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I. INTRODUCTION 2iE

Most circuits in a typical C31 communication system are nonlinear to

some degree. Examples include preamplifiers, mixers, frequency-converters,

channel paths containing metal-to-metal-oxide junctions, and in particular... -

power amplifiers. In addition to these inherent nonlinearities, there may ".

be nonlinearities deliberately introduced for the purpose of minimizing the

effects of the inherent ones. These circuits usually fall into a class .

which may be described as "mildly nonlinear" [4] circuits. Since these

circuits generally have memory, a simple power series characterization is

usually inadequate. However, a Volterra series expansion [1]-[6], which is

a generalization of the power series, provides a very versatile ...

characterization of a nonlinear circuit, subsystem, or an entire system [9]-

[114]. Furthermore, the Volterra characterization is compact for mild .....

nonlinearities in the sense that a truncated Volterra series can adequately

describe both the amplitude and memory behavior of the system.

To the reader familiar with Volterra expansions, the basic system

entity is the Volterra kernel hk(rlT 2,- .,Tk). Its Fourier transform

Hk(f Iff2 o P, fk) is known as the k-th order nonlinear transfer function

(NLTF) [4],[8]. The analyst of a C I communication system (and the EMC

engineer responsible for the design and implementation of the nonlinear

compensators for these systems) should acquire familiarity with techniques

for deriving the Volterra NLTFs from the circuit or its equivalent

description. The purpose of this report is to present, in a practical way, .'...

some techniques for effective representation of nonlinear circuits/systems

by Volterra NLTFs.

0.
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II. BACKGROUND
,...% %' .

p

Numerous alternative representations are available in the literature

for characterizing and analyzing nonlinear electronic systems. Of these,

the Volterra nonlinear transfer functions (NLTFs) description [1],[2] is

particularly attractive since it lends itself to convenient frequency-domain

interpretation. As such, it enables straightforward computations of such

quantities as a) linear and higher order nonlinear responses [2], b)

harmonic distortion, c) intermodulation distortion [7], and d) cross-

modulation distortion [7]. Recent research has shown that these NLTFs are

also well suited for compensator design [15],[16] to minimize

intermodulation effects. In order to familiarize the reader with this
analytical and design technique, this study briefly introduces the Volterra

expansion and then uses this expansion to analyze a series of nonlinear

phenomena. a,

To introduce the analytical technique, consider the input-output

relationship

y(t)= T[x(t)] (I)

where T is the system operator. This study will be restricted to

relationships which are time-invariant and only "mildly nonlinear." For J. ...

such systems, the output may be expressed as,

y(t)= y (t) (2) ""."'"
kk=1 '"":"

= f .. fhk( I  -- T. k )X(t-T 1 )"''x (t-T k)dTl .-- 'dTk

k=1 -.-..

where y (t)=H [x(t)] is referred to as the k-th order response and H is
k k k

referred to as the k-th order system-operator. These various notations are

consistent so that

Yk(t)- H [x(t)] (3)

,..:,",...
f .T -. . - ......

k1 k 1 k k

-w.-- - -

-2-..-.
2..,

AWN-.



4 This expansion can also be described diagrammatically as appears in

2F ig . 1. 
I.. , -I

a y Ct)

,[x(t) 

h 7(
7] 

1

h " <t y(t)

L 3 ),2 3

Fig. 1 Volterra System Representation

This expansion of y(t) was originally described by Vito Volterra and

later named the Volterra expansion by Wiener [2] who applied it to nonlinear

noise problems. It is analogous to a power series expansion. As with a

power series expansion, this "Volterra expansion" is practically useful only -.-

if the series converges quickly as k increases. For the midly nonlinear

relationships of interest in this report, only the first three responses hi,

2,and h are considered significant. 

°-"".

While the overall nonlinear relationship of equation (1) is

nonhomogeneous, equation (3) reveals that there is a simple relationship

between the input and output of the individual k-th order responses when the

input is scaled by a constant c. Specifically,

Yk (t)= Hk[ I (O] 

(4)...- 
- -

k= 

* r(t)]._.

k

k 

.
.

Thus by scaling the input, the factor E will appear as a multiplier and

can be used to identify the order of a particular response El]. This

observation will be useful in the subsequent sections of the report. .-

A- ... - .

- 3 -

~ -.- 
a-.-

a *~. .- - - -- - -.-.- .- . . . . . .. 
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* The time-domain integration associated with these expansions are %%

* operationally complex. This complexity can be alleviated by use of the

Fourier or Laplace transformations. In the image-space, convolution is

isomorphic to multiplication. To demonstrate this fact, and to determine

the proper product form, a multi-dimensional response y( (t,t 2 ,-. ,tk) can

be postulated .

Y~k) (tl ,''.',tk) 
(5) %K--

f...f h (-1 .. -, )x(t - T )...x(t -T )dtI  ...d-r-
-k - 1' 'k 1 1 k k 1 k

where Y(k) is referred to as the k-th order associated response [4]. It is

apparent that this associated response reduces to yk(t) if t =t t....t tt.

But the associated response is simple to Fourier transform to

Then y(t) is simply the inverse Fourier transform of Y (fi If f

w i t h t l- t 2 = . . t k = t ,  o r".

(6)

F ina lly , the Four ier trans form of Y (t ) be comes,. 
' . ". ' .. .

Y (f)= 
(7). . .

Yk

This equation allows easy determination of the k-th order response."-"''

M 00j2 r r t + .. + F ) t

For example, suppose that an input x(t) equal to elFt +e32Ft is applied
to a second order system H2 f1 , f2 ). Then equation (7) yields -[] [ .  ,

g2(f)= H2 (F1 ,F1 )5(f-2F1 ) +H2 (FI,F2 )6(f-FI-F2 ). .... . . .

+ H 2( F 2 F ) 6 ( f -F I- F 2) + H 2( F 2 F 2) 6 ( f -2 F 2) : i .--'4 : :

f .... .....: .......( V M e1 k. .. .. ,20 2' 1 k1 2 2 2'2k

or in the time-domain 
o yktbcm

- ( (7)

~.................. V 1.....................)I ......... dv ......

Y ( H ... . . ..... ......... 
... . .. . . . .. - -

F

,.--.:-.2- 2,.. . .., ' .'1--.,... ., ..-..- ,1,-. ,. . .,.,2 . .1,-, "-2 ," - , i ---,-...., .,,, , .
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y Wt) H (F 1 IF )JJ1t +H (Fl F )elF 1F )t
2 211 2 1212

+H2 (F F )ej2 (F 2 +F1 )t +H2 (F 2 ,F 2 )ej4Ft

In general, H2 (Fl ,F 2 ) may not equal H2 (F 2 , FI). But often it is

convenient to have functions which have this "symmetry" so that

H k(fl,...f k ) equals Hk with all possible permutations of the independent

variable. This can be guaranteed by defining a symmetrized H as
-' k

H (/P Hk(fl,.fk) (8)ak f , ' ' , k )  k-- k • . k.. -

where the tilde indicates that the function is unsymmeterized and the

script-p 1P denotes the summation of the H's over the k-factorial

permutations of the independent variables [l].

In the above example, we used H 2(s s 2 ) in the abstract form. A

particular realization (although not the most general one) is shown in Fig.

x (t)
H a a

x(t) 7 y(t)

H x bt)

Fig. 2 A Simple Second-Order Volterra System

2. Note that each of the blocks Ha, H and H is linear. For this
-b c

structure, it can be shown that

H 2(s i s )= Ha(s I ) H(S) HcS1+ (s +) _ -

If H equals Hb , then the block diagram of Fig. 2 can be more concisely

depicted as in Fig. 3.

x(t) -y(t

Fig. 3 Compact Representation of a Symmetric Second-Order System

-5-

... , .- -



Although we have employed the Fourier transform for the derivations in

this section, we could equally well have used the two-sided Laplace

transform.
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III. OVERVIEW OF EXAMPLES

The purpose of this report is to provide techniques for deriving the I

Volterra NLTFs from other available descriptions. To this end, the

subsequent sections will introduce the method of analysis through a

collection of nonlinear electronic device and circuit examples. These

"available descriptions" constitute a mix of differential equations, device

representation, circuits, and system representation by block diagrams.

The first two examples consider nonlinear differential equations. The
first example examines a nonlinear second-order differential equation; the

coefficient of the first derivative is a variable and dependent upon the

output. The second example is a generalization of the first equation; it is " . ,

an n-th order differential equation where all of the coefficients are ~ .... * -

variable and dependent upon the output.

The third example analyzes a nonlinear device wherein the current can , .

be expressed as a power series expansion of the voltage; a circuit including

this device is analyzed using nodal analysis. A forward biased diode has a

nonlinear current-voltage relationship as described; but the diode is

further complicated by the voltage-dependent capacitance associated with its"'---.--'-

junction. Therefore, example four analyzes the diode as a device outside a

circuit. This example is particularly important because of the wide spread

use of diodes, and because the nonlinear characteristics of diodes can be

employed in circuits designed to act as "nonlinear compensators."

The fifth example is the complementary dual to example three. Here,

the nonlinear devices have a current-voltage relationship such that the

voltage can be expressed as a power series expansion of the current. Also,

the analysis employs loop equations rather than node equations.
• . *? o° h,

The sixth example employs a more complicated nonlinear device, the r,

transistor. Here the transistor current is modeled as the "product-power"

series expansion of two voltages.

The seventh example analyzes a cascade of two nonlinear systems. This

example is particularly important because this is a configuration which can -"

-7-

•. . ..% .

. . . . . . . . . . . . . . . . . . . . . . . .*..-*...,
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be employed to eliminate the nonlinear output o h fis ytm h
example explicitly describes how to develop a nonlinear cascade compensator ,*'%

to eliminate the nonlinear response of the ifirst system. The eighth, and
'9 f inal, example uses the nonlinear characteristics of a diode to implement a

nonlinear cascade compensator.

I' '6

.. I
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P IV. NLTFs FROM NONLINEAR DIFFERENTIAL EQUATIONS

Example 1: Simple Nonlinear Differential Equation.

Volterra nonlinear transfer functions can be employed to characterize,

in the frequency-domain, certain classes of nonlinear differential

equations. As a specific example, consider the equation

d2  d....:,y + - fy f(y)} +by- x(t) (9)

2 y tdt

If f(y) can be expanded in a power series which converges quickly, then y

may be expanded in a Volterra expansion which also converges quickly.

~Sol ut ion.
* . *.* -,

It was stated that f(y) can be expanded as a power series; i.e.,

f(y) = a yn (10)
n=O n

Now form a Volterra series expansion for y as

y= Hix]= H SkX]= Yk (11) .
k=1 k1.

Substituting these expansions into the differential equation, one obtains

1+ y I I a( )n +b{ I y = x(t) - .- ,

dt2  k=1 j n=O k= ,1

For this example, the first three Volterra NLTFs for y,' y2, and y3 will be

formed. This is accomplished by explicitly writing the individual terms of

the various orders for the above differential equation. To keep track of

the order, scale the forcing function x to Ex.

s-Scaling. "., :" .
. . -w -...

-0.-. ..

y H [ HkEX] = ,.
k!1 k i 1l

- 9*** * ..... . - " .-. . -

.. . ..-



The differential equation then becomes .,

2d 2 ~(2
2 E +E Y2+E y+.. (12).~

dt d 2 2 33
d { a +Ey +a E y1 2 +E (a y +2a y y2 +a y1 1*)

Now, like powers of E can be collected and equated. '

d 2d
2~l+a y1  +by1. x

dtd

where G is the linear differential operator {A2 +a0  y +b}
-'dt 

2 0d

Then

y G [x] H H1 x. (13)

This equation can be Laplace transformed to

yl ~ 1 (s) XS
s +a s~-b

0

It therefore follows that isG or

H(s)= -~ (14i); -

2

2d d d 2
2 + a0  y2 +by2 ~ G[y2] a, y,

dt

-10-

L ..



So that

y -G1 a ay 1 ](5

1 r dt

Now the Laplace domain fformulation off H can be perfformed [4 ].The

determination off this NLTF is particularly simple 1ff y2 is diagrammed as .-

described in Section II.

H H2(sits 2) -a 1H 1(s 1+s 2 )ts1+s2 }H 1(S 1 )H 1(S 2 ) (16)

43.

dd-d3

2 +3 a0  y3 +by3  G[y I. [2a y y +a y)
dt

and thereffore a

y -G 1[L {2a y y +a y13 1(7

Here again, H3 may be more apparent ffrom the block diagram off Fig. 4.*

*3

H1  a2
-H y

---- jo .--s ----. P

2a1

H2

Fig. 4~ Block Diagram off the Third-Order NLTF

From the diagram, H3 can be written as

a;..7



H (sss)= s -H ( )s Ms + (18)

where the tilde has been included over H to indicate that this is an
3

unsymmetrized transfer function. The symmetrized H is obtained from H as

described in Section II as H 3 ' 3! HK H3(sp 1'2053~ [1]. And therefore, the

symmetrized H is '

3

* 1-f(sip ' s'3

-H1 (s +S +S3 Ms1 +S2+S3 {a H (s )H (s)H1 (s3)ib

2a,
+ _ [H (s )H (s s )H (s)+sis (s )H(ss)I

3 1 1 2 2' 3 H1( 2)H2( 83) 1 32 2

Here it is noted that the y kvs are recursive in the sense that ykis only a q

function of yip Y, **,y1 Thus the truncation of the original equation

to the third order terms leads to no error in the development of the first

* three NLTF's. Al~.o, the process could be continued to obtain as many of the

NLTF's as required. Indeed, there is no mathematical reason that all the

* y's could not be formed. But in most applications, this Volterra expansion V.~

is only practical for analysis and design if only the first few terms are V

* significant.

-12-



Example 2: General Differential Equation.

The first example was a differential equation which was "nonlinear in

the second term." This is a special case of the nonlinear differential

equation

dn  40 ! y}+d n - 1  Y} .+ 0, y}"'"""

n- i .0...

dtn L.1a n '  dtn - 1 +1 x (19) .", , -

This is a rather general nonlinear differential equation since it can

represent a n-th order differential equation where each coefficient of the

differential terms are dependent on the output, but can be expressed as

power series expansions. The approach to solving this equation is identical

to the previous example.

Sol-t ion.

Expand y as a Volterra series

00 ODx

y= H[x]= k XI - ykk k~l.. . :

As before this expansion is substituted into the differential equation and

the input or forcing function x is scaled by c to keep track of the order.

dnn k I -n-

Ik + k

This equation can be rewritten as '[-'[-

dn Zk1 kl+ k -""I-'dn a £ k k (20)k~J. k1 k 1 1
Thi eua i ca e erttna

dn- k k +•+k
1 -  L

a- ... .. (20).,
dn 2.-i k-i kk
dt- 1  k 1 kI 1

- 13 -

........ .......*

dt~.% E.1 k--1 k z°1

13.-o".. ."..-.. . . . . ._

f.. .~ • °- . ,



VME.*'h.'I K-

. \% ,

k +..+k

1-1 k -1 1

Now, by defining the linear operator L as

the differential equation (20) can be rewritten as

L k.. k E (21)
1 k.

Now as before, this expression will be evaluated for various powers of c,

and like powers will be collected.

CL

-1 *y I- X,

Xso that H is L ;or in the complex-domain

H (s)= - n(22)
1 nn-1

a s +an~ s +--- +an,1 0,11O'

2

so that

y2= -H 1 [L 2[H 1 ExIIH 1[X]

The Laplace domain formulation of H2 produces *

H2(sits 2) -H (s )H (s )L (s +s )H (s +S (23)
2 2 1 122 12 1 12

14.A



L H -2L[EHH I -L [HHJ
1 3 2 12 3 11 1

then the Laplace transform is

Hs (st 2 s) a) s )H ( + (24) ~ !

-L (s)H (s s )H 1s )H (s )H (3

3 L( 1+s2+s3 H1(s1 +32+s3)H1 s1)H1  2

*where the tilde has been included as a reminder that this is an

*unsymmetrized transfer function. The symmetrization of this transfer

Ifunction is straight forward as described In Section 1 and as applied in
* example 1.

- 4

L 1 H 4 -L 2 EH 2H 2+2H 1 H3  3 33EH11HIH2 -4[H1 1H111-A *.

So that H- can be formed In the complex-domain directly or from a diagram as
4

H (s is s s) (25)9 412304

-L 2 1 +s'2+s3+sQ{)H 2 (siPs 2 )H2C(s 3 F s4)+2H I(s I H 3(s 2 1 ss4))

3 is2+3 4 1 1 2 3

-L (s1 s +S+ )H (s )H (s )H (s )H (s)

As stated earlier, these transfer functions generally are recursive so V

*that the complexity of the function grows with the order. This is apparent

in this example. It Is for this reason that this analysis is usually

applied only to slightly nonlinear systems where it Is likely that the

* Volterra series expansion will converge rapidly.
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V. NLTFs OF SIMPLE CIRCUITS AND DEVICES

Example 3: Single Nonlinearity.

y(t) .. .. ,..

iD r

+

V't L
% 

D'

Fig. 5 Circuit with a Static Nonlinear Device

The circuit of Fig. 5 contains a single static nonlinear device D.

The node equation for this circuit can be written as

d d dt1v C26)C v- C- y + f y dt + iD (26)dt. ._t L D.

It is assumed that the nonlinear current-voltage relationship can be

adequately modeled with a power series; i.e.,

n

iD= n any (27)

The objective of this analysis is to find the form of the Volterra NLTFs Hk

which relate the node voltage to the input voltage; i.e.,

k k
k-1 ki1

Solution.

If the input v is scaled to Ev, then a new node voltage y results i' W

!HEv]_ I k [kv]_ E: k "" ..

y - H [ce H [i
k-i k k k-1 k

Substituting this into the node equation,

-16-
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k k f i .C- C . Yk +  E Yk dt + an (28 yi'- Y
dt dt k L k n kk=1 ~ k 1 n-i k-i 1.

G[ kYJ+ af n C ky I
ki1 n-2 k-i

c OD Co k1 +k2 + °..+kG[ ] y + .a..-..._
Sn k k k kn

1 2 n

where G is the linear operator with the Laplace transform Cs+a + -; i.e.,1 LsG(s) is the linear admittance.

Now as stated earlier, we are only interested in the first three
NLTFs, and therefore only terms that contribute to c, C, and 3 need be

explicitly expressed in the equations (28). So equation (28) can be

expressed as -..- '

d
c - .v(29)

1~~ 2 2 3

I G[yJ +C {GyI +a y 2) +C3 {G[y 3] +
2 a2yIy +a3 y1 } +HOT .

where HOT are the higher order terms in c. Notice that, this finite

expansion of equation (29) is more readily obtained from the double sum form

of equation (28) rather than the last form. While the last "infinite sums"

form of equation (28) is consistent with the general theory of Volterra

functions, for this example, and for all the future examples, this infinite

sums form is operational less efficient then the double sum form.

Therefore, in the future, this more complicated form will not be employed.

Using equation (29), the terms associated with the powers of c can be

collected.

" -.

dA

C d- G[yl] (30)

This equation can be Laplace transformed; and then by defining a linear

impedance Z(s) as G- 1(s), yl becomes

-17-"
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Z s) s) Cs V(s) (31) .J\*

* and therefore

H (s)- Cs Z(S)- Cs s (32)1 2LCs +Las~ +1 r 1

1 2' 1

22

* ~lc The acgranom of Hcathnbfomdrm the above equation, ors

H 2(ss)= - Z(5 +s 2 [H 1Cs 1)H 1Cs 2} (34i)

31'2 - 1 2 1 11

And therefore,

H (sis s (36)
3 1 1

-Z(s1 +3+s )12a H(s )H 1 2 aH( H( H(
1 2 2 1 1 2 ~21 3~ 3~ 1 H 1 s 1 2 1H

*where the tilde has been included over H as a reminder that this expression
3

*is unsyminetrized. The syinmetri zed H is obtained from H as described in

Seton1asHH(sip The syrnmetrizeAi e pression is3 3! '2' 3
* therefore,

H3(sip s (37)>

-Z(s1 +s +s3 )fa3 H(s )H (s )H (s3

+(a /3)(H (s )H (s s )+H Cs )H (ss +H s H s s)
2 1 12 2' 3 1 22 13 13 21

* These three NLTFs can be depicted graphically as appears in Fig. 6.

-18 -
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Example 4: Diode.

The previous example included nonlinear devices such that the current

through them can be expanded as a power series of the voltage across them.

*, One example of this type of nonlinear device is a forward biased diode. But , -
the diode is more complicated since there are capacitances and resistances

also associated with it. The capacitance CD is a function of thickness of i ..

the junction regions, and this thickness is itself a function of the voltage

across the diode; so that the capacitance is not a constant but depends upon

the junction voltage. Since the diode is such a common nonlinear electronic

device, it will be analyzed in this section as an isolated device.

As stated above, a power series representation will be used to

describe the voltage-current relationship of the diode. The order of this

power series expansion generally depends upon the quiescent point and

operating range. In many practical applications, the operating conditions

are selected so that only the dc, linear, and quadratic terms are

significant. But for the present analysis, the cubic term will also be

included.

xr

+ i C R
D D L

y +P

RB + i D C DI
(a) (b) (c)

Fig. 7 Diode Models

-20 -
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Fig. 7(b) depicts a standard model for a diode. Typically, RB is of

the order of a few tenths of an ohm, and R is several hundred kilo-ohms.
L

For the applications of interest to this study, these resistances are

inconsequential. Therefore the simpler model of Fig. 7(c) will be employed.

The objective of this analysis is to determine the first three

Volterra NLTF's PI. P2 and P3 which relate the voltage to the current.

Solution.

If the diode of Fig. 7(c) is driven by a current source x(t), a

voltage y(t) will result. Furthermore, the nonlinear current source and

capacitance of the diode model will have the forms,...

aD [ yn (38)

n

n0

where the voltage y can be expanded as a Volterra series

ki k-i4

The node equation for the diode and external current source is

d- CDy+i -x= 0 J.'.*, ,."

d n+I n" "
= " nc n y +nay -x

tn.0 n-i

=[c - +a[yn] -x
n-1 n-1 dt n

c-Scal ing. " -'-"7'"-

Now the driving current source x can be scaled by e to obtain *.- ...

-21-
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n1 n-1 dt n L k ] -x-0(9

2 3 d 2 3
dt +aIa ey E +

3L 1~ y3  2 1 12 2

d3
+ - +aI[e y3 -tx +HOT%
2 dt 3 1 %

where HOT denotes the higher order terms in e. The powers of' c can now be

* collected and equated.

Ed

c0 dta 1 )[ 1]

Here it is convenient to introduce the notation L (s)- cn~ s +an Then then n1 n
Laplace transform of' the above equation becomes

L1(s) y1(s)- X(s)

From this equation, the Laplace transform of' P is found to be

P1 (s)- L1  Cs)- c~ a(140)

2

L yI- -L..+jy7]2

2 12

Fig. 8 Second-Order NLTF of a Diode

The form of the NLTF is apparent from Fig. 8 as

-22
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Jr'L5-hi r.. -- -ZdE----ZJU-' - -3 '9~ ". r r ~ -. , . -, .

P2(s, )- -P (S) P (s) P1(s+s2) L(s+s) (41)%:

2 2 1 1 1 2 112 21s~2)

d d 3LIly 3I- -{C L +a2)[2y 2] -{c +a Ily I
1J3 ~ 1 dt 2 1 2 2 dt 3 1

= -L2[2y 1 Y2 ] -L3[Yl 3[y

The multidimensional Laplace transform of P can then be formed as

P3(s 's s)= -P (s1s2s3 )f2L (s+ 3 )P (s )P (s2s (42)
3 1 2'3 1 1s23 21~2 3 1 1 2 20 3(12

• ~ ~~~~~+L3(sI+S2+S3)PI (sl)PI (s2)PI (s3)] "' '.

3 1 23 11 12 13

where the tilde has been included over P as a reminder that this is a
3

unsymmetrized operator as discussed in Section 1.

This then completes the analysis of the diode.

4' -- '-

,"". """4. '
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VI. NLTFs OF MULTI-LOOP AND DEPENDENT SOURCE CIRCUITS

Example 5: Nonlinear Multi-loop Circuits.

R1  R2

+ JW

V~t (t) R1  (7 y(t)

+

2 2

D1 .u2  D 2 2111

Fig. 9 Multi-Loop Circuit with Nonlinear Devices

The previous two circuit examples dealt with nonlinear devices such

that the voltage across those devices could be described as a power series

expansion of the current through them. For this example, the opposite is

true; the nonlinear devices are such that the current through them can be

described as a power series expansion of the voltage across them. ."-.
'p

Fig. 9 depicts a network with two static nonlinear devices which are

represented as D and D2. Here the R's represent "linear impedance .!,

operators" and actually reflect the presence of any linear "sub-network." ..

The loop equations for Fig. 9 can be written -.

v= R 1xI - RI[Y] + u (43)11 1 2 [ u1

0= -R21 [x + R2 2 [y] - uI +u2
21 22 1 2

where R =R R =R +R R2 2R2 +R1 and the voltages u and u are
21 12' 11 10 12' 22w 20 12' 1 2

nonlinearly related to the currents through the devices D and D2
respectively.

The general objective of this analysis is to relate the currents x(t)

and y(t) to the input voltage v(t). But more specifically, the objective is ,

- 24 -
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to find the form of Volterra transfer functions P kand Qk which relate the

k-th nonlinear current i- [x yI to the input v(t); viz.,
-k k k~~ % ..

kali k.1 k.*..

-i Yk(t)- X Q[v(t)]
k.1 k k.1i

For efficient notation, define H as a column vector. >.'*-

H- k

- k_

Solu~tion.

We begin by requiring that the voltages u and u can be adequately1 2
modeled as a power series expansion where only the first three terms are

significant; i.e.,

n-1 n-1

u a(y)n
n-.

where the current through the common branch is F&-x-y.

Now replace v(t) with a scaled voltage cv(t) and thus generate new

* currents

Go0 0

x= EP[v] k Ev '%=~

k-1i k-i k-i k

k k k
*k.1 k-i k-i

Substituting this back into the loop equations:

-25-
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-- P -. Wulilv" -1W;iW F-
JIM+k~~k~n -:'.

w .. '.
k k n ..CV. C R 1 1 kkIXk] -R12lyk +1 bn{ nI Ckn (46)

*k=1 n-1 k-1

O" X k (-R+zY] -X + an{ J byk n

k-1 n-1 k-1 ni k1

As stated earlier, we are only interested in the first three NLTFs, and .. '.>
1 2 3 : -

therefore only terms that contribute to e , , and c need be explicitly

expressed in the equations (46). So the first equation of (46) can be

expressed as

3k3 3 " "k n"
v e I e R1[Xk] -R12LYk }  + bn C Hk O

k= 111 n- k-i' k

where HOT represent the higher order terms of c as k runs from four to -

infinity, and also as n runs from 4 to infinity. Expanding the summations

and regrouping the terms results in

Cv= I{R 1 [x I ] -R 1 2 [y 1 ] +bI I (47)

+ {R1 1 [x 2 ] -H 1 2[Y2] +b1 l-2 +b2 1 2-

+ [x I-R yI +bt +2b + 31 +HOT
1 1  3 12y3 1 3 21 2 3 1

where HOT now includes the previous higher order terms and also the higher

order terms formed from the square and cube processes. It is emphasized

that the expressed terms are exact. The above manipulations have merely

ignored terms of c which have power greater than three.

The second equation of (46) can be manipulated to result in

0- C I-R 2 1 [x 1 ] +R22 [y11 -b, 1 +a lyl (48)
+C {-R [x2] +R2 2 [y 2 ] -b 2 -b 2  +al2 +a 2 Y 1

+C 3 1-R [x I +R y] -b -2 ay+2 ay321 3 22[3 1 3 2b 2 I '2 b 3 1  a 1 y3  a 2y1 y2 a 3y 1 3} -

+HOT

* Now the terms associated with the powers of E can be collected and equated. ... ,.-,

- 26 -
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- v- R [x I-R Ly I +11 1 12 1 1 1

0= -R Ex] +R E b +21 1 2 2 y1 ] - 1  1 ~1 y1

or more concisely,

v (R 11+b) - 1 2 +b)x

-C2 1 1 b 2 1 1a) y1 -1

* The "admittance matrix" EG(s)] can now be formed as the inverse of the

matrix [iZ(s)]:

[s)=[s) 1  1 (R 22 (s)+b 1 +a 1)( 12 ()+ 1 (0

EGCs)= [Z~s)] = 7s)

(RS (sR+ (s)R )S
22 1 11 1~

whr Atsinc Hs opeertnginonvt) is dhefmine as)] Ten it follows that

P1 Cs) 22 (s R22Csa)+b
H (s)= - (51

-1 Cs)(R (s) ( 1 C)+b

1

Fig. 10.

-27



V~(t)

__ _ _ _H (s) )

Fig. 10 First-Order NLTF _

2 ~'

0= H [xl -R 2yI+b +
11 2 1 2 Y2 J 1b 2  b2 1  

' j.' *

2 2
21 x2  R2 2 y2] - 1 2 - 2 1  a1 y2  a2y1

or more concisely,

- 2-

2 -

x 

2-. 1Z 2 l 24
2-_b +baC

1 2 2 1Gs)

ro
~2 1

ButI to sov o h omo 2  an(qato5522hul)eLalc

Then teatransfer fcin fro vepito grapinal Fa.1s aCs )M Csg )11th

x2 1b 1 2

trasfe Hucto from v to[sGM s)M(9aQ 1 Q (s)] And

Btere oefore the rnferm func d eution from inputd to outputci

-28
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+S (s-1 (53)

p 3 .

0. R Ex] -Rty]I +b~ +2b~ +b3E

b11 3 12 3 1 3 2 12 3

3 3

0- ER1 x] +R2 2 [y I -b~ -2b & 2 -b 1 4- 1 y 2 2y 1 y 2 a3y1

* or more concisely,

:b -b &13 +2a~yy +a~y

and therefore, 
-

i = G [ :Gb]2 & (54~)

12b2 ~ +b E-3  -2a 2 y 1 y2 -a 3y 1

*This relationship can be depicted as appears in Fig. 12.

b 3

x2 2

from 
x

Fig. 2
11--3-

IG

2a-()()-S2

- 29
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The transform function from v to x and is apparent from equation (54) as

H (s s a (55)

72b2 M1 ( s )M2 (s 2 ,s 3 ) -b 3 M1 ( s )M (s 2 )M ( S3 ) -

-2a2 Q1 
( s )Q2 (s 2 s 3 ) -a3Q1 (s ) Q (sQ (s 3 )-

Seto 1 asQs 33 3T 1 1 1 2'1 3
where the tilde has been included over H as a reminder that this expression

is unsymmetrized. Again, the symmetrized H is obtained as described in

Section 1 as H_ vHs s The stated objective of this example

was to determine the first three P's and Q's and that has been accomplished.

V...

S......:..-

* . °.

.:.'.. 4.
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Example 6: Dependent Sources (Transistor Model). 
L%

This example analyzes a circuit with a nonlinear transistor model.

Here the transistor current is modeled as a function of two voltages u and

W; viz.,

= u gu n wm (56)
n=O m-O

where g0 0 =O. The circuit of interest appears below in Fig. 13.

w- -

I. ...

+ Lw

x l

Fig. 13 Transistor Model .,

Generally, the objective of this example is to determine the output

voltage y as a function of the input voltage x. More specifically, the

objective is to determine the first three Volterra NLTF's.

Solution.

The node equations for the circuit can be written in terms of u and w
as

du 1 1 n m xC 2 d- -( +R + g- [ nm u w K

n=O m=O I

dw w nm x
C 1dt R -m R

L n=Om=0 L 

These equations can be rewritten in vector for as

-31-
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2 dt R R ~10 - 01 u1 2
1' (57)

C d 1 g
9 10 1l dt R 01

1R 1 m
-1 /RL1_- n-0 M=0gri

n+m>l

S..-where the linear part of the transistor model has been moved to the left

side of the equation.

The voltages u and w can be expanded as

00 COk

U= P[ Ex]= I P [ex] E k u (58)
k kko k

W= Q[Ex]= I Q k EI k
k=1 k.1

where the scaling constant c has been included to keep track of the order of

the Volterra operators. These expansions for u and w can now be substituted

* into the node vector equation; viz.,

k

k=1

= 1  k n~ k m (59)

-1RL -1 n=0 mwo n

n+m)1

Sk
EW

k=1 k

where

C -g +( +-
2 dt R R ~10 0

[L]=1 2

9101 dt R L 801

-32
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Now like powers of c can be collected and equated.

w -1/RL

or _

1/R
- [LI x (60)w -1/RL

P1
x= Hl x__ 1 -- '1i.". -'

where
d • +.... -, ,".'

[LI 1 C1 dt +RL g0 1  g0 1
d 1 1

-g9 C L-+(I +-.)g10 2 dt R R 10
1 2-

I [LI 1  -/R (61)
1 R_ L"

and A is the determinant of [LI.

2

-L 2  - - - g2 u 2 Ul W 2  ).". .-"'"2,,.

or:i "-'

[u -  -2 +gulwl w(62)
L -1 (g2oU1  +gI +g 02 1- 1

and therefore H2 can be described in "operator notation" as~i}}?![}i

2
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H- R H iP 2gPQ+ (63)

-2 = 1 2 0 1  11 11 0 2 1

3U

U13 [+] i 0u g2 u1 
2 w +g u w 2 +g 3  (64s) N

*+29 0u u2 +g11 (u w +u w1  +2 12

2 3 23
H {g P + gP Q 2g (65)

-3 R -1 30 1 2 1 1211 03 1

+29g2 P 1P 2+11(P 1 Q2+p2Q1 )+2 g0 2Q1 Q2 1

where H3 is expressed in operator form.
d3

As in all the previous examples, H~ is recursive in the sense that It

is a function of only previous H's. 4~

Now the operators can be Laplace transformed to

-C s +1/R
H(s)=-1 1 L (66)

-1C 2 5 +[1/R1 +1/R 2

~~~-2 1 2-Ui122 11120

~~~~RH( +S)RHCs+ ~ ~ 2 11 2 2 1 2

H(sits 2,s3  g~(1 s2 s) g3 P (a)P (s )P (S

+g2 P I(S I)P I(s92Q 1 (s 3 +g 12 P I(S Q1 (S 2 Q(s 3

+g [P (s )Q C 2 (s s) (sitsP1 (s P( 2 3

2g0 2Q I )Q2(s2,s3)

where ~~ ,

2A(s)- C1 C 5 +[C (g01+1/R )+C (1/R +1/R2-))9s

01 L 31 1-1

+Ug~~~~ +./ ./ +1/ .g/

01 L.. . . . . . . .. . . . . . . . . . . . . . .
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The stated objective ot this example was to determine ~ and I13*

Since this has been accomplished, this example is complete.

J ..
* 'ft* ft.-
'ft. ., -ft

ft. ft.
ft.

* ft....'.

*~"6

'ft. 'ft. ft-ft

ft. -ft..-,

-ft -S

* ~ P*

~W-W2~

'ft

ft,

-~ 'ft .~ft -ft.1' - - .P
~%

~ft ft -
.5.

'ft %ftft*ft%. ~

'ft'- ft.

ftftft~

* ft.

~ft

-ft

ft C

p
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VII. NLTFs OF CASCADED SUBSYSTEMS n%:.

Example 7: Nonlinear Cascade. 7

In this example, we wish to design a cascade filter or compensator P P 3

which will eliminate some of the nonlinearities of a system H, as depicted

in Fig. 1i4.

x w y

Fig. 14 Cascade of Two Nonlinear Subsystems

Here It is assumed that the form of the nonlinear system has already been

determined as

w= HI~x] H H[x]- w (67)
n=1 n-i

*Indeed, after the form of the compensator has been determined, the H's for

an earlier example (viz., the single nonlinearity example) will be used to

implement part of a specific compensator.

Solution.

Form the output y as .:

Y= P~w]- k- [kw] (68)

k.1.

Then replace x with ex to form a new output;

25r
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SPk[  Ex]]. (69)
k1 nu.

k-i n ni

This relationship can be reexpressed in terms of the "x-y transfer function"

Q as

4' m Qmx]

£ r-i m.-i,'--

, .' ,,, - . _

Now if powers of c are collected, the Q's can be determined using "operator

notation" as

QI P H (70)

Q PH +P H
2 12 2 1

Q3 ' P1H3 +2P2 {H1 ,H 2 } +P3H1

Q= P1 H +2P 2 {H1 ,H3 } +P 2 H2 +3P 3 {H1 ,H1,H 2 1 +P4 H1

+ P 5  2P 2 HI ,H } +2P2 {H2 ,H1}

+3P {HIH +4P {H1,HH, +PH 1

! "%

These equations can be expressed in the complex-domain as

Q (S)= P (s ) (-S)

Q2 (S's 2 )= PI(sl+s 2 )H2 (sls 2 )+HI(sl)H(s 2 )P2 (S 1 S 2 )

;-.. ~Q3 (Sil s2 s3 = ," '~'

~3~1

P (sl+S +S)H (sits S) + [H (s )H (s 2s )P2ss'S ) (ag +
112S3 31203 3 1 12 23212 3

+H1 (s )H2 ( S 3 ) 2 ( 2' S 1 s3 )+H (s 3 )H2 (s 1 , 2 ) 2 ( 3' s 1 s2

- 37 -
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The stated objective of this exercise is to reduce the nonlinearities •

without distorting the linear characteristics of H. Therefore, the form of

Q should be HI; and therefore, .. %.oj.

P1= I (71)

where I is the identity operator. Furthermore, Q and Q can be made zero
2 3

by choosing P2 and P as
3_

P= -H 1  (72)2 2 1
P 3= -(H3 +2P2H 2)H1

Now it was assumed that only the first three H's were significant. So

- choose the remaining P's as the null operators. Then the remaining Q's are

* only functions of the insignificant H's and "cross-products" of the first

three H's. Thus by including only the first three P's in the compensator,

the first two "high-order" nonlinearities are eliminated, and the remaining

nonlinear terms are small.

In order to be more specific concerning the implementation of a

compensator, let us implement the P2 part of the compensator using the H's

of an earlier model. Specifically, the H's of the "single nonlinearity

example" is employed. " -

H (s)= Cs Ls
LCs 2 +Lgs +1

H2(sis2 )  -Z(s1+S2 A2 [HI(sl)HI(s)}"'""-"

Then P 2becomes

P2 (sl s2= -H 2(sI ,s2 )H (s 1+S 2) (73) .. ,

2 222 .1-'. .1 2-

LC(s +S 2
1 2= g2 )2 """ :""

LC(sI+S 2  +Lg1 (s1 +s2 ) +1
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The algebraic expression for Ps (ais s is determined by evaluating the
31203 

...second expression of equation (72). While this evaluation is mathematically
straight forward, the resulting expression is involved. Therefore, the

specific form of P will not be determined. This then completes this
*example. i

or%:

4W*~'=
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VIII. NLTFs OF A PROPOSED COMPENSATION NETWORK-
.,.N, ,..

Example 8: Diode Compensator. . . "

The previous example dealt with the general design of a cascade

compensator to reduce nonlinearities. This example analyzes a specific

circuit (viz., a Balanced Diode Squarer (BDS) as depicted in Fig. 15) which

can be employed as part of such a compensator. Specifically, it can be used

to remove the second order nonlinear part of the signal. Since this circuit . .-

uses diodes, the results of the diode analysis of Example 4 can be employed

to facilitate this BDS analysis. The dc-bias required to operate at the i

proper diode quiescent point has not been depicted since it adds nothing to

,- the analysis and is blocked by the output capacitor.

1AA 1 3 ____

-x D U 2  
. ..-- 'w c ::: i :::.

uV
2 R .-.-.

V

Fig. 15 Balanced Diode Squarer Circuit

For the purpose of analysis, the BDS circuit can be redrawn as appears

in Fig. 16 The resistors R and R and the resistors R and R have been
1 2 3 14

matched in Fig. 16. Furthermore, the two diodes are also matched; if the

circuit is constructed of discrete components, this diode matching can be ..

accomplished with additional external resistors and capacitors "hung-on" the

diodes.

The loops of the circuit have been chosen so that only a single loop

current passes through a diode; this choice simplifies the algebra of the

40 -
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analysis. The system or loop equations, and the output equation for the

circuit of Fig. 16 can be written as .:::

R11 RI 13 U1 -x (74)

R I i-RI +U~ -x
1 2 1 4 2

1 a 3 +s 4 :.-
RI I +-z I z -x 1'1 2 s 3 +a 4

Y= R (1I I

R Cs-1
where Z= - 5and Z Z i-R +R Now by using the results of the _1

diode anlyi ofEape2 hlotgsuand u2 can be written as a
1 2

function of 3 opcret.Te n a be expressed as Volterra

NLTFs operating on x. Then the first three Volterra NLTFs of the output are

simply formed.

R R3

x I
x Ii Iv3

V V ;

V R

Fig 12 B irutRerw
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Solution.

Here the loop currents can be expanded as :**'

Ilk '.

k-i ki

14~ Z %Ik~H~x -

k- k=i

where the second index on the I's indicate the order of the Volterra term.

These expressions can be restated more concisely as

I H 1k~~ [x]
k=1 k-1

From example 4I, the voltage u 1 can be expanded as

U= P1 EI +P [I ] +P [I ] +HOT (75)11 2 1 3 1

where HOT are higher order terms which will be ignored in this analysis. I

There is a similar expansion for the voltage u. These expressions foru

and uand the Volterra expansions of the loop currents can be substituted

into the loop equations of equation (74). Then the input voltage can be

scaled to Ex.

kk .rxk, -xR E LIk LIR ~ E 1r1 Ek I E1k-i 1k1-i n k-i

k-ik- n-i k-i

kk k- k-

1 k 1 1 4kZn02k

RR1 kl E 1k Z aL -- L *. 13k .ZkJ kE

ki k k

The left-side of the first equation above can be written as

-42-
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1 2 3 1 2 3 3 HOR ~ +~ I~ +RC I +R+ I J I P3 [R£ I~ +P EI 12 +C13

1 2 3 1 23+PR[1 +R I +RsI +E I I PR£ E IE I +O1 1 1 2 11 13 13 3 1 13 12 3

1 22 ~:~
111 1 12 1[ 1 1 32 33

1 2 1 2 3

3E 1 1 11 E P1[11 1 E 1[1 3

R1 I~~ +R1 131 31 +[ ]= (6

R I +RI +P[ x(61 11 1 31 1 1

R I +Z R I P[ -1 21 1 a41 1 2

1 (s) L 3s1 s/{ 41A

1 11 0 1 a 4

thise sytem dofe equ erreationsi eas os th symmer ofteleations it vis.

Ipprn thatis par iula ad , it is no ndesrefoe, e o tefis

.p*

this~~~~~ ~~~ sy3e ofeutos-eas ftesymtyo h qain ti

apparent~~~~~~~' tht1,.- n.II Adteeoe
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lrrw 7%m' -', "k°,k

. . R5 131 p. . -

6-~~~~ V- -kW 7-;.

Y1 5 3 + 141 ( 77  )  " " '

Nevertheless, the loop equations must be solved to obtain H which will be

required in the evaluation of the higher order transfer functions.

To this end, equations (76) can be restated as

0{{RP + 0 R 0 1
o {RIP 1

} 0 RI 11 [A] 1 - x (78)

R 0 Za Z 1

0 R Z Z -11s a

It therefore follows that

-1-

H = [A] -  
(79)

21 12 1 32 1 12 2 11

RI I22 IR 4 +J 1 [ I22 = p 2[  I1 2](80)] i .-[]

2R22 + s32 + I42 P =[I P [IRI 221 2 2 2 21

R I +ZI iZI =0
%1 12 a 32 s 42

R I +Z I + z 1
1 22 s 32 a 42 =

which can be restated as

2SP2 [ 1 2 - "."'''-
[A]E 2I=

-2 0
0-- -

"" - j4 -
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'S.. 2

A-1 P 2 [ 121 ]
2- 0

0

The second order output y2 can now be formed as

y2 . R 5 [13 +14

But this expression is unduly complicated. To gain more insight into

this second order output, reexamine Fig. 15. The actual squaring of this

BDS circuit is performed by the resistor-diode combination R 1 -D and R 2-D2 .

The resistors R and R are employed to sum the voltages u 2n u and
thrfoeths 3  41 an 2 0 n

therefore these two resistors usually have impedance values which do not

"load" the preceeding diode resistor combination. Furthermore, the

combination C and R are added to eliminate any DC-term; and it is designed
5

so as not to load the circuit, and to pass all frequencies of x. Therefore,

the output y2 can be essentially described as a filtered square term as

depicted in Fig. 17.

x c S + -2{cis +A Y

Fig. 17 BDS Second-Degree NLTF " "

Here it is not necessary to solve explicitly for I Look again at

Fig. 15; because of the symmetry of the circuit,

I- - .- -
1n 2n

Now look at the voltages u1 andu

- 45 -
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1, 11 [I + [I1 +P[I] +P [I1 ~

-I. =~ P [I ]+P [I2 II 2 ]+*. 1 2~~ +Pi [I +P [I. -'4.

P P[-I ]I+P [-I ]+P [-I ]+P [-I ]+....,-
1 11 2 12 3 13 14 1'4

= P -p[I 1 ] +P 2 ~ 2  -P3 1]+..
1 11 2 [112 [1 3 ]+P4 14 1]

So that the voltage w and y consists only of the even orders. All odd

orders are zero; viz.,

This same result can be obtained by recognizing the symmetry in the

* equations used to solve for I as was done in solving for I.
-3 -

As stated earlier, usually the effect of R3  R14  R5  and C are of no A.

39~ 4~ 0 5F

*consequences to the application. But more often the "filters" of P and P
1 2

* ~are significant to the application. If a cascade filter requires a . ~-
2

component K~x ], then the BDS circuit can be used as

2p

K [y]= K[x]
c

where K cincludes K operator and the inverse filter operations of P 1and P 2

-IMF
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