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A MICROMHCHANICS MODEL FOR NONLINEAR VISCOELASTIC BEHAVIOR OF
PARTICLE-REINFORCED RUBBER WITH DISTRIBUTED DAMAGE
, R.A., Schapery
Texas A&M University

Collcge Station, TX 77843

® frﬂ%f’h L ABSTRACT
. Af\ model based on micromechanics for predicting effective viscoelastic

stress-\strain equations and microcrack growth in particle-reinforced rubber

¢ (or other relatively soft viscoelastic matrix) is described. Geometric
idealization of the microstructure follows that of the composite spheres

assemblage and generalized self-consistent scheme originally used for

o linear elastic composites without damage. The approach combines a
perturbation analysis of the matrix, which becomes more accurate as the

particle volume fraction is increased, with the Rayleigh~Ritz energy method

L Ba omn ok o e g

) for predicting mechanical response of the composite. Results for linear

elastic behavior with crack growth are first obtained, and then extensions

to linear and nonlinear viscoelastic behavior are discussed. It is shown

C that the elasticity theory may be easily extended to predict mechanical
response of a viscoelastic composite, and that an approximate equation
governing microcrack growth is analogous to one for an aging elastic

< material. Finally, a limited assessment of the theory is made through

comparison with some existing effec;tive modulus results and experimentil
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1. Introduction
® Rubber which is filled with a large volume fraction of hard particles

usually exhibits considerable nonlinearity and strain rate-dependent

hysteresis over a wide range of temperatures and rates. In this paper we
L develop a mathematical model from micromechanical considerations for

predicting the growth of microcracks and their effect on the elastic and

viscoelastic deformation behavior of such a composite. Motivation for the
o geometric idealizations and analytical approach comes from studies of the
constitutive behavior and microstructure of composite solid propellant.
However, it should be clear that at least portions of the theory may apply to
¢ many other composites consisting of continuous matrices reinforced with a
large volume fraction of much stiffer and stronger particles or fibers; in the
latter case prediction of response characteristics for loading transverse to
® the fibers would be analogous to that done here.

Figure 1 shows the microstructure of a typical composite solid propellant

{1]. In this case there is 76 volume percent filler consisting primarily of
® ammonium perchlorate particles with some aluminum powder (both of comparable
stiffness) in a lightly crosslinked rubber. The applied strain is
approximately 30 percent, and is close to that producing specimen failure.
Y Only the largest particles may be easily secen as there is a broad distribution

of sizes, primarily in the 10 to 100 micron range. Each particle is

surrounded by a strongly attached rubber layer. Typically, beginning at
P' strains that are less than 10 percent of the ultimate value, crack-iike voids
; start to appear near the largest particles and grow steadily and separately
E from one another; a crack that grows around one large particle does not
ic: usually join with other cracks (until the ultimate strain is approached)
because of the shielding effect of adjacent particles,

Uniaxial stress-strain behavior of a similar propellant (with 73 volumc
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percent particles) is shown in Fig. 2 over a two minute test period. The

¢
~
‘4’

points are experimental values and the continuous line is from the equation
developed in [2]. One specimen grip was allowed to slip in compression (with
respect to the machine crosshead) to avoid buckling of the long bar-shaped
specimen; the data points reflect this low compressive resistance. On the

basis of the earlier study [2), data on dilatation of propellant [3], and the

characteristic behavior of stronger rubber with and without particles (4], it

is believed the stress-strain behavior in Fig. 2 reflects hysteresis due to

viscoelasticity (the difference between curves 2 and 3), stiffening due to

high axial straining of at least a fraction of the polymer natwork chains (the '-'.*-:.-:
upper end of curve 3), softening due to microcracks, and the type of softening

usually called the Mullins' Effect. This latter phenomenon, which is very

significant in carbon black-filled rubber without apparant microcracking, is
believed to be primarily due to non-affine displacement of network junctions
and entanglements during loading, followed by partial or delayed recovery of '.‘:—" *
these points at reduced strains; with weak crosslinks, more or less permanent LN
breakdown of network junctions may also occur [4]. Figure 3 illustrates the R

Mullins' Effect without viscoelastic hysteresis,

In view of these several apparently important mechanisms of inelastic :::;
behavior which influence mechanical response of the composite, it is believed
essential to begin our study with a highly simplified microstructural
geometry. When the effects of the different mechanisms are understood, less ‘
idealized geometry may be introduced as necessary. Accordingly, as a starting %‘-‘-:,-‘
point, we shall use a geometry originally proposed by Kerner (5] for ::?:-E

o
isotropic, linear c<lastic media without cracks, which is illustrated in Fia. gé::-:’

4, A two-phase composite sphere, consisting of a spherical particle and

matrix shell, is embedded 1n an effective (homogeneous) medium in Kerner's
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model. The bulk and shear moduli of the effective medium are initially
unknown; but they are found from the condition that the total composite body
in Fig. 4, consisting of the two-phase sphere in the much larger effective
medium, is to have the same moduli as the effective medium. Hashin [6] calls
this model the "generalized self-consistent schemea", Corrections and
improvements to this linear model have been made by Smith [7] and Christensen
and Lo [8]; additional discussion and comparison with experimental data may be
found in [9]. If the displacements specified on the outer boundary of the
effective continuum are those for a uniformly strained homogeneous body in
simple shear, for example, then the effective shear modulus may be found.
Instead, if displacements for simple shear are applied directly to the outer
surface of the matrix shell, then one obtains the upper bound to the shear
modulus for Hashin's composite spheres assemblage [10]. Both locations for
the boundary conditions are considered in this paper, although expressed in
terms of applied displacements which produce axisymmetric deformation in order
to simplify the analysis when cracks exist.

In Section 2 we propose a modification of the geometry in Fig. 4 to allow
for cracks and then outline the method of analysis. Sections 3-5 give details
of the approach, which consists of a combination of perturbation analysis,
Rayleigh-Ritz approximate energy method, and fracture mechanics. Rigid
particles and linear elastic, incompressible behavior of the matrix are
assumed for most of the work in this paper in order to develop, with a minimum
of complexity, a mathematical model that has some of the important features of
the actual composite and to gain insight for generalizing the analysis.
Nonlinear and viscoelastic effects in the matrix are discussed briefly in

Sections 6-8. Finally, some numerical results and comparisons are given in

Section 9.
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2. Description of the Model I:',;)
e The complex geometry of an actual particulate composite, such as that
in Fig. 1, is idealized using the geometry in Fig. 5. A representative
particle is assumed to be spherical. It is contained in a concentric shell
¢ of matrix material, a< r<b, which may have one or more cracks. This
: composite spherical particle is embedded in an uncracked shell of an
F effectively homogeneous isotropic material, b<r< c, having effective
¢ properties of the particulate composite without cracks. Finally, the outer
, region,r>c, is assumed to be large enough to permit treatment as being
: infinite in extent; it is considerered to be effectively homogeneous with
-

the effective anisotropic properties of the composite with particles and
cracks, but this paper does not explicitly account for the outer region.

The thickness of the shell without cracks, b< r <c, depends on the

microcrack density in the total composite, which is related to the size
distribution of particles, Namely, cracks tend to form and grow around the
largest particles. In the real composite each large particle with at least
one adjacent matrix crack is surrounded locally by composite material
consisting of smaller particles in apparently uncrackad matrix material; it
is this latter material that is represented by the shell b<r <c. The

total composite could be thought of as an assemblage of composite regions

, ¥ <c , each of which contains one large particle with one or more

adjacent cracks; if necessary, one could allow for a distribution of sizes,

considering variations in a,b, and <

. R e
e e
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As in other types of self-consistent models, the composite model in -’1:
Fig. 5 is subjected to outer boundary displacements at r>>c which )::\j
correspond to those for a uniform strain field. The displacement L.,::.,l
components u; (1=1,2,3) referred to an orthogonal set of Cartesian
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coordinates x; are, for the far-field,

ui = Eijxj (1)

where € = €44 are the components of a spacewise constant strain tensor.
(The summation convention is employed 1n which summation over the range of
a repeated index is implied.) This displacement representation is

completely general for small or large strains, apart from rigid body

*T 4 A N R T .Y e T e o T eT .

translation and rotation. The latter motion may be included by adding

constants and using nonsymmetric coefficients Cij in Eq. (1) {11]. In

developing stress-strain equations it is of course not necessary to include

the rigid body motion

For simplicity we shall consider here only small strain theory and

M A N

displacements which are symmetrical with respect to the x5 axis in Fig. 6,

There may be one or two axisymmetrical cracks, each centered at one of the

poles, as in Fig. 5. For this axisymmetrical deformation case, €10 = €11
and €12 = €13 = €53 = 0, so that Egq. (1) i1n terms of the spherical

coordinates becomes

LRI AL SN AR A AR L

o
u1=re11 sin 6 cos ¢, U, =r ells.me sin ¢, u3= r €34 cos 8 (2)

A The displacements in the radial and latitudinal directions, respectively,
=
! are found to be
:f u, = rley/3+eq(2 cos? 6 - sin? 8)/2] (3a) C
- P . “
} Uy = -3reg(cos & sin 6)/2 (3b) _ﬁf. j
" B
8 where e, and ey are the dilatation and deviatoric strain, respectively, s

©y T 26)) + €33,  €q = 2(€33 - €17)/3 (4) :
&'3._ Use of the measures of strain defined in Eq. (4), rather than €11 and €33, [ D
- is helpful in the subsequent analysis _'"4
- 2
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N
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In order to solve the problem of Fig. 5, one makes the displacements

¢ in the outer region equal those in Eg. (3) at r>>c, as is done for the ".1-'.:
problem in Fig. 4. Without cracks, the problems in Figs. 4 and 5 %E.if-
obviously are the same. In this case, the exact linear elastic solution ;
. for the mechanical state and the effective Young's modulus may be obtained }“-"'
just as for simple shear [9] by a separation of variables method in which ‘_h;_-
the particle and each shell have the same form of solution. In fact, one .\
;. finds that the dependence of the displacements on 0 is that in Eq. (3) EJ_‘
(which is from the uniform strain field) but functions of r appear in place '.:;'.-‘:‘._

of e, and ey; the function of r which replaces ¢4 in BEg (3a) is in general

different from that replacing ey in Eg (3b). Each shell and the particle

, has this form of displacement. An analogous situation exists for the '.'_ﬂ:'.-;.'.-

f stresses. S

e L
With cracks this simplicity certainly does not exist for exact L

solutions. However, we shall use it for developing approximate solutions

i based on the minimum potential energy principle. For example, with L,:
® :"k".i-'
reference to the inner shell with cracks, a <r < b, the interface

displacements at r=b are taken as

: u, = b[CIl/3 + q2(2 COs2 6 - Sin2 9)/2] (5a) :_"’_.._
C AR
;I ug = -3b gy(cos & sin 6)/2 (5b)
where q;, g5, q3 are free parameters which are found by minimizing the .

: strain energy for a given crack geometry. The outer material, r >b, then
'S
! deforms as if there were an uncracked inner shell with altered properties.
! In practice, for the type of highly-filled, rigid particle system in Fig.
, 1, the constraining effect of small, closely spaced particles just outside
!, of the soft matrix shell around each large particle tends to preclude high
-_ crack-induced displacement gradients for r>b.  Thus, Eg. (5) may actually ..:ij‘
' :1
. ]
! b
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be a more realistic representation than would be the case if the material

® for r>b were truly homogeneous,
The same form of Jisplacement variation may be used at the interface
b r=c, but with three additional free parameters, also to be found by
|. minimizing the strain energy. However, analysis of the entire composite in

b Fig. 5 has not yet been completed., Rather, a more limited set of results

has been obtained in which displacements in Eq. (3) are applied directly at
r=b for one case, and at r=c for another case. Aith these results, we may
determine if the essential characteristics of the model with crack growth
agree with experimental data.

Consistent with the limited goal of studying the essential behavior of
the model, expecially that due to the cracked shell, a<r <b,
we assume the particles are rigid and the matrix is incompressible, We
have done some work, as yet unpublished, allowing for realistic values of
rubber compressibility and particle moduli. It was found

that only the effects of rubber compressibility on the composite properties

were not negligible for the type of composite in Fig., 1; but they were

small enough to be neglected in a study of primary model characteristics.

:_ The effective stress-strain equations of the composite will be
F'l” obtained by evaluating the total strain energy for a unit volume of the E_J
t composite and then using virtual work to define the stresses, B
'[ W = %5 éeij (6) t}:;q
..( where W is the strain energy per unit volume; W depends on the microcracks,

but they are considered to be of fixed length in the virtual deformation

2T

process, For axisymmetric deformation and using ey and eg 1n Eq. (4) as

i( the measures of strain, Eq. (6) becomes

SWw = (\)33 - 011)6ed + (Zlel + 033)63\,/3 (7)

et L Lt et et c YT e
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™) which yields the following deviatoric and dilatational equations
Ud = 033 - 011 = BW/’éed ’ OV = (2011 + 0'33)/3 = BW/aev (8)
These results allow for material nonlinearity. For an incompressible
composite e, = O and only the first relation in Eq. (8) applies; in this
case Eq. (4) yields -
A
€11 = -833/2 .+ &g = €33 (9) =
PR
3. Field Equations and Boundary Conditions for the Matrix Shell e
Displacement and strain distributions in the matrix shell or layer, - (]
a <r<b, in Fig. 5 will be constructed for incompressible behavior by :ii;zfﬁ'_}
deriving the displacements u. and u o fram the curl of a vector potential (,.,_.'.j
[11]. For symmetry about the x4 axis, Fig. 6, they became
;ﬂ
u, = (r sin 6)"l 3(y sin 8) /30 (10)
ug = ~(x sin )~ 3(r v sin 9)/or (11)

it is helpful to replace the potential ¢ by a dimensionless displacement

function,

F=r ¢ sin 6/R3 (12)
where R is the mean radius of the matrix shell, Fig. 7. In addition, for

development of a perturbation solution we replace r in favor of the

e e e e e e e
LR RN B R . [N 43 AN s .
. . Voo P N PRI
. b et e P B
PPN L B EAR
e D A Ve
. e PR .
o< PR S P . .
TSI WP L, . N

’
laels

dimensionless radial coordinate x, which is defined by

4
i

N
[ PRGN

e lendh o b

r = (1 + hx}R (13)

. R ot
. DO DA
S, . PR

The dimensionless thickness,

h = H/R (14)

is assumed to be small enough to use it as a perturbation parameter.

.
! o

Observe that inner and outer radii of the matrix shell are given by x = -1

LI

and x = 1, respectively. In view of Eq. (13),
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t
|

a/3r = (Rh)~ 3/2x (15)
With a change of variables to F and x, as well as the use of the

dimensionless radius,

r zr/R=1+hx (16)

Egs. (10) and (1ll) become

u, = R r~¢ (sin 6)~1 3r/00 (17)

r

" u6=-R(h E)"l (sin 9)'1 AR/ Ox (18)

g The strain-displacement equations {11] in terms of the dimensionless

variables x and r are

€ = (Rh)'l Bur/ax (1%a)
€g= (RD)7L (3ug/ 30+ up) (19b)
- e¢= (Rr)‘1 (u, + cot © ug) (19¢)
[- - - .
g Vo= (RDTY (30,738 - ug) + (Rh) “Laug/ax (196)
b
.. Now rewrite the strains using the displacements in Egs. (17) and (18),
X
g Cay-l 2-2 (a2 ~-1
: €, = (h sin 6) r [94F/363x -~ 2h 9F/30] (20a)
'..( eq = (h sin 6)~1 T=2 [-32F/303x + cot 8 JF/dx + hr~Ll 3F/36) (20b)
; €y = (h sin 0)~L =2 [nz~1 5F/30 - cot 6 9F/x) (20c)
- Ypo= (b )2 (sin 6)~L (2h 3F/5x - T 52F/5x2
,3-\ + n2 t-1(32F/362 - cote aF/e)]  (20d)
.
" The equilibrium equations ([11] for the radial and latitudinal
f- directions using the dimensionless variables are, respectively,
N ) A
" r™2 vl G(e3 6 /0% + (sine)7L B(singa ) /e <30 = 0 (21a)
. £=2 h-1 g(e3 Tgyp) /3% + (sin )7L a(sine )/ - cot @ 7, =0 (21)

where ¢ 1s the mean normal stress,
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o = (9 + g +o¢)/3 (22)
b For a linear, elastic, isotropic matrix, the stress strain equations
I are

O, =0+ 2Gg, , 06=O+2G€8
® o, =0+ 2Ge, , 1, =Gy (23)

¢ ¢ ro rd

where G i1s the shear modulus. The mean stress ¢ is not determined by the

T YW

strains in view of the incompressibility assumption. When the strains, Bq.

(20), are substituted into the stresses, Eq. (23), and then the stresses
put into Eq (21), we obtain two differential equations for the mean stress
o and displacement function F.

For a nonlinear elastic material in which the strain energy density
depends on the shear strain invariant given in Egq. (61), the stress-
strain equations are the same as those in Eg. (23) except G is a function
of this strain invariant.

Using Eq. (5), the boundary conditions on the displacements are

specified at x = 1 as

[+
[}

. = R(1+h) [(q;/3 + qy(2 cos? 8 - sin? g)/2] (24a)

ug = -3R(1+h) gy (cos © sin 0)/2 (24b)

Allowing for rigid-body vertical translation of the particle, g,,the

conditions at x = -1 are
U, = g4 cos 0 (25a)
ug = -dy sin 6 (25b)

4. Perturbation Analysis for a Linear Elastic Matrix Shell

Using a standard method ([12], we expand F and other solution functions

in a power series in the (assumed) small parameter h,

A
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o F=E‘o+hE‘l+h2F2+... (26)
The relevant functions are then substituted into the field equations and ok
boundary conditions, and the equations arising from each set of terms of B
o the same order in h are solved sequentially, starting with the lowest
order. In using this approach, it is helpful to select the relevant
dependent variables in such a way that the lowest order approximations are
j0 independent of h. Ae find from an initial trial of the techniqgue that F,
is indeed independent of h and that the corresponding normal stresses are
0(h"3). (Standard notation is used here in that a quantity of nth order in
E & h is denoted by O(h™) and, by definition, 0(h™/h"® is bounded as h~ 0)
Thus, we introduce the new variables,
o s  h3o, s, = h3or, sq = h3°e' s = h3o¢ 27
i The modified mean stress s is expanded like F in Eg. (26),
f s=so+hsl+h252+... (28)
jo
- Next, in terms of the series for s and F express the equations of e
equilibrium, Eq. (21), using Egs. (20), (23), and (26)-(28), and then
:C' combine the terms into groups, each of which is multiplied by a common _ _':
power in h. Considering those with the h® coefficient, the radial and E"“"‘
latitudinal equations yield, respectively, ~
< 3So/3% = 0 (29)
95o/26 - G(sin 8)~1 r_sox3 = 0 (30)
¢ Surprisingly, the equations coming from the factor hl are the same as Eqgs.
. (29) and (30) except Sy and F replace 5o and Fu, respectively. \
. I{'-Z':;'-I
w y\
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The equations arising from h? are much more involved, and therefore we
shall limit our analysis to the zeroth and first order terms. It is also
found that by neglecting terms O(hz),

S.=8,=8, =8 (31)

Inasmuch as the zeroth and first order equations of equilibrium have

the same form, it is helpful to work instead with the single equation,

ds/de - G(sing)~133F/x3 = o (32)

after noting that s is independent of the dimensionless radial coordinate x
(cf. Eq. (29)). This equation is readily 1integrated with respect to x to
obtain F,

3

_ sin 6 X
F g-+f2

T TG

NVN

+ flx +-fo (33)

&8

The four functions of 8, i.e. ds/de6, f,, £, and f,, will be obtained from
the four boundary conditions on displacement, Egs. (24) and (25). To
accomplish this, it is helpful to first express the conditions on u, in
terms of F. Thus, by substituting Eq. (24a) into Eq. (17) and integrating

with respect to 0 we find for x=1,

F = (1+0)3 [-q;(cos 8)/3 + qz(sinze cos 0)/2] +k; (34)
where k; is a constant. For x = -1,
2 . 2
_ (1-h) sin” 6
F= —x 7 YUtk (35)

and k2 is another constant. From Egs. (18) and (24b) for x=1,

3F/3%= 3 g3 h(l+h)2(sin®€ cos 6)/2 (36)
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and from Egs. (18) and (25b) for x=-1,
8F/3x = h(l1-h) (sin?8) q,/R (37)

Note that these conditions on the latitudinal displacement are O(h);
this implies ue = 0 at x = *]1 for the zeroth order solution. Substitution
of F, Eq. (33), into tne four conditions, Egs. (34)-(37), gives equations
for obtaining the four functions of 6 in Eq. (33). Because the Uy
conditions, Egs. (36) and (37), are O(h) we may replace (1+h)2 and (1-h) by
unity since Eq. (33) is only valid up to the first order; consistent with

this approximation, in Egs. (34) and (35) we may use the approximations

(1+h)3 = 1+3n , (1-h) 2

n

1-2h (38)
There results, finally,

cos 8 -c

ds _ 3G (143h) ( 5———rs—) - lq + 3(q, - )h] in 6 0
d T 9 3 sin © 2 |92 7 71927 %3)" ) sin b cos
9 9}
+ -5 sin (39)
q,h
f2 = %— q3 h sin6 cos6 - gR sin® 8 (40)
c, —cos § 5 2
£1 = q(1+3h) (——F—) + g[q2+(3q2-q3)h]sm @ cos6
9 3, .
+ 2—3— (h- I)smze (41)

- cos 6 143h 3 , 2
fo = —ql(l+3h) 6 +[q2 (T) - §q3h] sin ©§ cos @ -

+ i]i (l—h)sin28 +c
4R 2 (42)

where the unspecified constants of integration k; and ko, have been
eliminated in favor of the new constants c) and cjp.
The shear strain, Eq. (20d), is needed for the subsequent energy

analysis, and 1t is found to be
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€
® Yo = (h £~ (sine) ™ [- Sig" g—g X+ 2hf1-f2] (43)

The latitudinal displacement, Eq. (18), is especially simple if only the
: zeroth order approximation Fj is used. For this case we find that it 1s
° distributed parabolically in x,
f vy = o P - (44)
U
- as i1llustrated in Fig. 7.

Also, it is to be noted that the mean stress o is derived by

‘@ integrating Eg. (39) and then using Eq. (27), C = sh™3. The constant c

may be found from consideration of the behavior of s; on the other hand, ¢,
has no effect on the mechanical variables and thus may be taken as zero.
Observe that there is a singular term (sin 6)"1 in Eg (39), which cannot
® exist in physically meaningful solutions. Removal of this singularity,

together with consideration of the mean stress at the ends of the matrix
® layer (when one or two cracks exist) leads to the solution in terms of ay
: through qy-

Without cracks we must set q; = O to remove the singularity and take

:C gy = 0 to satisfy the obvious symmetry requirement. Use of these
: conditions in BEgq (39) leads to -
s = 00h3 - §8G_[q2 + 3(qy - q3)h]sin2 Y (45)
._‘ '
1 where o, is an arbitrary constant mean stress. Wwith only one crack at the ’*"*‘
; bottom of the particle, cf. Fig. 5, set ¢; = 1 to remove the singularity at *
E 6 = 0 and obtain ._
¢ P

BN .
. S e L e e e
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3 (9% sing tan(8;/2)
3G { =5 (143h) [l“ ( s 5, @n(e/2) )]

q
% [q2 +3(q, —q3)h](sin2 6 - sin2 6,) ——.Z-lg—(oos 8 - cos 91)} (46)

® where 0y is the normal stress applied to the matrix surface at 6 = 61; for
g an internal cavity pressure p;, say, 0y = -py. Finally, for two cracks

of equal size at the top and bottom of the particle, symmetry conditions

@ imply ¢; = g4 = O, and therefore ..,4..4
‘ P
: 3.9 sin 6 Sangs
. s = 01h3 + 3 G {—3— (1+3h)1n ('m;) . )
]

2 [a,+ 3 (@, -ay)h](sin’ 6 - sin’ o)} (47) A

1f the two cracks are not of equal length or the normal stresses at the

ends of a matrix layer with two cracks are not equal, the constant = would
be used along with the constant of integration in s to satisfy the normal
stress condition at the ends of the matrix layer. Results for this case as
well as for additional cracks or voids could be readily obtained, but they
will not be given here,

That the perturbation solution permits satisfaction of normal stress
boundary conditions at the ends of the matrix layer is very important with
incompressible materials. For highly confined material, such as the matrix
layer, the error in a normal stress boundary condition does not decay
within a few layer thicknesses from the ends; 1n fact, the value of 91 1n
Egs. (46) and (47) may have a strong effect on the entire mean
stress distribution. In contrast, a shear stress condition cannot be

imposed at the ends because there are no remaining free parameters in the

perturbation solution for doing this., Unpublished work of the author on

problems for which an incompressible material layer is confinea between
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much stiffer plates shows that the effect of a surface shear stress decays

L J rapidly and is relatively small within a few layer thicknesses from the

A0l XY

’l.l L]

end. This localized effect would not be expected to significantly effect

XA

the overall strain energy and energy release rate predictions made in the

>

® next Section

5. Energy Analysis

The total strain energy for the composite of Fig. 5 may be written in

the form
Wp =Wy + Wy +W3 (48)

The first term Wy = Wy(q;, 9, Oy i = 1 through 4, is the strain energy
of the inner two-phase composite consisting of a particle and a matrix
shell, which can be evaluated from the results of the perturbation
analysis. The quantity W, is the strain energy of the shell b<r <c. In the
present limited analysis the outer shell r>c is omitted, and the
displacements at the surface r=c are specified to be those of a strained

continuum using dilatation e, and deviatoric strain =¥ (cf. Eg. (3)).

v
Assuming continuity of displacements Eq (24) across the interface r=b, we
may write W, = Wy(eq, €y, Qs 4,, 93). A more involved analysis which

includes W3 wculd not be needed if c>>b or if the goal were to obtain an

approximate upper bound on effective moduli using the composite spheres
assemblage idealization with or without the shell b<r<qg
Inasmuch as thne matrix and the uncracked outer shell are

incompressible, the overall dilatation e

¢ and volume change of the inner T

composite, r< b, are directly related. The change in volume of the inner

composite is

n
AV 2"b2f sint u, dé (49)
O
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where u, is given by Eq. (24a). We obtain

avy = 47103 q;/3 (50)
showing that q; is the dilatation of the inner composite, as expected.
This volume change is also that of the complete composite sphere r <c, 0

= 4a7c3 ey/3 and
q = (c/b)3 e, (51)

The free parameters q,, q3 and q, are selected so as to minimize the

total strain energy,

My W 2
= + = 1 =
,Aq_i 5@: SEI: for i = 2,3,4 (52)

These three conditions and Egq. (51) give, at least implicitly, the

relationships

i = qjlegr 2yr 85, 8y for i = 1,2,3,4 (53)

Energy Release Rate: The crack growth, as defined by a change in

e and 8 will be related to energy release rate, . This quantity may be
defined basically as the mechanical work per unit of new crack surface area
that becomes available at the crack tip during an infinitesimal amount of
growth. The area increase used in this definition is the area of new crack
surface projected onto the local crack plane, rather than all of the

physical surface area that may exist in the damaged material around a crack

tip. For an elastic material, the available work is equal to decrease in

strain energy for fixed surface displacements (where external loads are
applied.) Considering now the bottom crack in Fig. 5 the increase 1n crack

area is 2 TR% sin B dR. Thus,
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‘g = -awT/aA = -(21:1:(2 sin B)—l aw,I/as

= (27 R? sin 8))"1 3w,/ 36, (54)
A similar result is obviously obtained for the top crack. For two cracks
which are of equal length (60 = B) and which grow simultaneously,

G - _(anr2 sin 8)71 3W/38 (55)

where M /98 is the derivative for growth of both cracks. From Egs. (48)

(with w5 = 0), (51), and (52), with e3 and e,, fixed,

oW, aw 3q. W oW
i, 1 _ 1
’r‘ . 38, 38, ’5“61" (56)

along with a similar result for awT/BSO. Thus, to evaluate (g it 1is
sufficient to consider only the change in W, for fixed values of the four
parameters gqj.

The overall stress-strain equations are those given in Fq. (8), where
it should be recalled that the derivatives are taken with the crack sizes
fixed and that W is the strain energy per unit volume, Wp/V; here

V = 4nc3/3. Using Eq. (48) without W

3’
2/ w. \ o W
o =v'1[ E i} 2 ) 4, _3] (57)
d ’5_ ’F‘ ’5" ey
imp
Introduction of Eq. (52) yields
0g = V71 3w,/ /dey (58)

The dilatational equation is derived similarly,
oy = VTLi(c/b)3 30 /0q) + oW ,y/de] (59)

In differentiating Wy it is supposed that Eq. (51) has been introduced

first so that Wy does not depend on qi.
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Use of the Perturbation Solution: The strain energy Wy is only for
¢
the matrix because the particle is assumed rigid. For an incompreéssible
material, the strain energy density of the matrix may be written in the
form,
. 1
W = 3GY?2 (60)
where Yy is the "equivalent shear strain"; it is a positive quantity that is
proportional to the square root of the second invariant of the strain
L
tensor. For the axisymmetric problem under consideration,
2
Y = 20(ep-6)2/6 + (€,-5)2/6 + (g-€4)2/6 + Yy /a11/2 (61)
® where the positive square root is to be used. Observe that Eg. (20)
2
implies the normal strain differences squared are o(h~%) and Y:e is o(h™%.
To be consistent with the work in Section 4, we retain only the zeroth and
™) first order terms in h in the guantity (th),and obtain the very simplc
result
Y o= |yl (62)
- where |+ | denotes absolute value, and
1 2
Thus, only the shear strain appreciably affects the strain energy in a thin
,(’ shell. Now, using Egs. (13), (16), and (63), as well as the approximation E j
that the strain energy density vanishes in the layer wherever it is .
cracked (assuming compressive stresses are not acting across the crack ;',-j ,-:f
. surface) yields, l-i
61 b
W = 2-nf/ sin @ r? w) dr a0
0y @ .
lt 61 2 2
. = 71G R3hf fSin 8 (1+hx) Yrg dx ao (64)
6. -1
e}
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Substitute Eq (43) to find
. gl
2
W) = 3 TG(R/N) 3_[ sin 0 (671 ds/de)? de (65)
eo
) Although (ds/d 6)2 contains some terms O(h2) it 1s algebraically convenient
to not explicitly omit them. Using Eg. (39) let us next introduce the
quantity Y ’
® . 3 c, —cos b 1
Y= -6 Ll@s/an = 3{g e (3 Sin )+ 3l9, +3(a,33)hlsin & cos &
q4 . 6}
~ —p-sin b, (66)
) Then from Eq. (65),
5 % N
W)= 3-7TG(R/h)3 f sin 6 Y4 a6 (67)
%
] . which can be integrated analytically. Also, from BEgs. (54) and (56),
-2
G=crn3y /3 (68)
where ?l = ?(91). Recall that cy=1 when 90 = Q For two cracks of equal
® length, 90 =B = TT—el and c; = q4 = 0; we also find from Egs. (55), (56),
and (67) that the energy release rate is again given by Eg. (68).
It is interesting to observe that Ql is proportional to the shear
e strain Yegr EQ. (43), at the edge of the matrix layer, 6 =6, if the first
order term in h, thl—f?_, is neglected. Consequently, with this
approximation and Eq. (63), we see that the energy release rate, Eq. (68),
< is proportional to the strain energy density at 6= 8,. This result is
analogous to that for strain energy release rate in a long strip between
rigid, parallel clamps, in which the strain energy density is that in the
(& uniformly strained portion of the strip [13]. The strain energy available
to drive the crack in Fig. 7 is that in the layer just ahead of the tip. ::::j
S
Our analysis does not account for details on the scale of h around the Ry
¢ RS
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crack tip, and therefore we obtained a result which i5 like that for the
long strip problem. It should be recalled, however, that the simple result
in Eq. (68) is valid using both zeroth and first order terms in h, and
consequently §l is not limited to proportionality in the local shear
strain.

6. Geametric and Material Nonlinearities

The matrix shell analysis made thus far is based on linear theory.
Even if global or average strains are not large, the local shear strain is
O(h'z), Eq. (43), and therefore it way be large in highly-filled
composites. However, such behavior does not necessarily invalidate a
geometrically linear theory for all but impractically small applied
strains. This may be seen by first recognizing that Egs. (17)-(20) are
valid for large deformations if we replace displacements and strains by
velocities and strain rates, respectively, and consider r and € to be
Eulerian coordinates and R and H to be instantaneous dimensions, One could
then derive displacements by integrating the velocities with respect to
time after rewriting the equations in terms of Lagrangian coordinates and
the initial geometry. When the displacements are small relative to the
respective coordinates, one obtains from this process the same results as
now in Egs. (17), (18), and (20), regardless of the shear strain magnitude,
These relative displacements are O(h‘l) as are the normal strains; but the
shear strain is O(h'z), thus permitting us to make this distinction between
the magnitudes of shear strain and the other measures of deformation.

The shear-strain dominated mode of matrix deformation not only permits
the use of the forgoing geometrically linear theory with large shear
strains, but, with certain types of material nonlinearity, also leads to

mechanical state results which are not much more involvad than those for a
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fully linear theory. There is not space in this article to cover this L
topic in detail, and therefore we shall consider it only briefly for 1 ,',_____]
. . . . , ;':':':"1
power law nonlinear matrix material characterized by strain energy density r‘
;_-._\::
N+l e
Wy = G Y /(1) (69) Snd
n L]
where G, and N are positive constants and Y is the equivalent shear strain, ]
-
Eq. (61); for N=1 Eq. (60) is recovered if we let G, = G The stress- Y
R
strain equations arising from Eq. (69) are identical to those in Eq. (23) E-JJ
except G is not constant but instead is given by 'j

G=0¢, y V! (70)

A perturbation analysis similar to that for the linear case may be employed
if modified stresses like those in Bq (27), but with h3 replaced by h?Ntl,
are introduced. Neglecting terms O(hz) for these modified stresses, the
normal stresses are found as before to be equal, Eq. (31), and to be
independent of x. Moreover, neglecting terms O(h), the latitudinal

equilibrium equation is similar to Eq (32),

ds/a6 - (sin 6)~1 aG a2F/3x2) /3% = 0 (71)
where
=6, 2y Nt (72)

and from Eq. (20d),

o>

= Gy [(sin®)~1|32%F/ax2 ||N-1 (73)

Equations (71) and (73) lead to results which are analogous to those for
the linear case except N appears in the various cxponents and coefficients.
When terms O(h) are not neglected in the latitudinal equilibrium equation,

the results are considerably more involved.
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jt It is of course not necessary to satisfy the equilibrium equations
exactly when one uses the minimum strain energy principle to develop ::‘:’.?:
:E approximate solutions. Thus, whether or not terms O(h) are negligible, one 3::?:&%
::‘ could use the zeroth order displacements (i.e., those from Egs. (71) and m
(73)) in developing effective stress-strain relations. One could even use !’d"-.
: the form of the displacement distributions derived from linear theory, but .
" we have found that it is not satisfactory when strong material nonlinearity _.~..
- exists, !.‘
4 7. Viscoelastic Behavior \
;&; All of the results obtained so far in this paper may be readily :
~ extended to linear and a certain type of nonlinear viscoelastic behavior,
:_: The linear viscoelasticity counterpart of the radial stress in Eq. (23),
) for example, 1s
L4
- Ber
- op = 0+ 2/ G(t-t',t) zgv at’ (74)
N 3
L where G(t-t',t) is the so-called shear relaxation modulus, which imparts L__

hereditary characteristics to the deformation behavior. The second
argument in G (i.e. t) allows for aging; this aging may be due to chemical
or physical causes, including transient temperature. It is assumed the E_,.
body is undeformed for t <0, but the lower limit in Eg (74) and succeeding
hereditary integrals should be interpreted as 0~ to allow for the
possibility of a discontinuous change in strain or displacement at t=Q
Viscoelastic solutions will be derived from elastic solutions through
a correspondence principle designated as CP-1I in [14]). This principle
uses time-dependent solutions rather than Laplace transforms, and 1s
» applicable to compressible or incompressible bodies with stationary and

> growing cracks and with large deformations. With large deformations, the
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coordinates r and © and all dimensions, such as R and h, should be
interpreted as quantities which refer to the undeformed geometry. In order
to indicate how this correspondence principle would be used here, it is
helpful to introduce a so-called pseudo variable,
- =1 of
£R = Gg j G(t-t',t) zpr dt’ (75)
o

where f represents a displacement-like quantity sucn as u, and Ugs OF strain
or generalized displacement q;. With the R superscript, a quantity is
called a pseudo displacement or pseudo strain. The coefficient Gg, the
"reference modulus", is an arbitrary constant; it is usually selected to
have the dimensions of modulus in order for fR and f to have the same

dimensions. The inverse of Eq (75) is
t

aeR
£ = GRj I, 0 X g (76)

o
where J is the shear creep compliance; it is related to G through a

hereditary integral [14]. With this notation, BEg. (74) becomes an elastic-
like equation,

R
O, =0+ ZGRer (77)

A type of nonlinear viscoelastic behavior is characterized through the use
of the strain energy density in Egq. (69), but with vy expressed in terms of
pseudo strains EI; P YrRe' etc., instead of the original physical variables,
For further discussion of this nonlinear characterization (which includes
nonlinear viscous and elastic behavior as special cases) see [14-16}.

Let us now explicitly extend the micromechanics analysis to
viscoelasticity, beginning with Eg. (1), in which the strains €35
considered to be specified functions of time, Operate on Eg. (1) with the

are

integral in Eg. (75) to obtain,

........
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[N od
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o
X

f
o
7’
*y

o+ sl

’

¢ R R

ui = El] Xj (78)

o
%

v,
)

According to CP-I11, all of the earlier analysis is valid for a viscoelastic
material if all displacements and strains are interpreted as pseudo
] variables; i.e., introduce the superscript R and use Gg for shear modulus ;"“"“

(instead of G) as illustrated in Eq. (77). The viscoelastic stresses

predicted by this method do not have to be calculated fram pseudo

© stresses; instead, they are simply those in the elastic-like analysis. If Lo
P boundary tractions instead of the Eij are specified, then one would solve '_'.jjzlé
for eiRj from the elastic-like equations in terms of the given tractions,
Eﬁ after which the time-dependent strains may be calculated as indicated in
F Eq. (76).

8. Prediction of Crack Growth

Besides giving a procedure for obtaining viscoelastic solutions from I’
elastic solutions, the theory in {14] provides a method for calculating
initiation and continuation of crack growth. We start here with the energy

release rate analysis in Section 5; Eg. (68) will be used, in which all

displacement-like quantities q; in ; , Eq. (66), are to be considered as
R
- pseudo variables, q; . For simplicity, it is assumed either one crack or

¢ two equal-length cracks are in the matrix layer.

} 1t may be helpful to discuss first crack growth in a linear elastic

- material in which crack growth occurs when a constant "critical" value of
_‘4 energy release rate, (gc, is reached. The equation for predicting the é‘.:.:;
instantaneous length of one or two equal cracks, as defined by B8 =+ -61, h
Fig. 5, follows directly from Eg. (68) after setting @:‘gc.
"¢ ;r::.";.

where, as before, ;1 is defined by Eq. (66) in which ¢=6). In studies
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conducted to date, such as those discussed in Section 9, we have found that
the crack growth is stable. That is, as the applied strain is increased
(which causes changes in qj) Eq. (79) yields a unique, increasing crack
angle g. This crack growth, in turn, yields decreasing effective shear amd
bulk moduli, as determined from Egs. (58) and (59).

The crack growth theory in (14 expresses the growth in terms of a
generalized J integral, designated as Jy,. For so-called "self-similar"
growth [14] (which is concerned with deformation details on the scale of
the crack tip) J, is equal to (g 1f pseudo-variables, rather than the
physical variables, are used. Within the context of the perturbation
analysis, the value of(g is not sensitive to the difference between self-
similar and more general growth and consequently we shall assume J,, =(g.
Experience with the type of composite in Fig., 1 1indicates that the
instantaneous crack speed obeys a power law in ‘9 For a linear
viscoelastic material with a single mode of crack tip deformation,(g is
proportional to the square of stress intensity factor; the power law
relationship between speed of macrocrack growth and this factor is

illustrated in {17) for solid propellant. Thus, it is supposed here that

de/at = (GG, % e, (80)
where go is a positive constant with dimensions of energy release rate, and

k is a dimensionless, positive constant; the parameter t_, 1S a positive

9
quantity (with dimension of time) which may vary in time to allow for
aging, including transient temperature effects. One may also introduce a
crack growth initiation condition, but experience with solid propellant

shows that the initiation time is often negligible campared to the total

period of crack growth,

As an aid to examining the effect of applied strain history on crack

k

-~

B
ol

N
"L" s

Y
N

v s 70
R

'l
.

X

E

s

50 Ry

B A

oy
Y ¢
Sty

‘3




- - - . . - - - . . - o - . . . - . . -
BSOS e B N U AU
et el PP I VL U WA VAT WA AT RIS DA IR TR Rt

27

growth, it is helpful to consider here only those situations for which
there is one independently applied strain g, and ¢ and the associated
pseudo strain eR are non-negative. For example, specify a time-dependent
axial strain e = €33 20 and assume the other components, €11 and 522, vary
proportionally, or are such that a state of average uniaxial tensile stress
exists in the X3 direction. Although other less restrictive cases have
been studied, we shall limit our analysis to the aforementioned situations,
For each crack length the shear strain parameter ; , Eg. (66), is
proportional to € because the problem is linear. Thus, we may write for an
elastic material,
Y, = €£(8) (81)
The function £ = f(B) is derived by minimizing the strain energy with
respect to the free parameters, as discussed in Section 5, and by using the
specified transverse straining or loading conditions, such as 011=022=O.
In all cases studied to date we have found that f is a positive,
continuous, decreasing function of 8. Thus, for each ¢ the elastic energy
release rate from Egs. (68) and (81),
G =6 rn03E2 23 (82)

is a continuous, decreasing function of B, If we assume crack growth
occurs when (g=(gc (assumed constant) and solve Eg. (82) for B as a
function of ¢, we obviously would find that the microcracks grow stably as
the applied strain is increased

For a viscoelastic material, as discussed in Section 7, one replaces G

by Gg and € by eR in Eq. (82), where
t
R: ol Greetr,t ) Srae 83
e” = Gy (e-t',t ) v (83)
o
Assuming crack growth is defined by Eq. (80),

dg/dt = (eR)P 9/tg (84)
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where p = 2k and

g = g(8) = (Gg R h-3£2/39G)k (85)

Let us next introduce a "reduced time",
t
£ = t(t) = f de'/tg(t") (86)
o
Wwithout aging tg is constant and the reduced time : becomes t/tg.
Integration of Eq (84) yields
B
/ glap= &P (87)
)

where § is the Lebesgue norm of pseudo-strain,

3 1/p
[[(ER)P dE'] (88)
(o]

and Bo is the initial value of B. Also, eR = eR(E') in Eq. (88), where (L

S = 5(t)

is the dummy variable of integration.
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Equation (87) may be solved implicitly to obtain the instantaneous ,';

gy,

-. -..\

crack angle B as a function of the Lebesgue norm S and B, Inasmuch as the :':-:

value of 5 determines the amount of crack growth, it will be termed a
"damage parameter". Because p is often quite large, it is found that

numerical and approximate analytical predictions of B are aided by using

the pth root of the integral 1in Lgq (88) for the damage parameter, rather

than SP as in EQ. (87). It should be noted that when p=« , S becomes the

largest value of eR over all time up to the present [18]. For values pg 4

and deR/dt:O an excellent approximation is (2], !-—-
s =eREVP/(pm+ 1l/P (89) S
where m = dlog eR/dlog E Similar but samewhat more involved approxima- ;'._':.:::
; tions may be constructed for histories ¢R which are not monotone increasing L"—.._\‘.'\
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In many cases the denominator in Eg. (89) is essentially constant
because p is large or m does not vary significantly. 1If so, the damaye
parameter depends on only the current value of pseudo strain and time.
This behavior enables us to rewrite the basic crack growth equation so that
it looks like one for an aging elastic material. Specifically, substitute

Egs. (85) and (89) into Eq. (87), and rewriteit to obtain,

~R.2
Ger = Gr RO /3 (90)
where
~ R
Y, = £ e R (91)
“ P 1/k
YGen=G, c? £2 Lk [f £-2k dB'] (92)

Bo
and c is the denominator in Eq. (89); recall that p=2k. The right side of

Eq. (90) has the same form as Eq. (79) for energy release rate in an
elastic material. The quantity‘gCR thus plays the role of a critical
energy release rate; however, instead of being constant, it depends on
crack length through B and B, and on time, It was obsetved in Section 7
that the viscoelastic constitutive equations in terms of pseudo strains
are analogous to those for an elastic material. Equation (90) shows that
this observation extends to crack growth behavior as long as one accounts
for crack size and possibly aging in the critical energy release rate.
This elastic-like behavior can be shown to exist when there is more
than one independently specified strain or stress. Indead, using the self-
consistent model described in this paper, it leads to the existence of a
strain energy-like potential with crack growth. Such behavior is discussed

in [19], especially for elastic materials with damage, and an illustration

is given using experimental data on solid propellant under confining pressure

and axial stretching.
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Finally, it should be remarked that there are cealistic situations in

which the crack growth equation is that in Eq. (80), hut the constitutive

behavior is that for an elastic material because the shear relaxation modulus

is essentially constant. Alternatively, the crack growth equation may be
like that for an elastic material, ‘9 = constant, but tie relaxation modulus
is not constant; this case may be recovered from Eq (92) by letting k >,

9. Some Results and Comparisons

Range of validity of the Perturbation Solution: wWithout cracks tiw

accuracy of the perturbation analysis in predicting the offective Young's
modulus of the composite may be assessed through comparison with certain
exact results. We shall consider two cases; for both, it is assumed the
particle volume fraction for the composite spher: of radius b in Fig. 4 1s
the same as that for the total composite. In the first case the
displacements in Eq (3) are applied directly on the surface at r=b in Fiq.
4, giving a modulus, denoted by E_, which may be interpret=ad as an
approximate upper bound to the modulus of Hashin's composite spheres
assemblage [10]. The exact expression for this upper bound will be denoted
by E.g; it is three times the shear modulus derived in (10] in view of the
incompressibility condition.

To derive E, we first note that Eq. (24) must be the sam= as Eq. (3);
thus g;=e, and qp=d3=eg Moreover, without cracks e ;=q,=0, and e3=€33 from
Eg. (9). Bguation (66) reduces to

Y = 3 £33 sin26/8 (93)
Substitute Eq (93) into (67), with & =0 and 01='", divide the strain energy
W, by the volume 4 b3/3, recal l that R is the mean radias (of, iy, 7)), and

then use this result for W in the first relation in Fq. (8) with 0y11=0;

there results, finally,
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i

033 = By 33 (94)
®

whara

E, = E/{20n3(1+3n)] (95)

® is the composite effective Young's modulus in terms of the matrix Youny's

modulus, E=3G. The third column in Table 1 gives the ratio Eb/Ecs for a

.
g

.
ol
’l

range of particle volume fractions Vpi the second column comes from the

.

) exact relationship
h=(1-v, V37 + vy 173 (96)
which may be easily derived using the definition for h in Eq. (14). It is
@ encouraging that E, agrees so well with the exact result E.g for particle
volume fractions as low as 0O.4.
The second comparison we snall make is for the generalized self-
.. consistent model in Fig. 4, 1n which boundary displacements in BEg. (3) are
appliad at a radius r=c >>b. In tnls case the exact solution for Youny's
modulus,denoted by Eg., may be obtained from three times the shear modulus
@ in [9, p 56). The approximate modulus, say Eqs tollows from Eq. (53) with
Sg = 9330 € = “330 and Q4 = ey, = O The strain energy of the effective
medium, r> b, can be evaluated usiny exact displacement distributions
C similar to hose in [9]. The process is straightforward and the amount of
algebra is considerable, Therefore, only numerical values for the ratio

Ee /Escare given here; they are listea in the fourth column of Table 1.

”~

The error in the modulus which uses the perturbation solution is within 13%

of the exact solution for 1 Vb 0.65; for the composite in [2] the error

1s practically zero since vp = A 78. The last column in Table 1 gives tha

( ratio of exact values, showing that the effective modulus of the
gyeneralized self-consistent scheme is considerably smaller than Hashin's

upper bound for the Vo range indicated; bhowever, 1t is foumd tnat Eg. * F g
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->
as vp 0.

The Perturbation Solution with One Crack: Considcr again the case in

which the displacements in Eq. (3) are applied on the surface r=b, where
€337 0 and 0yy = 0 are the given inputs. wWe now use both expressions in
Eq. (8) to derive 034 and e,. The strain energy « is again that in Eq.
(67), after dividing by the volume. For ?, Eq. (66), we use g)=e,
dy=d3=e4, ¢1=1, and minimize the strain energy with respect to g, to find
this particle displacement. The crack angle B is derived from E3. (79)
assuming @c is constant.

Figures 8 and 9 show representative distributions of the shear strain
measure? . Eg. (66), and the dimensionless normal stress s/G for thre:
values of the axial strain € = €337 recall that s = h3v , Ea. (27), where
0 is the normal stress in the matrix. In Fig. 8 the peak values of ; are
the same since (gc is constant. These plots are for the given values of

Yy = 0.09 and v, = 0.78 ({but the results are not vary sensitive to vp); for

P
the three strains the predicted values of B ire approxinatzly 4, 13, and 23
degrees.

Results without a crack are also Jdrawn 1in Figs. 8 and 9. They are
from Eq. (46) (in which qy=q4=0, 4,=q3=¢, and 01= " and from Eg. (93).
Without a crack the normal stress at the poles, 9 in Eg. (46), is not
given by a boundary condition; since the material is incompressible the
strains determine the normal stress only to within a constant.
This constant may be found by requiring the total radial force/surface area

acting on the matrix shell to be the mean applied stress, “3373 With this

condition we obtain

s/G = [1 + 0.2/(1+3h) - 1.5 sin? 0]r/4 (37)
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Additional numerical results confirm that the quantity s/G from Eq. (46)

for one crack and 0,=0 approaches Eq. (97) with decreasing crack length,
except near the crack tip. Figures 8 and 9 show that the effect of the
crack on yand s/G for € = Q.05 is not great excapt near the tip, and that

® for all three strains the only qualitative difference in the distributions

for no crack, Egs. (93) and (97), and for one crack is near the crack tip.
In additional unpublishe . studies, the maximum 8 of 23 degrees in these
'Q figures (for € = 0.15) was found to be somewhat larger than needed to
achieve agreement with experimental results in [2] on stress-strain
behavior; thus, in this case, curves for the largest strain exaggerate the
ie change in the distributions due to crack yrowth
: Studies with two cracks have been made as well., However, tor tae sam2
values of (gc and initial crack length as with one crack it is found that a
i. larger value of applied strain is needed to initiate simultaneous
propagation., It is thus likely that even if two diametrically opposed
cracks were to exist initially,growth of only one would be significant.
@ Comparisons of predicted and measured stress-strain behavior made to-date
also support the one-crack model. Predicted stress-strain curves and
various comparisons will be published elsewhere,

1 C Effects of Viscoelasticity: Incorporation of viscoslasticity into tho

model has been discussed in Section 7. Essential aspects of the method for
dealing with both crack-tip and global effects are confirmed by the

experimental results in [2]. Her= we shall discuss only the theoretically

- Awe .’ . . . .
”

derived damage parameter, Eg. (88), and the relationship of this Lebesqgue
: norm to the findings in [2]. Neglecting aging effects, the raduced tima At,
iC Eq. (86), reduces to t = t/t:g in which t:g is a constant. The exponent p 1s

related to the exponent which characterizes time-depenacnce of the stress

T O P I S e e e R P T T T T
AT I SRR T A T T TR P T A RN AR M " A e T T T e Tl e T T T e e e T s e et T
e L B WP Y IR D TP IRE DTS TPL J T, T U, S, i A P, S T T S i, S A e T Lt S T e s




il T R el a A& D B4 24

At ol it S Gl Al ek g

relaxation modulus and to the characteristics of the material in the zono>
of failing material at a crack tip, For 4 nonaging material G(t-t',t;]
reduces to G(t-t'), and thus for power law relaxation,

G(t) =G t™" (98)
where G, and n are positive constants. According to the data for rubber in
[20:111], the failure zone at the crack tip is elastic-like, which in turn
yields [20:11],

p=2(1L + 1/n) (99)
This relationship is in agreement with data for macrocrack growth in
solid propellant [17]. For the relaxation modulus in [2] n = 0.366, and
thus p = 7.46. From the same study the exponent was found experimentally
to be o = 6.5 The difference wmay be in part due to tihe materia;
nonlinearity; namely, apart from effects of damage, a power law
nonlinearity was reported, in which o3 7V (cR)N, wher2 N = 0.85. In
another micromechanics model study it was shown that instead of Eq. (99)
one should use p = (1+N)k [16, Eq. (142)]; the quantity K is the samz as
for a linear viscoelastic material [15}, k = (1+1/n). Thus, p = 6.9, which
is only 6% greater than the experimental value of 0.5.

The experimental data in (2] indicate that two different Lebesgua
norms are neaded, corresponding to p = 6.5 and p =« , where the latter
norm is equal to the largest value of R(t") over all 0<t'“t, where t is
the current time [18]. The value p = = 1is what one would predict for an
elastic material since n = 0. The power law in Eq. (98) with n = 0.366 is
for a broad, intermediate time range, wher?2 in crack yrowth theory t is

one-third the time taken by a crack in growing an amount equal to tn.

T~

length of its crack tip failure zone (20:11). Thus, considering that there

is actually a distribution of particle and microcrack s1zes, and associatal
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microcrack growth rates, the need for p = may arise from the very slow

and fast growth rates for which elastic-like behavior would exist.
Additionally, molecular scale damage processes related to breakdown of
crosslinks and highly entangled long molecular chains (normally assoclat=d
with the so-called Mullins' effect [4]) may account, at least in part, for
the need of the p= ® value. The value of p may also depend on whether or
not the crack tip is in the matrix or at the particle-matrix intecface; in
this regard it should be noted that the perturbation results are not
sensitive to the radial location of the cracks, and thus they apply to both
cohesive and adhesive fracture processes. Although it is not yet cl=ar
just why p = © is needed, it is very encouraging that the two values of
p = 6.5 and p = » bracket the theoretically predicted range of possible
exponents using viscoelastic fracture mechanics for the matrix.

With exponents of p = 6.5 and larger, correspoding to k¥ 3.2, we have
found that the value of the effective critical fracture conerygy, Eq. (92),
changes only a small amount with straining except for ¥ very close to its
initial value Bo. Indeed, curves analogous to those in Figs. 8 and 9, but
for the viscoelastic material, are practically the same as for elasti:
behavior. It is also of interest to observe that for At = t/tg and
£R= cl(t/tg)m, with %_ and m constant (such as would be obtained for a power
law relaxation modulus and a constant strain rate input) we may eliminate E
fram Fg. (92) using

~

t = (R/c)l/m (100)
When this is done the resulting expressions are the same as in Egs. (90)

and (92) except the exponent on ?f is 2 + 1/mk, (g

1/mk
1

5 1s wultiplied by

C , and %CR no longer depends explicitly on t. Namely, the crack

growth behavior is pradicted to be the same as for a nonlinear power 1aw
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elastic material with a strain rate and crack loength-idcpendent fractur ..

energy (gcR = (gcR(Cl,S). Also, as a result of the® incegral in Eq. (92,

gt BN RS RSN Y Ao uae

this energy is initially zero and then initially 1ncreases with crack

growth.

10. Conclusions

: A model nas been described for predicting microcrack Jrowth and tne
overall or effective constitutive equations of a highly-filled particualate J
composite. Assuming rigid spherical particles and an inconpr2ssiole & 1

matrix, the theory was developed using a combination of perturbation and
strain enerygy methods. Accuracy of the perturbatinn analysis, whicn

increases with increasing values of particle voluwme fraction, wWas

\'p,
assessad by comparing the effective Young's modulus with existing exact

values predicted for the composite spheres assemblage and the ‘jeneralized

self-consistent mod=l. In the latter case the error is less than 133% foc

Vp >0.65, and in the former case the error is less than 8% for vp\O.40.

Viscoelastic effects were introducad, and a damage paramet2r that defines

'
Shed b e oA

the extent of time-dependent wmicrocracking was derived and found to be in

T

good agreement with experimental results on a rubber filled with relatively
rigid particles.

. N . . . £ ]

This paper described only the basic portion of i wmuch more extensive ) -

study underway to predict the mechanical response of linear and nonlinear

viscoelastic particulate composites, The geomoetric idealization of the

. : L  §

composite and the method of analysis were selected to be realistic but yet = *_'-‘g
” simple enough that 1t would be fezasible to include: geometric and matarial
1; . nonlinearities, compressibility of the matrix, and patrticle deformation :::',.'_:_:'3
.i
5 under multiaxial loading of the composite, Studies beyond those cover=d

here have been made and will be reported elsewhere.
hd
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Table 1
¢
Effective Modulus Ratios for Composite Spheres Assemblage ((S)
and Generalized Self-Consistent Scheme (SC).
o e
Vp h Eo/Ecs Be/Egc: Eso/Ecs
- o .999  1.67x1074 1.00 1.00 .624
.9 .0176 1.00 1.00 . 556
.8 .0372 1.00 1.00 475
.7 .0594 1.00 .94 .390
@ i*.}
.65 .0717 .99 .87 . 352
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Figure 1. Microtoned surface of a thin sheet of propellant under
uniaxial stress (in the direction of the arrow) just
below that causing specimen failure, as observed through

a scanning electron microscope (100X). After Cornwell
and Schapery [1].
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' Figure 2. Stress-strain curves for a filled rubber similar to that in Egj;

Figure 1. After Schapery [2].
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Figure 3. Illustrationof the Mullins' Effect in filled rubber without
viscoelasticity and microcracking.
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Figure 4. Generalized self-consistent scheme without microcracking.
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Generalized self-consistent scheme with microcracking.

Figure 5.
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Figure 6. Spherical ccordinate system.
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Figure 7. Portion of matrix shell with crack.




AE Tt I B RV ST AR RT § A L7 od RELE LTSS Bt 500 4 0" Aot

47

h'4
g Tp) 8
@ n m & '9:
o« &\ O <1 O ?:‘)
-----_‘-- ™ -4 o
T— - o 3
-— . -~ 3]
. [ ] '\.\. \\ \ z 5
. \ © 3
w4
N 5
- —
=
&~
3
P v
S :
No o
g
S
» a
- &t
]
(W D .
n By
g
/]
B
. 19
&
(\ g =
w ‘*5 RS
= e
1S) S.,
o ¢ {
r o >ty
¢ © -
-: '.
(AN 3 s
™ ol
o FR
] AN
[ ;:.’. RJROPCY
& E_{
) b IO,
RN
l-\\.\‘..‘
NS
..L'h:.‘i

f\"' R '.' . ot Ve st N RN "'. I S e N
ﬂ.'d.f‘f ’*A.a’...Lf_i.IAJ‘L.If ‘A:J‘m}}f_n‘bnh_ﬂ_-a_.x..b}-.lb}“mh‘u.;.‘ TN ‘-- " 4 :0 :I- - :- DI ;\‘- R RS -’\.&'\

- -



A S |

> \ G |
,.x..\»..... . w&u.&f.r.s..\..(.a A s %] X
LK) AR N ?.xx. p -
RIIOR B XA { YO XA L St
) < \L
o- QA
»
g
KX
o ‘wt
umm

(]
..\.-1
4
@© R
< . .@
*213ur TEPUIPNITIB] YITM 2INSEOW SS21]S UBDW XTJIlew JO UOFIBTIBA °6 aand1yg !

o, ‘...‘.._'.\ ‘.._'

AN



LG

ey
N e il

>¥ 4

- . c e e . . y . . . B e e e e e W
o ‘lll'l,.n‘.:it.t.ci.l.»ﬁu....f. .lnf.lkv!fnfdqu-f-f-‘-. q-. . ;.. ..... .~t.-.... ..w..s(- ... 1, .... N ,... ..- ...\. ...

L AR SN S S DG PRV SR




