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ADST&O *..

This paper is based on a paper by Beylkin in which a leading order
asymptotic theory for inversion of acoustic data is presented. The method "
is based on earlier work by Beylkin in the theory of pseudo-differential .

operators and generalized back projections or Radon transforms. The back p

projection or inversion is carried out with respect to a general [c(x,y,z)1 .'

background sound speed. The asymptotic limit of interest is high frequency.
The inversion operator is given as an integral of the observed data over
frequency and over the observation surface. Beylkin claims that his result
is useful for finding discontinuities in the sound speed, but he does not
make clear how this is to be done in practice. I show how to modify
Beylkin' s inversion operator to obtain an operator whose output is an array

* of singular functions, one for each reflector (discontinuity surface of the
sound speed) in the subsurface. The singular function of a surface is a

*Dirac delta function whose support lies on that surface. Thus, the array of
*singular functions produces a reflector map of the subsurface. The
* validity of modification of Beylkin's inversion operator is verified by

applying it to band limited Born-approximate and then Kirchhoff-approximate
representations of the upward propagating wave field. Multi-dimensional.
stationary phase is applied to the spatial integration okhe variables of

OV- C[

*the field representation and the variables of the observation surface. It
* -is confirmed that the output is proportional to the band limited singular
* functions of the reflectors and further that one can estimate the jump in
*velocity across each reflector from the peak amplitude of the output on each

reflector. This is done for the cases of common (or single fixed) source,
comon receiver, and comon (or fixed) offset between source and re civer,

• ....-..-..
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A(x_.i s ) Amplitude of ray-theoretic or WKBJ Green's function for

background sound speed with source at x and observation-s
point x. See Appendix A.

u~z)Perturbation in sound speed. Eq. (3).

. c(x) Reference sound speed. Eq. (3).

D(l,w) Observed data, us(xr(V),xs(l),w). Eq. (5).

6B(f(&xZ'Xsr)) Band limited Dirac delta function of 6 (defined below)

with x', xs and xr evaluated at the stationary point, defined

by Eq. (Cl), as functions of x.

6B(S) Band limited Dirac delta function of s, arc length normal to

a surface on which s = 0. Band limited singular function of

the surface. Eq. (38).

Aj Jump in 0(x) across the surface Si. Eq. (24).

F( ) Filtered (smoothed and tapered) source function in the

Fourier domain.

I~x~xl~x Phase of inversion operator applied to Born-approximate or

Kirchhoff-approximate field data. Eq. (9).

[9 o] Hessian matrix of the phase of the inversion operator applied

to Born-approximate or Kirchhoff-approximate field data.

Eq. (33).

Lj First fundamental form of differential geometry evaluated on

the reflector Sj. Eq. (29).

- ii - " 5
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First fundamental form of differential geometry evaluated on ,.'-

the source/receiver surface evaluated at xs. Eq. (M9). ...-

Ij(1) Singular function of the surface S.

Tj B(x) Band limited version of 7j(x) .

hlx, ) Determinant defining transformation from variables (w,{1 ,t2)

to Fourier wave vector k. Eq. (6).

J Jacobi determinant of ray theory. Eq. (A9). VI

" k Approximate Fourier variable of the inversion theory.

Eq. (11).

-II Upward normal vector on reflectors.

p(x,x ) V(x,x Eq. (AS).
--- r

R(_',x ) Ray-theoretic reflection coefficient. Eq. (47).

S Reflector in Kirchhoff representation of upward propagationg

wave.

Observation surface. " . -

Si, j I I Reflectors, surfaces of discontinuity of a(x) in the

subsurface.

S Domain of integration in i-variables.

-,- 4

(Y Running parameter along rays. Appendix A. .

a, 'a ) Parameters used to define a reflecting surface.

,.m

* (1,_ s )_  Ray-theoretic travel time between x and xs. See Appendix A. i .£i"

-- S- iii - -." ""



L

p. 0 Angle between the normal to a surface at the point Z' and the

ray from x aor x r to iD, under the stationarity conditions-

(Cl). Opening angle between these rays and normal subject to

Snell's law of reflection.

US( L ) Observed field data. Eq. (5).

*v(i) Sound speed. Eq. (2).

X Point at which the output of inversion operator applied toJA
D(L.0) is to be evaluated.

z = '(,) Point on reflecting surface.
X,

X~ r Source and receiver coordinates, repsectively. Eq. (1).

* = ~*~) Parameters labelling source and/or receiver points; i. a.,

is =xs(t) and/or xr E r (t). Eq. ()

ivp
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1. nnriODCrnXON-

This paper is based on the brilliant paper by Beylkin [19851. In that

paper, the author presented a theory for asymptotic inversion of .. 'X".-

observations for the acoustic wave equation to estimate discontinuities in

the sound speed. The method allows for an assortment of possible

source/receiver configurations, broad enough to accomodate most of the cases

of interest in seismic exploration and other applications. For example, the

method applies to zero-offset data; common (or single) source, multi-

receiver array data (or the reverse); or fixed offset data. The inversion

of the data is an integral over the source/receiver array. Extension to

other wave equations is also quite apparent from the presentation.

Beylkin's results are couched in the language of pseudo-differential

operators and generalized back projections or generalized inverse Radon

transforms. He also does not make precise the manner in which his method

actually produces the discontinuities in the sound speed. The theory only ..' ',

. predicts that his i,.tegral solution is a leading order high frequency

asymptotic inversion operator without relating the output to the information

being sought.

The purpose of this paper is twofold. First, I make more precise the

manner in which Beylkin's method provides an asymptotic solution of the

inverse problem. I start from one of Beylkin's interpretations of his

inversion scheme to view the output as a high frequency Fourier inversion of

-. band limited data for the perturbation in sound speed. I show that by

modifying the integrand of the operator by a scale factor, it will produce

- .-.- . . " " :V



asymptotically an array of scaled singular functions of the surfaces of

discontinuity of the sound speed. These surfaces are the reflectors in the

subsurface. The singular function of a surface is a Dirac delta function

whose support is on the surface. Thus, knowledge of the singular functions

is equivalent to mathematical imaging of the reflecting surfaces. The

scaling factor for each reflector is a known function of the jump in sound

speed across the reflector. That known function takes a different form

depending on whether one has used the Born approximation or the Kirchhoff

approximation to represent the input data. In either case, I provide a %

means of estimating from the output the change in sound speed across the .

reflector. The estimate is consistent with the form of the input data. A..

Beylkin derives his inversion operator for upward traveling waves

represented by their Born approximation. The "backwards projection" of this

approach is with respect to an assumed known reference sound speed. I begin

from such a representation, as well. From this starting point, I can only

have confidence in the accuracy of our interpretation of the output of our

method for small perturbations in sound speed.

The output that is produced depends on a certain open angle between two

particular rays in the subsurface. This angle is not known because it

varies from point to point in the subsurface. At each point, it depends on

the directions of incidence and reflection of a pair of specular rays from

an (unknown) source/receiver pair on the datum surface. I introduce an

alternative inversion integral which, in the Born limit produces an output

whose peak value on a reflector is independent of that opening angle. - .--

-2-
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I then consider the application of my inversion operator to Kirchhoff

approximate data for a single reflector. For such a representation, I need ....-

not assume small perturbations, but only high frequency, which is already

assumed in this theory. Here, I am able to show that the weighting on the

singular function of the surface is, to leading order asymptotically, the

full angular dependent reflection coefficient, independent of the size of

the jump in velocity across the reflector. Thus, it would seem that what

needs be "small" in this formalism is the error between the background sound

speed above a given reflector and the *true" sound speed above the

refl ector. . .' -. :

The angle of the reflection coefficient is as described above. I show -

how this angle can be determined by exploiting the two inversion integrals -.

already proposed. Thus, in terms of numerical processing one need compute

only one additional sum with summand given in terms of previously computed . .

elements. From these two outputs, one obtains a reflector map, an angularly .*'..

dependent reflection coefficient and an estimate of the (cosine of that)

angle.

I then propose a third inversion integral. This one has the property

that its peak amplitude on the reflecting surface is equal to the product of

the angularly dependent reflection coefficient and the area under the

temporal filter of the original time signal. This last result is the most

esthetically appealing, but offers little practical advantage over the other

two operators. In any case, at least two inversion integrals must be " '"

computed to determine the unknown angle at each output point and then the

-3-
- ' - .. ..
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jump in velocity from the angular-dependent reflection coefficient.

This verification also suggests a recursive application of the

inversion formalism. That is, starting from the upper surface, each time a

Wmajor" reflector is imaged, the background sound speed is updated to

account for the new information and data is processed deeper into the

section until a new major reflector is imaged. The method is

pointwise,hence lending itself to this type of recursive implementation.

In these results, the upper surface is allowed to be curved. Thus, the

inversion one produces eliminates two preprocessing steps usually applied to

seismic data. The first is a static correction for variable height of the

source/receiver array. The second is stacking to produce an "equivalent"

zero offset (backscatter) data set. -

Central to this derivation of these results is the method of multi-

dimensional stationary phase. This brings me to the second point of this

paper, namely, to provide a more classical verification of the asymptotic

validity of our modifications of Beylkin's inversion operator. Also, the

interpretation in terms of imaging of reflectors and estimating reflection "

coefficients arises in a natural way in this method. Furthenmore, the

method predicts that such imaging will occur only at those points on the

reflector for which there are a specular pair of rays from the source and

the receiver to the surface point. This ties the inversion back to the

required source/receiver array necessary for imaging the reflectors in the - "

subsurface.

-4-
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The verification of the two-and-one-half dimensional (2.5D)

specialization of Beylkin's result has already been presented in Bleistein,

Cohen and Bagin 11985b]. In that case, it is assumed that the data is

gathered only on a single line on the surface and that all parameters of the

* subsurface are functions of the transverse variable along that line and

depth. Significant simplifications occur in that analysis because fourfold

integrals over two surfaces appearing in the analysis here reduce to twofold-

integrals over two curves in the 2.5D case. Furthermore, a certain 3X3

matrix central to Beylkin's approach, appearing in the present analysis,

reduces to a 2X2 matrix in the 2.5D case and can be analyzed much more

readily than here.

The modification of Beylkin which I use is a generalization of the

method previously employed in Bleistein and Cohen [1979, 1982], Bleistein

and Gray [1985], Cohen, Bleistein and Hagin [1985], and Bleistein, Cohen and

flagin (1985a] and [1985b]. The essential feature of this modification is a

fundamental result in Fourier analysis, namely, given the Fourier transform

of a function with surfaces (3D) or curves (2D) of discontinuity,

multiplication of the Fourier data by ±ik before inversion, produces the

array of singular functions of the discontinuity curves or surfaces. Here, N
k is the magnitude of the spatial transform vector variable and +1 - sgnw

(time transform variable) in the present application, In the application to

Beylkin's result, I need only identify his inversion representation as an

inverse Fourier transform and then identify k for this representation. It

" then remains to carry out the verification of the validity of the

-. application of this theory to upward scattered data in this general context.

-5-
* " - "



This paper contains an extensive appendix on the relation between

Beylkin's transformation determinant, h(x,j), and the Jacobi determinant

which naturally arises in ray theory. This analysis is important if the

method is to be implemented numerically. Furthermore, the length of this

appendix reflects my personal interest in this interplay between ray theory :w-

and asymptotic inversion.

6--.-- .

V."•-

-6--o.-



.- 7.

2. MODIFYING B9ELKIN S RESULT TO OBTAIN THE SINGULAR FUNCTION

I present here Beylkin's solution to the acoustic inverse problem in a

constant density medium. Let us consider a seismic experiment carried out

on the surface of the earth in which the source/receiver pairs, xs and xr ,

respectively, are identified by a parameter = ( as follows:

,S ! s( , X~r 2! qr~ ). 1 i~-"i '

For example, for the case of common source, x s would be a constant vector

denoting that fixed position and the function xr(t) would be a parametric -
"-

representation of the receiver surface; for the common receiver case, the

roles of z and xr would be reversed; for the common offset case or common

midpoint case, both x s and xr would vary with .

It is assumed that u(lxs,w) is the response to an impulsive point

source at xs satisfying the wave equation

V - u = (-x (2)
v2

Born-approximate inversion is based on the assumption that the propagation

speed can be written in terms of some reference speed, c(x), and a small

perturbation a(z) as follows:

-- *= - + .(3)

v C- +o (L-

7.
, .'-o'-'."-7 -
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The total field, u in (2), is then written in terms of an incident field
which° sa i f e (2 .4

which satisfies (2) with v replaced by c. and a scattered field, uS(x,Xs,W),

which is everything else.

It is further assumed that observations of this latter field are made

at the points x = xr(q) for sources at the points x = x Beylkin's

inversion formula for a(x) is

c (Z) j hlx,t) l """
c(x) d Ih--,V -

8n, A(x,x )A(xx r )

s -

(4)

dw F(w) exp(-iw[zr(x,x) + c(x,xr)]) D( ,w)I -s -r

In this equation I have used the following notation. The domain of

integration S4 is the set of k-values which are required to cover the

source/receiver array. The notation S, is reserved for the surface on which

x and xr are located. The domain of integration in w is limited by the

"filter' F(W). I take this function to be symmetric and smoothly tapering

to zero at the ends of its support. I think of F(w) as a smoothly tapered

version of the source wavelet. In (2), there should have been some

frequency domain source function on the right side but I omitted it there in

order not to introduce two functions, one for the source and another for the

smoothing filter. Both are contained in this one function in the inversion
formula. The functions z(x,x s) and AlxZs) ['(xr) and A(xx are the

. WKBJ or ray-theoretic phase and amplitude of the Green's function with

. .. o ... F

~~~~~~~~~~~~~.'" .. •.. .. . . .... .-... .. . . .'. .. .... .,-.... .. . ... ... . .. .. ".-. .



source at x [ xr  and observation point 1, discussed in Appendix A. The

function, D(t,) is a shortened notation for the observed data at the upper

surface:

(,W)= uS(x (),X(),) ()-

The function, h(x,L)' is the essential element of Beylkin's result. It is

the determinant,

VI(x,xs) + r(x,x r-

hlx,t) = det V[c(x,x s ) + C(x, ) (6)
-s _-r

V[-(x'x s + -C (x x

It is assumed throughout that h # 0 and is finite. For four

configurations of xs( ) and xr( ) of interest in geophysical experiments, we

show in Appendix B that this is equivalent to the assumption that there are

no caustics in the ray families between the output point x and the upper

surface, So.

I will digress here to provide an interpretation of the result (4).

This interpretation is a synthesis of Beylkin's own presentation and the

discussion to be found in Cohen, Bleistein and Bagin [1985). Let us

consider the high frequency Born approximation of the data, D(tw), in terms

of the perturbation, a(x). That data is given by

-.



z- 'X '6 7 "
-9 -- 71 'q vw. -. -..

D( ,w) =-W c-(x') a(x') A(x',x) A(x',x.

(7)

* exp~iw[ (x,•Xs) + -(x',, )] d .'

This result is inserted into (4) to produce the following.

2
c (x) 2 Ih(lt)i 2

czWx dj d w dw F(i)8 1 A(_x•Xs)Al_,x r)
sit -s -- r

(8)

c-(x') a(x') A(x',x ) A(x',x r d -

* exp fi ) #(xS x',xs• r •"

In this equation,

V(Xx'' s'xr) = C(x',x s) + T(x',x r ) - [T(x,x s) + t(z,xr)] (9)

is the difference of travel times, source to input point to receiver minus

source to output point to receiver.

Beylkin's theoretical approach to the asymptotic inversion predicts

that the dominant critical point of the integral (8) is the point where "

vanishes, namely, where x, x. for any choice of . Furthermore, in a

neighborhood of that point, linear approximation (or first term of the

-10- - .-. - . - .
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"- Taylor series) for I yields

S(x.x',xx ) V[(x,x ) + C(x,xr)] (x' - X) (10)

With this approximation, the phase in (8) has the form of a Fourier phase,

- ik'(x' - x), with the wave vector k given by

k = w V[(Ax,Xs) + '(x,x)] (11)

I view (11) as defining a change of variables of integration from (w,4)

-- three variables -- to k -- also three variables. The function, w h(at)

is just the Jacobian of that transformation, so that

w Ih(x, )I dwd2 = dk . (12)

Now the integral in (8) is seen to be of the form of a forward and inverse

Fourier transform, producing the integrand evaluated at x = x. That

evaluation, indeed, yields a(x).

This ends the digression.

It is this interpretation as a Fourier integral which will allow me to

deduce a representation for the reflectivity function from the solution (8)

for a(x). I base that result on a theory for identifying surfaces of

discontinuity of a function from large Iki band limited data for the

function [C:hen and Bleistein, 1979, Bleistein, 19841. The result is that

if Q(x) has Fourier transform a(k), then-' '*

- 11 -7



aa ( x) *-

In this equation. 8a/an denotes the upward normal derivative of a at the

surfaces of discontinuity and the correspondence means that if we have the

* Fourier data d(k) , we obtain the Fourier data f or au/an by the indicated

m ultiplcation. In fact, I have now interpreted (8) as a Fourier integral

with k defined by (11). Thus, to obtain aa/8n, I need only multiply the

* integrand in (8) by the factor

i(sign w)k iW IV[-r(x,x_ + i(x'X)I (14)

Let us suppose that a(x) has a discontinuity surface, S. Then the

upward normal derivative at any point on S is proportional to a Dirac delta

function of arclength along a curve normal to S with peak of that delta . -

function on S itself. This delta function is the singularj function of the.

surf ace S. It is through this depiction of the singular functions or the

* discontinuity surfaces of a that processing for au/an provides a reflector

*map. Furthermore, for each surface the multiplier of the singular function

* is equal to the upward jump in a(x) across the surface, namely.

a(x-) - (x+) c (x)[- vx)-vx (5
L (x-) v(x+) j2c(x)

Here, a(x-) is the limiting value of a from points above the surface and

'5' , ,°-

a (x+) is the limiting value of a from points below the surface. I have

written approximate equalities in these equations and retained only the

-- 12 -
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because ~F thi is aferal, a lna

linear approximation from (3) because this is, after all, only a linear

inversion theory at this point. That will be remedied in Section 5 below;

we must content ourselves with this result for the present. One can see,

*however, that the singular function theory combined with the Born, high

frequency inversion theory provides a reflector map and a basis for

parameter estimation.

The modification (13,14) is now used in the expression (4) for a to

write down the following result for 8a/ln:

aa c (a) ih(a,g) IVc (a, ) + V (a.r -

an 87T A(xx )A(xx
a--r

(16)

iwdw F(w) exp(-iw[r(x,x ) + c(x,xr)]} D(t,w)

This is our first inversion formula. I will analyze this formula in

the next three sections but also offer alternative inversion formulas with

various computational advantages. The key difference among them will be

powers of IVC(x,x s ) + VT(xxr)I in the first line.

- 13 -



3. ASYIPTOTIC ANALYSIS - PRELIINARY RESULTS

For the inversion operator (16), 1 use for D(,w) the Born-approximate

data (7) to obtain an expression analogous to (8), expressing the output,

a/an, in terms of the perturbation, a, itself. The result is

0a. c [) h(x ,)I IV(" ;,x ) " V(xx )I d"F" '"sdZ "s rit. dw F(w0) . .'.

an 87 I A(x,x s )A(x,x r) A
oI( 17)

c{ (x ' ) a(x') A(x',x s) A(x',x ) exp (iw 4(x,x',x X ))d "

The phase, f, is given by (9); A(xx s ) expfiw-(x,xs)J is the ray-theoretic

or WKBJ Green's function for source point at xs and observation point, x,

with a similar description for the other amplitudes and traveltimes; the

Jacobian, h(x,k) is defined by (6).

My objective is to show that the multi-fold integral in (17)

asymptotically produces an array of scaled singular functions of the

surfaces of discontinuity of a(x). To do this, I will apply the method of P.

stationary phase [Bleistein, 1984] to the five-fold integral in x' and ,

under the assumption of "high frequency", and then analyze the remaining

w-integral. I remind the reader that by high frequency I mean that

2wL 4nfL >>A =-=->> ) 1. (18)

c c0

In this equation, L is a *typical length scale", c, is a local estimate of

- 14 -
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the background sound speed and f is the frequency in fz. The dimensionless

parameter, A. then, measures typical lengths in units of the wave length. V117

In practice, a value of A of 3 is sufficient for high frequency asymptotic

analysis to adequately approximate a Fourier type integral, such as the one

we have here.

The integral (17) does not even converge unless we make some assumption

about the nature of a(x). The reason is that the amplitudes Ax',x s ) and

A(x',x r) each decay only as l/Ji_'I at infinity, while d3x' is O(Ix'12d 1'1)

at infinity. Thus, to avoid convergence problems at infinity, I will

assume that clx') has finite support; that is, this function is zero outside

of some finite domain. This is not a serious constraint. Real data is

always of finite extent both spatially and temporally. In a model

experiment over all space and time, one simply models this finiteness of

data as being a consequence of the finite support of the function a(x'). Of

course, our output may contain "artifacts" which arise from the boundaries

of the input data set. We must be alert to these and reject them. -

Alternatively, one could taper the data set both spatially and

temporally to minimize the effects of the abrupt boundaries. Equivalently,

I assume that aC(x') vanishes smoothly at the boundaries of its support

domain, while I will still allow a(x') to have discontinuities inside that

domain. In this manner, the mathematical asusmption that a(x') has finite

support and vanishes smoothly at the boundary of its support is seen as a

physically reasonable assumption, while providing a useful mathematical

constraint for our further analysis.

-15 -



Let us now consider applying the method of stationary phase to (17) in

the variables V and L. Then the first derivatives of f with respect to all

of these variables would have to be equal to zero. I claim that, except, in

unusual (pathological) cases this cannot happen. More specifically, thei derivatives with respect to all of the x' variables cannot all

simultaneously be zero. To see why this is so, I write down those

derivatives, using (9):

V'(x,x',xx) = V',(x',x ) + VClx,,x ). (19)

In this equation, V' denotes the gradient with respect to V'. The reader is

reminded that V'r(x',x s) [V'l(x',Xr)] is the tangent vector to the

geometrical optics ray from x Ixr ] to x' with background sound speed c(x').

In order for V'4 to be zero, then, the ray directions would have to be anti-

colinear. Equivalently, both rays would have to be segments of a single ray

which emanates from one of the points xs# _xr , travels into the subsurface

and turns back to the surface to emerge at the other of these two points.

We will assume that _ xr and x' are not a triple of points for which this

can occur. ON the other hand, however, for vertical seismic profiling or

other tomographic-like inversion problems, this would be exactly the - .

stationary point of interest.

The method of stationary phase dictates that when there are no interior :..

stationary points, one applies integration by parts (the divergence theorem

in more than one dimension) to replace the integral over the interior by av

integral over certain boundary surfaces. There are two such types of

boundaries: the actual boundary of the domain of integration (where we have

* assumed that 0L(x') =0) and the discontinuity surfaces Of the integrand.

-16-
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For the present, I assume that the only discontinuities are in a(x'),

itself. At the end of Section 4, I will discuss the effects of

discontinuities in the background speed c, as well. .'.

Let us consider, for a moment, only the x'-integral in (17):

c- ( ) _x') A(x',x ) A(x',x r ) exp iw (Lx,x',xsxr)r d'x'. (20)

I denote by S1, S2 .... the discontinuity surfaces of ax'). For simplicity,

we sahould think of them as extending across the support domain of a(x') and

not intersecting. (This will simplify our analysis somewhat. It will be

clear below that the case of intersecting surfaces -- lenses, for example .-

can easily be included in the discussion.) I assume, therefore, that a(x')

is given by different functions between the surfaces:

aox'), x' between S o and S-

a(x') = a(x'), x' between Si and S. (21)

a (x'), x' between S and S
- n n+1

with So the observation surface on which is and xr reside.

Let us consider the integral in x' over the domain between Sj and Sj+l

where a(x') = ai(x') In order to apply the divergence theorem, we must

first write the integrand in the x' integral as a divergence. To do so,

- 17 -
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consider, first, the identity

Wexp (iwil = V' Wexp (iwl) - '. - W exp fiwi (22) V

In this expression, I have used W to denote the amplitude of the x'-integral

in (20). Note that the second term on the right here is of the same form as

the left side of this equation with a different amplitude function and a

factor (iw)- . Thus, asymptotically, one should expect that the integral of

this term will be of lower order in w [O(w-1)] than the integral of the left

side. Therefore, to leading order asymptotically, I need only integrate the

first term on the right. It is to this integral that the divergence

theoremcan be applied, to obtain

I = 2  ) a.(x') A(x',x A(x',x exp {iw 4(x,x',x s ,x
- - -- - - - -

j j+1  (23)

T(V'tlx',x ) + V'l(x',x r)]
- -s- - dSf

IV't(xi s) + V'z(x,•

In this equation, R denotes the upward normal on the surface, Sj or Sj+ I .

This is the outward normal tc the domain of integration at the upper

surface, but it is the inward normal at the lower surface. Thus, one

obtains surface integrals of opposite sign when the result of the divergence

theorem is expressed in terms of this upward normal. In particular, I

assume that a = 0 on So so that the integral over S0 is equal to zero. I

have also explicitly written V'i in terms of the gradients of the separate

travel times, from (9).

91 R



It is now necessary to sum integrals of the form (23) over all of the

*separate domains of def inition of a(x'). For each domain integral we obtain L

a pair of surface integrals. When this sum is re-ordered by surfaces.%

instead of domains, we obtain a pair of integrals over each surface in which

the only difference in the integrand arises from the discontinuities of L

*a(x'). Let us introduce the notation

A. i ax- a(x'+)], x' on S. (24)

* As in the previous section, ()denotes the limit through lower values of z

(from above) and (4)denotes the limit from below. Now,

=~....2,(25)

where

aa. c (Z) f h(xz j~ jV-:(z,x )+ V-C(X.z
__j dn J Adxw )A(w)

____ n. -" -sx ~ - r j
(26)

c-2(XI) A. A(x',x ) A(z',x r exp {iw 4(x,x',xso r
S.

-r dSt

V'-(X'x + V'v(x,,x)

In this integral, the surface S. is parametrized by two parameters,_

-19-



x = x'(q). x' on S.. (27) *

It might be more proper to index q by j, as well. However, I will continue

the discussion below focused on only one surface and hence dispense with

indexing on this variable. In terms of these parameters,

dS' =g.doldo 2, (28)

with gj the first fundamental form of differential geometry fo~r Sip.

d' dx' 2 d dx' dj' i ..- '

*~ gj d-x' -- =da - k,m =1,2. (29)
C" -j -0. 1 e k do

Here X denotes the vector cross product and *denotes the vector dot

* product.

-20-
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4. SYMPTOTIC ANALYSIS OF OUTPUT FOR BORN-APPROXINM DATA
"1.' ,". '." - ' .' 'o

I will now apply the method of stationary phase to (26) in the four ' -

variables ( ,c). The phase i is a function of these variables through the . ..

dependence of x' on c and the dependence of x and xr on L. Equation (9) is

used to write the four first derivatives of i in terms of the derivatives of

the travel times:

dx dx"4-

YJ (Xx) - (Xxsx, -S +~~!~) xx
d4 m I d4m j dIn i.._- d4

(30)

di - dx'

d- -'[ (x',xs ) + c(x',x r ) J• . ,m=1,2.
m m

The stationary points in ( ,a) are determined by requiring that these first -.-

derivatives all be equal to zero. rA .- ,

In Appendix C, I discuss the conditions under which I is stationary.

The stationary phase conditions are stated as equation (Cl). Also, in that

appendix I show that, for x on the surface Sj for some fixed j, there is a

unique stationary triple, x', x s and x r with x = x. This is shown for the

following source/receiver configurations of practical interest: common

source, common receiver and common offset. Although I have only considered

here the fully three dimensional problem, this analysis specializes to the

cases of 2.5D inversion.

I will proceed below by focusing attention on this stationary point on

Sj when x is in the neighborhood of Si. That is, this is the stationary
.1,

point which has limit V = x as x approaches S. If there were no

- 21 - -



source/receiver pair in the seismic survey under consideration which

included the particular x and x needed to complete the stationary triple,-s Xr

then the asymptotic contribution for that point x would be of lower order in

w and almost always of smaller value numerically after the w integration

than the result we will obtain below. Thus, I proceed under the assumption

that such a stationary triple has been determined and that the corresponding

values of a and are interior points of the respective domains of

integration.

Stationary Phase Evaluation

The integral in (26) is evaluated by the method of multi-dimensional

stationary phase in the four variables a and [. The result is

,." "* -,9

aa. c (x) A(x',xI) A(x',x_) ih(x,j). IV,(xL ) + Vt(x,k )I-_a -~ A. r -h?,"-I"-.1t

an jc(x ) A(x,x) A(x,x) det[ ] z/... -r t.'"
(31)

n[V'r(x',x ) + V' (x',x )A~Ig 4 ).- ,

V',~x~x+ V'tc(x',) 1 '

In this equation, gj is defined by (28) and I(x) denotes the integral

i(x) = F(w) exp (iw4(x,x',X sr ) + i(sign )(0/4)sig()} dw , (32)

This integral, as well as the entire right side of (31), is a function of x,

alone, because x', x s and xr are determined as functions of x from the

-."* stationarity conditions, (Cl). The matrix, [4 1, is a 4X4 matrix,

--22 -'. - 2 :. - -- -* .... .
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a2a at4

1m
- .8 824. im 1,2; (33) *,.

det[4fo] denotes the determinant of this matrix and sig(fto) denotes the

signature of the matrix, which is the number of positive eigenvalues minus

the number of negative eigenvalues of the matrix.

Determinant and Sinature fo x near Sj"

Since it is expected that aaj/an peaks for x on Sj, we are interested

in evaluating the result (31, 32, 33) for x near Si. Let us first consider

the behavior of the matrix ( ] in (33) when x is in S.j In this case, a

can be fixed before evaluating the second derivatives with respect to i " "

In that limit, 4 0; the entire 2X2 matrix in the upper left hand

corner of [4 o] is a matrix of zeroes; the determinant of [i) is just the

square of the determinant of the X2 matrix in the upper left hand corner:

(34)

+~~~~~ 2. d,=,, [
2- ;" r1

det [KJ det 22'G JJ det I a~ ~i 'x&)

with x' evaluated at the stationary point x on Si and xs and x evaluated so
.-s-.r

as to make the phase stationary.

From this result, we see that the determinant is positive, so that the

- 23 -
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eigenvalues of each sign must occur in pairs. Thus, the only choices for

sig(t ) are ±-4 and 0 and the only effect that the signature factor can

have on the final result in (31,32) is a multiplication by -1 or +1,

respectively. In Appendix D, J show that, in fact, the signature is zero e. .- e e'°

and the multiplier is +1. In this case, the integral I(x) defined by (32)

becomes '

I(x) F(w) exp (iw4(x,x',Xsx r) dto (35)

I will assume that the original source was impulsive. Thus, from the

assumptions about F(w) in Section 2, it can be seen that I(x) is a band

limited Dirac delta function of the argument, i(x,xsxr) Therefore I

set

i(x) -£-(
4 (X px'. (36)

where I have used the subscript B to remind us that this is a band limited

delta function.

The function, 4, is equal to zero on the surface S. Thus, the support

of this delta function includes S . In fact, this is the only zero and it

is isolated. To see why this is so, let us take the gradient of i with

respect to x, with x',x and x defined by the stationarity conditions (Cl):

* ~d4 at8 z'o 8 8 ~ 8d at axi ao m. + a aXrk at m  at aXsk atm
- + - + + , = 1,2,3. (37)

dx. x k,m ax a ax. Ox ~ Ox. ax O 8x
k' rk m j sk m

In this equation, each sum on k is zero by the stationarity conditions (Cl).
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Thus, the total derivative with respect to xjis just the partial derivative

with respect to the explicit xj in i.We can now conclude that Yk is not

zero by the same assumptions as were made to conclude that V'f (19) was not

*zero. Consequently, the only zero of J, subj ect to the stationarity -.

conditions, (Cl), is the surface Sj, itself. By standard rules about delta

functions we can now write I(x) in terms of a delta function of a single

* arclength variable having the property that it measures arclength along a--

curve normal to S.P If we denote that arclength by s, then
B. B

I (X) - _ (38)

This delta function, with support on Sj is the singular function of the

surface, S., introduced below equation (14) . Below, we will denote this -.

function by yj(x). Determination of the singular function of a surface

constitutes mathematical imaging of the surface. A plot of the band limited

delta function YB() will, indeed, depict the surface. In fact, standard -

seismic output depicts the reflectors by plotting their singular functions" '

within a scale factor. By using the result (38) in (30) with 6B(s) replaced

by YjB(x) one obtains

c (x) A(x'.x s ) A(x',x r -'-t1-

an c ...) A(xx.) A(xx det[#4JI'

(39) - -°

V Y~(rz x + V'T(lx, ]-..

V~t"-re- "r "

-s

Again the reader is reminded that V. pt and r are determined here as
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f unctions of x by the stationarity conditions (Cl), so tha t the entire

result is a function of 1. At this point we have a result which images the

jth reflector through the dependence of aa/non tefunction YBx' I

* only remains to determine the peak amplitude of this result when x is on the

* reflector.

Peak Am.plitude

I will now analyze the multiplier Of YBj(x!) at the peak of this-

function, that i s, on the reflector, i tselIf. To do so, let us f ir st

introduce the acute angle 0 between the upward normal to the surface and the

incident and reflected rays on the surface. Note that the downward 0

gradients V'rc(x ,x,) and V'-c(x' ,xr) make angles of 7t -0 with this normal and

make an angle of 20 with one another. Therefore,

[V, TV'(x',x )+ V't (x',x) 2co s e

(40)

Vl~ xS+ V'T(X~ r) I C1 () [1 + cos 20 ] c [2coS j

Finally, in Appendix E, I show that

Ih(x,'V 2cs
- V(, + _IXo (41)

* I~det(~ I v~~ rxx I cx f

*By inserting the results (40, 41) into (38) , one obtains the f ollowing

result for aa Ian at its peak, that is for x on S:
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.. . °

~ ji yjB (R)_ , _ on S.. (42) I-
an

S .. '..' -'

With Aj defined by (24), this result confirms the discussion at the end of

Section 2. Namely, the modification (16) of Beylkin's original inversion

equation (4) asymptotically produces a singular function at each reflector

multiplied by the upward jump in a(x) across the reflector.

I will now proceed to evaluate yj, 3(x), itself, on Si. To do so, I use

(35), (38) and (40) with x' = x to conclude that

j 2cos 0 1-) Aj F() dw (43)

We see here that the actual numerical value at the peak depends on the

opening angle 0 between the normal and each of the rays from x to x on S.

and xr to x and Sj. Unfortunately, we do not know this angle. From (41)

and (11), we recognize the first fraction in (43) as just the factor

relating IwI and I-I in our heuristic transformation (eq. 11) from (w, ) to

k. The reason for the appearance of this factor now becomes more apparent.

In (43), I have expressed our answer in terms of a band limited frequency

domain delta function. I have done this, because that is the way the data

is provided in the seismic experiment. On the other hand, YB(x) should be

expressed as a band limited wave number domain delta function. This first

factor is the scale between these two transform variables. .'.'-

*.,. .5 .

With (40) as a guide, the modification of our processing formula to

% .. ,
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obtain a result which is 9-independent at the peak is apparent. We need

only modify the integral formula in (16) by eliminating the factor of

IVr(XXs) + Vr(xoxr) II This effectively changes the scale of the normal

derivative so that we are no longer differentiating with respect to n, but

with respect to 4(x) = f(x,x',xs,Zr) evaluated at the stationary point

ad
related to Sj Thus, symbolically, I set

-* 28a C (a) fhz l: -..
_a I h(x 'V I

8( A(X,x )A(xxr) °- - r

(44)

iw dw F',) expt-1w IVr(x,x + Vr(X,xr)]lD( ,W)

-s -r

The symbolic differentiation here is with respect to in the

neighborhood of S. (No such differentiation is actually performed since I

only mean to give a suggestive name to the indicated operations on the right "

side of the equation.) All of the asymptotic analysis carried out above for

aa/an is identical for aa/, except that in the evaluation at the

stationary point one must eliminate one factor of

1VT(,x) + VC(X,Xr)I = 2cosO/c(x) (eq. (42)). Consequently, the peak value

of the reflectivity function 8aj/89. in response to data from the jth

surface is

F(M) dw , x on S (45)

j~j
and this replaces (43). Since we know the filter, we know the integral on



the right. Correcting the peak output by this scale factor provides an

estimate for Aj. In (15), the relationship between Aj and the change in

sound speed across the reflector is stated. Thus, if we know the sound

speed above the reflector we obtain an estimate of the sound speed below the

reflector consistent with the Born approximation on which the analysis was

based.

In summary, then, I have proposed a modification of Beylkin's

fundamental inversion formula forto Born-approximate data and then proceeded

to analyze the output as applied to such data by asymptotic methods. My

conclusions are as follows.

(i) The output 8a/8n is proportional to the sum of bandlimited scaled

singular functions of the reflectors plus possible lower order

(smaller) asymptotic contributions.

(ii) At the peak value of the output on a given reflector, the scale factor
. .. .. ..

of each singular function is the peak value of the bandlimited singular

function multiplied by the jump in a across that reflector. The peak

value of the singular function is proportional to the cosine of an

unknown angle. By a slight modification of the inversion operator, the

data can be processed for a function I defined as a/ai, whose peak

value is just the jump in a multiplied by the area under the frequency

domain filter of the data.

I repeat that F(W) is typically a tapered version of the original

source. Thus, this integral, within smoothing is just the source in the
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time domain, F(t), evaluated at t = 0.

I return now to the question of a discontinuous background sound speed.

Let us consider the effect on the output of a c(x) which might be " ,, ".

discontinuous above S. but remains continuous in the neighborhood of Sj. As

long as the ray-theoretic phases and amplitudes used in our inversion

formulas include the effects of those disontinuities -- e.g., refraction of

rays and transmission coefficients -- then the results obtained here remain - "

valid. After the surface S. has been identified, the effects (f that

surface are incorporated into the integral operator to invert for points

below S. ,

More generally, given a set of surfaces of discontinuity for the

background velocity, the upper velocity is used for a small region below

each input surface and then effects of that surface are included to process

deeper. This was the method successfully used by Docherty [1985].
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S. ASYMFIOTIC AMALYSIS FOR KICROFF-APROXIIMATE DATA

Let us consider, now, the consequences of applying the inversion

formulas (16) to Kirchhoff-approximate data D(w,,) for a single reflector, " 
*J.

rather than to Born-approximate data. On the one hand, such an application

* is suspect, since the derivation of the results (16) was based on a Born

approximation of the solution to the forward scattering problem for the

upward scattered data from the subsurface. On the other hand, Kirchhoff

data is not constrained to small perturbations, but only to high frequency,

which we have used throughout, in any case. Furthermore, Kirchhoff data

more accurately represents the upward scattered field from a single .

reflector (especially for separated source and receiver) than does Born

data. Thus, a useful output of this analysis will allow us to dispense with

the small perturbation constraint in the forward scattering problem, a

constraint which was imposed on the original derivation of (16) while

providing us a better estimate of the effect of applying our inversion

operator to field data.

In order that the reflector in question be properly located, it will

still be necessary that the background sound speed not vary too much from

the "true" sound speed above the reflector in question. However, this is a

somewhat less severe constraint when one contemplates a theory that will

produce something better than a linear approximation to the velocity - -

variations and we could then contemplate applying a three dimensional 'layer

22 stripping" method to proceed from one reflector to another, progressively

ir - deeper in the subsurface.

-31-
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Kirchhoff-approximate data for a seperated source and receiver and .

single reflector can be found in many sources, including Bleistein [1986],

eq. (49). In our present notation the result is -.

iw R(x',x A(x',x s ) A(x',x r ) exp fiu[T(x',x s ) + T(x',xr)] -

(46)

n-[V'r(x',x) + V'r(x',x)] dS' ' ""

In this equation, R(x',x s ) is the geometrical optics reflection coefficient,

Rx,) Ia-c(x',x )/anI v J (x'+) V (x- + a-~x9 )/aI-i -2 2 s

I(+',x )/an - v (x'+) V (x'-) + [8(x,', )/an

This result into (16) to obtain the following multifold integral., . -.

re pre se nta t ion of the output au/an:

a ',_ (z) 4jh(x)) ' I

d w dw F(w)

an 8n IA(z,x )A(x,x)I

I s - -r ," " '"

(48)

n*IV'-r(x',x ) + V'-c(x',x HI dS'

This result is to be compared to the integral (26) for the analysis of __

Born-approximate data from a single reflector Si. We can see that the

-32-
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integrals are identical except for the following factors:

c (x') A.
i <-> R(x',x) (49)'-. I l~ + -l~~

S]

The left side of the arrow is the factor appearing in the Born-approximate

output (26) while the right side is its replacement in the Kirchhoff-

approximate output (48). Thus, no further asymptotics need be done. The

result of stationary phase applied to (48) can be determined by making the

same replacement in the results of applying stationary phase to (26); that

is, to (39) and to (43). .

The conclusion of this comparison is that for the Kirchhoff data, the

formalism (16) produces a singular function of the reflecting surface scaled

by some function of x. That is, the output provides a reflector map. It

remains only to determine what the peak value of the output is when x is on

the reflector. To do so, we must make the replacement (49) when x = x' and

the stationarity conditions (Cl) are satisfied. In order to make this

substitution, note first that

c (x) IV(x,x) + c(x,x) = 4,os e (50)

When this result is combined with (49), we see that we need only make the 7.

replacement

- 33 -
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* 2
A. <-> 4cos e R(xx) (51)

at the peak. By using this observation in (43) one concludes that .--

a, 8R(x , _x ) co s 9 1-
- ){ F(w) dw , x on S (52)a)n C (X ) 2 f" " " ".f-( -/ '

I now show how this peak value is related to the previous result, (43).

To do so, I use the fact that Wr makes an angle of n -0 with the normal at

the stationary point to rewrite (47) as

-". o .. a ...
~ 

I

R c-(x_) cosO - 1v2(x+) -(x-) + c -(x) cos 2 (53)
R (x , s  (.53 ) Abu.

x) Cos 0 + v(x+) - V (X-) + C (x) cos 0-

Now let us assume for a moment that the jump in v(g) across S is small. One

then obtains the leading order approximation of R(x,X) for small values of

the jump by expanding the square root both in the numerator and the

denominator, retaining two terms in the numerator and one in the C -.

denominator. The result is that

) _- J v(x+) -v(x-)

4R(,=ccs c( A. (54) jig-

-s o v(x-) v(1 + )  2c(x)

where I have used (15) and (24) with x = x to obtain the last result.

That is, to leading order for small jumps, the present result agrees with

the previous result. However, e result (52) predicts that the output

............ . . .. . . . . . . . . . . . .. ',. '.
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. will, in fact, produce the geometrical optics reflection coefficient at the

peak, even though this coefficient is a nonlinear function of the jump in

sound speed. -

On the other hand, an estimate of the angularly dependent reflection

coefficient is not useful unless we have a means of estimating the angle.

. Fortunately, we do have such a means. What one must do is compute aaj/a.

[Eq. (44)] as well as 8a/an, since we know that the peak output of the

former by a factor of 2cosO/c(x). That is, if the surface S is one of the

surfaces Sj then the peak value (45) is replaced by the result,
... o

4R(x,x ) cos a jF() dw x on S (55)

*t . s 2 .- .-. .'2

Now, by taking the ratio of the results in (52) and (55) one obtains

.,, .' v° i. l

an J 2cos O

8an c xon S= S. (56)aa. c(x) -J..-.-'-"
8 4. .: : ii:-i

From this ratio, cosG is computed. Given cosG, (53) is used to compute the

sound speed below the reflector in terms of the sound speed above the -.

reflector. This is a fully nonlinear estimate of sound speed consistent . ,

with the high frequency asymptotic analysis that has been carried out.

For esthetic reasons it would also be desirable to obtain a result in -.-

which the peak value of the output was equal to the reflection coefficient

multiplied by the area under the filter. By examining (52). we see that we



need only eliminate a factor of 8cos'B/c(x) at the peak. From (50), we see

that the way to do this is to introduce into the inversion operator (16) a

divisor of c2 (x) VC(x,x s) + Vr(x,xr)I'. Thus, I propose one other operator,

which I call the reflectivity function and denote by P(x):

1 fh(xl
8 -Id A(xxs)A(XXr) .. .. (X'Xs + VI(x'xr) "

J "- -~rr

With no further analysis, we can be assured that the peak value of the

reflectivity function is given by -"-'-

,*" i",'_,,

P(x) ~ R(x,xs) _. , F(w) dw, x on S S . (58)
-s in .1

I note, further, from comparing this result with (55), that we could as

easily determine cosO through the ratio

. c X on S S. (59)
-, ." .. - ')

P(X Cos 
•. o .

In summary, then, the operator derived on the basis of the Born

approximation produces a reflector map when applied to Kirchhoff approximate

data with a nonlinear estimate of the jump in sound speed across reflectors,

. consistent with the geometrical optics reflection coefficient of each

reflector. The angular dependence of the reflection coefficient is resolved

*" by simultaneously computing two inversion outputs and taking their ratio.
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6. WDNOLUSIONS

Starting from an inversion operator proposed by Beylkit, I have

proposed three modifications of that operator. Each of those operators arc

shown by asymptotic analysis to produce a reflector map when applied either

to Born-approximate input data or Kirchhoff-approximate input data. The

peak value of the output of these operators is proportional to the Born

approximate reflection coefficient (or jump in a(x)) in the former case and

to the geometrical optics reflection coefficient in the latter case. The

output also depends upon the opening angle between specular rays from the -

source to the reflecting surface and from the receiver to the reflecting -

surface. This opening angle is unknown, but can be eliminated for either

type of data. These results are valid for three source/receiver ... .

configurations of interest: common (or fixed) source, common receiver or .'..

common offset, with the last of these including the zero offset or

backscatter case. The analysis also assumes that there are no caustics in

the ray trajectories from subsurface points to sources or receivers. The

analysis allows for a curved datum surface.

." 
.°...
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APPENDIX A: RAY-THEORETIC GREEN'S FUNCTION

In this appendix I present some results about the WKBJ or ray-theoretic

Green's function,

G(x,x',w) = A(x.x')exptiw-c(x,x')) (Al)

satisfying the inhomgeneous Helmholtz equation,

V G + G M &(x-x ). (A2)

In this equation, c denotes the background sound speed, c(x), with its

argument omitted when it is clear in context. The travel time r and the

amplitude A are chosen so that this equation is satisfied to order W and ..

The equations they satisfy are called, respectively, the eikonal and

transport equations:

2
(Vd 2 

= I/c 2 , 2 Tv-A + AT' " = 0 (63)

A solution of these equations is required to describe a wave emanating

from the source point, x'. Thus, the initial conditions for r and A are

0, Ix - _'IA(x,x') --- l/4r, as x --- x' (A4)

The problem for r is solved by the method of characteristics, (Bleistein,

19841. The characteristics satisfy the system of ordinary differential

equations,

Al-

. . .". '.. . . . . . . .



dx dp
= P ', for a = 0; - = V[l/c], p = Tv (A)

do do

Let us denote the initial value of p by po; that is, ' y

p0 -- px',_x). (A6)

This initial value of D is not determined, except for its magnitude which

must equal 1/clx') from the eikonal equation. Each choice of the direction

of p or, equivalently, each choice of Pi, and P,, within the constraint on

121, determines or "labels" an initial direction of a ray, which is the

solution curve x(a), or, more completely xl(,plo,P.)• The rays 'sweep out"

a volume of space as we vary the three ray parameters. If rays for

different choices of (P,,pao) do not cross one another -- i.e., if there

are no caustics -- then away from x = x', there is a one-to-one

correspondence between values of x and values of the triple (a,p,,,p1 o). It

is assumed throughout the analysis that there are no caustics in the region

of interest.

The travel time also satsifies an ordinary differential equation with P

respect to a -- i.e., an ordinary differential equation along the ray --

namely,

d_ 1 (A)

and thus is determined by integration along the ray. The transport

equation, the second equation in (A3), can also be written as an ordinary

-A2-
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differential equation along the ray, with solution,

A(x,x') = 1 (A8) 4
4n1 IP3 oJ Iz /  

/ ' .-

The Jacobi determinant, J, is given by

= = det a (A9)

ap, o "- > -

The assumption that there are no caustics assures us that J does not vanish,

except at a = 0, that is, at x = x'.

There are two practical ways to calculate J. First, J can be related

to the spreading of ray tubes. That is, J is proportional to the normal

cross-sectional area of the differential ray tube. Thus, if one is

'shooting* rays, a reasonably accurate approximation of J can be determined

by measuring the area of the tube of neighboring rays at the arrival point.

The constant of proportionality depends upon the ray parameters that are

used in the shooting method.

Alternatively, the components of the Jacobi matrix from which J is

computed also satisfy ordinary differential equations with respect to a.'"- -

that is ordinary differential equations on the rays. See, terveny, etal.

[1977] or Bleistein, [1984].

-A3



A:.
One can see from this brief discussion that ray theory lends itself

naturally to initial value problems, that is, to the 'shooting of rays" from

a prescribed point. On the other hand, in the application to inverse

problems, one is constantly thinking in terms of a travel time and amplitude

between two fixed points, say, x and x., for example. Indeed, it will, at

times, be convenient to think of the rays as emanating at x and arriving at

! s,  and sometimes, the reverse. There are both theoretical and

computational difficulties associated with the transition between initial

value problems from each point and the boundary value problem between the

two points. We will see some of this in the next appendix.

A4
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APPENDIX B: ANALYSIS OF h(z, )

The purpose of this appendix is to introduce simplifications of the

determinant h(x, ), defined by (6), for four cases of interest in seismic

exploration. In particular, It will be shown how this matrix is related to

the consitutents of the ray theoretic Green's function developed in the

previous appendix.

Case 1: Zero-Offset

K -o.-

Let us suppose that we are considering the idealized case of coincident '

source and receiver. In this case,

= r(q) ,  
(Bl)

the sum of travel times becomes just twice the travel time to the -. "-

source/receiver point and the determinant in (6) becomes the simpler result,

V' U . .x."
Vr(x~x ) -' -i

--s

h(x, ) = 8 det - -V ) . (2)

8 Vr (x,x )--s

The gradient V-(x, x) is the value of the p-vector (introduced in Appendix

A) on the ray initiated at x and arriving at depth at the point, x. Since

-s

this vector satisfies the eikonal equation with right side 1/c 2 (x),

independent of , we have the result,

- B1 -
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0 -kk , 1.2. (B3)
a Pk

0 - 1 _ a

To exploit this identity I multiply the matrix in (B2) by another matrix,

1 0

P= 0 1 p ,(94)

2

0 0 p
-

before computing the determinant. Since det P = p3 , the result of this

calculation is

p1L p1

8p ap 1  8 a(p
1 -p.)

h(x,) 2- det a,0 2--.0)

p pc (X)4 ' X)

ap p"

0

In this equation, the factor 1/c2(x) arises as the coefficient in the first

*row third column, which makes it a factor of the entire third column.

Let us now view the ray connecting xand x.as starting from the point

*at depth, K, and arriving at the surface at the point, x.. The vector

* denoted by p, here, is just the negaiveiy Of the initial value of the

*P-vector on that ray, say, Pa. The superscript, s, to denote a ray which

*emanates from x and arrives at x* (Later, I will have need of the notation

-B2 -



p0 as well.) In terms of this new vector, the result (5) can be rewritten

a s %' --

ass

8 8(p Op:)

h( - BOp S o c  2 x W ( 4 1 0 4 : )

The determinant h(x, ) has been written in terms of derivatives of the two

ray parameters at depth which label the ray propagating from x to x. In

fact, under the assumption that there are no caustics, the variables ] serve

equally well as parameters to label the ray from x which emerges at the

upper surface at the point xs({). Thus, h(x,t) can be interpreted as being

proportional to the Jacobian of transformation between two "ray-labeling-

sets of parameters. Each parameter pair can be supplemented with a third

running parameter along a fixed ray, namely, a, of Appendix A. Therefore,

without changing the value of h(x, ), two-by-two determinant in (6) can be

expanded into the three-by-three determinant,

8 8(p s ,a)

h(x,) .- (B7)h~x,.U =  s = 2'ii--

since the third row and column of this augmented determinant have only

Szeroes except for a one on the main diagonal.

Having used x to denote the initial point of this ray, let us think of

the running coordinate along the ray as being some other variable, say !.

The derivatives in (B7) are to be evaluated when Z = x s . Thus, I write

B3-
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_________ fa() 1 a- q() 1(
a Q a(plop 2*,V) a( 1 C,)

-- S

The first bracket on the right can be recognized from Appendix A as just the

Jacobian of the ray family initiated from x and evaluated at the surface

point, x.. This Jacobian will be denoted by JUx5 ,x). The second

determinant can be re-interpreted as a triple scalar product of two tangents

*in the surface So with the ray tangent di./dc, R(xs.z). The cross product

*of the tangents is in the direction of the normal vector at x and has

magnitude 4g(x,) 4Jgse in complete analogy with the result (29) for the

surface Si Thus,

a(p *,p0 3ffa) P(Ex x)-nj g ax ax5

-J(x ,x FS at, a t

With this result, h~,)can be rewritten as

hMx,t) =- 2(BIO)

*c ,(X) J(z x)

What can be seen, here, is that the matrix hMx, ,) is expressible in terms of

variables which are computed as part of the ray theoretic Green's function

and in terms of parameters defining the structure of the observation

*surface. For h to be nonzero, J must remain finite and the rays should not

* ~emerge tangent to the upper surface. For h to remain finite, J must be *%.-

nonzero -- no caustics. The singularity at ps, 0 is only apparent; the

-B4-



product p s must remain finite in the limit as pS o approaches zero.

This product is exactly what appears in the denominator of the ray-theoretic

amplitude, (A8), and must therefore remain nonzero in this limit because one

*" can find alternative representations of the amplitude which confirm that the

amplitude remains finite along a ray that is initially horizontal. In the

special case where the upper surface is flat, the dot product in (ElO) is

simply P3 (x s x) and the numerator being nonzero requires that the ray

direction have some vertical component at the upper surface. Furthermore,

in this case, it would be natural to take x, , and = s and then

= 1. Consequently,

p (x Zx)
3

h(xt) - flat upper surface. (Bll)
s 2

Po30c(x) J(XsX)

As a further simplification, if c(x) is a constant, p, is a constant on

each ray. In this case, the result (BIl) simplifies stil further to

r AMC .- i

h(x,) = - [c J(xsx) -  flat upper surface, constant iackground. (B12)

In this simplest form, the reciprocal dependence between h and J provides

the total structure of the relationship between them.

Case 2: Common Source

Let us consider, next, the case in which the source point is fixed.

This case was discussed in Cohen, Bleistein and Jlagin [1985]. It is

included here for completeness.

-B5 ,
* .-. ~ %. ' .~. ~ .~ -. B5 _.. *--.2 2 -.. ,-"-' 2 . ",*'



- ., I. - - - .. - - " .. . ,•-

For this case, the parametrization of the source and receiver points

becomes

X( 1  const., x = , (B13)

is -r ir ___

with the function xr(Q) ranging over the observation surface, S,, as -

*'. " ranges over its set of values on St. For this case, the determinant h(x,_)

in (6) becomes

+ N Xx)

hlx,) = det V.lx,x r ) (Bl4)"

LI

.T V (x,- )

Thus, while the first row remains a sum of two vectors, the second and third

. row are identified as derivatives of single vectors exactly of the form

" discussed above. Just as in the previous case, the matrix on the right is

to be multiplied by the matrix P defined in (B4) before the determinant is

computed. However, I now have to be more precise because the source and

receiver are separated. The p>-vector I use in P is the vector R(xr,_[). By

-B6 -



carrying out the matrix multiplication and then taking determinants, the

following result is obtained:

+ + I + C2(x) 2 _p
1 IS ir 2s 2r r

h(x,.) de t apira (BI15)

ap1  apr
- - 0

* In this equation,

P =P('.!)S Pr =P(xx r (1316) !_

Except for the subscripts, the two-by--two determinant in the lower left hand

corner in (B15) is exactly of the form of the two-by-two treated in Case 1.

Thus, use of the same method as in Case 1 yields

=~ ~ -[+c(x)p . P(xr!)-?[~(117
hMx, ) r13 7

p0r c (X) J(xr z)

The subscript zero is again used to designate vectors at x pointing along aL

the rays to x and xr and superscripts on the p-vectors to denote that these .-

-S

are the vectors on the rays oriented from x to x5 and xr reverse of tbe

orientation on the subscripted vectors above. The vector p(x r~i), is the

fina vale ofthe ect r p at the surface point, r

parameters of the ray-theoretic Green's function and parameters which

-B7-



. characterize the upper surface. Note that the same simplifications as were .

made above can be made here, too.

When this result is compared to the previous result, (BIO), we see that

there is one additional way in which h can be zero in (B17). The first

* factor of the numerator might vanish. This can only occur if the vectors ps

and pr are anti-colinear. That possibility was eliminated in Section 3.

Case 3: Common Receiver

For the common receiver case, we need only interchange the source and

receiver point in the previous case. When this is done in (16), the

* following result is obtained:

5 r

p3c(X) J(i SO).

- --

s -

Case 4: The General Case

When both x and xare more general functions of ~,there is not a

[1 r sAV.':.:L ;

great deal of simplification that can be achieved in the representation of

h~z4).The determinant h in (6) can be rewritten as a sum of four

determinants:

h(x,) hU.0 + h (AV + h (.t) + h_ ('I.- (B19)

, "B8 °
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(B21),

h1 (4 dot -Vx~x )(B0

aV(x,x +-~~
S S

h (x,V) dot -C U.r xB1
s

a V (x, x

V[,r(x~z q + (X.x )-S -r

a (B23)

-V(x, x

-r

B9. 'V



The determinant, h2 (x, ), is exactly like the result (Bl4) for the

entire determinant h(x,j) in the case of a common source; h1 (x, ) is the

same determinant as for the common receiver case. Thus, (BIB) and (B17) can

be used to write these determinants in terms of the parameters of ray - '-

propagation:

+ c 2(x) o PoJ l(X X)'. - -

h( x,,) - = - ,(-.-. .])

p oc (x) J(x sX)

so

.. r] -

h of t a (B2 5)on-o-a.(--hl'hpsr C (X) J(x 'x)  "---"-'-

The remaining two determinants, hlX~t) and hlxL), are not so easily..t..;.

dealt with. The reason is that the second and third rows do not involve -'-:'''

derivatives of the same travel time. That is, one row has v(x,x. ) while the

other has r(x,x ). Thus, a simplification to merely a ray determinant, J,

is not possible since these rows are related to different ray families. On

the other hand, each of the matrix entries is separately expressible in

terms of ray parameters and surface parameters. That derivation now

follows.

Let us consider a typical term, 8pi(,)/a8j, for i,j = 1,2, and to

be evaluated along the ray to (and ultimately at) x. or x r  It is not

necessary consider derivatives of p,, because the eikonal equation (A3) can

be used to express them in terms of p, and p,:

- BlO -- . -'
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ap p1 0a a,
- = - (B26)

For the derivatives of interest,

* 8. 8 i kX
- ij=1,2. (B27)

*When T is evaluated at x or xr, the derivatives axkai simply become

derivatives of the expressions xs(Q) and x. with respect to the

components of . Thus, these derivatives are known from the surface

geometry. For the other factor on the right in (B27), I again take the

point of view that p(x,j) is the negative of the initial value of the

p-vector along the ray starting from x and propagating to X, denoted above

by ps or pr. As noted in Appendix A, the first two components of these

vectors may be used as ray-labeling parameters: see the discussion below

(A6). Thus, as a first step,

ap ap (B28)

axk axk

Now, as in Appendix A, the family of rays emanating from x and covering a

volume around that point are viewed as defining a transformation or change

of variables from X to (p 1 oP 0 O), with the inverse of that transformation ..

mapping (p 1 o,p 1 o,a) to i. The expression in (B28) is an element of the

Jacobi matrix of the latter transformation. On the other hand, the matrix

of the former transformation is more familiar. It is the matrix whose

- Bll -
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determinant J(z,j) plays a crucial role in the propagation of amplitude

along rays. Thus, let us introduce the matrix

= - det ('ij] = 3(!,&)• (B29)

• -. . .

Since the two transformations in question here are inverses of one another,

the matrices of transformation must also be inverses of one another. (In

making this claim, I am assuming that there are no caustics in the ray

family over the domain of interest.) Thus, the derivative in (B28) can be

rewritten in terms of the inverse of the matrix in (029). The result is

-1- € ax- :::•
= (I LOJ cof (B30)

axk axk L o

In this equation, cof denotes cofactor in the matrix [Jij] in (B29).

This result is now used in (B26) to write

31
*ap 1  ax a;k

S3 (;,x) cof J , i,j 1,2. (B31)
k=l .-ap

I . - -

- B12 -
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4. Two-and-one-half dimensions ..

There is a whole class of special cases where h(x,k) can be written

more simply. These are the so-called two and one half dimensional (2.5D)

cases. Here, it is assumed that the earth parameters, c and a are functions '-. *

of (x,z) only (essentially two dimensional) while the wave propagation is

three dimensional. Furthermore, only one line of data is gathered, say, for

Ys Yr 0. However, for such a medium, all lines parallel to the line

y 0 would, of necessity, produce identical data and only the output of the

algorithm in-plane, that is, for y = 0, is required.

In the inversion formula, (16), then, the data, D(Q•o), is independent

of t and the integration in t, can be carried out by the method of

stationary phase. The stationary point turns out to be 2 = 0 and the

remainder of the integrand need only be evaluated in-plane. In this case,

h(x,t) can be evaluated in terms of the in-plane ray Jacobians associated

with two dimensional wave propagation. Out-of-plane effects are accounted

for through a scaling by 40r. In particular, h(x, ) is expressible in terms

of 2X2 determinants with the first row always being related to a P-vector.

Thus, a case like h,(x,t) or h 4 (x,) cannot occur and h is expressible in

terms of the two Jacobians associated with rays between x and x. or between

x and r

In Bleistein, Cohen and Hagin, [1985], the details of this computation

were carried out for the cases of common source, common receiver and common

offset. It should be noted that the 2.5D common source or common receiver

cases do not arise directly from the 3D common source or common receiver

- B13 -
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case. In the 3D common source case, for example, there is only one source

in the plane with y = 0. Thus, the data gathered on lines parellel to y = 0

is not identical. To make lines of identical data as the 2.3D model
% h'. '.

requires, the source must be moved to each new line, y = const. when the

receivers are moved. Thus, 2.SD common source corresponds to the 3D case in

which there is a line of sources, say with x = 0, and the data from each

source is gathered along an orthogonal line, y = const. Now each line of

experiments will be identical.

The results for h(, in 2.5D will not be restated here because the

entire processing formula in 2.5D changes. That result is an integral over

the source/receiver line (or curve) with an adjustment of the inversion

integrands provided in this paper to account for the out-of-plane stationary

phase computation.

B1.. .4 - -
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APPDIX C: NALYSIS OF TER STATIONAY MUSE ONDITIONS

The purpose of this Appendix is to discuss the conditions of stationary

phase, that is, the conditions that the four first partial derivatives of i

in (30) are all equal to zero. The reader is reminded that the traveltime r

is symetric in its initial and final coordinates. Thus, each of the

gradients appearing in (30) is a p-vector directed tangent to the ray. For -. -

example, Vsc(x',x s)= plxs,_X'), is a p-vector tangent to the ray from x' to

x (from second argument to first argument) evaluated at x (evaluated at

-ss~~~first argument). It has magnitude l/c3 (Xs) and is directed away from the -,-...'

initial point, x', Similarly, Y'r(x',x s) = R(x',x s) is evaluated at x', has

magnitude l/c2 (x') and is directed away from x,.

The result (30) and the notation for gradients introduced here are used

to write the conditions that the phase be stationary as follows: ,,:.

dx dx dx dxs d-r -s

x ') - + P(ir.1') d- p(x ) WE- + p(x ,x) T-
m m

(Cl)

* ( p~x) + P(Ox!) J 0 ,m =1,2.

It is assumed that a proper parameterization has been used for which the two

vectors in each case (m = 1,2) are linearly independent.

The second condition is easier to interpret. It states that the

tangents to the rays from and xr to the surface point x1 have equal

- projections on two linearly independent tangents in the reflecting surface.

... Consequently, the projections of these two vectors onto Sj must be equal

- Cl -
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. This is just Snell's law for reflection. The magnitudes of the p-vectors

must be equal (to I/cz(x')) and hence the out-of-plane components must be

equal in magnitude, as well. Indeed, the normal components of these vectors

are of the same sign and must, in fact, be equal.

The first condition in (Cl) ties the points on the two surfaces to the

output point, x. Let us consider the rays from x to the upper surface

- points, xs and xr.  Similarly, we consider the rays from z' to the upper

surface points, x s and xr.  For each pair of rays we take projections on

- tangents at their respective emergence points. The sum of these projections

* for each pair of rays must be equal to one another. This must be true for

two linearly independent tnagents at each point.

At first glance, it may not seem apparent that such a condition can

" ever be satisfied. However, consider the case in which x is on the

reflecting surface, S. Then, for x' = x (and a chosen accordingly) the two

. pairs of rays overlay one another and these stationarity conditions are

automatically satisfied for any pair of surface points, _xs and xr. Thus, we

would only have to find such a pair for which Snell's law is satisfied, as

. well. Indeed, if there were no such pair in the seismic experiment being

modeled, then that subsurface point would not be one for which the

stationarity conditions are satisfied and that point would not be imaged.

7 -7

On the other hand, there are many candidates for source/receiver pairs

on the upper surface when x' = x. To find them, proceed as follows. At

I' = x, pass a plane through the normal to S. In the plane, choose two
P

directions making equal angles with the normal. Use these as initial

-C2-
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directions for rays from the point. Snell's law is satisfied for this pair

of rays. The pair of emergence points at the upper surface are candidates

for a source/receiver pair. Vary the opening angle of the ray pair in the

* normal plane and rotate the plane. Thereby, obtain a two-dimensional

continuu of candidate source/receiver pairs in the upper surface.

Let us suppose now that such a pair is available in a given seismic

* survey when x is on S. Given that pair, it is argued by continuity that ".

for x nearby Sj there must by points x', xs and xr satisfying (CI) and

nearby the solution obtained in the limit when x is on S.

Constant Background Soundspeed

Further insight into the stationarity conditions is gained by

considering the case of constant background speed and flat layers, as in

Figure Cl. Given a point, x, a perpendicular is dropped to the surface S. ..

- This determines a point, x'. Pass a plane through the normal and draw the

rays at equal angles to the upper surface. This determines a pair of

points, as candidates for xs and xr .  For this pair of points. the sum of

projections on either side of the first line of (Cl) is equal to zero.

Thus, this triple of points satisfies both conditions of stationarity.

The three points, _p, xs and xr must be in the same plane in order that

Snell's law be satisfied. If I were not in the same plane, then the

projections of its p-vectors would no longer be colinear and could not sum

to zero. On the other hand, the sum of projections of the P-vectors from x'

would remain zero, Thus, the first conditioi in (Cl) could not be

-C3-
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satisfied. Similarly, if x is in the normal plane but not on the normal

line the first condition could not be satisfied. That is, the conditions of

stationarity are satisfied by three points x, x. and xr which, along with I .' .

lie in a plane normal to the reflector with ' at the foot of the normal to ::

Si drawn from x The only freedom left in these conditions, then, are the

opening angle of the rays at x, and the orientation of the normal plane.

Below, I discuss how these are further constrained for particular

source/receiver configurations and this flat reflector constant background LA

model.

Case 1: Zero-Offset " "

When the source/receiver pair are coincident, the opening angle of the

rays at x, must both be zero; both rays from x' to x s and xr must be the

normal ray to the surface, passing through x. The stationary point on the

upper surface and the point z' must have the same transverse coordinates as

x, itself. The stationarity conditions are completely satisfied by these

three points. Because of the degeneracy of this case, a specific normal

plane is not determined. However, that is secondary to determining the

actual triple of points, itself.

The generalization of this result to curved surfaces and variable

background is fairly straightforward. Given x, find a normal ray from Sj

which passes through x. The initial point of that ray on Sj is the point

X'. The point where the ray emerges on the upper surface S, is the

source/receiver point which completes the triple of points satisfying (Cl).

For x on Sj, there is clearly only one stationary triple. On the other hand

- C4 -

* . . * * * ~ ~* ~~ *** .. -'1 K." -.. L. -



* .-.- .--.- .-.----~-.---...---,. -- I I"
- .. -.

for x on the evolute of S. (the envelope of normals to S.) there will be

more than one triple. In order for the asymptotic methods used here to be

valid, it is necessary to assume that this evolute is a few wavelengths (at .,..

least three) away from Si. Thus, it is assumed that the reflector is not

severely curved; that is, the principal radii of curvature of the reflector

must be a few wavelengths long.

Cas 2: Common Source .

Let us suppose now that the source point is fixed. Given -, drop the

normal to Sj and thereby determine x'. Pass a plane through x, X and x'. ..

This plane is normal to Sj. Draw the ray from x. to x'. Draw the reflected

ray in the given normal plane. The emergence point on S, is the point !r.

If x is on S., set x' = x and use the normal at that point and the fixed

point z s to determine the normal plane. Then proceed to determine xr as

before, with x not on S"

In a theoretical model, receivers are spread over the entire upper

surface. In practice, the spread is finite. Thus, the spread need not

extend to the determined x In that case, the determined point, x' will

not be part of a triple satisfying (CI) and will not be imaged. In the text

I have proceeded as if such candidate points are indeed stationary points.

As above, I argue by continuity that for curved surfaces and variable

c(x), differing not greatly' from the constant background case, the

essential features of this analysis still apply.

C5. * .
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Case 3: Common Receiver

As in the previous appendix, one need only interchange the subscripts s

and r in the discussion of Case 2 tc obtain a completely analogous

conclusion here.

Case 4: Common Offset

It is assumed that all of the offset pairs lie on lines that are

parallel. We rotate the normal plane containing x and x' until it is

parallel to this set of lines. Indeed, the inters.,ction of the nornal plane

and the upper surface contains one of those lines. J7ioos¢ the opening angle
,*- .-. *

of the rays from x' so that the rays eme ge ar thte upper surface at a :'

separation distance equal to the common offset distance. The emergence "-.-

points are the pair x. and x r .

Case 5: Common Midpoint

There will only be a solution to (Cl) in this case if the common

midpoint and x lie along a common normal to S. Furthermore, in that case,

all source/receiver pairs are stationary points. The method of stationary

phase breaks down since the stationary points are no longer isolated. This -

is a case which requires further investigation.

.C6 "



* APPENDIX D: MATRIX SIGNATUE

The purpose of this appendix is to show that the signature of the %%

matrix [t.9] defined by (33) is equal to zero. To do so, I consider first

the special case in which the background sound speed c in the region between

the upper surface and the reflecting surface is constant, the layers are

flat and there is zero offset between sources and receivers. In this case,

the upper surface and the reflecting surface are defined, respectively, by

xs xr t xs 1 2 1 x x Jr

(DI)

Furthermore, the travel times are just the distances between initial and

final point. divided by c:

* v(xx ) = Iz- x I/c, "( '•zr) = I - - xrl/c ..

(D2) "'

( s = Ii - s l/ c • T (*' • r ) = I ' - i r l/ c " "-")

These results are used to simplify I, as defined by (9) and then to

computed the determinant in (33). The analysis is further simplified by . '..

setting x' = x. The result is

0 0 - l/ tc 0 .

0 0 0 -l/Rc
"= (D3)

"" -1/Hc 0 1/Hc 0

0 -1]Hc 0 I/Rc

For this matrix it is fairly straightforward to calculate the cbaracteristic

-Dl- •. -... .:
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equation. The result is

det iJ = [.(1 - ,) + lS/[Rc)" 0 (D4)

.-... b

This equation has two double roots, A = [l - 4 5 ]/ 2 . Since two of the roots

are positive and two are negative, sig[fi] = 0.

Let us now consider deforming this constant background, zero offset, -

flat layer model into the true model. If the signature is to change as the

model is deformed, then at some point in the deformation, at least one -

eigenvalue must be zero. In fact, exactly two eigenvalues would have to be -.-.- "v" .

zero at this point, since det[L9 ] is nonnegative and by assumption, the

signature changes.

In the next section, it is showr that det[44 1 is proportional to

.h(_,). It has been assumed that h is nonzero for the true model. I now .-..-

add to that the assumption that our true model is not so severely different

from the flat earth case for h to have passed through a zero on the way from -

one model to the other. Thus, sig[j ] = 0 for the true model, as well.

,- - * ,I.
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*A?)PKNDIX H: RELATION DETWEEN hfiu,t) AND det[ft.I AT THE STATIONARY POINT

In this appendix (41) will be verified. To do so, isnecessary to

*evaluate Ih(x4)J as defined by (6) subject to the stationarity conditions,

(Cl) and the additional condition that x = x'. As a first step, g is

* replaced by A' in (6) and that equation is rewritten in terms of p-vectors.

The result is

L(X',x )+ p(z',x)
-s r

h(x'~t) -det (El)

-h--~ [p~xx)

To calculate this determinant, the matrix is multiplied by a matrix whose

determinant is known. That matrix is

rdx' dx.' dx

where each vector here represents a column of K. We remark that

dx' dx'
detlK n ME)

with the second equality being equivalent to (29). 4

Now, in multiplying K by the matrix in (El), we see that the first two <*

el ement s of the f ir st row are both zero by (Cl) , whil e the th ird el ement i s

-El-



S givean by

(p~z'x + p~xx)J n=2cosG (4

which follows from (40). Thus, in expanding the determinant of the product

by the first row, it is only necessary to consider the lower left 2)a matrix

after multiplication. Thus, let us now consider a typical term,

a dx'
a~ P(Li's) + P("'L')J s r t('Z (

(£5)

a tkm or, k,m 1,2.

It now follows that if the matrix in (El) is multiplied by the matrix K

before calculating the determinant, the following result is obtained:

* ~dot hMx',t) = cs dt[gj,(6

* for V' x on S. The outer equality in (41) follows from this result. The

* right equality in (41) follows from (40).
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