonlinearity.
CROSS—-MODULATION DISTORTION

Cross-modulation occurs when the modulation information of one
carrier migrates to another carrier that did not have these sidebands.
To illustrate the phenomenon that takes place in cross-modulation,
consider a nonlinear device that has an input-output characteristic
specified by a power series. Let the input to this device be the

sum of an unmodulated carrier with frequency and a carrier with

2'

frequency Q., modulated with a tone of frequency Qm:

17

x(t) = V(1+b cos(nmt))cos(91t) + V cos(ta) (62)

1
The spectrum of this signal is shown in Fig. 7. Let us assume the terms
of the static nonlinearity have negligible contribution beyond the cubic

term. The terms of interest lie at the frequencies 91 and 92,

these are
the cross-modulated terms. The linear part of the response is

y (8 = av[(i+p

i cos(th))cos(Q1t)+cos(92t)]. (63)

1

Using the identity

cos{a)cos(g) = E [cos(a-B)+cos(a+8) ]

(63) may be written as
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Fig. 7. Spectrum of quadratic nonlinearily

generated cross-modulation.

The output spectrum is similar to (in fact proportional) to the input
spectrum. The quadratic, or second-order, response is
1 2
yz(t) = 3 {a2V [2(1+vos(291t))+2b1(cos(th)+cos(291—Qm)t)
+ 2b1(cos(nmt)+cos(291tnm)t)+2(cos(91+n2)t) ;
b 2 . ',."x'
* =5 (Ucos(91—92)t)+b1(1+cos(291—29m)t) r ‘ i -

2
+ b1(cos(2nmt)+cos(291t)+b1(cos(ﬂ2 Q1+Qm)t

2
b1

2

+ 2005(92+Q1-Qm)t)+ (1+cos(2n1+29m)t)

+ 2b1(cos(92+0119m)t+(1+ cos(292t))]} (65)

Let us introduce a notation to reduce the length of the expressions.

Let cos(Q)t be represented by CQ and cos(Q1*02)t by C Then
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the previous expression becomes

1 2 b} 2
y,(t) = & {a V[2(1+ —=)+4b.C +bC_ _+2b (C_ _+ C
2 4 2 2 1 Qm 1 2nm 1 93 Qm n3+nm
+2(C. _+C )+b_(C _a*C )
93 Qm QN+Qm 1 291 Qm 291+ﬂm
5
+ 2(1+ —=)C +2b (C_ __ +C )
2 291 1 Qu Qm QM+Qm
+2b,(Con 50 *Cog 4og )*C50 1) (66)
1 m 1 m 2
even more compactly,
2
1 2 b1 2
y2(t) =3 {a2V [2(2+ > )Hlb1CQ *b1C29 +lJCn +2b1cQ 0
m m 3 37 m
b2
+ 2(1+ )C +2b,C +4C_ +2b.C +2C 1 (67)
2 291 1 291:Qm Qu 1 Qu:Qm 292

where 93 = 92-91 and Qu- 92*91.

Notice that there are no cross-modulation terms in this case,

The cubic or third-order term in the series requires a method for
tabulating the frequency components. This will allow us to view the
various terms faster and this approach can be used to analyze higher

order nonlinearities. For the input

x(t) = V{C_ + _
91 2 91 Qm Q.I*Qm 92

the cubic output is

e 0cdR T 'Y WYL o Ry oy - "R, - ‘.A'.t'.’."'.".".""l’-'v'.‘._'L'-.'(d-l’.’.".".'{
‘4
4
[
,
r

3
¥3(t) = axx (t).

R
s

i X(E) = A, ()R, (0) +Aox () A, x, ()
) 121 *ay

.
s
'
',
J ’
N

We may write the input in an expanded form, namely
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where

A
in- Aicos(nit)

SR MR 1 B

Then the output, y3(t) may be computed by a systematic combination of

"o

the input constituents as follows: the order is three therefore the

N AL

number of columns (containing the input constituents) is also three.
See Table 1, Each row represents a distinct combination of the three

constituents from the available four sinusoids. For y3(t) the

components of the output are listed in Table 1. The multipliers 1,3 or
6 in the right half of the table arise from the number of distinct
permutations of the indices of the constituent sinusoids.

Using the cosine identities

cos(a)cos{B)cos(r) = % (c )

a-8+2 Corp-2"Cag-21"Carpsa

cosz(a)Cos(B) - 1 (C +2C _+2C )

4 2a~8B B 2a+B
cos3(u) - L (3C +C, )
4 o 3a
. The terms that produce cross-modulation are
3 3
- 3Vv'b.C. C +3V-'b,.C o}
:.- 1 91 91 Q 02 1 91"'9 92
- - 3 b.v3(cC NG + “C +C }
; 4 M Qm“ﬂz Qm*92 -Qm*ﬂz “Qm‘ﬂz
3 3
- dp v, e 1e ... (68)
2 1 92 Qm Qz*ﬂm
i Actually since
3
Y3 7 83X
- = 3a.b V3cos(ﬂ t)cos(Q.t) + ..
i 31 m 2 e
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TABLE 1
COMPUTATION OF OUTPUT FREQUENCIES GENERATED BY
THIRD-ORDER NONLINEARITIES

VA Sl afth  IMNCLPRA s % P

permutations translation
111 A?cos3(91t)
t} 112 A2A 0032(9 t)cos(Q.t)
g 38485 1 2
r.
‘ 113 A2A cosz(n t)cos(Q.,t)
34184 j ticosiag
114 A2A cosz(n t)cos(q,t)
3hy 8y g eostiy
122 A A2 os(R, t) s2(n t)
3A,A,cos(8, t)cos (4,
123 6A1A2A3cos(91t)cos(nzt)cos(93t)
1 24 6A1A2Aucos(91t)cos(ﬂzt)cos(nut)
133 3A Azcos(ﬁ t)cosz(ﬂ t)
173 1 3
134 6A1A3Aucos(n1t)cos(n3t)cos(nut)
1 44 A A2 (Q,t) 2(9 t)
31uCOSQ1 cos y
3.3
222 Azcos (ta)
22 3A2A cosz(n t)cos(Q,t)
3 2"3 2083
224 AZA osz(n t)cos(Q,t)
3R A, pL/COSty
2 3A Azcos(n t)cosz(n t)
33 2™3 2 3
2
24 i 3A2Aucos(02t)cos (Qut)
3. ha3
333 A3cos (Q3t)
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"Table 1 (cont'd)"

334

344

4 4y

3A§Aucosz(n t)cos(nut)

3

3A Aﬁcos(n t)cosz(nut)

3 3

3.0a3

Aucos (nut)

The carrier term may be approximated as

a1v cos(nzt)+ % a3v3cos(92t)

= a1Vcos(92t)

Thus, the cross-modulation at Wy is

ycm(t) = a1v(1+bcmcos(nmt))cos(92t)

A3
b =3 —D>0,1V
cm 31

(69)

(70)

The cross-modulation factor is the ratio of bcmto b1 is

on_ - —cm
o b
1
3a
- 2V
1
As an example consider a, = 10, a, = 0.02, b

1 1

3

that the amount of modulation is 50%. Then
b = 3(0.002)(0.5)(1)?
cm ) :

= 0.003

(711)

= 0.5, V=1 volt. Note

vcm(t) = 10(1+ O.OO3cos(th))cos(92t)

- 31 -
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bcm
CM_ =

(o} b1

= 0,006

This index measures the amount of modulation which has leaked onto the

unmodulated carrier.

CROSS~MODULATION FOR NONLINEARITIES WITH MEMORY

Let the input be the sum of a continuous carrier and an amplitude

modulated carrier as before

x(t) = V(1+b1cosﬂmt)cosn1t +Vcosnzt

this can be written in a complex phasor form as
jat J(ﬁ1“9m)t Jla,=a )t ja,t

x(L) = % [ 2e +b1 e +b1 e +2e

i, t ~-j(Q. -9 )t -jla,-e )t -ja.t
+2e ! +b1 e tm +b1 e e 'm +2e ] (72)

To reduce complexity, let

Then we may write x(t) as

v
x(t) =+ [ 2e, +b, e_ __ +b e +2e_ ] + CC (73)
y 91 1 91 Qm 1 Q1+Qm 92

where CC stands for complex conjugate terms.

If we use the tabulation technique shown earlier and select only the

terms that contribute to the cross-modulation namely, the output

A comionent at the frequency &,:Q turns out to be

2 "m
é 3! .3
- Y = 2 y’p, [H. (Q,,-0,+8 ,0.)e
1 a,ta 16 LU e Rl R S-S L
; +H (-Q,,0,+Q ,Q.)e +H_(Q,,-2,-Q ,0.)e  _
i 37 N e 2 a3 T e T2 e e
‘ *”3('“1'91‘“m'“2)992—nm* ccl (%)
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To discern the elements that cause cross-modulation, we need to express

this equation differently. We will assume H3 is a continuous function

and that the frequency of modulation is much less than the carrier
frequency,

Qm <« 91
We may now write the cross-modulation terms generated by the third-order

nonlinearity as

Q.)e +CC]

Y V7o LH3(Ry, 70y 808 bq ¢ B3Ry fp)eg g

ﬂztﬂm ] 2 92+ﬂm 3

=353 - -
=3 bV |H3(Q1. 2,,8,) |Lcos((a,-a )t +8,)

+cos((92+9m)t +32] (75)

R O SR B 4
. )
“nnnh

where B,= phase(H3(91,-Q1,92))

If we look at the third-order system response to the carrier term

v V3
Y3 -3 H1(92)e92+ - H3(92.92,—92)e02+ cc
N
- Y nae v occ 1?
2 2%, o
- V|H1(n2)[cos(92t* B,) (76)

where B, = phase{H1(92)}
Thus the ta term becomes
Yop(t) = V[H,(2,)[cos(a,t +8,)

*3b1v3|H3(91,~01,02)|cos(92t +8,)cos(Q t)

= |H,(2,)|V[cos(a,t +B,)+b cos(a,t +8,)cos(q t)] (1

- 33 =




|H3(n1 "Ry, 0,) |

2

where bx = 3b \'}

1
|5, (2,)]

Therefore,
Yo = |H1(92)|V|[cos(02t+e1)+bxcos(92t+32)cosnmt] (78)
The cross-modulation term is different from the memoryless case, there

ycm(t)"was pure amplitude modulation. Expressing the cross-modulation
content as a function of 31 and 32 we must consider two cases:

Case I
B1= 82
Yom(t) = [H (2,)|V(1+b_cosq t)cos(q,t+8,)
This case generates pure amplitude modulation.

Case 11

then the cross-modulation is

Yom(t) = |H, (2,)|Veos(a,t +8,+b cosq t)
where b << 1
X

This case generates pure phase modulation.
INTERMODULATION DISTORTION

Intermodulation distortion is the process whereby beat signals at
various sum and difference frequencies are produced. These signals are
impossible to filter with a linear filter because, the interference
frequencies lie within the passband of the uncorrupted signal. For

example, consider an input consisting of the sum of two cosine

waveforms, - 3 -
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x(t) = VC_ +VC
8 8%

The intermodulation terms that would be generated by a second-order

nonlinearity acting on this input are

2
Y, = aVIC,  __ +C ] (79)
2 © %2" v -0, "Va,va,

The third-order intermodulation products are at the frequencies

(291192), (292191) and could lie within the passband of either carrier.
The complete expression is found to be

Y -3 a V3[C

;M " 3 % c ] (19)

+
2ﬂ1t92 292191

The magnitude of these IM terms is

.3 .43
Dy = j 33V (80)

Then the IM index is expressed by

3 v (81)

This concludes our discussion of interference types.
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CHAPTER IV
COMPENSATION

Communication channels, both microwave and satellite, generally
exhibit nonlinear characteristics. When frequency division multiplexing
is employed, it is important to carefully assess the extent of possible
intermodulation distortion. When this distortion exceeds permissible
limits, it is reasonable to ask if it can be reduced by suitable
compensation, In this chapter we present the compensation of both
second and third-order NLTFs. The design methodology developed here has
been implemented in FORTRAN programs VCOMP2 and VCOMP3 [12], [13].
Results of example runs on these programs are presented, which confirm
the effectiveness of our technique in reduction of IM interference in a

specified band.

The Pth-Order Inverse

Suppose the input-output relationship of Fig. 1, representing a
weakly nonlinear system, is given by
y(t) = Hx(t))

= Hy [x(E) THH,[x(E) P [x ()]« (82)

then a p-th order post-inverse is defined as follows. A nonlinear
system G (also assumed to be representable in a Volterra series) is the

p~th order post-inverse of the nonlinear system H if the composite
system operator Q, given by,
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QAx(t)] = y(t)
= G[H[x(t)]] (83)

NP LI AW |t LU

contains only nonlinear terms of order p+1 or higher and its linear term

is the identity mapping. That is

‘
%
y
Qlx(t)] = x(t) + Qp*1[x(t)] v ees (84) s
: In this report our concern is limited to only second and third- ? :*{
F order nonlinearities. We give below the conditions upon the NLTF's of H :f“i'isf
b for the cases of second and third-order post-inverses: The following two ¢S;;g“41
[ S
ROSARAAS
f conditions must be satisfied [1] for a second~order inverse to exist: e
b DERER
t G1H1 =1 (85)
G1H2+GZH1 =0 (86)

For G to be the third-order inverse of H, three conditions must be
satisfied, namely (85), (86) and the following
G Hy + GZ{H1,H2} + GH,

G1H3+02[H1+H2]—62H1—GZH2+G3H1 =0 (87)

LA RS AR e r T T
LN T R R B ) " e e e, - .o Te

Note that if H2 = 0, i.e., the second-order nonlinearity is absent, then

(87) reduces to

61H3 +G3H1 = 0

VBT e e

Although the concept of a p—~th order inverse is a useful one from a

-

theoretical standpoint, its practical design utility is quite limited.

« £ & |

"

§ In fact, even the first-order inverse defined formally by (85), has a

! somewhat limited utility in practice. Indeed, such an inverse would
require the following relationship to be satisfied

- G, (8)H (s) =1 (88)

« TERY .
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implying that G1(s) be the inverse of H1(s). This is impractical

for two reasons. First, this would necessitate infinite gain for G1(s)
at values of s where H1(s) is zero; second, if the transfer function
H1(s) has zeros in the right-half plane, then G1(s) would contain poles

in the right-half plane and would thus be unstable. In most
communications applications, a global inverse is, in fact, not required.

Indeed, if the signal spectrum is limited to the band [m1,w ], then the

2

objective should be to design 01 30 that G1H1 may appear to be almost

equal to one (or, more generally, equal to e_JwT) in this band,
As stated above, application to communication systems requires
minimal transmission distortion only over a particular frequency band

(or bands). Let us denote this band (or union of bands) as <Rr >; the

oi
subscript 'roi' signifies the region of interest. Also, let us denote
the desired characteristic of the composite system as C(w). Then, it is
reasonable to state the desirable attributes of the compensator as
follows: 1) The composite system Q, should have a characteristic as

close to the desired as possible, i.e., G1H1 should approximate C(w)

over the band <Rr >, 2) the contributions of the NLTFs H2, etc., in

oi

the band <Rro > and possibly other interference regions of interest

i

<RIM> should be minimized, 3) the compensator should be stable, and 4)

the structure of the compensator should be simple and relatively
robust, {.e., insensitive to minor changes in the parameters of H1, H

2!

ete.

In the Appendix we present two simple examples dealing with the

- 38 -
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compensation of linear distortion in bandpass systems. These examples
are useful in that they provide insight into the structure of the
compensator TF, (compensator pole location with respect to the system
bandpass characteristic) needed to reduce linear distortion. This
provides the basic compensator TF form to reduce the distortion caused

by NLTFs in band-pass systems.
COMPENSATION OF THE QUADRATIC SYSTEM

A communication channel that exhibits only quadratic nonlinearity
(and no higher order nonlinearity) may be represented by a linear
transfer function in parallel with the quadratic TF, as shown in Fig. 8.
This model might represent a transmitter, the channel, the front-end of
a receiver, or a combination of these three,

When an input signal consisting of the sum of two sinusoids,

x(t) = V,cosn,t +V200392t

is applied to the system of Fig. 8, the output is the sum of the linear
and quadratic responses., The response of the linear block is
Wi (t) =V, [H (2 ]cos((0)t +993
+V2|H1(92)|cos((92)t *99; (89)
where

eQi = Phase{H1(91 )}

The response of the quadratic block is

wz(t) =

[v$|H2(91,Q1)|cos((291)t +¢1)+V§|H2(92.92)|oos((292t +4,)

NI

+2V, V5 [Hy (0 ,-0,) |cos((Q,-0,)t +43)

- _{'\‘ ~
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+2V V, [H, (9, ,2,) [cos((a,+2,)t +¢,)

2 _ 2 -
+2V7H, (R, ,-0,)+2V H,(a,, 92)] (90)

where

o
—_
[}

Phase{H2(91.91)}

©
n
n

Phase{HZ(QZ,QZ)}

Phase{H2(91,—92)}

©
=
]

Phase{H2(91,92)}

LINEAR
OPERATOR

QUADRATIC
OPERATOR

Fig. 8. Nonlinear communications channel model.

The system output then contains components with the following

frequencies: @ 291, 29 Q. .+Q Q. -2, and 0.

LY 20 8yt8y, 870,

For reasons that will shortly become apparent, consider that 91 and

n2 are nearly equal. Thus as shown in Fig. 9 the intermodulation terms

occur near the baseband and around the frequency 291. In realistic

- 40 -
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‘i situations the input spectrum is generally distributed over a frequency

! band with a bandwidth of T rad./s. This type of input might represent a ?JSE;Q'

E communications signature. The regions of the output spectrum where IM %&;ﬁ:ff}

, NS A

ﬁ distortion occurs may be obtained by substituting the boundary values of %f%?:g_%

! the input frequency band for 91 and 92 from the previous discussion, E;}iéxy:

s L *
sz1 N Qc+ g ! QZ = Qc- g i?:?f;?i

' it is readily seen that the output spectrum would now be as shown in . .

X Fig. 10.

- l INPUT
x h - » S
c 3 ]
] 2
‘ E
. =
._: w
'-- ™
- ouTPUT
>
i || | ]
- " 5 a & ~ ~ & >
» T8 % & & 32
- ~ ~ s
- 3 3 3
- £ .
: A
| Fig. 9. Spectra of the input and output of the R
. quadratic nonlinear system. RN
< -
.
- Note that the output interference energy is spread over two 3separate
“~
b bands (one near the zero frequency and the other at double frequency).
"
.
N
a A communications system may be compensated by pre-distorting the
g input signals with a nonlinearity which is an approximate 'inverse' of
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the channel nonlinearities. Alternatively, one may use post-—
compensation wherein the compensator is placed after all of the system
nonlinearities as shown in Fig. 11, for example, after the front—end of
a receiver. Bell Laboratories have used pre-distortion for compensation
on a narrow-band (compared to the carrier frequency) signal [6]. Their
compensator structure as well as the theory developed are, however, not

adequate for more general applications, We will use a post-compensation

/\ -
0 - >
: (=}
- -1 ]
=2
. =]
- ad
«
o

QUTPUT

0 K3 <

a ! >
PR 1+ ot e ~ +1 g
[’
=
— — = =]
~ At
=
=)

Fig. 10. Spectrum of the multiple frequency input to the

quadratic nonlinear system.

strategy and will apply Volterra theory to develop a general approach
for compensator design. With minor modifications the methodology can

also be extended to pre-compensator design.

Post~-Compensator Representation

The post-compensator transfer characteristic should have sufficient
latitude so that by proper parameter selection reduction of the
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nonlinear effects is possible. The post-compensator structure shown i

Fig. 12 appeared promising and was proven effective in our studies. The

sections of this compensator, are a gain constant for the linear kernel

and a parametric nonlinear block. Only the nonlinear response of the

System Under Compensation (SUC) will be compensated; the linear response

will be left essentially unaltered. The output frequencies generated
the channel NLTF are out-of-band interference terms. Our compensator

will reduce the interference at the frequency 291. Having chosen the

interference band of interest, the compensator design will now be
discussed. The output of the compensator is

y = Y1+Y2
where the output of the linear TF of the compensator is

yy = G Lw, 1+G [w,] + =ee (91)

The compensators quadratic output is

Yy = G2[w1]+62[w2]+202{w1,w2} + ees (92)

where Gz{w1,w2} is the bilinear Volterra operator [1].

Since our analysis is restricted, for the moment, to the second-~order
response, we will omit all terms shown underscored in (91) and (92).

Now, substituting for W, and W,y from (89) and (90) and recognizing

that G1(s) = K,

y, = K[v, [H,(8,)|cos((,)t +993+V2|H1(92)|cos((92)t +eQ;

12 2
+ 5 [v{H, (R, ,0)) [cos((20,)t +¢,)+V5|H,(0,,0,) [cos((2a,t +0,)

+2V V5 |H, (R, ,-0,) |cos((Q,-a,)t +¢3)+2v1v2|H2(n1,92)|

© c0s((R, +R)t +4,)+2VH (R, ,-R,)*+2V5H,(8,,-2,)]] (93)
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Fig. 11. Post-compensation of a communications system,

with quadratic nonlinearity.

o 6,0
b - w Y
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: Gyuls)
Ggls)
Gyls)

Fig. 12. Quadratic post-compensator structure.
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where K is a scalar gain. The quadratic response is given by

1 .4 2
= 5 IV IH, () [%[6,(2,,8,) [cos((2a, t)+26, +6,)

y
2 1

4 2
Vo 1, (2,) |76, (0,5, 0,) [cos((2a,8)+26, +4,)

5 2

)

2 -
+2[V V,17[H (@) )H, (0,)G,(R,,~0,) [cos((@,~0,)t + 6.6

+¢
1% 3

2
+2[V, V,1°|H, (2))H, (0,)G,(2,,8,) |cos((@,+2,)t + en1+enz+¢u)

y 2 y
+2V1H1(Q1)02(Q1. 91)+2V2H1(02)G2(92. 92)] (94)
Note that the right-hand side of (94) represents Gz[w1] since all other

terms in (92) were omitted. From the earlier section we know that

removal of the second~order output effects requires

G1H2+02H1 =0

or, in terms of the composite system TFs

Q =1

Q, =0

Since we stated that our goal is to reduce the distortion at 291, we do

so by setting terms involving this frequency to zero, i.e.,

V? J291t 55 j291t
> Real{KH2(91,Q1)e +V1H1(Q1)62(Q1,Q1)e } =0 (95)
-
The above equation describes the relationship between H1, Hz, K and G2

.
o
-
.
A

i} have chosen 2&1 as the frequency for compensation, any reduction of the
¥ .

" interference at the frequency 292 would be incidental. T[ reduction

:: - 45 -
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of the IM distortion at both 291 and 292 were required, then the

problem would have to be formulated in an entirely different manner:

-
~

perhaps, the center frequency of the compensator along with its bandwidth

could be appropriately chosen.

Multiple Frequency Compensation

We have stated an equation which describes the relationship between
the SUC and the compensator to reduce intermodulation interference at

290 for an input consisting of the sum of two unmodulated tones., Now

1’
let us compensate the IM interference for the case of an input which has

a spectral bandwidth I'. Now the reduction should be achieved over a

band over which IM interference occurs:

291 + T, instead of a single frequency 2@

x
Quadratic Mean-Square IM Criterion and a Related Cost Function

An index determining the amount of interference reduction is

discussed next. It is natural to define a distortion energy criterion

as

v

‘ 1 2
- €= 5 / |Y2(w)| dw (96)

A g

r! The actual input signal x(t) is often not known, except that it is

bandpass and real-valued (as is also the linear transfer function

H1(s)). For simplicity, we take the spectrum of the input to be uniform

over this band, so that YE(wl’wZ) = Qz(m1,m ). Now since

2

S
Qz(w) = — i Qz(w w1,w1)dw,

T -

N

-~ 46 -
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therefore our practical distortion criterion becomes

1 Y*b 2
_ e= - J 1Q, (w)|“dw (98)
; wO~A

where mot A is the frequency range of interest.(i.e. The region in which

u interference is to be minimized.) It will be seen later that Wy = 2wc

and A = T if the IM interference at the double frequency is of concern,
The cost function must now be defined over the appropriate band of

- frequencies. Using equation (95) the intermodulation at the (m1,w

5)

frequency pair (in the associated-response frequency-plane) is

Qz(w1,m2) = KHZ(w1,w2)+H1(m1)H1(w2)G(w1,w2) (99)

- where the frequencies w, and Wy each vary from 91— g to n1+ g

Computation of the Optimal Parameters

Parameter optimization applied to the design of dynamic systems

involves the selection of a parameter set so as to enable the system to

attain the best possible performance. We have selected for compensator

design the nonlinear least squares minimization algorithm by Dennis et

L

>
[ Ny Sy w

al [7]. This algorithm, in the large residual case, is more reliable

b
S

than Gauss-Newton or Levenberg-Marquardt methods (8] and more efficient Ay —

OO

[ - than the secant or variable metric methods algorithms [9], such as the
= Davidon-Fletcher-Powell method [10,11]. The algorithm amounts to a

variation on Newton's method in which part of the Hessian matrix is

L

2
o
s

computed exactly and part is approximated by a quasi-Newton updating

l ",
.

method. To promote convergence from poor starting guesses, the

e,

algorithm uses a model/trust-region technique along with an adaptive

choice of the model Hessian. The residual vector needed by NL2SNO is

- 47 -
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constructed by corverting the interference power density IQZ(w1,w2)|2

into the proper form. The transformation of the interference density in

the w, 40 plane into the real world frequency axis w is done by

2

searching the w,,w, plane along constant sum (or difference) frequencies

1'72
of the argument, and summing it. This is expressed by

QIM(m) = ! Qz(w1,m2) dg (100)

w1*m2= w
where the integral is a line integral along the line defined by
m +w2=w . Note that d? and dw are orthogonal to each other. The w,,w

1 1772

plane along with the incremental line element df is shown in Fig. 13.

o
“

If the band of concern were the baseband, then we would use the line

defined by Wy "W, =W for the above integration.

- i
A "R
-

In the computer program, the cost function is simply defined as 7;!% o
RN
€ = I; I;: IQ (w o W )|2 (101) ;::;.::‘_::';:S
PGM =N K=-N 211’72k " f\*i':{
AN

where w5 and w,, are the grid points in the (w1.m2) frequency plane

covering the square [91— g At g ] x [92— g y Byt g J. .iﬂ

The center of the square grid is (91,92). The program NL2SNO uses

SR ATl (102)
as the residual. The dimensionality of the residual vector is (2N+1)2.

Initial Parameter Selection

In most optimization methods the a priori values affects the

convergence, as well as the final solution, as local minima may exist

- 48 =
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throughout the range of the cost function. Therefore a method of

determining suitable initial parameter values {even in a semi-scientific

way) is highly desirable. The approach we use is to compute the
parameter values needed to compensate the SUC just at the center

frequency (of the interference band). Then equation (99) becomes

2
0 = H1(nc)Gz(nc,nc)+H2(9c,nc) (103)

- where Q_ =Q =Q_,. Rearranging, we obtain

~ c 1 72

- Hy(2.,0,)

- G2 (8 8e) = = “‘—'—"2 AN

| (2,) L

L. 1 RN ,s.

N ‘e
- - e W

:'-—'. vy, e O (1o8) =

o = Xgtd¥y = Py RN

:‘.: g ~

. Shown in Fig. 14 is the magnitude of 02(91,92) in the Wy 0, plane. L

:q'. ey
M"L."d

Consider a compensator which consists of a linear path with gain K, and zv!!r-

("
L

a quadratic path as shown in Fig. 15. The transfer functions of the
- 49 -

;- 'I. 'l. 'l‘

e R

. ._-\\,-.;.u\'-'«.-'. T e A e et e e
\.-JJAL_.' a .'z_.a 1 et et e TS Tt T s T s s N T e,




%

Aotk S S ACh i A Bl

vy

. ()]
[} [
. O 3
[3] P
f Q, [s]
_ 2 £
a2 =1 o
3 ol + o )
0 o~
[2] + 1
. S o
. [} - e}
). - = ©
. N %1 ]
n i =t
. o Q
' n
. R ) 5
. ] © [S2'
. (&) £
] o 0 ©
. - | N
. o e
. o (o] 1
o] 5.
(3] o
2 @ «
. N 3
: - -~ o
1 0 ©
+ + o = =
= = = =, .
v 0 0 — 2] 3] [T}
s —
b 60 .
. d [+ o
b ] [ -
N [x.
- ~~
g 0
] ~
. o )
. © s ARy
4 o ) .
. |9 . o
3 © ~
. VRSO
[2] A
o XX _ CR R
. |93 - Al
4 (o]
| S 3 X
@ 3 NI
& N A
A A
!
1




A
»

FOMMAAT SR A

]
«

e

TN

i

L

b # » 1
A4 'I.‘

From this the NLTF of the quadratic path becomes

b.(s,+b, Y(s.+b.)
G,(s,,s,) = o 1 1 2 1 (105)
271720 (s, va, )(s va, )(s, +s_+a)
1 1 2 1 1 T2 2

We shall call this a Type I Quadratic Compensator,

Suppose now we restrict our attention to a single unmodulated carrier
with frequency Qc and the interference generated at the frequency 290.

Setting s1 =32 =JQC gives
bo(JQc+b1)2
G2(Qc,ﬂc) = 5 (106)
(Jnc+a1) (J2nc+a2)

To compute the initial parameter vector, we equate the right-hand side

of (104) and (105). We will now compute ay,a, and b1 so that the phase
angle of the compensator is equal to eH. In order to select eG 80 that
it is the additive inverse of eH' let
QG = OH - 2nr, if SH >0
GG = GH ’ if BH <0
Then, equally distribute eG among the compensator poles at -a, and
-a
5 e and zero at —b1 by defining,
o . O
D 3

Since eG i3 a negative angle, 60 is positive.

The initial parameter values are then obtained by setting (the gain)

bO of the compensator to 1 and solving expression (106) for each

parameter value,
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P - _c
by = A » 3 C
tan(E—) tan(E-)
290
a (107)

2 tan( eD)

Using these computed parameter values evaluate the compensator,

JeH
G, (8,,8,) = Gypg ®
setting,
HMAG
bO aliare
MAG

to adjust the gain parameter b0 from its previously defined value of 1.

This initial parameter method provides a starting location for
compensation over the desired bandwidth., We will demonstrate the use of
this result with an example.

Let

Qc = 5 rad/sec
H1(Qc) = 0,01 -j
HZ(QC,QC) = ~0.09654 -j0.08098

Then from (103) the compensator response should be

GZ(Qc'Qc) = ~0.0013 -j0.005

which gives

x, = -0,0013 , yH = -0,005

H

HMAG' 0.00517 , by = -1.82516 rads
and since eH is <o, 9H = eG

by = 0.60839
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=
Y
.
R b, = =3 - -15.9269
:- 1 tan( 0.30419) *
a, = 2 = 15.9269
. 1 tan( 0.30419) )
% . 10 .
N 3, = Tan( 0.60839) 164.1654
now compute the bO using these parameters,
2
% H
X 2.2572 = Rl
. MAG

The initial parameter values are then

p = (2.2572 -15.927 15.927 16“.165)'r
EXAMPLES ON QUADRATIC COMPENSATION VIA PROGRAM VCOMP2

We now give two examples of quadratic interference reduction. Both

examples have been generated by use of the computer program VCOMP2,

Example 1:
Consider a system with the Linear TF

0.250025

32 +0.18 +25.25

H1(s) =

which has a bandpass nature. The quadratic nonlinearity is of the form

100

H,(8,,8,) =
(S1 +2)(s2 +2)(s1 *s, +12)
For the type of compensator to use we select the general form outlined

in the previous section.

bo(s1+b1)(sz*b1)

02(31,52) =
(s,+a,)(s,%a,)(s,+3,4a,)

The input is a narrowband signal with a center frequency of Qc= 5Mrad/ s

and a bandwidth r, of 2.0 Krad/s. The sum—squared error (i.e., sum
-~ 53 -
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squared of r(m1,w2) of the system with no compensation over a 5 x 5

point frequency grid) is €paM™ 3.94727. A simpler 3 x 3 example of the

frequency grid is shown in Fig. 16, Note that the resulting band of

interference is (290- T, 290+ r). The initial parameter vector is

p = [2.2572 -8.817 8.817 5.9811"
After optimization the compensator parameter values are
p = [43.65 -129.9 234.9 59.72]

A plot of the SUC interference function 20Log(|Qp,(w)|) versus the

compensated one is shown in Fig. 17. The system quadratic sum-squared

error is €poM™ 0.081724, a vast improvement over the uncompensated case.

Wy

Fig. 16. 3 x 3 point frequency grid of r(m1.w2)
ey
Example 2: kN !

This example is similar to Example 1, except the amount of deviation is
increased to 50.0 krad/s. The initial uncompensated sum—square error of

the nonlinear component again over a 5 x 5 point frequency grid for

r(w1,w2) is €poM™ 8.301. The same initial parameter values as in the
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last example are used. The compensated system error is 4,166, The final

parameter values are

p - [86.05 -4533 6480 19017

In Fig, 18 a plot is given of the uncompensated and compensated

Y1

Uncompensated

10 dB Compensated

o T v Ls T

4.997 4.999 5.001 5.003

Mrad/s

Fig. 17. Compensated versus uncompensated distortion.

interference function 20Log(|QIM(w)|) for this example. 1In the above

examples we used a compensator whose blocks were single-pole blocks. A
more effective reduction of the IM interference could be achieved with a

more complex conpensator whose block TFs are second-order, Its NLTF is

given by.
b.(s,+b )(s.+b,)
6,(s,,8,) = o 1.1\ 2 2 (108)
2 2 2
(s1+a231+a1)(82+a282+a1)((81+52) *82(81*82)*31)
— 55 -
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Compensated

b L
\\\\\\\\‘ Uncompensated
—_— S

4.95 4.975 5.025 5.050

Mrad/s

Fig. 18. Compensation results of the second example

This form of compensator will be called Type II Quadratic Compensator.
In this section we have explored the compensation of interference
produced by a quadratic nonlinearity. As stated earlier, the
interference generated by quadratic nonlinearities does not fall in the
system's passband. However, the intermodulation terms generated by
cubic nonlinearities, can fall within the main passband of the input to

the SUC. Compensation of third-order nonlinearities is considered next.

COMPENSATION OF CUBIC NONLINEARITIES

In this section we present the design of the third-order nonlinear

v

compensator using the configuration as shown in Fig, 19. The SUC here

is shown in greater detail in Fig. 20. Note that its cubic nonlinearity

L0

may be represented mathematically by the NLTF

[ 4

H3(s1.

s,) = H (3 )H (S )H (s )H (s 8,48 ) (109)

s 3 3

°3
- 56 ~
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Consider as an input to the SUC, a signal consisting of the sum of three

sinusoids,

x(t) = V‘cosQ1t +V200592t +V300303t

the output of the SUC is the sum of the outputs pf the two paths; the
response of the linear block 1is

wi(t) = V. [H (2,)fcos((a)t +en$

+V,[H (,)[cos((a,)t +69;

:
&
-

+V3|H1(Q3)|cos((ﬂ3)t +99; (110)

N (T T T T 1~ T T T 7 E
ro . .
N | > e || s LG I - .
| | S
K‘ w y ’
l N | PR
l Hos,, 55,80 ] I I G.(s,,s:.8,) l o _-.~
L Il | S
SYSTEM UNDER COMPENSATION COMPENSATOR -_._-J
- i
! L]
;: Fig. 19. Post-compensation of a communications system
;f with cubic nonlinearity.

ABRE

The response of the cubic block using expression (29) is

- 57 =~
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Fig. 20. Communications system model with cubic

nonlinearity. (SUC)

1
wat) = {r 19, [[31H (a,)|cos((a,)t +9Q1)

+|Hd(391)|cos((3n1)t +3en1+¢391)]

ot o1, 1 [21H,(0,) |cos((a,)t +2992)

+|Hy(20,-0,) |cos((20,-0,)t +26 )

8, *o,, -
Q 0 291 92

1 2

A\
+|Hy(20,+2,) [cos((20, +R, )t +20, +o. +¢291+92)]

1 2

)
2

*r122|0122||[|Hd(Q1~292)|cos((91~292)t +en1—2992+¢91_2Q

+2|H_(Q) |cos((a)t +2eQ1)

+[H (0 +20,) [cos((q, +20,)t +e91+2992+¢91+292)]

)

+r222|Q222|[3|Ha(92)|cos((92)t +992
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+|H,(30,) |cos((30,)t +3egz+¢392]

+r113|Q113|[2|Ha(93)|cos((Q )t +20, )

3 3
A
+|Hd(291+ﬂ3)|cos((291+93)t +zen1+ e:13 ¢291+g3) RSN

+|Hy(20,-25) | cos( (20, ~a3)t *9291‘9a3*¢2n,—n3)]

It *8, 8o 8 +dg g g

Q.. ][|H,(e,-2,-2,)|cos((a, ~2,-Q
1Q, 5311140 0,70, 12 . Ry By R TRy0g

*Ti23

+|H (2,+0,-0,) |cos((Q,+8,-0 )t +6, +8, ~8y *+¢ o)
a*"17 %2 3 17%%2 "3 2, 0, 0 00, 2,

+|H,(Q,~2,+Q,) |cos((R, -, +R,)t +8  ~8 o tq - )
a1 23 172773 2, 92 2, R "R,* 0,

Yt+o_ +6. +0_ +¢ )]
3750, 0, ey tay +0, vy

+H (R 40,4 )|cos((9 +2,+0

[1,(0,-20,) |cos((9,-20,)t +6) ~28) *ég o )

+T Q.|
1331 %33 , ey e, 20,

+2|H_(®,)[cos( ()t +28y )
1

)t +8

+|H, (8 +20,) |cos((a,+20, n1+2°n3+¢91+29;]

[2|Ha(93)|cos((ﬂ )t 428, )

*To031 %03 3

3

+[H,(20,-0,) | cos((28,-05)t +2992— a, ¢292_93)

+|H,(20,+05) ] 0S((20,%0)t +280¢00 +450 o )]

3 p Sy ety
)

(a,+205) |c0s((2,+2023)t +8y +280 9 o9

+T Q [
233| 233| d 2 3 2773

-
-
>

Es
-

+2[H_(0,) |cos((,)t +2602)

+[H,(2,720,) [cos((R,-20,)t +992—2993+¢92,293>]

Oehl)

-
A e

51 (311 (a5) [cos((ap)t +eQ3)

*T33319;

A 1
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+[Hy(30,) [cos((3a5)t +3e93+¢393)]} (11)

The spectra of w, and w3, the output of the SUC for an input consisting

of the sum of three sinusoids is shown in Fig. 21. The in-band

e distortion falls at the following frequencies: 91—92+Q3, 03-91+92, 92

—Q3+91. In the ensuing discussion we have chosen the distortion most
adverse to our communication system to be at a band of frequencies

around 91—92+Q3.

Post-Compensator Representation

The cubic compensator structure shown in Fig. 22 appeared promising

and was tried first in our studies. The parallel paths of this

WO

compensator are a gain constant for the linear TF and a third-order
nonlinear path. Only the nonlinear response of the SUC will be
;i compensated; the linear response will be left essentially unaltered.
-\‘
:: INPUT
- 9 o dd >
auTPuT -
I|H||| l“ll
o dudddda dgdd gddd ,
5 Y i B
e __FR =TSR g
L €3 =g
.:: by

- Fig. 21. Spectral plot of a third-order SUC output
= - 60 -
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Fig. 22. Cubic nonlinearity compensator.

The output frequencies generated by the channel NLTF are out-of-~band and
in-band interference terms. Our choice of an interference frequency to

be reduced is 91*92+93 which is an in-band term. Having chosen the

interference frequency of interest, the compensator design will now be
discussed. Note that at the moment we are dealing with the case of an
input consisting of three sinusoids.

The output of the compensator is

y = Y1+Y3

where the output from the linear section of the compensator is

- Yy KG1[w1J+Kcl[w3] + oo (112)

Ts
«

: Yo = Y0 " NN

2: The compensators cubic output is

- T R e DA L Bkl LA LR e LR
g

Since our analysis is restricted, for the moment, to the third-order

L ",'i

response, we will omit all terms shown underscored. Now, substituting
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- for w, and w, from (110) and (111) and retaining using only the

- 1 3
distortion terms at the frequency of interest QIM= 91—92+93 we have
~ y1' = K6V1V2V3|H3(Q1,—02,93)|cos((01-02+93)t +¢91_92+93)J (114)
- M
& y3, = Gylw,d
% M
- - 6V1V2V3|H1(91)H1(-92)H1(Q3)G3(91.—92.93)|
A cos({Q, Q. +R. )t *+6_ +6__ +8_ +P_ _ ) (115)
S 17273 e, Q, 93 , 92+93

where we have let G1 be a scalar gain K.

From earlier discussion, we know that removal of the third-order

. I R A
MOle B
PR AR T

output effects requires

G1H3+GBH1 =0

- or, in terms of the composite system TFs,

h Q -1

. =0

%G

=

) Since we stated that our goal is to reduce the IM interference at
i" 91—92+Q3, we do so by setting the sum of the terms involving this

frequency to zero, i.e.,

1°2°3 +Q

6KV, V Vo[ H3(0, 70,5, 2,0 [cos((@ -0+t + ¢Q1_92 3)

+6V. V_V [H1(91)H1(—92)H1(9

AN )G (91.~92,n3)|

373

-cos((Q1~Q +Q.)t +eQ +9  +9 ) =0 (116)

P! ~a. "% ¥ g +q
L SR U A

The above equation describes the relationship between H1, H3, K, and G
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to achieve reduction of interference at the frequency Q -91—9 +Q..

IM 2 73

Multiple Frequency Compensation

We have stated an equation which describes the relationship between
the SUC and the compensator to reduce intermodulation interference at

91—9 +Q for an input consisting of the sum of three unmodulated tones.

2 73
Now let us consider the IM interference for the case of an input which
has a spectral distribution over a bandwidth I'. An example spectral
distribution of the channel NLTF response is given in Figure 23,

Now the reduction should be achieved over a band over which the IM

instead of merely the frequency Q. -

interference occurs: (Q, -Q.+Q.)t 3r 1

172 7377 2

QZ+Q3.

Cubic Distortion Criterion and a Related Cost Function

A cost function describing the amount of interference is formulated

next. It is natural to define a distortion energy criterion as

1l
27 _

! |Y3(w)|2dw (117)

The actual input signal x(t) is often not known, except that it is

bandpass (as is also the linear transfer function H1(s)). For

simplicity, we take the spectrum of the input to be uniform over this

band, so that Y3(m1,w2,w3) = Q3(m1,w2,m3). Now if we define
1 ® ~
Q3(w) = — I I Q3(“’"“’1""1 wz.wz)dw1dw2 {(118)
(27) -®
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Fig. 23. Spectral plot of a third-order SUC output from an input

consisting of a carrier nc with bandwidth T.

then our practical distortion criterion becomes

w-tA
€ = ——%;— P |Q3(m)|2dm (119)
wo—A

where motA is the frequency range of interest.(i.e. The region in which

interference is to be minimized.) It will be seen later that Wy = Qc

and A =3T where the IM interference at @ =Q. -Q.,+Q, 1s addressed.

IM "1 2 73
The cost function must now be defined over the appropriate band of

frequencies. Using equation (118) the intermodulation at the (w )

119203

frequency coordinates (in the associated-response frequency-plane) is
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Q3(w1,m2.w3) = KH3(w1,w2,w3)+H1(w1)H1(-m2)H1(w3)G(w1.—w yw,) (120)

2°73
T r
where the frequencies Wy, W, and w3 each vary from (Qc 5 ) to (Qc+ 5 ).

The residual vector needed by NL2SNO [4] is constructed by converting
the interference density |Q3(m1,w2,m3)|2 into the proper form. The

transformation of the in-band interference power density in (w1,w2,w3)
into the real world frequency w is accomplished by integrating the

values of Q3 that lie on an interference surface oIM(m) defined by

This is expressed by

QIM(w) = . =wf{m v 03(w1,w2,w3) doIM (121)
1 "2 73

where the integral is a surface integral along the plane defined by

oIM(w) for w -w2+m3=w . Note that doIM and dw are orthogonal to each

1
other.

In the computer program, the cost function is simply defined as
N N N

€ = ) )) ) |Q (W, ywy;sw,,)
PGM i=-N j=-N k=-N 3771177237 73k

|2 (122)

where w,., ®

1i .and w,, are the grid points in the (w1.w

2j 3K ) frequency

213

r

space covering the cube [91— S, 9 L

r
£ 51X [0, 5, -y

57 5 I x [a,-

r
2 2 3

NIy

i

2.+ = J. The center of the cubic grid is 01,—92,93. The program NL2SNC

A
ri,j,k = |Q3(w1i,w2j,w3k)| (1
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as the residual. The dimensionality of the residual vector is (2N+1)3.

Shown in Fig. 24 is a plot of the r,

. rid. Fig. 25 shows the
i,j,k & 8. 2

location of an example cube centered at (w1,m2,m3).

Fig. 26 shows one of the surfaces oIM(QC) in the three-dimensional
interference space for w=QC; this plane maps into the real world

frequency Qc.

Delay Block in the Compensator Structure

Let us define the group delay of the contributions of the third-

order intermodulation as

4 .39
T[M(m) = " Phase{QIM(w)} (124)

We first considered the cubic compensator previously shown in Fig.

21 with nonlinear path NLTF given as

bOE§L+b1)(82+b1)(S3+b1)

G3(s1,s s.) = (125)

2’73 (s +a1)(82+a1)(s

1 +a1)(s1+s +3 +c2)

3 2 73

which we will call the Type I compensator.(A fairly complete family
listing of the useful cubic compensator structures is given in Table 2.)
When the group delay of the third-order nonlinearity of the SUC was
small, the optimized Type I compensator turns out to be stable (i.e.,

the block poles of the compensator turned out to be in the left-half s-

plane), However, large values of SUC group delay =t render the Type I
M

compensator inadequate; for such cases the program VCOMP3 yields a) only

a smill reduction in €pgM O b) unstable block poles for the

compensator, or both,

- b6 -
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TABLE 2

TABLE OF COMPENSATOR STRUCTURES

IDENTIFIER

Type I

Type ID

Type 1la

Type IIaD

Type 11b

!: Type IIbD

G Ga BLOCK TF IN G G, BLOCK TF IN G

ul 3 d 3
. (s + b1) ~ b
(s + a1) (s + a2)
The same as the Type I; except that G1 = Ke"ST
2
bos +b1s+ b3 1
K —
(s + a,)
(s + 1090)(3 + O.IQC) 3
The same as the Type Ila; except that G1 = Ke—ST
2
bos + b1s+ b3 1
K —
82+ a1s+ ao (s + a3)
-8T

The same as the Type IIb; except that G1 = Ke

Note: Structures I, ID' IIb, and IIbD are not

guaranteed to be stable. However, as discussed
in sutsection 3.4, they can be reparametrized so
that in the space of the new parameters these
forms are guaranteed to be stable for every
point.
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Fig. 24, ri,j,k grid

A modified compensator structurc which can effectively reduce the
IM interference is proposed next. This modified structure contains a
delay block in the linear path of the compensator, as shown in Fig. 27.

The compensator NLTF G, remains the same, thus the designation of this

3

compensator is Type I The incorporation of the delay shifts the phase

D"
of w3 (SUC IM interference) so that the group delay of y3 (the

compensator cubic response to the input of w1) duplicates the group

delay of Y, N(t,he delayed SUC IM interference). This altering of the w3

group delay facilitates constructing a stable G, so that y3 is the

3
additive inverse of Yy N The delayed version of w3 (i.e., Y, N)’ has a
’ 1]

phase characteristic that can be adequately cancelled by the response y3
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of the NLTF G3 yet allowing the block poles to be in the left-half s-

P
S

. plane. Without the delay block, the compensator was able to reduce the
rl
k IM interference only slightly, and had often returned

Y 7

5

P

w3

N

\

(}— (nc,—n . ﬂc)

7

e

(+52¢)

(+KI2¢)
|
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L
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Fig. 25. Location of the in—-band interference

)

region in 03(m1,w2,w3
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Fig. 26. ri,j,k grid with one interference surface shown,
%g unstable block poles. The output of the compensator is
- A A T (126)
where y1’L is the linear response, and YiM is the IM interference term,

‘ and the underscored terms are of order higher than three, hence omitted.
-t Note that

n T L]

.2 where DT is the delay operator, DT[w1] = w1(t-r) (127
L Clearly, the IM interference signal is

é; yd(t) = KDT[H3[x(t)]]* G3[w1(t)]. (128)
» The effect of the group delay manifests into the composite system NLTF
j; in the following manner:

3& Q (s,,8,,8,) = Ke_(s1+52+s3)TH (s,,8.,8.)

oy (3)"71°7273 37717723

+ H(S1 )H(sZ)H(s3)G3(s1,sz,s3) (129) -




Fig. 27. Addition of a phase delay to the cubic compensator

The Type I, cubic compensator provided an improvement over the Type

D
I; the computer program VCOMP3 returns unstable block TFs only
infrequently. Still when compensating an SUC with a large group delay
it was occasionally unstable. This led to the development of yet
another type of cubic compensator in which the poles of the block TFs
are restricted to only stable values. In this compensator the form of
the block TFs is the same as in the Type II; however the denominator

parameters are now frozen as

0.1+ 10Q
c C

30 that the the compensator poles are at 1OQcand 0.100. Thus,

. Gd(s) = 1
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. This structure is called Type IIa cubic compensator. We now discuss a

method to allow the compensator block poles to vary while simultaneously

vy &

ensuring that they stay in the left half-plane.

e A B
;’:"'4' I

Re-parmetrization of the Compensator Block TFs

-

'i—'w‘ o v”"

£

To completely circumvent the possibility of obtaining unstable

poles in the compensator block TFS, we re-parametrize the Ga and Gd

block TFs in G,. For brevity we will only consider Type IIb

3 d

v

structure. The TF structure for Ga(s) and Gd(s) is expressed as:

2
bzs + b1s+ b0

“
r
d -

]

Ga(S)

2
s+ a,s+ a,

1

S+ ¢

Gd(s) =

We now re-parametrize both transfer functions by use of the equations

%

]
o
-—
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The new parameter vector is
p = (p1.pz.p3,pu.p5,p6.p7)
wherein only pu,p5 affect the poles of Ga, and p6 affects the pole of

Gd. Every point of this parameter space maps into a stable point in the

(bo,b1,b2,a1,a0,c,r) space, Indeed it can be seen that the damping
ratio of Ga(s) is guaranteed to be greater than or equal to ¢. This

form will be called the Type 1Ib The poles of the Type IIbD

D*
compensator are shown in Fig. 28. Notice that the compensator poles at

51 and 52 lie to the left of the contour T no matter what the values of

the parameters Py and p5 may be.

jw

Fig. 28. Pole plot for modified Type IIb cubic compensator designs.

EXAMPLES OF INTERMODULATION REDUCTION USING

THE PROGRAM VCOMP3

Results of example runs on the program VCOMP3 are presented, which

confirm the effectiveness of our technique in reduction of IM

- 73 -
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e interference in a specified band.
Since most real world communication channels exhibit band-pass
behavior, the model used for the channel is a Chebyshev bandpass filter

of second, fourth and sixth-degree (passband ripple is 0.5 dB). The

nonlinearity is third-order and produces a signal approximately -20 dB
below the linear response. In the computer examples we vary the cutoff
rate of the channel (degree), the NLTF of the channel. The compensator

. used is of Type II, form shown earlier.

Compensation Examples by the Computer Program VCOMP3

, o
!ﬁ We now give reveral numerical examples of cubic interference reduction

by the computer program VCOMP3.

Example 1
i Consider a system with the transfer function,
'- 0.571997(10%)s
. H (s) = -
! 2 6 12
. s+ 0.571997(10 )}s +24.9916(10 7)
ll which is a second-degree Chebyshev with a passband 4.9 Mrad/s to 5.1

Mrad/s. The system has a cubic nonlinearity of the form.

H. (s,,s.,s.)

‘.

) 4.6416

' ) (s,+ 2)(s,+ 2)(s;+ 2) (s *s,%5.+ 12)

i@ This NLTF has a three dimensional impulse response resembling a lowpass
}i filter. The type of compensator used is the stable cubic with linear
- delay, outlined in the previous section.

o

! 63(81,32,33.9)
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2 2
P8+ Pysi* py)(P,yS,* Pysy* Py)
(s1+ O.1mc)(s1+ 10“0)(52+ 0.1wc)(s2+ 10wc)

(p 52+p s,+ p.)
. 23 7173 0

(s3+ O.1mc)(s3+ 10wc)

with the linear section of the compensator defined as

~(s,+s.+s.)p
G(s) = e 1 72 7374

The input is a narrowband signal with a center frequency Qc of 5 Mrad/s

and a bandwidth T of 200 Krad/s. The sum—squared error of the system

with no compensation is ¢ = 0.3036748. The initial parameter vector

PGM
is

p = [-4.6416 1.587 10.33 0,037
After optimization the compensator parameter values are

p = [-839.3 -32.18 -33.21 1.,265]
The poles of the compensator were fixed, only the gain and the location
of the zeros were varied. We therefore know that this compensator is

stable. The compensated system ¢ is 0.0003306 a vast improvement

PGM
over the uncompensated case. A plot of the compensated nonlinear

interference verses the uncompensated is given in Fig. 29.
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Fig. 29. Compensated versus the uncompensated interference.

Example 2
This example is similar to Example 1. The linear channel TF is
unchanged; however, the blocks of the NLTF are all second-degree

bandpass Chebyshev. Thus Ha =Hd both have a somewhat narrow bandpass

characteristic. The sum-squared error of the system with no :31]3}}3

compensation €oeM is 105.34013. The initial parameter vector is

p = [-4.6416 0.0 0.0 0.0]"
After optimization the compensator parameter values are

p = [1647.3 -85.75 66.65 1.579]

The compensated system ¢ is 0.0467988, again a vast improvement over 51!577:5

PGM
the uncompensated case. A comparison of the compensated nonlinear

interference and the uncompensated one is given in Fig. 30
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Uncompensated

Compensated

4.5 5.0 5.5
Mrad/s

Fig. 30. Compensated versus the uncompensated interference.

Example 3

This example has a linear TF with a further reduced bandwidth. The
linear characteristic of the channel is modeled by a fourth-degree
Chebyshev with a passband of 4.9 Mrad/s to 5.1 Mrad/s.

Hl(S) =

0.057144078°
+ 50.0437463s%+ 7.11879269s + 624.580478]

[s'+ 0.28484732s>

The sum-squared error of the system without compensation is €pGM

=59,27650. The initial parameter vector is

p = [-25.0 0.3 -1.0 0.01"

The optimally compensated system ¢ is 0.06369799. The final

PGM

parameter values are

p = [-3925 -22.78 -157.0 0.002317]T
A plot of the compensated nonlinear interference as well as the

uncompensated one is given in Fig. 31. Notice that 20dB of interference

reduction has been achieved with only a second-order compensator.
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-f; Fig. 31. Compensated versus the uncompensated interference.

Example 4
This example has a linear TF with a very narrow bandwidth. The
t: linear characteristic of the channel is modeled by a sixth-degree
. Chebyshev with a passband of 4.9Mrad/s to 5.1Mrad/s.
Hy(s) = vy
: Ao
L 0.005708s> RGP
- 0+ 0.2503385°+ 75.036108"+ 12.5184383+ 1875.2728°+ 156.35568 + 15609 '
- The initial parameter vector is
i T
2 p = [-38.07 0.2547 1.522 0]
= The uncompensated system €paM is 68.5240325. The final parameter values
by are
. T
p-= (11390 37.12 455.8 2.2]

- The system MSE is 21.5367901 representing a narrow improvement over the
) - 78 -
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uncompensated case. The compensated nonlinear interference is compared

with the uncompensated one in Fig. 32

Uncompensated

4.5 5.0 5.5

Fig. 32. Compensated versus the uncompensated

interference.
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. CONCLUSIONS
The performance of a communication system can suffer degradation
due to the intermodulation (IM) interference created by the inherent
f. nonlinearities. It has been shown here that such IM interference can
,% be effectively reduced for the frequency band(s) of interference by a
P
~ stable post-compensator appended to the System Under Compensation (SUC).
A5
- A complete methodology for designing such a compensator has been
;ﬁ developed. It is based upon a mean-square IM criterion and was
successfully implemented in a FORTRAN program VCOMP3. This program uses
?' a highly powerful software package for optimization of mean-square
.
;: nonlinear functions, thereby ensuring convergence to the global minimum
] in almost all practical cases.
't: The key strengths of the new approach are (a) broadband
:j compensation (over the band of interest) in contrast with the single

y frequency compensation attempted in the past, and (b) guaranteed
: stability of the compensator. The latter was achieved in a highly
ff innovative way. The stable region of the space of the parameters (of
' block transfer function of the compensator) was mapped onto a new :

. RIS A
" parameter space. In fact the stable region was the interior of the s- :f:;:{}ﬂ
> S
- plane to the left of the constant damping ratio lines, with a damping ii'f‘*:{
~ DTN

ratio ¢ specified by the designer. Thus for the reparameterized problem i 5

the program VCOMP3 is unconstrained to choose any point in the new

. - 80 -
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space. The final design is not only stable, the block transfer
functions have a damping ratio greater than g.

The compensator structures proposed, and used, have blocks with
pole~zero transfer functions, hence only low order blocks are required. °£?:${{<:
Indeed as shown in the studies presented, only first or second-order ‘jzhdhhi
blocks were required. The concept of group delay for the interference
component of the SUC was defined, which was followed by an improved
compensator design. The key advantage realized is that the

dimensionality of the parameter vector was small, typically 3 to 9,

Tetetatos

[

depending on the particular structure. Several case examples were

S

presented which demonstrate that reductions of 15 to 50 dB in the IM

interference can be achieved.

For completeness of this volume, a fairly comprehensive discussion
of Volterra systems was included. This research clearly shows that
advanced theory can be utilized to yield a practical tool for

improving the performance of expensive communication systems.

Future work can entail a) simultaneous IM interference in several
bands, and b) simultaneous IM interference reduction for multiple

receivers.
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APPENDIX

SIMPLE LINEAR COMPENSATION EXAMPLE

In this section we offer a tutorial example in altering linear

system response. This material is essential to the compensating of H1

and it provides us with a fundamental compensator structure to reduce
the effects of the higher order terms.

These examples deal with the most rudimentary adjustment of linear
distortion in a communication channel. 1In both examples we take the
general form of the compensator to be

b,s +b
G, (3) = 10
2

S +a,s +a
1 0

Example 1

Consider a communication system characterized by the linear
transfer function

5(1072)s°

H, (s) =
! y 3 2
s +(0.283)s” +(2.02)s” +(0.28)s +9.,8

where all frequencies are scaled by a factor of 106. The frequency band

of interest is

R> = <(%)0.9(106)n (%)1.1(106)w>
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The system frequency characteristics are given in Table 3. As a measure
of the effect of the compensator on the phase characteristic, a linear

approximation to the phase of each example will be given.

Linear Approximation to the slope

Mew +C
m= —0.889-10_3
c = -4,289

Maximum phase deviation from a linear approximation

3.367°

TABLE 3
THE UNCOMPENSATED SYSTEM FREQUENCY CHARACTERISTICS

6

w x 10 Magnitude Phase(degrees)
0.90 0.177 89.87
0.95 0.244 39.30
1.00 0.249 -4.28
1.05 0.239 -46.8
1.10 0.176 -89.91

It is desired to provide a second-order post compensator to flatten the
magnitude characteristic over this band. The compensator structure
chosen because of its wide bandwidth coverage is

32 *b1s *wg

(s *(0.1)w0)(5 +(10)w0)

G1(s) = K
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K is chosen to provide unit gain at the center frequency Wy Thus b1 is
the only free design parameter., By experimentation a satisfactory value

was found to be b1 = 200.0, so that K = 50.64. The corresponding

magnitude and phase of the compensator and the corrected system are

given in Table 4, and Tablec 5.

TABLE 4
THE COMPENSATED SYSTEM FREQUENCY CHARACTERISTICS

The Compensator Response

@_§_LQ? Magnitude Phase(degrees)
0.90 5.686 -43.92
0.95 4,464 -25.46
1.00 k.01t 0.00
1.05 4,423 24,37
1.10 5.420 41.19

The final system response is shown in Table 5, overall response 1is a
flat pass-band.
Linear Approximation to the slope
Mmew +C

m = ~0.433.10 3

c = -4,289
Maximum phase deviation from a linear approximation

1.136°
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TABLE 5
THE COMPENSATED SYSTEM FREQUENCY CHARACTERISTICS

The Final System Response

w x 10 Magnitude Phase(degrees)

0.90 1.008 45,92

0.95 1.092 13.83

i :

[ -

- 1.00 1.000 ~4,28
1.05 1.058 -22.43 e
1.10 0.994 -48.72

[
.
P
b
b
|
b
| o

The compensator parameter values which provided the desired results are

listed below:

ao =1.0

x a1 = 10.1

. b0 = 1930.0

b

b b, = 405.0

\"" = ~~ {_'

N b2 193 S

N AN

-4 K = 50.64

1\!

!E Several observations can be made concerning this example; first, the B

e compensated magnitude characteristic is quite flat. Indeel, it is found

f} that the maximum deviation from 0dB is only 0.2dB. Second, note that ff:ﬁ

. the maximum deviation of the uncompensated phase from a linear ‘

o approximation given by RS

;: ¢H(w) = —0.89066(10"3)w ~-4,28 (in degrees) ifif

il 2y

= 0 | - ~%

e is 3.437, For the compensated system, the maximum phase deviation from N

N :.i::-::
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the linear approximation

d5(w) = (0.015326)u
is 0.878°.

Example 2

We consider the same communication system as before however, here
the objective is to seek a compensator to reduce the 3dB bvand-width from
200 Krad/s to 100 Krad/s. A compensator structure is chosen that will
narrow the pass-band it is
(s +(0.1)w0)

G1(s) = K

2
s +a1 S *wo

As before K is chosen to provide unit gain at the center frequency wy -

The magnitude and phase of the compensator is given in Table 6. The

magnitude and phase of the compensated system is given in Table 7.

TABLE 6
THE COMPENSATED SYSTEM FREQUENCY CHARACTERISTICS

The Compensator Response

w X 106 Magnitude Phase(degrees)
0.90 1.813 61.92
0.95 2.894 43,22
1.00 4,010 0.00 -
1.05 2.950 -42.09
1.10 1.940 ~59.87
The system overall is a 3dB narrower pass—band. :!!?‘.
Linear Approximation to the slope égi

[
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Mew +C

m = -1.600+10 3
c = ~-4,289

Maximum phase deviation from a linear approximation

14.49°
TABLE 7
THE COMPENSATED SYSTEM FREQUENCY CHARACTERISTICS

The Final System Response

w X 106 Magnitude Phase(degrees)
0.90 0.321 151,80
0.95 0.708 82.53
1.00 1.000 -4,28
1.05 0.705 -88.90
1.10 0.343 -152.01

The compensator parameter values which provided the desired results are
listed below:

a, =1.0

0.107

[
%

o
]

0.0421

b, = 0.425

b, = 0.421

=
L}

50.31
Several observations can be made concerning this second example; first,

the compensated magnitude characteristic reaches the -3dB points in half

LS .
. et
(--\v" . . L.
AL a2t oloos bt
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e a,

the bandwidth required in the original system. Second, note that the

! maximum deviation of the uncompensated phase from a linear approximation

o given by

8 (w) = ~1.600(10 3)w -4.28 (in degrees)
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MISSION
of

Rome Air Development Center

RADC plans and executes nesearch, development, test and
selected acquisition programs in support of Command, Control
Communications and Intelligence (C3I) activities. Technical
and engineering suppornt within areas of technical competence
45 provided to ESD Program 0ffdices (P0s) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sur-
velllance of ground and aerospace obiects, {intelligence data
collection and handling, Ainformation system technology,
{onospheric propagation, solid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility.
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