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I. INTRODUCTION

Most circuits in a typical C3

I communication system are nonlinear to
some degree. Examples include preamplifiers, mixers, frequency-converters,
channel paths containing metal-to-metal-oxide junctions, and in particular
power amplifiers. 1In addition to these inherent nonlinearities, there may
be nonlinearities deliberately introduced for the purpose of minimizing the
effects of the inherent ones. These circuits usually fall into a class
which may be described as "mildly nonlinear™ [4] circuits. Since these
circuits generally have memory, a simple power series characterization is
usually inadequate. However, a Volterra series expansion [1]-[6], which is
a generalization of the power series, provides a very versatile
characterization of a nonlinear circuit, subsystem, or an entire system [9]-
(14]. Furthermore, the Volterra characterization is compact for mild
nonlinearities in the sense that a truncated Volterra series can adequately

describe both the amplitude and memory behavior of the system,

To the reader familiar with Volterra expansions, the basic system
entity is the Volterra kernel hk(11,12,---,1k). Its Fourier transform

Hk(fl'fz""'fk) is known as the k-th order nonlinear transfer function

(NLTF) [4],[8]. The analyst of a C3I communication system (and the EMC
engineer responsible for the design and implementation of the nonlinear
compensators for these systems) should acquire familiarity with techniques
for deriving the Volterra NLTFs from the circuit or its equivalent
description. The purpose of this report is to present, in a practical way,
: some techniques for effective representation of nonlinear circuits/systems
i by Volterra NLTFs.
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II. BACKGROUND
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MY,

Numerous alternative representations are available in the literature
for characterizing and analyzing nonlinear electronic systems. Of these,
the Volterra nonlinear transfer functions (NLTFs) description [1],[2] is
particularly attractive since it lends itself to convenient frequency-domain
interpretation. As such, it enables straightforward computations of such
quantities as a) linear and higher order nonlinear responses [2], b)
harmonic distortion, ¢) intermodulation distortion [7], and d) cross-
modulation distortion [7]. Recent research has shown that these NLTFs are
also well suited for compensator design [15],[16] to minimize
intermodulation effects. 1In order to familiarize the reader with this
analytical and design technique, this study briefly introduces the Volterra
expansion and then uses this expansion to analyze a series of nonlinear

phenomena.

To introduce the analytical technique, consider the input-output

relationship
y(t)= T[x(t)] (n

where T is the system operator. This study will be restricted to
relationships which are time-invariant and only "mildly nonlinear." For

such systems, the output may be expressed as,

y(t)= § y, (¢) o
k=1
=kz1 _i..:‘{hk(.[1"..'Tk)X(t—T1)...X(t—Tk)dT1...di

where yk(t)=Hk[x(t)] is referred to as the k-th order response and Hk is
referred to as the k-th order systemoperator. These various notations are

consistent so that

Yk(t)= Hk[x(t)] (3)
=—wf°:;f hk(11,...,Tk)x(t-r1)--~x(t-1k)dr1---drk
e
Ry
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- This expansion can also be described diagrammatically as appears in
- Fig. 1.
Ly
2
\ o y,(t)
t
2 x( )~—-——T——————- h1(1)
&
> t
T’ ny(1y,15) " > At

. r-
= y.(t) RLULARCY
3 PR ANy
:.:_ ...... h3( ‘Ll ’ ‘[2, 13) anend .:::::t':::':::. A
- DAY YN
T LSRG
iy : RS CRUENS
:E Fig. 1 Volterra System Representation
;} This expansion of y(t) was originally described by Vito Volterra and
,: later named the Volterra expansion by Wiener [2] who applied it to nonlinear
&3
- noise problems, It is analogous to a power series expansion. As with a
'3 puower series expansion, this "Volterra expansion" is practically useful only
y if the series converges quickly as k increases. For the midly nonlinear

relationships of interest in this report, only the first three responses h1,
" h2, and h3 are considered significant.

While the overall nonlinear relationship of equation (1) is
nonhomogeneous, equation (3) reveals that there is a simple relationship
between the input and output of the individual k-th order responses when the

input is scaled by a constant e. Specifically,

Y (t)= H lex(v)] (4)

= K HIx(6)] i

Thus by scaling the input, the factor sk will appear as a multiplier and f:;i
can be used to identify the order of a particular response [1]. This F e 9

-\ b
. observation will be useful in the subsequent sections of the report. #}:_*




A The time-domain integration associated with these expansions are
L operationally complex. This complexity can be alleviated by use of the
N Fourier or Laplace transformations. In the image-space, convolution is

isomorphic to multiplication. To demonstrate this fact, and to determine

o'

the proper product form, a multi-dimensional response y(k)(t1,t2,---,tk) can
be postulated

Wl s

A
Yy (byoesenty )= (5)

Jooof hk(r1."',Tk)x(t1-11)--'X(tk-rk)dr1-~-d1k

- —m

. where y(k) is referred to as the k-th order associated response [4]. It is

apparent that this associated response reduces to y (t) if t =t _=e.e=t =t,
Kk 1 72 k

Ij But the associated response is simple to Fourier transform to

N Yooy (Fpafpeeennf )= H(£,F

2’...'fk)X(r1 )X(fz)"’x(fk)

Then yk(t) is simply the inverse Fourier transform of Y

. with t1=t2=---=tk=t, or

(085000, )

(k) 2

yk(t)= (6)

¢ 4

-3

f-:;f{Hk(v,.---.vk>x<v1>---x<vk>}ejz"‘“1*"‘*vk)tdv1---dvk

-~

WM MR o S

Finally, the Fourier transform of yk(t) becomes

.,
L

Yk(f)= (7)

D
LA

o <

for e fUH (upyeee v 0XCv ) e eX ()} §(£=(v,teerry )) dvyeeedyy

- -

Th s

This equation allows easy determination of the k-th order response.

jemF t , jenF,t

For example, suppose that an input x(t) equal to e 2° is applied

to a second order system H2(f1,f2). Then equation (7) yields
Yz(f)= H2(F1,F1)6(f-2F1) +H2(F1,F2)6(f—F1-F2)
E +H(F,, F )8(f~F ~F,) +H,(F,,F,)§(f-2F,)

! or in the time-domain
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JunF. ¢t J2w(F +F_ )t
yz(t) H2(F1,F1)e ] +H2(F1,F2)e 1 2

’Fl)eJZW(F2+F1)t JMwF1t

+H2(F2 *HZ(FZ.FZ)e

In general, HZ(F1,F2) may not equal HZ(FZ'FI)' But often it is
convenient to have functions which have this "symmetry" so that
Hk(f1,o--,fk) equals Hk with all possible permutations of the independent
variable. This can be guaranteed by defining a symmetrized Hk as

1

= L 0y
H (€, 0000 )= o0 D H (£, o0, 1)) (8)

where the tilde indicates that the function is unsymmeterized and the
script-p JP denotes the summation of the Hk's over the k~factorial

permutations of the independent variables [1].

In the above example, we used H2(s1,32) in the abstract form. A

particular realization (although not the most general one) is shown in Fig.

xa(t)

x(t) y{t)

T
1l H | xb(t)

Fig. 2 A Simple Second-Order Volterra System

2. Note that each of the blocks Ha’ H,  and Hc is linear, For this

b
structure, it can be shown that
H2(s1,s

2)= Ha(s1) Hb(sz) Hc(s1+32).

Ir Ha equals H then the block diagram of Fig. 2 can be more concisely

bl
depicted as in Fig. 3.

xvy H }‘—"’@__“_"c ¥t

Fig. 3 Compact Representation of a Symmetric Second-Order System
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Although we have employed the Fourier transform for the derivations in

this section, we could equally well have used the two-sided Laplace
transform.

T ey
AN

4.4
VY XN

)
>
. a




YA - - ~ e - IO O N e e SRR oA N - o < e e T T Pl o Cotaliat il I Jhs b P A B AR A LS DA DA B Al e g0 g
e e

b III. OVERVIEW OF EXAMPLES

N The purpose of this report is to provide techniques for deriving the
Volterra NLTFs from other available descriptions. To this end, the

. %

subsequent sections will introduce the method of analysis through a
collection of nonlinear electronic device and circuit examples. These

SRy

"available descriptions" constitute a mix of differential equations, device

-

representation, circuits, and system representation by block diagrams.

2N

EAPNES

The first two examples consider nonlinear differential equations. The

'

LN

first example examines a nonlinear second-order differential equation; the
coefficient of the first derivative is a variable and dependent upon the

o output. The second example is a generalization of the first equation; it is
.i' an n-th order differential equation where all of the coefficients are

variable and dependent upon the output.

The third example analyzes a nonlinear device wherein the current can
o be expressed as a power series expansion of the voltage; a circuit including
. this device is analyzed using nodal analysis, A forward biased diode has a

nonlinear current-voltage relationship as described; but the diode is

further complicated by the voltage-dependent capacitance associated with its

e
1 '
et

junction. Therefore, example four analyzes the diode as a device outside a

1

circuit. This example is particularly important because of the wide spread

Sh, &0
A

use of dicdes, and because the nonlinear characteristics of diodes can be

employed in circuits designed to act as "nonlinear compensators."

OIS
AR
W e, 0, A

The fifth example is the complementary dual to example three., Here,

the nonlinear devices have a current-voltage relationship such that the

voltage can be expressed as a power series expansion of the current. Also,

. the analysis employs loop equations rather than node equations,

e I

- The sixth example employs a more complicated nonlinear device, the

transistor. Here the transistor current is modeled as the "product-power"

..'-

AR,
% %
4 % 4
..

series expansion of two voltages.

]
.
»
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g
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The seventh example analyzes a cascade of two nonlinear systems. This

Digs NE
i

b @
- R}

example is particularly important because this is a configuration which can

.
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The eighth, and

final, example uses the nonlinear characteristics of a diode to implement a

example explicitly describes how to develop a nonlinear cascade compensator
nonlinear cascade compensator.

be employed to eliminate the nonlinear output of the first system., The

to eliminate the nonlinear response of the first system.
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IV. NLTFs FROM NONLINEAR DIFFERENTIAL EQUATIONS

Example 1: Simple Nonlinear Differential Equation.

volterra nonlinear transfer functions can be employed to characterize,
in the frequency-domain, certain classes of nonlinear differential

equations. As a specific example, consider the equation

o2 d
;2 Y* &% {y f(y)} +by= x(t) (9)

If f(y) can be expanded in a power series which converges quickly, then y

may be expanded in a Volterra expansion which also converges quickly.

Solution.

It was stated that f(y) can be expanded as a power series; i.e.,
< n
£(y)= ] ay
n=0
Now form a Volterra series expansion for y as
-] -]
H{x]= 7§ H [x]= ) ¥, (1)
k=1 k=1

Substituting these expansions into the differential equation, one obtains
-]
y )M} el Tyl = x(t)
k K=1 k

For this example, the first three Volterra NLTFs for Yoo Yoo and y3 will be
formed. This is accomplished by explicitly writing the individual terms of
the various orders for the above differential equation. To keep track of

the order, scale the forcing function x to ex.

00 [ k
y, = Z1Hk[ex] = kz e H [x]

k= 1

_ ":-Pu“vh‘l‘
LS




The differential equation then becomes

2
.d—2 {€y1 §62y2+£3y3+0 . u}
dt

d 2 2 3 3
+q (apreyyra ey, reT{agy r2a y y,rayy T el

*b[€y1 +€2y2+€3y3+-00} = 254

Now, like powers of € can be collected and equated.

d
-_— Yy ta, — Yy +by =
dt2 1 0 dt "1 1

Or more concisely,

G[y‘]= X,

2

where G is the linear differential operator {9— d

+a,. — ¥ +b}
dtz 0 dt ‘1

Then
¥y= 6—1[x] = H1[x].

This equation can be Laplace transformed to

¥ (s)= Z—L— x(s)

s +aos+b

It therefore follows that H1 is G—1 or
1

s +aos+b

H1(s)=




., ‘_.'- i
LY e e
A o
[ " N )
. .".r-““.s-,q;*
., So that e,
N -1¢d 2 PN
5 y2 -G [-d—t: a1 Y1 ] ( 15 ) .:’..::\::'-"\:
) L RO
7l = 3,6 [ o (H,0x] H,[x]}] ErF
'u “?
A oo
. Now the Laplace domain formulation of H2 can be performed [4 ]. The .
< determination of this NLTF is particularly simple if Y, is diagrammed as
’ described in Section II.
‘.‘
- Hy(8,,8,)= -a,H (s +s,){s +s,}H (s )H, (s,) (16)
o
L
b
53:
> & d d 3 i
:;: ;—tz Y3 *ay gt Y3 +by3= G[y3]- T {2:a1y1y2+a2y1 } -
Y o
’ and therefore -
" b
= _o-1pd 3
- y3= <6 ' [3g {2a,y,y,%a,y,°1] a7 &
Here again, H3 may be more apparent from the block diagram of Fig. 4. ':.-i'
-.: NN
..- > H a :' e .':‘\:
2 1 2 ) 3
X y3 ‘..:.
—_— ) Hs |— I+ e
iy H
5 -
;j- —————t= 2a1
” H,,
o Fig. 4 Block Diagram of the Third-Order NLTF
: From the diagram, H3 can be written as
%
‘.
~a
<a ~- 11 -
2
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H3(s1,32,s3)= —H1(s1+32+s3){s1+32+s3} (18)

{a2H1(s1)H1(32)H1(s3) +2a1H1(s1)H2(32,s3)}

where the tilde has been included over H3 to indicate that this is an

unsymmetrized transfer function. The symmetrized H3 is obtained from H3 as
1

described in Section I1 as H3= 3r Y H3(s1,32,s3) [1]. And therefore, the
symmetrized H, is

3

H3(31 )52t33)=

-H1(s1+32+s3){51+32+s } {a2H1(s1)H1(sz)H1(s3)

3

2a

+

{H1(S1)H2(82,S3) +H1(52)H2(s1,s3) +H1(s3)H2(s1,32)}}

Here it is noted that the yk's are recursive in the sense that yk is only a
function of y1, y2, e, yk_1. Thus the truncation of the original equation
to the third order terms leads to no error in the development of the first
three NLTF's. Alsgo, the process could be continued to obtain as many of the
NLTF's as required. Indeed, there is no mathematical reason that all the
y's could not be formed. But in most applications, this Volterra expansion
is only practical for analysis and design if only the first few terms are

significant.
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Example 2: General Differential Equation.
The first example was a differential equation which was "nonlinear in
the second term." This is a special case of the nonlinear differential
equation
n @ n-1 @® o
d d
—n (1a myl} tem L lany 9."2} teee +l ] g fl,"‘l}= X (19)
dt =1 dt 2=1 ! =1
This is a rather general nonlinear differential equation since it can
represent a n—-th order differential equation where each coefficient of the
differential terms are dependent on the output, but can be expressed as
power series expansions, The approach to solving this equation is identical
to the previous example,
Solution.
Expand y as a Volterra series
0 L]
y= HlxJ= ] H[x)= Ty
k=1 k=1
As before this expansion is substituted into the differential equation and
the input or forcing function x is scaled by € to keep track of the order.
e-Scaling, 5
n ® © n-1 o © \t.-"::'
k d k S
d_n (1a o (lc yk}z} tepmy Llag Gl yk}l} Feee RO
dt”  2=1 " k=1 dt £=1 S R
IS
® © ."’.':t'
2 %
] a, 1{ ) ekyk} b= ex
=1 7’7 k=1
This equation can be rewritten as
dn © ) o K, +eeoetk
o y a Yoeee Y € Yy, ser ¥y (20)
at® ger ™Mo a1 oo K )
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k1+o.'+kz

Now, by defining the linear operator Ll as

n i
d
L= ) — a

i=1 dt 1,2

yk LR ) yk =

the differential equation (20) can be rewritten as

@ «© 4 k1+ouo+k2
Iob, I e le v, ooy,
=1 k1=1 k2=1 1

= €X
L

€X

(21)

Now as before, this expression will be evaluated for various powers of ¢,

and like powers will be collected.

1
€
L1[y1]- x!
S0 that H1 is L1—1; or in the complex—-domain
1
H1(S)- a sn +a Sn—1 +ece +3
n, 1 n-1,1 0,1

2
L1[y2]- -Lz[y1 ]
30 that
¥,= -H1[L2[H1[xJH1[x]]]

The Laplace domain formulation of H_ produces

2

Hy(syhsy)= H (30K, (s,)L, (s, +8,)H, (s, +s,)

—1“—.

(22)

(23)
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L1H3- —2L2[H1H2] —L3[H1H1H1]

then the Laplace transform is

H3(31’52’s3)' —2L2(s‘+sa+s3)H1(sl+32*s3)H1(s1)H2(52+s3) (2u)

)Hl(s1)H1(32)H1(s3)

VEEE S AP S B S r e s e s

- L3(s +8 +s3)H1(s +3_+3

1 72 1 72 73

where the tilde has been included as a reminder that this is an
unsymmetrized transfer function. The symmetrization of this transfer

i function is straight forward as described in Section 1 and as applied in
. example 1.
iy 4
£:
l L,[Hu]= -L2[H2H2+2H1H3] -3L3[H1H1H2] -Lu[H1H1H1H1]

So that Hu can be formed in the complex-domain directly or from a diagram as

- Hu(s,‘,sz’sB’su)a (25)

—L2(s1+52+s3+su){H2(s1,52)H2(33,su)+2H1(s1)H3(32,s3,su)}
—3L3(s1+sz+s3+su)H1(s1)Hi(sz)Hz(sB,su)

i —Lu(s1+52+33+su)ﬂ1(s1)Hi(sz)H1(s3)H1(su)

" As stated earlier, these transfer functions generally are recursive so

that the complexity of the function grows with the order. This is apparent

in this example. It is for this reason that this analysis is usually
applied only to slightly nonlinear systems where it is likely that the

WL T

...
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i

Volterra series expansion will converge rapidly.
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V. NLTFs OF SIMPLE CIRCUITS AND DEVICES

Example 3: Single Nonlinearity.

y(t)

{v(t) L D

Fig. 5 Circuit with a Static Nonlinear Device

The circuit of Fig. 5 contains a single static nonlinear device D.

The node equation for this circuit can be written as

d d 1
c TV C wYT [y dt + iD (26)

It is assumed that the nonlinear current-voltage relationship can be

adequately modeled with a power series; i.e.,

. n
1= ) ay (27)
n=1
The objective of this analysis is to find the form of the Volterra NLTFs Hk
which relate the node voltage to the input voltage; i.e.,
o ®
y= ! HIvl= Jvy
k=1 K k=1 k

Solution.

If the input v is scaled to ev, then a new node voltage Ye results

y= YH[evle Y e H[vls J e ¥y
€ k=1 K k=1 X k=1 K

Substituting this into the node equation,

_16_
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d d Kk 1 | k kK n
eC v C—17 e y +=11 ey, dt+Ja{]ecyl (28)

dt dtk_1 kK L Jk_1 % ney Moy K
=6l Jey]l+Tall]cey]

k=1 K a2 Pyay K

[ ] @ @™ © o k+k+ es e +k

K 1 %2

=6[Yeyl+fa I L.l ¢ RS

k=1 n=2 " ky=1 ky=1 k=1 1 %2 n

where G is the linear operator with the Laplace transform Cs+a1+ %3; i.e.,

G(s) is the linear admittance.

Now as stated earlier, we are only interested in the first three

3 need be

NLTFs, and therefore only terms that contribute to e’, ez, and ¢
explicitly expressed in the equations (28). So equation (28) can be
expressed as

eC %E V= (29)

e10[y,] +52{G[y2] +a2y12} *e3{G[y3] *2a,y,¥, +a3y,3} +HOT

where HOT are the higher order terms in €. Notice that, this finite
expansion of equation (29) is more readily obtained from the double sum form
of equation (28) rather than the last form. While the last "infinite sums"
form of equation (28) is consistent with the general theory of Volterra
functions, for this example, and for all the future examples, this infinite
sums form is operational less efficient then the double sum form.

Therefore, in the future, this more complicated form will not be employed.

Using equation (29), the terms associated with the powers of e can be

collected.

d
¢ gt v= Gly,] (30)

This equation can be Laplace transformed; and then by defining a linear

impedance Z(s) as G_1(s), Y, becomes
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y1(8)- Z(s) Cs v(s) (31)
and therefore

H ()= Cs Z(s)= Cs —; Ls (32)
LCs +La1s +1

G[y2]= -a2y12 (33)

The Laplace transform of H, can then be formed from the above cquation, or a

2
block diagram of the above equation, as

H2(s1,32)= -a, Z(S1+82) {H1(S1)H1(32)} (3%)

™

3

G[y3]= -2a ~a3y1 (35)

2¥1Y2
And therefore,

H3(s1,32,s3)= (36)

—Z(s1+sz+s3){2a2H1(s1)H2(32,33) +a3H1(sl)H1(32)H1(s3)}

where the tilde has been included over H_, as a reminder that this expression

3
is unsymmetrized. The symmetrized H3 is obtained from H3 as described in
Section 1 as H3= g% a H(s1,sz,s3). The symmetrized e.pression is
therefore,
H3(s1,32,s3)= (37)

—Z(s1+32+s3){a3H1(s1)H1(32)H1(s3)

+(a2/3){H1(s1)H2(s2,s3)+H1(32)H2(s1,53)+H1(s3)H2(s1,52)}}

These three NLTFs can be depicted grapnically as appears in Fig. 6.
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Z(s)
v(t) >
Cs Z(s) -a2() —» Z(8)
L1
Fig. 6 First Three NLTFs of the Circuit of Fig. 5 e
o
The stated objective of this example was to determine the first three ﬁ:*
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H's and that has been accomplished. — X
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Example 4: Diode.

The previous example included nonlinear devices such that the current
through them can be expanded as a power series of the voltage across them.
One example of this type of nonlinear device is a forward biased diode. But
the diode is more complicated since there are capacitances and resistances
also associated with it. The capacitance CD is a function of thickness of
the junction reglons, and this thickness is itself a function of the voltage
across the diode; so that the capacitance is not a constant but depends upon
the junction voltage. Since the diode is such a common nonlinear electronic

device, it will be analyzed in this section as an isolated device,

As stated above, a power series representation will be used to
describe the voltage—-current relationship of the diode. The order of this
power series expansion generally depends upon the quiescent point and
operating range. In many practical applications, the operating conditions
are selected so that only the dc, linear, and quadratic terms are
significant. But for the present analysis, the cubic term will also be
included.

(a) (b) (c)

Fig. 7 Diode Models
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Fig. 7(b) depicts a standard model for a diode. Typically, R
the order of a few tenths of an ohm, and R

B is of
L is several hundred kilo-ohms.
For the applications of interest to this study, these resistances are

inconsequential. Therefore the simpler model of Fig. 7(c) will be employed.

The objective of this analysis is to determine the first three

Volterra NLTF's P P, and P_ which relate the voltage to the current.

1' 72 3

Solution.

If the diode of Fig. T(c) is driven by a current source x(t), a
voltage y(t) will result. Furthermore, the nonlinear current source and
capacitance of the diode model will have the forms

S n
i= lay (38)
n=1}

v n
CD’ nzocny
where the voltage y can be expanded as a Volterra series
® @
y= k§1Pk[xJ - kz1yk
The node equation for the diode and external current source is

d -
T CpY *ip "x= O

+Jay -x

Now the driving current source x can be scaled by ¢ to obtain
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I e, & +an}[{k21ekyk}n] ~ex= 0 (39)
n= =

4 2 3 d 2 2 .3
leg g *a}leyy *e7y, +e7y3) +ley Gp *ayllety,” +2e7y,¥,]

+{ +a3}[e3y1] -ex +HOT

o L
2 dt
where HOT denotes the higher order terms in e. The powers of € can now be

collected and equated.

1
€ 3

d
{c0 o +a1}[y1] = X

Here it is convenient to introduce the notation Ln(s)a c, s +an. Then the

-1
Laplace transform of the above equation becomes

L1(s) y1(s)= x(s)

From this equation, the Laplace transform of P1 is found to be

-1 1
P(ed= Ly (&)= o5, (40)
0 1
2
£
- a 2
L1[y2]- {c1 9t +a2}[y1 ]
_ 2
= L2[y1 ]
> P1(s)
X = Y2
_— - L. 'L, f—a
1 72
> P1(s)

Fig. 8 Second-Order NLTF of a Diode

The form of the NLTF is apparent from Fig. 8 as
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P2(s1,32)- -P1(31) P1(32) P1(51+32) L2(s1+sz)

33

d . d
L1[y3]- '{01 rry +a2}[2y1y2] {02 rr3 +a3}[y1

_ _ 3
= -Lyl2y,y,] L3[y1 ]

The multidimensional Laplace transform of P3 can then be formed as

~

P (s1,52,s3)= ~P1(s1+s +3 ){2L2(sj+s +3

3 533 >+ 83 (s,,8,)

)Pl(SI)P 2183

2
*Ly(8,+9,+3,)P, (3, )P, (3,)P, (s,)]

where the tilde has been included over P3 as a reminder that this is a

unsymmetrized operator as discussed in Section 1.

This then completes the analysis of the diode.
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VI. NLTFs OF MULTI-LOOP AND DEPENDENT SOURCE CIRCUITS

Example 5: Nonlinear Multi-loop Circuits.

10 20

v(t) x(t) R12 (// y(t)

Fig. 9 Multi-Loop Circuit with Nonlinear Devices

The previous two circuit examples dealt with nonlinear devices such
that the voltage across those devices could be described as a power series
expansion of the current through them. For this example, the opposite is
true; the nonlinear devices are such that the current through them can be

described as a power series expansion of the voltage across them,

Fig. 9 depicts a network with two static nonlinear devices which are
represented as D1 and D2. Here the R's represent "linear impedance
operators" and actually reflect the presence of any linear "sub-network."

The loop equations for Fig. 9 can be written

V= R”[x] - R12[y] *u, (43)

0= -R21[x] + R22[y] -ty

where R21=R12, R11=R10+R12, R22=R20+R12, and the voltages u, and u, are
nonlinearly related to the currents through the devices D1 and D2
respectively.

The general objective of this analysis is to relate the currents x(t)

and y(t) to the input voltage v(t). But more specifically, the objective is
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to find the form of Volterra transfer functions Pk and Qk which relate the

k-th nonlinear current ik' [xk yk]‘r to the input v(t); viz.,

x(t)= I x ()= I PIv(D)] (44)
k=1 k=1

y(t)s Zyk(t)= ) Q. [v(t)]
k=1 k=1

For efficient notation, define Ek as a column vector

We begin by requiring that the voltages u, and u, can be adequately

1
modeled as a power series expansion where only the first three terms are

significant; i.e.,

u= 3 b (xy% J be" (45)
! n=1 1 n=1 a

u,= ) a ()"
2 n=1 n

where the current through the common branch is E=x-y.

Now replace v(t) with a scaled voltage ev(t) and thus generate new

currents

] .- ]
K k
x = JPlevl= JeP[vl= J ex
€ ka1 K k=1 X k=1 K

T Tk vk
y= 1Qflevl = JeQlvi= Jevy
€ ka1 K k=1 K k=1 K

Substituting this back into the loop equations:
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n

eve I “URIx] R [y 1} +] bn{ki e¥e, } (46)
=1

k=1 n=1

® K ® ® K n bt e k n
0= T e {-R,,[x. ] +R [y I} -Ib{]ecel +fallecy}
k=1 217k 2277k n=1 n K1 K ne1 n Ke1 k

As stated earlier, we are only interested in the first three NLTFs, and

3

Iy

N R ST N
.

therefore only terms that contribute to e‘. 52, and e~ need be explicitly

expressed in the equations (46). So the first equation of (46) can be

sme

expressed as

% 4 [ % % k n
EV= e { R,.[x, ] -R, [y J} +) b { e £} +HOT
K=1 117k 1277k n=1 n K=1 4

where HOT represent the higher order terms of ¢ as k runs from four to
infinity, and also as n runs from 4 to infinity. Expanding the summations

and regrouping the terms results in
1 -
EV= € {R11[x1] R12[y1] +b1£1} (47)
2 2
+e" Ry [x,] Ry,[y,0 +byE, +b,8, %)
+e3 (R, [x,] -R, [y,] +b €, +2b,E €, +b £ 3} +HOT
1173 12773 173 27172 3™

where HOT now includes the previous higher order terms and also the higher
order terms formed from the square and cube processes. It is emphasized

that the expressed terms are exact. The above manipulations have merely

ignored terms of ¢ which have power greater than three.

The second equation of (46) can be manipulated to result in Teee
1
0= ¢ | Ry, [x,1 +R,[y,] -b,s, +a1y1} (48)
2 L2 2
e Ry [x, Ry 0y,] ~biE, b8, +ayy, *ayy,°)

3

3. _ - - 3
ve” | Ry [x5] +Ry,0y,1 =D €5 ~2b,8, 6, ~DiE,~ *a,y,+23,Y,¥,%35y, }

+HOT

Now the terms associated with the powers of e can be collected and equated.

Lol d
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v= R Ix,J R Ly, ] +b g,
0= Ry [x,1 *R,,Ly,1 -b,&, +ay,

or more concisely,

v (R,.+b,) ~-(R,_+b.) X
1
- ¢ na 121 - [2] 4, (49)
o TRy b)) (Ryptopra)| |y
where [Z] represents the "linear network impedance."
Taking the Laplace transform of equation (49) yields
y(s)= [2(s)] 11(8)
The "admittance matrix" [G(s)] can now be formed as the inverse of the
matrix {Z(s)]:
_ T(R,,(s)+b,+a,) (R,.(s)+b )
[G(s)]= [2(8)) '= — 227t e (50)

A(S)
_(R21(s)+b1) (R11(8)+b1)

where A{s) is the determinant of the matrix [Z(s)]. Then it follows that
1,(s)= [G(s)] y(s)
y

(R22(s)+b1+a1

(s)
a(s) . Y
_(R (8)+b,)

But since 51 operating on v(t) is defined as i it follows that

1'
_P1(s)—

H,(s)= =
_Q(s)_

1| (Ryp(s)+birap)

A(Ss) 51

(R 5(8)+b,)

The relationship between 11 and v can be depicted graphically as appears in
Fig. 10.
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Fig. 10 First-Order NLTF

2

N AL
‘m

0= R,,[x,] -Ry,[y,] +b &, +b,E,

: %
L §

) ] 2 2
0= =R, [x,] +Ry,Ly,] ~b, &, ~b, 8" *a1y, *ayy,

.'h-'zd-'l

kP
.«

or more concisely,

LA -

S‘ —_ - _ 2 -

o X, b,&,

L 9_= [Z] + -b g 2 - 2

N Y2 P25 2¥1

N -

o i= [G] 2 .2 (52)
i 2 Do TEY

This relationship can be depicted graphically as appears in Fig. 11.

¢
* .- .

AN

.-% — i ib)()2

Sam—— ———>\ ;

i v(t) | H(s) |, 7D S

0 i ! a0\ __,

. ' — )

o — N

L Fig. 11 Second-Order NLTF

LR

&

=T

- But to solve for the form of P, and Q,, equation (52) should be Laplace
&k transformed. Since these equations involve a squaring process, the

:F multidimensional Laplace transforms are employed. For convenience, define
b'.-

o M P "%

t&: Then the transfer function from v to ¢ in Fig. 11 is ~b2M1(s1)M1(52); the
e i -

. transfer function from v to 0 is szt(sl)M1(32) a2Q1(51)Q1(sz). And

therefore, the transfer function from input to output is

>

_28_

SENEAA

c AT s

et ta \._-.._.n._;-.j.. -

L)
P
.
s
K
.
/s

- ."-“ Wt e '... N .
et A T S NN




r'_A-'..*.;-.’.- - P i S b i A e L ]

]
. “b.M, (s,)M, (s,) -
; (s .80 [otayesyl| 201 1% (53)
:I _bM, (3, )M, (s,) ~a,Q,(3,)Q, (s,)_
: e
. . - 3
' .. L3 ;
: 0= -Ry, [x,] *Ry5[y3] =By &3 ~2D,8 8, B3k~ "3V 2ayy1¥, *asgy,
- or more concisely,
— — 3 —

0wz | 3| | Peh% TSR 3
< - y _ _ 3
: 31 220,68, Thag T t285Y Y, AV
g and therefore,
i 2b,E, €, 'b3513 B
3 _i_3= [G] 3 3 (54)
: _2byE &, *DoE, T T23,Y, Y, T3V
. This relationship can be depicted as appears in Fig. 12.
N & :
. 1
i X2 EZ 7

2b2()()

by from y +\ ) ‘ . . -
. Fig. 2 - : _
b 11 —-«--—-——-—-l X3 "
3 .. S
P G > DR
! F /\ Lal Y3 %
: »22,001 ) — R
- ! B
- ! f/ a3()3 SR
< NI - RICeat,
i — i

Fig. 12 Third-Order NLTF
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i: The transform function from v to x3 and y3 is apparent from equation (54) as

“ -

; _133(31.52.33) (55)

. :2b2M1 (s1 )M2(32,33) —b3M1 (:-:1 )M1 (32)M1 (53)

o = [G(s1+32+s3)]

:.\

N 2b2M1 (s1 )M2(82.S3) +b3M1 (:'-s1 )M1 (ssz)M1 (S3)

' - -

i _ 2a2Q1(s1 )Q2(82.33) a3Q1(s1)Q1(32)Q1(s3)_

. where the tilde has been included over 23 as a reminder that this expression

- is unsymmetrized. Again, the symmetrized 5_3 is obtained as described in
Section 1 as H_= -—1“? H(s,6,s.,s,) . The stated objective of this example

. =37 31V =TSt

. was to determine the first three P's and Q's and that has been accomplished.
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Example 6: Dependent Sources (Transistor Model).

NN WS

This example analyzes a circuit with a nonlinear transistor model.

Here the transistor current is modeled as a function of two voltages u and

w; viz,,
I= §J ] g u W (56)
n=0 m=0 nm

where goo=0. The circuit of interest appears below in Fig. 13.

Fig. 13 Transistor Model

Generally, the objective of this example is to determine the output
voltage y as a function of the input voltage x. More specifically, the

objective is to determine the first three Volterra NLTF's.

Solution.

The node equations for the circuit can be written in terms of u and w

as
1 2 n=0 m=0 1
dw W . ot nm X
Cbae ™ TR T - Emy " TR
L. n=0 m=0 L

These equations can be rewritten in vector for as

—3“ -
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YR YR &y €01 u
1 2
d
B &0 ¢ at " & "Bo1 Y
YA I R B
_ L _ _| n=0 m=0
n+m>1

(57)

unwm
8nm

where the linear part of the transistor model has been moved to the left

side of the equation.

The voltages u and w can be expanded as

u= Plex]l= ¥ P lex] = ) eX u,
k=1 k=1

w= Qlex]= ) Q[ex] = ) e W,
k=1 k=1

(58)

where the scaling constant ¢ has been included to keep track of the order of

the Volterra operators.

into the node vector equation; viz.,

These expansions for u and w can now be substituted

) ekuk
k=1 _ _ o
,L] - -.1 /R1 X + _1 z 2 g (Xeku )n(zekw )m (59)
1/R 1 nm k k
_ L_ _ _| n=0 m=0
n+m
1 ckwk
where
_ . 1 ) _
¢ x® % EZ) €10 €01
(L]=
d 1
_ 810 1 % ' R "Bo1_
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Now like powers of e can be collected and equated.

£ 3
-u1 - 1/R1_
{L] _ X
_w1_ _ 1/RL_
or
u1 i [L]_1 1/R1 )
—w1_ _—1/RL_
—P1_
= Q X = §1x
—-1—
where
- d 1
_ C += g
(L] 1_ 1 1 dt RL 01
A
B &0
T 1/R,
1 -1 1
Ho- = [L] _
-1 RL 1/RL

and A is the determinant of [L].

2
- - - .-
2 2
[L] . = 1 (820u1
— 2.— - -
or
- - -
2 -1 2
. = [L] 1 (gzou1
2 p— -

*By Uy TBpow, )

2

+2 oUW, tg W 2)
11711 021

and therefore 52 can be described in "operator notation" as

S S

. r e e .
AP IPEAP ISP IRAP SO PP

._33_
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(60)

(61)

(62)
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2 2
Hy= BB (80P *810P1Q) *8p,Q) ) (63)
e
Tug a T 3 2 2 3
1 (L] . (83U ™ *8p Uy Wyt oUW, " *BgaW, (64)
_3_ - -
*28,0Uy Yy *8q (UgW rULW, ) 428 W, W, ]
- 1 3 2 2 3
H,- RLEI (83017 *85 P, Q)*8, P Q)" 830, (65)
+28,3P P, *8y,(P1Q;*P,Q) +2g,,Q,Q,]
where H

3 is expressed in operator form.

As in all the previous examples, H

1} is recursive in the sense that it
is a function of only previous H's,

Now the operators can be Laplace transformed to
“C,s +1/R

! L (66)
C,s +{1/R1+1/R2}_

S
51(5)' A(s)

Hy(s,,8,)=R H, (s,+8,){g, P (8, )P,(8,)+g,,P(5,)Q,(8,)+g,,Q (5,)Q,(s,)},

Hi(s;,s,,8,)= Rb§1(31+82+33){ B30P¢ (3,)P,(8,)P, (s5)

+821P,(81)P1(82)Q1(s3) +312P1(81)Q'(32)Q1(33)
+803Q1(31)Q1(32)Q1(33) +2320P1(31)P2(32,s3)

+g11{P1(s1)02(32,33)+P2(sl,sZ)Q1(s3)

+280201(s1)02(32,s3)}

where

2
A(S)= C1czs +{C2(go1+1/RL)+C1(1/R1+1/R2 310)}3

+{(go1+1/RL)(1/R1+1/R2) _810/RL}
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The stated objective of this example was to determine H,, H and H,.

1’ =2° 3
Since this has been accomplished, this example is complete.
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VII. NLTFs OF CASCADED SUBSYSTEMS

Example 7: Nonlinear Cascade.

In this example, we wish to design a cascade filter or compensator P
which will eliminate some of the nonlinearities of a system H, as depicted
in Fig. 14,

N A
Q

Fig. 14 Cascade of Two Nonlinear Subsystems

Here it is assumed that the form of the nonlinear system has already been

determined as
w= H(x]= H [x]- ) W (67)
n=1 n=1

Indeed, after the form of the compensator has been determined, the H's for
an earlier example (viz., the single nonlinearity example) will be used to

implement part of a specific compensator.

Solution.

Form the output y as

t

y= Plwl= ] P [w] (68)
k=1

= 1 p[YHIx]]
k=1 K p=1 P

Then replace x with ex to form a new output;

-36-
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o\ y= ) P [ ) H [ex]]. (69)
5 € k=1 Kpm P
o
-~ . .
' = 3 P[] e x]]
k=1 Kpa1 P

This relationship can be reexpressed in terms of the "x-y transfer function"
a Q as

T
W : ’

": .

i’c' ‘v
,‘v_". %4 .

1\ *® m
4 y= ) ¢ QI[x] OIS
O € met o o e
\" . -"‘-v ~-\'-
- -'_‘- '-‘; ‘-._‘
Now if powers of e are collected, the Q's can be determined using "operator A
SN
notation" as “ -
::' Q1= PTHI (70)
-3 Q= P.H, +P.H -
27 T2 TT2M .
o Q= PH; +2P,{H, Ky} +PH, -
- Q- PyHy +2P,H, By} P H, 3P5UH, H Hy) +P M, R _
Q= P.H, +2P,(H ,H} +2P2[H2,H3} JM
2 +3P3{H1 oHy,Hy} +4P, {H ,H ,H H} +PH, o
i~
- These equations can be expressed in the complex-domain as -
- Q,(s)= P, (s)H,(s) D)
o7 1 1 1 RS
- Q (81,8,)= P (8,+3,)H,(8,,8,)+H, (s, )H, (s,)P,(s,,8,)
.-: 03(31 p32r53)=‘
2 1
- P1(s1+s’:2+s3)H3(s1 ,32,33) + 3 [H1(s1 )H2(82,S3)P2(S1 .32*33)
.
l.
Z +Hy (8,)H,(8,,85)P5(8,,8,+35)+H, (3500, (s, »8,)P, (83,8, *+s,)]

JEBEE. Y s
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The stated objective of this exercise is to reduce the nonlinearities
without distorting the linear characteristics of H. Therefore, the form of
Q1 should be H1; and therefore,

P= I (71)
where 1 is the identity operator. Furthermore, 02 and Q3 can be made zero
by choosing P2 and P3 as

P= -HH | (72)

2 271
-1
P3- (H3 +2P2H1H2)H1

Now it was assumed that only the first three H's were significant. So
choose the remaining P's as the null operators. Then the remaining Q's are
only functions of the insignificant H's and "cross-products" of the first
three H's. Thus by including only the first three P's in the compensator,
the first two "high-order" nonlinearities are eliminated, and the remaining

nonlinear terms are small.

In order to be more specific concerning the implementation of a
compensator, let us implement the P2 part of the compensator using the H's
of an earlier model. Specifically, the H's of the "single nonlinearity

example" is employed.

Ls
2
LCs +Lg1s +1

H1(s)= Cs

H2(s1,sz)= —Z(s1+32) A, {H1(81)H1(82)}

Then szecomes
-1
P2(s1,32)= H2(s1,32)H](s1+sz) (73)

2
L ki)
g,

2
LC(51+32) +Lg1(31+32) +1
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The algebraic expression for P3(s1,32.33) i1s determined by evaluating the
second expression of equation (72). While this evaluation is mathematically
Straight forward, the resulting expression is involved. Therefore, the

specific form of P3 will not be determined. This then completes this
example.
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Example 8: Diode Compensator,

The previous example dealt with the general design of a cascade
compensator to reduce nonlinearities. This example analyzes a specific
circuit (viz., a Balanced Diode Squarer (BDS) as depicted in Fig. 15) which
can be employed as part of such a compensator. Specifically, it can be used
to remove the second order nonlinear part of the signal. Since this circuit
uses diodes, the results of the diode analysis of Example 4 can be employed
to facilitate this BDS analysis. The dc-bias required to operate at the
proper diode quiescent point has not been depicted since it adds nothing to
the analysis and is blocked by the output capacitor.

+X O R AW ! RAAAAA
1 D 3
1
w C
1
! v [ 1 oy
2
X © = YWy =—WW~ Rg %;
2 D Yy
2
v
v

Fig. 15 Balanced Diode Squarer Circuit

For the purpose of analysis, the BDS circuit can be redrawn as appears
in Fig. 16 The resistors R1 and R2 and the resistors R3 and Ru have been
matched in Fig. 16. Furthermore, the two diodes are also matched; if the
circuit is constructed of discrete components, this diode matching can be
accomplished with additional external resistors and capacitors "hung-on" the

diodes.

The loops of the circuit have been chosen so that only a single loop
current passes through a diode; this choice simplifies the algebra of the

_uo_
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analysis. The system or loop equations, and the output equation for the
circuit of Fig. 16 can be written as

R, 1, *R 1, *up = x (74)
R,I, *R, I, +u, ==x

R, I, *2, 15 +2.1, =X
RiI, 213421, ==X

y= RS{I3+IM}

R_Cs+1

5
s , and Za ZS+R1+R3. Now by using the results of the

diode analysis of Example 2, the voltages u, and u, can be written as a

function of the loop currents. Then I, and Iu can be expressed as Volterra

3
NLTFs operating on x. Then the first three Volterra NLTFs of the output are

where Z =
8

simply formed.

R u R

1 1 3
MMV ﬂ '\A«V\v
+
X
: y L
- v v
l D Wi’ 1= % —] W
v R y ¢
5
+
X
T x Iy
- v Vv
M = _‘WW
R1 u2 R3

Fig. 16 BDS Circuit Redrawn
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Solution.

I,= E I, = Z Hu[x]

where the second index on the I's indicate the order of the Volterra term,

These expressions can be restated more concisely as

I= ) I = Y H[x]
T k=1K k1 K

From example 4, the voltage u, can be expanded as

1

u = P1[I1] +P2[I1] +P3[I1] +HOT (75)

where HOT are higher order terms which will be ignored in this analysis.

There is a similar expansion for the voltage u2. These expressions for u1

and u, and the Volterra expansions of the loop currents can be substituted

into the loop equations of equation (74). Then the input voltage can be

scaled to ex.

@ w L] ]
K k K
R, } eI +R, Y eI +Y)PL Y eI, ]1=c¢x
Tgat 1K Tear 3K nel M a1 'K
[ k » k o L k
R, J €1 +R, Y eI, +JP[ }elI J=ex C e
a1 2K k=t WKopoy Moy 2K Sl
R, J eI +Z2_ Y€1, +2_ Vel = ex
Ty 1K s, 3k Ts Lt Thk
v Kk B T Kk
R, ? e Ly *Zg 1€ I3k vz, ! e =—eX
k=1 k=1 k=1

The left-side of the first equation above can be written as
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"7 AT AT TR R, Ay,

R, EII1 1R €2112"“1 5311 3*Ry ¢ I3*R, 62132"“1 53133 *Py Ce' I *52112"5311 37 :;ii
ke
.‘ +P2[€1I”+52112+e3113] +P3[£1I”+22112+e3113] +HOT -
|
S R e'I,, +R T +R‘e3113 +R1e’131 +R192132 +R1e3l33
% +e'P 01,1 +e%P [T, )] +e391[113]
+e?p,1,,%] +ed2p (1, 1 )]
+53P3[IH3] +HOT )

where liberal operator notation is employed. There is a similar expansion

for the second equation of the above loop equations.

And finally, the powers of € can be collected.

.- . . m. -
ERRY FLELPLURTL IR

P,
~

Yoy
- 1 ::\.‘
- € ot
: ) ot
' R L, +R1131 +P1[I”] = X (76) he
N Ryl *Ryly tPlIp ] =x
| Rl Zaly 25l =X
I Rilar *Zslg *Zaly =X -
_ where the diode Volterra relationship P1 is a linear relationship ; viz.,
ﬁ -1 et
-_: P1(S)— L1 (8)= 1/{cos+x1}. s
- -\ » '_
N In this particular case, it is not necessary to solve for the first s a
s U 0
order loop currents to obtain the first order output y,. From inspection of Sy
! this system of equations, because of the symmetry of the equations it is _F" -
' RS SR S
" apparent that 1_,,= -I,, and I,.= ~I_. . And therefore, RSO
2 1 LY 31 N
) R
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y,= 85{1314»11”} (1 XS

*a
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Nevertheless, the loop equations must be solved to obtain ﬂ1 which will be

required in the evaluation of the higher order transfer functions.

To this end, equations (76) can be restated as

S S AT FS T,V S AR

(R,+P,} O R, 0 1
0 (Ry*Py} 0 S SER 7V 5 S L (78)
' R 0 z z 1
1 a s
- 0 R Z Z -1
- 1 ) a
\\ — — - —
g It therefore follows that
! 1 g}
2 H= (A7) (79) ;.
2
N Rl *Rilss *PLI,) = PlI ) (80)
- R.I sR.I.. +P.[I..]1=P.[I..2] e
" 1722 1742 1522 2t 721
r - Sl
N R1112 +ZaI32 +Zsluz 0 f:;"'“-
- Rily, *2gl3 *2.0, =0 _-
» which can be restated as :
_ P.[I 2]
- 2" 711,
P.[1I
R =2 0
. O

g v
|
|
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{1
-1 2= 21
H,= [A] 0

The second order output y2 can now be formed as
Y2= R5{13+Iu}

But this expression is unduly complicated. To gain more insight into
this second order output, reexamine Fig. 15. The actual squaring of this
BDS circuit is performed by the resistor-diode combination RI—Dl and R2-D2.
The resistors R3 and Ru are employed to sum the voltages u, and Uss and
therefore these two resistors usually have impedance values which do not
"load" the preceeding diode resistor combination. Furthermore, the
combination C and R5 are added to eliminate any DC-term; and it is designed
so as not to load the circuit, and to pass all frequencies of x. Therefore,
the output y, can be essentially described as a filtered square term as

depicted in Fig. 17.

1 Yy

X i Co8 +A1 -2{013 +A2} — Y,

Fig., 17 BDS Second-Degree NLTF

Here it is not necessary to solve explicitly for 23. Look again at

Fig. 15; because of the symmetry of the circuit,

Linm “Ion

Now look at the voltages u1 and Uy

_us.—
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: u, = 91[1“] +P2[I12] *93[113] +Pu[11u] + e
u,= P1[121] +92[122] +P3[123] +Pu[12u] + eee

S Ao SRS N S 18 N 6 0 N SO0 IROY

—P1[I11] +P2[I12] -P3[I13] +Pu[11u] + oo

So that the voltage w and y consists only of the even orders. All odd

orders are zero; viz.,
- =0
Y3

This same result can be obtained by recognizing the symmetry in the

equations used to solve for I, as was done in solving for 51.

3

As stated earlier, usually the effect of R3, Ru, RS’ and C are of no
o consequences to the application., But more often the "filters" of P1 and P2
Zi are significant to the application. If a cascade filter requires a

component K[xzj, then the BDS circuit can be used as
e 2
- Kc[y]= K[x“]

where KC includes K operator and the inverse filter operations of P1and P2.
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