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FOREWORD 

lied Mathematics and Computing was held at the 
Atlanta, Georgia on 13-16 May 1985. The 
is the Army Mathematics Steering Committee 

( A M S C )  l Its members would like to thank Professor William F. Aimes for his 
invitation to hold the conference at his university, and for his outstanding 
work as the Chairperson on Local Arrangements. He, along with Professors M. 
F. Barnsley, Albert Bharucha-Reid, and R. W. Schafer organized the three 
special Sessions for this meeting. Unfortunately Professor Bharucha-Reid 
passed away before this conference was held, but his help in selecting the 
speakers and other planning phases contributed a great deal to its success. 
He was a skillful mathematician whose advice and council was often sought, and 
to many in the scientific community he was a friend and so as time gives on he 
will be missed more and more. 

The program of the present conference consisted of three parts, namely: 
(a) Seven invited addresses; (b) Three special sessions; and (c) Contributed 
papers by Army, academic and other scientific personnel. The sixteen speakers 
for the special sessions were selected by their organizers. These sessions 
carried the titles: "Algorithmic Issues in Multi-Dimensional Digital Signal 
Processing," "Applications of Chaotic Dynamics," and "Invariant Solutions of 
Partial Differential Equations." The subcommittee of the AMSC that oversee 
these conferences was very pleased with the high scientific quality of the 
fifty-one contributed papers. The Army scientists had an opportunity to hear 
and talk with many nationally known mathematical scientists during the course 
of this meeting. Some of these were the invited speakers, who are listed 
below together with the titles of their addresses, but also with many others 
that appeared on the program or were members of the audience. 

SPEAKERS AND AFFILIATION TITLES OF ADDRESS 

Professor J. T. Schwartz 
Courant Institute of Mathematical 
Sciences 

Identification of Partially Obscured 
Objects in Two and Three Dimensions by' 
Matching of Noisy "Characteristic 
Curves" 

Professor S. Rosenblatt Bifurcation and Stability of 
Illinois Institute.of Technology Viscoelastic Fluid Flows 

Dr. V. K. Stokes 
General Electric Company 

The Role of Modelling in an Industrial 
Environment 

Professor J. Strickwerda 
University of Wisconsin 

Professor S. N. Atluri 
Georgia Institute of Technology 

Finite Difference Methods for 
Elliptic Systems 

Computational Aspects of Finite Strain 
Inelastic Solid and Fracture Mechanics 

iii 



Professor J. R. Rice Using Supercomputers: Today and 
Purdue University Tomorrow 

Professor M. H. Schultz 
Yale University 

Parallel Computing and Fluid Dynamics 

A large number of individuals contributed to the success of the conference, in 
particular, the many speakers, the chairpersons, the host personnel, and the 
active and enthusiastic members of the audience. The members of the AMSC were 
please that most of the speakers were able to find time to prepare their 
papers for these Transactions. These research articles will enable many 
persons that were not able to attend the symposium to profit by these contribu- 
tions to the scientific literature. 
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ABSTRACT 
I 

This paper considers the problem of using ‘depth’ images of portions of 
3-D objects, drawn from a finite vocabulary of potential objects having 
known geometry, to identify the objects and determine their orientatiorn when 
the objects ;I.re viewed from an unknown angle. Several techniques, including 
a simple ‘probing’ method which can be used when at lease two object 
features constrain its orientation, and the use of semi-local invariant 
parameters of shape are suggested. 

A robust boundary-matching method, which determines best partial 
lcast-squares matchings rapidly is then described. Finally, techniques for 
using the silhouette of a polyhedral body to determine its identify and 
orientation is described. 

1. Introduction 
The goal of rob& is to develop general-purpose mechanisms having ‘opera- 

tive’ intelligent, i.e. that rudimentary level of intelligence which is displayed in 
the every-day handling of objects in the workplace and the home. For this level of 
capability to lx realized, a robot will need to maintain at least a partial model of 
its environment internally. Such a model would represent the (known aspects of 
its) environment in syrnMic fashion, as a collection of ‘obje.&s’ having known 
shape and orientation. Rigid objects are simplest; however a complete environ- 
ment model would eventually have to accornmxlate flexible objects like rope, 
paper and cloth, liquti, sofi objcxts (e.g. mashed potat-.), amorphous objects 
like dustpiles or heaps of crumbs, etc. Foregoing these interesting but more diffi- 
cult problems, the following remarks will concentrate on the relatively simple 
class of rigid objects and on the problem of identifying such objects and determin- 
ing their orientations so that they can lx manipulated by a robt. Of course, 
manipulation also requires an understanding of ob@ properties and inter-object 
relationships such as centers of mass, relationships of support, and coefficients of 
friction, all of which are concepts which a capable rofxt wiU have to understand. 
However, we ignore all these issues to focus on the underlying, still unsolved, 
problem of how to ragnize objects, seen from unknown orientations, and psi- 
bly seen as parts of complex multi-object scenes. 

‘Work on this paper has btxn suported in p art by Office of Naval Research Grant NOOO14- 
82-K-0381, by a grant from the USIsrael EJinational sdcna Foundation, and by grants from the 



Object recognition begins with raw perceptions, i.e. pixel arrays. These 
must be analyzed into objects which, if rigid, can h identified by the shapes of 
their bunding surfaces (but may also have properties other than their shape 
which can lx used to identify and locate them, including color, albedo, acoustic 
reflectance, magnetic behavior, visual texture, electrical behavior; indeed, any 
property that a sensor can de&t). To analyze the objects in a robot’s environ- 
ment will be more or less diffmlt depending on whether the ob@zts which can 
appear are known u priori, and on whether observation can be maintained con- 
tinuously or only applied occas’ionally. 
(1) In a highly controlled environment, it may be- known that only certain 

objxts, or only objects belonging to known classes, whose members are pre- 
cisely characterized by a small number of parameters, can be present. If 
these objects are known to change position only when the robot moves them, 
and if none of the robot’s manipulations miscarry, it may be possible to keep 
track of the objects, without much sensing, by a kind of ‘dead reckoning’. 
Even if some manipulations miscarry, it may bc known (or plausibly 
assumed) that only certain of the objects will move to unknown positions 
when an attempted motion fails. It may then be possible to fmd these objects 
again by differencing the pre-manipulation Scene and its miscarried result, 
e.g. after dropping coins on a smooth floor one can locate them again by 
searching visually for shiny raised areas on the floor. 

(2) Even if some of the objects move indelxndently of the robot system, it may 
be psible to maintain a valid environment model by keeping the moving 
objects under continuous observation. In that case the robot system may be 
able to follow the position of all objects at all times, and will, e.g., retain the 
capability of returning them to their base positions on command. For exam- 
ple, a future home robot system with multiple eyes built into the walls of a 
house might lx able to keep all a family’s dishes under continuous observa- 
tion during a meal or party, after the conclusion of which it could return 
them to their standard positions (after cleaning). 

(3) When new objects can appear in the robot’s environment, they will at first lx 
perceived simply as unexpected surfaces. It will then lx necessary to analyze 
these surfaces into the objects for which they belong. This process may be 
able to exploit u priori knowledge that only objects of certain categories will 
ordinarily appear in the robot’s environment. 
To be fully useful, the rag&ion capabilities described in the preceding 

pages need to be org&ed appropriately. What is wanted is basically a pair of 
procedures. The first of these should be an object acquisition procedure to which 
a succession of objects can be presented and their identities supplied. The aquisi- 
tion prdure should reoord the object shapes in some suitably compressed form 
and can pre-prms these shap so as to obtain a collection of efficient 

. 
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discriminating tests for subsequent object identification. The second procedure I 
wiJJ then u~~this data to ingeh a scene containing we or more of the& objects 
and convert it into a list of the objects present, each with its identity and orienta- 
tion. 

Going one step further, we can describe the goal of vision-based object 
rtxognition system as follows. The system should maintain and continually update 
a set of ‘registers’, one for each object observed; each of these registers should at 
all times contain the position and orientation of the corresponding object. For 
moving objects, the system should update this information continuously. This 
implies that after initial scene analysis the system must frequently prolx to deter- 
mine how the objects in the scene have moved, and whether new objects have 
entered the scene. 

The values present in such continuously updated registers GUI be considered 
to represent the natural outputs of an advanced robot vision capability since they 
are just what the system needs to control and manipulate its environment. Practi- 
cal progress in sane analysis will be defmed by the classes of 2-D and 3-D objects 
for which we are able to make such a symMic interface to the real world avail- 
able and reliable. 

2. Advantageous Forms of Raw Data 
Visual information is most useful if it is given as 3-D visual data, i.e. if true 

3-D coordinates are immediately calculated for all points oberved. We note that 
devioes which provide such 3-D data, usually based on laser&am scanning or on 
use of specially ‘structured light’ are commercially available already; see e.g. 
w91, w31, [T831* 

The crucial advantage of 3-D vision is that it allows images to be acquired 
by arbitrarily many eyes. Whereas to take ordinary (2-D) images acquired by 
several eyes and combine them is not easy, multiple 3-D images of a single scene 
combine in a trivial way, since they all refer to surfaces in a common geometric 
space. This makes it possible to use arbitrarily many eyes, some fixed, others 
mounted on moving parts of the rolxt system. (Eyes need to be mounted on the 
robt itself if either the robot can roam freely, or to ensure that the space near 
moving portions of the rob is not obscured, either by an intervening object or by 
parts of the robot itself. This second purpose may require specialized eyes of 
appropriate form and position.) Note that an ‘all seeing’ eye system of this sophis- 
tication subsumes a quite satisfactory proximity sensor, and makes other forms of 
proximity sensors supfhous. 

Of course, this still leaves open technical questions such as: how to combine 
separate observations; what to do when surfa= seen by more than oue eye differ 
discernably; and when to reject au interpretation txxausc of unaaptably large 
discrepancies. Nevertheless 3-D imagw are basically favorable for combination, 
while 2-D images are basically much less favorable. 



Whether depth images or silhouettes are in question, we shall assume that 
the objects present in the Scene to be analyzed are drawn from some known col- 
lection of possible objects o,, _ _ . , 0,. This assumption makes the image analysis 
problem ‘objective’ rather than ‘psychological’: one just wants the computer look- 
ing at a scene to calculate an integer or a finite set of integers that tells us exactly 
which of a known list of oossible candidate objects it sees. and from what ankles 
it sees them. However, o-ur simplifying assum&on still leaves us free to consider 
any one of a scale of image interpretation problems of gradually increasing diffi- 
culty, all of which are ‘objective’ in the sense just mentioned, and all of which 
would contribute robot capabilities of practical significance if solved: 
(1) The bodies present in the scene can be wholly visible or may IX partially 

ObSCUXd. 

(2) The Mies can be straight-sided (polygonal or polyhedral), or curved. 
(3) If the t&ies present in the scene are polygonal or polyhedral, they may 

either lx known to he in some constrained orientation, (e.g. standing on an 
edge or face, atop a flat surface), or can be present in qmpletely arbitrary 
orientations. 

(4) We may TV able to assume that the scene contains just one object, or may 
need to deal with scenes containing multiple objects, which may have either a 
single uniform orientation, or many different orientations. 

(5) Instead of fixed objects, we may need to deal with objects which are known 
only to belong to one of a finite sequence of object classes Ok. _ _ _ ,0,(s), 
each of which depends on one or more shape parameters s (e.g. in a home 
robotics application,- cylindrical cans of various heights and widths may be 
encountered). 
This list defines a family of problems for whose solution appropriate algo 

rithmic or heuristic approaches are needed. The efficiency of the approach 
selected will be important, esmally in the dynamic case where the system needs 
to keep track of moving objects in real tune. 

The remarks which follow will d&h various semi-algorithmic heuristics of 
gradually increasing complexity which can IX used to handle some of the prob 
lems listed abe. Some of these approach= have been simulated, and where pas- 
sible we wiLl note the results of simple numerical experiments. The approach pro 
posed is related to one explored in a series of papers by Y. Shirai of the Tsukuba 

.on Techniques 
The visual data gathered by a 3-D sensor, i.e. ‘3-D’ or ‘depth’ images, can be 

grouped in a table listing all points in 3-space which he on some reflecting surface 
of one of the objects present in a scene. However, since all sensor-gathered data 
is partly corrupted by noise, acquisition of 3-D images leads at once to the prob 
lem of how to identify objects, given slightly noise-qrrupted images (or, in other 
cases, silhouettes) of them. 



Electot&.n.ical kboratory in a series of papers; see [OSrS], [OS79], [!579], 
wow, Pm. 

4. Recognition of 2-D Objects 
Two basic approach= to recognition of 2-D objects drawn from a funk ool- 

k&ion of candidate objects can IX proposed. The first approach applies successive 
‘probes’ to the object, gathering sufficient information to discriminate it from 
among other potential. obje.cts (and to determine its orientation). This approach 
deals particularly easily with simple polygonal objects, but sidesteps the issue of 
shape description. The second approach associates a global shape descriptor with 
each object viewed, and then matches this descriptor to pre-calculated similar 
descriptors of the model objects expected to be seen, 

Recognition by Probing 
By processing raw image data in simple ways we can apply various logical 

‘probes’ to it. (In th e absence of visual data, probing can be accomplished 
mechanica.lly by detecting object contact using touch sensors.) Each such probe 
can be ooosidered to move along some specified curve y from a given position in a 
given direction until the first intersection of y with an object present in the scene 
is detected. The curves along which one probes can be straight lines, cirdes, etc. 
If only silhouettes of an object are given, we can still think of kilhouette pobes’, 
i.e. proks in the silhouette plane which end on encountering a point of the 
silhouette boundary. 

5 



Figure l(a): Probe of a 2-D polygonal object 
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Figure l(b): Depth probe of a 3-D object 



figure l(c): Silhouette probe of a 3-D object 
(Distance from camera of point p need not be known.) 

To see how easily objects can sometimes be identified by probing, consider 
the simplest 2-D case, in which we are given a polygon standing on one of its 
edges. In this particularly elementary situation, the first probe conducted will 
establish a point against which the polygon can be considered to ‘fit’, and then, 
knowing the point at which the probe contacts the polygon, we know that the 
polygon’s possible positions are restricted to a ftite set. This allows us RO build 
the finite set of points at which a further probe line could intersect one of the 
polygons which might confront us, in one of its finitely many possible orienta- 
tions. Suppose we divide this prolx line into minimal raolvable intervals (deter- 
mined by the precision of the instrument with which proh are conducted). 
Count the number of such intervals which contain points of intersection and cal- 
culate the entropy of the ass&&xl sutxlivision; this is the resolving power of the 
prok line. For efficiency one will then want to probe along the line whose resolv- 
ing power is greatest. Only a subset of the original set of polygons and orienta- 
tions will remail as candidates after this frost probe, and then one can apply a 
second protx which has greatest resolving power for this subset, etc. The tree- 
like search which results will determine the identity of the observed polygon and 
the edge that it is standing on. Normally very few prob will be required. The 
first probe should lx at a level which minimizes the expected number of probes 
subsequently required. (This style of searching assaiates a notion of ‘entropy’, 
relative to the imprecision of the probing instrument, with the given set 
op.... O, of objects; this ‘entropy’ is likely to have interesting invariance proper- 
ties, and deserves closer study.) 

Note that the probing procedure outlined is independent of any assumption 
of convexity. 
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Next consider the somewhat less trivial caSe of a convex polygon whose ini- 
tial orientation is totally unknown (but assume that we know one point interior to 
it). Probe the polygon twice to determine two puints on its periphery, and then 
track the segment between them to determine whether these two points belong to 
the same polygon edge (we assume that such a ‘generalized probing operation is 
available). If not, probe at a point intermediate between the two first @MS, and 
repeat. Eventually we must find two points which lie together on the same edge 
of the polygon; this reduces us to the caSe considered previously, since the 
pOlygon may be considered to be ‘standing’ on this edge. 

Similar ideas can be applied to the more interesting case of a curved 2-D 
region. To avoid complications suppose fmt that the region is convex. If WC can 
locate one pint P fixed relative to the region, then, by probing along a circle 
about this point as center, we can orient the region so that a chord through the 
pint P having a standard length D can lx regarded as horizontal. This standard- 
izes the position of the region to one of a finite collection of possible positions, 
and then we can use the kind of ‘probe tree’ described abe to determine which 
one of these possible orientations it has. 

If the whole of a region is visible, its centroid can serve as such an anchor 
point. Similar use could also be made of the two most distant points of the 
region, of the point of the region most distant from the line connecting these two 
pints, etc. Polygon corners can obviously be used as anchor points; acute 
comers, of which only a few can exist, are obviously preferable to obtuse comers. 
It is only necessary that any pint which probing might identify with a particular 
anchor point P should txlong to some relatively small known set of points ftxed 
relative to the region, but when the anchor point is ambiguous, the probe tree 
which we build up must reflect all the possible points that might be confused with 
it. 

Next consider the caSe of partially-obscured 2-D objects. The preceding 
observations suggest that the fu-st step in recognizing partially obscured objects 
should be to define noise-immune anchor points which can be lmted even if part 
of the region is obscured. This case is of course more difficult than that in which 
the whole object is visible, because 
(1) For totally visible objects, obvious ‘global’ anchor points such as the object 

centroid are available, while for partially occluded objects anchor points must 
lx calculated from relatively ‘local’ data. 

(2) If the object king observed is non-vex, then the (bundaty of the) convex 
hull of the portion king observed need not he on the convex hull of the 
whole object (see Fig. 11). 
of course, if the observed portion of the object has sharp discriminating 

features such as acute comers, then finding an anchor point will IX relatively 
easy. If no such sharp features are present, the problem becomes more difficult. 
One way of approaching it is by asskating the object with some appropriate, 



geometrically defined function on the unit circle/sphere of directions in 2-D 
(rap. 3-D) space. The function must lx one whose geometric deftition makes it 
invariant with respect to Euclidean motions of the region to k analyzed. Whcn- 
ever such a.n artificial ‘color’ shows sharp transitions or peaks, these can be used 
to define the anchor pointi that we need. In effect, this notion of ‘artifxial color’ 
converts the shape recognition problem into the problem of recognizing ‘colored 
beachballs’ when these are seen from an unknown orientation, a problem for 
which the presence of spots or regions of sharply defmed color will clearly be sig- 
nificant. 

Artificial colors of the type proposed can be defined in very many ways, but 
we want to chose one which has peaks or which varies sharply in the vicinity of 
ge.ometrically significant bundaxy features of the t&y to be analyzed. One pas- 
sible scheme is as follows: take a moclifxd “carpenter’s square” MC.& consisting 
of two half-lines making some standard angle a ( a = 90’ would be the standard 
carpenter’s square) and fit it over the region so that btb of its two sides touch 
the bundaxy of the region. The point at which this contact WCLUS is determined 
by the orientation 0 of (some distinguished one of) the sides of MCS. 

Figure 2: Modified ‘carpenter’s square’ in wntact with two @nts 
of a body. ‘kading’ side is at angle 9 to the horizontal. 
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Let A be the apex of the modified carpenter’s square MCS. Take the seg 
ment mnnecting the two points of contact between the region and MCS, take the 
midpoint A and M of this segment, and then find and r-d the distance d(0) = 
d(O,a) between the point x at which the line from A to M crosses the region 
boundary. 

we record the length 
- of this se91 nent xA 

/ 1’ 
,/’ /,/ / ’ ’ + A 

CL7 

,/” /” / ,, /,, / / M 
i/;,/ /./‘/ Y’ 

Figure 3: Using a modsed carpenter’s square to measure a region’s aver- 
age boundary curvature. 

If the region were simply a circle of radius R, then the distance d(B)=d(B,a) 

would be independent of 9, and would in fact be R(sind!-l-1. Thus d(0) meas- 
ures a kind of average of the curvature of the periphery of the region; averaged, 
that is, over the section of periphery between its the region’s two points of contact 
with MCS. 

The angle a that can be used in measuring the periphery of a partially 
obscured region depends on what potion of the periphery is visible. To use an 
angle a, the tangent to the visible portion of the periphery must turn through an 
angle exceeding 180 O - a. The closer a approaches 180”, the closer (sink&)-l-1 
corn= to 0, and hence the more sensitive d(0) brnes to small measurement 
inaccuracies. 

If w is constant (for several va.lucs of the apex angle cx of our modified 
carpenter’s square MCS), then the region (or rather the visible portion of its peri- 
phery) must be circular, and hen= actually possesses no geometric features other 
than its radius. If d(0) is nearly constant, i.e. if the ratio of its largest to its smal- 
lest values lies near 1, then the (visible part of the) region will be nearly circular, 
and hence: relatively featureless geometrically. 0&e& this ratio will vary more 
substantiaLly, enabling us to locate anchor points relatively sharply. To expand 
up this remark, it is mnveniene to consider not d(8) but its logarithm D(0) = 



log d(0). By assumption, D(O) varies substantially from its minimum value (over 
the visible part of the periphery, which correspnds to a range of angk < = 2 P). 
Suppsc that the smallest change in D that we feel able to measure is a change l . 
Establish a su~sion of levels 8,6+t,&+k, . . . through the range of D. For each 
of these levels 8,, divide the range over which 9 varies into disjoint intervals, each 
mtaining a point at which D take on the value &,, and each terminated by the 
first occurrence of a sufficiently large interval in which D dips below a,-~ or rises 
above $+L. Choose one representative point in each such interval, take this as an 
anchor point, and make corresponding entries in a probe?re.e. 

To’ identify a region using this information, we can subsequently survey it 
with a generalized vnter’s square of appropriate apex angle (depending on the 
amount of unobscured periphery available, which is appropriately measured in 
terms of the number of degrees through which the periphery has turned.) Once 
having measured the boundary in this way, fmd intervals as above; that is, inter- 
vals each of which contains at least one point 8 for which D(B)=E, and terminated 
in the same way as the intervals used to build the prok tree. Examine these 
intervals for each level s,, and take the smallest; this gives the most deftite infor- 
mation concerning the location of the corresponding anchor pint. Then divide 
this interval of orientations into subintervals, each small enough so that no point 
of intersection with a probe line can move by more than the standard measure- 
ment uncertainty of a prok when the object turns through a single orientation 
step. In effect, this rule defines the number of ‘micro-facets’ into which our pro 
cedure must divide the interval. 

Moving through this range of orientations by stepping successively ktwcen 
the intervals into which we have divided it, take the point x of Fig. 3, which lies 
between the point M and the apex A of the GCS, as an anchor point, and then 
execute (or simulate) a series of probes. This will eliminate incorrect 
orientations/identifications, normally quite rapidly, and leave only those orienta- 
tions consistent with the available data cunceming the visible periphery. 

Note that the number of orientations over which we need to search serially 
will be roughly proportional to 

min/Ij/var(DtT> 

where I designates an angular subinterval of the visible range of tangent angles 
(to the region periphery), 1 I 1 is the size of this subinterval, and D 1 I desig- 
nata the restriction of the function D to the subinterval I. Thus favorable cases 
are those in which a substantial part of the variation of D takes place in some 
small range of angles; unfavorable cases are those in which D varies uniformly 
over the whole of the visible angular range. Even in this unfavorable case, the 
range of angles we have to search will be limited to a fraction of the total angular 
range inversely proportional to D’s total variation. 

11 



The following additional technique can be used to improve the efficiency of 
the simple approach just outlined. Suppose that the function(s) D using which WC 
arc trying to identify and orient a region are mnstant or nearly constant over 
some substantial portion B of a region boundary. Then this section B of the 
kmdary is -likely to be close to circular, and of a known radius R. We GUI 
exploit this fact by mapping the visible portion of the boundary to a much smaller 
curve. This can lx done by moving each of its points P a known distance d (easily 
calculated from the estimated radius R) perpendicularly away from the tangent 
line at p. The image of B is then a significantly smaller curve B’. (The image of a 
perfect circle would plainly lx the unique point fmed relative to the circle, i.e. iti 
center.) 

Figure 4: Mapping a nearly circular curve into a smaller curve 
by ‘radial’ translation of its points. 

Once B has ken constr~~3ed, we can cover it with sufficiently small circles, 
which, hopefully, will not be very numerous. The centers of these circles form a 
coll~on A of possible anchor points, in the sense that when the curve is meas- 
ured (with a generalized txlxznter’s square) and found to have a D-value which 
only limits the region orientation to the large angular interval B, any point con- 
structcd in the manner just explained must lie very close to one of the anchor 



points in A.) 

5. Some observations concerning geometrically ‘colored’ and Q~olor- 
less’ curves and surfaces in 2 and 3 dimensions 

The issue crucial to some of the region identifutioa techniques outlircd 
above is how to find one or more ‘anchor points which can be used to standard- 
ize the position of the region. (Similarly, flat sides of a region define ‘anchor 
orientations’.) Once such an anchor point has ken found, the identification 
problem becomes very much easier. An anchor pint may lx5 unique, or, as in 
the case of a polygon, many possible points (vertices) may define useful anchors. 
Moreover, anchor points may IX uniquely identified by geometric invariants asso- 
ciated with them, or, as in the case of a regular polygon, a region may possess 
symmetries and therefore possess multiple anchor points which fall into logically 
indistinguishable categories. 

As we have noted, as sooa as a me is ‘painted’ with some owcrete or 
abstract ‘color’ which has significant variation along the curve, it becomes is easy 
to define anchor points; it suffices to take those points having some characteristic 
color, (but for this we want to pick a color which recurs only infrequently on the 
curve.) The rotational invariants ocmring in the preceding discussion give us a 
way of operating in situations in which no external color is available, by forming 
noise-immune geometric invariants and using them as generalized colors. (These 
‘geometric colors’ are most naturally asstiated with orientations of a measuring 
instrument and thus can most naturally be regarded as painting the circle rather 
than the region bundary under investigation. Siicc, in the case of convex 
&ii=, each orientation maps naturally to a point of the region boundary, this 
viewpoint loses no significant information.) 

We can &t understand the potential of this approach by considering those 
situations in which it must fail. These are situations in which the boundary curve 
being measured is completely ‘colorless’ relative to the geometric invariant calcu- 
lated, i.e. cases in which the battery of invariants we bring to bear have constant 
values over the boundary of the object being measured., Note that these are also 
cases other shape matching techniques will also tend to fail, because the same 
degree of matching will be attained by a large family of orientations differing sim- 
ply by Euclidean motions, making it impossible to dis criminate between these 
orientations. 

To be satisfied with a collection of geometric invariants, we will want con- 
stancy of the geometric invariants used to ‘paint’ an object’s boundary to imply 
that the bundary is inhcrentfy colorfess geometrically, i.e. to imply that its points 
are equivalent to each other under a Euclidean motion of the whole plane. 
Curves having this property must clearly be orbits of @nts under l-parameter 
subgroups of the group of plane motions, and hence must either be circles or 
straight linw (note therefore that if we can see the whole boundary of an object, 
the circle is the only possible colorless curve). Let us call a set of geometric 
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invariants umpk if any curie for which thm invariant3 are cxmstant over the 
length of a curve is necessarily straight or circular. (In addition, we want invari- 
ants that are stable relative to small perturbations of a ct.uve, and which are local, 
allowing them to bc calculated for nearly the full angular range through which a 
partially obscured convex curve turns.) Once we have an ample set of invaria.nts 
(also possessing the other properties just noted) we will have done as well as we 
can, in the sense that invariants better in any ideal sense are impossible. Similar 
considerations apply to cur~reg in 3-space and to curves which lie in other 
geometric objects of concern to us, particularly curves on the sphere. 

A similar of geometric ‘colorlessness’ applies to &es in 3-space and to sur- 
faces. A geometrically colorless me in 3-space is either a straight line, circle, or 
helix. A colorless curve lying on the surface of the sphere is necessarily a circle 
(not necessarily a great circle). A similar notion and remark apply to cc~lorings of 
the sphere; such a coloring fixes a point (which can then be used as an anchor 
point) unless there exists a continuous group of rotations of the sphere which 
leaves the coloring invariant, i.e. c(Rp) = c(p) for the mlor (or colors) c and every 
R in some continuous group of rotations. Here there are only two possibilities: 
either c is constant, or c is constant on each of a family of parallel circles on the 
sphere. In all other cases, either changes in the shape of one of the level curves 
4P) = COM will fix a point, or changes in the relative position of two level -es 
fix such a point. (For example, for each point p on a first (circular) level curve 
cw = COILT~~ we can take its minimum distance to a second (also circular) level 
curve c(p) - CO+, * unless the two curves are parallel, this function paints a vafy- 
ing geometric ‘color’ along the fmt curve, and (assuming infmite precision) this 
color fixes an anchor point. 

Next consider surfaces in three dimensional space which are geometrically 
colorless, either in the strong sense that all their points are geometrically 
equivalent, or in the weaker sense that the surfacz is invariant under some one- 
dimensional continuous subgroup of the Euclidean group. In the first case, the 
surface must have constant principal curvatures, and hence must lx a portion 
either of a plane, sphere, or circular cylinder. In the second case, the orbit of 
any point under the group of motions leaving the surfa= invariant must k either 
a straight line, circle, or helix (of pitch determined by the group leaving the sur- 
face invariant). Hence the surface must be either a portion of a cylinder (not 
necessarily circular), a surface of rotation, or a ‘helical cylinder’ (screw surfaae) 
defmed by its cross-section in a plane perpendicular to the direction of the corn- 
mon helix axis. 
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Fgure 5: Example of a ‘helical cylinder’. 
All pints of each helix on the surface have equal color. 

While interesting as mathematical exampIeS, helical cylinders of this kind are 
(except for machine screws and their colored equivalent, barber poles) rare. 

6. Shape Descriptor Matching 
Probing methods like that dtibed abwe use the actual periphery of the 

region to IX identified, and do not em&iy any global concept of region shape. 
This contrasts with other identification techniques that work from some abbrevi- 
ated shape descriptor which can be asstiated with the priphexy of a convex 
region, rather than from the periphery itself. The stability and efficiency with 
which thcsc descriptors cao IX matched is crucial for such methods. A few 
mathematical observations can IX made concerning this point. Assume first that 
the observed region is expected to be convex. Such regions are often descrit>ed by 
their ‘turning function’ O(S), i.e. the function which, starting from some arbi- 
trarily designated point of its periphery and proceeding counterclmkwise around 
the periphery, reoords the change in angle of the counterclockwise tangent as a 
function of the arc-length s traversed. This function is monotone increasing, and 
varia through 2n as 8 goes from 0 to its final value S, which is the total priphery 



of the region. The value S simply d&k the total size of the region, and (if 
the whole Periphery is available) we crm normalize it to 2?r, so that 8(s) is morn 
tone and goes from (0,O) to (271,2~r). 

The function O(S) h& various useful properties: 

(1) O(S) is invariant under any Euclidean motion of the object o in question. 

(2) O(J) depends in a very simple way on the starting point on the boundary of 0, 
that is, if the starting* point shifts by so> the graph of 8 undergow a 
correponding horizontal and vertical shift, i.e. simply changes to 

W(s) = e(J + so) - e(@ 

(3) 

We can still use the shape descriptor e($), measured along the visible portion 
of O'S boundary, even if 0 is partially occluded, i.e. even if only the prtion 
of 0 which lies right of some (known) directed line is visible. IJI such case 
the graph of 8 will simply be an (appropriately shifted) portion of the graph 
for the whole boundary of O. 

e is parametrized by the arc length of the boundary of 0, which can kcome 
unstable under small perturbations if convexity is lost. That is, if we 
represent the noise-corrupted boundary of an observed object 0 simply as the 
polygonal line passing through all observed boundary points, the resulting arc 
length can differ greatly from that of the ideal, noise-free object, in which 
case the shap d&ptors for the observed Wy and for its mdel counter- 
part will not approximate one another. To overme this difficulty, we can 
compute the convex hull of the observed data points, obtaining a convexified 
observed object, and then match the shape descriptor for this convexikd 
observation to pre-stored data describing various model convex bodies. 
If the region is polygonal, the function e(s) is a step function whose discon- 

tinuities tend to be troublesome when a slightly perturbed measurement of e($) is 
matched against a pre-stored model. To avoid this problem, one can simply turn 
the graph of the function 45” clockwise, thereby converting it into the graph of a 
revised function T(S) whose derivative is bounded by 1 in absolute value. 
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Figure 6(a): Graph of O(S) for a polygon. 

figure 6(b): Graph of O(S) after rotation by 45”. 
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To identify an observed convex region 0 (which can bc partially obscured), 
WC can then compute its descriptor O(S) and try to match it to similar shape 
descriptors computed for model regions 0,, . . . ,O, corresponding to the various 
2-D obj&s which might appear in an observed scene. 

In situations of this kind, matching is customarily implemented by means of 
the fast Fourier transform algorithm. More s@fi&ly, let ~($1 denote thl graph 
of boundary turning-angle vs. arc length computed for a (convexifkl) observed 
polygon o after this graph is’tumed cl&wise by 4s” (if 0 is obscured by a line 1 
then the graph of t should start at one point of obscu@ion (i.e. one intersection 
of 1 with the bounda.ry of o) and end at the other such point). For each of the 
specified model objects 0, let 7, denote the corressponding (rotated) graph for 0,. 

If we can use the ~2 metric in shape descriptor space, the object 0, matching 
o most closely is that which minimizes the distance 

t 
(2) 9 Ih,(*++l - ?j(dd 7 W12~ 

0 0 

Actually, we fmd it better to change (2) slightly so as to find the best “vertical fit” 
between T,(X+Q and E(X), i.e. to minimize 

In (3) the best value of c is given by 

(4 c = c(do) = $ j(Tj(x+da) - E(x))& . 
0 

With this value of c, (3) kxrnes 

(5) y 
I 

= 

where in the third integral in the last form of (5) we take !, to be defined as zero 
outside the interval [o,L]. This allows the minimum a-g in (s) to tx rewrit- 
ten as 

(6) rr$n ( ‘/(dc) + L) - IJ(dd) - $ [ K,(do + L) - gq - jp~ I2 
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Since the most expensive part of the computation (6) is simply a convolution, it 
follows that, after discretization to n interpolating points, we can calculate the 
minimu (6) (for each j separately) in time O(n log n), using the fast Fourier 
tiansform technique. 

Direct Match of Rotated 2-D Objects 
A cruder but stabler and still quite effective 2-D shape matching scheme can 

also bc implemented efficiently using the fast Fourier transform. In this method, 
we simply take a sequence of points qually spaced along the perimeter of a (con- 
vexifd) observed polygon O. More precisely, we take a sequence (IQ, . . . ,UJ of 
pints in clockwise order along the boundary of the convex hull of o such that alI* 
the arcs tstween successive points ur and c++~ have qual lengths (which must 
therefore lx S/n, where S is the total length of the periphery of 0). We then wish 
to match two such sequences (II& and (v,)j”,l corresponding to an observed 
(c0nvexQk.d) object o and a model object M respectively. Assume first that the 
whole boundary of o is visible. Matching amounts to finding a Euclidean motion 
E of the plane which will minimixe the L, distance lxtween the squenm (~a,);~~ 
and (v,)yml; i.e. we need to compute 

A = njn &a, - v,12 
J-1 

To simplify this calculation, first translate o so that its centroid lies at the origin, 
giva! 

/gUJ=O 

NextwriteEasEn= ~,a + P, R, denoting a auntercl=kise rotation by 8. Then 

But 

c l *R8u, = m.Ro~uJ) = 0. 

Hence m and 8 a- independently in A and we can minimize their contributions 
separately. 
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To minimize over I simply put 

As to 9, we need to compute 

“=yx iRt~-v 
J-1 e” 

Regarding the vectors u,, V, as complex numbers u,, v,, we can rewrite this as 

Altogether this gives 

1 
A = 9 lv,i2 I2 2 9 

J-1 
where oxv denotes the (Zdimensional) cross product of the vectors IJ and v. 
(Note the similarity between (‘) and the formula for the best matching between 
two turning-angle shape descriptors given in the preceding section.) 

If o is partially occluded or appears in an unknown orientation, we have to 
match the sequence (u,)+~ to each of the contiguous subsequences (~,+~)j-~ of the 
(circular) sequence (v,)Jmyl, for d = 0, . . . ,m-1. (We assume that m 2 n, for other- 
wise the (partial) periphery of o is too long to match M.) 

For each such d (*) becomes 

& in the preeding andysis, the minimum of the values A(d), d = 0, . . . ,m-1, can 

IX found in time O(m log m), using the fast Fourier transform. 
It is interesting to note that the observations made in the last few pages gen- 

eralize easily to curves in three dimensions, or, more generally, to any situation 
in which a model curve or surface U(O) depending on one or more parameten w 

must be rotated and translated to match a mtiel curve or surfam V(W) as well as 
possible. We a& to assume, however, that the matching operation involves no 
change in parametrization for either of the functions a(w) or v(o). 

Suppose more s@f&.ly that we are given two descriptor functions U(U), 
V(W), Ed, corresponding respectively to an obscnwzd object o and a model object 
hf. WC need to fmd the Euclidean motion B (e.g. of 3-s-) which minimh~ 
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A = rrjn { lb(w) - v(w)12 dw 

As in the 2-D case, we translate o so that its centroid lies at the origin, giving 

I u(w) dw = 0 

Write E as EU = RP + a, where R is a rotation. Then 

’ A = g$ s wn(w) + a - v(w)12 dw = 
* 5 

Iv(w)12 dw + lS11a12 - 2 s a-v(w) dw + I 1u(w)12 dw + 2! a*Ru(w) dw - 2 i Ru(w)-v(w) dw 
5 5 

But 

[ a.Ru(w) dw = a-Ru u(w) dw ) = 0 . 
s 

Hence a and R appear independently in A and we can minimize their contributions 
separately. 

TO minimize over a simply put 

a = 6 I v(w) do 
5 

As to R, we riced to compute 

S = mRax I Ru(w)-v(o) dw 
5 

To find 6, first calculate the matrix A given by 

A,, = J Ui(w)V,(W) dW 9 
S . 

(where iJ = 1,2,3 if we are dealing with a curve or surface in 3-space). Ln terms of 
thematrixAweca.nexpress6a.s 

8 = lyx fr(RA) 

1 
To maximize I, decompose A as A = QJf, where Q = A(A*A)IT is a pure rota- 

1 
tion and H = (A*A) 2 is positive defmite symmetric. This givez3 

6 = nyx rr(RQH) = ryx rr(RH) = rr(H) = rr((A’A)+) 

To see this, note that since the trace is invariant under rotation, we can assume 
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that H is diagonal. But for a diagonal positive deftite matrix (AI) and a rotation 
matrix (‘r~) the trace of the product 2 A,‘,, can Ix no larger than C h, and can 
assume this value only when rrl = a,,. 

Overall, we have 

A = j- Iv(o)12 dw - (“1 

showing that the optimal rotated match between 0 and M can be found in time 
proportional to that needed to integrate the various functions appearing in (* *)$ 
i.e. proportional to the number of data points used to discretize the curves or sur- 
faces u and V. 

Much as in the 2-D case considered previously, these formulae can be used 
to match observed 3-D cuntes parametrized by arc length to similarly 
parametrized model curves. Matching can be achieved in tie o(n log n) by Using 
the fast Fourier transform, even if the observed curve o is partially obscured. 
This remark is potentially applicable to matching of ‘iso-color’ curves on 3- 
dimensional surfam. 

There are two difficulties in extending the matching technique just descrilxd 
to partially obscured surfaces. The first difficulty is to parametrize 0. This point 
is discxssed below; but the.obviow parametrization using the centroid that can lx 
used in the unobscured case is not available for partially obscured objects. 

A second difficulty involves the computational cost of matching. Suppose 
that the centroid of o (or some other anchor point common to both o and M) is 
not known because o is partly obscured. TIen we have to match the visible par- 
tion of O'S surface against all psible similar portions of M’S surfam, aud that 
may force us to iterate over (an appropriate discretization of) the 3-D rotational 
group R,. This means that if we discretize R, into n3 points, and for pe of 
integration discretize S into n2 points, we end up with an O(d) matching pr(~ 
cedure, far too slow to L useful. What is missing here is an appropriate generali- 
zation of the discrete fast Fourier transform algorithm to the caSe of (a discre- 
tized form of) the group 0,. Even so the complexity can bt reduced to O(n410g n) 

by using the standard fast Fourier transform to handle all n members of O, which 
transform the north pole of S to the same point on S, all simultaneously. TO do 
better than this, a generalization of the fast Fourier transform which can give 
some rapid way of evaluating integrals on the sphere is needed. 



2 The authors would like to thank Qlarlts Kim for assistana with the ahAim dac&cd 
in this section. 

7. Numerical Experiments 
‘Ihe plausibility of the 2-D matching schemes suggested abave m be con- 

firmed by simple numerical simulations. For such simulations we begin by gen- 
erating noisy star-shaped obj&s, repraenting hypothetical ‘measurements’. 
These are generated by taking ideal convex objects, and perturbing some specified 
mu&r of points on each of their sides by adding artificial randomized noise to 
their distance from the object centroid; this noise ranges between 1 - IIU~~JO~~ 

and 1 + dse~~nrl, where mise~~nsr is a specifiable parameter controlling the 
amount of noise applied. A line of obscuration can also IX specified for each 
simulation run, in which case all points of the polygon lying to the right of this 
line to be omitted from the simulated measurement. Each generated object o is 
then matched against a collection of ideal cOnvex objects, including the one from 
which o has been generated by applying the ake random perturbation. 

Each of the two preceding heuristic matching schemes has ken simulated. 
When the matching algorithm finds that two or more ideal objects have nearly the 
same shape-descriptor distance from a shape-descriptor it reports the error or 
ambiguity in specific terms. 

Easy simulations have ken run with the library of convex objects shown in 
the following figure. The results of these simple experiments are encouraging. 
Both matching schemes described identify the correct model object in almost all 
trials. Exceptions WZE in cases when an observed object is obscured in a way 
which made its visible portion similar to a portion of another model object, or 
when the degree of random noise was high enough to confuse the measured 
object with a visually similar but different m&e1 object (e.g. a circle measured 
with 20 percent noise may IX identified as an oval). The two matching heuristics 
yield similar results, but in the presence of large quantities of noise the second 
technique more reliably avoids the grotesque misidentifications that txzgh~ to 
plague the first methti. The following figures are generated using the second 
matching scheme. Note that in each case the matching operation successfully 
identifies the figure presented to it, from among all the other figures Monging 
to the small shape library shown in figure 7, using only those unobscured boun- 
dary portions indicated in FQLUS 8(c) (resp. 8(f)).’ 
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Figure 7: Various figures from library of test figures used in simulations of matching 
scheme 
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Figure 8(a): A test oval and its roughened form 

Figure 8(b): Adjusted convex hull of test oval 

8. Additional remarks on the turning-angle shape descriptor; some 
remarks on texture; non-convex regions 

Since the derivative of the rotated graph T(S) derived from a region’s ‘turning 
function’ O(S) is bounded by 1 in modulus, the Fourier series of V(S) converges to 
T(S) with relative rapidity, making it possible to use the first few terms of this 
series as descriptors of the overall shape of the region. (The adequacy of such an 

25 



abbreviated dcxription GUI be assessed by regenerating the figure from these 
Fourier mfficients, and then noting what differen- with the original region the 
eye picks out.) 

To judge the limitations of this abbreviation, polygon is regular, then the 
function O(S) moves in alternate horizontal and vertical steps which must bt equal 
in size (assuming normalization of the total arc length to 2~). Hence T(S) is as 
shown in the following figure: 

Figure B(c): Visible portion of test oval hull 

-’ 
Figure B(d): Complete match of oval to visible convex hull se.ction 



Eg-ure 8(e): Original, roughened form, and adjusted convex hull of a second test oval 

Figure 8(f): Visible portion and computer-generated match for second test oval 

27 



Figure 9: The function T(S) for an n-sided regular polygon 

A (unit) circle would have a perfectly flat q(s) function. This comparison 
shows that the q(s)-function for an n-sided polygon approximates that for a circle 
very closely in the tmiform norm, but that it has a significantly different 
geometric fexr~e. To reflect this fact, a shape-matching scheme would have to 
apply some operator which will detect texture. The following is one possibiity: 
decompr>se the function IJ into parts corrqxmding to different frequency ranges 
by applying a disjoint set of band-pass filters. (These can decomv 7 into its 
low frequency part, encompassing all frequencies up to a limit Fl, and into then 
expnentiay expanding frequency ranges FL to F2, F2 to F3,... etc.) This gives 
w = T#) + rl2(4 + T&d + - * * , where relatively few terms need appear. The 
low-frequency component can bt represented exactly by a few Fourier coeffi- 
cients, after which each of the few higher-frequency components qIz, q3, . . . can be 
handled as follows: Calculate the variation of each such 7, over the range from 0 
to J. This defines a monotone increasing function 6,; treat this as previously, i.e. 
turn it 45” and represent it by its lowest few Fourier terms. The functions 8, then 
represent the way that the texture of the original turning function O(S) varies from 
zone to zone along the kundary of the region kiig analyzed. An approach like 
this might tx able to represent the shape and texture of a convex body adequately 
using something like 25-35 numerical parameters: e.g. 4 sines and 5 oosines to 
represent each of q1 and q2, and 2 sines and 3 cosines for q3, which will normally 
be much less significant to the eye. 
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As in the simpler caSe noted abwe, we can assess the adequacy of these 
descriptors by generatig and inspecting the simplest curves which these descrip- 
tars fail to distinguish within a variety of examples presented to the analysis sys- 
tem. One obvious shortcoming is that the proposed scheme misses periodicities 
which the eye can pick out, e.g. it dm not distinguish the function 7, appearing 
in the last preceding figure from the function which is different to the eye. 

-. 

Figure 10: The function T(S) for an n-sided but not entirely 
regular PolYgm 

This remark may lx more pessimistic than is justified, since we deal here with 
small edges on nearly circular polygons with numerous sides; nevertheless, only 
experiments exhibiting the stiengths and weakness~ of the scheme proposed can 
atablish the validity of more refined suggestions. 

In concluding this section we note that ~~~-COAY~X regions turn out, some- 
what surprisingly, to b easier to handle than convex regions. Every concavity is 
txxmded by a single straight side of the convex hull of the My, which can be 
called the cntrancc to the concavity; if the region is partially obscured, the concav- 
ity can be said to have a correctty vlsib& cttrr~cc if no point of obscuration lia on 
the wite side of the entrance from the visible points of the region. 
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Figure 11: Concavity entrances (The left one is correctly visible, 
whereas the right one is not.) 

A correctly visible concavity entrance identifies a straight side of the convex hull 
of the region to which it belongs, and since the hull has at least this one straight 
side we can treat it as ‘partially golygonal’, i.e. can take the polygon positions in 
which one such straight side is horizontal as the basis for the search tree used to 
identify all regions having a concavity with a correctly visible entrance. Moreover, 
any concavity with a correctly visible eatran= can IX considered to constitute a 
region (which may IX partially obscured) in its own right; any technique applica- 
ble to (partially obscured) regions can be applied recursively to such a concavity. 
In particular, whenever the whole boundary of a concavity is visible, we can fmd 
its centroid and can use this as an anchor point for the region. 

9. Three Dimensianal Bodies 
Having now said a g& deal abut the 2-D case, we can try to extend our 

considerations to the more dml.lenging but more signikant case of &lies in three 
dimensions. kt us begin by considering the probing technique, and first its appli- 
cation to the simplest case, that of a convex polyhedron standing on one of its 
faces. It will generally be easy to fmd two points pl, p2 fmed in the kdy, e.g. we 
can form silhouettes of the object as viewed from the x, y, and z directions and 
use this data to locate the topmclst point and the point with largest xmdinatc 
(note that we need the 3-spa= locations of bath these points). This will IX deter- 
minable from the three silhouettess unless the topmost (resp. rightmat) edge or 
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fact of the polyhedron is parallel to the xy (resp. yz) plane, in which case 
appropriate technic adjustments need to be made. Once these points have bee0 
found we can IogicaUy rotate and translate the body to put these two points in 
some standard position; then the object is nmsarily in one of some ftite 
number of FKJssible positions (the number of these positions being roughly pow- 
tional to the numlxx of faces of the polyhedron) and prolxz3 using a single-point 
depth sensor, organized in a ‘profx tree’ as before, should identity the 
polyhedron without diffxulty. 

A similar technique can lx used even if the polyh@on does not necessarily 
stand on a known face. From three silhouettes, we can fmd the topmast and 
bottom-most points of the plyhcdron, plus the points farthest left and farthest 
right. These define body position up to one of a finite number of fmcd positions. 
(Similarly, if a horizontal face is topmost or bottommost, this fact, plus the loca- 
tion of the leftmost and rightmost points of the polyhedron, determines its posi- 
tion up to ftitely many possibilities.) Then we can probe as before to complete 
identification and orientation of the polyhedron. 

Neither of these techniques depends on @yhcd.ron convexity. Indeed, either 
technique can be regarded as a way of orienting the -vex hull of a non-convex 
polyhedron. Moreover, as sxm as the position of its amvex hull is limited to a 
ftite set, the possible positions of the polyhedron itself became equally limited, 
and probing can be used in the ordinary way to complete its identification. 

Next suppose that only part of a polyhedron is visible. If this part includes at 
least one mer, this corner and an edge running from it can be used to anchor 
the polyhedron, following which we GUI apply much the same probing technique 
as was described for partly obscured polygons. 

To extend the probing idea to 3-D objects with smoothly curved boundaries, 
we need to fmd, not just one anchor point (as in the 2-D case), but two anchor 
pints (or one anchor pint and one ‘anchor direction’ emerging from it) which 
have known position relative to the objcx% Once these points are fixed, the 
object o is only free to turn about the axis defined by these two points, so that by 
probing along a circle perpendicular to this axis until contact is made with the 
txxjy surfam, we can restrict O'S possible orientations to a finite set. After this is 
achieved, the probe tre meth& can tx used to complete the identification of O. 
Note also that, once a single anchor point p for o has been l-ted, finding a 
second anchor point q will generally rcdum to a relatively easy 2-dimensional 
problem. If, for example, a sufficiently large portion of O’s surface is visible, we 
can form the intersection of o with a sphere of appropriate radius about p, and 
let q lx a point whose position in the resulting curve C is fiied; for example, q 
can be the centroid of C. When too little of 0 is visible for this approach to work, 
another possibility is to match C to an appropriate pre-stored model curve using 
the seamd of the fast matching techniques d&bed in Section X. 
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10. 3-D Object Recognition by Shape Descriptora 
To apply a shape-descriptor approach we must consider generalizations of the 

2-D matching schemes presented ake to the 3-D case. When the whole of o is 
visible, then an advantageous parametrization kcomes possible. That is, we can 
take c to bc the centroid of 0, and parametrize the points on its boundary by the 
orientation of the ray oonn&i.ng them to c. This parametrization is relatively 
immune to noise. Details are as follows. LRt 0 IX a convex 3-D object (if 0 is an 
observed object we assume it to be wholly visible). The shape descriptor that we 
want to use for o is simply a cAkction of data points (u(o)) on its boundary, 
where each point U(W) is parametrized by the orientation w of the ray connecting 
the centroid c of o with U; in other words, this shape descriptor is a 3-D vector 
function defined on the unit sphere S (i.e. a generalized ‘coloring’ of the sphere). 

If o is partially obscured its centroid cannot be determined, but instead we 
can use any other ‘anchor point’ having fmed location relative to the visible part 
of O'S surface as the center for an angle-based parametrization. Once such a 
fixed parametrization of O'S surface is available, the matching technique described 
previously may become available; but note the cavcazs concerning efftciency which 
have been expressed. Note also that the parametrization just outlined is also 
applicable to the case of nonconvex 3-D surfaces, provided that these surfaces are 
at least star-shaped with respect to some ‘anchor point’. 

11. Polyhedron Recognition Using Silhouettes 
Given presently available sensors, object silhouettes can be formed more 

sharply and rapidly than depth images. For this reason, it is worth cxmsidering 
the extent in which the silhouettes of lpolybedra can lx used to identify them. To 
this end, the following remarks on silhouettes will be helpful. Suppose that a con- 
vex polyhedron P is given a certain orientation in 3-space, and projected upon a 
plane Q parallel to the wz plane which lies entirely on one side of P. Given any 
such orientation, one group of P’S faces will IX visible from Q, while its other 
faces will be obscured by the body of P. The boundary Mwcen the visible and 
the invisible portions is a sequence of edges of P, wbicb we will call the 3- 
silhouctlG of P; tie projection onto the n-plane of the 34houette bunds the ordi- 
nary 2-O silhmdte of P, which is always a -vex polygon. If we assume that no 
face of P is orthogonal to the a-plane, then just one point p of the 3-silhouette 
projects onto each point CJ of its 2-D silhouette, and p varia continuously with 4. 
Hence the 34houette is topologically a circle, and therefore divides the surface 
of P into exactly 2 groups of faces, each of which must bc c0nntcted. The 
silhouette of a convex polyhedron P is therefore the projection, on the camera’s 
image plane, of a closed sequence of edges on P. 

Suppose we draw the outward-directed normal II to a given face F of P. Then 
F is visible from Q if II points toward Q, but obscured by the body of P if n pints 
away from Q. To understand how the 34lhouette of P varies as we rotate P 
about a vertical axis, it is convenient to project ah the normals II to P’s faces F 

32 



onto the my plane. This forms a ‘direction diagram’ consisting of unit vectors in 
the xy plane, and then a face is visible from z if the corresponding projected nor- 
mal points toward one side, say the negative side, of the y axis, but is invisible 
otherwise. Thus the edge separating two adjacent faces F~ and F~ kxlongs to p’s 

3-silhouette if and only if the projected normal vectors to F’l and F2 point into 
apposite sides of the y axis. 

Take an edge of the silhouette and its two extremities ul, u2. These are pre 
jections of cmrespdi.ng polyhedron vertices vl, v2, which therefore lie along two 
known lines in space. Taking the eye of the camera to lx the origin of cmrdi- 
nates, we can therefore write v1 = xal, v2 = x3, where a1, 82 are known unit vec- 
tors. Let u2u3 be the next edge of the silhouette. Ignoring exceptional positions, 
this must correspond to a polyhedron edge v2v3, and again we have y3 = za3 where 
a3 is a known unit vector. It will be noted below that the maximal number of dis- 
tinct 3-silhouettes that P can have is O(d) (O(n2) if we mnsider only isomeaic 
silhouettes), and in fact the maximal numkr of distinct triplets vl, v2, v3 of adja- 
cent vertices of P in a silhouette is also at most O(d) (O(n2) in the isometric case). 
Hence (searching as always over a finite number of ~sibiities) we can suppose 
that the three distances D, = Ivlv21, D, = [v2v31, D3 = 1~~~~1 are known. This gives us 
three quadratic equations for dete mining the three unknowns X, y, Z, namely 

x2 + y2 - 2ry(vl*v2) = Df 

Y2 + z2 - 2yz(v2-v3 = 0; 

z2 + x2 - 2+-q) = D; 

Thtse can readily be solved by subtracting suitable multiples of the third equation 
from the frst two, which gives two inhomogeneous quadratic equations for the 
ratios t = X/Z and y = $2. Thus knowing the positions of these sucEessive vertices 
on the perimeter of the silhouette determines the polyhedron orientation up to a 
ftite numlxx of possibilities, and hence determines the entire silhouette in the 
same sense. If the silhouette has four or more vertices we should therefore be 
able to compare a fmite collection of calculated silhouettes with an actual 
stiouette, and this will often identify the My and i& orientation uniquely. 
Identification times even easier if we assume that silhouettes viewed from two 
slightly different angles are available; we leave it to the reader to work out the 
details involved. 

AS usual, the situation is somewhat more favorable if the polyhedron and its 
silhouette arc non-vex. Iu such case each vertex of the silhouette which has the 
property that the silhouette liies on the smaller side of the two silhouette edges 
forming the silhouette boundary (‘convex corners’) must correspond to a comer of 
the polyhedron. Moreover, any segment meeting two such points which does 
not form part of the silhouette boundary must lx the image of an edge (‘flying 
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edge’) which connects two comers of the polyhedron but is not an edge of the 
polyhedron. Often this observation will make it possible to identify silhouette ver- 
tices rapidly. Consider, for example, the union of parallelipifl and pyramid 
shown in the following figure: 

Figure 12: A non-convex polyhedral object 



Fgure 13: Silhouette of a non-convex polyhedral object 

In the silhouette the pint u must correpond to v since v is the only polyhedron 
vertex cm.n&ed to more than one other vertex by a flying edge. 

To show that for any ~~avex polyhedron P there exist at most ~(8~) distinct 
silhouettes and, in the case of isometric projections, only o(n2) silhouettes, we can 
argue as follows. Consider the isometric case first. An isometric silhouette is 
uniquely determined by the direction in which P is projected, and hence in turn 
by a point on the unit sphere. As already noted, a silhouette changes its corn- 
binatorial structure only when it is projected in a direction v at which some face F 
of P is seen end-on; in other words, only when v is perpendicuk to the normal nF 
of F. But for each face F, the locus of orientations v which satisfy this condition 
is a great circle on the surface of the unit sphere. Sinaz P hasl n faces, thk defines 
n such great circles which cdectively partition the sphere into O(n2) open regions, 
inside each of which the <xlmbinatorial structure of P’S silhouette remains con- 
stant. 

Next consider silhouettes seen from an arbitrary viewpoint Z. In this case 
the combinatorial structure of a silhouette can change only when z lies cm one of 
the faoc planes of P. The n plan= d-post the 3-D space exterior to P into 
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O(d) regions, within each of which the combinatorial structure of the silhouette 
remains constant, as asserted. 
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ABSTRACT. A theory is present,ed of how recognit,ion cat,egories can be learned 
in response to a temporal strea.m of input, patt.erns. Interactions between an attentional 
sul>iyst.em and an oricntjng subsystem enable the network to self-stabilize its learning. 
without an external t,cacher. as the code becomes globally self--consistent. Category learn-L- 
ing is thus determined by global cont,ext,ual information in this q+stem. The at,tentional 
suh+ystem learns bott,om-up codes and top-down t,emplates, or expect,ancies. The internal 
rc.lyre+entations formed in this way stabilize themselves against recoding by matching the 
l<,hrncd top-down templates against input patterns. This matching process detects struc- 
tilral pattern properties in addition t,o local feature ma.tches. The t,op-down t,emplat.es 
can also suppress noise in the input pat,terns. and can subliminally prime the network 
t#o anticipate a set of input patterns. Mismatches act,ivate an orienting subsystem: which 
resets incorrect codes and drives a rapid search for new or more appropriate codes. -4s 
the learned code becomes globally self-consistent. the orienting subsyst,em is automatically 
disengaged and t,he memory consolidat,es. -4fter the recognition cat,egories for a set of input 
patterns self-st.abilize, those patt,erns directly access their categories without any search 
or recoding on future recognition trials. -4 novel patt.ern exemplar can directly access an 
established cabegory if it shares invariant properties with the set of familiar exemplars of 
that category. Several attentional atid nonspecific arousal mechanisms modulat,e the course 
of search and learning. Three types of attentional mechanism---priming, gain control. and 
vigilance-are distinguished. Three t?-pes of nonspecific arousal are also mechanistically 
characterized. The nonspecific x-igilance process determines how fine the learned categories 
will 1~s. If vigilance increase- duf,. for 1~xa.111ple. to a nega.Tive reinforcement. then the system 
autall,atjcally srarrhes for and l~arrl- finer recognition categories. The learned top-down 
espf~ct ancies kecornc more abstract a+ the recognition categories become broader. The 
lcarrled code is a propert)- of network irltcractions and t.hc entire history of input patt,ern 
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prcscntat,ions. The interactions generat,e emergent, rules such as a. lYeber Law Rule: a Z/3 
Rule, and an Associative Decay Rule. No serial programs or algorithmic rule st,ruc.tures 
are used. 

1. Introduction: Self-Organization of Recognition Cnkgories. A fundament,al 
problem of perctipt’ion and learning concerns the characterization of how recognition cat- 
egories emerge as a function of experience. When such categories spontaneously emerge 
through an individual’s interactSion with an environment, the processes are said to undergo 
self-orgarhatiorz [I]. A theory of how recognition categories can self-organize is outlined 
in this report! which summarizes the model’s design and mathcma,tical analysis, developed 
in other articles [2-41. In t,hose articles, the a.daptivr: resonance theory is also related to 
recent data about evoked potentials and about amnesias due to malfunction of medial 
temporal brain structures. Result,s of evoked potentia.1 and clinical st#udies suggest which 
macroscopic brain structures could ca.rry out the theoretical dynamics. The theory also 
specifies microscopic neural dynamics, &th local processes obeying membra,ne equa.tions 
(.;lppendix). 

\%‘e focus herein upon principles and mechanisms that are capable of self-organizing 
stable recognition codes in response to arbitrary temporal sequences of input pat.ternr.. 
These principles and mechanisms lead t,o t,he design of a neural network whose param~~ters 
can be specialized for applications to particular problem domains, such as speech a.nd 
vision. In these doma.ins. preprocessing st,ages prrpare environmental inputs for the self- 
organizing category formation and recognition sy5te.m. M’ork on speech and language 
preprocessing has characterized those st,ages aft,er which such a self-organizing recognition 
system can build up codes for phonemes: syllables. and words [5--71. Work on form and color 
preprocessing has characterized t,hose st,ages after n-hich such a self-organizing recognition 
system can build up codes for visual object recognition [8:9]. 

2. Bottom-Up Adaptive Filtering and Contrast-Enhancement in Short Term 
Me~~lory. We now introduce in a qualit,ative way the main mechanisms of the theory. We 
do so by considering the typical network reactions to a single input pattern I within a 
temporal stream of input patt.erns. Each input pattern may be the output pattern of 
a preprocessing st,a,:e. The input pat,t.ern I is received at t,he st,age F1 of an attention.ul 
~ubsys2enr. Pattern I is transformed into a pattern X of activation across the nodes of 
F, (Figure 1). The transformed pattern S represents a pat,tern in short term memory 
(STM). In F1 each node whose activity is sufficiently large generates excitatory signals 
along pathways to target nodes at the next processing st.age FZ. A pattern X of STM 
activities across F1 hereby elicits a pattern S of output signals from F,. When a signal 
from a node in F1 is carried along a pathway to F2, the signal is multiplied. or guted. by 
the pathway’s long berm memory (LTM) t race. The LTM gat,ed signal (i.e.. signal times 
LTM t,race), not the signal alone. rearhes the t,arget. node. Each target node sums up all 
of it,s LThl gat,rd signals. In this way. pa.ttern 5 generat,es a pattern T of LTM-gat’ed and 
summed inpuf, signals to F, (Figurt, 2;1). Tht> transformation from I;; to T is called an 
fnioptiz*c filter, 

The input, pattern T to F 2 ir; quirkly transformr>d by intcrartions among the nodes 
of Fz. These interactions contrast-enhance the input pattern T. The resulting pattern of 
activation across Fz is a new pa.tt,ern Y’. The cont,rast-enhanced pattern I’, rather than the 
input patt,ern T, is st,ored in STM by F2. 

A special case of this conbast-enhancement process: in which F2 chooses the ncde 
which receives the largest input,, is here considered. The chosen node is the only one that 
can store activity in STM. In more general versions of the thwry. tlltb contrast enhancing 
tra.nsformation from T to 1’ enables- more than one node at a t,imca to he a.ct,ive in STM. 
Such transformations are designed to simultaneously represenr ill STbl many subsets: or 
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Figure 1. Stages of bott,om-up xtivation: The input, pattern I gencrat,cs a. pattern of 
STM activation X across F1. Suficiently actfive F1 nodes emit bottom-up signals to F2. 
This signal pat,tern S is gat,ed by long term memory (LTM) traces within the FI + Fz 
pathways. The LTM-gat,ed signals are summed before activating their target nodes in FZ. 
This LTM-gated and summed signal pattern T generat#cs a p&tern of activation Y across 
F2. 

groupings. of an input pat,rern [G,lO]. \3I~cn F2 is dc~sigllc~d to nl;lkct a choice in STM. it, 
selects t,hat global grouping of the inl,ut patt,ern which is prcfr>rred hy the adaptive filter. 
This process automaticallv enables the network to part.it.ion all the input, patterns which 
are received by F, into disjoint. sets of recognition categories, each corresponding to a 
part,icular node in F2. 

Only those nodes of F2 which maintain stored activity in YTM can elicit new learning 
at rontAiguous LTM traces. IYhereas all t.he LTM traces in the adaptive filter, and thus 
all l(~;~rned past, cspericnrcas of the network. ilrp nstld t.0 (1(4(~rnlin(~ rrrogliit.iorl viii t,llcl 
trallsfr)rrnation I-+S--+SIT--~‘, only those LTh-1 trarc!s WIAWP ST&l actjvitics in F2 survival 
the contrast-cnllilrlrement, process can learn in response to the activity patt,ern S. 
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Figure 2. Searrh for a correct Fz code: (a) Tlw input pattern I gencr;ltes the specific 
SThl activity pat~tern X at I?, as it, nonspecifically activat,es A. Pattern X both idiibits .4 
alld grrlcrnt.cs tllr oull)ut signal pattern S. Signal pat.tern S is transformed into t.hr irlI,ut 
pattern T. whkh artivat.es t,he SThl patStern Y across I:?. (1,) Pattern ‘1’ gcmcrates the t,op- 
down signal patkrn 1; which is t,ransformed into the tmcmplate patStern \-. If V misn-mt,ches 
I at F, ,mtl~en a new SThl activity pat,tern X’ is genemted at F1 _ The reduction in t,ot,al 
SThJ activity whirb occws when X is transformed into X’ raises a decrease in the tot,al 
inhibition from Ft to A. (c) Then the input-driven act,ivation of A can release a nonspecific 
arousal wave t,o FZ, which reset,s the STM pattern Y at. Fz. (d) Aft,er Y is inllibited. it,s 
top-down t,emplat,e is eliminatJed. a.nd X can be reinst,akd at F,. Now S once again 
grwcrates input pat,tern T to F2, but sirlrc I’ rcrmins inhibited T can ac‘tivat,c a differwt 
STh,I pat t,erri Y* at, F2, If the t,op-down tmplatc due t,o 1” 
the rapid search for an a.ppropriate F2 code continues. 

also mismatclm I at F1, t,hcrl 
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The bottom-up ST15 t,ransformation I- S--S+ T-Y ir; not, the only process that 
regulat.es network learning. In the absence of top-down procesF,ing. t.he LTX5 t.races wit,hin 
the adaptive filter S- T (Figure 2a) can respond to certain sequences of input patterns 
by being ceaselessl? recoded in such a way that individual events are never event,ually 
encoded by a single category no matter how many times t.heT are present,ed. ,4n infinite 
class of examples in Lvhich temporally unst,able codes evolve 15 described in Section 7. It 
was the instability of bottom-up adaptive codin, 0 that led Grossberg [11y12] to introduce 
the adaptive resonance t,heory. 

In the adapt,ivc resonance theory. a matching process at Fr exist,s whereby learned top- 
down expectancies, or templates, from F2 t,o Fr are compared with the bottom-up input 
pat.tern to Fr. This matching process stabilizes the learning that emerges in response to 
an arbitrary input environment. The constraint,s that follow from the need to stabilize 
learning enable us to choose among the many possible versions of top-down template 
mat.ching and ST>4 processes. These learning constraints upon the adaptive resonance t,op- 
down design have enabled the theory to explain data from visual and auditory information 
processing experiment,s in which learning has not been a manipulated variable [-1.6,7]. 
These mechanisms have now been developed into a rigorously characterized learning syst,em 
whose properties have been quantit,atively analysed [2,3]. This analysis has revealed new 
design constraints wit,hin the adaptive resonance theory. The sysdem t#hat we will describe 
for learned categorical recognition is one outcome of this ana.lysis. 

Figure 3 summarizes the total network architecture. It includes modulatory processes. 
such as at,tentional gain control, which regulate ma.tching within Fr , a.s \v-ell as modulatjory 
processes, such as orienting arousal. which regulate reset w-ithin FZ. Figure 3 also includes 
an attentional gain cont,rol process at Fz. Such a process enables offset of the input pa.tt,ern 
t,o t.erminate all STM act,ivity within the att,entional subsystem in preparation for the next 
input pattern. In this example. ST15 st.orage can persist after the input pattern terminates 
only if an intcrnal!F generated or intermodality input source maintains the a.ctiviQ of the 
attentional gain control system. 

3. Top-Dow11 Template Matching and Stabilization of Code Learning. We 
now begin to consider how top-down templat,e matchin, m can stabilize code learning. In 
order to do so. top-down template matching at F, must be able to prevent learning at 
bot,tom-up LTM traces whose contiguous Fz nodes a.re only momentarily activated in 
STh4. This ability depends upon the different rat,es at which STM activities and LT?I4 
t,races can change. The STM t,ra.nsformation I--S- StT2Y takes place very quickly. 
BJ “verq- quit kly” we mean much more quickly than the rate at which the LTM traces in 
the adaptive filter S-T can change. As soon as the bottom-up STM transformation X-+Y 
takes place: the 5T15 activities ‘I- in F 2 elicit a t.op-don-n excitatory signal pat,tern U back 
to Fr. Only sufficiently large ST15 activities in Y elicit signals in V along the feedback 
pathways F2 -‘Fi. 

-45 in thr, ~OTTOIH-l:p arlaptivc filter. thr toll-dolvn signals L7 are also ga.ted by LTM 
TrilC+ l>efore tllcs LT1f-~ate(l ~i~i:;il~ are :IU~IIII~~ tit FI node::. The pattern r of out,put 
signals from F1 hereby gcner‘at ec it pattern I- of’ LT11-gated and sunm~ril input signals 
t,o Fr . The transformation from I7 to 1’ is thus also a.n adaptive filter. The pa.t.tern V is 
called a fop-dou:n f<.l~plcrle. or lti.arnrd erpccta,tion (Figure 2b). 

Two sources of input now perturb Fi : the bottom-up input pattern I which gave rise 
to the original activitv pattern S. and the top-down template pattern 1’ that resulted from 
activating X. The activity pa.ttern S’ across F i that is induced by I and J- taken t,ogether 
is typically diKerent from the activitv pattern S that was previously induced by I alone. 
In particular. Fi acts to match 1‘ against I. The result of’ this matching process determines 
the future course of learning and recognition hi; the network. 











PHASE 
GAIN 

I 
0 a 

Fig11~~ +I. Llat.ching 1)~ Z/3 Rule: (a) ln this cxam~~lc. rronsperific itt~t.ent,iorial gain control 
signals arc phasically activa.tetl by tllc I,ot~t,om-up input. In this network, t.he bottom-up 
input. arouses two different, nonspecific channels: the at.t.entional g&i control channel a.nd 
t,lic orienting subsyst,em. Only E’r cells that receive l)ott,om-up inputs and gain control 
signals can become supraliminally act,ive. (t)) A top-down template from I;‘2 inhibits t,he 
attentional gain control source as it subliminally primes target Fr cells. (c) When a 
bottom-up input @tern and a t,op-down template are simult,aneously active, only those 
Ft cells that rcccivr inputs from hot,ll sources can bc~oruc supralirnina.lly artivc, since tIllc 
gain cont8rol source is inhiLitct1. (d) Intermodality irihil)ition can shut, off’ tile gain control 
source and thereby prevent a hott,om-up input from supraliminally a.ct,ivating F1 . 
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7. Example uf Code hstabilit,y. We now iI1ustrat.e the importance of the Z/3 Rule 
by describing how its absence can 1ea.d to a t8emporally unst,able code. In the simplest 
type of code instabilit,y example: the code becomes unstable because neither top-down 
template nor reset mechanisms exist [ll]. Then. in response to certain input sequences 
that are repeated through time, a given input patt,ern can be ceaselessly recoded into 
more than one category. In the example that we will now describe: the top-down t,emplate 
signals are active and the reset mechanism is functional. However, t,he inhibit,ory top-down 
attentiona. gain control signals (Figures 3 and 4c) are chosen t.oo small for the 2/3 Rule to 
hold at F1. We show also that a larger choice of at,tentional gain control signals restores 
code stability by reinst,at,ing the Z/3 Rule. These simulations also illustra.te three other 
points: how a novel exemplar can directly access a previously established category; how 
the category in which a. given exemplar is coded can be influenced by the categories which 
form to encode very different, exemplars: and how the network responds to exemplars as 
coherent groupings of features, rather than to isolated fea.ture mat.ches or mismatches. 

Figure 5a summarizes a computer simulation of unst,able code learning. Figure 5b 
surnmarizes a computer simulation that, illustrates how reinst,atement of the 2/3 Rule can 
stabilize code learning. 

The first column of Figure Sa describes the four input patterns that were used in t,he 
simulation. These input patterns are labeled A. B. C. and D. Patterns B. C, and D are 
all subsets of -4. The relat,ionships among the inputs that make the simulation work are as 
follows: 

Code Instability Example 

DCCCA. (2) 

B c ,4. (3) 

BnC=Q. (4) 

j D 1~1 B I<j C: : (5) 

These results thus provide infinitel? many examples in which an alphabet of just four input 
patt,erns cannot be st’ably coded without the 2/3 Rule. The numbers 1: 2, 3, . . . listed 
in the second column itemize the presentation order. The third column, labeled BU for 
Bottom-Up. describes the input, pattern that was prc+cnted on each trial. In both Figures 
5a and 5b, the input patterns were periodically prescored in the order ABCAD. 

Each of the Top-Down Templat,e columns in Figure 5 corresponds to a different node 
in F2: with column 1 corresponding to node q. column 2 corresponding to node ~2, and 
so on. Ea.ch row summarizes the network response to its input pattern. The symbol RES, 
which stands for resonance. designat.es the node in F;, which codes t,he input pattern on 
that trial. For example, v 2 codes pattern C on trial 3: and ul codes pattern B on trial 
i. The patterns in a given ro\v dcscrille the templates after learning has occurred on that, 
trial. 

In Figure $3. inl)ut pattern -4 i- I,eriodically r(Jdd: On trial 1. it is c.oded by ~1; on 
trial 4. it is coded by Q. . on trial tj. it is coded b>- I’,: on trial 9: it is coded by ~2. This 
alt,ernation in the nodes q and 7f2 lx-hick code pattern A repeats indefinitely. 

l’iolation of the 2/3 Rule occurs on trials 4. 6. 8. 9. and so on. This violation is 
illustrated by comparing the template of z’~ 011 trials 3 and 4. On trial 3, the template of 
7~~ is coded by patt,ern C. which is a subset of pattern -4. On trial 4, pattern A is presented 
and directly activa.tes node v2. Because the 2/3 Rule does not hold, pattern A remains 
supraliminal in F1 even after the subset template (: ii: read-out from v:2. Thus no search 
is elicited b>* the mismatch of pattern -4 and it.s subset template (7. Consequently the 
template of ~2 is recoded from pattern C to its superset pattern A. 
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Figure 5. St,al)ilizat~ioIl of ca.tegorical learning by t11v 2/3 R.ule: In both (a) and (b), four 
input pa.t.tcrus A. n. C, and D arc prcwrlt,ed rcprat.cvIly in the list, ordm .4BCAD. In (a), 
the 2/3 Rule is violated because the t,op-down inhibitory gain control meclla.nism be weak 
(Figure 4~). Pat~tern A is pcriodicallv coded by vl a.nd 712. 
stmahle cawgory. In (L), the 2/3 R 1 :.- 

It is never coded by a single 
ii e lh rcstorod l-l? st~rmgtliening the tjop-dowl iiiliibit,ory 

gain control rrlccllanisxn. After SOIW initial recoding during t,lle first two prcsent,a,t,ions if 
ABCAD. all pat,terrls directly acwss distinct. stable cat,cgories. 
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In Figure 5b. by contrast. t,he 2/3 Rule does hold due to a larger choice of the at’ten- 
tional gain control parameter. Thus the network experiences a sequence of recodings that 
ultimat,ely stabilizes. In particular. on trial 4. node z:, L reads-out the subset template C, 
which mismatches t.he input pattern -4. The numbers beneath the t,emplate symbols in row 
4 describe the order of search. First, tl2’s t,emplat,e C mismat.ches A. Then q’s template 
B mismat,ches -4. Finally A activates the uncommitt,ed node Q, which resonates with F1 
as it learns the teemplate A. 

Scanning the rows of Figure 5b. we see that, patt,ern A is coded by q on trial 1; by ~3 
on t,rials 4 and 6; and by 2’4 on trial 9. On all fut,ure trials. input pat’tern A is coded by 
v4. Moreover, all the input patterns A, B. C. and D have learned a stable code by trial 9. 
Thus the code self-st,a.bilizes by the second run through the input list ABCAD. On trials 11 
through 15, and on all future trials, each input pattern chooses a different node (A t w4; 
B- v1; c + 273; D + 2~~). Each pattern belongs to a separate category because the 
vigilance parameter was chosen to be large in this example. Moreover, after code learning 
st,a.bilizes, each input pattern directly activat.es its node in F2 without undergoing any 
additional search. Thus after trial 9, only the **RE%” qmbol appears under the top-down 
templates. The patt,erns shown in a,ny row between 9 and 13 provide a complet,e description 
of the learned code. Examples of how a novel exemplar ran activate a previously learned 
category are found on trials 2 and 5 in Figures 5a and 5b. On trial 2. for example? pat,tern 
B is present,ed for t’he first, time and directly accesses the ca.tegory coded by vl. which was 
previously learned by pat,tern A on trial 1. In terminology from art8ificial int,e,ligence. B 
activates the same cat,egorical “point,er,” or “marker,” or “index” as in A. In so doing, 
B dots not change the categorical “index,” but it may change the categorical t#empla.te. 
which determines which input patterns will also be coded by this index on future trials. 
The category does not change. lj!lt its invariants may change. 

iln example of how prescn:arion of very different’ input patterns can influence the 
category of a fixed input patic,rn is found through consideration of trials 1: 4? and 9 in 
Figure 5b. These a.re the trials on which pattern A is recoded due to the int,ervening 
occurrence of other input patterns. On trial 1, pattern A is coded by q. On trial 4, ,4 is 
recoded by 03 because pattern B has also been coded by tq and pattern C ha.s been coded 
by ~2 in the interim. On trial 9: pattern -4 is recoded bv v4 both because patt,ern C has 
been recoded by 2~3 and patt,ern D has been coded by ~12 -in the int,erim. 

In all of these transitions, the global structure of the input pattern determines which 
F2 nodes will be a.ctivated, and global measures of pattern match at Fi det,ermine whet.her 
these nodes will be reset or allowed t,o resonate in STM. 

8. Vigilance, Orienting. and Reset. We now show how matching within the 
attentional subsyst.em at F1 determines whether or not the orientming subsystem will be 
activated, thereby lea,ding to reset of the attentional subsyst,em at Fz. The discussion can 
be broken into three parts: 

.4. Distinguishing -4ctive M&match from PassilTe Inactil-it?- 

.4 scvcrc mismatch at F, actit.atcs the orienting subsystem -4. In the worst possible 
case of mismatch. none of the F1 nodes can satisfy the 2/3 Rulct. and thus no supraliminal 
activation of F1 can occur. Thus in the worst case of mismatch. wherein Fi becomes totally 
inactive, the orienting subsystem must surely be engaged. 

On the other hand: F, may be inactive simply because no irtputs whatsoever are being 
processed. In this case. activation of the orienting subsystem is not desired. How does the 
network compute the difference between active mismatch and passive inactivity a.t Fi? 

This yuest.ion led Crossberg 141 to assume that the bottom-up input source activates 
two parallel channels (Figure 2a). The attentional subsystem receives a specific input 
pattern at F, . The orient,ing subsystem receives convergent inputs at -4 from all the a.ctive 
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input pathways. Thus the orienting subsystem can be activated only when F1 is actively 
processing bottom-up inputs. 

B. Competition between the Attentional and Orienting Subsystems 
How: then, is a bott,om-up input prevented from reset,ting its own Fz code? What 

mechanism prevents the activation of A by t,he bottom-up input from alwa,ys resetting the 
SThl representation at Fz? Clearly inhibit,ory pathways must exist from F1 to A (Figure 
2a). When F, is sufficiently active, it prevents the bot,tom-up input to A from generating 
a reset signal t,o FZ. When activity at, F1 is attenuated due to mismatch, the orienting 
subsystem -4 is a.ble t,o reset Fz (Figure 2b,c,d). In this way. the orienting subsystem can 
dist,inguish between active mismatch and paasive inactivity at F1. 

Within t,his general framework, we now show how a finer analysis of network dynamics, 
with particular emphasis on the 2/3 Rule, leads to a vigilance mechanism capable of 
regulating how coarse the learned cat,egories will be. 

C. Collapse of Bottom-Up dctivation due to Template hisma.tch 
Suppose that a bottom-up input, patt,ern has activated F, and blocked act,ivation of A 

(Figure 2a). Suppose, moreover, that F1 activates an F2 node which reads-out a template 
tha.t badly misma.tches t,he bot,tom-up input at F, (Figure 2b). Due t,o the 2/3 Rule, many 
of t,he F1 nodes which were act,ivated by the bottom-up input alone are suppressed by the 
t,op-down template. Suppose tha.t this mismatch event, causes a large collapse in t,he total 
activity across F1? and thus a large reduction in the total inhibition which F1 delivers to 
-4. If this reduction is sufficiently large. then the excit,atory bot,tom-up input to A may 
suy.reed in generat)ing a nonspecific reset qignal from A to Fz (Figure 2~). 

In order to characterize when a reset signa. will occur, we ma.ke t,he foliowing natural 
nssumpt,ions. Suppose t,hat an input pattern I sends positive signals to 1 I 1 nodes of F1 _ 
Since every a.ctive input pat,hway projects to A: I generates a t80tal input t,o -4 that is 
proportional to 1 I 1. W e suppose that .4 re;lct,s linearly to the tot,al input y I I 1. We also 
a.ssume that each active F1 node generatcli an inhibitory signal of fixed size to A. Since 
every active F1 node projects t,o A, the total inhibitory input 6 1 X 1 from F1 to ,4 is 
proportional to t.he number 1 X I f o ac ive F1 nodes. When 7 I I I> 6 I X 1, A receives a t 
net excitatory signal and generates a nonspecific reset signal to F2 (Figure 2~). 

In response to a bottom-up input pattern I of size I I 1, as in Figure 2a, the total 
inhibit,ory input, from F1 to A equals 6 1 I 1: so the net input t#o A equals (7 - 6) I I 1. In 
order to prevent, A from firing in this case (Figure 2a), we assume that 6 2 y. We call 

the vigilance parameter of the orienting subsystem. The constraints 6 2 y > 0 are equiv- 
alent to 0 5 p 5 1. The size of p determines the proportion of the input pattern which 
must be matched in order to prevent reset. 

When both a bottom-up input I and a t,op-down templa.te J’(j) are simultaneously 
a,ct,ive (Figure 2b), the 2/3 Rule implies that the total inhibit.ory signal from F1 to A 
equals 6 ) J’(J) n I (. In this case? the orienting subsystem is activat,ed only if 

that is, if 

“r ) I I> 6 1 T,‘(J) n I I; (7 

p(i)nIl 
-~--- < p, 

II/ (8 

In order to illustrate how the n&work codifies a series of patt,erns, we show in Figure 
6 the first 20 trials of a simulation using alphabet lett.ers as input patterns. In Figure 6a, 
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the vigilance para.mder p = -5. In Figure 6b. p = -8. Three properties are notable in 
these simula.tions. First, choosing a different, vigilance parameter can det’ermine different 
coding histories: such tha.t higher vigilance induces coding into finer cat,egories. Second, 
t,he network modifies its search order on each trial t,o reflect t,he cumulative effects of prior 
learning. and bypasses the orienting syst,em to directly access categories aft,er learning has 
taken place. Third. t,he t,emplates of coarser categories tend t.o be more abstract, because 
they must approximately match a larger number of input pattern exemplars. 

Given p = .5. the network groups the 26 letter patterns into 8 stable categories within 
3 presentations. In t,his simulat,ion, Fz contains 15 nodes. Thus 7 nodes remain uncoded 
because the network self-stabilizes its learning aft,er satisfying criteria of vigilance and 
global code self-consist.ency. Given p = .8 and 15 Fz nodes, the network groups 25 of the 
26 letters into 15 stable categories within 3 presentations. The 26th letter is rejected by 
the network in order t,o self-st,abilize its learning while satisfying its crit,eria of vigilance and 
global code self-consist.ency. These simulations show t,hat the network’s use of processing 
resources depends upon an evolving dynamical organization wit.h globally context-sensitive 
properties. This class of networks is capable of orga.nizing arbit,rary sequences of arbitrarily 
complex input patterns into stable cat,egories subject to the constraints of vigilance, global 
code self-consistency. and number of nodes in F, and FZ. 

APPENDIX 
NETW0R.K ECjl?ATIONS 

STM Equations 

The SThl act.ivity of any node vl; in Fr or Fi obeys a membrane equation of the form 

$xk = --4xk + (B - C.‘rki,Td - DxkJk-, (-41) 

where Jz- a.nd Jk are the tot.al excit,atory input and t,otal inhibitory input! respectively. 
to Vk and A, B7 C. D are nonnegative parameters. If C > 0, then the STM a.ct,ivity ok 
remains within the finite interval [O. BC-‘1 no rnatt,er how large the inputs Ji and Ji- are 
chosen. 

We denote nodes in Fr by V, , where 1: = 1.2. . . . ~11. We denot,e nodes in Fz by cj? 
wherej=M+l,M+2 ,..., N. Thusby(A1). 

;xi = -Alsi + (B, -~C,x;)Jz- - D,riJt: 

and 

$x; = -Azx~ + (B, - C,‘?x,I )qJ,, - D2xjJJ-. 

The input JgT is a sum of the bott,om-up input. I, and the t’op-down template 

c = Cr(q)+- 
j 

that is. 
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where I( x1) is the signal generat.ed by activity rI of 11~ _ and z,~, is the LTXI trace in the 
pathway from I:~ t,o Q. 

The inhibitory input J,: controls t,he attentional gain: 

Thus Jly = 0 if and only if Fz is ina,ctive (Figure 4). 
The inputs and paramet,ers of STM activities in F2 were chosen so tha.t t,he F2 node 

which received t,he largest input from F, wins the compet,ition for STM activity. Theorems 
show how these paramet,ers can be chosen [15-Ii]. The inputs J.F and JIr have the 
following form. 

Input J,; adds a positive feedback signal g(ri) from V] to itself to t,he bottom-up 
adapt,ive filt,er input 

W) 

that is. 
Jj+ = 9(x1) 4 T]. ( w 

where h(z,) is the signal emitted by z*, and Eij is the LTM trace in the pa&way from z’i to 

zli. Input J7- adds up negative feedback signals g(zl;) from all the other nodes in Fz: 

,J; = c g(s/, )t 
ki3 

t-491 

Such a nets-ork behaves approximately like a binary- sn.itching circuit: 

23 = G if Tj > mas(Tk : k # j) 
0 otherwise. 

LTM Equations 

The LTM trace of the bott,om-up pathway from I:, to l!j obeys a, learning equation of 
the form 

d 
(II+ = f(Zj)[-HH;ja,] -I- ml(q)]. (All) 

In (All). t,erm J(z.,) i> a por;tsl-naptic Fampling. CC ifarning. signal because f(~,) = 0 
implies ddf ;il = 0. T Crm 
in (,44). 

J(x,) ] ii alio the output ~ipn;~l of 1.3 to pathways from 19-i to F,. as 

The LTM trace of the top-dolvn pathway from 1’) to ‘L’, also obeys a learning equation 
of the form 

d 
Jj zj, = +f(r,)[-Hj;c”jl -t Kh(Xi)]+ VW 

In the present simulations, the simplest choice of H,, was made for the top-down LThl 
traces: 

Hj, = H = consta.nt. (A13) 
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.4 more complex choice of Hji was made for the bottom-up LTM traces. This wa.s 
done t,o directly generat,e t,he Wcber Law Rule [2] via the bottom-up LTAl process itself. 
The Weber Law R.ule can a,lso be generat,ed indirectly by exploiting a Weher Law property 
of compet,itive STM int,eract,ions across F1. Such an indirect inslanGat,ion of the Weber 
La.w Rule enjoys several a.dvantages. In particular. it would enable us to also choose 
Hji = H = constant,. Instead, we allowed t,he bottom-up LTM traces at, each node v; 
to compete among themselves for synaptic sites. Malsburg and Willshaw [X8) have used 
a relat,ed idea in their model of retinotect,al development. In the present usage, it was 
essential t,o choose a shunting competition t,o genera.te the Weber Law R.ule, unlike the 
Malsburg and Willshaw usage. Thus we let 

Hji = Lb(q) + c k(q). 
k+i 

(-414) 

A physical interpretation of t,his choice can be seen by rewriting (All) in the form 

& = f(q)[(h’ - Lqj)h,(xi) - C,] 1 h(Xk)]. 
k#i 

(AlS) 

By (A15), when t,hc postsynaptic signa. ,f(rj) is positive, a posit,ive presynaptic signal 
h(s;) commits receptor sites t.o the LT%l process z,,~ at a rate (K - LZl,)h(G)f(Xj). Si- 
mult~ancously. signals k(~k), k # i. which reach t’j at different regions of the V~ membrane 
compete for site5 which are already committed to s,~ via the mass action competitive terms 
-2ijf(xj)h(rk). When z,~ equilibrates to these competing signals, 

W6) 

The signal function k(ubj was chosen to rise quickly from 0 to 1 at a threshold activity 
level “0. Thus if z:i is a suprathreshold node in F, , (,416) approximates 

where 1 X ) is the number of active nodes in Fr. Term zt3 obeys a Weber Law Rule if 
L > 1. 

STM Reset System 

The simplest pOsSihk rnisll-latch-mediated a.ctivation of il and STM reset of I;:! by A 
were implemented in the simula.t,ions. As outlined in %:rrion 3. ea.& active input pathway- 
sends an excitatory signal of size 7 to A. Potentials zi of F1 wllich exceed a signal threshold 
T generat,e an inhibit80ry signal of size -6 to -4. Popula.tion A, in turn: generates a 
nonspecific reset mave to Fz whenever 

y ) II -6 1 x I> 0. (,418) 

where I is the current input. pattern a11(1 j -3: ! is t,hc number of nodes across F1 such that 
xi > T. The nonspecific reset wave shuts off t,he active Fy node unt,il the input pattern I 
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shuts off. Thus (AlO) must, be modified to shut off all F2 nodes which have been reset by 
A during the present,ation of I. 
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ABSTRACT. Neural network models of boundary completion, textural segmentation, 
and perceptual grouping possess novel mathematical properties with implications in psy- 
chology, neurobiology, artificial intelligence, geometry, statistica. mechanics, and decision 
theory. These neural circuits explain color and boundary data as well as t,extural grouping 
phenomena. Some of the circuits have recently received experimental support from neuro- 
physiological recordings from monkey visual cortex. The circuits suggest a new approach 
to the design of comput,er vision systems. 

1. Nonlinear Dynamical Systems in Visual Perception. Neurobiology, and Arti- 
ficial Intelligence. The venerable subject of visual percepbion offers t,he modern student 
of nonlinear dynamical systems a wealth of new phenomena and concepts that are ripe for 
development. This is partly because the profound issues of visual perception, like those 
of number theory, are often revealed through t,he use of immediately accessible materials. 
Just as many of the deepest questions about t,he int,egers can be presented to any student, 
many of the deepest, phenomena concerning visual perception can be readily seen by a 
casual observer (Figure 1). Easily stated number theoretic questions have led to some of 
the world’s most profound mathematics. Efforts to explain visual phenomena have also 
given rise to increasingly abstract concepts since the pioneering work of Helmholtz, Mach, 
and Maxwell. 

The perceptual processing theory that we and our colleagues are now developing has led 
to the discovery of new dynamical systems models of nonlinear competition, cooperation, 
diffusion, and resonance. These models have been used to quantitatively simulate on the 
computer many visual percepts that have not been explained by previous theories, to link 
these percepts to recent neurophysiological and anatomical data (Cohen and Grossberg, 
1984a, 1984b; Grossberg, 1983a, 1983b, 1984; Grossberg and Mingolla, 1985a, 1985b), 
and to make some neural predictions which have recently been confirmed (Grossberg and 
Mingolla, 1985a). 

As befits formal theories which model important physical phenomena, these dynami- 
cal systems exhibit a wide variety of mathematical properties and have led to new types 
of theorems. For example, certain dynamical systems of this type have the remarkable 
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property that, despite their very high dimension, they always approach one of perha,ps 
infinitely many equilibrium points given any physical choice of initial values and param- 
eters (Cohen and Grossberg, 1983; Grossberg, 1978, 1936). A wide variety of complex 
oscillations, including period doubling and chaotic oscillations, are known to be solutions 
of closely related nonlinear dynamical systems (Carpenter and Grossberg, 1983, 1984, 
1985; Cohen and Grossberg, 1983; Grossberg, 1980). Although a great deal is now known 
about these several types of dynamical behavior, it remains to completely characterize the 
mathematical conditions under which they obtain. In addition, such dynamical systems 
describe a new type of dynamical geometry. Fami1ia.r geometrical objects such as curves 
and surfaces are shown to be characterized by neural processes in a manner that is radi- 
cally different from the axioms of geometry. These systems also illustrate that the brain 
realizes novel principles of nonequilibrium statistical mechanics and nonstationary decision 
theory. New circuit designs for a sophisticated type of computer vision are also suggested. 
Thus the present theory defines a mathematical framework in which new mathematical 
ideas about perception, neurobiology, dynamical systems, geometry, statistical mechanics, 
decision theory, and artificial intelligence are developing side-by-side. 

This theory has emerged from an analysis of how brain designs achieve informative 
visual representations of the external world that are much more veridical than the retinal 
sensory data from which they are derived. Of special interest are issues concerning how 
distributed patterns of locally ambiguous visual cues can be used to generate unambiguous 
global percepts through the mediation of nonlinear dynamical interactions. The present 
article describes some of the issues that led to the theory, int#roduces the dynamical systems 
themselves, and illustrates some of their behaviors using computer simulations, 

2. From Noisy Retina to Coherent Percept. The limitations of sensory information 
on the retina present a formidable challenge to any perceptual theory. For example, light 
passes through a thicket of retinal veins before it reaches retinal photoreceptors. The 
percepts of human observers are fortunately not distorted by their retinal veins during 
normal vision. The retinal veins are not perceived because of the action of mechanisms 
which attenuate the perception of images tha,t are stabilized wit,h respect to the retina. 
Suppressing the percept of the stabilized veins is, however, far from sufficient to generate 
an unambiguous percept. This is because the images that reach the retina are often 
occluded and segmented by the veins in several places. Even a single edge can be broken 
into several disjoint components. Somehow in the final percept broken retinal contours are 
completed, and occluded retinal color and brightness signals are filled-in. These completed 
and filled-in percepts are, in a strict mechanistic sense, illusory percepts. 

Observers are not aware of which parts of a perceived edge are “real” and which are 
“illusory.” Thus it is not surprising that illusory percepts have provided important clues 
for deriving the present theory, and that the theory can be used to analyse many percepts 
of illusory boundaries, colors, and brightnesses. Of special int)erest are experiments of 
Krauskopf (1963) and Yarbus (1967). These experiments show tha.t, if certain scenic edges 
are artificially stabilized with respect t,o the retina., t’hen colors and brightnesses which were 
previously bounded by these edges can flow across? or fill-in. the percept until they a,re 
contained by the next perceptually significant boundary (Figure lc). Such results clarify 
how the visual system synthesized boundaries, both “real” and “illusory,” that it selects 
as perceptually significant, and how featural filling-in occurs wit,hin these boundaries. 

The retinal veins a.re not the only imperfection in t,he ret,inal image. The visual world 
is typically viewed in inhomogeneous lighting conditions. The scenic luminances that reach 
the retina thus confound fluctuating light,ing conditions with invariant object colors and 
brightnesses. It has been known since the time of Helmholtz (1962) that the brain somehow 
discounts the spurious illuminants to generat,e color and brighbness percepts that are more 
veridical than those in the retinal image. Land (1977) has shown that the perceived 
colors within a picture constructed from overlapping patches of color a.re determined by 
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Figure 1: Some perceptual illusions. (a) A bright illusory disc is induced perpendicular 
to the ends of the radial lines (Kennedy, 1979). (b) A bright illusory square is induced 
parallel to four black pat-man figures (Kanizsa, 1974). (c) When the edges of the large 
circle and the vertical line are stabilized on t,he retina, the red color (dots) outsidr the 
large circle envelopes the black and white hemi-discs except, within the small red circlr>s 
whose edges are not stabilized (Yarbus, 1967). Th e red inside the circles looks bright,cr 
(right) or darker (left) than the enveloping red. 

the relative contrasts of the edges between successive patches. The luminances within the 
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interiors of each patch are somehow discounted. 
This type of result also points to the action of a filling-in process. Were it not possible 

to fill-in among non-discount,ed edges, we would perceive a world of boundaries or cartoons. 
Since edges are used to generate the final filled-in percept, a good theory must &fine edge 
computations in a way that can achieve this goal. 

TO explain how this is a.ccomplished, the present theory hypothesizes that at least two 
fundamentally different types of edge processing occur in parallel during human visual 
perception. AS in the Land color demonstrations, edge computations in the present theory 
are used to generate a final percept, but edge computations by themselves do not constitute 
the final percept. These operations have been used to provide a physical interpretation 
and generalization (Grossberg, 1984) of the Land retinex theory of color and brightness 
perception (Land, 1977). 

3. The Boundary Contour System and the Feature Cont,our System. The theory 
asserts that two dist,inct, types of edge, or contour, computations are carried out within two 
parallel systems, which we call the Boundary Contour System and the Feature Contour 
System (Figure 2). Boundary Contour signals are used to synt.hesize the boundaries that 
the visual system selects as perceptually significant. Feature Contour signals initiate the 
filling-in processes whereby brightnesses and colors spread until they hit, their first bound- 
ary cont#ours, or are attenuated due to their spatial spread if no boundary contours inter- 
vene. The Boundary Cont,our System is defined by a nonlinear cooperative-competitive 
dynamical syst’em whose inputs are derived from a nonlinear filter. The Feature Con- 
tour System is defined by a nonlinear diffusion process whose inputs are derived from a 
nonlinear filter and whose diffusion coefficients are controlled by the Boundary Contour 
System. 

These two types of contour systems have not been identified in previous perceptual 
theories. One reason for this delay is that each scenic edge can activate both systems. 
Only the net effect of the interation between systems is perceived. Another reason is that 
boundary contours are not, by themselves, visible, They become visible by restricting the 
filling-in that is triggered by feature contour signals. 

If boundary contours are, by themselves, invisible, then how can we be sure that they 
exist? This is accomplished by an analysis of perceptual data which, by inference, reveals 
the diferent rules whereby these contours are computed. The main rules are the following 
ones. 

4. Boundary Contours and Boundary Completion. The process whereby boundary 
contours are built up is initiated by the activation of oriented masks, or elongated receptive 
fields, at ea.ch position of perceptual space (Hubcl and Wiesel, 1977). 

A. Orientation and Contrast: The output signal that is generated by a.n oriented mask 
to the next processing stage is sensitive to the orien,tu.tiolz and to the amount of contrast, 
but not to the direcGn of contrast, at an edge of a scene. Thus a vertical boundary 
contour can be a.ctivat,ed by either a close-to-vertical light-dark edge or a close-to-vertical 
dark-light edge at a fixed scenic position. 

B. Short-Range Oriented Shunting Competition: A mask of fixed orientation excites 
the like-oriented cells activated at its location and inhibits the like-oriented cells activated 
at nearby locations (stage w of Figure 3a). In other words, an on-center off-surround 
organiza.tion of like-oriented cell interactions exist,s around each perceptual location. The 
off-surround inhibition is of shunting, or divisive, type, rather than being subtractive, to 
prevent a straight scenic edge of fixed contrast from self-annihilating its own percept. 

C. Oriented Tonic Opponent Processing: At each perceptual location, the cells that 
react to perpendicularly oriented masks compete (stage x in Figure 3a). This competition 
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Figure 2: A macrocircuit of processing stages: The functional namchs of t,he abbreviakd 
stages are: MPL = Left M onocular Preprocessing stage; MPR = Right Monocular Prr- 
processing stage; BCS = Boundary Contour Synthesis stage; MIX:], = Left-Monocular 
Brightness and Color stage; MBCR = Right-Monocular Bright,ness and Color stage; and 
BP = Binocular Percept stage. Neural interpretations of the abbreviat.ed stages have been 
given elsewhere (Grossberg, 1984). 

defines a push-pull opponent, process: If a given orientation is inhibit,cAd, then its perpen- 
dicular orientation is disinhibit,ed. Hence the opponent processes arc’ t,onically active. 

D. Normalization and Ratio Scale: A final stage of orientational competition at each 
position tends to normalize, or adapt, t,he total output of the boundary signals corrc- 
sponding to that position (stage y of Figure 3a). The orientationally tuned suprathreshold 
outputs corresponding to each position of perceptual space thus tend to be ratios of a. 
conserved total activity, such that orthogonal orientations cannot simultaneously posssess 
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where 

where 

where 

positive ratios. 
E. Long-Range Oriented Cooperation and Boundary Completion: Like-oriented cells 

which survive the competitive interactions (A)-(D), and which have a.pproximately aligned 
orientations across perceptual space, can a.ctivate an oriented cooperative process z (Figure 
3a). The cooperative process, in t,urn: feeds back to the competitive process via the chain of 
processes x 4 v + W. The feedb I .k ac exchange between these competitive and cooperative 
interactions is capable of rapidly synthesizing sharp boundaries, both real and illusory, 
and of rapidly segment,ing a scent. The dynamical system which defines the Boundary 
Contour System is now described. 

Indices (i, j) denote posit,ion in a two-dimensional lattice and k denotes an orientation. 
Let S;j equal the input to position (i, j). Divide the oriented mask with position (;, j) and 
orientation Ic into a. left-half L,jk and a right-half Rijk. Then 

uijk = C Spqr 

(P,q)Ekjk 

(2) 

(3) 

and the notation [p]+ = max(p,O); 

$Vijk = -vijk + ,f(zijk) - vijk c f(ZPqk)ApqijT 

h) 

(4 

A,,ij = 
1 

A if (p - i)” + (q - j)” < A0 
0 otherwise; (5) 

(6) 

Bpqij = 
{ 

B if (p - i)2 + (q - j)” 5 Bo 
0 otherwise; 

d 
&xijk = -xijk $ c[wijk - Wii~i]l, 

where K is perpendicular to k:; 

(7) 

(8) 

$yiik = -DYijk + (E - !/zJk)xijk - Yijk c xijm; 
m#k 

(9) 

$&jk = -%jk + !?( c [Ypqr - YpqRIF$:)) + g( c [YPqr - YpqRIG~~‘)~ 

bw) (PLY) 
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(r,k) where R is perpendicular to r, and the cooperative kernels FPp and Ghk) are defined by 

F$:J") = [exp I-2(h$!t _ lJ2][ I cos(Npgzj - r> I]plcos(Nppi.j - k)lp] + (11) 

and 

where 

and 

J&j = J(P - iI2 + (g - JJ”, (13) 

N,,;j = arctan( 5). (14 
The nonlinear signal functions f in (4) and g in (10) are of the form 

f(C) = [E - RI+ (15) 
and 

[El+ 
do = T+ [f]” (16) 

Figure lb illustrates the relevance of some of these rules to perceptual phenomena. In 
Figure lb, an illusory square can be seen. The theory suggests that the vertical illusory 
boundary contours are completed by the cooperative process, described in Section 4E, in 
response to the vertically oriented masks, described in Section 4A. An illusory square can 
also be seen if the two black pat-man figures at the bottom of Figure lb are replaced 
by white pat-man figures, and the white background is replaced by a grey background. 
The black pat-man figures form a dark-light edge with respect to the grey background. 
The white pat-man figures form light-dark edges with respect to the grey background. 
The visibility of vert,ical illusory boundaries shows that, a process exists that is capable of 
completing boundaries between edges with opposite directions of contrast. The boundary 
completion process is thus sensitive to orientational alignment across perceptual space, as 
in Section 4E, and to amount of contrast but not to direction of contrast,, as in Section 
4A. 

5. Feature Contours and Diffusive Filling-h. The Feature (2ontour process obeys 
different rules of contrast. than those governing the Boundary Contour process. 

A. Contrast: The feature contour process is sensitive to direction of contrast as well as 
to amount of contrast: unlike the boundary contour process. Thus to compute the relative 
brightness across a scenic boundary, one needs to keep track of which side of the scenic 
boundary has a larger reflectance. Direction of contrast is also used to determine which 
side of a red-green scenic boundary is red and which is green. The different sensitivities of 
the two contour systems to direction of contrast is one of their most important dissociating 
properties. 

The Feature Contour process also obeys different rules of spatial interactions than 
those governing the Boundary Cont,our process. 

B. Diffusive Filling-In: Boundary contours activate a boundary completion process that 
synthesizes the boundaries which define monocular perceptual dom.ains. Feature contours 
activate a diffusive filling-in process that spreads featural qualities, such as brightness or 
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Figure 3: (a) Boundary Contour completion: An on-center off-surround interaction be- 
tween like-oriented cells representing nearby positions (sta,ge w) is followed by tonic oppo- 
nent processing bet#ween ort,hogonally orient,ed cells at each position (stage x). Then the 
total suprathreshold activity at each position is normalized (stage y) before each orien- 
tation feeds into long-range cooperation (sta.ge z) among similarly oriented and spatially 
aligned cells. Positive feedback from the cooperat,ive process feeds back to like-oriented 
cells at the opponent processing stage. (b) Feature Contour filling-in: Feature Contour 
signals activate cell compartments which permit, rapid lateral diffusion of electrical poten- 
tial across their membranes, except a.t those membranes which receive Boundary Contour 
signals from the BCS stage of Figure 2. 
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color, across these perceptual domains, as in t,he Yarbus (1967) demonstration (Figure 1~). 
Figure 3b depicts the main properties of this filling-in process. 

It is assumed that featural filling-in occurs within a array of closely coupled cell com- 
partments. A feature contour input signal to a cell of the array triggers a rapid diffusion of 
electrical potential across the compartment membranes of neighboring cells. This diffusion 
spreads with a space constant that depends upon the electrical properties of both the cell 
interiors and their membranes. 

A Boundary Contour signal is assumed to decrease the diffusion constant of its target 
cell membranes within the cell syncytium. It does so by acting as an inhibitory gating 
signal that causes an increase in membrane resistance. At the same time that a boundary 
contour signal attenuates the filling-in process at its target cells, it acts to inhibit the 
potentials of these cells. The nonlinear diffusion process which instantiates properties 
(5A) and (5B) is rigorously defined in Cohen and Grossberg (1984b). 

6. Boundary-Feat,ure Trade-Off: New Axioms of Geometry. The theory’s rules 
seem natural when one realizes that the rules of each contour system are designed to offset 
insufficiencies of the other contour system. This realization also leads to the conclusion 
that neural representations of geometrical objects do not obey the axioms of geometry. 
The Boundary Contour system, by itself, could at best generate a world of boundaries 
or cartoons. The Feature Contour system, by itself, could at best generate a world of 
formless qualities. Once one accepts that featural filling-in spreads over perceptually am- 
biguous regions until reaching a boundary contour, it becomes an urgent task to synthesize 
boundaries capable of cont,aining the featural flow. Orientationally tuned input masks, or 
receptive fields, are needed to initiate the process of building up these boundary contours. 
Orientationally tuned input masks are, however, insensitive to orientation a.t the ends of 
lines and at object corners. This breakdown is illustrated by the simula,tion in Figure 4a, 
which depicts the reaction of a lattice of orientationally tuned masks to a thin vertical 
line (Grossberg and Mingolla, 1985a). Without further processing of the mask outputs, 
featural quality could flow freely out of every line end or corner. Such a flow does, in fact, 
occasionally occur in viva in response to certain scenes, as in neon color spreading (Redies 
and Spillmann, 1981; van Tuijl, 1975), or in the featural flow that occurs over retinally 
stabilized scenic edges (Krauskopf, 1963; Yarbus, 1967). 

To offset this difficulty under normal circumstances, we suggest that the boundary 
system initiates the several stages of competitive interaction described in Section 4 to 
compensat,e for orientational insensitivity at line ends and at corners. Figure 4 shows how 
these competitive int,eractions generate horizontal boundary signals at the end of the thin 
vertical line that help to prevent the flow of featural quality out of the line. Such boundary 
signals are said to be generated by end cutting, or orthogonul itzduction. Thus every line 
end is an illusory percept that is reconst,ructed at a high level of visual processing. 

The output pattern of the competitive process triggers, in i,ts turn, a long-range ori- 
ented cooperative process, which builds up the complet,ed boundary contours. Computer 
simulations (Figure 5) show that this process is capable of quickly building sharp bound- 
aries that span widely separated input masks while suppressing spurious noise. Figure 
5 illustrates that the process which synthesizes a percept of line may not even form a 
connected set until the system approaches equilibrium. Thus a perceived line is, in part, 
an equilibrium solution of a mixed cooperative-competitive nonlinear feedback network, 
rather than a connected set of points. 

The illusory circle in Figure la can now be analysed as a result of orthogonal end 
cutting followed by oriented boundary cooperation. Many previously mysterious percepts 
have been analysed as consequences of the fundamental Boundary-Feature Trade-Off. All 
of these analyses suggest that the way in which we perceive geometrical objects does not 
correspond well to the classical axioms of geometry. 
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I Figure 4: Boundary-Feature Trade-Off: (a) Response of an orientation field to a thin 
vertical line which looks blown up relative to receptive field sizes. Lengths and orientations 

ve amounts of activation and orientations of the oriented ma.sks at, t,hc> 

I 

corresponding bar positions. Orientational t*uning breaks down at the? end of the bar. (1)) 
End-cutting generates “illusory” horizontal activations at the end of the line in resporlso 
to the orientation field in (a), to offset the breakdown in orientational tuning. The curl- 
cutting pattern is the output of stage y of Figure 3a. Thus “every line end is illusory,” in 
,I..,,, ^^.+A-..-2 A- AL- ---:a-.- -P I--I-L--. 
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Figure 5: Ea.ch column depicts a different time during the boundary completion pro- 
cess. The original input is two noisy but vertically biased inducing points and a horizont;rl 
int,ervening noise element. The cooperative-competitive exchange t,riggcrs transient or- 
thogona.1 inductions before attenuating all nonvertical elements as it, completes the vertical 
boundary. 
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7. Textural Segmentation and Grouping. While t’he importance of the Boundary 
Contour System is illustrated by its ability to complet,e indi-vidual contours, whether “real” 
or “illusory,” its rules also appear to a.ccount for much of the segmentation of textured 
scenes into grouped regions separated by perceived ront,ours, many of which have no ob- 
vious correlates in the optical input. A cont$our in a pattern of luminances is generally 
defined as a spatial discontinuity in luminance. While usua.lly sufficient, however, such 
discontinuities are by no mca.ns necessary for sust,aining perceived contours. Regions sep- 
arated by visual contours also occur in the presence of statistical differences in textural 
qualities such as orientation, shape, density, or color (Beck, 1966a, 1966b. 1972, 1982, 
1983; Beck, Prazdny, and Rosenfeld, 1983; Caelli, 1982. 1983; Caelli and Julesz, 1979). 
TWO findings of textural grouping research are especially salient. First, the visual system’s 
segmentation of the scenic input occurs rapidly throughout, all regions of that, input, in a 
manner often described as “preattentive.” That is, subjects generally describe boundaries 
in a consistent, manner when exposure times are short (under 200 msec) and without prior 
knowledge of the regions in a display at which boundaries are likely to occur, Thus any 
theoretical account of boundary ext,raction for such displa.ys must expla.in how early “data 
driven” processes rapidly converge on boundaries wherever they occur. 

The second finding of the experimental work on textures complicates the implications 
of the first,, however: the t,extura.l segmentation process is exquisitely context-sensitive. 
That, is, a. given t#exture element a.t a given location can be part of a variety of larger 
groupings, depending on wha.t surrounds it. Indeed, t,he precise det,ermination even of 
wha.t acts as an element a.t a given location can depend 011 pat,terns a,t. nearby loca.tions. 
We suggest that a boundary completion process underlies the context-sensitive ability of 
the visual system to segment and group text,ured input,. 

A long line of distinguished research by Jacob Beck and his colleagues has identified 
variables affecting textural segmentat’ion by the human visual syst’em (Beck, 1983; Beck, 
Prazdny, and Rosenfeld, 1983). Simple displays like the ones shown in Figure 6 show 
that the slopes of small elements of color or brightness contrast are a. critic.al determinant 
of grouping, with regions cont,aining many featlures with similar slopes tending to group. 
In particular, if certain of these features are distributed in a regular manner, colinear 
groupings of these features can become “emergent’ features,” capable of setting one textural 
region apart from another. A crucial aspect, of such emergent features is that the colinear 
arrangement need not be in line with the directions of the loc.al contrasts. (See Figure 6). 

Computer simula.t,ions illustrate the ability of the Boundary Contour System to gen- 
erate percept,ual groupings akin to those seen in Figure 6. Numerical paramet,ers were 
held fixed for all of the simulations; only t,he input patterns were varied. As the input 
patterns were moved about, the Boundary Cont,our System sensed relationships among 
the inducing element,s and generated emergent boundary groupings among them. In all of 
the simulations,.we defined the innut patterns to be the output, patterns of the oriented 
receptive fields. as in Figure 4a, since our primary objective was to st,udy the cooperative- 
competitive feedback exchange. All possible oriented groupings generated inputs to the 
cooperative-competitive feedback process. Only the favored groupings survived. Thus the 
ability of the network to suppress the many incorrect local groupings is as important as 
its ability to choose the correct global grouping. 

Figure 7a depicts an array of four vertically oriented input clusters. We call each 
cluster a Line because it represents a carica,ture of how a field of oriented complex cells 
resend to a vertical line, Figure Sb displays the equilibrium activities of the cells at the 
second competitive stage of our model. The length of an oriented line at each position is 
proportional to the equilibrium activity of a cell whose receptive field is centered at that 
position with that orientation. The input patt,ern in Figure 7a possesses a manifest vertical 
symmetry: Pairs of vertical Lines are colinear in the vertical direction, whereas they are 
spatially out-of-phase in the horizontal direction. The Boundary Contour System senses 
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Figure 6: (a) Emergent features. The colinear linking of short, line segments into longer 
segments is an “emergent feature” which sustains textural grouping. Our theory explains 
how such emergent fea.tures can contribute t,o perceptuaj grouping even if they are not 
visible (Gellatly, 1980). (Reprinted from Beck, Prazdny, and Rosenfeld, 1983.) (b) The 
diagonal grouping at the top of this figure is initiated by differential activation of diagonally 
oriented receptive fields, despite the absence of any diagonal edges in the image. Horizontal 
cooperation of signals at the ends of vertical lines generates subjective contours in the 
bottom half of this figure. (Adapted from Beck, Prazdny. and Rosenfeld, 1983.) 
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Figure 7: Computer simulations of processes underlying textural grouping: The lerlgtll 
of each line segment is proportional to the activation of a network node responsive to one 
of twelve possible orientations. The dots indicate the positions of inactive cells. Pa.& 
(a), (c), (e), and.(g) display the activities of oriented cells which input to the cooperativc- 
competitive feedback process. Parts (b), (d), (f), and (h) display equilibrium activities 
of orient,ed cells at the competitive stage of the Boundary Contour System. A pairwise 
comparison of (a) with (b), (c), 
by the network. 

and (d), and so on indicates the major groupings senses 
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this vertical symmetry, and generates emergent vertical lines in Figure 7b. In addition, 
the Boundary Contour System generates to horizontal end cuts at the ends of each Line, 
which can trap the featural contrasts of each line within the Feat,ure Contour System. 

In Figure 7c the input Lines are moved so that pairs of Lines are colinear in the vertical 
direction and their Line ends are lined up in the horizontal direction. Now both vertical 
and horizontal groupings are generated in Figure 7d. In Figure 7e the input lines are 
shifted so that they become non-colinear in a vertical direction, but pairs of their Line 
ends remain aligned. The vertical symmetry of Figure 7c is hereby broken. Thus in Figure 
7f the Boundary Contour System groups the horizontal Line ends, but not the vertical 
Lines. 

Figure 7h depicts a more demanding phenomenon: the emergence of diagonal groupings 
where no diagonals exist in the input pattern. Figure 7g is generated by bringing the two 
horizontal rows of vertical Lines closer together until their ends lie within the spatial 
bandwidth of the cooperative interaction. Figure 7h shows that the Boundary Contour 
System senses diagonal groupings of the Lines. These diagonal groupings emerge on both 
microscopic and macroscopic scales. Thus diagonally oriented receptive fields are activated 
in the emergent boundaries, and these activations, as a whole, group into diagonal bands. 

These figures illustrate that the Boundary Contour System behaves like an on-line sta- 
tistical decision theory, sensing only those groupings of perceptual elements with enough 
“stat,istical inertia” to drive its cooperative-competitive feedback exchanges towards a non- 
zero stable equilibrium configuration. One can interpret the distribution of oriented ac- 
tivities at, each input position as being analogous to a local probability distribution, and 
the final Boundary Contour System pattern as being the global decision that the system 
reaches and stores based upon all of its local data. In contrast to stochastic relaxation al- 
gorithms for boundary detection (Geman and Geman, 1984) wherein a formal temperature 
parameter is slowly decreased to drive the system towards a minimal energy configuration 
with boundary enhancing properties, no Boundary Contour System parameter is manip- 
ulated by an external agent. The Boundary Contour System system internally regulates 
its own convergence to a coherent configuration via its cooperative-competitive feedback 
exchanges. The input patterns themselves are the only “external parameters” that are 
altered in our system. Changing the external input pattern can cause a global switch, or 
phase transition, in the network, as in Figure 7. In each new mode, the network can main- * 
tain a different coherent organization via its cooperative-competitive feedback loops. The 
network can sustain a large number of different coherent configurations using its nonlinear 
dissipative dynamics (Prigogine, 1978)) rather than a conservative Hamiltonian system. 

The present simulations were generated by solving large systems of nonlinear differen- 
tial equations on a traditional computer. These simulations suggest that many seemingly 
esoteric Gestalt rules for grouping unambiguous wholes from ambiguous parts can be ef- 
fected by networks of cells embodying a small number of Boundary Contour System stages. 
The local intelligence required to implement these network designs is far less than that re- 
quired of a traditional computer central processing unit. The intelligence of the networks 
comes from their embodiment of nonclassical geometrical properties that are inherently 
context-sensitive. An appropriate hardware implementation of the Boundary Contour Sys- 
tem would segment and group complex and noisy images in a context-sensitive manner 
and in real-time. 

8. A Synthesis of Nonlinear Dynamics, Parallel Computation, and Image Pro- 
cessing. The deepest conceptual issues raised by the present results concern the choice 
of perceptual units and design principles. Local computations of scenic elements cannot 
provide an adequate understanding of visual percept.ion, if only because most luminance 
changes are discounted as spurious by the human visual system, The Boundary-Feature 
Trade-Off shows that the visual system is designed in a way that is quite different from any 
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possible local computational theory. A fert,ile source of new ideas about parallel computa- 
tion, image processing, geometry, and statistical mechanics, no less than about perceptual 
and neural theory, can thus be found in the collective properties of these very large systems 
of nonlinear differential equations. 
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I. IN’J7~0DUCTlON 

A. ~rkmmn& 

Determining the vulnerability of cornhat vrhiclcs and olhcr ~ystcms to the wide -range of 
thrc~~ts presented in modern warfare can be a d;ruuting t~k. Altlrough physics, engineering, 
opcrrtions research, and other disciplines offer an invaluable framework for ddrcssing the 
problem, ticsc more-or-leas hard sciences cannot by themselves provide complclc solutio~~s. 
On the contrruy, pr=titioncm of vulnerability analysis will assure you lhnt their profession is at 
least M rnucb an dmixture of it, intuition, and cductid guesswork as a science. 

Trzulitionzl computer techniques, although useful, hive been unable to m3stcr the entire 
problem. It was to addtcss this problem lbat lbt arlificid intelligence (Al) community 
developed the technology that h;u come lo be czdled czpcrf sy~lcmr. A true expert system is a 
program that mimics the performance of a hums expert in some intcllcctual endeavor. The 
archetypal expert system attins lhis high lcvcl of proficiency by embodying the heuristic, infor- 
mally framed knowledge of lhc human txpcrt, along with the cxpett’e not;rlways rigorous 
mctbods 01 reasoning in tbe subject domain. 

WC are building expert systems to deal with vulaerability analysis. Toward this end, we 
have dcvclopcd a general-purpose mccbanism (called ~JI irr/rrenct rrlpine in AI terminology) 
with wbicb to cmulti the bebavior oC human experts. *The projccl, developed in Franz LISP 
on a VAX-111750, is called Cctiic, and this paper offers 3 presentation of its design, its irnplc- 
mcntatioa, and icJ usage. 

As our first applicalion of Genie, WC are working with Walter Thompson and SLcvcn 
Polyak of the Aerial Targets Eranch, VLD, on an expert system to assist human expcrls in 
assessing the vulnerability of turbine jet l ngiues. hIany of the examples cited in this paper can 
be thought of ti being ttitcn from such a system, although aulhenlicity of domain det& will 
sometimes rufCer for the sake or illustrative clarity. 

D. TyDicnl Architecture of RII ExcDcrt, S~~tctr~. 

Tbe bighcst lcvcl ot organization of WI experl system is not complex, ECJ figure 1 illus- 
ttalcs. A basic tenet of the expert system methodology requires separation of domain cspcrtise 
(whctbct it be in iulcctious tliseascs or lurbine engine vulnerability) from l!be strategies for 
maoipulzting and applying that cxpcrlise, The resultit modularity greatly facilitates debugging 
and modifying either subsystem. 

kmwlrdga 
ml~rn4ncm . 
subryrlrm 

Genie 

Inferenc? rngine 
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ku * 4 lorwrrd backward 
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cnlculatc the ratio of the solid’s density to the density of waler). Procedural knowledge is often 
expressed in rules ot propositional implication (e.g. that if a solid is known tu be roughly as 
dense as steel then it can be deduced that the solid’s specific gravity is approxirnntEly equal to 
that of stiel). The process of constructing a knowledge base, of detirmining how an cxlwrt 
solves problemsand implementing that knowledge on a computer, is called knotutedge etrgineer- 
ing. 

The second subsystem is the itJerence engine. In a sense, the inference engine is the pro- 
gram that acts upon the knowledge base as data Optimally, it would be so well separated from 
the knowledge base and so geaeral that one could plug in a different knowledge base and 
thereby create a new expert system in an unrelated domain. 

Though it might not be as fundamental, an interlace between the system and its users is 
no less important than the knowledge base or the inference engine. The user interface should 
allow a non-programmer to modify the knowledge base, obtain consultative assistance, and 
interrogate the system about the reasons for its behavior, all in language that is clear and 
natural to the user. 

11. REPRESENTATION OF KNOWLED GE 

A key subproblem in modeling the behavior of a human expert is to choose appropriate 
Cormats for expressing and storing the expert’s knowledge so that a computer can process the 
knowledge effectively and efficiently. In this section we discuss the approach to knowledge 
representation that has been employed in building Genie. The discussion is presented in two 
parts: first we consider the syntax of our representation scheme, the formats avsilable ror use; 
and then we consider their semantic content, what mental construcb these structures represent. 

A. Tools 
1. Fra.mes. The data structure that is most widely used by Genie is called a /rune. 

Frames are a method of organizing information about an object and its propcrties, together with 
pointers to other frames describing related objects. A frame is composed of slots, each of 
which contains a piece of information. Figure 2 illustrates the kinds of information that might 
be stored in a frame. 

Corn p.Tfr& 
A Kind Of compressor 

Type axial 
Manufacturer General Electric 
Found In T58 turbine engine 
Pressure Ratio . 8.3 : 1 
Air Mass Flow 5.0 kg/s 
Blade Material steel 
Exit Pressure calculate: intake pressure 

times pressure ratio 

FIGURE 2.-Typical Frame 



Of course, if frames are to be used, then special functions will be required to manipulak 
them. We have implemented a set of routines to retrieve and store iutormation, and to per- 
form other such tasks in the manner described by Win’ston nnd Ilorn’ and by Roberts md 
Goldsteia2. 

2. Value Ranges. Arithmetic manipulation of data is a centra) theme of compukr & 
ence. Expert systems do not manipulate numbers as often as they do more general symbols, 
but a means to perform numeric computation is unquestionably among Genie’s requirements. 
Unfortunately, the kinds of numeric knowledge which Genie must handle carry the same 
imprecision and uncertainty that first motivated the development of expert systems. There are 
in the literature many approaches to dealing with the problem or imprecise and uncertain 
knowledge, some of which will be discussed in section VIII below. Another representation 
problem can turn up even with knowledge that is perfectly precise, crisp, and certain. Some 
knowledge is inescapably cast as information about sets, vectors, or intervals, rather than 
scah3. 

We have developed a representation format to deal with both of these problems. Using 
what we call value ronperr and the routines for manipulating them, one can represent either 
intervals on the real line or imprecisely known scalars. A value range record consists of six 
cells which can be labeled as in figure 3. 

FIGURE x--Format 01 a Value Range Record 

Either of the first two cells can be used for a lower bound on the value. Similarly, the last two 
cells can bound the value above. The # cell can contain a set of prohibited values. The =cell 
can only hold one value; if it is non-empty, then all the other cells must be empty. As an 
example, the value range in the proposition that 

0 < x 5 10, 2 not E (1) 

would be represented by the record 

FIGURE d.--inequality (1) Reprcsenled 08 u Value Range 

One way that Genie uses value ranges is in representing rules in the knowledge base. For 
example, a knowledge base might contain ihe following rule, 

“Ir thrust of engine < 6000 lbs, or 
thrust of engine > 13,000 Ibs, 
then engine is not 557.” 

Another use for value ranges is Genie’s facility for interpreting a user’s answers to its 

’ P. If. Wiosbn and 8. K. P. Horn. LISP. Addison-Wesley, 1081. pp. 281-901 

* R. El. Roberta and I. I? Goldstein. ll~e FRL Primer. Memo No. 409, Artificial lntclligrncc Laboratory, 



questions. In answer to the question, “What is the thrust of engine?” the user may enter, 
“5000 <= thrust < 7500”. There are several functions that operate on value ranges, includ- 
ing routines b build a record, to determine if a hypothesized value conflicts with existiug 
knowledge, and to improve the precision of the system’s estimate of a value. 

B. semantic% 
For the most part, Genie manipulates knowledge that is expressed in propositional impli- 

cations known as producfion rulea, or produclions. A production links one group of propositions, 
called ita anlccedenls, to a second group of propositions, called conclusions. The individual pro- 
positions are represented by tact frames, and the productions by rule frames. A third type of 
frame used by Genie is the concept frame. All three frame types have two states. The static 
state consists ot intrinsic information and relations; it is run-time invariant. The dynamic state 
adds the results of all the manipulations performed during the current execution. 

1. Rule&. In practice, a rule frame often contains just a list of preconditions for applying 
the rule together with a list of deductions that result from its application. These are stored in 
the Ih and Thena slots, respectively. Since a proposition and its negation describe the same 
knowledge, we use one fact frame to represent both. Therefore, propositions appearing in rules 
must be marked to specify which sense should be used. As an example, consider rule& whose 
frame appears in figure 5a. It states that if fact19 and fact20 are known to be true and tact3 is 
known to be false then fact21 is true and can be added to the knowledge bse. 

Once the three preconditions are met and the deduction is made, rule0 takes the rorm 
given in ligure 5b. In this case, rule6 is said to have /ired. If, however, faEt.20 were determined 
to be r&e, the rule would not fire and nothing would be learned about fact2l’s truth value. 
This situation is illustrated in figure 5c. 

Flexibility in specifying a rule’s preconditions is provided by the must-have mechanism 
shown in figure 5d. The rule88 frame contains three antecedents. The Must-have slot indi- 
cates that iT any two of the antecedents can be determined to hold, then the rule can fire. The 
default, for rules without Must-have slots, requires all the preconditions to bc met. 

2. m. The fact is the basic semantic building block in a Genie knowledge bassr. Rules 
are built up from them, and the inference engine attempts to deduce or verily them. When the 
user is asked a question, it is in order to acquire new facts. And the system’s ultimate answer 
is some fact. The internal representation ot rants is illustrated in figure G. 

The frame fact.17 (figure 6a) represents a proposition about a compressor. The English- 
language statement of,that proposition is found in the Stmt slot. The Default slot is available 
to specify which sense of a proposition (viz. its affirmation or its negation) should be assumed 
in the event that its truth value cannot be determined directly. The Ifs-of slot lists all the rules 
in the knowledge base whose application depends upon the truth value of ractl?. In particular, 
fact17 is in the Ifa slots of rules five, twenty-seven, and twenty-eight. The Them-d slot, on 
the other hand, lists all the rules that, if applied, will determine t&17’s truth value: fact17 is 
in the Them slots of rules 16 and 105. This linking of facta to the rules that use them speeds 
execution and facilitatis explaining system behavior to the user. 

The Xor slot of fact17 contains the name of a group of mutually exclusive propositions. 
If, by whatever means, fact17 is determined to be true, then Genie will conclude that all the 
other facts in xor3 are C&e. This feature is a handy way to model hierarchies of disjoint closes 
of objects (e.g. Whether a target is of RI-IA, mild steel, or aluminum). It also provides a 
means of representing the relation between antonyms, as for example, whether compressor 
vane geometry is variable or fixed. 

Suppose Genie WM running and applied rulel6. As a result, it would amass dynamic 
knowledge about the truth value of various tact& If rulelG’s assertion about fact17 were in the 
affirmative, then f&l7 would be modified to the form shown in figure Gb. The How slot 
could be checked at a later time to determine the context in which fwtlir’s truth was deter- 
mined. 
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a 

pi&q 

(b) 

rule6 

Ifs (fact19 1) (fW20 1) (fact.3 0) 
Thens (f&21 1) 
ShtUB Failed 
Culprit fact20 

(4 

rule88 
ICB (fact.15 1) (fact32 0) (fact33 1) 
Thens (lact34 1) (fact5 0) 
Must-have 2 

(4 

FIGURE 5.-Sample Rule Framee. 
(a) The slalic version 01 a simple rule. 

(b) The dynamic version 01 a success/u~ apphlion of(a). 
(c) A dynamic uerdon 01 a failed applicolion oj (a). 

(d) A mud-hue rule. 
. 

Propositions concerning numeric knowledge can be represented using what we call a&- 
melic/nclrr, as illustrated in figure 6c. The Mthmetlc slot of an arithmetic fact frame has three 
sub-cells (called lacellr in frame terminology), which provide the links by which to confirm or 
disprove Iact23. According lo the concept and attr facets, fact23 concerns the att,ribute called 
speed of an object called spool. Genie determined that fact23 was false by looking in the 8~1 
frame to compare what it knew about spool sped with the relation stored in the relat facet of 
hctaa. 

3. Conce& Rule and Tact frames provide a significant increase in deductive speed, but 
they are little more than an extension of the production-rule approach to building expert sys- 
tems. One of the major advantages of production rules over other semantic structures is their 
modularity. Rules represent small pieces or knowledge and can be added to a knowledge base 
or modified easily, and undesired side-effects are less common than with more complex 
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I ract17 1 
Stmt Stator vanes We aluminum 
Ifs-or rule5 rule 27 tule 28 
Thens-,of rulcl6 rule105 
Xor xot3 
Default Stat0r vanes are not aluminum 

Stmt StaW vanes are aluminum 
Ifs-Of rule5 rule 27 rule 28 
Thens-of rule’16 rule105 
Xor xor3 

(-Default 1 St ator vanes are not aluminum 
1 Truth 1 True I 
1 How 1 Deduced using rule16 

(b) 

Stmt 
Ifs-of 

1 Speed of spool GT 12000 
1 rule18 rule120 

Truth 
relat 1 GT 12000 
False 

1 How 1 Num-Relat 

(4 
FIGURE s.-Sample Facl Frame& 

(a) The &lie oereion 01 a uimple /act. (b) A dynamic veraion o/(a). 
(c) A dynamic vettin of an arilhmetic fact. 

6tWCtUrM. Unfortunately, though, the modularity of production rules also rcpresenk one of 
their most serious drawbacks. Because a knowledge base made up of rules has such a fine 
granularity, it is difficult to ascertain high-level patterns and order in lhe knowledge. This 
problem is especially serious when Duser tries to understand the system’s lines of reasoning, or 
when a student tries to acquire the expertise inherent in the knowledge base.s 

As a further step towards representing the order in an exl>ert’s knowledge, Genie uses 
concept frme6 to group information. In the discussion of arithmetic f;~ts, above, we saw one 

3 A. Barr and E. A. Feigenbaum, cds. fihc Handbook o/ Arfijiciol /n!rlli9cncc. vol. 1. William Kaufmann, 
Inc., 1981. pp. 183-194. 
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circumstance in which concept frames are used. Proceeding wilh that example, we shalll trace 
Genie’s process of determining t.he truth value or fact23. The system’s knowledge about 
several of the spool’s attributes are stored in rpool, which might take the form shown in tigure 
7. 

spool 
speed value-range 1 J 9590 1 I I 

used-by ract23 fact50 raclct82 
asked Ye3 
value 9590 

length value-range I I I I I 
used-by fact-40 ract95 

rnaaB value-range 0 1 I I - 500 
used-by fact43 fact44 fact60 fact99 
asked Yes 

FIGURES.-Samplt Conctpl ,Ramt. 

Originally, there was insutficient information in the speed slot of epod to determine whether 
fact23 held. So Genie asked the user, “What is the speed of spool?” The user’s response was 
presumably the scalar value 9590, since that is what the value-range facet indicates. When the 
=cell of a valu+range is non-empty, its contents is also stored in the value facet. 

Neither fact40 nor fact95 has been needed yet, since the length slot retains its static con- 
figuration. But one of the four propositions about spool mass was needed, since the asked 
facet of mana is full. If one of the three remaining facts asserted Uat spool mass equaled 200, 
then Genie would be incapable of determining that fact’s truth value by direct calculation. This 
is because Genie will only request input of a given parameter once, on the assumption that the 
user will have given his best estimate immediately. 

III. REASONING METIIODS 

The basic intent in developing expert systems is to enable a computer to reason as a 
human expert does. By this we mean lo achieve ezperl per]ormnnce, since our goal is not so 
much modeling the expert’s behavior as modeling the results of that behavior. A parallel can 
be drawn with the expert system’s representation of knowledge: one seeks a format that is iso- 
morphic to the one used by the expert’s brain, but replication is neither necessary nor possible. 
For example, we do not assert that frames or value-range records exist in the human brain. 
But neither are silicon chips identical to cortical neurons. In the same way, while formal logic 
is seldom applied by humans to real-world problems, its spirit can bc fundamentally useful in 
developing expert systems. 

Given a body of formal assertions and implications, or propositions and production rules, 
there are basically two possible strategies for using them. One str:rlrgy focuses on the rules’ 
antecedents, the other on their conclusions. They are called jorword and dackwnrd chaining, 
respectively, and will be explained below. 

Id forward chaining, one compares the facts in the knowledge bze with the antrccdcnts 
of the various rules, trying to fire any rules possible. Whrn a rule fires, its conclusions are 
added to the knowledge base and can potentially trigger other rules. Because attention is 
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focused on matching antecedents against the facts that are known, this method is also called 
dnfa-driucn rcoeoning. 

Forwatd chaining is often extremely useful in real-time applications. In these settings, the 
rules often represent event/response or condition/action knowledge. Robotic8 and industrial 
process control are examples. 

13. Bnckward Chainh 
The second strategy is somewbat more complicated. In backward chaining one atart by 

considering a goal, in this ca8e a fact whose truth value is desired. The key step i8 b find a 
way of determining the truth value, which usually mean8 liDding a rule that draw8 a conclusion 
about the fact. 11 such a rule exists, then one cau reformulate the original problem a8 the 
determination of the truth values of each of the rule’6 antecedents. This reformulation of 
problem8 into subproblems is iterated until each of the subproblems can be solved directly, 
either by finding facts in the knowledge base, or by asking questions of the user. For this re+ 
aon, backward chaining is also called goal-driven reo8oning. - 

C. Genie’8 Approach 
Beasooing ia the current version of Genie has a dual nature. From a holistic viewpoint, 

the control strategy is entirely goal-driven. Equally valid, however, is the reductionist point of 
view that all the syakm’6 deduction8 are made in datadriven mode. The two arguments are 
presented here. 

A Genie knowledge base must contain at least one fact tagged as a kypofhesis, or toplevel 
goal. The inference engine records all the hypotheses and tries to verify each one in succes- 
sion. Given a hypothesis, Genie looks at the Theno-of slot in its fact frame. This provide8 a 
list of rule6 that could potentially confirm the hypothesis. These rules’ If8 slot8 specify other 
fact.8 which Genie treats a6 subgoals. The 6UbgOa)8 will generally have additional rules in their 
own Therm-of slots, and 80 on. Following all these Thena-d and Ifn link8 a8 far as they lead 
would generate a tree structure with facts as nodes and rules ~8 edges. The leave6 of this tree 
- facts that cannot be deduced from any rule in the knowledge base - constitute the informa- 
tion Genie must request from the user, and are consequently the simplest possible subgoals. 

Consider the lowest level of deduction ia this process: a rule who8e antecedents are all 
leaves. A question will be asked for each fact, the user’8 answers being added to the knowledge 
base in a process called memorizolion. Assuming that the condition6 specified by the rule’s 
antecedents coDform p the answers, these subgoals are aI1 achieved. So the rule firea, causing 
it8 conclusions to be memorized, and a larger fraction of the problem has been solved. The 
procedure contiDue6 io this fa8hioo. 

Not all the rule8 will fire, of course. A rule fails if its anLecedent.8 do not conform to the 
circumstances of the present run. When this bappeD8, the desired conclusioa must be achieved 
through other means. If the fact ha8 untried rule8 in it8 ‘zbens-of, they will be tried. If not, 
the fact frame will be searched for a Default If all the rule6 that might confirm a hypothesis 
fail, then the bypotbesis is discarded, and another oDe tried. 

Whereas backward chaining impose6 order on Genie’8 performance, it is forward chaining 
that actuslly deduce6 facts. Every time a fact is memotized, whether it was given by the user or 
deduced from 8ome rule, forward chaining is performed on it. The fact’s Ifa4 slot lists the 
rule8 that require it. Each one of these rule8 that ha8 not already fired or failed is considered. 
If any rule’s antecedent requires the wrong truth value for tbe fact. then the rule fails. How- 
ever, if the newly memorized fact conform6 witb the only unfulfilled prccondilion of a rule, 
then that rule will fire. Genie will then torward chain on each of the rule’s cooclusioos in turn. 

The double linking of fact8 and rules makes Genie’s knowledge representation scheme 
very flexible. Backward chaining is achieved by following the Therm-of and If8 links. Simi- 
larly, following Ifn-al and Then8 link8 accomplishes forward chaining. Thus, one rrpresenta- 
lion of a rule can be used for both strategies. This capability is a very important one, since 
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using only one or the other stratigy ha6 serious drawbacks. A system that only forward chains 
often seems to behave erratically, jumping rvound the knowledge base. Furthermore, a purely 
datsdriven system cannot even ask the user any questions, since it can only passively obtain 
facts and apply rules to them. On the other hand, a strictly bwkward chaining system draws 
only those conclusions that are of immediate use. So it will miss drawing conclusions that are 
supported by ita knowledge but do not lie in the direct path 01 its current task. 

In summary, backward chaining causes Genie’s reasoning to be directed from the broad- 
est, most general conclusions, through ever more specific raccts. Tbis topdown behavior 
creates the impression that the system is acting purposefully. Within that context, forward 
chaining ensures that deductions are made as soon as the necessary knowledge is acquired. 

IV. USER INTERFACE 

The two previous sections discussed Genie’s layout and performance from an internal 
viewpoint. Ifere we shall describe the face that Genie shows to humans who interact with it at 
a computer terminal. First we consider the outermost layer of the program that mediates com- 
munication between the user and Genie. Then the specific modes of giving input to the system 
are addressed. Finally, we discuss Genie’6 ability to use in its communication something 
approaching normal English grammar. 

A. Jjrivet 
Upon invoking Genie, one interacts with a function, called Driver, that directs Genie’s 

operation. Anyone who invokes Driver will be categorized into one of three access classes: 
user, rule-writer, or programmer. The user class is the broadest. It includes those who use lhe 
system for production runs. Driver protects general users and Genie from one another, by res- 
tricting both the commands the user may use and the actions Genie may perform for the user, 
The rule-writer class is intended to include the knowledge engineers who maintiu the system. 
A rule writer may execute atty of the commands available b the general user. IO addition, the 
rule writer may modify the knowledge base and dig more deeply into Genie’s internal mechnn- 
isms to determine what t.he system is doing and why. The programmer class is the least restric- 
tive. Programmers may execute any of the comrriands available tu the rule writer plus several 
lower-level commands to debug the inference engine and peripheral components. 

Driver understands a number of commands, the most important of which is run, the 
request to start up thd expert system. One can also instruct Driver b show all the rules that 
have been applied, or all the facts or numerical values that have been derived so lar in the 
current run. It is also possible to view rules and facts, either in an English form or in a frame 
form that is more like their internal representations. Concept frames can be displayed in simi- 
lar fashion. 

B. Run-Time Innut Functions 
When Genie requires information from the user, there are three schemes by which it can 

request it. The first and simplest of these is the simple yes/no question. The user may 
respond b a yes/no question by typing one of a number of responses, each of which is 
equivalent to one of the responses “yes”, “no”, and “unknown”. The three canonical 
responses have the effect of declaring the fact (as asked) to be true, false, or indeterminate, 
respectively. 

The second scheme for requesting input is the menu. A menu displays a question rind 
several numbered responses. Each of the responses represent6 a fact, and all the 13cts in .a 
given rrtenu form a mutually exclusive set (i.e. they are in an xor list). The user simply types in 
the number of the desired response. Genie then concludes that t,he chosen fact is true and that 
all ot.hers in the menu are false. 
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The third mode of input is the numeric question. Whenever Genie requires an arithmetic 
fact, rather than simply request verification of that fact, it asks for the numeric value itsell. 
The u~et may respond to a numeric question in a fairly flexible algebraic notation. Possible 
responses include “S”, “2 > 3.14”, and “0 <= z < 100”. Once some value-range has been 
stored tor the numeric value, all the tzCtg that require the value are checked to determine their 
truths. It is assumed that the user’s input was tbe best estimat,e he had of the requested value. 

In addition to the prmissible answers, all three question modes also allow immediate 
interrogation about the context in which the question is being asked. Depending on one’s 
awes8 class, one may type “why”, to determine why the rrquestcd information is needed, 
“rule”, to be shown the rule that is currently being tested, and “hyp”, to be shown the 
hypothesis currently under consideration. 

C. Grammar 
Genie performs all its reasoning on coded representations of the domain information in 

the knowledge base. Generally, when it speaks to the user it must translate rules and other 
structures into English. To do this Genie depends on a simple yet effective pseudo-English 
grammar. This grammar is used in compiling the knowledge base, and then again whenever 
pieces of knowledge are displayed to the user. 

The primary piece of knowledge that must be formulated into English is the fact. Since a 
proposition’s assertion and its negation represent the same knowledge - in the sense that the 
truth value of either one follows immediately from that of the other - a single fact frame is 
used to represent both. Each fact frame contains a Stmt slot, the foundation of the lormula- 
tion process, in which is stored an affirmative English-language statement of the proposition. 

So, both for building fact frames and for displaying knowledge and asking questions, the 
grammatical requirements are: the means b determine the sense of a statement (affirmative or 
negative), to switch the sense of a statement, and to turn the statement into a question. Genie 
accomplishes these tasks through a simple scheme that matches statements against grammatical 
patterns. Given the fact statement, “Compressor has driver rings”, Genie will create the ques- 
tion, “Doe6 compressor have driver rings?“. It can complement the fact statement, “Engine is 
fully encased”, yielding “Engine is not fully encased.” 

..- 

V. DATA DIGESTION 

It has been a fuudamental design goal that Genie should be able to perform all of its tran- 
sactions with humans in nearly natural language. When a new rule is added to a Genie 
knowledge base, the first rorm that it ties is an English-language statement. But because 
Genie cannot actually remon using natural language directly, there is little justification for using 
English strings as the medium of knowledge representation within the system. The natural- 
language components of Genie must be able to switch between the internal representartion and 
statements in English. 

Strong arguments against storing facb as strings of English words can be made from con- 
siderations of etticiency. First, it is redundan6 and wasteful of space to store a lengthy state- 
ment of a fact in every rule that contains the fact. But more importantly, representing the 
abstract object known as a tact, with all its semantic and contextual baggage, as a mere string of 
words is unacceptably limiting. Both goal- and data-driven reasoning require the pairing up of 
autrcedenta and conclusions of various rules. To do this with the scanty rule representation 
that provides only word strings requires sequentially checking every rule in the knowledge base, 
performing a time-consuming word-for-word check to see if racts match. Negated facts cause 
additional headaches. 

For these reasons, Genie includes a module that preprocesses its knowledge base. Inter- 
nally, rules and facts are represented by frames rind referred to by unique names called code 
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symbole (like “rule24” and “fact7”). The key function in the data digestion process is c&d 
build-jrumctx It reads the knowledge-base input file and puts all the static knowledge intr, 
Genie’s internal representation forma&. As an example, the rule frame shown in figure 5a 
might have been created by build-frames from the input in figure 8. 

(IF there arc struts at, the front of t,he engine) 

1 

there are two flanges near the front of the engine) 
flanges are not extremely close together) 

TH ‘N 
(engine 113s a front frame)) 

FIGURE 8.-Sample Inpf Rdc. 

The data digestion process creates rule, fact, and concept frames where necessary, record- 
ing them in table8 60 that, lot instance, occurrences of a given-fact in subsequent rules will be 
referred to by the same fact code. So the only searching that Genie must do is in translating 
English statements into code symbols, and this is done all at once during data digestion. Other 
steps in data digestion are adding the links between rule and fact frames to allow chaining, and 
linking all the facts in each xor list. Appndix C provides a specification of the structures per- 
missible in the knowledge-b;ise input file. 

When an end user encounters Genie, tbe knowledge brsse has already been preprocessed. 
The improvement in performance obtained through data digestion is marked. In a pure produc- 
tion system the mean time required to make one inference grows linearly as the size of the 
knowledge base is increased. This is so because backward chaining cannot be pcrtormed 
without searching the ent.ire knowledge base for relevant rules. Digesting the rules as is done 
in Genie speeds the process considerably, and the time per inference is independent of the size 
of the knowledge base.’ 

VI. EXPLANATION FACILITIES 

A common observation among those who have designed expert systems is that a system 
must be accessible or it will not be used, because few will feel confident accepting the output of 
a black box. The program should be able to provide information about its reasoning and juslity 
particular inferences when the user requests it to do 60.’ Genie has several facilities to provide 
this kind of explanation of its behavior b the user. 

The simplest mechanism available to the user is :he straightforward dump of current 
knowledge. This can take any of the lollowing forms: listing all the facts whose tit& are 
known, listing all the rules whose Statumes are known, and listing all the concept allribuks for 
which Borne value-range is known. A re!ated mechanism is the “find” command, which finds 
all facts whose Stmts conttin specified words. 

The “show” command can be used to display a rule or a fact - either in Euglish or 
frame term - or a concept trame, This is often useful in combination with “find”. 

The highest-level intcrtogation commands currently available to the user arc “how” and 
“why”. An example of the tormer is “how factl7”, meaning, “By what means did you dctcr- 
mine the truth value of factl7f”. To answer the question, Genie checks the How slot in the 
fact frame, and prints an explanation of its just,ification for concluding the %th of the fact. 

’ K. Nila. K. Sruaki, and Ii. Ihara “An ExptrimcnLal Comprtison of Knowledge Rcpresenhtion Schemes”. 
AI Mogutiru, Sutnmcr 1084. pp. 20-36. 

’ 8. C. Bucbrnan and E. 11. Shortlille, eds. Ruk-Dared Ezpcrl Syrfcmr. Addiaon-We&y, 1084. pp. 58-59. 
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The “why” command asks the question, “TO what end did you need that fact?” It can be used 
to determine Genie’s motivation for asking a question. In response, Genie displ:iys the rule 
that it is currently attempting to fire. 

Taken together, these commands allow one to discover the system’s line6 of reasoning. 
This is useful for the rule writer in ensuring that rules interact to produce the intinded eonclu- 
siona. It is also useful for the end user in deciding whether to accept the system’s conclusions 
and the system itseIC. 

VII. FUTURE WORK 

There are several changes underway to improve both Genie’s internal processes and it5 
man/machine interface. Included in these are the system’6 interfaces with the rule writer and 
the user, uncertainty, higher-level organization of knowledge, mpre natural user interface, 

A. Uncertaintv 
Tbere are many kinds of uncertainty inherent in any real-world problem. The omnipres- 

ence of uncertainty sod inexactitude is made even more bothersome by their intractability. 
Reasoning effectively in the face of these obstacles is among the most challenging problems in 
AI. 

Among the types of uncertainty often encountered are simple probability of a proposition 
(e.g. “There is a 75 percent probability that the fragment will perforate the combustor hous- 
ing.“), fuzziness of a proposition (e.g. “The power turbine is very rugged.“), rule strength (i.e. 
the extent to which the rule is applicable), and rule reliability (when knowledge is synthesized 
from several experts). 

We have considered adopting the certainty factor technique used in the MYCIN project. 
A certainty factor is a scalar that is associated with a proposition and reflects the proposition’s 
probability. Conclusions of rules contain certainty factors, so one rule might be said to provide 
stronger or weaker evidence than another rule with the same conclusion. Iiowever, parametric 
studies indicate that MYCIN’s results are fairly insensitive to the choice of certainty factors, so 
this method mv not be highly useful. 

Another enticing tool i6 the theory of fuzzy se& introduced by Lotfi 2adeh.e~‘*e Fuzzy set 
theory promises to address many types of uncertainty. We have begun working with the Joint 
BRL/AMSAA Working Group on Fuzzy Sets to apply this approach to out work. 

B. Hipher-Level Organization of Knowledge 
The exclusive use ol iules to represent domain knowledge makes it impossible to capture 

any but the simplest patterns in the knowledge. More abstract organization can only be 
represented by more complex structure!. In order for Genie to remon more powerfully, 
explain its behavior at a suitably high level, and be appropriate a5 a teaching tool, it must have 
a fair level of abstraction. This consideration is central to the enhancement of Genie’s perfor- 
mance. 

The Cint two step6 toward higher-level organization were lhe representalion of rules and 

’ L. A. Zadcb. “Furry Scb,” Infomaliwr Controi, vol. 8. lP65. pp. 338-353. 

’ L. A. Zadcb. “Outline of a New Approach to the Andyais of Complex S+rn~ and Decision Rocesrcs,” 
IEE Tratuochu OR Syrfcmr, hfon, and Cydcmtticr, vol. smc-S, no. 1, January 1973, pp. 28-44. 

6 L. A. iadtb. be Role O/ FUZZY I!,+ in Lhc Ifanagcmenl 01 CInccrfainfy in Erpcri Sydcma hlcmorandum No. 
UCB/ERL M83/41, Electronics Research Laboratory, College or Enpinccting, University of California, 
Berktlcy, ln8.3. 
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facts aa franwe, and the uBe of concept frames. Concept frames are currently used only for 
numeric values in arithmetic facts. The next step ia probably to use a more robust concept 
frame, like that found in Leaat’a program, AM.“” ‘&uB, in a future incarnation Genie might 
build concept frames for every “object” mentioned in the rule base, BO it could fulfill requests 
like “Show every rule that mentions annular combustorB”. 

Of course, implementing this capability would require that the input rules be analyzed 
using a much more powerful gramms than the one with which Genie is currently endowed. 
Genie cannot now be said to understand its knowledge base in abstract terms: it breaks rules 
into facts and very effectively handles the relationa among them, but on fact statements it only 
performs surface-level manipulations. Clearly, a deeper understanding would require more 
intelligence in interpreting the knowledge. 

C. Rule Writet 
AB a rule base grow8, keeping it free of conflicts, contradictions, and overlaps becomes 

extremely difficult. While building individual rules is clear and straighbforward, ensuring that 
the integration of hundrede of rules produces the desired results can be a problem. It would be 
a great advantage to have a component that helped the knowledge engineer manage the 
development and maintenance of the knowledge base, facilitating addition and debugging of 
rules. 

Like most of the enhancements discussed here, a rule writing tool's utility depends on its 
intelligence. For example, even the ability to recognize when two similar Iacts have related 
meanings is difficult to automate. A fir&p=s rule writer could be made to compile rules into 
the knowledge base as they were entered. Such a program would be able to determine, just as 
Genie does now, which rules use given facts. 

D. More Natural Vscr Interface 
Genie ought to be able to converse with the user in something closer to normal English. 

This is tied in with increasing the order in the knowledge base, since sophisticated sbtements 
are built from and reflect elaborate knowledge structures. 

Another major improvement in the user interface will be possible when Genie is moved 
to a LISP machine in the near future. These single-user work stations provide a remarkably 
powerful environment for both development and production runs. A combination of mouse, 
windows, popup menuB, and high-resolution graphic6 will make communication simple and 
quite fast. 

’ D, Len&. AM: An orl$ciol inklligcnce approach lo-ditcovcry in molhtmatitr at hturilit read. SAIL AIM- 
286, Strnford Arlilicial lnklligcncc Laboratory, 1076. 

“D. A. fYatcrman and F. Hayes-Roth, cds. PatkmDiecltd /n~crcncc Syrfcm#. Academic F’rcsa, Inc., 1078. 
pp. 3043. 
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ANALYSIS OF GRADIENT CHANGE THRESHOLDS IN THE 
DETECTION OF EDGES OF OBJECTS FROM RANGE DATA 

C. N. Shen and R. L. Racicot 
U.S. Army Armament, Munitions, and Chemical Command 

Armament Research and Development Center 
Large Caliber Weapon Systems Laboratory 

Benet Weapons Laboratory 
Watervliet, NY 12189-5000 

ABSTRACT. The detection of the gradient change for an object or an 
obstacle can be analyzed. The ratio of the magnitude of the gradient change 
to measurement noise is related to the miss and false alarm of the system. 
The spacing of the measurements also affects the detection threshold of this 
gradient change. 

I. INTRODUCTION. A laser range finder is installed on the top of a mast 
attached to a land vehicle or a helicopter. This laser range finder measures 
the distance between itself and the ground points on a terrain with obstacles. 
For segmentation, the edges of the boulder and crater must be estimated. In 
determining the near edges of a boulder or the far edges of a crater, it is 
necessary to locate the first differences of the slopes of the terrain. This 
is equivalent to finding the second differences of the terrain range points. 
The threshold values of the second differences can be in terms of an angle in 
a vertical plane. The probabilities of miss and false alarm can be 
ascertained depending on the method of estimation and the scanning scheme. 

11. THE LAPLACIAN METHOD. The Laplacian Method considers cross-sections 
of terrain and looks for changes in slope in the azimuth or radial direction. 
Since we are only considering one-dimensional problems, we can write for the 
measurement equation 

=i = di + vi 

The change in slope is estimated by computing the following sufficient 
statistic: 

a 
si = zi+1 - 221 f zi-1 (2) 

This is a digital approximation of the second derivative, or second 
difference, of the range. 

Due to the presence of measurement noise in the calculation of sir it is 
impossible to discern with absolute certainty whether a change of slope 
exists. The Neyman-Pearson criterion provides a decision rule which we may 
use to accurately detect edges OF obstacles with a known probability of making 
an error. To produce the decision rule, first we must compute the variance of 
si as follows. We assume that the noise components vi of the measurements are 
independent Gaussian random variables with zero mean and a variance of 02* 
Then, since zi+l, zi, and zi-1 are independent, Eqs. (1) and (2) yield 



var(si) = var(zi+l-2zf+zi+l) 

= var(zi+l) + var(-2zi) f var(zi+l) 

= u2 "k 402 -I- u2 = 69 (3) 

Because sl is a scalar random variable, the Neyman-Pearson criterion 
provides a decision rule identical to that derived using hypothesis testing. 
The desired decision rule is 

no signal if -T ~ Si ~ T 
DECISIONi = (4) 

presence of signal if si is otherwise 

where T is the threshold in the decision process which can be determined from 
the equations 

PF = 2$[-T/m] 

PM = @[(T-u*)/-] 

(5) 

(6) 

where 

9(z) = l/a Iz e-a2/2 da (7) 
-co 

It is noted that the magnitude of Si is not estimated by the Laplacian llethod. 
The quantity u* is called the "minimum detectable change of slope," since it 
is the smallest change of slope that can be detected with a miss probability 
of Pbf or lower. The quantity PF indicates the probability of a false alarm. 
The miss probability PM is the probability of not detecting a true change of 
slope equal to u*. 

Typically, the standard deviation fi is a known system parameter and u* 
is chosen SO that suitable values of PF and PM can be obtained. Table 1 shows 
the trade-off of PF vs. PM for different values of the ratio ~*/a. These 
values are computed using Eqs. (5) and (6). 

TABLE 1. FALSE ALARM PROBABILITIES AND MISS PROBABILITIES 
FOR VARIOUS T/G AND u*/& 

1 I 
I 
1 T/6 1 
I I 

Pp 

1 PM For 1 PM For 1 PM For 
I I I 
I u*/m I u*/&T I u*/m 
1 I I 

.3174 

.1336 
.0932 
.0456 
.0319 
-0124 
.0026 
.0003 

.15&7 
.3085 
.3741 
.5000 
.5580 
.6915 
.8413 
.9332 

i .0227 

1 .1587 1 .3085 
.oooo I .9772 1 .8413 1 .5000 

.oooo I .oooo I 

.0002 

.0005 

.0013 
.0022 
.0062 
.0227 
.0668 
.1587 

.oooo i 

.oooo 1 

.oooo 1 

.OOOl I 

.0002 1 

.0013 I 

.0062 1 
.0227 1 
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III. THE RAPID ESTIMATION SCHEME AND COMPARISON OF ERROR PROBABILITIES. 
The variance of si for the Laplacian Method is usually too high when a change 
of slope occurs during scanning. An adaptive method called Rapid Estimation 
Scheme is used instead to keep the variance lower, thus also reducing the 
probabilities of false alarm and miss. A discussion of the Second Residual 
Method for the Rapid Estimation Scheme is given in the Appendix. 

The different expressions for the error probabilities of the two methods 
are given in Eqs. (5) and (6) and reiterated in Table 2. We see that the 
expressions for both methods are the same except that w appears with the 
Laplacian Method, whereas t's i+2 appears with the Second Residual Method. 

TABLE 2. ERROR PROBABILITIES 

1 Method ] Probability of False Alarm 1 Probability of Miss ] 
I I 

I I 

1 Laplacian 
I PL = 2$[-T/&-7] 

F 
1 PL = $[(T-u*)/Js] 1 

I I M I 
I Second Residual I Ps = 244-T/&& 1 Ps = W-u*)/G] 1 

)-~y-.y---y---L-.- - F.- - ----.-efsI _I-- -L =a---- -'rs==:==I---.- _ ._-. "_ .-m.- _ _ _ - .- _ _ _ - - - 

We know that the Second Residual variance is less than or equal to the 
Laplacian variance: 

/si+2dm (8) 

Since 4(z) is a monotonically increasing function and has a negative 
argument in all the expressions in Table 2 (we assume T-u* < 0), we can 
conclude that 

Pi (Second Residual) G Pi (Laplacian) (9) 

Ps (Second Residual) G Pi (Laplacian) 
M (10) 

Figure 1 illustrates how the smaller Second Residual variance leads to smaller 
error probabilitfes. 

With smaller error probabilities, we expect the Second Residual Method 
will have a better performance over the Laplacian Method. 

IV. MINIMUM SLOPES OF DETECTABLE OBSTACLES. In this section we will 
determine the threshold in edging of gradient changes of obstacles. These may 
be detected using the Second Residual or the Laplacian Method. 

Obstacles may or may not be detectable depending on the change of slopes 
of the terrain at its edges. It will be shown here that the minimum 
detectable slope change depends upon a given group of parameters. 

Figure 2 shows a diagram of an obstacle. C and B are consecutive points 
where laser beams emanating from laser range finder bounce off the terrain. 
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Point D is the estimate of the range based on the data at point R and previous 
points. zhus, the ran&e of point C is measured as 21+2 and point D lies at a 
range of di+2 , where di+2 = XF~+~X*P+~ is the prediction of the range di+2 
from previous data. We see that the distance from C to D is the residue, 
'i+2. It is apparent that the expected value of Ki+2 takes its minimum value, 
u* . From the geometry, the quantity tan 0 can be computed by finding x/y. 
These quantities are found as follows: 

x = u* sin B (11) 

y = hp - u* cos B (12) 

then 

tan El = x/y = (u* sin Q/(Ap - u* cos rJ) (13) 

By extending the above idea, we have two slopes, AB and BC, instead of 
one in the previous cases, The angle Y is the difference of the angle 9 for 
slope BA and the angle $ for slope CR, as shown in Figure 3. Now the slope of 
Y becomes 

a 
tan y = - , (Y = &$I (14) 

b 
where 

and 

a= u* sin (Bt$) (15) 

b = (Ap) cos Q - (Ap) sin $J cot (B+$) - u* cos (ti$) 

sin (a+$) cos 9 - cos (8-t+) sin 9 = ( Ap) ------------s;~-Tc~------------ - u* c-8 ( fj+,$) 

(AP) sin B = ---m----1- I u* 
sin CD+41 

=os (Bt$J) 

U* 
= (Ap) sFn fj ,+in (M,$) [--e-f------ a ---------- ----‘----I 

sin2 (B+4) (AP) sin B tan (H-4) 
(16) 

Combining the terms, we have 
(u*/+) tan2 (Bt9) - ----------------_---1____________ 

tan ' - 1 -t tan2 (6-k@) - (u*/T) tan (@+$I 
where 

r = (AP) sin B 
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The quantity T is the projection of the data spacing in the direction of sin 
i3. 

If Eq. (17) is solved for u*/T, we have 

u*/-l = U,(y,J++) ," -___-----1_----_1------------ tan y [l + tan2 (&t$)] 
tan (0+$) [tan (R+$) f tan Y] 

(19) 

Table 3 gives the values of K as a function of angle of detection Y, the 
sums of the elevation angle B, and one of angle 9 for the terrain. 

The above equation can also be derived from Figure 4 which gives 

u*/r = ~(Y,W$) =” [cot (f3+$) - cot ( B+$-w)] (20) 

v. FUNCTION K OF ANGULAR GEOMETRY. If we can keep the ratio u*/~ 
constant in Eq. (19) or (20), then the value of K(y 
Table 3. This can be achieved by letting both u*/ R and ~/fi be constant. f 

f%$) will be constant in 

First, we will d-iscuss the value of u*/dR. 

Table 1 shows the values of PF for given threshold to noise ratio T/V& 
which guarantees the probability of detection. It also lists the values of Px 
for both T/G and the signal to noise ratio, u*/&. For example, let us take 
T/6 = 1.679 and u*/fi = 3. We have 

PF = 0.0932 (21a) 

PM = 0.0932 (21b) 

which are reasonable values for our problem. 

The second part is to keep the ratio ~/fi constant. This is related 
to the scanning scheme given in the next section. From Eq. (18), we have 

r/G = (Ap)(sin B)/& = constant = L (22) 

Then the ratios 
u*/Jli 3 
---1 3 - I 

T/6 L 
KC Y, w-4) (23) 

If L is chosen as 4, then one will look at the points for K = 0.75 in Table 
3. If L is chosen as 1.6, then one will look at the points for K = 1.875 in 
Table 3. For K = 0.75, the following set of angles appears 

$+I$ 15" 20" 25" 30" 
Y 3.8' 6.7O 10.2" 15.g0 

In summary, the above value of Y is guaranteed to be detected for the 
conditions 
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TABLE 3. VALUES OF K(y, f3k$) AS FUNCTIONS OF GAM?fA AND BETA + PIII 

1 I I I I I I 
I I I 1 I 

Beta + Phi 
I t 

1 Gamma I 5 I 10 I 15 I 20 I 25 I 30 I 35 I 40 I 45 I 50 I 
I I I t I I I 

T 

O I O-O 
2 

1 3.2857 

/ 1 1 5.1163 6.2855 
1 ii 1 7.0986 

j ;; : t 1 7.6980 8.1592 
I 8.5258 

I 0.0 1 0.0 1 0.0 1 0.0 
0.9667 1 0.4612 I 0.2724 t 0.1819 
116605 1 0.8278 I 0.5014 I 0.3405 
2.1839 ] 1.1270 I 0.6972 I 0.4802 
2.5936 1 1.3762 I 0.8668 t 0.6046 
2.9238 1 1.5875 i 1.0154 t 0.7164 
3.1962 1 1.7694 1 1.1471 1 0.8175 
3.4252 1 1.9280 1 1.2649 1 0.9096 
3.6210 1'2.0678 1 1.3711 1 0.9941 
3.7906 1 2.1922 I 1.4675 ! 1.0721 

z I 20 ! 9.2856 t 3.9392 
1 22 -1 9.4674 I 4.0709 
I 24 I 9.6260 t 4.1887 
1 26 t 9.7658 t 4.2949 
t 28 1 9.8902 I 4.3913 
I 30 ,I 10.0019 I 4.4795 

1 10.1030 t 4.5607 
.; 1 10.1952 t 4.6357 

1 10.2797 t 4.7056 
1 10.3577 I 4.7709 
1 10.4301 t 4.8322 
1 10.4795 t 4.8900 
1 10.5608 t 4.9447 
1 10.6203 t 4.9968 
t 10.6765 t 5.0464 
1 10.7299 1 5.0939 
1 10.7807 1 5.1396 
1 10.8292 1 5.1835 
1 10.8758 t 5.2261 
1 10.9205 i 5.2673 

LLLLi~~~, ] :$ 1 10 9638 I 5 3073 

2.3039 t 1.5557 
2.4050 t 1.6369 
2.4972 1 1.7119 
2.5817 t 1.7818 
2.6597 1 1.8471 
2.7321 1 1.9084 
2.7995 t 1.9662 
2.8628 1 2.0209 
2.9223 1 2.0730 
2.9785 t 2.1226 
3.0318 I 2.1701 
3.0826 t 2.2158 
3.1312 I 2.2597 
3.1777 I 2.3022 
3.2225 I 2.3435 
3.2657 I 2.3835 
3.3076 I 2.4226 
3.3482 I 2.4607 
3.3877 I 2.4981 
3.4263 I 2.5349 
3.4641 I 2.5711 

1, md--- 

1.1445 
1.2120 
1.2752 
1.3347 
1.3910 
1.4443 
1.4951 
1.5436 
1.5902 
1.6350 
1.6782 
1.7200 
1.7606 I 
1.8002 1 
1.8388 I 
1.8766 1 
1.9136 I 
1.9501 1 
1.9861 1 
2.0217 t 
2.0570 1 

I’ I I I I 

0.0 
0.13L7 
0.2495 
0.3557 
0.4521 
0.5403 
0.6214 
0.6965 
0.7664 
0.8316 
0.8930 
0.9508 
1.0055 
1.0575 
1.1072 
1.1547 
1.2003 
1.2443 
1.2868 
1.3280 
1.3681 
1.4071 
1.4453 
1.4827 
1.5195 
1.5557 
1.5915 
1.6269 
1.6621 
1.6971 
1.7321 

i 0.0 i 0.0 i 0.0 i 0.0 1 
1 0.1011 1 0.0811 I 0.0675 1 0.0578 t 
1 0.1933 I 0.1562 1 0.1307 I 0.1126 I 
1 0.2778 t 0.2261 1 0.1902 I 0.1646 I 
I 0.3558 t 0.2913 I 0.2464 I 0.2142 I 
I 0.4281 1 0.3527 t 0.2998 t 0.2617 I 
1 0.4956 i 0.4105 I 0.3506 t 0.3074 I 

I 0.3991 

1 0.6144 
t 0.6600 

I 0.8278 

1 0.8056 
t 0.8416 

0.3514 I 
0.3939 
0.4351 
0.4751 
0.5142 
0.5524 
0.5898 
0.6265 
0.6628 
0.6986 
0.7340 I 
0.7692 t 
0.8042 I 
0.8391 i 
0.8740 I 
0.9090 I 
0.9442 1 
0.9796 I 
1.0154 I 
1.0517 I 
1.0884 I 
1.1258 1 
1.1640 I 
1.2031 I 

1 me--- 

I 1.0866 
t 1.1218 
1 1.1568 
1 1.1918 

I 1.3323 
I 1.3681 



u*/JTi= 3 , PF = PM = 0.0932 , 

and the variable B-t+ as listed. 

VI. THE SCANNING SCHEME. In order for the value of L to be constant in 
Eq. (221, one will take the discrete form in Figure 5 as 

(Ap)l sin RI = (Ap)p sin B2 = ‘c = & L = constant (23) 

If b is the height of the mast, then 

b - b 
Sin Bl = ------- 

r’t;4P1L 
sin $2 3 ------- 

=Gp 
(24) 

Thus, we have in Figure 4 
( API1 (A~12 f Jk __eem-- = -----dd 1 c = --I 

JPTqmTgbb 
(25) 

The above equation indicates that the spacing of the horizontal 
projection is proportional to the radial distances from the laser to points on 
the horizontal plane. For example, let us take b = 2, then 

( Ad1 (API2 k 
------ = --I--- = -I- 
Js+plz J4+pz 2 

or 

(AP)i = (w)fiL/2 (26) 

For example, given fi = 0.125 and L = 1.6 or fi = 0.05 and L = 4.0, in both 
cases we have f = & = O-20. Then, from Eq. (26), we have 

P 2m 5m 10 m 20 m 
AP 0.2828 m 0.5353 m 1.1832 m 2.010 m 

In this case we may miss a boulder of 0.2 m at 2 m away or a boulder of 2 m at 
20 m away* 

VII. PROBABILITY OF DETECTION FOR RANDOMLY LOCATED EDGES. In the -- 
nrevious sections it was assumed that range measurements were available from 
the range finder to the exact vertex of an edge. This is represented by point 
R in Figures 2 and 3. An edge is defined by a discrete angular changa Y* 
By assuming a range measurement point to fall on the edge vertex, results in a 
single value for the residual u* in Eq. (19). This corresponded to a single 
value for the PD probability of detection, in which PD = ~-PM with PM being 
given by Eq. (6). 
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Tn practice, the edges of objects might be randomly distributed and the 
range measurements, In general, might not fall on an edge .vertex. A more 
realisFtc approach, therefore, might be to treat the range measurementx to be 
randomly distributed near aa edge represented, for example, by points A, B, 
and 5 in Figure 6. A random residual<* would result for given edge angular --- 
change y instead of the constant value of u* assumed previously. 

The probability of detection in this case can be calculated using Eq. (6) 
as a function of the random variable <*: 

T-u* 
P(Detecttonluk) = 1 - P (Hissluk) = 1 - @[----I 

& 
(27) 

Form geometric cnnsiderations it can be shown that <* will range approximately 
from u*/2 to u* in Figure 6. It can be further assumed that the distribution 
of <* will be uniform over this range of values which corresponds to a purely 
random distribution of object edges on a given terrain. Equation (27) can 
then be used to determine the total probability of detection: 

P(Detection) f /' 
* - - 

u*/2 
P(Detlu*)f(u*)du* 

= 2- JlI,2 P(Detlu*)du* 
11* 

(28) 

in which f(u*) equals unfform distribution on (u*/2 to u*), and u* is given by 
Eq. (19). 

Equation (28) can.be solved as a function of T, fi, and u* where u* is a 
function of y, (IN@), and T as in Eq. (19). As an example, let 

T/G = threshold level for detection 
= 2.146; gives PF = 0.0319 from Table 1 

fi = 6' where o = range data noise level 
= 0.1225 for u = 0.05 

'I = 0.20 

The resulting P(Detection) is shown in Table 4 as a function of the angle 
change y and (B+$). Other scmilar information can readily be generated for 
other parameter values depending on the actual problem to be solved. 

The behavior of the mintmum detectable angular change y can be readily 
determined from the type of information given in Table 4. For example, by 
requiring P(Detection) = 0.90 and letting i3+$ = 15 degrees, results in a 
minimum detectable value of Y to be about 40 degrees. This compares to a 
value of y at 13 degrees for the nonrandom case previously considered where 
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TABLE 4. TOTAL PROBABILITY OF DETECTION FOR RANDOMLY LOCATED EDGES 

1 I 
1 Gamma I 2 
t t 

I 0.0 
1 1.0000 
1 1.0000 
! 1.0000 
I 1.0000 
1 1.0000 
I 1.0000 
I 1.0000 
I 1.0000 
1 1.0000 
1 1.0000 
1 1.0000 
I 1.0000 
1 1.0000 
1 1.0000 
I 1.0000 
I 1.0000 
1 1.0000 
I 1.0000 
I 1.0000 
I 1.0000 

4 

0.0 
0.9960 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1 
r 
I 

I 

I 

I 

I 

1.0000 
1.0000 
1 .oooo 
1.0000 
1.0000 
1 .oooo 
1 .oooo 

I 
I Beta + Phi 

I I I I 
6 1 3 10 I 12 I 14 i 16 1 18 20 I 

I I 

0.0 I 0.0 I 0.0 
0.7526 1 0.3606 i 0.1741 
0.9730 1 0.7563 i 0.4583 
0.9962 1 0.9077 i 0.6794 
0.9993 1 0.9605 f 0.8079 
0.9998 1 0.9812 i 0.8790 
1.0000 i 0.9902 1 0.9199 
1.0000 1 0.9944 t 0.9445 
1.0000 1 0.9967 t 0.9600 
1.0000 1 0.9979 I 0.9703 
1.0000 1 0.9986 1 0.9774 

t r 
I 

I 
I 

I i I 

j 0.0 i 0.0 1 0.0 i 0.0 i 
1 0.0676 1 0.0508 i 0.0412 t 0.0352 t 
I 0.1636 1 0.1110 1 0.0816 1 0.0641 i I 

1.0000 1 
1.0000 1 
1.0000 1 
1.0000 I 
1.0000 I 
1.0000 I 
1.0000 I 
1.0000 I 
1.0000 I 
1.0000 I 

,==-L 

0.9990 
0.9993 
0.9995 
0.9996 
0.9997 
0.9998 
0.9998 
0.9999 
0.9999 
0.9999 

0.9823 
0.9859 
0.9886 
0.9906 
0.9922 
0.9934 
0.9944 
0.9952 
0.9958 
0.9964 

0.0 
0.1004 
0.2645 
0.4431 
0.5895 
0.6960 
0.7707 
0.8230 
0.8603 
0.8874 
0.9076 
0.9230 
0.9350 
0.9444 
0.9520 
0.9582 
0.9632 
0.9675 
0.9710 
0.9741 
0.9767 

0.2831 I 0.1891 ! 0.1343 i 0.1011 i 
0.4016 1 0.2742 i 0.1941 1 0.1440 I 
0.5055 1 0.3575 1 0.2565 t 0.1901 i 
0.5909 I 0.4338 t 0.3176 t 0.2372 i 
0.6592 i 0.5013 t 0.3754 t 0.2838 t 
0.7133 1 0.5595 i 0.4286 t 0.3286 t 
0.7562 1 0.6094 t 0.4768 t 0.3710 t 
0.7905 1 0.6519 i 0.5202 i 0.4107 t 
0.8181 I 0.6881 I 0.5590 i 0.4476 t 
0.8407 1 0.7191 i 0.5937 i 0.4817 t 
0.8593 1 0.7457 1 0.6246 i O-5131 i 
0.8748 1 0.7687 i 0.6522 i 0.5421 i 
0.8879 I 0.7887 i 0.6770 I 0.5687 1 
0.8990 1 0.8062 i 0.6993 i 0.5933 t 
0.9085 1 0.8215 [ 0.7193 ! 0.6160 I 
0.9167 1 0.8351 1 0.7375 I 0.6369 I 
0.9239 1 0.8472 t 0.7539 t 0.6563 t 
0.9302 1 0.8581 t 0.7690 1 O-6743 i 

L --LeTT-TyTLI-TI WT.. . .-- 



the range -Ls assumed to be measured directly to the edge vertex. 

VIII. CONCLUSION. For an assigned probability of false alarm and miss, 
one can determine the signal to noise ratio and the threshold to noise ratio. 
If we use a special scanning scheme such that the spacing of horizontal 
projections is proportional to the radial distances from the laser to a 
horizontal plane, then the function K of angular geometry is also constant. 
The detectible angle y with certain probability can be found if K and $-t-4 are 
known. The angles B+$ are related to the elevation angle B and the terrain 
slope 9. 

The following results were discussed in this paper: 

1. Ability to.detect the change of slopes in a terrbin for navigation of 
vehicles or robotic platforms. 

2. Determination of the pr.obability of false alarm and the probability 
of detection for various signal to noise ratios and for the case of randomly 
distributed measurements. 

3. Determination of required signal to scanning factor ratios for 
various slopes and slope changes. The signals relate to the probability of 
detection and the scanning factor influences the size of the obstacles. 

4. Computation of the probability for detection of an edge if the 
reference directions of the laser rays are uniformly distributed over the 
slopes near an edge point. 



APPENDIX 

THE SECOND RESIDUAL METHOD 

The Second Residual Method, similar to the case case with the Laplacian 
Method, considers cross-sections of terrain and looks for changes in slope. 
Here, however, a state estimation and decision process is used to perform the 
detection. A discrete second order linear time-varying system model is used 
to estimate ranges and gradients (slopes) from current and previous data. If 
the difference between a range measurement and range prediction is large 
enough, a change in slope is indicated and a special estimation scheme is 
employed. 

THE SYSTEM MODEL. A stabilized system model for a terrain has been 
proposed. The state vector is 

xi = Idi* EilT (Al) 

where di indicates the i-th range and gi the i-th gradient (or slope). A 
change of slope is modelled by the presence of an unknown input, ui, which 
adds to the gradient component of xi through the input matrix. The system 
model is 

xi+1 = Fixi -I- Bui (A21 

where 
I- -1 I- -1 
1 bi l-c I I 0 I 

Fi = 1 I and R=l I 
lo qi 

I l I - -- 

where bi and qi are the time variant parameters and c is a small non-negative 
real number necessary for system stability while scanning inward from 
skylines. The measurement equation is 

zi+1 = hi+1 + vi+1 (A31 

where H = [l,O] and vi+1 is zero mean Gaussian noise where 

0 for all i f j 
E{vivj) = 

U2 for all i = j 

Our problem, then, is to detect any small nonzero inputs ui, since 
they represent a change in slope. 

(A41 

As in the Laplacian Method, a sufficient statistic is necessary to detect 
the change -of slopes. This sufficient statistic is called the residue, ri+2, 
as 



'i+2 = zi+2 - J%-1x*i+1 (A51 

where x* 1 is optimal estimate of xi-t-1 given zi+l, zi,. . . ,zl. 
shown thi: 

It can be 

E{'iflj = HFi+lBq 

= (l-c)q z ui (A61 



t PW 

Figure 1 n Distributions and Probabilities Comparing 

the Two Metrhods. 
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Figure 2. Obstacle Geometry 
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Identification of Partially Obscured Objects 

Charles R. Leake 

US Army Concepts Analysis Agency 
ATTN: CSCA-RQR 

8120 Woodmont Avenue 
Bethesda, MD 20814-2797 

Abstract. Present computer simulations use an acquisition mode 
theston criteria for identification. This model also prov 
for different states of acquisition such as detection, recognit 

1 that employs 
ides criteria 
ion, and iden- 

tification. However, experimental results obtained during tests have shown 
that it is not always necessary to go through al-1 the stages of acquisition in 
sequence to achieve identification. Additionally, some unique system charac- 
teristics other than size in relation to contrast can be used to acquire objects 
even when these objects are partially obscured. Other experimentally observed 

lso discussed which are related to motion and distance 
li are required for identification. These experimental 

a mathematical model encompassing these observations 

obscuration factori are a 
for which different stimu 
results are discussed and 
is presented. 

1. Introduction. This p aper is concerned with the image perceived by a viewer 
using a thermal sight (IR sensor and imaging device). Inasmuch as thermal 
sights are being used by many of the Army's advanced weapon systems, including 
tanks and fighting vehicles, as one of their principle means of target acqui- 
sition, it becomes important to investigate the human/sight interface in the 
acquisition process. This paper will concentrate on four factors--atmospheric 
conditions, thermal image, obscurants, and distance--which have been shown 
experimentally to influence the image perceived by a human through a thermal 
sight. A mathematical model of the influence of these factors on the thermal 
sight and human interface will be presented for possible use in modeling this 
relationship. A comparison of this model with present techniques will be dis- 
cussed. 

2. 'Rackground. Presently equations such as the Beers-Lambert Law or the 
Bougher-Lambert Law have been modified to account for thermal signature attenu- 
ation as a function of temperature contrast between the object and its back- 
ground. This formula is given in equation 1 below 

T = To e' dR 

where 

(1) 

T = attenuated temperature in OC 

To = object intrinsic temperature contrast in 'C 

R q Range between object and sensor (km) 

d = Extinction coefficient (Neper per km) 
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This equation offers a means. of determining thermal contrasts as a continuous 
function of R until some response threshold AT is reached beyond which the sensor 
does not function. 
equation (2). 

Acquisition then occurs when A >, AT where A is given by 

A= 
T - TD 

h 

TD = Thermal backg 

Conversely, when A<AT, 

r ound 

then acquisition does not occur. 

3. Discussion. In rea 
ject and its background 
acquisition than therma 

ity although differences in temperature between an ob- 
affect the target acquisition process, there is more to 

contrasts. For example, there is motion as well as the 
uniqueness of thermal signatures in relationship to their position relative to 
the object. To illustrate this point, suppose an object has a temperature To 
and this temperature relative to its background is greater than some threshold 
t, then this object is discernible by a thermal sensor within the range of the 
sensor. However, depending on the extent of the background object contrast 
in relationship to the size of the object, the degree of the acquisition is 
determined; i.e., detection through identification friend or foe. 

T = Thermal contrast frcxn formula 1. 

This method which is currently used in modeling does not take into account the 
uniqueness of certain aspects of the thermal signature which are neither re- 
lated to the temperature of the object nor its size. For example, an exhaust 
plume from a vehicle which exhibits directionality can in some instances lead 
to the identification of an object where the object background contrast rela-- 
tionship would indicate that the object should be at the detection phase of 
the acquisition process. Since the exhaust is separate from the object, unless 
it is considered in the acquisition process, the relationship between distance 
and thermal contrasts can be misunderstood. 

4. Model. 

a. General. In order to include such items as exhaust plumes and other hot 
areas inXi6EZl signatures, the following model was developed. The three di- 
mensions of the model are atmosphere, image, and distance. Obscurants are an 
additional dimension which enters into the equation as a temporary condition. 
The model considers atmosphere and image first, then atmosphere, obscurants and 
image, It then considers atmosphere, distance and image, and finally atmosphere, 
distance, obscurants and image. 

b. Atmosphere and Image. Let C be a set of characteristic curves on some 
variable t with G a set of functions on C. 
and ga & G such that 

For some a we have na, Ia, Ca & C 



C ai : t+Xai and gai : X,i-I,i & I, 

n 

for i E {l I-**, na}, When JJ, I = Ia, we have identification. 
ai 

What this model explains is the manner in which the thermal image is displayed 
on the screen of a thermal sight. The set C is the set of mappings of the 
lines on the screen. The image of these mappings is mapped into subportions 
of the screen by the set of mappings G. For a given atmosphere and object 
there is an associated image I,. When the union of the images associated with 
the subportions of the screen are equal to I,, the object is then identified, 
The question of what happens when some but not all of the subportions are miss- 
ing is addressed in the next section. 

.- - 

I 
C. Atmosphere, Image and Obscurants. Obscurants such as chemical smoke or 

dust cause a subset of the subportions of the image Ia to be partially obscured. 
The question then arises as to how well the human can complete the gestalt with 
missing pieces. This capability happens to be a human trait. 

Let p represent obscurant affect with Ipc I. Given an a, we have for Ipa c Ia, 

C ai : t*xpai and 

gai :lpai -Ipai* 

In this model it is assumed, just as it has been demonstrated in numerous psy- 
chological experiments that humans can complete the gestalt. It is also as- 
sumed that the human is not just reading into the gestalt in relation to his 
imagination as would be the case in an ink blot or Roscharch test, but that a 
true image will be discernible from the partial image Ipa. Thus, although it 
is expected that one would require all the parts, it is possible for a human to 
estimate all the parts from some of the parts. Thus, identification need not 
include all the parts in order to occur. 

d. Atmosphe-re, Distance and Image. Clearly C, the set of characteristic 
curves, will vary with distance d. Thus, for a given distance we have 

C adi : teX adi and gadi : h adi -Iadi C Iad 

Again, if U Iadi = Iad, identification has occurred. 
i=l 

In this model the image Iad has been adjusted for distance. This is the case 
with objects in relation to their background, For example, telephone poles at 
a distance look smaller than telephone poles that are close up, but everything 
else in the distance is proportional to the object being identified. This phe- 
nomenon is also well documented in elementary psychology texts. It is the 
adjustment intended for Iad. 
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e. Atmosphere, Distance, Image, and Obscurants. As discussed in 4c, ob- 
scurants can cause a subset of the subportions of the image lad to be partially 
obscured. Thus, for a given distance d and an obscurant effect p 

Cadi : t -+Apadi and 9padi : x padi + Ipadi C Ipad 

"a 
AS before, if i!l Ipadi = Ipad, identification of a partially obscured object 

has occurred. 

This last model is the most general and takes into account the dimensions men- 
tioned in this paper. In all of these models so far motion has not been included 
and these models represent an object sensed at a fixed-distance from the sensor. 
However, motion does affect one's perception of what is displayed on the screen 
of a thermal sight and will cause the observer to become aware of something new 
appearing on the screen as well as continuously changing its position. This 
change in gestalt included with a unique signature causes objects to be detected 
and identified simultaneously, which is not predicted from equations (1) and (2). 
Equations (1) and (2) predict a more gradual transition through the acquisition 
process, whereas motion and signature allow the observer to accomplish the 
acquisition process from detection to identification almost instantaneously, 
and, therefore, at the same apparent range. This has been demonstrated by 
several studies of which the author is aware (1, 2, and 3). 

5. Summary. Target acquisition by a thermal sight as presently modeled through 
the -such equations as (1) and (2) requires revisiting. These models 
predict a gradual transition through the acquisition process. However, actual 
tests by troops with moving targets indicate that real targets and not ones 
that have been made to appear like a target are identified at the same time 
that they are detected. Since the degree of target acquisition is related to 
the command to fire, this would imply that opening engagements might take 
place earlier and at greater ranges than would be indicated through the use 
of equations such as (1) or (2). Inasmuch as the models presented in this 
paper would be difficult to convert into mathematical formulas, until such 
equations are developed, a substitute such as actual data found in such studies 
as 1, 2 and 3 could be converted into look-up tables to determine acquisition 
as a function of range, atmosphere, obscurants and image to determine when a 
target was acquired. Moreover, when necessary, interpolation of these tables 
could be used to provide the needed continuum for use in a computer model. The 
use of such information could be used to advantage in assisting modelers in 
discriminating between systems with and without thermal sights as well as for 
other modeling purposes. 

1. USAARENBD, Tank Company Team, Night Fight Test, 1976. 
USAARENBD, Tank Infrared Elbow (TIRE) FDTE, 1976. 

32: USAARENBD, Tank Thermal Sight (TTS), OTIf, 1978. 

110 



OPTIXUM CONTROL OF FLEXIBLE ROBOT ARHS ON FIXED PATHS. 

Sabri Cetinkunt 
Wayne J. Book 

School of Mechanical Engineering 
Georgia Institute of Technology 

Atlanta, GA 30332 

ABSTRACT 

Productivity of the industrial robots are directly related to 
the speed of the task execution. The speed of the robots can be 
drastically improved by using better control algorthims and 
reducing the weight of the manipulator. 

The speed of a robotic manipulator is constrained by 
manipulator dynamics and actuator capabilities. Increasing the size of 
the actuators is not a solution since that will increase the wei.ght of 
the the overall system leading ,to a relatively heavier system.The 
more realistic approach to the problem is to find the opt imum 
control solution for a manipulator to follow a pre-defined path in 
minimum time, with limited actuator capabilities. 

In terms of the dynamic constraints, the weight of the arms 
may be the most important factor. If a light-weight arm structure is 
used, actuators will be able to afford higher speeds during the task 
execution than they would for rigid arm structure. On the other hand 
using flexible-arms has ‘a major draw-back which is the flexible 
vibrations, while increasing the speed. 

This paper presents the minimum time control solution 
of a two link flexible arm with actuator constraints . We solved 
the minimum time problem with no constraints on the flexible modes 
and show the time improvement due to the use of light-weight arms. 
The objective is to modify the trajectory, such that flexible vibrations 
are bounded while changing the solution from the previous one as little 
as possible. Practical ways of trajectory modifications for flexible arms 
are discussed. 

INTRODUCTION 
Today, most trajectory planning algorithms do not consider the dynamics 
of the manipulators, rather constant and/or piece wise constant 
accelerations for the overall task are used and an overall maximum 
allowable speed is set [5,6,71. However, robotic manipulators are 
highly nonlinear dynamic systems, so it is expected that affordable 
accelerations and decelerations and maximum speeds will vary as a 
function of states. For the traditional schemes to work, the trajectory 
must be planned for the worst possible case. The capabilities of the 
system will be used only a small part of the time. Bobrow et al 

an ;ssici[i]ted first reported that for every point on the path there is 
maximum allowable speed and maximum affordable acceleration and 

_____LI_________I_______1____1__111_____---------------------------- 

This material is based in part on work supported by the National 
Science Foundation under grant MEA-8303539. 
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deceleration, and these values can drastically vary from one state to 
another. Incorporating the manipulator dynamics into the trajectory 
planning level, they found the minimum time trajectories for different 
manipulator models Cl,21 with limited actuator capabilities moving along 
pre-defined paths. Shin and McKay [3] solved the same problem independently. 

Light-weight manipulators with the same actuator capabilities will be 
faster. The main problem associated with the light-weight structures 
is the flexible vibrations. Fig. 1 conceptually shows the performance 
improvement in terms of increased speed. 

In this paper we show the performance improvements due to 

1. use of light-weight arms 

2. incorporating the manipulator dynamics into trajectory planning level 

3. Discuss flexible vibrations during a minimum time trajectory execution 
and considerations of path modifications such that flexible vibrations 
will be bounded. This problem is similar in nature to the one raised by 
Hollerbach IS]. 

-FLEXIBLE MANIPULATOR DYNAMIC MODEL IN JOINT AND PATH VARIABLES 
A’general dynamic modelling technique for flkxible robotic manipulators 
was developed by Book using recursive Lagrangian-assumed modes method. 
Homogeneous transformation matrices are used for kinematic relations of 
the system [41 . A two link flexible robotic manipulator is modelled 
using that technique (Fig. 2). In the model no actuator dynamics is 
considered, rather the net torque input to the links is considered as the 
input variable. No friction at joints nor in the structural vibrations is 
considered. Flexibility of each link is approximated with one assumed 
mode for each link. The dynamic model of the manipulator may be expressed 
in general terms as : 

LJJ 4x4 q=f(q,q) + Q (2-1) 
where ---- _ 

Joint angle and flexible mode time variables 

QT: rT, T, 0.01 
Net input torques 

Generalized Inertia Matrix ,symmetric, 
positive definite. 

fT: [f; f2 f3 fql Nonlinear dynamic terms including centrifugal 
- 9 9 J gravitational,effective spring and Coriolis. 

The problem is to find the minimum time trajectories for a given 
manipulator with limited actuator capabilities moving along a fixed 
path, with state constraints (bounded flexible vibration constraint). 
Once the path to be moved along is specified 

s-s (x 3 yl (2-2) 

From inverse kinematic formu 
be found as 

lation, the corresponding joint angles can 

e=p (s ) , GT= - - 
I 

h,"2,3 (2-3) 

I Similarly, once the speed along the path is known S(S) 
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;=j (s,;, O-4) 

and 
. . . . . . 

e=5 (s,l,s) (2-5) 
-- 

Knowing the relations (2-3)-(2-5) analytically form or numerically the 
manipulator dynamics in part can be expressed in path variables. 

where fi=fi(s,;,p,;) 
(2-7) 

- gi=gi(s,;,e * -1 t,en,w (2-8) 

+ + Jij’Jij(s.6) 
(2-9) 

et ,en: Unit tangent and normal vectors along the path. 

P : Curvature of the path at a point. 

Notice that flexible modes also affect the position of the end effector, 
but are not included in the definition of the path. This is mainly due 
to the fact that we do not have a “direct” control on the flexible 
vibrations and would like to keep them as small as possible in general. 

FORMULATION OF THE NEAR MINIMUM TIME TRAJECTORY PROBLEM FOR FLEXIbLE 
MANIPULATORS 
Using the classical variational calculus principles, the optimum control/ 
programming problem may be stated as: 

Minimize J= i'dt= i' F (3-l) 

s(io) = so 
SO 

. 
i.(Sf) = Sf Initial and final states in path variables. 

Subject to : 
System dynamics, equations (2-6a) and (2-6b) 

Actuator constraints 
>, 

i = 1,2 
:-I: i n 

(_e,_e) ,’ Ti I Ti (,_e) (3-2) 
niax 

la,;:ic inequality constraints on flexible modes 

ai( 'i(t) 2 bitt) i=1,2 
(3-3) 
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accuracy of the end point along the path. At first the problem will be 
solved without considering these constraints. This solution will be 
used as a nominal solution for the 
(3-3) 

trajectory modification step so that 
are satisfied. 

The solution method we use closely follows Bobrow et.al.‘s method with 
some modifications for flexible manipulators. The solution of the 
above stated optimization problem follows: 
given SQ(S~) ,S, CS,) to minimize .I, 

for any path S(x,y) with 
S should be as large.as possible 

while satisfying the system dynamics and actuator constraints. In 
order to do so at any state on the path one should use maximum 

acceleration or deceleration. Then, the problem is reduced to finding 
the maximum accelerations and decelerations associated with each state 
of interest. It can be seen from equation (6a) that for each (S ,S ) 

. . ,* .v. 

'd- 
cs<s 

- a 

'a 
=min I \ S . 

1 ad 

sd = max !s 1. 
\ dij 

Obviously there may be some range of speeds associated with every point 
on the path that system can no longer afford to satisfy all conditions 
(the S range that above inequality is violated). Collection of these 
ranges defines the forbidden region on (S ,S ) plane. The boundary 
between allowed and forbidden regions is constant for a given rigid 
manipulator for a given task. In the case of flexible manipulators, due 
to the coupling between equations (6a) and (6b) this boundary is also a 
function of flexible modes,not only (S ,S >. So, depending on the time 
history of flexible modes and unpredictable disturbances the boundary 
will vary. This is not true in the rigid case where the true extremum 
can be found. At this point the problem is to find when to use maximum 
accelerations and when maximum decelerations (i.e. to find the 
switching point(s)).See Fig. 3a-3b. 

Finding switching points for flexible manipulators: 

l.Integrate !&9(x 
crosses forbidden 
deceleration. 

,y> from final state backward in time until it 
region or initial position, using maximum 

(x,y) Forward in time with maximum acceleration until 
reached or the two curves crossed each other. If .the 
each other before they enter forbidden region, then 
This is the last switching point and terminate the 

search. If not, then 

2; Integrate B 
the boundary is 
two curve crossed 
find that point. 

3.Backup on the forward integrated curve--and integrate forward with 
maximum deceleration until a the trajectory passes tangent to the 
boundary. 

4.Then using the point as new starting point go to step two. 

Notice that the last switching point is not the exact switching points, 
because the flexible modes will not. match at this point. That will 
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cause one to miss the final state somewhat. Also, when searching for 
the switching points one has to move in a continuous manner in order to 
keep track of the flexible mode histories accurately.. In that sense, 
the algorithm given at [ll has been modified for flexible robotic 
manipulators. 

SIHULATION RESULTS AND DISCUSSION 

The two-link flexible manipulator model for task one (shown in Fig. 4a) 
was simulated for the two different cases in order to show the 
performance improvement achieved due to light-weight system. In both 
cases actuators have same capabilities. It is found that weight 
reduction by a factor of 2 results in approximately 60 % time improvements 
(Fig. 5a and 6a). This improvement, of course, slightly varies depending 
on the task. Joint actuator histories are shown in-Fig. 5b-6c and flexible 
mode responses are shown in Fig. 5c-6d. 

Task 2 (Shown in Fig. 4b) simulated for light-weight manipulator and 
results are shown Fig 7 a-d. The final trajectory is shown in heavy 
lines. One interesting point in this simulation is the fact that as 
soon as the manipulator end point enters the curvature the system must 
accelerate along the path in order to obey the constraints. In Fig. 5a 
the curve ab shows that right before the curvature the system is able 
to afford deceleration (aa’ curve), but as end point enters the 
curvature, then the sudden appearance of a normal acceleration term in 
the dynamics of the system makes the difference.The other point in 
the case of flexible arms is that at the last switching point flexible 
modes are not same,since thay have different histories. This will cause 
error in the final state reached. See Fig. 6a, 7a. The last switching 
point needs to be varied from the original result of the above algorithm. 
This can be done on trial and error basis at the trajectory planning level. 

S.CONCLUSION AND FURTHER WORK 
In this paper we showed ways to improve performance and productivity 
of Robotic manipulators With Flexible arms.One way was to use 
light-weight structures and the other was to incorporate the dynamics 
of. manipulators in to trajectory planning level and make optimum 
utilization of given manipulator. This method can be used with any 
path.Application of the method requires manipulator model,Geometric 
path in work space,and actuator capabilities. Obvoiusly as trajectory 
gets closer to the forbiden region boundary system capabilities are 
being used to the limits and any disturbance or uncertainty can easliy 
put the system into forbiden region .The situation is more dramatic 
for flexible manipulators.While this analysis is nice in terms of 
knowing the ultimate capabilities , in practice there will be a saftey 
factor that will require to keep the optimal trajectory away from the 
forbideen region certain amount.Research is in progress on the Optimum 
modification of the trajectories found by above described method so 
that inequality constraints on the flexible modes will be satisfied. 
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ABSTRACT. A finite element based method is developed and applied for 
geometrically nonlinear dynamic analysis of flexible systems. Vibration 
and static correction modes are used to account -for linear elastic 
deformation of components. Boundary conditions for vibration and static 
correction mode analysis are defined by kinematic constraints between 
components of a system. Constraint equations between flexible bodies are 
derived and a Lagrange multiplier formulation is used to generate the 
coupled large displacement-small deformation equations of motion. A 
standard, lumped mass finite element structural analysis code is used to 
generate deformation modes and deformable body mass and stiffness 
information. An intermediate-processor is used to calculate time- 
independent terms in the equations of motion and to generate input data 
for a large scale dynamic analysis code that includes coupled effects of 
geometric nonlinearity and elastic deformation. Two examples are 
presented and the effects of deformation mode selection on dynamic 
prediction are analyzed. 

I. INTRODUCTION. Developments in multibody dynamics have come from 
two principle sources; mechanism dynamics and spacecraft dynamics. Early 
developments in the field of flexible mechanisms are typified by Refs. l- 
5. While numerous technical differences exist between the methods used in 
these studies, the pervasive assumption made is that large amplitude gross 
motion dynamics can be uncoupled from small amplitude elastodynamics of 
the system. 

Attempts have been made to account for coupling between gross motion 
and elastodynamics using continuum models and deriving special purpose 
equations of motion. A mechanism example that typifies this approach is 
presented in Ref. 6. A related approach to spacecraft dynamics may be 
found in Refs. 7-9. 

Essential limitations associated with the assumptions of uncoupling 
gross motion and vibration, using elastic continuum models, has led 
workers in both fields of flexible mechanism dynamics and spacecraft s 
dynamics to formulations that employ finite element based techniques to 
represent flexibility and coupling these effects with gross motion 
dynamics. Bodley and co-workers developed a computer program called 
DISCOS [lO],fo.r spacecraft dynamics and control, including flexibility 
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effects through finite element modal analysis. Related developments in 
spacecraft structural dynamics with open loops may be found in Refs. 11 
and 12. A substantial extention of these methods, using relative joint 
coordinates and accounting for closed loops; has recently been presented 
by Keat [13]. 

Finite element based, fully coupled dynamic formulations for machine 
dynamics began in the late 1970’s and are reflected by the early papers of 
Refs. 14 and 15. Song [14] presented a general formulation for planar 
system dynamics that incorporated flexible finite elements into a general 
purpose, rigid body mechanism dynamics code. On the other hand, Sunada 
and Dubowsky [15] used a lumped mass finite element model of structural 
components and developed the equations of motion for selected machines. 
Their work provided substantial insight into use of finite element data in 
generating the equations of motion. Shabana and Wehage [16] extended the 
method of Ref. 14, to include vibration modes to model flexible bodies in 
a general purpose dynamics code. The key contribution from this work was 
clear demonstration that flexibility effects can be included in a general 
purpose spatial dynamics code. The limitation of the approach of Ref. 16 
is that flexible bodies must be made up of collections of finite elements 
that are imbedded in the analysis code. 

The purpose of this paper is to present and illustrate use of a 
finite element based numerical method for dynamic analysis of mechanl'cal 
systems that contain complex-shaped, flexible bodies. To achieve this 
goal, the following approach is employed; 

1) Vibration and static correction deformation modes are used to 
define kinematically admissible deformation fields in elastic 
components. 

2) Constraint equations between flexible bodies are derived. 

(3) The equations of motion are derived, using lumped mass finite 
element approximations. 

(4) A standard finite element structural analysis code is used for 
vibration and static correction mode analysis of each flexible 
body. A preprocessor calculates time-independent terms in the 
equations of motion and generates input data for geometrically 
nonlinear dynamic analysis of flexible systems. 

II. GENERALIZED COORDINATES AND KINETIC ENERGY. In order to specify 
the state of a body, it is necessary to define a set of generalized 
coordinates that uniquely locate every point in the body in space. The 
XYZ reference frame shown in Fig. 1 represents an inertial reference frame 
and the xyz. frame is a reference frame for a typical body, which need not 
be fixed to the body as it deforms. The xyz frame is defined to be fixed 
to the body in its undeformed state; i.e., points on the body can be 
defined relative to the xyz frame, prior to deformation. If the 
distributed mass around node i is replaced by a point mass at that node, 
which is called lumped mass, that mass has no rotary inertia. 
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Figure 1. Reference Generalized Coordinates 

Consider node point i on the body, defined by the vector t-G1 in the 

xyz frame in the undeformed state. Let Pi be a projection matrix that 

extracts the xyz coordinates of the displacement u1 of point i due to 
deformation; i.e., 

ll' = piu (1) 

where u is the nodal displacement vector for the entire body, which 
contains both nodal displacements and rotations. After deformation, point 
i is located in the xyz frame by 

t-1 = f-i + u' = r: + P'u (2) 
. 

where r1 and rG' are vectors from the origin of the xyz frame to point i 

in the deformed and undeformed states respectively. Global XYZ 
coordinates of point i are thus 

Ri = R + A(rl) + Piu) (3) 

where A is the transformation matrix from the xyz frame to the XYZ frame. 
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In order to uniquely characterize the state of the body, in terms of 
generalized coordinates of the reference frame and deformation mode 
coordinates, one must exclude modes corresponding zero frequencies. 
Otherwise, rigid body motion is represented by both R and the modal 
coordinates and uniqueness of state as a function of generalized 
coordinates is lost. 

In terms of deformation mode coordin.ates, one can calculate the 
velocity of point i from Eq. 3 as 

Rf = R f A( t-d ’ ’ + P'Ya) + AP'Y~ (4) 

where Y and a are modal matrix and modal coordinate vector, :, 
respectively. Using Euler parameters [17] (See Appendix) as rotational 
generalized coordinates of the xyz frame, relative to the XYZ frame, the 
absolute velocity becomes 

R’ = fi - 2Ef’; + APiY: 

= i - - 2A;;"G; + APi,; (5) 

where p is the (4x1) vector of Euler parameters, r' is any (3x1) vector . 
defined in the xyz frame, :' and ? are (4x4) and (3x3) matrices composed 

of the elements of ri, and E and G are (3x4) matrices defined by the 
elements of p (see Appendix for details). Summing the kinetic energy of 

masses mi lumped at nodes i over the total number N of nodes yields the 
kinetic energy of the body L-181 as 

T=; 1 
T 

M (6) 

where 
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M= 

L 

-2E 2 mifi 
i=l 

4GT 

symmetric 

A; ’ 
i=l 

rniP'Y 

N .T . 
-2 1 miGT? P'Y 

i=l 

N .T . 
+ 2p 1 mir' P'Y 

i=l 

; m.(PiY)'(P'Y) 
i=l '_ 4 

Note that vector ri appearing in the mass matrix depends on both reference 
and modal coordinates, so it is not constant. Evaluation of M at each 
time step of a simulation requires expansion of terms that involve 
generalized coordinates. An efficient method of carrying out the 
expansion and evaluating M is presented in Refs. 18 and 19. 

III. STRAIN ENERGY. The strain energy of a deformable body is 
calculated in the finite element code as 

“J T 2 u Ku 

where K is the structual stiffness matrix. Using modal matrix and 
coordinates, Eq. 7 becomes 

1TT U=z a Y KYa = kaTKaaa 

(7) 

(8) 

where 

K 
aa 

= YTKY 

IV. GENERALIZED FORCE. Let Fi be an external force acting on node i 
of a body. The virtual work of all such forces acting on the body can be 
written as 

The total differential of Eq. 3 can be used to calculate the virtual 
displacement of node i as 

6Ri 
. 

= 6R - 2AF'GGp f AP'Y6a 

Equation 9 can now be written as 
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6W = [QRT QpT QaT] $ c1 &a 

where 

Q, = ; Fi 
i=l 

N . . 
Q, = 1 2ET;'ATF' 

i=l 

Q, = ; (AP'y)TF' 
i=l i 

(12) 

Forces due to spring, damper , and actuator elements are included in the 
generalized force vector Q. 

-* 
E UATIONS OF MOTION OF A FLEXIBLE BODY. The equations of motion 

of a flex-r e body7 no kinematic constraints can be written as 

(13) 

where T is kinetic energy of the body, q = CRT , pT, aTIT, U is total 
strain energy of the body, Q is generalized force acting on the body, J is 

the Jacobian matrix of the Euler-parameter constraint equation pTp = 1 
[17], and X is a Lagrange multiplier associated with that constraint. 

Expanding the kinetic energy expression of Eq. 6 and using the strain 
energy expression of Eq. 8, the equations of motion of the body are 
formulated [18]. In these equations of motion, many calculations are 
required to evaluate all terms. If terms are partitioned into time- 
dependent and time-independent subsets, the amount of calculation is 
substantially reduced [18]. Time-independent terms are precalculated in a 
subroutine that-takes input from an established finite element structual 
analysis code. The resulting values are then read into the geometrically 
nonlinear dynamics code to form the equations of motion (Eq. 13) of the 
body. For a detailed development of the flexible body equations of motion 
and a discussion of methods used to generate deformation modes using a 
finite element code, the reader is referred to Refs. 18 and 19. 
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VI. EQUATIONS OF MOTION OF A CONSTRAINED SYSTEM. System equations 
of motion can be obtained by combining equations of motion of each body 
and equations of constraint between bodies, using Lagranges equations of 
motion, as 

(14) 

where 7 is total kinetic energy of the system, { is the complete set of 
generalized coordinates for the system, 0 is the strain energy of the 
system, 0 is the complete vector of generalized forces, J is the Jacobian 

matrix of the kinematic constraint equations (including pTp =1 for each 
body), and 1 is the complete vector of Lagrange multipliers. This system 
of equations can be systematically assembled from Eq. 13 for each body and 
the constraint equations derived in 

VII. CONSTRAINT FORMULATION. 
bodies must account for deformation 
Otherwise, derivation of constraint 
rigid body systems. In this paper, 
universal, and revolute joints are 
bodies. 

Section 7. 

Kinematic constraints between flexible 
of bodies that are connected. 
equations proceeds as in the case of 
the equations for spherical, 
formulated for rigid and flexible 

(a) Spherical Joint (SPHR). A spherical joint at point P between 
two adjacent bodies i and j is shown in Fig. 2. A vector equation that 
requires point P to be common to both bodies is 

Ri + Ais; - R. - Ajs; = 0 
J 05) 

where s; and si are vectors from the origins of the ith and jth local 

reference frames to paint P. Let s! and s'. 
'0 JO 

be values of 5; and sj in 

the undeformed state, measured in the respective body reference frames. 

If both bodies are flexible, s; and sj depend on elastic deformation 

and must be evaluated at each deformed state. If modal coordinates are 
employed to represent elastic deformation, Eq. 15 can be written as 

Ri + A+; 
0 

+ (pkya)J - Rj - Aj [S’. + (Pkya)jl = o 
JO 

(16) 

where Ai and Aj are transformation matrices from the ith and jth local 

reference frames to the global frame and k is the number of the node at 
which the spherical joint is located. This joint generates three 
algebraic constraint equations. 

(b) Universal Joint (UNIV). A universal joint between adjacent 
bodies i and j is shown in Fig. 3. Three points, P in both bodies, I in 
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body i, and J in body j are chosen to define a universal joint. Point P 
must satisfy the spherical joint equation of Eq. 16. The constraint that 
requires vectors gi and gj, defined in Fig. 3, to be perpendicular is that 

their scalar (dot) product is zero, denoted as the DOT1 constraint, 

giTgj = 0 (17) 

where gi and gj are vectors from point P to points I and J in the global 
frame. 

When both bodies are flexible, elastic deformation should be 
considered. To include the effect of rotational deformation, define body- 
fixed .$I-+<~ and Sj'ljcj frames at point P in each body. It is assumed 

that the structure near the joint is sufficiently- stiff so that 
vectors g; and gj defined in the 5i~ir and cj~j<j frames remain 

constant. Then, Eq. 17 can be written as 

(AiBig;)T(AjBjg;) = 0 (18) 

where Bi and Ai are transformation matrices from si~i~i to XiyiZi frames 

and from XiyiZi to XYZ frames, respectively. The same notations are used 

in defining matrices Bj and Aj for body j. 

(c) Revolute Joint (RVLT). A revolute joint between adjacent bodies 
i and j is shown in Fig. 4. Three points, P in both bodies, I in body i, 
and J in body j, are chosen on the common joint axes. This joint requires 
that point P should be common to both bodies and that vectors gi and gj 

must be parallel. Hence, point P must satisfy the spherical joint 
equation of Eq. 16. 

Constraint equations that require vectors gi and gj in Fig. 4 to be 

parallel are that gj be orthogonal to two perpendicular vectors hI and h2 

that are imbedded in body i and are perpendicular to gi. Those 

constraints can be formulated as two DOT1 constraints, 

hI 
T 

gj = 0 

T 
h2 gj = 0 

> 
(19) 

VIII. SELECTION OF OEFORMATION MODES. In modal deformation 
approximate methods, a few of the lowest trequency natural vibration modes 
are normally used. This often requires a large number of vibration modes 
(i.e., high frequency modes) to represent local deformation effects due to 
concentrated loads. 'Developments in structural dynamics [ZO-221 suggest 
that another kind of deformation mode should be introduced to approximate 
the effects of high frequency modes. 
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Figure 4. Revolute Joint 

In mechanical system dynamics, there are differences from 
conventional structural dynamics. Kinematic constraints and nonlinear 
spring-damper elements are frequently attached between two adjacent 
elastic bodies and small elastic deformation is highly coupled with the 
geometrically nonlinear global motion of the system. To consider the 
local deformation due to forces transmitted by these elements, deformation 
modes are defined by imposing unit forces in the direction of reaction or 
spring forces that are expected to cause significant deformation of the 
body. The resulting deformation is called a static correction mode. A 
detailed derivation of static correction modes for application to machine 
dynamics can be found in Ref. 18. 

If one chooses : vibration normal modes from vibration analysis and 
ii static correction modes, the elastic displacement u can be written as 
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U =Y a +Ya 
iii iii 

(20) 

where Y and Y are mode shapes from vibration and static analysis, 
n' Ii-l 

respectively, and a and a are amplitudes of these modes. The 
ii lil 

matrices Y and Y are combined to form 
ii Ii-l 

IX. COMPUTER IMPLEMENTATION. To practically implement the theory 
presented element code with the capability of 
carrying out both vibration and static analysis is employed. Most finite 
element codes can be used for this purpose. The SPAR Structural Analysis 
System was used for applications presented in this paper. 

After vibration and static correction mode analysis is complete, the 
modal matrix is composed of vibration normal modes and static correction 
modes (Eq. 21). An intermediate processor is used to generate modal 
matrices and time-independent terms in the equations of motion. output 
from the intermediate processor is read as input data in the DADS dynamic 
analysis code. Using the input data, the DADS program formulates the 
equations of motion of the system (Eq. 14), which are then inteyrated 
using a variable-step, variable-order numerical integration algorithm. 
For additional details regarding implementation, see Refs. 18 and 19. 

X. NUMERICAL EXAMPLES. 

(a) Flexible Component Door Closing Mechanism. A flexible door is 
attached to a rigid ground by two beams and revolute joints, as shown in 
Fig. 5. If the rotational axes of the revolute joints are parallel to the 
Z-axis, the door can freely rotate. If the revolute joints are not 
parallel, the door must deform to rotate. In this example, the rotational 
axes of the revolute joints remain in the X-Z plane and make an angle of 5 
degrees with the Z-axis. The door is initially rotated 15 degrees. To 
make the body of the door much stiffer than the beams, the Modulus of 
Elasticity of the door plate is assigned to be 10 times greater than that 
of the beams. Material properties and dimensions of the mechanism are as 
follows; 

Mass density, p = 7.83 * lo3 Kg/m3 
Height of the plate, H = 0.8 m 
Width of the plate, W = 0.6 m 
Modulus of Elasticity of the plate, E2 = 2.0 * 1012 N/m2 
Thickness of the plate, t = 0.005 m 
Length of the beams, L = 0.05 m 
Modulus of Elasticity of the beams, El = 2.0 * 1011 N/m2 
Radii of the beams, r = 0.003 m. 
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Figure 5. Flexible Door With Initial Rotation of Angle 15" 

The finite element model of the door is shown in Fig. 6. The plate 
is divided into 12 membrane+bending elements and each beam is divided into 
10 beam elements of equal length. Boundary conditions for vibration 
analysis are chosen such that three trdnslational coordinates at node 40 
are fixed and X- and Z-direction translational coordinates at node 30 are 
fixed. Since only five constraints are imposed for vibration analysis, 
there is one rigid body mode of vibration. The first ten natural 
frequencies from vibration analysis are 0.0,.62.08, 126.29, 163.53, 
227.95, 237.84, 375.90, 477.91, 499.10, and 533.48 rad/sec. 

134 



N20 Nl5 NIO 

N28 N26 N24 P 

NZY NZf 

\ 

N5 

N4 

N3 

N2 

Nl6 NII N6 

N **: Node Number* * 

Plate ; 12 (Membrane + Bending) Elements 

Ez2.0 X1012 N/m2 

Beam i IO Beam Elements at each bear-h 

E=2.0xlO" N/m2 

Figure 6. Finite Element Model of Flexible Door 

Since the five constraints for vibration analysis are not sufficient 
to suppress rigid body motion, one additional constraint is imposed to 
define static correction modes. The Z-direction translational coordinate 
at node 8 is fixed as one additional constraint. Since a revolute joint 
allows one relative rotational degree of freedom about its joint axis, 
there are five reaction components at each revolute joint. In this model, 
however, five reaction components (2 forces at node 30 and 3 forces at 
node 40) are already accounted for in vibration analysis. The other five 
reaction components (two torques at nodes 30 and 40 and one force at node 
30) are chosen to define static correction modes, as shdwn in Fig. 7. At 
node 30, the first static correction mode is due to a unit torque in the 
Z-direction, the second is due to a unit force along the rotational axis, 



and the third is due to a unit torque along the axis in the X-Y plane 
perpen-dicular to the rotational axis. At node 40, the first mode is due 
to a unit torque in the Z-direction and the second is due to a unit torque 
along the axis in the X-Y plane perpendicular to the rotational axis. 

unit force 

1 unit torque 

unit torque& ' \ 
along z-axis 

Y 

J- X 

z N8 

unit torque , 

unit torque 

along z-axis I 

Figure 7. Forces Defining 5 Static Correction Modes 

To see the vibratory motion of the door due to an initial 15 degree 
rotation, the door is released from the deformed position. Analysis was 
carried out with 5N (5-normal modes), 5s (5"static correction modes), 9N 
(g-normal modes), and 4N5S (4-normal + 5-static correction modes) 
models. The static correction modes in the 5s and 4N5S solutions are 
inertia relief and residual inertia relief attachment modes, respectively. 
Inertia relief attachment modes are defined by subtracting a portion of 
the rigid body mode from the attachment modes. Residual inertia relief 
attachment modes are then defined by subtracting the contribution of the 
kept normal modes from these inertia relief attachment modes. 

The X-coordinates of node 8 in the 5N and .5S soluti.ons are shown in 
Fig. 8. To determine the reason for the difference. in frequency between 
the 5N and 5s solutions, strain energies at the initially deformed states 
are compared. The initial strain energy is calcul.ated as S.E. = 

(aTKaaa)/2, where a is the vector of modal coordinates at the initially. 

deformed configuration and K,, is the modal stiffness matrix. The initial 

strain energy of the 5N state is 57.6 Nom and that of the 5s state is 
of the hish initial strain energy in the 5N state, the 

that of the 5s solution. 
0.562 Nem; Because 
frequency of the 5N 
Considering the min e, for the initial 

solution is much higher than 
imum potential energy princip 1 
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equilibrium configuration, it can be seen that the 5S deformed state is 
closer to the actual initial deformation than that of 5N state. Thus, the 
5s solution is expected to be more accurate than the 5N solution. 

0.10 

0.08 
n 

E 0.06 
w 0.04 
a3 
f 0.02 

c 0.00 

?I -0.02 
-e El -0.04 

Y -0.06 
X 

-0.08 

-0.10 

-: 5N SOLUTION 

.-**: 5s SOLUTION 

0.0 0.4 1.6 

Figure 8. X-coordinates of Mode 8 in the 5N and 5s Solutions 

Nine normal mode (9N) and 4N5S solutions are compared with the 5S 
solution in Fig. 9. Although the number of normal modes is increased to 
nine in the 9N solution, the solution is still far from the 5S solution. 
This means that nine normal modes are not sufficient in this example. 
There is almost no difference between results of the 5S and 4N5S 
solutions. This means that the attachment modes are dominant in this 
example. 

Simulation times on a PRIME 750 computer and RMS (Root Mean Square) 
integration stepsizes are given in Table 1. Since the frequency of the 
normal mode solution is much greater than that of the 5S solution, its 
computing time is extreme. It is difficult to estimate the number of 
normal modes that would be required for an accurate solution. Certainly, 
computing time would be astronomical. 
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Figure 9. X-coordinates of Node 8 in the 9N, 5S, and 4N5S Solutions 

Table 1. Comparison of Simulation Times 

Type T end CPU 

Csecl Csecl 

RMS inteyration 
stepsize 

Csecl 

5s solution 2.0 106 0.47812E-01 
5N solution 2.0 401 0.90934E-02 
9N solution 2.0 7471 0.65035E-03 
4N5S solution 2.0 7281 0.75491E-03 
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(b) Windshield Wiper Mechanism. A model of a two blade windshield 
wiper mechanism that consists of 6 bodies is shown in Fig. 10. The crank 
arm (body 2), drive link (body 3), and connecting link (body 5) are modeled 
as rigid bodies. In the right wiper arm (body 4), the link connecting bar 
and wiper arm are modeled as rigid and flexible, respectively. In the left 
wiper arm (body 6), the link connecting bar and wiper are modeled as rigid 
and flexible, respectively. The chassis of the vehicle is body 1. The 
mass and moments of inertia of each body are given in Table 2. 

m BODY 6 (LEFT WIPER ARM) n 

BODY 4 (RIGHT WIPER ARM) 

BODY 3 (DRIVE LINK) (63.52,7.84,2.9) 

Y 2 (CRANK LINK) 
REVOLUTE JOINT 

-x1 
BODY I (CHASSIS) 

Figure 10. Windshield Wiper Mechanism 

Table 2. Mass and Moments of Inertia 

JOINT 
.8) 

Body Mass Moments of Inertia (g*cml) 
No. (gram) I xx IYY I 22 I XY I XZ IYZ 

: 189.2 61.3 282.6 100.0 36413.8 314.7 36413.8 33.6 -- 0.0 0.0 0.0: 0.0 0.0 

4 567.0 215730.0 218240.0 3610.6 155.5 -1737.8 -406::: 
5 255.9 300.0 90133.7 90133.7 0.0 0.0 0.0 
6 499.5 198920.0 202210.0 4173.8 -486.6 10285.0 -4006.0 
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There are three revolute joints, two spherical joints, and two 
universal joints in the model. Locations of joints at extreme position 
measured in the chassis coordinate system are shown in Fig. 10. The first 
revolute joint is located between the chassis and crank arm. The second 
and third revolute joints are located between the chassis and the right 
and left link connecting bars, respectively. The first spherical joint is 
located between the crank arm and drive link. The second spherical joint 
is between the right link connecting bar and connecting link. The first 
universal joint is located between the drive link and the right link 
connecting bar, The second universal joint is between the connecting link 
and left link connecting bar. 

A finite element model of the right and left wiper arms is shown in 
Fig. 11. This model consists of 26 nodes. The link connecting bar (nodes 
1-8) is treated as rigid and the wiper arm (nodes 8-26) is treated as 
flexible. The cross-section of the wiper arm is modeled as rectangular, 
with two different shapes along its length. To consider the mass of the 
wiper blade in the finite element model, a nonstructural mass element is 
attached at node 26. Nonstructural mass elements are also allocated 
between nodes 8 and 14, to account for variation of the cross-sections. 
To calculate the center of mass of the arm, the mass of the link 
connecting bar is lumped at its nodes. To consider elastic deformation of 
the wiper arm, due to frictional force at the blade, one static correction 
mode is defined and used in flexible body analysis. That static 
correction mode is defined by a unit force applied at the tip, 
perpendicular to the wiper arm. 

The friction force on the arm tip is modeled as a linearly decreasing 
force with increasing tip velocity, as shown in Fig. 12. Simulations are 
carried out with a constant crank arm speed of 60 rpm. Tip velocity and 
friction force from rigid and flexible solutions are presented as plots of 
variables versus time in Fig. 13. As shown in Fig. 13, the linear tip 
velocities in both cases are different. In the rigid case, vibratory 
phenomenon can not be detected, but a vibratory frequency of 13-14 Hz is 
predicted in the flexible case. 

XI. CONCLUSIONS. This paper presents a new method of choosing modal 
matriFemimulation of flexible mechanical systems, employing static 
correction and vibration modes. The following conculsions are obtained. 

(1) When high reaction forces occur at kinematic joints, static 
correction modes are much better than vibration modes to 
represent deformation. 

(2) If vibration and static correction modes are combined, 
deformation due to both inertial and reaction forces can be 
accurately represented. 

(3) Computing cost can be significantly reduced if static correction 
modes are employed, instead of purely normal modes of vibration. 
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APPENDIX 

The following matrix notation is used to implement vector operations: 

a = Cax,ay,aZIT 

I 0 

a= a 
Z 

-a 
Y 

-a 
Z 

0 

a 
X 

L 0 
-I- a G 

-a 

aT -1 a 

Using Euler's theorern, Euler parameters L-171 can be defined as 

"0 = cos x 2 ' 
e = n sinX 

2 

where x is the rotation angle about a unit vector n that moves the body 

from a reference orientation to a general orientation and 

T e - hy2,e31 l Defining p = [eo,eI,e2,e3JT, and has the following 

relations: 

PTP = I 9 PT; = p'Tp = 0 

E = C-e, i f eOI] , G = C-e, -e" + eoIJ 

ETE = GTG = -ppT + Iqx4 , G: = ;G - apT 

Ep = Gp=O , EET = GGT = I , EGT = A 
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RESPONSE OF DAMPED MECHANICAL SYSTEMS 

TO A TIME DEPENDENT EXTERNAL FORCE 

Gary L. Anderson 

Engineering Sciences Division 

US Army Research Office 

Research Triangle Park, North Carolina 

ABSTRACT. The method of Krylov and Bogoliubov is extended so as to be --- 
applicable to ordinary differential equations that describe the motion of 

linearly damped, linear and nonlinear mechanical systems that are subjected to 

a par-titular family of oscillatory external forces. These force functions, in 

turn, satisfy a linear second order ordinary differential equation with con- 

stant coefficients. This method is particularly useful for the resonance 

analysis of systems in transient or steady motion. The technique is applied 

to nonhomogeneous forms of the differential equations of Mathieu, Bessel, 

Hermite and Duffing for the purpose of generating approximate analytic expres- 

sions for their solution. Numerical computations based upon these analytical 

approximations and the Runge-Kutta numerical integration technique reveal that 

the method developed here produces rather useful accurate approximations. 

I. INTRODUCTION. The classicial method of averaging as developed by 

Krylov, Bogoliubov and Mitropolsky [l], [2] has been applied by many 

investigators to solve linear and nonlinear differential equations of the type 

ii + w2x + Ef(t,X& = 0, (1) 

which arise in the theories of mechanical and electrical oscillations. In 

order to account for the influence of linear damping, several authors have 

considered the differential equation 
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ii -I" 2vi + w x + Ef(t,x,t) = 0, .2 
(2) 

and have introduced certain modifications of the Krylov-Boyoliubov theory. 

Various such techniques have been reported by Brunelle [3], Mendelson [4] and 

Anderson [5] to 181. Stanisic and Euler [91 have extended the Krylov- 

Boy01 iubov method to the specific non-linear forced motion problem * 

- + w2x -t p x3 
1 

+ u 
2 

xi2 = Ncosnt, (3) 

which is an equation that describes the motion of a large class of nonlinear 

mechanical systems, as reported by Kane [lU]. Stanisic and Euler have not 

accounted for the possible presence of a linear dampiny term in (3). 

The Stanisic-Euler technique consists of reducing the nonhomogeneous, 

nonlinear equation in (3) to a fourth order homogeneous, non-linear equation, 

In-the form of the solution assumed, there appear two variable amplitudes and 

two variable frequencies that, are to be determined. 

In the present investigation, the basic approach of the Stanisic-Euler 

solution is extended to a more general class of problems, namely, 

;; "t 2+ + qx + Ff(t,X,i) = EC)(t), 

where Q(t) is known to satisfy the linear differential equation 

g(t) + 2y2i(t) + w;Q(t) = 0. 

The initial conditions associated with (4) are taken to be 

(4) 

(5) 

dt,) = x0, i(tJ = v. (6) 

Furthermore, it is assun~ecl that yj' wj,j = I,2, so that the system is under- 

damped in the linear approximation. The problem of determininy the response of 
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dyriilmic systems described by (4) to (6) is of considerable importance for the 

~lf~sic~n of nonlinear elements -in machines, mechanisms, vehicles and other 

s t.ructures . 

2. IIt! ItIUI1 UF SOLUTIUN. - ._.-..- -- ---- _-.-._-_ The ObJective of the analysis that follows is to 

dsterminf! an apprvximatc solution for the initial value problem stated in (4) 

and (b). The forcing function u(t) appearing in (4) is assumed to satisfy the 

linrar diffcren,tiaI equation in (5). The first step in the derivation of an 

approximation for x(t) is the elimination of the presence of Q(t) in the 

rquation of motion. This is done by forminy the first and second derivatives 

with r~spcc:I:. to time .t of (4) and substitutiny the results into (5). This 

process leads to the followiny fourth order homogeneous nonlinear differential 

clqur7tion: 

X iv t 2(y, + yp* 

f by2 

t (UT + 4y,y* t u;,, •t 2(Y2Uf f y&i + 

12x t EF(t,x,X,$j = G, (7) 

where 

a'f F(t,x,.&;;) = Tt7 + 2U2$ af l 

+ Y&X + 

(8) 

Two initial conditions for (7) are already available in (6), but two more must 

be adjoined to these. From (4) and its derivative with respect to t, we find 

that these are 
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where 

lilt0 1 = p 
0 ' 

iho) = q, (9) 

p* 
= EQ(tJ - ul;x " 2Y,Vo - Ef(tosxo'vo) I (10) 

0 

af(t*,X&) 

90 = djct,, - qvo - 2Y,P, - dat. +v 
af(to,Xo'Vo) 

0ax 
t 

t PO 
af(to,xo,vo) 

ad 
1 * (11) 

Motivated by the form of solution of the linear counterpart ( E= o) of (7), 

we assume that the solution of the original differential equation (4) can be 

expressed in the form 

x(t) = a,sin$, + a2simJ2, (12) 

where a. = 
J 

aj(t) and 4~~ = Qjt + ej(t), j = 1,2 a,(t) and ej(t) being unknown 

slowly varying amplitude and phase functions with 

'j = (W2 j 

- p)'i2 
' (  Yj 

-fw jY j = 1,2. (13) 

If we form the first, second and third derivatives of (12) with respect to 

time and proceed in 'the spirit of the method of variations of parameters, we 

obtain 

i = q a,coq - y,a,sin$, + 82a2c0s$2 - y2a2sinl12 , 

;; = -2y,n,.a,cos$, - (n; - Yfh,sW, - 2y2n2a2cos$2 - 

- cn; - $a2siW2 , 
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. . . 
x = (3Yy-q - fi+,cow, + (3Y,$-Y~la,SW, + (3y2Q 

22 - ns)a2cos$2 + 

and 

+ (3Y2"$ - $)a2sinq2 (16) 

(i, t y,a,)sin$, t a,i,cosi, + (i, + y2a2)sin$2 + a2B2c0s$2 = 0 , (17) 

(a, + y,a,)(ti,cos$, - y,sinllr,) - a,B,(Y,cos$, + n,sin$,) + 

(18) 
+ 6, + Y2a2) h2cos$2 .- y2sin$2) - a2~2(y2c~s$2 + n2sinq2) = 0, 

(a, + up, 1 V~,q-4, + (0; - y;)sin$,l - 6,8,[2y,G,sin$, - 

- (fif - v;)COW,l + (i, f y2a2)[2y2~2 cosq2 t (a.$ - ys)sinJ2] - (19) 

. 
- a2e2[2~2~2sin$2 - (C$ - y$)cOW21 = 0 1 

The specific forms retained in (14) to (16) are analogous to those that 

would occur in the analysis of the corresponding linear problem. 

Substituting (14) to (16) and the apposite expression for x 
IV . 

into (7), we 

obtain 

(i, + -f,a,He,cos$, + f,sin$,) + a,e,(f,cos$, - e,sin$,) + 
(20) 

+ (a, + y2a2) (e2cosJ12 + f2siW2) + a2~2(f2c0s$2 - e2sinQ2) = - EF, 

where F has been defined in (8) and for j = 1,2 

e. 
J 

= fij(3Y5 - "5) , 
fS 

= Yj(3"5 - yj) 
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The system of equations in (17) to (20) may be considered a system of 

linear algebraic equations in the four unknown aj + Yjaj and ej, j = 1,2. The 

process of solving this system of equations leads to the following system of 

first order differential equations: 

where 

. 
al + ylal = ~F(R,,cos$~ + R12sWl) , (21) 

6, = - (EF/aT)(R,Tsin$, - R12cos$T) , WI 

a2 + Y2a2 = EF(R~~cos$~ - R,pt$) , (23) 

i2 3 - (EF/a2)(R22sini2 + R12cos12) g (24) 

R,, = L; - w; - 2+, - v2)lhlR , 
R12 = 21~2 - y,)/R , 

R22 = I$ - u; + 2v2(y1 - v2)lh2R , W) 

R = 'ti; - UT, 
2 

+ 4+2 + Y&2 - 4Y,Y2(W, + W2j2 . 

The system of fjrst order differential equations in (21) to (24) must be 

accompanied by a set of four initial conditions. According to (li), (9), (12) 

and (14) to (lG), we have 

a,OsinJJ1O t a20sin$20 = x0 

~~,alOcos~+O - ~yla,Osin$,O + n2a20cos+20 - y2a20sin$20 = v. 

(26j 

!', ( 3-r f - +lOcos~~,O + v1(3ii7 - y~)a,Osin$,O + a2(3~; - n;)a20cos$20 + 

+ Y2(3$ - Y~)a20sin$20 = qc, , 
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\Awre a, = 
JO 

aj(to) and J:. = w.t + ej(to), j = 1,2. 'this is a system of four Jo JO 
;lfgtlhraic equations in the four unknowns aj,CoS+j, and ajosin$jo. Solving 

this system for aj(to), flj(to), we find 

al(tO) , = 'w;/"; t w;' "2/R , 

o,(t0) -1 = tan (f2,W2/W,) - tilt0 II 

a,(t,) = - ‘z;/“$ + z;’ "2/R , 

o,(t,) = tan-'(Q2Z2/Z,) - m2t0, 

h'l 
= x&4-+, - y,) t (2y2 - 3q)wf •t Y,L$l •t v 

0 2 2 Cw2(w2 - q’ •t 

t 2v2(2v2 - 3~~1~: •t 2~:~s + ~Y;Y~(Y, -Y~)I + P~[(Y, + 2y2)~; - 

- 3y,mq + 4y+y; - $1 f q$J$ - WY + 2Y,(Y, - Y,)l ) 

w2 = xoqw; - wi •t 4Y,(Y, - Y*)l f q)IY,$ - Ypp + 4Y,Y2h, - $1 + 

+ P(& 2 - wf f 4ty; - Y$)l + 2q (Y - 01 9) 3 
UN1 

z1 
= Xowf[ (2y, - 3y2)u; f y& t 4y;(Y2 - Y, 11 + v,[+; - w;) +- 

jg+; t 2y,(2y, - 3v2hJ; +EY,Yp* - Y,)] + P@2 + 2y,)w; - 

- 3Y& •t 4Y+Y; - +I + qo[wf -w; + 2Y2(Y2 - Y,)l 9 

z2 = xow;[wf - w;+4vtv - 2 2 
y,)] t 2vo[y2wi - Y,$ + 4r,y2(y2 - VI)1 + 

2 - + P(pI w; + 4ty; - Ypl + 2qo(Y2 - v,) * 
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In the event that yl = y2 = 0, i.e., there is no damping in the system, 

the forms of the initial conditions in (27) become significantly simpler. 

Using (6), (lo), (11) and (27), we can verify that 

a, (to) = [ho”; + q,)2/q + ‘X0$ + po)2]“2/lu; - $1 , 

e,(t,) = 

a2(to) = I(vouf + q0 

y(to) = 

tan-iL41(X& + PO)] 
L 

"oW2 + 90 

12/$ + 'X0$ + poJ21 

-1 tan [ 
f.0 (x u2 + PO) 2 01 

vow; f 90 I 

1 

VO , 

'2Jlu$ - $1 , 

- u2t0 . 

(28)2 

In the spirit of the Krylov-Bogoliubov method Cl], we form the averages of 

(21) to (24) to obtain 

. 
a, + Y,a, = E[R,, c Fcos$, > + R,2 < Fsin$, >I , 

8, = -(E/a,)[R,, c Fsin$, > - R,2 < FCOS$J, >I , 

(29) 
a2 t y2a2 = E[R~~ < FCOS$J~ > - R,2 < FsinQ2 >I , 

;2 = (E/a2)[R22 < Fsinq2 > + R,2 < Fcos$2 >I,, 

where <FCOSI/J. > = 
J 

(1/4l? 
2m 2lr 

,I J 0 J 9 0 FcOsGjdUJ 1 di2 

cFsin$. > = (,/4n2) 2' 2'FSin$jd$,d+2 . 
J J i 0 0 (30) 

The function F(t,x,i,X,j;') that appears on the right side of the system of 

differential equations in (21) to (24) was defined earlier in (8). The 

quantities x,2,% ,and y appearing in (8) are next replaced by the.trigonometric 

expressions stated in (12) and (14) to (16). This implies that F becomes a 
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function of t, e., and 1cI,. Thus, it becomes convenient to express F as a 

double Fourier siries ai follows: 

F(t,x,&%) = F*(W& 

(1) 
= $0 n=O [Fmn Y (t)cosh+,) + F 

x[F;;) (t)cos(n$,) + FAz)(t)sin(n$2)1 , ~ 

wllere the coefficients Ffnn(t), j = 1(1)4, are known functions of time 

expanded form, the first few and most important terms of (31) are 

31) 

t. In 

F*(W, sq = F. + F,COS$J, + E,sinJl, + G,cos+2 + H,sin$2 + l ** , (32) 

where the explicit forms of the coefficients F,, F1, . . . . HI are known. 

If we use (32) in (30), we find that 

< Fcow, > = Fl/2 , -C Fsinq, > = El/2 , 

< Fw2 > = G,/2 , < Fsinv2 > = H,/2 . 
(33) 

Substitution of (33) into (29) yields the simplified or averaged system of 

equations 

a,+ up, = W2)(R,,F, + R,2E,) , 

6, = - (42a,)(R,,E, - R12F+ , 

(34) 

$+ Yp2 = (E/Z)(R~~G, - R,2H,) 

i2 = -  (&‘a& (R22H, + R12G,) l 
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From this point, the objective is to solve the system of ordill,lry differuritial 

equations in (34) subject to the set of initial conditions that. has been 

stated in (2/). 

3. LINEAR DIFFERENTIAL EIJUATIONS. ------ ,,-. -__ As a first applicatiorl of the theory 

developed in Section 2, we consider the following linear di fl(:r-,!*rltial equatiut~ 

with variable coefficients: 

ii + c(t);c + Ibq + ll(t)lx = EQ.(U, to < t . 

The initial conditions are those stated in (li), and Q 

the differential equatiorl (5) with Y2 = 0. Comparing 

Y1 = 0 and 

(t) is assutlied to satisfy 

(35) with (4), we find 

Ef(t,X,;) = c(t);c + TWX l 

In this case, (8) leads to 

&(t,x,i,s;$) = h,(t)x + h2(t); + h+t): + h4(t)ji' 9 (37) 

where 

h,(t) = ;;(t) + +(t) , h2(t) = ';(t) t +(t) + 2&t) , 

h&t) = n(t) t 28t) , h&t) = c(t) . 

In the event that ~1 = ~2 = 0, (25) reduces to 

R1l = 
1 I 

9 
w+o; - $1 

R12 
= 0, R22 = 

-1 

+J; - $1 

(3t3) 

Consequently, the averaged differential equations in (34) beColtle 
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;I = ER,,F,/~ 6, = -cR,,E,/Pa, 

i, = ER~~G,/~ , Q = -~R~~H,/2a2 

where, in view of (32), (37) and (38), 

E1 = (l/E)[;;W + (a; - wT)n(t) - 2wfi(t)]a, , 

Cl = (w,/dLiW + 2;lWa2 
(4U) 

Hl = (l/E)Ct(t) - 2wst(t)]a, , 

When (40) is substituted into (3Y), the resulting system of first order 

differential equations is found to be 

a, = 
al 

2(WL - uL 1 2) 
[at> + 2b) + (US - Lq)Ek)l , 

i, = -1 
2w,hq - u;, Mt) - z+(t)1 + &w , 

1 

. 
a2 = 

a2 . . (41) 

y-(-pyp) + 2;lWl , 

i2 = -1 
2wp$ - $1 kt) - 2w$(t)l . 

The system of differentia‘l equations in (41) is a linear system of elementary 

uncoupled differential equations with coefficients that vary with time t. 

In view of (6), (lo), (Ill) and (3(j), the initial conditions associated 

with the system (41) are the expressions given in (28) with 

PO = EQ(t,) - x,Cdt,) + +I - v&to) , 
(42) 

I 90 = EQ(tO) - x,i(t,) - v,[dt,) + uf + i( - POE(tO) . 
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The differential equations in (41) arc! easily integrated to yir?ld 

a,(t) = a,(tO)expC 
[i(t) + 2ll(t1 - iho) - 2dt0)] , t 

2(wL - w') 12 - 2 toc( i 
r)drl , 

l 

n(T1d-c - 1 
2w+q - w$, r.l;w - 2o;w - ;I(t,1 + 

+ 2w;q1 + e,(tJ J 
(43) 

i(t) t zll(t) 
a,(t) = a2(t0)expI 

- at,) - 2Tdt0) 

2(w2 +;,T1' 

e,(t) = 
-1 

2w2(w$ - w; )I;lW - 2w$(t) - ;(tJ + 2wpt($1 + e2(t0) . 

The 

(42 

quantities aj(to) and oj(to), j = 1,2, are to be deterlnined frorv (28)2 and 

. 

ExatTlc 1. - -.- We consider the following nonhornoyeneous Flathir?u's equation: 

. . 
x + (LO; + 4bcos2t)x = EQ sinw t, 0 2 

Oct. (44) 

A comparison of (35) and (44) reveals that 

c(t) = o, &) = 4bcos2t, to = 0, Q(t) = QOsiyt.(45) 

Substitutiny (45) into (43), we find 

a, Ct) = a,(O) exp[ 4b(cos2t - l)] 
L L 

9 - w2 
, 
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a,(t) J a2(to)wl 
4b(l - cos2t$ 

wi _ wi , 

e,(t) = 
4b 

w2(ws _ wi, sin2t + e,(t,) . 

In the present case, (42) reduces to 

PO = -xo(w; + 4b), qO = m2Q0 - v,(w; + 4b) , 

by virtue of (45). For the initial conditions xo = vo = 0, WC obtain po = U 

and q, = Ew2qo. Hence, (28a) leads to 

a,(O) = 
""@, 

Wl (w$ - wf' ' 

EQ 
a2(0) = 0 

Wf - ws ' 

e, (0) = 0 , 

e2(0) = 0 . 

Consequently, (4(i) can now be expressed as 

al(t) = E”2Qo 
L 

+2 - Y 
L) 

expr4b(cos2t - U1 
wf - w$ s 

e,(t) = 
b (w2 - 

W,tWi - W$) 1 
W$ + 4)sin2t , 

e,(t) = 
4b 
z L sin2t , 

w2(w2 - till 
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Finally, substi- 

ation for the solut 

i(o) = x(0) = 0. 

tution of (47) into (12) leads to the following approxim- 

ion of (44) subject to the homogeneous initial conditions 

x(t) = 
EQO 

2 2{(@+xP[ 
-4b(' - COs't)lsin[w,tt 

b(wf - W; t 4) 
wf _ Wf 2 

w2 - Y +1 - 9 
L) sin2tl - 

(48) 

- ewL4b$ 1 LY2')lsin[ti2t + w2(w$b- Uijsin2t]J . 
2 

This approx imate solution for (44) consists of the sum of two sinusioda 

varying terms whose arguments consist of the sum of a linear term and a 

,lY 
sine 

term in t. The magnitude of the phase angle becomes very large as the value 

of t&j2 tends toward WI. In addition, the primary sinusoidal terms are multi- 

plied by exponential functions whose aryuments depend upon cos 2t. These 

factors cannot give rise to an unlimited growth in time of the amplitude of 

motion. Since the leading coefficient in (48) contains the term CUE - UJ: in the 

denomin,ator, the value of x will become very large whenever the value of w2 is 

close to that of w 1' 

To assess the accuracy of the approximation for x(t) given in (48), we 

have evaluated this approximate solution and have solved (44) subject to the 

initial conditions i(o) = x(o) = 0 numerically by means of the Runge-Kutta 

method (hereinafter called the "exact" solution). The numerical results 

ob-tained in this manner have been plotted on the same set of axes (x versus t) 

for purposes of comparison, For the choice of parameters WI = l.S, w2 = 6, b 

= 0.05, Q = 1 and E = 0.1, the exact and approximate curves for x(t) versus t 

have been'plotted in Figure 1 on the interval 0 < t < 10. - - In general, the 

quantitative agreement between the approximate and exact curves is quite good 

over the entire interval shown. If the values of all the preceding parameters 

are held constant while the value of w 2 is diminished from w 2 = 6 to w2 = 4, 

then numerical calculations yield the plot of x(t) versus t shown in Figure 2. 

Once again, good agreement between the exact and approximate curves is very 

good. 
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The approximation in (48) leads to somewhat less satisfactory results when 

the frequency parameters Y and ~2 were assiyned the values of "'1 = 1.1 and Yi 
= 3. This is not surprising since the nature of the :;olution of the homoyen- 

eous form of Mathieu's equation is known to change when the value of "1 is 

close to unity--see, for example, Nayfeh [ll], pp. 234 to 254. 

Example 2. -me- Consider next the non-homogeneous form of Bessel's equation, 

name.ly, 

;; t (l/t)i + 'tit - v2-/t2)x = EQ(t), @<iI <t, 0 

where Q(t) is assumed to satisfy the differential equation 

a t o$Q = 0. 

Upon referriny to (35), we see that for (49) 

E(t) = 1/t, n(t) = - v2/ti. 

(49) 

(49a) 

Consequently, (43) leads to 

a,(t) = al(tO)(tO/t) "2exp I~+-$$) (& -. $1 I, 

e,(t) = [ 
(u2 + 2q - (uw,) 

2 
.2 1 

2+; - $1 
I,;-? - 2 

wl(wl - Y 
' 1 ").(F - T + e+to) 9 

a,(t) 
1 

a2(t0)exp[2( L 
t 29 1 

= ’ )I 
w2 - Y 

2)yF , 
(51) 

e,(t) = -1 2 ,)b2(iJ 1 - 

Q”2 

- 

9 

F 1 ) 

0 

_ ++ - I-)] + e2(t0L 
t0 



where the quantities aj(to) and Oj(to), j = 1,2, are to be determined from 

(28)2- 

In case of x0 = v. = 0 and Q(t) = Qosin W2t, we find from (49) that 

PO = EQ0sinw2t0, q. = EQO[a2COS(u2tO) - Wt$.in(w2t0)1. 

Therefore, (2tl)2 leads to 

a, (to) 
2 

= r(qo/y) + PO1 2 “2/la; - $1, - 

e,(tO) = tan-'[ 
w,sin(w2t0) 

W2coS~W2to) - u/to~Sin(DZtO)l - qto, 

a2(t0) = -mlo/q 
2 

f PO1 2 "2/1u; - w$, (52) 

e2(t0) = tan-'[ 
w2sin(w2t0) 

w2C0S(w2t0) - (l/t0Mn(w2t0) 
1 - yto. 

Therefore, an approximation for x(t) is 

x(t) 1 a, (to) (to/t) 
l/2 exp[ ' + 2u22 2(WL - w 1 

(J+ - &)]sin[w,t + 
2) tO 

[(2 t v2)cl$ - u%$l , 
+ 2w,(w7 - Lo;, 

(y - ;) t ;’ 
0 

2) (;T - $4 f e, (to)1 + 
ul(wl - w2 0 

(53) 
1 f 2u2 1 

+ a2(t0)expL2( 2 “)(F - jy 1 
w2 - Y 0 

' ) sinIw2t + 

t 
1 tv2(& - &) t & - -1_)1 •t qtO)la 

+$ - 9) 0 t0 
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As t becomes very large, the coefficient of the first sine term in (53) tends 

to zero. Consequently, as t-s m , (53) reduces to 

1 + 2v2 
1w 

x(t) : a2(t,)exp[2t6(U; _ Uf)lsinlw2(t - t,) - t I 22 w2 - 9 ') + 
0 

V2 
W2sinw2t0 

+ 3 2 2 +tan 
W2tO(W2 - wl) 

-'r 
LW2cosw2t0 - (l/tO)sinti2t0 3). (54) 

As in the preceding example, numerical calculations have been performed to 

solve 

ii + (l/t)i t (w? - v2/t2)x = EQosinti2t, o<t 
0 

<: t, (55) 

subject to the initial conditions x(t,) = i(t,) = 0. Some typical plots are 

shown in Fiyures 3 and 4, for which the following numerical values for the 

parameters were used: to = 1, w1 = 1, Q, = 1 and E= 0.1. The value w2 = 6, 

v= l/4 and w 
2 

= 4,v= 1 were used in the plottiny of Fiyures 3 and 4, respec- 

tively. Fiyure 3 shows that there is very good agreement between the approx- 

imate and exact curves over the entire time interval considered, namely 

1 < t 2 10. The approximation proves to be slightly less precise in Figure 4, - 
where ~~~~ has a smaller value. The approximate curve, nonetheless, respects 

the qualitative features of the exact curve reasonably well. 

Example 3. The nonhomoyeneous form of Hermite's differential equation -- 
(see Sneddon ClZ], p. 152) is 

*. 
x - 2t; t 2vx = cQ(t), 0 < t, (56) 

where Q(t) satisfies (5) when ~2 = 0. Since (56) is a particular case of 

(W, we have 

w; = 2v, c(t) = -2t, T)(t) = 0, to = 0. (57) 
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When the expressions in (57) are inserted into 

be 

a, (t) = a,(0)et2j2 , e,(t) = e,(O) 

43), the results are found to 

a,(t) = a2(0) , e,(t) = e,(O) - 
2w2t 

l$ - u2’ ’ 

where for x 
0 = v. = U and,Q(t) = 4, sin W2t, 

(58) 

EW Q 
0) = 20 

, a2(0) = 
w 1ti2 - d 

12 11 
(59) 

e, (0) = e,(O) = 0 I 

When (58) and (59) are substituted into (12), the resu It is the following 

approximation for x(t): 

- sin[ti2,t(l - z 2 ,)I) . 
9 - al 

(W 

Numerical results based upon the approximate solution (GO) and the "exact" 

Kunge-Kutta solution have been plotted on the interval 0 Lt 5 1.5 in Figures 

5 and 6, where the set of parameters w2 = 6, v= 3 and w2 = lU, v= 6, respec- 

tively, have been used with U, = 1, E= 0.1. The agreement between the approx- 

imate and the "exact" solutions is generally rather good for the time interval 

considered. 
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4. A NONLINEAR DIFFERENTIAL EQUATION. In the preceding section, we --- 
showed that the general theory developed in Section 2 can be applied effect- 

ively to several nonhomogeneous linear differential equations with variable 

coefficients for the purpose of generating analytical expressions that repre- 

sent approximate solutions. It is next of interest to examine a forced motion 

problem in the theory of nonlinear oscillations. In particular, we consider a 

form of Duffiny's equation that includes the effect of linear damping, i.e., 

i t 2y;( + w2x t EClX 3 
= EQ(t) , Ott, (61) 

where Q(t) satisfies (5). Comparing (4) and (61), we write 

Y, = Yr y = WI f(t,x,;c) = cXx3 , ‘(62) 

where c1= 1 for a hard spring and c1= -1 for a soft spring. Using (62) and (a), 

we can easily show that 

F = $f + 2~2~~ af:, + 

TZ .b12X3 
02 

2 t 6av2x2i t 3ax2x t 6axx . (63) 

If we now use (12), (14) and (IS) with (63), we can verify that 

aF = A1sin3$, + A2sin2$,sinQ2 t A3sin$,sin2G2 + 

+ A4sin3q2 + A5sin2$,cos$, t E,6sin2$lcos$~2 

+ A7sin+,cos$,sin$2 + A8sin$lsin+2cos$2 + 

9 7 

t 

7 
+ A9cos$,sinL$2 t A1DsinL$2cos$2 + A1,sin$,cosL$, + 

+ A,2sin$lcos2$2 t A,3sin~,cos~,~os~~ + Alacos2$,sin$2 f 

+ A1Ssin$2cos 
2 

Q2 t A16cos$1sin$2cos$2 , (64) 
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where 

*1= (W2 2 - 3~i t 12yi - 6y,y2)ag, A2 = 6(3$ - wi)a;a2, 

*3 = 3(2vf + 2y,y2 + 2~; - tif - dj)a,az, A4 = 2(3y$ - $)a;, 

*5 = 6~,(~2 - 3Y,)a~, A6 = -12vp2a~a2 , 

A7 = -24v,fq a;a2. A8 = ~lZ(y, + y2)a2a,a$, 

A9 = -6n,h, + Y2)a,af, *lo = -1 2r2@, *11 
7 6ti2a3 (65) 

1 1' 

*12 = 6s$a,a;, *13 
= 12n,+ata2, A14 

= 6n2a2a 1 1 2' 

*15 
= 6n2as, *16 

= 12n,fi2a,a; . 

If (64) is used with (30) and (33), we find after some manipulation that 

i' FCOST+ ' = (alsq + 31, 

c Fsin$, :, = (a/8)(3*, + 2A3 + Al1 + 2*,2), (66) 

c Fsin$2 > = (d8H2A2 + 3A4 + 2A14 t: AIs), 
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where it may be observed that the coefficients A-/, A8, AI3 and AI6 defined in 

(6s) do not appear. In view of (66) and the riyht side of (29), it can be 

shown that 

R1l < Fcos$,.> + R12 < Fsin$,> k H,ay t F2alas !, 

R,, < Fsin$, > - R,2 c Fcos$, > = H3ai + 14a,as y 

(67) 

R22 < Fcosq2 > - R12 c Fsin$2 > = -H5a;a2 --H6as y 

R22 < Fsin+2 > + R,2 < FCOS$~ > = H&y- +,a; y 

where 

H1 = (3w,/2R) b; - u; - 2h2 - Y,)~I ,- tip = (3av2/R)$' -m2,), 

H3 = -(3u/8nlR)f(w$ - wf'" + 4y1(3y, - 2y2)(u; - w;) t 

t 8y;(y2 -v,)~ t 4w;(y2 - y,)(y2 - 3y,)>, 

H4 = -(3a/4n,R)[(w; - ~7" + 4-y~'~; - wf, - 4u;'y; - y;)], (68) 

H5 = (3ay,/R)[w; - wf - 2(y2 - +, H6 = t3ay2/2R)f.w; - wi), 

H7 = (3aylh2R)[(3y, - 2y2)w2 2 - Y,$ 

H8 = (3ay2/2fi2R) [@y, - y2+$ - y2w; I 

t2Y2(Y2 - Y,W I 

AS a consequence of (67), (29) can now be expressed as 

. 
al + ylal = e(H,a? + H2a,ag), 

. 
e, = -E(H3af + H4as), 

i2+Y2a2 = -2E(H,a;a2 + H2$), 

i2 = -E(H7ai + H8as). 
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Example - 4. Suppose that ~2 = 0, so that Q(t) is a solution of (4%). it 

now follows from (68) that 

H1 = (3ay /2R)(w2 - u2 - 2v2), 1 2 1 1 H2 = 0, 

H3 = -(3a/8n,R)[($ - uf" + lZu+; + 841, (70) 

H4 = -3d4i-5, H7 = (3+w2R)h$ - w;), H8 = 0, 

where, in view of (25), 

R = (w2 - u')~ + (2y W j2. 
2 1 12 (71) 

In view of (70), the averaged equations of motion (69) reduce to 

al + y,a, = EH,ay, (72) 

8, = -E(H3a; + H4a$), (73) 

a2 = -2EHlaia2, (741 

Q, = -EH7ai. (75) 

The differ,ential equation (72) is uncoupled but nonlinear. It can be 

solved by elementary methods, Indeed, we can write 

dal 
a,(af - c21 

= eHldt, (76) 

where we assume that E> U,a > 0 and ti; > U: + 2r,2, so that HI > 0 and 

~2 = +Hl :, 0. (77) 
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The integral of (76) is easily verified to be 

cemYlt 
a,(t) = 

(r t e-2vlt)"2 

where 

(78) 

79) r = [c/a,(0)12 - 1. ( 

Since the explicit form of a,(t) is now available in (78), we can 

determine a2(t) throuyh an integration of (74). The result is 

a,(t) = u(r t e-2ylt), 

where 

u = a,(O)[a,(O)/c]' . w 

Finally, using the expressions for al(t) and a2(t) in (78) and (80), we derive 

the following phase angle expressions from (73) and (75): 

r + e-2r,t EH u2 
e,(t) = (H3/2H,)kn[ r + , ] - 4 

4v11(2r + ') 
2 + v,t(2r)* - 

- (2r + e -2ylt)2] + e,(0) 

and 

w 

r + e-2ylt 
e2(t) = (H7/2H,)Rn[ r'+ 1 I + e,(O) . (83) 
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Expressions for the initial values aj(0) and ej(0), j = 1,2, must now be 

determined. When y2 = 0, (28) yields 

Wl 
= y+xow; + p,)(L$ - 3w; + 4y;1 + (v(& + q"h; - u; + 2YT), 

w2 = cxow; f po)h$ - uf + 4Y;) + 2Y,(Vo~3 + q,), 
w 

z1 
= 2y,w;(xow; + p,, t vo[C+$ - US) + (2y,w2P3 + q&$ - w;L 

z2 = x w?(w2 - tJ$, - p 
01 1 (w2 - LlJ2 

02 1 I- 43) - 2Y,(VoW~ + qo) * 

Furthermore, from (10) and (ll), we find 

PO = EQ(0) - $x0 - 2y,vo - ECLX& 

(85) 

90 
= $0) -ti;vo - 2y,po - 3mVoX~ 

I 

since f(t,x,;) = c1x3. In the case of Q(t) = Q, sin(U2t) and x0 = v. =0, we 

have from (85) 

PO = 0, q. = ~~~~~ , (86) 

whereas (84) yie'lds 

w, = m2Q0h; - u; + 2y;), W2 = 2~rp2Q0 9 

z1 = qo(w; - w;), z2 = -2v,qo * 

Consequently, (27) leads to the expressions 

a2(0) = -EQ~/R~'~, 
(87) 

e,(O) = tan-'1 
2ylfil 

- uf + 2yq 
2ylw2 

w$ e,(O) = tan-+-+1 , 



where R was given earlier in (71). 

Substituting (78) and (80) into (12), we find 

W-V 
x(t) = 

(r + e-2ylt)1'2 
sin[n,t t e,(t)] + 

q(O) 
t a*(O) cz (r t e-2ylt)sin [w2t t e*(t)], (88) 

where gj(t), j = 1,2, are defined in (82) and (83), with the initial values 

being given in (87). 

It is easy to see that the function a,(t) in (78) approaches zero as t 

tends to infinity, whereas according to (80) and (83) 

a,(t) - a2(0)[1 - a;(0)/c2] , 

e,(t) - 
*rp* 

(H7/2H,hn(&! + tan-'[tii _ w-I 

as t-j* . Consequently, in the steady state, we have 

x(t) - a2(0)[l - a;(0)/c2]sinFw2t t (H7/2H,)an(r,l ,) t 

-1 
ttan C *w ]] 

u; - w; * 

(89) 

In the case of cx= 1, wl = 1, w2 = 6, q, = 1 and E= 0.1, plots of the 

variation of x(t) with t as determined from (88) are shown in Figures 7 and 8 

for YI = 0.25 and YI = 0.75, respectively. The exact and approximate curves 

in these figures are in excellent agreement on the time intervals considered. 

In Figure 8, the higher coefficient of damping (YI = il../S) causes a rapid 

decay of the transient component of the motion, and the steady state behavior 

as described by (89) becomes evident after the first two cycles. 
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If the nonlinearity of the system is characterized by a soft spring 

(a= -l), the form of the solution just presented must be modified slightly. 

We write 

B = -H1 = (3v,/ZR)(w$ --UT - 2yT) , 

H3 = (3/85R)[(w; - $I2 + 3(2~~~2)~ t 8~71 , w-0 

Hq = -3/4fl, 1 H7 = -(3+2R)(3w; - UT, , 

Equations (73) and (75) remain unchanged, but it is advantageous to replace 

(72) and (74) with 

i, f qa, = -cBai , w 

and 

;2 = 2EBa;a2 , 

respectively. 

Integration of (91) leads to 

6-V 
a,(t) = 

(M2 - e-2ylt)"z ' 

(W 

W) 

where 

.2 = q/d = 2R/&(w$ - uf - 2~;) , M2 = 1 + [v/a,to)12. (94) 

The integrations of (92), (73) and (75) are elementary. The results are 

a,(t) = a2(0)a;(0)(M2 - e"2rlt)/y2 , 

(95) 

e,(t) = e,(o) - (d4+2H3v2knl 
‘~2‘- e’2ylt l t 

ML ; , 

172 



+ H4[a;(0)a2(O)/w2][4~,M4t + (1 - 2M212 - 

- (2Mz - e-2ylt)21 , (96) 

e,(t) = e,(0) - kH7u2/2r 
-2v,t 

)NM2M-Lr, I, (cl71 

where the values of aj(U) and ej(U), j = 1,2, can be determinted from (87). 

Therefore, by virtue of (12), (93) and (95) to (57), an approximate sol- 

ution of 

ii + 2++“2X-Ex3 = 
1 EQosinw2t , 

is 

x(t) 1 Ve-V 

(M2 : e-2Y1t) 
1/2Sin[SIit + 0,(t)] + 

aft01 
+ a2(0+-(M2 - e -2rlt)sin[w2t t e2(t)3 . w 

tends to the steady state solution 

x(t) - a2(0)(1 + 5)sin(02t t $2) , 

where 

WN 

4 
2Y1w2 

= a;(0)/v2 , Q2 = tan-'( T 2) 
w2 - Y 

- (EH,v2/2y,)en(l t 6) . 
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To assess the quality of the approximation in (99), we have also solved 

numerically the initial value problem stated in (98). These "exact" and 

approximate solutions have been plotted in Figures 9 and 10 for 9 = 1, 2 = 

4, Q, = 1, and E= 0.1, with YI = 0.25 and YI = 0.75, respectively. In both 

cases, the exact and approximate curves for x(t) versus t are in excellent 

agreement. The decay of the transient portion of the solution is quite evi- 

dent. Moreover, the attainment of the steady state motion is clearly visible 

in Figure 10 since the value of the damping coefficient is three times greater 

than the value used in the plotting of Figure 9. 

5. SUMMARY AND CONCLUSIONS. --- A method that can be applied for the 

determination of approximate analytical solutions of the class of nonhomogen- 

eous linear and nonlinear differential equations of second order stated in (4) 

has been developed. it is hypothesized that the forcing function Q(t) in (4) 

satifies the linear second order differential equation with constant coeffici- 

ents shown in (5). The class of physical problems considered is character- 

istic of the linear and nonlinear theories of oscillatory systems. The pre- 

sent method-represents an extension of Burnelle's method of averaging [3], 

which specifically accounts for the presence of linear but subcritical damping 

in the system. Burnelle's technique, which is applicable to homoyeneous 

differential equations, may be viewed as a generalization of the Krylov- 

Bogoliubov method of averaging [I], in which only small linear damping is 

considered. The linear damping term is understood to be a component of 

f(t,x,i). 

In the technique presented here, x(t) is assumed to possess a solution in 

the form shown in (12), where the amplitudes aj(t) and the phase of angles 

ej(t)S j = 1,2, are to be determined. The method of variation of parameters 

is applied, and a system of first order differential equations in the aj's and 

ej's is derived. To simplify this system of differential equations, the 

averaying operators in (30) are applied to (21) to (24). It may be argued 

that the riyht sides of these differential equations are slowly varyiny func- _ 
tions of time t. This process reduces the complicated system to a much 
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simpler system that is in many cases tractable by elementary methods. In 

essence, this has been accomplished by expressing the right sides of (21) to 

(24) as double Fourier series in q1 and q2 and then approximating the resulting 

expressions throuyh retention of only the constant term (i.e., the average 

value of the right side) of the Fourier series. It is this averaging process 

that introduces the approximation nature into the technique of solution. 

The averaged differential equations in (34) were then solved for some 

specific choices of the function f (t,x,;) that appears in (4). Firstly, a 

class of linear differential equations was considered for the form of f(t,x,;) 

shown in (36). The integrated forms of aj(t) and Qj(t) are presented in (43). 

As illustrative examples, nonhomogeneous forms of the differential equations 

of Hermite, Mathieu and Bessel have been solved approximately by the proposed 

method. TO assess the validity of the analytical approximations, these same 

initial value problems were solved numerically for several values of the 

parameters by the Kunye-Kutta method, herein called the "exact" method, Plots 

of x(t) versus t based upon both the analytical approximations and the numer- 

ically exact computations were prepared on the same sets of axes. These 

numerical results, shown in Figures 1 to 6, proved to be in excellent qual- 

itative and relatively good quantitative agreement. 

Secondly, Duffing's nonlinear differential equation including the effect 

of subcritical linear damping has also been solved in an approximate sense by 

the proposed method. Roth hard and soft nonlinear springs have been consid- 

ered, i.e., f(t,x,i) = +x3. Numerical calculations revealed that the analy- 

tical approximation provides a very accurate representation of the solution of 

the nonlinear differential equation even into the steady state domain. The 

exact and approximate curves have been plotted in Figures 7 to 10. The human 

eye cannot distinguish between them on the scale of the axes employed. 

Consequently, the method developed here offers a practical technique for 

the determination of rather accurate analyticai approximate solutions for 

certain types of nonhomogeneous linear ordinary differential equations. It 
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should be noted, however, that the solutions are not valid when w Z-+1- This 

case requires a modification of the form of the solution assumed here for 

x(t). The resolution of this situation remains a problem for further research. 
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Figure 1. Variation of x(t) versus t #or W, = 1.5, Wt = 6, 
b = 0. 051 Go = 1, and G = 0. 1 accofding to ( 48 1. 
o-approximate solution, a-exact solution. 



180 



f-0 
-0 ul 3” 

181 



s 
1 ot* 

182 



k 

- 

-- 

. . 

. . 

-. 

. . 

*, 

-. 

183 



w2 = 10, nu = 6, Qo = 1, eps = 0.1 
M-ET-84 13:1&C@ 

Figure b . Variation of x(t) versus t for Cd= = 10, Y = 6, 
Qa = I‘ and 6 = 0. 1 according to ( 60 ). 
o-approximate solution, A-exact solution. 
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Figure 3. Variation of x(t) versus t according to ( 88 .I 
for Duffing’s equation with 01 - I1 t32 = A1 C3, = 

3 = 0. 25, and ti = 1. o-approximate 
solution. 
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Vl = 1, v2 = 4, 00 = 1, sps = 0.1, g = 0.25, alfa = -1 
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Figure 9. Variation of x(t) versus t according to ( gg 1 
for Duffing’s equation with WI= I, % = 4, Q, = 
1, 6 =O.l, r, = 0. 25, and CL = -1. o-approximate 
solution; d--exact solution. 
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Figure fb. Variation of x(t) versus t according to ( 99 ) 
for Iluffing’s equation with 0, = 1, % = 4, Q* = 
I, 6 = 0. I, 5 = 0. 75$ and ti = -1. o-approximate 
solution, A-exact solution. 
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COMPUTATION OF RESIDUAL STRESSES DUE TO PHASE TRANSFORMATIONS 
DURING QUENCHING OF HOLLOW CYLINDERS 

J. D. Vasilakis 
U.S. Army Armament, Munitions, and Chemical Command 

Armament Research and Development Center 
Large Caliber Weapon Systems Laboratory 

Benet Weapons Laboratory 
Watervliet, NY 12189-5000 

ABSTRACT. In a previous paper, a method for computing the stresses due 
to the combined effects of transient temperatures and material phase 
transformations was described. The general purpose finite element program 
ADINATIADINA was used for the computation of both the transient temperatures 
and the associated stresses. The problem considered was that of an 
axisymmetric hollow cylinder undergoing a water-spray quench. The present 
work considers a similar model, but is better able to describe the residual 
stress state because of the availability of a more accurate set of properties 
for the material expansion due to the phase transformation. Effects on the 
transient and residual stresses due to modifications of the material expansion 
and varying quench rates are discussed. 

It is found that the stresses due to the transformation are more severe 
than those due to the transient temperatures alone. Inelastic behavior is 
found to occur in all the cases considered and high residual stresses can 
exist on the inner and outer surfaces. ,While dependent on actual material 
composition, these residual stresses can lead to quench cracking. 

The model describes the rapid quenching of steel gun tubes for the 
purpose of developing a martensitic grain structure and desired physical 
properties in the tube. 

I* INTKODUCTION. Rapid quenching of components from initially high 
temperatures usually results in development of residual stresses within the 
components upon cooling. The quenching is normally undertaken to develop a 
desired microstructure in the material which would determine its behavior or 
response in use. These changes in microstructure, or transformations, cause 
volume changes which can give rise to stresses in the component in addition to 
the stresses due to the rapid temperature changes. Thus, the residual state 
of stress which exists when the component is cooled to room temperature is due 
to the combined effect of transient temperatures and material phase 
transformation. 

In a previous paper [l], a method for computing the stresses due to these 
combined effects was described. The general purpose finite element program 
ADINAT/ADINA was used for the computation of both the transient temperatures 
and the associated stresses. The problem considered was that of an 
axisymmetric hollow cylinder undergoing a water-spray quench. The present 
work considers a similar model but is better able to describe the residual 
stress state because of the availability of a more accurate set of properties 
for the material expansion due to the phase transformation. The material 
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properties and system parameters used in the computations, such as quenching 
time, were chosen using the rotary forge quench facility at Watervliet Arsenal 
as a model. 

The quench facility has nozzles on several diametral planes for spraying 
water on the outer diameter of a long tube as it is slowly rotated. The bore, 
or inner surface of the tube, can also be cooled by a bore flush. There have 
been several types of quench cycles in the past. These include varying quench 
times of the outer diameter for the breech and muzzle ends of the tube. The 
long tubes are usually of constant bore diameter and varying outer diameter 
with the larger being the breech end and the smaller the muzzle end. 
Quenching of the bore can be omitted, delayed, simultaneous with the outer 
diameter quench, etc. The goal was to develop the design properties in the 
tube without causing quench cracking due to the h‘igh residual tensile stresses 
at the bore. 

Since the diameter of these tubes varies slowly, end effects are ignored 
and the tube is treated as a long axisymmetric cylinder. In the earlier work 
[l], the transient temperatures and combined stresses for the breech and 
muzzle ends were treated as two separate cases. This earlier work also 
considered the effects of the different quench cycles. The geometry used is 
that of the muzzle or smaller end of the long tube. It is also assumed that 
no bore quench takes place. This was done because most of the quenching 
currently being undertaken at the facility does not use the bore quench. 
Latent heat is ignored in the computation of the transient temperatures. This 
is not due to a limitation of the model, but to a lack of appropriate input. 

Based on recent experimental work [2], the residual stresses can now 
be computed from realistic temperature-transformation curves. Also, because 
of information on the martensite transformation itself, the effect of new - 
quench cycles on the cooling curves can be seen. The resultant residual 
stress distributions can then be discussed. 

II. PROBLEM STATEMENT. Thermal and transformation stresses are computed 
for long hollow cylinders as they are being quenched. The effects due to the 
transient temperature distributions and the martensite transformation are both 
considered in the stress calculations. The thermo-physical properties are 
assumed to be temperature dependent. The residual stress distributions at the 
end of the quench cycles are presented. Both experimentally developed and 
assumed transformation-temperature curves are used, and the quench cycle is 
varied. A general purpose finite element program ADINAT/ADINA is used for the 
computations. 

III. FINITE ELEMENT PROGRAM. The finite element geometry for the 
problem is shown in Figure 1, along with a simplified drawing of a gun tube. 
Eight node quadrilateral elements are used in the model. The present work 
shows results only for the muzzle end of the tube. In the earlier work [l], 
stress and temperature results for the breech end of the tube due to different 
quench cycles and an assumed transformation-temperature curve were presented. 

The finite element program actually consists of two parts, one for 
computing temperatures, ADINAT, and one for computing stresses, ARINA. Each 
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program can stand alone, but when one wishes to compute thermal stresses using 
the same geometry, ADINAT produces a file which includes the temperatures at 
the node for each time step if the problem is a transient one. This ADINAT 
output file can then be used as input to ADINA for the stress computation. 

In the program, the thermo-physical properties were considered as 
functions of temperature. The convection losses during the heat transfer 
portion of the computation are considered to be due to the temperature 
difference between the tube wall and ambient, which is assumed to be 18.3OC 
(65°F). For the computation of stresses, one has a choice of several material 
behavior models in ADINA. The one chosen for this work was Model 10 [3] which 
is applicable to the thermo-elastic-plastic solution of interest. The yield 
criterion assumed was the distortion energy criterion and the yield stress was 
assumed to be a function of temperature. No creep or hardening was assumed 
although the model allowed both to be incorporated. 

To compute thermal stresses, the problem for the transient temperatures 
was solved using just ADINAT as indicated above. The special file created by 
ADINAT was then used as input to ADINA to compute the thermal stresses. 
However, in many cases in solving the temperature problem, time increments 
vary. Short-time increments are used during periods of large transients, 
and longer-time increments when the temperature gradients are not as severe. 
While ADIWAT allows one to change time increments, ADINA does not. This 

difficulty was overcome by manipulating the temperature file used for stress 
computation so that with the restart capability, ADINA would see only one time 
increment during any one computation interval. Finally, the restart facility 
in ADINA [4] was altered so that a restart could be undertaken from any 
previous time instead of just the last completed step. 

The computation of transformation stresses and combined thermal and 
transformation stresses can be treated like thermal stresses with little 
additional effdrt. The effect of the transformation, at least the aspect of 
it giving rise to stresses, is to create a volume change in the material. In 
this case the volume change is an increase, and it occurs when the temperature 
at a point in the material becomes equal to the martensite start (MS) 
temperature and is completed when it reaches the martensite finish (MF) 
temperature. If the transformation is assumed to be isotropic, then the 
linear expansion can be taken as one-third the volume change. Reference 1 
describes what was done when the expansion due to the volume change was 
available as a separate quantity from the thermal expansion coefficient of the 
material. The current work takes advantage of the fact that the expansion is 
available from experiments as the combined effect. 

IV. EXPERIMENTAL WORK. Cote [2] is conducting tests on various steels 
used in the manufacture of large caliber cannon. Small samples of the steels 
are quenched at different rates and the expansion in each sample is 
determined. He supplied the data for the experimental curve for the linear 
expansion versus temperature curve shown in Figure 2. .He also suggested the 
modified curve as being typical of another type of steel or one in which some 
bainite has formed in addition to martensite. Other aspects of his work 
indicate that the desired microstructure can be achieved with slower quench 
cycles. This work has guided some of the decisions as to what quench cycles 



to run, what transformation curves to use, etc. 

v. RESULTS. The early work [l] was based on the assumed transformation- 
temperature curve shown in Figure 2. The experimental curve was not available 
at that time. Based on that curve, however, several different quench cycles 
were run to determine the transient temperature distributions and the 
associated residual stresses. The quench cycles previously run were: 

1. Bore quench started at the same time as the 00 quench. 
2. Bore quench started 30 seconds before the OD quench began. 
3. Bore quench started 30 seconds after the OD quench began. 
4. No bore quench. 

These were run for both the muzzle and the breech end of the gun tube. For 
comparison purposes, some of this earlier work is shown in Figures 3 through 
5. The results are for the muzzle end with no bore quench taking place. 
Figure 3 shows the variation with time of the tangential stress at the bore 
and in the outer surface. Since this was a four minute quench simulation, the 
stresses at time 250 seconds are the residual stresses at those respective 
points. The breaks in the curves indicate when the phase transformation would 
begin and end in the bore and on the outer surface. The onset of inelastic 
deformation can also be found as can changes in the slope of the phase 
transformation-temperature curve. Figure 4 shows the residual stress 
distribution throughout the cylinder wall. High compressive stresses are seen 
at the bore and high tensile stresses on the outer surface. Figure 5 is a 
series of figures showing the tangential stress distribution across the wall 
thickness at different times. The transformation has started on the outer 
diameter by 150.5 seconds and continues into the cylinder. It begins on the 
ID by 175.5 seconds and the residual stress state (similar to Figure 4) is 
seen at time 245.5 seconds. 

The results for other transformation curves in Figure 2 are shown in the 
remaining figures. The phase transformation curves used here for the 
computation of residual stresses are the experimentally determined one and the 
one modified from it. In addition, each was run with a fast quench (- 4 
minutes) and a slow quench (- 15 minute) cycle. Boundary conditions for the 
computation of temperatures are not readily available. The only known 
information is that the temperature on the muzzle end of the tube reaches 
about 200'F in approximately four minutes. This point is about eight minutes 
on the breech end. A constant convection coefficient, h, is found by 
exercising the program which gives us this point and is used in subsequent 
runs. The geometry for the muzzle end was used and no bore quench was 
considered. Figures 6 through 9 represent the transient temperatures 
experienced by the tube during quenching. Figure 6 is the response of the 
fast quench and the temperature distribution throughout the wall at selected 
times is shown. The effect on the temperature distributed due to the OD only 
quench is easily seen, especially.at early times. The difference between the 
outer diameter and bore diameter temperatures at any time is found in Figure 
7, again for the fast quench cycle. Figures 8 and 9 show the thermal results 
for the slow quench cycle, with Figure 8 showing the radial distribution of 
temperatures, and Figure 9 the OD and ID temperature as they vary in time. It 
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is easily seen that the temperature difference between the ID and OD is much 
less during the slow quench. 

Figures 10 and 11 show some of the stress results due to the experimental 
phase transformation curve and a fast quench cycle. This is perhaps the worst 
case as far as high stress gradients and residual stresses are concerned. The 
distribution of tangential stresses throughout the wall is shown in Figure 10 
for specific times. At time 121 seconds the transformation has begun on the 
OD, and at time 150 seconds it has begun on the ID. The effect on the 
stresses is due primarily to the volume change associated with the 
transformation. This can easily be seen by considering .&he stresses prior to 
the transformation beginning and the changes to the state of stress after it 
has been completed. Figure 11 shows the fluctuation of the stresses at the ID 
and OD of the tube throughout this quench cycle. Again the breaks in the 
curve are due to the onset of transformations, the onset of inelastic material 
behavior, and changes in slope of the transformation curve. High tensile 
stresses are found at the bore. Figures 12 and 13 show the results for the 
experimental transformation curve and the slow quench. Since it was thought 
that the desired material microstructure would be developed even during a slow 
quench for a specific steel, the combination of loads was run. From Figure 12 
one can see that the initial thermal stresses are small, as the thermal 
gradients are much less during the slower quench. The transformation on the 
OD started about 460-470 seconds into the run and on the‘ ID probably about 
40-50 seconds later. The residual state of stress is shown at the end of the 
quench cycle. High residual stresses are found at both the ID and OD but do 
not appear to penetrate into the interior of the tube section as they did 
during the rapid quench cycle. Bore tangential stress, however, is still 
tensile. Figure 14 shows the history of the tangential stress at the bore and 
OD. Most of the action occurs during the period from 450-625 seconds when the 
material is undergoing the transformation. 

By subjecting the material to more time at the austenitizing temperature 
or perhaps by the changing the austenitizing temperature, it may be possible 
to change the shape of the phase transformation-temperature curve. For this 
reason, it was decided to look at the type of results that would arise if the 
modified transformation curve in Figure 2 was used. Figures 14 and 15 show 
the results for this curve with the first quench cycle. While the high 
stresses do occur on the ID and OD, the penetration of tshese stresses into the 
interior is not as much as it was with the experimentally determined 
transformation curve. Figures 16 and 17 depict the results for the modified 
transformation curve and slow quench. In this case, the residual stresses are 
small. 

VI. CONCLUSIONS. Using experimental results as a guide, this work 
looked at the residual stress states in a long hollow tube which arise when 
the cylinder Ps quenched. These stresses are due to the transient 
temperatures during quenching and the material transformation that occurs. 
High tensile stresses occurred at the bore for all runs. These are the 
stresses that can lead to quench cracking. 
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In all runs, the stresses that occurred due to the phase change were much 
more severe than those due to the thermal gradients. During the slow quench, 
the thermal stresses were very small by comparison. For the more rapid 
quench, although more severe, they still were much less than the 
transformation stress. One should recall that the cylinder modeled is a steel 
one and the thermal conductivity is high tending to keep the gradients small. 
Varying the quench cycle, e.g., introducing bore quench, would not 
significantly change the stresses due to the temperature gradients alone. 

The stresses due to the transformation cause inelastic material behavior, 
almost from the time the transformation begins. At the higher temperatures, 
it is expected that yielding could occur without generating cracks due to a 
more ductile response* A slow quench with the experimentally determined 
transformation curve or either quench with the modified transformation curve , 
shows more shallow areas on the ID and OD for high residual stresses. Less 
material is thus subject to high stresses. Although this analysis cannot 
predict the onset of cracks due to quenching, it would tend to indicate that 
fast quench and experimental transformation curve would have a higher 
propensity for cracking. Either modifying the transformation curve or slowing 
the quench would help decrease the possibility of quench cracking. 

REFERENCES 

1. .I. D. Vasilakis, "Thermal and Transformation Stresses in Hollow Tubes 
During the Quenching Process," Transaction of the First Army Conference on 
Applied Mathematics and Computing, AR0 Report 84-l. 

2. P. Cote, Benet Weapons Laboratory, Private Communication, September 1984. 

3. M. Snyder and K.-J. Bathe, "Formulation and Numerical Solution of Thermo- 
Elastic-Plastic and Creep Problems," NTIS: PB-274-044, June 1977. 

4. Fred Gregory, Ballistics Research Laboratory, Private Communication, April 
1983. 

194 



-L - 

195 



c3 
I 

0 

z 

i 

j 
1 

i 
! 

/ 
I 
i 
i 

~ i 
:i I 
i 
i 
i 
1 I 
i ! 

\L, 

(H3NI) NOISNVdX3 883NIl NI 33NVH3 

196 



. 

-, , 
I 

I’ 
,’ 

I’ 

< 
---*_ 

I  

I  

,  
I  

I  

I  

I  
I  

I  
L 

I 

. , , \ , . . 
-. . 

197 



I I I I 

I I 

I I I 1 I I I I I I I l 

198 



vi m 

I 
I 
I 52 

In 

\- 

Ii N 

E 

-Ll 
In & In 

199 





1250 

1000 

750 

500 

250 

BORE AND OUTER SURFACE TEMPERATURE 
HISTORY DURING QUENCH (NO BORE QUENCH) 

BORE DdETEIi 
50 100 150 200 250 

--'... OUTER DIAUE'TBI? TIM& (SECONDS) 

FIGURE 7. 
PAST QUIMCH CYClE 

wm/w 



T 
E 
M m 3 P N E 
R 
A 
T 
u 
R 
E 

TRANSIENT TEMPERATURES IN TUBE 
DURING QUENCH 

1500 

500 

2.4 2.6 
RADIUS 

2.8 3.0 

MUZZLE END 

T= 1550 F 

SLOW QUENCH 

TIME (SEC). 

125.000 

250.000 

37s. 000 

500.000 

625.000 

750.000 

875.000 
1000.000 

1100.000 
1200.000 

FIGURE 8. 



1500 

1250 

1000 

750 

500 

250 

BORE AND OUTER SURFACE TEMPERATURE 
HISTORY DURING QUENCH (NO BORE QUENCH) 

I I t 

- DOUR DIAYKPIB 
----.-- OUTSR DlAYBTPR 

FIGURE 9. 

ebo 

SLOI QUENCH CYCIA 

Iwvw 



w 
i ? z 

4: 
Y I- 

9 9 
iI I II- k 

I . ii 
A- Y i= Y 

Lu 
Y 

r ;1 

: . B 
-47 

t .8 . 8 
-v1 Y P 

204 



TAOUSAN 

100 

50 

0 

-50 

-100 

DS DS THERMAL AND TRANSFORMATION STRESSES THERMAL AND TRANSFORMATION STRESSES 
DURING QUENCH (NO BORE QUENCH) DURING QUENCH (NO BORE QUENCH) 

__/-----.__ 

:’ : 4’ 4’ I 

0 50 100 150 200 250 
- BORS STRESS 
-.. ‘.. OD STRESS TIYS (SK~NDS) 

BASED ON BXPBRIYENTAL 
TRANSPORYATlON CURVE 

FIGURE 11. (FAST QUINCH) 12/31/84 



TANGENTIAL STRESS-w RADIUS FOR SPECIFIC TIMES DURING QUENCH 

TIHE 356.8) 
/ TIHE 25s. 00 

I+ 

I 
TIME 205.80 

I+ 
TIHE 385.88 TIHE 56.88 TIHE l0S.W TIHE 15S.W TIHE 5.88 

/ 
TIHE 405.60 

I* k- I- 
I 

TIME 542.88 TIN 522.00 

kL 
TIHE 681.00 

TINE s62.W TIME 682.88 

I* 

TItfE 601.00 TIM 455.88 TI?iE 502.08 

TIME 791.66 TIttE 721.88 TIHE 641.68 TIlfE 661.00 TIHE 74l.iM TIM 761.00 lIFfE 621.80 

L -I 
TIHE 821.00 TIHE 861 .w 

TIHE lO2l.W 

TIME 801.06 
s a? 

TIME 781.00 TIM! 841.06 TIHE WI .w TIME 981.88 TIW 821.80 

TIHE WI .w TIRE 1B4l.W TIHE 1661.88 r1HE 1881.88 11HE 841.88 TIM 061.66 TIHE lW1.W 

kx 
TIHE 1161.88 

k? 
TIRE 1181.88 TIHE Il0f.W TIME 1141.88 

EXPERIMENTAL TRANSFORMATION CURVE 
SLOW, NO BORE QUENCH 

FIGURE 12. 



a 0 0 0 0 
0 bn vs 0 

I 
I 

(1Sd) SSSzfJS lVlJN33NV1 

207 



m 
. 

E 

-A 

t 

! 
Y 
;: 

z . E 

-K Y G- 
? 

I . 
z 

-K Y 
: 

208 



USANDS USANDS THERMAL AND TRANSFORMATION STRESSES THERMAL AND TRANSFORMATION STRESSES 
DURING QUENCH (NO BORE QUENCH) 

150 

i 
: I 

/e.*------‘z _- t 
i’ 

I 
i : 
1’ : 

: : 1 
I 
: 1 

:, 
i-.-, 

:, 

-/ I 
1 I 

: i 1 
I 
I 

: t 

t i I 
: I 1 

i.. 
---- --____--. -.__ 

I 
I I 

- BORE sdss 
50 100 150 200 250 

--*.*-- OD STRESS TIME (SECONDS) 

BASED ON MODIFIED 

TRANSFORMATION CURVE 
FIGURE 15. (FAST QUENCH) 12/31/84 



210 



TtIOUSANDS THERMAL AND TRANSFORMATION STRESSES 
DURING QUENCH (NO BORE QUENCH) 

100 

50 

0 

-50 

-100 

- BORE STR& 
-...-.. 0.D STRISS 

FIGURE 17. 

600 

TIME (SIXONDS) 

800 1000 

BASED ON YODIPIRD 
lRANSPORYATlON CURVE 
(SLOV QUENCH) lZ/Sl/tIi 

1200 





I  

FURTHER INVESTIGATION OF THE STABILITY OF 
DlFFUSION FLAMES NEAR EXTINCTION* 

Y.S. Chvi and G.S.S. Ludford 
Department of Thcorct.lcaL and Al)plieJ Mtic.ll:r~~ 1~:~ 

Cornell University, LLl~aca, NY 148153 

ABSTRACT. For fixed L, (the fuel Lewis nmbar) trq~irl UIJ ! , streng 

dependence af the exchange of srability point on L, (tl~e oxidant Lewis 

number) is lound near extinction. On the other hand, wi tin l.. = 1 the 

et-cect or v;'lryin~: L,, 011 tlw 1 oc:rLLo~~ or Llw IwirlL I .L; fciurrd Lu bc rniriutc. 

1. INTRODUCTION. In a paper Il] at the last Army Conference, we 
described an investigation of both the near-extinction rind near-ignition 
stability of diffusion flames. The emphasis was on Lewis-number effect:: 
and, for flames near extinction, the result8 were of a preliminary natural. 
The ones presented here, though not definitive, bring the story up to date. 
The investigation continue8 and we expect the remaining difficulties to bc 
be overcome soon. 

2. GOVERNING EQUATIONS FOR NEAR-EXTINCTION ANALYSIS. Thl! near- 
extinction steady states [corresponding to the bottom half of the S-respnnt:e 
in figure 1) have been described in [2]. The perturbation temperature 
satisfies the differential equation 

d‘t8 
- = 
dc2 

-K$+p(k++k2 -t8)(k3<+k4-ts)ets (:I 1 

Figure 1. S-shaped response for chambered diflusion Fllame: K is the 

fraction of unburnt fuel and M is the injection rntc. 

*Supported by the U.S. Army Research Office. 
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and the boundary conditions 

t 
klS-k3B + O(1) 

= 
s as c + +. (2) 

k3SSklC + O(1) 

Here kl is a known positive constant, k2 = PC, k3 is a known negative 

constant, k 
4 = QC, where P, Q are known constants and B, C are unknown 

constants; the constant K is positive. The numerics determine exactly 
two solution for each K greater than a certain K*(,Lo.LF), exactly one 

for K = K* and none for K < K*. 

From these solutions the two responses 

R = -6,C, 

where Ba << 1 is a (known) small positive constant, can be calculated 

for each K > K*, thereby generating the middle and lower branches of the 
S-shaped response curve in figure 1. The bend is approached as K + K* 
and remote parts of the two branches as K-t m. 

The corresponding stability problem is 

d26T t 
-[----- 

dE2 
+‘+Tl = Ke s(~osrbF+~Fs~9+~Fs~os~T~~ 

2 

= L-1 d $0 

dE2 

+ -1 d24F 

0 
x$o = I, - 

dE2 
+ WF 

9T(-) = $o(++ = $,(+-) = 0, 

where 

Yes = Lo(kl&+k2-ts), yFs = LF(k3"+k4-ts) 

are the mass fractions corresponding to the steady state temperature 
perturbation ts. Here X is the eigenvalue; if the spectrum has non- 

negative real part for a steady state t 
E-2' that state is stable to the 

class of disturbance considered; otherwise it is unstable. 
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(3) 

(4) 

3. NUMERICAL RESULTS. In our previous paper Cl], we reported 
preliminary results of an extinction analysis. Here, a more accurate 
calculation is being recorded. 



For 10 = L 
F 

= 1, more careful computation shows agreement with Buckmaster. 

Nachman and Teliferro's result (131) i.e., change of stability occurs at 
the turning point of steady states. 

With general LO,LF, we have to deal with 3 second-order simultaneous 

equations on a doubly infinite domain in order to extract the required 
eigenvalue. Computations show that although the steady-state response 
can generally be obtained to a higher degree of accuracy with a reasonable 
numerical infinity, the corresponding stability problem requires a much 
larger numerical infinity for convergence of eigenvalues. In some cases, 
we even have difficulty in getting the eigenvalue converged. (For small 

Lo' for example 0.1, we even had difficulty in getting the steady-state 

response, because C is so small.) 

From these numerical experiments, it is found that the real part of the 
smallest eigenvalue decreases as the numerical infinity is increased. 
Hence, once a negative eigenvalue is obtained on the lower branch, we may 
expect the location of the change of stability point to remain on the 
lower branch when more accurate computations are made. 

With L, fixed at 1, for very large Lo the change of stability point is 

on the lower branch. As we gradually decrease Lo to 1, the point moves 

to the turn. Further decrease of Lo makes the change of stability point 

move back to the lower branch until a certain critical value is attained 
which we conjecture to be (Lo)crit = log(l+Yo,l)/log 2: (cf. [2]). As 

we now decrease further still, the change of stability point moves towards 
the turn again. For Lo about 0.13, it is very close to the turn. How- 

ever, numerical difficulties prevent us from getting information for 
smaller values of Lo. 

On the other hand, with Lo = 1 and I, varied, the effect on the 

change of stability point is very minute, at least for the few cases 
that have been tested. 

Re-examination of the numerical procedure is in progress. Some 
theoretical results and ideas have also 
a better justification of the numerical 
future. 

been developed. We hope to give 
results obtained in the near 
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COMPLEX KINETICS IN FLAME; THEORY* 

G.S.S. Ludford and Richard Y. Tam 
Department of Theoretical and Applied Mechanics 

Cornell University 
Ithaca, NY 14853 

ABSTRACT. The Zeldovich-L&an model with two-step kinetics is chosen 
to illustrate the complexities involved and the methods used for complex 
kinetics. A systematic procedure due to Fife and Nicolaenko characterizes 
each reaction by its power function, i.e. the part of the reaction source 
term that does not depend on the mass fractions. Of particular interest are 
the cross-over temperature Tc, at which the two power functions are equal, 

and its relation to the upper the lower bounds,Tu and TR, of the burnt 

temperature, which of course depend on the state of the fresh mixture. The 
possibilities Tc < TI1 < TU, TR < Tc < TU, TR i TU < Tc lead to three 

different flame structures, in which the flame temperature is TI1, T , T c u 
respectively. Once the flame temperature has been determined the analysis 
follows that in the familiar asymptotic treatment of one-step kinetics. 

INTRODUCTION. 
modeliing well. 

The one-step kinetic model has served combustion 
However, some important phenomena, e.g. flame quenching, 

are not reproducible by the one-step model. The natural extension is there- 
fore to multi-step kinetics which involve intermediate products called 
radicals. It has long been known that free radicals can exert considerable 
influence on combustion processes. A simple two--step model that involves 
one intermediate species is the Zeldovich-Linan model: 

A+X+2X 

2X+M+P+M 

consisting of a chain-branching (production) step and a chain-breaking 
(recombination) step. Here X is the radical, A the reactant and M a 
third body. The activation energy of the production step is very large, 
while that of the recombination step is small and thus taken to be zero. 
We shall use this model to illustrate a systematic method of evaluating 
complex kinetic schemes that is due to Fife and Nicolaenko (see Nicolaenko, 
1985). 

(1) 

dY 
dx 

dX K-1 d2X _ D xy 
dx- -= 

-B/T 

dx2 le - v2x2, 

dT d2T -- - = qlPlXYe -O/T 

dx dx2 
f q2D2X2. 

*Supported by the U.S. Army Research Office. 
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Here T is the temperature , while X and Y are the mass fractions of radical 
and reactant (respectively); K and L are the Lewis numbers of the radical 
and reactant; 

Vl = Dl/& V2 = D,/M2, 

where Dl and D2 are the rate constants of the reaction steps; ql and q2 are the 

proportions of the total heat released in the first and second steps of 
the reaction, so that 

9 is the activation energy of the first step, that.of,the second step 
being taken zero. Given the parameters, L, K, Bl and D2, ql/q2 and B, 

the problem is to determine the burning rate M for which these differential 
equations have a solution satisfying the boundary conditions 

X, Y, T -t 0, Yf, Tf as x + -, 

X, Y, dT/dx + 0 as x-t+. 

The solution is sought in the limit 0 + ~1 . 

POWER FUNCTIONS. Integrating the equations with respect to x from -00 
to -tm and noting that the derivatives at both ends tend to zero, we get 

Yf = al’ \ = a1 - a23 Tb - TU = qly + 9.f-p 

where 

7 fl XYeBelTdx, "1=-l 
a2 = 7 Q2X2dx. 

-m 

Note that 0 < -\IYf which at the two ends of the inequality yields 

TL = Tf + qlYf, TU = Tf + Yf; 

these two values of Tb depend on the fresh state. Of course, we have 

TR < T, i Tu, where T, is the flame temperature. 

The part of the reaction source term that does not depend on the 
mass fractions is called a power function, which we denote by 

H1 
= Die-B/T, H2 = D2. 

The cross-over temperature is that temperature at which the power functions 
are equal, i.e. 
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-0/T 
Die c = D2 or T = e/(llnDl-enD2). C 

Thus, in contrast to the two values of the burnt temperature found above, 
the cross-over temperaturedependson details of the reaction such as 
activation energy, rate constants, etc. 

Consider 

a2 lwo2X2dx I;2X2dx ImH2X2dx 
-m -= 

a1 I 
mglxye-O/Tdx 

-03 
=Jal;e-dTdi = jcHlxydx 

-m 

and note that a 1 
must be no smaller than a2 (since Xb must be nonnegative). 

Suppose Dl > D2, so the curves of the power functions H 1. and H 2 intersect 

to define the cross-over temperature Tc as shown in fig. 1. In the limit 

e + w, for which all the first reaction is concentrated at a flame sheet, 
there are three possible relatidns between the flame temperature T, and the 
cross-over temperature T C’ in the discussion of which we shall use, << to 

denote exponentially smaller than. 

(ii) T, > T : C Then H2 ci Hl and a2 << al; no restriction is imposed 

on the order of magnitude of X. Consequently, we have a2 = 0, 

from which follows Xh = Yf and T, = Tb = TR. Radicals remain 

at x = +", and recombination takes place over exponentially long 
distances, i.e. downstream of what may be called the 

(iii) T, = T : C H2 being comparable (exponentially) to Hl, 

ation reaction must go to completion on the x-scale, 
consequently, Xb = 0, a2 = Yf and T, < Tb = TU. 

possible THE FIVE POSSIBLE FLAME STRUCTURES. Now, there are three 
orderings of the cross-over temperature T and the burnt-temperature bounds 
TR and TU (two additional limiting cases 'can also be identified). The 

three possibilities may be characterized by the terms (a) fast, (b) slow, 
and (c) intermediate recombination. They occur in the following circum- 
stances (see Figure 2). 

(a) TR < TU < To. Case (i) applies and the flame temperature has to 

be atits upper bound; 

(i) T, c Tc: Then Hl << H2 and the only way to satisfy the inequal- 

ity a2/al 5 1 is to take X c< 1 everywhere. This implies 

xb = 0 and a2 = YE, so that T, = Tb = TU. Recombination is 

completed within the flame sheet. 

flame proper. 

the recombin- 

and 
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(b) T < T <T 
C R u' 

Case (ii) applies and the flame temperature has to 

be at its lower bound; 

(c) TR< Tc< T . 
U 

Assuming either case (i) or (ii) leads to a contra- 

diction, so case (iii) applies and the flame has to be at the 
cross-over temperature. 

These results are summarized by saying that T, is driven as close as 
it can be to T 

C’ 
Determination of the flame temperature is a crucial step 

in solving the problem. The asymptotic analysis is now similar to that for 
the one-step reaction, and leads to T, X, Y profiles sketched in figure 2, 
as well as formulae for the burning rate. It is found that 

M a D1/20-3/2 -'lTu e 

M c1 Df/2e-le-e/Z: 

for fast recombination, 

for slow recombination, 

M c1 D;/2e-2e-0'2Tc for intermediate recombination. 

The two limiting cases.are: 

(d) TR < TU = Tc. For this fast/intermediate recombination, the 

profiles are similar to those for the fast recombination case 
except that the radical concentration is much larger (but still 
confined to the flame sheet). 

(e) Tc = TR < T . 
u 

For this intermediate/slow recombination, the 

profiles are similar to those for the slow recombination case 
except that the recombination is completed by x = i-m. 

CONCLUDING REMARKS. It is now clear that for Dl < D 2' only (a) can 

occur. But, for Dl > D2 (as we have supposed above) there are five 

possibilities depending on the state of the fresh mixture. 

Fife and Nicolaenko have considered a whole range of multistep kinetic 
schemes. Their method is currently applied to the 4-step model of Peters 
& Smooke (1985), which has considerably more complexity. Now, apart from 
the 24 different ways of ordering the four reaction rate constants 
Dl, D2, D3, D4, there will be many cross-over temperatures. Which of these 

the flame temperature is driven close to is not as clear as for the two- 
step case. But the problem may not be as complex as it first appears. 
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Applications of Front Tracking to Combustion, Surface 
Instabilities and Two Dimensional Riemann Problems: 
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ABSTRACT 

The method of front tracking is applied to problems involving curved 
detonation fronts, surface instabilities and two-dimensional Riemann prob- 
lems. The detonation problems include detonation fronts with and without 
cylindrical symmetry; comparisons with one-dimensional models are made. 
The analysis of interface instabilities focuses on the compressible Rayleigh- 
Taylor instability of a supersonic accelerated contact discontinuity between 
two gases and the propagation of a supersonic slab jet. Theoretical notions 
for an S matrix theory for general multi-dimensional hyperbolic conservation 
laws and the numerical implementation of computer programs which solve 
certain two-dimensional Riemann problems are also discussed. 

1. Introduction 

Systems of non-linear conservation laws in n space dimensions 
II, -t W(x, a) = 0 (14 

1. Supported in part by the National S&m Foundation, grant DMS83-1229. 
2. Supported in pm by the Applied Mathematical kiences subprogram of the Office of Energy 
Research, U. S. Department of Energy, under wnuaa DE-ACO2-76ER03077. 
3. Supported in part by the Army Research Office, grant DAAG29-83-K-0007, 
4. Work supported by the U. S. Deparment of Energy. 
5. Supponed in part by the National Science Foundation, grant nos. M-82-07965 and M-83- 
01662, 
6. Supported in part by the Army Research Office, grant DMG29.84.K0130. 
7. Alfred P. Sloan Foundation Fellow. 
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where II = u(x, t) and p is a smooth function of the state II E RJ and the position x E R” into 
RJ, are often used as first order approximations for many natural phenomena. Equations of 
this type occur in models in which external forces and higher order effects such as viscosity 
and heat conduction are neglected. 

We are primarily concerned with the case where system (1.1) consists of the Euler 
equations for a compressible, inviscid, non-heat cond(ucting gas.\ In this case: 

Here p is the density, m and E are the mclmentum and total energy per unit volume respec- 
tively and p is the thermodynamic pressure. These equations represent the laws of conserva- 
tion of mass, momentum and energy respectively. The thermodynamic variables p , p and E 
are related by a caloric equation of state p = p (p, E). For the case of a polytropic gss this 
relation is given by: 

p = (y-l) E - $f , 
1 I 

where y is positive constant usually satisfying l<ys$. 

Much progress has recently been made in adapting a front tracking method to the calcu- 
lation of solutions of system (1.1) which contain discontinuities. In this method a one- 
dimensional grid is placed onto the discontinuity. Points on the tracked front are propagated 
by solving one-dimensional Riemann prnblems in the direction normal to the interface. This 
step provides the position of the tracked interface for the next time step. Tangential informa- 
tion is ignored during the normal propagation phase, so this step is followed by a update of 
the states on the new interface based on the component of (1.1) tangent to the interface. The 
positions of the new and old fronts together with their assigned states are used as boundary 
value data for the solution of the states off the front. A detailed description of this method 
can be found in [l]. 

The discontinuities supported by the Euler equations (1.2) are of two types, shocks and 
contact discontinuities. If combustion is considered, a third type of discontinuity, a combus- 
tion wave, may also occur. 

In this paper we will report on recent progress which has been made by the authors and 
co-workers in modeling solutions in two space dimensions of the Euler equations for detona- 
tion waves, surface instabilities for non-combustion interactions and the numerical solution of 
certain two-dimensional Riemann problems. In addition recent theoretical work concerning a 
general theory of elementary waves and Riemann solutions for systems of hyperbolic conser- 
vation laws will also be discussed. 

2. Multi-dlmeoslonal Rlemenn Problems and Elementary Waves 

While the theory of hyperbolic conservation laws in one space dimension is highly 
developed, the corresponding theory for two or more space dimensions is not so well under- 
stood. Rec:at work has been devoted to the development of some basic notions which can 
be used in an S matrix theory for systems of hyperbolic conservation laws in more than one 
space dimension, see [2,3,4]. 

~tA=ti be the Jacobian matrix of p’. Equation (1.1) is said to be hyperbolic in a 

domai:; D E R !‘I if the s x s matrix A *c has real eigenvalues AI, . . .,X,forall(x,r)rD 
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and for all vectors E . If the eigenvalues Ak are all distinct, the equation is said to be strictly 
hyperbolic. In the discussion which follows, hyperbolicity is assumed. 

An S matrix theory is concerned with the large lime asymptotic behavior of solutions to 
systems of equations for which system (1.1) is a first approximation. The leading order 
terms of these large time solutions are governed by the infinite scaling limit of the original 
system of equations. This scaling generally eliminates the higher order effects, yielding the 
system (1.1). It is assumed that any source terms in the original equation are of bounded 
extend. Under scaling these source terms will in general survive and go into a multiple of a 
delta function at the origin. 

An S matrix is the product of two wave operators, the outgoing operator W+ which 
gives the large positive time asymptotic and the incoming wave operator W’ which gives the 
large negative time asymptotics. Attention will be focused on the outgoing wave operator 
w+. The domain of Wf usually taken to be the range of W-. However, because of the 
occurrence of shocks in solutions of (1. l), this equation, when supplemented by the necessary 
entropy condition to separate physical from nonphysical waves, is not reversible. Thus W- is 
not well defined. As a substitute the domain of W* will be restricted to scale invariant func- 
tions, Thus we consider solutions to the initial value problem for system (1.1) whose initial 
data is constant on rays through the origin. In some cases it will also be desirable to impose 
regularity conditions on the initial data as well. In one space dimension this is the well 
known Riemann problem and the problem of solving (1.1) with scale invariant data will be 
referred to as a multi-dimensional Riemann problem. 

The notion of dimensionality in a Riemann problem is actually best described in terms 
of a co-dimension. A Riemann problem of co-dimension j is defined as the Cauchy problem 
for a system of conservation laws in d space dimensions in which the data is scale invariant in 
j dimensions and independent in the remaining d - j dimensions. 

The restriction to scale invariant data and the fact that equation (1.1) is itself scale 
invariant implies that a solution to a Riemarm problem should be self-similar, that is, a func- 
tion of 5. This implies that a Riemann solution II of (1.1) will satisfy 

- $*vu + v*# = 0. (2.1) 

Such a solution II is completely determined by its values in the hyperplane t = 1 and by res- 
tricting our attention to this hyperplane time can be eliminated from the equation. Therefore 
a Riemann solution of (1.1) has in general one less degree of freedom than a general solu- 
tion. 

General solutions for Riemann problems are known in a few special cases. If the 
number of space dimensions is one, the system is strictly hyperbolic and each eigenvalue is 
either genuinely non-linear or linearly degenerate, then the classical paper of Lax [5] 
describes the solution of a Riemann problem with a small discontinuity as consisting of 
shocks, centered rarefactions and contact discontinuities. If the equation is scalar and in two 
space dimensions, solutions are known in the case where F is of the form fJ, where f is a 
scalar valued function with at most one inflection point and J is a constant vector [6,7]. 

A central aspect of a scattering theory is that a source decomposes into some number of 
localized coherent waves, which then separate and propagate away from each other. These 
local disturbances are called d-dimensional elementary waves if the equation (1.1) is in d 
space dimensions. When d equals one these elementary waves include shocks, contact 
discontinuities and rarefaction waves. For d>l elementary waves are defined by the interac- 
tion of lower dimensional waves, for example when two shocks or a shock and a contact 
discontinuity collide. In many cases, such as the interaction of two shock waves, these waves 
will move with a definite velocity. Assuming that the original equation (1.1) is invariant 
under Galilean boosts one can then make a translation to a reference frame in which the 
wave is at rest, thus eliminating one more degree of freedom from the equation. 
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Understanding the structure of these elementary waves is crucial in describing the solu- 
tion of a Riemann problem. In some special cases this structure is known. As mentioned 
above, in the case of one space dimension, hyperbolicity and a suitable type of convexity for 
the flux function, a theory of Lax describes these elementary wave as consisting of shocks, 
contact discontinuities and rarefaction waves which correspond to the eigenvalues of the dif- 
ferential of the flux function. If the equation is scalar, then a general theory of Oleinik [8] 
describes these waves in terms of the convex envelope of the associated flux function. Other 
special cases in which the structure of elementary waves is known include one space dimen- 
sion polytropic gas dynamics [9], two space dimension polytropic gas dynamiw [lo], adsorp- 
tion with a Langmuir isotherm [ll], and water and polymer displacement of oil without 
adsorption [12,13]. 

3. Two Dimensional Detonation Fronts 

The method of front tracking has been applied to detonation waves in two-dimensional 
gas dynamics [14]. For problems which exhibit cylindrical symmetry comparisons can be 
made between the two-dimensional model and a one-dimensional model which exploits the 
symmetry and the agreement between these two methods is good. One finds that as the mesh 
of the computational grid is refined, the two-dimensional model converges linearly to the 
solution given by the model based on cylindrical symmetry. 

Only a polytropic equation of state is considered, so the energy term E in (1.2) 
becomes: 

E=J-+ppq+ 
y-1 

F. 

Here 4 is the the energy released by the chemical reaction that occurs across the detonation 
front. The Chapman-Jouguet model of detonation is used. In this model it is assumed that 
the reaction takes place instantaneously and that the reaction zone is infinitely thin. 

Jf state 0 is the unburned gas and state 1 is the burned gas, the states on the two sides of 
the detonation are related by: 

Pl - PO M2= , 
To - 71 

where M is the mass flux across the front, and the Hugoniot relation: 

YOTOPO YlTlPl 
- - - - 41-40 
ro-1 Yl-1 

( ) = [PO-PI) (70-5) 
2 * 

(3.la) 

(3.lb) 

In the case of a Chapman-Jouguet (CJ) detonation, the detonation wave moves at the 
local sound speed with respect to the gas behind it [15], and the behind state is completely 
determined by the ahead state and equations (3.1). When the combustion front is a strong 
detonation one additional parameter is necessary in order to specify the behind state from the 
ahead state. 

A series of both strong and CJ detonation runs using grid sizes of 5 by 5, 10 by 10, 20 
by 20,40 by 40 and 80 by 80 have been made. The contact discontinuity behind the detona- 
tion front and the detonation front itself were tracked. Several of these runs were initially 
cylindrically symmetric and in these cases comparisons were made with a one-dimensional 
computation using the random choice method with 1500 points in the radial direction. 

Figs. 3.1 - 3.5 present the results of a cylindrically symmetric computation in which the 
initial pressure ratio across the front is 100. The initial density is uniform and the gas 
releases 92.65% of its internal energy upon combustion. Figs. 3.1 and 3.2 show the positions 
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of the contact (inzer quarter circle) and the detonation (outer quarter circle) at the beginning 
and end of the run respe&vely. Other figures include comparisons of pressure profiles and 
detonation wave speed (se-e Figs 3.3 and 3.4). The detonation wave speed error when calcu- 
lated with respect to the one-dimensional code is less than 0.5%. Fig. 3.5 shows the conver- 
gence of the front tracking code to the one-dimensional code under mesh refinement. 

In addition to cylindrically symmetric runs the front trackiug code has also been applied 
to problems in which the initial interface is elliptical. If the initial states are the same as the 
ones described above, hot spots are produced behind the front in regions of small curvature 
and cold spots in corresponding regions of large c.trvature. The initial lengths of the major 
and minor axes are .3 and .15 for the detonation wave and .29 and .145 for the contact. Fig. 
3.6 shows pressure contours and the waves just before the detonation wave breaks through 
the boundary on a 30 by 30 grid. The pressure is higher behind the flatter portion of the 
detonation wave than behind the rounder portion of the wave. 

4. Supersonic Interface Instabilities 

Interface fingering instabilities arise in a wide variety of physical contexts: inertial laser 
fusion, plasma fusion, instabilities of layers in stars, the instability of laser accelerated foils, 
and astrophysical jets. We have examined the compressible Rayleigh-Taylor instability of a 
supersonic accelerated contact discontinuity between two gases, The computed solutions exhi- 
bit a complicated set of nonlinear waves comprised of spike and bubble bow shocks, terminal 
shocks within the spike and bubble, Kelvin-Helmholtz roll-up of thn spike tip, and contact 
surface waves. Detailed analysis is given in Ref. [16]. We have also studied the propaga- 
tion of a supersonic slab jet in order to compare and contrast the jet wave structure with that 
of the supersonic accelerated surface. 

A compressible gas interface which is accelerated by a shock (the Meshkov-Richtmyer 
instability [17, IS]) is Rayleigh-Taylor unstable. If the interface is accelerated by a gravita- 
tional field, then the interface is unstable when the light fluid pushes the heavy. The impor- 
tant features of this instability caz be modeled by imparting an initial kinetic energy to the 
contact discontinuity, which subsequently is allowed to advect freely. We assume that the 
problem is periodic in x with reflecting boundaries at the top and bottom of the computa- 
tional region. 

The problem can be parametrized in dimensionless units by the initial Mach number of 
the tip of the spike with respect to the heavy gas and by the initial density ratio p& (b 
denotes the gas below the contact, a the gas above). The dimensional scales are set by the 
initial ambient pressure, perturbation wavelength, and initial ambient density of the heavy 
gas. The polytropic gas constant y was set equal to 1.4. 

An interesting set of wave structures emerges from this study. Figure 4.1 portrays the 
evolution of a Mach 2.8 density ratio 2 accelerated surface at t = 0.4. The flow is initially 
supersonic in both gases. The bow shocks in the lower gas have interacted to form a single 
shock, while the spike bow shock has interacted and joined with its periodic neighbors. The 
spike exhibits the characteristic Rayleigh-Taylor roll-up, and the contact shape indicates the 
preseme of small-scale surface instabilities. 

Just inside of the advancing spike a “terminal” shock wave is formed. The contact is 
advancing more slowly than the heavy gas inside of the spike. A shock wave, preceded by a 
rarefaction wave, is formed as the advancing heavy gas is slowed down to the contact velo- 
city. A similar terminal wave is formed in the light gas inside of the advancing bubble. 

This shock preceded by a rarefaction wave pattern can be clearly seen in the density 
cross section plots in both the supersonic accelerated surface run (Figure 4.1) and the super- 
sonic jet run (Figure 4.2). Note that while the jet terminal shock propagates with the head of 
the jet beam, the accelerated surface terminal shocks we physical transients which decouple 
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from the late evolution of the contact instability. 
The compressible Rayleigh-Taylor results differ from the incompressible case chiefly in 

the formation of the terminal compression waves and in the fact that the spike exhibits less 
roll-up, The accelerated surface problem differs from the gravitational instability in that the 
spike appears to attain a finite growth of aspect ratio approximately equal to 2 for our range 
of parameters. 

A resurgence of interest in supersonic jets has been sparked by the observation of astro- 
physical jets emanating from the cores of active galaxies and by ,&e subsequent success of 
theoretical [19] and computational analyses [20]. 

The evolution of a Mach 3, density ratio 10 slab jet at t = 0.4 is presented in Figure 4.2 
[16]. T!le jet was initialized by injecting gas at a specified Mach number into an ambient gas 
at equal pressure. The boundary conditions are through-flow. The problem is parametrized 
by the Mach number of the jet with respect to the jet gas and the density ratio of jet to 
ambient gas. y was set equal to 5/3. The results apply to jets from laboratory to astrophysi- 
cal scales since the problem is independent of length scale. 

The jet beam in our 80x120 grid computation is 5 grid blocks wide, while the beam is 20 
grid blocks wide in the 160x300 grid computation of Norman, Smatr, and Winkler [20]. 

The density contour and cross-section plots in Fig. 4.2 indicate the presence of a bow 
wave (the flow is subsonic in the ambient gas) and of a terminal shock near the head of the 
jet beam, preceded by a rarefaction wave. This terminal shock system may explain the 
observed hot spots terminating astrophysical jets [20]. The contact shape displays the large 
scale Kelvin-Helmholtz roll-up of this jet, and the development of two-dimensional pinch 
waves. 

The fact that we get reasonable results with a beam 5 grid blocks across illustrates one 
of the advantages of the front-tracking method. By placing additional degrees cf freedom 
around the tracked contact, the method is able to resolve the solution globally with fewer 
degrees of freedom than required by conventional finite difference methods. The importance 
of this feature of the method will become apparent when the statistical regime of multiple 
fingers is considered. 

5. Numerical Implementatlan of Elementary Waves 

Further work on the development of computer code for modeling elementary waves is 
in progress. Previous papers [lo, l] have reported the numerical implementation in the front 
tracking code of the elementary waves known as regular reflection and single Mach reflec- 
tion, this section will discuss the case of shock and contact discontinuity interactions. 

The simplest model of a shock and contact discontinuity interaction consists of an 
incident shock wave colliding with a contact discontinuity separating two different gases. The 
local result of this interaction is a configuration we call a diffraction node. A diffraction 
node consists of the incident shock wave, the contact discontinuity into which the incident 
shock collides, a reflected wave which is either a shock or a centered rarefaction wave and a 
deflected concact surface behind the incident shock. The model supposes that locally all of 
the shock or contact waves can be assumed to be straight, and that the solution in a neighbor- 
hood of the node is piecewise constant except for the possible reflected centered rarefaction 
wave. It is assumed that the point of intersection of these waves moves with a definite velo- 
city and thus the interaction can be studied in a frame of reference in which the node is at 
rest, Thr: description of a diffraction node then consists of the states in a neighborhood of 
the node together with the angles at which the waves at the node intersect. 

In a dynamic model it is necessary to calculate the transformation to the Heady frame of 
the node. This is equivalent to finding the velocity of the node in the given reference frame. 
This velocity can be approximated by propagating the incident shock and the contact 

228 



discontinuity into which it collides for one time step ignoring their interaction. The intersec- 
tion of the two propagated curves is then used as the updated node position from which the 
node velocity can be calculated. One the node velocity is known, the transformation to the 
steady frame of the node is performed. If one assumes that the data in front of the incident 
shock on both sides the contact discontinuity is known, and the strength of the incident shock 
is given, then the configuration around the diffraction node in the steady frame m be found 
by the intersection of shock polars in the pressure turning angle space, see Henderson [21]. 
Finally the configuration is translated back to the original frame of reference. 

Figure 5.1 shows the result of the interaction of a planar shock wave colliding with a 
sinusoidally perturbed contact discontinuity. The incident shock is in air (y = 1.402) and the 
contact surface separates air from sulphur hexafluoride (y = 1.092). This interaction is 
known as a fast-slow interaction since the sound speed in air is greater than that in sulphur 
hexafluoride. The initial shock has a pressure behind to pressure ahead ratio of 100. It is 
interesting to note the extreme proximity of the transmitted shock and the deflected contact 
discontinuity near the node. We were quite pleased with the front tracking code’s ability to 
resolve a configuration with such close curves. The rectangular mesh used for this run was 
20x20, and the separation between the transmitted shock and deflected contact is on the order 
of one tenth of a mesh block for a large portion of the computational region. Furthermore 
the transmitted wave lies on the sulphur hexaflouride side of the contact discontinuity and the 
value of gamma for this gas is so close to one as to make the resolution of waves on 
moderate sized grids difficult for most finite difference methods. We suspect that without 
front tracking one would need a rectangular mesh more than ten times as fine in each linear 
dimension in order to resolve both the deflected contact and the transmitted wave. 

6. Bifurcations and Wave Interactions 

One of the principal difficulties in any front tracking code is the handling of bifurcations 
and interactions in the tracked interface. Examples of these include the transition from regu- 
lar to Mach reflection and the passing of waves through computational boundaries, Interac- 
tions of both of these types have been either fully or partially implemented in our front track- 
ing code, 

Figure 6.1 shows a planar shock wave incident upon a ramp. The problem is initialized 
with the shock normal to the wall. When the ramp is reached, a bifurcation ~~XIUS, in this 
case to a regular reflection. At a later time the point of regular reflection reaches the top of 
the ramp. At this point the regular reflection node lifts off the wall producing a Mach type 
reflection. 

In figures 6.2 the front tracking code is used to follow the development of a compressi- 
ble Kelvin-Helmholtz roll-up [l, 221. Initially two gases of equal pressure and temperature 
but moving in opposite directions are separated by a slip discontinuity. This slip surface is 
given an initial perturbation which causes it to roll-up. The boundary conditions at the sides 
of the computational rectangle are periodic. As the surface rolls up portions of the surface 
cross the periodic boundaries. Any section of the surface which propagates past a periodic 
boundary is disconnected from the original curve and reinstalled periodically shifted to the 
opposite side of computational rectangle. A linking between the periodically connected 
curves is maintained so that periodic boundary conditions are enforced. The visual effect is 
that as one section of the slip surface propagates out of the computational window, we see 
the corresponding portion of the periodic neighbor moving into our picture. 

Not only is the interaction of curves with computational boundaries of interest, but ?he 
interaction of nodes as well. Fig. 6.3 shows a diffraction node propagating past a computa- 
timally passive boundary. This problem is supersonic and the signals from the exterior of 
the right hand boundary are sufficiently weak that their influence on the solution can be 
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ignored. Thus the problem of node passing through such a boundary is simply a matter of 
identifying those curves at the exiting node which leave and those which remain. Exiting 
curves are deleted and the remaining curves are separately installed on the boundary. The 
main difficulty here is dealing with the numerical degeneracies which occur because very 
short curves are produced when the node first cTosses the boundary. 
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Fig. 3.1 
The initial strong detonation wave (outer circle) and the contact discontinuity for a 
cylindrically symmetric computation. The initial conditions are uniform density, zero 
velocity, and a circular pressure discontinuity at radius .2, with ratio inside to outside of 
100. The heat released upon combustion is 92.65% of the internal energy of the 
unburned gas. The initial position of the contact is radius ,195. The initial state 
between the waves is that behind a planar detonation wave with the above initial data. 

232 



Fig. 3.2 
The detonation wave and the contact at the time step analyzed in Figs. 3.3 and 3.4. The 
detonation wave now has radius approximately .36. 
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Fig. 3.3 
A plot of presure vs. radius corresponding to Fig. 3.2 is shown. The solid curve shows 
the results obtained by the one-dimensional random choice computation. The vertical 
lined represent the range of pressure values in the two-dimensional front tracking solu- 
tion at a fixed radius as the angle varies on a 40 by 40 grid. Thus, the vertical lines 
show the angular dependence in the solution. 
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Fig. 3.4 
A plot of detonation speed vs. time for the computation on a 40 by 40 grid. The solid 
curve shows the speed of the detonation wave in the one-dimensional calcukion. The 
vertical lines represent the range of values of the speed of the detonation in the two- 
dimensional calculation. The maximum error (max IUrUldI 

hi 
) is less than 0.5%. 
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Fig. 3.5 
Convergence of the front and interior schemes. The pressure errors in the interior and 
at the front are shown for NxN grids at the time indicated by Fig. 3.2. The # signs 
represent the interior error, where 

The front error (error bars) gives the range of the errors at the front, defined as 

Front Error = 100% x P2d - pld 

PI ’ 

where [P] is the pressure jump at the front in the one-dimensional computation at the 
same time. The asterisks represent the error of the average pressure behind the front, 
namely 

Front Error(average pressure) = 100% X 
P 

2doWmrr -pld . 
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Fig. 3.6 
Pressure contours are shown for a computation of an elliptical expanding detonation on 
a 30 by 30 grid. Also shown are the detonation wave (D) and the contact (C). 
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Fig. 5.1 
The intcrachi of a shock wave with a contact discontinuity prodhg reflect4 ad 
tranmitkd skk on a 20 by 20 rcctanguk grid. 
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Fig. 6.1 
A shock incident upon a ramp. Bifurcation to a regular reflection omrs when the 
shock reaches the ramp. When the regular reflection no& reaches the top of the ramp 
a bifurcation to a Mach type reflection mcurs. The grid here is 30 by 30. 
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Fig. 6.2 
Compressible Kelvin-Helmholk roll-up. The computation is on a 40 by 40 grid. When 
interior curves cross the periodic boundaries at the side of the sqwc, they B~C ptriodi- 
ally reinserted on the opposite boundary. 
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Fig. 6.3 
Propagation of an interior node past a computationally passive boundary on a 20 by 20 
grid. Signals from the outside of the wmputational domain are assumed to be negligi- 
ble. 
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BIFURCATION AND STABILITY OF VISCOELASTIC FLUID FLOWS 

S. Rosenblat 
Department of Mathematics 

Illinois Institute of Technology 
Chicago, Illinois 60616 

ABSTRACT. Results on stability of viscoelastic fluid 
flows are presented, reviewed and discussed; both linear 
stability and nonlinear stability (bifurcation) are 
considered. A central problem in viscoelastic fluid 
dynamics is that predictions of flow behavior can in general 
be strongly dependent, both qualitatively and 
quantitatively, on the choice of the constitutive equation 
used to relate stress and deformation rate. This is true 
even for very simple flow configurations, and the 
acceptability or otherwise of a constitutive law depends on 
whether its predictions are in accord with experiment. It 
will be shown in this paper that stability results are also 
strongly correlated with the particular constitutive 
equation used, and some implications of this fact are 
discussed. Detailed results are given for the problem of 
buoyancy-driven instability in a quiescent horizontal layer. 

1. INTRODUCTION. The area of hydrodynamic stability 
can conveniently be subdivided into three categories; these 
subdivisions are equally relevant to Newtonian and non- 
Newtonian fluid flows, and apply to both theoretical and 
experimental approaches. 

A. Linear Stabilitv. The object is to investigate the 
stability to infinitesimal disturbances of specific, well- 
defined basic flow states. In particular, the question of 
whether a given flow is stable or unstable is usually posed 
in terms of dimensionless parameter, conveniently denoted R 
(which may be a Reynolds number, Rayleigh number, Taylor 
number, etc.), and the aim is to determine a critical value 
R, of R which divides stable and unstable flow patterns. 

In general, the basic flow is (asymptotically) stable if 
R < R, and unstable if R > R,. This component of the area 

of hydrodynamic stability is thoroughly understood and 
developed for Newtonian fluid flows; 
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B. Bifurcation. The object is to investigate the 
weakly nonlinear evolution into a new state that is 
associated with the destabilization of a basic state. The 
theory for this aspect is well developed and applies in a 
small neighborhood of the critical value of R, that is, for 
IR - R,I small. Theorems are available that can predict 

whether the new bifurcation state is supercritical (that is, 
exists for R > Rc), subcritical (exists for R c Rc) or 

transcritical (exists for both R < Rc and R > R,), and 

whether it is stable or unstable. The new state may be 
time-independent or time-periodic, depending on the 
characteristics of the linear stability problem, and has a 
spatial structure different from, and more complex than, the 
basic state. 

C. Transition. Most fluid flows experience transition 
to turbulence when the characteristic parameter R becomes 
sufficiently large. 
of great interest, 

The problem of transition is currently 
and some understanding of the process has 

been achieved in recent years. A number of ideas are being 
explored in this strongly nonlinear regime, in particular 
the notion that there is a pre-turbulent, chaotic state that 
appears when R > > R,. There are several model equations 

and a body of theory in dynamical systems that support this 
idea, but the link with real fluid behavior is only 
partially established. 

2. STABILITY OF VISCOELJGTIC FLUIDS. It is convenient 
to characterize the elasticity of a non-Newtonian fluid by a 
parameter X(which may denote a Weissenberg number or a 
Deborah number); for the purposes of this discussion, X = 0 
represents a Newtonian fluid and X > 0 a viscoelastic fluid. 
This is a gross-simplification; it is rarely the case in 
practice that a non-Newtonian fluid can be characterized by 
a single parameter. 

As regards stability, it is desirable to summarize the 
most important issues that arise in relation to viscoelastic 
fluids by comparison with their Newtonian counterparts. 

A. Linear Stability. There are two issues, 
quantitative and qualitative. The former relates to the 
question of how the critical value of R, is changed when X # 0 

in other words, whether the presence of elasticity tends to 
stabilize or destabilize a given flew field, or to have no 
effect. This problem has been studied by a great many 
authors in different flow configurations (see for example 
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the survey by Pearson [l]). The other, perhaps more 
important, question is whether new instabilities can appear 
when X # 0 which are completely absent when X = 0. It is of 
special significance to know whether such instabilities can 
arise for R < < R,. If they do, it may be associated with a 
release of elastic energy stored in the basic flow to feed 
the disturbances. More recently it has been suggested by 
Joseph and co-workers [2] that such an effect can be due to 
the change of type from elliptic to hyperbolic of the 
governing differential equations. 

B. Bifurcation. The main issue here is qualitative, 
whether the presence of elasticity alters the nature of the 
bifurcating solution. In particular it would be of interest 
to know whether a solution that is supercritical and stable 
in the Newtonian case can become subcritical and unstable in 
the corresponding non-Newtonian case, or conversely. An 
example of this will be discussed in detail below. Another 
interesting question is whether the geometry in space of a 
bifurcating solution is changed due to viscoelasticity. 

c. Transition. Although most practical viscoelastic 
fluid flows operates at relatively low Reynolds numbers, it 
would nevertheless be important to know how the transition 
to turbulence occurs in such fluids. This issue has hardly 
been addressed at all and the answers are unknown. 

3. CONSTITUTIVE RELATIONS. The greatest obstacle to 
understanding the behavior of viscoelastic fluid flows is 
lack of certainty regarding constitutive relations. For the 
purposes of solving problems one is obliged to use 
relatively simple relations rather than general (e.g. 
functional) laws, but then one encounters the difficulty 
that a suitable relation for a particular flow of a fluid 
may not be suitable for a different flow of the same fluid. 
In addition, of course, different fluids generally require 
different constitutive laws. In the study of viscoelastic 
fluid stability there is already evidence that predictions, 
including qualitative ones, may be relation-dependent, and 
further examples of this will be given below. This, 
however, should be regarded as a positive rather than a 
negative feature, since when coupled with experiments the 
theory can be used as a yardstick for the validity or 
otherwise of a particular constitutive equation for certain 
classes of flows. A good example is the work of Craik [3] 
who showed that the rest state of a second-order fluid was 
unstable, which implies that the second-order model should 
not be used for unsteady flows. 

STABILITY OF SHEAR FLOWS. There has been much work 
(almok exclusively linear theory) on the stability of 
various kinds of rectilinear and circular shearing flows, 
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and several surreys are available, including that by Pearson 
[l] and Petrie and Denn [4]. A good deal of this work has 
been motivated by practical problems relating to flows of 
polymer solutions and polymer melts. 

A. Circular Couette Flow. This is the flow between 
concentric rotating cylinders, a classical problem in 
Newtonian fluid stability, 
of screw extrusion; 

and of relevance to the process 
There have been several calculations of 

linear stability for various constitutive relations [5-73, 
and the overall conclusion is that for any physically 
acceptable constitutive model the effect of viscoelasticity 
is stabilizing; in other words the critical parameter (the 
Taylor number) has a higher value than in the Newtonian 
case. The onset of instability is through the exchange of 
stabilities in these analyses. 
however, 

Under certain conditions 
[S-9] it appears that overstability is possibl6. 

There has been some work on nonlinear instability for this 
problem [lo], 
equations. 

but only for very special constitutive 

B. Plane Couette Flow. This is the.simplest 
viscometric flow, generated by differential motion of 
parallel planes. In the case of a Newtonian fluid the 
is stable for all Reynolds numbers to infinitesimal 

flow 

disturbances. There have been many studies of the stability 
of this flow for various viscoelastic models, with the aim 
of determining an instability at low Reynolds number but 
dependent on Weissenberg number. 
positive results [ll], 

Although there are some 
it is not at all clear that there is 

a viscoelastic instability in this flow for a meaningful 
constitutive relation [12]. 

C. Plane Poiseuille Flow. This.is the flow in a 
channel under a constant pressure gradient. A number of 
studies of the stability of this -flow [13-181 for various 
constftutive models have indicated that in general the 
critical Reynolds number is decreased by the presence of 
elasticity: a destabilizing effect. 
effect depends on the model. 

The degree of the 
There have also been attempts 

to identify the presence of a new instability at low 
Reynolds numbers [18-221, with a view to elucidating 
important phenomenon of melt fracture. Although such 

the 

instabilities are predicted by theory, the results are for 
special constitutive models and do not in general agree with 
any experimental results, 
instabilities open.- 

leaving the question of such 
Some work has been done on weakly 

nonlinear theory 123-241, but the conclusions do not appear 
to be particularly significant. 

THERMAL CONVECTION 
issuez*raised earlier, we &all discuss in detail the- 

To demonstrate some of the 
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thermal convection (Benard) problem for a viscoelastic 
liquid. This is the problem of a horizontal liquid layer 
heated from below; density varies linearly with temperature 
and buoyancy drives convection. In the basic state there is 
no fluid motion and a linear temperature distribution across 
the layer. 
energy, 

The governing equations are Navier-Stokes, 
continuity and a constitutive relation. The liquid 

is of infinite horizontal extent, and the parallel 
horizontal boundaries are taken to be isothermal, 
deformable and stress-free. 

non- 

The equations (dimensionless) for arbitrary 
disturbances to the basic state are 

-1 Pr bt + yVy)= -VP + V=T -k RGE 
- 

v*v = 0 

et -I- v-V8 = v2e+w 

(1) 

(2) 

(3) 

where y - 
pressure, 

(u,v,w) is velocity,9 is temperature, p is 
T is extra stress, g is unit vector in the 

vertical direction, and R, Pr are respectively the Rayleigh 
number and Prandtl number defined in the usual way, 
zero-shear-rate viscosity as the reference value. with the 
boundary conditions are The 

8 =u z = Vz = w = 0 on z = 0,1. (4) 

To investigate the consequences of various models, we use a 
hybrid constitutive relation which includes several familiar 
relations as special cases. We write 

(5) 
. 

where Y = vv -I VJ is the rate of strain tensor, and D is 
the JaGmann-derivative defined by 

D= $+ v-v + - .w) - - - 

where w - VI- VI' is the vorticity tensor. Equation (5) has 
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four parameters: X is the Deborah number, a measure of 
relaxation time; ~(0 5 E < 1) is related to the retardation 
time: a(0 < all) delineates corotational and 
codeformatronal models; K(>O) is a parameter obtained from 
network theory arguments. -When K= 0, equation (5) is an 
Oldroyd-type model, specifically, a Maxwell model when E = 0 
and a Jeffreys model when~# 0. The model is corotational 
when a = 0 and upper-convected when a = 1. When K#O 

and E-= 0 equation (5) becomes the Phan Thien-Tanner model 
[251 l 

We now consider the various stability aspects of this 
problem. 

A. Linear Stability. This problem was fully resolved 
by Sokolov and Tanner [26]. When the nonlinear terms in 
equations (l), (3) and (5) are deleted, and the time 
dependence is taken to be proportional to exp(at), the ' 
problem reduces to an eigenvalue problem for the growth rate D 
of disturbances. It should be noted that in the linear 
approximation the parameters a and K are irrelevant; only 
the elasticity parameters enter the problem. Loss of 
stability occurs when u = 0 (exchange of stabilities) or 
when Re 0 = 0 (overstability). 

The results can be summarized as follows. In the case 
of exchange of stabilities (u = 0) the Rayleigh number for 
marginal stability is 

dS) = (Tr2 + a2)3/a2 (6) 

where c1 is the wave number of the disturbance. The critical 

value is R(S) - 27~~4/4 at ac = r2/2. This is exactly the 

result for the Newtonian problem, which means that there is 
an instability that is independent .of elasticity. In the 
case of overstability (0 - iw) there is marginal stability 
when 

.(P) = R(S) - cw2 
[ 
.(cX+l)Pr-1 + ~1.c /a2 (7) 1 

2 .w = ch(l-E)-1-Pr-l 
A2 (Pr-l+E) 

with 



where c - ~'+a 2. This result depends on the elasticity 
parameter (as well as on Prangtl number), and, as (8) shows, 
can only occur if 

X(1-E) > (l+Pr-l)/c . (9) 

In other words, this is a new instability occurring only at 
sufficiently high elasticity. It is obvious from (7) that 

R(') < R(S) at any fixed wave number at which overstability 
takes place; this means that the first onset of instability 

may be periodic rather than steady. A-graph of R(S) and 

R(') as a function of wave number is shown in Figure 1. The 

solid cume represents R(S), the broken curves R(') for 
various parameter values. 
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FIGURE 1. 

Neutral stability curves for steady onset (solid lines) and 
periodic onset (broken lines). 
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B. Bifurcation. A partial study of this problem was 
performed by Eltayeb [27]. Looking only for two-dimensional 
weakly nonlinear solutions we can introduce a stream 
function I$ such that 

y= bJJ,,o, - dJx) - 

The governing equations (1) - (3) reduce to 

-t J(V'Jl,$) }+ Rex - N = 0 (11) 

et -t J(9,$) + $, - V2e = 0 (12) 

where J is the Jacobian and where N is a combination of 
stress components, namely 

a2 N=- 
axai 

The first term on the right of (13) is a contribution from 
normal stress differences while the second relates to shear 
thinning. Equations (10) - (12) have to be supplemented by 
the two-dimensional forms of the nonlinear constitutive 
relations (5). 

The problem is solved by perturbation in terms of a 
small bifurcation parameter u. We write + 

R - Ro = p2R2 

where R, is the critical value for either steady or periodic 

onset. A solution that exists for R2 > 0 is called 

supercritical and is called subcritical if it exists for 

R2 < 0. All field quantities are expanded in powers of p, 

for example 
0 = u81+&2+p3e3 -I-... (15) 
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The quantity 81 has the form 

0 = A cos ax sin ITZ (16) 

where A is the amplitude, to be determined. A standard 
perturbation procedure leads to a solvability condition at 

3 order p . 

We summarize the result 
of convection. Detail .s and 
onset can be found in [281. 
to an equation of the form 

s for the case of steady onset 
results for the case of periodic 

The solvability condition leads 

R2A - KA3 = 0' (17) 

where K is a constant that depends on all parameters of the 
problem. The bifurcating solution will be supercritical and 
stable if K > 0, and will be subcritical and unstable if 
K < 0. In the Newtonian case it is known that K = p > 0, 
and the solution is supercritical and stable. In the present 
problem we compute an expression for K, namely 

K = p .+ A2 (1-E) [ m -(a2-2aK)n 1 
where m,n are positive numerical constants. It follows from 
(18) that there are values of the viscoelastic parameters 
which allow subcritical bifurcation. We find, for example, 
that if a > 0.75 (close to the upper convected model), 
K = 0 and X > 0.03 with E = 0, then subcritical bifurcation 
occurs. Other combinations give the same result, but if a 
is sufficiently small or K sufficiently large then only 
supercritical bifurcation can occur. 

Results such as these may be a partial test of the 
viability of a proposed constitutive relation for a 
particular liquid. Thus Liang and Acrivos [ZS] studied 
onset of convection in a polyacrylamide solution and found 
only supercritical bifurcation. 
with the formula (18), 

This observation, coupled 
would exclude certain models, or 

certain parameter ranges, for this liquid. 



(a) 

b) 

&x.lRE 2 -- '. 
Schematic bifurcation diagram for (a) superc~itical bifwccation and 
(b) subcritical bifurcation. Solid lines represent stable solutions 

and broken lines represent unstable solutions. 

c. Transition. A formal study -of transition has not 
yet been achieved, even in Newtonian fluids. In recent 
years, however, there has been great interest in a severely 
truncated Fourier series representation of the field 
quantities that leads [30] to a system of three nonlinear 
ordinary differential equations having interesting 
properties. These equations, known as the Lorenz system, 
exhibit aperiodic (chaotic) solutions that may be a valid 
behavioral model of how transition takes place. It is of 
interest to derive the analogous system for the viscoelastic 
problem, and to study its properties. 

To do this we set 

8 = Al cos ux sin 712 -I- A2 sin CLITT, $.= Bl sin CLX sin rz 

N = Ml sin 01x sin ITZ (19) 



in the equations of motion and the constitutive relations, 
and then truncate to retain only those Fourier components 
exhibited in (19). The quantities Al, AZ, BI, Ml, are time- 

dependent amplitudes. The procedure leads to a system of 
four ordinary differential equations, namely, 

Pr-loBi -I- aRA1 + Ml = 0 

Aj+CAl +_.aBl + n~A2Bl = 0 

A;+4r2A 
2 - &A B = 0 

11 

Ml+hMi - 02(bl+EABi) = 0 (20) 

It is noteworthy that of the four elasticity parameters in 
the original system, only two (X and E) appear in (20); this 
is due to the form of the truncation. Also, when X = 0 the 
above reduces precisely to the three equations of the Lorenz 
system. 

The linear and weakly nonlinear stability analysis of 
the null solution of (20) gives the same results as obtained 

for the full system above. When X(1 -.E) < (1 + Pr")/c 
there is a steady bifurcation from R = R, and in this case 

the solution is supercritical. When x(1 - E) :* (1 + Pr-l)/c 
there is a periodic bifurcation which is also supercritical 
and unstable. The behavior away from the neighborhood of 
the bifurcation point has to be determined by numerical 
integration of (20). The results can be summarized as 
follows: 

(i) When (1 - E) < (1 + Pr-l)/c the steady bifurcating 
solution loses stability at a value of R that depends on Pr 
and the elastic parameters, 
bifurcates from it. 

and a periodic solution 
In the Newtonian case (X = 0) this 

occurs at R/Rc = 24 when Pr = 10, and the periodic solution 

is subcritical. Chaotic solutions are found in regions of 
parameter space where no stable solutions exist, as shown in 
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Figure 3. In 
supercritical 

the viscoelastic case, the steady 
solution loses stability at a value of R/Rc 

less than in the Newtonian case; in fact this va&ye 
decreases towards R/R= - 1 as X(1 - E) -t (1 + Pr )/c. In 

addition the bifurcating periodic solution begins as 
supercritical and stable, but then turns around, as shown. 
Chaotic solutions have been computed'quite close to the 
original bifurcation point R - R, for the appropriate values 

of the elasticity parameters. 

(ii) When X (1 - E,) > (1 f Pr'l)/c the periodic solution 
emerging from the null solution is supercritical and stable, 
and remains so: it does not lose stability. Koreover in 
this case there appears to be no chaotic solutions at all, 
as far as we can determine. 

---I---c------ - -3-c 

FIuWRE 3 
Schematic bifurcation diagram for equations (20). stable steady 
solutions are denoted by 

~1~tio1-1~ by +I- 4-k +t. 

-I unstable steady solutions by 
-, stableperiodic solutionsby -H-H- ,unstableperi&ic 
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Thus elasticity acts in two different'ways in the 
system (20): it first advances the position where chaotic 
solutions appear and then, for higher values, it seems to 
suppress them altogether. This phenomenon warrants further 
study. 

6. SUMMARY. It is evident that both qualitative and 
quantitative changes can occur in stability problems for 
viscoelastic flows by comparison with their Newtonian 
counterparts, but that the results are often strongly 
dependent on constitutive relations. This fact can be used 
as a partial test for the validity of a constitutive 
hypothesis when coupled with appropriate experiments. 

In the particular case of the thermal convection 
problem it is found that a new, periodic instability of the 
null solution may appear in a sufficiently elastic fluid,- 
and also that the bifurcation into convection may be 
subcritical for certain constitutive relations. The 
detailed formulas demonstrated above could be used as 
measure of fluid behavior and properties. 

7. ACKNOWLEDGEMENT. The work described in this paper 
was supported by the Army Research Office under Contract No. 
DAAG 29-82.K-0061. 

REFERENCES 

1. J. R. A. Pearson, Ann, Rev. Fluid Mech., &, 163, 1976. 
2. M. Ahrens, D. D. Joseph, M. Renardy and Y. Renardy, 

Rheol. Acta. a, 345, 1984. 
3. A. D. Craik, 5. Fluid Mech. 33, 33, 1968. 
4. C. J. S. Petrie and M. M. Denn, AIChE J., 22, 209, 1976. 
5. C. Miller, Univ. of Mich. Ph.D. Diss., 1967. 
6. F. J. Lockett and R. S. Rivlin, J. de Mecan., I, 475, 

1968. 
7. M. M. Smith and R. S. Rivlin, J. de Mecan., 

l-l, 70, 1972. 
8. 2. S. Sun, Univ. of Del. Ph.D. Diss., 1972. 
9. H. Giesekus, Prog. in Heat Mass Transfer, 3, 187, 1972. 
10. M. M. Denn, 2. S. Sun and 8. D. Rushton, Trans. Sot. 

Rheol. 15, 415, 1971. 
11. U. Akbay and S. Sponagel, Rheol. Acta, 20, 579, 1981. 
12. M. Renardy, 3rd Army Conf. on Applied Math. and Comp., 

Atlanta, 1985. 
13. G. Tlapa and B. Bernstein, Phys. Fluids, 13, 565, 1970. 
14. K. C. Porteous and M. M. Denn, Trans. Sac. Rheol., l-6, 

295, 1972. 
15. Chan Man Fong, Rheol. Acta,.l, 324, 1968. 
16. D. H. Chun and W. H. Schwarz, Phys. Fluids, 11, 5, 1968. 

257 



17. J. Platten and R. S. Schechter, Phys. Fluids, l-3, 832, 
1970. 

18, J, R, A. Pearson and C. 5. S. Petriej Proc. Fourth fnt, 
Gong. Rheol., 3, 265, 1965. 

19. L. V. McIntire, J. Appl. Polymer Sci., l6, 290, 1972. 
20. W. S. Bonnett and L. V. Mcfntire, AIChE J., _21, 901, 

1975. 
21. R. Rothenberger, D. H. McCoy and H. M. Denn; Trans. Sot. 

Rheol.i 17, 259, 1973. 
22. T. C. Ho and M. M. Denn, J. Non-Newt. Fluid Mech. I 2, 

179, 1977. 
23. K. C. Porteous and M. M. Denn, Trans. Sac. Rheol., 16, 

309, 1972. 
24. L. V. McIntire and C. H. Lin, J. 'Fluid Mech., 52 

273, 1972. 
25. N. Phan Thien and R. I, Tanner, J. Non-Newt. Fluid 

Mech., 2, 353, 1977. 
26. M. Sokolov and R. I. Tanner, Phys. Fluids l5, 534, 1972. 
27. I. A. Eltayeb, Proc. Roy. Sot. Lond. A, 356, 161, 1977. 
28. S. Rosenblat, to 1985. appear, 
29. S:F. Liang and A. Acrfvos, Rheol. Acta, .9, 447, 1970, 
30. E. N. Lorenz, J. Atmos. Sci., a, 130, 1963. 

258 



CRACK SOLUTTQNS 4'Un PllSTILE FRACTURE CRITERIA 

Denni.s w. Tracey and Calin E. Freese 

Yechitnics of Materials Brancfi 

3rmy Paterials and Mechanics Research Center 
Watertown, Massachusetts C?172-OflPl 

ABSTRACT. Numerical solutions for a group of elastic-plastic 
crack problems gre discussefi. The problems consider blunted 
fl?ws in infinite plates under remote monotonically increasinq 
tension. The solutions were obtained using a combined finite 
element-analytic stress function formulation. Results related to 
critical stress and energy release rate theories of ductile 

fracture are discussed. 

I. INTRODUCTION. The results presented in this report 
supplement other results presented by the authors on the t-.opic of 

elastic-plastic stress states near the ends of blunted, cracklike 

flaws, Ref. 11,2). The inclusion of crack tip geometry in 

analytical studies is a complication which has been largely 
avoided in the mechanics of fracture literature. Wtcworthy 

exceptions are the papers of Rice qnr! .Johnson(3) and McMeeking(B) 
which have consid!ered the finite Yeformation effects at t%e tip 
of a sharp crzck. The qoal of our work bps been to determine t:)le 

important aspects of the eYiastic-plastic cr8ck sol,ution related 

to the presence of the traction free crack tip surface so that 
guidelines to the applicability of sharp crack solutions to 

ductile fracture problems can be estahlishe?. 
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Our work has concentrated on the character of the near tSp 

elastic-plastic stress and strain fields and how these rompare 

with the results of sFI.grp crarks. Speci fir rnoapls treated have 

been flaws wi trh semicircular r7r1d ci rcul-lr ti.ps (!I .and keyhole) 
and the very long and n?t-row elli,ptical fl.?W. 

In Ref.(?) we reported the intrigujng result t?ai-. the maximum 

stress of the l.oq?rithmic spiral s1.ipJ.i.n~ solution is not. 

achieve? for sj.ther the 1J or keyhole tin ~JIJP to a li!nite$ r?nqe 

of plasticity 3lony the tip surface. This is an im?nrt?nt 
finding with j.mplications related to critical stress theories of 
fracture such F.S clisrlussed hy Ritchie, Knott. and Rice(q). !4sre 

we provide results indicating the rirnqe 0 F aoolicahility of the ,., 

fully plastic slipline solution and the character of the elgst-ip- 

plastic stress distribution for the cracklike e!lips:p. 

Another important asvet-t of: the solutions which rel~~te to 

energy ther>ries of fract.ure is the variation of the \J integral 
near the) crack tip, Ref.(S). J is a path inteqra! defined in 
terms of the strain Energy danF:jty rhI(El, displacement qra+lent 
and stress tractinn alonq an arbitrary path L which starts at a 
point on t'lc lowor cr,?ck flank and ends at a point on the upper 
crack flank. Kit5 the crack length in the x direction, s 
arclength-increasinq counterclockwise, n outward pointin unit 
normal, T the traction vector ani! u the displacement vect.or, 

J= J L (hx - T * 3ujax)ds - - 

J was introduced hy Rite(7) who demonstrated that for 

constitutive theories which have stress derivable from W, J is 
path independent an? equal to the rate of decrease of potenti 

energy with respect to crr7ck !.enytFI. As such, J can 5e expected 

to characterize the severity of the crack tip deformation fjel?, 
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while incipient crrlrk extension might he expeatqentally 
correlate2 and predicter! in application in terms of a materiP 
dependent critical value of J. 

A strain energy density Function dons not exist for materials 
which yield and flow qccordinq to the Prandtl-Reuss theory. This 

is the theory most commonly employed jn stu?ies of: metal 
deformation and it w?'s used in this work. However, if thfouqh9ut 
t%e domain proportional. strpssiny results, thl solution 

corresponds to the nonlinear elastic solution of: the problem. 3f 

course a strain energy funrtion does exist for nonlinear 

elasticity. This fosters interest jn evaluating ,7 with !d defined 

as the stress working densitv 

The interest lies in estahlishinq the ffeqree of nath depcrndency 

of J for th? e33stic-pl?st!c case and determining how the crack 
tip val.ue J tip differs from the value calculates over paths 

within t\e elastically Reformed material away from the tip. .7 
computations have hewn nerformed for the U-tip flaw an* resul.ts 

are discussed below. 

II. NUMERICAL F3RYllL4TIOY. The flaw of our study js taken to he 

crackline with a length ?a greatly exceeding the root radius of 
curvature0 . The flaw is isolated within an jnfinite metpllir 
sheet which is under plane strain constraint with a tensile load 
applied far from the flaw. The metal deforms Pccorflinq to the 

Prandtl-Reuss equations which have linear elastic response within 
the Mises yield surf;tce and plastic flow following the normality 

rule. These constitutive relations are increment?1 in Form whjch 
means that the solution to our nonlinear prohle~ must hs obtained 
by progressina stepwise alon? t5~? loafi p?t>. TOP nonh3rdeninq 

model is used, so that plastic: flow occurs iin'rler a constant vslup 
of equivalent stress equal to the material's uni;txiel yield 

stress Y. Resides the yield stress, the only other material. 
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properties entering the analysis are Younv’s modulus E and 

Poisson’s ratio v , and the latter was taken equal to fl.3. FOlr 

general applicability, the results are presented in dimensionless 
form in terms of Y and E. 

The analysis was conducted using a numerical formulation 
designed for this problem from aspects of the finite element and 
stress function boundary collocation methods. Tn a region 
surrounding the flaw root, where plastic fieformation is 
anticipated, finite element approximations are made for the 
displacement fieJr3. Over :he remainder of the infinite ?amaJn, 
the response is elastic and is represented by ?n analytic stress 

function newer spries aF73rouin3tion. Boundary collocation 
techniques are user! to couple the equations govsrnina in the two 

regions. fit each step of the analysis, discrete unknowns are 
nodal displacement increments in tbp finite element region and 
coefficients of the newer ssrips in the elzstir reT!',on. 

The formul.ation has heen discussed in Rec.(l). It follows 
from the work of Rowie and Freess(P) on mapping-collocation 
techniques usinrJ el,;lstics stress function theory and the work of 
Tracey and Freese(P) on elastic-plastic finite element analysis. 

Its appeal lies in the ease by which infinite regjons can be 

accommodate? with discretization necessary only at the etds of 

the flaw. Mapping and analytic continuation are used so that the 
traction free crack boundary condition is implicitly satisfied. 
There is no need for fliscretization and collocrtion slonq the 
crack surface in the elastic region. 

The standard mapping function which transforms the ell.ipse 

with semi-axes a,b to the unit circle I</=1 i,n a 5 parameter 
plane was used in the elastic formulation. The I-J-tip anil keyhole 

problems were treateif by considerin? the flaws as slits (h=g) in 

the elastic region. The finite element mesh served to define the 
crack tip shape in the problems. In the U-tip problem, within 

the finite element reTion the sl.it opens to a parallel fac!ed, 
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semi-circular enc;led slot of Jength 7~7~; wt)ile in the keyhole 

problem, a split circular boundary WAS connected to the ends of 
the slit. While a more natural !I-tjp mor?el would’ 5-v~ a uni.form 
opening along the entire crack I.ength, the mapping function which 
would transform this flaw onto the unit circle is not known. 

NonetheJess, there is little reason to expect that this case 
would have a solution very much different than the case 

considered. 

Whereas the general planar elasticj.ty prohlem requires 
?etermination of two analytic stress functions, continuation 

reduces the problem to finding a single functi.on ,+(c) which 

satisfies the remote stress condition and the equil.ihrium anil 

compatibility conditions along the finite element interface. 

While formally therp is an interface encjrclinq each end of the 

flaw, symmetry allows treatment 0. F a si.nqle quadrant of t-he 

plane. 

The interface is definer! in the’ auxiliary plane as P cjrc1.e 
of radjus R center& st the ends of the sli.t, so t.hat the problem 

in the elastic reTion is to find 4 outsiire t-he disks I<+ II< 

R. The interface maps onto a smooth non-circular contour enrlinq 
on the faces of +,ha ~13 ipse (slit). For the elljFtica9 flaw R 

was chosep to have the interface a distance 125~ from the tip at 

7c1O from the length direction. The circular tin problem had 9 
chosen so that the interface was at a distance of 750 at 7fl”. 

The nature of formulation is such that the Yomnutation?J titsk 
increases with the value of R in that a laryer region must he 

discretized when R is increased whSle a higher load level CFV~ 

then he accommodated. The m;luimuln load that can he incrementitlly 

reached is determined in the course of the 3naJysis accorrJin9 to 
when the plastic zone extends to the interface. 
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The power series approximation for 4 I<) that. was chosen 

consi.sts of two pa7rt.s. The fi rs;t p?‘rt corresponds to the known 

solution for r7n 011 iut.icn.l fli+w in ;r nl.lre:Iy elastic tension 

fiel3: The seconJ part servcts to represc?nt the perturhqtion frnm 

this elastic solution near the root. Tn terms of: the remote 

stress increment AT 7+nd undetermined coeffi?ientsa 
n' 

thP 

approximation tias the form 

In 

r,/ts2 - un NC.) = AT {(a + b)L - (3a + b)/<)/8 + 
c 

an 

n=l 

The first term i.s c~cpecto? to afl~quately represent t5c solution 

f-lr from +hP plasti!: zon?. 7%~ 7rJrJitionr77 series is pxj);lnde? 

from the flaw enSrs c=+! an? its terms vanish at. infinity, 

consistent with its role of representing t3e lorr>l deviation frnm 

the exact elastic solution. There are m coefficients tin, and 

they are real numbers ?ue to the conflitions of symmetry ;Icross 

the x ;Ind y <::ces. Sufficjpnt ;Iccur-ry wrls folln;l in thp ;In;llysPs 

reported here by using 2fl terms in thP seri.as Fpnroximation. 

Reasonably fine element qriils were used in the analyses. h 

mesh consisting of approximately 1?flC! no?c? an? 17flF triangular 

elements was used in the elliptica!. fl?w nrohlem, whjle for the 

other problems the mesh consisted of apDroxjmately lC!?‘J nodes an? 

2OQfl elements. EJ.emr?nt +i.mensions in e3ch c2s.e i.ncr?Psed from 

the tip and at the tip ed~!e lengths wPre less than p /lO. 

The usual stiffness anproach vnnployin? t-he princip1.e of 

virtual work was used to ;~ss~rrh!r thp S(ovrrninT equations in ths 

finite elemf?nt revion. Th? loa? vertof in Shis system i.s rn,3+e un 

exclusively of force in?reqentS actinq on interface nodes. ThPSP 

represent the load transfer across the intPrf?ce. A nart7a.l 

Gausstan- elimination pravir’ss 2 reduce;! linear system of 
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equations relatina thpsc interface force inrrements to tl~e 

interface noda displacement increments. The force incrcmpnt.s 

are expressed in terms of a n using the el;rstici,ty theory stress 

equations >ncl th1-2 convcnt!9nzl fi.nite element consistent 1.0~6 

procedure. Likewise, t.YT 9isnlarPment increments 3re exnresse? 

in terms of 
%. 

4 series with fewer tsrms ttl;lt finite element 

interface deqrecs of Freedom is ctiosen so that th? system is 

over-determj.ncd ?nd so!.ut.ion is hy the method of 1.aast: squ?res. 

The finite element no&I displacement increments are calculated 

once a 
n 

are computed and t.3en stra3in 7nd stress increments ?re 

computed throughout the finite el.ement mesh. 

Qetails of th* finite element formulation I-(ave heen 

thoroughly discussed in Ref. (9). An averac-~e stiffness approach 

is employed to 3accommo+ate plast.ic zone ani’ flow rllle rh,7nges 

rlurinq a sten. A nonlinear problem is pose4 at each sten since 

the averages arr? +efinPd in terms of the un?etermined nodal 

displacement changes an? the solution is found bv iteration. h? p 

have labeled it an “jnrrpment?l. secant stiffness” Formulation to 

distinguish it from t;lnyent stiffness formulations which define 

equations on the basis of the current state. Sorrective 

techniques are necessary with the tangent f.ormulgtions to Forcp 

the stress solution t-0 satisfy the yield crjterion with the 

result that. significant Joad imhal3nce errors ran ensue!. The 

incremental secant stiffness sppro;rqh on the other hanil 

quarantees that the yield criterion is satisfied at the end of 

each step, while load imha3ance js controlled hy t5e interatjon 

covercjence toler3Pcp. 

An adaptive lo>? incrementation 3lqorithm is used to control 

the load pat-h ?iscret.iz?tion error. Loai! step size is tre;lt,ec! as 

a variable an3 the sol.ut-ion is dsterminerl according to a 

constraint sclerrt,cJ to limit trrle constitukive law chancres *urincj 

a step. For the nrob,lsms describe? below t?-te constrajnt limitei’ 

the maximum 4zviDtoric stress increment moGulus to fl.flSY. In t5e 

case of the circrllar ti? flaws, SF steps were t?ken to have the 

265 



plastic zone extend to within an element of the interface and 

this corresponded to a loar! level T=.2QY. The e13.iptica3. flaw 

problem required 51 steps to ir I.osd T=.?YY for the plastic: zone 

to approach the interface. 

IfI. ELASTIC PLASTTC SOLrJTII)NS. We discussei’ in Ref. (2’1 the 

finding that for the circular tip flaws the material ?lony the 

crack tip surface between 8pproxiqatel.y 57’ ani! 9f1° e3zsticall.y 

unloaded after having yielded. It Fppears that. the expansjon of 

the plastic zone into the region above the crack flanks creates a 

l.oad shedding mechanism whi.ch results in- the unloading. l3i rect1.y 

related to this limitei’ crack surface yielding behavior is the 
nature of the stress distrihutjon ahead of the tip. The mzxi.mum 
stress value of 2.97Y zt x=3.Plp predicted from slipline theory 

under the assumption of ful.1.y plastic conrJitions up to t.he flanks 
is not realized. Instead it was found t-hat a stress maximum 

equal to 2.57Y develops at x=?.TC;p. The Ioqarithmic spiral 

stress distribution holds only Over the range from the crack tip 

(x=fl) to x=2.1.9,. 

Figure(l) illustrates the elastic-plast.ic limitations t.o the 

fully p1asti.c: stress solution for the cicular tip flaws and ~Iso 

shown are the recently oht.ainecl resu1.t.s for the ell i.nt.ic:al flaw. 

The stress values are plotted relative to t%e yield stress anil 

the distance scale is normalized with respect to t-ho root radius. 

The solid curves are the sl.ipline ?redi?tions assuminq that 

yielding spreads along the crack flanks. The maximum stress of 

the elastic-plastic solution is indicated for each case as is the 

point at which the ful.ly pl.astir: solution ceases to apnly. 

Compared to the circular tip fJ?ws, the elliptical flaw is 

seen to have a less severe stress state, with a maximum stress 

equal to 2.44Y at a distance of 4.9SP aheair of the Flaw. 

Figure(?) provides the comp1et.e elastic-plastic distribution for 

the ellipse over a distance II?, ahead of the tip. It is seen 

that the solution departs from the fully plastic curve at x=4.19,. 
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The results ?re plottei! frorcl discrete element fiat.3 along the 
x-axis at a load level of p.35Y. ActllalJy, the distribution 
shows little ctiange over the distance plotter! beyonfi a remote 
tension value of !?.3flY. 

J inteqral computations were carried out for the U-tip flow 
problem to establish the degree of path dependence which 
follows from the non-proportional stressing in the problem. 
Paths L were chosen to be piecewise linear contours along element 
edges which encircle the crack tiT), es illustrated in 

Figures(?,4). The problem of data retrieval was rlanaqed by A 
scheme which employed element face numbers defined hy combining 
the numbers of the nobles on earh firce OF the mesh. Pat%s were 
specified by listing the nodes along cacti path so that elements 

contributing to each arc of the path were identified by a face 
number test. Stress, strain 2nd displacement data from the two 
constant state trj,ngles sharinq each segment were averaged and 
this provide? the c'at;l needed to compute t3e edqe contributions 

to J. 

Results are given in Figure(S\ corresponding to the 1.q pat.hs 
drawn in Figure(4) which are frclrn the crack tip surface (r=p) to 
r=lG.R p. The results are plotted with .l normalize? by a 
reference value -7 ref which was taken to he the value for a 

perfectly sharp crack (slit) with 3.ength 2a and remote tensile 
stress T, 

.J ref 
= (].-,:T) @T2/F: 

The numerical error of the finite element solution and the method 

of computation of &J can be gauged From the psth dependency foun? 
for the elastic solution. The elastic values af J ranged from 

1.fln7 to -995 'Jref with the maximum at r=l.5, and only minor 

variations on paths beyond 5,. We miqht canclu?e then that the 
model and computational scheme allow .7 computations which are 



approximately 1% in error. 

It. is seen that before crack tip rlnloaflinq, at. T=.lGY, the 

value of LJ 
tip is ‘;Tt below ,J rpf’ 

\t the loa4 level. T=.3.qY, the 

tip value of .J is lg9 helow t’7e reference value. T!IF! plot 

illustrates the trend whir? has siqni ficant .7 variations over an 

increasing r-gj,on from the tip PS 10~~7 level increases. 

IV. SUMMARY. The elastic-plastic blunt fl.sw sol.utions in+icate 

that the Flastic zone exvends over ? limiteir nortion of tFle crack 

surface. This resu1t.s in a stress distribution ahead of the flaw 

which is less s;?vere than faulty nl.?stic sJ.ipl ine ana1ysi.s would 

suggest. TFle c3r.q 1 yscs were run to l.oa+ leve3.s hiqh enough to 

achieve the asyngtotir: stress djstributi.ons over a 1”~ distanq:s 

ahead of t3e flc7w. ‘+~!ile the circular tin Fl?ws have a m;lximum 

stress of ?.S7Y 2t 2.71;~ below the crack surFacP, the elliptical 

flaw has a maximum stress of 3.44Y at I.9PP. 

J integral computations For t.he [J-tip fl.aw indicate t5at 

there is siqnificant pat% depdendency. The value of %.Jtin in 

comparison to the remote value of J changes with load level 

consistent with the evolution of the solut.jon to t5e fully 

developed crack tip reTion stress state. The results suyqest 

that fracture Crjteri? haSed on .J SholJlr! account for differPrIceS 

in th,~ tip and remote values of +J when representing t.he severity 

of the deformation state in the fracture prone crack tir, 

material. 
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THE BAUSCHINGER EFFECT ON STRESS INTENSITY FACTORS 
FOR A RADIALLY CRACKED GUN TUBE 

S. L. Pu and P. C. T. Chen 
U.S. Army Armament, Munitions, and Chemical Command 

Armament Research and Development Center 
Large Caliber Weapon Systems Laboratory 

Benet Weapons Laboratory 
Watervliet, NY 12189-5000 

ABSTRACT. The theoretical predicted fatigue life of a high-strength 
steel tube which has undergone an autofrettage procedure is significantly 
higher than the experimental prediction. To account for the discrepancy, 
attention is now turned to developing better elasttc-plastic models for a high 
strength steel. An improved material model shows that reve.rse yielding may 
occur in the inner portion of the tube. This reverse yielding reduces the 
residual compressive hoop stress considerably which has an adverse effect on 
bore crack propagation. This study considers the stress intensity factors due 
to a radial crack taking the Bauschinger effect into consideration. 

The elastirplastic interfaces during loading and unloading in the 
autofrettage process divide the tube into three-ring regions. The residual 
stress distribution in each region is quite different. When a crack grows 
from one region into another, the previous method using functional stress 
intensity fails. A new method is used to obtain stress intensity factors for 
a radial crack growing out of the reverse yielding zone. This approach is 
based on crack face weight functions obtained by Sha using stiffness 
derivative finite element techniques coupled with singular crack-tip elements. 

I. INTRODUCTION. An early brittle failure of a cannon tube during the 
1960’s prompted a renewed interest in fracture analysis of cannon pressure 
vessels [ 13. After careful investigation of the cause of fracture, some basic 
design changes were made to prevent any further failures. One of the design 
changes was to introduce a compressive residual stress near the inner radius 
of the cannon by an autofrettage process. Considerable efforts have been made 
to predict the residual stress distribution in an overstrained tube based on 
various material models [2-51. In order to confirm the theoretical 
predictions of residual stresses, experimental methods [6,7] have been 
initiated in our laboratory. 

Since the current cannon tube design uses a wall ratio close to two, the 
maximum compressive residual stress at the bore for a fully autofrettaged tube 
is about 85 percent of the yield stress u. of the material, Most of the 
earlier predictions of residual stresses were based on the assumption of 
elastic unloading. According to Milligan et al [8] , the hLgh strength gun 
steel has a very high Bauschinger effect. To account for the compressive 
yield strength reduction due to the Bauschinger effect, Underwood and Kendall 
[9] have tried to estimate the residual stress distribution and its effect on 
fatigue crack growth rate. Recently, Chen obtained a closed form solution of 
residual stresses in autofrettaged tubes based on a theoretical material model 
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taking both Bauschinger and hardening effects into consideration [IO]. The 
new residual stress distribution is very different from that obtained earlier 
based on the assmption of elastic unloading. The functional stress intensity 
method developed for the computation of stress intensity factors of a radial 
crack initiating from the inner radius of a tube may fail due to the presence 
of a reverse yielding region near the bore. The objective of this paper is to 
develop a numerical method to overcome such a difficulty and to study the 
Bauschinger effect on stress intensity factors for a radially cracked, 
partially autofrettaged gun tube. 

II. THE BAUSCBINGER EFFECT AND RESIDUAL STRESSES. The phenomenon that a 
material lowers its elastic limit in compression (tension) subsequent to a 
previous stressing in tension (compression) beyond the elastic limit is called 
the Bauschinger effect. A quantity representing the magnitude of the 
Bauschinger effect is the Bauschinger effect factor (BEF). This is defined as 
the ratio of the yield stress upon reverse loading to the initial yield stress 
(Q - The BEF (f) is a function of percent overstrain (cp). The graph OF BEF 
vs. percent overstrain obtained by Milligan (81 for a modified 4330 steel 
having a martensitic structure is shown in Figure 1 which was used by Chen in 
his computations of residual stresses. 

Taking the Bauschinger effect factor f into consideration, Chen obtained 
the closed form solution of residual stresses in autofrettaged tubes [lo]. He 
assuned a material model which exhibits the stress-strain curve shown in 
Figure 2 during tensile loading and unloading after overstrain. The 
assumption of elastic-perfectly plastic loading was supported by the fact that 
very little strain-hardening was observed in the tensile test. A bilinear 
model for elastfc-plastic unloading was assmed since a large slope of strain- 
hardening (m'E) did develop after the occurrence of reverse yielding. 

Referring to the point 0' in Figure 2 as the origin of a new (primed) 
coordinate system (o',E'), the reverse yielding curve can be expressed as 

u’ 
-3 = 1 + f + m'r;l(l-m') (1) 
a0 

where E = (E/oo)s'P, E is Young's modulus, stp is the plastic strain in the 
primed coordinates. The final residual stress state (denoted by a double 
prime) is obtained by summing the stress state corresponding to the elastic- 
perfectly plastic loading and the primed stress state corresponding to 
unloading. The tangential and radial components can be written as 

Go.1 = a0 + ue’ , ur” = ur + or’ (2) 

Elastic Plastic Loading 

Let a and b be the inner and outer radii of the cylinder, respectively, 
and let the material be elastic-perfectly plastic, obeying the Tresca's yield 
criterion, the stress components are given by [2] 

ur/oo P2 = 5 (71+ --) - & ,p b2 r,aGr<p (3) 
QBIQO 
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%/Qo 1 p2 p2 =- 7 -- pCr<b (4) 
wuo 

2 $? =2) ’ 

where P is the elastic-plastic boundary relating to the internal pressure p by 

P 1 P2 -- = M 
uO 2 (l 

- ;;) + !h (-4 
a 

The eouivalent elastic strain can be calculated by 

where 

E P2 
-- ~~ = 01 (-- - 1) , a < r 6 p 
QO r2 

2 n 
Bl = -- fl-vLI 

(5) 

(6) 

(7) ’ I 
a‘- ’ 

In Eq. (7) v is the ratio of Poisson. 

Elastic-Plastic Unloading 

If the internal pressure p is subsequently removed completely, the 
unloading may be either elastic of elastic-plastic depending on whether the 
magnitude of p is less than or greater than pm which is the minimum pressure 
to cause the reverse yielding to occur. If P '\Pm, the unloading is entirely 
elastic and the stress components are 

(8) 

Using Tresca's criterion subject to ur" > oz" > a~", the reverse yielding will 
not occur if 

or" - 00" r fo, (9) 

Substituting Eqs. (2), (3), and (8) into (9), we obtain the expression for pm 

Pm 1 a2 -- = - (l+f)(l - --) 
Qo 2 b2 

(10) 

If P > Pm, reverse yielding will occur in a region a < r < P' with P' < P 
upon unloading and we have from Eq. (1) 

urn - ue” = fao + m'Es'p/(l-m') in a<r<p' (11) 
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The stresses in the plastic and elastic regions are given by [3] 

1 a2 
Or '/Q* = p/a0 - z Bz’(l++ 2(1 - ;'i) - (1-82')(l+f)&) , (a<r<p*) (12) 

a 

agt/uo = url/~o - (l+f) - m'5'/(1-m') , (acr<o') (13) 

' 2 (g-1 
(14) 

I , ( P' <rcb) 
(15) 

where 

61’ = (1-m')/[m'+(l-m')/Bl] (16) 

@2' = m'Sl'/(l-m') (17) 

c. ' = B1'(l+f)(p'2/r~l) (18) 

The value of p' can be found from continuity of or' at p' from Eqs. (12) and 
(14). Figure 3 shows different residual hoop stress distributions for a 
hollow cylinder with a wall ratio of two and E/u0 = 200, u = 0.3, p/a = 1.6 
and 2.0. The broken lines are elastic unloading solutions (f=l), while solid 
lines are elastic-plastic unloading with m' = 0 and 0.3. It shows a drastic 
difference in oe" in the reverse yielding region near the bore and P' varies 
slightly with P and m'. 

III. FUNCTIONAL STRESS INTENSITY METHOD. We have developed the 
functional stress intensity method [ll] for the computation of stress 
intensity factors of radial cracks in a pressurized and partially 
autofrettaged cylinder by combining the finite element method and the weight 
function method. A weight function vector h is a universal function which 
depends only on geometry and not on loadings [12]. For a given radially 
cracked ring, if KI(l), th e mode I stress intensity factor, and v(l), the 
normal component of crack face displacement associated with a symmetric load 
systm 1 are known, then the normal component of the crack face weight 
functions can be expressed by 

H av(l) (x, a) 
hIy(x, a) 5 1-1-m- -----c---e (19) 

2KI(l) aa. 

where H = E for plane stress and H = E/(1-v2) for plane strain, x = (r-a) is a 
distance measured from the base of the crack along the crack face toward the 
crack tip, and R is the crack length. For any symmetric load applied to the 
same cracked ring, the stress intensity factor associated with the new load 
can be found from 

KI = ,;;; i,” p(x) ‘;’ dx 
I 
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where p(x) is the normal stress in the tangential direction at the crack site 
due to the new load applied to the untracked ring. If the uniform tension p, 
at the outer radius is taken as load one, we can find numerical values of 
KI(1) and v(1) by the finite element method. We wish to use Eq. (20) to 
obtain KI associated with the autofrettage residual stresses. It can be seen 
from Eqs. (2), (3), (81, and (12) through (15) that the residual stress ~0" 
has the general expression 

00°C r> = Al + A2/r2 + A3Rn(r) (21) 

for a tube subject to an elastic-plastic loading prior to an elastic 
unloading, where Ai, i = 1,2,3 are superposition constants. 

Let p(x) in Eq. 
i 

20) be ue" above. 
an expression for ad )/at. 

The integration to find KI requires 
A method which assumes v(1) as a conic section 

[13 
1 

has been used by Grandt [14]. Another method which avoids the need of 
av( )/aR has been developed by Pu. He uses finite elements to obtain 
functional stress intensities Kc(l), K,.(ra2), and Kc(hr) defined by 

K,(p) = -:-- 1’ p 
a@> 
--_a_ dx 

K(1) 0 aa 
(22) 

for a crack face loading p = 1, p = F2, and p = h(r), respectively. Once 
the functional stress intensities are known, then the stress intensity factor 
KI(p) can be found for a general residual stress distribution of Eq. (21) by 
an algebraic equation 

KI(p) = AlK,(l) + A2Kc(r-') + A3Kc(anr) (23) 

This method was successfully applied to various residual stresses predicted 
from various material models [15]. 

Now for a radial crack in a reverse yielding zone, the stress intensity 
factor can still be found by the functional stress intensity method since the 
residual stress remains the same form as Eq. (21) with the superposition 
constants obtainable from Eqs. (3) and (13). However, if the radial crack is 
longer than the reverse yielding zone, the functional stress intensity method 
fails since the crack face loading p(x) has two different expressions in two 
different regions: 0 < x < n'ma and n'-a < x < R. Let R(X) and pe(x) be the 
crack face loading (residual hoop stress) in the reverse yielding region and 
the elastic region. Equation (20) becomes 

KI zc qya 
0 

py(x)hIy(x, Qdx + 2/’ 
o'-a Pe(x)hIy(x, R)dx 

To use this equation, we have to find the explicit crack face weight function 
hIy using the stiffness derivative finite elsment technique explained in the 
next section. 
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IV. EXPLICIT CRACK FACE WEIGHT FUNCTION. The stiffness derivative 
method for determining linear elastic stress intensity factors was introduced 
by Parks [16]. The method was extended to calculate the weight function 
vector field by Parks et al [17]. An efficient finite element evaluation of 
explicit weight functions has been established by Sha [18] who combines the 
stiffness derivative technique with special singular crack tip elements. Be 
applied the method to radial crack problems of a hollow disk [19]. The 
degenerated quarter-point quadratic elements were used around a crack tip. 
These singular elements were surrounded by the standard eight-node 
quadrilateral elements. The virtual crack extension of an amount 6& was 
simulated by advancing the crack-tip node by 6R in the direction colinear with 
the mode I radial crack (x-direction). The surrounding quarter-point nodes 
were also shifted to new locations and there was no change in location of all 
other nodes. Hence only a few crack-tip elements have experienced changes in 
elemental stiffness due to the virtual crack extension. This makes the 
stiffness derivative technique very efficient from a computational viewpoint. 

From the displacement form of the finite element method, the equation of 
equilibrium is 

[K]hd = IF] (25) 

where [K] is the global sitffness matrix, Iu] and IF] are displacement vector 
and load vector, respectively. The change in displacement per unit crack 
extensions can be found by differentiating Eq. (25) with respect to crack 
length R 

d{u] -ewe = 
dR 

[K]'$a;? (26) 

Note that d{F]/dR = 0 if we select a load system which consists of only 
surface tractions not applied on the crack face. The global stiffness 
derivative d[K]/dll is the sum of N, elemental stiffness derivatives 

d[Kl NC dlkil --3- = c ----w 
dR 
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where NC is the number of crack tip elements and [ki] is the element stiffness 
of the ith crack tip element. For a small crack extension 611, the element 
stiffness derivative may be approximated by 

Wil [kil g+lJg - Pi1 g 
----- = --------f------- 

dR 68 
(28) 

where [ki]g+Sg and [ki]a are element stiffness after and before virtual crack 
extension, respectively. 

The displacement vector is a function of position (x,y) and the crack 
length R 



(29) 

Applying the chain rule of differentiation of Eq. (29) with respect to R 
gives 

aId d(u) ahI dx aId dy 1-m- = ---- w ---- *- - ---M -a 
a2 dR 8x dR aY dfi 

(30) 

For a mode I crack lying on the x-axis with colinear virtual crack extension, 
we have dx/dR = 1 and dy/dR = 0. Definitions of global coordinates and 
displacements for isoparametric elements are 

x = 1 Ni( t,n)xi , u = 1 Ni( E,q)q 
(31) 

Y = 1 Ni(S,n)yi , v = 1 N~(.E,TI)~~ 

where <,sl are local coordinates; x,y are global coordinates; Xi,yi are global 
coordinates of node i; ui and vi are x and y components of displacement at 
node i; Ni(E,n) are shape functions which interpolate the displacement over 
the element. The finite element evaluation of a{u]/&c can be carried out from 

abd 1 a[pJ~u~l 
1 --e--d- 

ay Wiuil ay 
---- = ----1- I- f ------- -- I ax det[J] a.5 an a0 as 

(32) 

where [J] is the Jacobian matrix. This leads to the expression for the y 
component of mode I weight function vector at (x,y) 

Ii dv(1) 1 a[Niuil ay a[Nillil ay 
hIy(x,Y,Q = ----d-d- [ ad&d- M 1demam { M-w---- I_ - ------- $1 (33) 

KI(l)(R) da det[J] ag an at 

For a hollow disk of b/a = 2, Sha and Yang [19] have obtained explicit 
weight function for a single bore or rim radial crack. In private 
communication, Sha has provided the following expression to approximate the 
dimensionless crack face weight function component 

r8 4 rs n/2-1 
2fi hIy(;-) = nil Dn(i-1 

= 
(34) 

where rs, the distance from the crack tip along the crack face, is related to 
x and r by 

rs = R-x=R+a-r (35) 

The coefficient3 Dn, n = 1,2,3,4, determined by the least square technique, 
are given in the following table for various crack lengths. 
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TABLE 1. LEAST SQUARE FITTED COEFFICIENTS OF EQUATION (34) FOR A SINGLE BORE 
CRACK IN A HOLLOW CYLINDER OF b/a = 2 WITH VARIOUS CRACK LENGTHS c = 
fi/ (b-a> 

I 
I a. 

I I I 
--- I I I I I 

i b-a 1 D1 
I 

D2 I 
I 

D3 
1 

D4 
I 

I I 
1 0.01 1 0.7966DfOO 1 -0,7721D-02 1 0.2935D+OO 1 0.362OD-k00 I 
[ 0.02 1 0.7976D+OO 1 -0.6980D-02 I 0.2840D+OO I 0.3608Df00 1 
1 0.03 1 0.8130Df00 1 -0.7176~-01 1 0.37111FtOO 1 0.3134D+00 1 
I 0.05 I 0.8008D+00 I -0.5811D-02 1 0.2649D+OO I 0.3551D+00 I 

I 0.83351)+00 
0.8051D+OO 
0.8286Df00 
0.8132D+OO 
0.8026D+OO 
0.7981D+OO 
0.7956D+00 
0.7990D+oo 
0.8004D+OO 

1 -0.1714Df00 
1 -0.2789D-01 
1 -0.1818D+00 
1 -0.8254D-01 
1 O.l409D-02 
I 0.4661D-01 
1 0.7236D-01 
1 0.4395D-01 
1 0.2255D-01 

1 0.4942Df00 
1 0.3116D+OO 
1 0.6119DfOO 
1 0.5769D+OO 
1 0.5881Df00 
1 0.6908D+OO 
1 0.9065Df00 
1 O.l361D+Ol 
! 0.2130~+01 

1 0.2421D+OO 
1 0.3270D+OO 
1 0.1554D+OO 
I 0.2414D-k00 
1 0.3756D+00 
1 0.4935D+OO 
1 0.5437D+00 
I 0.4059D+oo 

! -0.3915D-01 
1 0.80 1 0.7976D+OO 1 0.4388~-01 1 0.3537D+01 I -O.l131D+01 I 

i i. L,------ I. --- -L--2 __..- -.YzI.=-.s ._._____._ z* -._,. - ---.-------=e. _,_._.-_ cz --.- ----.---.-.“, _-.--- - --.- - - - _ 

V. STRESS INTENSITY FACTORS. To use Eqs. (34) and (24), we need a 
certain transformation of variables. Let us use a, the bore radius, to 
normalize all linear lengths and use the same notations (before normalization) 
to denote the normalized lengths except that a is unit and b is w, the wall 
ratio. Denote rs/R by T, Eq. (24) associated with the residual hoop stress 
becomes 

Dn&2-1)dr + 1 
T' ufj" 4 

0 
(;;-)J 1 Dnrni2-l)d-r 

n=l 

where (oe"/~~)~ is the residual hoop stress in the elastic unloading region, 
while (u~'*/u~)Y is that in the reverse yielding region and 'c' is the value of 
T corresponding to r = p', the elastic-plastic interface during unloading. 
The residual hoop stress can be represented by the general form 

(-"-)e = Ale f A2e re2(r) + A3e Rn( rl r) (37) 
QO 

.I 

(::-)y = Aly + A2y rd2(f) + A3y an(r/T) (38) 
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where the coefficients Ale,...,Agy, can be obtained from Eqs. (2), (3), and 
(12) through (15). From Eq. (35) and the definition of T, we have 

r('c) = a(a,-f) ,. 2, = (lfR)/& (39) 

Denoting Iln( a, B), 12n(o,B), and 13n(o,8) as the following definite integrals, 

12n(a,B) = I@ Y2(QTn12-ld, 
a 

n = 1,2,3,4 (40) 

Ig,(a, B) = a IB %n(r(T))&2-1d, 

Eq. (36) can be written in the form 

KI 
= -1 

3 4 
_____ [ 1 
0,~ J;; i=l 

Ale DnIin(O,l) + 1 (AirAie) 1 DnIin(T' ,I) (41) 
n=l i=l n=l 

The expressions of integrals Iin(a,B), i = 1,2,3, n = 1,...4, are easy to 
carry out and are omitted. Equation (41) can be used for any loading which 
yields a hoop stress of the form given by Eq. (21) and for any multiply- 
cracked cylinder as long as the coefficients D, are known for that particular 
cracked geometry. In case there is no reverse yielding region, Eq. (41) 
reduces to 

KI 13 ----- = -- C Aie 
0,JrR J;; i=l 

"r DnIin(O,l) 
ll=l 

(42) 

For a shallow crack which lies entirely in the reverse yielding region, Eq. 
(41) becomes 

KI --w-M a -- AIY C DnIin(O, 1) (43) 
o,m J;; i=l n=l 

Table 1 gives D, for single bore crack of various discrete crack lengths. For 
a crack length not given in Table 1, Sha [19] suggested the use of cubic 
spline interpolation to obtain the weight function for that length from 
discrete values in Table 1 followed by the least square technique to calculate 
D's. 

Equation (42) is used to compute KI/poJ"a for a single bore crack in a 
hollow cylinder of w = 2 subject to uniform tension p. at the outside 
cylindrical surface. The Lame' solution gives Al = A2 = w2/(wLl) and A3 = 0. 
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Numerical results for various crack lengths are very accurate in comparison 
with results previous1 reported in [20]. 

f- 
Further check of numerical 

computations of KI/uo rR from Eq. 
cylinder without reverse yielding. 

(42) is done for a partially autofrettaged 
The results confirm those published in 

[211- 

For a cylinder of w = 2, the Bauschinger effect factors for 60 percent, 
80 percent, and 100 percent overstrain are, from Figure 1, f = 0.44, 0.42, and 
0.38, respectively. Using v = 0.3, E/U, = 200, the elastic-plastic interface 
P' during unloading depends on f and m'. It varies from p' = 1.106 for E = 
0.6 (f = 0.44) and m' = 0.3 to p' = 1.20 for E = 1 (f = 0.38) and m' = 0. The 
residual hoop stress distributions near the bore for these two cases are shown 
in solid lines in Figure 3 while broken lines are corresponding stresses 
without taking Bauschinger effect into consideration. The residual stress in 
the reverse yielding region varies drastically with f and m'. Stress 
intensity factors due to residual stresses are calculated from Eq. (43) or 
(41) depending on whether the crack tip is inside or outside of the reverse 
yielding zone. Figures 4 and 5 are graphs of KI/(uo~) as a functfon of 
dimensionless crack length c = a/(w-1) for E = 0.6 and E = 1, respectively. 
Superposing stress intensity factors due to an internal pressure p = ooo/Lf, 
the combined stress intensity factors from both p and residual stresses are 
shown in Figures 6 and 7 for Lf = 3 and for E = 0.6 and E = 1.0, respectively. 
Figure 8 is a similar graph for Lf = 1.5 and E = 1.0. In Figures 6, 7., and 8, 
the curves in the centerline correspond to m' = 0, the curves in the broken 
line are for m' = 0.3, while the solid lines are results obtained earlier 
without taking reverse yielding into consideration. 
values of K1/(uoG) are 0.55 and 0.37 for m' 

For c = 0.01, Figure 7, 
= 0 and 0.3, respectively, 

versus the corresponding value 0.058 from the solid line. It indicates that 
the Bauschinger effect will greatly reduce the advantageous effect of 
compressive residual hoop stress introduced by the autoFrettage process. 

VI. CONCLUSION. The Rauschinger effect of the high strength gun steel 
causes the presence of the reverse yielding in a partially autofrettaged 
cannon tube of wall ratio of two. This reverse yielding reduces the magnitude 
of compressive hoop stress considerably in the reverse yielding region. This 
stress reduction will result in much higher stress intensity factors in a 
shallow bore crack in a pressurized and autofrettaged gun tube. The higher 
the stress intensity factor implies the lower the fatigue life. 

The expression in Eq. (34) f or explicit crack face weight function 
obtained by a combination of stiffness derivative technique and special 
singular crack tip elements is highly accurate. It recovers the previous 
stress intensity factor results for a single bore crack in a tube subject to 
various loading conditions. The method can treat any crack face loading 
including stress discontinuities and stress gradient discontinuities over the 
crack face. 

Numerical results are limited to single bore radial cracks in this paper. 
However, the method is general for either bore cracks or rim cracks for any 
number of cracks as long as we have obtained the explfcit crack face weight 
function for that particular cracked geometry. 
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PERCENT TENSILE OVERSTRAIN 

FIGURE 1 

Bauschinger effect factor vs. percent tensile overstrain, martensitic structur 

of a 4330 modified steel 
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FIGURE 2 

Stress-strain curves during loading and unloading 
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FIGURE 3 

Dependence of oB/uO on f and m' in the reverse yielding region of 

a cylinder of wall ratio of two 
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FIGURE 4 

Dimensionless stress intensity factors as a function of dimensionless crack length 

c due to compressive hoop stress in a cylinder having 60 percend degree of autofret- 

tage for various values of f and m' 
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FIGURE 5 

Dimensionless stress intensity factors as a function of dimensionless crack length 

c due to compressive hoop stress in a cylinder having 100 percent degree of autofret 

tage for various values of f and m' 
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Resultant stress intensity factors as a function of crack length c for various 

values of f and m' in a pressurized, autofrettaged cylinder. Internal pressure 

p = 00/3 and degree of autofrettage E = 0.6 
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FIGURE 7 

Resultant stress intensity factors as a function of crack length c for various 

values -of f and m' in a pressurized, autofrettaged cylinder. Internal pressure 

P = a0/3 and degree of autofrettage E = 1.0 
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ELASTIC-PLASTIC LOADING AND UNLOADING IN A THICK TUBE 
WITH KINEMATIC HARDENING THEORY 

Peter C. T. Chen 
U.S. Army Armament, Munitions, and Chemical Command 

Armament Research and Development Center 
Large Caliber Weapon Systems Laboratory 

Benet Weapons Laboratory 
Watervliet, NY 12189-5000 

ABSTRACT. Using Tresca's yield criterion, its associated flow rule, and 
the linear hardening law, analytical solutions are obtained for elastic- 
plastic loading and unloading problems in a thick tube subjected to uniform 
internal pressure. Explicit expressions for the displacement, strains, and 
stresses are presented and numerical results in a closed-end tube are 
calculated. 

I. INTRODUCTION. The importance of the determination of residual 
stresses in a prestressed thick-walled cylinder is well-known and elastic- 
plastic loading response has been extensively studied [l-5]. Most of the 
earlier solutions for residual stresses were based on the assumption of 
elastic unloading and only a few considered elastic-plastic unloading [2,5]. 
Bland's work [2], which neglects the Bauschinger effect, is based on the 
Tresca's yield condition and isotropic hardening rule. Kinematic hardening is 
the simplest theory that can model the Bauschinger effect [6,7]. If unloading 
does not occur, there is no difference between the kinematic and isotropic 
hardening models. For unloading with reverse yielding, the results based on 
these two models will be different as shown in a recent paper [5] using the 
ADINA finite element code [8]. The vnn Mises' yield condition and its 
associated flow rules were used in both models. 

In this paper a closed-form solution for elastic-plastic loading and 
unloading in pressurized thick-walled cylinders is presented using Tresca's 
yield criterion, its assocfated flow rule, and the linear kinematic hardening 
law. Numerical results are calculated for a closed-end tube. 

II. ELASTIC-PLASTIC LOADING. Consider a thick-walled cylinder, internal --I 
radius a and e-xternal radius b, which is subjected to internal pressure p. 
The material is assumed to be elastic-plastic, obeying the Tresca's yield 
criterion, the associated flow theory, and a linear strain-hardening rule. 
Using the isotropic hardening theory, the elastic-plastic solution has been 
obtained by Bland [2]. In order to consider the Bauschinger effect, the 
kinematic hardening theory is used here. Subject to the condition ~0 3 uz 2 
ur, Tresca's yield criterion for the Prager-hardening rule [6] states that 
yielding occurs when 

where 

(2) 
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define the position of the center of the yield surface, c is a material 
constant and K, the initial yield stress. The associated flow rule states 
that 

dEe@ = -d erP and dEzp = 0 (3) 

For the case of linear strain-hardening, the yield stress curve can be 
represented by a straight line, 

K/K, = 1 + llEP and rl = (E/Ko)m/ (l-m) (4) 

P 
where rl is a material constant and the equivalent plastic strain E is defined 
by 

Ep = r’2/3 j {(dEop)2 + (d+P) 2) 
l’2 2 p 

= -- E0 
43 

(5) 

The elastic-plastic solution for the stresses and displacements can be 
obtained explicitly. The expressions in the plastic range (a C r G p) are 

OJKo P2 1 P2 

WK, 
=+I+ ---I T ; nB (-- - 1) - (1 - rlB)log f 

(6) 

.2 r (7) 

%‘KO = up2’b2 - 2Nl-QB) log t f EE,‘Ko 
r (8) 

(E/Ko)(u/r> = (1-2V)(l+V)(+/Ko) - uEE~/K~ + (l-Y2)p2/r2 (9) 

and in the elastic range ( p < r < b) 

where 

-%‘Ko 1 (P2 P2 m- -- 7 Md 
‘J&o 2 b2 r2) 

o,‘KO = EE /K + up2’b2 z 0 

1 
(E/Ko)u/r = - 2 (l+u)[p2/r2 + (l-2v>p2/b2] - UEEJK~ 

E&,/K, = -k!Y>_, 
(b2/acl) (p’Ko) 

P = 0 (open-end) , 1 (closed-end) 

and 

is-1 = q + -- 2 (E&)/(1-~2) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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The yield surface moves in translation during plastic deformation as given by 

a8 = -a= = (6/2)ccp and cp = B(p2/r2-1) (16) 

The elastic plastic surface p is related to the internal pressure p by 
1 

p/K, = - (I-p2/b2) + (1-nB)log p/a + i nB (02/a2-1) (17) 
2 

III. REVERSE YIELDING. If the pressure p given by Eq. (17) is 
subsequently removed completely with no reverse yielding, the unloading is 
entirely elastic and the solution is given by 

or' (18) 

De' (19) 

%’ = V(u,'faa') + Ecx' (20) 

EEZ’ = -(u-2v)p/(b2/ael) (21) 

Eu'/r = -[(l-v - W) + (1+v)b2/r2]p/(b2/a2-1) (22) 

The residual stress system, which will he denoted by two primes, is the sum of 
the system produced by loading and that produced by unloading, i.e., urr" = ur 
+ ur', etc. Assuming the kinematic hardening rule and using Tresca's 
criterion subject to or" > ux" > ue", the reverse yielding will not occur if 

(Ur”-a,) - (ue”-a$ G K, (23) 

Substituting the loading and unloading solution into Eq. (23), we can 
determine the minimum pressure (pm) for reverse yielding to occur. The 
equation for pm is given by 

PmlKo = (1-a2/b2) (24) 

Equating (17) to (24), we can determine the maximum amount of overstrain for 
reverse yielding not to occur. 

IV. ELASTIC-PLASTIC UNLOADING. Now suppose that the loading has been 
such that the Internal pressure is larger than ~~ given by Eq. (24). On 
unloading, yielding will occur for a 4 r 6 p' with p' < p. Using the 
kinematic hardening rule during unloading and assuming ur" > uz" ) ue", we 
have 

(or”-%“) - (ug”-“0”) = K, (25) 

where 
P P 

ar " = CEr" , ag" = c Ee" (26) 

Since the residual stress system is the sum of two systems produced by loading 
and unloading, combining Eqe. (1) and (25) leads to 
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cur I-%’ > - (a$-a$) = 2Ko (27) 

where 

%' 
P 

= CEr' , ag' = CEg' 
P. 

(28) 

During elastic-plastic unloading, the associated flow theory states that 

dE0 lP = -dE," C 0 and dcs' 
P 

= 0 (29) 

It has been assumed that the sign of dE6' 
P 

is the same throughout the 
unloading process and that is negative. This will be the case when the 
internal pressure is removed during unloading. Since Es' = sZte = -Es is 
known, we can use ilooke's law and the equilibrium‘equation, 

dor'/dr = (og'-ur')/r (30) 

to express Uz' in teDnS of Qr' 

Qz' = EEL' + 2~0,' + vr(d+'/dr) (31) 

Since the dilation is purely elastic 

(du'/dr) + u'/r + Ed' = E-~(1-2v)(ur'+a~'+u,') 

&-I integration using Eqs. (30) and (31), we obtain 

ru' = (1-2v)(1+v)E'1r2 c+' - vEz'r2 + A _I 

(32) 

(33) 

where A is a constant. The strain components can be expressed in terms of or' 
and (dar'/dr). The plastic strain components are 

Eg' 
P 

= -Er' 
P 

= Ar" - (l-~~)E-~r(d+'/dr) (34) 

Using Eq. (31) together with Eqs. (27) and (28), we have 

r(dur'/dr) = -2(Ko-cs6'P) (35) 

Substituting Eq. (35) into Eq. (34) and determining the constant A by the 
condition EO'P = 0 at p', we obtain 

A = -2(1-u2)(Ko/E)pt2 (36) 

and 

(Wo) EdP = -2(pt2/r2-1)/[2c/E + (l-~')'~] (37) 

Equations (35) and (36) with the boundary condition at r = a suffice to 
determine or' in the plastic region. The expressions for the stresses in (a G 
r G P') are given explicitly by 

Qr' /K. = p/K, - nf3(pt2/a2-pt2/r2) - 2(1-nB)log(r/a) (38) 
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uel/K, = ur*/Ko - 2 - 2nB(P'2/rLl) (39) 

(40) 

and in (p' < r G b) given by 

Qr’ /K. (41) 
= * (pr2/r2 i pt2/b2) 

W/K, (42) 

os'/Ko = -2vpt2/b2 - Q/K, (43) 

The continuity condition of ur' determines the relation between P' and P as 
given by 

l- Pt2/b2 + 2(1-n@ log ,pl + ri8(pt2/ak1) 
a 

= i (1-P2/b2) + (l-nB)log(n/a) + 1 rlB(P2/arl) (44) 

The yield surface moves in translation during elastfc-plastic unloading 
according to 

where ~6' 
P 

is given by Eq. (37). 

V. NUMERICAL RESULTS AND DISCUSSIONS. Consider a closed-end thick- 
walled cylinder with the following parameters: b/a = 3, v = 0.3, and E/K, = 
200. The numerical results for the displacements, strains, and stresses 
during elastic-plastic loading and unloading are calculated. Figure 1 shows 
the relationship between the internal pressure factor (p/Ko) and the 
dimensionless elastic-plastic interface (P/a) for various values of the 
hardening parameter, m = 0, 0.05, 0.1, and 0.2. The displacements at the 
inside and outside boundaries of the tube (Ua and Ub) are shown in Figure 2 as 
functions of the elastic-plastic interface for m = 0.1. The solid and dotted 
curves represent the displacements during loading and after unloading, 
respectively. Figure 3 shows the distribution of hoop stresses (~0) during 
loading for P/a = 1.0, 1.5, 2.0, 2.5, and 3.0. After complete unloading from 
different stages of loading, the corresponding residual hoop stresses (Ug") 
are shown in Figure 4. Reverse yielding occurs in a strain-hardening tube 
with m = 0.1 only when the plastic portion (p) is larger than 1.652 a. In 
order to show the effect of hardening parameters (m) on the residual stress 
distribution, the numerical results are presented in Figure 5 for m = 0, 0.05, 
and 0.10. Aa can be seen in the figure, larger values of hardening parameter 
(m) tend to reduce the beneficial residual hoop stress at the bore. 

All the results presented in Figures 1 through 5 are based on the 
kinematic theory. We have also calculated the results based on the isotropic 
hardening theory [2]. Figure 6 shows a comparison of two hardening rules for 
the residual hoop stresses in a closed-end thick-walled cylinder. The dotted 
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curves represent isotropic hardening model with no Bauschinger effect. 
According to this model, there is no reverse yielding. The solid curves show 
the Bauechinger effect and reverse yielding occurs in both cases, p'/a = 
1.098, 1.336, for p/a = 2.0, 3.0, respectively. The residual hoop stresses at 
the bore are og"& = -0.729, -0.327 for p/a = 2.0, 3.0, respectively. 
According to isotropic hardening rule, 
-1.060, -1.318 for p/a = 

those values of Ue"/Ko should be 
2.0, 3.0;respectively. These numerical results 

indicate that the effect of hardening rules on the residual hoop stresses is 
quite significant, especially near the bore. Many plasticity theories for . 
reverse yielding have been proposed and reviewed [9], and many computer 
programs have been developed [lo]. It is believed that the numerical results 
based on other theories will fall within the limits obtained by using the 
kinematic and isotropic hardening models. 
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ABSTRACT 

Representation theorems for tensor functions together with 

the uniaxial formulation of the theory of viscoplasticity based on 

overstress are used to present a fully invariant three-dimensional, 

small-strain, nonlinear orthotropic theory, To facilitate identifi- 

cation of the material functions, "elastic anisotropy" and "inelastic 

anisotropyw are related by a scalar function. 

In each preferred direction the stress is composed of time 

(rate)-independent (or plastic) and viscous (or rate-dependent) contri- 

butions. It is demonstrated that these contributions can vary in the 

different preferred directions. It is possible to have almost linear 

elastic response in one direction while the other two directions exhibit 

inelastic deformation. While normally the stress-strain curve with the 

highest elastic modulus will also exhibit the highest stress in the 

plastic range, this tendency can be reversed by a judicious choice of 

the invariants. 

The above properties are demonstrated by numerical experiments 

which include monotonic and cyclic loading at constant strain rate as 

well as reIaxation tests. 
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1. INTRODUCTION 

Recently the modeling of inelastic behavior of metals has been 

changing from predominantly yield surface oriented approaches to others, 

which use different concepts such as the endochronic time [l] for the time- 

independent case. Fox rate-dependence, the unified* theories [2-51 were 

developed which, like the endochronic theory, do not use the formalism 

associated with yield surface plasticity. These theories are proposed for 

the uniaxial case and for isotropy when three-dimensional formulations are 

considered. 

The viscoplasticity theory based on overstress is of the unified 

type and considers rate-dependence fundamental [6,7]. It was previously 

developed as a deformation theory [S] and is now extended to cyclic neutral 

behavior [6,7]. As in the case of the unified theories, only an isotropic 

formulation has been proposed so far. 

When considering anisotropy in the inelastic deformation of metals, 

it is necessary to distinguish between deformation induced anisotropy and nat- 

ural anisotropy. For the former, an initially isotropic material may become 

permanently anisotropic after inelastic(plastic) deformation. The latter is 

essentially present in single crystals, metal matrix composites and direc- 

tionally solidified alloys. Frequently the anisotropy induced by a kinematic 

variable (backstress) is also considered separately. 

Within the context of the theory of viscoplasticity based on 

overstress, an orthotropic formulation is introduced in this paper. The aim 

of the formulation is not to provide the most general, tensorially invariant 

representation. Rather, a simplified version is developed which captures 

key anisotropic phenomena and renders the identification of real material 

*The term "unified" is used to indicate that creep and plastic strains are not 
considered separately; all inelastic deformation is rate dependent and is 
modeled through the inelastic strain rate. 
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properties through testing as simple as possible. To this end it is assumed 

that elastic anisotropy and inelastic anisotropy are simply related. The 

defoz-mtion induced anisotropy is not included but anisotropy due to the 

development of the kinematic variable (backstress, equilibrium stress) is 

part of the formulation. 

In the present analysis, tensor function representations and the 

uniaxial formulation of the viscoplasticity theory based on overstress [6] 

are used to synthesize an orthotropic representation using anisotropic 

elasticity theory as a guide. Tensor function representation theorems are 

very useful and, to the knowledge of the authors, have not been employed in 

the derivation of anisotropic viscoplasticity theories. 

After some introductory remarks the evolution equations for the 

ineIastic strain rate and for the equilibrium stress are given in chapter 2. 

To facilitate identification it is assumed that elastic anisotropy and 

inelastic anisotropy are the same, i.e. the respective "fourth-order material 

tensors" are related by a scalar multiple. Inelastic incompressibility is 

not considered in this paper but has been formulated elsewhere [9,10]. In 

chapter 3 the equations are specialized for various simple tests which are 

important in the identification procedure. It is demonstrated that the theory 

is capable of reproducing elastic response in one direction while the other 

two directions exhibit inelastic behavior. The capabilities of the proposed 

theory are illustrated by numerical experiments (numerical integration of 

the coupled nonlinear differential equation system using hypothetical but 

realistic material properties). 
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2. EVOLUTION EQUATIONS 

2.1 Introductory Remarks 

Aniso.tropy has been considered within the context of time-independent 

yield surface plasticity, e.g. [11,12] to cite just a few, and for visco- 

plasticity [13-161. The present approach differs from the others by the use 

of representation theorems for isotropic tensor functions using "geometric" 

tensors and the usual deformation variables as arguments. To this end, the 

constitutive relations for orthotropic materials depend on three symmetric 

geometric tensors rn, n, &, which are formed as 

m ij = M. M. (1) 
1 J 

n 
ij 

= N. N. (2) 
I. J 

R = L. L 
ij ij 

as well as the usual mechanical variables. The unit vectors Mi, Ni, and Li 

are mutually orthogonal to each other and parallel to the intersections of 

the three orthogonal symmetry planes which define the state of orthotropy. 

The infinitesimal total strain rate is the sum of elastic and 

inelastic parts 

i l e *in 
ij 

=E +E 
ij ij l 

The elastic strain rate is governed by the hypoelastic law 

l e 

‘i j = 
s l 

ijeq 'eq ' 

The inverse of (5) is 

; =c 
l e 

ij ijeq Eeq * 

(41 

(5) 

(6) 

Representations of S, and G for orthotropy are given in the 

Appendix. 
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Using (41, Eq.(6) can be rewritten as 

G =c *in 
ij 

G 
ijpq pq 

- Epq) * 

2.2 Evolution of Inelastic Strain 

The inelastic strain rate l: is assumed to depend on a quantity 

called overstress [6-81 and denoted by X ij 

'in 
E ij = Fij[X m 

P4' Pq' nPq' 
where 

X =0 
Pq P9 - gPq ' 

The quantity g 
Pq 

is the equilibrium stress for which an evolution law is 

needed. The function F ij is an isotropic tensor valued function of the 

arguments enclosed by square brackets. 

The complete representation of F ij is available from [17,18] 

l in 
& = klm f k2n + k3& + k4(mz + zrn) 

+ k7z2 

where the scalar functions ki depend on seven invariants 

tr mX -- ) tr nX -- 9 tr RX -- 

tr mX2, tr nX2, tr kX2, trx3 A,- *- -- 

(7) 

(8) 

(9) 

(10) 

(11) 

By choosing 
k7 = 0 (12) 

the quadratic term X2 is eliminated in the present study in accordance 

with the uniaxial overstress model [6-a], 
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Retention of this term offers the possibility of modeling second-order 

effects within the context of finite deformation which will not be explored 

here. 

Thus the complete representation of (10) can be given as 

*in 
E ij =k 

ijpq *Pq 
03) 

where the components of the fourth-order tensor & are functions of the 

scalar invariants and the geometric tensors given in (11) and (l)-(3), 

respectively. 

In order to reduce the complexity of the fourth-order tensor k 

further, we will introduce the concept of "anisotropy ratios," These 

ratios can also be defined for elasticity. As an example, the ratio of 

Young's moduli in two different directions in the material is an "anisotropic 

ratio." Thus, (10) becomes I 

*in 
E.. =kr 

1J ijpq 'Pq * 

The components of the dimensionless quantity K are called z 

"inelastic anisotropy ratios." In general they may be functions but will 

be constants in this paper. The representation of E for orthotropy is 

given in (A-10). 

(14) 

The quantity k has dimensions of (time-stress)-' and is a scalar 

function of the set of invariants given in (11). This function is simply 

related to "the viscosity function" of the isotropic or uniaxial theory 

[6-81. It governs the strain-rate dependence of the uniaxial stress-strain 

curves in different material directions. 

For practical reasons a single argument denoted by.F is proposed 

for the viscosity function k 

r* = tr(EX_)(zP) , (15) 
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It is possible to use a different z in (15) than the one given in (14). 

2.3 Evolution of the Equilibrium Stress .- 

An evolution law for the equilibrium stress g 
ij 

can be developed 

from the representation theorems [17,18]. In generalizing the uniaxial over- 

stress model, the rate of equilibrium stress is an isotrop-ic tensor function 

of six symmetric tensors 

= Hij[?, L 
PP' 

; 
Pq' mpq' npq' aPql 

I where 

iij = Pij - fij 

and f ij 
is the generalization of the f function of [6]. Its derivative 

represents the final slope of the stress-strain relation in the plastic 

range. 

The complete representation of (16) is too general and lengthy 

for present purposes. Instead, the forms proposed in [lo] will be con- 

sidered (see Eqs.(lS) and (20) of [lo]). A special case which retains 

sufficient generality for the present is 

Pij 

(16) 

(17) 

(18) 

The scalar $ is a decreasing function of overstress X and is initially 

slightly less than Young's modulus in one of the preferred directions, e.g. 

qJ[O] = El < El -F (19) 

The anisotropy ratio -' r is described after (A-10). z 

I 
t If Z1=E1, then (7), (14) and (18) represent only linear elastic behavior. 

Any positive El<El results in inelastic behavior. Usually El= 0.99 El. 
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The argument ; 
Pq 

has the following form 

-; =; 
Pq Pq 

- $1 - 4) :;f 

where I' 
g 

and 9 are dimensionless scalar functions .of invariants of the 
- 

modified equilibrium stress g and overstress X, respectively. 

The scalar function l'i in (20) governs the anisotropy of the 

equilibrium stress and is given as 

r2 
g 

= tr (rg) (rg)/A2 ^3 - z 7.. 

where g is defined in (17). Depending upon modeling requirements, a 

quantity r, which is different than that of (14) or (15), can be used 
2 

in (21). The constant A2 is the asymptotic value of tr(ri)(rg) in a w- --w -_ Y 
constant strain-rate test. 

The function f ij defined in (17) is assumed to be 

f 
-1 

ij = '1 rijpq Epq 

The constant Pl represents the slope in the inelastic range and 

is reached asymptotically. 

The scalar function $ in (20) is selected as 

p1 @[Fl = m 

where P 1 and $ are used in (22) and (lg), respectively. 

3. UNIAXIAL TESTS IN PREFERRED DIRECTIONS FOR CONSTANT ANISOTROPIC RATIOS 

If we assume that anisotropic ratios remain the same for both 

elastic and inelastic deformations, then 

previous section simplifies considerably. 

the general formulation of the 

In this case 
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(23) 



r=E 1: ' 

-1 
r 
=: 

= C/E1 , 
z 

(24) 

(25) 

where the quantities 2, 2 and E were introduced in (S), (6) and 

(14). The explicit forms of S and 5 are given in the Appendix. f 

The stress- and strain-tensor components are assumed to be given 

in the preferred coordinate system represented by 8, y and L. The uniaxial 

tests are carried out in the preferred directions and then the geometric 

tensor components of (1) - (3) are 

all m ij = 0 except mll = 
1 

all n 
ij 

= 0 except nz2 = 1 

all R ij = 0 except R33 = 1 . 

3.1 Uniaxial Tension in the z-Direction 

In a uniaxial tension test in the preferred z or 3 direction all 

the components of the stress tensor are zero, except oz which corresponds 

to the applied load. The lateral components of the equilibrium stress 

tensor are zero. The shear components vanish due to material symmetry, 

The evolution law for oz is obtained from (7) by using the 

quantity $ given in the Appendix 

where 

G 
Z 

= E3’Ez - E;) 

*in E = r (u z 2 z - gzN . 

(26) 

(27) 

(28) 

The strain rate Ez =constant is the input parameter. 

Since the formulation corresponds to a constant Poisson's ratio, 

the lateral strain rates are also constant 
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;: = 
X -v31 EZ 

. . 

& 
G= -L)  

Y 32 % 

The lateral inelastic strain rates are 

-in -in E = h-r 
X 31 E2 

p = *in 
Y -'32 Ed 

The argument r of the function k is determined from (15) using 

(28), (31) and (32) 

The only nonzero component of the equilibrium stress g has the 
Z 

following evolution law which is obtained from (18) using (25), 

E2 = 2: ( r2 = 
- Tg(l- $)$ 

) 

where r 
g 

is obtained from(21) as 

f l)ri(g2 7 fz)*/A2 

and $ is given by (23). Note that all components of f ij are zero except 

f E3 
Z = '1q % 

as can be seen from (22). 

For simplicity let us assume that f,, is zero, and set PI= 0. 
J-J 

The asymptotic solutions of (27) and (34) will occur when 

l in 
; =E 

Z 2 
= r2(Oz - gz)W,l 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 
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and 

or, correspondingly 

i-*=1 , 
81 

A 
gz = 

r tr 2 + r:2 + 1) l/2 
2 31 

which render 6 = i = 0. 
z z 

Notice that the final value of the equilibrium stress gz is a 

constant which is independent of the input strain rate i 25' 

Equation (37) is a nonlinear algebraic expression of the over- 

stress u z -gz' 
For different input strain rates, different asymptotic 

overstress values are obtained. 

3.2 Uniaxial Tension in the x-Direction -. -- 

Similar procedure is applied to the case of constant strain-rate 

loading in the x-direction. We will compare the asymptotic properties of 

this case to that of the previous case. 

The evolution of ox is governed by 

G 
X 

= E1':x - ::") 

where 
*in E 

X 
= 'ux - gx)k 

The laterial total and inelastic strain rates are governed by 

;  z-v 
E1 l 

Y  
21 q % 

E . 
E z-v 1; 

z 31 E3 x 

*in -in 
E = -r 
Y 21 r1 &X 

gin *in E 
z = -r31 r2 Cx 
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The argument I? of the function k is 

rf = ( (r21 rl12 + (1: 31v 
2 

+ 1 
i 

(ox-Q2 

The nonzero component of the equilibrium stress gx is governed 

where functions Q and QI are the same as in the previous case, and r is e 

r = ( (r21 rlj2 + (r 
2 

31v + l 
1 2 

82 
(g, -fx) /A 

2 

The nonzero component fx of fij is given by 

f 
X 

=PIEx . 

The asymptotic solutions of (39) and (461, when P, =O and 

4= 0, will occur when 

and 

gx = 

gin 
k =E 

X X 
= ‘“, - 9,) kU21 

A --- -_-.-- 

( (r 215) 
2 

+ (r P >"+ 1y2 
31 2 

(45) 

(46) 

(47) 

(481 

Thus the final value of the equilibrium stress gx is the constant 

on the right-hand side of (50). 

The spacing of the equilibrium stresses gx and gz of these two 

uniaxial tests is governed by 

(49) 

(50) 

8x (r 
2 2 
31 + r32 + 1)1'2 

-= f- -...- - 
gz 2 ( (r 21 rl) 2 + ('31r2) 2 + 1 ) 112 

(51) 
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which is obtained from (50) and (38b). Since the equilibrium stress is 

a measure of time-independent change in the material, the ratio in (51) 

can be called "plastic anisotropy." 

The strain-rate spacing of the uniaxial test curves in the 

x-direction is governed by the nonlinear algebraic equation (49). 

Different spacings predicted in x- and z-directions by (49) and (37) for 

the same input strain rate can be termed "viscous anisotropy." The ratio 

of the spacings is governed by 

ux - g 
X 

r2 k[r1l 
0 z-&z = UT21 

where b = i z x 
and rl and r2 are given by (33) and (45), respectively. 

4. DISCUSSION 

4.1 General 

(52) 

The fully invariant three-dimensional formulation is a simplified 

version of the theory presented in [9]. Here it is assumed that the elastic 

anisotropy ratio El S, (see (A.10)) is equal to 5 appearing in (14), (18) and 

(22) which govern the evolution of the inelastic strain rate. This choice 

simplifies the identification of the material functions to be discussed 

shortly. As a consequence of this choice, constant Poisson's ratios are 

found in the uniaxial tests; see (29)-(32) and (41)-(44). This restriction, 

which is judged to be acceptable for the present purpose, is removed in [9] 

where a formulation with variable Poisson's ratio is given. 

4.2 Identification 

Rate dependence of the uniaxial stress-strain curves in a particular 

direction in the material are governed by the function kT in a nonlinear manner, 

The function k in this paper is equivalent to (l/Ek) in previous papers, 
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see (37) or (49), and the invariant r. They control viscous anisotropy. 

In principle the identification procedure is as follows. Uniaxial 

tests in a certain preferred direction, say x, are performed at piecewise 

constant strain rates during one test. Then a k function is introduced which 

can reproduce the same strain-rate spacing as found in the experiment. Thus 

the relaxation and creep properties in the x-direction are also determined, 

see [6]. 

The strain-rate spacing (and correspondingly the creep and the 

relaxation properties) in some other direction, say z, can be adjusted through 

the quantity E which is used to calculate r in (15). It is not necessarily 

the same as that of (14), (18) and (22), although this is assumed in the body 

of the paper. (An exception is made in the numerical examples to show the 

versatility of the approach.) An analytical expression is given in (52) for 

the ratio of the uniaxial overstress values in the x- and z-directions. This 

ratio depends on r 2 of r in (14), and the function k evaluated at two different =: 

arguments r 1 and r 
2' 

which are given by (33) and (45) for x- and z-directions, 

respectively. In such a way, viscous anisotropy is reproduced. 

The plastic (rate-independent) anisotropy is governed by the 

asymptotic spacing of the uniaxial equilibrium stress curves and controlled 

by the invariant I' . 
& 

As in the case of r, quantity E, which is used to cal- 

culate r 
g 

in (21), does not have to be the same as that of (14) or (15). The 

asymptotic g values for uniaxial tests in x- and z-directions and their ratio 

are given by (35b), (50) and (51) in terms of the particular : in (21). They 

can be used for the adjustment of material data. 

4.3 Illustration of the Theory bfiumerical Experiments -_I_ 

It was mentioned that the proposed simplified approach offers 

flexibilities by choosing the anisotropy ratios in the invariants I' and r 
g 
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in different ways, Specifically three cases can be identified. 

(i) The quantities 5 in (14), (15) and (21) are all equal to each 

other which are, in turn, set equal to E lS' 2 

(ii) The quantity E for the inelastic strain rate in (14) is set 

equal to E 1 5 The quantities in (15) and (21) are equal but 

different than El S. z 

(iii) The quantity f in (14) is set equal to El S,. 'The other quantities 

in (15) and (21) are chosen independently. 

In case (i) the inelastic properties, including viscous and plastic 

anisotropy, are nonlinearly governed by the elastic properties. 

This behavior is illustrated by numerical experiments (the numerical 

integration of the coupled system of nonlinear differential equations) using 

the material data listed in Table 1. It should be noted that the material 

constants were chosen so that transverse isotropy, a special case of orthotropy 

is modeled. The preferred direction is the z- (or 3-) direction. As a conse- 

quence the behaviors in the x- and y-directions are identical. 

Figure 1 shows the results of a tensile test with a strain rate of 

E = 10 -4 
s-l . Both the components of o and g in the z- and x-directions are 

plotted. It is seen that ffx >uz and gx >gz at all times corresponding to 

'Ex= El) ' (EZ= E3). At the end of the graph the asymptotic values are approxi- 

mately reached and correspond to the theoretical predictions. (It should be 

noted that in Fig. 1 and in subsequent figures Pl is chosen differently from 

zero resulting in a positive final slope of the o and g curves.) 

The relaxation behavior and the hysteresis loops predicted by the 

theory are plotted in Figs. 2 and 3, respectively. 

The different amounts of stress reduction during the 240s relaxation 

time (AB vs. A'B' in Fig. 2) are obvious. In the cyclic case a considerable 

amount of Bauschinger effect is evident. It is also of interest that the 

321 



hysteresis loops are not quite closed indicative that the asymptotic values 

are not yet reached at 1.2%. (The theory presented herein represents cyclic 

neutral behavior, see [6,71.) In regions where the o- and g-curves coincide 

elastic behavior is represented. It can be observed that the elastic regions 

in the two directions are different. 

In cases (ii) and (iii) the viscous and the plastic anisotropy become 

uncoupled from the elastic properties. It is now possible to adjust the ratio 

of the uniaxial overstress values and/or the asymptotic spacing of the uniaxial 

g-curves independently. 

However, it should be noted that the ratios of the lateral strains 

to the uniaxial strains remain fixed and are governed by the elastic Poisson's 

ratios. 

A numerical example is given for case (ii) in Fig. 4. The material 

data is the same as that of Figs. 1,2 and 3, except r2 in (15) and (21) is set 

equal to zero, Thus the invariants I' and lYg become zero, see (33) and (35). 

As a consequence k in (28) is constant and equal to k[O] which is 

typically a very small number. This choice renders the inelastic strain rate 

very small. Similarly the evolution of gz is a straight line with modulus 

$J[Ol/r2- This choice gives nearly elastic behavior in the z-direction without, 

of course, affecting the response in the x-direction. These properties are 

illustrated in Fig. 4 

Another interesting example of case (ii) is the modding of nearly 

elastic response under a hydrostatic state of stress 

r21 
=$(lfL r2 

'1 q' 

rl 
'32 

=+-+ 
2 
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in (15) and (21), the invariants r and r 
g 

will filter out all the hydrostatic 

components. However the trace of the inelastic strain rate in (14) is not 

zero. 

It can be shown that, if a hydrostatic state of stress is applied, 

the equilibrium stress and consequently the overstress are also hydrostatic. 

The choice of (53) - (55) in (15) and (21) yields r= rg= 0 in this case. Thus 

the behavior is again nearly elastic. 

An example of case (iii) is given in Fig, 5. The material data is 

the same as that of Figs. 1,2 and 3, except r2 in r is set equal to 0.5 (note 
g 

that r2=El/E3=50/35 otherwise). The behavior in -the x-direction is not 

affected by this choice; compare Fig. 5 to Fig. 1. The curves for uniaxial aZ 

and gz coincide with those of Fig. 1 in the elastic region. Although the 

Young's modulus in the z-direction E3 is smaller than El, the asymptotic value 

of the gz -curve is higher than that of gx due to the choice of r2= 0.5 in r ; 
g 

see also (51). (Due to the choice of functions, the evolution for g has not 
z 

reached the asymptotic value at the strain limit of the graph.) The amount 

of overstress in the z-direction is not affected by r ; compare Fig, 1 and 
g 

Fig. 5. 

4.4 Additional Remarks 

The inelastic deformation is not volume preserving in the present 

formulation. However, a model with isochoric inelastic deformations is 

developed in [9] and will be presented elsewhere. The theory is intended for 

use with composites as as well as "naturally" anisotropic metals. Since 

experimental confirmation of the isochoric nature of inelastic deformation 

of these materials seems to be absent, both formulations were developed in 

[91- 
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When initially loaded, the response of the present theory is 

symmetric with respect to the stress-strain origin; i.e., the stress-strain 

diagrams in tension and compression are congruent. When other than purely 

quadratic invariants are retained as arguments in the functions, e.g. in $, 

"strength differential effects" can be reproduced. In this case the stress- 

strain diagrams in tension and compression are not congruent. Examples of 

models of such behavior are given in [9]. 
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Table 1 

MATERIAL CONSTANTS AND FUNCTIONS USED 

E1 = Modulus of Elasticity in the x-direction = 50,000 MPa 

E2 = I, II I' II 'I y-direction = E 1 

E3 = II 'I 11 II 11 z-direction = 35,000 MPa 

v21 = Poisson's ratio for the x- and y-directions = 0.35 

v31 = " 'I II II x- I' z-directions = 0.45 

v32 = ” I, II II y- ”  z-directions = V31 

‘1 = El/E2 = 1 

=2 = El/E3 

r21. = v21 Unless otherwise indicated 

'31 = v31 

'32 = '32 

pl 
= 500 MPa 

2 
+ (r 

2 
31 '2) + l > (ma) 2 

k[r] = 
2.5 ~10~~ 

E1 
(MFa set)-1 

Q[rl = El 0.4 + 0.5 exp(-6 '10 
-3 

arg) > 

tihere 
r2 arg = 2 2 

(MPa)2 

(r21 rl) + (r31 r2) + 1 

OPa> 
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A-l 

APPEND IX 

The elastic coefficient ten SOT s 
ijpq 

introduced in (5) can be 

defined implicitly by the following 

l e 
E ij =s In 

1 ij -tS2 n.. +S 
1J 

3 eij + S4(m. G. +m 
IP PJ 

G > 
jp PI 

(A.l:i 

+ S5(n. 6.+n 
1P PJ 

where 

s1 = ( (3 - 2Spn +Sn +SR 
Pq 7 Pq > 

;I 
8 PCI Pq 

F2= Sm ( 7 Pq 
+ (s2 - 2s >n 

5 Pq 
fSgR ; 

) P9 Pq 

s3= S8rn ( 4-S n 
P9 9 P9 

+ (s 3 
-2S)R g 

6 Pq tTP9 ’ > 

The representation given by (A.l) and (A.21 is taken from 

Boehler [18]. The elastic constants S i' 
i=l-9 are related to the 

so-called engineering constants E 
1' E2' 

E3 (Young's moduli), ~~1, u 
31' '32 

(Poisson's ratios), G 
23' G12' G13 (shear moduli). The relations are 

given as 

1 
s1 = q 

1 
s2 = E, 

1 
s3 = E, 
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(A.2a> 

(A.2b‘ .' 

(A.2c: 

(A.3a) 

(A.3b; 

(A.3c: 

(A.3d: 

(A.3e] 

(A.3f:; 



v21 

S7=-E2 

v31 

s8= -Ej 

'32 

Sg=-Eg * 

Equation (A.l) can also be put 

where the ! s 
ijpq 

are given by 

- 

%ll %22 s1133 '1123 

s2222 '2233 '2223 

s3333 '3323 

'2323 
symmetric 

in matrix form 

- 

s1113 s1112 

'2213 s2212 

s3313 '3312 

S 2313 '2312 

s13L3 '1312 

S 1212 
- 

S 
ijpq 

= (S4 mip + S5 nip f S6 llip)6tj 

+ (S4 m. +S n 5 iq 
+s R >s* 

w 6 iq pj 

+(S m 
4 jp 

+S n 
5 jp 

+s R >a* 
6 jp qi 

+(S m 
4 jq 

+S n 
5 jq 

+ S6 Rjq$ 

+m +S n ij. ((Sl - 25 )m 
4 Pq 7 Pq + '8 'pq J 

+n 
ij ( 

S m 
7 P4 

+ (S 2 - 25 )n 
5 Pq + s9 Rpq) 1 

+R 
ij ( 

S m 
8 P4 

+ Sg n 
Pq 

+ (S3 - 2s )a 
6 Pq ) 

A-2 

(A.%) 

(A.3h) I 

(A.3i) 

(A-4) 

(A.5) 
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A-3 

The quantity 6*. is related to the Kronecker 6 
1J ij 

and assumes different values 

for different components of S ijkR' 

for 

I 

%ll' s2222' s3333' 

'1122, '1133' '2233 l 

and 

%13' '1112' '2223' '2212 

p. = 6 for 
=J ij '3323' '3313' '2323' '2313 ' 

'2312' '1313' '1312' '1212 

(A.5a) 

(A.Sb) 

for '1123' '2213' '3312 
either of the above definitions can be employed. 

The expression on the right-hand side of (A.5) is not a tensorial 

representation*. It should be viewed as a formula for computing the components 

of the fourth-order tensor 2 for a given orientation of the preferred directions 

Ki, Ni and Li. 

* 
A representation of the fourth-order tensor of orthotropy based on the 
geometry tensors ;, n and & is given in [9]. It is extremely difficult 
to relate the nine constants of this representation to those of (A.5). 
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The inverse of (A.1)) (or equation (7)) is 

. 
. 
'ij 

=C m 
1 ij 

+c n +c R 3 ij 
+ C e +m 

2 ij 4 (m ip "pj 
l e) 

jp 'pi 

+ C (n l e 
5 %P ‘pj 

+n jp yi, + C6('lip :;j + Rjp Epei) 

where 

q = ( (C, - 2C >m 
4 Pq + c7 npq 

+c,Q i' 
8 pq pq ) 

l e 

c2 
= 

( 
C m f CC, - 2C >n 

) 
E 

7 Pq 5 Pq + c9 EPq Pq 

c3 = 53 mpq ( 
+C n 

9 Pq 
+ cc, - 2C6)Lpq) :peq ’ 

The elastic constants Ci, i=1,9 are related to the engineering 

constants through 

3 
E1 =D ‘-“;2E/ ( E2 \ 

3 

c2 
E2 E1 = -- 1 - vi1 E ( > 

3 

E3 
E 

c3 
= 7 l-v& $ ( ) 

2 

c4 = G13 + G12 - Gz3 

c5 = G12 + G23 - %3 

'6 = G23 + G13 - G12 

E2 3 E1 
c, = 7 v32 '31 3 + '21 5 > 

El y 
3 

E3 
E 
A+, E2 

c9 = n '31 '21 E3 32 3 

A-- 4 

(A-6) 

(A.7a) 

(A.7b) 

(A.7c) 

(A.8a) 

(A.8b) 

(A.84 

(A.8d) 

(A.8e) 

(A.8f) 

(~.8g) 

(A.8h) 

(A.gi) 

336 



I and 

2 
' = ' - v21 

E1 
21 '31 '32 q " 

Equation (A.6) can also be written in the matrix form similar to 

(A.4). The components of C.. 
UPq 

can be obtained from (A.5) by simply 

replacing Si by Ci given in (A.8), i=1,9. 

It should be noted that there are some restrictions in the 

engineering constants El, E2, Vzl, etc., and they are given by Jones [19]. 

The anisotropy ratios r.. used in the text can be obtained 
iJPq 

from (El Sijpq) by replacing 

E1 
r by r2 

3 

E1 1 
(- 

1 1 
-?- G12+c-- G23 

by r3 

El 1 
2 (- G23 

bY r4 

1 1 -- 
+ G23 - q; 

v31 by =31 

'32 by =32 

The inverse r 
-1 is obtained from C/E, via the same procedure. 

(A.91 

(A.lO) 
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LINEAR STABILITY OF SHEAR FLOW OF A VISCOELASTIC FLUID 

Yuriko Renardy and Michael Renardy 
Mathematics Research Center 

University of Wisconsin 
610 Walnut St. 

Madison, WI 53705 

ABSTRACT. The stability of plane Couette flow of an upper convected 
Maxwell fluid is investigated using a numerical method. No evidence of 
instabilities has been found. The essential features of the linearized 
spectrum, as well as those of the numerical approximation, which can lead to 
artificial instabilities, are discussed. 

INTRODUCT ION. While there is a fairly comprehensive picture of the 
stability of parallel shear flows of Newtonian fluids, little is known about 
viscoelastic fluids. Experimentally, instabilities of flows of polymers are 
observed in a variety of geometries , even though the Reynolds number (a 
measure of the effect of inertia) is small. These instabilities are caused by 
the elasticity of the fluid , which is measured by another dimensionless 
parameter, called the Weissenberg or Deborah number. There seems to be 
considerable controversy over the precise origin of these instabilities, e-g- 
whether they are a feature of parallel shear flows or originate in inflow or 
outflow regions: for a review of experiments and various attempts at 
theoretical explanations see [2] l 

Denn a+ his coworkers [I], 131, (51, have investigated the linear 
stability of plane Poiseuille flow of an upper convected Maxwell fluid. In 
the Newtonian case, this flow becomes unstable at a critical Reynolds number 

Rc - 5772 . Porteous and Denn [31 found that a small amount of elasticity 

decreases the critical Reynolds number to values of 1000-2000 when the 
Weissenberg number is increased to 1. At higher values of the Weissenberg 
number, they experienced numerical difficulties. These results prompted the 
conjecture that further increase of the Weissenberg number may continue to 
decrease the critical Reynolds number , and that there might ultimately be 
instabilities even at very low Reynolds numbers. While Rothenberger, McCoy, 

and Denn [S] claimed to have found such instabilities , a later study by Ho and 
Denn [ll indicated that these were .an artifact of the discretization, and no 
evidence of real instabilities at low Reynolds number was found. 

In this paper; we look at linear stability of plane Couette flow for 'an 
upper convected Maxwell fluid. In contrast to Dsnn and his coworkers, who 
used a shooting method to compute individual eigenvalues, we use a spectral 
method and a matrix eigenvalue solver to compute the whole spectrum of-the 
problem. In this way we can obtain a more comprehensive picture not only of 
the spectrum of the continuous problem, but also of the behavior of the 
numerical approximation and of the origin and nature of artificial instabilities. 

Sponsored by the United States Army under Contract No. DAAG29-80X-0041. 
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II. FORMULATION OF THE PROBLEM. We consider the flow between two 
parallel plates moving in opposite directions with equal velocities. The 
direction of the motion of the plates is the x-direction and the direction 
perpendicular to the plates in the y-direction. We non-dimensiondlize the 
problem in such a way that the plates are at y = 1 and y = -1 and move in the 
x-direction with velocities +l and -1, respectively. The equations of the 
problem are the equation of motion 

h.l 

R[e+ (1 l v,y] = -vp * divg 

div u = 0 , * 

and the constitutive relation for an upper convected Maxwell fluid 

2 + w[jf + (2 l VIZ -  (Vu)2 -  - -  gvgT] = vu + (V;lT .  

(21 

Here R is the Reynolds number and W the Weissenberg nurrber. Plane Couette 
flow is the trivial solution 

u= (y,O) I  2 = ( “ :  ; ,  l 

(3) 

We linearize at this solution. Since Squire's theorem holds for the upper 
convected Maxwell fluid (61, only two-dimensional disturbances need to be 
considered. we separate variables and look at disturbances proportional to 

,iaxeut , and we express the perturbed velocities in terms of a stream 
function. The resulting eigenvalue problem is [31 

$(4)+ b 3 (Y)@ I*' + b2 (y)+",+ b, (Y)#J' + b. (Y)+ 

- SR(yia + u)(+“- a2+) , 
(4) 

where 

and 

s~l+iawy+wo, 
(5) 

b3(y) = 2 s’(ss- ‘) , 

b2W =.-202+ 2 F2(S - 1J2 

s2 ’ 

b,(y) = -2a 
S’(S - 11 _ 4 &(S - 1) 

S s2 ‘\ 
(6) 

2 s2(s2+ 1) + 4 S’ 
4 

ho(y) = a4- 2a 
s2 pi’ 
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S' = $ = iaw . 

The boundary conditions are 

9 7 9’ =0 at y=*l. 

For the numerical treatment, we multiply (4) by S2 and expand 9 in a series of 
Chebyshev polynomials. This leads to a matr;x eigenvalue problem of the form 
det (A - UB) = 0 , which was solved by the NAG routine F02GJF. In our 
computations, we used between 24 and 60 Chebyshev polynomials. 

III. Discussion of results. Before discussing our numerical results, we 
outline some features which can be obtained analytically. For S = 0, the 
equation has a singular point. This leads to a continuous spectrum given by 

s=o-u= - + + iay , y e [-1,ll m (8) 

If S f 0, the equation is regular , and eigenvalues are isolated. An exact 
solution to the problem can be obtained in the limiting case a=O. If we 

assume S # 0, we obtain (p)= uR(1 + cW)$" = ru*$" o (9) 

The eigenvalues Q* are real and negative and tend to -0 . we have 

-1 f ‘r + 4 # CT* 
U= I (10) 

2w 

and we can conclude from this that, except for a finite number, the 

eigenvalues have real part - 4 . Even for a # 0 , a foxmal asymptotic 

argument assuming U large and very oscillatory eigenfunctions leads to the 

conclusion that the real parts of the eigenvalues should tend to - 2 
l 

asymptotically. The Newtonian eigenvalues are recovered from (10). if R IU is 

small. That is, the spectrum looks more Newtonian if W is small and R is 
large. 

The numerically computed eigenvalues reflect these overall features. No 
evidence of instability was found in the parameter range where we could obtain 
converged results. For W in excess of about 5, round-off errors caused 
substantial problems, which we hope to overcome in the future by using higher 
precision arithmetic. For the Newtonian case, it is known that plane Couette 
flow is always stable 141. 

The presence of a continuous spectrum suggests the possibility of 
eigenvalues which either bifurcate from it or approach it in certain limits. 
Such eigenvalues were indeed found in oux calculations. In the following 
table we have R = 1, a = 1 , and we show one of the eigenvalues as a function 
of w. 
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W Flea ala 

2.0 -0.370 f0.774 

1.7 -0.460 f0.740 

1.5 -0,543 f0.730 

1.2 -0.722 f0.703 

1.0 -0.900 f0.687 

0.5 -1.94 f0.655 

0.2 -4.97 50.646 

Clearly, the real parts approach - i asW+O. 

It is interesting to look not only at converged results, but also at 
the behavior of the numerical approximations. It is well known that the 
scheme used here leads to "spurious" modes, i.e. to eigenvalues of the 
discrete problem which are pure artifacts of the discretization and do not 
approximate those of the differential equation even in a qualitative sense. 
In our calculations, we find four such spurious eigenvalues; they can be 
stable or unstable. The following discussion is concerned with the remaining 
eigenvalues, which approximate either the discrete or the continuous spectrum. 

Since the scheme we use is infinite order accurate, a number of 
eigenvalues in the discrete spectrum are approximated very well provided we 
use a sufficient number of Chebyshev modes. As the imaginary parts of the 
eigenvalues increase, their real parts first approach - g , reflecting the 

behavior of the continuous problem. However, foi eigenvalues with large 
imaginary parts, the accuracy of the numerical approximation deteriorates, and 
the real parts of the computed eigenvalues move away from - 4 . If W is 

sufficiently large, they may become positive, thus leading to artificial 
instabilities. It is not clear that using more Cbebyshev polynomials will 
remove those artificial instabilities: For any fixed range of linQ , the 
approximation is improved, but at the same time, eigenvalues with higher and 
higher imaginary parts are introduced, and the instability may just be shifted 
to those higher modes. 

The continuous spectrum extends from - i- ia to -;+ ia. Since the 

infinite order accuracy of the method applies only to isolated eigenvalues 
with C" eigenfunctions and not to.the continuous spectrum, the approximation 
is relatively poor. It is better near the ends and worse towards the 
middle. For high values of W and/or a , this leads again to artificial 
instabilities. Since these artificial instabilities occur near Inu = 0 , they 
are particularly damaging if one tries to use this kind of scheme for 
transient calculations: Unstable eigenvalues with large imaginary parts, such 
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as those resulting from the numerical approximation of the discrete spectrum, 
can be stabilized by using appropriate time discretizations, but this is not 
possible for eigenvalues close to zero. We suspect that the artificial 
instabilities found by Denn and his coworkers (11, [S] also result frun poor 
approximations to the continuous spectrum. 

As expected, the quality of the numerical approximation deteriorates with 
increasing W. Also, at the same time, the potential for artificial 
instabilities is increased due to fact that the real parts of the eigenvalues 

are proportional to - $ , i.e. there is less to "spare" if you want to remain 

stable. Higher Reynolds numbers tend to improve the features of the numerics. 

Calculations of steady flows of viscoelastic fluids have so far had 
remarkably little success. There have been suggestions that flows could be 
computed by integrating the equations forward in time and waiting for the 
calculations to settle down to a steady state. The feat&es found in this 
study suggest that great caution is advisable with this approach. We found 
artificial instabilities resulting not only from spurious modes, but also from 
poorly approximated ones, and similar problems were encountered by Denn with a 
different numerical scheme. It remains an open question as to whether schemes 
can be constructed to avoid such problems. 
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EFFECT OF A WALL ON THE LIFT FORCE 

Donald CI. Drew 
Department of Mathematical Seirncrr 

Rensselaer Polytechnic Institute 
Troy, New York U.S.A. 12180-3590 

Introduction I- 

FarticXe--+luid flows occur in filtration processes and wear 
a.qd erosi on. Particle motion near a wall is a romplex 
question. Whether a particle actually touches a wall is 
complicated by short range forces and in homogeneities in 
geometry and materials;. A particle must first move through the 
iluid before short range forces dominate. For this reason, we 
stud-y the forces on a particle moving in a shearing fluid near a 
wall. 

In this paper, we derive the forces on a spherical particle 
in F'oiseraill~! flow in a channel, accounting for the inertial 
force on the parti.cle due to the presence OS the waT1. We use 
the method of Fourier transform, first used by Childress (19&4) 
for this type of inertial force calculation. It was applied ta 
shear f .lows by Saffman C19&4r. The method was generalized to 
ggnet-al shapes by Ha.rper and Chang (19681, and to straining and 
rotating flows by I?rew (19781. 

Equation of Nation 

The equations of motion for a sphere moving near a wall in 
an incompressible viscous fluid of density p and viscosity u are 

in R(t) 9 which is defined to be 

Here v is the velocity of the fluid, p is the pressure, 

r = 
p-19 r2t r3> is the spatial position, t is time, cp is the 

center of the sphere9 and a is the radius of the sphere. We 

assume rp31t) = d(t) 1 a, so that the sphere does not intersect 

the wall. 

This work was supported by U.S. Army Research Office Contract 
QAAG25’-82-K-0185 



The bolundary condltionc, s-e 

sphere- The equations of matinn for the s;pher::? are 

1Je shal.1 call eq. (8) the outer solution. Thj 5 flow xc, 5tea.dy. 
Note that this solution dr3ec, not satisfy t.he boundary condi ti on5 
at the particle surface. 

Inner Flow - 
Let L?S ‘consider the irwx problem. The vE?loicity is zraled by 

% = aidIO1, and Re = NJa. /en. We shall refer to Re a~. the 
Reynolds number, and a’ss.ume that K and Re LL 1.. 

Note that the flow is unsteady due to the relative motion of 
the wall and the changing motion of the fluiti far from the 
sphere, as viewed frum the sphere. The m&ion of the 
courdinate system is assumed slow, so that we can neglect t!7e 
nan-inertial acceleration5 C@uriali5 farce, centripetal force), 

The imposition of the wail boundary condi?:ian depends ok;- 
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the sire of K. If K = O(l), then the wall influences the 
flow (and hence the motion of the sphere) strongly. For 
smaller e, we must ascertain whether wall effects or other 
perturbation effects are more important. 

For small K, the solution the inner problem is given 
by Brenner (1964). The details are omitted, but the salient 
features will be summarized here. The force and torque on 
the sphere are given by Faxen’s laws. 
The force is 

If we assume no net torque on the sphere, we have 

The inner- flow is equal to the outer flow, plus a Stokeslet, 

plus terms which decay faster than }zi I-’ as Ici 1 -) m. 

Inertial Reqion 
Let US consider the flow on a scale between -the inner and 

outer. Harper and Chang (1968) give a careful explanation of 
the balances which must occur. In this region the appropriate 
Reynolds number is one based on the velocity gradient, 

Roughly, on any length scale between a and a Re,-i/z, the flow 
consists of the outer flow, plus a Stokeslet, to lowest order. 

For length scales between a Res-I/” and L, the flow is the 
outer fluw, to lowest order. A critical balance occurs 

on a length scale equal to a Re,"'. At this scale, inertia 

contributes a perturbation in the flow of order Re, 
1/z! D which 

i/2 
by virtue of Faxen’s laws, give an O(Res ] contribution to 
to the force. 

The approximate equations valid in the inertial subregion 
are 

v-v = 0 (12) - 

[ 

i)V 

pus r3 < + v3ei 
1 

= 
- vp + uv2v - (1.3) 

V =Oonr3 =-d . (14) 

Where Us = B dr i- (d - &I , and for convenience, we have translated 

the origin to tl& sphere center. The solution must match to the 
Stokeslet from the inner solution. 

We car! alao see the relation between the distance from 
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boundar:q and the inertial force. If d RE?~~‘+ LL a Lk d9 the 
inner flaky L'~~e~L1 the bnundary. ‘The i,~ner pr0b1 em may 5~ 
solved by perturbati c)n m~lthnds cca?: and HzLr 1477). If a L.e 

d F;E?g2, the inertial rcx-r’ectiar-: due ta this InertnEt flow will 

occur at OCRe,) "' and will dominate the OCK:) corrections. In 
-this case.! the anaPysi5 of Saffman 11965. i9681, generaiized by 

Harper and Chang i1468! gives the CrrRe,l"' correctior! to the 

f clrce. When a = OCd F&,1/Z), the force can be computed from 
<12-141. To compute the durce zn the sphere, we must compute 

the induced velocity at the origin. Then 

F = hacaaviIO). IlSi - - 

Harper and Chang Cl9681 7 fcllowing Saffman C1965; 19&B) ‘1 
+cund the sclution to i12-1.31 in the infinite domain. Their 
5oluticn aL5c matches to the Stokeslet .at r = 0. If we der:ate 
the c,olution in the infinite damair! as ~as-p,,y and write 

~ii=--voonr3=-d ? (IQ) -_ 

whet-e we drop the prime an r and d. - 

If we apply a Fxc-ier transform in ri and r2, we have 

where e = (r-1, If Fourier transforms 

are taken of (17,181 T and the pressure transform xi is 
eliminated, a differential equation can be derived for the e, 
component of r,. It is this velocity which gives rise to 
transverse, or lift forces. The equation is 
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The i:-rtegrals involved in-! ginding ri3 and subsequently F, 
have been approx i mated numberically using NAG library routine 
wi til truncation. T-he calculatiuns were expensive and -required 
large amount5 of compute?- time and memory _ We specu1 ate 
whether a mot-e direct appt-oath might have been better. The 
resi.kl t. fcr F = Fif.tav, 3 CC?> is shown in Figure 1 as a func-Lion 
of d. The total ii it fur-!:e is obtained by adding (271 and 

appropriate value from Figure 1, 
1/2 

and multiplying by (Re5;) . 

Conclurionr 

The li+t force due to the slip-shear interaction is 
enhanced ik~y the presence 0-E a wall. The rantribution due to 
the wall, shown in Figure 1, decreases lriith distance from 
the wall. The wall correction is quite small compared with 
the the slip-shear interaction force at moderate distartces 
from the wal! t d = 13Ca t3~-~/‘)). 
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Figure 1. Oimensionless wall-induced force versus 
dimensionlejs distance from wall. 
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The above anal,ysi c, presumes a forte F on the sphere in 
axial direction. If no force act-s an the sphere, the 
analysi5 gives a force of zera to the order computed, si:lce 
the Stakesjlet contribution in the inner flow is zero. With 
Fi = 0 and Ti = 0, the next contribution to the force is the 
strainlet (Schonberg, Drew and Eelfort 19851, This alters 
the matching condition as r i 13 for eqs. (17) and (la>, 
and leads to aCRe3/2) corrections CLin, Feet-y and Schowaiter 
1970). 
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TllE EFFECTS OF NON-SPI~I~RTCITY AND RhDIATIVlf ENl?KGY LOSS ON THE 
MIGRATION OF THE GAS BUBBLE FROM UNDERWATEK EXPLOSIONS 

K.C. Heaton 
Weapon Sys terns Set tion, Armaments Division 

Defence Research Establishment Valcartier 
P-0. Box 8800, Courcelette 

Quebec, GOA 1RO 

ABSTRACT 

One of the more important phenomena associated with the upward 
motion of a gas bubble from an underwater explosion is the significant 
departure from spheticity near the times of the minimum bubble radius. 
Neglecting this change in shape results in the prediction of a much 
faster upward velocity, than actually occurs. The inclusion of this 
effect in the equations of motion has been exceedingly difficult be- 
cause of the large magnitude of the departure from sphericity. 

In this work, the shape of the bubble is described by an ellipsoid 
whose axes are allowed to vary independently, thus modelling, to first 
order, the changes of bubble shape. The Lagrangian equations of 
motion, Incorporating the effects of the change of shape and of energy 
loss by the radiation of sound, are derived and solved for the case of 
a spheroidal bubble. The results of these calculations for various 
initial conditions are compared with analgous cases for a spherical 
bubble. 

It is found that the spheroidal bubble model pred:Lcts a reduction 
in the upward translational motion of the bubble of a factor of approx- 
imately 2. A comparison of the predicted upward motion of a spheroi.dal 
bubble produced by 227.27 kg. of TNT detonated 46 metres below the 
surface shows good agreement with that which has actually observed. 



I. INTRODUCTION 

The formation of a bubble OF gaseous detonation products always 
accompanies an underwater explosion. This bubble rises toward the 
surface of the water, responding as it does so to the change in the 
external pressure distribution with oscillatory motion, during the 
course of which it loses some oE its energy through the emission of 
sonic pulses. Although the bubble is initially spherical, the effect 
of its upward motion is to distort it into a non-spherical shape, which 
becomes most pronounced in the neighbourhood of the minimum radius. 
The alteration in the bubble's shape further affects both the pulsa- 
tions and the upward translational motion of the bubble. By means of 
finite element techniques, the equations of motion of the bubble can be 
solved, taking into account the effects of the changing shape of the 
bubble, although the amount of computing time required by this method 
limits its utility. Finite element methods have a further disadvantage 
in that physical insights into the systems considered are rather more 
difficult to come by than might otherwise have been the case. 

Herring (1942) and others (eg. Taylor (1942) and Shiffman and 
Friedman (1944)) have treated the problem of the motion of the bubble 
by considering it to be a perfect sphere throughout its entire motion. 
This treatment yields values for the periods of radial pulsations OF 
the bubble which are in good agreement with experimental data, but 
predicts a much more rapid movement toward the surface than is actually 
observed. This arises because the largest upward velocities of the 
bubble occur at those times when the bubble is near its minimum radius; 
it is precisely then that the largest departures from sphericity occur. 
Penney and Price (1942) and Ward (1943) included the effects oE the 
non-sphericity of the bubble on its motion. However, it was always 
explicitly assumed in their derivations OF the velocity potential of 
the flow about the bubble that the departures from sphericity are 
always small. Accordingly, their equations are not applicable near the 
times at which the bubble is at its smallest volumes. 

Hicks (1972) was able to bring the value for the upward transla- 
tional velocity of a spherical bubble at a minimum radius into agree- 
ment with experimental data by adding a drag term to the equations of 
motion.' In his formulation, the drag coefficient is an empirical 
correction whose value is chosen to make the predicted rate of rise at 
the first minimum radius consistent with observation. However, a 
different drag coefEicient must be selected for each charge mass and 
depth, requiring a comprehensive data base Erom which the appropriate 
value can be chosen for each case. For these reasons, a model for the 
bubble in which large deviations from sphericity and their effects on 
its translational motion are treated would be of considerable practicai 
and theoretical interest. 



III this work, a Lagrangian is derived for a bubble whose shape is 
not constrained to be always spherical but may become ellipsoidal as it 
moves upwards. The equations of motion for a general ellipsoidal 
bubble, incorporating the effects of loss of energy by radiation, are 
presented. The algorithm by which these equations of motion were 
solved numerically is briefly discussed. Computational results for 
some charge masses and depths are presented and compared with 
experimental data. 

II. REVIEW OF PREVIOUS WORK 

Taylor (1942) derived equations describing the motion of a 
spherical bubble of gas undergoing both radial pulsations and 
translational motion toward the water surface. These are: 

= Y, - E(a) 

where a is the radius of the bubble as a function of the time t, U its 
upward velocity, 2 the position of the bubble below the pressure datum 
(i.e. below the zero pressure level), E(a) the internal energy of the 
gas comprising the bubble, g the gravitational acceleration, Yo the 
total energy of the bubble and p the density of the water. In Taylor's 
formulation, there was no mechanism included for energy loss, and hence 
Y, was taken to be a constant. For TNT explosions, it has been found 
(Herring 194%) that approximately 50% of the total explosion energy is 
retained by the bubble; in that case, 

YO 
= (1.85 x 101')?l L PJI 

where Y. is measured in ergs, and M, the original mass of the explosive 
charge, is given in gm. If one assumes that the gaseous explosion 
products obey the ideal gas law, then the internal pressure, P, is 
given by 

TJ = k(pg)y [2.4j 

where p is the density of the explosion products and y the ratio of 
speciEiF heats. Assuming that the entire mass, N, of the explosive has 
been converted to gas, 

% 
=-L+ 

tq, a 
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E(a) = 7 PdV 
n 

kyy =I a-3( y-1 > 

(y-1) (4, 
y-1 

where dV = 4&da. Taylor, using the work of ..Jones, set 

k = 7.83 x l$ 

P-61 

WI 
y = 1.25 

for TNT where, in eq. [2.t;], ~(a) is measured in ergs and m in gm. 

Hicks (1972) incorporated a drag force, FJ,, into the equations of 
motion, where FU is given Ly 

FD = + CgLpa2U2 [2.8] 

and the value of the drag coefficient, CD, was chosen to be C D = 2.25 
in order to bring the distance travelled upward by the bubble at its 
first maximum into agreement with that actually observed for 500 lbs. 
of TNT detonated 150 Ft. below the surface. 13~ differentiating cq. 
[2.2], he obtained the rate of change of momentum with respect to time. 
The incorporation of FJ, into the equation of motion yielded: 

&a%) = 2a3g - $ CJja2U2 P-9 1 
L, the Lagrangian oE the bubble, is gfven by 

2 
L x 2npa3 ($f) + f pa3U2 - %a3pgz [LLO] 

- E(a) 

Hence, a more general form for the equations of motion of a 
spherical bubble is given by 

where i = *, d = g = -U, and the Qi are the generalised dissipative 
forces. 
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The dissipstlve drag Force, Q,, is given by FD in eq. 12.81. It 
has previously been shown (Heaton 1984) that Qa, the generalised force 

Ear dissipation by radiation of sound, is given by 

Q, = -16n,,a2 $ - L 1\-Qa 
CS 

[2.12] 

where 

AQ, = h*pn2[4S + (a% '/a ] [2.13] 

2 . . 
a = 2, and Cs is the speed of sound in the water. 

The terms contained in AQ, are analogous to the radiation reaction 
terms in electromagnetic theory, and hence can be ignored in a first 
approximation, although this approach will underestimate the energy 
loss near the minimum r:ldius, and overestimate it elsewhere. 

Ward' (1953j aud Penney and Price (1942) derived equations of 
motion for a nearly spherical bubble by expanding the velocity poten- 
tial, a, of the f7.ow about the bubble 1n terms of the Legendre poly- 
nomials, P,, thusly: 

@=++B1~ pl(cclsQ) _ p2(cos9) + l . ,  

’ R2 7 

[2.14] 
r 

where the coefficients A, BL and B2 are functions only of time. They 
further assumed that the radius vector, R(t), from the centre of the 
bubble to a point on its surface could be written as 

R(t) = a + b2P2(cos8) + b3P3(cos8) + . . . 1:2.x] 

where a, b2, and b3 are functions of time only. 4t the surface of the 
bubble, 

s = - (g'R - u case [2.16] 

= 2 + 2 5 Pl(CO"O) + 3 3 P*(cos9) 

of the Tependre ,b:$!k;t" eq* 
Substituting eq. [2.16] and equating the coefficients 

.J u 2 on both sides of the equation yields: 
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At the surface of the bubble, the pressure must be uniform and eq~ral to 
the internal gas pressure. Using Jkrnoul1.i'~ equation, this condition 
can be written as 

is= - gllcose + g&R - $-(6Q2, = 3pg)Y [2.18] 

If one substitutes for CD and R in eq. [2.18], 
[2J5], 

using eqs. [2.14] - 
multiplies the resulting equation in turn by each of the 

Legendre polynomials, and then integrates over coe.8, the orthogonality 
relations among the Legendre polynomials produce 4 differential equa- 
tions : 

gz i- a&) + 4 (g)2 
2 

dt2 
- f" + O(lJ4) = ;(p,)y - 

+j & (a3U> - 4 3 dt' f 0(rJ3) = ga', j 0 d 
[2.19] 

dB2 
fat-- 

3B% da 3 U2 
-;rYE+5 

1. d2a 3B2 ' 
-;Ts oy2-dK 5 

4- O(!J3) == 0, 

1 A 483 
- y-z z2 : 0 7 

dt' + O(U3) = 0 

Ward (1943) has estimated the value of b2, which measures the depar- 
tures from sphericity, in eq. 12.151, and found that it remains small 
until the bubble begins to contract. Near the bubble's minimum radius, 
b2 becomes greater than a, making the whole calculation invalid. 

III. EQUATIONS OF MOTION FOR AN ELLIPSOIDAL BUBBLE 

Now, let a, b, c be the semi-axes of an ellipsoid along the x, y, 
z axes, respectively, for a co-ordinate system whose origin is at the 
centre of the ellipsoid. Let the ellipsoid be immersed in a fluid of 
Cufinite extent, and let one of the axes, say a, vary with respect LO 
time. At any instant Ln time, the equation of the ellipsoid will be 
given by 

[OJ] 

The velocity potential, CDT,, for the flow about the ellipsoid is 
given by the solution to Laplace's equation, 
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L&J= 0 

with appropriate boundary conditions. Since the problem obviously 
possesses eliipsoidal symmetry, it is most convenient to transform to .-- 
ellipsoidal co-ordinates, thusly: 



y’2 = w*.$y, 

,2 = ~c*+?&*i-,~f 2 c +v 
CC & 2-a2)(c2-b > ' 

L-1 

where A, p, v, are the ellipsoidal co-ordinates. The surfaces defined 
by h = constant, n = constant, v = constant, are confocal quadrics. 
Recause oE the symmetry &ich exists in the transformation equations, 
eq* L3.31, one is allowed to specify which co-ordinate's constancy will 
yield conEoca1 ellipsoids. Throughout this paper, then, the relation h 
= constant will be taken to describe the family of confocal ellipsoids. 
In ellipsoidal co-ordinates, Laplace's equation,+eq. L3.21, is given 
by: 

+ (A-p)(kv &12@ = 0 

where kA is given by 

and the expressions for k 
symmetry. IL 

and k h can be obtained from eq. [3.5] by 

Now, let a be a solution to eq. [3.4], and let another solution 
be given by 

a = ax(h) WI 

where x is a function of A o-nly. 
WI, 

By substituting eq. [3.6] into eq. 
one finds that a must have the form 

a = '*hf(p,v) C3.71 
where aA is a function of A, only (Milne-Thompson 1949). Using eq. 
[3.6] to aid in the solution of eq. [3.4], one finds that 

x(h) =A!+-+B 
ahkh 

where A and B are arbitrary constants. Hence, if cr is a solution to 
eq- [3.2l, 
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is also a solution. The solutions to eq. 
[3-g] are the ellipsoidal harmonics. 

[3.4] having the form of cq. 

In the case of the spherical bubble, Taylor and HerrIng assumed 
that its pulsation6 would be described by simple radial occillacions. 
Since a sphere 16 a degenerate ellipsoid, it would be reasonable to 
choose a6 a Bolution to eq. [ 3,4 the ellipsoidal harmonic which pro- ] 
duces analogous oscillations. Such a velocity potential is: 

#=A [3.10] 

mince a = 1 is a solution to eq. [3.4]. The upper limit of the inte- 
gral hash been chosen in order that the potential become 0 at an 
infinite distance from its source, The constant of integration A is 
determined by the boundary conditions. Now, the boundary conditions 
for a pulsating ellipsoid are not as obvious as those for a sphere. 
Nonetheless, it seems apparent that at that point on an axis which is 
on the surface of the elliipsoid, the normal velocity of the fluid must 
be equal to the rate of change with respect to time of that axis. 

I.1 e n c e , for an ellipsoid in whicllonly one axis is allowed to vary, 
say a, 

g,--i ,, 
x=a 

[3.11] 

where A -da l?kLTp l n Is the normal derivative of the potential, and 
“n is the un k’o%ward normal to the ellipsoid. f 
coordinates, eq. [3.11] can be written as: 

In ellipsoidal 

p.123 

where the potential Q is given by eq. [3=10]. 

Now, at x=a, y=o, z=o 

A=0 

r-b; 

v--c 

and 

kA = abc 
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[3.15] 

The kinetic energy of the fluid around the ellipsoid is given by 

[3.16] 

c3.173 

where the integral is 
by eq- [34, 

carried out over a bounding ell.ipsoid described 
and over a second outer boundary which Is obtained by 

allowing h in eq. [3.3] to approach infinity, essentially describing an 
infinitely extended ellipsoid. The contribution to eq. [3.17] from the 
large ellipsoid vanishes, leaving only that at the inner surface i.e. 
the bubble itself. The E'rlrface integral can he transformed into one 
over the x-y plane, thusly: 

[3.18] 

where 2 is the unit normal along the z axis. The unit normal, 2, to 
the surface of the c1Lipsoi.d is given by 

h I1 = 

fn the ellipsoidal co-ordinates, 

where 

h; = l 
2 2 

T (&2 + (L..+hj2 + y-&p) i2 

So, at the surface OF the ellipsoid, h=o, 

[3.20] 

[3.21] 

llsing eqs. ]:3.16], (3.151, (3.191, and [3.22] and taking account of the 
contributions from the half surfaces above and below the x-y plane, eq. 
[3.17] becomes 
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[3.23] 

where 

13.241 

Evaluating eq. [3.23] finally yields the expression for the. kinetfc 
energy, T, of the flow about an ellipsoid, described by eq. [3.1], when 
the semi-axis a is allowed to vary with respect ts time: 

[3.25] 

Since the equations are symmetrical with respect to all. three semi-axes, 
it is possible to obtain expressions for the kinetic energy of the flow 
about an ellipsoid when each of the other semi-axes are varying b:: means 
of cyclic pemutations of a, h, and c, thusly: 

T = qp2b2;2 

where 6 = g and E = g . 

[3.27] 

H@llC@, by adding eqs. [x253 - [3.27], and renormalizing, one can 
obtain the kinet-lc energy, T, for the flow around an ellipsoid when all. 
three axes are al.lowed to vary In time: 

[3,28] 

The normalisation factor 3 has been chosen so that eq. [3.28] is in 
agreement with the term for the kinetic energy due to radial spherical 
pulsations in eq. [2.1] when a=b=c and &6=;. 

hs mentioned above, it is not en.tirely clear what sort of boundary 
conditions are applicable at the surface of a pulsating ellipsoid. In 
fact, the specification of boundary conditions when all three semi-axes 
are varying is equivalent to putting constraints on the interactions 
among A, $9 and E, which, in turn, is equivalent to specifying which 
shapes the bubble will be allowed to assume. Equation [3.28] corre- 
sponds to a velocity potential which has been so constructed that the 
velocity cross-terms in eq. [3.17] cancel out. Since i, 6, and c, are 
all mutually perpendicular, this seems physically reasonable. ThLs has 
the effect of insisting that the movement oE a point on an axis of the 
ellipsoid is due only to the c!lange in length of that axis, with the 
changes in the lengths of the other two axes contributing nothing. 
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The velocity potential sssociated with the purely transLationa 
motion of the ellipsoid along the z axis is well known (e.g. Milne- 
Thompson 1949). The boundary condition is 

-3) h=o 
= ucoso, [3.29] 

where, dz _ l as before, -U = dt - z, 0, is the angle between the z axis and 
the normal to the surface of the ellipsoid, and z is the position of the 
bubble centre below the pressure datum. Since 

cos0, = 6 ff )h=o [3.30] 

eq. [3.29] becomes 

E jhzo = -lJ % lhco [3.31] 

The solution to eq. [3.4] which satisfies the boundary conditions 
in eq. [3.31] is the first order ellipsoidal harmonic given by 

where C is a constant of integration. Direct substitution of eq. [3.32] 
back into eq. [3.31] yields 

c-p$u [3.33] 
0 

where 

The kinetic energy of the flow around a translating elLipsoFd is then 
given by: 

= k) pu2 II z cos0,dS 

= 3 abcp (&)u2 
0 

As before, the integration is carried out over a bounding ellipsoid 
whose semi-axes are a, b, and c, and over orle whose semi-axes are 
allowed to extend to infinity, where the contribution from the outer 
ellipsoid vanishes. Hence, the kinetic energy for the flow generated by 
a transLating ellipsoid whose semf-axes are varying in time is given 
by: 
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[3.363 

Equation [3.36] has no provision ior t'ne interacti.on of A, 6, or t with 
TJ. Again, this is not unexpected since eq. l3.353 should yield the 
kinetic energy terms in eq. [3.1], as it does in fact do, when a=b=c and 
I;=&;. Physically, as long as the bubble is symmetrical with respect to 
the x-y plane, the contributions from the top and bottom halves to a 
coupling of the oscillatory motion with the translational exactly cancel 
each other. 

The energy, VP, associated with the hydrostatic pressure around 
the bubble is: 

VP = 3 pgabcz 

The internal energy of the bubble, Efa,b,c), is given by 

e(a,b,c) = ii-$? -(-f-l) b-c y--l> r-( 'f-l > -A-_ 

(y-1 )(q, 
y-l [3.x) 

Hence, the LagrangLan, L, for the Flow around an ellipsoidai 
bubble whose seni-axes are A, b, c, at a depth z below the pressure 
datum, where the z axis is parallel to tile ellipsoid ~1x1s c, and which 
is moving with a translational velocity II = - g is given by 

L = 3 p(;;2,,2c2 + a2&.2 + a2b2;2) 7 did 
0 % 

+ 2.f pabc (&-)TJ2 - 3 pabcgz 
0 P-39 1 

kMYa-( Y-l) b-(-f-l) c-( r-l) - --- 

The total energy of the bubble, Y(t), at any time t is therefore 
given by: 

Y(t) = 3 p(i2b2c2 t- a2A2c2 C a2b2;2) $ $$ 

+ 3 pabc(&-)U2 + 3 pabcgz 
0 

[3.40] 
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where the Qi are the generalised dissipative forces. 

The substitution of eq. [3.39] into eq. [3.41] results in: 

aI 
+ (2c2bIo -I- b2c2 8):s + (2b2cIo 

+ b2c2 aI0 l * 

&a” I  

e 

+ ff p(si2b1c2 
ar 

f a2G2c2 + a2b2;2) e 

+ h p(ac2b2 + ab2E2)I 3 0+ 9 pbcf(a,)G2 

3f(n > 
+ q pabc -& z 

2 
-3 PSbCZ 

+ (y-l) Ka-Yb-(y-l),-(y-l) + Q,, 

31 
-C ( 2ac21, + a2c2 -y$)AS + (2a2cIo 

+ .2=2 a10 
&6E] 

+ 3 p(;2b2,2 + a262,2 + a2&2) 2 

f 3 p(bc2i2 + ba2c2)-Lo + 3 pacf(ao)12 

3f(a: I.2 
+ 3 pabc -& z - 3 pgacz 

+ (y-l)Ka -(Y-l)p&-k~> f Qb, 

[3.41] 

[3.42] 

[3.43] 

3 pa2b210’G = 
aI .2 

- 2+ p [a2b2 & c 
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Wa,) .2 471 
+ %j pabc ac z - 7 mabz 

+ (y-l)& Y-l) \,-( Y-l) c-Y -+ Q 
C’ 

. . 
a  = d2a 

dt=' 

. . pd22 
dt2' 

[3.44] 

/3.45] 

[3.46] 

In order to compl.cte the derivation OF the equations of motion of 
the bubble, it is necessary to deternine Qa, Qb, f& and Q,, the general- 
ised dissipative forces associated with the radiation of sound by the 
bubble. Now, at distances large compared tiith the scal.e of the bubble, 
the Form of the velocity potential, ip, in the fluid will be identical 
with that of a spherical bubble. Hence, 

3 = -  $ + A  l $(1/r) [3.47] 
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where C and x are constants which depend only on tlw time t. r is the 
distance to the fLeld point from an origin located somewhere within the 
bubble. 

Following the development given by Landau and Lifshitz (1966), in 
the wave zone, 

where 0 is the angle between the direction of the translational motion 
and r, and the retarded time t' is .given by 

t’=t-r 
cS 

where CS 
3, of tt 

is, as before, the veloci.ty of sound in water. The velocity, 
ie water in the wave zone must therefore be given by: 

[3.50] 

+ . . . 

where terms of higher negative order in I! have been neglected. The 

total energy emitted as sonic radiation per unit time, E is then: 

dE=- 
dt pCs jI (+@bdS 

2 

where the integral has been taken over a sphere of radius t (Landau and 
Lifshitz 1966). 

5' 
To a good approximation, the term in eq. [3.51] proportional to 

can be neglected for low translational velocities, since it will be 

2 orders of magnitude smaller than that proportional to CsB1. 

Now, the volume ~TIC of fluid which Flows through the surface over which 
the integral in eq. [ 3.51 I~ taken must be equal to the rate of change ] 'c 
with respect to time of the volume, 0, of the bubble. Thus, 

c=h 6 

= i (ibc + aI& + ah:) [3.52] 

367 



and so 

if= 
4T& r.. - -gc 

s 
tabc + a*& + aby 

+ b( AC f a;> 

+ c(ib + ah)]2 

Now, evidently, 

[3.53] 

[3.54] 

Since all of the dependence on the. tranalatiogal velocity in eq. [3.51] 
was contained i.n the term proportional to CS , it follows that, to the 
same approximation, Q, = Cl in eq, [3.54]. Since, in the absence of any 
translational mot Fnn, * therd exists nothing to distinguish one axis of 
the ellipsoid from another, it follows that one should be able to obtain 
the other two Qi from one by cyclic permutation of the axes a, b, and c. 
The only grouping of the terns in eq. 13.531 which is invariant under 
cyclic permutation of the axes i,s gi-ven by 

+ F(K) % 
1=1 

F(+) -t F(s) 
=1 

F(‘i) ] 

where 

and a = a, a2 = b, a3 = c. 1 

Hence, by comparison of eq. [3.55] with eq. C3.541, 

Q = - 
a. 1 

[3.55] 

[3.56] 

[3.57] 

where, as before, i, j, k, are successively equal to 1, 2, 3. Now, as 
was the case for the spherical. bubble, the terms in eq. 13.57 ] which 
depend upon the products 0.f the pulsational accelerations with them- 
selves or with the pul.sationnl. velocities are srialogous to the radiation 
reaction terms in eIectrornagnetIc theory. ThE.s suggests that such terms 
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may be igaorahle, at 1.~33s t: in a first approximation- At this stage, I.!1 
the absence of any perturbing, force in the .u-y 
allow E, = a. 

lane, it is possible to 
This allows one to drop eq. [3.42 as an e uation of 

motion, and replace f~ and h by ; and a in eqs. 
13.571. This, of course, 

P 3.431 - ? 1 3.45 and eq. 
specialises the equations of motion to those 

of a spheroidal bubble. Henceforth, throughout this paper, the case of 
the spheroidal bubble w.ill be treated exclusively. 

To sum up: eqs. [3.42] - [3.45] are equations of motion de- 
scribing a pulsating ellipsoidal bubble undergoing translational motion. 
w-hen Q, = Qb = Q, = 0, the equations neglect any sort of energy loss. 
It has been shown that the energy loss from the translational motion of 
the bubble can be expected to be negligible with respect to that from 
the pulsational motion and so Q, was set to 0 in eq. [3.45]. It was 
further shown that 

where 

[3.58] 

L3.59 ] 

+ AF(;t), ifjfk 
When one wishes to ignore the effects of radiation reaction, 

AF(;;) = 0 [3.hO] 

and 

AF(A,i) = a:a.a 
1 J k’ i# jfk [Ml ] 

when one wishes to include them. 

IV. NUMERICAL METHODS OF SOLUTION 

Before one atiempts numerical solutions of the equations of 
motion, eqs. [3.43] - [3.45], it is useful to make them 
non-dimensional. Thus, the substitutfon of 

a = a*L, 

c = c*L, 

z = z*L, 

t = t*T 

P-1 3 
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.i.nto the equations of mot ioil used, where 

yields a dimensionless form of the equations of motion. As before, Y. 
is given by eq. [2.3] and g and p are, respectively, the gravitational 
acceleration and the density of water. These particular scaling factors 
in eq. [4.2] were originally used by Taylor (1942). 

Since all of the equations of motion have the unfortunate property 
of singularity at the origin, it is necessary to begin the integration 
with a seti.es solution. Taylor (1942) su gested that the initial solu- 
tions to the dimensionless forms of eqs. f2.11 - [2.2] be 

* 215 
a = (&.y) , 

.* 
z = +p* 9 

k 
z = 2 0 -(&)t*2 I 

[4.3] 

where 2 
* 

is the initial dimensionless depth below the pressure datum, 
for valEes of t* near zero. Since the h;kblc can*be expected to be 
spherical initially, the values for a ,*z , and z from eq. 14.33 were 
used to begfn tllz integration at Cme to, with the additional require- 
ment thafjCa = c * One also needs initial values for the rates of 
change, a 

l * 
and c , of the semi-axes. These were estimated by assuming 

that the bubble would be initially spher;&al and substituting into the 
dimengionlesz form of eq. [2.1] to find a . Hence, the initial values 
for i and c are given by 

.* 2 
a = (l- E;d)j~ 

0 2xa*3 
-(#rj 

2 

L +-T*, 

l * . 9: 
a = c I 

where 

E*(a*) = -- 
&,*-3(Y-U --- 

(y-l l(9) Tt3(y-1)' 

Y, is the initial total energy, as given by eq. [2.3], and all other 
variables are as previously defined. 

aL, 
Another numerical dLfficulty concerns the evaluation of the terms 

aL, 
aa 9 

.EQ ZQ 
ac * aa $ a~ * Now, evidently, 
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a10 _ -- aa -a 7 --v-2-- dh I I 
o (a2+A) (b2+X)' (c2+k)" 

dh L 1 ----VT1 
' (a2+Aj2 (b*+h)' (c2+h) 

aI 
2 = bcI1 + abc &, 

aa "I1 .s = abI1 + abc ac 

where 

11 = 7 ah A k 
' (a2+A)' (b*+h)' (c2+h) 

j/2 

[4.6] 

14.7 1 

[4.8] 

I, and I1 were evaluated with the IHSL double precision subroutines 
MMLINF and MMLIXD, which compute incomplete Elliptic integrals of the 
first and second kind, respectively. 
[4.6], are, in fact, 

The partial derivatives of I,, eq. 
incomplete elliptic integrals of the second kind, 

and can be evaluated with ElMLIND. The evaluation of the second terms in 
eq. [4.7] presented considerable difricwlty. 
commercial routine capable of evaluating eqs. ~~.~~i::e~fs f?~ki~~, and 
the difficulties invol;red in the composition of one ab nihilo are 
formidable. Accordingly, as a stopgap, the terms in eqs. [4.7] which 
involve the derivative of an incomplete elliptic integral of the second 
kind were evaluated by holding one of a or c constant, and varying the 
other at each step in the integration, thusly: 

(Il(*Aa,c) - (Il(a-Aa,c)), 

arl - = .& (Il(a, dAc) - Il(a, C-AC)) 
i)C 

where MMLINJI was used co evaluate Il. Since ha and Ac can he made as 
small as desired, theoretically eq. [4.9] can be made to approximate the 
true value of the derivative as closely as desired; however, the prac- 
tical constraints OF computational time, machine accuracy, and the 
accuracy of the IMSL subroutines do place limits on the size of Aa and 
AC. 

The actual integrations were carried out using a 4 point Runge- 
Kutta algorithm incorporating automatic error controls. Some numerical 
difficulties with this method were encountered when the radiation re- 
action was incorporated using eq. [3.61]. Near the minima of a and c, : 
and E becomelsmall, and change sign as well. Because of their Ieilend- 
ence upon :' and t-1, the values of Q, and Q, can oscillate rapidly, 
adversely affecting the convergence of the integration. 

"1 

This dtf:iculty 
circumvented by the use of a series approximation in which a and 
were replaced by averaged pulsational velocities. B:y using eq. 

c3.403, it is possible to write 
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where 

+ a*2p2,*2 

[4.10] 

*2 *2.,2 
+abc) 

and Y(t) is the energy of the bubble at any time t, given by eq. 
[3.4c)]. 

IF one defines: 

[4.11 j 

then, 

[4.13] 

where the posityve value is taken while a particular axis is expanding 
and the negative while it is contracting. By expanding the dimension- 
less form of cq. [3.58] when AF(ai) is given by eq. [3.61], and sub- 

- 1 

stituting (P) 
2 

for (j*)-1 and (E*)-1, values for the dissipative 
function incorporating averaged radiation reaction terms were obtained. 

Estimates for a and c were arrived at by the substitution of the 
current values of a, c, i, I?, z, and d into eqs. [3.43] and [3.44] with 
Q, and Q, set to zero. Those values for a and c were substituted back 
into eq. [3.58], 
used in eqs. 

to obtain new values for Qaand Q, which were in turn 
/3.43] and r3.441 to obtain new estimates for a and c. 

V. NUMERICAL RESULTS AND ANALYSIS 

Figures 2-11 show the results i,f computations for a bubble 
produced by the detonation of 2.1136 kg. of TNT 6.1 metres below the 
surface, using eqs. [3.43] - [3.46] E or a spheroidal bubble. Those 
curves associated with a spheroidal bubble and labelled 'AY = 0' were 
calculated under the assumption of no energy loss; that is, Q, = Qc = Q, 
= 0 in eqs. [3.42] - [3.46]. The curves labelled 'AY f 0, AF = 0', were 
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calculated incorporat.ing radiative enorry loss, hut not radiation 
reaction terns; that is, eqs. [3.58] - 13.601 were used to define Q an3 

Q,* In Figs. 2-5, a and c are the semi-axes oE the spheroi.dal bubb‘te, 
where a is the semi-axis in tile plane not.nal to the bubble's upward 
motion, and c the semi-axfs in tlje plane parallel to the bubble's upr~3rd 
motion. 

Taylor (1942) considered.the same case, using eqs. [2.1] - [2.2] 
for a spherical bubble in the absence of any energy loss from any 
source . In Figs. 2-11, the curves labelled with ' AY = 0' were obtained 
by solving eqs. [2.10] - c2.111, with Q, = Q, = 0, which are equivalent 
to Taylor's equations For a spherical bubble. The curves labelled ' AY f 
0, AQ, = 0' resul.t from the incorporation of radiative energy loss, 
neglecting radiation reaction, into eqs. [2.10] - [2.11]; that is; Q, 
was given by eq. [2.12], wLth AQa - 0. The curves labelled ' AY f 0, 
AQ, # 0' incorporate energy loss including radiation reaction; that is; 

Qa and AQ, were: given by eqs. [2.12] - [2.13]. In Figs. 2-5, 'radius' 
refers to the sphecica.1 
[2.11]. 

bubble radius as calculated in eqs. [2.10] - 

The curves labelled 'spherical' in Figs. 6-11 are the upward 
velocities and heights above the original detonation point, obtained by 
solving eqs. [2.10] -- [2.11] for a spherical bubble, under different 
assumptions about the natllre of the energy loss. The curves labelled 
'spheroidal' are the same quantities obtained from the solution of eqs. 
[3.43] - 13,461 for a spheroidal bubble. 

Taylor (1943) presented photographs showing the behaviour of 
bubbles generated by electrical discharges in oil, which are here 
reproduced in Figs. 12-13. These show that a bubble in the early stazes 
of its motion is very nearly spherical, but that near its minimum 
volume, it becomes appro:ci.mately disc shaped, wtth its longest dimension 
lying in the plane normal to the direction of its upward motion. Near 
the second maximum, the bubble is highly non-spherical, and, Ln fact, 
seems to be attempting to fission, exhibiting an extremely large bulge 
on its upper surface and a Fl.at lower surface. After the bubble has 
passed through its second maximum, it becomes mushroom-shaped and 
actually does bifurcate at its second minimum. The two halves rejoin 
later to form a distorted disc. 

As one can see from Fig. 2, a spheroidal bubble reproduces the 
salient Eeatures of the observed behaviour, at least qualitatively. a 
and c were very nearly equal to each other, as well as to the spherical 
radius, at the first maximum. Near the first minimum, the bubble becacne 
more obviously spheroidal, with the ratio a/c assuming a value of 2.34. 
After the first minimum, the qualitative agreement between the sphe- 
roidal bubble model and Taylor's photographs was less pronounced. This 
was hardly surprising, given that tile equations of motion constrain the 
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possible s!~pes oE the hubble to spheroids. liowever, the model d9rzs :lt 
loast predict that the bubbLe JouLd not return CO a ~phc~i~al sh;li>C- In 
addition, the spheroidal model. also retains one of the successful 
features of the spherical model, that of the prediction of the period oE 
the bubble's oscillation. The period OE the first oscillation in Fig. 2 
(which was defined for both the spherical and spheroidal bubble to be 
the time after a maximum at which the first derivative of the volume 
changed sign) was .26 seconds for both models. It should also be noted 
that the time at which the volume was a minimum did not coincide with 
the minima of either a or c. In Fig. 2, a reached its first minimum a 
full .Ol seconds before c did. 

Figures 3-4 show the effects OF incorporating radiative energy 
loss into the spheroidal bubble model, and compare the results with the 
analogous case for a spber.Lcal bubble. When radiative energy loss was 
included in the calculations, the second minima of a and c. occurred 
slightly earlier, and was more nearly coincident. Figure 5 compares the 
semi-axes for a spheroidal bubble under various assumptions about 'ihc 
form of the energy loss. It is interesting that the most noticeable 
difference among the calculations was in the value of c. 

The outstanding failure oE the spherical model for the bubble is 
its prediction of a too rapid rate of rise when the bubble's vol.u,ne is a 
minimum. As Figs. 6-10 show, the maximum upward veLocity predicted by 
the spheroidal model was less than that predicted by the spherical model 
by a factor of 2, and consequently the distance travelled from the site 
OF the explosion was decreased by about the same amount. This dimiuua- 
tion of the upward translational velocity of the bubble near its minimum 
volume accounted for the differences between the periods oE the 
spherical and spheroidal models after the first minimum in Figs. 2-4. 
because the spheroidal bubble was deeper than the spherical one, the 
hydrostatic pressure was greater, making the period shorter. This is 
also the reason that the curves in Figs. 2-11 associated with the 
spherical bubble modeL terminated .? seconds before those of the sphc- 
roidal model. Because of tile spherical bubble's greater upward veloc- 
ities, it reached the surface before the spheroidaL one. 

Figure 11 shows the energy possessed by the hubble as 3 function 

of time for both the spherical and spheroidal models. Since the ini.t ial 
solutions to the equations of: motion for the spheroidal bubble were 
calculated by assuming it to have been initially spherical, it is not 
surprising that, in the absence of dissipation, the energies predicted 
by the two models were found to be constant and equal. The energy 
losses predicted by the spheroidal model without radiation reactian were 
found to be in close agreement with those of the spherical model without 
radiation reaction. AEter the first minimum volume was passed, the 
spheroidal model predicted a slightly greater energy loss than the 
spherical, until the spheroidal bubble passed through a second minimum 
volume. 
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The most dramatic difference between the spheroidal and spherical 
models is in the role of radiation reaction. As can be seen in Fig. 11, 
the Inclusion of radiation reaction in the spherical bubble model 
decreased the amount of energy radiated. For the spheruidal bubble, 
this was the case only until the first Iminimum volume ‘was passed. After 
that time, the effect of including radiation reaction in the calculation 
was to increase the radiative energy loss, compared both to that of the 
spheroidal model without radiation reaction and to that of either 
spherical model. Moreover, since even without the inclusion of radia- 
tion reaction, the spheroidal model yielded a greater energy loss than 
the analogous spherical case, it seems that this was not an artefact of 
the approximations used in the computation of the radiation reaction 
terms. Whether the magnitude of the increase in the energy loss which 
occurred when radiation reaction terms were addeh to the equations would 
be as large as that indicated by Fig. 11 is rather more uncertain. The 
cLose correspondence between the predicted energy losses for the 
spherical and spheroidal models prior to the first min-Lmum suggests that 
the calculation was valid, at least in the regime in which the bubble 
w3s nearly spherical. However, as mentioned above, aEter the first 
minimum, the actual shape of the bubble is not really spheroidal. 
Consequently, the actual radiation loss may he quite different to that 
calculated for a spheroidal bubble. However, since the bubble is even 
less spherical than it is spheroidal, on balance, it seems probable that 
the predictions of the spheroidal model were more accurate than those of 
the spherical. 

'dicks (1972) solved the equations of motion for a spherical 
bubble, with the addition of a hydrodynamic drag term, Eor 227.27 kg. of 
TNT at a depth of 45.73 metres below the surface. (That is, l-licks took 
eqs. [2.11] as his equations of motion, with Q, as defined by eq. 62.81 
and Q, = 0). It has been observed that a bubble from an explosion with 
these characteristics rises approximately 3.35 metres from the location 
of the explosion in the time taken to reach its first minimum. Xicks 
found that where drag is the only source of dissipation, a drag coef- 
ficient of CD = 2.25 had to be introduced into the equations oE motion 
for a spherical bubble in order to reproduce this behaviour. In this 
work, for the initial solutions chosen, it was found that a drag coef- 
ficient oE C, = 1.85 brought the predicted rise oE a spherIca bubble 
into better agreement with observation. When radiative dissipation was 
also included, a drag coefficient of CD = 1.6 yielded better agrccement 
with observation. 

In Figs. 14-23, the curves labellcd 'spherical' were obtaLned by 
taking eqs. [2.10] - [2.11] as the equations of motion for a spherical 
bubble produced by 227.27 kg. of TNT detonated 45.73 metres below the 
surface. All of the symbols in the legend Eor these fi.gures have the 
same meaning as in Figs. 2-1.1. It should also be understood that, for 
the spherical bubble, the effects of drag were ignored unless a value of 
the drag coefficient CT) Ls given in the legend. When d.rag was con- 
sidered, FD was given by eq. [7.8]. Lt should be emphasized that a drag 
term was incorporated only into the equations of motion for a spherical 
bubble and never into eqs. [3.43] - [3.46], the equations of motion for 
a spheroidal bubble. 
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The behaviour of the spheroidal bubble in Figs. 14-17 was very 
similar to that in Figs. 2-5. One difference was the close a8reemcnt 
among all four curves for the period of the Eirst bubble oscillation. 
As well, for the second oscillation, the period .predicted by the sphe- 
roidal model was closer to that of the spherical model with drag than 
that which was predicted by the spherical model without drag. This 
applied In the cases for which radiative energy loss was considered as 
well as those cases for which it was not.’ In Figs. 18-21, it can be 
seen that the peak velocities predicted by the spheroidal models, both 
with and without radiative energy loss, were in agreement with those 
predicted by the spherical model with drag, most notably at the first 
minimum. 

It is Fig. 22, however, which demonstrates the accuracy of the 
spheroidal model. As can be seen, the height above the site of the 
original explosion predicted by the spheroidal model was in good agree- 
ment with that predicted by the spherical model with drag, while that 
predicted by- the spherical model in the absence of drag disagreed with 
that predicted by the spherical model with drag. Because the drag 
coefficient used with the spherical model was chosen specifically to 
force the calculated height to agree with observation, the agreement of 
the spheroidal model with the spherical model in this case consitutes a 
veri Eication of the spheroidal model. The agreement was not as good at 
the second minimum, especially for the spheroidal bubble without energy 
loss. However, once radiative energy loss was added to the spheroidal 
model, the curves exhibited close agreement with those for the spherical 
model with drag. 

Figure 23 compares the predicted energy losses of the spherical 
and spheroidal models. Once again, it can be seen that the inclusion of 
radiation reaction terms increased the predicted energy loss for a 
spheroidal bubble, in contrast to the spherical model, for which the 
addition of reaction terms decreased the energy loss. It is inter- 
esting, however, the energy remaining to the spheroidal bubble was 
greater than that remaining to the spherical bubble when losses from 
both drag and radiation were included. 

VI. CONCLUDING REMARKS 

In this work, a Lagrangian for an oscillating ellipsoidal bubble 
which is also undergoing translational motion has been derived, and 
equations of motion obtained from it. An expression for the generalised 
dissipative forces caused by the radiation of sound by the bubble was 
also found, and incorporated into the equations of motion. This 
equation was specialised to the case of a spheroidal bubble, and the 
equations of motion solved for some different charge masses and depths, 
both with and without the effects of radiation of sound having been 
included. 
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Ry comparLson wLt11 the results obtained from Taylor’s spherical 
bubble model, tt was shown that the spheroidal model tr:taLned tile 
SUCC~SSEU~ feiitures of the spherical model, notably the predict ion of 
the bubble’s oscillatory period, and reproduced, a~ least qualitatively, 
notable features of a real bubble’s behavlour, such its flattening near 
its first mInimum, and a slower rise time than that predicted by the 

spherical model. After the first mini.mum, the bubble’s shape was not as 
well modelled by a spheroid; however, the results obtained at those 
times were still superior to those from the spherical model, particu- 
larly with respect to the rise time. For the case cited by Hicks 
(1972)) the spheroidal bubb1.e model produced results whLch were In very 
close agreement with experimental data. The spllerical model was capable 
oE similar agreement only for a limited time and only with the addition 
of a drag term. The spheroldal model’s ndvantnge arises from its 
reproduction of the height above the explosion site naturally, without 
the addition of a drag term which must be determined Erom experimental 
data for each case. Incidentally, because the spheroidaL model ignored 
hydrodynamic drag completely, and still reproduced the observed be- 
haviour of tile bubble, it seems likely that drag is relatively unimpor- 
tant in determining the bubble’s motion; it appears, rather, that the 
shape of the bubble is the single most important factor. 

It appear:; that the spheroidal model predlctetl a greater loss of 
energy in the bubble through the radiation of sound than the spherical 
model. This was Eound to be most significant when radLation reaction 
terms were included in the radiative dissipation function. In contrast 
to the spherical model, the efEect OF including radiation reaction terms 
was to Lncredse the energy loss. 
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FIGURE 7 
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Evolution in time of a bubble in oil 

390 



FIGURE 13 
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STEFAN’S PROBLEM IN A FINITE DOMAIN WITH CONSTANT BOUNDARY 
AND INITIAL CONDITIONS 

Shunsuka Takagi 

U.S. Army Cold Regions Research and Engineering Laboratory 
Hanover, N.H. 03755 

ABSTRACT 

Stefan’s problem in a finite dolrrain is solved under constant boundary 
and initial conditions. The solution is initially that of the semi- 
infinite domain, transits through infinitely many intermediate stage solu- 
tions, and finally arrives at a stationary stage solution. An intermediate 
stage solution emerges when a corresponding lead time becomes effective. 
Because exponential singularities exist at the terminal of the finite 
domain as functions of time, lead times are introduced. 

The breakthrough is achieved by two innovations. The first is the use 
of the integral type solution of the one-dimensional heat conduction equa- 
tion in place of the well-used serial type solution. By use of a finite 
domain solution determined under unrestricted initial and boundary condi- 
tions, the integral type solution allows us to find the temperature of the 
old phase in a two-phase Stefan problem. The second innovation is the 
inverse-Laplace-integral type expression of ikerfe(xlJK) that is valid 
for any integer k, negative, zero, or positive. This formula is used to 
expand the interfacial temperature of the old phase into a series of 6, 
and to sum up the series of the form, 

l 

This summation is employed to evaluate the final steady temperature. 

403 





NUMERICAL ABERRATIONS IN A STEFAN PROBLIZM 
FROM DETONATION THEORY** 

G.S.S. Ludford & A.A. Oyediran 
Department of Theoretical & Applied Mechanics 

Cornell University, Ithaca NY 14853 USA 

ABSTRACT. The velocity of the moving boundary in a Stefan problem 
from detonation theory is examined analytically. Motivation comes from 
computations in which the velocity profile exhibited cusps and terminations 
(i.e. inability of the computer to find a velocity). Here we show that a 
solution exists with continuous velocity and acceleration at all times but 
that, under certain circumstances, another (singular) solution may bifurcate 
off. If a similar phenomenon occurs in the finite-difference schemes used, 
the analysis suggests that the aberrations (cusps and terminations) are due 
to numerical inaccuracies. The next step, apparently a difficult one, is 
to modify the schemes so as to follow the non-singular solutions. 

I. INTRODUCTION. A certain model of detonation waves leads to the 
governing equations 

Ft-[K(t)+F]F = F 
X xx' F(-m,t) = 0, F(+,t) = F,, (1) 

F(TO,t) = F,, Fx(-O,t)-Fx(+O,t) = 1, (2) 

where F,,F= are given positive constants. Here x is measured from the 
moving boundary (the flame front), whose velocity is K(t), and the solution 
must satisfy the given initial conditions 

F(x,O) = FO(x) with Fo(-W) = 0 and Fo(+m) = F . (3) m 

The problem (l-3) is overdetermined when the velocity of the boundary 
is prescribed; indeed, the object is to find K(t) along with the solution 
F(x, t> . Numerically this is achieved by advancing the solution of the 
truncated system (1,2a) at each time step, with K as a parameter whose value 
is determined by the remaining equation (2b). 

There is a steady solution, expressible in terms of exponentials, 
whenever 

2/F, < F, < Fm + 2/Fm, (4) 

but it is (linearly) unstable if 
I 

F,/2 + l/F, + @/4+1/F: < F, +: FoD + 2/F-. (5) 

Early computations [l] of unstable solutions give the curves in figure 1: 
eventually there was breakdown, i.e. the computer was unable to find a value 
of K, although in some cases this was preceded by the formation of cusps. 

fc%upported by the U.S. Army Research Office. 
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Later computations [21, based on more accurate numerical schemes always led 
directly to breakdown. 

K 

Figure 1. Computational aberrations for galloping detonation: cusps and 
termination. 

The object of the present paper is to show that such cusps and break- 
downs are numerical aberrations, i.e. at all stages of the evolution 
described by equations (l-3) the velocity K(t) exists and the acceleration 
K'(t) can be continuous. (An earlier paper [3] concluded that K'(t) was 
discontinuous, but that is incorrect.) For that purpose we shall put the 
origin of t at the instant of interest, so that the initial conditions (3) 
are no longer arbitrary but must be the end result of the preceding evolu- 
tion. This implies (Sec. 2) certain relations between the spatial deriva- 
tives on the two sides of the moving boundary, i.e. on the derivatives of 
FO at x = TO. Such initial conditions are then shown (Sec. 3) to give the 
velocity the required properties 

K(+O) = K(-0), K'(+O) = K'(-0). (6) 

Although there is always a solution with continuous velocity and 
acceleration, in certain circumstances there is a second (singular) solution. 
Section IV discusses the implications of this for numerical approximation 
of the evolution. 
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II. EVOLUTIONARY CONDITIONS. While initial values could be chosen so 
as to violate the boundary conditions (2), at any stage of the subsequent 
evolution these conditions must be satisfied. This implies 

Fo(W = F,, F;(-0)-F;(+O) = 1 (7) 

when F (x) is the end result of an earlier evolution. 
relatigns involving higher derivatives, 

Likewise, there are 
in the generation of which the 

differential equation (1) is also involved. We shall need to consider 
derivatives up to the fifth order and, in doing so, the following consequences 
of the boundary conditions (2) will be used: 

Fr = F Fi = FT 
*’ t tt = 0; F;-F; = 1, FLt = F+--, Fitt = Fztt (8) 

where, for example, 

F+(t) = F(fO,t). (9) 

The zeroth- and first-order relations (8a,d) lead to the requirement (7). 

The second-order relation follows from the differential equation (l), 
which gives 

-(K+F& = F;x (10) 

at x = 70. Thus 

Fix/F- 
X 

= Fix/F; = V (say> 9 

and the corresponding velocity is 

K = -(F* + V). (12) 

The third-order relation comes from the x-derivative of the differential 
equation, which gives 

Fr xt - (K+F,)Fzx - Fz2 = F*,, 

at x = TO. Thus, 

[F,,,l = V2-[+ 
where the jump notation 

(14) 

[Ql = Q- - Q+ (15) 

(for any quantity Q) has been introduced. 

To obtain the fourth-order relation, the second x- and first 
t-derivative of the differential equation must also be considered; these 
give, for x = i0, 
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F:xt- (K+F,)F+ - 3F'F' = F' 
XXX x xx xxxx' 

+ - 
-(K+F,)F~~- K'F; = Fzxt. 

(16) 

(17) 

Elimination of Fzt, and F 
i 
xxt from equations (13), (16) and (17) shows 

that 

(Fixxx-2VFLx+2VF;2+V3F;)/F- = (F+ 
X xxxx -2VFzxx+2VF:2+V3F:)/F: = -A(say) (18) 

and the corresponding acceleration is 

K' = A. (19) 

An alternative expression is 

-A = [Fxxxxl - 2V[Fxxx] f 2V[F;] + V3. (20) 

Finally the fifth-order relation is obtained by also considering the 
third x-derivative and the second mixed derivative of the differential 
equation; these give, for x = TO, 

- - 

FZxxt- (K+F.&xxx-4+~xx - 3F;i = Fzxxxx, 

FT 7 
- - 

xtt4K+F,)F;xt-K'Fxx-2Fxti F;xx,. 

(21) 

(22) 

Elimination of Fzt, F+ 
xxt' 

Fi xxxt from equations (13), (16), (21) and (22) 
-r 

leaves only the time derivatives FT 
subtraction. The result is 

xtt, which may then be eliminated by 

‘Fxxxxx ] = 3V[F xxxx I-6CFXFXXX ] + 7V2[F;]-Z[F;]-2V4. (23) 

The requirement (8a) and the relations (8d), (ll), (14), (18a), (23) 
between spatial derivatives on the two sides of the moving boundary provide 
restrictions on F 0' if the initial data (3) are to be compatible with an 
earlier evolution. The velocity and acceleration attained just before the 
initial instant are given by the formulas (12) and (19) which, because they 
contain only space derivatives, may be written in terms of F . Immediately 
after the initial instant the velocity and acceleration are given by the 
same formulas, so that whether or not they have discontinuities depends on 
whether or not the spatial derivatives do. Such infinitely rapid changes 
in derivatives at the boundary are effected by layers, so we turn now to 
their structure. 

III. OUTER AND INNER EXPANSIONS. Let t = 0 be the instant at which 
a discontinuity is supposed to occur. We shall show that in fact 

K. = K(+O), Kl = K'(+O) (24) 
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(25) 

exist and can be equal to 

K(-0) = -(F,+V), K'(-0) = A, 

where 

V=C/G =C/G - - + +' (26) 

-A = (F--2VT-+2VGf+V3GJ/G- = (F+-2VT++2VG:'V3G+)/G+; (27) 

we may also write 

-A = (F--F+)-2V(T--T+)+2V(G_+G+)+V3. (28) 

The formulas (25) are rewrites of the results (12) and (:L9), while the 
expressions (26-28) come from the relations (11) and (18) and the expression 
(20) on setting 

FT 
X 

=F;)(;O) Z G, F:x= 
+ 

F;;(TO) = C-, F;xx = 
+ 

F;;' (TO) - T , 
i 

(29) 
F+ xxxx = F;(jO) z F . 

i 

We shall also need the rewrites 

Fo(jO) = F,, G - G+ =l, 

T - - T+ = V2 - (G-+G+) , 

Fi - F; = 3V(F--F+)-6(G-T--G+T+)+7V2(G-+G+)-~(+G;)-~v~ 

of the relations (7), (14) and (23); we have set 

F 
i 
xxxxx 

= F;(jO) 2 F'. 
i 

The strategy is to seek a solution with 

K= K. + Kit+... for t > 0, 

in which 

F = FO(x) + tFL(x) + t2F2(x)+... 
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(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

away from the origin. The differential equation requires 



F1 = (KO+FJF; + F;, 

2F2 
= (KO+FO)2F; + 2(KO+FO)(F;2+F~" + 4F;F; + F; I- KIF;. 

(36) 

(37) 

The relations (26b), (27b) (30-32) now ensure that 

Fl(jO) = F2(+0) = 0, F;(-0) = Fi(+O), I?;(-0) = Fi(fO), (38) 

i.e. the boundary conditions (2) are satisfied to the order implied, provided 
the choices (25) are made for K. and K1. 

The task of showing that K, K' exist and can be continuous at all 
times is therefore completed, but the proof (which essentially consists of 
two different ways of deriving the evolution relations) does not explain why 
discontinuities appear in the computations. For that we turn to a discussion 
of potential boundary layers, which uncovers an alternative (singular) 
solution in certain circumstances. 

The boundary layers that must occur at the origin if there is a 
discontinuity are described by the similarity variable 

5 l/2 =x/t , (39) 

and we write 

F = fo(E)+t l/2 
fl(S)+tf2(Z)+t 

312 
f3(5)4t2f4(5)+t 

512 f5(S)+..- . (40) 

Substitution in the differential equation (1) and the boundary conditions 
(2), plus matching with the expansion (35), then gives a series of 
differential problems for the coefficient functions fo,fl,f2,f3,f4,f5. 

It was shown in [3] that, provided the initial data satisfy the 
relations (30), the first two functions in this expansion are 

f. = F,, fl = G$ for 5 2 0. (41) 

The next term in the expansion satisfies 

1 f'; + $f;-f* =GiK8 with Kt=K+F 
0 *' (42) 

so that 

f2 
= GTK$ + Ai2)(c2+2) + B$2)e-'2'8D-3(~E~/fi) for 5 ; 0. (43) 

(2) Here D denotes the parabolic cylinder function and A; , + Bi2) are integra- 

tion constants, the latter representing the strengths of the boundary layers 
that effect instantaneous changes in the curvatures at the origin. Matching 
with the outer expansion (35) gives 

I 
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and then the boundary conditions (2) require 

(‘, (K*+V) f Dd3(o)B(2) = d2) + B:2’ = 0. 
+ O 7 

(45) 

If G--i-G+ # 0, the (unique) solution of this homogeneous s.ystem is 

"5 + V = B(2) = 0, (46) 
i 

which confirms that K o exists and has the value (25a). Consideration of the 

problems for f3 and f4 then shows that Kl has the value (25). 

The cusps and terminations, found in the computations, correspond to 

G +G+ = 0, i.e. G = ?1/2. (47) 
i 

The solution of the homogeneous system (45) is then 

p) 

i 
= :(K; + V)/2 D-,(O), (48) 

where K. (in Kt) is undetermined. To determine it we must go to the next 

term in the expansion (40), which satisfies 

-+3 = -Kkf' 
02 (49) 

The general solution is 

f3 = K;f; f E/4 -t A(3)~(~+6)+B(3)e-52'8D-4(/~/lh) for 5 $ 0, (50) 
i 3 

where A (3) , BC3) are integration constants, the latter enabling instantan- 
i i 

eous changes in the third derivatives at the origin. 

Matching with the outer expansion (35) gives 

*(3) = T 16, 
7 i 

and then the boundary conditions (2) require 

(51) 

(3) -K~(K"O+V)/JX+D-~(O)B~ = K;2-T_+TT++Dt4(0)(B- (3)+B9/J2 = 0. (52) 

Elimination of B (3) from these three equations gives 
i 

*2 
K. + 39 + 2(T--T+) = 0 

where, according to the relation (31), 

T -T+ = V2. 

(53) 

(54) 
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It follows that either KO still has the value (25a) and 

B(3) = 0 , (55) 
i 

or K6 = -2V and B(2), B(3)# 0. 
i i 

of 
We conclude that the solution bifurcates when G- + G+ = 0: for one 

the continuations, no boundary layers form at the origin and K is 
continuous; for the other, both the second and third derivatives are changed 
instantaneously at the moving boundary and there is a jump in velocity. The 
computational implications of this bifurcation will be discussed in Sec. IV; 
here we shall examine the first continuation further, with a view to 
confirming that the acceleration is then also continuous. 

The next terms in the inner expansion are found to be 

f4 = V(3-4T )E2/8 + V(lkV*-4T )/4 4 K1/4 
i i 

+ F (~~+12<~+12)/24 f B (4)e-s2'8D-5((511Jz), (56) 
3 7 

f5 = -Vfi+(3V2+8T )c3/24+[6V2-2V?l-4(V2rF3)T f 2VKl]c/8 
? i 

+ F'<(<4+20~2+60)/120 + I3 (5) .-E2/8, ( 

i i 
-6 

after matching with the outer expansion. Applying the boundary 
(2) to f4 shows that 

f(Kl-A)/4 f DB5(0)B (4) = B(4) + BC4) = 0, 
i - 

+ 

#JZ) (57) 

conditions 

(58) 

which should be compared with the system (45) for G = +1/2. As there the 
solution is not unique; we may write i 

Bt4)= j(K1-A)/4D-5(O), 
i 

(59) 

where K is uuIetermkned.To determine it we apply the boundary conditions 
to f 

5 
, And find 

2V(Kl-A)/3~~+D_6(0)B- (5)= 3V(Kl-A)/J2-D'6(0)[B- (5)+B:5)] = 0 (601 
+ 

when equations (27), (28), (32) are used. Since Di6(0)/De6(0) = -1541~/842, 

this homogeneous system has the unique solution 

Kl 
= A, B(') = 0, 

T 
showing that the acceleration is indeed continuous. 

(61) 
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THE ROLE OF MODELING IN AN INDUSTRIAL ENVIRtWlENT 

Vijay K. Stokes 

General Electric Company 
Corporate Research and Development 

ABSTRACT 

In many situations in industry -- especially those relating to the 

development of new concepts and machines -- the overall problem is not 

sufficiently well defined to warrant a "brute force" use of the field 

equations of mechanics. Such an approach can, in fact, be counterproductive, 

both from the point of view of the understanding achieved and the cost. It 

is more appropriate to first develop simple models to elucidate the physics 

of the problem. Cnce the basic mechanisms have been understood, more refined 

answers can be obtained by using the methodology of engineering science. 

Two examples will be used to illustrate this point: A simple analytical 

model will be used to explain the apparently anomalous motion in a new orbital 

washer -- in which the motion of clothes is exactly opposite to what might be 

expected in such a machine. In the second example, simple beam theory will be 

used to develop an energy absorbing concept for thermoplastic automotive 

bumpers, which overcomes a major shortcoming in existing bumpers, namely their 

inability to absorb significant amounts of energy for impacts over the supports. 
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CONDENSATION ON FRACTALS SETS 

J. S. Geronimo 
School of Mathematics 

Georgia Institute of Technology 
Atlanta, Georgia 30332 USA 

ABSTRACT. Among the many rich directions of study con- 
nected with fracial sets, there is the theory of moments of 
balanced measures on these sets. The balanced measure 
attaches equal v;eiyht to each of the mappings which generate 
the fractal set. This implies in many cases that the power 
moments can be calculated explicitly. One problem with 
balanced measures is that they are either absolutely or 
singularly continuous and consequently do not give rise to 
operators with eigenvalues. Bert we report on a new class 
of sets and measures which we call condensed Zractal sets 
and condensed measures which give rise to a point spectrum. 
We will also discuss some applications to specific physical 
problems, 

I. INTRODUCTION. Let R(z): e + c denote a rational 
transfoYmation. of--- the extended complex plane i? = C u {m} into 
itself of degree N > 1. Then R(z) = ?(z)/Q(z) where P and Q 
are nontrivial polynomials with no common factors. set 
.(n) (2) = R o +-l) (z) and R 0 (z) = z. The Julia set J of 
R(z) is equal to the closure of the set of all repulsive k 
cycles of R for all finite positive integers k. 

Associated with the action of R on C there is a unique 
measure p, called the balanced measure for R, with the pro- 
perty that 

/ f dp = ; I : f(R;'(x))du (1) 
J J i=l 

where f E 1,1(J,p) and R,l(z), i = 1,2,. N denotes a com- 
plete assignment of Chelbranchcs of R 

-* I- I 
-l(t). If R(z) is a 

polynomial then the orthonormal polynomials p,,(x) associated 

with p i.e., p,(x) = k(n)xn + . . . . k(n) > 0 wit3 

1 pJx)p,(x)du = 6n,m 
J 

(2) 

satisfy the relation [BGHl], [BM] 

P,,(X) = pn(Tx) (3) 
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When J is real these polynomials also satisfy the following 
three term recurrence formula 

a (n+l) Pn+l (xl + b (n)p, (xl + a (Idpn-1 (xl = xp, (xl (4) 

with p,(x) = 1 and p-l(x) = 0. The above is just the discrete 
analog of the SchrGdinger equation. Let A be the infinite 
dimensional Jacobi matrix associated with (41, i.e., 

then a consequence of (3) is that A satisfies 
renormalization group equation [B], [RGM], 

D(z-ApD* - (Tz-A)-l . 

Acre D: f 
R* + %i and (D+) (n) I= @(nX), + 

Q E R-2' 

the fol lowing 

(5) 

II. CONDENSED JULIA SETS. _.-.-_-_--- --- Instead of diving i7nto the 
general phenomena of condensation we will illustrate it with 
a simple example. Let us consider the Julia sets J and JE 
associated with the transformations Rz = z 2 -X 
z2 

and Rez = 
- X + E/Z respectively. Xcre X > 2. We begin by recalling 

the construction of J. Let I(O) = [-a,a] with a = i 
this being the largest fixed point of R. Defining 

n+m 

below. 
I0 

“_ _-_---. 
-a (1) 

-_---__-- 
a 

I (1) 

-a -4-F-a G a 
(l/2) 

_--- 
(l/2) 

I (2) 

-f- 
- 

4 
-- 

Cl]&= 
A- a -. --._-- 

(l/4) 
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A sequence of measures {p which converge weakly 

to p can be constructed. One begins by letting u (0) have 
total mass 1 on I (01, Now following (1) u (1) will have l/2 

its mass on each of the two intervals of I (1) , p(2) will 
have l/4 its mass on each of the four intervals of I (2) 

etc. etc. 

Let us construct J, when 0 < E << 1.. Let Ilo) = [-a-6, a+S], 
where a+6 is the largest positive fixed point of RE(z), 

so s -f 0 as E .-+ 0. I;et I(~) = ~-l~(~-l) -then again J = 

lim I(n). I(n) 
E E 

for n = 0,1,2 are shown below 
n-tm 

---," -_-- 
-a-b 

------.--I-- - .,- 
(1) a+6 

.--- 
-a-6 l/3 l/3 -- 

_- -- _-.-..-- 
l/3 

_-- -- 
l/9 l/9 l/9 .-- - 

-- 
l/9 y9 l/9 l/F 1/g l/9 

Si-rice RE has three inverse branches we see that the original 

interval I (0) will be split into three disjoint intervals 
for E small enough, and each of these intervals will in 
turn split into three other disjoint intervals. 

Again one can construct a sequence of rnc:dSiures {p (n) ) 

which converge weakly to us. Here PLO) has total rlass 1 one 
I (0) while u(n) 
3n intervalsEof ~+~~~s ~nt~~~'l~~~~ 1: 

one each of the 
:'i"o plc see that 

JO = J u {lim R-"(O)). (6) 
n->- 

That is Jo is the Julia set associated with the transformation 

R(z) = z2-X plus zero and all its preimayes. Furthermore the 
measure associated with Jo lxxomes 
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Q. = 6(x-x;))dx (7) 

where lxi")]~~l denotes the preimagcs of order n under 
R(z) of zero, and 6(x) is t-he Dirac delta function. We note 
the analoy of (1) for 110 is 

/ f dpo = ; / 
2 
C f(R;lx)dpO + + f(0) (8) 

JO JO i=l 

f E L1(J,ilo). 

Generalizations of the above discussion to more general 
rational functions can be found in [RGH2] and to more general 
mappings of compact spaces into themselves in [UD]. 

III. APPLICATIONS. 
a) SchrBdinqcr~u~~~6n on a Sierpinski 

VJe consider the sequence of fractal 
n=O 1 II n=l L 

7 2 3 
3 11 -_- 2" 

x 

1 
3' 2' 

c- - 

The hsoundary conditions used identify the corners of the two 
trianqles on the laryest scale. Stopping at any finite n, 
we consider the ti.qht-b inding eiqenvalue equat ion in R2 

lattice [DARK] , CR1 . 
lattices shown below: 

11=2 

where H is given by 

HE- c {li><jH/j><il] 

HIq> = El@ (9) 

nearest 
nei-qhhors 

It can he shown [EGH2] that the spectrum of H is C u t-4,2}, 
where C is the condensed Julia set for z + -z(z+3) + 

', E (2 2-l)-1. Let o1 and oz be the condensed measures for 

Z -t -2(x+3) (z+l)/(z+l) and z + --z (2+3) (z-l)/(z-1) respectively; 
then the density of states p associaked with H can he written 
as 
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1 1 p = 3 rJ3. + 3 u2 + f xv2 . 

Here x-2 is the characteristic function of thee set i-21. 

b) An application to orthogonal polynomials. Let Ip,l 
be the polynomials given by (2) and assume that J is real. 
We now construct the polynonials of the second kind 

p(l) (x) = J pn+l 
(xl - P,+l(Y) 

n -~-.-'- dp (y) . 
J X-Y 

These polynomials obey the relation [BGH3] 

mrt11ermore 
nolnials are 
[BGM] 

the measure with respect to which thcsc poly- 
orthogonal is a condensed rncasure and one has 

/ f dp“’ = 1 J -_---.- 

C i=l C Ii' (R;~(x))~ 

N 
f 1 rneQ, f E L1(C,jP)). 

n==l 

Here C is the condensed Julia set associated with P (1) , 

'XnlfT=l are the zeros of R'(x), and {rn}i\lzl a.re predetermined 
constants [BGM]. 
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NEWTON'S METHOD, JULIA SETS AND CHAOTIC DYNAMICS 

Edward R. Vrscay 
School of Mathematics 

Georgia Institute of Technology 
Atlanta, GA 30332 

Abstract 

The SchrGder or Konig iteration schemes for a given polynomial g(z) 
represent generalizations of Newton's method. In both schemes, functions 
Sm(z) are constructed so that the iteration sequence zn+l = Sm(zn) con- 

verges locally to a root z* of g(z) = 0 with prescribed order m. Patho- 
logical situations involving the iteration sequence {zn) do exist, however. 

If z. E J, the Julia set of rational function S,(z),, then the zn behave 

chaotically and never converge to a root. For z. d J, it is also possible, 

however, that the zn converge to attractive cycles other than the roots z*. 

Associated with this latter behavior are regions in a "parameter space" 
which exhibit the morphology and dynamical patterns which are associated 
with the classical Mandelbrot sets of quadratic maps. These types of 
behavior are investigated with the aid of microcomputer plots. 

1. Introduction 

Consider the familiar and very important Newton iteration function, 
constructed to determine the roots of a polynomial g(z): 

N(z) = z - A&l- 
g'(z) ' (1.1) 

Clearly, N(z) is a rational function. One is interested in the conditions 
for which the iteration sequence zn+l = N(zn) converges to a root z* of 

g(z) l We may ask several questions: What is the set W(z*) of all initial 
values 2 E 1c for which the sequence {z,} converges to the root z*? Is it 

0 
possible that the zn do not converge to any of the zt? For what z. E (c do 

these pathological situations occur and what is the nature of these noncon- 
vergent sequences {zn}? The, classical theory of iteration of analytic func- 

tions, concerned with the behavior of sequences in the neighborhood of a 
fixed point, does notattack such global problems. Here, the Julia-Fatou 
theory of iteration of rational functions [lo, 151 (and its subsequent 
developments) provides an insight into the dynamics of such iteration 
schemes. Nonconvergent sequences associated with Newton's method and its 
generalizations may, for example, exhibit asymptotic periodic or even 
chaotic behavior, n either of which may be simply explai.ned away as results 
of calculations in finite precision arithmetic. As will be shown below, 
when the g(z) constitute a one-parameter family of polynomials and the 
parameter is varied, the asymptotic behavior of nonconvergent sequences may 
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exhibit a cascade of period-doubling bifurcations eventually transforming 
to chaos, a characteristic feature of quadratic [7, 11, 161 and polynomial- 
like [8] maps. 

The behavior of Newton's method as a deterministic dynamical system 
on the real line has been discussed in a recent article by Saari and Urenko 
[I91 * Howland and Vaillancourt [13] investigated the pathological attrac- 
tive cycles which may be encountered in Newton's method. Curry et al. [6], 
by means of a series of experiments and the main concepts of Julia-Fatou 
theory, catalogued the behavior patterns associated with Newton's method 
as applied to a one-parameter family of cubic polynomials. This present 
study was motivated in part by Ref. [6]. We consider a generalized family 
of Schrb'der iteration functions having the form 

m-l 
sm(z) = 2 + ,f, c,[-g(z) In, m = 2,3,4,..., (1.2) 

and constructed so that the iteration sequence z 
n+l = Sm(zn) converges 

locally to a zero 'z* of g(z) as 0(/z-z*lm). The.case m = 2 corresponds 
to the Newton method of Eq. (1.1). When g(z) is a polynomial, the degree 
of the rational function Sm(z) increases with m. For m > 2, the S,(z) 

functions may possess extra fixed points which are generally distinct from 
the roots 22. If attractive, these points may trap the SchrGder iteration 

sequence (2,). 

The Schr;ider functions are discussed in Section 2. In Section 3 
Newton's method and its g.eneralizations are examined in the light of Julia- 
Fatou theory of iteration of rational functions. In Section 4 are presented 
microcomputer generated plots of the basins of attraction of the Schrijder 

schemes for m = 2 and 3 as applied to the function g(z) = z4 - 1. In each 
case the common boundary of these basins of attraction constitutes the Julia 
set of the Schr;jder iteration function. We also examine the dynamics of 
Schrijder maps for a one-parameter family of cubic polynomials. There exist 
regions in complex parameter space where critical points of the Sm(z) are 

attracted to points or cycles which do not correspond to roots of the g,(z). 

These regions exhibit the morphology and classical characteristics of 
Mandelbrot sets. In Section 5, another family of iteration functions of 
prescribed order, the Konig functions, is introduced and briefly examined. 

2. The Schri;der Iteration Functions 

Let f(z): E + E be analytic on a compact subset T of the complex plane 
E, having fixed point p E T, i.e., f(p) = p. The fixed point p is a..Wlultive, 

ind.idbtieti or Upu&iv~ $p;;&;g on whether If'(p)/ is less than, equal 
to or greater than one, = 0, then p is termed hup~ti~tiv&. 

Given a starting value z. E T, we define the iteration sequence {z,]; by 

=*+1 = f(z,), n = 0,1,2,... . Now assume that p is attractive, i.e., that 

zn + p as n + w. Let en = zn - p be the error associated with the nth 

iterate. Using the Taylor expansion of f(z), we have 
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e 
n+l = 2 n+l - ' 

= f(e n+P) -f(P) (2.1) 

=- 1, f cm> 
m. (PI (enlrn + O[ (enjm], n + (~3, 

where m is the smallest integer for which f (ml (p) # 0 (usually m = 1). 
Then f(z) is said to be an tie&&&an &n&on 06 o/rda m. 

We now consider the construction of iteration functions of prescribed 
order to determine the simple roots of g(z) = 0. The first case, m = 2, 
corresponds to quadratic convergence and can yield the familiar Newton 
method. The point z* 
f(z) = 2 

is a zero of g(z) iff it is a fixed point of 
- h(dg(z), where h(z) is an arbitrary non-zero function analytic 

in T, The problem is to construct f(z) so that f'(z*) = 0. Since f'(z) = 

l- h'(z)g(z> - h(z)g'(z) and g(z*) = 0, we may choose h(z) = [g'(z)]-1 
to give Eq. (1.1) for g'(z) # 0. This represents a generalized and non- 
geometric procedure of constructing Newton's method over the complex plane. 

Higher order iteration functions may be constructed in the same spirit. 
The SchGdet &V&&n &Ln~Oti [20] have been defined in Eq. (1.2), with 

c,(z) = 5 [* &ln-l& l (2.2) 

The coefficients c,(z) are analytic functions for g'(z) # 0. The iteration 

sequences defined by zn+l 

g(z) as O(jz-z 21"). 

= Sm(zn) converge locally to the zeros z: of 

To see this, we assume g(z) to be analytic in T and 

g'(z) # 0. The functions Sm(z) are analytic in T. For every z* E T such 

that g(z*) = 0, it follows that S,(z*) = z* and 

SA(z”) = sip*) = . . . = dm-l) (z*) = 0. 
m (2.3) 

A proof of Eq. (2.3) is given in Henrici [12], p. 520. 

The Sm(z) fuqctions in Eq. (1.2) are truncations of a general infinite 

series in g(z), the first three terms of which are given explicitly below: 

S(z) = z - &y g(z) - 21gc:l:r;13 [ml2 
z 

3 [g”(z) I2 - $ g’(z)g”’ (2) 
(2.4) 

k’(z) I5 
[gW13 a** * 

The construction of Sm(z) requires a knowledge of the first m-l derivatives 

of g(z). From Eq. (1.2) we see that only for m = 2, the Newton method, does 
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the fixed point condition S,(p) = p imply that g(p) = 0. For m > 2, how- 

ever, it implies that either (i) g(p) = 0 or (ii) T,(p) = 0, where 

m-2 
T,(z) = C cn+l(+g(Z)ln l 

n=O 
(2.5) 

The introduction of these extra fixed points may complicate the root-finding 
procedure: as repulsive or indifferent fixed points, they alter the basins 
of attraction for the roots; as attractive fixed points, they may trap an 
iteration sequence. 

3. Julia-Fatou Theory and Schrijder Rational Iteration Functions 

The theory of iteration of rational functions, originating in the 
classical research of,Julia [15] and Fatou [lo], has witnessed a dramatic 
resurgence of interest in the last twenty years. A comprehensive account 
of this research is given in the excellent review of Blanchard [3]. Details 
of many important proofs are given in the paper by Brolin 143. Some 
important concepts and their connection with Newton-type iteration schemes 
are outlined below. 

Let R(z) be a rational function, R(z) = P(z)/Q(z) where P(z) and 
Q(z) are polynomials with complex coefficients and no common factors, and 

d = deg(K) Z max{deg(P),deg(Q)) 12. The sequence of iterates {Kn(z)) of 
R(z) is defined by 

R'(z) = z, Rl(z) = R(z), R”+‘(Z) = R(R%>), n = 0,1,2,... . 

The inverses of R(z) shall be denoted by R;'(z), where the subscript index 

i = 1,2,..., d enumerates all branches of the inverse. We now consider 
R: i + E where E = (I: IJ {ml denotes the Riemann sphere with suitably defined 
spherical metric. Given a point z. E t, the iteration sequence {zn};, 

given by 

2 n+l = R(z ) - Rn+' n- (z,) I 

defines the aoma.td ~hbkX of zo. 

If Rk(p) = p and Rm(p) # p for m < k, then p is a &hd pOhd 06 ohden 
k. The set of distinct points {pi, i = 1,2,3,...,k], where 

p1 = R(P), p2 = R(pl>,...,p, = R(pk+ 

is termed a k-cycle. If k = 1, p is simply called a fixed point of I?(z). 
The k-cycle is a.tthAdVe, indi&(ehent, o/L ~QUbiVe, depending whether the 

multipler 1 [Rk(pi)]'/ is less than, equal to or greater than one, respectively. 

The Julia set J(R) of the rational map R: i + i is formally defined 

as the set of z E E for which the family of maps Rn(z.) is not normal, in 
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the sense of Monte1 [l]. A more working description is that J(R) is the 
clos_ure of all repulsive k-cycles of R(z), k = 1,2,3,... . Its complement, 
F = C\J(R), the Fatou set, is the set of all z E (c for which the,family 

R"(z) is equicontinuous, in the spherical metric on some neighbourhood 
of each point of F. 'i 

Some important properties of J(R) are listed below: 

(a) J # 0 and J is closed; 
(b) J is invariant with respect to R, i.e., R(J) = J := R-l(J); 

(c) J(R) = J(Rm), m 1 2,3,4,...; 
(d) If J has interior points then J = z; - 
(e) J(R) is compact and non-denumerable. In general, its Hausdorff- 

Besicovitch dimension is non-integral, whereupon J(R) is a fractal, 
as defined by Mandelbrot [17]. 

Let p be an attractive fixed point of R(z). The &&'u&-ive bhn 
(stable set) W(p) of p is defined as the set 

W(p) = {z E iIRn(z) -f p as n + a). 

The immediate LL#U~W bahn A(p) of p is the maximal domain containing p 

on which the sequence of iterates (Rn} is normal. We now have the following 
important property: boundary of W(p) is J(R). It follows that if R(z) 
has several distinct attractive points, then their basins of attraction 
share the same boundary, the Julia set of R(z). 

A simple and illustrative example is afforded by the map R(z) = z2. 
The unit circle C = {z: IzI = 1) is invariant with respect to R(z) and its 
iterates. All fixed points of R(z) and its iterates, except z = 0 and z = 03 
lie on C and are repulsive, Cis the Julia set of R(z). The forward orbit 
of any point given by IzI < 1 is the fixed point z = 0. The forward orbit 
of any point given by lzl > 1 is the point at infinity. The Julia set C 
may be regarded as a hepd&h b& under the action of the forward map R(z). 
Equivalently, C may be regarded as the ai&uudoh be.X for the inverses 

R;'(z) =+A, R;'(z) = -&. 

Before the works of Julia and Fatou, Cayley [5] began an investigation 
of Newton's method in the complex plane. Firstly, he analyzed Newton's 
method of determining the square roots of unity, i.e., the zeroes of 

g(z) = 2 - 1, to ascertain the basin of attraction of each root. Here 
N(z) = z/2 + l/(22). One would expect that the imaginary axis J is the 
boundary of the two attractive basins, W(+l) and W(-l), since it is easily 
shown that N(J) = J, i.e., if z E J then N(z) E J. Now consider the con- 
formal map T(z) = (z-l)/(z+l). Let R+ = {z: Re(z) > 0) and 

R = {z: Re(z) < 0). Then TJT -1 = C where C denotes the unit circle, 

TR+T-1 = {z: /z( < 11, TR T-l = {z: (zl > 1) and TNT 
-1 2 := z . Furthermore, 

T(+l) = 0 and T(-1) = m. N(z) is conformally conjugate to the map R(z) = z2 
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which was our earlier example. It now follows that under the action of 
N(z), W(+l) = R+, W(-1) = R- and J is the Julia set of N(z). As such, J 

is the repeller set for N(z) or the attractor set under the action of N ;l(z) 3 
i = 1,2. In the language of Barnsley and Demko [2], J is the attractor for 
the &X&&d duM&&t a@em (7%) {C,w+(z),w (z)}, where 

w+(z) = 2 + 

w-(z) = 2 - Yx-l. 
(3.1) 

The situation is not so simple, as Cayley discovered [9, 181, for the 

analysis of Newton's method for higher roots of unity, i.e., g,(z) = zn-1, 

n > 2. The Julia set J must serve as a common boundary for all W(z2). In 

other words, given any point z E J, then any c-neighborhood of z must 
include points from all the W(z;). To,illustrate, Figure l(a) presents ths 

basins of attraction for Newton's method for g,(z) = z4 - 1. The Julia set 

boundary is a complicated curve which is infinitely self-similar -- a magni- 
fication of any region reveals further similar and intricate structure, 
characteristic of a fractal curve 1173. The Julia set includes points on 
the lines Re(z) = *Im(z). 

Figure l(b) is an attractive basin map for the Schrijder S3(z) method 

as applied to 84(z) = 0, namely, S3(z),= (21z8+14z4- 3)/(32z7L The Jul:ia 

set boundary is similar in structure to that of Figure l(a) on the diagonals, 
but with a greater number of "petals" being nested in a self-similar fashion. 
A fundamental difference is noted in the immediate stable sets A(=;) of 

each root as they no longer extend into the origin as in Figure l(a). This 
is due to the presence of four extra fixed points of S3(z), as given by 

the zeroes of Eq. (2.5). These fixed points are solutions of z4 - 3/11 = 0. 
They are repulsive 1211 and must lie on the Julia set J(Sj). The appearance 

of these extra fixed points and their effects on the basins of attraction 
demonstrates the caution that may be necessary with the use of higher order 
iteration methods. The existence of repulsive fixed points for S3 and S4 

iteration methods as-applied to g,(z) = 0 has been discussed for general 

n in [21]. 

4. Parameter Space and Chaotic Dynamics 

As mentioned earlier, the Newton or SchrGder methods are not guaranteed 
to converge to zero of g(z). If the initial point z. E J, the Julia set, 

then the sequence {z,) will alw;,lys remain on J. Apart from this situation, 

however, the possibility exists that the z n converge to periodic cycles or 
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Figure 1. Schroder basins of attraction W(i*) for the roots of z4 -l=O 
in the complex region [-l,l] x [-1,l) ", White regions constitute W(i); 
black regions, W(-i); light: grey, W(-1); dark grey, W(l): 

(a) S2 (Newton) method, (b) S3 method. 

4,29 



exhibit chaotic behavior. Rather than trying to construct specific 
examples of such pathological behavior, we may systematically examine the 
iteration schemes associated with a parametrized family of polynomials 
g(z) * Here, we consider the one-parameter family of cubic polynomials 

gA(z) = z3 + (A-l)2 - A. (4.1) 

The zeros of g,(z) are z; = 1, zi 3 = (-1 i m)/2. We shall now be 

working in a parameter space wher: A E (c. Each point A = (Re(A), Im(A)) 
represents a dynamical system with its own fixed points, Julia sets and 
possible attractive cycles.. 

Curry et al. [6] first examined Newton's method in this parameter space 
to discover regions in A-space where attractive periodic cycles exist. 
This feature is also observed for the higher order S,(z) functions as well 

as the possible existence of extra attractive fixed points corresponding to 
the roots of Eq. (2.4) [21]. Here we restrict our attention to the S2 

(Newton) and S 3 iteration schemes, the former of which will serve as a 

reference. 

In order to detect the existence of attractive cycles which could 
interfere with the Schrsder search for the zz, we observe the orbits of 

the m& p&&&5 of the Sm(z), i.e., those points c E n: for which 

S(c) = 0. The underlying reason for studying these special orbits rests 

in the following theorem of Fatou [lo]: If R(z) is a rational function 
having an attractive periodic cycle, then at least one critical point will 
converge to it. 

Among the critical points of the S,(z) are the zeroes z; which, of 

course, are also attractive fixed points (l-cycles) of the S,(z). These 

points are obviously not free to converge to any other attractive cycle. 
Other roots, which we shall call the @L&Z CtiCd poti c i are avail- 

able, however. The free critical points for the first two Schrijder func- 
tions associated with the g,(z) are (i) for S2(z), cl = 0 and (ii) for 

S3(Z)' Cl 2 = +[(A-l>/15]1'2, 
I 

In order to study the dynamics of these maps on a microcomputer, a 
region of the complex A-plane was represented by a grid of 400x200 points, 
each point corresponding to a pixel of a computer video terminal. For each 
point A = (Re(A), ImW), a free critical point ci was computed and used 

as an initial value for the Iteration sequence, z n+l = Sm(zn) * After each 

iteration, the distance between the iterate zk and each zc was computed. 

If any of these distances was less than a prescribed value of (10 -4) the 
sequence was assumed to converge to that particular root and the corresponding 
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0.01 

0 

-0.0 ;.a5 0.36 , 

b 

Figure 2. Parameter space maps associated with Newton's method for the 
&e-parameter family of cubic polynomials g*(z). 

I.1 

fW 

0.0 

S2(r) 

-1.0 L 
0.35 0.36 0.37 

A 

0. 31 

Figure 3. Asymptotic trajectories of the critical point cl for Newton's 

method as applied to the g,(z) in the range 0.35 5 A 5 0.37, 
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pixel was colored accordingly. If no such convergence was observed after a 
prescribed number of iterations (typically 200), then the grid.point was 
left black. The resulting black areas represented regions in parameter 
space for which additional cycles existed. 

22-Newton Method 

Figure 2(a) represents the region of the complex A-plane [-2,21X [-2,2]. 
White regions represent values of A for which the sole critical point 

c1 = 0 is attracted to the root z; = 1, grey regions correspond to attraction 

to either of the roots z* 
2,3' 

Small black areas, representing parameter 

values for which pathological attractive cycles exist, are observed at 
A g (0.31, kl.64) and (1.01, ,*0.98). When magnified, these regions have 
the same general shape as the remarkable Mandelbrot bifurcation sets [17] 

for quadratic maps R(z) = z2 - X. Four other sets are detected on the real 
axis at A g 0.26, 0.36, 0.5 and 0.65. Figure 2(b), a magnification of 
the region [0.35, 0.371 X [O.Ol, 0.011, reveals a characteristic Mandelbrot- 
like set. 

The existence of sttible attractive periodic cycles and regions of 
period-doubling bifurcations corresponding to the region in Figure 2(b) 
is shown in Figure 3. Here, we plot the asymptotic trajectory (zn for 

n 2 10000) of the critical point c 1 for the range of real parameter values 

0.35 5 A 5 0.37. The calculations were performed on a CYBER 180/855 main- 
frame computer in double precision (32 significant digits). Let us examine 
the dynamics as the parameter A is decreased from 0.37. The free critical 
point cl is eventually mapped to zz = 1. Below the critical value 

A= 0.362683..., cl is suddenly mapped into a 2-cycle. As A is further 

decreased the 2-cycle becomes a 4-cycle, etc. . The bifurcation to 8 and 
16-cycles proceeds quite rapidly, with an eventual transition to chaotic 
behavior. A three-cycle is then observed, followed by a return to chaotic 
behavior, etc. . At A Z 0.35286 a sudden return from chaos back to the 
fixed point .z; = 1 is observed. If the Mandelbrot set of Figure 2(b) is 
superimposed on Figure 3, it is seen that its pinch points correspond to 

the points at which the 2n-cycles bifurcate. 

2 -Iteration Method 

Figure 4(a) presents regions in parameter space A E [-5,51X [-5,5] 
for which the critical point cl is attracted either to z: = 1 (white), 

z* 2 3 (prey) or neither (black). The parameter space map for the other 
3 

critical point c 2 = -c 
1 

is obtained from a reflection of the regions in 

this figure about the real A axis. An enlargement of the region 
11.89, 1.951 x [-0.03, O-.03] is shown in Figure 4(b) along with its reflec- 
tion about the real A-axis. The upper half (including real axis) of this 
Mandelbrot-like set corresponds to A values for which cl does not converge 
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b 

Figure 4. Parameter space maps associated with the Schroder S3 method as 
applied to the cubic polynomials g,(z). 7. 

1.(3 
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0 

I- 

s3(rj 
- 

- 
1.89 1.92 1.95 

A 

Figure 5. Asymptotic trajectories of the critical point cl for the S3 

method as applied to the g,(z) in the range 1.89 I A 5 1.95. 
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to the 7-9; the lower half corresponds to the critical point c2. Unlike 
in the Newton method, t,here are two possibilities for the orbits of the c i 
to be trapped away from the root6 zz: 

w convergence to a k-cycle as seen above, 
(ii) convergence to additional attractive fixed points given by the zeroes 

of Eq. (2.5), where g(z) = p,(z). 

Figure 5 shows the asymptotic trajectories of the free critical point cl 

in the parameter region corresponding to Figure 4(b). 

5. Konig Iteration Scheme 

Here we briefly describe another set of iteration functions of prescribed 
order. Given a polynomial g(z) with zeroes z:, the Konig iteration functions 

are defined as [14] 

K,(z) = z + (m-l) [l/g(z) J (m-2) 
[l/g(z)](m-l) ' 

15.1) 

along with the iteration sequence defined by zn+l = Km(zn). If the zn are 

sufficiently close to zero z* i of g(z), then zn + zz as 0(/z,-z;lm) [14]. 

The case m = 2 again corresponds to Newton's method. 

Figure 6 shows the basins of attraction for the four roots of unity, 
I.e., g(z) = z4 - 1, for the K3 iteration procedure. There are major dif- 
ferences between this basin map and those associated with the S2 (or K2) 

and S3 iteration methods of Figures l(a) and l(b). The immediate stable set 
of each root is much larger in Figure 6 since the "bubbly" Julia set regions 
are greatly compressed into the diagonals. The transition from the 
K2-Newton method to the K3 method is significant. Secondly, the K3 itera- 

tion function, as its S3 counterpart, has four additional repulsive fixed 

points. Unlike the S3 function, however, these points lie on the diagonal 
lines Re(z) = &Im(z) and not on the real or imaginary axes. As such, they - 
do not interfere with the immediate stable sets of the roots z?. 

We now consider the K3 iteration method as applied to the one-parameter 
family of cubic polynomials g,(z) given in Eq. (4.1). Figure 7(a) repre- 
sents the region of complex A-space, [-5,51X [-5,5]. As before, regions 
are colored according to whether the free critical point c 1 = [(A-l)/l5]1'2 

is mapped to 2: = 1 (white), z; 3 = (prey) or neither (black). Only one 

black region of nonconvergence, 'centered at A z (1.99, -3,26) is detectable 
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-1 0 1 

Figure 6. Basins of attraction W(zq) associated with the Konig K 

iteration method as applied to z4 
3 

-l=O. Regions are shaded as in Fig. 1. 

2.00 

b 

Figure 7. Parameter space maps associated with the Konig K3 method as 
applied to the cubic polynomial family g,(z). 
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in this plot. A magnification of this region is presented in Figure 7(b) 
to reveal a Mandelbrot-like set. Trajectories of cl for sample parameter 

values lying in this set have been caiculated. Within the largest cardioid- 
like region of the Mandelbrot set, cl is mapped to 2-cycles. As the para- 

meter A is va?ied along the axis of symmetry a period-doubling cascade 
eventually leading to chaotic behavior is observed as in Section 4 for the 
Schrb'der iteration methods. Interestingly, in no regions of the K3 

Mandelbrot set are the ci observed to map to fixed points. In fact it 

can be sh&n [22] that there exist no regions in the K 
3 parameter space 

where attractive fixed points other than the 22 exist. 
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CHAOTIC EIGENSTATES FOR QUANTUM IMECHANICAL SYSTEMS 

D. Bessis 
SACLAY, France and School of Mathematics 
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Atlanta, Georgia 30332 

ABSTRACT. We shall first discuss algebraic properties 
of the iterations of polynomials and show that these nroner- 
ties are related to almost periodic SchrSdinger orserakors. 
An exactly solvable model is introduced which displays 
interesting features: 
chaotic states, 

almost periodicity, singular spectrum, 
exact renormalization group. . - 

I. INTRODUCTION. Singular continuous spectra arise in 
many different physical models, connected with either fractal 
structures or almost periodic potentials in SchrGdinger 
equations. Physical problems in which scaling properties 
play an important role lead to a detailed interpretation of 
the observed phenomena in terms of fractal structures Ill, 
such as vibration properties of proteins [2], percolation in 
discontinuous thin films [3] and diamagnetic properties of 
superconductors near the percolation threshold [41. Also, 
models involving a fractal structure as underlying framework 
generate singular measures in a natural way, as for instance 
the vibration spectrum on Sierpinsky's gasket [Sl or Potts 
models on hierarchical lattices [6]. 

Another important class of physical models which 
generate singular continuous spectra is that of the 
almost periodic Schrbdinger operators [7]. They appear for 
instance in incommensurate structures, conducting or super- 
conducting linear chains [8], in the electronic properties 
of crystals in a magnetic field [91 or more generally in 
metal-insulator transitions, 
an example [lo]. 

the almost Mathieu equation being 
Very little is known about the nature and 

behavior of the wave functions for states belonging to a 
singular continuous spectrum. 

Many discretized equations can be considered as Poincare 
maps of dynamical systems with an infinite number of degrees 
of freedom, an analogy which has been used in the Frenkel- 
Kontorova model [ill. In this article we shall summarize 
the relation between one of the simplest dynamical systems, 
the iteration of polynomial mappings,and SchrGdinger operators. 

In Section II, we introduce an invariant measure under 
a polynomial transformation. In Section III we show ortho- 
gonality properties of iterated polynomials, and associate 
to those a Hilbert space operator the spectrum of which is 
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the Julia set of the polynomial transformation. In Section 
IV we introduce a one dimensional discrete SchrGdinger opera- 
tor the density of states of which is the invariant measure. 
In Section V we show that this operator has almost periodic 
properties and that the corresponding eigenstates display 
chaotic behavior. 

II. INVARIANT MEASURES UNDER POLYNOMIAL TRANSFORMATIONS. 
Let us consider a polynomial T(x) of degree d written 

in canonical form 

T(x) - xd + alxdml + a2xdm2 f . . . + ad-lx + ad’ (11.1) 

We further assume that there exists a finite interval S of 
the real line such that for any x E S, all the roots of the 
equation T(y) = x are real and belong to S. This condition 
imposes weak constraints on the real coefficients a 2'a3 ,...,a d' 
Consider an arbitrary point x0 in S. Let x1 (1) = i T-) (x0) 
i = 1,2,... ,d be the d first preimages of x0, that is, the 
d different points which are mapped to x0 by T. More generally, 
let T(n) be the.nth iterate of T 

T(ll (xl = T(x) , 
T (n) (x) = Ten-‘) [T(x) ] , 

(11.2) 

and let x i = T(-n) 
(n) i (x,), i = 1,2,..., dk be the dn roots of 

the equation T (n) (x) = X0' The set of accumulation points of 
all preimages x i 

(n) 
of x U is the Julia set of the polynomial 

T [12,13,14]. Under our hypothesis this set is real, con- 
tained in S, and independent of x0. 

Following Brolin [14], we shall consider the asymptotic 
distribution of the predecessors: we define, for any n and for 
an arbitrary (but fixed) x0, the measure 

dpn(x) = 1 
dn 

(11.3) 

This is a discrete measure with equal weights on all the 
preimages of order n of x0. Brolin [14] asserts that the 

sequence dp, has a limit in the weak topology, which is 
independent of x0, when n goes to infinity. This limiting 

measure au(x) has been recognized to have special invariance 
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properties; it is invariant under T, and gives equal weight 
to all inverse branches of T. This is sometimes referred to 
as the balanced property [151. 

For our purpose here, it is sufficient to define the 
complexification of the above defined measure, which is sup- 
ported by the Julia set contained in S. We define 

G(z) = / d;j;’ . 
S 

(11.4) 

The invariance property is reflected by the following functional 
equation: 

G(Z) = + T' (z)G(T(z) 1. (11.5) 

Expanding G(z) around z =m, we get: 

+m 'n G(z) = C - 
n=O zn+' ' 

(11.6) 

where the 1-1, are the moments of the measure du(x) 

'n = / xndU(x). 
S 

(11.7) 

It is easy to see that (11.5) allows one to compute the 
moments F1, recursively, provided one normalizes u. to the 
value +l. 

The invariance properties of the measure are best sum- 
marized by the following identity: 

1 @[T(x) ,xldu(x) = ; / 
d 

(11.8) 
S S 

C $(x,T;l 
i=l 

where $ is an arbitrary measurable function of two variables. 

III. ORTHOGONAL POLYNOMIALS AND THE HILBE;RT SPACE 
OPERATOR ASSOCIATED TO A JULIA SET. It is natural to intro- 
duce the set of orthogonal polynomials associated to the 
positive measure du(x). We consider the set o-f polynomials 
P,(x) of degree n = 0,1,2,...,m with highest degree coef- 
ficient equal to 1, which satisfy 

L Pm(x)Pn(X)dp(x) = h 6 n m,n l 

(111.1) 

Using (11.8) in an appropriate way, one finds [15,16,17,18, 
191 that 
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Pn(T(x)) = Pnd(& 

Iterating (111.2), one gets 

P (T(k) n (xl 1 = P 
nd 

ktx) - 

For n = 1 (111.3) reduces to 

Pl(T(k) (xl 1 = P  

dk 
(xl l 

(111.4) 

However, it can be checked that Pi(x) : x when T(x) is 
written in canonical form. Therefore 

- T(k) (x) : P 
dk 

(x). (111.5) 

This is a very remarkable result, because it explicitly 
states that the iterates of any polynomial (in canonical 
form) are subsets of the family of orthogonal polynomials 
with respect to the equilibrium measure associated to the 
Julia set corresponding to this polynomial. While the 
iteration of polynomials is a very complicated nonlinear 
operation, orthogonal polynomials satisfy a three-term linear 
recursive relation [20]: 

(111.2) 

(III.3) 

P n+l(X) = (x-a,)P,(x) - RnPn&x). (111.6) 

It is not difficult to obtain the an and Rn explicitly in 

terms of the coefficients a2,a3,*..,ad [19]. Therefore the 

nonlinear substitution of a polynomial into a pdlynomial 
has been changed into a linear operation. However, the 
linear relation (111.6) involves all the interpolating poly- 
nomials between the polynomials of the subfamily of degree 
dk which are the kth iterates of T(x). Nevertheless extremely 
interesting new points of view can be derived from (111.6). 

Introducing the Jacobi matrix H associated to the 
three-term recursive relation (111.6) as well as a decima- 
tion operator D, acting on the infinite-dimensional vector 
with components 

I),(X) = P,(x) = h;1'2Pn(x), (III.7) 

where en(x) are the set of orthonormalized polynomials, one 
gets [21, 221 

HD = D(T(H)) (III.8) 

where D is defined by 
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and 

W,(X) = ‘bdn(x) (111.9) 

W.‘(x) = x’!‘(x). (.11I.10) 

(111.10) expresses nothing other than the content of the 
three-term recursive relation (111.6). 

However, if $ is an eigenstate of H with eigenvalue 
x, (III.8) tells us that D+ is an eigenstate of H with 
eigenvalue T(x), and therefore the spectrum of H is invariant 
under T(x). That is, it is the Julia set- associated with 
T (xl l It can be shown also that the spectrum is invariant 
under the inverse map T -l(x). 

To conclude this first part, we see that, to any poly- 
nomial map, one can associate a Hilbert space operator the 
spectrum of which is the Julia set correponding to this map, 
and whose eigenstate is an infinite dimensional vector the 
components of which are nothing but the set of orthogonal 
polynomials with respect to the equilibrium measure defined 
on the Julia set. 

IV. ONE-DIMENSIONAL SCHRiiDINGER OPERATOR ASSOCIATED TO 
A POLYNOMIAL TRANSFORMATION. For the sake of simplicity we 
shall confine ourselves to the logistic map 

T(x)=x 2 -A . (IV.1) 

We require h > 2 for the Julia set to be real. In that 
case the Jacobi matrix H is an infinite tridiagonal matrix 
with all elements zero, except 

H j,j+l = H 
j+Lj =s j = 0,1,2,.,.. 

and the R&X) are rational functions of h given by the 
recurrence [17] 

R. = 0 

R2n + R2n+l = A 

which fits for the first few: 

R4 = A; R5 = x2 -h-l 
R1 = X; R2 = 1; R3 = X-1; 

x-1 i*.- 

(IV.2) 

(IV.3) 

The Schrcdinger operator associated to the Jacobi matrix 
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H, has the following properties [2ll 

(i) Its spectrum is invariant under both 

T(x) = x2 - X (IV.4) 

and its two inverses 

T-l(x) = kdm. (IV.5) 

(ii) The integrated density of states is the equilibrium 
measure au(x). 

(iii) When X > 2, the spectrum of H is the set K of points 
x (G) where 

; = (uO,ul,...,un,...) 0. = k1 1 (IV.6) 

x(S) = u. + h + u1 x + UT2 Jx + . . . (IV.7) 

(iv) K is a Cantor set of Lebesgue measure zero [14]. 

(v) The representation (IV.~), (IV.7) is a well adapted coding 
of K and the action of T is expressed on the sequences of 
signs s as the usual shift S 

SbO,U1,“‘) = (up2 I... 1 

T(x(;)) = x(S:). 

Similarly for the action of T 
-1 

(IV.8) 

+ 
% = (‘l,UO,U1,. . .) 

T-l lx (3 ) = xG$ l 

(IV.9) 

Using the coding, one can identify the measure dp(x) as the 
coin-tossing probability measure 

Sf (x) dp (xl = / ; (do, + 
n=O 

[6((rn-1) + s(~n+l)l]f(x(~0,01,02,...)). 

(IV.10) 

Therefore wesee that dp has no atomic part and the action 
of T on the spectrum has the ergodic properties of a Bernoulli 
shift. 
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V. ALMOST PERIODICITY AND BEHAVIOR OF THE EIGENSTATE. 
We come now to one of the most remarkable and unexpected 
facts about the coefficients Rn appearing in the Jacobi 
matrix H. A careful analysis of the recursion relations 
(IV.3) allows one to prove [17] that for X > 2 

0 < R2n < 1 

X-l 5 R2n+l < h 

lim R 
k-fc9 p2k+s 

= Rs . 

~1~0,. that for x 1 3, 

lRpZkts - Rsl 2 A k ' 
(X-2) 

(V. aI) 

07.2) 

which shows that the sequence Rn is almost periodic [22]. 

Therefore one can expand Rn in Fourier-like series 

M 2y-1 
Rn= C 

q=o p:o Lq 
exp 

2inn (2p-t-1) 
. 

29 
n7.3) 

Those properties can be extended to complex values of X 
large enough and for X real and slightly bigger than 2 [23]. 
Those quasi-periodic properties also extend to the most 
general polynomial T(x) of degree d.. 

Let us end this section by mentioning some properties 
of the states Qn(x). 

(i) Outside the spectrum, Q,(x) increases expo8nentially, 
because $ k(x) = &CT (k) (x)) and T(k) (x) goes to infinity 

2k n2 
as x when x is outside the spectrum. 

(ii) Inside the spectrum one gets the bound 

I$p) I < t(,,::E, )k (V.4) for 2k-1 5 n <: 2k. 

Therefore we have an explicit polynomial bound. The Lyapunov 
exponent [24] can be proven to satisfy 

Q(x) = y(T(x)), 07.5) 

which proves that y(x) vanishes on the spectrum, consistent 
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with the bound (V.4). 

Finally, let us emphasize the following fact. On the 
spectrum we have 

3, 
P2 

,(x) = $,dk) (xl) . W. 6) 

However, when k goes to infinity, the sequence T (k) (x) is 
ergodic on the spectrum. Therefore the sequences $ 

P2 
k cx) 

have fully chaotic behavior of a precise type related to 
the Bernoulli shift mentioned above. Although the complete 
behavior remains to be analyzed [25], and it should not be 
excluded a priori that the‘chaotic behavior could be attri- 

buted to the sampling (~2~), we assert that ours is the only 
almost periodic discrete model in which such an explicit 
statement on the states can be made when the spectrum is 
singular continuous. 

VI. CONCLUSION. A most fascinating point is to study 
the time dependent behavior of the corresponding quantum 
mechanical system 

$(t) = eiH$(0), (VI.1) 

choosing as $(O) the vector (l,O,O,...) = [.O>. The projec- 
tion of $(t) on Q(O): 

Q(O) ,e iHt$(0) ixtdp(x). > = Je (VI.2) 

Therefore the Fourier transform of the measure which for 
large time analyzes the structure of the fractal on which it 
is defined [26] is likely to give a sequence of increasing 
times tltt2,t3,...tn,... for which, no matter how large t 
is chosen, the probability that the system is found in its 
initial state remains finite [27]. Such singular spectra 
will provide systems which are intermediate between bound 
systems and unbound systems. 
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LARGE DEFORMATIONS OF ELASTOMER CYLINDERS SUBJECTED TO END 
THRUST AND PROBE PENETRATION 
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ABSTRACT. The Army is currently evaluating new elastomer tank track 
pads. These pads are repeatedly loaded to large strains when the tank 
is traveling on paved highways and to even larger strains when the 
tank is off the road and the pad is penetrated by sharp objects in 
the soil. In the process of evaluating the new elastomers, laboratory 
tests are made of cylindrical samples. In this effort a numerical 
method for analyzing tests of the cylindrical samples is presented. 
Axisymmetric triangular finite elements are used in the analysis to 
discretize the potential energy of the elastomer. Gradient and 
tangent matrices for the discretized potenetial energy are computed. 
The formulation allows different nonlinear energy density functionals 
to be used. Both end thrust and probe penetration problems are 
solved. A penalty method is used for the (no friction) contact 
problem associated with the probe penetration. Contours of the 
principal stretch ratios and stresses are shown on the deformed 
meshes for both the end thrust and probe penetration problems. 

INTRODUCTION. The analysis of large deformations of elastomers 
involves joining currently active research work in numerical analysis 
and nonlinear mechanics[l-51. In this effort we demonstrate a new 
numerical method for analyzing the large deformations of axisymmetric 
elastomers. The geometrical relations necessary for describing the 
stretch ratios of the deformed body in terms of the undeformed 
geometry are given. Both the deformed and undeformed bodies are 
interpolated using the finite element method and relationships 
between these interpolations are used to obtain the approximations to 
the variables which describe the stretch ratios. The internal energy 
of the deformed elastomer is expressed as the sum of separate 
symmetrical functions of the principal stretch ratios, see Valanis 
and Landel [61. The internal energy is then used to determine the 
potential energy of the deformed elastomer. The energy gradient and 
tangent matrices with respect to the finite element nodal variables 
are then determined so that the Newton - Raphson method may be 
employed to obtain the deformed geometry (i.e., a minimum of the 

* Mechanical Engineer, AMMRC 
** Professor of Mathematics, Boston University 
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potential energy functional). The incompressibility constraint is 
en,forced by adding the work done by changing the element's volume to 
the potential energy. End thrust is analyzed by enforcing the 
displacement of the top boundary. The probe penetration problem is 
approximated by adding a penalty term to the potential energy in 
which the distance between the contact surface (probe surface) and 
the nodes which penetrate into the contact region is minimized [5]. 

STRETCH RATIOS IN AXISYMMETRIC SOLIDS. The strain energy in a 
deformed 

--- 
elasfomer so1i.d can beaeterm in terms of the chanqes in 

length of material lines originating in the undeformed body [8]T The 
measure of this change in length most commonly used is the stretch 
ratio, defined as the ratio of the deformed -material line length to 
the undeformed length. The stretch ratios in an axisymmetric solid 
can be determined as follows, see Figure 1. Let the coordinate system 
of the undeformed body be the (a,6) system and the system of the 
deformed body be the (r,z) system where the radial direction ;Ihsegiven 
bY the a,r coordinates and the axial direction by B,z 
coordinates. Neighboring points in the undeformed body are located by 
the coordinates (a,B) and (a + da,B + dB) respectively. Deforming the 
elastomer results in the above points being mapped to (r,z) and (r + 
dr,z + dz), respectively, in the deformed body. The line segments F. 
and x represent the undeformed 
lines2for the direction 9 

and associated deformed materia 1 
at (a,B) in the undeformed body. If we 

let s be a coordinate line measured along T1 and assume that the 
(r,z) coordinates along 6 can be described by functions of s then we 
can write 3 1 and 3 2 as fo lows. 1 

Tl(0) = daa" + dBt = (cos0 h + sin0 $)ds 

Z2(0) = dr$ + dz$ = (rsg + zS$)ds (1) 

We can now determine the stretch ratio at (a,B) in the direction 8. 
It is 

l(e) = IT21 / IT11 = ( rs2 t z~*)~'~ (2) 

To develop the finite element, we determine the principal stretch 
ratios in terms of the deformed and undeformed coordinates. We have 
the stretch ratio at (a,61 in direction 0 using the deformed 
coordinates and the auxiliary system (e,s). We map the 0,s) 
coordinates to the (r,z) coordinates as follows, for a given 8. 
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r = f(a(S) ,6(S)) 

2 = z(a(s) ,6(S)) 
(3) 

Using (2) and the chain rule we have 

X2(K) = [case sine] ro2 + za2 rarg a B 

I 

+zz 

1: r 2 2 
a 6 

+zz 
a 6 5 + % 

? 

case 

II 1 

(4) 

sin0 

The principal values of nc(e) are the characteristic values of the 
matrix in (4). They are 

2 
9 

= 1/2(A + B + ((A - B) 2+4C) ) 2 l/2 

2 
I2 = 1/2(A f B - ((A - B)* + 4C2)1'2) 

where 

A=r2+r2 
a 6 

B=r2+z2 
6 6 

and 

C=rr a 6 + z 2 a I3 

The third stretch ratio, the hoop stretch ratio, is given by 

2 2 
x3 = r2/a 

(5) 

(6) 

TRIANGULAR BILINEAR ELEMENT. The potential energy expression for a 
deformed elastomer is not quadratic in the variables to be 
determined. That is, the potential energy minimization problem is 
nonlinear, In this section we describe a convenient way to compute 
the gradient and tangent matrices which must be repetively calculated 
in the minimization process. We choose a triangular three node 
element. The node numbering and coordinates for the element are shown 
in Figure 2. We map the undeformed triangular element to the unit 
triangle shown in Figure 3 and interpolate (a,6) over the mapped 
triangle as follows. 
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01 = cql - 6 - II) + a25 + a3n 

f3 = Bl(l - 5 - rl) + f3*E + fi3Jl 

Using (7) we obtain 

where 

A = da 2 dB3 - da3 dB2 

and 

da1 = a3 - a2 da2 = a1 - a3 da1 + da2 + da3 = 0 

dsl = f13 - B* dB2 = 6l - 63 d61 + dB2 f dB3 = 0 

Similarly we inte.rpolate (r,z) 

r = rl(l - 5 - n) + r2E + r3n 

z = z,(l c r 
L 

- Tl) + z*s + z3fl 

from which 

dr i 1 = 
dz 

dr3 

dz3 

Using (8) and (10) we can obtain 1: , 1: z and z in terms of the 
nodal variables (rl, zl, r2, z2, r3S z3 f'ana'the undeformed geometry. 
We find 
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1 
r = - ---EC a A 

i d6i 

1 
Z = - 

u - c zi dBi 
A 

1 
r6 = - 4 C ri dBi, 

i = 1,2,3 (11) 

1 
z6 = - 42 zi dai 

We note the relations in (11) can be used in (5) and (6) to compute 
the principal stretch ratios X. (i=1,2,3). 
r z6 in (11) are constant inlan element. 

The quantities ra, z,, 

tGse quantities as vector dot products 
It is useful to express 

since they are needed to 
calculate the potential energy and thus will be involved in the 
computation of the gradient and tangent matrices. We define 

pT = -l/A Ids, 0 dB2 0 dB3 01 

qT = -1/A [O dBl 0 dB2 0 de,1 

rT = l/A [da1 0 da2 0 da3 0] 

ST = l/A [O da1 0 da2 0 da31 

then 

r = uTp T 2 = u s a a 
T 

5 =ur T 
5 =us 

(12) 

(13) 

where 
T 

U = (rld1,r2,z2,r3,z3) 

In addition, we will need a similar expression for the radius used to 
calculate X3 in (6). Since the geometry (i.e. r and z) are 
interpolated with bilinear functions we will attempt to use one point 
integration to compute the expressions in the energy. The form of I: 
at the center of the element, r 

C’ 
becomes 

r = 
C 

(1: +r 1 2 + r3)/3 = uTt (14) 

where 

t T = l/3 [l .o 1 0 1 O] 

We now outline the computation of the gradient and tangent matrices 
of the potential energy. From the Valanis and Landel form [6] of the 
internal energy we have 

I[ = IT U(~lt~2,~3) dr - W (15) 
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where 

wy*+ = C F(L) 

t = the volume of an element 

w= the work done by external forces 

Using one point integration we have 

a = rrcAU - W 

Then the gradient and tangent matrices become 

an au aw 
g=- 

aUT 
= rrCA - - - au T aUT 

and 

a*, a*u a*w 
k= - = nrcA - - 

au au 
T amu 

T T auau 

(16) 

(17) 

(18) 

Since Ai = Ai(rl,zl,r2,z2,r3,z3) 
write 

= Ai for an element we can then 

u = U(u) (19) 

and directly compute the gradient of U as follows. 

au 
3 

- *= c ui T 
au i=l 

xi,u (20) 

where 
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and 

x i,u 
= 

x i,rl 
x i,zl 

x i,z3 

Similarly, the tangent matrix of U is determined from 

a% 3 
-= T z P 
auau i=l 

i 

3 

+ c 
i=l 
j=2,3 

where 

1 i,uu 
= 

i'i,u'i,u 
T 

+ "i'i uu. I 1 

uij[x. x. T + lj,u~i,uTJ 1IU J#U 

(j>i) 

A i,rlrl 

(sym) 

x i,rlzl A i,rlr2 l ** 
A i,zlzl x i,zlz2 l " 

A i,r2r2 l '.I J 

and 

! 
[ A* 3,rl x j,zl l .' 'j,z3' 

(21) 

Note, h 
2 

= 0 so there are eight coefficient matrices in (21). 
Using ( JyyS) and (14) we have 
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A i,u = x. A 1,A 'u +A B +X i,B 'u C i,C 'u i = 1,2 (22) 

and 

x3," = t/a 

Similarly, 

x i,uu = A i,A Aluu + Ai BB,uu + X. C, + X. 
I 1,c uu 1,AA A,uA, T + 

U 

A i BBB,UB,UT + Xi ccC,uC, T + ’ 
I U 

i AB(A,uB, T + B,UA, T’ 
U U 

+ x i,AC(A,“‘,uT +‘CtuAtuT) ’ ’ i ic(B,uC,uT + C,UBI”~) 
I 

i = 1,2 (23) 

and 

x 
3,uu = 

0 

The expressions in (22) and (23) can be conveniently computed using 
the following relations obtained from definitions above. 

A = uT[ppT + qqTh 

B = uT[rr T f SST]. (24) 

C = uT[prT + rpT]u 

Then, 

At” = 2[r,p + zaql 

A%" = 2[PPT + qqT] 

and 

Bf” = 2[rgr + .zgS] 

B 
‘UU 

= 2[rsT + SST1 
(25) 

c, 
U 

= rar + rgp + zgs + zBq 

Guu = prT + rpT + qs T 
+ w 

T (26) 

The only remaining tasks are to determine the derivatives of the 
stretch ratios and to perform the axisymmetric integration of the 
element gradient and tangent matrices. Using (5) we have 

A-B 
l+ 2 

a1 - x2 
2 1 

- '1'1,A 1 
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C 

1 r L 

'2,B = 
Vl,A 

l2 

(27) 

1 
'~,AA =- 

(al2 - h22) - 2(A - B) (X1X1 A - x2x2 A) 
I , 2 

ll (Al2 - a2212 - ?,A 

'~,AB = - %,AA - '1,A 2 2A 
1 

1 
'1,AC =- 

2C(x2X2,A - 'lXIIA) 
- 5 (al2 - X12)2 "l,A'l,C 

I 

1 

'&AA = 
-- 

I2 
[ '1,A 

2 
+ '2,A 

2 
+ '1'1,AA I 

1 

'2,AB = - - [ 'l,AXl,~ + '2,A'2,8 + '1'1,AB ' 
x2 

1 

'2,AC = - - ' 'l,AX1,C + '2,AX2,C + 'l'l,AC I 
A2 

1 2 
'1,BB = - - ['l,A%,B + 'l,B + '1'1,AB' x 

, 

1 

'1,BC = 
-- 

a1 

1 

a2,BC = - - 
a2 

[a l,A'l,C + 'l,B'l,C + 'lal,AC 1 

Ial,Bal,C + '2,Ba2,C + 'l'l,BC ' 
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1 
%,cc =7 

(Xl2 - x2*, - *c(y~,c - 55 c) 

1 L[ 
- 5,c 

2 
(al* - a**)* 3 

and 

A2,cc = 
- 1 [ a1 c* f x2 c* + y1 cc 3 

x2 
I I I 

Note, A 
so x2 ,;w 

is computed using Al* + A2* =_A + B 
not needed. That is, 

I 

1 
a 

2,uu = - 
A2 

2(A,uu + B,uu) - x1 ual UT - x2 $2 UT 1 (28) 
2 I I I I 

Given any configuration (r,z) we can now compute the approximate 
gradient and tangent matrices of the potential energy using the above 
bilinear three noded triangular axisymmetric element. The Newton - 
Raphson method can then be used to locate extremum values of the 
potential energy, 

MATERIAL MODEL. The internal energy expression used in this effort 
iS valid for a nearly incompressible solid undergoing large 
deformations [63. Elastomers fall into this category. The specific 
form used is 

U = I/* ^x [ln(llX2h3)12 + 2yii11i[ln(*i) - 11 (29) 

where ^x, IJ = the Lam& constants. 

Many other forms are available [7]. We utilize the expression in 
(29) to demonstrate the finite element algorithm. The terms needed in 
the gradient and tangent matrices, equations (19) and (20), are 

h 
a 

Ui = - ln(xlx2h3) f *IJ ln(xi) i=l,2,3 

'i 
1 

U ii =7 [Zrl- ln(ilX2x3)1 f *~‘i] i=1,2,3 

i 

(30) 
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lJ.. = 
13 X.A. 

1 3 

i=1,2 j=2,3 j>i 

END THRUST AND PROBE PENETRATION. To demonstrate the above algorithm 
we solved two problems. The first is the "end thrust" problem in 
which a cylinder is compressed by first bonding its ends to plates. 
The cylinder and plates are then placed in a hydraulic 
tensile/compression tester which forces the plates towards each 
other. The second is the "probe penetration" problem which involves 
forcing a probe with a hemispherical end down the axis of the 
cylinder. 

A. END THRUST. A cylinder of radius 1.0 in and height 2.0 in was 
assumed, The Lame constants chosen were ^x = 16,000 psi and IJ = 160 
psi. These values closely represent styrene - butadiene 
rubber. Solutions were obtained by enforcing motion of the top 
surface of the cylinder. Results are shown in Figure 4 for a 10% 
reduction in height. The deformed mesh and profiles of 5’9 and X 3 
are shown. 

B. PROBE PENETRATION. For this example a cylinder of radius 1.0 in 
and height 1.0 in were assumed. The values of 2 and I.I were the same 
as those used for the end thr-'ust problem. Some additional comments 
relating to the method used to represent contact are worthwhile. A 
penalty method, in which the distance between nodes (which have moved 
"inside" the probe surface) and the probe surface is minimized, was 
used to model contact. One of two terms was added to the potential 
energy, depending on the location of the node. The first term 
Figure 4.) iS 

(see 

II ’ = y n np [rp - (rn2 + (zn - c)2)1’212 

where 

‘np = ' kznzn ' 
p = a user defined constant to weight the penalty term, 

k znzn = the diagonal term of the tangent matrix associated 
with a vertical displacement, 

(r n"n) = the coordinates of the node, 

c = the height to the center of the hemispherical end of 
the probe, 

and 

rP = the radius of the hemispherical end of the probe. 
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The second term is 

P,ll = y [r - rn] 2 
w P (32) 

The II ' term is used if the node is inside the spherical end of the 
probe"and the JI I1 term for the case when the node is inside the 
cylindrical portron of the probe. 

1 11 
The gradient and tangent matrices were computed for II and n and 
used to modify the global gradient and tangent matric& when a" node 
was in contact. After a node was determined to be in contact the 
appropriate penalty term was applied for all succeeding probe 
locations analyzed. That is, the node was not released. However, none 
of the nodes in contact moved outside the contact surface for the 
problems analyzed here. The results for a probe of radius 0.25 i,n 
penetrating 0.30 in into the cylinder is shown in Figure 5. Also 
shown are results obtained using the ABAQUS program with a Mooney - 
Rivlin material given by 

u -2 -2 -2 -2 = 80 psi [Al2 + 122 + X1 X2 - 31 + 20 psi [Xl + x 
2 

2 2 
+ 9 I2 - 31 (33) 

The results shown in Figure 5 indicate that there is relatively good 
agreement between the ABAQUS calculations and the calculations made 
using the above finite element algorithm. Overall displacement 
profiles and the location of zero hydrostatic pressure (i.e. 
approximate zone of near zero volume change) agree well. 

CONCLUSION. A finite element algorithm was presented in which large 
TGymmetric deformations of nearly incompressible materials can be 
determined. Results were presented for end thrust and probe 
penetration problems. Different material models can be accommodated 
in this formulation with relative ease. The computer program written 
to implement the above finite element algorithm was checked by 
comparing results obtained using it to results obtained using the 
ABAQUS finite element code for a probe penetration problem. 
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A TECHNIQUE FOR CALCULATING PATH INTEGRALS 
FOR NONLINEAR FRACTURE 

J.R. Whiteman? and G.M. Thompson* 
Institute of Computational Mathematics 

Department of Mathematics and Statistics 
Brunel University, Uxbridge, Middlesex, UB8 3PH, England 

I. INTRODUCTION. Path independent integrals for fracture mechanics 
were presented by Eshelby [51 and Rice [7], and a number of papers extend- 
ing the range of application, e.g. Atluri [I], Blackburn [‘3], Blackburn et 
al [4], Hellen [6] and Rice [8], have since appeared. 

The present paper describes a finite element method for calculating 
approximations to a path integral Jp for fracture-problems involving 
elastic-plastic deformation with hardening. This involves the use of 
techniques based on incremental plasticity and allows approximations to 
Jp to be calculated for contourssurrounding the crack tip.. Recent comments 
by Atluri and Trafiey emphasise the importance of being able to calculate 
such approximations for contours at varying distances from a crack tip, 
see Atluri [2] and Tracey [IO]. 

II. Jp-INTEGRAL. Rice [7] proved that, for a homogeneous two- 
)1imensional elastic body, the rate of decrease in potential energy with 
respect to crack length is equal to the path independent integral, J. 
That is 

apE J=-- 
aL ' (2.1) 

where PE is the potential energy and L the crack length. J is defined 
for a crack with flat surfaces parallel to the x1-axis, see Fig. 1, as 

(2.2) 

where the contour IY surrounding the crack tip, starts from the lower 
crack surface and continues in an anticlockwise direction until it ends 
on theupper surface, W is the strain energy density, ui are the dis- 
placements, and the tractions Ti are defined with respect to the unit 
outward normal vector 2, SO that Ti - oijnj. 

t Supported in part by the United States Army Research, Development and 
Standardisation Group, London, England. 

* GKN Technological Centre, Design Analysis Group, Birmingham New Road, 
Wolverhampton, WV4 6BW, England. 

467 



Fig. 1. Two-dimensional crack with contour P 

For problems of linear elastic fracture the value of J can be 
used as a fracture criterion. In the present work for elastic-plastic 
fracture problems a corresponding integral, the J -integral, is defined. 
This integral can be developed from the J-integra !i , (2.2),by separating 
what was for the elastic case the strain energy density W into elastic 
and plastic components, We and Wp respectively. Thus 

w=w,+w , 
P 

where the elastic component is given in terms of the stress and 
elastic strain components by 

we = 4 CLj(Eij>e . 

The plastic term, Wp, is defined as 

-F 
rp- - 

wP q io P 
adE 

(2.3) 

(2.4) 

(2.5) 

where 0 and E 
plastic strai:. 

are respectively the effective stress and effective 
Equations (2.2) - (2.5) together define Jp. 

III. CALCULATION OF THE Jp-INTEGRAL 

Full details of the method of approximating JP throughout the 
load history for elastic-plastic deformation are given by Whiteman 
and Thompson [II]; a description of the algorithm and use of the 
MODEL finite element code appears in [9]. 

The finite element method is applied using a formulation in terms 
of displacements. With incremental plasticity the load is applied 

and for the kth increment the finite element approximation 
to the corresponding increment of displacement is fir t calculated. 

(k) The associated increments of strain and stress d% and ddk) are then 
'3) retrieved and the total displacements s strains dk) 

o(k), for the combined load up to the kth fncrement, 
and stresses 

Jl are calculated. 
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For the approximation of Jp, as in (2.2) - (2.5), to be calculated, 
a contour path r, see Fig, 2, 1s chosen through a ring of elements tie 
surrounding the crack tip. The total value of the approximation (Jp)ik) 
is calculated by summing the contributions (JE)ik) from ,elements involving 

v 
- -.-.,_. -=. _ 

A B 0 

Fig. 2. The contour I' around the crack tip, point 0. The Gauss points 
are indicated by X and I' by the dotted line. The upper crack 
surface is the line OA 

segments ,(e) of I. Each element Re is transformed in turn(opto a 
:;tandard ehnent in the (<,,<2)-plane so‘that the image of I' e is either 
a line 5, =Const, a line 5, =Const or a path consisting of parts 5, =Const 
and 5, =Const. 

Along the image of I(e), for example t1 =Const, we have that 

(J;);) = 1 
j 

(3.1) 

where the (S(i),<(j)) are Gauss points and the G* are the corres onding 
weights. If'the gtresses and dis 

K 
lacements at t ?l e end of the kt R load 

increment are re5peCtiVely (aI3 

I$e)(,,.)ik) is given by 
e*)( ) h and (uf)kk) , i,j = 1,2, then 

e (k) e (k) 

+ cue > 
(k) cacul)h +, a(Uz)h ) 

12 h ax2 ax1 

e (k) 

+ (0 
e )(k) a(u2)h (k) 1 5 
22 h -2 + 'P 1 a<, 

[i 
(o:,)r)n, + (oiz))Lk)nz} "'"g?) + ((oF1)r)n, + (o~,)~)n,} 

1 

(3.2) 
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where Wck) is the plastic work term at the end of the kth increment - 

given by (W (k) I-' $k) de(k) = 
P Jo P. 

For nonlinear fracture problems, where incremental techniques are 
used to model the elastic-plastic deformation, if the tot 
applied through L increments, then approximations to (J ) ?b 

load is 

culated for each load increment k=1,2 ,***, L. In each !n~rern~~~ i' ca1- 
number of approximations are calculated for different contours I which 
are at different distances from the crack tip 0, see Fig. 2. These 
approximations, together with their mean value, are used as criteria 
for fracture. 

Approximations to Jp have been calculated for a number of contours 
I as the load is incremented for several two-dimensional Mode I crack 
problems. In each case a power law relating effective plastic strain 
and effective stress has been employed. Details of the problems together 
with some numerical results are given by Thompson and Whiteman in [9] 
and 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

[ill. 
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AN EXPLICIT A PRIORI ASSESSMENT OF SHEAR LOCKING 
IN A TRIANGULAR MINDLIN-TYPE PLATE ELEMENT 

Alexander Tessler 

Medhanics of Materials Branch 
Army Materials and Mechanics Research Center 

Watertown, Massachusetts 02172 

ABSTRACT. An a priori, explicit algebraic procedure for 
identifying shear locking and excessive‘solution stiffening in 
thin shear-deformable plates is explored. Only element level 
solutions of element Kirchhoff modes are required to establish 
the nodal degree-of-freedom constraints. These constraints 
clearly identify whatever kinematic stiffening might exist. 
The methodology is demonstrated by the use of a conforming, 
three-node Mindlin element. Several discretizations of square 
plates are examined. The results are compared, and fully 
confirmed, with the corresponding numerical solutions. Examples 
of alternate discretizations, which alleviate the locking effect, 
are also presented. 

1. INTRODUCTION. The locking phenomenon, intrinsic to C0 
penalty constraint models, is by far the most severe detriment to 
element performance. Encountered in the limiting penalty regime 
(viz., when the penalty parameter approaches infinity while the 
penalty strains diminish to zero), locking is evidenced by 
grossly erroneous results. Various remedial techniques have been 
employed in an effort to abate 'shear locking' in 
shear-deformable flexure elements and mathematically similar 
'incompressibility locking' in incompressible elasticity, 
plasticity and fluid flow formulations. Notable improvements 
have been achieved by discrete penalty constraints [l-51, reduced 
integration procedures [6-221, improved penalty strain 
interpolations [23-251, and penalty parameter modifications 
[13,18,26-301. 

Despite the locking-free characteristics generally achieved 
by these enhancing schemes, evidence of locking under certain 
discretizational conditions still remains (e.g., refer to 
[17,29,30]) l Presently, there exists a lack of insight with 
regard to the actual mechanism of locking, in general, and in 
these, occasionally locking models, in particular. Attempts have 
been made to predict locking on the basis of a constraint index 
criterion [lo] and, recently, by operational procedures involving 
consistency comparisons of discrete and exact equations of 
equilibrium/motion [31,32]. While the former approach is only a 
heuristic measure of locking, the latter methods, despite their 
theoretical merit, appear too cumbersome for practical 
applications. 
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The objective of our present effort is to explore in detail 
the mechanisms of shear locking by, what appears to be, the most 
direct and effective way for a discretization assessment 
conducted a priori to the full-scale finite element computation. 
Herein, we propose an explicit, element-by-element analysis of 
element Kirchhoff modes (i.e., vanishing coefficients of shear 
strain polynomial 
nearly 

terms) which are responsible for enforcing a 
shearless element deformation state. 

involves simultaneously solving a 
Such an analysis 

small set of linear algebraic 
constraint equations for each element, from which kinematic 
constraints upon individual degrees of freedom 
determined. 

(do f) are 
By Starting with elements most severly restrained by 

boundary conditions and marching across the mesh-from element to 
element, one can definitively identify the true origin of locking 
within an element and the conditions of locking propagation 
throughout the whole discretizational domain. In the absence of 
shear locking, clear evidence of a global (mesh-wide) stiffening 
effect, if such exists, can be established. 

This a priori analysis will be demonstrated on several thin 
plate problems modeled by a conforming, three-node (nine dof) 
Mindlin element [29] (refer to Figs.1 and 2 for the plate and 
element notations) l The element, herein referred to as MIN3*, 
utilizes 'anisoparametric' kinematic interpolations and exact 
quadratures of all energy and work terms in the variational 
statement. It also uses the standard Mindlin plate shear 
correction factor, k, * (k**=n* /12 for isotropic, homogeneous 

plates [33]) and, hence, constitutes a true penalty constraint 
element for which the penalty parameter becomes infinitely large 
as its thickness diminishes to zero. Essentially the same 
element, termed MIN3 [29], with the shear stiffness (penalty 
parameter) enhanced by the so-called element-appropriate shear 

2 correction factor, k2=(k,$) , is completely devoid of locking 

(02 is an element shear correction dependent won element 
material and geometric properties). Yet, it should not be 
regarded as a true penalty element owing to the finite-valued 
upper bound of its 'penalty' parameter (for details of this 
concept and its implementation, refer to [28-291) l For 
comparison purposes, MIN3’s results will also be presented. 

In section 2, from the kinematic variable assumptions we 
derive explicit pOlynOmia1 expressions for MIN3,'S transverse 
shear strains and bending curvatures, and define two distinct 
types of Kirchhoff modes that control element performance. 

In section 3, for the purpose of demonstrating the typical 
MIN3, behavior with its occasional shear locking characteristics, 
numerical results are presented for several square plate problems 
discretized by three standard mesh patterns. 

In section 4, the proposed explicit procedure for identifying 
shear locking and related excessive plate stiffening is 
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elaborated on using standard discretizational patterns. Closed 
form solutions, clearly exhibiting the mechanisms of mesh 
constraining, are carried out for the basic macro-element and 
refined multi-element discretizations. These a priori 
predictions are confirmed throughout by the numerical solutions 
of section 3. The main shortcomings of some of the considered 
meshes are overcome by 
boundaries (section 5). 

alternative discretizations along plate 
Conclusions and some numerical results 

with our trouble-free MIN3 element are given in section 6. 

2. KIRCHHOFF CONSTRAINTS. The transverse shear strains are 
deri=d in a consistent manner from the assumptions of the 
transverse displacement, w, and normal rotations, 0 x and 0 
interested 

y (the 
reader should consult [291 for details of the 

derivation of w), which may be written as 

w= gw+Le +M0 -- -x - 7' (la) 

e 
X 

= t e , - -x eY = I e -Y 
where 

ET = {Wi} , kxT = {ex i' 
T I 

2Y 
= {Oyil (i = 1,2,3) 

are vectors of nodal dof; 

I = Iril, E = ILil I 

the shape functions 

2 = {Mi} (i = 1,2,3) 

are given in terms of area-parametric coordinates as 

Li = l/8 (bkNi+3 - b.N J k+3)' 

Mi = I./8 (a.N Jk+3 - akNi+3)' 
N i+3 = 4t.r. 

1 3 
5; = (c; + b;x + a;y)/2A, t4 = 1 (summation on i) 

a A A A a 

(A is the area of a triangle) 

a.=x -x 
1 k j, bi = Yj - Yk, Ci = XjYk - XkYj 

(i = 1,2,3; j = 2,3,1; k = 3,1,2). 

The transverse shear strains are computed using 
relations 

rxz =w, +e 
X Y 

rYz 
=w, +e 

Y x 

(lb) 

(2) 

(3) 

(4) 

(1) from the 

(Sal 

I5b) 

After performing the straightforward algebraic manipulations, 
we arrive at the following expressions for the shear strains 
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corresponding to an arbitrary-shape triangle: 

yXZ = A0 + A lY 
where 

(6) 

A0 =Lw + &ix + 
%% (7a) 

A1=P&x+ 9& (7b) 

and components of the 1x3 row vectors La, 
given as kat -a' m Ea and CJ, are 

t ai = hi/2A, 

a ai = b(b c. 
k J 

- bjck)/8A2, 

m ai = [ci + bi(a.c - a c.)/2A]/4A, 
3k k~ 

P = ai - hi/4A, 

q -ai = ai/4A. 

(i = 1,2,3; j = 2,3,1; k = 3,1,2). (8) 

Similarly, 
yYz 

may be expressed as 

yYz 
= B0 + Bl x. (9) 

with 

53 = Lb !i + Lb Lx + s iyr (10a) 

B1 = $ .!!x + gb Lye (1 ob) 

where components of the 1x3 row vectors t 
given by the geometric relations 43' AsI st pb and 9b ape 

tbi = ai/2A 

Lbi = [ci + ai(c.b 
J k 

- bjck)/2A]/4A 

mbi = ai(a.c 2 
I k * akcP8A 

'bi = hi/4A 

qbi = -ai/4A 

(i = 1,2,3; j = 2,3,1; k = 3,1,2). (11) 

REMARK 2.1 Interestingly, the shear strain approximations (6) 
and (9) satisfy the following three differential equations: 

Y xz'x 
= 0, Yyzry’O, Yxz 'y + Y 

. -4yztx=0 
(12) 
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This means that the edge constraint procedure, used to condense 
out the mid-edge w dof [291, is equivalent to enforcing 
differential constraints (12) across the entire element domain. 
Further, the third equation in (12) may he recognized as an exact 
transverse shear equilibrium statement for a plate without 
interior loads. This ,of course, is always the case for MIN3,, 
where any applied load is transformed into consistent nodal 
forces. Thus, our 'displacement' element also satisfies one 
plate equilibrium equation exactly. 

In the thin (classical) plate regime as the plate 
span-to-thickness ratio (L/h) approaches infinity, the Kirchhoff 
constraints 

Y +0 and y +@ XZ YZ 
(13a) 

2 are enforced over the entire element domain assuming that A/h += 
as well (i.e., the element penalty parameter, which is 
proportional to A/h2, must be large). Owing to (6,9) F the 
Kirchhoff modes must be enforced simultaneously, i.e., 

A@ BP+, Al+fl (note A =-l3 ) 11 (13b) 

The single important feature of constraints (13b) is that in 
their unrestrained form (i.e., prior to applying boundary 
restraints) each mode contains contributions of at least two 
independent kinematic variables (i.e., Ap and Bfl are functions 
of w, e and 0 x Yi Al depends on Bx and ey). Such modes will be 

referred to as the 'true' Kirchhoff (or Qenalty) modes. won 
their enforcement, a dependence of at least two originally 
independent fields is achieved. On the other hand, we shall term 
a Kirchhoff mode 'spurious' if it is only in terms of a single 
kinematic variable. This latter situation :i s inherent in 
isoparametric formulations (i.e., where w, ex‘and 8 are 
interpolated by the same order polynomials; refelI to [29] for 
further discussion on the subject), and it is also possible with 
MIN3, for some geometries and boundary restraints (due to the 
removal of certain dof from Ai, Bi coefficients). 

In order to ascertain the Kirchhoff constraint implications 
upon the bending strain energy, it will prove insightful to 
examine the element normal and twisting curvatures: 

K = e 
X Y’X 

= bieyi/2A, 

Ky = e 
x’y 

= aiexi/2A, 

K = e x’x + e 
XY Y’Y 

= (b.e i xi +a e i yi)/‘A. 

(summation on i is implied, i=1,2,3) 

(14a) 

(14b) 

(14c) 

Note that the element bending strain energy is a funct ion of the 
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curvatures (14), 
the shear 

while the transverse shear energy is in terms of 
strains (5). The two contributions are superimposed to 

produce the total element strain energy (for details on the 
strain energy, stiffness matrices and load vectors for MIN3* 
consult [29]). 

3. STANDARn DISCRETIZATIONS FOR PLATES. To 
ascertain 

SQUARE 
the kind of behavior MIN3, typically exhibits, 

solutions for uniformly loaded, simply supported and clamped 
square plate ranging fi:Jm moderately thick (L/h=lfl) to extremely * 
thin (L/h=ln') are carried out. The A, B and C meshes, depicted 
in Figs. 3 and 4, are standard 4x4 triangular element 
subdivisions for a symmetric plate quadrant. The center 
deflection results, normalized with respect to the appropriate 
Mindlin theory solutions, are summarized in Table 1. 

Note that in the simply supported case (Fig. 3), mesh B tends 
to lock at L/h=lf12, with the solution progressively deteriorating 
as L/h increases. Meshes A and C, however, yield nonlocking 
results for this problem, although mesh C solutions are superior. 
In the clamped case (Fig. 4), both A and B meshes lock for 
L/h>lf12, while mesh C provides a relatively good solution that is 
only locally locked. 

Apparently, mesh A produces no locking in the simply 
supported case, but locks under clamped conditions. This 
indicates the influence of boundary restraints on shear locking. 
Further, from the comparison of the A and B mesh results in the 
simply supported case, it becomes evident that locking is also 
mesh dependent. 

In what follows we shall demonstrate that while true 
Kirchhoff modes yield non-locking solutions, spurious ones 
generally produce a considerable stiffening effect and ,in some 
cases, full element and/or plate locking. 

4. ANALYTIC MESH ASSESSMENTS. The procedure to be 
undertaken involves simultaneously solving three algebraic 
constraint equations (13b) for each element, from which the 
implication on the bending curvatures (14) and bending strain 
energy can readily be ascertained, By marching through the entire 
mesh, from element to element, all constraints upon individual 
dof are solved for without much algebraic difficulty. As the 
result, we shall be able to pinpoint locking and/or related 
kinematic stiffening of either local (at some nodes) or global 
(throughout the mesh) nature. 

To assess the suitability of meshes A, B and C for thin 
plate-bending modeling a priori to the full-scale finite element 
computations, it is first expedient to determine whether a 
representative macro-element model (Fig. 5) is capable of a 
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nonlocking plate response. Then we shall carry out the analysis 
for larger discretizations starting with elements that are most 
severely restrained by boundary conditions. In this way, even 
relatively large discretizations can be examined quickly without 
computerizing the process. The practical examples are presented 
below. 

4.1 Fesh types A and B. Figure 5a depicts a macro-element 
model (consisting of two MIN3, triangles) for a symme tr ic 
quadrant of a square plate. Incorporating element nodal 
coordinates in (8,ll) yields the following 
bending curvatures: 

element P 

w2 - wl + (a/2) (0 
Yl + ey2 I*0 

w3 - w2 + (a/2) (ox1 + ox3 - ey2 + ey3) +fl 

0 xl - Ox2 - ey2 + ey3 +0 

It X = (Oy2 - eyl)/a, KY = (ex3’ex2)/ar 

KXY 
= (ox2 - exl + ey3 - e,,)/a. 

element Q 

w3 - w4 
+ a/2(Ox3 - Ox4 + 9 

Yl + ey3 
) *0 

w4 - wl + a/2(Oxl + Ox,)+0 

e 
x3 - ex4 + Oyl - ey4 +0 

K X 
= (ey3 - e,,)/a, cY = (ox4 - exl)/at 

KXY 
= (ex3 - ex4 - eyl + ey4)/a- 

Kirchhoff modes and 

(15a) 

(1%) 

(AO+O) , 

(Em+fl) , 

(Al+01 9 (16a) 

(16b) 

A-type mesh: Simply supported edges (l-4) and (3-4) and boundary 
restraints ~1~~=w~=0~1~,~=0,~=0 cy2%y3%y4% 

In element Q, all but two dof are fixed, while element P has 
only three active dof. With these boundary conditions, (15) and 
(16) become 

w2 * -(a/2) e yl' w2 + (a/2) ox3 (these imply Ox3+-eyl) (17a) 

*X 
= -0 

Yl 
/a, 

KY = 
ex3/at rxy = 0 (17b) 

0 +-e 
x3= 

(18a) 
K x10 

X cY I KXY = Ox3 - eyl)/a (18b) 

According to our earlier definition, constraints (17a) and (lea) 
should be regarded as true Kirchhoff modes since each relates two 
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independent kinematic fields, The relation (18a) ' also 
theoretically correct due to the intrinsic symmetry condition in 
this plate problem. Obviously, the bending energies are 
nonvanishing (because kx#O and ry#O in element P, and K #0 in 
element Q), and there exists no locking in eithexr' of the 
elements. 

Because of the excessive boundary restraints (only three out 
of twelve dof are not fixed) one would 
excessively stiff results or even locking. 

intuitively anticipate 
Evidently, due to the 

exclusive enforcement of the true Kirchhoff modes the elements do 
not lock. On the other hand, the solutions for mesh A 
corresponding to L,/h>ln4 exhibit about 20% error in the maximum 
deflection (Table I), 
considering 

which may be regarded as unsatisfactory 
the relatively large number of dof in the 

discretization. (Note that the exact plate theory solution for 
this problem requires only few Fourier series terms to capture 
the bulk of the answer [341.) 

To ascertain the source of the 'solution stiffening' for this 
problem we need only consider (for the sake of avoiding any 
additional algebra) the linear Kirchhoff modes (Al=- Bl+O). For 

example, it may be convenient to examine first the Rn and Sn 

(n=1,2,...,N) elements that are adjacent to the kinematic 
symmetry axis x (refer to Fig. 6a). The linear Kirchhoff modes 
for these elements may be written as 

'xi(n+l) - e xin - eyi(n+l) + 'yj(n+l) + 0 (R,) 

e xj(n+l) - 'xjn - eyin + 'yjn + ' en) 

Using the symmetry condition along the x axis (i.,e, exin=FI 
for all n) gives 

e yi(n+l)+'yj(n+l) 

and employing (19a) in (20) we obtain 

exj (N+l)+'xjN*'xj (N-l) “‘*exj2+eyil - eyjl = A#0 

(2GI) 

(19a) 

(20a) 

The Rn element constraints (19a) are certainly spurious, and 

they influence the linear Kirchhoff constraints of Sn elements 
just short of locking: (20a) enforces virtually identical e . 
dof along j-line, and this obviously produces a severe stiffga?ng 
effect. In a similar fashion. we find that the adjacent row of 
elements is subject to the same constraining action on exkn dof. 

Moreover, following the same procedure one could evaluate 
Kirchhoff modes along the other kinematic symmetry line (y-axis) 
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and arrive at stiffening constraints of type (19a), i.e., 

e +e +. . .#0 (21) yin yjneeykn 
Thus, constraints (20a) and (21) are enforced throughout the 
mesh causing a significant Stiffening effect (only few rotational 
dof remain independent because of these constraints). 
upon examining our numerical solution for mesh A, we find that 
relations (19a,20a,21) are in fact confirmed (e.g., for L/h=la4 
we have: e xj2=1.00003A, 6 =l.000llA, @ xj3 =1.00014A, xj4 
8 =1.00015A). xj5 

A-type m+sh: Clamped edges (l-4) and (-3-4). It is a very 

simple matter to verify, using additional boundary restraints 
=0 in (17) and (18), that a single macro-element model eyl=ex3 

will produce a fully locking solution. Furthermore, 
multi-element model of this type will also 1oc: 
(simply -apply the additional restraints eyil=eyjl=eykl...=O to 

(20a) ) . The numerical solutions for mesh A (Table 1) are seen to 
be in exact agreement with our closed form predictions. 

B-type mesh: Simply supported edges (3-4) and (2-3) and boundary 
restraints w2~3=~!=8x1=ex2=@ -x3Ly@y3zLy4=-0_1 

Employing these boundary restraints in (15) and (16) gives 

wp/2) 0 +0 (22a) 
Y2' OY2 

K = e y2/a, ~~ = 0, = -ey2/a (22b) 
X lcXY 

e +fl, w1 +( a/2) ex4 (23a) x4 
= 0, KX KY = 

ex4/a, = -ex4/a (23b) 
KxY 

Clearly, the vanishing e and e x4 dof are spurious, and 
Y2 

consequently, each element in this mesh will lock (all dof and 
curvatures vanish, i.e., we have a trivial solution). 

We can also verify analytically whether a finer mesh of type 
B has a chance to avoid spurious locking. To do this, let us 
consider elements pn and On (n=1,2,...,N) along a symmetry axis x 
(refer to Fig. 6b). The linear Kirchhoff modes for these 
elements are 

exi(n+l) - exin - eyin + 'yjn + 0 (P,) (24) 

e - exj(n+l) + @yi(n+l) - eyj(n+l) + v (Q,) (75) xjn 

Owing to the kinematic symmetry along x-axis (exin'O for all n) 
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constraint (24) takes a spurious form 

e yin + eyjn (24a) 

and using (24a) 
constraints on 

in (25) we obtain another set of spurious 
Q elements n 

e xjn + e xj(n+l) (25a) 

Now, with (il-j,) edge under simply supported restraints (i.e., 

'xjl =Q) I (25a) becomes 

e Xj(N+l)*exjN+exj(N-l)*~"exj2+exj~=0 (25b’ 

Obviously, the adjacent row of elements will suffer from the 
same spurious constraints. Thus , no matter what the boundary 
condition on the last row of elements, all 0 x dof will vanish. 
By considering elements along the other symmetry line (y-axis) we 
determine that all e 

Y 
dof also vanish. 

It is then clear that a B-type mesh will lock under simply 
supported (and clamped) restraints regardless of how fine the 
discretization might be. (The fact that both ex and e 

Y 
are forced 

to vanish implies zero bending energy. The deflection, w, will 
also vanish because of its dependence upon rotational dof via 
constant Kirchhoff constraints A OrBO+O'. 

REMARK 4.1 It must be kept in mind that for a given plate 
thickness, however small, as the number of elements approaches a 
large value, the element penalty parameter will no longer be 
large. In this case, Kirchhoff modes will not be enforced on the 
element level, and we should have a nonlocking solution at hand. 

4.2 C-type mesh. A typical macro-element, 
discretization for 

c-type 
a symmetric plate quadrant is shown in Fig. 

Sb. For each of the four WIN3, elements, comprising the model, 
we can write the element Kirchhoff modes (13b) in an explicit 
algebraic form which already incorporates the necessary boundary 
restraints, 

Simply supported edges (2-3) and (3-4) and boundary restraints 
w,=w3=w,=ex1=ox 2=ex3=eyl~y3~y4=& 

The Kirchhoff modes for the four MIN3, elements are 

element R 

wl+ (a/2) ey2, 

2w5-wl+ (a/2) (e - ex5 - e 
Y2 Y5' 

+2e 
eY2 Y5 
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element S 

2w5+ (a/2) (By2 - ex5 +eyg t 

+2e ey2 x5 
element P 

e +2e x4 y5' 

2w5+ (a/2) Ox4 + ox5 - ey5) 

element 0 

(27) 

(28) 

w1 - 2w5+ (a/2) ox5 + 0 y5 - ex4), 
9 x4 +2e x5' 

wl+ (a/2) ex4 (29) 

Solving (26-29) simultaneously yields the following constraints: 

wl+ (a/2) e 
Y2' 

w5+ (a/4) e Y2' 
9 

X5 
=ey5, ex4=ey2, +2e 

eY2 Y5 
Equations (30) clearly show a non 

(30) 

locking nature of the solution, 
i.e., the dof that are not restrained by boundary conditions 
remain finite (nonzero). Intuitively, one could also expect that 
a larger mesh of this type would not engender locking, and this, 
in fact, is confirmed by our numerical solution for mesh C (refer 
to Fig. 3 and Table I). 

Clamped edges. To achieve a clamped condition, we simply 
enforce two additional boundary restraints e =e y2 x4 =0 in (30). In 

this case, all dof vanish, and the mesh is fully locked, 

In contrast to the A- and B-type discretizations, where the 
behavior of a large mesh follows the pattern established by a 
single macro-element model, the C-type mesh (flor a clamped plate) 
does not exhibit overall locking once we go to 2x2 and higher 
refinement levels. 

To verify this analytically, without performing the finite 
element numerical computations, we can proceed starting with 
elements that form a clamped corner of the plate (i.e., elements 
that are most severely restrained). For example, let us consider 
a 2x2 symmetric quadrant discretization depicted in Fig. 6c. . . 
Here, edges (kl-k3) and (il-kl) are clamped, while (11-13) and 

(i, -k3) are kinematic symmetry axes. Taking into account the 

boundary restraints imposed on elements Sl and Pl (i.e., 
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wr=e =e x1: yr =0, where r=kl,k2,jl), the Kirchhoff modes become 

element S 
1 

Wt./ (a/4) (eynl - 3exnl)' exnl*O 

element P 1 

(31) 

Wnl* (a/4) (exnl - 3eynl)' eynl+@ (32) 

which result in w 
nl +0 or locking for the two elements. This 

solution plus the boundary restraints at nodes j, and k2 can be 
used to compute shear constraints for elements R 1 and Ql, which 
happened to be identical for the two elements, i.e., 

elements Q, and Rl 

wj2 + (a/2) (2eyj2 - exj2) I 

'xj2 +eyj2r 

wj2+ (a/2) (2e xj2 - eyj2) (33) 

Evidently, there is no locking in either of the elements. 

We proceed further along the same lines and examine the 
adjacent elements S2 and p2. Thus, we obtain 

element S, c 

Wml 
+ (a/4) 0 

yml 
- exmli, 

e xml +0 

element P 
2 

wj2 + (a/2) (2eyml - exj2)t 

e xj2 + 20 
yml - eyj2r 

2wm1 - w. 
12 

* (a/2) (2exj2 + exml + eyj2 - 3eyml) 

(34) 

(35) 

The second of constraints (34) is spurious. In this case, 
however, locking is only of a local nature since the other dof 
remain nonzero. 

Similarly, one could examine the rest of the mesh and find 
the second spurious constraint, namely, e 

Yn2 
'0, which is also 

only local. Thus, the mesh possesses two spurious constraints 
that do not trigger a global (mesh-wide) locking. The same kind 
of a local locking trend is achieved with a larger mesh, namely, 
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the 4x4 C-discretization of Fig. 4. Note that the resulting 
solution has a substantially greater error than that in the 
simply supported case (refer to Table 1). This is obviously due 
to local locking of the clamped plate. 

5. ALTERNATIVE BOUWDARY DISCRETIZATIONS. From the previous 
discusion it becomes apparent that boundary restraints, element 
geometry, and orientation are the contributing factors that 
affect the condition of the shear strains. Shear locking and 
overall solution stiffening were shown to emanate from spurious 
Kirchhoff modes. In the following two examples with uniformly 
loaded square plates we demonstrate how simple changes in the 
boundary element orientations and geometry change the character 
of a solution. 

5.1 Simply supported plates. In Fig. 7 are depicted five 
meshes for a symmetric plate quadrant which represent slight 
boundary element modifications of meshes A and R. The results 
are summarized in Table 2. Interestingly, the global locking 
experienced by mesh B is no longer present in these alternative 
discretizations. However, four of these meshes exhibit local 
locking of some rotational dof which are responsible for the 
overall solution error. 

5.2 Clamped plates. Discretizations G and H of Fig. 8 were 
analyzed under restraints. Neither mesh 
exhi‘bits global 

clamped 
locking 

boundary 
(refer-to Table 3), however, local 

locking takes place at several nodes. 

6. CONCLUDING REMARKS. In this paper we elaborated upon an 
a priori, element-by-element algebraic procedure for identifyin: 
such plate modeling shortcomings as shear locking and/or relateo 
solution stiffening. Closed form solutions and numerical 
computations were carried out for several mesh patterns and 
boundary conditions using a conforming, three-node Mindlin 
element (MIN3,). The element tends to lock occasionally and, in 
some cases, produces an overall plate-stiffening effect. These 
pitfalls were shown to emanate from spurious Kirchhoff modes 
which arise from overrestraining of the element kinematic field 
by boundary conditions. The finite element solutions were found 
to be in complete agreement with the analytic a priori 
predictions. 

The enhanced version of the element (MIN3) uses a finite 
element shear correction device, which effectively relaxes the 
enforcement of spurious Kirchhcff modes. The approach also 
ensures a well-conditioned element stiffness over the entire 
range of A/h2 ratios, and there exists no shear locking to hinder 
MIN3's performance. (Note that MIh'3,'s stiffness becomes 
ill-conditioned for very large values of A/'h2, thus requiring 
large computer-word lengths to avoid conditioning errors). For 
the purpose of comparison, the MIN3 results for the square plate 
problems of section 3 are summarized in Tables 4 an 5. (Several 
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important test problems solved with this element were reported in 
[291) l 

Finally, it is worth commenting on the general character of 
the shear (or penalty) constraints discussed herein. The 
mathematical form of these constraints is virtually identical (or 
closely related) to those of the penalty formulations for 
incompressible elasticity, plasticity and fluid mechanics. The 
locking pitfall, often hindering such penalty methods, is the 
consequence of deficient penalty strain approximations, which 
often are subject to boundary restraints and ,therefore, further 
constraining of the spurious nature. A close examination of 
penalty modes, in the manner presented here for the Kirchhoff 
constraints, may be seen as a necessary prerequisite to 
understanding element behavior. Such an analysis may also point 
toward new and more effective ways of improving these penalty 
methods. 
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Fig. 1. Plate notations for kinematic variables and stress resultanta. 

CONFIGURATION CONSTRAINTS: CONFIGURATION 

n &A (n&J da =o 

‘MIN3’ 

I BUADRA~~~ 

KEY: 

l MI 8, ,e, DEGREES OF FREEDOM 

0 w DEGREES OF FREEDOn 

Fig. 2. Triangular element configuration. 
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-*I Simply supported boundary reatralnts --- Klnematlc symmetry restraints 

‘Locked’ dot (thin plates) 

Fig. 3. Simply supported square plates: standard symmetric-quadrant meshes. 

B C 

X - 

-*- Clamped boundary restrainta - - - Kfnematlc symmetry reatralnts 

‘Locked’ dof (thin plater) 

Fig. 4. Clamped square plates: standard symmetric-quadrant meshes. 



a. A a B-type macro-element b. C-type macro-element 

Fig. 5. Macro-element meshes. 

a. A-type mesh fragment 

IY 

Boundary restraints 

_ _ _ Kinematic symmetry restratntr 

b. B-type mesh fragment 

Y 

‘4 ‘3 ‘2 ‘I 

C. 2x2 C-type mesh 

Fig. 6. Fragments of standard meshes. 



t 
D r 

-*- Simply supported 
boundary restraints 

--- Kinematic symmetry 
restralnts 

‘Locked’ dof (thin plates) 

Fio- 7. Simply supported square plates: alternative symmetric-quadrant meshes. 

-*- Clamped boundary 
restralntr 

- -- Klnematlc symmetry 
reatralntr 

‘Locked’ dof (thin plates) 

Fig. 8. Clamped square plates: alternative symmetric-quadrant mesheo. 
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Table 1. Simply supported and clamped square plates under 

uniform load; MIN3, center deflection results 
normalized with respect to analytic solution 
according to Hindlin theory (E=10.92x106, 3 =0.3) . 

simoly supported clamped 
L/h mesh 

A 0 C A B C 

10 0.981 0.978 0.993 0.909 0.947 0.973 
102 0.891 0.728 0.990 0.504 0.557 0.935 
104 0.801 3.8~10~~ 0.989 1.2x10-4 1.5x10-4 0.93i 
106 0.801 3.8~18-~ 0.989 1.2x10-6 1.5x10 -6 0.931 

Table 2,. Simply supported square plates under uniform load; 
MIN3, center deflection results normalized with 
respect to analytic solution according to Mindlin 
theory (E=10.92x106, ~00.3). 

L/h mesh 

0 E F G H 

10 0.971 0.971 0.975 0.992 0.988 
1n2 0.801 8.838 0.831 0.986 0.955 
104 0.540 0.579 0.577 0.984 0.931 
lo6 0.548 0.579 0.577 0.984 0.931 
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Table 3. Clamped square plates under uniform load: 
l 

HIN3, center deflection results normalized with 
respect to analytic solution according to Hindlin 
theory (E=10.92x106, u=0.3). 

L/h mesh 
G H 

10 0.966 0.968 
102 0.922 0.942 
104 8.915 0.960 
1U6 0.915 0.968 

Table 4. Simply supported square plates under uniform load; 
MIN3 center deflection results normalized with 
respect to analytic solution according to Mindlin 
theory (E=10.92x106, u=0.3). 

L/h mesh 
D c P .G H 

10 0.997 0.997 a.999 1.007 1.003 
102 0.992 0.991 0.992 1.006 1.001 
104 0.991 0.991 0.991 1.006 1.000 
106 0.991 0.991 0.991 1.806 1.00Q 

Table 5. Clamped square plates under uniform load; 
MIN3 center deflection results normalized with 
respect to analytic solution according to Mindlin 
theory (E=10.92x106, u=0.3). 

L/h mesh 
G H 

10 1.011 1.014 
102 1.003 1.003 

104 1.004 1.001 

106 1.004 1.001 
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ON THE SOLVABILITY AND COMPUTATIONAL ASPECTS OF 
A REFINED SHEAR DEFORMATION PLATE THEORY 

J. N. Reddy 
Department of Engineering Science and Mechanics 

Virginia Polytechnic Institute and State University _ 
Blacksburg, Virginia 24061 USA 

ABSTRACT 

The existence and uniqueness of solutions to the third-order shear 

deformation theory developed recently by the author are examined, and 

the computational aspects of the associated finite-element models are 

discussed. The existence and uniqueness of solutions of the linear 

theory are proved using the Lax-Milgram theorem. A new mixed finite- 

element model that uses displacements and bending moments as degrees of 

freedom 

mixed e 

element. 

and a displacement finite-element model are discussed. The 

lement is a Co element while the displacement element is a C1 

1. INTRODUCTION 

The origin of displacement-based theories is due to Basset [I]. In 

a displacement-based theory, it is assumed that the displacement 

components of the plate can be expanded in series of po'wers of the 

thickness coordinate z. For example, the displacement component u in 

the x-direction in the N-th order theory is written in the form 

N 
U(X,Y,Z) = UOb,Y) + r 

n:l 
z”u(“) (x,y) (1) 

where x and y are the Cartesian coordinates in the middle plane of the 

plate, and u (n) have the meaning 

d"u 
u(")(x,y) = -I dnz z=O' 

n = 0,1,2,... (2) 

Basset's work did not receive as much attention as it deserves. In 1949 
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NACA technical note, Hildebrand, Reissner and Thomas [Z] presented (also 

see Hencky [3]) a first-order shear deformation theory [a special case 

of ,Eq. WI, 

W,Y,Z) = UOhY) + W,(X,Y) 

V(X,YJ) = VO(X,Y) + Wy(x,Y) 

W(X,Y,Z) = WO(X,Y) (3) 

The differential equations of the theory were derived using the 

principle of the minimum total potential energy. This leads to five 

equilibrium equations in the five generalized displacement variables, 

u~,v~,w~,~~ and J, 
Y 

. Mindlin [4] presented a dynamic analysis of 

Hencky's theory [3], and used the displacement field in Eq. (3) for the 

vibration of isotropic plates. We shall refer to the shear deformation 

theory based on the displacement field (3) as the first-order shear 

deformation theory, although it is known as the Mindlin or Reissner- 

Mindlin theory in the literature. For additional references on the 

history of the shear deformation theory, the reader is advised to 

consult Reference 5. 

Recently, Levinson [6] and Murthy [7] presented third-order 

theories in which vanishing of the transverse shear stresses on the 

bounding planes of the plate and transverse inextensibility of the 

normals were assumed. However, both authors used the equilibrium 

equations of the first-order theory in their analysis, and thus the 

higher-order terms of the displacement field were accounted only in the 

calculation of the strains but not in the governing differential 

equations or in the boundary conditions. Recently, the present author 

(see [8,9]) derived variationally consistent equations of motion by 

means of Hamilton's principle. The theory presented in [8] accounts for 
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moderately large deflections but is limited to orthotropic plates, while 

that in 191 is for the small-deflection theory of laminated plates. 

Finite element models of these theories were presented by Reddy and his 

colleagues [lO,lll. The present paper contains a review df the theory, 

some mathematical results on the existence and uniqueness of solutions 

of the linear theory, and a discussion of the displacement and mixed 

finite element models. 

2. EQUATIONS OF THE HIGHER-ORDER THEORY 

Consider a rectangular laminate with planeform dimensions a and b 

and thickness h. The coordinate system is taken such that the x-y plane 

coincides with the mid-plane of the plate, and the z-axis is 

perpendicular to that plane. The plate is composed of perfectly bonded 

orthotropic layers with the principal material axes of each layer 

oriented arbitrarily with respect to the plate axes. 

In order to obtain a parabolic distribution of the transverse shear 

stresses, a cubic expansion is used for the inplane displacements and 

the transverse inextensibility (i.e., the transverse normal strain Ed is 

zero) is assumed. The resulting displacement is given by (see Reddy 

[WI): 

Ul(X’Y.Z) = U(X,Y) + Z[bx(bY) - 4 (~)2bx(wI) + 2 (X9YHl 

U2(X’Y,Z) = V(X,Y) + Z[Qy(X,Y) - 4 (~)z(ly(x,y) + g hYH1 

U3(X’Y,Z) = W(X,Y) , (4) 

where ulp u2 and u3 are the displacements in the x-, y- and z- 

directions, respectively. The displacements of-a point (x,y) on the 

midplane of the plate are denoted by u, v and w; $x and py are the 
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rotations of normals to the midplane about the y- and x-axes, 

respectively. The strains can be obtained from Eq. (4). 

Assuming that each layer of the laminate possesses a plane of 

material symmetry parallel to the x-y plane, the constitutive equations 

for the k-th layer can be written as 

(5) 

where CT i and Ei (i = 1,2,4,5,6) are the stress and strain components 

referred to lamina coordinates and q..' 
1J 

s are the plane-stress reduced 

elastic constants 'in the material axes of the k-th lamina, 

Cl1 E2 - = E1/U-92~21)9 oz2 = q Q,,, g12 = 92 22 0 

Q44 = G2d3 , o,, = G13 3 q66 = G12 (6) 

and Ei, v.. and G.. 
‘J 1 J 

are the usual engineering constants. 

The equations of equilibrium can be obtained using.the principle of 

virtual displacements. In analytical form, the principle can be stated 

as follows (see [PI): 

s (sU + aW)dV = 0 (7) 
V 

where U is the total strain energy due to deformation, W is the 

potential of external loads, and V is the volume of the laminate 

and 6 denotes the variational symbol. The following five equations are 

obtained for the linear case: 
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Nl,x + N6,y = ’ 

-N6 x + N 
, 2,y = O 

- 3 
Ql,x + ‘2,Y h2 

(R l,x+R2,y )+ 4 (p~,xx+2p~,xy+p2,yy~ = q 
3h2 

4 
Ml,x + M6,y- %+ ; R1 

- 4 (P 3h2 l,x+‘6,y1 = ’ 

AR M6,x + M2,y- Q2+ h2 2 
- 4 (P 

3h2 
6,x+‘2,y1 = ’ 

h/2 
(Ni,Mi,Pi) = J 

-h/2 
oi(l,z,z3)dz (i=1,2,6) 

J/2 
(Q2,R2) = ih,2 04(Lz 

2 
)dz (9) 

h/2 
(Q1+ = 1 

-h/2 
og(l,z2)dz 

In the general case of arbitrary geometry, boundary conditions and 

lamination scheme, the exact analytical solutions to the set of 

differential equations in Eq. (8) cannot be found. However, closed-form 

solutions exist for certain 'simply supported' rectangular plates with 

two sets of laminate stiffnesses, as described in [8,9,12]. 

where 

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS 

A formal proof of the existence and uniqueness of solutions of the 

equations of the higher-order theory requires us to establish the 

positive-definiteness of the bilinear form in an appropriate function 
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(or vector) space. First, some mathematical prel 

(see 1131). 

iminars are in order 

Let P denote the open bounded region of the plate (i.e., the 

midplane of the plate) and r be its-boundary. We use the standard 

notation: 

Lo = the complete named (i.e., Hilbert) space of generalized 
functions that are square integrable in sz; i.e., u E 
L2 (a) means 

1 lu(x,~)(~dxdy < m 
51 

H'(n) = the complete normed space of functions which along with 

u E HI(a) implies 
their generalized first derivatives belong to Lo; i.e., 

J lu(x,y)12dxdy < m , J$$x.y)12dxdy < m , [$$x,y)/2dxdy < - 
n 

H2W = the complete normed space of functions which along with 
their generalized derivatives up to and including order 
2 are in L2(n) 

We shall use Hi(a) to denote the space of functions u from HI(n) that 

vanish on the boundary r of 61, and Hz(n) to denote the space of 

functions u from H'(n) which, along with their first derivatives, vanish 

on r. The norm in Hm(,)[Ho(n) z L,(n)] is given by 

dxdy i+j 5 m (lob) 

Equations (7) and (8) can be expressed in terms of the five 

generalized displacements u, v, w, IIJ~ and IJI~. In terms of the 

displacements, Eq. (7) has the form (for symmetric laminates only): 

B&n) = a(n) (11) 
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where 1 = (i, TX, Gy), A = (w, Q,, $y), and B(-,.) and a(.) are the 

bilinear and linear forms on the vector space, H 

H = HE(n) x H;(n) x H;(n) ( W 

The norm in H is defined by -. 

IIAII; = Ilwll; + llJlxll; + II0 II 2 
Yl 

(W 

where II~II, denotes the Hm(n) norm. 

In writing Eqs. (11) and (12), it is assumed that the inplane 

displacements, being uncoupled from w, a,, $y, can be solved 

independently and that the plate is subjected to clamped boundary 

conditions. The bilinear form B(., -) and linear form a(.) are given by 

B&A) = I 
a3rx 

{%[D,, 2 + D12 2 - 4 F (- 
R ax 3h2 11 3x 

+$[D12$+D %-“F (%+h) 
22 ay 3,.,2 12 ax ,,2 

- - 

+ bx + E)(As5 - 4 D )($x + g)+$ + $(Aas h2 55 -%D )($y+E) h2 44 

dX 

-&-j (-+A aQx a2w 
3h2 12 ax ax2 1 

“$X 
alcl 

ax 
+F 22 + 



+ i$, (D55 -%F )($ +g) h2 55 x 

-QF )(JI + 
,$ 44 Y $1) dxdy 

a(h) = f qidxdy 
R 

where Dij, Fe. and Ha * 
‘J ‘J are the laminate stiffnesses, 

UN 

Equation (11) is called the variational problem associated with Eq. 

(8) when applied to a clamped laminate. We wish to show that the 

variational problem (11) has a unique solution in the space H. Toward 

establishing this result, we use the well-known Lax-Milgram theorem (see 

Reddy [13]): 

Theorem 1: Let H be a Hilbert space, and let B(-,a) be a bilinear 

form on H with the following properties: 

(i) IB(n,n)j 5 MI~AII~II~II~ (continuity) (144 

(ii) B(n,n) 2 UII~II~ (positive-definiteness) (W 

for all A, KcH. Then for any continuous linear functional a(-) on H, 

there exists a unique vector ~~ in H such that 

B&no) = a(n) 

holds for every TEH. 

A proof of the theorem can be found in [13]. Thus, if we can show 

that B(m,-) and a(*) of Eq. (13) are continuous and B(.,a) is positive- 

definite on H, then we have a unique solution to Eq. (11). It can be 

shown that the solution of the variational problem is also the solution 
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of the classical problem (i.e. the original differential equations), 

provided that the boundary of the domain and the data q are sufficiently 

smooth. 

We now set out to establish the continuity and positive- 

definiteness properties of l3(-, a). The continuity of YL(.) is obvious. 

From Eq. (13a), we have 

E&l) = J [c (” - 
- 

a 1 ax + “x&x * + $x) + c& + yly,(E + oy) 

+ c a2ii a2w + c -- 
3 ax* ax* 4 

2- 2 2 
e+ 4c awaw a2G a% aJ, 

6 
+ 

axay axay 
c7(-- 

ax* ax 
+aw -2) 

ax* ax 

2 aw aT 4 + aS 
Cg(T 

2 a2i w 

ay* ay ax 
3y +,y2 axx 

- 
3Q 2 

+ -$(j+ 

3ax 3$ a*w a$, aa, a9 ati ati 
+ (,,+$ -]+c -- 

3X3Y 11 ax ax + ‘12 ax’ $ + (-- “ZY) 
ax ay 

- 
wy wy 

( 
aTx - 3~ 

+ '13 ay 3y + '14 ay + 
>)($ + $)]dxdy 

where 

cl = A55 +S h4 55 9 c2 = A44 +BF h4 44 

16 16 16 
c3 

16 
= 2 Hll ’ c4 = &T H22 ’ c5 = 2 H12 ’ ‘6 =: $3 H66 
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c7 
-4F 

3h2 11 ’ ‘8 4F -35;2 12 

*A+ 
lh2 66 ’ c11 = Oil 

_ 8 F ,-16, 
3h2 I1 gh4 H1l 

52 = O12 
-8, 

3h2 '* 
+LL 

9h4 H12 ' 53 = 022 
-&F +16 

3h2 22 gh4 H22 

54 = O66 
--8F +16 

3h2 66 g/.,4 H66 (16) 

The continuity of B(-,a) can be proved by using Holder's inequality 

for sums of integrals [13], 

n 
z s uividxdy 5 ,FI [J (Ui)2dxdy11'2[jlvi~2dxdy]1'2 

i=l R *= n 

~ (ill ~nIUi)2dxdy)1’2( : s lv.12dxdy)1'2 
i=l n ’ 

We have 

lB(n,~>l 5 M(II$ + IIT,II: + el,ll*)-(IIWII; + IIQ,II' + II$~II')~'* 

= M lITill ,, tt h 11 H 

where M = max (Ic1('(c21,...,(c141). 

Next consider the bilinear form B(A,A): 

B(A,A) = l (cl(E + "x)2 + c2(g + ay)* + c3(+)* 
Al ax 

a*w 2 2 2 
+ c4(+ 

a*w 2 -- 

ay 
+ *‘5 zx’l ;,‘1 + 4c6ti$ 

a2w aslx 2 w 2 w 

+ 2c7 ,,2 ax + “8 ,,,2 ay 
CL-Y, *cg (2x-Y 

ax* ay 
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a2w a*x asx 
+,y2 ax -1 + 4ClO(ay 

w, 

+ c14(ay - + $)2]dxdy 

Next we use Kern's inequality (see [13]): For A = (u,v)E 

(18) 

H:(n) x H:(n) there exists a constant c(o) (depends only on n) such that 

(llull~ + ,,vll;)I'2 5 c(a) 

Then we have 

+ z)2]dxdy (19) 

where a > 0 is a constant that depends on ~2 and the constants cl, 

c2' . . ..c14. but is independent of A. 

Since B(.,-) is continuous and positive-definite on H, the 

variational problem (11) has a unique solution A = (w,wx~,wy) in H. 

Although we have given the results here for clamped plate, the results 

can be extended to simply supported plates and plates with mixed 

boundary conditions. 

4. FINITE ELEMENT MODELS 

4.1 Displacement Finite Element Model 

It is informative to note that the equations of the present higher- 

order theory has terms from both the classical and first-order shear 

deformation theory. Although the number of generalized displacements 

are the same in the higher-order and first-order theories, the higher- 
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order theory contains terms involving the second-order derivatives of 

the transverse deflection in the potential energy expression. Hence, 

like in the classical plate theory, Hermite interpolation of the 

transverse deflection is required, while Lagrange interpolation of 

+x and $y is admissible for,the displacement finite element model. 

The finite-element model is of the form 

[KeJ{~e} = {Fe] (20) 

where [Ke] is the element stiffness matrix, {Ae} is the vector of the 

nodal values of the generalized displacements, and {Fe} is the force 

vector that contains contributions from both applied loads and 

contributions from the boundary of the element (i.e., internal 

forces). In the present study, the isoparametric rectangular element is 

used for 0, and $y and the four-node Hermite cubic element is ued for w. 

The element stiffness matrix [Ke] is of the form 

[Ke] = 

where 

d’l 

[K1'lT 

!d3JT 

K12] [K131 

KZ2] 1 [K231 

K;; = Ia, [cl 2 -$ + c2 2 2 + c3 L d c 
ax2 ax2 

c 4 ay2 ay2 

a21b . a2e. a20 2 2 2 
+ c&t-1 2 + Aa) + 4c6 z$$dxdy 

ax2 ay2 ay2 ax2 

K12 iJ 

aq a29 
5 ax 

i aqJ qJJ + c7 - - 
a2q wJ 

ax2 ax + ‘9 ayZ ax 

a'$- a+ 

+ 2c10 ii& ay ']dxdy 
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K:; = In, [c2 2 
a24i aiJJ a*@! wJ a*+j wJ 

- -1dxdy *J ’ ‘8 7 ay i '9 ,,2 r + *‘lo axay ax 

4.2 Mixed Model 

To relax the continuity requirements placed in the displacement 

model described above, here we consider a mixed formulation of the 

problem. In a mixed model, independent approximations of the 

displacements and stress resultants are used. A mixed variational 

formulation of these equations can be obtained by treating u, v, 

w, c,, cy, Ml, M2, M6, Pl, P2 and P6 as the primary variables. The 

governing equations for u, v, w, wx and my are given in Eq. (8). The 

equations for the other six variables (Ml, M2, M8, P,, P2 and P6) are 

provided by the laminate constitute equations: 

{N} = [Al {E’} + [61{K”} + [El {K*} 

{M} = ]B].[E'} + [D]{<'} + [PI{,.*} 

{P} = [E&O} + [F]{K'} + [HI {K'} 

i 

92 

Q1 

R2 

R1 

= 

A44 
D 

44 

- 

O45 

A55 D45 %5 
symm. 

F44 F45 

- J55- 

(**a) 

G’*b) 

where Aijs Bij, etc., are the plate stiffnesses, defined by 
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(Aij,Bij,‘ij,Eij,Fij,HiS) 

h/2 
= s 9ij(l,z,z2,23,24,26)dz (i,j=1,2,6) 

-h/2 
Wa) 

(Aij,oij,Fij) 
h/2 = s 

-h/2 
Qij(l,r2,z4)dz (i,j=4,5) (23b) 

The mixed model is of the form 

[Ke]{~e} = {Fe} (24) 

where [Ke], {A~} and {Fe} are the generalized element stiffness matrix, 

element displacement vector, and element force vector, respectively. 

The vector {A~} denotes the set of nodal values, 

{AelT = {U1,U2,...,Un,V1,V2,...,Vn,WlrWZ,...,wn, 

2 $2 x' x ,..*,P 2 $2 $' M1 M2 x, yY y'"" y' 1' l'...' M;, 

M1 M2 12 n12 
2' 2 ,...,M~,M6,M6,...,M6,p1'p1'""p;, 

P1 P2 12 
2' 2 ,4,P,,P,,***, 'il (e) (25) 

The displacement model results in eight degrees of freedom (u, v, 

WY 
aw aw a2w 
ax' g - $,Y axay, by) per node while the mixed model results in 

eleven degrees of freedom (u, v, w, c,, $ 
Y' Ml, M2, Me, ply p2* p6) per 

node. The displacement model with linear approximation of u, v, Q, and 

oy and Hermite cubic interpolation of w results in stiffness matrix of 

order 32 x 32. For linear interpolation of all variables, the mixed 

element results in stiffness matrix of order 44 x 44. Thus, the mixed 

element is computationally expensive compared to the displacement model, 

although increased accuracy of the bending moments is expected in the 

mixed model. 
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1. INTRODUCTION. A system of conservation laws in one space 
dimension 
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strength of the wave parameterizes a one-parameter family of states 
u+ on the right of the wave. These one-parameter families (one 
for each characteristic family) are called wave curves. The 
umbilic point has a profound effect on the structure of wave 
curves. An overall goal of this research is to classify the vari- 
ous effects produced by the presence of such a point. The classi- 
fication of 2x2 systems in [3] identifies four different 
regimes that we describe in r2. In 83 we illustrate the effect of 
the umbilic point by describing the solution of a prototype Riemann 
problem. Of particular note are two new types of shock wave violat- 

Ut + F(U)x = 0 --43 < x < -, t > 0 (1.1). 

is strictly hyperbolic at U if dF(U) has distinct real eigen- 
values. Many hyperbolic systems of physical interest fail to be 
strictly hyperbolic at every point. In this paper, we summarize 
recent work on 2x 2 hyperbolic systems that are strictly hyper- 
bolic except at a single point called an umbilic point. 

Equations with umbilic points arise as models of three phase 
flow in a porous medium. In this context, the Riemann initial 
value problem assumes especial importance, since it is central to 
numerical front tracking methods based on Glimm's scheme. The 
Riemann problem for (1.1) has jump initial data 

1 
UL if xc0 

U(x,O) = . (1.2) 

uR if x>o 

Solutions of (l.l), (1.2) involve combinations of centered shock 
and rarefaction waves. Each wave in a specific characteristic 
family may be characterized by the state U- Non the left of the 
wave in (x,t)-space and the wave strength. F'or fixed U , the 



ing the Lax entropy condition. These overcompressive and under- 
compressive shocks are associated with the presence of the umbilic 
point, which confuses the labelling of the characteristic speeds. 
Details of the results and properties described here, together with 
new techniques for studying Riemann problems, are discussed fully 
in [3,4]. 

2. CLASSIFICATION OF EQUATIONS WITH UMBILIC POINTS. To moti- 
vate the analysis, we begin by describing equations modelling three 
phase flow in a porous medium. Let u,v,w denote volume fractions 
of the phases, with corresponding relative permeabilities f,g,h. 
We assume the flow is one-dimensional, is not subject to external 
forces, and that the pressure in each of the phases is the same. 
We make the constitutive, or modelling, assumption that f,g,h 
depend only on u,v,w respectively: f = f(u), etc. As usual, the 
conservation of momentum is approximated by Darcy's law, which for 
l-d flows enables us to express the velocities in terms of the 
volume fractions. This puts the conservation of mass in the 
following form: 

ut+(rx=O f(U)) 

Vt + (qx = 0, 1 (2.1) 

with D = f(u) + g(v) + h(w) and u+v+w=l. The physical 
range for u,v and w=l-u-v is [O,l]. Note that the corre- 
sponding equation for w is redundant and thus excluded from 
(2.1) I and that f,g,h are taken to include the corresponding vis- 
cosities. 

Here are properties of f,g,h that reflect experimental re- 
sults for 2-phase flow: 

(A) f(0) = f'(0) = 0, f"(u) > 0, 0 s u 5 1, 

and similarly for g,h. 

Let us return to terminology for general 2x 2 systems in 
order to state a result for system (2.1): 

Ut + F(U)x = 0 , (2.2) 

where u = U(x,t) E lR2, F: lR2 + R2. System (2.2) is hyperbolic if 
dF(U) has real eigenvalues (characteristic speeds), which we label 
Al(U) 3 A2(U). If yJ) = A2(U), we call U an umbilic point. 

An umbilic point U* is essential if the set of matrices 
T = (dF(U): U near U*} is a smooth P-dimensional manifold, in 

which U* is the only umbilic point, and dF(U*) is diagonal. 
The term "essential" reflects the property that such umbilic points 
cannot be removed by perturbations of F. 
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Theorem 2.1. Under assumption (A), system (2.1) has a unique 
essential umbilic point in the triangle 0 < u,v,l - u - v < 1. 

We next turn to the structure of wave curves for system (2.2) 
near an essential umbilic point U*. Consider the Taylor series 

for F(U) about U* 

F(U) = F(U*) + dF(U*)(U - U*) + Q(U - U*) I- h.o.t., 

where Q = ; d2F(U*) and h.o.t. indicates the remainder term. 

Since F(U*) is constant and dF(U*) is-a multiple of the 
identity (and may be removed by changing to a moving system of 
coordinates), the first term to affect wave curves is Q(U - u*). 
Assuming Q is nondegenerate in a sense specified in [3], the 
higher order terms do not change the qualitative properties of wave 
curves near the umbilic point. We shall ignore the higher order 
terms in what follows. Taking U* = 0 without loss of generality, 
we are left with the system 

Ut f QWx = 0 -w < x < ", t > 0 (2.3) 

Now U = 0 is automatically an umbilic point for (2.3), and is 
essential if dQ(U) has distinct (real) eigenvalues for every 
u * 0. 

Now linear changes of dependent variable U in (2.3) do not 
affect the characteristic speeds, or other features such as the 
admissible shack waves and the rarefaction waves. Accordingly, it 
is appropriate in a classification of equations (2.3) to call two 
equations equivalent if a linear change of variable converts one to 
the other. That is, quadratic maps Q,: R2 + R2 (k = 1,2) are 
equivalent if there exists a (constant) matrix S such that 

Ql(SW = SQ,W) for all u t R2. If Q(U) = dC(U) for a homogen- 

eous cubic scalar C: R 
3 + R, then (2.3) is symmetric, and automa- 

tically hyperbolic. The following result says that up to equiva- 
lence, all equations (2.3) with an essential umbilic point are 
symmetric. 

Theorem 2.2. If u=o is an essential umbilic point for (2.3), 
then Q is equivalent to dC, where 

C(u,v) = au3/3 + bu2v + UV2 (2.4) 

and a # 1 + b2. 

511 



Note that (2.4) is not the most general cubic scalar. We have 
rotated coordinates to eliminate the V3 term and scaled to let 
the coefficient of uv2 be unity. Both of these transformations 
preserve equivalence. Theorem 2.2 reduces the study of equations 
(2.3) to an investigation of a 2-parameter family of equations: 

Ut + dC(U)x = 0 (2.5) 

Recall that shock waves for a 2x2 system are compressive 
if they satisfy the Lax entropy condition [l], which requires 
characteristics of one family to enter the shock from both sides 
and characteristics of the other family to pass through the shock. 
There are also what we call overcompressive shocks for which both 
families of characteristics enter the shock, and noncompressive 
shocks for which both families of characteristics pass through the 
shock. If we fix UL, all possible shock waves with U 

I; on the 
left are identified by the set of UR lying on a shock wave curve. 

Figure 1. Regions in the (a,b)-plane. 
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These "R Satisfy the Rankine-Hugoniot condition and correspond to 

compressive and overcompressive shocks. (Certain noncompressive 
shocks also, need to be selected in general. This is discussed 
briefly in 83.) We also have rarefaction curves which give the 
values of U through a centered rarefaction wave. These values 
lie on an integral curve of one of the two right eigenvectors of 
dF(U). In Figure 2, we show these wave curves for (2.5) with 

"L = 0 on the left of the wave. There are four regions in which 

the structure of the wave curves changes; these are shown in Figure 
1. 

I .  

s,- .a. 

scl 

---- 
s, --- % 

sl: slow shocks so: overcompressive shocks 

Rl: slow rarefactions R2: fast rarefactions 

Figure 2. Wave curves originating at the umbilic point. 
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To understand the overcompressive shocks, consider the Riemann 
problem (1.2), (2.5) in region 2, when UL = 0 and UR is close 
to the curve So representing overcompressive shocks in Figure 2. 
The solution involves two compressive shock waves of nearly equal 
speed separated by a state U on the curve S m 1' This is illu- 

strated in Figure 3. Thus, an overcompressive shock wave is a 
superpasition of fast and slow compressive shock waves travelling 
at the same speed. 

4 

Figure 3. Rarefaction curves. 
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In Figure 4, we show the patterns of rarefaction curves for 
(2.5) in the four cases. Note that the arrows indicate the direc- 
tion of increasing characteristic speed. 

Figure 4. Solution of Riemann problem. 
UL = 0, OR near S 0' 

The following result shows how the 3-phase flow model (2.1) fits 
into the classification. By Theorem 2.1, system (2.1) has an 

umbilic point (u*,v*). Let Q denote the quadratic terms of the 
Taylor expansion of the nonlinearity of (2.1) about (u*,v*) l 

Theorem 2.3. Under assumption (A), the quadratic mapping Q for 
system (2.1) is equivalent to dC, for C given by (2.4) with 
a < 1 + b2. 

In other words, system (2.1) has properties near bJ*,v*1 corre- 
sponding only to quadratic nonlinearities in regions 1 and 2 of 
Figure 1. 

3. SOLUTION OF A RIEMANN PROBLEM. In this section, we ex- 
plain the solution of the Riemann problem 

=t - (i2)x = 0 

1 =L x < 0, 
2(x,0) = 

=R x>O' 

(3.1) 

(3.2) 

where z=u+iv. Note that equation (3.1) has the symmetry pro- 

perty that e2~i/3~ and z are solutions whenever z is a solu- 

5-l 5 



tion. For each zL, zR, there is a combination of centered shock 
and rarefaction waves that join zL to ZR. For fixed zL, e&h 
combination of successively faster waves determines a value of 

and as the strengths of the waves change, 
=R' 

so does the value of 
In Figure 5, 

=R- 
each possible combination of shock waves (S) and 

rarefaction waves (R) is indicated and associated with a region. 

. . 0 / .-I 
I 

ss n 

:..._. . *....-* 

Figure 5. Solution of the Riemann problem (3.1), (3.2) 
for a typical zL. 

For example, if z R lies in a region labelled (RS)S, then the 
solution of the Riemann problem involes a slow rarefaction-shock, 
and a fast shock wave. The label Z indicates an undercompressive 
shock. These are noncompressive shocks that have viscous profiles 
associated with the Burgers' system 

=t - (E2), = a zxx . 
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Now as =L changes, the =R regions get distorted. The 

regions have the shapes indicated in Figure 5 only for ZL between 

the lines 
+ 

M1 = {z > 0) and Mi = {z = ,eiK'3 : a > 0}, which are 

lines of symmetry for equation (3.1). As zL 
+ crosses M2 or Ml, 

several regions coalesce and collapse, and then reform in a differ- 
ent arrangement that is easily obtained by symmetry. 

One interesting feature of Figure 5 emphasizes the role of the 
umbilic point z = 0. The curve PQ separates two different con- 
structions of solutions of the Riemann problem. If ZR lies above 

PQ, then the standard construction of Liu, for strictly hyperbolic 
systems, applies. This says that there is a point zm on the 

curve ABC (representing slow waves) such that zR lies on the 

curve through zm representing fast waves. Below PQ, the con- 
struction is similar except that the slower waves (including the 
undercompressive shocks) are represented by the curve WXYZ, which 
does not include zL. The "coordinate system" that was used above 

PQ is, roughly speaking, rotated through 90° below PQ. 

It should be emphasized that the solution of (3.1), (3.2) has 
relied upon the symmetry property of (3.3) to distinguish the under- 
compressive shocks. Without the symmetry, or if the diffusion 
matrix fails to be a multiple of the identity, then characterizing 
shocks possessing viscous profiles is significantly more difficult. 
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A GENERALIZED HEAT EQUATION: AN OVERVIEW 

Siegfried H. Lehnigk 
Research, Development, and Engineering Center 

U.S. Army Missile Command 
Redstone Arsenal, Alabama 35898-5248 

ABSTRACT. The basic equation to be discussed is: 

&[-I+$ + D(x)z],-$$ = 0, x> o, t > 9, (*I 

A(x) = LlxX+l I D(x) = apxh + 8x, 

with parameters a>O,h<l, p < 1,BElR. The standard heat equation 
arises for X = -1, p = B = 0. Crucial- for the construction of 
solutions of (*) is a function v*(x,t;y) which is derivyd from 
the fundamental solution v(x,t;y,s). v*(x,t;y) is.the delta 
function initial condition solution of (*) with 6 applied 
at x = y = 0, describing distribution processes from a com- 
pl.etely concentrated initial state. v*(x,t;y) is the kernel 
for Poisson-Lebesgue and Poisson-Stieltjes transform solutions 
of (*). It also forms the basis for the construction of biy 
orthogonal solution sequences of (*). Furthermore,.it is the 
essential ingredient for the definition of a generalized 
Jacobi Theta function: 

etx,t) = P v*tx,t;01 + 2n,1 v*(x,t:yJ. 

For fixed t > 0, the function v*(x,t;O) may be interpreted as 
a probability density function. It contains as special cases 
a number of well known functions. 

I. ORIGIN OF THE EQUATION 

The equation 

T& [A(x) s + D(x)z] - g = 0 , z = z(x,t), (1.1) 

was used as a (linear) one-dimensional autonomous model for 
various diffusion type processes in problems of heat conduction, 
diffusion of atoms into semiconductor materials, and decay of 
molecular systems from excited states. 
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For physical reasons, the requirement arose that equation (1.1) 
be of such a nature that it admits a conservative similarity 
solution in the open first quadrant of the (x,t) plane. A 
solution of this kind is, by definition, of the general form 

zo(x,t) = b -l(tM(FL 5 = xb-h. (1.2) 

with b(O)=O, b(t)> 0 and increasing as t + m, and f( 5 ) such that 
m 
Izo(x,t)dx z 1 . 

0 
Under appropriate circumstances, the function (1.2) will be the 
delta function initial condition solution of equation (1.1) with 
the delta function applied at the origin (x,t)=(O,O). It will 
then describe a distribution process in space and time from a 
completely concentrated initial state at (0,O). 

Substitution of (1.2) into (1.1) leads to a condition on the co- 
efficient functions A(x) and D(x) of the form 

dA 
F(A, p D, $) = 0 

and to a first order equation for b(t) and a second order equation 
for f(S). An additional requirement is needed to determine A,D,b, 
and f uniquely. It could be derived from a physical principle 
associated with the process to be modeled by equation (1.1) or 
from an assumption about the physical nature of the underlying 
diffusion process. It was decided that the diffusion coefficient 
A(x) should satisfy a power law, 

A(x) = CYX A+1 , CY >O. 

Relation (1.3) then leads to the drift coefficient 

D(x) = apx' + Bx, t3ElR ' 

and the functions b(t) and f(c) a@pearing in (1.2) take the 
specific forms 

b(t) = 

[~(l-A)Bml (1 - exp - (l-A)f3t)](lmA) 
-1 

, fj f 0 , 

f(C) = $f$ Se' exp -5'-',5 = xb-l(t), q = (X-P)(~-X)-~ . 

(1.4) 

(1.5) 
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It is clear that the parameter value h= 1 must be avoided and 
that, therefore, X>lorX cl. It turns out that h < 1 leads to 
physically interesting situations. Because of the conserva- 
tiveness requirement, it is necessary to restrict the 
parameter p to values p cl. This then makes the compound parameter 
q appearing in (1.5) greater than -1. 

Special cases of the now specified equation (1.1) are the heat 
equation [l] forX= -1, p = 6 = 0. and the Feller equation [2,3] 
forX= 0. 

II. A FUNDAMENTAL SOLUTION 

The equation 

& CA(x) E + D(x)zJ - +f = D , (2.la) 

A(x) q r~xx+' , D(x) = olpxx + @x, c1> 0,*X < 1, p < 1, B 6 BI (2Jb) 

has a fundamental solution v(x,t;y,s), x> 0 ,t> 0, 'y> 0: szo 
[41. This is to say that v(x,t;y,s) for fixed y and s is a 
solution of (2.1) as a function of x>O, t>O, and for x and t 
fixed it is a solution of the corresponding adjoint equation 
for y> 0, s 2 0. 

A special solution of equation (2.1) can be obtained from the 
fundamental solution 

v*(x,t;y) = (1-My-(1+x) v(x,t;y,O) 

= ('-X)b-'+k'+A) (,-&-#P-h) 

x Iq(2S:(‘-~)(,-Bt,)t(l-~)),,p (-Q-h - (,-atq)l-A) ) (2.2) 

c= xb-', TJ= y b -1 , q = (X- p) (1-X) 
-1 , b = b(t) as given by 

(1.4), Iq = modified Bessel function of the first kind (of 

imaginary argument) 

III. OTHER SPECIAL SOLUTIONS 

The function v*(x,t;y) defined by (2.2) plays a crucial role in 
the construction of other special solutions of the equation (2.1 1. 
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Boundary condition solutions of (2.1) for prescribed behavior 
along the t-axis have been established in 153. They will not be 
discussed further in this overview. 

Initial condition solutions can be defined as Poisson-Lebesgue 
transforms 

03 

z(x,t) = 
1 

v*(x,t;y)g(y)dy, 
0 

(3.1) 

provided that g(x) is Lebesgue summable over every compact 
interval of 0 <x < a. This class of solutions has the property 
that 

2(x,0+) = g(x) almost everywhere, 

which justifies their designation as initial condition solutions. 

Another important class of solutions can be defined as Poisson- 
Stieltjes transforms 

m m 

z(x,t) = 

1 

v*(x,t;y)dh(y), 

0 

provided that h(x) is of bounded variation on every compact 
interval of 0 <XC m. A special case arises if one takes-for h(x) 
the Heaviside unit step function at x = y > 0. This situ&ion 
identifies v*(x,t;y) as the delta function initial condition 
solution of equation (2.1) with the delta function applied at 
x = y>o, t = 0. Letting y + 0 one obtains the particular solution 

v*(x,t;o+) = zo(x,t) = M b-'(t) Ssp exp -6 
l-h . (3.2) 

Thus, the similarity solution (1.2) with b and f specified by 
(1.4) and (1.5), respectively, is being recovered and now identi- 
fied as the delta function initial condition solution with the 
delta function applied at the origin. 

For details on this section, the reader is referred to [4]. 

522 



IV. BIORTHOGONAL SEQUENCES OF SOLUTIONS 

Using the Poisson-Lebesgue transform (3.1) with g(x) = x 
n(l-X) -p 

= exp [(n(l-A)-p)log x ] with log x real for x>O , one can 

define the sequence of initial condition solutions 

v,(x,t) = v*(x,t;y)y n(l-X)-pdy (n=0,1,2,...). 

Furthermore, expanding v*(x,t;u(l-h) -I ) into a power series 
about u = 0, one obtains 

I= C$ wn(x,t)un 
n=o 

which converges everywhere in the (finite) u-plane and, thus, is 
an entire function of the complex variable u. It can be verified 
directly that each of the coefficient functions w,(x,t) is a 

solution of the equation (2.1) for x> 0, t> 0, although none of 
them is an initial condition solution in the sense of (3.1). 

The sequences {v,( x,t)] and fw,(x,t)~ have the property that 

m 

Bt x 

I 

0 
xPwm(x,t)vn(e ,-t)dx = 

n! 

if m # n, 

exp -[l+n(l-A)] Bt if m = n. 

This fact allows the expansion of certain types of solutions 
z(x,t) of equation (2.1) into series in terms Iof the functions 
vn(x,t) for example. 

A typical theorem says roughly that if a solution z(x,t) of (2.1) 

is of a certain structure, then z(x,t) = Y 
n=o 

cnvn(x,t) and vice 

versa. Details on this subject may be found in [6]. 
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V. A GENERALIZED JACOBI THETA FUNCTION 

This topic has been developed in [7] and the reader is referred 
to this paper for details. In terms of the special solution (2.2) 
of the equation (2.1) the function 

O(x,t) = v*(x,t;O) + 2 y v*(x,t;Y,LxELtE a I 

is being defined for a sui?LAble sequence {y,} , 
(5.1) 

0 < Ync Y,+l* Yn+ m 

as n +m, as a function of the complex variables x and t. 

A special case of (5.1) arises for A = - 1, p =B = 0 (heat 
equation), and y, = nm, 

e(x,t) = fB3 (x.e-4ut),xE (c, tE Q, Re t>O, (5.2) 

'3 being one of the Jacobi Theta functions [81, Chap. XXI. 

The analytic properties of the function e(x,t) which, because of 
the relation (5.2), is being designated a generalized Jacobi Theta 
function, have been discussed in [7]. Typical results are as 
follows: 

Theorem. For fixed tE t such that Re b -(lwA) (-t)< 0 and for 

suitable {yn} , 0(x,-t) is a holomorphic function of 

x E. {XE a : x * 0,larg xl< TT ). 

Termwise, differentation is justified. 

Remarks. 

a. The set of points t such that Re b -(l-') (-t)< 0 is not 

empty. It contains all points t with Re t > 0, Im t = 0. 

b. In special cases, the holomorphic nature of O(x,t) 
extends to all of a , for example in the case specified by (5.2). 

Theorem. For fixed xE (xE a: x#O, larg xl<n) and for 

suitable {yn} e(x,t) is a holomorphic function of tE {tea : 

Ret > 0) if @= 0, of t E H if a<O, and of t ,c K if 6 > 0. 

Termwise differentation is justified. 
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Remarks. 

Because of periodicity for B # 0, it is sufficient to consider only 
the &avior of e(x,t) in the periodicity strip Re LYE (-m,m), Im t = o I$ 

(- &‘&I’ The sets H and K of the theorem are the 

unshaded domains shown in Figures 1 and 2, respectively. 

- -I --. 

(I-IJWI 

F 
Jl 0 

-_-.- 
2WhlWI 

> - .- .- -. -_ -_--- _, 
I 01 (ft c 

II 

-5ici$i 

TI 
-- 

(l-NIJI 
__--. .--. --.------.. 

I 

.I 

- 

-, 
IJ 

Fig. 1 

..--. _. Fig. 2 

525 



b. The different behavior of B(x,t) as a function of t 
relative to the values of the drift parameter f3 is not surprising. 
First of all, the different structure of the function b(t) for 
i3 = 0 and for B # 0 as shown in (1.4) should be observed. Secondly, 
it is important to note that 6 > 0 as compared with B <O results 
in a drastic change in the behavior of the distribution process 

-1 
v*(x,t;Y), y_> 0. If fi ? 0, b(t,t[a(l-A)@-l](l-X) > 0 

as t+m, which is to say that the distribution process approaches 
a steady state as t+ m. This is in contrast to the case B 2 Oin 
which b(t)f m as tf m. 

Theorem. e(x,t) is a particular solution of equation (2.1). 

VI. PROBABILISTIC CONSIDERATIONS 

The real valued function of the real variable x 

I ~Y(l+q,~l-xj, x> O,c = xb -', b>O,X< 1, p<l, 

F(xj = 
q = (A-p)(l-u-1 > -1, 

where Y(a,y) is the incomplete Gamma function, may be designated 
a probability distribution function. The nondecreasing function 

F(x) has the properties F(x)>O, F(x)+0 as x J--m , ~(x)fl 
as x+m. Consequently, the real valued function of the real 
variable x 

dF(xj _ 1 - x 
--r(l+q) dx 

&-P exp -c'-' , x > 0 

o(x) = (6.1) 

0,x <=o, 

represents a probability density function. One recognizes 
immediately that e(x) coincides with the delta function,initial 
condition solution (3.2) of the equation (2.1) if t is being 
considered as a (positive) parameter. 
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The probability density function $(x) given by (6.1) conta 
well-known functions ai special cases: 

ins the following 

a. the Gauss (normal) pdf 

2 b-l ,-Wd2 
Ai- 

for X = -1, p=O. 

b. the Weibull pdf 

(1-X)b-'(x/b)-' e 
-(x/b)'-h 

for p = x. 

C. the negative exponential pdf 

b-l ,-x/b 

for X = p = 0 (special case of Weibull). 

d. the Gamma pdf 

& 
b-'(x/b)-' e 

-x/b 

for x = 0. 

e, the Rayleigh pdf 

2b-'(x/b) e -(x/b)2 

for X = p =-1 (special case of Weibull). 

f. the Maxwell pdf (Maxwell distribution for the absolute value of velocity) 

+ b-'(x/b)2 e 
-bdd2 

for X = -1, p = -2. 
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g- the Wien pdf (Wien distribution for frequency, limiting case 
of Planck's distribution for high frequencies) 

+,b -1(33@-x'b 

forX= 0, p = -3. 

It is useful to investigate the characteristic function associated 
with a probability density function. 
is defined as 

For the function (6.1) it 

Q(s) = $-+ b-' 
m 

/ 
c-p ews'*x eSXdx , s = u + iw, 

0 

or, upon the substitution x = bS, 

(6.2) 

The powers of 5 are, of course, defined in terms of loge with the 
principal value for log5 for 5 > 0. 

The transformation (6.2) defines Q(s) as a holomorphic function 

for Re s < 0 if 0~ X<l, for Re s < b-l ifX= 0, 

and forsd&if X<O, i.e., for X c 0, Q(s) is an entire function 

of order p = X -$- l), 1 < p < ao . 

One has the power series expansion 

m 
@(s) = c an 

n=o 
J- S" (6.3) 

% 
= bn T(l+q+n(l-X)-l 

N+d 
(n=0,1,2,...) 

being the moments of the probability density function (6.1). They 
exist for all values of x < 1. However, for O<x cl, the series 
evidently does not have a positive radius of. convergence. 

ForA= 0, the series (6.3) has the convergence radius b -1 > 0 and 
it represents the function 
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O(s) = (l-bs)P-l (P < 1) 

for IsI < b-'. Clearly, for X < 0, the convergence radius is + 03 . 

In applications, it is useful to identify the parameter b appearing in 
(6.1) with the function b(t) as defined by (1.4) to have the full set of 
parameters a > O,BcIR, X ~1, p ~1, t ~0 available. 
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ON THE NUMERICAL SOLUTION OF A STOCHASTIC 

OPTIMAL CORRECTION PROBLEM* 

P. L. Chow and J.L. Menaldi 

Department of Mathematics, Wayne State University 

Detroit, Michigan 48202 

ABSTRACT The numerical solution to an optimal correction problem 

for a damped random linear oscillator is studied. A numerical 

algorithm for the discretized system of the governing variational inequalities 

will be given. To initiate the computation, we adopt a numerical scheme for 

the deterministic version of the problem. This will be followed by an algor- 

ithm based on a discrete maximum principle to ensure the convergence of the 

interation process. 

I. INTRODUCTION. In a previous paper [l], we consider the control problem for 

the damped linear oscillator excited by a random noise . 
;;+p;E+ q2x = rwt+vt, o<t,<T, 

x(o) = x0 , ho> = Y, 
(1) 

where p,q are the damping and spring constants, and xo rye denote the initial 

position and velocity, respectively; r is the intensity of the white-noise 

. 
V 

Wt; t the control momentum at t , and T the horizon. Settings y=i, 

Equation (1) may be rewritten in the Ito-differential form by a change of time 

scale: 

*This work has been supported in part by the AR0 Contract DAAG29-83-K-0014. 
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i 

dx 
S = ysds, 

Ws = -(pys+ q xs)ds + rdws + dv 
s' (2) 

dt 
S 

= ds, 

X 
0 

=x9 Y 
0 

=y, to=t. 

For the admissible set Vad of control v 
t' we take the set of all processes 

of bounded variation, which depend on the Wiener process 
Wt 'in a nice way. 

Also, for simplicity, we assume the average cost function being df the special 

form 

Jvky. t> = Et f(xT,yT) + clvTI} (3) 

where f is smooth and of, at most, polynomial growth; c>o is a constant, 

and tq 
f is the sum of the positive variation v t and the negative variation 

v; of v t l 

If we denote by u the minimum cost function 

u(x,y, t) = inf J,(x,y.t) , (4) 
V 

then we can show that it satisfies the variational inequalities: 

1 

(a) 2 + Lu'>, 0 , 

(b) 1 $1 < k c, (5) 

(4 (2 + Lu)(I $1 - c) = o , u(x,y,T) = f(x,y) . 

where o < t < T, -.w < x,y < = , and 

1 2 a%- Lu = 2r-- 
aY2 

(2py+q x) *+ y * ay ax * (6) 

To solve the problem numerically, we must replace the unbounded domain in 

the x-y-t space by a rectangular box Q,= {(x,y,t) in lR3 : 1x1 4 III , 

IYI Gfa,, o,<t<T} . Then we introduce a finite-difference approximation 
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to the differential inequalities in (5) and some appropriate boundary conditions 

on the boundary surface of Q 
T - 

To this end we let Ax = al/X, Ay = 92/M 

and At = T/h‘ for some fixed integers M,N > o . Let 9, N denote the set 
, 

of mesh points in Q, , that is 

Q Y,N 
= ((x.,v t ) :x = iAx, y. = jay, 

l'j'n i 3 

t 
n 

= nAt ; i,j = o,?l,...,?M, n=o,l,...,N} . 

The pivotal value of u at a mesh point P(xi,yj,tn) is given by 

n 
U. Y!r 

l,j 
u(3) = u(x,,v.,tJ * 

1 -J 

In what follows we shall present two numerical procedures for solving the 

problerr: (5) corresponding to two different finite-difference schemes for the 

variational inequalities. The first procedure is based on a deterministic 

version of the problem, while the second procedure deals with the full problem 

directly. For convenience, they will be called the first-order and second- 

order cetnols, respectively. The former method is simple and explicit, but 

l~zs accurate. The latter is an implicit scheme whose convergence can be 

-l*c'"T~r; -;17: ad - means of a maximum principle. It seems that, by using the first- 

order prt'cedure to cbtain an initial approximation, the rate of convergence by 

the second-order procedure can be increased conside,rably. 

‘tie rexark that tte analysis of the control of the system (I) follows clbsel\q 

the techniques introduced in our earlier work [27], 131. Some of the numeri- 

cal :~rc:-ir.iqu~s has Seen adopted from the work of Gronzalez and Rofman [4]. 

- .r - - . :: F~~<mT’mv-h~:jL~>, , , +* ““‘d~~,J : f,j,!. !%‘1‘]I(JIJ , .I ,,, &_~ To avoid unnecessary algebraic complica- 

;J = fJ ir, Eq, !1J* Then we introduce a finite-difference 

Ii .lows : 



1 L (UT;; - uy,j' + y&p (u;+;+1 - 2uy; + uy+;k-l) At , , , 

+ q2 Ii] $ [hi(u; j-1-u; j) + h'i(u; j+I-u; j)l 
, , , , (7) 

+ Id Az [hj(u~+l,j-u~ j) + h'j(uy-l j-uy j)] >o, 
, , 9 

1, if i>o 
where h = i 

0, if i < o , and h'. = (l-hi) . 1 

By using the forward and the backward differences, the inequality (5.b) yields: 

n n 
U. 

l,j 
- u. 

1, j-l 
,< CAY, 

(8) 
n n 

U. 
l,j 

- u* 
1, j-t-1 

s CAY. 

The expressions (7) and (8) can be rewritten as: 

n 
U. I < aij(hi un 

l>J x,j-1 + h'i u" l,j+l ) 

+ bij(h. u;+r j + hi u;-r 1 , , j) 

+ cij(uq+&- 2u;+; + u;+jel) , 
, , , 

n 
U. 

l,j 
4 un i,j+l +cAY, 

n 
U. 

l,j 
4 u” i,j-1 +cAY, 

where 

q2 /iI Ax Ij 1 AY r2 
a = = 

ij 
,b = 

dij AY 
ij 

I C 

dijAx 
ij , 

2dij(Ay) 

(9) 

(10) 

(11) 

d = 
ij ( &+q21il e= ljl'z) . 

Let A1 , A2 , A3 denote the right-hand sides of (9), (10) and (ll),respectively. 

Then the system of variational inequalities become 
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n 
It i,j k=1,2,3 , 

' max ((uy,j- %"y,j )> = 0, n=o,l,...,N; i,j=o,kl,...,+M, 
Iskc3 

UN = f i,j i,j ' 

(12) 

\ u. 
l,j 

= g. 
l,j ' 

i=+M or j=tM . 

Here the last condition is an additional boundary condition needed when we re- 

place the unbounded domain by a rectangular box. The first numerical algorithm 

is given a5 follows: 

1.1 Set n = N and u! = f 
l,j i,j ' for i,j=O,Zl +N . ,...,- 

2.1 For (i = -M; j=o,-l,...,-M), 

(i = M ; j=o, 1 ,...,M), 

(i = o , -l,...,-M ; j = M), 

n set u. 
l,j 

= gi j , with n=o, .,..*, N-l . 
, 

3.1 For n=N-1 , calculate u'.' 
l,j 

by the following steps: 

(a) Set u2 j = uy-1 for (i=o,l,...,Pl;j-0) . From (12), compute 
, , 

11 
u. = 

l,j 
niin { A u'.' _ } for 

k 1,:1 
j=o,l %I ,*.*,+ and i=M,+l ,, . . . ,o . 

15k3 

(b) Knowing II; j for (i=o; j=o,...,hl) and (i=o,-1.,.,.,-M; j=Pl) , 
9 

compute u'! 
l,j 

as before for i=-l,...,-?I and j-o ,-1 ,-a-, -M * 

(c) Knowing 11 
Cl . 

l,j 
for (i=o,-l....,-?l; j=o) and (i=-X; j=o,-l,...,->I) , 

find u'.' 
l,j 

for j=o,-l,...,--M and i=-M, -Y+l,...,o . 

(d) Knowing u'! . icrr (i=o: j=cl,-, 1 , . . . , -?l) ad (i=o, 1,. . . ,'1; j=-‘1) , 
13.1 

f i.nd u'.' 
l,j 

for i=O,.,...,?l and j=-M,-WL, . . . ,o . 
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5.) Adjust the initial values, say, by taking the mean of the guessed and the 

computed values and repeat the steps (3.a) - (3.d) until they agree with a 

prescribed error. Then go to 6.). 

6.; Replace n by (n-l) in 3.). Repeat the steps 3.) to 6.) and stop after 

n=o , 

The above procedure can be schematically shown in the following Figure 1. 

Figure 1 

A First-Order Numericai Procedure 

The above procedure is explicit in the sense that one can march backward in 

time. However, we do not expect a fast convergence of the scheme, if it con- 

verges at all. It is possible to devise a modified scheme to improve the 

accuracy of the method. But, since this procedure will be used only for the 

initial computations, we will not do so. For the major part of computations, 

the next algorithm, will be adopted to ensure a proper convergence. 
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III. AN ITERATIVE METHOD BASED ON MAXIMLTM PRINCIPLE. In the left-hand side of 

i7), if we replace the superscript n+l by n for each of three terms inside 

the second parenthesis, we would obtain the following finite-difference approxi- 

mation to (5.1): 

d-1 
U. 

l,j 
4 au. 

3. 1-j 
+ a (u” 2 i,j+l + u” i,j-f 1 

+ a (h.u? 3 1 l,j-1 + h'i u" 1, j+l 1 

+ a (h. un 
4 3 i-l,j + h; u: 1-l ,j > I 

where 

1 r2 
'1 = aoht ' '2 = 2ao(Ay) ’ ‘3 

2 

a L+L 2 lib + Ijby 

0 = At 2(Ay)2 + ' Ay Ax ' 

Here we note that Uk's are positive with 

al +a2+a3+a 
4 

= 1, 

and they depend on (i,j) . 

For convenience, we regard the triple array 

tensor). Let 

U = ru; jl (zM+1)~(2M+h)x(N+1) 
3 

be a vector in (2M+1)2 x (N+l)-dimensional space 

l(u 11 = max 1~: j( . 
i,j,n ’ 

(13) 

(15) 

n 
U. 

l,j 
as a vector u (or a 

E with the maximum norm 

(16) 

Let us define a linear operators Ml, M2 and M3 on E such that 
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(Mlu)2 j = the right-hand side of (13), 
, 

I and 

(Mp); j 
n 

, 
= A2ui,j , 

(M3u); j = A3u; j 
, I * 

where A2 and A3 are given as in (12). 

Q on E by components: 

‘Qu’: j = , 

(17) 

In addition, we define the operator 

(18) 

By the above definitions, in contrast with the system (12), we get the following 

discrete approximation for the problem (5): 

(4 u S %.u, k=1,2,3, 

6) Qu = u , 

(19) 

I 
Cd) u = g for i=?M or j=?M, 

where,by convention, the first two relations hold component-wise, f={f 1 
i,j 

and g = {g. 
l,j 

1 . 

As to be explained later, the difference-inequality (13) yields a maximum 

principle. Consequently there exists a unique solution to the problem (19) 

which can be constructed by successive approximations. This forms the basis 

for our second numerical algorithm, an iterative scheme. Given u(O) in E , 

we denote by u (W = iun,kl 
i,j 

its k-th iterate. The iteration procedure runs 

as follows: 

1.) To start the process, assume the values of u (0) are given so that they 

satisfy (19.a,c and d). 
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2.) As the first iterate, set u "I = {Uy$' } with 
l,j 

for n=N; i,j=o,?l,...,kM , 

n,l u. = n=o,l,...,N-1; i=kM or j=?M, 
l,j 

otherwise . 

(20) 

3.) Suppose we have computed u (k) . Then, similar to the above computation, 

we get 

{fi j} for n=N; i,j=o,"l,...,*M, 
9 

n,k+l = 
U. 

l,ci 
{gi j) for n=o,l,...,N-1; i=iM or j=?M, 

9 

{QU'~,j otherwise . 

(21) 

4.) Preassigned an acceptable error E . The iteration process terminates at 

K-th step when Ilu(K)- ~(~-l) 11 < E . 

By the properties of the solution of (19), we can show that the iteration- 

sequence {u (k)) d f' e ined above conv-erges monotonically in E to the solution 

u from below. This is a consequence of analytical properties of u to be 

stated in what follows. 

IV. SOME AXALYXCAL RESULTS. We will summarize a few relevant results which 

enable us to prove the existence,uniqueness of a solution to the problem (19), 

as well as the convergence of the iteration method proposed in the previous 

section. 

First we state the announced maximum principle: 

0 

(Rl.) Let uEE satisfy u < Q(u) in Q, N , the interior of Q,,, . Then 
, 

0 
U cannot attain its maximum in Q M,N ' 

As an immediate consequence, we have 
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(R2.) Assume the existence of a solution to (19). Then the solution must be 

unique. If the data f and g are bounded and positive, then so does 

the solution u . In fact we get 0 S u S max 1 II f II, II g II 1 . 

To prove the existence of a solution, we need 

(R3.) Suppose u < Q(u) for some u EE . Then the vector v = Q(u) satisfies 

v&Q(v) . 

The above result implies that the sequence u (k) of iterates defined 

in (20) and (21) converges, that is 

(R4.) Let {u(~) } be defined as in (20) and (21). Then the sequence is mono- 

tonically increasing and it will converge in E to the solution u of 

(19) * 

As a corollary of (R4.), we conclude that 

(RS.) The iterative numerical method for the discrete problem (19), as des- 

cribed in IIV, is convergent and stable. 

V. NUMERICAL EXAMPLE. As an example, we have carried out extensive numerical 

computations for the special case when the damping coefficient p=l), the spring 

constant q=o.2, the noise level r=0.2 and the unit fuel cost c=o.2 . 

Also we chose At= 0.04 , N=4 and &=Ay=O.2 with M=6 . The terminal 

value f(x,y)=x'+ y2 , while the tolerable error &=0.5x10-4. Under these 

conditions, it is found that the iterative method described in §I11 converges 

rather rapidly. Within the specified error E , most results can be obtained 

in less than 30 iterations. In Table 1, we show a typical set of computational 

results for the optimal cost function 
n 

u. 
l,j ' 

The results are grouped in three 

blocks corresponding to n=1,2,3. In each block, the entries in the horizontal 

directions give the values of un. 
1-J 

for i ranging from -6 to +6, and the 

vertical entries are its values for j =-6, -5,...,5,6 . Also the regions 
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corresponding to the continuation sets, in which u satisfies Mlu=u , and 

their complementary regions are displayed in Figures 2-4, corresponding to 

n=1,2,3. In the figure, the continuation set is marked by the plus (+) signs, 

while its complement by the star (*) signs. The curves between them are the 

free boundaries. These figures are important in that they provide a control 

chart to implement the optimal policy. According to our previous result [l], 

the optimal policy is to do nothing if the initial state lies in the continua- 

tion set, and to make a vertical jump to the boundary otherwise. Subsequently 

one applies a control only when the state reaches a free boundary by a vertical 

reflection. In view of the figures, we observe the drastic change in the 

shape of free boundaries, say for n=l and 3 . For n=l, the initial 

correction is almost one-sided for saving the cost. But near the end, n= 3, 

the best policy is a two-sided correction to bring the final state to the 

origin as close as possible. 
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ERROR ESTIMATE FOR THE NUMERICAL SOLUTION OF A STOCHASTIC 

CONTROL PROBLEM* 

P.L. Chow and J.L. Menaldi 

Department of Mathematics, Wayne State University 

Detroit, Michigan 48202 

ABSTRACT. The numerical solution of an optimal stopping problem 

for a diffusion model is treated. To discretize the problem we use 

a finite-difference method in such a way that the probabilistic structure is 

preserved. That is, we regardthediscretesystemprobabilistically,as a Markov 

chainto approximatetheoriginal diffusion process. Thereby the strong convergence 

and the error of approximation are obtained for the numerical solution of the 

optimal cost function. 

1. INTRODUCTION. We are interested in solving numerically the Hamilton-Jacobi- 

Bellman equation arising from stochastic control problems. Asafirststepwewill 

treat a relatively simpler problem of optimal stopping for a diffision model. 

For such stochastic control problem, one is referred to the books by Bensoussan 

and Lions [l] and by Shiryayev [Z], among others, and to the paper by Menaldi 

[3] for the case of degenerate diffusion. 

The main objective of the paper is to study the numerical solution of 

the optimal cost function, which satisfies a variational inequality as to be 

shown. In particular we wish to get an error estimate for the approximate 

solution by using a finite-difference scheme. This scheme is devised in such a 

way that the probabilistic structure of the problem is preserved. It will be 

compatible with the approximating Markov chain model to the original diffusion 

process. 

*This work was supported by the AR0 Contract DAAG29-83-K-0014. 
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The idea of using a Markov chain approximation is not new. Amqng others, 

Kushner [4] has used this approach extensively in the context of stochastic 

control. However, he adopted the method of weak convergence or the martingale 

formulation in the approximation theory. In constrast, we will be concerned with 

an error estimate for some approximate solution in a strong sense. As far as 

we know, this kind of result has not been obtained before. 

II. DIFFUSION MODELS. The state of the dynamial system under consideration is 

governed by a stochastic differential equation of It6 type. It reads 

(1) 
dy(t) = aoJy(t)ldt+ 2 ak[y(t)ldWk(t) I t>,o, 

k=l 

which is defined in a q-dimensional Wiener space (QF,?,P,W(t),t 30) , i.e., 

(fl,F,P) is a completed probability space and W(t) = (Wk(t),k=l,...,q) is a 

q-dimentionsl standard Wiener process with respect to {?,t >, 01 . The co- 

efficients 'k = (u. ik (x),i=l,...,d) , k=l 9..-99 , are given Lipschitz continuous 

functions on lRd, i.e., 

(2) uk(x’)I ,< clx-~‘1 , for x,x' in xd, 

where I*1 denotes the Euclidian norm in lRd. In the equation (l), x is the 

initial state at the time t=o . 

Suppose that the only control we have on the system is to decide whether 

or not we should stop the evolution of the state. This decision should be 

adapted to the observation of the state, which is assumed to be the actual state 

of the system and is completely observable. Therefore, if r = z(o) , oER , 

is the random time at which we decide to stop the system, it is a stopping time 

with respect to {Ft,t 20) , i.e., 
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(3) (1 <t )EFt , for every t 20. 

Note that r >, o and r(O) may be infinite for some wER . 

Associated with each decision, or each stopping time r , we tntroduce 

an average cost functional 

(4) J(T) = E{ IO r/I Tf[y(t)dt + h[y(s)]j,(I < T)) , 

where F and h are given functions. They represent the unit operating cost 

and the cost of stopping the system, respectively. The horizon T may be finite 

or infinite. Sometime it can even be random, e.g., 

(5) T = inf { t >, 0 = y(t)$! 0) 

which is the first exit time of the process y(t) from some closed subset \9 

of lRd . The function 1 (T < T) equals to 1 if r < T and 0 otherwise. 

The control problem is to choose f so that the average cost J(s) is 

minimal. This optimal cost u(x) is defined by 

(6) Lx> = inf ( Jx(5 ) : T satisfying (3) } . 

where J is written as Jx to show its dependence on x . 

Assuming then G is finite and smooth, we apply the method of dynamic 

programming to obtain the equation for optimality 

(7) maxIA:-f, j-h}=. in 0, 

while 
1 (8) Au(x) = - - 2 2 

d 
aiju(x) - c aio(x)aiu(x) 9 

i=l 

with a i = wax,, aij = a2/axiaxj . The equation (7) is commonly referred to 

as a variational inequality. In case that T is given by (5), we must add to 

the equation (7) the boundary condition 
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Suppose that 6 be the solution of the equation (7) subject to the 

boundary condition (9). Then we define the continuation set [c <h] = (xc6: 

i(x) < h(x) 1 , which determines the optimal stopping time ^; . Since, in view 

of (7), .i <h implies Ai = F, we have 

[; <h] c [AA=f] , 

whichmeans that,inthe continution set,it is cheaper to let the system evolve 

freely without stopping. But, as soon as the state leaves the continuation set, 

we must stop the system immediately to avoid a higher cost. 

In what follows, a finite-difference scheme for solving the variational 

inequality (7) in 19 subject to the condition (9) will be proposed. Proba- 

bilistically the diffusion process will be replaced by an appropriate Markov 

chain so that the structure of the problem is preserved. As mentioned in the 

previous section, our real interest goes beyond the present problem. Hopefully, 

this approach may be extended to treat a certain class of nonlinear problems 

for which the coefficients f and u could depend on a control parameter, say 

a, so that A= A(o) and the equation (7) becomes 

(10) ma~{max[A(a)b - f(a)],;-h] = 0 . 
a 

This problem will be studied in the future. 

III. MARKOV-CHAIN MODELS. Let At denote a small unit of time. The state of 

the dynamical system at the discrete times I&, n=O,l ,*-*, is given by 

z(n,k) , which evolves according to the equation 

Z(n+l) = ztn> + l (Jk[Z(n)15i+1 , 

(11) 
k=o 
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where 5 n with its components being independent, identically 

distributed random variables, for n=l,2,..., and CJ~ = (uik(x),i=l,2,...,d), 

k=l,&.,.,q, are given as before. 

Here a stopping time, the control variable, is an integer-valued random 

variable v = v(o) satisfying 1 

(12) (V 6 n]E; F” , n=1,2,..., 

where F n is the o-algebra generated by the variables (5’ ,E2 , . . . ,tn} . 

The average cost associates with each control v is given by 

c (VAN).-1 
(13) J,(v&) = E z f[Z(n)At i- h[Z(n)]I(v < N) 

n=o 

where the horizon N is a positive integer defined by 

(14) N = inf 1 n >,o : Z(n)$!S+) . 

Again an application of Dynamic Programming yields 

(15) max{Aatjae-f,ik-h] = o in 6. 

Here we set 

u(x) - E[u(x + g ok(x)fk)] , 
k=o > 

and L&(x) is the optimal cost, i.e., 

(17) kt (x) = inf {Jx(v,&) : V satisfying (12)) . 

The boundary condition for the Equation (15) is 

(18) ;& = 0 on Ch9 . 

Let aoral and Po,pl be positive numbers such that 

(19) 2qal + a0 = aoP, = a& = 1 . 
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Also we choose the probability distribution of En = (~,",~~,~~*.5,", to satisfy 

the following 

: 

c and 5; have disjoint supports for k#J? , 

(20) p{ 5: =PoW =ao, 
pi 5; = f 91 = al , for k=l,...,q. 

Then the operator A 
At can be expressed as 

al q 
A&U(X) = - z kfl i"tx +T uk(X) > - 2u(x) 

(21) a 
+ u(x - q ukW 1 - 2 [u(x t ~,Am,(x),- u(x) 1 

Note that for a smooth function u(x) we have 

a , , ( x ) u j k ( x ) a i j  

u(x+s Tuk(x))ds 

(221 d 1 
- c 

I j=l 0 
oio(x)aiu(x + tPoAto,(x>>dt . 

One of the key properties of the operator AAt is the validity of the 

maximum principle which says 

(23) 

attains a local maximum at x 
0’ 

then 

for a sufficiently small At . 

Now, in view of (22), we deduce that, if the second derivatives of u are 

continuous in a neighborhood of x , 

(24) IA&u(x) - Au(x)1 + o as At --$ o . 

In passing we remark that the alternative form (21) for AAt has a 

advantage over the conventional finite-differencing. This enables us to reduce 
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the number of coupling among the equations from an order of 2d to that of 2d . 

From a numerical point of view, this reduction is significant. 

IV. APPROXIMATIOY EESULTS. Having described two stochastic control models in 

the previous two sections, we now come to examine the approximation problem. 

That is, if we approximate the diffusion model by a Markov chain model, what is 

the approximation error? In particular we are interested in the error estimate 

for computing the optimal cost by a finite-difference scheme. Our approach to 

this problem has two distinct features. On one hand, we exploit the analytical 

characterizationof theoptimalcost,i.e., the variational inequalityortheHamilton- 

Jacobi-Bellmanequationbyreplacingthe differential operator A by a finite- 

difference operator Ant . On the other hand, we look at the optimal cost 

itself through an appropriate approximation of the state equation. Specifically, 

the approximation involves replacing the Brownian motion by a suitable random 

walk. 

There are many published papers concerning the above-mentioned approxi- 

mation problem, But, to our knowledge, none has addressed to the strong 

(versus weak) convergence in the approximation. Since we wish to eventually 

include the deterministic control problems in our analysis, it will be necessary 

to deal with controlled diffusion processes with possible degeneracy. This is 

one of the reasons why we are interested in seeking an approximation that will 

yield the following kind of error estimate 

(2% E { sup 
O<t$T 

1 y(t) - yAt(t> 1 1 < CT& , 

where T > o is finite, C 
T 

a positive constant depending on cr and T, and 

b%>,t >, 01 is an approximation process of {y(t),t > o} constructed from 

the Markov chain (11). 
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We remark that once an estimate like (25) has been established, a cor- 

responding estimate for the optimal cost functions (6) and (17) follows 

immediately. Therefore, we shall only be concerned with an estimate of the 

type (25) by giving some probabilitic arguments. 

The construction of the-process {yAt(t),t >,o } is .suggested by 

Skorokhod [S], known as the Skorokhod representation. On the same Wiener 

space where the stochastic equation (1) is based, we define, by induction, 

the random variables qn = ($,qy,...,qn) 
q 

and ‘8 = (19~,6~,...,#) as 

follows 

r; = 0 , Qt) = Wk(t) for k=l,...,q, 

: 

n+l 
rk = inf t&o : { IW~(t)l=l~~* I} , n=o,l,..., 

(26) $+%I = w;(t+z;+')-w;(T.;+') , n=o,l,..., 

19; = Tk + .-. + r: , n=l,2,..., 

n-t1 
qk = wp;+l n+l 

1 = Wk(Bk > - WK(Q , n=o,l,..., 

and 

{ 

n 
5 = 0 11: = 5: , 

(27) 

19:: = 5: -I- . . . + 51 , n=1,2,.... 

It is possible to show that the random variables rjn have the same pro- 

bability distribution (20) for the random variables cn, n=1,2,..., and that 

(28) E{%, 19: } = nAt . 

Consequently we can replace the equation (11) by 
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z (n+l> = Z(n) -t z Ok[Z(n)]$+l , n=o,l ,*a*, 
k=o 

(29) 

Z(0) = x , 

which represents the same Markov chain. 

Now we define the approximating process {yAt(t),t >, o] by 

(30) YA’ (t> = Z(n) if 

By construction this process is adapted and piecewise constant so that the 

equation (29) can be wr.itten as 

yAt(t,O) = x f I C',[yAtWlds 
0 

9 
+ z 

I 
eF 

k=l o 
"k[YAt (s) ldWk(s) , 

if 

With aid the above representation, we are able to verify the following result. 

Theorem: Under the assumption (2) and with the representation (31), for any 

given numbers p > 1 and T > o , there exists a constant C = C(p,T) > o , 

depending on p and T , the same constant as in (2), such that 

(32) E 
{ 

sup 
ort,<T 

lY,W -yF(t)lP < C(l+ IxlP)(At)P'2 

for any x in lRd and o <At ,< 1 . 
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In terms of practical computation, we note that the variable x in the 

discretized equation is still continuous. To discretize the variable x , we 

may proceed as follows. First, select a convenient basis {ek(x),k=1,2,..., 1 

in a suitable function space, and write 

(33) u(x) - i \(u)ek(x) , 
k=l 

where we may take a finite sum from the series. Then by means the equation (15), 

we obtain a system of complementary inequalities in (h 
1 ,...,$) in the space 

lRk . Getting an error bound by using (33) is much easier than that for the 

previous case. For instance, if we choose a mesh in lRd of the size At, 

. l.e., x = tit, where i = (i 1 ,.-.,fd) with integers as components, then it 

is possible to slightly modify the Markov chain (29) in such a way that (32) 

is preserved and the restriction of (29) to the mesh is still a Markov chain. 

This means that the corresponding variational inequality (15) for the new 

Markov chain is the restriction of (15) to the mesh. Thereby all variables 

now become discrete and the estimate (32) holds. 

A paper containing the details of the above arguments is under preparation, 

and the generalization of the present work to other types of control problems 

is a subject of our current research. 
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I FINITE DIFFERENCE METBODS FOR ELLIPTIC SYSTEMS 

John C. Strikwerda 
University of Wisconsin-Madison 

AESTRACT. I__- This paper is an introduction to finite difference methods for 
elliptic systems of partial differential equations. Elliptic systems arise in 
many areas of applications such as incompressible fluid flow and elasticity. 
The theory for elliptic systems is reviewed and the analogous theory for 
finite difference schemes is presented. 

I. INTP.ODUCTION. Elliptic systems of partial differential equations 
arise in many areas of science and engineering, and hence it is important to 
develop numerical methods for their solution. -In thia paper we discuss finite 
difference methods for elliptic systems, presenting both theoretical results 
and results of sample calculations. 

We take as our definition of elliptic systems that given by Buglis and 
Nirenberg (3). 

Definition 1.1 
A system of partial differential equations 

(1.1) jz, a,j (X,D)Uj(X) = fi(X) , i = 1, . . . . n, 

where 0 = (-i a 
xi' 

. . . . -ia 1, 
Xd 

is an elliptic system if there are integers 

(‘i)itj and (~~1 ji, such that 

1) deg aij'x,E) < 0. + '1. 1 3 

2) there are positive constants c and R such that 

(det tij(x,S) 1 > ~161~ for 161 > R and with *P = 

The system (1.11 holds in a domain Ll in Rd and the polynomials in 
FI eij(x’~), are continuous on the closure of n. 

Another way of expressing condition (21 is to let ILij(x,E) be the s&n 

of terms of Then 

det 'ij(x,S) 

aij(x,F) which are homogeneous of degree ai + T. in E,. 
3 

is a homogeneous polynomial of degree 2p.- Condition (2) is 

then equivalent to requiring that 

det 1;j'x.S) # 0 for 5 # 0. 

Without 13s~ of generality we can assume that oi C 0 and ~~ > 1 
for 1 < i, j < n. 

We now present some examples of elliptic systems that occur frequently in 
applications. Our first example is the Cauchy-Riemann equations 
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hJ *=, ax - ay 

aU+ av 
ay Zzo 

with ui ~0 and T 
j 

~1. Also, the first-order Poisson equaticns 

u+&f 
1 

v+%=f* 

au+-=0 av 
ax ay 

are elliptic with 'I, = ~2 = -1, a3 = 0 and f, = r2 = 1, r3 = 2 given 

that (u,v,p) = (u,, u2r ~3). The two-dimensional equations of licear 
elasticity 

au av 
t,, - P,Z - P2 ay= 0 

3U av 
t12 - p3ay- Pjz= 0 

au av t,2 - P2 z - Play = 0 

atll atl2 
ax+- au =f 

1 

atl2 at22 
ax+- ay 

= 
f2 

are a; elliptic with (t,,, t,2, f22' u,v) = (u,, u2r u3# u40 u5)' 

wi)i=l = l-1, '1, -1, 0, 01, and (TV):=, = (1, 1, 1, 2, 2). The 

constants pk are given by 

Pl 
=(, 2-1 -rl) 

P2 = 4 (1 + rl)-’ 

P3 
2 -1 = rl(l - tl 1 

where n is Poisson's ratio. 

lIhe final example is the Stokes equations 

V2U ap -ax= 0 

v2v - g ,= 0 
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where aI = 02 = 0, a3 = -1 and 'TV = f2 = 2 and f3 z 1 with (U,V,p) = 

(up 9’ u,). 

XI. REGULARITY ESTIMATES. The prototype of all elliptic systems is the 
scalar Poisson equation 

(2.1) v*u = f 

on a domain n. The classical Schauder estimates show that the order of 
differentiation of the solution to (2.1) is two more than the order of 
differentiation of the data f (Gilbarg and Trudinger (5) ). This increase in 
the differentiability of the solution over the differentiability of the data 
is a characterizing feature of elliptic systems. 

For the case that the elliptic system (1.11 has constant coefficients, we 
prove an interior regularity estimate that relates the orders of 
differentiation of the solution to that of the data. 
Theorem 2.1 

(2.2) 1 a,j'D)W. = fi , i = 1, ..a, n 
j=l 3 

be an elliptic system defined on Eld with (ui) and (TV) as in definition 
r-a. 

1.1. If fi E H '(Rd) then E H 
"j '+'j CRd) for any real number rr 

moreover there exists a constant C(r) such that 

IWD 
r+T = F Iw .I 

j=l 
J rtr. 

< C(r)( f nfi’r,a + ndo) 
3 i=l i 

Proof 
= C(r)(llflrVa + IlwRo) . 

Consider the system (2.2) written in matrix notation 
L(D)w(x) = ffx) . 

We begin by using the fourier transform to obtain the system 

L&s) = &I . 
By condition (1) of definition 1.1, for 14 > R the matrix 
decomposed as 

where EL(() is bounded in norm independently of 

are the diagonal matrices with entries (Eiai and 

l-4 and 161" and ISI' 

respectively. 

Moreover, for 151 ' R, z(S) is an invertible matrix with norm bounded 
independently of IFI- 

L(E) can be 
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Therefore, for IS! FR we have 

and for any real number r 

By Parseval's relation we then easily obtain 

n n 
c SW 0 

j=l 
j r+T 

j 
' C(r)( C nfinr,u 

i=l i 
+ RwnO) 

for some constant C(r) depending on x(5) but independent of f or w. 
This completes the proof. 

Estimates of the same form as (2.3) hold for elliptic systems with 
variable coefficients. The theory of pseudo-differential operators can be 
used to extend the ideas of the above proof to the case with variable 
coefficients. 

From the regularity estimate on Rd on can obtain interior regularity 
estimates for more general domains. To do this we consider the system (2.2) 

on a domain 62 in F6. Iet p(x) be a Cm cut-off function which is unity 

on a domain 3 and vanishes off a domain "0 with ", s E. C Q. -The 

operator L(D) applied to the function G(x) = cp(x)U(X) gives 

(2.41 L(D);;(x) = cp(x)f(x) - M(x,D)u(x) 

where M(x,D) is a matrix of differential operators such that the (i,j)-th 
operator has order less than ui + T.. 

3 
Mxeover M(x,D) vanishes outside of 

nO= Thus the system (2.4) can be considered as holding on 6. The estimate 

(2.3) then gives 

IUl p+‘F n < c(r)(Ofnr-cJ p + uugr+.t-, IJ 1 
'1 I - 0 ' 0 

where C(r) also depends on v and its derivatives. Using a sequence of 
sets such as 5 and nO we easily obtain the estimate 

lUR f+f n c C(r)(nfnr-u n + uuno) . 

'1 I 

This interior regularity estimate shows that, if a solution to the system 
(2.2) exists on the domain R, then the solution u is smooth in the 
interior of L+l. The degree of smoothness, or differentiability, is dependent 
on the differentiability of the data. 

III. FINITE DIFFERENCE SCHEMES. We now consider finite difference 
schemes for elliptic systems. We begin by examining the use of central 
difference formulas to approximate the Cauchy-Riemann equations 
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(3.1) 

(3.2) 

au av _ o 
--ay- ar- 

*+av=, 
ay ax 

on the unit square. 

For boundary data specify u = x2 - y2 at x = 0 and x = 1, and 
specify v = 2xy at y=O and y=l. Using central difference 
approximations along with one-sided differences to (3.1) at the boundaries one 
obtains as the solution 

(3.3) 
2 2 u 

ij 
=x -y +E i j i 

vij = 2xiyj 

where Xi = ih, Yj 
= jh, and h = l/f2 M). (This example is discussed in 

more detail in Eube and Strikwerda (2)). 

The quantity !zi is given by 

0 i even 
Ei = 

-h2 i odd 

Notice that the solution is second-order accurate, but not smooth. In 
particulax, the second divided difference of Uij with respect to x does 

not converge to the second partial derivative of u( xl with respect to x. 
This nonconvergence of divided differences does not occur for the usual finite 
difference schemes for a single second-order elliptic equation. Bramble and 
Iiubbard (1) showed that for .solutions of a finite difference scheme 
approximating a single second order elliptic equation, the divided differences 
converge to the corresponding partial derivatives, provided the data is 
sufficiently smooth. Moreover, if the divided difference formulas are 
accurate enough, the rate of convergence of the divided differences is the 
same as that of the solution itself. Similar results have been given by Thorn& 
and Westergren (81, Vainikko and Tamme (111, and others. 

As the example shows, not all consistent finite difference schemes for 
elliptic systems have the same regularity property that schemes such as the 
standard five-point Laplacian scheme have. sub& and Strikwerda (2) showed 
that a class of finite difference schemes, called regular schemes, do have the 
regularity property. These regular schemes may be defined as follows. 

Dzfinition 3.1. 

For .i,j "1, . . . . nr let L ij be a difference operator with symbol 

Pij(h,x,h). The system of difference equations 

(3.4) T L. u.(x) = fi(xI 
lj 3 

i = 1, l =O, n I 
j=l 
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is a regular elliptic system if there are sets of integers (u.) n and 

bj ljZ, 
1 i=l 

such that each XI.. 
13 is a difference operator of order at most 

'i f 'j? 
and if there are positive constants C, 

E08 ho such that 

jdet eijih,x,S)( > CjS\*' 

for 40 < E C f and 0 < h C 0, where 2p= Cui+Ztj. 

The symbol of a difference operator L is defined by L eixs = 

&(h,x,hEIeixE, i.e. the symbol is the factor multiplying .ixE. which 
results from applying the operator to .w . 

.Cne can easily check that the finite difference scheme for the Cauchy- 
Iiiemann equations which uses central differences does not satisfy the 
determinant condition (3.5). The symbol for the central difference scheme for 
(3.1) is 

‘r 1;::: 1 ;h:;)8 

and the absolute value of the determinant is '( sin2 h5, + sin' .hg2)hW2 . 

This determinant vanishes for (~,,~2) = (nh-',O), tO,ah-'1, and 
(nh-',vh-'). us shown by Bube and Strikwerda (2) the loss of smoothness in 

the example is a consequence of the vanishing of the determinant. 

There are several regular schemes for the Cauchy-tiemann equations. One 
common regular schemes is the staggered grid method used by Ghil and Balgovind 
(41, Iomax and Martin (61, and others. A regular scheme using a non-staggered 
grid is obtained by using the following approximations 

aa H 
ax - &xo” 

* 2 
- + 6 +6x,u 

av - 2 

ax - %ov 
- G &*bxfv , 
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where the second subscript of 0, +, or - indicates a central, forward, or 
backward divided difference. If we set 

c(5) = (sin(h{) +< eihE'2sin3 i h<)h-' 

then the symbol of this system of difference equations is 

i s(5,) -i C.iE.,) 

i C(5,) i r;(E,) i 

and the determinant is 

(lc(5,)12 + 15(E2)12) 

which does not vanish for 15,l + I(,1 non zero. Research is currently being 

done on finding an efficient algorithm for solving the system of finite 
difference equations resulting from this approximation. 

A regular finite difference scheme for the Stokes equations has been 
proposed by Strikwerda (9). This scheme was shown to be second-order accurate 
on non-orthogonal non-uniform grids. This scheme was also used with the 
incompressible Navier-Stokes equations, Strikwerda (10) and Nagel and 
Strikwerda (7). 

Currently research is being done to consider the regularity at the 
boundary of the domain for finite difference schemes. It should be possible 
to determine the effect of the numerical boundary conditions on the accuracy 
and smoothness of the solution near the boundary. It is also important to 
devise better methods for solving the finite difference equations arising from 
approximations to elliptic systems. 
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GENERALIZED ISOVECTORS AND SIMIMRITY SOLUTIONS* 

Frank B. Estabrook and Hugo D. Wahlquist 
Jet Propulsion Laboratory 169-327 
California Institute of Technology 

4800 Oak Grove Drive 
Pasadena, CA 91109 

ABSTRACT The manipulatory techniques of differential geometry 
allow systematic derivation of invariance groups of sets of partial 
differential equations. For each generator or isovector of the 
algebra of such a group, a family of similarity solutions may be 
found by integrating a set of equations with one fewer independent 
variables. The equations for the components of the isovectors them- 
selves are overdetermined linear partial differential equations, 
which can be solved algorithmically by symbolic manipulation pro- 
grams. Such families of similarity solutions can be generalized by 
relaxing the definition of isovector, so that its components satisfy 
nonlinear equations, and the group property is lost. The resulting 
"generalized similarity solutions" nonetheless can be useful and 
physically significant. 

I. DIFFERENTIAL GEOMETRY AND APPLIED MATHEMATICS Topics such as 
partial differential equations(notcessarily linear), Hamiltonian 
mechanics, variational and perturbational techniques, and Lie group 
theory can all be treated at a deep level as described by tensor 
structures on differential manifolds. It should thus be stressed 
that differential geometry is a much broader discipline than that 
traditionally taught, which over-emphasized Riemannian geometry. 
In general, one does n& have a metric tensor gij, one cannot 
"raise and lower" indices, and one must carefully maintain the 
distinction between "contravariant" objects such as vector fields, 
and "covariant" objects such as l-form fields. Without a metric, 
one is limited in differentiation operations to the generalized 
curl, d (applied to completely antisymmetric covariant fields, 
n-forms), and to the "substantial" or Lie derivative operation 
along a given vector field. The inner product, or contraction of 
vectors and Eorms, and the outer or antisymmetrized tensor product 
of forms, completes the set of operations: d, e,,',A. The re- 
sulting "exterior calculus" has been expounded in a number of texts, 
and, in our opinion, will in the near future be routinely taught at 
the undergraduate level. We recommend a new text by William L. 
Burke.(l) 

II* CARTAN - &HLER n-mom Sets of first order partial differ- 
ential equations are treated in Cartan-IQihler theory as defined by 
ideals of differential farms.(2) Such an ideal is generated by a set 
of forms ai, or by a set Bi algebraically equivalent to the ai-- 
i.e., any form, say B, in the second set can be expressed as a sum 
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over all forms of the same rank in the first ideal, with functions 
(or scalar fields) as coefficients, and conversely. A_ny form in 
the ideal of these generators may be so expressed, and in fact the 
defining property is that all the forms in the ideal vanish when 
pulled back (or mapped) onto an “integral” submanifold. The set ai 
should be completed with all other generators having this property 
of vanishing on any of the Integral submanifolds, in particular the 
forms dai. The integral submanifolds are solutions of sets of 
partial differential equations which appear when a choice of inde- 
pendent and dependent variables is made. 

Topics such as the symmetries, potentials, conservation laws, and 
80 on, of a set of p.d.e. ‘8 can all be treated systematlcally when a 
closed differential ideal can be found to express it. We believe 
this approach to be particularly useful when a set is nonlinear (or 
when it appears to be nonlinear in the variables first given). 
Consider as an example an 8 dimensional space, with points continu- 
ously labeled by coordinates or parameters U, a, A, B, F, G, p, t, 
and in it an ideal I generated by a set of two l-form fields and 
four 2-form fields: 

dU - Adt - Bdp 

dS1 - Fdt - Gdp 

dA-dt t dB*dp 

dF-dt -i- dG-dp 

dBndt f dA-dp - [e -“(F2 - G2 ) - B/p]dp-dt 

(1) 

dG-dt -I- dF-dp - [2(BG - AF) - G/p]d.p-dt 

I is closed, that is dIC1. Cartan’s theory(2) allows us to calcu- 
late the maximum dimension of integral submanifold to be 2; if we 
adopt P and t as independent variables, the condition that all 
(the generators) of I vanish reduces to a set of p.d.e. ‘s that in 
fact are of great interest in the theory of (nonlinear) cylindrical 
gravitational wavesc3): 

U -I- &J - u 
tt = 

.-2u 2 
PP P P % - n,2) 

R 
PP 

+ 1. R - fltt = 
P P 

2 mpup - “pt) 
(2) 

Sollton solutions, and many beautiful properties have recently been 
discovered for this set. The ideal I is one way of representing 
this, that allows the underlying group and algebraic structures to 
be uncovered. 

III. CAUCHY CHARACTERISTICS When presented with an ideal I for 
analysis, the first associated structure to seek is a vector field 
V that has the property: 

VJICI (3) 
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If it exists, such a field, denoted a Cauchy Characteristic of I, 
when contracted on any form in I, y ields a form (of one less rank) 
also in I. These equations are an overdetermined homogeneous 
linear algebraic set for the components of V. An example is the 
field of flow, or set of trajectories, that belongs to a Hamilton- 
Jacobi Equation. It is easily shown that any Cauchy Characteristic 
vector V muet lie in the integral manifolds of maximum dimension. 
A non-trivial further result is then Caftan's theorem, that for any 
such V a coordinate transformation can be found that eliminates one 
(independent) coordinate from explicit appearance in the set of 
generators for I, The solutions thus depend on one .less indepen- 
dent variable than at first may appear, 

IV. ISOVECTORS The next class of associated vector fields are 
the isovectors, or generators of Lie's infinitesimal symmetries 
(the same as treated by Ovsiannikov - Ames, Bluman and Cole, etc.) 
In our language, they satisfy 

“V xc I (4) 

and can readily be seen to form a group. Now one must integrate 
a homogeneous, linear, overdetermined set of first order partial 
differential equations for the components of V. This can be done 
algorithmically by repeated differentiation (sic!), introducing at 
each step more functions, of fewer variables. Beautiful and effec- 
tive symbolic manipulation programs (in the language REDUCE) have 
recently been developed for this at Twente University, in Holland, 
c.f. recent theses by P. Gragert and P. Kersten, and also a survey 
paper with their professor R. Martini.t4) 

V. SIMILARITY SOLUTIONS We can now precisely define a simi- 
larity solution of an ideal I - {ai}, belonging to an isovector 
V of I (one usually writes the most general V belonging to the 
entire isogroup), as an integral manifold of an augmented ideal 
I' generated by forms ai and 

I' = {a 1, Vlai} (5) 

Assuming that I was complete, that is, that daiC1, it is imme- 
diately calculable that I' is also complete, since from the iden- 
tity d(VJai) - evai + VddaiC I'. Moreover, I' has an isovector, 
viz., V--e have been able consistently to impose it. Thus by 
Cartan's theorem, the number oE independent variables in I' can 
be reduced by one. We will now be searching for a (nonempty!) 
subset of solutions of I. If the original number of independent 
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variable was greater than two, and we have more than one indepen- 
dent isovector, this process can be repeated until a set that is 
readily solvable is obtained, or until a set of ordinary differen- 
tial equation is at hand. Returning to the above example, one 
verifies that the following is an an isovector: 

(This could easily be fqund ad hoc by any applied mathematician, as 
it generated scaling invariance, so we repeat that, in general, one 
should use a superposition of all generators of the isogroup!) The 
Cartan coordinate reduction al%ed by Eq. (6) can be achieved by 
introducing new independent variables say n = p/t (which is such 
that f,r( = 0) and any other independent function of p ,t. The 
latter then drops out of I’ and one finds a set of o.d. e. ‘8: 

U”(T12 - 1) + U’(2tl-+) = e -2U(n’)2(l -lJ2) 
rl (7) 

fl”( n2 -1) + Q’(2ll- i) = 2tJ’R’(l12 - 1) 

These have been solved by quadrature by E. Fischer.(5) 

In the same paper, Fischer finds another reduction of Eq. (2) to a 
set oE o.d.e.‘s. As is in fact often tried in relativity theory 
the ansatz that U and n depend only on the combination rl = p2 - t 3 
also works! One finds 

2r$J” + 3U’ = -2w -2Q-& 
(8) 

2l$-i” + 3sl’ = 4qsl’U 

and, again, these are solvable by quadrature. But the resulting 
solutions do not belong to an infinitesimal symmetry of I as given1 
What’s going on? 

VI. GENERALIZED SYMMETRIES First, it must be said that the des- 
cription of a set of p.d.e. ‘s by a differential ideal I is not 
unique. It may even be possible- to express I in terms of fewer 
variables, although there are certain criteria for I to be “well 
set” that we do not expound here, For any such alternate set, a 
different but closely related ideal can result, and a systematic 
understanding of how its isogroup Is built into, or onto, that 
first found, is not clear to us. This is one of the reasons we 
only claim to be expounding tools for applied mathematicians. 

Prolongation of an I by including higher partial derivatives has 
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been considered carefully by Anderson and Ibragimov(6), who find, 
in the limit of infinite prolongation, new symmetries of "Lie-B%ck- 
lund" type related to soliton transformations and other newly 
appreciated techniques for solution generation. 

Prolongation of an I by finding conservation laws, and generalized 
conservation laws 
been found by us( St ) 

and introducing new potential-like variables, has 
to be equally effective in finding other classes 

of generalized symetries. An example is the Burgers equation, whose 
linearity (an infinite number of isogroup generators!) is not found 
until an additional potential variable is included In the set of 
p.d.e.'s. 

Finally, what about the example above, at the end of section V? The 
ansatz was found by Fischer to result from a "generalized isovectorn 
V satisfying the equation: 

%,IC I' (9) 

This is still sufficient to preserve the closure of I*, using Eq. 
(5); but such vectors V no longer form a group. If finding simllar- 
ity-type special solutions is all one wants, this is in principle 
no problem. What may be a practical problem is that the equations 
(9), (5), for V are no longer linear in its components. It remains 
an open question whether such generalized isovectors and their 
similarity solution families have any significant relation to the 
other approaches to generalized symmetries we have mentioned above, 

*Research sponsored by the U.S. Army Research Office through an 
agreement with the National Aeronautics and Space Administration. 
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APPLICATION OF RECIPROCAL BACKLUND TRANSFORMATIONS 

TO STEFAN PROBLEMS IN NONLINEAR HEAT CONDUCTION 

Colin Rogers* 

School of Mathematics 
Georgia Institute of Technology 

Atlanta, Georgia 30332 USA 

ABSTRACT. Reciprocal Bscklund transformations are used to 

investigate both one-phase and two-phase Stefan problems 

in nonlinear heat conduction. A new class of exact solutions 

to the associated nonlinear moving boundary value problems is 

derived which is analogous to that obtained by Neumann in 

linear heat conduction. 

I. INTRODUCTION. Storm [l], in an investigation of heat 

transport in simple metals showed that for an important class 

of such materials a Bzcklund transformation may be introduced 

which reduces the prevailing nonlinear heat conduction equa- 

tion to the classical 1+1 heat equation. The reduction was 

used to solve a fixed boundary value problem involving the 

temperature distribution in a half-space with an insulated 

boundary. It has been shown recently that the Storm trans- 

formation may be set in the context of a class of reciprocal 

Backlund transformations which allow the reduction of a wide 

variety of nonlinear boundary value problems to linear 

*Permanent address: Department of Applied Mathematics, 
University of Waterloo, Waterloo, Ontario, Canada. 
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canonical form [2,3]. Here, both one-phase and two-phase 

Stefan problems are considered for materials of Storm-type. 

Such moving boundary problems arise naturally in the analysis 

of melting and solidification processes 141. Their com- 

plexity resides in the fact that the heat balance condition 

at the moving interface produces a nonlinear boundary condi- 

tion. Here, there is that additional complication that the 

heat conduction equations considered are themselves non- 

linear. However, with attention restricted to Storm-type 

materials, it is shown that introduction of a reciprocal trans- 

formation allows the construction of a class of exact solu- 

tions analogous to the classical Neumann solutions of linear 

heat conduction. 

II. THE RECIPROCAL TRANSFORCWTION. In what follows, we 

make use of the following result [51: 

Theorem 

The conservation law 

& IT(a/ax; a/at; UH + & ma/ax; a/at; u)) = 0 (1) 

is transformed to the reciprocally associated conservation 

law 

aT* aF* 
m+ax*=o 

by the reciprocal transformation: 

(2) 
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dx* =Tdx-Fdt, t*=t 
R 

T* = 1 F* = -F(D*;a*;u) 
T(D*;a*;u) ' T(D*;a*;U) 

(3) 

where 

D* a-1 a a 
:= ax --FjzF’ a* := & = $ & + - 

at* 

T(a/aX; a/at; U) := T(U,UX,UXX,.;*,;UtlUttl”‘) 

F(a/ax; a/at; U) := F(u~u~,u~~,...,;u~,u~~,...) . 

The reciprocal nature of the transformation resides in the 

involutory property R2 = I. 

In particular, the above result shows that the nonlinear 

equation 

jg [Q(u)1 - & 
n 

['(u) Jl aiD1'Q(u) --.+I = 0 (4) 

1 a where D := - - a (u) ax is reducible to the linear canonical form 

au* -ri a a=u*] = 0 
at* + ax* i=l ai ax*i (5) 

via the reciprocal transformation 

n 
dx* = O(u)dx + a(u) C cQD=(&)dt, t" = t 

i=l 

1 

(6) 

u*=+ . 

In the sequel, a special case of this result is used in 

the analysis of a class of Stefan problems in nonlinear heat 

conduction. 
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III. A CLASS OF SINGLE PHASE STEPHAN PROBLEMS IN NON- 

LINEAR HEAT CONDUCTION. The following nonlinear moving 

boundary value problem is considered: 

pep(T) g = j$ [K (T) El, 0 < x < x(t) (7) 

K(T) ?$ = U(t) on x = 0, t > 0 (8) 

K(T) $$ = L&(t) 

3 
on x = X(t) (9) 

T = 
Tf 

X(0) = oa (10) 

In the above, T(x,t) denotes the temperature distribution in 

a medium wherein the specific heat c 
P 

and thermal conductivity 
,*, 

K are temperature dependent. The density p of the material 

is taken to be constant. L denotes the latent heat of fusion 

of the material and liberation of heat is envisaged to take 

place during a phase change which occurs at the temperature 

If we set 

T 
9(T) = / S(o)du, S = pep(T) 

TO 
then the nonlinear heat equation (7) may be written as 

& [Q(T)1 - & [K(T) +$ = 0. 

(11) 
(12) 

(13) 

The reduction of the previous section with 
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i 

0 if1 
a* = 1 -K* i = 1, K* > 0 

(14) 

shows that (13) is taken to the l+l-classical heat equation 

aT* 
*= K* a*T* 

ax** 
I (15) 

via the reciprocal transformation 

dx* = @(T)dx + K(T) g dt, t* = t 

1 
T* = G(T) 

(16) 

subject only to the condition 

kc*@'/@ 2 = K(T) . (17) 

The applicability of the condition (17) to simple metals was 

discussed in [l]. 

Under the reciprocal transformation (16) 

ax* - = Q(T), 
ax 

3g= 
at K(T) g = ; & [K(T) +x + 

0 K(T) g x=o 

= i" & [Q(T)ldx + u(t) 
0 

whence 

X 
x*(x,t) = oJ Qdx + O(t) - O(O), (18) 

where O(t) = U(t) and we have taken x*(0,0) = 0. 
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Accordingly, the fixed boundary condition (8) becomes 

K* aT* - 
ax* -UT* on x* = O(t*) - 0 (0). 

Moreover, 

a [K(T) Eldx + K.(T) gix=x(tJ 

= [0(T)ldx + L+(t) 

SO that we obtain an alternative expression 

x*(x,t) = '; 
X(t) 

@(T)dx + [Q(Tf) + LpJX. 

Thus, the moving boundary conditions (9) become 

K* aT* - 
ax* -LpT*i( 

1 

on x* = x* 
1 T* = - 

@ (Tf) 

where 

X" = x* 
x=X(t) = [@(Tf) + LplX(t) 

so that the initial condition (10) becomes 

X* 
I 

t*=o = 0. 

(19) 

(20) 

(21) 

(22) 

(21) 

Furthermore, on x* = X* it is seen that 

dX*/dt* = (l/T*)dX/dt - K*T;,/T* 

so that the heat balance boundary condition on x* = X* becomes 
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(22) 

-LpdX*/dt* 
= a~ (Tf) [Q (Tf) + LPI on x* = X* . 

Thus, to summarize, under the reciprocal transformation (16), 

the moving boundary value problem (7)-(10) reduces, subject 

to the Storm condition (17) to 

aT* 
at*= 

K* a2T* 
ax*2 

I 

K* aT* - - - -UT* on ax* x* = O(t*) - O(0) 

K* aT* LpdX*/dt* 
- = - Q (Tf) [@(Tf) + LPI ax* 

on x* = X* 
1 

T* = QJ (Tf) 
i 

x*(o) = 0. 

Now, 

dx = T*dx* + K*T;* dt* 

so that 

ax ax* = T* 

ax _ @T* = “; a -- 
at* X* x* ax* (K*T;,)dx* + K*T;, 

x*=x* 

X* 
= aT* dx* _ 

x{ at* 
LpdX*/dt* 

Q(Tf)[@(Tf) f LPI 

(23) 
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whence 

X* 

x = s T*dx* + X*T* x*zx* -  

X *  
I  

@(T 

f 
)  ,a ; ; “ ;  + ~~1 l 

f 

Accordingly, 

X* 
x(x",t") = 1 T*dx* + X*/[@(Tf) + LP] . (24) 

X* 

Alternatively, 

so that 

d 
= - (K*T* )dx* + K*T* 

x*;x=o ax* x* 

a-x-. 
s aT* dx* _ UT* 

= o(t*)-O(O) = x*=0 (t*) -0 (0) 

X* 
x(x*,t*) = / T*dx* . (25) 

Ott*)-O(0) 

Hence, if T*(x*,t*) is the solution of the reciprocal 

boundary value problem (23) then the solution of the original 

problem (7)-(10) is given parametrically by 

T = @-'(l/T*) 

X* 
x= / T*dx* (26) 

0 (t*)-0 (0) 

t = t* 

while the evolution of the boundary x = X is given in terms of 
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that of x* = X* by the simple relation (22). 

We now specialise our attention to the class of moving 

boundary problems (7)-( 10) with 

u(t) = u,/vE, X(t) = vc2yt 

and introduce the similarity variable 

(27) 
(28) 

into the reciprocal problem (23). Solutions are sought of 

the type 

‘I’* = $*(X*/F) 

so that 

whence 

$* = Aerf[ 
J * 5*1 + B. 

The linear boundary conditions require that 

kc* s = -u,&$* 
and 

Q 
1 

* = @(Tf) On 

whence, A and B are given by 

A 
-+* r1 

= -Uo[Aerf[- "' I + Bl , 
h? 

on 5* = uom 

<* = OtTf) + Lp 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 
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Aerf[ (Q(Tf) +Lp)l +B=&. 
f 

(36) 

The constant y which determines the motion of the boundary 

x = X(t) is obtained from the remaining boundary condition 

which provides the transcendental equation 

Y -- 
2K.x (0 (Tf)+Lp) 2 

= -Lp/Q[Tf). (37) 

The solution of the original boundary value problem is 

now given parametrically by the relations 

T = Q--l 1 

Aerf( 1 
[Aerf( 0) + Blda . 

U@77 

(38) 

(39) 

It is noted that the above class of exact solutions 

has the property that T = constant = T0 on the boundary 

x = 0 where 

O(To) = 1 
l (40) 

Aerf[U,/fl] + B 

It is emphasised that the above analysis is valid for any 

member of the class of materials given by (17). It repre- 

sents an extension to nonlinear heat conduction of the clas- 

sical Neumann solution. 

IV. TWO PHASE STEFAN PROBLEMS IN NONLINEAR HEAT CONDUC- 

TION. APPLXCATION OF RECIPROCAL TRANSFORMATIONS. The two- 

phase Stefan problem to be considered is for a semi-infinite 
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region x > 0 with phase change temperature T f' It is required 

to determine the evolution of the moving phase separation 

boundary x = X(t) and temperature distribution 

where 

T2(x,t) > Tf 0 < x < X(t) 
T(x,t) = 

Tl(x,t) < Tf x(t) < x < 03 

pcpl(Tl) 2 = & kl(Tl) 21, X(t) < x < 00 

aT1 aT2 -- 
Kl(Ti) ax tc2 (T2) ax = Lpi 

1 
on x = X(t) 

Tl = T2 = Tf 

aT2 aT - 

pcp2 (T2) - = & k2(T2) -$I, at 
0 < x < X(t) 

aT2 
K~(T~) ;3x = U(t) on x = 0, t > 0 

together with the initial conditions 

X(O) = 0 

T+,O) = V. < Tf , x > 0 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

In the above, the Ti(x,t), c pi (Ti) , kzi(Ti) i = 1,2 

represent, in turn, the temperature distribution, specific 

heat and thermal conductivity in the two phases. The sub- 

scripts i = 1,2 refer to the new and original phases respec- 

tively. In this problem a melting process is envisaged in 
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which phase 1 is solid and phase 2 is liquid. L denotes the 

latent heat of fusion of the medium. Here U(t) denotes the 

prescribed flux on the boundary x = 0 while V. represents 

the initial temperature of the medium. It is noted that the 

analogous two-phase problem in linear heat conduction has 

been recently investigated by Tarzia 161. As in that work and 

in the single phase problem,attention is restricted to the 

class of moving boundary problems with 

If we now set 

Ti = Qi(Ti 

then (42) and 

) = J Si(c)da, S. = ocpi(Ti), i = 1,2 1 (50) 
TOi 

(44) yield 

u(t) = uo/dT, X(t) = LqT. (48) 
(49) 

aTi K. a?. 
--&($ at 1) = 0 

i ax 
i = 1,2 . (51) 

Our attention is henceforth confined to materials for 

which the Storm conditions 

,,mp’i = Ki(Ti) i = 1,2 (52) 

apply I where Ki, i = 1,2 are positive constants. 

Use of the conditions (52) in (51) reduces the heat con- 

duction equations in the two phases to the form 

aTi _ 
-- 

at 
'in ($~) =O, i = 1,2. 

i 
(53) 

The similarity variable 
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5 = x/ayE (54) 

is now introduced and solutions of (53) are sought in the form 

Ti = Gi(x/m) i = 1,2 (55) 

whence (53) yields 

Under the reciprocal transformation 

R (R2 = I) 

(56) produces the linear canonical form 

d2$; 
-i. - 

W; 

1 dE*2 
+ vq ds* = 0 i = 1,2 

i 
1 

with solution 

$2 = Aierf[ y Et] + Bi i = 1,2. 
2Ei 

The four conditions 

Tl = T2 = Tf On 
x = X(t) 

aT2 u. 
~~ (T2) ax = - on x=o,t>o 

VT 

T1(x,O) = v. 

(56) 

(57) 

(58) 

(59) 

produce, in turn, four equations which determine the Ai, Bi 
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i = 1,2 namely 

Alerf[ r 
J 

Al] + Bl = 1 
2K1 Ql(Tr) ' 

A2erf[ h2] + B2 = 1 Q2(Tf) ' 

A2 

A1+B1= 1 a1 (V,) 

where 

hl = 6: t--l I x2 = 

The interface condition 

aTl aT2 I_- 
K1(T1) ax 5(T2) T = Lpir 

yields 

whence 

I 

"*2(&l - 

on 

on 

x = X(-t) 

E 1 = 

-A& (Tf) 
2K1 
y'rr exp (-+yAf/2;L) 

+A2@2(Tf) 
2K2 
y'rr exp(-yXz/2K2) = Lp. 

(60) 

(61) 

(62) 

(63) 

(64) 
(65) 

(66) 

The latter provides a transcendental equation for the constant 

Y which determines the motion of the moving boundary x = 

X(t) = m. 

The required temperature distributions T1 and T2 are 
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given parametrically by 

Tl = @;lIAlerf[ <iI + Bl}-1 

5i 
5 = / CAlerf[ 

xl J 
2 (51 + Bl}do + 1. 
2K2 i 

(67) 

and 

Ef 2 
5 = / 

UpFY 
CT] -k B2]do . 

The quantities Xl and X2 are given by the relations 

hl - x2 = LP f Ql(Tf) - a2(Tf) (69) 

together with 

A2 
1 = / old0 f B2[h2 - Up71 (70) 

uom 
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ANALYSIS OF FLUID EQUATIONS BY GROUP METHODS 

W. F. Ames1 and M. C. Nucci 2,3 
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Georgia Institute of Technology 
Atlanta, GA 30332 

ABSTRACT. Using the machinery of Lie group analysis 
several equations arising in fluid mechanics are studied. 
In particular, the Burgers' equation the KdV equation, the 
Hopf equation, the two dimensional KdV equation and the 
Lin-Tsien equation are analyzed. In all cases the parti- 
cular group includes arbitrary functions of time which 
permit the transformation of time dependent equations into 
the corresponding time independent ones. Infinitely many 
time dependent solutions are associated with each steady 
solution. Some solutions are constructed, 

I. INTRODUCTION. Perhaps the most widely applicable 
method for determining analytic solutions of partial dif- 
ferential equations utilizes the underlying (Lie) group 
structure. The mathematical foundations for the determination 
of the full group for a system of differential equations 
can be found in Ames [l], Bluman and Cole [2], and the general 
theory is found in Ovsiannikov [3]. The determination of the 
full group requires extremely lengthy calculations. Detailed 
calculations can be found in Ames [l]; Ovsiannikov [3] and 
for the Navier Stokes equations in Boisvert [4] (see also 
Boisvert, et al. [51). Algebraic programming packages for 
determining these groups have been developed by Schwarz using 
REDUCE [9], by Roseneau and Schwarzmeier using MACSYMA [lo] 
and CINO in Russia (see Ovsiannikov [3], p. 57). These 
programs, while very versatile, have difficulties in 
incorporating arbitrary functions where they arise ln the Lie 
algebra. These arbitrary functions play a fundamental role 
in the sequel. 

In Boisvert, et al. 151 the full Lie group leaving the 
Navier-Stokes equations invariant, 

2 
ut + uux + vu + wuz = -p, + WV u,, (1.1) 

Y 
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2 Permanent address: Dipartimento di Matematica, Universitg, 
di Perugia, 06100 Perugia, Italy 

3 Research supported by a NATO-CNR fellowship. 
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vt + uvx + vv 
Y 

twv =-p 
Z Y 

+ uv2v, (1.2) 

wt 
+ uwx + VW 

Y. 
t wwz = -p, + pv2w, (1.3) 

U 
X fv fWZ=O1 Y 

(1.4) 

is determined. In the spirit of Lie it is desired to find 
infinitesimal transformations of the form 

(1.5) 

t' = t + ET(t,x,y,z,u,v,w,p) + bk2), 

X' = x + &X(trX,y,z,U,V~W,p) + O(E2), 

Y' = y t EY(t,X,y,Z,U,V,W,p) + O(E2), 

2' = z + ~z(t,X,y,Z,U,V,W,pj + ok2), 

U’ = u t EU(t,X,y,Z,U,V,W,p) + O(E2), 

V' = v + EV(t,X,y,Z,U,V,W,p) + O(E2), 

W' = w f EW(t,X,y,Z,U,V,W,p) + O(E2), 

P' = p + EP(t,x,y,Z,U,V,W,P) + ok2), 

which leave (1.1-1.4) invariant. System (1.5) leaves (l.l- 
1.4) invariant if and only if (u',v',w',p') is a solution of 
(l.l'-1.4') whenever (u,v,w,p) is a solution to (1.1'1.4). 
By (1.1' -1.4') is meant the same equations in the primed 
variables. By extensive analysis it is found that the full 
Lie group leaving (1.1-1.4) invariant is given by (1.5) with 

T = a f 2fit, (1.6) 

x = 8x - yy - AZ + f(t), (1.7) 

Y= BY f YX - DZ + g(t), (1.8) 

2 = 82 + Xx + uy + h(t), (1.9) 

u = -f3u - yv - xw + f'(t) (1.10) 

v= -pv + yu - o-w + g' (t) (1.11) 

w= -fiw + Au f CJV f h' (t) (1.12) 

P = -2~p + j(t) - xf" (t) - yg"(t) - zh" (t) (1.13) 
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where a,~~y,h and 0 are five arbitrary parameters and f(t), g(t), 
h(t) and j(t) are arbitrary, sufficiently smooth functions 
of t. 

The arbitrary functions in (l-7-1.9) permit equations 
(1.1-1.4) to be transformed into their time-independent form. 
Thus any solution of the steady equations generates an infinity 
of time dependent solutions. This idea was exploited in 
Boisvert, et al. 151 and Nucci [6]. 

II. BURGER'S EQUATION. For the Burgers' equation 

Ut +uux=lJuxx _ (2.1) 

the full two parameter group (a,~) with one arbitrary func- 
tion (f(t)) is 

T = a + zgt, x = Bx + f(t); u = -Bu -t f'(t) (2.2) 

With c = 1, B = 0 the subgroup 

T 1, = x = f(t), u = f'(t) 

has the generator 

QI = s + f(t) +$ I- f'(t)' E = 0. (2.3) 

From the Lagrange equations of (2.2) we have 

U= u - f(t) 
(2.4) 

X= x - F(T), 

where F' = f. When this transformation is applied to (2.1) 
there results 

;u- = .pu-- , 
X xx 

that is the steady equation. One integration gives the 
integrable Riccati equation 

u’ f u2 I c, 

where u = -2uU. Finally setting U = $J'/$ (2.6) becomes 

9” - C$ = 0. 

For C = a2 > 0 the solution of (2.1) is 

(2.5) 

(2.6) 
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u(x,t) = -2pa{l-Rexp[-2a(x-F(t))])/{l+Rexp[-2a(x-F(t)]) + f(t). 

For C = -c1 2 < 0 the the solution for (2.1) is 

u(x,t) = -2pa 
cos [a (x-F (t) ) 1 - R sin[a(x-F(t))] + f(t) 
sin[a(x-F(t))] + R COS[a(x-F(t)) 1 

where R is another arbitrary constant. If c = 0 the solution 
is 

u(x,t) = 2p 
2pR - (x-F(t)) + f(t) l 

III. THE KORTEWEZ DE VRIES EQUATION. Under the trans- 
formation (2.4) the KdV equation ut + uux = uxxx becomes 

-- 
uu- = u--- 

X xxx 
. . . 

which is integrable in terms of elliptic functions since one 
integration gives 

U xx - u2 = c, 

when u = 2U. 

IV. THE EQUATION ut + uux = [@(ux)uxlx. Again the 

action of (2.4) transforms the equation of the title into 

V. TWO DIMENSIONAL K-dV EQUATION. The full group for 
the two dimensional K-dV equation (Rogers and Chadwick [71) 

U = -u 
xxxx xt - aUYY 

- 6~; - 6uuxx (5.1) 

is calculated, using the notation of (1.5) for t, xI y, and 
u, to be 

T = f(t) 

X = .f' (t)x/3 - f:'(t)y2/6a - g' (t)y/b + h(t) 

Y = 2f'Wy/3 + g(t) (5.2) 

U= -afl(t + f"(t)x/l8 - f"' (t)y2/36a - g"(t)y/l2a 

+ h'(t)/6. 

In (5.2) the functions f(t), g(t) and h(t) are 'arbitrary so 
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the Lie Algebra is infinite dimensional with the generator 

Q=T&+X (5.3) 

Moreover, the specific choice of the subgroup 

T=l, x= -g’y/2a f h(t), Y = s(t) 
(5.4) 

U = -g"y/12a + h'/6 

gives rise to the characteristic variables 

Y - y = G(t) 

X- ;;= -gy/2a + iI(t) (5.5) 

U- ;;= -g'y/12a + g2/24cr f h/6 , 

where G' = g and R' = g2,'2a + h. Under (5.5) equation (5.1) 
becomes 

-- + 6(&) 2 
aUYY 

+ 6;;;;;; + i;;-;;; = 0, (5.61 

that is the time independent equation. Each solution of 
(5.6) gives rise to a family of solutions involving thre_e 
arbitrary functions of time, f, g and h, when u, x, and y 
awe replaced by their relations from (5.5). To illustrate 
this idea the full group is generated for equation (5.6) and 
some exact solutions are obtained in the next section. 

VI. SOLUTIOtiS FOR EQUATION (5.6). The full group for 
equation (5.6) (we have dropped the bars), in the notation of 
(1.5) for x, y, and u is 

x = clx + c2 

Y = 2c1y + c3 (6.1) 

U = -2cp, 

with the three parameters c1,c2,c3. The equation for the 

invariant surface are obtained from (for cl # 0) 

u = F(r1)/2c~(2c~y f c3) 
w 

16.2) 
rl = (ClX + C2)/(2ClY f c,) , 

where F satisfies the ordinary differential equation 

c3F(iv) 2 
1 + 3FF" -I acln2F" + 3 (F') + 7cl"nF ' + 8clclF = 0. (6.3) 
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Two solutions of equation (6.3) are 

and 

F(n) = - 4ac1$/3 

3 -2 F(n) = -4cln . 

The solution of equation (5.1) resulting from (6.4) is 
g 

2dCl Ix + z y - 01 + c*>* 
UC- 

3I2Cl,[Y - G(t) 1 + c312 

and that resulting from (6.5) is 

(6.4) 

(6.5) 

2cf 2 
UC- 

Ic, Lx -t & Y - R(t)1 + c212 
-&Y+&, +; 

where R' = g2/24a + h and G' = g. 

V I I  l AN INTERESTING SUBGROUP OF (5.2). With the choice 

f(t) = t3, g(t) =,h(t) = 0 in (5.2) the group becomes 

T = t3, x = t*x - ty*/*, Y = *t*y 
(7.1) 

U= -2t*u + tx/3 - y2/6a 

From (7.1) the equations for the invariant surface are found 
from 

o=y/t*, 5 = x/t + y*/*c(t* (7.2) 

and 

u = 5/6 - n2t2/12a -I- F(n,c)/t2, 

where F(n,E) satisfies the equation 

(7.3) 

CtF rlrl + (3F2jC5 + FEEc5 = 0. 

But, of Course, this is equation (5.6) with n = G, 5 = 5 
and F = u. Thus two solutions are available - i.e., 

u(x,t) =&- 
2a[c1xt + c1y2/2a + 

2 ,2 
t c*l 

3t2[2cly + t2c31 
2 

and 
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2c2t2 
u(x,t) = g - 1 

(clxt f  cp2/2a + t2q 2 l 

VIII. THE LIN-TSIEN EQUATION. The Lin-Tsien equation 
181 

2@tX ‘Q,, - ayy = 0, (8.1) 

where $ is a velocity potential, has been used to study 
dynamic transonic flow in two space dimensions (x and yP. 
The full group is known (see Ovsiannikov [3, p. 3881) to be 

x = 4ax/3 + g'(t)y + w(i) 

Y= ay + g(t) 
(8.2) 

T = 2cLt/3 + B 

aJ = 2a@ + 2y3g"'/3 + 2y2w" + 2xyg" + 2xw' f yr(t1 f s(t). 

Equations (8.2) contain two arbitrary contants, c1 and B, 
and four arbitrary functions g(t), w(t), r(t) and s(t). Con- 
sequently, the Lie Algebra is infinite dimensional. Once 
again these arbitrary functions will permit an infinite num- 
ber of time dependent solutions to be generated from each 
steady state solution. 

The invariants of the group that are constant in time 
(with c1 = 0) are found as before to be 

X - x = gy - A, x = /(g2 + w)dt 

y-?=Q, Q = /g(t)dt 

and 

9 -T = 2gGy + 2g"s3/3 + 2wz 

+ II 2g” [gY2 + 2sQ? - X3 f gQ2 - XQ] 

+ 3 g“' [3y2Q + 3yQ2 + Q31 f 2w’l3g + sQ 
(8.3) 

- Xl 

+ 2w"[2sQ + Q2] f ry + sldt 

It is easy to show that s(x,y> satisfies the time 
independent equation 

s;;q;;, - Jyu = 0 (8.4) 

which has been much studied. Given any solution of (8.4) it 
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follows that time dependent solutions (with four arbitrary 
functions of time g, w, r and s) are constructable -- thus 

G(x,y,t) = Rx - gwy + A, Y - 0) 

+ (right hand side of the last equation in (8.3)). 
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ABSTRACT. The program of F-P-S Poincarg-like linearization and the 
results of its application to soliton equations are described. 

I. Introduction. The results announced in [l] strongly suggest that 

soliton equations are F-P-S Poincar&like linearizable 1151. This was further 
supported by our work [2,3,4]. The purpose of this paper is to describe 
heuristically the F-P-S Poincar&like linearization program ($IIj and some of 
its implications (see last section of SII), as well as describe the results 
obtained to date from its application to soliton equations (§III). 

One important reason for continued physical interest in soliton equations 
such as the Korteweg de Vries (KdV), nonlinear Schrtidinger, Boussinesq, and 
the Benjamin-On0 (B.0.) equations is that they are the :Lowest order nonlinear 
equations in multiscale approximations to the equations of one-dimensional 
fluid flow for various physical configurations and certain initial data. They 
are of interest in their own right because they possess an infinite- 
dimensional Lie symmetry structure which can be used to generate hierarchies 
of constants of motion and classes of soliton solutions. They exhibit 
particle-like properties. Further, it is known that many soliton equations 
are particular cases of completely integrable infinite-dimensional 
Hamiltonian systems [6,7]. There are various effective approaches to studying 
such equations: e.g., IST Scheme [8,9,10,11]; Riemann problem for matrices 
[lZ]; Method of Prolongation Structures [13] (the reader is also referred to 
the presentation by Estabrook in these proceedings); Kac-Moody Lie algebraic 
methods [14], (see [14] f or the references to the work of the Kyoto School.), 
loop groups [15], Riemann surfaces and theta functions 1[16]. What is the 
justification for the interest in all these approaches and, as we advocate, 
even one more? To date there does not exist an algorithmic method for 
determining whether a given equation is of the soliton type; rather all of the 
above provide methods for constructing soliton equations. In the case of the 
Method of Prolongation Structures it also provides a way for searching for 
structures such as symmetry, Lax pairs, Bgcklund transformaions for a given 
equation, if they exist. We have approached this general area with two broad 
goals in mind. One is to realize the implications of the F-P-S PoincarB 
linearization program cited at the end of III. This includes, of course, 
solving the evolution equation in question. The second goal is to use this 
program as a tool to try to determine algorithmically whether a given equation 
is a soliton equation or not. In $111 we describe our results to date which 
show some progress towards these goals. 
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II. F-P-S PoincarGlike linearization. The progr;>m of the classifi- 
cation of nonlinear representations of Lie groups and Lie algebras of Flato- 
Pinczon-Simon [5,17] can be regarded as a generalization of Poincar&'s program 
of transforming vector fields to normal forms. Here we shall briefly describe 
this transformation for the case when there exists an equivalent linear normal 
form in the neighborhood of the origin. Further, we shall confine our 
discu-ssion to the following formulation which is sufficient for introducing 
the general ideas. Consider a nonlinear analytic vector field T with Taylor 
expansion about the origin of the form T = c Tn .where Tn is the nth order 
term, which 

nil 
describes a nonlinear ordinary differential equation (ODE) of the form 
du/dt = T(u), t G 1, u E Pn . We look for ways to transform this 
vector field (this ODE) to a simpler form. That is the general problem. The 
problem we are interested in here is to determine whether or not this vector 
field (ODE) can be transformed to its linear part through the use of power 
series substitutions. Explicitly, we seek to determine whether or not there 
exists an analytic map A , acting on some neighborhood of the origin, such that 

DA*[T] = T1 o A , (11.1) 

where DA[T] is the Frgchet derivative of A along the direction T and o 
denotes composition of maps. Such a map A: u + v takes solutions of 
du/dt = T(u) into solutions of dvjdt = T1(v> . In the Taylor expansions Tn 
and An can be chosen to be symmetric n-linear maps. Therefore substitution 
of the formal power series representations for T and A into (11.1) yields 
the following equations 

[T1,Anl.k = c Ap(Iq B Tn-p+l 0 Ip-q-l&,, (II-Z) 
llpln-l,Olqlp-1 

where [T~,A~]* = DTl.[An] - DAn[T1] , Iq = q-fold tensor product of the 
identity operator, and 6, is the symmetrization operator on the n-fold 
tensor product. (The tensor product appears because it is possible and useful 
to consider linear maps rather than-n-linear maps at each order). Such a map 
is called a linearization map. 

An analogous discussion for a map B which takes T1 into T under 
the same assumptions yields the following equations 

[B",Tl]* = z Tp o (B1l 0 . . . 0 B1p) un . (11.3) 
llpln-l,il+. ..+ip=n-1 

The map B is called an inverse linearization map and it is this map which 
underlies the usual perturbation methods. In fact, it is somewhat surprising 
that this approach of Poincar6 to perturbation computations is not more 
commonly used. This is what is termed Poincarg linearization and we now 
proceed to set it in a group theoretical context and then describe its I 

generalization 2 la Flato-Pinczon-Simon to what is termed F-P-S PoincarG-like 
linearization. 

Equation (II.2) can be given the following group theoretical inter- 
pretation. Consider the local group action obtained by integrating the vector 

field T(T1) to U, (II:), where t is the group parameter. Then (II.2) 

is the Lie algebraic version of the problem of the equivalence of the 
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one parameter group Ut to the linear group u1 

an analytic map A intertwining Ut and U: 

t , i.e. does there exist 

, 

AoUt= 
1 

Uto A . (11.4) 

We remind the reader that Ut and A appearing in equation (11.4) are 

nonlinear maps. 
It is this part of the program Poincarg linearization which Flato- 

Pinczon-Simon generalized to classify the actions of nonlinear representations 
of Lie groups and Lie algebras on, in general, infinite-dimensional spaces. 
In what is termed F-P-S Poincar&like linearization a gi-van nonlinear 
evolution equation on a given space of initial conditions defines a 
one-parameter time-translation subgroup of a (larger) covariance group (such 
as the Galilean group or Poincarg group) of the equation in question. A 
choice of a covariance (symmetry) group is naturally suggested by the physical 
context in which the equation arises. The existence of an explicit invertible 
analytic linearization map A from a space of initial conditions for the 
nonlinear equation to one for the linear equation which takes the nonlinear 
representation of the covariance algebra into its linear part is investigated 
by analyzing the linearization algorithm (11.2) and the inverse linearization 
algorithm (11.3). This turns out to be a problem of cohomology, the details 
of which we omit here. We shall illustrate F-P-S PoincarC-like linearization 
with an application to the B.O. equation. 

The Benjamin-On0 (B.O.) equation can be written in the form 
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du(t)/dt = T&J(~)), u(t> E E,t f B , (11.5) 

where To is one generator of the nonlinear representation l2 3 (a,b) + 
aT0 + bT1 of the commutative space-time Lie algebra R2 , Here for 

w E E: To = T; e T;, 

T;(w) = aw , 

T1 = T;, T;(w) = -GHw, T;(w) = -a(wj* , 

(aw)(x) = dw(x)/dx and (Hw)(xj = P.V. ]dyw(y)(y-x)'lr'l 

is the Hilbert transform. E stands for various spaces, which In our work are 
all subspaces of Sobolev spaces wn,2 the space of functions which are in 
L2(1j together with all their derivatives, up to order n . Its linear 
part is given by 

dv(t)/dt = T;(v(t)), v(t) E E, tEE. (11.6) 

Suppose for a moment that the evolution operator Ut (resp. Ul) associated 
with the Equation (11.5j (resp. (11.6)) exists, for eac.h timk t , on a space 
E of initial condition, i.e., if uo (rev. vo) is an initial condition for 
equation (11.5) (resp. (11.6)) at t = 0 , then the solution of Equation 
(11.5) (resp. (11.6)) is 

. . u(t) = up,> (resp. v(t) = $(vo)j . (11.7) 

Equation (11.7) is the one-parameter time-translation group, with group para- 
meter t , defined by the B.O. (linear B.O.) equation. It is sufficient for our 
purpose to consider this group as a one-parameter subgroup of a larger covar- 



The map, from K2 into functions on E , 

(t,a) --+ u 1 
(t,a> 

(resp. u 
(t,a)' 

(11.8) 

defines a nonlinear (resp. linear) representation of the commutative space- 
time covariance (symmetry) group K2 on E , i.e., 

u 
(t,a> O u(t’,a’) = u(t+tl,a+a’) (resp. 

'tt ,a ) O 'tt',a') = $t+t',a+a')' * 

The solution of (11.2) and (11.3) for the generators To and Tl of the 
group K*, subject to the condition B o A = idE , yields an invertible 
linearization map A with B = A'1 which linearizes (II:&!). 

The implications of the existence of a solution B of Equations (11.3) 
are several. This solves one of the most fundamental problems about an 
evolution equation, namely, the initial value problem for the nonlinear 
equation on the set of initial conditions {uo E Elun = B(y))} for some 
vo G E by 

u(t) = B(vCt)), q-j = B(vC) (11.9) 

where v(t) is the solution of the linear part with initial condition vo . 
Also other questions for the nonlinear evolution equation, such as the 
existence of superposition principles, hierarchies of 'higher order' evolution 
equations (or symmetries), and infinite sequence of constants of motion are 
reduced to the corresponding questions for the linear equation when A and B 
exist. We want to stress that we have not, in this heuristic discussion, 
considered the mathematically important and technical question of domains for 
A and B . Some of these points, as well as the B.O. equation itself, are 
discussed in more detail in $111 and in the papers referenced there. 

III. Description of results. It was known, since the discovery of the 
IST scheme for the KdV equation [S], how to construct solutions of the KdV 
equation from a certain class of solutions of the linear part. However, it 
was not clear how the Cauchy problem for the KdV equation on a given space of 
initial conditions reduces to one for its linear part. In [I] it was first 
shown how this reduction takes place by showing that on the space of initial 
conditions 

Sb(K) = if E C=(K) I Ilfll, = ,,yiz Nl I(l+lxl)Nakf(x) I < m, N = O,l,...} 

OIk& 

the Cauchy problem for the KdV equation can be solved entirely by the F-P-S 
PoincarGlike linearization program described in $11. Specifically, on the 
space of initial data Sb , a translation-invariant invertible analytic linear- 
ization map A : sb * A&l c sb was concretely realized. (Technically in 
this case A is unique and converges to an entire analytic function on Sb , 
and is invertible.) The problem of the existence of global (in time) 
solutions and the existence of solutions which are not global (in time) was 
solved for the space Sb . In particular, as was earlier established in [18], 
the existence of global solutions for the KdV equation for all initial 

600 



conditions in S(E), the Schwartz space of rapidly decreasing function on 
the real line B , was established. Here the fact that s(m) c sb(E) 
was used, as well as a separate fact [18], namely, A[S(E)] is invariant 
under the linear evolution. A nonlinear superposition principle for the KdV 
equation was also obtained from the result that A&l is convex. 

This program was next applied to Burgers equation. Although :Burgers 
equation is not a soliton equation it shares many properties with soliton 
equations and is an important nonsoliton equation. Because of the existence 
of the Cole-Hopf transformation, it was well known that Burgers equation 
linearizes to its linear part. However, the application of the F-P-S 
Poincar&like linearization program to Burgers equation led to new results 
concerning its constants of motion and Hamiltonian structure. For 
completeness we shall discuss the nature of the linearization map obtained in 
[19] as well as the other results. 

In [19] Burgers equation was linearized on the space of initial condition 
S(E) - Specifically, a translation-invariant invertible analytic 
linearization map A:S + A[S] C S was concretely realized. (Technically A 
converges to an entire analytic function on S . The inverse A-l:A[S] + S is 
analytic on the image A[S]) . A-1 is close to the Cole-Hopt-transformation. 
It was shown that A[S] is invariant under the linear evolution, hence the 
existence of global solutions for the Burgers equation for all initial 
conditions in S(1) (or IAn> > was established. Further, it was 
established that Burgers equation has an infinity of constants of motion. 
This fact was not commonly thought to be true. It was also shown that A[S] 
is a convex subset of S , hence the existance of a nonlinear superposition 
principle for Burgers equation was established. It was shown that the 
commutative Lie algebra of higher-order Burgers equations is the image of the 
positive powers of the translation operator under A'1 . Thus the enveloping 
algebra of the translation operator for the linear part is the source of the 
Burgers hierarchy. It was also shown that while Burgers' equation is 
dissipative it can be defined by a completely integrable Hamiltonian system. 

The above result on the connection between the hierarchy of higher-order 
Burgers equations and the powers of the translation operator generalizes and 
the analogous result for the KdV equation was established earlier in [18] by 
analyzing the direct and inverse scattering maps in the IST scheme. In this 
latter work the question of determining a complete set of constants of motion 
for the KdV was solved. Specifically, it was shown that the Lie algebra 
spanned by certain polynomials in the generators of a solvable Lie algebra of 
dimension three for the linear part underlies each constant of motion for the 
KdV equat,ion. 

In [3] it was shown, by using examples, that the IST scheme, Hirota TN 
formalism, and the Kac-Moody constructions of the Kyoto School all yield the 
same inverse linearization operator in the sense described in ZII. Hence, 
they solve the Cauchy problem for the same set of initial conditions. 
Specifically, in the case of a nonlinear evolution equation solvable by the 
IST scheme, iteration of the associated Gelfand-Levitan-Marchencko (G-L-M) 
equation yields the Taylos series representation of an inverse linearization 
map. For example, following the approach in [l], formulas (3.11), (4.02), 
and (4.14) of Resales [20] can be given a rigorous mathematical meaning and 
hence represent analytic solutions to the cohomological equations for A-l: 
for the KdV, MKdV sine-Gordon, and nonlinear Schri5dinger equations, 
respectively. The Kadomstev-Petviashvili (K-P) equation turns out to be 
another example. It was shown in the case of Hirota's TN formalism (or 
dependent variable substitution method) that it contains the essential 
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information for the construction of inverse linearization maps. This is 
illustrated for the K-P equation. To go from the N-soliton result to A-l , 
one simply writes the N-soliton solution in terms of N solutions of the 
linear part of the equation. Then a generalization of this yields A'1 for 
more general initial conditions. Since the Kac-Moody construction of the 
Kyoto School in general subsumes the results obtained via Hirota's TN 
formalism a similar construction yields A-l for the whole hierarchy. This is 
illustrated for a sine-Gordon hierarchy. (The latter example technically uses 
a generalization of the Kyoto School construction. This generalization is 
under separate investigation.) Given the central role the K-P hierarchy, its 
variations, and reductions, play in the extensive results of the Kyoto School, 
the class of soliton equations which are F-P-S PoincarG-like linearizable is 
quite large. 

In [2] the cohomological equations for an inverse linearization map for 
the Benjamin-On0 equation were explicitly solved. ‘A domain of convergence for 
this B (B, in the language of [4]), which is invariant under the linear 
evolution, was identified. The resulting global solitonless solutions for the 
B.O. equation "se for each time t decreasing at least as x-l but not 
faster than x in the space variable x for nontrivial initial data. 
Beyond its physical significance, this soliton equation was and still is 
extremely important in its own right because it has a dispersion relation 
w(p) = ]p]p, p E B for its linear part which is not analytic. (This 
dispersion relation has a certain similarity to the dispersion relation for 
the linear wave equation.) 

The above analysis of the B.O. equation was continued in [4]. There', we 
extended the map Bc found in [2] to include solitons. Specifically, we have 
explicitly solved the Cauchy problem for certain initial data close to pure 
n-soliton data (Th 2.3, 3.1, 141). This last result followed from an analysis 
of the cohomological equations for the linearization maps A . These latter 
equations were explicitly solved for a space-time covariant map A, . The map 
AC was shown to annihilate pure multi-solitons. Therefore in order to treat 
initial conditions which include multi-soliton components, an analysis of an 
associated linear problem which was constructed from a special property of A,, 
which we loosely call its recursivity, led to the deformation of the map A, 
into an analytic linearization map A which exists on a well-defined space of 
initial conditions (Th. 2.3 [4]) and is one-to-one on pure multi-solitons. The 
main technical problem remaining for solving explicitly the Cauchy problem for 
all initial conditions in any one of the spaces appearing in our analysis, is 
to characterize the elements in the image of A . A comparison of these 
results with the work of Fokas and Ablowitz [al] was made in [4]. Further 
comparison is actively being pursued by one of the authors (RLA) with the 
authors of [21]. 

An interesting result concerns the property we referred to in the 
preceding paragraph as the recursivity of the linearization (inverse 
linearization) maps. While we do not have a precise definition of what we 
mean by recursivity, computationally we identify this property in a given case 
by the simplification of the division problem which appears in the solution of 
the cohomological equations. While in all cases An 
the Aj , j < n , 

is given in terms of all 
and similarly for Bn it happens in these cases that they 

are given by iterating a few elementary operations. The recursivity of A, leads 
naturally in the case of the B-0. equation to the identification of the 
Fourier transform of A, with the distorted Fourier transform [22] associated 
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with a self adjoint operator which is the x-member of a Lax pair. This leads 
to a Lax pair which in the case of the positive frequency part is a particular 
case of the Lax-pair of Bock and Kruskal [23]. (This also leads directly to 
an explicit construction of an infinite hierarchy of constants of motion.) 
The recursivity of Bc leads to a Gelfand-Levitan-like equation. 

With respect to the latter work on the B.O. equation, it is perhaps 
worthwhile to end by pointing out that the scattering operator for the Lax 
pair we constructed is a constant of motion, therefore our solution for the 
B-0. equation is a non-IST one. Further, the perturbation approach employed 
by Rosales [20] contains an ansatz which is implicitly a particular case of 
the algebraic part (i.e. no topological considerations) of space translation 
invariant formal F-P-S Poincar&like inverse linearization. In light of our 
result for the B.O. equation, namely A and B are not space-translationally 
invariant. His approach will not yield without conceptual modification the 
solitonic part of B for the B.O. equation. Another much simpler example of 
a formally linearizable equation (with a covariance group reduced to the 
time-translations) , which is not treatable by Resales' approach, is 

g u(t,x> = 2 u(~,x) + (uCt,x)j*. In this context, we remind the reader that 

the general F-P-S problem is the classification of nonlinear representations 
of Lie groups into normal forms where linearizable representations belong to 
the trivial equivalence class. The F-P-S Poincar&like linearizability of a 
given evolution equations therefore depends critically on the covariance group 
considered as i~llustrated by our last example. 
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ABSTRACT. A gas dynamic model of the pellet fusion pro- 
cess having a time-invariant source term is studied. Under 
appropriate assumptions a nonlinear system of three partial 
differential equations results. A group analysis is per- 
formed on these equations and the family of one parameter 
transformation groups, which leave the equations invariant, 
is derived. Exploiting these invariants, for some particular 
values of the parameters involved in the equations, closed 
form solutions are found. 

I. INTRODUCTION. I In the pellet fusion process, a 
spherical pellet IS fired into a containment chamber and then 
bombarded with pulses of laser energy. When hit by a laser 
pulse, a shock wave propagates through the pellet as the 
temperature rises, [A typical pellet configuration is sketched 
below.1 

\ void 
‘2, rl' 

\ I I 
\ ’ 
\ ’ 

\ I’ Y 

Fig. 1. A Typical Pellet Configuration. 

The outermost layer of the pellet, consisting of lead, 
prevents the outward expansion of the inner layers; hence, 
as the Lithium-Lead layer heats up, it expands inward forcing 
the DT fuel toward the center. 
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The shock wave, 
is reflected. 

after passing through to the inner layer, 
On striking the outer surface of the pellet, 

another pulse arrives and constructively adds to the shock 
wave already in the pellet. 

The process continues until the concentration of fuel 
and the temperature, at the center, is high enough for the 
fusion reaction to take place. 

II. THE MODEL. By applying the principles of gas 
dynamics and exploiting the spherical symmetry of the problem, 
we obtain the following equations describing the process: 

g + 2pur -1 au a0 +pJy+uar=o 

(Conservation of Mass) 

+ RTp -1 ap aT =+R--=O ar 

(Conservation of Momentum) 

+ 2(y-1)Tur -1 + (y-l)T$$ = rn 

(1) 

(2) 

(3) 

(Conservation of Energy) 

where p(r,t) is the density inside the pellet (pg/pm3) 
u(r,t) is the velocity inside the pellet (um/ns), 
T(r,t) is the temperature inside the pellet (KeV), 

r is the radial variable (urn), 
t is the time (ns), 
R is the gas constant for lead (um2/ns KeV), 
Y is the ratio of specific heat, 
n r is the external energy input (KeV/ns). 

The boundary/initial conditions are 

p (r,O) = PO WI u(r,O) = u,(r), T(r,O) = To(r) 

and u(O,t) = 0. 

In modeling the pellet fusion process, we have imglicitly 
assumed 

(a) the process is adiabatic 
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. 
(b) the internal viscosity of the pellet is negligible. 

III. THE FULL GROUP (Boisvert r-3 1, Ervin [ 4 I). The 
family of one parameter groups which leave equations (l)- (3) 
constant conformally invariant may be summarized as: 

Theorem: The following three continuous one parameter 
transformations leave ( 1-t ) invariant. 

1 2-n 2n-1 
n+l ' 

L 
Q,: (r,t,p,u,T) + (re ,te3(n+l) E, pe-3(n+l) E, ue-3 

5 
,Te3 ) 

6 -=- 
E $ (n+l) 

Q,: (r,t,p,u,T) + (r,t+E,p,u;T) 

Q,: (r,t,p,u,T) -f (r,t,pe&,u,T). 

Proof: follows by direct substitution. -- 
Note: Q2 corresponds to the equations being translation 

invariant with respect to time. Q, and Q3 indicates that the 

equations are invariant under a two parameter dilatation (or 
stretching) transformation. 

APPLICATION OF THE DILATATION GROUP (Ames [l 1, 
Blumarand Cole [2 I, Ovsiannikov [ 5 I). Assume 

p = eai, B- u = e u, T = e&T, g = eEr I t = e't . (4) 

The invariants of the group are 
t T 

rl=-' pv& ' 
f(7-l) = 9- p/E ; h(n) = - $/E ;(5) 

E#O 

The invariance of the P.D.E.'s (I )-(3 1 imply that 
g _ n+l -- (6) 
E 3 

x 2-n -E- (8) 
& 3 

Following from the transformation described by (5) and subject 
to the condition (6)-(8), equations (l)-(3) become 
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g’ - $ rl(gg’+R sh+Rh') +Fg2 + ,E+$Rh = 0 (10) 

h' - ; rltgh’ + (y-1)g'h) + ($2(y-1) +i (y-1) )gh = B,, (11) 

where f = f(n), g = g(n), h = h(n). 

Now, let us investigate the boundary/initial conditions 
under the dilatation transformation 

(i) p (r,O) = PO(r) 
From (5) p(r,t) = r &'"f(rl), so that p(r,O) = r"'Ef(0). 

Hence assuming that pO(r) = Ara gives C~/E = a and 
f(0) = A. 

(ii) u(r,O) = 0 
Since u(r,t) = r 'jEg(n) it follows that u(r,O) = r B/E s(O) I 

whereupon g(0) = 0, 
(iii) T(r,O) = To (~1 

Since T(r,t) '= rS'E h(n)then T(r,O) = r 2/3 (n+Uh (o) - 

Hence with To(r) = Br 2/3(n+l) it follows h(0) = B. 
(iv) u(O,t) = 0 

Recall u(r,t) = r"'g(n) = rB"g(-&) = 

(n+1)'3g(tr(n-2)'3) whereupon 
r 

r I 
lim ,(n+l)/3 g(t,r(n-2)/3) = 0 
r-t0 

provided n > 2. - 

v. CONSTRUCTION OF EXACT SOLUTIONS. Consider the case 
when n = 2. Now n = 2 implies B/E = 1; S/E = 2; X/E = 0. 
Equations (9)- (11) then simplify to 

f' + (3+F)fg = 0 (12) 

g’ + g2 + (2+h=O. (13) 

h' + (3y-1)gh = B. (14) 

with initial conditions f(0) = A, g(0) = 0, h(0) = B. 

From (12) it follows that 

f(n) = A exp[-(3 + F) .fn g(E)dEl. 
0 
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From (14) 

whereupon 

h=- g'+g 
2 

(2 f z)R 

h' = - g” +2w’ l 

(2 + ;)R 

(15) 

(16) 

Equation (13) gives 

gvo) = -(2 + :)RB. 

Substituting (15) and (16) into (14) yields 

g" -t (3y + l)g'g' + (3y - l)g3 = -BOO +F)R 

with initial condition 

g(O) = 0, gl (0) = 42 + F)RB. 

(17) 

(18) 

The change of variable 

s' = ugs, 

gives 

s" = us (9' + ug2) 

and 

s II 1 = ps (g" + 3pg'g + l12g3) 

(19) 

(20) 

. (21) 

In particular, for y = 5/3 (corresponding to a mono- 
atomic gas) and u = 2, equation (17) becomes 

S II' + 2Bo(2 f E)Rs = 0 

with initial conditions 

(22) 

s(O) = 1, s' (0) = 0, ~"(0) = -2(2 f F)RI~. (23) 

The solution of (22) and (23) is 

% 
s(r11 = cle -Frl + e2 n (c2 cos 2 Fn + c 3 sin $ Fn), 

where 

F = (2ao(2 + ;)R)1'3 
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and cl,c2.,c3 are given by 

From equation (19) 

and 

s (rl) = -=xp[2 i" g(S)dCl 
0 

g = s'/2s F 

-F cle 
-Frl 

=-- 
+ c4e 

pl 
sin(q Frl + $I + $) 

2 

ClewFn - cqe"sin($ F~J + 4) ' 

where 

c4 = dm and 4 = Tan-1 2 . 
7 

For Y = z/3, we choose 1~ = 1 in equation (lg)J(zl). Equation 

(17) then becomes 

S II’ f Bo(2 + z)Rs = 0, 

with initial conditions 
(24) 

s(0) = 1, s' (0) = 0, d'(0) = 42 f F)RB. 

Letting 

G = (Bo(2 + a)R)1'3 , E G # 0, 

the solution for s:(I~) is 

s(o) = cle -Grl % + e2 
cc2 cos 9 GUI + c3 sin 9 Grl), 

where the constants c 1,c2,c3 are given by 

(25) 
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Then g(n) is given 
Grl 

sin(Js Go + $ + 2) 
g(q) = -G 

cle-Gn + Cde 2 3 

Grl 
clemGq - c4e2 sin(q Gq + $) 

where 

c4 = d- and c) = Tan -1 c2 c3 . 

In the case y = l/3, equation (17) becomes 

g” f 2g'g = -BO(2 + F'R. 

Integrating, we obtain the first order differential equa- 

tion 

g’ + g2 = -60(2 + ;)Rn + c. 

Applying the initial conditions q(0) = 0 and g'(O) = 
-(2 + E)RB, we obtain c = -(2 + z)RB. Substituting this 

into equation (26) results in 

g’ + g2 = -a,(2 + ;)Rh + + 
0 

Upon applying equation (19) and (20) with u = 1, equation 
(27) becomes 

-s” + po(2 + ;)R(n + 5)s = 0, 
0 

with initial conditions 

(26) 

(27) 

(28) 

s(0) = 1, s'(0) = 0. 

Making the change of variable 5 = n + $- , equation (28) 
becomes 0 

s": + fio(2 + ;)R& = 0, (29) 

with 

i(B) = 1, 
"0 

s'(F) = 0. (30) 
0 

Equation (29) is a Bessel equation of order 1/'3, whose solu- 
tion is 

S(E) = ~"'2[clJl,3(Q(E)) + c2Jw1/3(QCE))It (31) 

where 

611 



R(C) = (80(2 f $)Ry : c3'2 . 

Differentiating yields 

s'(c) = ; +2[clJ,,3 (a) + c2J-1/3(Q)l 

+ (bo(2 + ;)R)"/25[c J' 1 1,3(Q) + c J 2 '1,3(Q)], 
that is, 

{[YJ1/3 ('I + c2J-1/3(fi) 1 

+ 3Q[c,Ji/3 (i-2) + c2J;l,3(") 1). 

For the application of initial conditions, it is convenient 
to set 

"0 
= a(+) = (Bo(2 + ;)R)1/2 + (+3/2 

0 0 
Then s(B/Bo) = 1 implies 

YJ1/3 0 ln ) + c2J-l/3 0 (fi ) = (B) u2 
BO 

and s'(B/Bo) = 0 gives 

[c~J~,~ Wo) + c2JB1,3 MO) 1 

. 

(32) 

(33) 
+ 3Qo[c J' 1 1/31RO) + c J 2 &(RO) I = 0. 

Using equation (32), (33) reduces to 

C1Ji/3(fio) + c2J~~/3(QO) = - 3a. 1 (,I . ao l/2 

Hence c1 and c2 are given by 

[ 

Jl/3(no) J-1/3("o) 

Ji/3(no) J11,3 (fro) 1 = 
(p”) l/2 

B 

Bo l/2 &- (xl 
0 1 (34) 

Observe that det 
J1/3("o) 

Ji/3(rLO) 

J-l/3(no) = 

J11,3 (Q,) 1 
Wronskian (Jl,3(Q), J-1,3 tR) ) 

n=no l 

as the functions J 1,3(R) and J ,1,3(R) are linearly independent 
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solutions of (29) then the 

Wronskian (J l/,(fi)' 

Hence cl and c2 are uniquely determined by (34). Since 

Wronskian (J,,,(Q), J-1,3(Q) ) I R=Ro = 
-2 SiIi ; 

nR 0 ’ 
then from (34) we have 

J-1,3 (no) 

-Jl/3(Q,) 
Using the relationship 

J &z) - Jr+,(z) = 2J;W I 

S'(E) =; <-l'2{cl[Jl,302) f ;QJ -2/3(Q) - an J4,3(Q)l 

+ c2[J -1,3(W + ; i-i J-4,3 (RI - ; fi J2,3(“) I}, 

and therefore, 

-1 c1 [J1/3 (i-2) + ;fiJ -2,3(Q) - ; .Q J4,3 (fi) 1 

c1J1,3(fi) + 5J4,2 (al 

+ 
c2 CJ _,/,(Q) + + fi J -4,3(Q) - +fiJ2,3(Q) 1 

c1J1/3 (a) + cjJ+3(“) I 

where 

.Q = (Bo(2 + E)R)"'2 $ (q + j+)3'2 . 

The "similarity" variable rl, given by 

n-2 
n = tr 3 

becomes n = t for n = 2. 

Hence the solutions obtained above corres:pond to a 
'separation of variables solution.' 

c1 
p(r,t) = rE f(t) 
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u(r,t) = rg(t) 

T(r,t) = r2h(t). 

The substitution described by equation (19) enabled us 
to rewrite the non-linear differential equations (17) and 
(18) as linear equations of one higher'order. The uniqueness 
of the solution of equations (22)-(23), (24)-(25), and 
(29)-(30) implies a unique solution of equations (17)-(18) 
for the cases y = 5/3, 2/3, and l/3. 

VI. SINGULARITIES‘OF g(r), For each of the cases dis- r cussed-above the unknown function g was e-xpressible as 

4 s’ =i=* 
Likewise f and h can be written in terms of s, 

(35) 

and 

h = h-1)k”)2 - ps”S 

~~(2 -I- ;)Rs2 
. 

In the case y = l/3, combining ( 1 and ( ) 

h = Bo(n f $) - 
0 

From equation (34) we see that the solution to our system of 
equations (9 )1-(11) becomes singular whenever S(Q) = 0. 
Physically, infinite values of g(n) are not possible; however, 
the fact that theoretically it does become unbounded leads 
us to investigate the zeros of s(n). 

% 
For y = 5/3 s (11) = ClemF’I - c4e2 sin(G Frl + 9) 

F = (2Bo(2 + !)R)lj3 

y = 2/3 e-d = cleMGn - c4egnsin(q Gn + 9); 

G= (0,(2 -I- E)R)1'3 
and for 
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y = 1/3 s(n) = (0 + e)1’2[Clil,3(Si) + C2J-1/3(") Ii 
0 

B 3/2 n(q) = (Po(2 + ;)R)l'2 $ (rl + B) . 
0 

In the first two cases it is obvious that s(o) will have 
infinitely many zeros for n > 0. Actually as rl becomes 
large these zeros will occur almost periodically with 
periods 4~r/n F and 4n/a G respectively. For y = l/3 let 
us examine equation (31) 

s”(n) + Bo(2 + E)R(n + $)s(n) = (3. 
0 - 

Unlike the previous two cases, in which the zeros occur almost 
periodically, the zeros of s(q) (for y = l/3) occur "more 
frequently." To see this we apply the "Interlacing of 
Zeros Theorem" [cf. 61. 

Observe that 

w(rl) = (n + +)1'2Jl,3 
0 

((po(2 + f)R)l'2 3 (11 + +3'2) 
0 

is a solution tc equation (28). For large E the zeros of 
Jl,3(<) are separated by approximately v. As -q increases 
the amount by which n must vary, such that 

((Bo(2 + F)R)l'2 f (r~ + $)3'2) 
0 

increases by IT, decreases. Hence the zeros of w(n) occur 
IIrnore frequently" as rl increases. Since the zeros of s(n) 
and w(n) are interlaced, it follows that the zeros of s(r~) 
must also occur "more frequently" as n increases. 
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AN ENDOCHRONIC APPROACH AND OTHER TOPICS 
IN SMALL AND FINITE DEFORMATION COMPUTATIONAL ELASTO’PLASTICITY 

SATYA N. ATLURI 

Center for the Advancement of Computational-Mechanics 
School of Civil Engineering 
Georgia Institute of Technology 

Abstract 

(i) A synopsis of a recently developed methodology for computational 
small-deformation elasto-plastic analyses of cyclically loaded structures, 
based on a variant of an endochronic theory, is presented. The present 
plasticity model is shown to provide a unified basis for the earlier 
“multiple-yield-surface” or “nonlinear kinematic hardening” theories of 
Mroz, Krieg, Dafalias and Popov, Chaboche, and others. (ii) Issues 
related to constitutive modeling of finite deformation elasto-plasticity, 
and attendant numerical implementations, are discussed. Consistent rate 
forma of elastic’plastic evolution equations, which, in the limit, model 
the hyperelastic or small-deformation elastic-plastic behaviours appro- 
priately , are presented. 

I. An Endochronic Computational Approach to Cyclic Plasticity 

Without much loss of generality, we treat only deviatoric plasticity. Let 

c be the Stress, a; its deviator; d% the strain-rate, dEt the deviatoric 

strain; dem the mean strain, ds* = (dge)’ + dsp; the plastic strain”change 

dcp is purely deviatoric; and, thus the differential of mean-strain, de- 

noted by dEm, is purely elastic, i.e., dem t dEg. We consider the 

solid to be elastically isotropic. Using additive decomposition of dE 

into dge and d$p, we have: 

(1 .la: 

following Valanis Cl], we define endochronfc (internal time) (but 

Newtonian time-like) parameters:’ 

(dEp~dsP]yz ; dz dg dc.- q:- ‘f(z); f(0) = 1 ) dc 2 0 (1 .lb,c,d) 

where f(c) is monotonically increasing. 

As in Valanis [l], the stress in the elastic-plastic solid is represented 

through the integral: 

1 In what: follows, A*B = A B ; and A:0 = A ijjk -- B Wd il ij l 
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a’ = 2u 
1 0 

p(z - 2’) e (1.2) 

where v is the initial (elastic) shear modulus, and p(z) is a 

material’specific kernel. Equation (1.2) thus appears to circumvent the 

need for a yield surface as well as for the flow rules of classical plas- 

ticity theory. Differentiation of (1.2) leads to: 

h_(z) 
da’ = y)IdE’ + p(o)f(<) [(w - ; ):(dg’ j z )p2) (1.3) 

P(0) = p at 2 = 0; u 
P 

= p[ 1 + p(o)] Al 
; h_(z) = 

I 
z 2 (pzt) aEP 
0 a= 

D dz 
(1.4) 

While the classical loading/unloading criteria (or criteria for elastic or 

plastic processes) are apparently bypassed in Eq. (1.31, there are, never- 

theless, prices extracted for this seeming simplicity. Some of these coun- 

terbalancing difficulties of the above endochronic approach, as compared 

to a classical plasticity theory, are as follows: (i) The determination 

of stress history (and da) for a given strain history (or de) at each 

material point becomes highly iterative in nature, as seen from (1.3); 

(ii) In a finite element/boundary’element/or other weak solution of the 

boundary value problem, the trial solution dct is derived by differ- 

entiation of trial displacements du. To determine the trial stresses dtt 

and yet retain a piecewise-linear&equation solution strategy, there is no 

recourse other than to approximate Eq. (1.3) as da’ = 2ppdc’ . Thus, the 

stiffness matrix at any stage of loading is essentially the linear-elastic 

stiffness matrix; and the elastic-plastic solution method becomes the 

so-called “initialistrainlt method; (iii) To model the uniaxial 

stres- =-strain curve of a material that does exhibit a sharp ‘knee’ near 

the elastic limit, the kernel p(z) has to be weakly sfngular at 2 = 0. 

These drawbacks notwithstanding, Valanis and Fan [2] have recently pre- 

sented a series of papers dealing with a direct computational implementa- 

tion of an iterative, initial strain method based on Eq. (1 .3) and using 

exponential functions for the kernel p(z) i’n Eq. (1.4). Details of compu- 

tational times for achieving convergence of plasticity iterations of. the 

global f i ni te element eqUatiOn3, or of the iterations for stress integra- 

tion, are not readily available in [2]. 
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Watanabe and Atluri [3-61 have recently presented alternate characteriza” 

tiOnS Of Cyclic-Plasticity constitutive relations using the essential con- 

cepts of an endochronic theory, but with the following features: (i) The 

notion of a yield’surface, and the demarcation in the definitions- of the 

elastic processes and plastic processes, are retained; (ii) The stress 

history (or do), for a given strain history (or cl:), can be determined 

quite easily, as in a classical plasticity theory, by using a “gener- 

alized”midpoint-radial-return” algorithm; (iii) The finite-element formula- 

tion can ..be based on a !!tangent-stiffness”. approach,. -wherein the- material 

constitutive law at each point can be chosen differently depending on 

whether an elastic process or a plastic process is postulated at each 

point during the current ‘load’ increment; and (iv) The present C3-61 endo- 

chronic approach provides a unified basis for other well-documented theo- 

ries to model cyclic-plasticity, viz., the “multiple-yield’surface” theo- 

ries of Mroz [7], Krieg [a], and Dafalias and Popov [9]; and the kinematic 

hardening theories of Prager,and Chaboche [12]. The starting point in the 

work of Watanabe and Atluri [3-41 is the representation of the kernel p(z) 

in Eq. (1.2) in the form: 

p(z) = PO 6(z) + P,(Z) Cl .5) 

where 6(z) is a Dirac function and PI(Z) is a non-singular function. It 

turns out [3-4) that the term p. 6(z) in Eq. (1.5) leads to the notion of 

a yield surface; the function f(c) in (1.2b) leads to the notion of a 

yield-surface-expansion (isotropic hardening) ; and the function p1 (z) in 

(1 .5) leads to the notion of yield-surface translation (kinematic 

hardening). Use of (1.5) in (1.2) leads to: 

dgp 2 P 

_ -2lJP,z 0’ + 211 J p,(z-2’) $ dz’ o 

dcp 
0 - f T 
ydz 

+ g’(z) 

(1.6a) 

(1.6b) 

wherein the definitions of T$ and a’ (the “back st;ress”) are apparent. 

Eq. (1.6b) can be written as: 
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dEP = 
(’ - _a’) 

TyOf 
l dc ;  dy 2 0 (1.7) 

Of course, Eq. (1 .7) is entirely reminiscent of the classical flow-rule 

and normality relation for plastic strain-rate using,a Mises’ yield 

criterion. However, at this point, this similarity is purely formal. 

From the very definition of dy as in (l.lb), it follows that, during 

plastic flow, 

dzP dgp 

dy:dT=” 
i.e., (0’ - a’):(o’ - a0 = [T; f(c)]* (1 .8a,b) 

Equation (1.8b) clearly indicates that during plastic flow, the stress 

point, in the deviatoric stress space, remains on a Mises-cylinder of 

radius my” f(c), with the center of the surface at a’. 

By differentiating (1.7) with respect to C, one obtains the following 

relation which holds during plastic flow: 

d2cp 
(-+ 

dc 
(1.9) 

From (1 .1 1, and the definition of a’ as in (1.61, respectively, we see 

that: 

d$ dg’ de’ 
-= 
dc 2!J (dg - *I 

and 

da’ dgp 
WC 
dc 

“‘] 
2u [P,(O) r + f 

where hX = I 
= dp 

--Q 
aEp 

0 d= 
2-z’ ) g dz’ 

Use of (1 .lO) and (1 .lla) in (1.9) results in: 

LIE = [l + P,(O) + f 
o (df/dg) 
jr 2l.l 1 dgp 

(1 .lO) 

(1 .lla) 

(1 .llb) 

Also, during plastic flow, it follows sf2’2”” (1.8aI and (1 .7) that: 



(1.13) 

Taking the trace of both sides of (1.12) with [lo_’ - c’)/(T$‘f)] [or 

which is also equal to (dgp/dy)l and using (1 .13), one obtains: 
* 

(0’ A g’) -r;(df/dC) ,h : (i” - $1 
dE’ : rof = [1 + p,(o) + + 

*v Pf 
] dc = C d< 

Y Y (1 .I41 

wherein the definition of C is apparent. Eq. (1.14) can be rewritten as: 

dy = ; [ 
(dg’ 1: (2’ - a’ 1 

] 4 $ dg’ : N, (1.15) 

where N = (g’ A ;‘)/-trf is a unit tlNormallt. 

Cl 0 w ) by definition, during a “Plastic Process”, i.e. when d”_p * 0, we have 

dy > 0. Thus, (1.15) clearly indicates: 

(A) Definition of a Plastic Process (PI: dg > 0 

(P) if (i) (CJ’ - gl):(gl - gl) = (Tif)* ; - _ and dE1:N_ > 0 (1.16) 

Equation (1.15) also indicates that a “plastic process” is not possible if 

N:dE’ 5 0. In confirmity with this, we define an “elastic process” as w Y 
follows: 

(8) Definition of an Elastic Process (E): dy p 0 

(i> if (g’ - g’):(g’ - 2’) < (Tyf)* ; or (1.17a) 

(ii) if (2’ - g’):(z’ - a_‘) = (1.17b) 

1: is interesting to observe that the (Elastic) and (Plastic) processes 

defined above, for the presen.t endochronic theory, depend directly on 
> 

whether (!,!:dE) 7 0: while in the classical plasticity theory these -, - 
processes depend, ab initio, on whether (E:dz) $ 0. In computational 

mschan its , the central problem of plasticity is to determine dz, given as 

ds. In this context, the (E) and (P) criteria of (‘I.161 and (1.17) are 

more direct and more meaningf!Jl. IJsing (1.15) in (1.71, we obtain: 
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During (P): 

since N, is deviatoric. Recall that E:’ [see (1 .6)J and h_” [see (1 .llb)]; 

and through them, the coefficient C [see (1.1411 depend on the kernel 

P ,  (2) l 

A convenient choice for the kernel p,(z) is: 

P,(Z) = 1 P . exp(- BiZ) i 11 
(1.19) 

such that. from (1.6) it follows that: 

g' = 1 21.10 I” {Pli exp[- BibJ )I g dzI) E i ,#) (1.20a) 
i 0 i - 

and h (1 .20b) 

with o1(i) being defined in an apparent fashion. From (1.20) it follows: 

da’ = 2vo P,(O) dgP - I,! f } [ dEP. dcp)Y2 w* - 
i 

(1.21) 

Thus, the evolution equation for 2’ is nonlinear in dzp and thus is 

similar to a nonlinear-kinematic-hardening relation [12l. It has been 

discussed in detail by Watanabe and Atluri [41 that the present theory, 

with the translation of the yield surface as in (1 .20), and the expansion 

of the yield surface as specified by: 

f = (1 + YG) [linear] , (1.22a) 

or f=a+(l - a)exp(-4.x) [saturated] , (1.22b) 

where Y and I/J are constants; and 5 = $dg; includes the 

multiple-yield-surface theories of Mroz [71, Krieg C81, and Dafalias and 

Popov [91 as special cases. 

Based on (1 .18), the stress-strain relation in the present theory may .be 

written as: 

(1.23a) 



(da:11 - w - (2~ + 3X)(dE:I) v w 

where r = 1 in (P) ‘and f = 0 in (El. 

3y assuming P = 1 or 0 appropriately, one may proceed to develop a 
tangent-stiffhess finite--element method in the usual fashion. If the 
stress a _n at state Cn, In an incremental solution, is known, the 
incremental stresses Aa corresponding to the trial-solutions AE_ for 

incremental strains are determined in the usual fashion. We assume that 
zn is on the yield surface and further assume that the process had been 

plastic; i.e., I](:!, + 2pAe’) - $11 > (~8 fn). Then, for any 0 
such that 0 < e < 1, the algorithm for determining the actual 
stress-increment ha in the plastic process proceeds as follows: 

(1.24a) 

t 

$df/dc) hX: (z’ - g’) 
where Cn = [l + P, (0) + 2p + 

0 rOf InI 
Y 

Au:1 = - - (2~ + ~X)(AE:I) 1,. 

(1 .24b) 

(1.24~) 

(1.24d) 

(1.24e) 

(1.24f) 

Of course, several variants of the above algorithm, such as sub-incremen- 
tal ones, are possible. The above tangent-stiffness finite-element, a.nd 
generalized mid-point-radial-return-stress-integration, algorithm has been 

used by Watanabe and Atluri [5,6] to solve several problems of cyclic plas- 
ticlty and non-proportional biaxial loading. It has been found that the 
present models capture the experimentally observed phenomena of cyclic 
hardening, cross-hardening, ratcheting, etc. 
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Because of the superior predictive capabilities of the present model and 

the fact that it is no more difficult to implement than the usual (classi- 

cal) plasticity models, it may be a candidate for further exploitation In 

general purpose computational programs. 

II. Towards a Consistent Finite Deformation Plasticity 
Theory and Attendant Computations: 

In dealing with finite deformation problems, it- has been (and to a large 

extent still is) customary in the computational mechanics lit.erature to 

postulate constitutive theories in the form of linear relations between an 

objective rate (usually the Jaumann rate) of stress or an objective rate 

of an internal variable (such as the back stress in a kinematic hardening 

plasticity theory) on the one hand, and (the objective) velocity strain 

(or the symmetric part of velocity gradient) on the other. In this 

section, we reexamine such approaches and point out several alternative 

paths towards rational and consistent theories and attendant computational 

algorithms for finite deformation elasto-plasticity. 

First we examine hyperelasticity, and then elastoplasticity, with the aim 

that a finite-deformation elastoplasticity theory should remain valid in 

the limits of hyperelasticity as well as of small-deformation elastoplas- 

ticity. 

II. 1 Wperelasticity 

We consider here an isotropic hyperelastic solid wherein: E is the defor- 

mation gradient with polar decomposition E = _R*Ue = ye -2, where V_e and le 

are the elastic stretches (lJe = ,V and ye,’ )! in this case); ,R the rigid 

rotation; ;“oe the elastic-strain-energy density per unit initial volume; i 

the Kirchhoff stress (= JL where J = det F,, and 2 the Cauchy stress). For 

observer transformations denoted by an orthogonal rotation Q, it is well 

known that the various quantities transform as: F + Q-F; R + Q-3; LJe -t VW m -1 
t 

!e;i. -2,; _ ___- *’ + Q .;.r .Q and 3 + Q=o=Qt Based on these oberver-frame related 

transformations, one may write an objective constitutive relation for an 

isotropic hyperelastic solid in any number of alternative forms as 

follcr;s : 
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-t l qw -1 
2 = -p-t l ll(lJ )*Ft = _ - - _ -a - 

= F=r(U )*R_t _ _ * WV,,) = ;(v_,) (2.1) 
- - -e 

where P is the “rotated” stress, S, is the 2nd Piola’Kirchhoff stress, C_ 

the “convected” stress, M is another llinduced” convected stress, f the 

“Biot-Lure-Jaumann” stress. The physical interpretations of these 

tensors, as well as that of ‘T, are given in Atluri [13]. The tensors E, 

S, C, M, w w - 
and r are functions of ,Ue alone and, nence, are observer 

invariant, while x is a-function-of V.&and thus- transforms as T + s-x*? t . 

From (2.1) it is easy to note the following equalities: 

JT(U ) = u_e*swe) ‘2, = u,’ _ -e (2.2) 
- -e =u;’ -- l M(UeblJe = u_e*r_(u_e) 

As shown in detail in Atluri 1131, for isotropic elastic solids, the 

following relations exist between the various stresses and the 

elastic-strain-energy density Woe: 

awoe 
aw 

r@,l = - ; s(u ) = -2% ; c(u ) = 
aWoe aWoe 

ahye - -e a($ - -e a (v_,21 
; -- rbej = au 

-e (2.3) 

aw aWoe 
and T(V)=+ -he - -e 

o(v ) =- 
-e 

a Rnxe 
(2.4) 

where Rn (_I denotes the natural logarithm of (,). For initially 

unstressed solids, we have the restrictions: 

L = S_ = C_ = c = 0 when iJe = L ; and 1 = 0 1 0 whf?n ‘V, = i . (2.5) 

based on (2.4) and (2.5), one may define a resticted class of 

“semi-linear” isotropic hyperelastic solid through the relations: 

E = 2~ &nU,, + X[ (enge):r]r (2.5a) 

c_ = 2&J-2 
-e 

- L) + x[ [u_J2 - I_j:r]i 

r, = 2!J(ye -  I) l av_, -  I):rlI 

(2.5c). 

(2.5d) 



_o = 2~ RnV_, + A[ (‘1n\Le):I]i (2.5f I 
4 

wherein it is possible that the coefficients u and X may have different 

numerical values in each of Eqs. (2.5a-f). 

Let L, = f=Ekl be the velocity gradient, D = (L_)s [= L/z(L_ + Lt] be the 

Velocity Strain [( -1s and ( -)a denote the symmetric and antisymmetric 

Tarts, respectively, of (,)I; \i = (L_)~ [= ‘Y&L_ - kt)] be the spin: and c = 

;i*Rt. Now, by differentiating Eqs (2.1) with respect to time, one easily -” 1 
obtains a set of objective rate relations: 

. 
,o - L-0 - o*Lt 6 ;* = _ : -t; F*S=F ;+L -t.o + 2.4 = iR = E -t - 

l C*F 
-1 

- - - - _ - (2.6c,d) 

;-; -,-x(xe) + Ie-t(Ve) ; 4 = 2~ & (en!,) + A[& (Ilnxe):I ]I (2.7) - - 

In (2.6b), c is the observer-invariant form of spin: 

Also, ;G is the Green-Naghdi 

rate, O’R the Rivlin rate, etc. 

rate equations (2.6a’f) may be 

rate, ;J the Jaumann rate, ;T the Truesdell 

However, using (2.2) and (2.11, all the 

‘written in a unified form as: 

(2.10) 

uhere Rc” - ; PER may be considered as the Sreen-iiaghdi rate in the rotated .” --J - 
frame. If the eigendirections’of ye are represented by the matrix a and 

those of ye are represented by 2, we have (see Atluri [13]): 
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(2.1 la) 

g (eny,) = Et’ & (en&g + &Zng.~ + ~“-enu_=~ (2.11b) 

;rhere i’and 2 are diagonal matrices consisting of the eigenvalues of UJand 

v --ir respectively, and dt A- enx _ = h -1-i 1 {.A’‘. Thus when (2.11a) and (2.11b) - - 
aie used in (2.5a) and (2.5f). respectively, the expressions f’or i and h 

become rather complicated. On the other hand, when the elastic stretches 

are small, i.e., ye = ,I + QJ and xe = ; + ,EV and where each of the 

components (Eij)U and (Eij )V is <<- 1 ,--then 

2 
% 

3 2 
% % 

3 
EV RnU_, = 5, A 2 + 3 + . . . ; IlnV_, = gv - 2 + 3 - . . . (2.12a,b) 

Thus, for moderately small elastic stretches, (2.5a), (2.5.f), and (2.12) 

lead to: 

+ A[ {i, - 1/2(i”.$ + “-&J + . ..].L]I (2.13a) 

and a similar relation for i with &J being replaced by $,I. For arbitrary 

Up and Ve, it appears more algebraically convenient to work with relations 

if the *type (2.5b), (2.5d), and (2.5e). Considering, for instance, (2.5d) 

and (2.5e), one has from (2.10): 

&&*a_ = 2!Jcie’U-e + ge-ie) + x[i,!v_,:r) + v_,(;_,s)] - (2JJ + 3x14, 

(2.14) 

orI alternatively, 

i = 2u(ie*xe + ‘J-,4, ) + A[iehe:i) + v_,(d,:I_) J - (2lJ + 3AG, 

(2.15 

iJOW , consider the polar decomposition, E 3 R-U = v_,*R_. From this we - -e .d 

have i = i.[ -1 = R + R -lj -II -’ .$ = ie*y;’ + ‘le _ -,‘. *R-V _ -e -e - 

(2.16) 

Zy defining coordinate-invariant VP 
kl% 

ity’strain 0, and sgin 7, such that: 



I  

n,> l t and = &D-R - --’ it is easy to der i ve from (2.16 and 2.17) 

that: 

c, a- (6 + W)4J _ -e = v_,=tg - yv) (2.18) 

and de = (g + w_)‘v_, - V_,*R = Xe’(Q - ld) f py, (2.19) 

Use of (2.18) and (2.19) in (2.14) and (2.15) results in consistent forms 

of ‘objective’ rate-constitutive relations for hyperelastic solids. The 

resultant rate equations clearly indicate the fallacy in the current 

practice wherein a finite deformation (even hyper-elastic) stress-strain 
law is simply expressed as a linear relation between an objective rate of 
stress (usually 6~) and D. For instance, it is currently common practice 

to write, 

(2.20) 

Equations (2.14 and 2.18) and (2.15 and 2.19) clearly show that (2.20) is 
not valid. In fact, as is well known, Eq. (2.20) with aJ leads to 
oscillatory shear stresses in a finite deformation Simple shear test cl41. 

While the above ,hyperelastic rate relations have their own intrinsic 
reasons for being, our objective here is to use them as guides to 

postulate consistent rate-type finite-deformation elasto-plastic relations. 
This is pursued next. 

II.2 Rate-Type Finite-Deformation Elasto-Plastic Stress-Strain Relations 

The primary criteria we shall demand these relations to satisfy are: 
(1) The finite elasto-plastic rate relations should, in the limit, be 
valid in the cases of hyperelasticity as well as small-deformation 
elasto-plasticity; (2) They should obey the so-called Prager’s cl51 
criterion. This criterion implies that when the objective stress rate 
vanishes [by virtue of the’vanishing of the right-hand side of the 
equation with the said stress rate on the left-hand side], then the second 
invariant of the Kirchhoff stress (~1 should remain constant. Otherwise, 

in a J2 -flow theory of plasticity, spurious plastic flow may result; 

(3) The classical plasticity concepts, such as Drucker ‘s postulates 

regarding plastic work and plastic ;;;mality, should hold. 



We will assume that the solid is elastically isotropic. The main theme 

adopted now is that: the stress in a finitely deformed elasto-plastic 

solid may be derived from an elastic-strain-energy density function Woe, 

such that: 

aw 
EkeI = 26y 

aWoe SIV,,) = - 
aWoe ; c(u ) = - i 

a(8) - -e aQ2 1 

aw aw aMoe 
d" ) = $ ; 0,) = e ; &,) 1 - - -e -e -e 

ahye (2.21) 

l.e., in a manner entirely analogous to Eqs. (2.3 and 2.4). Thus, in a 

finitely deformed elast-ic-plastic solid, the ‘objective’ relations for the 

stress rate are still given by equations of the type Eqs. (2.14 and 2.18) 

or Eqs. (2.15 and 2.191, provided now Ee and ie are appropriately defined 

in terms of the kinematics of an elastic-plastic deformation. As to this, 

Lee [lb] has originally suggested: 

F, = !Se*F (2.22) 
-P 

with subscripts e and p denoting ‘elastic’ and ‘plastic’, respectively. 

However, it is well known that ,Fe in (2.22) is not unique, but can be 

determined to only within a rigid rotation. Fardshisheh and Onat [ 171 

have suggested that this non-uniqueness can be remedied by requiring Fe to 

be a pure, symmetric stretch tensor, ,Ve* Thus, 

E = Ke’F 
‘P 

(2.23) 

By requiring ,Ve to be similar to that in an otherwise hyPerelastic solid, 

we see that under observer transformat ions, the following results hold: 

1 + Q’F ; v -e + qveqt ; and F + Q*F . 
-P - ‘P 

Note that in (2.231, the rigid- 

rotation of a material element is not explicitly determined. With the 

apparent loss of some generality, however, we study here the decomposi- 

tions: 

F, = n-u l u p V_e*V_p-R (2.24) 
- -e ‘P 

where R is the rigid rotation, lJe and ,Ve are ‘elastic’ stretches, and up 

and V -P 
are the ‘plastic’ stretch tensors. We requre ,Uel _Up, ,Ve, and V,p to 

be symmetric. Under observer transformations it then fOllOWS that: _Ue+ye; 
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and also ye= e*i;?t; and V 
-P 

Under the decomposition (2.23), we have: 

L, =-Q&l + K,.f l F-‘4,’ ; 
‘P ‘P (2.25a) d 

From (2.25) it easily follows that: 

!!,- @+lp - - I) (2.26) 

Now, the stress-power, or the rate of stress-work, in a finitely deformed 

elastic-plastic body (per unit initial volume) is given by: 

Thus, if D, is decomposed into D, = l3e + D , we will have: 
‘P 

i a o:D oe - -e ; i7 = o:D 
OP --P 

(2.27a) 

(2.27b,c) 

The well-known postulates of Drucker, concerning fi,,, may then be used to 
establish the normality of Gp to the yield surface, expressed as a 
function of u. This suggests the definitions: 

D 
‘P 

3 (v .$ q-1 q-1 ) 
-e -p -p -e s ’ yp = [v,;f l F-“4;’ )a 

‘P -P 
(2.28) 

where D ,p and Ws are the “plastic velocity-strain” and “plastic spin”, 
respectively. Using (2.28) in (2.261, we have: 

ie=(o,+$4 -(D -e ‘P 

= Qe I + ileke 3 \I,+?-, - gel (2.30) 

The use of (2.29) in (2.15) will then result in an objective, 
elastic-plastic stress-strain rate relation for finite deformations. We 

now need evolution eauations for ,Dp and Wp -w d as defined in Eq. (2.281, 
which may be written down, using the general isotropic function 

representation theorems, such as due to Wang C181. In this connection, 

the work of Loret [19] in representing directly the quantity (fp-‘p ) :1 

is useful and noteworthy. From ,this single representation, Loret cl91 

determines both ,Dp and YP. 
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. 

However, there appears a slight inconsistency in the above approach. If 
the process is purely elastic (and thus the material behaviour approaches 

hyperelasticity) or when there is no plastic process as determined by d 
flow rule, it follows that IIP = 0. This necessitates (ep=,Fpl) to be 

zero, in an elastic process. Thus, in an elastic process, (2.29) reduces 

to: 

i -e - Q + y>=v -e (2.31) 

which does not agree with the hyperelastic relation, (2.19), i.e., ie E 

(D, + W,>*te - 1e-g. 

On the other hand, using the decomposition (2.24), we have: 

(2.32) 

(2.33) 

(2.3’1) 

Equations (2.331 and (2.34) may be rearranged as: 

y- &q = ($4,‘1, + (u 4 l u -1 l yl 
-e -p -p -e 1 3 (2.35) 

Now, the stress-power per unit initial volume may be written as: 

PO =I g:Q +z (J ppR_tj:D_ = JF: (&g-a) - Jc:p (2.37) 

Thus, if 6 is decomposed into @ - Ge+ 6 
‘P’ 

we have fi oe 
= J[:g,; i = Jr:@ , 

oP P 
Now, the yield function may be expressed as: 

f(r,Wop) = 0 (2.33) 

since the invariants of Jr are the same as those of 0. The 

Drucker-normallty would then apply to Fp in the deviatoric space of [. 

Thus, we may define: 

(2.39) 



Using (2.39)) (2.35), and (2.361, we have: 

2e = (j + ii)4 - -e (-, + ip)*U * u .(y - ii) - lJJ.(D - -,I -e -e ‘P 

= (j, f ij,, ‘tJe =’ v_,q p, - E,) 

(2.40) 

(2.41) 

the use of (2.40) in (2.14) results in an objective elastic-plastic 

stress-strain relation that is consistant for finite deformations. Ve may 

use representation theorems Cl83 to write down a general expression for 

(fp*lJpl ) from which both ip -and -Fp can be determined from (2.391, such 

that Fp satisfies the normality condition. We may essentially follow 

Loret [191. 

The development in (2.40), in conjunction with (2.14), will remain 

consistent in the limit of hyperelastlcity. Thus, when Up =’ I, ip 3 0, 

D-p 
- 

= o_ = iii, and thus ce Z (D, f i) l ye, which agrees with the hyperelnstic 

relation, (2.18). 

Also, the present suggestion of an elastic-plastic constitutive relation 

based on (2.40) and (2.14) does satisfy the Prager condition [151. Thus, 

when Rt •i~eR = 0, it is clear that since the rate of stress in a rigidly Y w w 
rotating system is zero, the invariants of the Kirchhoff tensor remain 

constant. This is not. the case when other stress-rate equations as in 

(2.6c,d,e,f) [i.e., rates in non-rigidly-spinning systems] are used and 

when the right-hand sides of (2.6c,d,e, and f) are consistently determined 

(through time differentiation) from (2.5b,c,d), respectively. If, on the 

other hand, one uses ad-hoc postulations, as is commonly done currently, 

with only a linear relation between an objective stress rate and D,, such 

as: 

( iT) or (h,) = 2u[g - A(!:Q)N] + A(!::): (2.42) 

then, {T or 5R = 0 implies that ,D = 0, and then ,L = ,W, and hence ;T and (iR 

reduce to hi. Thus, since in is a spin-based rate, when ;T or bR is zero w 
in (2.421, the invariants of a themselves remain constant, and hence -. 
Prager’s condition is obeyed by the inconsisteflt relation (2.42). . 
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To close the description of other plasticity features, such as kinematic 

hardening, we may introduce a Kirchhoff-stress-like internal variable 2, 

which we may label as the finite deformation back-stress, If 

one may introduce an isotropic tensor function representation 

(2.43). 

(2.44) 

Such general representations, and specific examples, were considered by 
Reed and Atluri [22],who attempted, successfully, to model the results of 

finite-torsion experiments. For instance, Reed and Atluri C213 

demonstrated that an excellent agreement with the experimental results of 
Swift [22J for stresses and strains in a finite-torsion test, can be 
obtained from the simple model: 

.I 

OJ = c, gp + c2 ‘1’ 

where C 1 = constant ; c2 = C2(cy:o_P) , 

in conjunction with 
1 

GJ = A, D, + A2 0’ 

(2.45) 

(2.46) 

where A 1 = constant ; A2 = A2(+) . 

Another “nonlinear-kinematic-hardening” model, which is a special case of 
the representation in (2.441, and a generaiization of (1.21), may be 
generated by writing: 

01 
SC =CD - (2.47) 

‘P 

The primary reason for using such models as in (2.45) and (2.47) is that 

simple linear models of the type 

(2.48) 

can easily be shown to lead (see Atluri [14]) to oscillatory values for 
the components of a in cases such as finite simple shear. If .this 

linearity is insisted upon, non-oscillatory back stress a may be generated 

by replacing the left-had side of (2.48) with other objective rates such 
as &i, G+, or &, as shown by Atluri [14], or by creating other 
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Stress rates such as based on the spin of material fibers aligned with the 
principal directions of g, as done by Lee [23]. However, since modeling 
material behaviour under cyclic loading necessitates the use of nonlinear 

kinematic hardening models as discussed in Section I of this paper, it may 
be worthwhile to circumvent the arbitrariness surrounding the left-hand 
side of (2.48) [while retaining only the linear term in D,P as in (2.48)] 
and concentrate instead on the right-hand side of (2.48) and consider more 

general representations involving Dp, a, a as in the right-hand sides of - YW 
(2.44) and (2.47). This type of modeling the evolution of the back stress 

a, along with the use of Eqs. (2.40) and (2.14) f or representing the evolu- 
tion of Kirchhoff stress g, may form a consistent basis for a finite- 
elasto-plastic theory. This remains to be verified through systematic 
computational modeling of available experimental data on finite 
plasticity. 
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ABSTRACT. We discuss the motion of nonlinear-viscoelastic materials with 
fading memory in one space dimension. We formulate the mathematical problem, 
survey results for global existence of classical solution to the initial value 
problem if the data are sufficiently small, and discuss in detail the 
development of singularities in initially smooth solutions for large data. 

1. INTRODUCTION AND DISCUSSION OF RESULTS. In this paper we discuss 
the motion of nonlinear viscoelastic materials with fading memory in one space 
dimension. We concentrate on viscoelastic solids and briefly remark on simlar 
results for fluids. After formulating the mathematical problems, we survey 
results for global existence of classical solutions to the initial value 
problem, provided the initial data are sufficiently small. We then discuss in 
some detail the development of singularities in initially smooth solutions for 
large data. 

We consider the longitudinal motion of a homogeneous one-dimensional body 
occupying an interval B in a reference configuration and having unit 
reference density. For simple materials, the stress u at a material point 
X is a nonlinear functional of the entire history of the strain E=S at 
the same point x (here u denotes the displacement). In this paper, we 
confine ourselves to the following model problem, which can be motivated as a 
natural generalization of Boltsmann's constitutive relation for linear 
viscoelasticity [l] (the derivation of similar results in a variety of other 
models will be discussed in a later paper) 

u(x,t) = cp(E(x,t)) + J", a' (t--r)$(E(X~~))dr ' 
(1.1) 

(x 8 B, -m<tz<“) l 

Here cp and & are given smooth functions R + R with 

cp(O) = $(O) = 0, ‘p’ > 0, IJJ’ > 0 # (1.2) 

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. 
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and for physical reasons the relaxation function a : LO,-) + R is positive, 

decreasing, convex, and a' e L'[O,=), where ' denotes the derivative. The 
conditions on a imply that the stress relaxes as time increases and that 
deformations which occurred in the distant past have less influence on the 
present stress than those which occurred more recently. Since only a' 
occurs in the equation, we may use the normalization a(m) = 0. In the 
rheological literature the relaxation function a is often taken to be a 
finite linear combination of decaying exponentials with positive coefficients 
obtained by a least square fit to experimental data. 

When (1.1) is substituted into the balance of linear momentum, the 
following integrodifferential equation for the displacement u results 

Utt = 'p(ux)x + a'*$(ux)x + f , x e B, t > 0 . (1.3) 

Here * denotes the convolution (a*6)(t) = 1: a(t-r)B(T)dr, and f is the 

sum of an external body force and the history term 1' a'(t-T)$(u (x,~))~d-r. 
An appropriate dynamical problem is to determine a sloth functio: 
u : B X (O,m) + R which satisfies (1.3) together with appropriate boundary 
conditions if B is bounded, and which at t = 0 satisfies prescribed 
initial conditions 

u(x,O) = Ilo( u&o) = q(x)r x e B 

for certain smooth functions u. and ul. To avoid technical complications 
we assume in the following that f = 0. We also restrict ourselves to the 
case of an unbounded body, B = R and we study the Cauchy problem 

utt = TV + a’*$(uxlx , xeR,t>O , (1.4) 

u(x,O) = qp), +(x,0) = u,(x) , x@R. (1.5) 

When a' :O and cp satisfies (1.21, the body is purely elastic. In 
this case it is well known (see Iax [141, MacCamy and Mizel 1151, Klainerman 
and Majda [131), that in general the Cauchy problem (l-41, (1.5) does not have 
globally defined smooth solutions, 'no matter how smooth and small the initial 
data are chosen. The initially smooth solution u develops singularities 
(shock waves) in finite time. 

If a'90 and a satisfies the sign conditions above, the fading memory 
term in (1.4) introduces a weak dissipation mechanism. Significant insight 
into the strength of this mechanism was gained by the work of Coleman and 
Gurtin [2], who studied the growth and decay of acceleration waves in 
materials with memory. They showed that the amplitude q(t) of an 
acceleration wave propagating into a homogeneously strained medium at rest 
satisfies a Bernoulli-Riccati ordinary differential equation. The coefficient 
of q2 in this equation is proportional to a second order elastic modulus, 
which is given by v" in our model problem, and there is a linear damping 
term proportional to a'(O). Thus the amplitude q(t) = [uttl decays to zero 
as t •t -, provided Iq(Ol) is sufficiently small. 011 the other hand, if 
q" # 0, then q(t) + m in finite time if IdO) I is large enough, and 
q(O) is of a certain sign. They did not study existence of such solutions. 
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This suggests that, under appropriate assumptions on g, 4 and a, the 
Cauchy problem (1.41, (1.5) should have unique, globally defined classical 
(C2) solutions for sufficiently smooth and small initial data u0, u,, while 
smooth solutions should develop singularities in finite time if the initial 
data are large in an appropriate sense. Such a global existence result for 
small data were recently established by Hrusa and Nohel [lo] using delicate 
a priori estimates obtained by combining an energy method with properties of 
Volterra equations (even in the presence of a small body force). We refer to 
a recent survey [9] for earlier small data results on initial boundary value 
problems modelling the motion of finite viscoelastic bodies, and for technical 
simplifications of the analysis in the special cases CpEJI or a(t) = e+. 
For the global results the Cauchy problem is more difficult than the finite 
body problem because the Poincar6 inequality is not available to estimate 
lower order derivatives from higher order derivatives. 

The remainder of our discussion will deal with the formation of 
singularities in finite time from smooth solutions of the Cauchy problem 
(1.41, (1.5). For the special case v g $1 Markowich and Renardy [17] have 
obtained numerical evidence for the formation of shock fronts in finite time 
from large data, and Hattori [7] has shown that, if p" f 0 and if the body 
B is finite, then there are smooth initial data (which he does not 
characterize) for which the corresponding Dirichlet-initial value problem does 
not have a globally defined smooth solution. On the other hand, Hrusa [8] has 
shown that if 0 is linear and only JI is allowed to be nonlinear, then the 
Cauchy problem (1.41, (1.5) does have globally smooth solutions, even for 
large smooth data. Therefore, we shall restrict ourselves to the case when 
v" # 0, at Least over the range of the solution. The case when q~" changes 
sign will require further refinements. 

An essential ingredient in the analysis (which is also important for the 
global theory) is the following local existence result which is established by 
combining Banach's fixed point theorem on an appropriate function space with 
standard energy estimates and Sobolev's embedding theorem. 

Proposition 1: 

Assume that (pI 9 e C3(R) satisfy (1.2); assume a, a', ar e L~oc[OI(D), (*I 

and there is a constant K>O such that 

Assume that 
2 u. e LRoc(R) and that I.$, u1 e H2(R). Then the cauchy problem 

(1.41, (1.5) has a uni que classical solution u B C2(R x [O,Tg)) defined on 
a maximal interval (0,TO). If TO is finite, then 

sup [l"xx (x,t)l + !uxtht)ll = OD ' 
RX [O,To) 

(*I 
Here the square bracket means integrability up to 0. No sign condition 

on a are required, but a'(O) finite is essential. 
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The proof of Proposition 1 is almost identical to that of Theorem 2.1 of 
[6], and we omit the details; only certain readily available energy estimates 
for lower order derivatives are needed. The characterization of the maximal 
interval of existence is established by combining the energy estimates 
obtained in [61 with a Gronwall inequality argument. We remark that the 
energy estimates used in the proof of Proposition 1 yield time-dependent 
bounds which cannot be used to obtain global estimates. These can only be 
constructed by taking advantage of the damping mechanism induced by the memory 
term under appropriate sign conditions on a and by assuming the initial data 
to be small (see [IO] for details). 

The assumptions concerning the kernel a in Proposition 1 im,ply that 
a' is absolutely continuous on IO,-). Recently, HruSa .and Renardy, [II] 
established a result similar to Proposition 1 (and proved a global existence 
result for small data for bounded bodies) under assumptions which permit a 

singularity in a' att=O (e.g. a'(t) m -t u-1 ,O<a<l as t+O+). 
Such singularities are relevant for certain popular models of viscoelaatic ' 
materials. 

Our main result on development of singularities for large enough data is 

Theorenl 1: 

Let cpI $ e C3(R) satisfy (1.2) and assume a, a', a" e Lloc[O,m). 

Assume that ~"(0) f 0. Then, for every T, > 0, we can choose initial 

data ~6, u1 e C2(a) n L-(R) such that the maximal time interval of 
existence, given by Proposition 1, for the smooth solution of the Cauchy 
problem (1.4), (1.5) cannot exceed T.1. More precisely, if sup [u{(x)] 

XeR 
and sup (u,(x)1 are sufficiently small, while u:(x) and u\(x) assume 

x@R 
sufficiently large values with appropriate signs, then there is some 

t* < T, such that 

sup 
Rx [o,t*) 

+xX (x,t) 1 + luxt(x,t) II = - “ 

while 

(1.6) 

sup 
RX[O,t*) 

{Jux(x,t)l + lu,hA 11 < (p (1.7) 

(and in fact, this latter quantity remains small). 

In view of the analogy with hyperbolic conservation laws and the 
numerical evidence [17], it is to be expected that a blow-up as established by 
Theorem 1 will lead to the development of a shock front. 

The method of the proof, sketched in section 2 is to show that the memory 
term is in fact of lower order than the elastic term 'pi and can be 

treated as a perturbation. While considerably more technical, the proof is a 
generalization of the approach of Lax [I41 for showing the development of 
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singularities for the quasilinear wave equation 

Utt = rp(ux)x l 

Theorem 1 was established independently by Dafermos [4] using an approach 
which is different from ours but similar in spirit. The result can also be 
established by modifying the results of F. John [I21 and extending them to 
systems of quasilinear hyperbolic conservation laws which contain lower order 
source terms (F. John, private communications). 

Similar results for first order model problems were derived by Malek- 
Madani and Nohel [16] and, using different methods, by Renardy [18] and 
Dafermos [3]. 

A particular case of the model equation studied in this paper leads to a 
model for shearing flows of viscoelastic fluids studied recently by Slemrod 
[201. With v(x,t) denoting the velocity of the fluid in simple shear, 
Slemrod studies the problem 

Vt = a*cP(vxlx , (x e R, t > 0) , 
(1.8) 

v(x,Ol = vo(x) , (X@R) . 

for the special case a = emt. Problem (1.8) leads to a Cauchy problem of the 
form (1.4), (1.5) after differentiation with respect to time. Then Theorem 1 
can be used to get a blow-up result for thjs problem, like the result found by 
Slemrod for a(t) = emt. The global existence of solutions for small data 
follows from [S, Theorem 4.11. Other popular models for viscoelastic fluids 
have been analyzed by the method used in this paper; the results will be 
published elsewhere. 

2. Development of Shocks. In this section, we sketch the proof of 
Theorem 1 establishing the development of shocks from initially smooth 
solutions of the Cauchy problem (1.41, (1.5) in finite time. For simplicity, 
most of the analysis will be carried out for the special case a(t) = emt; 
the proof for more general relaxation functions as well as for a more general 
class of model equations will be carried out in a forthcoming paper, 

We begin by transforming (1.4) to an equivalent system. We let 
w=u x’v=%l and write the constitutive assumption (1.1) in the form 

u = p(w) - 2 , 2 = -a ‘+$(w) l 

Since we have assumed 'p' > 0, the first of these equations can be 
solved for w, 

w=rp -'(a+z) =: g(u,z) , 

and g is a smooth function of a e R, z e R. AS long as the solution 
remains smooth, the Cauchy problem (1.4), (1.5) is equivaIent to the first 
order system 
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vt = Qx I 

ut = c2(u,z)vx + a'(O)$(g(U,z)) + a"*$(g(u,s)) , 

=t = -a'(O)$(g(u,z)) - a"*+(g(a,z)) . 

The initial conditions become 

v(x,O) = u,(x), a(x,O) = rp(l$(x)), 2(x,0) = 0 . 

(2.1) 

(2.2) 

BY c we have denoted the wave speed 

c(a,z) := '12 [T’(S(U,Z) )I ; 

c is a smooth function of u and z. The system (2.1) is hyperbolic, and 
its eigenvalues are +c, -c and 0. 
a C' 

Under the assumptions of Proposition 1, 
-solution exists on some maximal interval R x [O,TO). If To is finite, 

then v, a, z or one of their first derivatives must become infinite as 
t + To. It is immediate from equation (2.1) that ut, ox, zt and zx will 
remain bounded as long as v, u, z, vt and vx are bounded. 

To proceed further, we extend the classical approach of Lax [14] for 
first order hyperbolic 2 x a-systems. We define "approximate" Riemann in- 
variants by those quantities which would be the classical Riemann invariants 
if z in the first two equations of (2.1) were treated as a parameter. These 
quantities are given by 

r = r(v,u,z) =v+@(u,z) , 

s = s(v,u,z) = v - @(u,z) , 
(2.3) 

@(u,z) = (” ds 
u. c(t,z) ; 

without loss of generality we may take u. = 0. Since @u(u,z) = 
1 

c(u,z) > 0, this correspondence is smoothly invertible, and we have 

r+s v=-, 
2 

cp(,,z) = y . 

In the following, we assume a(t) = e+. Then (2.1) takes the simple form 

Vt = ux I 

ut = c2b,z)vx - $(g(u,z)) + 2 , 

Zt = &(g(u,z) 1 - z - 

(2.41 

We now differentiate r and s along the c and -c characteristics, 
respectively, and z along the zero characteristic (i.e. we form 

't - cr,, st + csx and 2,). This leads to the following first order 
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hyperbolic system equivalent to (2.41, (2.2) 

rt 
- Arx = -Bzx + CD , 

St 
+ AS = -Bz 

X X 
- CD , 

zt =D, 

with the initial data 

r(x,O) = u,(x) + w&Jp ),O) , 

s(x,O) = u,(x) - @(qhlp)),o) , 

2(x,0) = 0 ; 

A = A(r,S,z) := C(U(f,S,2),2) > 0 , 

B = B(r,s,z) := c(u(r,s,z),z)@z(0(r,s,z),zI , 

C = C(r,s,z) := @z(u(r,s,z),z) - c(u(r : z) z) , 
I, I 

D = D(r,s,z) := $(g(u(r,s,z),z) 1 - 2 . 

To establish the development of shocks in finite time, we study the 
evolution along characteristics of the quantities 

and zX- Note that if 

be the x-derivatives of 

(2.5) 

(2.6) 

(2.71 

a 
X 

P :=v + 
X c(u,z) ’ 

(2.8) 

% 
T :=v - 

X c(u,z) ’ 

z were a constant parameter, then p and 'c would 

r and so We have vx = + (P+T), ux = ; c(p-r), and 

A tedious but straightforward calculation using the relations (obtained by 
differentiating (2.4)) 
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u tx = c2(u,zlvxx + (c2)ub,zlo v xx 

+ (C2)z(U,z)z v - D xx x t 

ztx = Dx I 

yields the system 

(c2) 

Pt - CP 
X 

=+ P(P-T1 + O(lPllZ,~ + /-+,I 

+ IPI + ITI + Izxl) I 
(c2) 

't +cT =- 
X 

---$ T(P-T) + O(lPI IkxI + ITI lzxl 

+ IPI + Ifl + bxl) t 

2 xt = O(lPI + ITI + lzxl) l 

subject to the initial data 

P(X,O) = u;(x) + cp’ (u;)(x);~u;(x) , 

r(x,O) = u;(x) - cp’ (u;(x) ,‘/2 u;;(x) , 

(2.9) 

(2.10) 

(2.11) 

zx(x,O) = 0 l 

The cross product terms pr in (2.10) axe eliminated if one considers the 

characteristic derivatives of p and c(U,z) l/2 f (see Lax [14] and 
SLemrod [I91 1. We find 

a a, ( 32 
‘at * ’ ax 

l/2 PI = y(c PI2 + O( IPI lzxl + Id bxl 

+ Id + I-d + bxl) t 
a 

(at + c ax hc '12 92 T) = Y(C ?I2 + O(lPJIZ,I + (T[lZxl 

+ IPl + Id + bxI) n 
z xt = O((PJ + ('cl + lzxl) l 

(2.12) 
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Here the coefficient function y is given by 

y = y(a,z) t ; v”(g(u,z)) 
cp’ (g(u,z) I 

5/4 l 

For definiteness, let us assume ~"(0) > 0 (the discussion for ~"(0) < 0 is 
analogous). We take initial data with the following properties: ub and 
u, (and hence p(x,O), r(x,O) as well as 2(x,0) 5 0) are uniformly small, 
and p(x,O), ?(x,O) are such that at least one of them has a large positive 
maximum (by choosing uz or Ui or both sufficiently large). At the same 
time, the maxima of -p and -'c should not be too large. 

As long as (r,s,z) remains within a given neighborhood U of 0, we 
have upper and lower bounds for the coefficients occuring in (2.12), in 
particular, we have a positive lower bound yO for y. We shall see later 
that (r,s,z) will remain in U up to the time of blow-up if they are small 
enough initially and if we make the maximum of p(x,Ol of T(x,O) large 
enough. 

For every t 3 0, we now set 

h(t) = max[max p(x,t), max T(x,t)l . 
X X 

From (2.12), we find that, as long as (r,s,z) e U, while h(t) is large 
and maxlz,l c< h(t), we have, for some positive constants Y. and K 

X 

(k)+ h(t) > yo(h(t))2, and max)zxtl < Kh(t) CC (h(t))2 . 
X 

Initially, we have laxI = 0 and it follows from these inequalities that it 
will remain small compared to h(t). We also find that h(t) becomes 
infinite in finite time. Since there is also some constant y, such that 

(&I+ h(t) ( v,(h(t))2, it can be shown that, with t* denoting the blow-up 

c1 c2 
time of h, we have - < h(t) < - 

t*-t t*-t 
for some constants c, and c2. 

The third equation of (2.12) then implies that 12x1 grows at most 

logarithmically as t + t*. Since log( t*-t) is integrable, equations (2.5) 
imply that r, s, and* z remain bounded and in fact small if their initial 
data are small, and t is small (which is the case if h(0) is large). In 
this way, we can choose the data such that (r,s,z) will in fact remain in 
U up to the time of blow-up. This completes the sketch of the proof. 
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A FAST ALGORITHM FOR NON-NEWTONIAN FLOW 

David S. Malkus 
Mathematics R.esearch Cent.er 

University of Wisconsin - Madison 
Madison. LYl 53705 

.4BSTRACT. The goals of the project described here are tu:ofolcl: First.. t,o turn an existing 
pilot, algorithm for the steady flow of non-Newtonian memory fluids into a robust and 
efficient algorithm. Second, render enhancements of the method’s current capabilities 
computationally feasible. Such enhancements include fully coupled thermal dependence, 
material compressiblity: and free surface flows. The pilot algorithm is a finite element 
method whose novelty lies in its computation of the stress field in a nonlinear iteration 
scheme. The stress at a point is a non-local functional of the current velocity iterate, 
and the pilot method has demonstrated the feasiblity of reliable comput,ation with such 
const.itutivc equations. Before the method can take its place as a reliable scientific and 
engineering tool. int,ensive effort must be made to reduce the computational cost in t,he 
manner decribed here. 

1. VISCJELASTIC ELI-HIS,,: The following equations are solved numerically, using the 
finite element method 11 -. 4’: The equations of steady motion. 

(1) 
where u is the velocity field. u t,he stress tensor, f a body force, and p the density. The 
equateion of continuity for an incompressible fluid is 

c-u=0 (2) 
For non-Newtonian fluids. t,he crucial equa.t.ion is the constitutive equation, 

u = -PI $ ap(o)Re -- (1 - R)u’ (3) 

where p is an isot,ropic contribution t,o the stress, ~(0) is a zero-shea.r viscosity, R is a ratio 
of a retardation time. n. to a retardation t,ime, T. and Q’ is an extra st.ress t,ensor. The 
rat,io, R1 and its complement determine t,he proportion of the st,ress which is Newtonian 
- and usually is t.he result of a Newtonian solvent - and the complementary proportion 
from the extra stress ~- usually due to long-chain molecules (such as polymers) disolved 
in the Newtonian solvent. 

There are many proposed forms for the extra-stress tensor: there are two basic cat- 
egories: the differential and integral models 1 . Here we shall only be concerned with the 
integral form. 

(4) 
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where /LI, is a constant determining p(O), and So(l) is a st,rain measure, measuring t.hc 
deformation which carried the part.icle from its position at. t,ime 7 in t,he past, to the st,rrss 
evalua.tion point, at. the present time, 0. The strain measures are thr same kind employ4 
in finit,e elasticity. The memory funct~ions, ml, are usually sums of exponentials, each wit11 

v(l) amplitude deterlniiled by the modulus, C;, and decay constant, t~k, which determillrs 
the fract,ion of the ba.sic decay ral.e, T. Thus a rornpu~.at.ional method must det,ernlillo 
the deformat ion history of evcnry stress w~l11a1 ion point reyuired t,o solve the equat.ions 01 
motion in some approxirnair ~a!-. compute the required strain measure -- which is a]mosl 
alwa.ys highly nonlinear in its dependence on the velocity field -” and then approximat,e 
the hist,ory integral over an infinite interval, This just computes the stress, and then the 
stress computation must be imbedded in some iterative scheme to produce an approxirnat,c 
solution to the highly nonlinear equations of motion. 

II. SOME FLOWS In this section we give a brief description of some of the flows to which -----,I--- _-. -1 
the current method is being applied. The geometry of these flows is quite simple and the 
results obtained do not illustrate the real power of the finite element method. It is hopc*d 
that. the reader will appreciat.e t.hat the method described here is still very much in t11c 
development stage, and that. the problems so far investigat,ed by thch a.uthor and ot,ht>r 
researchers are intended to isolate the complexity inherent in t.he non-Newtonian nat urc 
of the flow from other possible cotnplicat,ions. Never-thelcss, there SPPITK to be a good dc;J 
of physical interest in the problerns pictured here, in spite of t.heir gcomctric simplicit);. 

FIGURE I 

f:low over a t,ransversc slot computed by t,he pilot method on a rncsh of 1008 clcrncrrl~. 
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The first. Ilow is a plane fIo\v over a fra.nsvprsc slot. The strrarnlir1c5 pIott.c~d ~II l:ig~lrc~ 

I are t.aken from a solution computed by the author, using a constitutive equa.tjon of Iris 
own devising [l] and the mesh of 1008 crosed-triangle macroelemen1.s illustrated in ref. 1. 
The flow is at a “Deborah number” of 4.7 (this can be thought of as a dimensionless shear 
rat,e). Flow is from right to left, and undist,urbed flow profiles have been imposed at the 
inffow and out.fjow. Actually. since t.here is fiuid memory. t,he inlet condition is tha.1 t,hc 
flow rant inucs forever upstream as undist,urbtrd plane Poiscuille iJo\v. Figure 1 illust,rat.es a 
chracterist.ic tilt to the ~ortcs in the slot. which is opposite in direction t,o the t.ilt observed 
in Kewt,onian flows with non-zero Reynolds number 131. 

The interest, in flows over transverse slots arises from the facl. t.hat there stems t,o IN 
an importantS rclat.ion bt~twccn the difference brt,ween the prcssurrs at top and bottom of 
the slot, and t.he first normal-stress differenc,e of the fluid in the undist,urbed flow 11 - 31. 
There seems t,o be a discrepancy between M-ha.t. the numerical models predict and laboratory 
experimems measure in such flows, and it is one of the author’s highest, priorities to resolve 
t.his. The results could have important ramificat,ions for devices designed to measure tile 
first normal-stress difference using “hole-pressure” measurements. 

.=&$&SE --- -- -- . ..---- --.. “.-...-.-_-.-- ---. ._-_ _ .--,., - -- -,.. .--.-~- =-=!!!!tr 7=-L.~;+T Fzz& ----- --- 

Abrupt. contraction fiow comput.ed by the pilot, method with MO elements. 

The next flow is 1 tlat of flow t.tirougll an abrupt, planar contracliorl. Figure 3 pictures 
such a flop.; flow is frorrr left to right. so that. the fluid is being forced form the larger IO 
the smaller channel. Because symmetry* is assumed. the computational domian is only t.hc 
top idr of a channel cross-section. The UOM- pict,ured here WCS the same fluid model as 
that of Figure I, at a sliglit ly lower Deborah number. 3.7. lnflow and outflow condit.ionr; 
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are imposed as More; extreme care is taken to match the flux at inflow and nut flop 
t.)oundaries. 

The interesl in lhis flow st,erns from the fact that some fluids seem to behave quil,e 
differently than others in contraction flow. Some fluids, such as polystyrene or high-density 
polgethelyne mc1t.s. seem t,o have relatively smaller “dead-spaces” or recirculation regions 
at high Deborah numbor than at low 1IIcbora.h number, while SUTIIP branched potym(%rs, 
such as low-densit)’ pol!~cthclyne, seem to do quite the opposite. dcvrloping rerirculal.iorl 
regions rmanat,ing from entry which dominate the whole flow-field. The flow pictured irl 
Figure 2 has ah11 the same size recirculation region as a flow of 1,hc sa,mc fluid at low 
shear rate. The author is int.erest,ed in further study of t.his flow in order to find out what 
propcrt,y of the constit,utiw model is associa.ted with entry vortex behavior. The abjtii.;v 
to predict recirculation size is of prac.tical import because fluid trapped inside dead-spa.ccls 
tends to degrade. It would be useful to able to determine how much polymer degradation 
could be expected in a given die as a function of measura.ble material properties. 

Newtonian flow in a plane cross-section of a journal-tclaring. 

The final flow is one for which the author has as yet no results; tha.t is the flow in 
a journal-bearing. Figure 3 pictures the cross-section of two eccentrically placed cylinders 
with fluid between them to lubricate a.nd prevent solid-to-solid corlt.act. There are two 
important aspects to t,hjs flow which differ from the prcviou!; two flows: First. there arc 
no inflows and outflows, and second, there arc JIO domain corners to gcneratc singularities 
in the stress-field. 
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The author’s int,erest in this problem is. first.! just tha.t it is quit,e different. from the 
other two. It will be int.eresting to observe the behavior of the numerical method here 
because it omits two puzzling aspects of memory-fluid problerns: history-dependence at 
inlets: and stress-singularities of unknown charact.er. There is also physical interest in this 
problem because the effects of fluid ela.sticit;v on the load-bearing capacity of the bearing 
ma; be beneficial. It would be able to predict 1oa.d hearing-capacity from measurable 
material propert.ies. and numerical modelling may help to do so. 

III. COMPUT~TIOISAL &fETHOD, The strain measure in the integrand of eq. (I) is 
assumed to be determined by a deformation gradient: Eo( T), just as in nonlinear elasticity. 
Only in the present case, the deformation gradient is assumed to be computable from a 
system of linear, non-constant coefficient ordinary different,ial equations along the path 
followed by eac.h particle at which the stress is to be evaluat,ed. The usual deformat,ion 
gradients of large-strain elasticity can also be obtained from special cases of the following 
evolution equations: 

X(5) = vyx(T): 

x(0) =x0 

lie(r) = F(x(T), Vv;x(7)j)E0(7j 

Eo(0) .=: I 

(5) 

The first, two sets of equations determine the pathline (streamline) followed by a particle 
t,o bring it from its position. x, at time r in the past to its present position at the stress 
evaluation point. xo. To evaluate the integrand of eq. (4): these equations are solved as 
an initial value problem in reverse t,ime. This determines the non-constant coefficient in 
t,he evolution equation for the gradient,, which is assumed to be a traceless matrix, F. The 
common deformation gradient,, ?e, is obtained when F is Vv itself. 

The fundamental strategy of the current numerical method is to choose constant 
strain-rat,e finit,e elements: then t,he evolution equation is a constant-coefficient equation 
on each element. This strategy is enabled by a basic propert?- of linear ODEs: If we define 
a deformation gradient,. E,, . relative to time ri hl- 

E,, = FE,, 

E,, (71) = 1 
(6) 

then the strain relative to the present. time, evaluated at any earlier time is give by matrix 
multiplication: 

Eo(r) = Eo(rljE,, (7) (7) 

This provides interface conditions between finite elements. so that only constant-coefficient 
equations need be solved on eac.h element: it turns out that such solutions are known 
analytically, as is the pathline and transit time along it 1 -- 3‘. 

Thus, given an estimate of the solution t.o the problem it terms of a ve1ocit.y field. 
the integrand of eq. (4) ci.n straight-forwardly be computed at each historical time. In the 
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current method. this is used in conjunction w+ith a specially devised Gaussian quadrature 
formulas t,o approximate 0’: 

>v, 

S,(+t?(T) dr e 1 uks”(Tk> 

k=l 

With what we have thus far. t’he stress can be computed in any trial velocity field; to 
approximate the solution t,o eqs. (I) and (2): t,he usual Galerkin procedure can be followed 
in which t,he residual of eq. (1) is dotted into a test function, vh. drawn from the same 
space as the trial solutions, and t,he result is int#egrat,ed over the problem domain. After 
integrat,ion by parts and replacement of the spatial integral by a numerical int,egral with 
points & and weights Bc. we get something which looks like 

c e,jd. I+ - zz(v d)(c 9) + P(U. qd d ‘- vha f](ig = 0 (9) 

The pressure term of eq. (3) h as . b een replaced by a penalty t,erm 131 with penalty pa,rameter 
z: thus there are no explicit pressure unknowns, and the continuity equation (2) is satisfied 
to O(z-“). Eq. (9) illustrates the R =L 0 case; for nonzero R, the obvious modification of 
adding a Newtonian viscous term is made. 

The import,ant point to observe about eq. (9) is that to evaluate it,s residual, itI is 
required to evaluate the stress at the points & by means ahead>- discussed. To complet,e the 
method. what is needed is a means of correcting estimates of the disrret’e solutNion, based on 
evaluation of the residual; sewton’s method might an example of such a procedure, but, as 
we shall see, this is not, ent,irely straight,-forward. The current algorithm employs the inverse 
Broyden met,hod 11:2j to solve the discrete nonlinear equa.tions. An important, point to be 
made here is that. regardless of the choice of it,erative scheme: the method outlined here is 
enormously costly in practice, because for a reasonably fine mesh. ea.ch evaluat,ion of the 
stress-field values at the spatial integration points is a pot8entiall!- formidable computation. 

IV FAST ALGORITHAIS. The method outlined in the previous section applies to isother- A._----- 
ma], incompressible flows in a fixed spat,ial domain, These restrictions are not essential: 
mat,erial compressibility and temperature dependence can be handled in very- similar fash- 
ion if “artificial (historical) t,ime” is introduced, in which either densit.y or t,emperature 
are used to change t.he time variable along the pathlines in such a way that a traceless 
matrix in the evolution equation is obtained 15-i. The transformation to artificial time does 
not in itself seem to be computationally costly: but these problems involve added levels of 
complexity to an already complicated solution procedure with additional fields and corre- 
sponding equations. The resulting phenomena are likely to be more intricat,e in detail and 
more nonlinear in chara,ct,er. A similar observat,ion can be made about free-surface flows; 
a well-developed methodology exists ;tii t,o solve such problems. which can be directly in- I 
terfa.ced wit,h the method outlined here, but this also cert,ain to render the computations 
more formidable than they now are. With the current algorithm, computat,ions on a mesh 
which is refined only to the extent which seems to be required to obtain accepttable a.ccu- 
racy, at a shear rate normally occuring in polymer processing, the computation of a steady 
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solution can take as long a 40 minutes on a Cra!- l-.4. This must be reduced drasticall?; if 
the algorit’hm is to used routinely in scientific and engineering research, particularly if the 
more ph>-sicall?- realistic enhancements mentioned above are to be added. The remainder 
of this paper will discuss several approaches to the reduc.tion in computational cost. which 
are currently heing implementrd or investigat,ed by the author. 

Vectorization of Linear Eauation Solving. -4 variety of neu- romput~ets have the ca.pabilit,l -_-,.- --._ .-- _.,_- 2-- --.- -----. 
of carrt,ing out hardjvarc vector operations: rearranging the comput,er code in such a wal- 
that t,he compiler can take adt,antage of this cayabilit>- can result in substantial savings in 
computational cost. One part of a typical code where such savings have a good chance of 
being realized is in the solution of linear equations. I-nfortunately. in the current algorithm. 
it, is not expected that this can dramatically reduce the run time. Linear equations are 
solved in the nonlinear iteration scheme. but this appears to account for a small porCon of 
the computational cost. The major portion of the calculation is c.arried out at the element’ 
level with small arrays or scalar yuant,it,ies involved in resolGng element boundary crossings 
and accumulating the deformation gradient by small matris multiplication. I’ectorization 
offers little hope of speeding up these calculations. On the the other hand. ir is expected 
that linear equation solving w’ill begin to play a n~ore and more important role with the 
planned enhancements to t.he code discussed earlier. The Jacobian terms corresponding t,o 
the thermal energy equation are easy to form: likejvisc the part of the Jacobian associat,ed 
with inertial terms and the unknown free-surface t,ransformation are easy to deduce. A41so, 
active research is under way aimed at producing the Jacobian terms a.ssociat#ed with the 
non-Sewtonjan viscous terms (see below}. 
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In short I the future dcvclopment of the code seems to point in the direction of an 
algorithm which I las a large, unsvmmetric. and possibly not. banded matrix to factor at 
each one of dozens of possible it#erat,es. The current. it.eration method has only one? banded, 
symmetric, positive-definite matrix t,o fact.or at the outset, and a back-substitution at each 
it,eration (the unsvmmetric Jacobian contribution of the inertial terms is left to the inverse 
updating scheme). It therefore seems appropriate t,o modify t.he code at the present time 
t’o take full advantage of vect,orizat,ion, in order to make sure t,hc linear equation solving 
phase remains in the bacground. as it should. 

Adaptive Memorv Quadrature. The area which seems to shovv most promise in reduction of ---- _-.. -,- ,-._ -.. _-” ,,., 
the the computational cost is that of the stress calculation at an individual stress evaluat,ion 
point. There seem to be several possible approaches. the under])-ing strategy of all of them 
is to take advantage of the fact that the stresses are being evaluated in what is hoped will 
be a convergent, sequence of velocity iterates. Particuarly further along in the sequence: 
t,he previous it,erate should be able to provide a guide to estimate how much computat.ion 
is absolutely necessary at the next iterat.ion. 

Perhaps the most obvious way to do this is to USC the previous iterate to determine 
what n;,, of eq. (8) should be in the next iterate. It is observed that in some flows! verl- 
many fewer quadrat.ure point,s are needed to accurately comput,e CF’ than in other flows. 
The strategy will be to begin the iterations with a nominal number of points for each stress 
evaluation point and increase or decrease t.hat number in succeeding iterations. based on 



adaptive criterea determined from previous it,erations. 

Ja,cobian Approximation. The rea.son that t.he present algorithm employs an updating 
scheme rathe; than a direct, calculation of the Jacobian is that it is not a trivial mat- 
t,er to construct the Jacobian, or even write down a closed form expression for it. It, is 
clear that the stress at a point, can depend on velocities far from tha.t point, and therefore 
the Jacobian of the residual of eq. (9) cannot have the usual finite element band and/or 
spa.rsity structure. In ref. i, an approximation scheme for the Jacobian is proposed. It is 
not. clear at present whether this approximat,ion. some other, or even an exact computation 
of t,he Jacobian is best (the latt,er may be possible to undertake - it is not. clear at this 
time). But the work of ref. 7 shows clearly t.he complexity involved. The terms of the 
Jacobian contribution from the extra stress are computed by tracking along streamlines. 
The resulting Jacobian element mat,rices are not square: Their column dimension depends 
on t,he number of diRerent elements the particle path passes t.hrough before t,he final in- 
tegration point of eq. (8) . IS 1 ocated. It appears that a frontal solut.ion tcchniquc is called 
for in order to handle the resulting global matrix ‘iI. 

Pseudo-Dynamic Kelasa.tion. The hope in computin ---__-..-.L --,.. “_.^ g the Jacobian is tha.t, the computa- _-I. 
tional cost will be more t,han returned in improved convergence ra.te over the inverse Broy- 
den algorithm aff’orded by Newton’s method or modified Newton’s method with Broyden 
updates. But. the complexity of the Jacobian calrulation is such that. this may never be real- 
ized. and it is well worth t,he invest.igation of other improvements to the it,erative solution of 
the nonlinear equations. One avenue currently being explored is that of “pseudo-dynamic 
relaxtion.” The problem is cast as a time-dependent problem and steady solutions are 
obtained by letting the transient phenomena die out. In the algorithm present,ed here. 
the transient behavior does not, represent the true dynamics of the non-Newtonian fluid: 
the stress is computed in the current velocity field as if it had been a steady field for 
all time. hence the name “pseudo-dynamic.” To do ot.herwise would involve complexities 
beyond what seems mana.geable at, present, though implemcntat,ion of t,he pseudo-dynamic 
algorithm does open t,he door for future exploration of true dynamic behavior. 

One may easily verify that the steady-states of the pseudo-dynamic algorithm are 
the same as t,he steady stat,es of the true dynamic algorithm. The reason for t’aking the 
pseudo-dynamic approach is to produc.e a different kind of steady-st,ate it,eration scheme, 
in which the damping of the high frequency modes in the pseudo-dynamic response can 
be controlled by choice of time-stepping method and pseudo-time step. The reason that 
this seems to be a worthwhile avenue to explore is suggest.ed by recent work of Y. Re- 
nardy and M. Renardy ‘8;. They found that with a certain spatial discretization of the 
linearized operator associat,ed with the equations of motion of a Maxwell fluid in a shearing 
flow, there were apparently spurious eigenvalues extremely close to the right half-plane, 
evidently introduce by the discretization. If this lvere also a consequence of finite element 
discretization. t,here could be severe consequences for iterative methods which behave like 
temporal iteration schemes. It, is hoped tha.t by controlling the time st.ep and parameters 
of the pseudo-dynamic time-stepping met.hod, the damping of the high frequency modes 
associated with any spurious eigenvalues can be damped t,o produce nearer monotonic, 
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more rapid convergence of the resultin g iterative method. There is no worry hcrc of damp- 
ing out interesting t.ransient behavior - t,he transient behavior is not correct, and all that. 
it is required is that it be damped out as rapidly as possible. 

The following algorithm is based on Hughes, Liu. and Brooks pedict,or-corrector 
algorit-hm for I he I\;a\-ier-St,okes equations :9.. but w.ith the possibility of more fully implicit 
inner iterations at each time step: 

Ma,-1 - Cvnrl - N(v,,~) - Q(v,,-l) = FnA1 

N = nonlinear inertial term. excl. time deriv. 

V (0) -.,- v 
n t 1 -'- n - (1 - r)hta, 

v(i:‘l.) I- ,(i) - 
n-l n-l J--l{ jM -T qAfC]~l;‘!~ - q.lfQ(v;~,) 

,+ y;lfN(vj;‘je 1) - MvfJ1 4 y~tF,... 1} 

(10) 

M is t,he finite elernent “mass matrix,” C the Newt,onian viscous and penalty-pressure 
mat,rix. and F,-l the applied force vector at t,ime step n - I. B is the usual finite 

(i-l) 
element matrix of shape funct,ion derivatives and u is the slress. computed in v,,~ as 
described in previous sections: v,-1 without the superscript of inner iterat.ion is the “fully 
converged” result of inner iteration at time-level 17 - 1. Choice of the number of inner 
iterations is open. so that v~+~ could result from just one correction cycle. or many. An 
important aspect of eq. (10) . . f ound in those terms labelled by (.)opt; a fully implicit ’ 1s 
t,reatrnent, would employ exact Jacobian terms here. ,%t the other ext.reme is Hughes, Liu, 
and Brooks met.hod: they use C to approximate both of these terms and do only one inner 
it erat ion. The present. non-Newtonian implementation uses C initially: updated by the 
inverse Broyden method during a number of inner iterations. If it proves to be effective, 
Newton or modified Newt,on,‘Bro>-den iterat.ions could be employed in the inner it,erations. 
It is instructive to note t,hat, the direct st,eady-st.ate Broyden algorithm mentioned earlier 
is obtained as a special case of eq. (IO) with 3 =’ 1 and an infinite time step. 

I’. SIMYl4RY A pjlot numerical method for the computation of solution to memory ---A--z 
fluid flow problems has been described. This method has shown that such computations 
are feasible but ext,remely costly. -More reasonable physical assumptions than those of 
isothermal, incompressible flow in a fixed domain are on the near horizon but are bound 
to increase t,he computat.ional cost. A number of ways of improving the comput,ational 
performance of the algorit,hm have been proposed here and are in the implementation 
stage. These improvements will go together t,o make what the author refers to as “a fast 
algorithm for non-I\Zewtonian flow.” It is hoped that this fast algorithm can transform the 
method described here from pilot code to useful cnmputat.iona.1 tool for the investigation 
of problems in viscoelasticity and rheology. 
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WAVE CURVES FOR THE RIEMANN PROBLEH OF PLANE WAVES 
IN SIMPLE ISOTROPIC ELASTIC SOLIDS * 

Zhijing Tang and T. C. T. Ting 
Department of Civil Engineering, Mechanics and Hetallurgy 

University of Illinois at Chicago 
Chicago, Illinois 60680 . 

ABSTRACT A modified Riemann problem in which the initial and 
boundary conditions are constants are considered for plane waves in a 
half space occupied by a simple elastic solid.. The governing 
quasilinear differential equations are a system of hyperbolic 
conservation laws which possesses three wave speeds c, * c2 > c3. 
The system is genuinely nonlinear with respect to c,. and c3 and 
linearly degenerate with rspect to c,. Thus it is sufficient to study 
a two-wave speed system with c, and c3. Wave curves for simple waves 
and shock waves are used to construct the solution. Second order 
hyperelastic materials which contain four material constants are 
considered and the solution in the form of wave curves are obtained for 
all possible combinations of initial and boundary conditions. With a 
proper nondimensionalization, the wave curves depend only on one 
material parameter k. The solutions are thermodynamically correct 
because the entropy effects does not come into picture until the third 
order in stresses are included in the constitutive laws. The two-wave 
speed system have one umbilic point at which c, o c3 and hence the 
system is not totally hyperbolic (or not strictly hyperbolic). Several 
interesting and unexpected results are obtained due to the existence of 
the umbilic point. In one example, we find that a shock wave satisfies 
Lax stability condition for a V, shock as well as a V, shock. In 
another, a shock wave which involves only one stress component does not 
satisfy Lax stability condition for either V, shock or V, shock. 
However, it satisfies Lax stability condition if we consider it under 
the context of one-wave speed system. Finally we consider the effects 
on the solution when the third order therms are included. We show that 
although the entropy affetcs the shock wave solution, it does not appear 
in the simple wave solution until the fourth order terms are included. 
With the third order terms, there are in general two umbilic points, one 
of which may be an umbilic line. 

EXTENDED SUMMARY *The Riemann problem is a special case of the 
Cauchv problem in which the initial value is a constant for X > 0 and a 
differeAt constant for X < 0. Physically, this may represent the 
problem of a fluid in a tube with different initial pressures on both 
sides of a diaphragm located at X - 0. The solution to the Riemann 
problem yields the fluid motion after the diaphragm is ruptured. The 
problem we will study here is the plane waves in an elastic half space 
X = X, 5 0 which is prestressed at time t = 0. For t > 0, a constant 
traction is applied at the boundary X = 0. This is a “modif ied” Riemann 

* This work is supported by the U. S. Army Research Office 
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problem. 

The governing quasilinear partial differential equations for the 
problem are a system of hyperbolic conservation laws. Extensive 
coverages of the subject can be found in Courant and Friedrichs (1948), 
Jeffrey (1976), Lax (1957, 1973) and Dafermos (1983), for example. 
Inherited with the solution to the quasi-linear system is the weak 
solution or the shock wave in which the solution is discontinuous. The 
appearance of shock waves in the solution is a general rule rather than 
an exception. 

Plane finite amplitude waves in simple elastic solids have been 
studied by many investigators. Chu (1964) and Collins (1966) considered 
incompressible materials, Bland (1964a,b, 1965) and Davison (1966) 
studied compressible elastic solids while Howard (1966) investigated 
waves in transversely isotropic materials. For the Riemann problem, the 
solution in general consists of simple waves and/or shock waves (Lax 
1957, Liu 1975, Smol ler 1969b). The Crux of the problem is in the 
determination of the correct sequence of simple waves and shock waves to 
satisfy the initial and boundary conditions. Most invetigators used a 
semi-inverse approach, i.e. one assumed a combination of simple waves 
and shock waves to see what initial and boundary conditions were 
satisfied. A direct approach using the wave curves for simple waves and 
shock waves was employed by Li and Ting (1983). The idea has been used 
earlier by Clifton (1966) and Ting and Nan (1969) where the wave curves 
are called “stress paths”. However, the problems studied by them were 
for elastic-plastic materials in which the elastic part was linear and 
hence the wave curves for shock waves were straight lines. In the paper 
by Li and Ting (1983)) the second order hyperelastic material was 
studied for a special case in which the material was initially stress 
free. In the present paper we extend their problem to include arbitrary 
initial condition. We also consider the effects on the solution of 
including the third order terms in the constitutive equations. 

In Chapter II, the basic equations for the problem are developed. 
The material is assumed to be isotropic simple elastic solids. 
Following Li and Ting (1983), we use the stresses instead of the 
deformation gradients as the dependent variables. This is due to the 
fact that it is more natural to prescribe stress rather than deformation 
gradiet (or strain) as the initial and boundary conditions. With the 
assumption of plane waves in isotropic simple e1asti.c solids, the 
deformation gradients are functions of 0 and 72 only, where u and r 
are, respectively, the normal and shear stress on a X = X, o constant 
plane. The angle the, shear stress makes with respect to X, axis is 
denoted by 8. Since the basic solutions to the Riemann problem involve 
simpel waves and shock waves, we discuss simple wave solutions in 
Chapter III and shock wave solutions in Chapter IV. 

A simple wave solution represents a wave fan on the (X,t) plane in 
which the stresses are constants along the straight lines passing 
through the origin. As the slope of the straight lines varies, the 
stresses trace a curve in the stress space which is called the simple 
wave curve. There are three simple wave curves associated with the 
three wave speeds c, I c2 2 c3. Using the cylindrical coordinate 
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system (0,7,0) for the stress space, it is shown that the simple wave 
curves associated with c, and cg lie on a radial plane 
(0 = constant) and hence are plane polarized. The simple wave curve 
associated with c2 is a circle (0 = constant and 7 = constant) and 
hence is circularly polarized. These results agree with that of Bland 
(1965) except that,Bland used deformation gradients as the dependent 
variables. We then use the second order hyperelastic materials to study 
the geometry of simple wave curves. There are four material constants 
but the simple wave curves depend only on one non-dimensional parameter 
k. Depending on the value of k, there are four diEferent simple wave 
curves. 

In Chapter IV we study the shock wave solutions. For a given stress 
state in front of the shock, the admissible-stress state behind the 
shock depends on the shock wave speed V. As V varies, the stress state 
behind the shock traces a curve in stress space which is called the 
shock wave curve. There are three possible shock wave curves associated 
with the three shock wave speeds V,, V, and V,. Like simple wave 
curves, shock wave curves associated with V, and V, are plane 
polarized and the one associated with V, is circularly polarized. The 
latter is identical to the simple wave curve associated with c2 since 
the governing differential equations are linearly degenerate with 
respect to c2 (Lax 1957). 

A shock wave solution satisfying the Rankine-Hugoniot jump conditions 
is not necessarily admissible unless it also satisfies the Lax stability 
condition (Lax 1957) 

Ci (B) ~ Vi(B,A) 5 C;(A) , Cl l 1) 

where B and A denote, respectively, the stress state in front of (or 
Before) and behind (ar After) the shock wave. Without Lax stability 
condition the solution may not be unique. A simple example of non- 
uniqueness is provided by Hopf’s equation (Hopf 1950, Witham 1974). For 
a large amplitude shock, Lax stability condition is necessary but not 
sufficient. A more discriminating condition was proposed by Liu (1974). 
Let P be any point between A and B on the shock curve. The Liu 
admissibility condition reads 

Vi(B,P) ’ Vi (B,A) . (1.2a) 

Also, if we define the “reversed” shock wave curve the locus of the 
stress state B in front of the shock for a fixed stress state A behind 
the shock, and if Q is any point on the reversed shock wave curve 
between B and A, then the Liu admissibility also stipulates that 

Vi(B,A) 2 Vi (Q,A) . (1.2b) 
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In general the shock wave curve and the reversed shock wave curve are 
different. In any case we have 

Vi(8,B) = C;(B) and Vi (A-A) o c;(A) 9 (1.3) 

and (1.1) is a special case of (1.2a,b). As in Chapter III, we use the 
second order hyperelastic material to study the geometry of shock wave 
curves. Again, the shock wave curves are found to depend only on one 
parameter k. 

By neglecting the entropy in the second order materials the analysis 
is thermodynamically correct because the effect of entropy on the shock 
discontinuity is in the third order of strain (or stress) and, with the 
adiabatic approximation, the entropy is a constant through a simple 
wave. We therefore study the solutions to the Riemann problem for 
second order hyperelastic materials in Chapter V. This chapter 
represents the main work of this paper. We consider all possible 
combinations of initial value and boundary value, both of which are 
constants. In view of the fact that the c2 simple wave (which is also 
the V, shock wave) is linearly degenerate, there is no lose of 
generality in ignoring the c2 simple wave. Therefore all we have to 
consider are simple wave curves associated with c, and c, and shock 
wave curves 
(0, T) plane. 

associated with V, and V3. These curves lie on the 
Consequently, the problem is reduced to a two-wave speed 

system instead of a three-wave speed system. If c, # c3, the system 
is said to be “totally hyperbolic” or “strictly hyperbolic” (Courant and 
Hilbert 1962, Lax 1957). 
everywhere except at 

In our ease tha system is totally hyperbolic 
the point (0,~) = (u ,0) at which c, = c3. 

This point is called the umbilic point (Shearer et al, 1985). 

The existence of the umbilic point leads to the following interesting 
and unexpected results, some of which have also been found by Schaefer 
and Shearer (1985) in the problem of oil recovery. 

i) For the hyperbolic materials, the simple wave curves associated 
with different wave speeds are orthogonal to each other. Hence there 
are two wave curves through each point on the (a,~) plane. At the 
umbilic point, however, the simple wave curves may not be orthogonal to 
each other (see Figs. 1-6). Horeover, there may be infinitely many wave 
curves passing through the umbilic point (Fig.2. See also Ting 1973)). 

ii) For the reduced two-waveaspeed system, there are in general two 
wave fans in the solution. The wave fan may be a simple wave, a shock 
wave or a composite wave in which a shock wave is in contact with a 
simple wave of the same family (Fig.8). However, when the wave curve 
passes through the umbilic point, one may have three or even four wave 

fan:;l:s 
ee wave pattern 10 and 11 of Fig.8.) 

. . * 
From a given point other than the umbilic point on the (0,~) 

plane, one can draw two simple wave curves and two shock wave curves. 
They are orthogonal at the starting point. As one follows one of the 
wave curves, the curve may intersect with the other wave curve starting 
from the same point (Fig.9b). This causes the solution to depend 
discontinuously on the boundary condition. (See also Li and Ting 1983.) 

iv) For a large amplitude shock, we have an example in which the 
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shock wave speed satisfies Lax stability condition (1.1) for both i E 1 
and i = 3 (see (5.6~)). Thus the shock has the double role of being a 
V, shock as well as a V, shock. 

VI In another example we have a situation in which Lax stability 
condition (1.1) is not satisfied for either i f 1 or i = 3 (see (5.9c)). 
We have therefore no solutions which satisfy Lax stability condition. 
However, for the example concerned the shock wave curve is along the 
o-axis and hence involves only one stress component. Considering the 
wave motion with one stress component one would obtain a one-wave speed 
system. Under the one-wave speed system the shock concerned satisfies 
the Lax stability condition. We have therefore a paradox in which a 
shock is stable under the one-wave speed system but unstable under a 
two-wave speed system. 

In the last chapter we consider the effects of including the third 
order terms in the constitutive equations. As pointed out by Bland 
(19691, we can no longer ignore the entropy since the effect of entropy 
in a shock wave is of third order in strain and hence in stress. For a 
special third order hyperelastic material, we show that the entropy jump 
across the shock is positive for the solutions obtained in Chapter V. A 
slightly more general third order material is then used to study the 
effects of third order terms on the geometry of shock wave curves. 
Finally, we consider the general third order hyperelastic materials. We 
show that there may be as many as three umbilic points on the (u,~) 
plane, one of which may be an umbilic line. This is interesting since 
it is not common to have an umbilic line. 
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A COHPARISOM BETWEEN VECTOR AND TENSOK TRANSFORMTIONS, 

AN APPLICATION IN CONTINUUM MECHANICS 

M. N. L. NARASIMHAN* and ED!JARD A. SAIBEL 
Engineering Sciences Division, U.S. Army Research Office, 
P. 0, Box 12211, Research Triangle Park, N.C. 27709-2211 

ABSTRACT. Boundary value problems involving a conformal transformation of 
simplyconnected regions when formulated by two colllmonly used methods, once 
using a vector approach and the other, a more general tensor approach, revcal 
an apparent disparity, the resolution of which leads to a condition which must 
be satisfied by the Jacobian. 

As illustrations, (1) the flow of a viscous incompressible fluid in an 
eccentric annulus and, (2) the torsion of a hollow shaft with a similar geo- 
metry, are considered and the conditions to be satisfied by the Jacobitiils i3r-e 
obtained. 

I. INTRODUCTION. Invariant formulations of physical laws and their 

mathematical modeling require the use of vector and/or tensor approaches. Ry 

a vector approach is meant,, in the present context, the use of tradition21 

vector calculus operations, typical under a Euclidean-space setting, without 

the explicit use of covariant differentiation and the Christoffel symbols, 

which characteristically belong to the domain of tensor calculus. By a tensor 

approach is meant the use of operations of covarisnt and intrinsic differentia- 

tions which ey.;jlicitly involve the Christoffel symbols defined in a Rienannian 

space. These Christoffel symbols are yeonlctry-dcpenclent quantities which, in 

general, are not tensors themselves except under the affine group of transfor- 

mations. Also, these symbols identically vanish in the case of Cartesian 

__--- --e-s. 
q'ermanent Addr-ess 
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Oregnrl State University 
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tensors since the latter are always defined relative to a Cartesian frame of 

reference. As a consequence of the use of the Riemannian space in the tensor 

approach, as opposed to that of the Euclidean space, the tensor derivatives 

which occur in the gradient, divergence and curl operations are involved with 

a more elaborate geometry acquired through the Christoffel symbols than the 

geometry involved in the various vector operations. It is the purpose here to 

examine more closely the consequences of this geometric structure of the 

tensor al)proacti, which produces extra terms. However, t!;,sc extra terms must 

vanish since the vector and tensor approaches must both produce the same 

olltcorllP. It is shown in this -paper that when the above techniques are applied 

,to a ;:)hysical problem involving a conformal mapping of a simply ccnnected 

region occupied by a material, there would result a useful gcomstric condition 

on the Jacobian of the conformal transformation. In physical problems 

involving materials with their complicated geometry requiring the use of 

curvilinear coordinate systems, the tensor approach results in numerous ter::ls 

whose occurrence poses considerable complexity. The above-mentioned 

constraining condition on the Jacobian helps readily identify those terms 

which must vanish, thus resulting in a substantial reduction in the complexity 

of the prob;cm. 

GJe present some applications of the above concept to both fluid and solid 

mechanics. 

670 



its invcrs~ arc, rc5pcctively, 
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where the last step in (2.3) follows from the previous one by thz use of the 

Carrchy-Ripmann equations 

ad/ax1 = ax2/ax2 , ad/ax2 = -a&ax1 . (2.4) 

The line element ds in the x1x2 space is related to that in the 

x1x2 s;~ace by ihe fol lowing. 

ds2 = (dx1)2 + (dx2)2 

= J-‘[(dX1)2 + (dX2)2 = gk-QdAkdhL , (2.5) 

ion aver repeated indices is implied where in the last step in (2.5), summat 

and we shall use this summation convent 

find that the metric tensor gk, and its 

ion in the sequel. Thus from (2.54, \r:e 

reciprocal g kl are given by 

911 -1 1 = + = J = g22 = 22 I p = 0 ak,R = , 0, fork # R . . 
9 g (2.6) 

Next introduce over the region D, a continuously differentiable, symmc- 

tric, second rank, linear tensor-valued function t, of another tensor-valued 

function d with similar properties, which in turn is a linear function of the 

gradient of a continuously differentiable vector field v as follows. 
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t_(h’,A2) = (aotrd_)i + 2alcj 

cl_(AW) = (l/Z) C(vy) + (vylTl 

where 3: =lJcntity tensor, a and 0 

ttlL space variables x1 and x2 

tensor dcnotcs its trJnsposc. 

a1 s arc sc;~lars indcpcndcnt of 

, and the superscript T over s. 

Eqs. (2.7) and (2.0) can altcrnst$liy bc exprcsscd in the co;ltyoncnt nota- 

tion for the given ortl~ogoml coordinate systm as 

tkL = (aotr$)gkL + 2uldke 

111 kn, 1 a v -I- 2a dka , 
0 ;"I9 1 

dkR = d,ll"g 
mk n& 

g 

= (1/2) (“k;,g” -,- “‘;kg% 

where the scllli-colon followed by an index rcprcscnts the Lovariant diffcrcn- 

tistion with respect to space variables and an underscore below an index 

indicates the suspension olr summtion over that index. For cxm~plc, in the 

AlA2 space ) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

673 



vk >v k 
- ;R = aAR k,R,m = 1, 2, l - -  

dl’ e (1/2)(v';2922 + v2;,cJ") . 

srconcl kind 

i on Q I in (2.11) dcnutes the Christoffcl sy111bo1 of the 

[XYNU and SCIIILD (1949)l which is related to that of the first 

kind, [lm,n], and is defined below. 

ag 
= (1/2Q"(en. + _ _ ag"ll, 39 9,111 

ax"' a2 
-1 , 
ax" 

llle last: stqJ on the r 

the trscc of (2.0) rind 

ing ighl:-hand side of (2.9)) follows irulcdiately Iry t3k 

notiny Lti.at 

(2.13) 

trd_ = V-y = 
fll 

V 
;m * 

(2.11) 

(2.12) 

(2.14) 

One of the principal objectives of -t,hc present investigation is to colllputc 

the divcrgcnce of t_ , by two indepcndcnt Ilic~thods, vectoriJ1 snd tcnsorial , 

in order to derive the condition to be satisfied by the Jacobian of .the confor- 

ml mapping (2.1). 
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(2.15) 

V.d = w (l/Z)[V(V99 + v2yl - 
(2. I 6) 

= (1/2)[2V(V4 - VxVxyl , 

so 111iJt (2.15) bcculllcs 

O*L = aoV(Vpv)I -t a,[ZV(V*v_) - VxVxv_] . (2.17) 
- 3 

r2 
= J[L(V(Z)/61 - ~b(l)/J31 , 

a;\’ ah2 

(2.10) 

(Z.19) 
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where 4.' 
.I 

is ttlc Kroncckcr de1 trr and i=l ,2, . The quanti tics ~(1) rind V(2) 

are ttlc physical cmlt~uncn1;s of y corresponding to A’ JIlLI 2 . Thus, V/C' 

obtain 

[Vet],(i) = 
3f, 

aOJ7(7 ) a5 3f2 "5 

ah' 
+ a,fi[2(--i) - a-!(-) + S+J)l 

ax aA2 

where the suffix V on the left-hand side denotes the Value ol' the 

component ofV;g.At~inc~ by usiny the vector approach and i=1,2 . 

Ttwsor At~t~roxtl 

tknlp ) mk. + tmyk } mk ’ 

I  (2.20) 

irlg t The divcrrjcncr, of L in the tensor approach is obtJinod by us 

fulluwing well known expression, SIX SYPICE and SCHILD (1349) 

.ilC 

(2.21) 

where [Vm:]" denotes the 1 th contravariant colllponcnt of v.t . Substituting 

(2.10) into (2.9) and the resulting expression into (2.21),W-arIJ then applying 

the well known Ricci's 1:hcorcm of tensor analysis [SYNGE and SCIIILD (1949)], 

9 ka =o I (2.22) 
; Ill 

for ~11 k, R, mcl III, one obtaiils 

(2.23) 
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where IkP', I~, and lrnR are all obtainable from the general expression 

Ii.1 = Jj * Jjg-- f “J;igii . (2.24) 

It may readily be identified that the bracketed expression in the coefficient 

of a1 in (2.23) is the covariant derivative and divergence of the tensor with 

respect to A~, , that is, 

,kQ = aIkQ 

;k r 
(2.25) 

For practical applications, one needs to obtain the physical components 

from the vector and tensor components. The latter are related to the former 

bi [see, TRUESDELL (1953, 1954) and ERICKSEN (1960)] 

vk = ‘.‘(k)/<k , Vk = dk-)qk , -- -- (2.26) 

tkQ = 
t(k)(Q)‘%% ’ tk& = 

k 
t(k)(.Q)%&j ’ tQ = t(k) (a) J 

gaa 
-- .f , 

G ’ 
-- 

where the indices enclosed in parentheses, as before, represent physical 

components. Thus, in tensor approach, the physical components of vat are 

obtained from (2.23) leading to 

[V-LIT(i) = croJJ- 
afl - + c1 lki;k& , i,k = 1,2 , 
ax’ 1 -A 

(2.27) 
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where the suffix T in the left-hand side of (2.27) denotes the value of the 

physical component of V-L obtained by using the tensor approach. 

Since the values of -the phys ing the ical components of V-t obtained by us 

required to be identical, wz must have vector and tensor approaches are from 

(2.20) and (2.27) 

[v-El,(i) afl _ - [V-&Iv(i) = ~~,[Ik~;~qi - C(2- - 
C” ax’ 

&af2 f 
’ aA2 

6$) I (2.28) 

= 0 , 

for the coefficients of n 
0' 

in the two terms on the left-hand side of (2.23) 

!lning identical automatically cancel out. The coefficient of o", in (2.23) 

can he evaluated by using (2.19) and (2.24)-(2.26). After somewhat lengthy 

but straightforward algebra, one readily finds that (2.28) finally reduces to 

where 

V2J - WJ)[ (a~/d)~ + (aJ/aG)+ = 0 I 

v2 w -- + a2 
a2 

a(Al)2 a(h2)2 ’ 

(2.29) 

(2.30) 

is the familiar Laplacian operator of the plane rectangular Cartesian system 

(A' A2) t * 

It can now be readily verified that the Jacobian of a transformation which 

is given to be conformal readily satisfies the condition (2.29). Conversely, 

by retracing the steps, one readily finds that if the Jacobian of an arbitrary 

plane coordinate transformation satisfies (2.29) then the latter must bc a 
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conformal one. Thus eq. (2.29) is an invariant geometric property of the 

Jacobian since it is independent of the choice of the conformal map F in (2.1). 

III. APPLICATIONS 

In this section, two physical examples are presented, one from fluid ctcchs- 

nits and another from solid mechanics, in order to illustrate the above pro- 

perty of the Jacobian of the conformal transformations involved. 

IIIa. Conformal mapping of the flow between eccentric rotating cylinders 

The flow between eccentric rotating cylinders is most conveniently studied 

by introducing a modified bipolar coordinate system, see WANNIER (19X)), \I000 

(1957). and DIPRIMA and STUART (1972). Here the main interest consists only 

in the conformal mapping in terms of the modified bipolar coordinate system 

and in the derivation of the condition which must be satisfied by the Jacobian 

of the transformation. The momentum equations for a laminar flow in terms of 

the stress field are also formulated. 

Consider the flow between two infinitely long circular cylinders of radii 

a and b (>a) with centers set a distance se apart. In order to insure that 

the cylinders do not touch we require aecb-a, which can be written 

where 

OL<l, (3.1) 

E = c/6 I 6 = (b -. a)/a . (3.2) 
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The parameter E is the eccentricity and the pwamctcr 6 , cJllCd the 

clearance ratio, is s tImsure of the ratio of the mcsn clcarsncc bctwccn the 

cylinders to the radius of tho inner cylinder. Let the polar coordinate 

system have its oriyin at the axis of the inner cylinder wiLh the ray e = o 

through the axis of the outer cylinder. 

Following Mood in further detail we introduce modified bipolx coordinates 

by rlleans of the confomal transformtion 

Z - a(r; + y)/(l + yr;) , z 0 X + iy = re 

where y is tl real constant given by. 

iB 
* r =E’+iq =pe i4 , (3..3) 

Y - (J/k){-[2 + a(1 - E)] + [I2 + 6(1 - E>12 - 4Eq1'21 (3.4) 

The coordinate curves p = constant are circlcs;'jn particular the inner snd 

outer cylinders Jrc given by' p = 1 and P p 6 , respcctivcly, where 

6 - ; 
l’+ 6 -I- Eb - y 
- (1 + 6)y - EYl5 (3.5) 

An advantage of the Illodificd bipolar coordinate system as compmd to the 

usual bipolar coordinate systm is that in the lialit E + 0 the P,$. 

coordinate systml reduces to the r,e coordinate system cxccpt for s. scale 

factor a. 

The Jacobian J, of the transformation (3.3) is given by 

J = (1 + 2ypcos+ + y2pq2/(1 - yq2 ) IYI f 1 - (3.6) 
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The ~1c11mt of arc ltlnl~th in two dimensions is 

(3.7) 

The stress cowponenl;s for an inccupressiblc viscous flu-id in IX~IIIS or t;tw 

iiludificd bipolar coordinstc systclll p,g arc ob~taincd fro111 the li~c~r con- 

slitulivc rclat~iuil having the fom (2.7) ml (2.8) witfj uotr(! = -b and 
I 

a, - u., wlwrc & *: stress tensor, d - dcforiustion rdtc- tcrlfor, y = vcluciLy 

vwtw, p = fluid pressure and U = viscosity cocfficicnt (dssu~~ccl lo bc ,irldl!- 

purdcrit of spal;isl coordinates). 

In tllc vector approach, v-t_ takes the fom (2.17). llw ll;t vp and vJI 

be the vclocil;y colllponcnts in the p and 4 JirccLions, rospectivcly. 

Tim tllc coqloncnt forn~s oVmt ~CCOIIIC, in the p and 4 directions, w 

(3;8) 

(3.9) 
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In the tensor spproxh, the stress tonstitutivc relation takes the form 

(2.9) and (2.10) with aOtrd, = - b , a, = p . The expressi 011s 

for P*$(d and rv*~l,w are obtained from (2.27). Thus, 

where 

av 
T, = Z$-(~-j .I. ---A?. c - 2mav 2"p Ji- 2vp aJ .I. -- 

-- - 

~6 ag ‘ap 2p2Jj- a+ SpJfi ap .a$ 

“0 a25 --- - av$ TIT 3 2 
2~47 apag P2 ag 2pGa4 ap 

(3.11) 

(3,12) 

(3.13) 

(3.14) 
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and a corrc?spondirlg expression for CV-E]~($) which is obtained in like mnncr. 

Dow, since llic vector and tensor c7pprodches lrlu5t produce idcnticJ1 rcsulI;s fur 

P*l ) the difference bctwccn (3.8) and (3.12) must vsnish as al50 the differ- 

ence hrtween (3.10) and tile corresponding exprc ssion for [V*t_l,($) must vsriish 

for ~11 possible arbitrary vcluciLy fields. Thus 

IWTb) - D*t_l,,(d = 0 ) 

yields the condition 

Silllilsrly, il; can 1~ readily verified that 

1 condition (3,lG). 1 

(3.17) 

sLr,lint Y 'his cstablishcs the con 

on the JacubiJn of tl~c conform1 Inslying given in (3.3). 

(3.15) 

For purpoc,cs of future applications, it is useful to fumiulatc hcrc tk 

mtietltuni equations in terns of the stress divergcncc coq)oncnLs crt~ploying the 

iikdiricd bipolar coordindlcs p,$ : 
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material of the cylintlcrs is made up of a linear honwgcncous ir;otropic elastic 

~olicl chsracterizcd by llooke's lsw with constant lsr~c coefficients, The {1:-i 9~ 

is twisted by couples 3pplicd 3t the ends of the prim. It 'Is well known, see 

TINO~III:tJKO and GOWIEli (1970), Lhat tlw dcformtion of ttlc twisted shdfi; 

consists (1) of rotstions of cross sections of the shaft Jnd (2) of w3.r;)-jr,g of 

llw cl-o',; scctiot~s J~~IJIII~~ to be the smlc for all cross wction5. In Ijrdtr- tu 

tlclincste the k/Jr-ping of the cross sections, a funclion known ss tlw tcjr5ion 

function is introduced. The determination of this function-is an integral 

part of the problem. The solution of this problcin is luost convcnicntly 

effected by introducing a conform1 transforniation in the pl~nc of a cross 

Section of the priw 

(3.22) 

where 2c is the distance between the poles of the bipolar CoorcfinJte systclg 

5 9 0 induced by (3.22). In the present study, WC xc only intcrcstcd in 

1.1~ l~rvpwty ulr lhu Jacobian of the above conform1 trmSformtio:I. 

The Jscubian of the transfomatiun is readily found using (2.2). 

J = $(cos~ + coshd2 > 0 - (3.23) 

The cuwcs r\ = cmstant are found to bc coaxial circles with equations 

X2 + (Y - c*cothn) 
2 = c2cosech2n , (3.2ll) 

wtli 1~ ttw curves 5 = constant arc circles given by 

;x + c-cot5)2 + y2 = c2cosec25 ) 
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and the cross section of the prism is bounded, say, by the eccentric circles 

n = rl, and II = n, ho) . 

The stress-strain relations and other pertinent formulas of linear clasti- 

city are all analogous to the formulas (2.15)-(2.17) where J is the 

stress tensor, d, is replaced by the strain tensor e , the vectory is replaced 

by ttlc displsccmcnt vector u and uO and CI, f arc respcctivcly, replaced by the 

Lame' coefficients Xe and I-I 
e ' 

Following the general method givci; in section 2 one obtains the exprcs- 

sions for stress divergence using the vector and tensor approaches. Thus 

(3.26) 

(3.27) 

where u 5 and u rl are the components of the displacement vector rclJtivc to the 

bipolar coordinate system 6 and ,-, . 
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In the tensor approach, 

at En 1 aJ 
+ag---t J ag Ed - 

au 
+ 2lq 2 - k u,$l I 

au 
kl 

1 aJ = fiu&$+ + --” 
au 

1 aJ 
2JaE n +$yyus~ 9 1 

au 

Substituting (3.30) - (3.32) into (3.2F), one obtains 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 
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where 

2 a2u 
E,=J.&$+Jd- 

am 

1 a25 1 aJ aull 
_ -u- - + 

1 aJ, aJ ---- 
2 marl 2 an ac 

--U 
25 36 arl rl 

+ --- ?“rl 1 aJ 
2 ag an ’ 

,a% 
E2 =2JF------ 4 3 aJ au?l 1 

2 a ac 
E + 1 aJ 

Z ‘n z4ao 
aJ 

naF;wn 

a2u 
5 

a% 
1 32J 

+ J w + J agaz + F uc m . 

Subtracting (3.26) from (3.331, one obtains 

D’t_lr&) - [“‘g”(c) ‘= 0 , 

which yields for all possible arbritary choices of u 
5 

V2J - f [(g)2 + (g)21 = 0 . 

In ,like manner; the difference-expression, 

rv’~lTh) - CV-$,h) = 0 , 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

also leads to the same identical condition as in (3.37) on the Jacobian. 

688 



IV. III scuss ION 

From the foregoing analysis, the following observations and conclusions 

can be effected regarding the properties of the Jacobian of the conformal 

transformations. 

(1) The condition satisfied by the Jacobian given by (2.29) is entirely 

independent of the mapping function of the conformal transformation and hence 

is invariant with respect to arbitrary choices of conformal maps. 

(2) Also, the condition on J is independent of all physical fields and 

parameters within the class of continuously differentiable, symmetric tensor- 

valued functions. 

Hence the constraint on the Jacobian is an invariant geometric condition 

which arises purely as a geometric property of the conformal transformation 

and its Jacobian. 

(3) Only the coefficient of, in (2.28) vanishes identically without 
0 

constraining J in any manner, but the coefficient ofa, involves the condition 

on J. The phenomenon can be accounted for by observing that the coefficient 

ofu 
0 

involves the first invariant, trd_ , and owing to this invariance, there 

occurs no change in the geometry of the region. On the other hand, the co- 

efficient ofa,, is indeed associated with a geometry change since it leads to a 

constraint on the Jacobian of the transformation causing such a change. If 

for example, v is the velocity vector of a fluid particle in a given region of 

flow, the cti<Fficient V(V-v) of u 
0 

does not involve any distortional 
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change since it rcprerents a dilatation rate. On the other hand, the coeffi- - 

cient of a, does represent a change of shape which means a change in 

geometry implying a constraining condition on the Jacobian of the transfor- 

mation causing the change of shape. 

Thus, the vector and tensor approaches yield identical results for the 

divergence of a second rank tensor t, of the type described earlier if and only 

if the invariant geometric condition (2.29) on the Jacobian of the conformal 

mapp.iliy in (2.1) is satisfied, 
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LARGE ELASTIC DEFORMATION OF A SHEET 
DUE TO FLUID LOAD 

EDWARD W. ROSS, JR. 
Mathematician 

US Army Natick Research & Development Center 
Natick, Massachusetts 01760-5017 

Abstract 

This paper analyzes the behavior of a tarpaulin, suspended at its ends when a 
puddle of water accumulates on it during a rainstorm. The tarpaulin is taken as 
a wide, thin sheet of linearly elastic material, without bending strength, 
initially horizontal and unstressed. It undergoes large, plane deformation, 
caused by the weight of the puddle, and is idealized as a string. The solution 
is found in closed form except for one boundary condition that has to be 
satisfied by trial and error and involving a numerical integration. The deformed 
sheet has the shape of a sine function beneath the load. Asymptotic formulas are 
derived in the small deformation limit, but most of these are sufficiently 
accurate to be useful for practical ranges of the parameters when the deforma- 
tions are large. 

1. Introduction 

Tents, tarpaulins and other forms of thin, flexible sheets are much used by 
the military for the shelter of troops and equipment. The theoretical behavior 
of such structures under conditions commonly met in the field, such as rain, snow 
and wind, has not been studied extensively. The present paper is an investiga- 
tion of one such situation, namely, when rain fails on a wide flat, horizontal 
sheet, fixed at the edges. Under these conditions the sheet sags and water 
accumulates in a puddle near the center. We analyze a simple version of this 
process, i.e. one-dimensional continuum (a string) under a liquid, gravity load 
that varies along the string in a manner consistent with the condition that the 
liqu-id surface be horizontal. The deformations are not required to be small, but 
a linearly elastic constitutive relation is assumed. Bending and dynamic effects 
are omitted. 

The behavior of a flexible string has been analyzed by many writers, going 
back to the times of Bernoulli and Love. Various aspects of the problem have 
been studied recently by Antman [l] and Pugsley [2] among others. Much effort 
has gone into the development of finite-element programs for the numerical solu- 
tion of nonlinear string problems, see, for example, Fried [3], Huddleston [41 
and Peyrot and Goulois [5]. The author is aware of only one paper dealing with a 
problem similar to the present one, Malcolm and Glockner [6], and that is re- 
stricted to small deformation. 
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2. Formulation 

A wide sheet is idealized as a one-dimensional continuum, a string, of length 
ZL, initially straight and horizontal, with its left end at x = y = 0 and mid- 
point at x = L, y = 0, see Figure 1. The sheet is deformed symmetrically about 
the mid-point by a puddle of liquid with a horizontal surface and variable depth. 
Variables X, Y are the deformed coordinates of the point on the string that is 
initially at (x, y). 

The kinematics of the deformed string are specified in terms of 0 , where 

tan 0 = dY/dX = slope of string (1) 

If dS is the deformed length of a small string element whose initial length was 

dx, then 

dS/dx = 1 t E =t(dX/dx12 + (dY/dx)211'2 (2) 

where E is the strain. Also 

dX/dx = (1 + e I case , dY/dx = (1 + E I sine (3) 

We do not assume that 1~1 <( &* 

The constitutive law for linear elasticity is used, 

T = tension in string = TOc (4) 

although it is conceivable that some progress could be made with a more general 
elastic law. 

Equilibrium of a string element in the X and Y directions implies 

dT/dx = -5. (dS/dx) sine 
(5) 

T de/dx = -F,(dS/dx) case 

where F, dS is the vertical upward force of the liquid on the deformed string- 

element of length dS. We assume that the water surface is a dis-tance below the 
initial position of the string (see Figure 21, and the wet portion of the string 
has initial coordinates 

If P is the density of the liquid, and U is the unit step function, we find 
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with the aid of (3) 

Fy dS/dx = v(Y + A ) (dX/dx) U (x - AL) 

= p(Y + A ) (1 + E ’ coseU (x - AL) 

The system of equations is then 

dT/dx = - u(Y +p 1 (1 + E ) sinecoseU (x - AL) 

Tde /dx = - (Y + A ) (1 + E ) cos2a u (x - AL) 

dY/dx = (1 tc ) sine 

dX/dx = (1 +. E) case 

These have to be solved with the boundary conditions 

X = Y =Oatx=O 

8 =O,X=Latx=L 

Notice that 

y=-A at x = AL 

because of the definitions. 

The equations may be put in dimensionless form by means of the 
transformations 

z = x/L,5 3X/L, -n = Y/L, 6 =PIL, E = T/T,, 

p = L(p/T )1'2 0 

after which they may be written 

dE ldz =-p 2 ( I-I t a) (1 + E. 1 sine case U(z - A)1 
. 

de ldz = -p2,-' (n.+s) (1 +E) CO38 u(z - A) 

dn ldz = (1 + E ) sine 

d5 /dz q (7 t E ) case 

with boundary conditions 

5 =n=Oatz=O 

8 =o, r;=latz=l 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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and the intermediate condition 

0 = -6 atz=A (16) 

The forcing function in this problem is the total load of liquid, W, in 
the region 02 z(= 1, which is given by 

w= -T sine],=0 

or, in non-dimensional terms 

W/To 3 X = '-E(O)sine(O) (17) 

3. Solution 

An almost-complete solution to the problem in closed form is obtainable by 
elementary means. The solution in the dry (i.e. unwetted) region 0 zz :A can 
be written by inspection, and the solution in Asz 21 which joins smoothly with 
that in OlzrA can be found as a function of e (which is monotone in AL ~2 -1) 
by dividing pairs of the equations. 

In the dry region the solution is easily seen to be 

E = E(O) = E. , e=e = e(0) 0 (18) 
5 = (l+EO).ZCOSe 0 ' n = (ltEO)zsine 0 

Then at z = A we have 

E=E 0 ' e 0’ = e E = (ltE,)Acose 0 (19) 

n = -6 = (l+E,)Asine 0 

The solution for tZA is found as follows. 
we get 

Dividing Equation (10) by (111, 

E-'dE/de = tane 

which has the solution 

E = Eocoseosece (201 
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This shows that E 2 E as expected. Next, if we divide (11 
that 0 ' 

Ede/dtj = -p2(tItA)ctnecose 

using (20), this can be rewritten as 

sec2etane + Q-'p2(n+s)dn/do = 0 

and has the solution 

Q = -6 - Q 1'2p-1H(e,00) 

where 

Q = E~COSO~ 

H = - tanoO'(l - tan2e/tan2eo) l/2 20 

1 by (12) we see 

(21) 

(22) 

(23) 

If (13) is divided by (ll), the resulting equation can be written 

dg/de = -Q1'2p-'H-'sec2e 

which has the solution 

5 = A(Q t coseo) + Q1’2~-1$b,eo) 

ij(e,e,) = d2 - sin-'(tane/taneo) 

(24) 

(25) 4 

At this point we have obtained solutions for E,~I andE as functions of 0 
which satisfy the junction conditions at z = A. It still remains to find the 
relation between e and z. To do this, we must solve (ll),which leads to 

z = A + Qli2$ 

J 
e (Q t cost2111H(t)J-1sec2tdt 

t=eO (26) 

parts and using q(e,,e,) = 0 , we obtain Integrating by 

z=A + 45-l [(Q t case)-‘$[e,eo) - J 
8 

(Q + cost)-2$(t,eJsintdtl 

t=e 
0 

The integrals in Equations (26) and (27) cannot be evaluated 
found by numer ical integration. In doing so, the form I261 i 
because of the singularity in the integrand arising from the 

”  

(27) 

The singularity is merely in thb derivative of the integrand 

exactly but may be 
s inconvenient 
zero of H at e = e 0 - 

of (27) and that 
integral was evaluated successfully by the IMSL subroutine DCADRE. 
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The deformed shape of the string can be obtained in closed form by-elimina- 
ting e between (21) and (24), which leads to the relation 

r( = -6 -I+ Q1'2p~1taneosin[pQ*1'21C. - A(Q f CCS~,,))] (28) 

Thus the wetted part of the sheet is shaped like a portion of a sine curve, 

The parameters 00 and %(or, equivalently, Q) have yet to be evaluated. 
For this purpose we use the boundary conditions (15) in the form 5 = z q 1 at 
FI = 0. These lead to the equations 

A(Q + coseo) •t Q 'q',/2 - ' = 0 (29) 

A+Q '/2p-'[(' t Q)-'n/2 - 1 ] = ' 
X (30) 

where 

J 0 
I, =- (Q + cost)-2$(t,e0)sintdt 

t=e 0 
(31) 

Taking A and P as given quantities, these equations were solved for e,using the 

IMSL version of the Brent algorithm. If e. is assumed, Equation (29) is merely 

quadratic in Q and can be solved easily. Then the function on the left of (30) 

is evaluated for these values of e0 and Q, and the Brent algorithm generates 

successive values of-e0 until. Equation (30) is satisfied with sufficient 

accuracy. 

When the solution for e0 has been obtained, the quantities 

E o = Qseceo 

6 = -(l t cO)AsineO 

x = -Edsine 

n(l) = -& t"Q1'2p-1tane~0 
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can be found. The relation between z and e is expressed by Equation (27), and 
Equations (21) and (24) then give the deformed positions of points parametri- 
tally in terms of their initial locations. 

In applying these formulas V& shall usually regardA as theload-intensity and p 
as a parameter characteristic of the material-geometrical situation. The forms 
of the solutions are such that for most variables of interest the dependence on X 
and p can only be obtained implicitly. However, it is informative to examine the 
small-deflection limit, for which explicit formulas can be found. This deriva- 
tion requires some care and is given in the Appendix. The results are as x + n 

1 - A * 2-“$~/(2p)]$‘~ ’ l.399p-1A1’3 

l/3 6 - -0 * -l-l(l) * (2x) 1'3 ' 1 . 260x 
0 

E o _ 9 .m 2-l/3,2/3 z o,7g4h2/: 

. . 
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4, Results and Discussi,on 

Although the relation between initial and deformed positions of particles on 

the sheet is of some interest, we are primarily concerned with finding the 

effects of the parameters x and P rln the quantities A (which specifies the half- 

length of the puddle), B0 (maximum slope angle), cI) (maximum strain or dimension- 

less stress), ~(1) (dimensionless central deflection) and 6 (dimensionless 

displacement of the puddle surface). Typical values for the physical parameters 

in anticipated applications of these results are 

L = 3 meters, JJ = 1,000 Kg/meter3, To = 360 newton/mm 

Since all calculations are done per unit sheet-width perpendicular to the plane 

of motion, a typical value for P is 

P = L(p/To)"2 II l/2 l 

First, for illustrative purposes we display in Figure 3 two examples of the 

deformed shape (when p = l/2) of the sheet, for A =, 0.4,. X = .01256, and A= 0.8, 

'h = ,387 x lD-'. The actual weights of water on these sheets are 452 and 13.9 

kilograms per meter of width, respectively. The more highly stressed of the 

two cases (A = 0.4) suffers a maximum strain E = 0.039. It is thought that this 0 
sheet-material tears at about E = 0.1, consequently failure is not expected in 

either case. Comparing the initial and deformed positions of points in these 

graphs, we observe that the x-displacements are much smaller than the y-displace- 

ments. 

Figures 4 through 8 show plots of E ,e 0 0' n(l) , A and 6 as functions of 1 

for p = .2, .5 and .8. These graphs imply two main conclusions. The first, 



perhaps rather simple, is that for any p there is a maximum total liquid weight 

that the deformed sheet can carry. For, when the entire sheet is wetted, A = 6 

= 0, any additional liquid will simply overflow at the ends df the sheet. These 

maxima can be seen in Figure 7 as the values of x for which A = 0. The relation- 

ship between this maximum, or fully-wetted, load, xf , and p is exhibited in 

Figure 9. This shows that Xf increases with p and, for example, x <= xf 5 0.3 when 

P 2 0.8. 

The second main point, visible in Figures 4, 5, and 6, is that P does not 

have much effect on the relations between X and sO,eO and rl(l) in the range 

.2 <= p 2 0.8. This agrees with the asymptotic behaviors of ~.,e 0 0 and, q(l) for 

small deflections, Equations (33) and (341, which show no effect of P 

however, that A and 6 are affected by ,Y ., Indeed, Equation (32) and Fi 

indicate that p affects the relation between A and X for all relevant 
, 

i.e. for 0 5 X 5 Xf, Equation (33) asserts that the relation between 6 
> 

Observe, 

gure 7 

X values, 

and A, is 
-4 

not influenced by p when x + O,, but the effect of P is felt when X = 1 x 10 ., 

according to Figure 8. 
.  

Systematic comparisons between the asymptotic formulas (32), (33) and. (34) 

and Figures 4 through 8 show that the asymptotic formulas'for E~,E~, n(l) and 

A are almost good enough to be used throughout the range $0.8. The asymptotic 

formulas are of course most accurate for small :J , but the graphs show that their 

errors are not too bad even when,1 is fairly large, say x = 0(10-l). 

In particular, the estimate 

E = .794A2’3 
0 

701 



is quite good even near ,A = 1 and can almost be regarded as a universal formula 

for p 2 0.8. The asymptotic predictions of e 0 ' o(l) and A are less accurate 

but still usable as rough estimates for x = 0(1o-‘) . The simple formula (33) 

for 6. is accurate only for very small X and completely misses the dependence of 6 

We present next an elementary, somewhat contrived, application of these 

results, namely to estimate the rain conditions under which a sheet with T = 36 

newton/cm, width = 6 meters, i,e. L = 3 meters, will break. We assume that the 

sheet tears when E = 0.1. The asymptotic formulas tell us that tearing occurs 

when 

x = (.1/.794)3'2 = .0447 

W = XT 0 = l,609kg/m 

Hence the volume of water per meter of sheet width is 1.609 rn: and so tearing 

occurs when the average depth of water on the sheet is 1.609/3 = .536 m (about 21 

inches). 

If rain falls at the rate of ,025 m (an inch) per hour, the sheet will tear 

in about 21 hours. Just before the sheet tears we have from (33) that 

VI(l) = -e. = 1.260(.0447)"' = .447 . 

Since P = 0.5, Equation (32) gives 

A=1 - 1.399 (.0447)"3 /.5 = l Ol. 

The relative accuracy of this estimate for A is rather poor since the true value 

is A = .09. Despite this, the approximation is qualitatively correct in 

asserting that the sheet is almost cpmpletely engulfed when it tears.' ,The depth 

of water is about 1.3 meters (4 feet) in the center of the puddle. 
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5. Conclusions 

We conclude that this solution provides quite a bit of information about the 
behavior of wide flexible sheets during a rainstorm. The solution may also be 
useful,in assessing the quality of finite-element codes that purport to solve 
geometrically nonlinear elastic problems. There is not at present a wide range 
of such solutions for comparison with finite-element results. The solution given 
here is not ideal for that purpose (some error is inherent in the numerical in- 
tegration and solution by the Brent algorithm) but is probably good enough to 
provide a meaningful standard. 

The example suggests that, if the assumed parameters are typical of those in 
common use, tearing will occur only in a phenomenally heavy or prolonged rain- 
storm. However, lesser storms may cause unacceptably large deflections at the 
center of the sheet. 

With minor modifications this solution can be employed to study the more 
realistic case where the edges of the sheet are attached to the ends of elastic 
columns. The solution in that case is more complicated than here, but not as 
much so as might be expected, for the following reason. In the present problem 
the sheet has fixed ends, and the only inextensional solution is trivial. When 
the ends are allowed to move, a nontrivial inextensional solution exists and is 
not much more difficult to find than the present one. 
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Append ix 

The abjective is to find the asytotic behavior as A -t I and 8_ + 0 of the 
solutions to 

A(Q + ~0~8~) + Q “2&r/2 - 1 p 0 

A + Q"2p-'[(l + Q)-'IT/~ - I ] - 1 = 0 
X 

where 

J 0 TX = 
eo 

$(t,e*) (Q + cost)-2sintdt 

‘Y(t,eo) = (n/2) - sin-’ (tant/taneO) 

We start by estimating Ix. Since B0 is small and negat 

” 

(A.1) 

(A.2) 

Q + cost = 1 + Q -t2/2 : 1 + Q 

sint 2 tant = t I sin8 
0 

? e. 

[ (71/2) - sin-' (t/eo)Jtdt J 0 

Jx 
: (l+Q)-2 

0. 

2 (l+Q)-2[-(7rOi/4) - 
I 

' tsin-’ 

0O 

(t/eo)dt 

and 

I 
9 
eO 

tsin-‘(t/80)dt = -~r0,2(8 I 

Thus we find 

I = - (l+Q) 
-2 

X 
aei/8 . 

(A.31 

(A,41 

ve so is t, hence 

(A.5) 

If the t2/2 term were retained in equation (A.51, a neglig 
estimation would result. 

Now we define 

Y = 1 -AzO, Q 
l/2 = uB > 0, CI - Pp/lT 

ble correct ion to th iS 

(A-6) 

(A.7) 
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and use the approximation 

COSO : 1 
0 

- $2 

in equation (A.1) to obtain 

ep2 : Lb - d/(1 - Y)3 + a2B2 

It is evident now that as 13~ + 0 and A -+ 1, i.e. 
We define 

v Y + 0. we must have B + 0. 

4=6-r (A.!) 

where [$I << B,y, and so can write 

(A.91 

We do not yet know the relative magnitudes of $-and B2 To clar is we 
observe that (A.2) 

‘ify th 
can be written with the aid of (A-6) and (A.7) as 

-y(l + a6j2 + e(1 + clB) + Be;/4 = 0 . 

Using equations (A.8) and (A.9) leads eventually to 

2(+ - 2y&2 + cw) -I- Bc$/ (1 - y) = 0 

which is solved for 4 to obtain 

9 - a2y3, B - y(1 -I- 012y2) 

Q- a2y2(1 + 20152) 

Combining this with (A.9), the estimate 

ep2 - a2y2 + a2y3/( 1 - y) ? .2y* 

0 + p 
0 CcY 

is found. 

The other quantities of interest are calculated now, as follows: 

% 
= Q/cod - .*y2 

0 

x = -Eos in0 
0 

_ 21/2a3y3 

6 = -A(1 + E,)sinBc - 2 l ‘2ay 

n(1) = -6 + Q1’2p-1tan8 
0 -, ,-? “2ay 

(A. 10) 
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When these formulas are re-expressed in terms of X , Equations (32), (33) and 

(34) are obtained. 

Figure Captions 

Figure 1: Sketch of the Deformed String 

Figure 2: Load on an Element of the Deformed String 

Figure 3: Deformed Shapes of the String fur p = l/Z. Initial and Deformed 

Positions for A = 0.4 (0) and A = 0.8. (x). 

Figure 4: Dependence of Strain, Ed, on Total Weight,1 , for p = 0.2, (01, 0.5 

(x) and 0.8 (A). 

Figure 5: Dependence of Angle,e. , on Total Weight, x , for p = 0.2, (01, 0.5 
0 

(x) and 0.8 (A!. 

Figure 6: Dependence of Central Deflection, $l), on Total Weight, A , for p = 

= 0.2, (01, 0.5 (x) and 0.8 (A). 

, Figure 7: Dependence of Puddle Edge Position, A, on Total Weight, 1 , for p = 

0.2 (01, 0.5 (x) and 0.8 (A). 

Figure 8: Dependence of Puddle-Surface Displacement, 6. , on Total Weight, A, , 

for P = 0.2 (01, 0.5 (x1 and 0.8 (A). 

Figure 9: Dependence of maximum Load xfon Parameter p . 
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Figure 1: Sketch of the Deformed String 
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RELATIVISTIC WAVE EQUATIONS FOR SOLIDS 
AND LOW TEMPERATURE QUANTUM SYSTEMS 

Richard A. Weiss 
Environmental Systems Division 

U. S. Army Engineer Waterways Experiment Station 
Vicksburg, Mississippi 39180-0631 

ABSTRACT. The local scale invariance of relativistic thermodynamics is 
established and a set of coupled relativistic wave equations is developed that 
describe the propagation of small amplitude waves in solids and low temperature 
interacting Fermi and Bose systems. A first order expansion calculation is 
done in order to obtain the wave equations from a basic set of material equa- 
tions. The wave equations determine the relativistic energy density and 
Griineisen parameter for small amplitude mechanical or electromagnetic waves. 
In turn, the wave amplitude and phase velocity are obta:ined from the energy 
density and Grllneisen parameter of the waves. At low pressures the wave 
amplitudes are determined to be not greatly different from those predicted by 
a nonrelativistic calculation, but at high pressures, such as those expected 
to occur under nuclear blast loading or in stellar compact objects, the cal- 
culated relativistic wave amplitudes can be considerably larger than the 
corresponding nonrelativistic predictions. 

1. INTRODUCTION. Local gauge invariance has become a powerful tool in 
modern physics.1 It has unified the electromagnetic force with the weak 
nuclear force, and possibly also with the strong nuclear force, into a single 
entity described by local non-Abelian gauge invariance of the fields.2 The 
requirement of local gauge invariance necessitates the introduction of new 
fields which obey sets of coupled differential equations which lead to uni- 
fication of the fields in a natural way. The gauge transformaS~~psw~~~~e- 
spond to generalized rotations of the fields in the manner e 
9(x) depends on space and time for local gauge invariance. 

A theory of relativistic thermodynamics has been developed for solids 
and quantum liquids which is based on a set of coupled differential equations 
for the zero temperature values of the GrUneisen parameter and pressure.3 
These coupled equations are derived from a relativistic trace equation that 
has been gauged (scaled) by the introduction of the Griineisen parameter. The 
fact that an additional field (the Gtineisen parameter) has to be considered 
in order to calculate the relativistic pressure suggests an invariance of the 
system similar to local gauge invariance. Electromagnetism and the electro- 
weak interactions are examples of fields that are described by local gauge 
theories in which the gauging is accomplished by the introduction of addi- 
tional fields. The invariance of relativistic thermodynamics refers to 
different values of pressure and energy density; and, in analogy to a local 
gauge transformation, is manifested through a real exponential e -9 (V,T) corre- 
sponding to changes of the local scale of the pressure and energy density of 
a system.4 This paper shows that relativistic thermodynamics is scale in- 
variant, and that the local symmetry group for relativistic thermodynamics 
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is the unimodular group of scale transformations e -6(V,T) . 

The trace equation of relativistic thermodynamics is written as3 

' + PaV 
(1) 

where U = relativistic internal energy, P = relativistic pressure, T = absolute 
temperature, V = volume per mole of substance, and Ua and Pa = corresponding 
nonrelativistic internal energy and pressure. Throughout this paper the 
index rralc will refer to nonrelativistic calculations. It has been shown that 
for a physical system described by U = U, f UjTj+ .i* and P = PO + P*Tj + l *a 
(such as the high temperature Mie-Gruneisen state equation with j = i and the 
Debye state equation with j = 4) the trace equation (1) is equivalent to the 
following set of coupled differential equations3 

3v2 
d2P dP du 
-2 + 3(3 + y,)v $ + C3(Yo f v $1 + 41p. = p,” 
dV2 

hop0 
0 

-K 
0 

jYo”pi 
PE - Kz 

where the internal energy coefficients are given by5 

!G V 
U. = exp (j - 1) 1 C (v 

a 
0 

J 
- Y,> F 1 

(2) 

(3) 

(4) 

and where PO, K, and y. = zero temperature values of the relativistic pressure, 
incompressibility ( -VdP,/dV) and Grtineisen parameter respectively, and PO", KE 
and yg are the corresponding nonrelativistic values of these quantitfes. Eqs. 
(2) and (3) are a set of coupled nonlinear differential equations for P, and 

k' 
The zero temperature value of the Griineisen parameter is the T = 0 limit 

the Griineisen parameter defined as5 

,,A!- ap ( > cv aT v (5) 

which for a temperature dependent Debye temperature becomes,6r7 
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Y= (6) 

where CV = heat capacity and 0D = Debye temperature. The Debye temperature 
is generally a function of V and T. Equation (6) gives the general nonrel- 
ativistic expression for the Griineisen parameter. 

Wave propagation in matter is complicated by the fact that matter is a 
thermodynamic system which is described by physical quantities such as the 
heat capacity and Griineisen parameter.5,8 Further complications arise be- 
cause matter is often prestressed as for instance by gravitation in a star 
or planet.g Various assumptions are used to calculate the phase velocity and 
wave amplitude in terms of the thermodynamic state equation of a material 
medium, but no completely general procedure exists for calculating these 
quantities. This paper develops a relativistic calculation of the phase 
velocity and amplitude for mechanical waves in thermodynamic media. 

Specifically, this paper develops a set of coupled first order relativ- 
istic equations that govern small amplitude wave propagation in thermodynamic 
systems such as solids and low temperature Fermi and Bose liquids. These 
equations determine the relativistic energy density and Grtineisen parameter 
for mechanical or electromagnetic waves. The phase velocity and wave ampli- 
tude can be obtained from the energy density and Grtineisen parameter for the 
waves, and are expressed in terms of the material parameters of the thermo- 
dynamic ground state of the material system. 

The wave equations are developed from a small amplitude perturbation 
expansion of a set of relativistic material equations. This insures that 
the derived wave equations are intimately connected to the material parameters 
of the thermodynamic medium. A complicated set of nonlinear wave equations 
are derived whose complete solution requires numerical computer techniques, 
however, an order of magnitude approximate solution is given for the case of 
elastic waves in solids. The procedure followed in this paper is to first 
review local scale invariance, then the relativistic g-round state calcula- 
tion, and then the relativistic wave equations that govern excitations in a 
thermal medium. 

2. LOCAL SCALE INVARIANCE. The fact that an additional field ye(V) 
must be introduced in order to calculate the zero temperature pressure P,(V) 
as in Eqs. (2) and (3) suggests that the relativistic trace equation (1) may 
be invariant under a local scale transformation of the form exp [-$(V,T)I. 
The scale invariance of Eq. (1) will now be demonstrated. To do this the 
following elementary thermodynamic relationships are used3 
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G),, = G7" - (P _" KT' (%)TM, 

d&,qu = P - KT - YCT($) 
- p1 

v 

where KT = -V(aP/aV)T = isothermal incompressibility. Using Eqs. (7) and 
(8) allows Eq. (1) to be written as 

l+T&-bV& )U-3V(l+y+V&T&)P 

a 1 + T 5 - baV 

where 

(7) 

(8) 

(9) 

TGP/aTjv 

b= (P-K+ (10) 

(11) 

Note that the Griineisen parameter y defined in equation (5) is not independ- 
ent of the quantity b defined by equation (10). Eq. (9) can be rewritten in 
a more symmetrical form by writing U = EV, where E = energy density, with 
the result 

1 a -bfTE -b"&)E-3(1+-y++-yT$)P (12) 

= 1 - ba f T & - baV & Ea 
) 

Eq. (12) can be written as 

(H1 - wp - 3(H2 - W2)P = (H; - WY) Ea (13) 

where 

a a H1=TE-bVG (14) 
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(I' - +Ea e-Jla = e+=(,; - W;)Ea (24) 

Equations (22) through (24) allows the trace equation (13) to be written as 

eJI(Hi - Wi)e-‘E - 3e'(H; - id;) e-'P = e' 
a 

(I(' - Wy')e -QaEa 
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(25) 

H2 
a a 

=V=-yT= (15) 

w1 -b-l (16) 

w2 = -y - 1 (17) 

Eq. (13) is in a form suitable for demonstrating local scale invariance. 

Introduce the following scale transformations E + E’ = Ee-a and 
p+p'= Pe-4 where Jo and $ are functions of V and T. Also for the nonrela- 

tivistic energy density introduce the scale transformation Ea + Eat= Eae-$= 

where ga is also a function of V and T. Under these scale transformations 
y and b assume new values y -+ y' and b + b' , and equations (14) through (17) 
become 

a a H; = Tz - b'V= (18) 

H; = v 6 - y’T & (19) 

Wi = b' - 1 (20) 

“; = -y’ - l (21) 

where b' and y' are to be determined by the local scale invariance conditions. 
The local scale invariant conditions for the operators i; equation (13) are 
written in a manner similar to local gauge invariance as 

(Hi - Wi)Ee -9 = e-'(H1 - Wl)E (22) 

‘H; - W;)Pe -4 = e-'(H2 - W2P (23) 



so that the following operator equations hold 

HI - Wt = e 4J (Hi - Wi)e -JI 
(26) 

H2 - W2 = e'(H; - W;)e -4 
(27) 

The values of b' and y' are obtained as follows. Placing equations (14) 
through (21) into the scale invariant conditions given by equations (22) and 
(23) yields the following results 

b' =b+ 
EbVj$T$ 

( > 

E+vZ 
9V 

- EVS 
aV 

(28) 

Y' (29) 

NOW since b' and Y' are associated E' and P' respectively, while b and y 
are associated with E and P respectively, one can write 

db b' = b +&Et - E) + l *a 

y’ = y + $(Pf - P) + l *. 

(30) 

(31) 

while from E’ = Ee -@ andP' =Pe -4 it follows that 

E' - E = E(e-’ - 1) (32) 

P' - P = P(e -4 - 1) (33) 

so that combining equations (28) through (33) yields the following differen- 
tial equations for $ and 9, 

db e’ 
T*+,tJ~ 

aT av -E 
dE e’ - 1 aE E+vTv - &v$$ 
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(35) 

Therefore it is always possible to find a @ and 4 such that the trace equa- 
tion (13) is locally scale invariant. 

Consider now the infinitesimal iocal scale transformation where $ and 9 
are small quantities, then equations (32) and (33) become 

E’ - E = -$E _ (36) 

P' - p= -$P ,(37) 

and equations (34) and (35) become 

T w --- 
db -= $ aT 

b!?!k 
$ av 

dE E++-Ev* 
av av 

dy -= 
dp P - T 2 + PT &f! 

aT aT 

(38) 

(39) 

Therefore it is always possible to :Ind a $ and $ such that the trace equa- 
tion (13) is invariant under an infi;l:tesimal local scale transformation. 
Note that for the case when b and y x-e slowly varying functions, equations 
(38) and (39) yield 

,all, 8,. 
:'IT b = ---i-A 

._ ah 

i 3v 

(40) 

It turns out that the solutions to equations (40) and (41) are very simple. 
Choose 3, and 4 as follows 



IJ =pv 
pivi 

eD =- 4 T (43) 

1) it where PiVi = an initial value of PV. Then from equations (40) and (4 
follows that 

TaP 

b = (P -YT) 

V aeD 
- T av 

Y= 
T aeD 1 - - $ aT 

(42) 

(44) 

(45) 

Equation (44) is just the basic definition of the quantity b given in equa- 
tion (lo), while equation (45) is just the standard result for the Griineisen 
parameter given in equation (6). Therefore the values of $ and $ given by 
equations (42) and (43) are the proper potential functions for the infini- 
tesimal local scale transformation of relativistic thermodynamics for the 
case of slowly varying values of b and y. The explicit determination of $ 
and .$ for the general case of local scale invariance given by equations‘(34) 
and (35) is much more complicated, and has not been accomplished. 

The scale invariance of the trace equations (1) or (9) requires the 
presence of the parameters b and y, although as mentioned earlier, b and y 
are not independent. This means that for the zero-temperature case, the 
zero-temperature values of the pressure and the Griineisen parameter must be 
determined simultaneously as shown in equations (2) and (3). The establish- 
ment of local scale invariance of the relativistic trace equation gives one 
confidence to use equations (2) and (3) to determine the equations govern- 
ing the propagation of small amplitude waves in a thermodynamic medium. But 
first the ground state of the thermodynamic -system must be ,described. 

3. GROUND STATE. The nonrelativistic state equation of the ground 
state of a thermal system is assumed to have the following form5 

Ea = Ea + Ea$ + . . . 
0 j 

Pa = Pa + PaTj + . . . 
0 j 
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where Ea and Pa = nonrelativistic energy density and pressure respectively, 
Eg and Ps =nonrelativistic zero-temperature values of the energy density and 
pressure respectively, Ea and Pa = nonrelativistic thermal coefficients for 
the energy density and p?essure'respectively, T = absolute temperature of the 
system (OK), and j = numerical index having values characteristic of the type 
of physical system. Ty ical examples of systems that are described by equa- 
tions (46) and (47) are g 

j=l high temperature solid 
j=2 low temperature Fermi gas 
j = 5/2 low temperature molecular Bose gas 
j=4 low temperature solid 

A commonly used descriptor of the thermal state equations given by equa- 
tions (46) and (47) is the nonrelativistic zero-temperature value of the 
Griineisen parameter that is defined by5 

(48) 

except for j = 1. Here yg = nonrelativistic zero-temperature value of the 
Griineisen parameter, and V = volume of the material system. When j - 1 , 
y; = 213 . 

The corresponding relativistic state equations will be written as 

E = E. + Ej~j + l . . (49) 

P = PO + PjTJ + ‘9 l (50) 

P. 
yo=:+ 

j 
& < + (VEj) 

(51) 

except for j = 1 , when y. = 213 , and where E, and PO = relativistic zero- 
temperature energy density and pressure respectively, Ej and Pj = relativis- 
tic thermal coefficients for the energy density and pressure respectively, 
and Y, = relativistic zero-temperature Grlineisen parameter. 

The relativistic values of the zero-temperature energy density and 
Griineisen parameter for the ground state thermodynamic. system are given by 
the solution of the following two coupled equations3 

E. - 3k1 + yo)Po - Ko] = EE (521 
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where 

E l+j+p 
hop0 

j 
-K 

0 0 

n = l/V = reciprocal volume 

K dPO 

0 -dn= relativistic zero-temperature bulk modulus 

dPt 
$=n--I 

dn nonrelativistic zero-temperature bulk modulus 

Prom equations (48) through (51) it follows that3 

Ej = nCj exp [ - (j-l) 1" y, $ I 

Ey = n$ exp [ - (j-1) I" Y, $ 3 

so that 

E. c. 
-l = L exp C - (j-l) /" (Y, - 
E; c; 

Yt) + 1 

(53) 

(55) 

(56) 

When y. = Yz , it must follow that Ej = Ea SO that quite generally Cj = C? . 
Combining equation (56) with equation (53 j shows that equations (52) and i 53) 
are two nonlinear coupled equations for determining E, and Y, in terms of the 
known values of Eg and yt . These equations give the recipe for calculating 
the relativistic ground state of a thermal system in terms of the correspond- 
ing nonrelativistic description of the ground state. The calculation of the 
relativistic excited states will now be given. 

4. EXCITATIONS. The excitations in thermal media that are considered 
in this paper are mechanical radiation and electromagnetic waves. Only 
waves of small amplitude are treated. The thermal state equations of the 
radiation are assumed to have a form similar to the ground state equations 
(46), (47), (49) and (50) and are written as 

P; = Ptr + Pa T' 
jr 

+ *a* 

(57) 

(58) 
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and 

Er = Ear f Ej r~j + l - - (59) 

= * *or r + PjrT7 + l ** 

where 

Ezr and Pa 
Or 

= nonrelativistic zero-temperature radiation energy 
density and pressure respectively 

Ea 
jr 

and P a 
jr 

= nonrelativistic thermal coefficients for the 
radiation energy density and pressure respectively 
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E 
OK 

and Par = relativistic zero-temperature radiation energy 
density and pressure respectively 

E 
jr 

and P 
jr 

= relativistic thermal coefficients for the radiation 
energy density and pressure respectively 

It will be shown in this paper that the relativistic state equations for 
radiation given in equations (59) and (60) must have nonzero thermal compo- 
nents even when the corresponding nonrelativistic thermal components that 
appear in equations (57) and (58) are taken to be zero. Finally, the radia- 
tion terms are assumed to be much smaller than the ground state terms, i.e., 
Er << E and Pr << P . 

When radiation is present in a system whose ground state is described 
by PO , K, , and Y, , these three parameters become PO + PO, , K, + K,r , 

and y. + 6or , where K 
8' 

= relativistic zero-temperature incompressibility 
associated with the ra iation, and B,, = incremental change in the relativ- 
istic Griineisen parameter of the system due to the presence of radiation. 
The bulk modulus (incompressibility) associated with the radiation is given 
bY 

K dPor 
or ="dn (61) 

The increment in the zero-temperature Griineisen parameter of the system due 
to the presence of small amplitude radiation is obtained from the defining 
equation (51) by noting that when radiation is present this equation becomes 

P. +P.r P +p. 
Y, + &or = 

Ei + Eir = ES il ,. 5) 
(62) 



Expanding the denominator in equation (62), keeping only first order terms, 
and finally subtracting equation (51) gives 

6 - Ejr :jr _ 2 
or E 

j ( > jr j 
(63) 

E 
= $ (Yor - Y,) 

j 

where yor = zero-temperature Griineisen parameter for the radiation field 
itself, and is defined by 

(64) 

The corresponding expressions for the nonrelativistic bulk modulus and 
Griineisen parameters associated with the radiation field in matter are 

Ka dPZr 
or =%T-- (65) 

a 

Aa or 
= 5 ya - ya 

( E; Or ’ ) 
(66) 

a 

'Er 
= 'jr 

ETr 

(67) 

From equations (63) and (66) it follows that if E-, and E’f are small quan- 
tities then so also are 6or and 62, . However, t fi 2' e radia ion Gruneisen para- 

meters themselves, y,r and yz, , are generally not small quantities being 
the ratio of two small quantities, and at low pressures have the value l/3 
for isotropic radiation.5 The quantities Ear, Par, Kor, Ejr, Pjr, and 6or , 
and their nonrelativistic analogs, are taken to be small quantities. Final- 
ly, from equation (64) and the law of energy conservation (see Appendix A), 
it follows that the ratio of thermal terms that occurs in equation (63) can 
be written as 
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#Lexp - j 1 (j-1) 1” (yor j - v,) 4 1 (68) 

where D-J= = constant associated with radiation field. 

5. DERIVATION OF WAVE EQUATIONS. When radiation is present in the 
thermodynamic systems being considered, equation (52) becomes 

E. + E or - 3hl + Y, + 60,)(Po + PO,) - (K. + Kor)] = Et + Ezr (69) 

Similarly, when radiation is present, equation (53) becomes 

j (y, + 60,) (PO + PO,) 

po + Por - K. - Kor 
+ 3* & (Y, f 60,) 

I 
(70) 

Equations (69) and (70) are the relativistic equations for waves in matter, 
however they are too complex for simple solutions to be obtained. Simplifi- 
cation can be achieved by assuming the radiation components to be small 
quantities. 

Considering only first order terms in equation (69), and subtracting 
equation (52), gives 

E - 
Or 310 + Y,)P Or 

- Kor] - 3PoSor = Et= (71) 

In a similar fashion, by expanding the denominators in equation (70), using 
1/(1+x) sl- x, and keeping only first order terms, and finally subtract- 
ing equation (53) yields the following result 
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jE (CLKor 
j - 6Por) + 3Ejn 

0 0 

+E l+j+, 
j YoPo 

dyO 
jr -K +3ll- 

0 
dn 

0 

= jEy aaKzr - BaPir 
jEaPasa 

+ d + Ea 
p: - Kt, Jr 

1+j+ 
P," - Ko" 

where 

YoPo a a= 
Yo"po" 

CL = 
(PO - Ko12 (Pt - K,") 

2 

6= 
YOKO fla = 

YZK," 

(pO - Ko12 (Pt - Kz)2 

(721 

(73) 

(74) 

The radiation equations (71) and (72) will 
form. 

now be written in a much simpler 

(72), 
Equation (63) can be used for 6,= that occurs in equations (71) and 

while the first derivative of Aor that occurs in equation (72) is eval- 
uated by using equations (63) and (68) and can be written as (see Appendix B) 

d6 E or jr 
%T-= 

dyer dyO 

E 
n--n-- 

j 
dn dn (j-1) (Y,, - Yo12 1 (75) 

Substituting the results of equations (63) and (75) into the two basic equa- 
tions (71) and (72) yields 

E 
E or - 3[(1 + Y,)P or - Kor] - 3 $ Po(y 

j 
or - yo) = Ea or 
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and 

- ~por) + E 
JPoyor 

‘+j+p 
dyer 

jEj(oKor jr -K +3n&y-- 3W1) (Y,, - 
3 

(77) 
0 0 

These two radiation equations can be further simplified by using some basic 
mathematical properties of the radiatfon field. 

For radiation, the zero-temperature pressure is related to the zero- 
temperature energy density through the radiation Griineisen parameter as 
follows (see Appendix A) 

P =Y E (78) 
OK or or 

This proportionality of the pressure and energy density is characteristic of 
radiation fields. The bulk modulus of the radiation field can be written 
using equation (78) as 

dPor dEor dYor 
K or =%7= Y n-+ Ear ndn or dn (79) 

Equations analogous to (78) and (79) hold for the nonrelativistic quantities 
%r and K& respectively. Placing equations (78) and (79) into equation (76) 
and (77) and then dividing equation (77) by Ej yields the two fundamental 
first order coupled nonlinear differential equations for E,, and yor , 

dEOK 

In dn - + JEor + g = EEr (80) 

dEOK 

Gn dn - + @or 
+ f = +tr (81) 
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where I = 3y Of 

dyer J=3nr- 30 + Y,)Y,, + 1 

& 
g=3$ 

j 
po lye - yor) 

G = jay,= 

R=j dyer 
an dn - Byor 

& 
[ 

jPoYor’ dY 
f=$ l+j+p 

ii 0 

-K +ne- 
0 

3(j-l)(r,, - Y,)* 1 

1 a dE:r 
+Gndn + Ra&zr 

a 
.5 aa Ga=~E ay 

j 
Or 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 

(89) 

Ef R” = j $ 
j 

I (90) 

The ratio Ej,/Ej that occurs in equation (84) and (87) is a function of 
yo, as shown in equation (68), while the ratio Es/E that appears in equa- 
tions (89) and (90) is given by equation (56). A q&ions (80) and (81) are 
a set of coupled relativistic wave equations that determine the relativistic 
energy density E,, . . . and Grunelsen parameter yor for radiation in terms of the 
corresponding nonrelativistic radiation parameters E& and y,", , and in 
terms of the ground state material parameters Po , Ko 
a 3 Yo I PE , KE , and 

yo * 

6. MIXHANIGAL WAVES IN A SOLID. The temperature independent part of 
the nonrelativistic energy density for mechanical waves in a solid is given 
bylo 
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(91) 

where 

ka = nonrelativistic wave number 

Aa = nonrelativistic wave amplitude 

The nonrelativistic Griineisen parameter (diffuse radiation factor) for the 
radiation itself is given bylo 

cr 
1 n dwa 1 dk 

=-+----r- 
3 Wa dn 3 (92) 

where Wa = w/ka = nonrealtivistic phase velocity of the waves, and w = 2Tf 
where f = frequency of the waves. The corresponding relativistic expres- 
sions are written 

E or = + Kok2A2 

1 ndW 1 n dk Y c-+--z---- 
Oz” 3 Wdn 3 k dn 

(93) 

(94) 

where 

k = relativistic wave number 

A = relativistic wave amplitude 

W = w/k = relativistic phase velocity 

As before the relativistic bulk modulus K, is obtained from a solution of 
the ground state material equations (52) and (53). 

The solution of the coupled equations (80) and (8X) for the case of 
waves in a solid, described by equations (91) through (94), determines the 
relativistic radiation parameters k and A in terms of the nonrelativistic 
radiation parameters k, and A, and in terms of the material parameters in 
the following general forms 

k = k(ka,A,,Po,Ko,Yo,P~,K~,Y~,~) 

A= A(k,rA,,Po.Ko,~o.P~,~~,~~,~~ 
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The relativistic phase velocity is W = w/k , SO that it also is given by a 
function of the form 

W = W(k,.Aa,Po,Ko,yo,P~,K~,~~,~) (97) 

The coupled relativistic wave equations (80) and (81) are complicated 
differential equations that are difficult to solve analytically, even for 
the simple case of a solid. However, some qualitative results can be obtain- 
ed for the case of wave propagation in a solid by combining equations (80) 
and (93) and assuming that k and A (and hence W ) are not density dependent. 
Actually, there is a density dependence of the phase velocity.g But within 
the crude approximation that k and A are not density dependent, equations 
(80) and (93) yield 

dK 
In -$ + X0 + g = 

> 
+- KEk;A; (98) 

Then assuming y,, = l/3 and y, = 1 in equation (82) and (83) gives I = 1 and 

J = -1 ; and taking K, r, na , where o = adiabatic index, and finally 
g s 2Eor 3 gives the following approximate result for equation (98) 

(99) 

But the solution of the ground state equations (52) and (53) is known to 
give K, s Kg at low pressures and K, << KE at high pressures.3 Therefore 
within the limits of the approximations made to obtain equation (99), it 

follows that kA Q k,A,/m for very low pressures, kA s k,A,for moderate 

pressures, and kA >> kaAa for high pressures. The values of o can range 
from zero to about two depending on the density of the system. 

Finally, an explicit expression is given for the relativistic phase 
velocity of mechanical waves in a thermodynamic solid. The source terms for 
equations (80) and (81) are Egr and ygr , where Eg, is given by equation 
(91) while y,", is obtained from equation (92) with3 

w 2 
( 1 

a 
c (100) 
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where c = light speed. The simultaneous solution of (80) and (81) gives 
E or and Yor - Then equation (94) is integrated to obtain the relativistic 
sound speed as follows 

[ J 

m 
W 

- = exp - (yor 
C 

* +p] 
n 

(101) 

Equation (94) shows that if W is an increasing function of density it follows 
that Yor > l/3 for mechanical waves, and therefore-w < c which is required - 
by special relativity. 

7. ELECTROMAGNETIC WAVES IN MATTER. An analogous calculation can be 
done for the case of the propagation of electromagnetic waves in matter. 
For this case the radiation energy density and pressure can also be written 
in the form of equations (57) through (60) except that now 

E 1 =- 
or 2 cE2 + uH2 > (1021 

(103) 

where E and H = relativistic electric and magnetic radiation fields respec- 
tively; E, and Ha = nonrelativistic electric and magnetic radiation fields 
respectively; E , p and Ea , pa = relativistic and nonrelativistic permit- 
tivities and permeabilities respectively. Therefore the energy density is a 
function of many variables. The electroweak case includes even more para- 
meters. Therefore it is not possible to obtain relativistic values of each 
parameter by solving the two coupled relativistic wave equations (80) and 
(81) unless the assumption is made that the electric and magnetic fields are 
unaffected by equations (80) and (81), and only the permittivity and perme- 
ability need to be considered. The solution of these two equations gives 
only the relativistic energy density and Grtineisen parameter for electro- 
magnetic radiation. However an explicit solution for the relativistic phase 
velocity can be obtained. 

The fundamental waves equations (80) and (81) determine Ear and yor 
in terms of Ea and ya where E& 
given by equagron (92Prw;th1' 

is given by equation (103) and Ygr is 

w2 = 1 
a E v aa 
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Equation (94) is then integrated to obtain the relativistfc phase velocity 
of electromagnetic waves in a thermodynamic medium as follows 

W 
- = exp c [ - ,"c+ - Y,,) %] 

0 
(105) 

Equation (94) shows that if W is a decreasing function of density (as is the 
case for electromagnetic waves in a solid or low temperature quantum system) 
it follows that yor < l/3 and W < c for electromagnetic waves in matter. 
Note that the relativistic phase-velocity depends on the material parameters 
PO , K, , Y, , PE , K: and Y: . 

8. CONCLUSION. Scale invariance has been demonstrated for a theory 
of relativistic thermodynamics that is based on a trace equation. The 
Griineisen parameter must be introduced in addition to the pressure to insure 
local scale invariance. For solids and low temperature quantum systems, 
this means that the zero-temperature values of the pressure and Griineisen 
parameter must be determined simultaneously through the solution of two cou- 
pled second order differential equations. The equations governing small am- 
plitude waves in thermodynamic media can be obtained by a perturbation cal- 
culation on these ground state equations. Two coupled first order differ- 
ential equations have been derived that describe relativistic wave propa- 
gation in solids and low temperature quantum systems. The solution of these 
wave equations determines the relativistic energy density and Griineisen para- 
meter for radiation in terms of the corresponding nonrelativistic radiation 
energy density and Griineisen parameter and in terms of material parameters 
of the ground state. For mechanical waves the solution of the wave equa- 
tions determines the relativistic amplitude and phase velocity. 

Possible observable effects may occur in a number of high density sys- 
tems. For instance, unusual dispersion effects and anomalously large wave 
amplitudes may be observed in the high pressure states of solids and liquids 
that occur in the interior of planets, stars, and stellar compact 
objects.12,13 Measurable effects may also occur in the vibrations of atomic 
nuclei that are associated with the giant nuclear resonances.14 Practical 
effects may also be noticed in the effects of nuclear explosions and in the 
interaction of high energy laser beams with solfds.15 Finally, it should be 
pointed out that because the phase velocity and the wave amplitude must be 
calculated simultaneously from a pair of coupled nonlinear equations, it 
follows that the phase velocity depends on the wave amplitude, and this 
characteristic of nonlinear wave propagation y;y lead to the formation of 
shocks and solitons under certain conditions. 

APPENDIX A - RADIATION CONDITIONS. For radiation, the pressure is 
linearly related to the energy density as follows 
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pr = r,Er (Al) 

where r 1" = diffuse radiation factor given bylo 

n aw y++-- 
w an 

where the phase velocity W is generally density dependent. Combining equa- 
tion (Al) with equations (59) and (60) gives 

P 
OF = rrEor (A3) 

P. =rE 
J= r jr 

(A4) 

But from the definition of the radiation Griineisen parameter given by equa- 
tion (64)) it follows from equation (Ah) that 

which means that the radiation Griineisen parameter is equal to the diffuse 
radiation factor. 

If the pressure and the internal energy of the radiation are written as 

Pr = Par + P 
jr 

Tj 

ur = vEr = uor -I- U 
3= 

Tj (A7) 

then the application of the Gibbs-Helmholtz equation of thermodynamics 

yields the following completely general equations 
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P dUor = --= 
OY dV - & (vEo,) 

(j-l)‘jr = dV 5 = -&(vEjr) 

Combining equations (A3) and (A4) with equations (A9) and 
gives 

&(vEo,) + Y E = 0 
or or 

-$ (vEjr) - (j-l)Y,,Ej r = 0 

or equivalently 

V dUor -- = - 
u or dV 

Y or 

V d"jr 
U. dV = (j-l)r,, 

Jr 

The radiation equations (A13) and (A14) can be immediately integrated to give 

n 
u or = Dar exp y dn 

or n 

U. = D. Jr Jr exp (j-1) I" Y,, $1 

and finally, 

n 
E = nD Of Or exp y dn 

or n 
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(A9) 

(A101 

(AlO) respectively 

(All) 

(A121 

(A13) 

(A14) 

(A15) 

(A161 

(Al7) 



(j-1) (Y,, - 1 
which is the desired result. 
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03) 

E 
jr 

= nD. 
Jr 

exp - 
I 

(j-1) I" Yor + ] (Al@ 

Then combining equation (A18) with equation (54) gives 

+.!h~p[- (j-l) I" (Yor 7 Y,) $1 
j 5 

which is the desired result. 

(Al91 

APPENDIX B - EVALUATION OF ds,r/dn. The derivative that occurs in equa- 

tion (72) can be evaluated from equation (63) as follows, 

dsOr 
n- = (Y,, dn 

-Yo)n-&(-$)+$(n2-n>) (Bl) 

In order to evaluate the derivative of the energy ratio term in equation (Bl) 
one uses equation (A19) of Appendix A to get the following result 

or - Y,> 032) 

Combining equations (Bl) and (B2) gives the result 
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ABSTRACT. The equa.tion ut = AU” models the expansion of a gas with density 
U(T: 1) in a porous medium. We give an equivalent formulat.ion of this equat,ion as a. free 
boundary- problem, the free surface being the boundary of t#he set where the gas densky 
is nonzero. Using this formulat,ion. we discuss new a priori estimates for the pressure 
1: := (7Tl+n - ,))dn--l. In one dimension: our est.imates imply t,hat the pressure and the 
free boundary are infinitely differentiable. 

1. THE FREE ROIYXD,iSRY PROBLEM. The initial value problem 

u&t) = Ad’+.t): x f Rd. 1 5 T. 
u(x:O) = z&(x) (1) 

describes the expansion of a gas in a porous medium: u denotes the gas density, il = 
T - Y = 8; A . . - t 6’: and m :b 1 is a physical parameter. 

In this section we derive an equivalent formulation of the initial value problem (1). 
We assume that, uql has bounded support n(O) with smooth boundary XI(O). Then, 
n(i) := supp-w(d) is bounded for all 1. \Ve rewrite (1) as an initial value problem for the 
pressure 2‘ := (n2: (n2 - 1))u m ~’ 1 _ Hy direct substitution. 

vt(x.f) = (172 -I’ 1)2:(2,2)AV(J:1) f TK(IJ) ?. I E n(t), t < T? 

+,oj = I+). 
(2) 

We assume that v is twice continuously differentiable and de-fine a family of curves y - 
J(y,t), y E n(0). via the syst.ern 

&(y.t) = -TlJ(:(y.t).t) 

I(Y.0) - Y. 
(3) 

?;ote t,hat 
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which implies in particular that, t:(t(y?t).f) = 0 for y f XI(O). Therefore, if t <: T with T 
sufficiently small, {(v, t) d .fi e nes a l-l mapping of n(O) onto st(t). 

Summarizing the above considera.tions we have: 
If IA is a weak solution of (1) for which z’ is twice continuousl+v differentiable on its (closed) 
support, then 2: is a classical solution of (2) and. for T suficientl~ small, n(t) = ((n(O), t) 
with : defined by (3). 

The converse of t,his st.atement also holds: 
If the pair (2’: E) is a classical solution of (2,3) with n(t) = E(n(O),I) and if the mapping 
((..t) is I-I for all t < T, then u is a. weak solution of (I], 

Here we have used the not,ation f(I) := {f(x) : X E I) for a function f and a set 1. 

To verify the last assertion, let 6 be any t,est function with compact support in Q := 
R” x (0: T). IntegraGng b>- parts, 

where we have used t,hat 1~ vanishes on t,he boundary of n(t) and therefore the boundar)l 
normal is para.llel t,o --VI:. 

We need t.he following 

Lemma. Assume that [(v, t) a.s defined in (3) is a I ‘.- 1 mapping of n(O) onto n(t). Then, 
for an!: srnooth function f? 

(5) 

Csing this and the fact t,hat 4(x, a) ha.s compact support in (0, T), the right hand side 
of (4) equals 

This expression vanishes since equa.t.ions (1) and (2) are equivalent, on n(t) and since 
VU m = UC7?. 

For the sake of completeness we include a 

Proof of the Lemma. Denot,e by V{(.?2) the Jacobi matrix {&&(*!1)} where (3. is the 
j-t,h component of the vect,or <. From (3) it. follows that t,he determinant of 0~ satisfies 
the differential equation 

(deiVf)l ::: -Av(detC<). 
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Yote in particular that detVt(.,l) is positive for all t. Vsing this, we obtain 

dy 

Jw) Jn(o) 

= atJ 
I(E(Y!t)?t)(detVE)(y,2) 

Tl(CI) 

-1 
Ffj(f(Y47~) * Et(Y:i 

il ( !I ) 
I- 

(6) 

Equation (5) follows by repla.cing the last term in (6) by a boundar?- irnegral and recalling 
t,hat t,he boundary normal equals - Gv/ jI’z:.. 

One notices the similarity of the free boundary problem (2:3) to the Stefan problem. 
E.g. the one phase St,efan problem is described by equation (3) and the heat equation 

v&t) = A2.(2,2). 5 E n(t): f 5 T, 

v(r:O) = v,:,(r). 

In this case. 2’ denotes the t.empera.ture distribution of water in a region n(t) which is 
surrounded by ice. 

Existence of weak solut,ions for t,he porous medium equat#ion and Stefan problems 
can be proved via semi group theory ‘3:. R.egularity results, in particular for the free 
boundaries, appear to be considerably more difficult to obtain. For the one phase Stefan 
problem the existence and C”- regularity of classical solutions was obt,ained by Hanzawa 
:7; and Kinderlehrer and Nirenberg :lI; using rather sophisticat.ed techniques. For t,he 
porous medium equation in several variables no comparable regularity results are known. 
A major difficulty in studying existence and regularity for the system (2,3) is that the 

parabolic operator degenerates on the free surface. 

For the one dimensional case (d = I) Caffarelli and Friedman \4] have shown the 
existence of classical solutions for the system (2,3). Using their result we proved in i9i that 
the pressure t? and the free .boundary are infinitely differentiable as soon as the support 
of ~(a,t) is expanding. This result is discussed in sect,ion 2. In section 3. we describe new 
a priori estimates for the multivariate c.ase. If a suitable regularization or approximation 
procedure can be found, these estimates imply the existence of smooth solutions for the 
system (2.3). 
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2. C”-REGUL.4RITY IN 03E DIMEXSIOX. In one variable we may assume that 
f-l(O) = j-1:1:. Th en. the system (2,3) reduces to 

:‘(y.t) = -r,(<(y:t),t). y = zl: 
Q(-l.O): 11 (7) 

The curves <(-lx: .) a.re Lipschitz cont,inuous 12 1 but. in general not Cl. +4s was observed 
in ill. t’ need not be continuous at 

1, := sup{i : E(y.t) = y}. y = *l. 

Caffarelli and Friedman ‘4- proved that, the syst.em (7,P) has a classical solution for t > 
max{t. .-]. 211; i.e. the funct.ions 1:: wul. 2~~ and 1st: 21 are cant inuous up to t’he free boundaries. 
Using &is result. we proved in ‘9’ t.he following opt.imal regularity result. 

Theorem. Assume that I:,., is continuous. Then? gy, *) E cyt,. oc), y = il, and 
w E CE(n,) where 0, := {(r-t) : T,:(x,~) Y 0} .-‘{(c(y,t).i) : 1 :> t,! y = 11). 

Our proof of this result is based on a priori estimat#es in weighted norms. To illustrate 
t,he main idea, we make a simplifying assumption. LVe suppose that t-r = t, -; 0 which 
implies in part,icular that 

h(S(y7q.q + 0, y = il, t -2 0. 

Under this stre n thened hypot#hesis we have the following a priori estimate. g, 

Proposition. For- any smooth solution (v. I) of (7,s) and any k > 0. 6 > 0, 

where the constant dqk depends on k, 6. T and zlcl but not on V. 

An analogous estimat,e is also valid for a suitably defined Galerkin approximation. 
This yields the regularity of 2: and, by (7). also the regularit,p of ,‘. 

We prove (9) by induction on li. Thus assume that the estimat.e (9) holds for k < 1. 
Differentiating (8) and set,ting w := akt: we obt,ain 

where f is a sum of terms of t,he form 
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We multiply (10) hi- T’I*W wirh T := 1 - 6 and integrate each term over the inter\-‘al 
n(t) = ;[(-I.!). E(l:t),. Integrating b!- part.s and observing that t,he boundary terms 
vanish we obtain 

( -Ii/ p 2 
m 1: 11.‘21?.. = 

Cl ( t 1, 

- i1 - (/ - 2)(m - 1)/Z] (I:! - I:). 

Combining these ident it.ies yields 

(11) 

where the constant 73 is positive for 1 ::- 1. 

The estimat.ion of the terms on the right hand side of (11) is somewhat t,echnical. in 
particular if 1 is small. Let us assume that I > 4 and refer to ‘9: for the remaining cases. 
We need t.wo auxiliaq inequalities. By the result in .3]. I: is continously differentiable with 
modulus of continuity depending only- on UC,. Vsing this. and the fact that rr does not 
vanish on either of the free boundaries. it is not. difficult to show (cf. Lemmas 1, 2 in 19:) 
t,ha.t 

(12) 

for any smooth function y. uniformI>- for t 5 T. Moreox-er. there exists a positive constant 

cs which depends only on v,:, and T such that 
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ITsing Hijlder’s inequ&y and (13) y-ields 

From (12) it follows that ;~~~(e.i):,~r~(~) can be bounded in terms of A4 for i > 6. 
Therefore. if K denotes a generic constant which may- depend on Al-, and 11~~: we have 

For the last t,erm in (11) w-e have to estimat,e the integrals I,, := [~-‘w(a,Vz:)(a~v)u:. 
Since u < (1 + 2)i2 2 1 - 3: (12) implies that iaiV(*J).X ,n(ij <;: K for t I? 6. Hence we 
obtain 

J ypI “: K(1 - 
J 

Ad). (16) 

We choose f ‘c:: less than 13 so t,hat the first t,erm on the right hand side of (14) 
is less than ?sls. Substit.ut,ing the estimat’es (14. 16) into (31) we obtain the differential 
inequality 

;a, 
I 

r2 vu 2 i (m-l)/ &,&: p 
. n(t) 12 (I. ) 

< K(l- 
J 

T2VW2) - (cl + cT’,/cg) 
J 

1!211*2. 

Integrating t,his inequality over the interval ;6. Tj and using t.hat 

yields (9) for k = 1 wit.h 6 replaced by 26. 

3. -4 PRIORI ESTIM,4TES IN SEVERAL VARIABLES. Based on the results in 
the unjvariate case one is bempted to conjecture that the free surface an(t) is infinit,ely 
differentiable in the neigborhood of any point where the support of v(*,2) is expanding. A 
first step in this direction is again a result by Caffarelli and Friedman ‘5: who showed tha.t 
the free surface is Hijlder continuous. More recently. Gurtin. McC&y and Socolovsky 
i6: discovered an interesting transformation which ?+ields a system of parbial differential 
equations for the free surface which does not involve 7’. However. this system does not 
fall in any of the standard categories and, except, for the univariate case ;8: exist,ence of 
smooth solut,ions could not been established. We formulate below a priori estimates which 
would imply the existence of classical solutions for the system (2:3) if an appropriate 
approximation procedure can be found. 
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Theorem. Assume that an(O) is smooth. rt:o(r) f 0 for z 5 iKl(O) and (v.E) is a 
smooth solution of t,he syst,em (2:3). Let ;wli,o := xlarZk .[<I !Pw’ denote the semi 

norm of H”(.n). Then, for any k > 2 - d,i2. there exist, constants T and B which depend 
on k. n(O) and wcl but not on 11 and 6 such t,hat 

The proof of the Theorem is given in a forthcoming paper .lO:. ,4s in the univariate 
case. our arguments are based on energy estimates. The major difficult,y is the estimation 
of the tangential derivat,ives of t: in a neigborhood of Xl(t). 
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ABSTRACT 

An efficient numerical method, used previouslyforaordinary differential 
equation is here extendedto a partial differential equation (in particular, 
Poisson's equation) of a function of two variables. Bicubic functions are used 
as the basic approximations. Residuals are liquidated by setting their integrals 
equal to zero over specified subregions of analyticity. 

INTRODUCTION 

The approximate solution of ordinary differential equations with the use of 
ptecewise polynomials, or spline curves, and the partition method was investi- 
gated by Langhaar and Chu (1). From the results of their application of piece- 
wise cubic and piecewise quintic approximations to a number of ordinary differen- 
tial equations, they have concluded that this method has certain advantages over 
other methods. For example, this method yields directly the first derivatives in 
the case of a piecewise cubic, or the first and second derivatives in the case of 
a piecewise quintic approximation in addition to the value of the function at a 
finite number of points. The finite-difference method of solution yields 
directly only the values of the function, an obvious drawback, since for many 
problems in mechanics, the derivatives are the sought for unknowns. Also, the 
finite-element method is based on variational principles and the physical problem 
at hand. The piecewise polynomial method is free of such formulations, and is, 
in that sense, more general. 

In this investigation, the piecewise polynomial method is extended to 
partial differential equations (in particular, Poisson's equation) of a function 
of two variables. 

For an approximating polynomial, a bicubic was chosen, i.e., 

3 3 
&,Y,) = c 

i j 
C aijx Y 

i=o j=o 
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CONSTRUCTION OF THE BICUBIC POLYNOMIALS 

A finite closed region of the x-y plane is divided into MN subregions (M 
being the number of subregions in the x-direction and N being the number of sub- 
regions in the y-direction) by the lines x = xi and y = y. such that J 

0=x0<x1<x2...<xm=L 

0 =yo<y1<y2...<Yn=w 

Y 

I L 

'j+l W 
yj 

0 xixi+l X 

Figure 1 

Equation 1 is written in the following explicit form 

&,Y) = al + a2x + a3x2 + aqx3 

+ a5y + a6xy + a,x2y2 + agx3y2 

+ agy2 + alow + a11x2y2 + a12x3y2 

+ a13y3 + a14xy3 + a15x2y3 + a16x3y3 

In 
one has 

terms of values $I, +x, I$ 
Y 

and 4 at the 
XY 
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four corners of the sybregion, 



rCxi,yj) = al + a2x. + a3xi + abx: + . . . . + a13y3j + a14xyi 1 

+ a15x:Y: + a16x3y3 = I$I~ 
i j 

Txbi ,yj) = a2 2+ + 2a3xi + 3aqxi l -0 + a lbY: + 2a 15xiyi + 3a 16xi~j’ f  Q2 

ry(xi ,yj) = a5 + a6xi + a7xt + agxl + . . . + 3a y2 + 3alrxiyj2 + 3a 15x?-y? l3 3 1 J 

+ 3a &YT = $3 
= 3 

txy(xi ,yj) = a6 + 2a7x. + 3agx? + 2a10y. + . l l f 6a15x. Y? + 9a 
1. 1 J 1 J 

1hx2Y2 = $4 i j 

g(xi ,Y~+~) = al + a2xi + a3x: + l l . + aIby:+l + a15XzY3+1 + a16X3Y3 1 J+l 
= $5 

$CXi+,,Yj) = al + a2xi+l + a3xj2+1 + l - -  + al~xi+lY: + a15xi+1Y: 

3 = ’ a16x2+1Yj ‘9 

$(xi+lSYj+l) = al + a2xi+l + a3Xz+1 + l ”  + a14xi+lYi+1 + a15xl+lY3+1 

3 
+ a16x:+1Yj+l = 413 

4 (x xy i+l “j+l’ 
+ 2a 

+ 3a x2 + + 6a x Y2 2 
=a . . . 6 x 

7 i+1 8 i+1 15 i.+l j+l + ga 16x:+lyj+l 



when written in the form of matrices, are These equations 

x X2 
i i 

1 2x 
i 

0 0 

. 

. 

. 

0 0 

0 0 

just 

[El [Al = [@I (2) 

. . 

l .  

.  .  

.  .  

.  .  

. x+3 
ij 

. 2x y3 
i j 

. 3x*y* 
i j 

. 3x2,1yj2+1 

. 6x 2 i+l'j+l 

The bicubic polynomial, equation 1, when written in the form of matrices is 

x3y3 
i j 

3x2y3 
ij 

3x3 y* 
ij 

3x? 1+1Yj',l 

4 

al 

a2 

a3 

a15 

a16 

4 1 

42 

@15 

416 

4A%Y) = ILx,x2,x3, . . . . x2y3 ,x3y31 [Al (3) 

or alternatively 

$(X,Y) = t1,x,x2,x3, . . . x*y3,xw [Cl [CD1 (4) 

where [C] is as yet some undetermined 16 x 16 matrix of constants. 

Comparison of equations 3 and 4 shows that 

[Al = [Cl [@I 

but, from equation 2 

[Al = [El-i [@I 

Therefore, [Cl = [El' 

and a bicubic polynomial whose coefficients are expressed in the generalized 
deflection $i can now be written for each subregion. 
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Poisson's equation is 

L (I$) = f(X,Y) 

POISSON'S EQUATION 

(5) 

f 

Figure 2. W 

tl 

* 

I 
PLI x 
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where 

a2 a2 LE--t- 
a2 ay2 

If t is substituted for tp in equation 5, then 

L(D = [L(l), L(x), L(x9, . . . , L(x2y3), L(x3y3)l [Cl [@I = f(x,y) + e(x,y> 

where e(x,y)is the error resulting from the approximation of $ by t. 

Each subregion is'divided into four parts and the integral of the error 
e(x,y) over each of these parts is set equal to zero (Partition Method). This 
procedure yields a set of 4MN equations involving the 4(M+l)(N+l) unknown @i, 
i.e., 

I( L(;)dxdy = Ij [L(l), L(x), L(x2), . . l L(x2y3), L(x3y3)]dxdy[C][@] 
each part each part 

= II f(xy)dxdy 
each part 

The remaining 4(M+N+l) equations needed are obtained from the boundary con- 
ditions. 

EXAMPLE 

Consider the torsion of a bar of rectangular cross-section, Fig. 2. This 
problem reduces to the solution of 

~2 (I = 1 in R 
+ = 0 on S 

where the shear stresses are given by 



=yz = -2* 

Let L+=W=l and M=N=2, then the unit square region R is divided into four 
equal subregions each of which is divided into four equal parts. Setting the 
integral of the error over each of these parts equal to zero yields sixteen equa- 
tions. 

9-12 

5-8 

Figure 3. 

The numbering scheme is shown in Figure 3. 

Y 2 
2 

I 2 

13-36 

15-28 X 

At the lower left node, 

Imposing the boundary condition I$ on S yields 

41 = $5 = 49 = 413 = 421 = I+25 = $29 = 033 = 0 



Also, since Q = constant along S 
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and 

$3 = ‘$7 = $11 = ‘$27 = $31 = 635 = o 
The above 20 equations, together with the 16 equations obtained from setting the 
integral of the error equal to zero, constftute a set of 36 linear algebraic 
equations from which the 36 deflections ,$i can be obtained. 
problem is completely solved. 

Knowing the +i, the 

Alternatively, the integral of the error along the boundary can be set equal 
to zero, along 16 equal distinct segments of the boundary S together with the 4 
equations 

$1 = $9 = $25 

Nonzero values 

@ XY = 2.0357 

4X = 0.3304 

9 = 
XY 

-2.0357 

9, = 0.3304 

4 = 0.0737 

+Y = -0.3304 

4J XY 
= -2.0357 

ex = -0.3304 

e = 
XY 

2.0357 

m 

= $33 = 0 

of 4, 4,s 4 Y’ 
and 4 xy are given below: 

at (0, 0) 

at (0,1/2) 

at (0, 1) 

at (l/2,0) 

at ( l/2 , V2 ) 

at (l/2, 1) 

at (1, 0) 

at (1, V2 1 

at (1, 1) 

The results are shown in Table 1 for $ at the midpoint of the edge x = 0, 
I.e., 4 in Figure 2. 
R, i.e.: 4 

The value for I) is a so given at the center of the region IF 
These values are given for M=N=2 and M=N=4, along with the exact 

values. Th7e'values of $ i found by satisfying the boundary conditions pointwise 
were the same as those found by setting the integral of the error along the boun- 
dary equal to zero. 



M=N 

2 

4 

exact 

'.b6 = $,(082 > 417 = 4 ( 112 , l/2 1 

0.33036 0.073661 

0.33743 0.073656 

0.3375 0.07367 1 

Table 1. 
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Abstract. Int,egrals of a function of a single variable can be expressed as the sum 
of a numerical quadrature rule and a remainder term. The quadrature rule is a linear 
combination of function values and weights. or the imegral of a Taylor polynomial, while 
the remainder t.erm depends on some derivative of the integrand evaluat,ed at an unknown 
point. in the int,ert’al of int,egration. Numerical quadrat,ure is made self-validating by using 
interval computation t#o capture both the roundoff and truncation errors made when using 
a given rule. Necessary derivatives can be generated automatically by using well-known 
recurrence relations for Taylor coefficients. In order for quadrature methods of t,his type to 
be accurate (in the sense that small intervals are produced) and efficient (to obtain results 
of given accura.cy in a reasonably short time)? an accurate scalar product and an adaptive 
stra.tegy are required. The necessary scalar product and support, for interval arithmetic are 
provided in Pascal-SC (for microcomputers) and ilCRITH (for IBM 370 comput8ers). The 
a.daptive strat,egy chooses the subint8ervals of integration and the order of t,he quadrature 
formula in each subinterval on the basis of guaranteed, rat.her than estima.ted, informa.tion 
about the error of numerical integration in each subinterval. The program described in 
this report implements st.andard Sewt,on-Cot.es, Gaussian. and Taylor series methods for 
numerical int.egration. VI:ays to handle singularities are discussed, and comparisons are 
given with a st,andard numerical int,egration method. 

1. Requirements for Aut,omatic Integration Algorithms. In !2], de Boor formulat8es 
fundament,al requirements for an automatic algorithm for numerical approximation of the 
integral 

(14 

of a function of a single real variable. Such an algorithm requires (i) the limits of integration 
a: b, (ii) access to a procedure for the evaluation of I(X) f or r in the int,erval of integration, 
(iii) tolerances a,p on the desired absolute and relative error. respectively: and (iv) a limit 
M on the number of funct.ion evaluations allowed. 

As output, the algorithm should produce an estimate I‘ for the value of 11 which 
satisfies 

(1.2) 

Sponsored in part by the U. S. Army under Contra.ct# No. DAAG29-80-C-0041. 
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Furthermore, the algorithm should be efficient. computing as few function values as pos- 
sible. It should also be reliable, which will be taken here to mean that either the desired 
accuracy (1.2) is guaranteed, or a message to the contrary is returned to the user, possibly 
with additional information about the cause of failure. As pointed out by de Boor [Z], 
algorithms which use only values of f(z) at a finite number of points cannot meet the 
above requirements in general; nevertheless. accurat,e and efficient automatic integration 
algorithms can be formulat,ed for wide classes of integra,nds 1.71, i23j. 

This paper presents automatic quadrature algorithms which atstain the goals of reli- 
ability and efficiency by use of a.utomat8ic differentiat,ion and interval computation. They 
make use of information about, the int)egiand on entire subintervals of integration, rather 
than at a discrete set, of points. The results combine the self-validating algorithms of Gray 
and Rall iSI, [9], IlO], and the notion of adaptive quadra.ture 12j, [3], 1231. Adaptation is / 
carried out on the basis of guaranteed, rather than estimated, bounds for the error of the 
approximate integration over each subinterval. Furthermore, the given algorithm has the 
a.bility t,o det,ect and handle certain t,ypes of singularities in the int,egrand. and even to 
verify nonexistence of the integral in some cases. 

In the terminology of Rice [23], th e method described here has the following features: 

interval Processor Component: 
Variable order rule with remainder using interval 
arit,hmetic to give guaranteed bounds. 

Bound Estimator Component: 
Direct analysis. 

Special Behavior Components: 
Polynomials. 
R.oundoff level. 
Singularities in derivatives. 
Jump discontinuities. 
Removable singularities. 
r”-type singularities. 
All are strictfly validat#ed. 

Interval Collection Mana.gement Component: 
Ordered list. 
None discarded. 

The method of this paper does not belong to the large family of 10' or so algorithms 
considered by Rice because of the use of int,erval c.omput.ation and automatic differentiation, 
which were not considered in 1231. Details of the actual implementation of the algorithms 
presented here in an environment: which supports interval computation will be given in ‘$7. 
The next few sections describe the underlying methodology. 

2. Self-validating Evaluation of Quadrature Formulas. Self-validation of numerical 
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computations is one of the basic motivat.ions of interval analysis i151, 1161. The goal 
is t.o obtain an interval which comains the desired result. be it real or s&valued. In the 
case of the int,egration problem (1 ,I), a self-validating interval method produces an interval 
J = /c,dj which is guarant,eed to contain the due I{ of the integral. The width of this 
interval inclusion will depend on uncertainties in the values of the imegrand and the limits 
of integration, the roundoff error in the actual computjation. and the truncation error 
appropriate to the method used. All of thcsct quantities can be estimated in a tedious 
way by the techniques of classical error analysis. an effort which is unnecessary in the 
computational environment described below. However, once an interval jc, d] containing I 
is found by whatever method: one has the following approximations to I and corresponding 
error bounds 1211: 

(24 I” = i(c t d), ;If -- I”/ < i(d - c): 

for absolute error, or 

L 

(2.2) 
I’= 2cd 

c+d’ 

If - I’ --- 
If 

< 
d- cj 
ct d” 

for relative error: with cd > 0 in this case. It follows t.hat (1.2) will be satisfied if an interval 
J = jc, d] can be obtained with width w(J) = d - c small enough so that w(J) < 2a and 
w(J) 5 p;c -5 d;. 

First. the problem of finding an interval inclusion J of Ij will be considered. The 
basic method for imerval int.egration by use of standard formulas for numerical quadrature 
or Taylor series was first described by Moore jI4’. To illustrate Moore’s idea, consider a 
st,andard interpolat,ory imegration jormulu of the form 

P-3) 

where h = (b - a),in: and a < E < b. A formula of type (2.3) will be called a quadrature 
formula of order p on n points. The ordinary Gauss and Newton-Cotes integration formulas 
follow this pattern 17;. 

It. should be noted that integration formulas such as (2.3) give the ezac2 value of the 
integral If of functions which are differentiable p times. The only difficulty is that the 
value of < is unknown. For practical comput,at,ion. it. is thus customary to express (2.3) as 
t,he sum of a rule 

of numerical integration, and a (truncation) error term 

(2.5) e,f = c,h * f,,(<. h). 
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where 

denotes the Taylor coefficient of order p in t.he orpansion of $( { Y- h). It is usual to 
compute I* = r,f to approximate the value of the int,egral. and to estima.te e,f somehow. 
Of course: if f is a polynomial of degree p I- 1 or less. then e,f E 0, and 1f = r,f. 

A self-valida.ting computat.ion of the rule r,f of numerical integration is straightfor- 
ward in an environment which provides interval arithmetic and monotone interval inclu- 
sions of the library functions used in t.he evaluat,ion of f(x) for a given x. Let’ S denote the 
screen of floating-point numbers available, and IS the corresponding set of closed intervals 
[UJJ], u,,z’ E s. lf j is evalua.ted on an int,erval X E IS using int,erval arithmetic and 
library funct,ions? then t,he result, is the natural in,terval inclusion F(X) of f on X such 
that. 

(2.7) 

il5]. 

f(X) = {f(x) j x E -71) g F(X). 

[16]. If lViY illli respectively denote the smallest intervals in IS which c.ontain the real 
numbers wi? xir that is? W’, = jVuji, Au:ii, ;Cr,, Ax,;, where V!. A denote t,he monot,one , 
downward and upward roundings from the real numbers R t,o S [l.l]: then the inclusion 

is guaranteed, and the computation of R, can be done automatically. 
An autornatjic, self-validating computation of the error term (2.5) requires an addi- 

tional ingredient. This consists of subroutines for the generation of the Taylor coefficients 
f&$) off. Th ese use well-known recurrence relations for the arithmetic operations and L 
library functions used to evaluat,e f(x) for given z 161, [ 151, i16], 119], A suitable compu- 
tational environment provides these routines. Corliss and Chang [5] have shown that the 
calculation of f,:,(r, h)? {I (1, h) ,... ,j$,( x, h) requires a.bout 

(2.9) t = ap2 :bp+c 

units of time, where a. depends on the number of multiplications, divisons, and calls to 
library functions in the computa.tion of f? and b depends on the number of additions and 
subtractions required. In any case. interval evaluation of exactly the same recurrence 
relations yields t,he corresponding interval inc,lusions E;I,(X: H),...,F,(X, H) such that 

(2.10) fk(5.h.) E F&Y:H). k = O.l.... ?P, 

for all z E X and h E H IX5j: i16{. Thus. the desired interval inclusion 

(2.11) e,f E E,f = C,H . F,,(A-. H) 
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racy crikria (1.2), if possi\)le, hy clroosing 11 suflicielltly small ] 181. llowcver, the problcnl 
of Pflicicncy was not, addressed. 

Instead of sylilting t.hc numerical intrgration forrrlulit (2.3) into a rulcl of nurncricill 

irit,cgration (2.1) arid im error term (2.5), 1, i will tx 11cIpfuI la.Ler to cousidcr it. to reprcscilt. 

t,hC scalar product, of t.lle. augrnciltetl /utrclinn-mlue veclor 

(2.14) w = ( ID], . . . , TJlfi, CJl), 

which is irrdcpendcnb ol t,hc intugrand 1 and depends only on the specific limnula (2.3) 
used. ‘Hius, 

(2.15) I=w.fEW-F=J, 

(2X) w = (IYJ,. . . ,Wn,,C,ff) 

nro l.hc corrcsponrling int,crval inclusions of f, w. This allows tile computaliofi tOO USC m- 

rerlt.ly tlrvc~lopc~l ~r~c~tl~ods f’or highly arcuratr calculation of real and interval scalar prod- 

uc*ts 1121. This rc~ul~s in a considctral)le dctcrpase in widt~l~ due to rouIldolr error in tJle 

cornpu t,cxd value of J. 

‘I‘hc~ irit cgraiiorr forlliul;l (2.3) cm 1~ irit,orJ)rct,cVl as ;t .qingle-panel rulp, or iis a multi- 

]JfJVd rrrlv, nmuing that a silrjplcr forlrlllla 011 III poirlt,s i:; applied k limes t.o t,hc mm- 

~~~~1l~liJlg nunlhcr Of subint.crvals Of ,Y = [rr,lri, with 71 5 kfl2. IIcnolilig elm subintcrvals 0r 
.!- t)y S;, i = 1,2,..., k, tliis rrisans t11a.t. ati irit.egrat,ion brnula 
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holds in each subinterval. where h, = w(-Xi). It has been shown i18; that 

(2.19) 

In a.ddition to the decrease in width of F,,(A’. u-(S)) by a factor of u!(X)]’ a.s w(X) becomes 
sma.11, the width of F(l’)(?i) will overestimat,e the width of f”‘)(X) by less a,s w(X) - 0 
for f ‘“1 (x) continuous 115.:. Thus. the gain in ca.lculating the error terms over smaller 
subintervals can be substarnial. Roundoff error in adding a number of interval inclusions 
of one-panel rules (2.18) can again be reduced considerably by expressing the result as the 
scalar product of the ext,ended augmented function-va.luc vector 

(2.20) F = (F(Xrr,. . . .F(?&J,FP(XI: .H,):. . . , F(Xkr), . . . ,F(&m).&(Xk,Hk)) 

with the extended augmented weight vector 

(2.21) w = (U!] 1.. . . , Il!lrn, C,,Hl,. . . , UJkl.. . . , Wkm: ChHk). 

3. Taylor Series Methods. The seminal paper bv Moore ;I41 also provides the basis for 
self-validating numerical integration by the use of Taylor series, although the techniques 
present.ed bq- him in this case are directed toward t,he solution of the initial-value prob- 
lem for ordinary differential equations. For numerical integration, Ta.yIor series are more 
appropriate than fixed quadrature formu1a.s for interva,l-valued endpoints of intervals of 
imegration. as will be discussed in $6. Furthermore, Tay-lor series support the rigorous 
approach to automatic recognition and t,reatment of singularit,ies described in 55. 

Of course, one could consider (1.1) to be the solution If =: y(b) of the initial-value 
problem 

(3.1) Y’(4 = fW Y(Q) = 0, 

and appl!; Moore’s methods directly. However. since J(J) in (3.1) is independent’ of y, 
unlike t)he usual case in differential equa.tions, it, is simpler t,o use the capability to generate 
a segment of the Taylor series and the int,erval remainder term automa.tically to perform 
a self-validating calculat.ion of the desired integral. 

In particular, inst,ea.d of expanding the solution y(z) of (3.1) at x :.. a as in the ca.se 
of a differential equation, it, is advantageous to expand j(x) at the midpoint c == (u + b)/2 
of the int#erval X = [a, b] of int,egration. It will be assumed that the integrand j has p 2 0 
derivatives in t.he interval of integration. For h = (b - a)/2, one has 

(3.2) 

f’7yE) @ - 4” --. 
n! 
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(2.13) f (I(:rj). . . .,r(.r,,),r,,(,c.Il)). 

(2. Id) w (111 1 . . . . . II’,, . I’,, I/ ). 

wliicti is iri~l(~l)c~ri(l~~ril, of 1.11~~ irit,c*gr;lrtd / ;III(I tlc~~~~~ii~ls orlly OII t tic spcv.ific- li)rrrilrla (2.2) 

lrwtl. ‘l’tllls, 

(2. IS) I w-s W.F .I. 

(2.w) I: (!‘(A,)*. . . . f+-J~ /$(x’, I/)) 

(2.17) w (WI . . . . . M’,, ~ C,‘,, l/) 

(2. IH) 



holds in each subinterval. where h, = ul(Xi). It has been shown /18!, that 

(2.19) 

In addition to the decrease in width of F,,(,li’. W(X)) by a faart,or of W(X)” as w(X) becomes 
small, the widt,h of F’(J’)(X) 
for fCP)(5) continuous j 15;. 

will overcstimat,e the width of j(r’)(X) by less as w(X) --+ 0 
Thus. the gain in calculating the error terms over smaller 

subintervals can be substant,ial. Roundoff error in adding a number of interval inclusions 
of one-panel rules (2.18) can again be reduced considerably by expressing the result as the 
scalar product of the extended a.ugmented function-value vector 

wit,h the cxt,ended augmented weight vector 

(2.21) w = (~11~. . . , wlm,ClmH1,. . . ,wkl.. , . , wkm: &,Hk). 

3. Taylor Series Methods. The seminal paper by Moore 114j also provides the basis for 
self-validating numerical integration by the use of Taylor series, although the techniques 
presented by him in this case are directed toward t,he solution of the initial-value prob- 
lem for ordinary differential equations. For numerical integration, Taylor series are more 
appropriate than fixed quadrature formulas for int,erval-valued endpoints of intervals of 
integration, as will be discussed in 56. Furthermore, Taylor series support the rigorous 
approach to aut,omatic recognition and treatment of singularities described in 55. 

Of course, one could consider (1.1) to be the solution l,? = y(b) of the initial-value 
problem 

(3.1) YW = S(4* Y(U) = 0, 

and apply Moore’s methods directly. However. since f(z) in (3.1) is independent of y, 
unlike the usual case in differential equations, it is simpler to use the capability to generate 
a segment of the Taylor series and the interval remainder term automatically to perform 
a self-validating calculat,ion of the desired integral. 

In particular? instea,d of expanding the solution y(z) of (3.1) at zc = a as in the case 
of a differential equation, it is advantageous to expand f(z) a,t the midpoint c = (a + b)/2 
of the interval X = [a,bj of int,egration. It will be assumed that the integrand f has p > 0 
derivatives in the interval of integration. For h. = (b - a)/2, one has 
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tie arl indelinite iiltegral d- t11e Tayir yolyrlomial or degree n - 1 of j(z). Then, 

/ 

I* 
(3.5) 

a 
j(x)dx E y(x)II’ t “‘“‘(“i(;nic);,:l lb c J,, 

n . a 

whcrr 

n-l 

+ 
for 77. even. 

Note that subtraction does not “cancel” equal intervals in general. One has Iu, u] -- Iu, V] = 
III -- 7:) 7’ - 71.1 f p,o] 11111ess 21 = u. iri wllicli case the iriLerva1 consists of a sirlglc point 111, 
pq, IIt;]. If II 1c series were cxparidcd at x = a instead ol x = c, tlierl the width ol the 

inLcrval rcrnaindrr terms would be incrrased by a factor of 2nt’I 
Fornlulas (3.5)-(U) I rtsctnblc (2.12) for ordinary quadraLurc! rules, with the evaluation 

or l,hr irlttlgralltl at rt poirll,s rcplaccd by its value and L11e values of its first, TL- 3 derivatives 
at. a single point. IT / is a polynomial or degree rl, - 1 or Icss, i,hen F(“)(X) G Io,o], alld 
only roundufr error efl’ects the width of J,. 

J, can be computed directly irorn the automatically generated interval Taylor coelii- 
cients J’lk (C, II) arid &(X, D) of 1: k = 0, 1, . . . , ~1.i: p. 

Since 

(3.7) lj = 
/ 

(,“J(X)dX E J,,.) ?I -0,I )...) p, 
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This int,ersect,ion can be calculat,ed as the corresponding interval Taylor co&cient,s of the 
integrand are generat,ed: 

j 
I,:, = .I,,. (a Himlann sum). 

w 

I I, --, ITL.-,nJn. n -= 1.2 . . . . . p. 

This provides a means t.o determine the highest useful term of the Taylor expansion: since 
the calculation can be t,erminat~ed when effective decrease in the widths of the intervals 
{1,1} ceases, or when the desired tolera.nce is met,. 

As in the case of (2.12), formula (3.6) can be evaluated as the scalar product of the 
vet tors 

(3.10) F== (Fr,(C?H),F1(C,H) ,... :F,.-I(C.H).~~(CIH)). 

where 7; (C. 13) = F, (c. w) - F&‘: H) or T,(C, H) .:-. 22;‘,(c*. H) according as n is odd 
or even, and the vect,or 

(3.11) w  = ( Iv ,&  \ I ” ,  ,  .  .  .  .  cl’,- J, , & ) .  

where 

(3.12) M’, = +; k == O.l..... 72. 
+ 

The wjdtIh of J, can also be reduced sorncivhat, if the expansion is about C -=: ic: c,. 
c E S. In this case? the interval stepsize LI might have t,o be increased a. very srtlall 
amount. to maintain inclusion of the subinterval of inkgratiorl. 1.12 55, it. will he no,ttd that 
t-txpansjon aboui a.n endpoint,: as in (:~.I), or some other point in t.he interval of integration. 
CalI be helpful if the integrand has removable singularities. 

4. Adaptiw Strategies. The computer program ANTE 191 den~on~? rated t,he realit! 
of’ automal ic. self-valjda-ting numerical quadrat.urc using Newt,on-(i:otcrs and Gaussian in- 

t,egratiojt formulas in the syay discussed jn (2. (Euler-Ma.claurin irlt,egrat,ion was added 
IO lhe capa.t,ilitiss of’ l?;‘rF: later IlOj.) Xjcpwewr. thcrc was no at,t,empt, to address t.hc 
problem of cfhcienc~, a defect remedied in the pr:)gra.rn described later. In order lo satisfy 
t8he accuracy- crit.er‘ion (1.2)~ if possible, IaTE, simply divided the interval of integratjon 
int,o a sufficient number of equal subintervals ‘91: ;I 8,. By contrast, popular numerical 
integrat#ion packages such as CADRE 131 and QUL4DP.4CK II 7, use information obtained 
about. the behavior of the integrand t,o att,empt to reduce the nurnber of function evalua- 
tions t,o a minimum. The method given here uses similar strategies. cxcejlf 1,ha.t estima.tes 
of the error based on ev-aluation of the int,egrand ;it a finit,e set, of points are replaced br 
guaranteed bounds. This elimina.t,es the need for **safety fa.ct,ors” j23;. 

Adaptive strat,egies fall into t,he categories of o&f adaptation. which relates to t,he 

choice of the formula used in each subinterval. and subintp,rval adaptat,ion: which de- 
termines how the original interval of integration is broken up into subintervals. Order 
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.I,, 
2 {- 

//I ! I 
; A’(’ J(C) 
1 II (1 / I)! : 

(1i.i) 11 , ,I) J(T)h .I,,. 

I’ 

7! 0. I , . . . , I’, 
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This intersectidn can be calculat,ed as the corresponding interval Taylor coefficients of the 
integrand are genera.ted: 

I 
I,:, = Jc.1. (a Riemanri sum). 

(3.9) 
\ I, = l71.-, fl!lT7. n = 1.2 . . . . . p. 

This provides a means 1.0 determine t,he highest. useful terrn of the Taylor expansion: since 
the calculation can be t,erminated when effective decrease in the widths of t,he intervals 
{In} ceases, or when t,he desired tolerance is met. 

As in the case of (2.12), formula (3.6) can be evaluated as the scalar product of the 
vet tors 

(3.10) F = (a(C.H),F,(C,H),...,F,-1(C.H).T,(C,H)), 

where T,(C,fi) = F,(C.H) - Fn(CYH) or T,(C,H) = 2J’n(C1H) according as n is odd 
or even. and t.he vector 

(3.1 I) 

where 

(3.12) M.-k = .“L. 
k+ 1’ 

k = 0,l ,...‘?Z. 

The widt,h of ,I, can also be reduced somewhat, if the expansion is about C = \c,cj. 
c c S. In this case, the interval stepsize H might have to be increased a very sma.11 
amount to mainta.in inclusion of the subinterval of integrat,ion. In §5, it, will be not,ed that 
expansion about, an endpoint: as in (3.1): or some other point in the interval of integra.tion? 
can be helpful if t,he integrand has removable singularities. 

4. Adaptiw St,rat,egies. The computer program INTE 191 demonstrated the realit)- 
of autjomatic, self-validating numerical quadrature using Newton-Cot<es and Gaussia.n in- 
tegration formulas in the way discussed in 52. (Euler-Maclaurin integration was added 
t’o the capabilities of 15TE lat,er /lo].) .H owever. there was no attempt to address the 
problem of efficiency: a defect remedied in the program described later. In order to sa)tisfy 
the accusa.cy criterion (I .2), if possible, INTE simply divided the interval of integration 
into a sufficient number of equal subintervals 19;: i18 . By contrast, popular numerical 
int,egration packages such as CADR,E :3] and QIYL4DP.9CK IIT! USC information obtained 
about, the behavior of the integrand t,o at,tempt# t#o reduce the number of function eva.lua- 
tions to a minimum. The method given here uses similar strategies. except that estimat,es 
of the error based on evaluation of the int,egrand at a finite set of points are repla.ced by 
guarant,eed bounds. This eliminat,es the need for “safety fa.ctors” !23j. 

Adaptive strategies fall into the categories of order adaptation. which relates to the 
choice of the formula used in each subinterval, and subinterrral adaptation, which de- 
termines how the original interval of integration is broken up into subintervals. Order 
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adapt,ation is somewhat simpler than subint-erval adapt,ation. and will be considered first. 
For met.hods based either on standard quadrat,ure formulas or Taylor series. order zero 
refers to the interval Riemann sum F(_Y) * W(X), which always contains JX j(z)& j4j. 

Given a suite of numerical integration formulas of the form (2.3). suppose t,hat X E IS 
is the current subinterval of inr,egration. 5pecifically. suppose that, the given rules are of 
order i for i = 0.1. . . . . A- on rj,; points. Once the imerval Taylor coefficients Fi(X. H) have 
been formed. then t.hc order p :; I; of t hc most accura.1.e rule ca.n be chosen to be the value 
of I’ for which t,hc width of the error term 

C4.1) E,,f =. C,,H - F,(A-J3) 

is minimum, i = 0,l.. . _ . k. 
-Alternatively, the act,ual approximat,e integrals J; could be examined, but. this requires 

more comput,at.ion t#han use of the error terms alone. Suppose that p denotes the maximum 
value of the width w(F(C)) of the interval evaluation of f at a node C of t,he int#egration 
formula being used. The t,otal cost can be taken t.o be proportional to n;. w(Ji): where n; 
is the number of function evaluations. The width w( J;) can be estimated by p + UI(E,;J), 
and thus Z can be chosen as the minimizer of 

(44 771,(i) = min{u*(J,:I),n,i(jL -7 ul(E&)). 

Thus, more nodes are used in a given subint,erval only if a significant reduction in width 
of the a.ppr0ximat.e integral results. It, should also be noted that a given integration rule 
can be used in several int.egration formulas having remainder terms of different, orders. 
For example, Stroud and Secrest !24: give error terms for Gaussian integration rules on n 
nodes which have orders 1 < ~1 “: 2;. In certain cases, t.he error terms corresponding t.o 
smaller than maximum p can be narrower (for example. for highly oscillatory int,egrands), 
and the use of these formulas instead of the standard ones will minimize W( JFl). 

In t,he case of Taylor series. the intersection (3.9) procedure can result in approxima- 
tions I, which are considerably bett.er than ,I, given by (3.6). which ca.n be viewed as the 
sum of a rule and an error term. The intervals I, are monotone decreasing in width, so 
the increase in accuracy has to be balanced against the cost in time (2.9) of generating 
more terms of the series. The constants Q, b. c in (2.9) can always be determined for a 
given integrand, so the corresponding heuristic can be based on the function 

(4.3) d(n) I ~(1~) - (an’+ bn + c). 

Generation of the Taylor series can be stopped when 

(i) lTL-- = JTL--] = 1,. 

(ii) O(n - 2) < B(~L). or 

(iii) n = p. 

Because of the difference between the remainder terms in (3.6) for odd and even n, it 
is prudent, to calculate at, least one extra value of J,. However, the conditions above 
guarantee that no more than two series terms will be computed beyond the one which 
gives the narrowest, I,. 
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Another important strategy for order adapoation involves the case that the integrand 
has singularities in a certain derivative in the given subint,erval. This will be discussed 
more fully in the next section. If a cert,ain derivative cannot. be evaluated, this will be 
detected. and the method will be restrict,ed to rules or orders of Taylor expansion which 
use only the derivatives which can be evaluated. 

The st.ra.tegy for subinterval adapta,tion retains all subintervals. At each st,ep, the 
subinterval which makes t,he largest conlribution to the width of J is processed by brea.king 
it int,o further subint.ervals. This processing continues until 

(i) W(J) is small enough to satisfy the accuracy requirement, (1 .Z), 

(ii) the noise inherent, in function evaluation limits furt,her reduction of w(J), or 

(iii) more than the maximum number h1 of function evalua.tions have been performed. 

The second t,ermination criterion in this list is particularly important. Jf t,he noise in the 
function evaluation is large relative to the accuracy request,ed, eventually the width of the 
trunca.tion error Ef is ma.de so small that it a.dds nothing t>o the width of the rule Rf 
alone. At this point. further increase in accuracy is not possible. Without the guaranteed 
bounds provided by the int,erval comput,ation. man.y standard methods cannot recognize 
when this point has been reached! and the calculation should be terminated. Malcolm 
and Simpson 113’ observe that the strategy of processing the worst subinterval results 
in local errors of roughly equal magnit,udc. R.ice 1231 calls this an ordered list interval 
collection management, component, and lists some advant,ages and disadvanta.ges which 
will be discussed in more detail in $7. 

5. Treatment of Singularities. -4mong the quadrature routines which provide estimates 
for I{: t’he more successful ones have specia.1 provisions to ha.ndle and perhaps recognize 
certain types of singularities. QU?iDPACK jl7j. for example, can handle integrals of the 
form 

(.5.1) 
J 

Jx - u)“(b - +(,)+)dz, 

where a,3 .> --I and v(x) = 1, log(a: - a)? log(b I_ r)’ or log(r - a) log(b - 2): provided 
the user supplies cy, 3. and the form of o. CADRE 131 attempts to detect and verify the 
presence of jump discontinuities or x”- type singularities in the integrand. The program 
described here attempts to recognize and handle automatically 

(1) g 1 t‘,. sin u ari ICS in derivatives of I, 

(2) some removable singularities, 

(3) jump discontinuities, and 

(4) some algebraic singularities at endpoints. 

Since guaranteed bounds are comput,ed for If. the task of such a program is more 
difficult t,han for methods which yield only an est,imate. For example. Gaussian quadrature 
can be used in the neighborhood of an endpoint singularity, because the integrand need 
not be evalua.ted at the endpoint. To give guaranteed bounds, however, requires that the 
function, or some of its derivatives, be evaluated on the entire interval. Hence. the price 
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of t,he guarantee is a restriction on the applicability of the program. Either it verifies that 
the integrand is in its domain of applica.bility, or. if it cannot deliver guaranteed bounds, 
it notifies the user with an indication of the difficulty;. 

An example will indicate what can go wrong at endpoints. For example: 

(5.2) 

could be presented to the compul,er as 

Although the original problem (5.2) is well-behaved, the interval integral in (5.3) contains 
integrals such as 

(5.4) J 
AK ---,_-. 

\‘Tz - x dx. 
(I 

and consequently does not exist. Hence. the correct. response is that (5.3) cannot be 
evaluat.cd on the entire int,erval of integration, just on ~O?VT], for example. This suggests 
that standard numerical quadrature routines, which avoid evaluation of the integrand at 
endpoints: can be fooled into returning values for int.egrals such as 

J 
iT --- 

\/T -- < - x dr 
r, 

for c sufficiently small, instead of informing the user of possible difficulty. The types of 
singularities which can be handled by the techniques present,ed here will now be described. 

5.1. Singu1arit.k in derivatives of j. 

The int.egra.nd j may not have enough derivatives for some rules which t,he integration 
program can apply. In the process of automatic generation of interval Taylor coefficients 
on an int,erval N. the nonexist,ence of a derivatives of j beyond a certain order is detected 
and reported. As long as j itself can be evaluated on the entire interval of integration, 
the order a.dapt,ation strat,egy handles singularities in the derivatives of j. For example, 
consider the problem 

b-6) 

The first derivative f’ is undefined at 2 = 0. so the only rule that can be applied to the 
entire interval of integraQion is the Riemann sum 

(5.7) 
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At t,his point, the subimerval a.daptive st,rategy takes over. At each st,ep. the subinterval 
containing 0 requires a Riemann sum. and thus is frequent]>- select,ed for further processing 
because of its width. All other subintervals can be processed using higher-order rules. This 
stra.tegy a,pplies to singularities in f’ which occur anywhere in the interval of integration. 
and not just at rndp0int.s. It also works for singularities in higher deriva.tives. whose 
presence might not even be known to t,hc user. Once a singularity of this type has been 
confined t,o a sufficicntl~~ small subinterval. it is possible to meet reasonable requirements 
for accuracy. jvith self-validation. 

5.2. Jump discontinuities 

If the int,egrand is given by an ordinary mathematical expression, t,hen it’ is difficult to 
represent a function which has jump discontinuities, and yet. can be evaluat,ed at every point 
in the interval of integration. However, the user can supply a subrout,ine for evalua.tion 
of the integrand m-hich produces jump discontinuities. These appear t.o the program as 
singularities in f ‘. On any subint,erval which cont.ains a jump. only the Riemann sum 
is available, and its M.idth will lead t,o frequent selection of this subiruerval for further 
processing. a.s before. So special algorithms are needed in t’his case. 

This behavior is similar t,o C.4DRE !b2’. L:pon recognizing a jump. C-4DRE subdi- 
vides t#he interval and uses a low-order rule. 

5.3. Some removable singularities 

The Taylor series met,hod permits handling of some removable singularities. Consider 
the problem 

IJ = 
s 

T sins 
-dx. 

I:1 x 

in which the int.egrand has a removable singularity at. r = 0. In this case, t,he integrand 
cannot be evaluat,ed directly on any interval cont,a.ining 0. but f can be expanded at 2 = 0 
using 1’Hospital.s rule. which can be applied automatically 161. ,4 short Taylor series with 
remainder for f at 0 is sufficient to bound If near O7 and the rest of the interval of 
integration is processed in the normal manner. 

5.4. Some algebraic singularities at endpoints 

Suppose t,hat t.he int)egrand has the form 

(W f(x) = (u - r)-‘4(r): 

where 4(x) is analytic at, z = (1. If c is chosen closer to u than any other singularity, then 
the series for f expanded at 5 = a is asymptotic to the series for V(X) = (a - x)-‘. The 
Taylor coefficients U, = ~:;(a: h) of 1: sat,isfy the recurrence relation 

! s-l h. 
v-1 = I!; 

l+--_ n’ z ) c 

(5.10) 

( 
vi+] h p= -,“... ” -- - 1 i-l. 

v, R,, > 
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where R, is the radius of convergence of the series. If S cannot be evaluated on ja:b;. then 
one attempt.s t,o find constant,5 JCL, h-R. 8~. s R such thal 

(5.11) ]j-& -. q’L 5 f(r) ‘;: Kh’(a .- 2)-Gy 

for x near a. If such const.ants can be found and (5.11) validated. then we proceed. If 
,G L 1-b 1. t,hen the program can guarant.ee that If does not exist.. We know of no other 
numerical quadrat,ure routine which can mlidnie nontxisl~ence of an int,egral. If 8~ C. 1: 
then 

(5.12) 

These bounds can be made as tight as desired by taking (I’ close enough to n. The interval 
[a; a’] is placed on t,he list of subintervals, and processing continues on the subinterval 
ia’, bl. 

‘A singularity at, h can be handled similarI>-. 
If KL, KR: SL , .SR cannot be found, or if 

(51.3) SL <I I < sli’. 

t,hen the integrand cannot be handled by t,his met.hod. and a message l,o that, effect is sent 
to the user. 

These methods for recognizing and handling certain singularit.ies ext,end the domain 
of applicability of the program t,o include man)- integrands which arise in applications. 
However, their usefulness is somewhat limited. For one thing. the location of t,he singu- 
larity must be known in advance, or guessed. For popular sets of t.est problems, guessing 
one or both endpoints usually works. For real problems: locations of singularities may be 
unknown. However, the method given here validat,es correct guesses. The endpoints to be 
investigat,ed for the presence of singularities must be machine numbers, not int,ervals. If 
an interval-valued endpoint is even one machine number wide! then the problem cont,ains 
int!egrands which are unbounded on a set of positjive measure. If a singularity is in the 
int,erior of the interval of int,egration: then we can determine its location to within one or 
two machine numbers. From this, its cont.ribution to 1f could be estimated, but, the possi- 
bility t,hat the integrand is unbounded on a set of positive measure cannot, be eliminated. 
Since a validated answer cannot, be produced in this case, an error return is selectted. If 
the user knows that the singularity occurs at a machine number, then the integral should 
be calculat,ed as the sum of two int,egrals, with the singularity at one endpoint of each. 

6. Extension t’o Interval \7alues. The definition of the int,egral (1.1) has been extended 
to arbitrary int.erval-valued ititegrands J 141, 1201. For smooth, real-valued functions such 
as those considered in b3. the interval int,egral and the Riemann integral coincide. The 
concept of interval int,egration is useful in connection with integrands which have jump 
discontinuit,ies or singularities of various kinds. The definit,ion given in :4] can be extended 
to t,he case that the limits of integration are interval-valued: 

(6.1) 
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for A, I? E IR, the set of all finite intervals with real endpoints. 
There are several reasons to want to be able handle interval endpoints of integration. 

First of all, some real numbers, such as 1~, cannot, be represented exactly in S, and have 
to be replaced by the corresponding small intervals such as IVn, An] in IS. Secondly, the 
limits of integration may coqle from measurements other estimates, and thus are known 
t.o lie between certain limits even though their exact values are uncertain. Finally, one can 
be interested in bounds for the value of the int,cgral (1.1) over ranges of values of limils 
of integration. In this case, rather tharl satisfy an accuracy criteriou such as (1.2), it is 
usually desired to find an interval J containing (6.1) which is as small as possible. 

Similar considerations apply to interval-valued integrands. The case which usually 
arises in practice is that the integrand j is a function not only of the independent variable 
P, but also several parameters ~1, ~2,. . . , c,. For example, 1 could be a polynomial of 
dcgrec m -- 1 with coefficients determined by observations, 

(6.2) j(x) = Cl + czx + + - - + l&x-l, ci E IS, i = 1,2 ,..., 772. 

In general, given interva,ls Cl, Cz,. . . , Cm, it is natural to define 

(6.3) f(x; Cl, - * * Gn) = {j(x;Cl,...,CnJ 1 CI g Cl,*..,Cm E cm}. 

The natural interval incl,usions Fk(X,Cl,. . . , C,) of f and its Taylor coeficients on an 
interval X E IS are again obtainable on a computer by using interval computation and 
automatic differentiation. In particular, for an interval polynomial (6.2), F,(X, H) E [O,O] 
for p > m, just as in the real case. The definition 

/ 
B 

(6.4) 1(x; CI 7 - - . , C&x = l-(x, Cl, * -. , GYl)d~ Cl E CI,...,Cm E c, 
A 

describes the type of integrals to which the methods of this paper apply, It is assumed that 
A, I? and the coefficient intervals Ci all belong to IS, and hence are machine-representable. 
If necessary, outward rounding can be used to obtain them from real intervals, preserving 
inclusion of the desired integral. 

On the basis of (2.3), it is to be expected that the best results will be obtaincad for 
integrands f which are very smooth as functions of z. However, one can always compute 
the interval Riemann sum F(X) - w(X). Th is is self-validating, because 

w / I(+ c F(X) - 4X), 
X 

but is inaccurate and slow to converge [4], 1201. It is important to be able to confine bad 
behavior of the integrand to very small int,ervals for (6.5) to be useful. 

The meaning of tolerance for problems with interval-valued endpoints requires some 
clarification. Consider the problem 
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If we compute J = ,-‘0.004.0.79]. for example. then w(J) = 0.794, although the estimat,e 
for each endpoint is in error by less than 0.005. Hence. a requested tolerance must be large 
enough to accomodate the uncertainties which are inherent in the problem being solved. 

The ca.ses that. one or both endpoints of integrat,ion are nondegenerate intervals in 
IS will now be considered. The possible situations will be denoted by IR.: RI: and II. 
respectively. a.rcording as the lower, upper. or both endpoints of the interval of integration 
are int,erval-valued. One strategy for handling interval-valued endpoints is to allow the 
uncertainties in the locations of the endpoints to be carried over into uncertainties in the 
locations of the nodes, as in INTE i9:. For example. using a one-panel Simpson’s rule on 
4-decimal digit machine gives 

(6.7) 
s ;3.1,3.2; 

p,o.l] 

f(x)dx E (B ; A) (F(j0,O.l + 4F([1.55,1.65]) + F(j3.1,3.2)) 

(B - A)” 
- --d"(jO,3.2]), 

2880 

where A = iO.O.l]: B = j3.1,3.2]. For j(x) = sin a, (6.7) yields 11.880,2.214] using the 
a.ccurate scalar product, while t,he correct answer is \1.994,2.000]. 

A bett,er strategy is to concentrat,e the uncertainty at the ends: 

The middle part is handled as an RR integral as described in 553-4, while t#he other two 
integrals: of the types JR and RI: respectively, will be treated in the manner to be described 
below. In this example, we can get, ;1.984,2.0733. As the widths of the endpoints increase, 
the advantage of the second strategy becomes more pronounced. 

The general case (6.3) can be expressed in terms of integrals of the above types. This 
case in turn splits into six subcases, according as A and B are (i) disjoint, (ii) overlapping, 
or (iii) one is contained in the other. More precisely, for A = [AL,~~R], B = (BL, BR], 
suppose that, A R < BR. Then we have: 

Case 1. AR 5 BL (disjoint interval endpoints). Here, the integral (6.3) can be written 

(6.9) 
/ 

AB f(z)dz = 
J 

,I”,, , j(x)dr i 1”’ j(x)ds t /i”“‘“’ j(x)dx, 
L, ?, Ar, Hr. 

and thus is t,he sum of integrals of types IR: RR, and RI, respectively. 

Case 2. AL < .BL < 24R < BR ( overlapping interval endpoints). Here, 

/ 

IAR,BLl 
(x)dx 1. j’(x)dx, 

A,. 

the sum of integrals of t,ypes IR. 11: and RI. 
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Case 3. BL < AL 5: AR :; BR (A is properly- contained in B). Here. 

(6.11) 
IAr. ,Bfi: 

f(z)ds i 
s 

f (+k 
‘4 1: 

again the sum of inkgrals of iypcs IR. II. a.nd RI. 

The other t,hree cases are obt,ained for R R -.: ,4H by reversing the 6les of .4 and B in the 
preceding. 

Case 1 is undoubtedly the one which is encountered most often in practice. To illus- 
trat,e Case 3, consider 

(6.12) 
/ 

iV1 
f(x)dx + f (x)dx. 

.T 

We are not, aware of physical problems which give rise t,o inbegration problems other than 
Case 1 (except to bound the values of int,egrals over ranges of endpoints), but provision 
for t,hese cases adds little to the machinery which is required to ha.ndle Case 1. 

Megrals o-f t,ypes RI, IR: and II can be handled by Gauss or Newton-Cot,es formulas 
with interval-valued nodes, but this lea.ds t,o wide interval bounds. The met,hod of Taylor 
series, as outlined in 54, applies as easily to t.he cases of one or both endpoint,s interval- 
valued as to RR type integration. Hence: t,he program uses Taylor polynomials for integra.ls 
of types RI, IRj and 11. even if the user has chosen Gauss or Newton-Cotes formulas for 
use on type RR subintervals. 

Using the same not,ation as in §3, g(s) d enotes an indefinite integral (3.4) of f (2). 
The one-panel form of the various int,egration formulas are then: 

Type RI: 

(6.13) 

Type IR 

(6.14) 

Type II: 

(6.15) 
/ 

ja,b! 
f(+ < &T) 

jn,h] 

! ju.bj 

I ,fX,t,; 
(x - c)n+l 

4 J+)(/a:b]) (~ + 1)’ 
1 IO1 

i ja,b] 

Each uses intersections of subsequent estimates and order adaptation as the RR algorithm 
does. 
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Formulation of t,he multipanel forms for the above types requires some care. Suppose 
the nodes a = zC, <: x1 < . . . C. LC~ = h are selected. and set 1’i = !x;.- 1.x;; for i = 
I,&. . . , k. For type II int,egrals, let 

(6.16) 

which is symmetric about 0. If s.l. k: 1;. then 

(6.17) 

If s E 1: and t E Yi with i < j, then 

(6.18) 

Hence, 

(6.19) (;‘j f (2)dT 5 t /‘I f(r)&. 
* ] ;=I l’, 

The subintervals 1; are chosen by the same subinterval adaptive strategy as used for type 
RR integrals. Thus, the algorithm for t,ype II integrals is the same as for t,ype RR, except 
that t,he integral on each subinterval is computed using the one-panel type 11 rule, equation 
(6.15), with intersection. 

The multipanel rules for types RI and IR do not lend themselves to subinterval adap- 
t.ation. By definition, 

(6.20) 

* f(r)dx = is a f(z)& / t E ja, b] 1 
t 

XI f(+h i t E Yi 
I 
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Once the endpoints of a suhinterval are chosen! that subinterval can be subdivided only 
with great difficulty. he observe that 

(6.21) 

so the type II algorithm gives bounds using adaptation. If those bounds are not small 
enough, then we apply the algorithm given by equation (6.20) using a fixed stepsize equal 
to the smallest stepsize chosen adaptively by t,he type II algorithm. 

Type IR inbegrals are done similarly. 

In the general case of the integral (6.3), the allowable tolerances and the maximum 
number of function evaluations must be apport’ioned among three distinct, independent 
integrations. These are given in proportion to the width of the respective subintervals. If 
r(X;) denotes the tolerance allowed on the subinterval Xi, T* is the tolerance rema.ining, 
then 

(6.21) 

If the integral on the first subinterval is narrower than its share of the total tolerance 
requires? then the tolerances on the other subintervals are relaxed so that the total tolerance 
can be met more efficiently. On the ot,her hand. if the integral on the first subinterval 
is a little too wide, then the integrals on the remaining subintervals can sometimes be 
commuted accurately enough that the total tolerance can still be satisfied. 

7. Implementation Details. It follows from the above discussion that realization of 
adaptive, self-validating qua.drature routmines on a computer requires that the following 
features be support,ed: 

(i) interval computation (arithmetic operations and standard library functions). 

(ii) Subroutines for automatic generation of Taylor coefficients. 

(iii) Ac.cura1.e scalar product of interval vect,ors (to minimize width due to roundoff 
error), 

The program INTE i9j was written in FORTRAN for the Sperry 1100, on which 
only (i) 1251 and (ii) were supported. As mentioned above, INTE performs self-validating 
numerical integration without adaptation. The microcomputer language Pascal-SC [22] 
and the ACRITH package for t,he IBM 370 series of computers support (i) and (iii). to which 
the routines (ii) have been added. The implementation described in [6] for Pascal-SC is 
immediately a.daptable to ACR,ITH. The program described here is written in FORTRAN 
for use with ACRITH. In particular, the following operators and library functions are 
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supported: 

+ 
- 

4 
: 

* * constant 
ABS 
SQR 
SQRT 

SIN SINH EXP 
cos COSH LOG=LN 
TAN T-4NH LOG10 
COTAN=COT COTANH=COTH ERF 
ASIN ASJNH ERFC 
ACOS ACOSH GAMMA 
ATAN ATANH LGAMMA 
ACOTAN=ACOT ACOTNH-ACOTH 

The Taylor series terms F,( C, H) and F,( S, I-I) are calculated by using the well- 
known recurrence relations [15j, 1161, /I91 for the operators and functions given above. In 
t,his application, the “point” of expansion and the stepsize are interval-valued to give the 
desired inclusions, but t,he recurrence relations remain the same. It is possible for the user 
to augment the list of library funct,ions given above if the required recurrence relation for 
Taylor coefficients of the new function is known. 

Given an integrand of the type considered, for example, 

the ‘program first parses it into a code list !19]: 

Operator Operand I Operand 2 Result 

SQR x (=Templ) Temp4 
+ 1 (=Temp2) Temp4 Temp5 

! 4 (=Temp3) Temp5 F 

In order to comput,e the series for j expanded at, C with stepsize H, this code list is 
interpreted to obtain the sequence of calls 

Templ := (C,H) {The series for x.} 
Temp2 :- (1) { Const,ant. series.} 
Temp3 := (4) {Constant series.} 
Call ITSQR(Templ ,Temp4) 
Call IT,4DD(Temp2,Temp4,TempS) 
Call ITDIV(TempS,Temp5,F). 

The result is an array which contains the interval-valued series for j and an indication of 
how many terms were computed. For example, the subroutine ITSQR(U, V) computes the 
series for V = U2, given the series for U, by means of the recurrence relations 

(7.2) 

i even, 
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where I,‘, = \,;-( C. H) and T-:i = Ui(C, H) d enot.e the ith Taylor coefficents of U a.nd j/r? 
respect,ively j19], p. 49. The interval function ISQR computes ISQR(X) = X2 instead of 
X * X, which is preferable in general, since, for example. .-l: 112 = i0: 1; while i-1,1; . 
i- 1. lj = ;- 1.1;. The parsing and interpret,ation at runtime described a.bove is unnecessary 
in Pasc.al-SC, because the compiler generates the reyuired code 16;. 

The int,erval Taylor coefficients F1 (X, C): Fz(X. C). . . . are maint,ained in a record-like 
st,ructure. If’ “F” is the name of t,he function being expa.nded, then 

LF Index of last, known nonzero term; 
MF Index of last known term: 
OFL Vector of series terms-left (lower) bound; 
OFR Vect,or of series terms-right, (upper) bound. 

The designat,ions for ot,her variables replace “F” in the above. 

The algorithms used depend on whether the endpoints of the int,erval X of integration 
are elements of S, tha,t is, machine numbers, or whet,her they are intervals. The basic 
algorithm is for the case X = ia, b] E IS, and is called the RR (REAL-REAL) algorithm: 

1. Compute the integral on ia, b]; 

2. Add [qb] to t,he list of subintervals; 

3. Loop 

4. Find the subint,erval on which the width of the integral is largest; 

5. Bisect’ it; 

6. Comptite the int,egral on the left subint,erval; 

7. .4dd the left subinterval to the list; 

8. Compute the integral on the right subinterval; 

9. ,4dd the right subinterval to the list: 

10. Compute the integral on ja, b] by summing t,he integrals on all the subintervals; 

11. Exit when accuracy t,olerance is met: 

12. Exit with warning when 

13. no further improvement in accuracy is possible, 

14. or i’H function evaluations are exceeded; 

15. End loop. 
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Each subinterval ?i is maint,ained in a data struct’ure of the following form: 

XA 
XB 
OPTORD 
M’IDIYYT 
SINT 
M‘EGHT 

FNVAL 

FNTRN 

Left endpoint of the subinterval: 
Right endpoint of the subint’erval; 
Order of t,he derivat.ive used to comput’e the remainder; 
Width of the int,egral on this subint,erval; 
lnt,erval-valued inl.egral on t’his subint,erval; 
Vector of interval valued 

weight.s (Gauss and Newton-Cotes), 
stepsize (Taylor); 

Vector of interval-valued 
function values (Gauss and Newton-Cotes). 
series terms (Taylor) : 

Vector of interval-valued 
function values (Gauss and Newton-Cotes), 
series terms (Taylor) : 

including remainder t,erms. 

,4t steps 1, 6? and 8. the integral is computed on the subinterva.1 IXA,XB] using one- 
panel versions of Gauss, Newton-Cot,es, or Taylor polynomials a.s outlined in Sections 2 and 
3. The weight vect,ors and functions are arranged in the vectors M:EGHT and FNTRIV, 
respectively, in such a way that, the interval inclusion 

(7.3) J = c WEGHTi + FnTTRN; 

of Jj l(r)& is computed as a single inner product. Similarly, 

(7.3) Rf = 13 WEGHT; x FNV.41,;. 

At step 13, if J c Rf, then the loop is exited. In this case, further reduction of the width 
of the truncation error cannot reduce w(J). For G auss and Newton-Cotes formulas, SINT . 
is used only to give WIDINT. For Taylor polynomials , x;SINTi is intersected with (7.3). 
SXlVTi is comput,ed using the intersection principle discussed #at the end of $3. For a few 
subintervals, xi SINT; is narrower than (7.3), while the sit,uation is usually reversed for a 
large number of subintervals. because (7.3) uses the a.ccurate scalar product. 

The arrangement. of subint.ervals in the arrays listed above must be relatively straight.- 
forward t,o allow J to be computed by a single scalar product operation. Each iteration of 
the loop from step 3 t.o st.ep 15 removes one subinterval from the list and replaces it with 
two subintervals. Subint,ervals are not ot#herwise deleted from the list. Hence, the follow- 
ing simple allocation scheme works: On the ith pass t,hrough the loop. the information 
about the left subinterval is stored in the locations previously used by its parent: and the 
information about the right subinterval is stored in the (1, + Y)st locations, following the 
already computed values. Hence, insertion requires no searching. The widest subinterval 
is found at step 4 by a sequential search of the array WIDIKT( I.-i). 
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By contrast. QUADPACK iii, maintains it,s list of pending subintervals in sorted 
order, so no search is necessary for the next, subinterval to be processed. However: new 
subintervals are inserted at locations found by a sequential search, followed by changing 
pointers to a,11 following entries in the list. For each subinterval processed, the program 
does one sequential search. while Ql?ADPACK d oes t.wo. In addition: QUADPACK uses 
t,wo sets of point’er adjustments. 

For integra.tion using Taylor polynomials. the maintenance of list of subintervals is 
somewhat more complicat,ed, because the prograrn reuses the series which it has previ- 
ously computed. To illustrate the ideas, consider the first execution of the-loop at step 3. 
At that point, the list, of subintervals contains only one: X = !a, b] itself. FNTRN contains 
OPTORD- 1 terms of the series for f expanded at c = (a + b)/2 and the truncation error 
term involving F(OFToRD)(X) given by equation (4 6) . . P rovided that the requested tol- .J 
erance exceeds t.he noise inherent in the function evaluation, a stepsize h can be computed 
which is small enough that the requested tolerance per unit step is satisfied on the interval 
[c - h, c -+ IL. Notice tha.t if a relative tolerance is requested, then t,his requires a current 
est,imate for 3. The value of the integral on this subinterval can be computed at a cost 
proportional to OPTORD, instead of a cost proportional to OPTORD”, which would be 
required t,o generate J directly by using the recurrence relations for f. Following this, the 
two subintervals la, c - !ij and ic + h, I!J; are processed directly. Consequently, th.is method 
breaks the subinterval of integrat,ion int,o three parts, rather than bisecting it. 

Thus, for int,egration by Taylor polynomials, step 5 of the RR algorithm is replaced 
by 

5.0’ Compute h such that the tolerance is satisfied on /c - h, c + hj; 
5.1’ Compute the integral on [c - h2 c I-. h] from information in FNVAL; 
5.2’ “left subinterval” := [XA. c - hj; 
5.3 ’ “right, subinterval” := [c + h, XB]. 

The middle subint,erval [c - h, c + h] -,. 1s maintained on the list of subintervals so that, 
it’s contribution to J is included in the scalar product in (7.3). This has the helpful side 

1 effect that h can be chosen somewhat optimist,ically. If t,he choice is too optimistic, then 
[c - k. c -t h] will be selected later for further processing as the worst subinterval, at, which 
time it will be broken into three parts. One of the new subintervals will occupy the place 
of the parent interval in the list maintained, while the other two will be added t,o the end 
of the list. 

A further refinement could be implemented. The stepsize h computed at st,ep 5.0’ has 
the following property: On each subinterval of length 2h which is contained in [XA,XB], 
the use of a Taylor polynomial of degree OPTORD-1 yields an integral which satisfies the 
requested tolerance. The integration on such a subinterval can be done with half the usual 
work. No series for the truncation error needs to be computed because the truncation 
error can be bounded by using the global remainder term on [XA,XB]. If [XA,XB] can 
be covered by a few subintervals of length 2h! then this could be done, and division 
into three parts would be needed only when the middle part is relatively small. This 
refinement could improve the efficiency of the program. However, the improvement would 
likely be modest, because the advantages of intersecting subsequent estimates on each 
small subinterval would be lost, and the number of subintervals added to the list would 
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no longer be constant. The program also does not. reuse function evaluations required by 
Gauss or Newton-Cotes formulas, although it could be modified to do so. 

8. Numerical Examples. We give four examples to illustrate the accuracy and the 
relia.bility of the program. All computations were done in double precision on an IBM 
4341 computer, using calls to ACRITH routines for all necessary interval calculations, 
including scalar products. 

0.7 
Example 1. I = 

/ 

1 
-dx. 

“+c; l-2 

Interval bounds for the answer can be computed in three ways: 

(84 I = log(1 - 0.6) - log(1 - 0.7), 

W) I = Iog(4/3), 

or by ada.ptive, self-validating quadrature. 
Neither 0.6 nor 0.7 are ma.chine numbers. so they are converted to intervals which 

are one machine number wide. All three methods give the interval [0.2876820724517808, 
0.2876820724517811], but the results are 20, 13, and 14 machine numbers wide, respec- 
tively. That is! the program is capable of accuracies comparable to evaluation of the 
analytic expression for the answer. This result required 43 equivalent function evaluations 
on 18 subintervals. In order to appreciate the accuracy achieved by the program, we must 
consider some details at t,he level of machine numbers. If (8.1) is evaluated without sim- 
plification using interval calculations, the result is the hexadecimal int,erval iZ 4049 A588 
44D3 6E41, Z 4049 A588 44D3 63.55;: which is 20 machine numbers wide. Using (8.2), the 
last 4 hexadecimal digits are iZ __. 6E45, Z . . . 6E52: ;, which is 1.3 machine numbers wide. 
The adaptive, self-validating quadra.ture program gives iZ .__ 6E44, Z . . . 63521, which is 
14 machine numbers wide. 

Example 2. 
/ 

4 

Cf 
%iidx = 5 (see s5.1). 

This example illust,rates the order adaptation required to handle the nonexistance of 
f’(0) + The program gave the interval 15.33333 33333 27, 5.33333 33333 361. It stopped when 
it had used 400 effective function evaluations on 226 subintervals. Most of the subintervals 
were clustered near the origin. Away from 0, as many as 13 series terms were used. 

Example 3. 
/ 

(,l f w x. where f(z) = 
t 

0, x < 0.3: 

1 x > 0.3. 

This example illustrates integration of a simple discontinuous function. The parser 
does not accept a. piece-wise definition, so this function was coded by hand. Table 1 shows 
the results for tolerances 0.0 and l.OE-15: and for recognizing that the function has a 
singularity on the interval of integration. 
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Width of Function 
Integral Evaluations 

Subintervals 

Tolerance = 0.0 
10: 1: 
;o. 013: 

2.50E-16 238 146 
-+ ;0.3, 11 a.:sIG17 22 29 

Tolerance = l.OE-15 
p, lj 
jo. 0.3j $ 10.3, I] 

7.77E-16 194 130 
1.39E-16 10 5 

Table 1. Integrating a Discontinuous Function. 

As is usually t,he case, the program performs much better when the user recognizes 
the presence of a discontinuity. The performance would be even better if the discontinuity 
occured a.t a machine number. Sotice that the cost of requesting the program to do the 
best it, can (tolerance = 0.0) is only slightly more than the cost when a lesser tolerance 
is preskbed. The ta.ble shows more subintervals than eva,luations because evaluating a 
series which is z 0 is not counted as an evaluation. 

I 
Example 4. 

s 

1 
--.- dx. 

I, 1 - Q22 
This example illustrates the performance of the program as the int)egrand varies from 

very smooth t,o being undefined at a point in the interval of int.egration. These calculations 
were done in single precision with an absolute error tolerance request of I .OE-5. An error 
code of 66 signals that the program was unable to meet the requested tolerance, while 67 
means that it was unable to evaluate the integrand. As the problem begame more diffkult? 
the program required more effective function evaluations and more subint,ervals. 
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Alpha 
Error 
Code 

0.00 0 
0.05 0 
0.10 0 
0.15 0 
0.20 0 
0.25 0 
0.30 0 
0.35 0 
0.40 0 
0.35 0 
0.50 0 
0.55 0 
0.60 0 
0.65 0 
0.70 0 
0.75 0 
0.80 0 
0.85 0 

0.90 0 
0.95 0 
1 .oo- 66 
1.05 67 

Function 
Evaluat,ions Subint ervals 

2 2 
8 2 
8 2 
8 2 
8 2 
5 2 

15 6 
12 6 
12 6 
21 10 
19 10 
16 IO 
24 14 
35 18 
29 18 
38 22 
48 26 
43 26 
62 34 
73 42 

254 150 
2 

Maximum Absolute 
Order Error 

3 0.0 
20 4.4E-16 
20 1.8E-14 
20 6.6E-12 
20 7.S10 
15 4.1E-06 
15 1.9E-lo 
1 3 4.5E-08 
13 I .8E-07 
15 6.1E-08 
14 1.4E-07 
12 7.9E-06 
12 2.4E-07 
15 6.4E-08 
12 S.OE-06 
12 1.3E-OT 
15 6.6E-08 
12 7.5E-06 
15 6.8E-08 
14 1.2E-07 
8 3.2E-01 

Table 2. Performance Profile. 
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ABSTRACT 

We report about the computational aspects of high level algorithms 
developed for efficiently processing the diverging and converging branch 
systems in nonserial dynamic programming. A special feature of these 
algorithms consists of a special technique devised for processing the 
network functions such that the minimum amount of storage is employed. It 
is shown that if k is the discretization level of the state and decision 
variables then the space complexities are O(k) and O(k2') for the diverging 
and converging branch systems respectively. The resultant time 
complexities are also developed. These savings in computational 
complexities enhance the attractiveness of dynamic prog-ramming as s tool 
for processing more complex nonserial systems. 

1, INTRODUCTION 

When considering nonserfal dynamic programming networks 1123 
attention is usually focussed initially on the following four basic well 
structured systems: diverging, converging, feed forward and feedback loop 
systems. A characteristic of each of these nonserial systems, is the fact 
that at least one subsystem either receives inputs from more than one 
subsystem or sends outputs to more than one subsystem. Altetnatively, for 
at least one of the stages of these systems, the output is not the input 
to the next; thus, there exists at least one n such that the output x, f 
Xn-l* the input of the next stage. This distinguishes them ftom the usual 
serial systems. 

Examples of the above classical nonserial systems and various 
combinations of them abound in real life ([2] [13] 1181). For example, 
they are encountered in the study of chemical processing systems, natural 
gas transmission pipelines, water resources systems, energy, communication 
and computer networks. There are important reasons to treat these 
problems from the standpoint of nonserial dynamic programming. In 
general, however, the resultant problems are more difficult computation- 
ally than classical serial dynamic programming. It is clear that 
computational advances in serial dynamic programming play an important 
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role in the study of nonserial dynamic programming processes. As an 
extension of this argument, analysis of complex nonserial dynamic program- 
ming processes consisting of various combinations of each of the basic 
structures is also aided by computational advances in the four classical 
structured nonserial dynamic programming systems outlined earlier. 

Hitherto, limited attention has been paid to efficient algorithms for 
treating nonserial dynamic programming networks. In particular there is a 
complete absence of any discussions relative to their computational 
complexities. This shortcoming was recently addressed in [14]. The 
emphasis was on the development of efficient computing algorithms which 
will minimize the usual storage requirements of dynamic programming 
encountered while processing the first two classical nonserial systems, 
namely the diverging and converging branch systems. In this paper we 
merely outline the problems and concentrate on the complexity analysis of 
the resultant algorithms. The reader is referred to the above referenced 
paper for algorithmic details. 

2.1 THE BASIC DYNAMIC PROGRAMMING ALGORITHM FOR THE DIVERGING BRANCH 
SYSTEM 

A diverging branch system (see Fig, 1) is the easiest of the 
elementary nonserial structures to analyze. For simplicity, we first 
consider a two branch system. The stage transformations t(.,.) and return 
functions r(., .) both for a main serial process i (i=1,2, .,., n) and for 
a branch j (j = 1,2, . . . . m) are defined as follows: 

xi-l = ti (xi, di) , i = 1, 2, . . . . n 

xj-1,1 =t (x jl jl' djl) 9 5 = 1, 2, l a., m 

= tsl(xs, ds) 

r. =r 
1 i (xi, di) , i = 1, 2, . . . . n 

‘j,l = rj ,l(xjls djl) , j = 1, 2, l **9 m 

Without loss of generality, consider the basic system consisting 
of one main serial system (i = 1, 2, . . . . n) and one branch (j = 1, 2, 
. . . . m). Let us assume that the input and decision variables at each 
stage have the following integer values: 

l<x <k jl jl ' j = 1, 2, .*., m 

1 G xi < ki , i = 1, 2, ..*, n 

1 g djl d pjl , j = 1, 2, . . . . m 

1 < di c pi , i = 1, 2, . . . . n 
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The algorithm is developed by first decomposing the network into four 
phases and then employing the usual recursive procedures in optimizing the 
total return. The recursion equations for the various phases then become: 

2.1.1) For the Diverging Branch (from stage 11 to stage ml) 

fll(xll) = max rll(xll, dll) 

l 6 dll c p11 

fjl (xjl ) = max 11: jl(xjl' djl) + fj-l,l(tjl(xjl' dj))J 

led 
jl ' pjl 

where j = 2, 3, .*. , 

Using the above equations, the optimal branch return and optimal 
decisions are computed for each possible value of xii. 

2.1.2) For the Main Serial Process (from stage 1 to stage s-l, i.e. 
prior to junction node) 

fl(xl) = max rl(xl, dl) 

1 G dl 6 pl 

fi(xi) = max [ri(xi. di) + fiel(ti(xi, di))l 

1 G di Q pi 

where i = 2, . . . . s-l 

The optimal return fi(xi) and optimal decision di at each stage are saved 
for each possible input value Xi. 

2.1.3) For the Stage s (junction) 

f s+ml(xs) = max [rS(xs, ds) + fs,l(ts(xs, ds) + fml(tsl(rs, d,))l 
1 6 d, 6 P, 

At this stage, the optimal return fs+ml(xs) is the combination of 

main serial process preceding stage s, f s-l(ts(xs~ dsl)) and the optimal 

return from the branch, fml(tsl(xs, ds)). For each possible value x 
S’ 

both fs+ml(xs) and ds are reserved at this stage. 
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2.1.4) For the Remaining Stages (from stage s + 1 to stage n, the 
terminal node) 

The optimal return at each remaining stage from s + 1 to n can be 
obtained as in the usual serial systems, i.e., 

f n+ml(*n) = UBX [rn(*,,, dn) + fn-l+ml(tn(xn* dn))I 
lrd/p n 

where I = s + 1, . . . . n 

2.1.5) Determination of the Optimal Decision and Return at Each Stage 

At the final stage n, the optimal input xz to the system can be 
obtained by letting 

f n+l(*) = max [f 
n+mltxn)l 

1 < xn 6 kn 

With the optimal input xz and optimal d* 
*" 

obtained from a decision table, 
* 

we can produce optimal stage return r as n and optimal stage output x n-l 
follows: 

* 
r n = rn(x* n, d;) 

* 
*n-1 = tm(x;, d;) 

This process continues from stage n down to stage s + 1. 
At the junJ;tion stage (stage s), the opiimal stage input x*, and stage 
decision d,, the optimal branch input xml are obtained via the transition 
equation 

* 
Xml = t&x;, d;). 

For the remaining processes, the stage transformation, return function, 
and decision tables can be used at each stage. 

2.2 A Nigh Level Computing Algorithm for Diverging Branch Systems 
(DBCA) 

The conventional computer algorithm for performing the operations 
listed in the foregoing generally employs a brute-force method to store 
optimal .decisions ak each stage and then later retracing them after the 
optimal return fn(xn) has been found. Such an approach dictates an 
enormous amount of storage requirement. The problem obviously gets worse 
when large and complex networks are involved. This is certainly the case 
when multi state variable dynamic programming problems as in converging 
and loop systems are involved. To mitigate this problem, we have 
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developed a technique which marks the optimal*decision value, say, d: by 
adding kd = 1 C k to the state entry ti(xi, 
stage takes place. 

di) as the processing of each 
In other words, kd is a number larger than all 

discretization levels and k = max (kll,..., k,L;kL,...,kn). This 
eliminates the neeg for storing the optimal decision. Later, when the 
optimal degision di is to be rgtraged, it may be retrieved by searching 
only the xi-row of ti for ti(xi, 
for each i. 

di) > kd over values of di. This is done 
Any future reference to the table ti is then made as (each 

entry) mod kd. 

This idea proposed for the elimination of the need for storing 
optimal decisions can result in a substantial saving of storage space. 
For example, consider a simple serial dynamic programming system involving 
S stages, D decision variables and P state-variables. If K is the 
discretization level of the state variable, then using the conventional 
computational procedure, 
is approximately SDKP. 

the storage requirement for the optimal decision 
In a very simple case where S = 10, D = 1, K = 

1000 and P = 2, this saving amounts to 10'. 

In a diverging branch system, tables F(O;l,l:K > are needed for 
processing the optimal return at each stage. At each stage i, the optimal 
return is processed by using the previous stage optimal return from 
F(st,,), and stored in F(dt,.), where st = (i-l) mod 2, and dt = i mod 2. 
The optimal return fml is stored in table FM(1:K >. Note that st and dt 
are used to indicate indices of source and destination tables 
respectively. 

To present the algorithm, we first explain the notations. The 
algorithms are described in a PASCAL-type construct. Comments are 
enclosed within (*...*). Enclosure of a simple or a complex statement 
within a loop is effected by indenting the statement. In [14] the 
computer algorithm for the diverging branch system is described in detail. 
It consists of modules A through C each corresponding to the seven 
different phases of optimization. 

3.1 THE BASIC DP ALGORITHM FOR THE CONVERGING BRANCH SYSTEM 

Let us similarly review the converse of the diverging branch system, 
namely a converging branch nonserial network. In its simplest form, a 
number of parallel serial systems join together at a junction node and 
then feed their outputs to a serial system. A simple example consisting 
of two input parallel branches and one serial output is exhibited in Fig. 
2 and is used as the leitmotif for our algorithm. In general, the 
converging branch system is treated as an initial final value problem 
(often termed a two-point boundary value problem) resulting in a two, 
dimensional optimization problem. 

We begin by noting that this system is more difficult computationally 
than the diverging branch system. However, as before, we may still view 
it as consisting basically of a serial system i, i = 1, 2, . . . . n and a 
branch j, j = 1, 2, . . . . m with convergence occurring at node (stage) S, 
The transformation at this stage may be written as: 
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xS-l = ‘s(xol, xs, ds) 

The transition function for the other stages may be represented as in 
the usual serial processes as follows: 

For the Branches 

xj-l,l = tjl(xjl, djl) , j = 1, 2, .-*s m 

For the Main 

xj-l = j j' t  (x dj) ,  j = 1, 2, l ... n; j f s 

We define the returns for each stage similarly. Thus, 

r 
S 

= rs(x 01' xs' ds) 

r i = fi(xi, di) , i = 1, 2, . . . . n;i#s 

‘jl = rjl(xjl, djl) , j = 1, 2, .**I m 

To develop the algorithm, we proceed as follows: We first 
decompose the system into three components corresponding to stages 11, 21 
to ml, and 1 to n. For stages 1 to n, we separately consider stages 1 to 
s-l, s, and finally s + 1 to n. To find the optimal branch return 
fml(xol) we use the backward recursion. Next, we maximize f 
x ml l 

PCXB1) Over The recursion equations for the different phases may t en e 
d&?ined as follows: 

3.1.1) FOR STAGE 11 

We solve the problem 

fll(xll,xO1) = max rll(xll, dll) 

1 c dll G p 11 

s.t. xo1 = tll(xll, dll) 

In other words, for each input value x,, we will 
- decision dll which satisfies x o1 = tll~~ll, dll) 

stage return. For each value of (x11, x01), the 

find the optimal 
and also maximizeskthe 
optimal decision dll and 
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optimal return r 
h 1 are saved. We note that a two state variable dynamic 

program results ere as well as in the next phase of the model. 

3.1.2) For Stages 21 to ml 

The optimal return is given by 

fjl(Xj1' xo1) = max [r (x jl jl' djl) + fj,l,l(tjl(xjl' djl))' 

j = 1, 2, . . . . m 

* 
At each ptage from 21 to ml, the optimal decision djl and optimal 
return f 
fml(xml' 

jl are computed for each pair of ixjl, xol). At stage ml, 
xol) is found and the value of xml which maximizes the branch 

return for each value of x o1 is obtained such that* 

fml(xol) = max fml(xO1, xl11 

x ml 

3.1.3) For the Main Serial Process 

3.1.3-i The optimal return from stages 1 to s - 1 can be found by 
using the usual recursive procedure, i.e., 

fl(xl) = max rl(xl. dl) 

1 < dl < p1 

fi(xi) = wx [ri(xi, di> + fi-l(ti(Xis di))l 

1 ( di 6 p1 
where i = 2, 3, . . . . s - 1 

3.1.3-ii) At Stage s (the junction node) 

The optimal branch return fml(xml, xol) is combined with the return 
at stage s and the optimal return from stages 1 through s - 1 using the 
recursion equation 

fs(Xs I xml) = max [rs(x 01' xs' ds> + fs$s(xO1a x8) dJ) 

+ fml(Xml’ XOl>J 

where the maximization is over 1 < xolc kol and 1 < d, c p,. In other 
words, at junction 8, we compute the optimal return fs(xs) and determine 
z;t;mal branch output xol, and optimal decision ds, for each input value 

. We can also obtain the optimal branch input xmlS which maximizes 
the branch return using the value of xol. ' The use of the decomposition 



principle at the junction stage s ensures that the optimization of the 
main serial chain is reduced to a sequence of one dimensional problems. 

3.1.3-iii For Stage s + 1 to n 

The recursion equation is given by 

fi(xi) = max [ri(xi, di) + fi-l(ti(xi, di))] 

1 Q di d p, 

where i = s + l,..., n 

At the final stage n the optimal system return for each input value of 

xi can be obtained. 

3.1.4) Determination of the Optimal Decision and Return at Each Stage 

At the final stage, the optimal input x* can be obtained which 
nn 

maximizes fn(xn) with the optimal decision dn obtained from the decision 

table. We will proceed from stage n - 1 to stage s + 1. At stage s, 
* * 

the optimal input xs and optimal branch input x 01 
are found as 

follows: 

* 

X 
S 

= c3+l(x s+l ' d ) s-t1 

Now that xz has been found, the optimal branch input x0; can be 
obtained. This is because we decided optimal xol for each value of xs 
when evaluating the optimal objective function value at stage s. For the 
remaining stages the optimal stage input and decision can be obtained 
using, the stage transformation function: 

X n = tn+l(xn+l, dn+& n = s - 1, s - 2, . . . . 1 

and the decision table, respectively. 

3.1.5) Input Data Required for the Algorithm 
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The algorithm, akin to that developed for the diverging branch 
system, is designed to receive the following input specifications in 
Pascal: 



For storage complexity, S, we assume that each variable (computer 
word) takes a unit storage space. We may then calculate the demand for 
the storage tables during computation ignoring all input tables and 
intermediate variables created during the course of processing. 

For a performance profile of an algorithm, we consider the 
computational complexity T as a function of basic operations. Apparently, 
comparison, mod operation, assignment and arithmetic operations may be 
considered as such basic operations. However, observation reveals that 
the total number of all of the foregoing operations performed is roughly 
proportional to the number of comparisons. Hence, comparison constitutes 
the basic operation and T of an algorithm is approximated by the number of 
comparisons. 

As an example consider a list [c1,c2,...,cn] of values where ci is a 
composition of q of these basic operations. A simple routine to find the 
optimum value V will be: 
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n= the number of stages in the main serial process 

m= the number of stages in the converging branch 

s = junction stage 

k il = upperbound of the input value x il' 

ki 
= upperbound of the input value x., 1 

pi1 
= upperbound of the decision value d il' 

pi = upperbound of the decision value di, 

3.1.6) Output List of the Algorithm 

At the completion of the operations, unless otherwise specified, the 
algorithm outputs are akin to those of the diverging branch algorithm. 

3.2 A High Level Computing Algorithm for the Converging Branch System 
(CBCA) 

We follow the notations of Section 2.2 and note that in processing 
the converging branch system, tables Fl(O:l,l:k,l:k) and F(O:l,l:k) are 
needed to store the converging branch and the main branch optimal returns 
respectively. A table FM(l:k) is also needed to store the optimal return 
at stage ml for use later. For the details of the CBCA algorithm, see 
1141. 

4. COMPLEXITY ANALYSIS OF THE DBCA AND CBCA COMPUTING ALGORITHMS 

A major deficiency of the literature of dynamic programming 
algorithms is the almost complete absence and certainly inadequate 
treatment of their resultant complexity issues. Complexity analysis is an 
tmportant component of algorithms especially when digital computation is 
of interest or a necessfty. In this section, we discuss the complexity of 
the two high level computer algorithms for the diverging and converging 
branch nonserial systems respectively. Our analysis focuses on issues 
related to space (storage) and computational (time) complexities. 



v = cl; 

Jo= 1 

For j = n to 1 do 

If V C C., then Jo = j; V = C. 
J 3 

The maximum number of comparisons in this routine is O(n). 
Similarly, searching a value V in the list can take a maximum of one 
comparison. Of course, more efficient searching algorithms are available 
However, for the purposes of our analysis we choose this brute-force 
method to get an estimate on the worst cases. We further focus on the 
comparison where each such operation accounts for a unit time. 

A simple procedure for finding the maximum of w items taking O(w) 
time can be constructed. A binary search taking log2 w time may be used 
for searching a list of w items. 

Let k be the disretization level of the state-as well as the decision 
variables i.e. kil = pi1 = kf = pi = k. Also let m and n be the dimen- 
sion of the stages in the branch and main subsystems respectively. We 
state and prove the following theorems which characterize our algor-lthm. 

Theorem 1. 

For the diverging branch computer algorithm, the space complexity 
S(DBS) = O(k) and the time complexity, T(DBS) = O((m+n>k2) 

Proof 

For S(DBS), we reason as follows: 

The DNA algorithm employs tables F(O;l,l:k) and J?M(l:k) which 
consume 2k and k spaces respectively. Thus, S(DBS) = 2k + k = 3k = O(k). 
For T(DBS) we proceed by listing the time for each of the basic 
computations (steps). 

Step Time 

A 1-1 kilPil 

s-l 
B itl kiPi c 

C ksps 

D : 
i=s+l kiPi 

E kn 

F F ( 
i=l 

1 + log PiI 

G I lolit Pi 
i=l 
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Hence, T(DBS) = 'E ,=l(kilpil + log P,) + 1 
-1 

log Pi + E k.p. 
i=l i=l l1 

+ ksps + : 
i=s+l 

kipi + y 1 
i=l 

n 
+ log pi) + 1 (k p -I- log pi + 1) + kn 

i=l ii 

n 
r ; (k2 + log k) + c (k2 + log k + 1) + k 

i=l i=l 

G (m + n) k2 + k + (m + n) log k + II. 

Let a denote the right side. Then T(DBS) < a. Moreover, 
a 

(m+n)k2 
=l+(--&<+~+(-#- 

k2 k2 

= 1 + A1 + A2 + A3, with the Ais, i = 1,2,3 defined as 

A3=(--$)A cl ---to 
k2 k2 

Thus a2 --c-f 1 and T(DBS) = O(a) = 0((m+n)k2). 
(m+n)k 

Corollary 1: 

The time complexity of DBS is Linearly dependent on the total number 
of stages in the system. 
O(k2). 

Further, for a fixed number of stages, T(DBS) = 



Corollary 2: 

The computational complexity of DBCA is independent of the stage 
where the diverging branch starts. 

Theorem 2: 

For the converging branch computer algorithm, the s ace complexity S(CSS) 
= O(k2) while the time complexity T(CBS) = O((m+n)k 3 ). 

Proof: 

The storage tables used are Fl(O:l,l:k,l:k), F(O:l,l:k) and FM(l:k). 
However, after the optimal returns from the branch have been transferred 
to FM, Fl can be released and the smaller table F may be used. This means 
that at any one time the maximuG storage used will be no more than 2k2 + 
3k spaces. Hence, S(CBS> = O(k% For time complexity we list the time 
taken by each step as follows: 

Step Time 

A 

B kmlkOl 

C 
p-lk p 
i=l i i 

D 
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E ; k.p. 
i=s+l ' ' 

F 

G 

H 

k* 

; 
i=l 

log Pi+ log kOl 

y (kilPil+ log Pil) + kml 
i=l 



Thus, 

T(CBS) = y 
i=l 

(log pil+ kilpil(kOl+ 1)) + ; (1% pi+ kipi) + km1 (kDl+l) 
i=l 

+ ksps (kOl- 1) + log kC1 + kn 

(log k + k2(k + 1)) + i (log k + k2) + k (k + 1) + k2(k - 1) 
i=l i=l 

+ log k + k. 

= (m + 1) k3 + (m f n) k2 + 2k + (m + n + 1) log k 

G (m + n) k3 + (m + n) k* + 2k + (m + n + 1) log k 

Let a denote the right side to that T(CBS) < a Now, 

a =1+i+(&) 1+(1+ 1) 
k log 

(m+n) k 3 k2 m+n k3 ' 

The second term converges to 0. The third and fourth terms are no 

more than $ k3 
and 2 log k respectively. Hence each converges to 0. 

Therefore, a 
(m+n) k 

3 -+ 1 and T(CBS) = O(a) = O((m + n) k3) 

Corollary 3. 

T(CBS) is linearly dependent on the number of stages in he system. 
Furthermore, for a bounded number of stages T(CBS) = O(k 5 ). 

DISCUSSION 

The algorithms discussed in this paper and developed extensively in 
[3] have been extended to other classical nonserial systems such as the 
feedforward and feedback loop systems. These cases are certainly more 
difficult than the two classical systems treated here. A natural 
extension of these ideas is to complex combinations of the four basic 
structures. Research is in progress to extend these ideas to multi- 
diverging and multiconverging branch systems including various forms of 
branching, converging and looping. Although the pattern of analysis in 
such systems is akin to the ones presented here, it will be shown that 
memory requirements are functions of the complexity of branching present 
in the network. 
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A MODEL FOR SYMMETRIC VORTEX-MERGER# 

M. V. MELANDER, N. J. ZABUSKY AND J. C. MCWILLIAMS* 

Institute for Computational Mathematics and Applications 
Department of Mathematics and Statistics 

University of Pittsburgh 
Pittsburgh, Pa 15260 

+ National Center for Atmospheric Reserirch 
P.0. Box 3000 Boulder, Colorado 80307-3000 

We examine the pairing or merger of two identical regions of uniform vorticity using an 
approximation to the 2D-Euler equations based on second order local physical space moments. 
This approximation, that can describe the initial phase of a merger, yields a Mamiltonian system 
of ordinary differential equations for the evolution of the centroid position, aspect ratio and 
orientation of each region. The symmetry of the problem makes this system integrable. 
Thereby we obtain a necessary and sufficient condition for merger. This condition involves only 
the initial conditions and the conserved quantities. The existence of “pulsating” solutions, 
observed computationally, is related to the existence of two steady corotating states - two fixed 
points in a phase plane. 

1. Introduction 
When two vortices with like signed vorticity are sufficiently close together they merge or 

pair into one vortex. For example, two identical circular vortices of uniform vorticity merge 
when the initial centroid separation is smaller than 1.7 diameters. In spite of the importance of 
the merger process - especially for two-dimensional turbulence calculations (McWilliams (1985)) 
- there has so far been only a limited understanding of why the process takes place. In this 

paper we present the first simple analytical model of symmetric merger of uniform vortices. 

Melander, Zabusky and Styczek (1985) have developed a physical-space moment description 
for vortex interactions of the 2D-Euler equations. Although this model is asymptotic and 
becomes increasingly invalid during a meger, it yields a fair description of the initial evolution 
towards vortex pairing. The moment model yields a Hamiltonian system with four ordinary 
differential equations for each vortex. When the model is applied to the present problem we 
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obtain an integrable model. Using this model we obtain a simple explicit formula (28) for the 
threshold of the process. 

In Section 2, we discuss briefly the ideas behind the moment model and state the equations 
governing the interaction of two identical vortices. The solution to these equations is presented 
in Section 3 and interpreted through phase portraits in Section 4. Dynamical results derived 
from the moment model are validated qualitatively in Section 5 by comparing with high 
resolution spectral simulations. 

2. Formulation of the model equations 
We consider two identical regions D1 and D2 of constant vorticity 8. The regions are 

symmetrically situated around the global vorticity centroid, which we for convenience take as 
the origin of a Cartesian coordinate system. The dynamics is governed by the 2D-Euler 
equations, which in vorticity-streamfunction form are 

dtw = wt + w $ - W $ = O, 
XY YX (1) 

and 
AQ = -LO. (2) 

We approximate this problem using the moment model derived in Melander, Zabusky and 
Styczek (19851. For the sake of the completeness we briefly describe the ideas behind this 
model. 

The system of equations (2) and (1) has the following weak formulation 

$(x) = - (l/h) I w(x’) lnl x-x’) dp’, (31 

dtl F(x1w dp = J&7Fl*dtx dp, (4) 

where dpzdxdy and F is an arbitrary test function. Asumming that D, and D, are disjoint 
I I 

ellipses (of common area A, aspect ratio X and orientation 4 as shown in Figure 1). we may 
express the streamfunction $I in terms of the local moments 

mn 
Jk = 

/ 
w (x-x~)~(~-Y~? dp, 

Dk 

where x k = (x,, y,) den o es the centroid of Dk. If XED~ then t 
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00 (6) 

l/2$; Ix-x’ 1 do’= ~_(x-.2)~ 

m+n=O 

is a convergent series representing the far-field, while the near-field of $ is obtained from 
the properties of Kirchhoff’s elliptical vortex. By truncating the expansion (5) after m+n=2 and 
restricting the test functions F to be quadratic polynomials of x and y inside D, and D,, we 

1 L 

obtain a finite system of ordinary differential equations for the local moments and 
centroid positions. Using the terminology introduced in Figure 1, these equations become: 

the 

d,X = XZJA sin 2(k)). 

4rrR* 

dt4 = ox + QA(l+X*) cos 2(0-$1, 

(1+x)* 8rrR*(l-X2) 

dtO = AB 1 
[ 

- A(l-X2) cos 2(8-,$) , 

4z 8nR2X 
1 

dtR = A*a(l-X2) sin 2(8-+), 

32.rrXR3 

(7) 

(8) 

(9) 

(10) 

where A is conserved. These equations are derived in Melander, Zabusky and Styczek (1985). 
Note that 0 and 4 enter only in the combination 0-4. The model is asymptotically correct 
to order O(c3) where 

E : max (diameter D1)/(2R). (11) 

Therefore as a merger progresses the model becomes increasingly invalid, However, from past 
experience the model’s results compare favorably with results for the full Euler equations. That 
is we have found a good agreement for critical merger distances - in general the deviation 
from contour dynamical results is only 5-108. For example the critical merger distance for two 
identical circular vortices is 3.4/m for contour dynamics and 3.2JA7?i for the moment 
model. 

Equations (7) through (10) conserve the total angular impulse or moment of inertia 

M = 2Aw [R* + A(1+X2)/(4~X)3. 

and the excees energy 

H = l/2 I WI) dp. 
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. 

The first follows by integration of (7) and (10). The second follows from the truncation of the 
expanded streamfunction. 

The system (7)-(10) becomes Hamiltonian when canonical variables are introduced. However, 
we shall not use these variables in this paper. 

We make the equations dimensionless by introducing the following scaling 

t = tis, R = R(T/A+‘~. 

The dimensionless centroid separation s becomes 2R(r/A) l/2 , and we introduce 

K = l/s2 = A/(4rR2). 

A convenient normalization of M is 

(5 = 21rM/uA2 > 2, 

which may be written as 

l/K = 0 - (1+x21/x. 

If 5 E $- 0 then we can rewrite the system as two first order differential equations 

dtX = -XK sin 22. 

$5 = Rs - R m’ 

where 

5 
E X/(x+1J2, 

am E (K/2)( [ X 2+1 + K(X2-l)] cos 25 + 2 3 - 

X2-1 x 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

Here Rs and am are the angular velocities due to the self-interaction and the mutual- 
interaction, respectively. 
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3. The solution of the model equations 
With (17) inserted into (18) and (19) we obtain an autonomous system. Hence for a fixed 

value of o, a conserved quantity, the problem is within the framework of a classical phase 
plane analysis. 

Obviously there is a singularity in the equations for X=1, which is due to the way we 
describe the ellipse, namely by an aspect ratio and an orientation. (Clearly the orientation is 
not well-defined for a circle). There are other bad features of the (X&-description as well. 
For example the same ellipse can be described in many ways, (Lb), (l/X..$+n/2), etc. A 
convenient set of coordinates for the problem is 

(D,G) = (x*-l) (cos 25, sin 25) (21) 
x 

whereby each ellipse is uniquely represented. Furthermore, the singularity at X=1 disappears 
when the equations are restated in the new variables 

i 

l/K = 0 - / 4 + D2 + G*, 

K(2*KD) - 2 

2+- 

In terms of the new variables (D.G) the excess energy is 

H = DK/2 - ln((2 + -J/K). 

(22) 

(23) 

(24) , 

The trajectories in the (D,G)-plane are the 1eveI curve of H. 

4. The merger condition 
The natural way to interpret the results is by looking at the (D.G) phase plane. There is a 

circle of radius (a *-4) 1’2 and center (0,O) in the phase plane where (dtD)*+(dtG)* is inf initc. 

Along this circle the centroid separation vanishes, K -1 =O, Since R=O corresponds to centroid 
“collapse”, we name this circle the collapse circle. Only that part of the phaseplane, which is 
inside the collapse circle is of physical interest The moment model is valid within a certain 
disk centered at (0,O) and with a radius, =3.75 corresponding to an aspect ratio X=4. 
Equations (23) and (24) are reflection symmetric about the D-axis, correponding to time 
reversal invariance. Furthermore, we find that the aspect ratio decreases when Cc0 and 
increases when G>O. 

The steady state solutions of (23) have been reported in Melander, Zabusky and Styczek 
(1985). The aspect ratios of the steady states are the real roots of a fifth order algebraic 
equation 
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4x5 - 7aX4 + (2uZ+4+6)A3 - (2a2+3ci)~2 + 5aX - .8 = 0. (25) 

(In the previous work this equation was expressed in terms of the dimensionless centroid 

separation u=ZR(rr/A) l/2 ). Figure 2 shows the reciprocal aspect ratio 1-1, of the states as a 
-1 function of o . There are one, two or three steady states depending on whether 

o<ocR=11.4, o=ocr or o>ocr. All of them are located on the D-axis. A local analysis shows 

that B is a saddle point and A is a center, C corresponds to a solution outside the colap 
circle, that is without physical meaning. Let us consider the three cases. 

(A) ~‘-a cr. Since there are no steady states, therefore all initial conditions lead to centroid 

collapse or merger. A typical phase portrait is shown in Figure 3. The two apparent stationary 

points on the collapse circle show that centroid collapse always takes place at an angle of 45’ 
in the corotating frame. However, these points are far outside the region where the model is 
valid. 

(B) u=o cr. In this case we have one unstable steady state. All other initial conditions lead 

to merger. We remark that the fixed point does not correspond to the limiting “figure eight” 
state of Saffman and Szeto (1980). 

(C) o>ocr. This is the most complicated and interesting case. When o is only moderately 

larger than ocr, we have two physically significant stationary points. We observe from the 

phase portrait shown in Figure 4 that there is a critical separatrix S starting and ending at 
saddlepoint B. All initial conditions outside S lead to centroid collapse. Inside S we have 
closed orbits and the center A. Along a closed orbit surrounding the origin, 6 increases 
steadily, so that vortices rotate counter clockwise in the corotating frame. However. orbits not 
surrounding the origin, 6 oscillates around zero, corresponding to a nutation of ellipses in the 
corotating frame. Since H has a constant value on each trajectory in the phase plane, we can 
characterize S by the corresponding value of H at point B, namely 

HS(a) = (X 2-1)/ [2(a X-X 2+1)3 (26) 

- ln(2 + Jm ) 

+ ln(u - (1 2+1)/X) x=x , 
B 

where XB denotes the aspect ratio of the unstable steady state B. The region of the phase 

plane inside S is then characterized by 

H(D,G;o) < IIS(a) - and x < x,(o). (27) 

(Note, HeHS(o) between the outer separatrices and to right of B). Hence, merger or centroid 
collapse will occur if and only if one of the following conditions is satisfied: 
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(28) 

H > H&d; 

This is the merger condition of the moment model for symmetric merger. 

Now that we know the phase portraits we shall address the physical question of why merger 
occurs in the moment model. Consider the case o>ocr. The moment model gives reasonable 
results only when X is moderate, say less than four. Herewith we have reduced the interesting 
part of the phase plane to a disk centered at the origin. All trajectories inside this disk are 
either clearly inside the critical separatrix S or they come near the saddle point B. A local 
analysis near the saddlepoint is therefore justified. Note that a state in the neighbourhood of 
B is easily to recognized from the vorticity distribution, because the ellipses are aligned (c=Ol 
and fairly elongated X>mino ix,) -2.36. The separatrices divide this region of the phase plane 

into four sectors, labelled in Figure 4. Table 1 presents simple rules for determining the long 
time evolution (nonlinear stability) from a short time evolution (linear stability of the saddle 
point B). That is one sees the long time evolution from less than half a revolution in the 
corotating frame. 

Table 1 

Sector Characteristic Long-time evolution 

1 dtC’O pulsation 
2 d$<O, $5 -0 merger 
3 dtW merger 
4 d&‘O, dtc =0 merger after one pulsation 

From equation (191, we observe that d{/dt becomes negative because the clockwise rotation 
caused by the mutual interaction dominates the counter-clockwise rotation of the Kirchhoff 
ellipse. In Melander, Zabusky and McWilliams (1985) we discuss the consequences of firn>Qs 

for the full Euler equations. Especially we show that S2mQs can cause filamentation and 

axisymmetrization. 

5. @di&tEve comparison with: high resolution simulations 
In this section we discuss spectral simulations related to the critical separatrix S in the 

phaseplane. We do this to validate the conclusions obtained from the moment model and to 
highlight the importance of the separatrix S as a threshold to merger. 
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The simulations are made with a pseudospectral code (Haidvogel (1985)) which solves 

a,w + ax+ayw - ay+axw = -v~~*w (2% 

w = - AQ (30) 

in the periodic domain [-IT.IT] x I-TI,TI]. 

We specify the initial vorticity distribution o(r,b,O) as an idealized smooth distribution of 
compact support, and with equivorticity lines that are concentric ellipses of a common 
orientation and aspect ratio. Outside the etlipse r=Ro(,$) there is no vorticity and inside 
r=Ri($) the vorticity is uniform w=w . The realative steepness of the vorticity gradient is 
controlled by the parameter 6=(Ro-li)/Ro. We refer to such a vorticity distribution as 

V(6,wp,a,b), where a and b are the major and minor axis of the outermost ellipse r=Ro($). We 

have found it convenient to specify t&,4,0) as a distribution with a monotone profile function 
f(r), r>O 

(31) 
1, r<R. 

1 

w(r.4) = w 1 - f [(r-Ri)/(Ro-Ri)l, R. c r < R. 

0, Roi. 

We select our profile function f from the one parameter family Ifk:k>OI where 

fk(r) = exp( -k/r exp(l/(r-1) ), 0 K r < 1. (32) 

This function smoothly connects levels 0 and 1 at r=O and r=l, and all its derivatives vanishes 
at these points. A suiteable k is obtained from the natural requirement that f(0.5)=0.5, this 
implies k=2.56085. With this choice of k we find f’(O.S)=ln 8 = 2.08, and approximately 90% of 
the variation of the function f occurs within the interval [0.25,0.751. 

Figure 5 shows a numerical simulation of the evolution of two vortex regions as calculated 
on a 256*-mesh. The initial conditions are small-6 near-tophats of elliptical shape - V(0.2, 
lo., 0.6255, 0.4) - corresponding nearly to a corotating steady state solution Overman and 
Zabusky (1982) for o=12.66. By trial and error we adjusted the centroid separation to 1.44 
which is slightly smaller that the critical merger separation. 

The two vortices approach and at t=l.O the lower contours have joined. We observe that 
the state barely changes it shape in the time interval from t=l.O to t=3.0. During this period 
the state looks like the unstable steady state (B) predicted by the moment model. Note the 
slow clockwise rotation of the individual vorticies with respect to a corotating frame (from 
t=l.O to t=2.5). After t=2.5 we can no longer distinguish the individual vortices, since the 
dissipation has erased the gradient between them. 
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For ~3.0 the compound core begins to axisymmetrize. We display pictures of this evolution 
-ause they constitute a unique example of the evolution after a merger of nearly uniform 
vortices (comparable with contour dynamics) and highlights the complicated entanglement of 
Iong filaments. In fact this simulation goes beyond what has been calculated with contour 
dynamics. At t=5.0 and P6.0 we see a significant vorticity shedding and the formation of 
strong filaments. The almost complete absence of the “roll-up” phenomenon is due to the 
smooth vorticity distribution and the dissipation, but has nothing to do with the periodic 
boundary conditions (actually the periodic boundary conditions are in favour of the roll up). 
At t=8.0 the vorticity shedding has stopped and a stable near elliptical core has formed. 
However, the presence of the filaments has a dramatic influence on the core, particularly when 
they reattach to the core. The figurw of the evolution at t=9.0, t=9.5 and t=lO.O represent our 
cleanest example of a reattachment. The evolution beyond t=lO.O has not been calculated, but is 
within the framework of the axisymmetrixation of a single vortex (Melander, McWilliams and 
Zgbusky (1985)). We expect relaxation to axisymmetry through a couple of further breakinp. 

While Figure 5 corresponds to a trajectory slightly outside the critical separatrix S in the 
phasepJane, Figure 6 corresponds to a trajectory slightly inside S. This figure is the result of 
a 128 -mesh calculation. We start out with the same initial conditions as before only the 
centroid separation is now increased to 1.45. Except for the obvious effect off the dissipation 
on the vorticity gradients the evolution until t=2.0 is the same as before. Later it becomes 
clear that the vorticies rotate counter clockwise in the corotating frame, compare G5.0 and 
t=6,0. In the time interval from G2.0 to t=5.0 we observe an almost steady state corresponding 
to the saddlepoint in the phase plane. At P7.0 this state begins to break into two vortices 
and at t=8.5 only the two lowerst contours are joined. The vortices appraoch again a t=9.0 and 
at t=lO.O we observe a near recurrence to the steady state. 

6. Conclusion 
We have presented an integrable model governing the evolution of two identical vortices. 

The model yields an explicit merger condition (281, which involves both conserved quantities 
and initial conditions. For the most frequently occuring initial conditions - namely almost 
axisymmetric vortices - only the conserved quantities are needed. The threshold to merger in 
the moment model is a separatrix in a phase plane. Using specially chosen initial conditions for 
high resolution spectral simulations we have demonstrated a similar phenomenon for the full 
Euler equations. Especially we have shown that the threshold to merger is a balance between 
mutual- and self-interaction of the vortices. This provides us with a rule of thumb: lf the 
vortices - when they are aligned - have an aspect ratio larger than 2.3 and rotate clockwise 
in the corotating frame then merger will occur - otherwise not. 
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Figure 1 shows two elliptical vorrim symmetri=lly situated around the common vorticity 
centroid. The centroid of vortex 1 has the polar coordinates (R, 8) and the major axis is tilted 
the angle 4. In a frame rotating with angular velocity dt0 the orientation of the major axis is 
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Figure 2 The aspect ratio of the steady corotating states of the moment model is plotted 
versus the dimensionless conserved quantity o=ZrrM/wA. A( -1 
saddlepoints. 

are centers and B(----) are 
For these states (A and B) the major axis of the vortices are aligned. For a given value of o the aspect ratio X must be smaller than [a+-] /2 in order to have a 

non-vanishing cetroid separation, the unphysical region where this condition is not satisfied is 
shaded in the figure. The polynomial (25) has one real root C (-.-.-I in this region. 

The figure also shows results (0) from the contour dynamical calculations of Overman and Zabusky 
(1982). 
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Fime 3 The phase plane for a=lO.O<acr. We have scaled the axis by the collapse radius 
/Fi=9.79. 
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G 

Fiwe 4 The phase plane for o=12.5>ocr=11.42. 
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t=2.5 

t=3.0 

._. -., 

Figure 5 (legend on the follotv9.w pape) 



Fimre 5 Equivorticity lines foT the evolution of two V(0.2, lo., 0.6255, 0.4) vortices on a 

2562-mesh with u4=3.125xlO 
-8 

, The initial center-m-center distance is 1.44 and the box size is 

2~. We have subtracted the bulkrotation in the pictures since it is irrelevant for our discussion. 
The contour interval is 0.6. 
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Figure 6 shows the evolution of the same two vortices as in Figure 5 but with the centroid 
separation 1.45. The calculation is performed on a 1282-mesh and the dissipation is 16 times 
stronger as dictated by the meshsize. Therefore the gradients quickly becomes more smooth 
than in Figure 5. The coarser mesh is justified by computational considerations. In order to 
observe near recurrence to the unstable steady state the initial centroid separation must be 
sligthly smaller than the critical merger separation. This distance can only be found to high 
accuracy through bisection - 
to three signifiean t figures. 

a wasteful procedure. We found this distance on the 1282-mesh 
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Stable Summation Methods for 
Elliptic Eigenfunc tion Expansions * 

Harvey Diamond 
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Abstract: We develop stable methods for correct summation of expansions of data 
perturbed by error, using eigenfunctions associated with elliptic operators. The tech- 
nique parallels that of Tikhonov for Sturm-Liouville operators in one dimension, using 
summation techniques which scale the summation parameter with error. Our analytic 
methods recover from the perturbed expansion a good approximation to the correct 
data, where the data are sufficiently regular. 

Introduction: Some problems of engineering and mathematical physics can be formulated 
as that of solving the equation 

where A is an operator mapping a metric space 
are called well-posed in the sense of Hadamard, 

(a) there exists at least one solution u; 

(b) there exists at most one solution u; 

U into a metric space F. These problems 
if 

(c) there is continuous dependence of solutions {u} upon the data {f}. 
This last condition is called stability. A classical example of a problem which does 

not satisfy (c) is the Cauchy problem for the Laplace equation- Another is the heat-flow 
equation for negative time, namely 

a 2 uz2 = ut 

u(z,t) = f(z) , t < T 

This problem is unstable under small changes in the data f., in that small mean square 
errors in f produce large errors in U, both pointwise and in P. 

One method of resolving such ill-posedness is the introduction of additional a priori 
assumptions on the solution u. The Russian mathematician A.N. Tikhonov (Till, in a 
fundamental paper, applied this idea to solution of ill-posed inverse problems. It was 

* Research partially supported by the National Science Foundation 
** Research supported by AR0 Grant DAAG-84-G-0004 
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successfully used on the Cauchy problem for elliptic operators in pioneering work by Fritz 
John [Jolj. [Joa]. 

This paper present.s a regularization method for expansions in eigenfunctions of elliptic 
operators on R”. The following example illustrates a situation to which our results can be 
applied. If A is an ellipt,ic operator in the variable 5 E Rny the partial differential equation 

on (z. t) E R” x R+ can be viewed as a dynamical system. Its normal modes are multiples 
of the eigenfunctions {ur(z)} of -4 and the solution can be written as 

(lb) 

where time evolution of the dynamical variables a!(t) is governed by 

with X1 the eigenvalue corresponding to Us. The above summation schematically de- 
scribes a discret,e or continuous spectral expansion. Equations such as (1) model such 
system as the flow of heat, and the time evolution of relativistic quantum mechanical 
and electromagnetic fields. Given the relationship between the “normal mode” dynamics 
and the “pointwise” dynamics expressed in (I), a natural question is how perturbations 
in configuration space (in which Z(t) = (al, a~, . . .) lies) correspond to changes in $(z, t), 
and. more specifically, how such changes in $(z, t) can be stably computed. This is clearly 
a question about pointwise behavior of perturbed expansions in eigenfunctions of elliptic 
operators. 

Mathematically. our regularization method is a family of linear operators {&}e,o on 
VCR”) along with a scaling function ~(7),7 > 0, such that if {fr}?7 > 0 is a net of LP(Rn) 
perturbations of f with ]]fT - IlIp < 7, then &(f,) app roaches f in LP and pointwise when 
c = c(y) and y - 0. The results we obtain are applicable to the class of analytic multipliers 

A(f) = 4(4f, h w ere A is an elliptic operator on Rn. Such regularization methods for 
expansions in eigenfunctions of ordinary differential operators have been widely studied. 
Results for partial differential operators are fewer. Our results apply to a large class of 
elliptic operators on R”: and can be used for both discrete and continuous spect,ra. We 
use extensively the analytic operator calculus (see [DS]), and the results and approach of 
!GKl] and [KR]. 

II. Previous Results and Problem Formulation. 

Let c1= (cx~:...~ a,) be a multiindex, and Da 3 (i)- 1y$...g& 
1 ?a 

/aj z al + . . . + u,. Consider the differential operator 

A= c b&P -Ao+B 
‘ai<m 

(2) 



on IL”, where A0 contains the leading terms and B is the remainder. We assume A0 is 
constant coefficient positive elliptic, while the coefficients of B can be expressed as sums of 
functions in certain LP spaces: b,(s) E Lra+Lw ([al < m) where d = ~upl~~~~{ $+lal} < 
M. We choose for the domain of A the LP-Sobolev space Lk = (1 - A)-?Lp, 1 5 p < 
min r,; if p is outside this range, then the domain must be smaller and A may not be 
densely defined. The resolvent (z - A)-’ of A: if it exists, may be expressed as an integral 
operator with kernel denoted by L, (2, y), 2, y E R”. Sharp local bounds on the behavior 
of L, were obtained in [GK2]. Specifically, let 

(3) 

The next theorem says that the kernel of the resolvent operator is bounded by an L’ 
radially decreasing convolution kernel. 

Theorem 1 (Gurarie, Kon): Let 1 2 p 5 min f,. There is a constant C > 0 such that the 

LP-spectrum of A is contained in the parabolic domain s1 = {t = peie: Cpi-’ 2 I sin tln+2} 
containing R +. For z e j-3 the kernel of R, = (z - A)-’ is estimated by 

ILz(w)I I F(pJ)pf+%&+ - p)), 

where t > n, s = max(0, n - m) and 

F(z) = F(p, e) = c 
cp&l -1 

1 sin f In+2 
(1 - --- 1 sin !!!ltD+2 ) ’ 

(4) 

(5) 

Furthermore, the kernel L!‘) of R, - I?:, where I?: = (z - Ao) -I, satisfies 

Lp(5,y) < c 
- ) sin iln+2 

F(p, e)pd*-2h,/$(p~(x - y)), 

with s’ = max(n - 27n + d,O). 

We now define our class of regularization operators, which are expressed in terms of 
an analytic multiplier 4(z) with 4(O) = 1. Let 

B, = (2: 1 arg.21 5 r}, D, = (2: 121 5 r} (6) 

By Theorem 1, the spectrum o(A) is contained in I?, U D, for r sufficiently large. Let 
4(z) be analytic in a domain D c C containing B, U D,, and r be the positively oriented 
contour consisting of the boundary a(o, U B,). Using the analytic operator calculus we 
can define the operator 4(cA):P(R”) + LP(R”) by 

+A)/(z) = & J, +)(z - fA)-%)d’, 
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where E is small enough that the spectrum of CA lies within I?. 
To guarantee I is well defined we suppose 

(a) JRhl i+ildr\ < 00 for any ray R,, = {z:argz = rl}, 1711 5 7 (7a) 

(b) /,, lqd4 ,T,O where G, = {z: (z( = 7, ( arg .zI 5 r} (7b) 

For our regularization methods, we must impose the following stronger integrability con- 
dition: 

J r 1~(4114-61~4 < 00 (8) 
for all 6 > 0. 

It is interesting to note the connection of the regularization operators &(EA) with the 
application of multipliers for summing expansions. Formally, 

with us a generahzed eigenfunction of A and X its associated eigenvalue. The operator 
formulation on the left side is more general, in that it can be applied independently of 
detailed spectral considerations. 

III. Main Result and an Application 

We can now formulate our problem. Let f E Lp (R”), 1 < p < 00, and {jr}, 1 > 0, 
denote a net of functions in LJ’(R”) with Ijj - frllp < 7. We wish to determine a sharp 
scaling of c and y which guarantees that as 7 + 0, +(rA)f, + f in LP(R”), 1 5 p < 00, 
and pointwise on the Lebesgue set of f. 

The following theorem provides a large class of P-regularizing operators of the form 
$(eA) and ,a sharp condition on the associated scaling functions. 

Theorem 2: Let A be an elliptic operator of order m on R” satisfying the conditions 
above, and 4(z) be analytic on the spectrum of A, satisfying the boundedness conditions 
(7) and (8). Let p > g, f E Lp(R”), and {jr}, 7 > 0, be a net of LP(R”) functions, with 

IV - frllp < Y* If n 
-mp -0 

7c 7+0 (9) 

then 4(eA)f7 + f in P(R”) (1 5 p < 00) and pointwise on the Lebesgue set of j. 
Furthermore, this scaling of c with 7 is sharp in that if (9) fails, then for each A there are 
j, { f-,} such that 4(EA) fr+ j on the Lebesgue set of f. 

The proof uses the fact that for f in LJ’, 1 5 p < OQ, 4(~A)f(s) converges as E + 0 
to f(z) in Lp norm (1 5 p < 00) and pointwise on the Lebesgue set of f (1 5 p 5 00); 
it also depends on Theorem 1, the Minkowski integral inequality, and Young’s inequality. 
The proof is omitted for brevity, and will appear elsewhere. 



As an application, consider a function r(t) in a multiparameter time domain (7’ 
(h, * * - 7 03 

iTEd; . 
(10) 

How do frequency domain errors (in f(z)) propagate into time domain (f(T)) errors? In 
general, small function space or pointwise errors in i will lead to unbounded errors in 
pointwise estimation of f. 

This type of problem has applications in many types of situations; one example is the 
problem of waves radiating from an antenna with fixed frequency w, and a given aperture 
illumination f(z). Small perturbations in f(s) can lead to unbounded errors in the local 
radiation field intensity. 

The following provides a regularization procedure for ameliorating the large pointwise 
errors in /(t) above; we choose to work with L2 for simplicity. 

Corollary 2.1. Let j7 be an L2-perturbation of j, of size -I, i.e., [Ii - j711z 5 y 

(11) 

where 4 is a function analytic in a region B, U D, (2, r > 0; see eq, (S)), and satisfies 
(7) and (8). Let j(t) be th e inverse Fourier transform of I. If the scaling 

-” 
16 ‘74-J -0 (12) 

holds, then the pointwise error in /L,.,(t) vanishes a8 6 -+ 0. 

That is, if the summation parameter c is scaled correctly with L2-error 7, pointwise 
. error in the time domain vanishes with function space error in the frequency domain. We 

remark that the exponent -2 in (12) arises from the fact that the expansion in (10) is in 
fact in eigenfunctions of the Laplacian. That is, 
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ABSTRACT: In this paper we propose piecewise-polynomial methods for the 

approximation of Cauchy principal value integrals and develop a simple, efficient and 

numerically stable algorithm for the evaluation of the weights of the resulting piecewise- 

polynomial quadralures. We present two examples to illustrate the advantages of these 

quadratures versus the Gauss-Jacobi quadratures. 

1. INTRODUCTION 

In this paper we consider the numerical approximation of the Cauchy principal value 

integral 

f 

1 

4w) = w(t) 
g(t) 

(1) 
-1 jTydt 

= &I, {ir’ + l:., w(t) gdt 

where g(t) is a Holder continuous function in I-1, l] and w(t) is a positive integrable 

weight function given by 

w(t) = (1-t)-y1+t)-P (2) 

where a and p are constants and CV, fi < 1. There has been an increasing interest in the 

numerical approximation of (l), particularly since such approximations may be used to 

solve the Cauchy Singular Integral Equation (CSIE): 

b(6) 0(++)8(6) + Tl(g; 6) = f(a), bl<l 

where a(s), b(s) and f(6) are given input functions and g(i) is the unknown function. 

CSIE’s arise in areas such as aerodynamics, fluid and fracture mechanics, wave-guide 

theory, scattering and other areas (e.g. Erdogan et. al. [6], Gerasoulis [S], Lotz [12], Miller 

and Keer [13]). 

The majority of numerical methods proposed for (1) are global methods, usually based on 
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orthogonal polynomial approximations (e.g. Paget and Elliott [14], Erdogan et. al. [6], 

Welstead [17]). Very little attention has been paid to local methods, mainly piecewise- 

polynomial approximations, even though such methods were used as early as 1950 for the 

special case u)(l) = 1 (e.g. Lot2 [12j, lvanov [lo]). 

It is well known that global methods converge very fast for differentiable input, functions 

with %malln derivatives. However, there are two difficulties associated with their 

implementation. First, although orthogonal polynomials exist, for the approximation of (1) 

(Elliott [5]), similar polynomials may not exist for (3), since nonclassical weight functions 

might, arise for certain b(s) (Welstead [17, p. 115)). Only for special cases of a(s) the 

existence of orthogonal polynomials has been proven (Elliott- [5]). Even if such polynomials 

exist for (3), considerable computational effort is needed to generate their recursion 

coefficients (e.g. Welstead (17, p. 1151). Second, since the node points are generally 

chosen as the zeros of an orthogonal polynomial, global methods are not appropriate for 

integrals with input functions that behave “badly” in some subinterval [o, b] of [-1, l] (e.g. 

Paget and Elliott 114, pp. 381-384)). For such integrals, a numerical method with no 

restriction on the choice of node points would have to be used in order to concentrate the 

nodes in [a, a]. This is not possible with global methods. 

In contrast, local methods based on piecewise-polynomial quadratures afford a flexible choice 

of the node points. However, their implementation suffers from the lack of efficient 

numerical algorithms for the computation of the quadrature weights. In this paper we 

address this issue and propose a simple, efficient and numerically stable method for the 

computation of the quadrature weights. 

In section 2, we develop a quadrature for Z(g ;s ), by approximating g(l) with piecewise- 

linear polynomials. We also develop an algorithm for the evaluation of the quadrature 

weights by splitting the interval [-I, l] into two subintervals I-1, 0] and 10, 11, and in each 

subinterval, we expand the nonsingular parts (l-t)-” and (l+t))p into Taylor’s series and 

integrate the singular parts of w(l) “exactlyn. The quadrature weights are computed via 

two fast-converging series. Finally in section 3, two numerical examples are presented. In 

the first example we extend the piecewise-linear quadrature to weakly singular integrals of 

the form r!, w(t)g(t)dt, where ru(t) is defined in (2). W e illustrate the advantages of these 

quadratures versus the Gauss-Jacobi quadratures by choosing g(t) = fi and also describe 

how the analysis for piecewise-linear quadrature may be extended to higher order 

approximations (e.g. piecewise-quadratic, etc.). In the second example we demonstrate the 

usefulness of the piecewise-linear quadrature for the approximation of integrals with weight 

functions of the form with w(t) = (l-t)-a(l+t)-Pn(t), where n(l) is a positive continuous 

function. Such weight functions arise in the solution of CSIE’s with variable coefficients 

(e.g. Elliott [5], Welstead [17]). 
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2. PIECEWISE-POLYNOMIAL QUADRATURES 

We begin this section with some preliminary mathemat,ic.s. We rewrite (I) as 

G;s) = 49;s) + 9(+&L J(g;s) = w(t) 
g(t)-d8) dt 

t-s ’ q(h) = - f - 
_: f”,‘dt (4) 

and assume that qa(c) exists. A sufficient condition for its exist,ence is that. w(t) is Holder 

continuous in every open subinterval of [-1, 11, which is true for the weight function in 

(2). The function qo(6) satisfies 

r(-a)r(-a+l) - 1-S 
q&) = -acot (m) W(6) - 2-@+P) 

r(-v/9+1) 
F(l,-(ct+/q ; l-tcr ; y), cx # 0,-l )... (5) 

where F(l,-(a+P) ; 1+c1 ; $2) is the hypergeometric and r(a) the gamma function (e.g. 

Tricomi [16j). For several important special cases the hypergeometric function may be 

simplified further. For example, if a+P = n and K is an integer, then 

2p(a+p)v)wP+l) 
T(-a--p+l) 

F(l,-(a+P) ; 1+a ; A$) = -,-“-“--p(,“qb) 
sin (ICE) (6) 

where P’,*~@)(B) is the Gauss-Jacobi polynomial of degree n. We are now ready to introduce 

the piecewise-linear quadrature. 

2.1. Piecewise-Linear Approximations 

We subdivide I-1, l] into n subintervals [ti, ti+ljr ti -C ti+l, a’ = O(l)n-1, to = -1, 2, = 1, 

and define the atepsize hi = tj+l-tj, i = O(l)n-1. The piecewise-linear polynomial 

approximation g,(t) of g(t) is defined by 

g,(t) = a; (t - ti) + bi, if 1 E [ti, t;+l], Oi = 
Sk+d-g(Q) 

hi ’ 
bi = g(tJ, i = o(l)n-1. (7) 

Furthermore, we set 

J 
G+ I 

Ii = w(t) dt, 
ti 

Ii(a) = ij+‘sdt, A;(S) = ai(6-t,) - aj(s-tj) + bi .- bj, 
3 

for i = O(l)n-1, and present the following theorem. 

Theorem 1: (i) For 4 E [lj, lj+l], Jo (0, 1, __. , n-l}, we have Aj(a)Zj(u) = 0 and 

(8) 
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Proof: (i) We first show that +(s)Ij(“) = o for 6 C- ;fJ: ljA,:. Since w(t) is Holder continuous 

in every closed subinterval of (--I: 1): then there exists an ( ‘:- Cl so t,hat the integrals 

f 

‘j+1 w(t) 
-di 

tj 
t-s =J t~+lw(t)-w(s) ‘I+] dt 

dt + t ._“, 6 w(e) 
tj s ’ j 

l--s, j-l(l)n-2 

f 

$+I w(t) 

t. xdt 
3 

“+5u(t)-“,(s) 8-t”(t) 
?I. 

/ 
dt, $ 

J-E t-s s 9 
zdt + -dt, j = 0, n-l, 

are bounded. Moreover, ~~(8) = 0, for 8 E (tj, tj+,), j = 0(1)n-1 and therefore 

Similarly, for B = tj+,, Aj(s) = Ai+l(6) = 0 and 

Ajb) i;j+2t:;:’ -dt = 0, j = O(l)n-2. 
3 3+1 

(10) 

(11) 

By substituting On(l) in the second equation in (4), by rewriting (4) as 

n-l t. 

c/ 

t+l 

J(w) = 44 

Ui(t-ti)+Bi - Uj("-tj)-~j 

dt 
i=o t i t-s 

and by using (lo), (11) and (12) we derive (9). 

(12) 

(ii) The proof of convergence shown by Stewart [15] for LY = p = l/2, also applies to the 

weight function (2) for all CL, fl < 1. q 

We now consider the quadrature approximation for Z(s ; 8). We define 

4(g) if 8 @ Pi, ti+l] zi -I- (u--t&(8) 
l;(6) - 

otherwise 
, 

0 
tli = 

h; ’ 
i = O(l)n-1, (13) 

Wo(8) = lo(B) - U&), Wn(S) = U&8), Wi(8) = Yip1(8) -t i i - t+(B), i = l(l)n-1, (14) 

and present the following corollary, which can be shown directly from Theorem 1. 

Corollary: The piecewise-linear quadrature for I(g ; 8) is given by 

828 



(15) 
i=O i=O 

dhm e,(g), Q&) and ~~(6) are defined in (7): (4) and (14) respecfively. II 

It is clear from Theorem 1 that t,he main difficulty with t,he piecewise-polynomial 

quadrature (9) is the evaluation of Ii and Ii(s). Several authors have considered particular 

cafes of w(t). Flugge-Lotz 1121, Atkinson [2j and others (see the references in Stewart [15] 

and Ivanov IlO]) h ave studied the case w(t) = I. For t,his case, we see that the integrals in 

(8) have a closed form expression, e.g. li = ti+r-li and Ii(g) = In I(ti+l-s)/(ll-6)1. Closed 

form expressions have also been derived for the cases a = p =’ &1/‘2 by Gerasoulis 171, [S], 

Gerasoulis and Srivastav 191, Jen and Srivastav [II]. Such closed form expressions do not 

exist in general and a numerical method must be used. However, since the integrands in 

(8) are singular at &I, classical quadratures are not appropriate for their approximation. It 

is only recently that an attempt was made to develop numerical methods for the evaluation 

I, and li(6): Miller and Keer [13] suggested an interesting technique for estimating 1; and 

Ii(s). They first expand the weight function m(t) = (I-t)-“(l+t)-P into a Taylor’s series in 

(-1, 1) and then integrate the series “exactlyn. However, since the Taylor’s series is 

unbounded at +l, the integrated series converges slowly near these points. 

In the next section, we introduce a simple, efficient and numerical stable method for the 

evaluation of Ii and l;(g). The underlying idea in the evaluation of li and Ii(s) is similar 

to ‘product integration” which has been successfully used in quadrature approximations of 

weakly singular integrals (Atkinson [I, p. 2721). Thus, instead of expanding 

w(t) = (1-t)y(1+t)-P in (-1, 1) as it has been proposed by Miller and Keer [ 131, we first 

split the interval I-1, I] into two subintervals (-1, O] and (0, l] and expand the part of 

w(t) which consists of a C” function and integrate the other part. Note that (l-t)-Q is 

COD in [.-I, O] and that (l+t)-fi is C” in [0, I]. Clearly, this approach would be practical 

only if the integrated part can be computed very efficiently to within a given tolerance. 

Fortunately, as we shall see in the next two sections, this is possible for the weight 

function defined in (2). 

2.2. The Numerical Evaluation of Ii 
In Theorems 2 and 3 we present a series approximation for Zi and analyze its convergence. 

Note that each step in the series is computed recursively and therefore very few 

computations are performed per summation step. 

Theorem 2: The integrals Ii, i = O(l)n--1, defined in (8) can be evaluated from (a), (b) 

and (c) below, 
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(a) If z’ is such that 0 I ti < titl, and p E (0, 11, 

lj = (l+p)+ (-1)” 
k-0 

(10) 

1. _ k(l-p) 1, t,k - - lv+~=-~ f,k-1 -- (l-“tj)l .“(li-p)k}, Jj,_l = 0 (17) 

(b) If i is such that ti < ti+l 2 0, and p E j-i, 01; 

(18) 

lj,k - - E; lj,k-l + &r (l+ti+J-%~+~-P)k - (l+ti)l-P(ti-P)k}, z+ = 0. (19) 

(c) Ij i is such that q 5 0 2 tj+1, then this interval is split into two subintervals [ii, 0] 

and [0, ti+l] and Ii is evaluated by using (a) and (b) in each subinterval. 

Proof : We prove only part (a) since the proof for part (b) and (c) is similar. The 

Taylor’s series expansion of (l+l)-p is given by 

(l+t)-p = (I+p)-+ (-l)k r(k+a) 
w)k!(l+P)k 

(t-Plk (20) 
k=O 

which converges for all points p E [0, 11. By multiplying with (l,~t)-~ and by integrating 

the last equation, we derive (16), where 

h,k = J ++1 (t-p)k 
- dt. 

ii (1-t)” 
(21) 

To show (17), we consider the indefinite integral I,,, of li,k and integrate it by parts 

I 
b-Pjk 

l ,k = J -& = -- 
(1-t)” 

lQl (t-p)k(I-t)l-Q _ tS[(l-p)-(L-p)l(‘-p)k-ld~ > 

(l-tp 
which reduces to the following remarkable recursion 

(22) 

I 
k(l-p) 

.,k = - 
I _ _ w)l-a(~-P)k 

l-rk-Q l qk l l+k--a . (23) 

Then, (17) is derived by taking the integration limits in (23). Furthermore, since a, PC 1, 

then 
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o < Ul-PI 
- 5 1, if p E ]O: II and 

k(l+P) < 1 0 < - 
- ltk-a - 1+/c-p - ' 

if p E j-1, 0), 

which imply that the recursions (17) and (19) are numerically slable 13, p. 171. 0 

We now consider the rate of convergence of the partial sums Z!N), where 

Z!N1 = e d,, d, - (-l)k 
r(k+P) 

t 
k=O r(p)k!(l+p]k+P ‘i’kr 

RN = ],-]!N' = 
’ ’ 

F dke (24) 
k= N-b I 

Theorem 3: If p = ti or p = ti+1, then the remainder R, oj the series in (16) satisfies: 

VNl AN+IpMjdMi 
lRNl 5 z 5 1-A 

, for all N 2 M = ,?I. (25) 

hi 
where A = - < 1. 

l+P 

Proof : We will show that Id,1 < AId,-,I and A < 1 for all k 2 M. Since p := 0, -1, . . . . 

implies d, = 0, for all k 9 -/3, we need to consider only the case fl # 0, -1, . . . . . We 

see that the assumption p = ti+l or p = ri and (21) imply 

Ik-l+PJhi 
/‘i,kI 5 fti+lwti) I’i,k-II, and from (24) Id,( 5 

k(l+p) 
idk-li. (20) 

Furthermore, since p < 1 and 0 < p 5 1 then ]k--I+@ -C k for a]] k > M = [?I, and by 

hi 
using (26), jd,( I Aldk-,I, where X = r~;; < 1. From the last equation in (24) 

IdN+lI A id,1 
I& 5 2 ldkl 5 5 Ak-N-lldN+I( = y-y < - -. 1-A’ for N 2 M, 

k=N+l k=N+l 

where we have used the sum of the the geometric series 13, p. 631. u 

This Theorem implies that the partial sums IiN) converge very fast to Ii. For example, if 

B = l/2 and hi = .2, i.e. ra = 10 subintervals, then ]RNl 5 4x10-’ for N < 9, while if 

h; = .02, i.e. n = 100 subintervals, then lRN/ < 3x10-' for N < 3. The bound for the 

remainder of the series in (18) is similar to (25). 

2.3. The Numerical Evaluation of Ii(B) 

The piecewise-linear quadrature derived in Theorem 1, also requires the evaluation of Ii(s), 

i = O(l)n-1, for 8 4 [ri, ti+r]. In the next two Theorems, we present a series approximation 

for Ii(#) and analyze its convergence. Note again that each step in the series is computed 

recursively and therefore very few computations are performed per summation step (i.e. 9 

multiplications and 5 additions per step). 
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Theorem 4: The integrals Ii(g), i = O(l)n --1 defined in (8), can be evaluated for 

6 cf Iti, ti+J from (a), (6) and (c) below. where the point p is chosen as 

‘i ij s>ti+l 
P= 

{ ti+1 ij scti 

(a) If i is such that 0 5 ti < ti+lr then 

Ii(‘) = 5 Bkb)li,kb), 
Ii k 

b,kb) = e 
(S-P) 

(27) 
k=O 

where I+ is defined in (17) and Elk(e) has a closed form expression for 

P = 0, -1: -2, . . . . . e.g. if /3 = 0 then Bk(s) = l/(p-s), while for /J # 0, --I, -2, . . . . . 

Bk(6) = %A4 + b,(s), bk(6) = - 
(k-1+P) s-p 

k (G) bk-,(“)r b(6) = (;f, (28) 

If numerical underflow occurs in the evaluation, of Ii,k(6) by (27) then the following 

equivalent recursion should be used: 

If - 
Il-PI < 1 
la-PI - 

, then set Z;,-1(8) = 0 and evaluate 

4,kb) = ~(~) zi,k-1(9) - ~{ (‘-Li+l)lpa(~)kp (l-ti)l-u(~)k), (29) 
for k = 0, 1, ..‘). If ; > 1 then choose a sufficiently large N, set z~,~(LT) = o and 

evaluate I+(s), k = (N-1)(-1)1 by using (R9) backwards. 

0) If i is such that ti < Q+1 I 0, then Ii(g) is evaluated from (27), where I+ is 

defined in (19) and Bk(a) has a closed form expression for a = 0, -1, -2, . . . . . while for 

a # 0, -1, -2, . . . . 

Bk(“) = Bk-l(8) + a,(a), a,(s) = (k-l+a) (s-p k l-p) b,-,b)~ b,(a) = 
(l-P)-” 

p-s ’ PO) 

11-M Bml(s) = 0. Similarly, if ld-pl 5 1, then set li,Ll(~) = o and evaluate 

k 
Ii,kb) = - m ( 2) b,k-I(“) + & (I+$+#-‘( z )k - (l+ti)‘-p( z )k ), (31) 

for k = 0, 1, . . . . . while if E > 1 then use (91) backwards. 

(c) If i is such that li I 0 I ti+1, then this interval is split into two subintervals [ti, O] 

and [0, ti+l] and Ii(B) is evaluated by using (a) and (b) in each subinterval. 
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Proof: We prove only part (a) since the proof for (b) and (c) is similar. From the 

definition of p and t’he fart that, 8 4 /ii. lid 1]T a-e have ,1----p; c ,s-p for Q 5 t < r,+r and 

1 
-?Z 
t-6 $$I l--jl-p;,(ap) J = &E (y (32) 

k=O 

By combining (20) and (32) we obtain 

1 I 

(1+t)f+ 6) 
=: 5 &(s)( 2)“’ Bk(g) = 

& (-.l)j!(lDii)(d-p)j 

k-0 (l&P---S) j=o 
I‘(P)J! 1sp ’ 

which reduces to (27) by multiplying with (l-t)-a and by int,egrat,ing, where 

li,k(6) r p(l-t)-~ (Z)idt. (34) 

The recursion in’(28) can br easily deduced from the definition of Rk(6) in (33). Moreover, 

iJ--pI < I for p E (0, l] and since ,l,-p, .I- s g (--I, l), this recursion is numerically stable. 

Equation (29) may be derived by dividing (17) by (a-~)~. If E < 1 then (29) is 

numerically stable. If E > 1 then (29) is unstable, but its equivalent backward recursion is 

stable. To determine a starting point N for which the backward recursion computes 

&(6), k = (N-1)(l)o with an error less than E, we use (34) to derive 

(ti+l-tilN In ( ‘/lzi,Ol) hi 
II&S)/ 5 , -p,N IZi,ol I c, implies N 2 

s In (A21 ’ +=,pJ (35) 

where Jli,u\ is defined in (17) and hi = ti+I-ti. By setting li,N(s) := 0, then the error 6 will 

be multiplied by 3 < 1 in each recursion step and therefore all Ii+(a), k = (N-1) (l)O, will 

be computed with an error less than c, provided that the maximum error in floating point 

arithmetic is less than c 13, p. 171. u 

We now consider the rate of convergence of the series in (27). We define 

N 

f%) = c dkb)~ d&(8) = ~,(d~j,&), RN(&) = Ii(u) - rt’“l(s) = E dk(8) (36) 
k=O k=N+X 

Theorem 5: The remainder RN(g) 01 the series in (27) satisfies: 

IRN(~)I 5 C(S) Xr’ Ili,ol for all 
1-P 

N > M= [--, 
2’ 

where ~~ < 1 is defined in (35) and C(B) is independent of Iv. 

(37) 

Proof: We can easily see that the choice of M in (37) and p < 1, implies Ij-l+p( < j for 

all j > M, Thus, from the definition of ai in (28) we derive 
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ibj(6)j < XipL Ib~(a)l, j = L, L-+1, . . . . for all L > M (38) 

I 9 _‘” P 1 
where A, = - 

l+P 
< 1 for p E IO, l] and 8 E (-1, I). The second equation in (33) implies 

j=k+l 

(39) 

and by using the sum of the geometric series and (38), we derive 

lBkt6)l 5 I&,&)l + 
Ibk,+lb)i 

l-x , k > M. 
1 

(40) 

Furthermore, (34) implies 

ih,k(g)I I x:-L i&,L(8)l, k = L, L+I,..., and L > 0, (41) 

and since I&+.1 -til < Is-pi from the assumptions of Theorem 4, then A, < 1. By 

substituting (41) and (40) into the last equation in (36) and by using (38) we derive 

(42) 

P,(8) I lbN+,b) / 
{ (1-q + (l-~)#q-~l) ) IZ++ll, 

hi 
where A = A, A, = G is also defined in Theorem 3. By using (41) the last inequality 

reduces to (37), where, because of (38), we may choose 

IB& I Ibdg) I 
c(6) = { (1-q + (l-X)(1-X,) ). q 

We see that the speed of convergence of RN(B) d p d e en s on X2 < 1. If A2 is close to 1, then 

R,(8) will converge slowly. Since a E [ti, I~+~], slow convergence may be encountered in the 

intervals [tiPI, tj] and [I~+~, tj+z], particularly if 8 is near rj or tj+l. To avoid this, we 

select g to be a node point. Since Aj(6)Zj(a) = 0 and Aj-l(g)Zj_l(B) = 0 if 6 = tj, then we 

do not have to evaluate Zip I (8) and I~(( ) in these intervals. Furthermore, if we assume that 

the mesh is uniform, then we can easily see that A2 = l/2, l/S, . . . in 

ltj-2, tj-l], [ti-s, Ij-21, . . . . respectively. Note that (1/2)‘~ =‘3x10p8, (1/3)l” = 7x10-~, 

(1/4)12 = 6~10-~, which imply that only few subintervals near [tj, tj+r] will need N 110 for 

RN(g) to become less than C(s) IO-‘. 
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3. NUMERICAL APPLICATIONS 

The algorithm described by Theorems 1, 2 and 4 is simple and computationally efficient. 

Note that the numerical computation of Ji and Ii(s) requires the evaluation of a single 

summation as opposed to three or four nested summations needed by Miller and Keer’s 1131 

algorithm. Moreover, for a uniform mesh, the total amount of computations needed for the 

evaluation of Id and li[s) may be cut in half by using the identity J:!+l = s:;+2 - ‘ii:: 
t I 

where it is assumed t,hat the Ii and Ii(s) are saved (stored) when the mesh increases from 

n+-1 to 2nr-1 points. We now present two examples which illustrate the advantages of the 

piecew-ise-polynomial quadratures l versus the Gauss-Jacobi quadratures, particularly for 

“badly” behaved integrands. 

Example 1: The piecewise-polynomial quadrature can be used to approximate weakly 

singular integrals of the form: 

s 1 

J= y) g(t) dt = Jn = & wui Ati), w(c) = (l-.c)-~(l-t@ (43) 
i=o 

IO) 
= I, - D, 

p1 
w, = fq 

I!” I!‘) I I -’ 1 
wO 

ho 
wi = Ii - F + hi,m.1’ - i = l(l)(n-1), 

n-1 
(44) 

where Ii is defined in Theorem 1 and 1:” = s:f+l w(l) (t-tJdl. The series expansion for 
I 

I,“’ may be obtained from (16) and (18) by replacing li,k with l+.+r. 

Extensions to higher order piecewise-polynomial approximations, i.e. quadratic, cubic, etc., is 

straightforward. The weights for piecewise-polynomial methods of order m L 1 may be 

obtained as linear combinations of 2:‘) = Jf!+l w(t) (c--t,)jd, j = O(l)m. The integrals 1:‘) 

may be estimated by replacing li,k with I~.t:j in (16) and (18). Since li,k+j is used in the 

evaluation of all quadrature weights, very few additional computations are needed for the 

estimation of the weights of higher order methods. 

In Table 3-l we present the numerical results of the quadrature in (43) for 

g(c) = vqq, w(c) = (1-t2)-1/2 and for two different choices of mesh points. The decay 

exponent and the order of convergence of the Error = e, = IJ- J,I are defined by 

P = In (e,/ezn)/ln (2) and O(n-P) respectively, The decay exponent for the uniform mesh 

ti = -1 + ih, i = O(l)n, h = 2/n tends to p = 1.50, which is expected for the square root 

integrand (Atkinson [l, p. 2551). The global Gauss-Chebyshev quadrature, e.g. 

Jg = KC,“=, Jltilh ti = cos((%-1)~/(2n)), i = l(l)n, also converges with p = 1.50. The 

accuracy of the Gauss-Chebyshev quadrature is similar to the piecewise-linear quadrature 
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with uniform mesh, i.e. if n -- PO! J, = 2.39723. The value J, is comput,ed from the exact 

J = 4Lrly3!4)./Iy1/4). 

It is well known that a bet,t,er rat,e of con\-ergence may be attained if the mesh 

concentrates at the points for which the input, functions or their derivatives arc singular. 

For the Jltl whose derivat,ive is singular at 2 = 0, the nonuniform mesh 

li = -(1 - i h)4. i = O(l)(nj2), and t, = (-1 7 ih)4. i = (n/2)(l)n, results in an O(h2) rat,e 

of convergence (column 7 of Table 3-l). Th e O(h2) rate is expectNed for this choice of 

nonuniform mesh (De Boor [4, p. 461). However, a similar improvement on the rate of 

convergence of the Gauss-Chebyshev method is not. possible since li are predetermined. For 

piecewise-polynomial quadratures, an additional cxt,rapolation may be used to further 

improve the numerical results. This is demonstrated in the last column of Table 3-1, 

where Ezlrap = (4 J,, - J,)/S. It can be shown t,hat. the order of convergence for the 

piecewise-linear quadrature in (43) is 0(/z’) for C2 functions (Atkinson [l, p. 2731). 

I I lJniform Mesh )I Nonuniform Mesh 

I I Jn I Error I P II J, IE~~o~ I P lEstrap I 

n I L 

I I I I II I I I I 
1 10 1 2.30119 1 3.5x10-' 1 --- 11 2.36147 1 3.4~10-~ 1 --- 1 ---- l 

1 20 / 2.38360 ( 1.3~10-~ I 1.47 11 2.38703 I 9.3x1o-3 I 1.91 / 2.39555 1 

1 40 I 2.39176 1 4.5~10-~ 1 1.48 /I 2.39388 1 2.4~10-~ 1 1.94 1 2.39616 1 

1 80 1 2.39467 I 1.6~10-~ 1 1.49 /I 2.39566 ) 6.2~10-~ 1 1.96 / 2.39026 1 

b / 2.39028 1 I 1.50 11 2.39628 ) / 2.00 / 2.39628 I 

I I 

Table 3-l: The quadrature (43) for g(t) = fi and a = ,LJ = l/2 

Example 2: We will now apply the piecewise-polynomial quadrature to the solution of a 

CSIE with variable coefficients. Welstead [17, p. 1031 has solved the CSlE 

sin(y) w(e)y(b) + i 
f 

dt = j(e) 
-1 t-s 

w(t) = (l-t)-1/2(l~t)-1/2s2(t), n(t) = e (l-t)t/2(ltt)-1/2 

(45) 

(46) 

by using orthogonal polynomial approximations. Equation (45) is equivalent to 
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where C is an arbitrary constant,. By rewrit,ing (47) as 

(47) 

y(t) =: sin(T) j(t) - J(F;t) - F(t) f_: z + C, 

cos (T, f(2) -- 

F(t) = 
e 71fl(t) ’ 

J(F;t) = 
J 

1Jl-s2 
- WWd6 

, J 
l Jl-82 

-----ds --irt 
-1 s-t -1 6 --- t 

(48) 

(49) 

then the piecewise-polynomial quadrature can be used to approximate J(F; t). 

In Table 3-2 we present the approximation y,(l) of y(1) by the piecewise-linear quadrature 

(15) for f(t) = JI-t2 and C = l/lr. We again select a uniform mesh 

ti = -1 + i h, i =z O(l)& h = 2/n and a nonuniform mesh ti = -1 + (ih)4, i = 0(l)(n/2), 

t; = -q-g i = (n/Z)(l)n which concentrates at kl. Note that the decay exponent p tends 

to 2.00 for both choices of mesh points. This is expected, since 

F(t) = (l-t)(1-t)‘2(l+t)(1+t)/2COS ($)I( e n) (50) 

is a C1[--1, l] function and its second derivative is integrable. More specifically, we can 

show that F(zttl) = 0, F’(k1) = Fl/e, F”(t) = iP,(t)ln (l-t) + az(t)ln (l+t) + as(r) where 

Qi(t), i = l(l)3 are continuous functions. If F,,(t) is the piecewise-polynomial approximation 

of F(t) defined by (7), th en, by using Peano’s error formula, we easily see that 

h2 ’ 
IJ(F-F,;l)I 5 a Jl+t)1/2(l-t)-1/2)F’.(t)~dt 

J (51) 

where h = max hi for all i. Since (ln(lkt)l < c(6)(lit)-6 for any 6 > 0, where c(6) is a 

positive constant, the integral in the last equation is bounded and the O(h’) order of 

convergence is obvious. 

We observe that the Error in the uniform mesh part of the Table is about half the Error 
of the nonuniform mesh, which is explained by (51) and the fact that max hi is larger for 

the nonuniform mesh. However, the decay exponent p for the nonuniform mesh tends faster 

to 2.00 and consequently, the error for the nonuniform extrapolation is smaller than that of 

the uniform extrapolation for the same n. The y,(l) = 0.518592 is computed by choosing 

n = 2560. 
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The numerical solution derived by Welstead (171: with the use of orthogonal polynomials 

with respect to u)(t) in (45); is y,(l) = 0.518583 for n = 40. The generation of such 

polynomials, mesh points and quadrat,ure weight,s for nonclassical weight functions require 

considerable computational effort since a Stieltjes procedure to determine t,he recurrence 

coefficients, Fejer’s quadrature to evaluate the integrals involved and the solution of an 

eigenvalue problem via Lanczos’ algorithm would have to be implemented (e.g. Welstead 

117, p. 1151). Therefore, it is obvious that t,he computational effort will increase with 

the dimension n of the approximation. It is not clear whether this approach is 

computationally feasible for large n’s. However, the computational effort for the piecewise- 

polynomial method increases slowly as n increases: since the series for all additional 

integrals converge fast (see Theorems 3 and 5). Using f the piecewise-linear method, we 

have routinely solved problems with n = 5000 without encountering any numerical 

instability. 

1 
I I Uniform Mesh (I Nonuniform Mesh 

I I y,(l) I Emv I P II Y,(I) I Error I P I Eztrap I 
n 1 

I I I I II I I I I 
1 10 1 0.514213 / 4.3~10-~ 1 --- 1) 0.508712 1 9.9xlO-3 1 --- / ---- l 

( 20 ) 0.517349 ) 1.2~10-~ ( 1.82 (1 0.515989 ) 2.6~10~~ 1 1.92 1 0.518414 1 

) 40 1 0.518251 / 3.4~10-~ 1 1.87 1) 0.517931 1 6.6~10-~ 1 1.98 1 0.518579 ) 

I 80 1 0.518501 1 9.Ox1O-5 1 1.91 11 0.518426 1 1.7~10-~ ) 2.00 1 0.518592 1 

b 1 0.518592 / 1 2.00 11 0.518592 1 1 2.00 1 0.518591 ) 

I 1 

Table S-2: The quadrature (15) with a = p = -l/2 and g(t) defined in (50). 

Note : All computations were performed on a DECSYSTEM/2060T using FORTRAN 77 

with double precision floating point arithmetic (with a mantissa of 16 to 18 decimals and 

with an exponent in the range 0.14~10~~~ to 3.4~10~'). 
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NUMERICAL SOLUTION OF RANDOM LINEAR 
VOLTERRA INTEGRAL EQUATION* 

M. Sambandham 
Department of Mathematics 

Atlanta University/Morehouse College 
Atlanta, GA 30314 

ABSTRACT. Numerical solutions are obtained to Volterra 
integral equations with random nonhomogeneous terms. The 
method we use is Lobatto quadrature formula. Based on the 
simulation of random forcing term the numerical solutions are 
used (i) to compare the convergence of the average of the 
random solutions to tne solution of the average equation, 
(ii) to evaluate the confinement probability and risk func- 
tionals, and (iii) to discuss the convergence of the solution 
processes of the random equations to the solution of the 
deterministic equation through the sample path graphs, as the 
variance of the random forcing term tends to zero. 

I. INTRODUCTION. An integral equation of the form 

y(x) = g (x) + r” K(x,i) ytt)dt (1) 
xO 

is said to bea Volterra integral equation of the second kind 
in which K(x,y) is the kernel and g(x) is the nonhomogeneous 
term (or forcing term). Probabilistic analog of (l), namely, 
a random Volterra integral equation is defined as follows: 

X 
y(x,w) = g(x,w) + 1 K(x,~tw)y(s,w)ds, 

xO 
(2) 

where K(x,y,w) is the random kernel and q(x,w) is the random 
forcing term. The parameter w is an element of a given prob- 
ability measure space (fi,A,u). 

In this article we obtain the numerical solution of (2). 
We take the available deterministic methods of solving a 
Volterra integral equation and suitably adopt these methods 
to generate the sample solutions of the random Volterra 
integral equation (2). 

*Research supported by AR0 Grant No. DAAG29-65-(~0109. 
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For related work on random Fredholm equation of second 
kind see [3,91. In [3] random Fredho,lm equation is considered 
with a random forcing term or a random kernel. in [91 a 
singular integral equation with random forcing term is con- 
sidered. Lax [8] has used the method of moments to obtain 
the mean and the autocorrelation of random Volterra integral 
equation. Tsokos and Padgett [lo] have employed the method 
of successive approximation to solve random nonlinear Volterra 
integral equations. For the several discussion and methods 
of numerical solution of Volterra integral equations refer 
to Baker [l], Golberg [4]. Other important numerical method 
is Lobatta Method (Jain and Sharma [7]). 

We organize our article as follows. - In Section 2 we 
present a short review of the Lobatto method [71. In Section 
3 we present the numerical technique we employed to solve the 
random Volterra integration equation. The concept of confine- 
ment probability and risk functionals are discussed in Section 
4. Some numerical results and figures are presented in 
Section 5 and a short discussion and conclusion are in Section 
6. 

II. LOBATTO QLTADRATURE FORMULA. Consider the Volterra 
linear integral equation of second kind: 

y(x) = g(x) f Jx K(x,t)y(t)dt. 
xO 

(3) 

In (3) y(x) is numerically to be determined for a given con- 
tinuous forcing function g(x) and jointly continuous kernel 
K(x,t). Equation (3) gives the values of y(x) at xn = x0 +nh 
as 

X 

y(xn) = g(x,) + 7 K(x,, t)y(t)dt 
.- 
"0 

n-l xp+l 
= g(x,) + c J WX,' t)y(t)dt. 

p=o 
xP 

Now apsroxinating the integral in (4) by the following 
quadrature formula 

xo+h 4 
1 g(x)dx = ; C 

xO p=l 
wp9(-cp) I 
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(4) 

(5) 

where 



T’J1 = w4 =1/6, w2=w3=5/6 

-5 
= x 0' 

~~ = x0 + rh, r = (5 - G)/lO 

T3 =x 0 +sh, s= (5 f fi)/lO 
~~ = x0 + h, 

R = -4h7g(6) (t) 
3.2’ l 15750 ' xO < t < xO'h, 

the approximate value of y(xn) is given by 

y (xi) = [12g(xnJ + h{K(x ,x~~~)Y(x~-& n 

+ .5x (Xn’xn+r-J Y (x*+;-l) 

f 5K(x,'xn+s-JY(X rl+sS 
n-2 

+h C 
p=o 

~K(xti,xp)y(xJ 

+ 5K(xn,x p+r)Y(xp+r) 

+ 5K(xn,x p+s)Y(Xp+s) 

+ K(x;,x p+l)y(xp+l ))I/(12 -hK(xn,xn)) I 

where 

Y(X P+r) = 2 y(xp) (h61p - B2p) - < y(xp) 

+ C(a 2pBOp - a,pa2p)Y(xpl f a2pg(:cp+s) 

h3 
- Bzp9 ( xpr)l [G Blp - yshliA 

- [ (ypBop - ~&plp)Y (xp) + Qg(x ps ) 

h3 2 2 
- Blpg(xp+r)l [z a2p - YS h I/n, 
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2 
y (Xp+s ) = yh y(xp) (ha 

A/3 1P - "2p) - + y(xp) 

+ [(c1 2pBop- a0p62+(Xp) + u2pgcXp+s) 
3 

- B2pg(xp+r) 1 K- 0 
5& lp 

- vhl/A 

- [(u 
l&P 

- aopBlp~Y(xp) + c1 
IP gfx p+s) 

h3 22 
- Blpy (x~+~) [z “2p - y= h l/A, 

Xp+r 
c1 = 

w / R(x p+#( x-xp)'ldx, n = 0,1,2, 
xO 

xp+s 
i3 = 

w 
/ K(X p+s,x) (x-xp)*dx, n = 0,1,2, 

xO 

y = Yp62p - C12pBlp ' 

A=y[h(a x2,-B 
1P IP 

r2h+rB h3 -- 
2P - s"2p) - 56 y1 - 

This equation (6) describes a single-step method for the solu- 
tion of (3). 

III. RANDOM VOLTERRA INTEGRAL EQUATION AND THE NUMERICAL 
METHOD. The equation that we are interested in is the fol- 
lowing equation: 

X 

y(x,w) = g(x,w) + / K(x,s;w)y(s,w)ds 
xO 

(7) 

where g(x,w) is the random forcing function to be simulated. 
For each sample function g(x,w) using Lobbato method equation 
(7) is solved. For our numerical work we consider the fol- 
lowing two examples: 

Example 1: gl(x,w) F N(x,a2x), 
Kl(x,s,~) =.s - x 9 

a2 = constant, 
x0= 0. 
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Example 2: g2kw) E N(x+l, u*x) 
K2(x,s,~) = x - s, 

cl* = constant, X0 = 0. 

We notice that in Examples 1 and 2 Egl(x,w) = x and 
E(g2(x,u)) = x+1. These factors sllow that the solutions of the 
average of equation (7) for Examples 1 and 2 are respectively 

x sin x and e . Further we note that if u = 0 then the random 
equation (7) becomes deterministic. For our numerical cal- 
culations we take u values tend to zero so that we get the 
deterministic solution at u = 0. This factor is an addi- 
tional advantage that we get the deterministic solution as 
a particular case of our numerical example. The graphs and 
numerical data for different 0 are presented in Section 5. 

IV. CONFINEMENT PROBABILITY AND RISK FUNCTIONAL. The 
concept of confinement probability and risk functional are 
useful techniques in the probabilistic numerical analysis. 
To be more specific these are useful in the analysis of 
stability of continuous random systems with nonstationary 
responses.--- The confinement probability can be- considered to 
be a real valued functional of random function. For any 
positive constant ~1, the confinement probability function 
F a for any random solution y(x) is defined by 

F,(Y) = P(ly(x) 115 a, for all x E [O,tJ) (8) 

Those systems for whichthe confinement probability decays to 
zero slowly are considered to be more stable than those for 
which the confinement probability approaches to zero more 
rapidly as the system evolves in time. 

The concept of risk functional is useful to check whether 
the system exceeds certain bounds. Suppose there is certain 
risk if the absolute value of Y exceeds certain 
constant y. Then the risk functional G is defined by the 
relation Y 

Gy (y,) = P{[ min y(E) 2 -yl u [ max y(,5) 2 VI I. (9) 
or;ssx O<~sx 

Confinement probability and risk functional are useful 
techniques one can implement and analyze during the numerical 
procedure of probabilistic numerical analysis. These concepts 
can be used to check the stability and error analysis during 
the numerical experiments. In the next section, we discuss 



these concepts for Examples 1 and 2. For more details on 
confinement probability and risk functionals see [5,6]. 

V. NUMERICAL &SULTS. From IMSL subroutine we generate 
standard normal random variables. Let it be R(w). Then for 
u 2 0, let 

(i) g,(x,w) = x + cfi R(w), 
(ii) g,(x,w) = x + 1 + cr& R(w). 

We remark that E(gl(x,w)) = x and E(g2(x,w)) = x+1 and 
Var(gi(x,w)) = D2x, i = 1,2. We notice that if 0 = O.gl(x,o) 

and g2(x,w) are deterministic functions. -We simulate sample 

functions for gl(x,w) and g,(x,w) and use Lobatto method to 

solve Examples 1 and 2. Our numerical results are based on 
40 samples. For Example 1 we analyze when x E [O,~;rl and 
for Example 2 we study for x E [0,3l. For the numerical 
studies we took u = 1.0, 0.5, 0.1, 0.05, 0.01, 0. For these 
six values of 0, we present the sample path graphs for 
Examples 1 and 2 in the Figures 1-6 and 7-12 respectively. 
These graphs illustrate the convergence of the sample paths 
to the exact values (CI' = 0). Table I and II represent the 
confinement probability and risk functional values for 
u = 1.0, 0 = 0.1 respectively for the Examples 1 and 2. 

Table I. 

y(x) = sin x, 0 5 sin x 5 1 

X 

(O! .2) 

(0, l 4) 

(0, .6) 

(0, .8) 

(0, 1.0) 

(0, 1.2) 

(0, 1.4) 

(O,n) r 
Confinement Probability 

u = 1.0 

0.710 1.000 0.290 0.000 

0.675 1.000 0.325 0.000 

0.640 1.000 0.360 0.000 

0.610 1.000 0.389 0.000 

0.585 1.000 0.415 0.000 

0.567 0.984 0.433 0.016 

0.551 0.944 0;449 0.056 

0.528 0.880 0.472 0.120 

u = 0.1 

r Risk Functional 

u = 1.0 u = 0.1 

546 



Fig 1 : 6= 1.0 (Example 1) 
Trajectory 

Fig 2 : d = 0.5 ( Example 1) 
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Fig 3 : d= 0.1 (Example 1) 
Trajectory 

Fig 4 .: o'= 0.05 ( Example 1) 



Fig 5: d= 0.01 ( Example 1) 

Fig 6: d= 0.0 (Example 1) 
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Fig 7: 6= 1.0 (Example 2) 

E‘50 



Fig 8: d= 0.5 (Example 2) 



Fig 9 1: d= O.l(Example 2) 

Fig 10: 6= 0.05 (Example 2) 
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Fig 11: 6 = 0.01 (Example 2) 

Fig 12 : 6 = 0.0 (Example 2) 
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Table II. 

r 
X 

(0, .5) 

(0, 1.0) 

(0, 1.5) 

(0, 2.0) 

(0, 2.5) 

(0, 3.0) 

y(x) = eA , 1 < ex < e' 

Confinement Probability Risk Functionals 

u = 1.0 

0.738 

0.800 

0.837 

0.865 

0.887 

0.894 

u =. 0.1 

1.000 

1.000 

1.000 

1.000 

1.000. 

0.9901 

VI. DISCUSSION. Figures l-6 anh 7-12 illustrate the 
convergence of the exact value. These figures clearly illus- 
trate the random disturbances at each stage. Further the 
importance of the probabilistic models and determinstic 
models are clearly visualized from the graphs. 

u = 1.0 u = 0.1 

0.262 0.000 

0.200 0.000 

- 0.163 0.000 

0.135 0.000 

0.113 0.000 

0.106 0.099 

The discussionin Section 4illustrate that confinement 
probability and risk functionals are useful techniques one can 
use in the- probabilistic numerical analysis. The data in 
Tables ,I and II confirm that the random solution of the random 
equation converges faster to the solution y(x) = sin x of the 
corresponding deterministic equation in the case of c = 0.1' 
ccmpar& to the case of c = 1.0. For the same parameter 
values u = 0.1 path converges in the- second example 

(y (xl = eX) even faster than the case of Example 1 (y = sin x). 
Further the risk functionals illustrate the probability that 
the solution exceeded certain limits. Though these factors 
are utilized here to discuss the solution processes, one can 
suitably use these factors for analysis and other topics of 
consideration in the probabilistic numerical analysis. 
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R. Yalm&ili 
Te&nolqy Bran&, Arnwtmt Division 

Fire Control and 6~11 Calitxr Weapon Systems Labxatory 
us Army ARE, z3mm, her, l!u 078014001 

NW’IW, Transient tww-dimmsional heat conductidn was analyzti by 
f ini t=ZZG t techniques ( F’EM) . ‘lhe nrost Collalu3n asswrrpt ions sue11 as linear 
tenprature distribution within eati element would within ea& time increment 
were utilized. The resulting difference equations were studied against the 
metI& of weighted residuals (m) and various finite-difference techniques 
(PW) with enphasis on stability, accurae and ncnoscillation characteristics. 
These codes p%sess built-in algorithms, such as, the Cuthill+Mse algorithm 
for optimization of the +ndvide of .the n&xix. A ladle of nr>lt= netal. was 
simulatd 

b‘l 
this algorithm. 

bandwidth o 26 was obtained. 
Even though it took 10 iterations, a minimcun 

batrdwidth as 17. 
The manual nulltiring of nodes yielded the 

There is a wide scope for fuxther researdl and development 
of new ti iqrovd algorithms. 

I. INfRQCUCrICN. qhe f ininte-elemetlt msthd of describing continuous 
systems was flntrtiutied in the mid4950’s @ has since beame an 
extremely useful engineering tedhnique, tie FU4 has been applied in a variety 
of fields including stress analysis,, flu$d dynamics, and field theory. Norrie 
and de-Rig I: 1Jlist over 7;OOO reference‘s in a bibliography publish~ in 1976. 
Numerous references exist in the case of the finite-difference n&h&A a&also 
the a&hod of weighted risiduals, 
vast literature. 

It id not the objective to discuss such a 
Rather, ‘it is the intent t6 &rrmriza conclusion5 based on 

the author’s r&a&h even though it ix~i be considered mntroversial. 
Uopzfully, such a statement ma\r stix&ate further resear& and W fruitful’ 
tkldings later. 

The transient two-dimension&l heat c&ductioh was &lyzed by F’EI4 with 
poplar assu&ow au& as linear tenrperature distribution \?ithi’n ea& 
element and within ea& time-ipcrement. ’ The resulting equations were calpred 
against the result of thb MWR and FIX4 with em&ads on stability, accuracy, 
a.td nonoscillation tiracteristicg, me effect of relaxation of those 
assw&ons upon the ~lusiona is questioned. 

Various FEM CodesC 2, 3, 45 are aGailable for analysis 0E engineering 
problems with any g~lnetry, nonlinear naterial properties, and nonline‘ar 
cotlditions. These cQdea possess algorithms, such aa the Cuthill-kKeet5~ 
algoritlun, for optitnizati?n (minimization) of tile bandwidth oIE the matrix 
(resulting system of equations). ft is in~rtant to realize the effect of 
lxndwidth on cOre storage and computational tiws, especially for multi- 
dknsional problems. It is dalonsttated that these algorithms do not 
qecessarily yield the minimum bandwidth and therefore, aual nulribsring of 
&es my be better if practicable. 

The author of this paper presented itg;F the Second Army Conference of Applied 
Mathematics and Computing. 



2. FINITE ELEMENT MEXHO~LEY. GurtinZ63introduced the variational 
principle for linear initial value problems in 1964 and confirmed that the 
funciton T(x,y,t) whi& leads to an extrerraun of the functional 

s 
(PC,??’ + Vl’*K*Vl - SpC,!l’,*TjdV 

Y 

is the solution of the transient heat conduction equation 

bl’ 
(K’T. I). , - pep* --’ = 0 

bl 
(2) 

With the bundary aondition 

K*T, , - 6, - 0 (3) 

Where T (x,.y,t) is the temperature at the spatial pint (x,y) and time t&is 
the initial tenrperature, VT is the gradient of T, K is the thermal 
conductivity, P is the n&erial density, Cp is the heat capacity of the 
material per unit mass, 
V is the, volume and * 

Gi(X,Yd) - /Q&,y;t)dt . 
is the convolutian s-1 defined as 

me twodimensional body Was divided into square elements of length AL a,txl 
linear templerature distribution was ass& within each element. ‘fhe 
integration in the functional equation was accomplished and applied, the first 
Variation with respect to the rMa1 terqerature, Ti,j,k+l . An additional 
assumption rqarding variation of nodal temperature with respect to time 
Within any time increment is necessary in order to evaluate the mid-term of 
the functional. If a linear variation (with respect to time within each time 
step) iS aSSumed, the finite-element difference equation (FEDE) can be written 
ast 

where 

u 4 8 pm-- 
8 s’l 

e KAt - --_..._ _. (6,) 
2pC,AL’ 
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3. m. E&n though, the application of MWR4Mlocation Yields 
finite-difference equatims by the use of any of the following Laplacian term 
approximations (V2T ) , this is not the case for EEIX: 

L 16 - 
Ti-l,j + Q,j-1 + Ti,j+l + %+1,j -4 %,j 

(AL)' 

L 17 - Ti-l,,-1+Ti-l,j+l+Ti+l,j-1~i+l,j+l-4T u 

2 (U' 

(7) 

~i-1,j-l+b~i-l,j+TI-1,j+l~~i,j-1-~~~I,j*4~ 
L19- i.j+l+Ti*l,j-l+bTi+l,j+Ti+l,j+l 

6 (AL)~ 

L 17 19 - 
~i-l.,-L+~i-l,,+Ti-l,j+l+~i,j-l-~T +T i,j i,j+l+Ti+l,j-l+Ti+l,j+Ti+l,j+l 

If only Ll7 19 is chosen as the Laplacian approximation, one can prove that 
the M4R-(Bllccation yields finite difference equation and the IG4R-Galerkin 
yields FEDE. The question nm arises whether or not L17 19 is the best one 
because the unique E'EDE can be obtained only by L 17 19 where as numerous MWR 
and FIN can be formulated. If accuracy, stability, and nonoscillation 
characteristics are derived, the order from best to least suitable is as 
folltms: 

Accuracy: W9,Ll6 = L,.l719 ' L17 

Stability: Ll7 >Ll719 'Ll9'Ll6 

Nonoscillation: L4l7 = Ll719'L,l9* Ll6 

Certainly, the L17 19 is not the best one. Therefore, Fl+l my not ti the bzst 
as far: as accuracy, stability and nonoscillation characteristics are concern4 
What happens if nonlinear variations are considered instead of linear nodal 
tenrperature variations within Bach element and also within each time 
increment? We do knm nonlinear temperature distributions in space were 
considered in mny finite+lement oodes. &wever, nonlinear variation with 
respzct'to time is not considered to the best of the author's knmledge. Has 
anyone derived FEDE with the assumption of nonlinear distribution in space? 
IB the conclusion with respect to accuracy, stability and nonoscillation 
characteristics remain valid for nonlinear variations? Further research is 
neded to answer some of these questions. 
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4. sToRAGEANDEANlM1m?EL EVeryone ends up with a system of linear 
algebraic -ations irrespective of the use of any technique whether it is 
FlBl,MWRorFDl. In the end, computers are used in association with some 
techniques for the solution of simultaneous linear equations. A smart way of 
resolving these equations is to use a banded matrix solution technique which 
has the advantages of SW and of using minimum computer ccre storage. This 
implies that one should ensure minimum matrix bandwidth. Indeed, one should 
also take advantage of sparseness (zeros) of a matrix. The following example 
illustrates the importance of minimization of core storage: 

Table 1. Storage 

# of qns E'ull matrix Upper Matrix Upper Banded Matrix Bandwidth 

100 10,000 5,050 1,045 11 
500 250,000 125,250 24,225 51 

1000 1,000,000 500,500 49,725 51 
95,950 101 

CXle may achieve the minimization of matrix bandwidth by numbering the nodal 
points in a structure in a particular manner. Either complex structure or 
inadvertent numbering yields an inefficient system of equations and thus one 
has to rely on automatic renumbering algorithms such as Cuthill-&Kee. The 
following example illustrates its m&hanics and effectiveness: 

l%ble 2. Cuthill - FM&e Technique 

Configuration 31d Node # Connected-e # Degree New N&e # 

BawAwi&h= b 

\5 

13 

IO 

I 

4 

+ 1 2,6,7 3 4 
2 1,3,7,8 4 7 
3 2,4,8,9 4 10 
4 5,3,10,9 4 13 
5 4,lO 2 15 
6 11,1,12,7 4 2 
7 1,2,6,12,13,8 6 5 
8 2,3,13,14,7,9 6 8 
9 X,3,4,10,14,8 6 11 

10 5,15,4,9 4 14 
11 6,12 2 1 
12 11,6,7,13 4 3 
13 12,14,7,8 4 6 
14 15,13,8,9 4 9 
15 10,14,9 3 12 
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5. DISCUSSION. The importance of minimization of core storage and 
reduction of matrix bandwidth is demstrated in Table 1. The automatic 
generation of mesh and automatic numbering and renumbering of nodes is quite 
common in most finite-element computer codes. The rentiring of r-&es is 
accomplished, manually, by the Cuthill-MSee technique for a simple example. 
Fortunately, the niminum bandwidth is obtained in this case. Soxnetimes, this 
may not be true. Consider the following example with 40 quadrilateral (8- 
n&e) elements. Because of s-try, this object may be considered as one- 
half of a crucible or rectangular channel filled partially by a hot molten 
metal. There are a total of 149 nodes. Fox example, the Marc code generates 
the mesh and assigns the node nunikrs as shorm fo; given gmmetry. 

2 \ . 10 

Geometry Automatic 
Generation ' 

The automtically generated and nunikred scheme does contain the bandwidth of 
65. Wever, if an iterative (say 10 iterations) Cuthill-kKee algorithm is 
called for minimization of matrix bandwidth, the following renurribering is 
accomplishesd with a bandwidth of 26. 
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Bb 

3 

I 

- 

- 

- 

- 

L-L7Lc--- 
lr17 

Cuthill-Mckee 

, 

-! 

I 

i 
-1 

The bandwidth is 29, 29, 32, 35, 46, 29, 
1,2,3,4,5,6,7,8,9, and 10 respectively. 

Manual 

26, 26, 26, and 26 for iterations 
Certainly, the final bandwidth is not 

czn optimum choice. The manual numbering as shown a‘bove accomplisheda 
bandwidth of 17 based on intuition. Thus, significant savings in both core 
storage space and comuputations is accomplished. Therefore, a prudent 
prqraxaner/analyst, whereever possible, should not rely on automation alone. 
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