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A MICRCMEICHANICS MODEL FOR NONLINEAR VISCOELASTIC BEHAVIOR OF

PARTICLE-REINFORCED RUBBER WITH DISTRIBUTED DAMAGE

R. A. Schapery I
Texas A&M University

College Station, TX 77843

* rr 1 ".(~ , ABSTRACT

A model based on micromechanics for predicting effective viscoelastic

stress-strain equations and microcrack growth in particle-reinforced rubber

(or other relatively soft viscoelastic matrix) is described. Geometric

idealization of the microstructure follows that of the composite spheres

assemblage and generalized self-consistent scheme originally used for

linear elastic composites without damage. The approach combines a

perturbation analysis of the matrix, which becomes more accurate as the

particle volume fraction is increased, with the Rayleigh-Ritz energy method

for predicting mechanical response of the composite. Results for linear

elastic behavior with crack growth are first obtained, and then extensions

to linear and nonlinear viscoelastic behavior are discussed. It is shown

that the elasticity theory may be easily extended to predict mechanical

response of a viscoelastic composite, and that an approximate equation

governing microcrack growth is analogous to one for an aging elastic .

material. Finally, a limited assessment of the theory is made through

comparison with some existing effective modulus results and experlmentl-

data on a particle-filled rubber . . .,,.-. - . '4 .. , ""
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1. Introduction

Rubber which is filled with a large volume fraction of hard particles _0

usually exhibits considerable nonlinearity and strain rate-dependent

hysteresis over a wide range of temperatures and rates. In this paper we

develop a mathematical model from micromechanical considerations for

predicting the growth of microcracks and their effect on the elastic and

viscoelastic deformation behavior of such a composite. Motivation for the

geometric idealizations and analytical approach comes from studies of the

constitutive behavior and microstructure of composite solid propellant.

However, it should be clear that at least portions of the theory may apply to

many other composites consisting of continuous matrices reinforced with a

large volume fraction of much stiffer and stronger particles or fibers; in the

latter case prediction of response characteristics for loading transverse to

the fibers would be analogous to that done here. %.7

Figure 1 shows the microstructure of a typical composite solid propellant

[i]. In this case there is 76 volume percent filler consisting primarily of

ammonium perchlorate particles with some aluminum powder (both of comparable

stiffness) in a lightly crosslinked rubber. The applied strain is

approximately 30 percent, and is close to that producing specimen failure.

Only the largest particles may be easily seen as there is a broad distribution

of sizes, primarily in the 10 to 100 micron range. Each particle is

surrounded by a strongly attached rubber layer. Typically, beginning at

strains that are less than 10 percent of the ultimate value, crack-Like voids

start to appear near the largest particles and grow steadily and separately

from one another; a crack that grows around one large particle does not

usually join with other cracks (until the ultimate strain is approached)

because of the shielding effect of adjacent particles.

Uniaxial stress-strain behavior of a similar propellant (with 78 volunc

.................. *. . . . . . . . . . . . . . . .... . . .
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percent particles) is shown in Fig. 2 over a two minute test period. The
*

points are experimental values and the continuous line is from the equation

developed in [2]. One specimen grip was allowed to slip in compression (with

respect to the machine crosshead) to avoid buckling of the long bar-shaped

specimen; the data points reflect this low compressive resistance. On the .

basis of the earlier study [2], data on dilatation of propellant [3], and the

characteristic behavior of stronger rubber with and without particles [4], it

is believed the stress-strain behavior in Fig. 2 reflects hysteresis due to

viscoelasticity (the difference between curves 2 and 3), stiffening due to

high axial straining of at least a fraction of the polymer network chains (the
V d:

upper end of curve 3), softening due to microcracks, and the type of softening

usually called the Mullins' Effect. This latter phenomenon, which is very

significant in carbon black-filled rubber without apparent microcracking, is

believed to be primarily due to non-affine displacement of network junctions

and entanglements during loading, followed by partial or delayed recovery of

these points at reduced strains; with weak crosslinks, more or less permanent

breakdown of network junctions may also occur [4]. Figure 3 illustrates the

Mullins' Effect without viscoelastic hysteresis.

In view of these several apparently important mechanisms of inelastic

behavior which influence mechanical response of the composite, it is believed

essential to begin our study with a highly simplified microstructural

geometry. When the effects of the different mechanisms are understood, less

idealized geometry may be introduced as necessary. Accordingly, as a starting

point, we shall use a geometry originally proposed by Kerner [5] for

isotropic, linear elastic media without cracks, which is illustrated in Fig.

4. A two-phase composite sphere, consisting of a spherical particle and

matrix shell, is embedded in an effective (homogeneous) medium in Kerner's

• :. : *..i::*
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model. The bulk and shear moduli of the effective medium are initially

unknown; but they are found from the condition that the total composite body

in Fig. 4, consisting of the two-phase sphere in the much larger effective

medium, is to have the same moduli as the effective medium. Hashin [6] calls

this model the "generalized self-consistent scem" Corrections and

improvements to this linear model have been made by Smith 17] and Christensen

and L~o [8]; additional discussion and comparison with experimental data may be

found in [9). If the displacements specified on the outer boundary of the

effective continuum are those for a uniformly strained homogeneous body in

simple shear, for example, then the effective shear modulus may be found.

Instead, if displacements for simple shear are applied directly to the outer

surface of the matrix shell, then one obtains the upper bound to the shear

modulus for Hashin's composite spheres assemblage [10]. Both locations for

the boundary conditions are considered in this paper, although expressed in

terms of applied displacements which produce axisymmetric deformation in order

to simplify the analysis when cracks exist.

In Section 2 we propose a modification of the geometry in Fig. 4 to allow

for cracks and then outline the method of analysis. Sections 3-5 give details -

of the approach, which consists of a combination of perturbation analysis,

C_ Rayleigh-Ritz approximate energy method, and fracture mechanics. Rigid

particles and linear elastic, incompressible behavior of the matrix are

assumed for most of the work in this paper in order to develop, with a minimum

of complexity, a mathematical model that has some of the important features of

the actual composite and to gain insight for generalizing the analysis.

* Nonlinear and viscoelastic effects in the matrix are discussed brief ly in

Sections 6-8. Finally, some numerical results and comparisons are given in

Section 9.
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2. Description of the Model

The complex geometry of an actual particulate composite, such as that

in Fig. 1, is idealized using the geometry in Fig. 5. A representative

particle is assumed to be spherical. It is contained in a concentric shell

of matrix material, a< r < b, which may have one or more cracks. This

composite spherical particle is embedded in an uncracked shell of an

effectively homogeneous isotropic material, b< r< c, having effective

properties of the particulate composite without cracks. Finally, the outer

region,r>c, is assumed to be large enough to permit treatment as being

infinite in extent; it is considerered to be effectively homogeneous with

the effective anisotropic properties of the composite with particles and

cracks, but this paper does not explicitly account for the outer region.

The thickness of the shell without cracks, b< r < c, depends on the

microcrack density in the total composite, which is related to the size

distribution of particles. Namely, cracks tend to form and grow around the

largest particles. In the real composite each large particle with at least

40 one adjacent matrix crack is surrounded locally by composite material

consisting of smaller particles in apparently uncracked matrix material; it

is this latter material that is represented by the shell b<r <c. The

total composite could be thought of as an assemblage of composite regions

, r < c , each of which contains one large particle with one or m ore

adjacent cracks; if necessary, one could allow for a distribution of sizes,

considering variations in a,b, and c.

As in other types of self-consistent models, the composite model in

Fig. 5 is subjected to outer boundary displacements at r>> c which

correspond to those for a uniform strain field. The displacement

components u, (i=1,2,3) referred to an orthogonal set of Cartesitn .1
* . *..-..



coordinates xi are, for the far-field,

where -ij = £ji are the components of a spacewise constant strain tensor.

(The summation convention is employed in which summation over the range of

a repeated index is implied.) This displacement representation is

completely general for small or large strains, apart from rigid body

translation and rotation. The latter motion may be included by adding

constants and using nonsymmetric coefficients cij in Eq. (1) [111. In

developing stress-strain equations it is of course not necessary to include

the rigid body motion.

For simplicity we shall consider here only small strain theory and

displacements which are symmetrical with respect to the x3 axis in Fig. 6.

There may be one or two axisynmmetrical cracks, each centered at one of the

poles, as in Fig. 5. For this axisymmetrical deformation case, E22 = 11

and £12 C E1 2 =0 so that Eq. (1) in terms of the spherical

coordinates becomes

uI =rFl sin 0 cos , u =r sinesn u r E3 cose (2)
11 2 1"1 -3

The displacements in the radial and latitudinal directions, respectively,

are found to be

ur = r[ev/ 3+ed(2 cos2 0 - sin 2 e)/21 (3a)

u. =-3red(cos 0 sin 0)/2 (3b)

where ev and ed are the dilatation and deviatoric strain, respectively,

ev 2£ll + c33 , ed 2(£33 - Cll)/3 (4)

Use of the measures of strain defined in Eq. (4), rather than el and 33,

is helpful in the subsequent analysis.• K:
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In order to solve the problem of Fig. 5, one makes the displacements

in the outer region equal those in Eq. (3) at r> >c, as is done for the-F

problem in Fig. 4. Without cracks, the problems in Figs. 4 and 5 e

obviously are the same. In this case, the exact linear elastic solution

for the mechanical state and the effective Young's modulus may be obtained

just as for simple shear [9] by a separation of variables method in which

the particle and each shell have the same form of solution. In fact, one

finds that the dependence of the displacements on 6 is that in Eq. (3)

(which is from the uniform strain field) but functions of r appear in place

of ev and ed; the function of r which replaces ed in Eq. (3a) is in general

different from that replacing ed in Eq. (3b). Each shell and the particle

has this form of displacement. An analogous situation exists for the

stresses.

With cracks this simplicity certainly does not exist for exact

solutions. However, we shall use it for developing approximate solutions

based on the minimum potential energy principle. For example, with

reference to the inner shell with cracks, a < r < b, the interface

displacements at r=b are taken as

ur b[ql/3 + q2(2 cos 2 a - sin2 e)/2] (5a)

u= -3b q3 (cos 6 sin 6)/2 (5b)

where ql, q2 ' q3 are free parameters which are found by minimizing the

strain energy for a given crack geometry. The outer material, r >b, then

deforms as if there were an uncracked inner shell with altered properties.

In practice, for the type of highly-filled, rigid particle system in Fig.

1, the constraining effect of small, closely spaced particles just outside

of the soft matrix shell around each large particle tends to preclude high

crack-induced displacement gradients for r > b, Thus, E. (5) may actually

................................. ...... .
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be a more realistic representation than would be the case if the material

* for r > b were truly homogeneous. "

The same form of displacement variation may be used at the interface

r=c, but with three additional free parameters, also to be found by

minimizing the strain energy. However, analysis of the entire composite in

Fig. 5 has not yet been completed. Rather, a more limited set of results

has been obtained in which displacements in Eq. (3) are applied directly at

r=b for one case, and at r=c for another case. 'ith these results, we may

determine if the essential characteristics of the model with crack growth

agree with experimental data.

Consistent with the limited goal of studying the essential behavior of

the model, expecially that due to the cracked shell, a < r < b,

we assume the particles are rigid and the matrix is incompressible. We

have done some work, as yet unpublished, allowing for realistic values of L

rubber compressibility and particle moduli. It was found

that only the effects of rubber compressibility on the composite properties

were not negligible for the type of composite in Fig. 1; but they were

small enough to be neglected in a study of primary model characteristics.

The effective stress-strain equations of the composite will be

obtained by evaluating the total strain energy for a unit volume of the r
composite and then using virtual work to define the stresses,

6W = oij 6cij (6)

where W is the strain energy per unit volume; W depends on the microcracks,

but they are considered to be of fixed length in the virtual deformation

process. For axisymmetric deformation and using ev and Cd in Eq. (4) as

the measures of strain, Eq. (6) becomes

('= -3 - ll)6ed + (2' 11  + 33) ev/3 (7)

I"
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4P which yields the following deviatoric and dilatational equations

)/ Wae
0d = 033 - 011 3W/ed, o = (2Oll + a33)/3 = (8)

These results allow for material nonlinearity. For an incompressible

composite ev = 0 and only the first relation in Eq. (8) applies; in this

* case Eq. (4) yields

'll --33/2 ed =33 (9)

9 -

3. Field Equations and Boundary Conditions for the Matrix Shell

Displacement and strain distributions in the matrix shell or layer,

a <r <b, in Fig. 5 will be constructed for incompressible behavior by

deriving the displacements ur and u8 fron the curl of a vector potential IL_
[ii]. For symmetry about the x3 axis, Fig. 6, they became

* Ur = (r sin e)- ' (i sin 0)/SO (10)

u0 = -(r sin e)-  (r p sin e)/ r (11)

It is helpfill to replace the potential 4 by a dimensionless displacement

function,

F r 4 sin O/R3  (12)

where R is the mean radius of the matrix shell, Fig. 7. In addition, for

development of a perturbation solution we replace r in favor of the

dimensionless radial coordinate x, which is defined by

r = (1 + hx)R (13)

The dimensionless thickness,

h H/R (14)

is assumed to be small enough to use it as a perturbation parameter.

Observe that inner and outer radii of the matrix shell are given by x -1

and x = 1, respectively. In view of Eq. (13),

* a. . a".*~. .k ~ *.A -. . "-*
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; = (Rh) -  / x (15)

With a change of variables to F and x, as well as the use of the

dimensionless radius,

r - r/R = 1 + hx (16)

Eqs. (10) and (11) become

ur = R r (sin 0)-1 F/ O (17)

U0 =-R(h r)- (sin o) ?F/?x (18)

The strain-displacement equations [111 in terms of the dimensionless

variables x and r are

Er (Rh) - I DUr/ X (19a)

C0= (Rr)- 1 (u 0/a0+ Ur) (19b)

C = (Rr) (ur + cotb ue) (19c)

rO= (R)I ( U/?O- uO) + (Rh)-lu 0 /x (19d)

Now rewrite the strains using the displacements in Eqs. (17) and (18),

(h sin )-i 2 2F/ Ox - 2h r 9F/ 0] (20a)

£0 =(h sinO )- r- 2 [_ 2F/ O x + cot 0 ,F/ x + hr-  3F/D0] (20b)

£ = (h sin )- r2 r - cot (2c)

-r = (h r)
-2 (sin 0)-1 [2h 3F/'x -r 2F/ x2

h2 r-I(32F/ 0 2 
- cot e F/ e)] (20d)

The equilibrium equations [ill for the radial and latitudinal

directions using the dimensionless variables are, respectively,

r - 2 h - I ?,(r3 r)/)3x + (sin 0) - 1  (sin 0or(j)/;e -3; = 0 (21a)
r-2 h 3(r3 r)/;x + (sin () (sin 6 )/,Q _ cot , = 0 (21b)

where o is the mean normal stress,

;.........................-..,,............... , ,
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a (Or + a +a o)/3 (22)

For a linear, elastic, isotropic matrix, the stress strain equations

are

r = O+ 2GEr , 0 =o+2GE

a = G+ 2GE , r0 =Gyr (23)

where G is the shear modulus. The mean stress a is not determined by the

strains in view of the incompressibility assumption. When the strains, Eq.

(20), are substituted into the stresses, Eq. (23), and then the stresses

put into Eq. (21), we obtain two differential equations for the mean stress

a and displacement function F.

For a nonlinear elastic material in which the strain energy density

depends on the shear strain invariant given in Bq. (61), the stress-

strain equations are the same as those in Eq. (23) except G is a function

of this strain invariant.

Using Eq. (5), the boundary conditions on the displacements are

specified at x = I as

ur R(l+h) [ql/3 + q2 (2 cos
2 6 - sin 2 0)/2] (24a)

ue = -3R(1+h)q 3 (cos 0 sin 0)/2 (24b)

Allowing for rigid-body vertical translation of the particle, q4 ,the

conditions at x = -1 are

U= q4 cos O (25a)

u, = -q4 sin 0 (25b)

4. Perturbation Analysis for a Linear Elastic Matrix Shell

Using a standard method [12], we expand F and other solution functions

' in a power series in the (assumed) small parameter h,

-i ". .".
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The F Fo + h Fl + h2F 2 +... (26)

The relevant functions are then substituted into the field equations and

boundary conditions, and the equations arising from each set of terms of

the same order in h are solved sequentially, starting with the lowest

order. In using this approach, it is nelpful to select the relevant

dependent variables in such a way that the lowest order approximations are

* independent of h 4e find from an initial trial of the technique that FO

is indeed independent of h and that the corresponding normal stresses are

O(h- 3). (Standard notation is used here in that a quantity of nth order in

h is denoted by O(hn) and, by definition, O(hn)/hn is bounded as h OJ

Thus, we introduce the new variables,

5" -h 3 a, Sr zh 3
Cr, so0 h 30 0 , s h3 Oq, (27)

The modified mean stress s is expanded like F in Eq. (26),

s o0 + h s I + h2 s2 ... (28)

Next, in terms of the series for s and F express the equations of

equilibrium, Eq. (21), using Eqs. (20), (23), and (26)-(28), and then

combine the terms into groups, each of which is multiplied by a common

power in h. Considering those with the ho coefficient, the radial and....

latitudinal equations yield, respectively,

-So/aX 0 (29) L

.So/?e- G(sin 6)-l a3Fo/;x 3 = 0 (30)

Surprisingly, the equations coming from the factor hl are the same as Eqs.

(29) and (30) except s I and F1 replace so and F.), respectively.

1t 0
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The equations arising from h2 are much more involved, and therefore we
r'. +

shall limit our analysis to the zeroth and first order terms. It is also -

found that by neglecting terms 0(h2),

0 Sr s s =s (31)

Inasmuch as the zeroth and first order equations of equilibrium have

the same form, it is helpful to work instead with the single equation,

ds/dO- G(sin 0) -13 F/x 3 = 0 (32)

after noting that s is independent of the dimensionless radial coordinate x

(cf. Eq. (29)). This equation is readily integrated with respect to x to

obtain F,

si d 3 2
F sin dsf 2 + fx+f (33)

G d0" 2 2 1 0 7o

The four functions of 0, i.e. dS/de, fo, fl, and f2 ' will be obtained from

t the four boundary conditions on displacement, Eqs. (24) and (25). To

accomplish this, it is helpful to first express the conditions on ur in

terms of F. Thus, by substituting Eq. (24a) into Eq. (17) and integrating

with respect to 0 we find for x=l,

F = (l+h)3 [-ql(cos 0)/3 + q2 (sin e cos e)/2] + k (34)

where k1 is a constant. For x = -1,

2 si 2(1-h) 2 sin 2 0

F= R 2 q- + k2  (35)
R• .2 4 2

and k2 is another constant. From Eqs. (18) and (24b) for x=l,

F/ x= 3 q3 h(l+h)
2 (sin2 e cos 8)/2 (36)

LF

. . . .. . .'
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and from Eqs. (18) and (25b) for x=-l,

2

F/x = h(l-h) (sin2 6) q4/R (37)

Note that these conditions on the latitudinal displacement are 0(h);

this implies u, = 0 at x = ±1 for the zeroth order solution. Substitution

". of F, Eq. (33), into the four conditions, Eqs. (34)-(37), gives equations

for obtaining the four functions of a in Eq. (33). Because the u0

conditions, Eqs. (36) and (37), are O(h) we may replace (l+h)2 and (1-h) by

unity since Eq. (33) is only valid up to the first order; consistent with

this approximation, in Eqs. (34) and (35) we may use the approximations

(1+h)3 -l+3h , (1-h) 2  1 -2h (38)

*. There results, finally,

ds _3G. q 13h(Cos 0- ( q)de 1 -2- q2(+3h)( 3 sin- 2  3 -.cos

+ ! sin 0 (39)

qhR.

f2 q 3 h sin 2  cosO q sin 2  (40)

Cos
f= q ( + 3  4 ) + 3[q2 

+ (3q2 -q3 )h sin 2 0 cos '
3 2 2 3

q 42

+ --(h- -)sin 2 8 (41)

f -(+h)cos 0 .,. ~qh]si 2  cos0 -.--

+ (1-h)sin 6 + c2  (42) F-

where the unspecified constants of integration kI and k have been

eliminated in favor of the new constants cI and c2.

The shear strain, Eq. (20d), is needed for the subsequent energy

analysis, and it is found to be

~ ~ ~<~.*- *2~1-~~:-*~:;i-x'KK -
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r (h )-2 (si) -1 sin e ds x 2hf1r= G d 1 -f 2] (43)

The latitudinal displacement, Eq. (18), is especially simple if only the

zeroth order approximation Fo is used. For this case we find that it is

distributed parabolically in x,

R ds 2
U8  (I-x (44)

as illustrated in Fig. 7.

Also, it is to be noted that the mean stress o is derived by

integrating Eq. (39) and then using Eq. (27), 0 = sh- 3. The constant c"

may be found from consideration of the behavior of s; on the other hand, c2

has no effect on the mechanical variables and thus may be taken as zero.

Observe that there is a singular term (sin 6)-l in Eq. (39), which cannot

exist in physically meaningful solutions. Removal of this singularity,

together with consideration of the mean stress at the ends of the matrix

layer (when one or two cracks exist) leads to the solution in terms of ql

through q4"

Without cracks we must set ql = 0 to remove the singularity and take

q4 = 0 to satisfy the obvious symmetry requirement. Use of these

*. conditions in Eq. (39) leads to

S a Oh 3  3G - .(45)

0 =oh -[q 2 
+ 3(q2  q 3 )hlsin2 (

where oo is an arbitrary constant mean stress. With only one crack at the

bottom of the particle, cf. Fig. 5, set c, = 1 to remove the singularity at

6 =O and obtain
CI

U,-

. . . .. . . . . . . . . . . . . . . . . -. . . . . .
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h 3 + sin tan(01/2) 
'

s =Oh G -c- (1+3h) [1 si~n1ta(/))""
sie , -o2T-

12 2 q44 [q2 +3 (q2 -q3 )h (sin e -sinI) -- -(Cos 0 -cos i (46)

• where aI is the normal stress applied to the matrix surface at 0 = 01; for

an internal cavity pressure p1 ' say, ,= -p1. Finally, for two cracks

of equal size at the top and bottom of the particle, symmetry conditions

* imply cI = q4 = 0, and therefore

3 {ql sin e - °

s oh 3 + 1 G s(+3h)in S

_ 4 [q2 + 3 (q2 -q3 )h] (sin 2 0 -sin2 l)} (47)

If the two cracks are not of equal length or the normal stresses at the

ends of a matrix layer with two cracks are not equal, the constant cl would

be used along with the constant of integration in s to satisfy the normal

stress condition at the ends of the matrix layer. Results for this case as

well as for additional cracks or voids could be readily obtained, but they

will not be given here.

That the perturbation solution permits satisfaction of normal stress

boundary conditions at the ends of the matrix layer is very important with

incompressible materials. For highly confined material, such as the matrix F

layer, the error in a normal stress boundary condition does not decay

within a few layer thicknesses from the ends; in fact, the value of Oi in

Eqs. (46) and (47) may have a strong effect on the entire mean

stress distribution. In contrast, a shear stress condition cannot be

imposed at the ends because there are no remaining free parameters in the ...*

perturbation solution for doing this. Unpublished work of the author on

problems for which an incompressible material layer is confinea between

. . . ... i
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much stiffer plates shows that the effect of a surface shear stress decays

rapidly and is relatively small within a few layer thicknesses from the

end. This localized effect would not be expected to significantly effect

the overall strain energy and energy release rate predictions made in the

next Section.

5. Energy Analysis

The total strain energy for the composite of Fig. 5 may be written in

the form

W= 1 + 2 + W3 (48)

The first term v1  Wl(qi, 00, 01), i = 1 through 4, is the strain energy

of the inner two-phase composite consisting of a particle and a matrix

shell, which can be evaluated from the results of the perturbation

analysis. The quantity W2 is the strain energy of the shell b <r <c. In the

present limited analysis the outer shell r> c is omitted, and the

displacements at the surface r=c are specified to be those of a strained

continuum using dilatation ev and deviatoric strain ed (cf. Eq. (3)).

Assuming continuity of displacements Eq. (24) across the interface r=b, we

may write W2 = W2(ed, ev, ql, q2, q 3). A more involved analysis which

includes W3 wculd not be needed if c >>b or if the goal were to obtain an

approximate upper bound on effective moduli using the composite spheres

assemblage idealization with or without the shell b< r < c.

Inasmuch as tne matrix and the uncracked outer shell are

incompressible, the overall dilatation ev and volime change of the inner

composite, r< b, are directly related. The change in volume of the inner

composite is

AV1  2 b2 fsn, ur dO (49)
0
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where u is given by Eq. (24a). We obtain
rF

AV1  4 n b3 ql/3 (50)

showing that ql is the dilatation of the inner composite, as expected.

This volume change is also that of the complete composite sphere r <c, So

AV1 = 4 Trc 3 ev/3 and

ql= (c/b)3 ev (51)

The free parameters q2, q3 and q4 are selected so as to minimize the

total strain energy,

+ 2 0 for i= 2,3,4 (52)

These three conditions and Eq. (51) give, at least implicitly, the

*relationships

qi= qi(ed, ev, 0o, 6I )  for i = 1,2,3,4 (53)

Energy Release Rate: The crack growth, as defined by a change in

e and e0, will be related to energy release rate, (. This quantity my be

defined basically as the mechanical work per unit of new crack surface area

that becomes available at the crack tip during an infinitesimal amount of

growth. The area increase used in this definition is the area of new crack

surface projected onto the local crack plane, rather than all of the

physical surface area that may exist in the damaged material around a crack

tip. For an elastic material, the available work is equal to decrease in

strain energy for fixed surface displacements (where external loads are

applied.) Considering now the bottom crick in Fig. 5 tho increase in crackI2 area is 2 ITR2 sin B d . Thus,

I
.. *..
.p,..,

_________________________________K.K.<. ~ . ~tp..i1 j.i



18

E = -(2,2 sin 3) - a

= (27 R2 sin 0I)- I9WT/38 (54)

A similar result is obviously obtained for the top crack. For two cracks

which are of equal length (8
0 = B) and which grow simultaneously,

W -(4 Tr R2 sin B)-1 WT/3 (55) "! i

where 2WT/P6 is the derivative for growth of both cracks. From Eqs. (48)

(withW 3 = 0), (51), and (52), with ed and ev fixed,

PwT  1 + 2  1 +'1 1 (56)

along with a similar result for W T/DO0. Thus, to evaluate it is

sufficient to consider only the change in W for fixed values of the four

parameters qi.

The overall stress-strain equations are those given in Eq. (8), where

it should be recalled that the derivatives are taken with the crack sizes

fixed and that W is the strain energy per unit volume, WT/V; here

V = 47Tc 3/3. Using Eq. (48) without WV

Od~~ ~ =W V-[g w qi + w 2,e(5)["....

V 1  1+ 2
d P2 i ed

i=2

Introduction of Eq. (52) yields

ad = V- 1 3W2/ ed (58)

The dilatational equation is derived similarly, P

ov = v-l(c/b) 3 IWl/ q + W2 /;ev] (59)

In differentiating W2 it is supposed that Eq. (51) has been introduced

first so that W 2 does not depend on ql.

~ ....-- .. .

~ .~ .- * i
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Use of the Perturbation Solution: The strain energy W, is only for

the matrix because the particle is assumed rigid. For an incompressible

material, the strain energy density of the matrix may be written in the

form,

W= G Y (60)

where y is the "equivalent shear strain"; it is a positive quantity that is

proportional to the square root of the second invariant of the strain

tensor. For the axisymmetric problem under consideration,

2 2a¢ 2/ 2 1/2
Y 2[(E"r-ce)2/6 + (Er- E) 2/6 + (e- /6 + Yr6 /41 (61)

where the positive square root is to be used. Observe that Eq. (20) . .
2.

implies the normal strain differences squared are O(h-2) and -Y is O(h-4).

To be consistent with the work in Section 4, we retain only the zeroth and

first order terms in h in the quantity (h2 y),and obtain the very simple-

result

Y = IYrO1 (62)

4 where I" I denotes absolute value, and
1 2 Gy°,"wI l G Yr0 (63)-i--<

Thus, only the shear strain appreciably affects the strain energy in a thin

shell. Now, using Eqs. (13), (16), and (63), as well as the approximation

that the strain energy density vanishes in the layer wherever it is

cracked (assuming compressive stresses are not acting across the crack

surface) yields, [

1 b

W1 = 2 n sin6 r2 w1 dr dO

00 a

= TTG R3h f sine (l+hx)2 y2 dx do (64)fre d O(4

0

0I.t.°,

- '"1-
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Substitute Eq. (43) to find

2 3f 1 2'

W1 = T G(R/h)J sin 0 (G-I ds/dO) 2 dO (65)

0

Although (ds/dO)2 contains some terms O(h2) it is algebraically convenient

to not explicitly omit them. Using Eq. (39) let us next introduce the

quantity -Y

G-l(ds/d6) : g{ql(1+3h) 3 sin 0 q 2 3(q 2 -q 3 )h]sin0 cos0

- _ sin } (66)

Then from Eq. (65),

2 3 1 ;2 .
= -TG(R/h) j sin 0 -(2 dO (67)

00

which can be integrated analytically. Also, from Eqs. (54) and (56),

=G R h-3 ;, /3 (68)

where Y( . Recall that cl=l when 0o = 0. For two cracks of equal

length, 00 = = -6l and cI = q4 = 0; we also find from Eqs. (55), (56), .

and (67) that the energy release rate is again given by Eq. (68).

It is interesting to observe that Yi is proportional to the shear

strain Yr0' Eq. (43), at the edge of the matrix layer, 0 = ", if the first -

order term in h, 2hf 1 -f 2, is neglected. Consequently, with this

approximation and Eq. (63), we see that the energy release rate, Eq. (68),

is proportional to the strain energy density at 0 = 01. This result is

analogous to that for strain energy release rate in a long strip between

rigid, parallel clamps, in which the strain energy density is that in the

uniformly strained portion of the strip [131. The strain energy available

to drive the crack in Fig. 7 is that in the layer just ahead of the tip.

Our analysis does not account for details on the scale of h around the

n .-_ - .v. .'. ... . ...-.. -.. .-.- "'., - 9 i . : _ -- " - - '.'
i
, :.. -
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crack tip, and therefore we obtained a result which is like that for the

long strip problem. It should be recalled, however, that the simple result

in Eq. (68) is valid using both zeroth and first order terms in h, and

consequently y1 is not limited to proportionality in the local shear

strain.

6. Geometric and Material Nonlinearities

The matrix shell analysis made thus far is based on linear theory.

Even if global or average strains are not large, the local shear strain is k

0(h-2), Eq. (43), and therefore it laiy be large in highly-filled

composites. However, such behavior does not necessarily invalidate a

geometrically linear theory for all but impractically small applied

strains. This may be seen by first recognizing that Eqs. (17)-(20) are

valid for large deformations if we replace displacements and strains by

velocities and strain rates, respectively, and consider r and e to be

Eulerian coordinates and R and H to be instantaneous dimensions. One could

then derive displacements by integrating the velocities with respect to

time after rewriting the equations in terms of Lagrangian coordinates and

the initial geometry. When the displacements are small relative to the

respective coordinates, one obtains from this process the same results as

now in Eqs. (17), (18), and (20), regardless of the shear strain magnitude.

These relative displacements are O(h-1) as are the normal strains; but the

shear strain is 0(h- 2 ), thus permitting us to make this distinction between

the magnitudes of shear strain and the other measures of deformation.

The shear-strain dominated mode of matrix deformation not only permits

the use of the forgoing geometrically linear theory with large shear

strains, but, with certain types of material nonl inearity, also leads to

mechanical state results which aLe not much mor- involv.3 than those for a

.-'
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fully linear theory. There is not space in this article to cover this

topic in detail, and therefore we shall consider it only briefly for a

power law nonlinear matrix material characterized by strain energy density

= G n yN+/(N+I) (69)

where Gn and N are positive constants and y is the equivalent shear strain,

Eq. (61); for N=l Eq. (60) is recovered if we let Gn = G. The stress-

strain equations arising from Eq. (69) are identical to those in Eq. (23)

* except G is not constant but instead is given by

N-1
G Gn YI- (70)

A perturbation analysis similar to that for the linear case may be enpoloyed

if modified stresses like those in E. (27), but with h3 replaced by h2N+1,

are introduced. Neglecting terms O(h2) for these modified stresses, the

normal stresses are found as before to be equal, Eq. (31), and to be

independent of x. Moreover, neglecting terms O(h), the latitudinal

equilibrium equation is similar to Eq. (32),

ds/de - (sin 6)i 1 2 F/Dx2 )/ x 0 (71)

[ where

G - Gn (h 2 1 7r( I )N-I (72)

and from Eq. (20d),

S= Gn[ (sin )-i 132F/ax2 Ij N-1 (73)

Equations (71) and (73) lead to results which are analogous to those for

the linear case except N appears in the various exponents and coefficients.

When terms O(h) are not neglected in the latitudinal equilibrium equation,

the results are considerably more involved.

. * . . . . .. . . . * . .
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It is of course not necessary to satisfy the equilibrium equations

exactly when one uses the minimum strain energy principle to develop

approximate solutions. Thus, whether or not terms O(h) are negligible, one

could use the zeroth order displacements (i.e., those from Eqs. (71) and

(73)) in developing effective stress-strain relations. One could even use

the form of the displacement distributions derived from linear theory, but

we have found that it is not satisfactory when strong material nonlinearity

exists.

7. Viscoelastic Behavior " -

All of the results obtained so far in this paper may be readily

extended to linear and a certain type of nonlinear viscoelastic behavior.

The linear viscoelasticity counterpart of the radial stress in Eq. (23), -

for example, is

t

= 2f G(t-t',t) - dt' (74)

0

where G(t-t',t) is the so-called shear relaxation modulus, which imparts

hereditary characteristics to the deformation behavior. The second

argument in G (i.e. t) allows for aging; this aging may be due to chemical

or physical causes, including transient temperature. It is assumed the [
body is undeformed for t <0, but the lower limit in Eq. (74) and succeeding

hereditary integrals should be interpreted as 0- to allow for the

possibility of a discontinuous change in strain or displacement at t=O.

Viscoelastic solutions will be derived from elastic solutions through

- a correspondence principle designated as CP-II in [14]. This principle

uses time-dopendent solutions rather than Laplace transforms, .ind is is

applicable to compressible or incompressible bodies with stationary and

growing cracks and with large deformations. With large deformations, the

-. tVtV - - p - * * * . * .-- . .
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coordinates r and 0 and all dimensions, such as R and h, should be

interpreted as quantities which refer to the undeformed geometry. In order

to indicate how this correspondence principle would be used here, it is

helpful to introduce a so-called pseudo variable,

t

fR G f G(t-t' ,t) dt' (75)

0

where f represents a displacement-like quantity such as ur and ue, or strain

or generalized displacement qi. With the R superscript, a quantity is

called a pseudo displacement or pseudo strain. The coefficient GR, the

"reference modulus", is an arbitrary constant; it is usually selected to

have the dimensions of modulus in order for fR and f to have the same

dimensions. The inverse of Eq. (75) is

f = GR fJ (t-dtt)-- at' (76)

0

where J is the shear creep compliance; it is related to G through a

hereditary integral [14]. With this notation, Eq. (74) becomes an elastic-

like equation,
R

or  + 2GRE4 (77)

A type of nonlinear viscoelastic behavior is characterized through the use

of the strain energy density in Eq. (69), but with y expressed in terms of

R R
pseudo strains Er I Yro, etc., instead of the original physical variables.

For further discussion of this nonlinear characterization (which includes

nonlinear viscous and elastic behavior as special cases) see [14-161.

Let us now explicitly extend the micromechanics analysis to

viscoelasticity, beginning with Eq. (1), in which the strains Eij are

considered to be specified functions of time. Operate on Eq. (1) with the

integral in Eq. (75) to obtain,

.................... S -*... ...... * *- .
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R (78)
u = ij Xj

According to CP-II, all of the earlier analysis is valid for a viscoelastic

material if all displacements and strains are interpreted as pseudo

*I variables; i.e., introduce the superscript R and use GR for shear modulus

(instead of G) as illustrated in Eq. (77). The viscoelastic stresses

predicted by this method do not have to be calculated fron pseudo

* stresses; instead, they are simply those in the elastic-like analysis. If

boundary tractions instead of the E are specified, then one would solve

R
for -ii from the elastic-like equations in terms of the given tractions,

after which the time-dependent strains may be calculated as indicated in ..

Eq. (76).

8. Prediction of Crack Growth

- Besides giving a procedure for obtaining viscoelastic solutions from

elastic solutions, the theory in [141 provides a method for calculating

initiation and continuation of crack growth. We start here with the energy

* release rate analysis in Section 5; Eq. (68) will be used, in which all

displacement-like quantities qi in, Eq. (66), are to be considered as

R
pseudo variables, qi. For simplicity, it is assumed either one crack or

two equal-length cracks are in the matrix layer.

It may be helpful to discuss first crack growth in a linear elastic

material in which crack growth occurs when a constant "critical" value of

energy release rate, W.' is reached. The equation for predicting the

instantaneous length of one or two equal cracks, as defined by 6 Olt

Fig. 5, follows directly from Eq. (68) after setting =

16 G R h-3 '/3 (79)

where, as before, Y 1 is defined by Eq. (66) in which 0 =Or .  In studies

--C

t2 _

. . . . . . . . . . . ..
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conducted to date, such as those discussed in Section 9, we have found that

the crack growth is stable. That is, as the applied strain is increased

(which causes changes in qi) Eq. (79) yields a unique, increasing crack

angle . This crack growth, in turn, yields decreasing effective shear and

* bulk moduli, as determined from Eqs. (58) and (59).

The crack growth theory in [14j expresses the growth in terms of a

generalized J integral, designated as Jv. For so-called "self-similar"

* growth [141 (which is concerned with deformation details on the scale of

the crack tip) Jv is equal to if pseudo-variables, rather than the

physical variables, are used. Within the context of the perturbation

analysis, the value of ( is not sensitive to the difference between self-

similar and more general growth and consequently we shall assume Jv ="

Experience with the type of composite in Fig. 1 indicates that the

instantaneous crack speed obeys a power law in W. For a linear

viscoelastic material with a single mode of crack tip deformation,W is

proportional to the square of stress intensity factor; the power law

relationship between speed of macrocrack growth and this factor is

illustrated in [17] for solid propellant. Thus, it is supposed here that

d /dt = (80)
t9

where SQ is a positive constant with dimensions of energy release rate, and
k is a dimensionless, positive constant; the parameter tg is a positive

quantity (with dimension of time) which may vary in time to allow for
I

aging, including transient temperature effects. One may also introduce a ___

crack growth initiation condition, but experience with solid propellant

shows that the initiation time is often negligible compared to the total

period of crack growth.

As an aid to examining the effect of applied strain history on crack

...........................................*... *.o.~ L,-* ". 2 . . '*'**-*?""-.,
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growth, it is helpful to consider here only those situations for which

* there is one independently applied strain c, and c and the associated

pseudo strain cR are non-negative. For example, specify a time-dependent

axial strain -= £33 >0 and assume the other components, Ell and -22, vary

proportionally, or are such that a state of average uniaxial tensile stress p.

exists in the x3 direction. Although other less restrictive cases have

been studied, we shall limit our analysis to the aforementioned situations.

For each crack length the shear strain parameter y , Eq. (66), is

proportional to £ because the problem is linear. Thus, we may write for an

elastic material,

= Ef(8) (81)

The function f = f(B) is derived by minimizing the strain energy with

respect to the free parameters, as discussed in Section 5, and by using the

* specified transverse straining or loading conditions, such as '11='22=0.

In all cases studied to date we have found that f is a positive,

continuous, decreasing function of . Thus, for each c the elastic energy

• release rate from Eqs. (68) and (81),

= G R h-3f2 c2/3 (82)

is a continuous, decreasing function of . If we assume crack growth

occurs when =c (assumed constant) and solve Eq. (82) for B as a -

function of E, we obviously would find that the microcracks grow stably as

the applied strain is increased.

C- For a viscoelastic material, as discussed in Section 7, one replaces G

by GR and E by cR in Eq. (82), where

t
7R GR1  G(t-t' ,t dt (83)

0

Assuming crack growth is defined by Eq. (80),

d3/dt = (£R)P g/tg (84)
...
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where p 2k and

g = g(B) - (GR R h-3f2/3)k (85)

Let us next introduce a "reduced time",

t

t = t(t) f dt'/tg(t') (86)

0

Without aging tg is constant and the reduced time becomes t/tg.

Integration of Eq. (84) yields

g- dB Sp  (87)

where S is the Lebesgue norm of pseudo-strain,
s A

A [Al /P
S= S(t) dt (88)

0

and B0 is the initial value of B. Also, CR = ER( ') in Eq. (88), where t'
00

is the dummy variable of integration.

Equation (87) may be solved implicitly to obtain the instantaneous

crack angle B as a function of the Lebesgue norm S and Bo. Inasmuch as the*a
value of S determines the amount of crack growth, it will be termed a

"damage parameter". Because p is often quite Large, it is found that

numerical and approximate analytical predictions of B are aided by using

the pth root of the integral in Eq. (88) for the damage parameter, rather

than SP as in Eq. (87). It should be noted that when p=- , S becomes the

largest value of ER over all time up to the present [181. For values p>, 4

and dER/dt> 0 an excellent approximation is 12),

S = FR ^1/p/(p m + I)i/P (89)

where m =_ dlog E /dlog t. Similar but somewhat rrore involved approxima-

tions may be constructed for histories FoR which are not monotone increasinq

in t.

.° .. . *
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In many cases the denominator in Eq. (89) is essentially constant J
because p is large or m does not vary significantly. If so, the damag,.-

parameter depends on only the current value of pseudo strain and time.

This behavior enables us to rewrite the basic crack growth equation so that

it looks like one for an aging elastic material. Specifically, substitute

Eqs. (85) and (89) into Eq. (87), and rewrite it to obtain, I
:G R h-3 R ) /3 (90) h.

where

YI- (f 191)

(.0 c2 f2  -/k [ff-2k d6] (92)

and c is the denominator in Eq. (89); recall that p=2k. The right side of

Eq. (90) has the same form as Eq. (79) for energy release rate in an I.
elastic material. quantity R  tnus plays the role of a critical-n a e r i l . T h e u n i y f R

energy release rate; however, instead of being constant, it depends on

crack length through B and 6 and on time. It was observed in Section 7

that the viscoelastic constitutive equations in terms of pseudo strains

are analogous to those for an elastic material. Equation (90) shows that

this observation extends to crack growth behavior as long as one accounts

for crack size and possibly aging in the critical energy release rate.

This elastic-like behavior can be shown to exist when there is more

than one independently specified strain or stress. Indeed, using the self-

consistent model described in this paper, it leads to the existence of a

strain energy-like potential with crack growth. Such behavior is discussed

in [19], especially for elastic materials with damage, and an illustration

is given using experimental data on solid propellant under confininq pressure

and axial stretching.

.........................
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Finally, it should be remarked that there are cealistic situations in .

which the crack growth equation is that in Eq. (80), but the constitutive -

behavior is that for an elastic material because the shear relaxation rodulus

is essentially constant. Alternatively, the crack growth equation may be

like that for an elastic material, = constant, out tie relaxation modulus

is not constant; this case may be recovered from Eq (92) by letting k .

9. Some Results and Comparisons

Range of Validity of the Perturbation Solution: 4itnout cracks tiit,

accuracy of the perturbation analysis in predicting the eCfective Young's

modulus of the composite may be assessed through comparison with certain

exact results. We shall consider two cases; for both, it is assumed the

particle volume fraction for the composite sphere of radius b in Fig. 4 is

the same as that for the total composite. In the first case the .-

displacements in Eq. (3) are applied directly on the surface at r=b in Fig.

4, giving a modulus, denoted by Eb, which may be interpreted -, in

approximate upper bound to the modulus of Hashin's composite spheres

assemblage [10. The exact expression for this upper bound will be denoted

by Ecs; it is three times the shear modulus derived in li0] in view of the

incompressibility condition.

To derive Eb we first note that Eq. (24) must be the same as Eq. (3);

thus ql=ev and q2=q3=ed. Moreover, without cracks ev=q4=0, and ed=33 from

Eq. (9). Equation (66) reduces to

Substitute Eq. (93) into (67), with o00=0 and 0 1i, divide the strain ener,,'

V4 by the woI ume 4' b3/3, recal I thit R is the in,-.,n i t i us (t". Fig. 7) ind

then use this result for W in the first relation in Eq. (9) with o11=O; L

thee r s f

. . . . . . . . . . . .. . . . . . . . . . . . . . .","- .
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033 Eb t33 ( o.

where p

Eb = E/120n3 (1+3h) j (95)

is the composite effective Young's modulus in terms if tli _ matrix Young's

modulus, E=3G. The third column in Table I gives the ratio Eb/Ecs for a

range of particle volume fractions Vp; the second column comes from the

exact relationship

h = v-Vp 1/3)/(1 + Vp 1/3) (96) ?p.p

which may be easily derived using the definition for h in Eq. (14). It is

encouraging that Eb agrees so well with the exact result Ecs for particle

volme fractions as low as 0.4.

The second comparison we shall make is for the generalized self-

consistent model in Fig. 4, in which boundary displacements in Eq. (3) are

applied at a radius r=c >>b. In this case the exact solution for Young's

modulus, denoted by Esc, may be obtained from three times the shear modulus

in [9, p. 56]. The approximate modulus, say Ec, tollows from Ec. (58) with

d = 033' ed = '33, and q4 = ev 0. The strain energy of the effective

medium, r> b, can be evaluated usinj ,xact displacement distributions

C similar to hose in [9]. The proce~ss is straightforward and the amount of

algebra is considerable. Therefore, only numerical values for the ratio

EC /Escare given here; they are .istea in the fourth column of Table 1.

The error in the modulus which uses the perturbation solation is within 13.

of the exact solution for I, vP1 0.65; for the composite in [21 the error

is practically zero since vp = L 78. The last column in Table 1 gives the

ratio of exact values, showing that the etffctive modulus of the

generalized self-consistent scheme is considerably smaller than Hashin's

upper bound for tNe p range indicated; however, it is found tnat E

C!
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as v * 0.

The Perturbation Solution with One Crack: Considcr again the case in ..

which the displacements in Eq. (3) are applied on the surface r=b, where"

E33 > 0 and On = 0 are the given inputs. We now use both expressions in

Eq. (8) to derive 033 and ev. The strain energy A is again that in Eq.

(67), after dividing by the volume. For Y, Eq. (66), we use ql=ev ,

q2=q3=ed, cl=l, and minimize the strain energy with respect to q4 to find

this particle displacement. The crack angle B is derived from E-. (79)

assuming §c is constant.

Figures 8 and 9 show representative distributions of the shear strain

measurey, Eq. (66), and the dimensionless normal stress s/G for three

values of the axial strain c E33; recall that s h3j , Eq. (27), where

a is the normal stress in the matrix. In Fig. 8 the peak values of r are

the same sinceW C is constant. These plots are for the given values of

i= 0.09 and vp = 0.78 (but the results are not very sensitive to vp); fo..

the three strains the predicted values of -i re approxi nately 4, 13, and 23

degrees.

Results without a crack are also drawn in Figs. 8 and 9. They are

from Eq. (46) (in which ql=q 4 O, q2=q3= , and 01=) and from Eq. (93).

Without a crack the normal stress at the poles, oI in Lq. (46), is not

given by a boundary condition; since the material i.s incompressible the,

strains determine the normal stress only to within a constant.

This constant may be found by requiring the total radial force/surface area

acting on the matrix shell to be the mean applied strcss, '"33'3. With this

condition we obtain r

s/G = [I + 0. 2/(1+3h) - 1.5 sin 2 01 /4 (37)

.. .......... . .. ........ . -......-.-.. . . . . .. . ., . . . .- .... . . _. . . : i...'
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Additional numerical results confirm that the quantity s/G from Eq. (46)

for one crack and o1=0 approaches Eq. (97) with decreasing crack length,

except near the crack tip. Figures 8 and 9 snow that the effect of the

crack on y and s/G for c = 0605 is not great except near the tip, and that

for all three strains the only qualitative difference in tile distributions

for no crack, Eqs. (93) and (97), and for one crack is near the crack tip.

In additional unpublishe studies, the maximum l6 of 23 degrees in these

figures (for c = 0.15) was found to be somewhat larger than needed to

achieve agreement with experimental results in [21 on stress-strain

behavior; thus, in this case, curves for the largest strain exaggerate the

change in the distributions due to crack growth.

Studies with two cracks have been made as well. However, tor tie same"-

values of 'c and initial crack length as with one crack it is found that a

larger value of applied strain is needed to initiate simultaneous

propagation. It is thus likely that even if two dianetrically opposed

cracks were to exist initially, growth of only one would be significant.

Comparisor)sof predicted and measured stress-strain behavior made to-date

also support the one-crack model. Predicted stress-strain curves and

various comparisons will be published elsewhere.

Effects of Viscoelasticity: Incorporation of viscoelasticity into th.2 17

model has been discussed in Section 7. Essential aspects of the method for

dealing with both crack-tip and global effects are confirmed by the.-

experimental results in [2]. Here we shall discuss only the theoretically - i

derived damage parameter, Eq. (88), and the relationship of this Lebusgue.

norm to the findings in [2]. Neglecting aging effects, the r-uced time t,

Eq. (86), reduces to t = t/t in which t is a constant. The exponent p is

related to the exponent which characterizes tiin--dep[nunco of the stress"

° °'°.-

... °'.. . °.. '-°.°.. " '......°, - - . .,. • . °.. ••. . . . . • . . . . .•. •"
-',' 2_',_.; ,22.'2 ',2_,;'2_,'_''_.,'..". .," / .,. " .,." " • '. " -'. ". -.. '. L .°..." "! .2... . . . . . . . ..".. .".". ."."..'"".. . ."... ... .'".,-.".'. .. "."-. .- ".. .
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relaxation modulus and to the characteristics of the matterial in the zo .-

of failing material at a crack tip. For ,, nonaging :naterial G(t-t',t,

reduces to G(t-t'), and thus for power taw relaxation,

G(t) =Glt-n (98)-

where G, and n are positive constants. According to the data for rubber in

[20:111], the failure zone at the crack tip is elastic-like, which in turn

yields [20:11],

p = 2(1 + 1/n) (99)

This relationship is in agreement with data for macrocrack growth in

solid propellant [171. For the relaxation modulus in [2] n = 0.366, and

thus p = 7.46. From the same study the exponent was found experimentilly

to be o = 6.5. The difference nay be in part due to the material'

nonlinearity; namely, apart from effects of camage, a power law

nonlinearity was reported, in which 3 (-: R)N, where N = 0.85. In

another micromechanics model study it was shown that instead of Eq. (99) '."

one should use p = (l+N)k [16, Eq. (142)1; the quantity k is the same as ..

I.'
for a linear viscoelastic material [151, k = (1+1/n). Thus, p = 6.9, which

is only 6% greater than the experimental value of 6.5.

The experimental data in [21 indicate that two different Lebesgue

norms are needed, corresponding to p = 6.5 and p = , where the Latter

norm is equal to the largest value of £R(t ' ) over all O< t'<t, where t i-.

the current time [181. The value p = is what one would predict for an

elastic material since n = 0. The power law in Eq. (98) with n = 0.366 is

for a broad, intermediate time range, wher2 in crack growth theory t is

one-third the time taken by a crack in growing an anount equal to to.-

length of its crack tip failure zone [20:111. Thus, considering that there

is actually a distribution of particle ind nicrocrack :izes, ind associatl.

. - ...... .', -.-. "
- . ... .. . . . . . . . . . . . . . . . . . . .



35

microcrack growth rates, the need for p = ' may arise from the very slow

and fast growth rates for which elastic-like behavior would exist.

Additionally, molecular scale damage processes related to breakdown of

crosslinks and highly entangled long molecular chains (normally associated

IL.
with the so-called Mullins' effect [4]) may account, at least in part, for

the need of the p = value. The value of p may also depend on whether or

not the crack tip is in the matrix or at the article-m:itrix interface; in

this regard it should be noted that the perturbation results are not

sensitive to the radial location of the cracks, and thus they apply to both

cohesive and adhesive fracture processes. Although it is not yet c1." -

just why p = is needed, it is very encouraging that the two values of

p = 6.5 and p = bracket the theoretically predicted range of possibK

exponents using viscoelastic fracture mechanics for the matrix.

A ith exponents of p = 6.5 and larger, corri-spondinj to k 1- 3.2, we hav--

found that the value of the effective critical fEracture energy, Eq. (92),

changes only a small amount with straining except for ' very close to its

initial value o Indeed, curves analogous to those in Figs. 8 and 9, out

for the viscoelastic material, are practically the same as for elasti:

behavior. It is also of interest to observe that for t = t/tg and

E = C1 (t/tg)m, with C, and m constant (such as would be obtained for a power

law relaxation modulus and a onstant strain rate input) we may eliminate t

fran Fx. (92) using

t R/ ( C) 1/m (100) -%-

When this is done the resulting expressions are the same as in Eqs. (9D)

and (92) except the exponent on ^R is 2 + 1,mk, is iiiltiplied by
C1/mk epiiyon Nml, .'!

-and (cR no longer depends explicitly on t. Namcly, the crack

growth behavior is predi:cted to be the sain, as for a noni inoi ower I :w

wt-.'
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elastic material with a strain rate and crack l_12ngth-J_,pndent frictul "

energycR Also, as a result of th.? in cejrat in Erj. (92,-

this energy is initially zero and then initially incrtdsu3 wit1 ,]Ld"-

growth.

A model nas been described for predicting microcuick jrowth and tnc

overall or effective constitutive equations of a higLly-fillked particdiite

composite. Assuming rigid spherical poarticl&s in..a in~orr~oc-

matrix, the theory was developed using a cotnbination of perturbition arnd

strain energy methods. Accuracy of the perturbation anaLysis, whici

increases with increasing values of particle volume fraction, v., was

assessed by comparing the effective Young's modulus with existing exact

values predicted for the composite spheres assemblage and the ,eneralized

self-consistent model. In the latter case the error is less than 13 % for

v >0.65, and in the former case the error is less than 8% for Vp10.40.

Viscoelastic effects were introduced, and a damage parameter that defines

the extent of time-dependent microcracking was derived and found to be in

good agreement with experimental results on a ruober filled with relatively

rigid particles.

This paper described only the basic portion of - much morr extensive

study underway to predict the mechanical response of linear and nonlinear

viscoelastic particulate composites. The geometric idealization of the

composite and the method of analysis were seected to be realistic but yet

simple enough that It would be feasible to includ, geometric and material

*nonlinearities, compressibility of the_ matrix, and particlIe Iefortmation

under multiaxial loading of the composite. Studies beyond those covered

here have been made and will be reported elsewhere.

. * .. . .
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Table 1

Effective Modulus Ratios for Composite Spheres Assemblage (CS)

and Generalized Self-Consistent Scheme (SC).

Vp Eb/Ecs EC/Esc Esc/Ecs

.999 1.67xlO -4  1.00 1.00 .624

.9 .0176 1.00 1.00 .556

.8 .0372 1.00 1.00 .475

.7 .0594 1.00 .94 .390

.65 .0717 .99 .87 .352

.6 .0849 .99 .72 .326

.5 .115 .97 .21 .322

.4 .152 .92 < 0 .379
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Figure 1. Microtoned surf'ace of a thin sheet of propellant under'-.-'.2

uniaxial stress (in the direction of the arrow) just "'"

,'. below that causing specimen faiure, as observed through".'

'. ~a scanning electron microscope (lOOX). After Cornwell [.

and Schapery [1].
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Figure 4. Generalized self-consistent scheme without microcracking.



C 44

a.

C N

EFFECTIVE MEDIUM

* WITHOU CRACKS

CRACK WTOTCAK

Figure 5. Generalized self-consistent scheme with microcracking.

'a7



43'

r

00

Figure 6. Spherical coordinate system.



* 46

X\ 3

0 2

MATRIX

APPROXIMATELY
PARABOLIC
DISPLACEMENT

IC-
Figure 7. Portion of matrix shell with crack.



p 47

*Lfl Ur OD
- cko

w w -

41

U*CU

4

w D E C u V

<i



-Ul K.-~l F_ .-.. r.
48

fO (S P
CD4

ac

J

'41

(.D
0)0

-'-4

CV)

Ifl -' LI) ) -

U U aEU



• • .i°°JZ,

I

. ... o- .


