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ABSTRACT

.

This paper is based on a paper by Beylkin in which a leading order
asymptotic theory for inversion of acoustic data is presented. The method
is based on earlier work by Beylkin in the theory of pseudo-differential
operators and gemeralized back projections or Radon transforms. The back
projection or inversion is carried out with respect to a general [c(x,y,z)]
background sound speed. The asymptotic limit of interest is high frequency.
The inversion operator is given as an integral of the observed data over
frequency and over the observation surface. Beylkin claims that his result
is useful for finding discontinuities in the sound speed, but he does not
make clear how this is to be done in practice. I show how to modify
Beylkin’s inversion operator to obtain an operator whose output is an array
of singular functions, one for each reflector (discontinuity surface of the
sound speed) in the subsurface. The singular function of a surface is a
Dirac delta function whose support lies on that surface. Thus, the array of
singular functions produces a reflector map of the subsurface. The
validity of modification of Beylkin’'s inversion operator is verified by
applying it to band limited Born-approximate and then Kirchhoff-approximate
representations of the upward propagating wave field.. Multi-dimensional
stationary phase is applied to the spatial integration over the variables of
the field representation and the variables of the observation surface. It
is confirmed that the output is proportional to the band limited singular
functions of the reflectors and further that one can estimate the jump in
velocity across each reflector from the peak amplitude of the output on each
reflector. This is done for the cases of common (or single fixed) source,
common receiver, and common {(or fixed) offset between source and regeiver,
with zero offset or backscatter as a special case of the last of these.
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GLOSSARY

Az, x4) Amplitude of ray-theoretic or WEBJ Green’s function for
background sound speed with source at X and observation
point x. See Appendix A.

a(x) Perturbation in sound speed. Eq. (3).

c(x) Reference sound speed. Eq. (3).

D(E,w) Observed data, ug(x (%),x.(E),w). Eq. (5).

spl¥(x.x’',x5x,)) Band limited Dirac delta function of & (defined below)
with x’, Xg and x evaluated at the stationary point, defined

by Eq. (Cl), as functions of x.
5p(s) Band 1imited Dirac delta function of s, arc length normal to

a surface on which s = 0. Band limited singular function of

the surface. Eq. (38).
Aj Jump in a(x) across the surface Sj. Eq. (24).

F(w) Filtered (smoothed and tapered) source function in the

Fourier domain.

¥(x,x’,x_,x_) Phase of inversion operator applied to Born-approximate or

s Kirchhoff-approximate field data. Eq. (9).
[!§°] Hessian matrix of the phase of the inversion operator applied
to Born-approximate or Kirchhoff-approximate field data.
Bq. (33).
=
by g; First fundamental fomm of differential geometry evaluated on

the reflector Sj. Eq. (29).
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g5 First fundamental fomm of differential geometry evaluated on

-
o
P\.

the source/receiver surface evaluated at x.. KEq. (B9).

Yj(;) Singular function of the surface Sj.
ng(g) Band limited version of yj(g).
hix,g) Determinant defining transformation from variables (w,£,,&,)

to Fourier wave vector k. Eq. (6).

] Jacobi determinant of ray theory. Eq. (A9).

k Approximate Fourier variable of the inversion theory.
Eq. (11).

| Upwvard normal vector on reflectors.

p(x,x.) Ve(x,x. ). Eq. (AS).

R({',;s) Ray—theoretic reflection coefficient. Eq. (47).

S Reflector in Kirchhoff representation of upward propagationg
wave.

Se Observation surface.

vy oy
e

w)
-
[
I
[

Reflectors, surfaces of discontinuity of a(x) in the

: subsurface.
Sc Domain of integration in f-variables.
o Running parameter along rays. Appendix A.
o = (0,,0,) Parameters used to define a reflecting surface.
ti{x,x)) Ray-theoretic travel time between x and x.. See Appendix A.
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) Angle between the normal to a surface at the point x' 8nd the

ray from X, or x. to x', under the statiomarity conditions

T
(C1). Opening angle between these rays and normal subject to

Snell’s law of reflection.

ns(gr(g),;s(;).w) Observed field data. Eq. (5).
v(x) Sound speed. Eg. (2).

Point at which the output of inversion operator applied to

L]

D(f,w) is to be evaluated.
x' = x'(g) Point on reflecting surface.

Source and receiver coordinates, repsectively. Eq. (1).

.x.s' Xr
£ = (51,5,) Parameters labelling source and/or receiver points; i. e.,
x. = x. (&) snd/or x = x  (¥). Eq. (1).
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1. INTRODUCTION

This paper is based on the brilliant paper by Beylkin [1985). In that

TN,

paper, the author presented a theory for asymptotic inversion of

observations for the acoustic wave equation to estimate discontinuities in

Y LAY

the sound speed. The method allows for an assortment of possible
source/receiver configurations, broad enmough to accomodate most of the cases
- of interest in seismic exploration and other applications. For example, the
method applies to zero~offset data; common (or single) source, multi-
receiver array data (or the reverse); or fixed offset data. The inversion
of the data is an integral over the source/receiver array. Extemsion to

. other wave equations is also quite apparent from the presentation.

_ Beylkin's results are couched in the language of pseudo-differential

w operators and generalized back projections or generalized imverse Radon

2

N S
vty %1 7y
B
s

transforms. He also does not make precise the manner in which his method

L'

actually produces the discontinuities in the sound speed. The theory only

O

predicts that his integral solution is a leading order high frequency
asymptotic inversion operator without relating the output to the information

. being sought.

The purpose of this paper is twofold. First, I make more precise the

manner in which Beylkin’s method provides an asymptotic solution of the

. inverse problem, 1 start from one of Beylkin's interpretations of his
. inversion scheme to view the output as a high frequency Fourier inversion of
- band limited data for the perturbation in sound speed. 1 show that by
i

8 modifying the integrand of the operator by a scale factor, it will produce
:.

.

'
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asymptotically an array of scaled singular functions of the surfaces of
discontinuity of the sound speed. These surfaces are the reflectors in the
subsurface., The singular function of a surface is a Dirac delta function
whose support is on the surface. Thus, knowledge of the singular functionms
is equivalent to mathematical imaging of the reflecting surfaces. The
scaling factor for each reflector is a known function of the jump in sound
speed across the reflector. That known function takes a different fomm
depending on whether one has used the Born approximation or the Kirchhoff
approximation to represent the input data. In either case, I provide a
means of estimating from the output the change in sound speed across the

reflector. The estimate is consistent with the fomm of the input data.

Beylkin derives his inversion operator for upward traveling waves
represented by their Born approximation. The "backwards projection” of this
approach is with respect to an assumed known reference sound speed. I begin
from such a representation, as well. From this starting point, I can only
bave confidence in the accuracy of our interpretation of the output of our

method for small perturbations in sound speed.

The output that is produced depends on a certain open angle between two
particular rays in the subsurface. This angle is not known because it
varies from point to point in the subsurface. At each point, it depends on
the directions of incidence and reflection of a pair of specular rays from
an (unknown) source/receiver pair on the datum surface. I introduce an
alterpative inversion integral which, in the Bormn 1imit produces an output

whose peak value on & reflector is independent of that opening angle.
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1 then consider the application of my inversion operator to Kirchhoff

approximate data for a single reflector. For such a representation, I peed

R AN BN R R R e e

not assume small perturbations, but only high frequency, which is already

assumed in this theory. Here, I am able to show that the weighting on the

TN A ¢ 5

singular function of the surface is, to leading order asymptotically, the

-~

full angular dependent reflection coefficient, independent of the size of
i the jump in velocity across the reflector. Thus, it would seem that what
needs be "small” in this formalism is the error between the background sound
speed above a given reflector and the "true” sound speed above the

i reflector.

The angle of the reflection coefficient is as described above. I show

how this angle can be determined by exploiting the two inversion integrals

"y

already proposed. Thus, in terms of numerical processing one need compute

only one additional sum with summand given in terms of previously computed

11

' elements. From these two outputs, one obtains a reflector map, an angularly

MR o JoR AL TS N '.‘

dependent reflection coefficient and an estimate of the (cosinme of that)

angle.

J then propose a third inversion integral. This one has the property
that its peak amplitude on the reflecting surface is equal to the product of

the angularly dependent reflection coefficient and the area under the

n

temporal filter of the original time sigpal. This last result is the most

:‘_ esthetically appealing, but offers little practical adventage over the other

; two operators. In any case, at least two inversion integrals must be .

g computed to determine the unknown angle at each output point and then the L

B
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jump in velocity from the angular-dependent reflection coefficient.

This verification also suggests a recursive application of the
inversion formalism. That is, starting from the upper surface, each time a
"major® reflector is imaged, the background sound speed is updated to
account for the new information and data is processed deeper into the
section wuntil a new major reflector is imaged. The method is

pointwise, hence lending itself to this type of recursive implementation.

In these results, the upper surface is allowed to be curved. Thus, the
inversion ome produces eliminates two preprocessing steps usually applied to
seismic data. The first is a static correction for variable beight of the
source/receiver array. The second is stacking to produce an "equivalent”

zero offset (backscatter) data set.

Central to this derivation of these results is the method of multi-
dimensional stationary phase. This brings me to the second point of this
paper, namely, to provide a more classical verification of the asymptotic
validity of our modifications of Beylkin's inversion operator. Also, the
interpretation in terms of imaging of reflectors and estimating reflection
coefficients arises in a natural way in this method. Furthemore, the
method predicts that such imaging will occur only at those points on the
reflector for which there are a specular pair of rays from the source and
the receiver to the surface point. This ties the inversion back to the
required source/receiver array necessary for imaging the reflectors in the

subsurface.
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The verification of the two-and-ope-half dimensional (2.5D)
specialization of Beylkin’'s result has already been presented in Bleistein,
Cohen and Hagin [1985b]. In that case, it is assumed that the data is
gathered only on a single line on the surface and that all parameters of the
subsurface are functions of the transverse variable along that line and

depth. Significant simplifications occur in that analysis because fourfold

integrals over two surfaces appearing in the analysis here reduce to twofold
i integrals over two curves in the 2.5D case. Furthemmore, a certain 33
matrix central to Beylkin’'s approach, appearing in the present analysis,

reduces to a 2>X2 matrix in the 2.5D case and can be analyzed much more

readily than here.

The modification of Beylkin which I use is a generalization of the
method previously employed in Bleistein and Cohen [1979, 1982), Bleistein
and Gray {1985], Cohen, Bleistein and Bagin [1985], and Bleistein, Cohen and
Hagin [1985a] and [1985b). The essential feature of this modification is a
fundamental result in Fourier analysis, namely, given the Fourjer transform
of a function with surfaces (3D) or curves (2D) of discontinuity,
multiplication of the Fourier data by *jk before inmversion, produces the

array of singular fuanctions of the discontinuity curves or surfaces. Here,

k is the magnitude of the spatial transform vector variable and *1 = sgnuw
(time transform variable) in the present application. In the application to
Beylkin’s result, I pneed only identify his inversion representation as an
inverse Fourier transform and then identify k for this representation. It -

then remains to carry out the verification of the validity of the

application of this theory to upward scattered data in this gemeral context. ‘:A:':~-:j-'.j'-
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:? This paper contains a&an extensive appendix on the relation between
\ Beylkin’'s transformation determinant, h(x,f(), and the Jacobi determinant
»
. which naturally arises in ray theory. This analysis is important if the ,_
W ,_:
‘ method is to be implemented numerically. Furthermore, the length of this k.
\ ’
appendix reflects my personal interest in this interplay between ray theory ’L
S and asymptotic inversion. o
. W
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2. MODIFYING BEYLKIN’S RESULT TO OBTAIN THE SINGULAR FUNCTION

I present here Beylkin’'s solution to the acoustic inverse problem in a
constant density medium., Let us consider a seismic experiment carried out
on the surface of the earth in which the source/receiver pairs, 8 and x

respectively, are identified by a parameter £ = (&,,%,) as follows:
g T Es(c)l X, = Er(g)‘ (1)

For example, for the case of common source, xg Would be a constant vector
denoting that fixed position and the function x, (&) would be s parametric
representation of the receiver surface; for the common receiver case, the

roles of X, and x  would be reversed; for the common offset case or common

b

midpoint case, both x. and x, would vary with .

It is assumed that n(;,;s.w) is the response to an impulsive point

source at x_satisfying the wave equation

s

Vu-2 u=25%(x-x) . (2)

Born-approximate inversion is based on the assumption that the propagation

speed can be written in temms of some reference speed, c(x), and a small

perturbation a(x) as follows:

—1-;=L’[1+a]. (3)
v c
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The total field, u in (2), is then written in temms of an incident field
which satisfies (2) with v replaced by ¢, and a scattered field, ug(x,x.,v),

which is everything else.

It is further assumed that observations of this latter field are made

W
at the points x = x_(f) for sources at the points x = ;s(g). Beylkin's e -
inversion formula for a(x) is :fx

A
¢*(x) \ In(x,8) | '
a(x) ~ d g .
8 Alx,x)A(x,x) -
s Lo

(4)

* |} do Flw) exp[—iw[t(g.;s) + t(g.gr)]} D(E,w) .

In this equation I have used the following notation. The domain of
integration Sg is the set of &-values which are required to cover the
source/receiver array. The notation §, is reserved for the surface on which
X, and x. are located. The domain of integration in w is limited by the
*filter” F(w). I take this function to be symmetric and smoothly taperinmg
to zero at the ends of its support. I think of F(w) as a smoothly tapered
version of the source wavelet., In (2), there should have been some
frequency domain source function on the right side but I omitted it there in
order not to introduce two functions, one for the source and another for the
smoothing filter. Both are contained in this one function in the imversion
formula. The functions t(x,xg) and A(x,xy) [v(x,x;) and A(x,x,)] are the

WKB) or ray-theoretic phase and amplitude of the Green’'s function with
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source at X [;r] and observation point x, discussed in Appendix A, The

function, D(¢,w) is a shortened notation for the observed data at the upper

surface:

D(¢,w) = us(gt(g).gs(g),m) . (5)

The function, h(x,f)., is the essential element of Beylkin’'s result. It is

the determinant,

Viv(x,x ) + v(x,x)]
S r

det %E: Vit(z,x) + tlz,x )] (6)

h(x,E)

2
at, 2iIs 2rxp

It is assumed throughout that h # 0 and is finite. For four
configurations of x (f) and gr(g) of interest in geophysical experiments, we
show in Appendix B that this is equivalent to the assumption that there are
no caustics in the ray families between the output point x and the upper
surface, S§,,

1 will digress here to provide an interpretation of the result (4).
This interpretation is a synthesis of Beylkin's own presentation and the
discussion to be found in Coben, Bleistein and Hagin [1985]. Let wus
consider the high frequency Born approximation of the data, D(g.w), in temms

of the perturbation, a(x). That data is given by




3 -3 1] ’ [
D(¢,0) = - w ¢ (x') alx’) Alx .;s) A(x '!r)
&)
+ expliole(z’,x) + t(;',;r)]} ax' .
This result is inserted into (4) to produce the following.
3
¢ (x) \ |b(x.8)| .
alx) ~ - a’e o du Flw)
8n A(;.;S)A(_x_.;r)
S
4 (8)
=3 ' ' ' ) 3
. ¢ (x') alx’) Alx .;s) A(x s dx
+ exp liw !(!'!"!s’!r)} .
In this equation,
!(5.;'.55.51) = t(z',x) + w(x',x ) - [t(g.;s) + t(;.gt)] (9)

is the difference of travel times, source to input point to receiver minus

source to output point to receiver.

Beylkin's theoretical approach to the asymptotic inversion predicts
that the dominant critical point of the integral (8) is the point where ¢
vanishes, namely, where x' = g, for amy choice of §. Furthermore, in a

neighborhood of that point, linear approximation (or first term of the

_10..
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Taylor series) for & yields

. ’(5'5"53’5:) = Vlv(x,x ) + v(x,x )] - (x' - 1) . (10)

With this approximation, the phase in (8) has the form of a Fourier phase,

-~ ik*(x' - x), with the wave vector k given by

k=w Viz(x,x) + t(;,;r)] . (11)

I view (11) as defining a change of variables of integration from (w,f)

3 -- three variables —~ to k —— also three variables. The function, w'h(x,¢)

is just the Jacobian of that transformation, so that

0 |b(z.8) ] dwd’t = dx’. (12)

Now the integral in (8) is seen to be of the form of a forward and inverse

RS I T I

Fourier transform, producing the integrand evaluated at x’ = x. That

evaluation, indeed, yields a(x)-

Y

N
"~
N This ends the digression.
)
It is this interpretation as a Fourijer integral which will allow me to
B deduce a representation for the reflectivity function from the solutiom (8)
- for a(x). I base that result on a theory for identifying surfaces of SRR
Sl discontinuity of a function from large l;l band limited data for the
i function [Cohen and Bleistein, 1979, Bleistein, 1984]. The result is that
: if a(x) has Fourier transform G(k), then
:' - 11 -
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da(x)

(—> il«ignw) |k|d(x) . (13)
on

In this equation, da/dn denotes the upward normal derivative of a at the
surfaces of discontinuity and the correspondence means that if we have the
Fourier data ¥(k), we obtain the Fourier data for 8a/dn by the indicated
multiplication. In fact, I have now interpreted (8) as a Fourier integral
with k defined by (11). Thus, to obtain 3a/dn, I need only multiply the

integrand in (8) by the factor

ilsignw)| x| = io |v[t(§,,_[s) + r(;,!t)ll . (14)

Let us suppose that a(x) has a discontinuity surface, S. Then the
upward normal derivative at any point on S is proportional to a Dirac delta

function of arclength along a curve normal to S with peak of that delta

function on § itself. This delta function is the singular function of the

surface 8, It is through this depiction of the singular functions or the
discontinuity surfaces of a that processing for 9a/dn provides a reflector
map. Furthermore, for each surface the multiplier of the singular function

is equal to the upward jump in a(x) across the surface, namely,

1 1 viz+) - v(g—)
al(x-) - a(x+) = ¢ (x) - = . (15)
v (x-) v (x+) 2¢(x)

Here, a(x-) is the limiting value of o from points above the surface and

a(x+) jis the limiting value of a from points below the surface. I have

written approximate equalities in these equations and retained only the
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linear approximation from (3) because this is, after all, only a linear

inversion theory at this point. That will be remedied in Section 5 below;
we must content ourselves with this result for the present. One can see,
however, that the singular function theory combined with the Borm, high
for

frequency inversion theory provides a reflector map and a basis

parameter estimation.

The modification (13,14) is now used in the expression (4) for a to

write down the following result for da/fn:

da c’(;) Intx,8) | |Vr(_x_.xs) + Vt(x.xrﬂ

~

an  8n Alx.x)A(z.z)

(16)

. ivdo Flu) exp{—iw[r(_x_.gs) + t(;.;r)]} D(f,w) .

This is our first inversion formula. I will apalyze this formula in
the next three sections but also offer alternative inversion formulas with

various computational advantages. The key difference among them will be

powers of | Vr(x,x ) + Vr(x,x )| in the first line.
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3. ASYNPTOTIC ANALYSIS - PRELIMINARY RESULTS

For the inversion operator (16), I use for D({,w) the Born-approximate

data (7) to obtain an expression analogous to (8), expressing the output,

. da/dn, in terms of the perturbation, a, itself. The result is
: 2

da ¢ (x) . |h(x,8) | |Vt(§,§s) + Vt(;.;r)l s
. _— - - d’e iw do F(w)
. on 8n g A(;.;S)A(g,;r)

° (17

. (x ) a(x’) Alx',x.)) Alx',x)) exp {iv &(x,x’ .;s.;r)}d x'. L
i s

The phase, &, is given by (9); A(x,xg) explivt(x,x )} is the ray-theoretic
. or WKBJ Green's function for source point at xs and observation point, x,

with a similar description for the other amplitudes and traveltimes; the

" Jacobian, h(x,f) is defined by (6).

S

'.:: My objective is to show that the multi-fold integral in (17)

. asymptotically produces an array of scaled singular functions of the t:"'.f-.j-'i‘_:'
5 surfaces of discontinuity of a(x). To do this, I will apply the method of "]

stationary phase [Bleistein, 1984] to the five-fold integral im x' and §

under the assumption of "high frequency”, and then analyze the remaining

w-integral. I remind the reader that by high frequency I mean that o ‘
2 anfL
. L L LS (18)
- c c
- ° °
) .
: In this equation, L is a “"typical length scale”, c, is a local estimate of ".‘..;'fA.'j-':;:::
a -
r-- _ 14 - co.
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the background sound speed and f is the frequency in Hz. The dimensiomnless
parameter, A, then, measures typical lengths in units of the wave length.
In practice, a value of A of 3 is sufficient for high frequency asymptotic
analysis to adequately approximate a Fourier type integral, such as the one

we have here.

The integral (17) does not even converge unless we make some assumption
about the nmature of a(x). The reason is that the amplitudes A.x’',x,) and
A(x',x,) each decay only as 1/|x'| at infinity, while d’x’ is O(|x’|*d|x’])
at infinity. Thus, to avoid convergence problems at infinity, I will
assume that q(!') has finite support; that is, this function is zero outside
of some finite domain. This is not a serious comnstraint. Real data is
always of finite extent both spatially and temporally. In a model
experiment over all space and time, one simply models this finitemess of
data as being a consequence of the finite support of the function a(x'). Of
course, our output may contain "artifacts” which arise from the boundaries

of the input data set. We must be alert to these and reject them,

Alternatively, one could taper the data set both spatially and
temporally to minimize the effects of the abrupt boundaries. Equivalently,
I assume that a(x’') vanishes smoothly at the boundaries of its support
domain, while I will still allow a(x’) to have discontinuities inside that
domain. In this manner, the mathematical asusmption that o(x') has finite
support and vanishes smoothly at the boundary of its support is seen as a
physically reasonable assumption, while providing a useful mathematical

constraint for our further analysis.

LA A Al il Al &




Let us now consider applying the method of statiomary phase to (17) in

the variables x’ and . Then the first derivatives of & with respect to all

of these variables would have to be equal to zero. I claim that, except, in

unusual (pathological) cases this cannot happen. More specifically, the

-
[
N
Yo
~
™

.
.

derivatives with respect to all of the x’ variables cannot all

A" A JSEEEA e TR YIRS R

simul taneously be zero. To see why this is so, I write down those
derivatives, using (9):

’ = [} ] ' ’ N (19
Vé(z,x'x,x) = Velz',x) * Vielx',x) )
N In this equation, V' denotes the gradient with respect to x', The reader is
reminded that v"(¥"§s) IV't(E',Er)] is the tangent vector to the
geometrical optics ray from x_ [z ] to x' with background sound speed c(x’).

In order for V'# to be zero, then, the ray directions would have to be anti-

colinear. Equivalently, both rays would have to be segments of a single ray

which emanates from ome of the poimts xg, X,» travels into the subsurface
and turns back to the surface to emerge at the other of these two points.

We will assume that x x,. and x' are not a triple of points for which this

s’

can occur. ON the other hand, however, for vertical seismic profiling or

other tomographic-like inversion problems, this would be exactly the

N A

stationary point of interest.

The method of stationary phase dictates that when there are no interior

COTEE

stationary points, one applies integration by parts (the divergence theorem
in more than ome dimension) to replace the integral over the interior by an
integral over certain boundary surfaces. There are two such types of

boundaries: the actual boundary of the domain of integration (where we have

TS s S

assumed that a(x') = 0) and the discontinuity surfaces of the integrand.

‘. s D
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For the present, I assume that the only discontinuities are in alx'),
itself. At the end of Section 4, I will discuss the effects of
discontinuities in the background speed c, as well.
Let us consider, for a moment, only the x'-integral in (17):
(20)

¢ (x') alx) A(z',x ) Alx’,x ) exp liv !(’—"5"%"—‘:)} a’x’.

I denote by S,, S,..., the discontinuity surfaces of a(x'). For simplicity,

we sahould think of them as extending across the support domain of a(x’) and

not intersecting. (This will simplify our analysis somewhat. It will be
clear below that the case of intersecting surfaces —— lenses, for example --
can easily be included in the discussion.) I assume, therefore, that a(x’)
is given by different functions between the surfaces:
a,(x’'), x' between S  and S_,
a(zx’) = | a,(x'), x’' between S, and S, , (21)
an(!')’ x' between Sn and Sn+l,

and x  reside.

with S; the observation surface on which x

Let us consider the integral im x’ over the domain between §; and Si+1

In order to apply the divergence theorem, we must

where alx’) = aj(g').

first write the integrand in the x’' integral as a divergence. To do so,
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eee
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vlele
s Tyt te e

consider, first, the identity

v'e v'e
Wexp {iwd} = V'. —_— Vexp (iod) -v'- — W lexp {iwd}. (22)
io|V' g in|V' ¢

In this expression, I have used W to denote the amplitude of the x’'-integral
in (20). Note that the second term on the right here is of the same form as
the left side of this equation with a different amplitude function and a
factor (iw)”. Thus, asymptotically, onme should expect that the integral of
this term will be of lower order in w [0{w™™)] than the integral of the left
side. Therefore, to leading order asymptotically, I need only integrate the
first term on the right. It is to this integral that the divergence

theoremcan be applied, to obtain

-2 : [
I=1c¢ (') aj(g ) Alx »2.) Az .;r) exp {io ¥(x,x 'Es'!r)}
ﬂ-[V't(g'.gs) + Viel(z',x )]

: ~ ds’ .
Vie(x',x ) + Vie(x',x)
=S8 - r

In this equation, ® denotes the upward normal on the surface, Sj or Sj+1-
This is the outward normal tc the domain of integration at the wupper
surface, but it is the inward normal at the lower surface. Thus, one
obtains surface integrals of opposite sign when the result of the divergence
theorem is expressed in terms of this upward nommal. In particular, I
assume that @ = 0 on S; so that the integral over S, is equal to zero. I

have also explicitly written V'@ in terms of the gradients of the separate

travel times, from (9).
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It is now necessary to sum integrals of the form (23) over all of the
separate domains of definition of a(x’), For each domain integral we obtain
a pair of surface integrals. When this sum is re—ordered by surfaces
instead of domains, we obtain a pair of integrals over each surface in which
the only difference in the integrand arises from the discontinuities of
alx’). Let us introduce the notation

A= lalx-) ~alz'), 2’ on S, . (24)

As in the previous section, (-) denotes the limit through lower values of z

t (from sbove) and (+) denotes the limit from below. Now,

da da
— =§ 4 (25)
on on
where
R .
da. ¢ (x) . In(x, &) | |ve(x,x ) + Vt(;.gr)! .
-~ - n d't 2 v duw F(w)
dn 8n Al(x,x )A(x,x )
g =r=2g T
¢ (26)
-2
] e (x%) Aj Alx',x)) Alx',x ) exp liw $(x,x',x,,x.)}
s
J
nelVielx',x ) + Vielx',x))
. > as' .
2
vViel{x',x ) + Vie(x',x )
= "% r

In this integral, the surface Sj is parametrized by two parameters,

0 = (0,,0,):

_19_
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!' = !’(_6_)! 5' on S.. (27)

It might be more proper to index g by j, as well. However, I will continue
the discussion below focused on only one surface and hence dispense with

indexing on this variable. In terms of these parameters,
s’ = Jgj do do,, (28)

with B; the first fundamental form of differential geometry for Sj.

dx’ dx' | 2 dx’' dx'
g, = X = det | —— * — , k,m=1,2 , (29)
] du1 doz dok dum

Here X denotes the vector cross product and - denotes the vector dot

product,

< -
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4. ASYNPTOTIC ANALYSIS OF OUTPUT FOR BORN-APPROXIMATE DATA

Ak

I will now apply the method of stationmary phase to (26) in the four

: g
variables (£,0). The phase 4 is a function of these variables through the - . ;-?
ha ::' x"':.‘r:
dependence of x' on ¢ and the dependence of xg and x_ on {. Equation (9) is ;hliﬁd;

used to write the four first derivatives of & in temms of the derivatives of

the travel times:

dx

. ' . s ' ) e 1 ';::;;T
EE; = Vs[ w(x',x) - tlx,x) ] EE;- + Vr[ wlx',x) ~ <(x,x) ] it ff;:fii
(30) ’
dx’
e[y v | g -
m m

The stationary points in (f,o) are determined by requiring that these first

derivatives all be equal to zero.

In Appendix C, I discuss the conditions under which § is statiomary.
The stationary phase conditions are stated as equation (C1). Also, in that
appendix I show that, for X on the surface Sj for some fixed j, there is a

unique statiomary triple, x', x_. and X,, with ' = x. This is shown for the

S

following source/receiver configurations of practical interest: common
source, common receiver and common offset. Although I have only considered

here the fully three dimensional problem, this analysis specializes to the

cases of 2.5D inversion,

I will proceed below by focusing attention on this stationary point on

Sj when x is in the neighborhood of Sj. That is, this is the stationary

point which has limit x’' = x as x approaches §;. 1f there were mno

':'-' N e T s h\- T '.'."‘.".' S -7 f’""h"‘ e e R
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source/receiver pair in the seismic survey wunder consideration which

needed to complete the statiomary triple,

included the particular X, and x/

then the asymptotic contribution for that point x would be of lower order in
w and almost always of smaller value numerically after the w integration

than the result we will obtain below. Thus, I proceed under the assumption

—

.i that such a stationary triple has been determined and that the corresponding

values of ¢ and ¢ are interior points of the respective domains of

s A
RN

integration.

- Stationary Phase Evaluation

The integral in (26) is evaluated by the method of multi-dimensional

stationary phase in the four variables g and §. The result is

da, ¢ (x) AGx'.x) Alx'x) |a(x,0) |Ve(x,x) + Velx,g)|

1/2

on j 02(5-) A(g.;s) A(;,gr) Idet[!éoll

(31)

;°[V't(5'.gs) + V't(;',gr)]
. g. I(x).
R [
|V't(g'.§ ) + Vie(x',x )l
s r

In this equation, g; is defined by (28) and I(x) denotes the integral

I(x) = i% [ F(w) exp {imi(g.;'.gs.;r) + i{sign w)(n/4)sig(d U)} dw , (32)

4
This integral, as well as the entire right side of (31), is a function of x,

alone, because x’, x. and x, are determined as functions of x from the

stationarity conditions, (Cl1). The matrix, [ngl. is a 4X4 matrix,
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p . .

[_:: [!to] = . . , i,m=1,2; (33)

o ad K ]

E | afiacm aoiadm

»_:

E{ det[§€°) denotes the determipant of this matrix and sig(!tc) denotes the
signature of the matrix, which is the number of positive eigenvalues minus

the number of negative eigenvalues of the matrix.

Determinant and_Signature for x near 5

Since it is expected that aajlan peaks for x on Sj. we are interested

in evaluating the result (31, 32, 33) for x near Sj' Let us first consider

the behavior of the matrix [’go] in (33) when x is on Sj. In this case, o

can be fixed before evaluating the second derivatives with respect to ;.

Em+ In that limit, & = 0; the entire 2X2 matrix in the upper left hand

corner of [igol is a matrix of zeroes; the determinant of [.go] is just the

square of the determinant of the 2X2 matrix in the upper left hand corner:

(34)

ot [t,] - [ - [ [ [m,,)”(x,,,]l]z

with x' evaluated at the statiomary point x on S; and x; and x  evaluated so

as to make the phase stationary.

From this result, we see that the determinant is positive, so that the

. e AR N
Lg e e T St L.!_\L.L;_‘ amndiadie e A LA A A




eigenvalues of each sign must occur in pairs. Thus, the only choices for
Sis(QEU) are *4 and 0 and the only effect that the signature factor can
have on the final result in (31,32) is a multiplication by -1 or +1,
respectively. In Appendix D, T show that, in fact, the signature is zero
and the multiplier is +1. In this case, the integral I(x) defined by (32)

becomes

I(x) = 5%-[ F(w) exp {iwﬁ(g.g'.gs.gr)} do . (35)

I will assume that the original source was impulsive. Thus, from the
assumptions about F(w) in Section 2, it can be seen that I(x) is a band

limited Dirac delta function of the argument, &(x,x',x,,x,). Therefore I

H]

set

($(x,x',x_,x)), (36)

where I have used the subscript B to remind us that this is a band limited

delta function.

The function, ¢, is equal to zero on the surface Sj. Thus, the support
of this delta function includes Sj' In fact, this is the only zero and it
is isolated. To see why this is so, let us take the gradient of & with

respect to x, with x',x; and x  defined by the stationarity conditions (C1):

.\l". l‘ ‘ l”'.‘J' = ; k
‘ I ',‘ .n' .u' .d’
MO s
ORI o
o0 e
};’J’?-'_’a'_ ’4

R RAAR
'

5ot
L]

oa?
:.;

..}

t 4

(PR P8

da¢ ¢ 3¢ 9x! do ¢ o9x ., 9t 8¢ o9x , at
k
__=_._+§_____._£+ rk 'm sk _m 5 -1,2,3. (31
’ .
dxj axj Lm 6xk aam axj axrk Bém axj axsk 8§m axj S
it
X
In this equation, each sum on k is zero by the stationarity conditioms (C1), :f?
-
S
- 24 - BN
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Thus, the total derivative with respect to x; is just the partial derivative

PR
1.4 4

with respect to the explicit x; in 4. VWe can now conclude that ¥# is not
zero by the same assumptions as were made to conclude that V'# (19) was not
zero. Consequently, the only zero of &, suvbject to the stationmarity

conditions, (Cl), is the surface Sj. itself. By standard rules about delta

N functions we can now write I(x) in terms of a delta function of a single

- arclength variable having the property that it measures arclength along a

curve normal to Sj. If we demote that arclength by s, then

5 _(s) 5 (s)
I(x) B = B . (38)

- Ivé]  fvetzz) + Ve(x,z0)|

This delta function, with support on §; is the singular function of the
surface, Sj, introduced below equation (14). Below, we will denote this
function by yj(g). Determination of the singular function of a surface
constitutes mathematical imaging of the surface. A plot of the band limited
delta function YjB(i) will, indeed, depict the surface. In fact, standard
g seismic output depicts the reflectors by plotting their singular functions

within a scale factor. By using the result (38) in (30) with 5p(s) replaced

by 7jp(x) one obtains

da . ¢ (x) A(x'.x.) Alx',x) |h(x.,8)]

1/a

r
¢ (x') A(x,x) Alx,x) ‘det[§§01|
(39)

a-lVio(xr,x) + Velx’,x))
X LS 9 _

' CIETICE

V't(g',; ) + V"t(!',! )| 2
S r

) e 2 s s K
‘.".'A'.'.'¢':

Again the reader is reminded that x', x, and x, are determined here as

L

S . . - . -
ANl el e ety
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a3k
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I
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functions of x by the stationarity conditions (Cl), so that the entire
result is a function of x, At this point we bave 2 result which images the
jth reflector through the dependence of auj/an on the function ij(g). It
only remains to determine the peak amplitude of this result when X is on the

reflector.

I will now analyze the multiplier of yBj(g) at the peak of this
function, that is, on the reflector, itself. To do so, let us first
introduce the acute angle 0 between the upward normal to the surface and the
incident and reflected rays on the surface. Note that the downward
gradients V't(x’',x ) and V't(x',x,) make angles of n -8 with this normal and

make an angle of 20 with ome another. Therefore,

~ 2cos ©
n '[V't(g’,gs) + V't(g',gr)] = - —g%g;;— ,
(40)
Vig(x',x ) + v'r(x"x ) z= ___2_ [1 + cos20] = Q_O?_Q : .
= ’=s - '*r 1, cl(x’)
c (x')
Finally, in Appendix E, I show that
nex.0) | — 2 cos ©
1/2 Jsj = lV‘t(_X_.gs) + vt(_x_p!t)l = '—;T!—)—— » ! on Sj. (41)

Idet[§§°]|

By inserting the results (40, 41) into (38), one obtains the following

result for aaj/an at its peak; that is for x on Sj:

- 26 -
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aaj
—= ~A, y.plx) , x 0on S, (42)
an j "iB Jj

With Aj defined by (24), this result confirms the discussion at the end of
Section 2. Namely, the modification (16) of Beylkin's original inversion
equation (4) asymptotically produces a singelar function at each reflector

multiplied by the upward jump in a(x) across the reflector.

I will now proceed to evaluate yjs(g). itself, on Sj' To do so, I use

(35), (38) and (40) with x’' = x to conclude that

da.
e [Fm) du . (43)

We see here that the actual numerical value at the peak depends on the
opening angle O between the normal and each of the rays from X, to x on Sj

and . to x and §;. Unfortunately, we do not know this angle. From (41)

r
and (11), we recognize the first fraction in (43) as just the factor
relating |o| and |k| in our heuristic transformation (eq. 11) from (w,) to
k., The reason for the appearance of this factor now becomes more apparent.
In (43), I have expressed our answer in terms of a band limited frequency
domain delta function. I have dome this, because that is the way the data
is provided in the seismic experiment. On the other hand, yg(x) should be

expressed as a band limited wave number domain delta function. This first

factor is the scale between these two transform variables.

With (40) as a guide, the modification of our processing formula to i)
DR

« . hew

‘!LY—‘*\!
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obtain a result which is B8-independent at the peal is apparent. ¥e mnced

.

only modify the integral formula in (16) by eliminating the factor of

e |vt(!,§s) + VT(!'!r)I’ This effectively changes the scale of the normal
. derivative so that we are no longer differentiating with respect to n, but

with respect to !j(;) = !(5,5',55,5r) evaluated at the stationary point

&{ related to Sj. Thus, symbolically, I set
s
% ,
il da W o Ib(x.0) ]
; EX 3 3
8x A(;.;S)A(g.;r)
L 4
B (44)
_h . ivw dw Flw) expl-iw [Vr(:_x.;s) + Vt(g.gr)]} D(E.,w) .

The symbolic differentiation here is with respect to ’j in the

neighborhood of Sj. (No such differentiation is actually performed since I
only mean to give a suggestive name to the indicated operations on the right

side of the equation.) All of the asymptotic analysis carried out above for

{' da/dn is identical for da/3d, except that in the evaluation at the .
:: stationary point one must eliminate one factor of
P |Vt(§.gs) + Vt(g,gr)| = 2cos8/c(x) (eq. (42)). Consequently, the peak value €1i7L4s

of the reflectivity function aaj/agj in response to data from the jth

surface is

i3 da . 1
. —1=A = | F(w)dw, xon§S, , (45)
" an j 2n J

and this replaces (43)., Since we know the filter, we know the integral on

. L
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- the right. Correcting the peak output by this scale factor provides an
l estimate for Aj. In (15), the relationship between Aj and the change in
sound speed across the reflector is stated. Thus, if we know the sound
speed above the reflector we obtain an estimate of the sound speed below the

refiector consistent with the Born approximation on which the analysis was

B JC I N

ba sed.

l In summary, then, I have proposed a modification of Beylkin's
fundamental inversion formula forto Born-approximate data and then proceeded
to analyze the output as applied to such data by asymptotic methods. My

conclusions are as follows.

(i) The output da/dn is proportional to the sum of bandlimited scaled
i singular functions of the reflectors plus possible lower order

(smaller) asymptotic contributions.

l (ii) At the peak value of the output on a given reflector, the scale factor
of each singular function is the peak value of the bandlimited singular
function multiplied by the jump in e across that reflector. The peak

value of the singular function is proportional to the cosine of an

[ 2

unknown angle. By a slight modification of the inversion operator, the
data can be processed for a function I defined as da/dd, whose peak
value is just the jump in ¢ multiplied by the area under the frequency

domain filter of the data.

1 repeat that F(w) is typically a tapered version of the original

source. Thus, this integral, within smoothing is just the source in the
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time domain, F(t), evaluated at t = 0,

I return now to the question of a discontinuous background sound speed.
Let us consider the effect on the output of a c(x) which might be
discontinuous above sj but remains continuous in the neighborhood of §;. As
long as the ray-theoretic phases and amplitudes used in our inversion
formulas include the effects of those disontinuities -- e.g., refraction of
rays and transmission coefficients —~ then the results obtained here remain
valid. After the surface Sj has been identified, the effects {f that
surface are incorporated into the integral operator to invert for points

below Sj,

More generally, given a set of surfaces of discontinuity for the
background velocity, the upper velocity is used for a small region below
each input surface and then effects of that surface are included to process

deeper. This was the method successfully used by Docherty [1985].
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S. ASYMPTOTIC ANALYSIS FOR KIRCHHOFF-APPROXIMATE DATA

Let us consider, now, the consequences of applying the inversion

[MAEEES [

-
-

formulas (16) to Kirchhoff-approximate data D(w,f) for a single reflector,

Te

rather than to Born-approximate data. On the one hand, such an application

is suspect, since the derivation of the results (16) was based on a Born
approximation of the solution to the forward scattering problem for the
. ppward scattered data from the subsurface. On the other hand, Kirchhoff
data is not constrained to small perturbations, but only to high frequency,
which we have used throughout, in any case. Furthemmore, Kirchhoff data
‘ more accurately represents the upward scattered field from a single
: reflector (especially for separated source and receiver) than does Born
data. Thus, a useful output of this analysis will allow us to dispense with
the small perturbation constraint in the forward scattering problem, a
constraint which was imposed on the original derivation of (16) while

providing us a better estimate of the effect of applying our inversion

.' operator to field data.

:"»" In order that the reflector in question be properly located, it will
<; still be necessary that the background sound speed not vary too much from
the "true” sound speed above the reflector in question. However, this is a
somewhat less severe constraint when one contemplates a theory that will
produce something better than a linear approximation to the velocity
variations and we could then contemplate applying a three dimensional "layer

stripping” method to proceed from one reflector to another, progressively

‘f deepexr in the subsurface.
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Kirchhoff-approximate data for a seperated source and receiver and

single reflector can be found in many sources, including Bleistein [1986],

eq. (49). 1In our present notation the result is

KR o ¥ D iy G

D(E,w) ~ iw [ R(;'.gs) A(;'.;s) A(g'.;r) e xp {im[r(g'.;s) + r(g'.;r)]}
S

(46)

“ ne[Vitl(x',x ) + Viel(x’,zx )] dS’ .
- —S - -r

In this equation, R(l"is) is the geometrical optics reflection coefficient,

i |ar(5'.5 )/anl - Jv—:(5'+) - v_z(g'—) + [ar(g',g )/an]’
g s s

R(s’.gs)

. (47)

|at(§'.5 )/anl + ]v_z(§'+) - v—z(g'—) + [at(g',g )/an]z
s s

This result into (16) to obtain the following multifold integral

representation of the output da/dn:

| SR AUV SRR

da ¢’ (x) . BED | V) ¢ Vel |
de s o dw Flw)

dn 8n g A(g,;s)A(g.gr)
¢ (48)

—_— ~

LS

- | R(x',x ) A(x',x ) A(x'.x ) exp (iv &(x,x',x ,x )}
- -s - - S b o

iRt e et

S
. n-[V't(g'.gs) + V't(g',gr)] das’ .
i This result is to be compared to the integral (26) for the analysis of
F
; Born-approximate data from a single reflector Sj- We can see that the .‘.;1j¥ff
; IR
N -
5 - 32 - -
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integrals are identical except for the following factors:

-2
¢ (x') A,
I
Vie(x',x ) + Vit(x’,x ) *
- i 3 - -r

< > R(x',x ) . (49)

The left side of the arrow is the factor appearing in the Born-approximate
output (26) while the right side is its replacement in the Kirchhoff-
approximate output (48). Thus, no further asymptotics need be done. The
result of stationary phase applied to (48) can be determined by making the
same replacement in the results of applying stationmary phase to (26); that

is, to (39) and to (43),

The conclusion of this comparison is that for the Kirchhoff data, the
formalism (16) produces a singular function of the reflecting surface scaled
by some function of x. That is, the output provides a reflector map. It
remains only to determine what the peak value of the output is when x is on
the reflector. To do so, we must make the replacement (49) when x = x' and

the statiomarity conditions (Cl) are satisfied. In order to make this

substitution, note first that

e’(x) |velx,x) + Velx,z )| = deos’e . (50)

When this result is comkined with (49), we see that we need only make the

repl acement

- 33 -
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Ay 4c0s’0 R(x,x) (51)

:},":',-‘

at the peak. By using this observation in (43) one concludes that

da  8R(x,x) cos’s 1
— = — | F(w) dw , x on S . (52)
on c(x) 2n

I now show how this peak value is related to the previous result, (43).
To do so, I use the fact that Vr makes an angle of n - 6 with the normal at

the stationary point to rewrite (47) as

0_1(5) cos 8 - ‘v—z(x_:+) - v-z(g—) + c—z(g) coszG

R(!,_x_s) = . (53)

-1 2 —32 —3 3
¢ (x)cos® + Jv (x+) - v (x-) + ¢ (x)cos ©

\

Now let us assume for a moment that the jump in v(x) across S is small. One
then obtains the leading order approximation of R(g,;s) for small values of
the jump by expanding the square root both in the numerator and the
denominator, retaining two terms in the numerator and one in the

denominator. The result is that

2 2 1 1 viz+) - vix-)
4R(5,;s) cos 8= ¢ (x) S - = = = A, (54)
vi(x-) v (x+) 2¢(x) J

where I have used (15) and (24) with x = x' to obtain the last result,
That is, to leading order for small jumps, the present result agrees with

the previous result. However, .u.e¢ result (52) predicts that the output

- 24 -
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will, in fact, produce the geometrical optics reflection coefficient at the

peak, even though this coefficient is a nonlinear function of the jump in

sound speed.

\
+
On the other hand, an estimate of the angularly dependent reflection
:: coefficient is not useful unless we have a means of estimating the angle.
3 Fortunately, we do have such a means. What one must do is compute aaj/ai
[Eq. (44)] as well as da/dn, since we know tbat the peak output of the
former by a factor of 2cos8/c(x). That is, if the surface S is one of the
: surfaces SJ- then the peak value (45) is replaced by the result,
- aaj 2 1
- —= = 4R(x,x ) cos 8 — | F(w) dw , x 00 § . (55)
X 0% . 2n
\ J
_‘: Now, by taking the ratio of the results in (52) and (55) one obtains
: da,
3-.% 2cos 6
~ , xonS=2S8,. (56)
- da. c(x) = i
. -—-‘Laq
: J
From this ratio, cos® is computed. Given cos®, (53) is used to compute the
sound speed below the reflector in terms of the sound speed above the
;; reflector. This is a fully nonlinear estimate of sound speed coasistent
with the high frequency asymptotic analysis that has been carried out.
Y For esthetic reasons it would also be desirable to obtain a result in

which the peak value of the output was equal to the reflection coefficient

b
17w a

multiplied by the area under the filter. By examining (52), we see that we

. - 18
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need only eliminate a factor of 8cos’®/c(x) at the peak. From (50), we see

that the way to do this is to introduce into the inversion operator (16) a
divisor of c’(g)th(;,;s) + V%(;,;t)l'. Thus, I propose ome other operator,

which I call the reflectivity function and denote by B(x):

1 F jhix.g|
glx) ~ — 4 & 2
8n A(x,x )A(x,x) |Vt(§.; ) + Vo(x,x)
g 3 s r s r
14
(57)
. io do F(w) exp{-im[t(;.;s) + t(g.;r)]} D(¢,w) .

With no further analysis, we can be assured that the peak value of the
reflectivity function is given by

plx) ~ R(x.x) f%—l F(u) do, x on § = Sj . (58)

I note, further, from comparing this result with (55), that we could as

easily determine cos® through the ratio

da

o
B(x)

~ cos ®, x on S = 5; - (59)

In summary, then, the operator derived on the basis of the Born
approximation produces a reflector map when applied to Kirchhoff approximate
data with a nonlinear estimate of the jump in sound speed across reflectors,
consistent with the geometrical optics reflection coefficient of each
reflector. The angular dependence of the reflection coefficient is resolved

by simul taneously computing two inversion outputs and taking their ratio.
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6. OONQLUSIONS

have

Starting from an inversion operator proposed by Beylkin, I
proposed three modifications of that operator. Fach of those operators arc
shown by asymptotic analysis to produce a reflector map when applied either
to Born-approximate input data or Kirchhoff-approximate input data. The
peak value of the output of these operators is proportional to the Bornm
approximate reflection coefficient (or jump in a(x)) in the former case and
to the geometrical optics reflection coefficient in the latter case. The
output also depends upon the opening angle between specular rays from the
source to the reflecting surface and from the receiver to the reflecting
surface. This opening angle is unknown, but can be eliminated for either
type of data. These results are valid for three source/receiver
configurations of interest: common (or fixed) source, common receiver or
common offset, with the 1last of these including the zero offset or
backscatter case. The analysis also assumes that there are no caustics in
the ray trajectories from subsurface points to sources or receivers. The

analysis allows for a curved datum surface.
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FIGURE CAPTION C

Figure Cl1: Triple x', x,, x, satisfying stationary phase conditions,

Eq. (C1) for a horizontal observation surface, horizontal reflector and

constant background sound speed.




FIGURE C1
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APPENDIX A: RAY-THEORETIC GREEN’'S FUNCTION

In this appendix I present some results about the WKBJ or ray-theoretic

Green's function,

G(x,x',w) = A(x,x")explivt(x,x')} , (A1)

satisfying the inhomgeneous Helmholtz equation,

ve+ L G- p(x-x"). (A2)

In this equation, ¢ denotes the background sound speed, c(x), with its
argument omitted when it is clear in context., The travel time tv and the
amplitude A are chosen so that this equation is satisfied to order w’ and w.
The equations they satisfy are called, respectively, the eikonal and

transport equations:

[vel” = 1/¢’, 2Ve-VA + AVt =0 . (A3)

A solution of these equations is required to describe a wave emanating

from the source point, x’. Thus, the initial conditions for vt and A are

t(x,x') =0, |x - x'|Alx,x’) ©1/4n, as x Sx' . (A4)

The problem for t is solved by the method of characteristics, [Bleistein,

1984]1. The characteristics satisfy the system of ordinary differential

equations,
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. e Em——te w = -

dx dn 3
—=p, x=1x', for ¢ =0; — = V[1/c"), p= Vo . (AS)
do do

Let us denote the initial value of p by p,; that is,

CTEEEE A A A e e e 8

P, = p(x’'.x"). (A6)

' This initial value of p is not determined, except for its magnitude which

4,

must equal 1/c(x’') from the eikonal equation. Each choice of the direction
of p or, equivalently, each choice of p,, and p,, within the constraint on

lpl. determines or "labels” an initial direction of a ray, which is the

A, .

solution curve x(c), or, more completely x(o,p,0,P3,)+ The rays "sweep out”
a volume of space as we vary the three ray parameters. If rays for

different choices of (pjo,Pso) do not cross one another —- i.e., if there

are no caustics -- then away from x = x', there is a one-to-one

correspondence between values of x and values of the triple (o,pye,Ps,) It

0TS T R s

i is assumed throughout the analysis that there are no caustics in the region B2
of interest.
F The travel time also satsifies an ordinary differential equation with P ogar—
" respect to ¢ —— i.e., an ordinmary differential equation along the ray —- ’:-_'.‘. -
NS
namely, el
:“. :—t = -1—3 , (A7) RNt
° ¢ o
:
'l‘ and thus is determined by integration along the ray. The transport 2
equation, the second equation im (A3), can also be written as an ordimary R 1
- R
. ».'.'1
S ]
| v |
- A2 - )
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differential equation along the ray, with solution,

. 1
A(x,x') = 73 (A8)
411|p”J|
The Jacobi determinant, J, is given by
alx,,x,.x,) ax
J = = det 3 . (A9)
3o, p,,:0,,) Pio
ox
ap30

The assumption that there are no caustics assures us that J does not vanish,

except at 0 = 0, that is, at x = x’,

There are two practical ways to calculate J. First, J can be related
to the spreading of ray tubes. That is, J is proportional to the nommal
cross-sectional area of the differential ray tube. Thus, if omne is
*shooting” rays, a reasonably accurate approximation of J can be determined
by measuring the area of the tube of meighboring rays at the arrival point.
that are

The constant of proportionality depends upon the ray parameters

used in the shooting method.

Alternatively, the components of the Jacobi matrix from which J is
computed also satisfy ordinary differential equations with respect to o:

that is ordinary differential equations on the rays. See, terveny. etal.

[1977) or Bleistein, [1984].
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One can see from this brief discussion that ray theory lends itself
naturally to initial value problems, that is, to the "shooting of rays” from
a prescribed point. On the other hand, in the application to inverse
problems, one is constantly thinking in termms of a travel time and amplitude

between two fixed points, say, x and x_, for example. Indeed, it will, at

s’
times, be convenient to think of the rays as emanating at x and arriving at
Xe and sometimes, the reverse. There are both theoretical and
computational difficulties associated with the transition between initial
value problems from each point and the boundary value problem between the

two points. We will see some of this in the next appendix.
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APPENDIX B: ANALYSIS OF h(z,t)

The purpose of this appendix is to introduce simplifications of the
determinant h(;,;). defined by (6), for four cases of interest in seismic
exploration. In particular, It will be shown how this matrix is related to
the consitutents of the ray theoretic Green's function developed in the

previous appendix.

Case 1: Zero-Offset

Let us suppose that we are considering the idealized case of coincident

source and receiver. In this case,
x (%) = ;r(g), (B1)

the sum of travel times becomes just twice the travel time to the

source/receiver point and the determinant in (6) becomes the simpler result,

Vz(x.x )
- s

2
a

h(x,g) = 8 det Vt(g,;s) . (B2)

1

()
a—c—z vt(!,_x_s)

The gradient Vt(l‘fs) is the value of the p-vector (introduced in Appendix
A) on the ray initiated at X and arriving at depth at the point, x. Since
this vector satisfies the eikonal equation with right side 1/c’(x),

independent of {, we have the result,
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> , o 3 a
° - 2 oF o TRT 2 Pp T P =0, 3=1.2. (5)
Ej c Ej k=1 j

To exploit this identity I multiply the matrix in (B2) by another matrix,

1 1] P,
P = 0 1 p, , (B4)
0 0 »p

before computing the determimant. Since detP = p,, the result of this

calculation is

pl p3 1
ap ap 8 alp,..p,)
h(x,f) = ——2— det &—‘ a—gi 0 - _ . (Bs)
p,c (x) 1 1 p,c (x) 3(g,.§,)
apl apz 0
9E, 9t

In this equation, the factor 1/c*(x) arises as the coefficienmt in the first

row third column, which makes it a factor of the entire third column.

Let us now view the ray conmecting x and x, as starting from the point

at depth, x, and arriving at the surface at the point, x,. The vector

negative of the initial value of the

denoted by p, here, is just the
p-vector on that ray, say, p:- The superscript, s, to denote a ray which

emanates from x and arrives at xg. (Later, I will have need of the notation




2{, as well.) In termms of this new vector, the result (5) can be rewritten

as

8 a(ps .ps )
h(x,E) = - A (B6)

pjocz(g) (g, ,¢,)

The determinant h(x,¢) has been written in terms of derivatives of the two
ray parameters at depth which label the ray propagating from x to xg- In
fact, under the assumption that there are no caustics, the variables §{ serve
equally well as parameters to label the ray from x which emerges at the
upper surface at the point zs(ﬁ). Thus, h(x,E) can be interpreted as being
proportional to the Jacobian of transformation between two "ray-labeling”

sets of parameters. Each parameter pair can be supplemented with a third

running parameter along a fixed ray, namely, o, of Appendix A. Therefore,
without changing the value of h(x,f), two-by-two determinant in (6) can be

expanded into the three-by-three determinant,

S S
8 a(p_ ,p. _,0)
h(x,8) = - —— o 2 ., (B7)
P,oc (x) 3(¢,.8,,0)

since the third row and column of this augmented determipant have only

zeroes except for a one on the main diagonal.

Baving used x to denote the initial point of this ray, let us think of

the running coordinmate along the ray as being some other variable, say ¥,

Coe e
a
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The derivatives in (B7) are to be evaluated when ¥ = x . Thus, I write ’ ;...'
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3(PrgrPrgro) 3(x) 3(x)

B(CI.E,.U) 3(p1°.pzo.0) 3(§I.§z.6)

The first bracket on the right can be recognized from Appendix A as just the
Jacobian of the ray family initiated from x and evaluated at the surface

point, x This Jacobian will be denoted by J(x,, x). The second

s'
determinant can be re—interpreted as a triple scalar product of two tangents
in the surface S, with the ray tangent dxg /do = p(x,,x). The cross product
of the tangents is in the direction of the normal vector at x  and has

magnitude 43(58) = ‘Jgs. in complete analogy with the result (29) for the

surface S.i . Thus,

8 s ~
a(pxo’on"’) P(!so!)'nsﬁ

3 .8, .00 Tz .0

With this result, h(x,}) can be rewritten as

P(!s"x')'ns‘lg_s

pf,cz(g) J(x,,x)

¥hat can be seen, here, is that the matrix h(5.§) is expressible in temms of
variables which are computed as part of the ray theoretic Green's function
and in temms of parameters defining the structure of the observation
surface. For h to be nonzero, J must remain finite and the rays should not
emerge tangent to the upper surface., For h to remain finite, J must be

nonzero -— no caustics. The singularity at pfo = 0 is only apparent; the




product Pg,J(gs,g) must remain finite in the limit as pfo approaches zero.
This product is exactly what appears in the denominator of the ray-theoretic
amplitude, (AB), and must therefore remainm monzero in this limit because one
can find alternative representations of the amplitude which confimm that the
amplitude remains finite along a ray that is initially horizontal. 1In the
special case where the upper surface is flat, the dot product in (B10) is
simply p,(x_,x) and the numerator being nonzero requires that the ray
direction have some vertical component at the upper surface. Furthemore,
in this case, it would be matural to take {, = x, and §, = x,, and then B

S

gs = 1. Consequently, LT

P,(Es.;)

h(x,z) = - —3 , flat upper surface. (B11)
p,,¢ (x) J(x_.x)

As a further simplification, if c(x) is a constant, p, is a constant on

each ray. In this case, the result (Bl1l) simplifies still further to

i".; '._

b(x,g) = - [CzJ(Es-E)]—l' flat upper surface, constant cackground. (B12)

In this simplest form, the reciprocal dependence between h and J provides

the total structure of the relationship between them.

Case_2: Common Source

Let us consider, next, the case in which the source point is fixed.

This case was discussed in Cohen, Bleistein and Ragin [1985). It is

included here for completeness. liffff:f




For this case, the parametrization of the source and receiver points

becomes

x (&) = const,, x = ;r(g). (B13)
with the function x () ranging over the observation surface, S,, as ¢

ranges over its set of values on S:. For this case, the determinant h(x,f)

in (6) becomes

Viz(z,x ) + z(x,x )]
s r

@

h(x,f) = det Vt(_x_,;r) (B14)
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Thus, while the first row remesins a sum of two vectors, the second and third
row are identified as derivatives of single vectors exactly of the form
discussed above. Just as in the previous case, the matrix on the right is
to be multiplied by the matrix P defined in (B4) before the determimant is
computed. However, I now have to be more precise because the source and

receiver are separated. The p-vector I use in P is the vector p(;_r.;). By
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carrying out the matrix multiplication and then taking determinmants, the

following result is obtained:

2
) Pyt Py, Pyt ltelzpcp
h(x,g) = :;?—;——-det aplt apzr . (B15)
X
='Psy 3t aE
P, , p,, o
L, 3L,
In this equation,
P, = plx.x ). p, = plx.x) . (B16)

Except for the subscripts, the two-by-two determinant in the lower left hand
corner in (B15) is exactly of the form of the two-by-two treated in Case 1.

Thus, use of the same method as in Case 1 yields

2 [ r —

[1 + ¢ (x)p pol p(gr.g)'i Jg &
= T T et
r 13 B . (B17) _‘ . -»
P,,°© (x) J(_x_t.g)

h(x,g)

. . F g
The subscript zero is agein used to designate vectors at x pointing along ,,_l.,_,_

the rays to X, and x . and superscripts on the p-vectors to denote that these . Z-jj;-"_:.“‘

r
are the vectors on the rays oriented from x to x, and x,, TEVerse of the

orientation on the subscripted vectors above. The vector p(x ,x), is the

final value of the vector p; at the surface point, x,-

As above, the determinant b(;,;) is expressed in termms of elementary

parameters of the ray-theoretic Green’s function and parameters which

.
e S e e T e

Tt et e " - PO R S S R
O R U T NENT U C U RS AP T RN "




“r
,'"bv
o
N~
:‘: characterize the upper surface. Note that the same simplifications as were
-"
N made above can be made here, too.
:::: When this result is compared to the previous result, (B10), we see that
N there is one additional way in which h carn be zero in (B17), The first
factor of the numerator might vanish. This can only occur if the vectors p:
» and _gf are anti-colinear, That possibility was eliminmated in Section 3.
Case 3: Common Receiver
' For the common receiver case, we need only interchange the source and
_ receiver point in the previous case. When this is dome in (16), the
. following result is obtained:
] 3 r s
< [1 +c¢ (x)p,* p ] pl(zx_,x) 1 ‘ls
- B(x,E) = - s . s A RC I (B18)
" Py (x) J(x_,x)
‘. Case 4: The General Case
3 When both x_ and x_ are more gemeral functions of §, there is not a
! great deal of simplification that can be achieved in the representation of
- h(x,f). The determinant h in (6) can be rewritten as a sum of four
determinants: .
- h(x,2) = b (x,8) + b, (x,8) + b, (x.8) + b (5,0) - (B19) oohs
. '
- - B8 -
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b (x,§) = det

hz(g.g) = det

b (x,§) = det

h‘(g,g) = det

v[t(!l! ) + v(x,x)]
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The determinant, h,(x,f), is exactly like the result (B14) for the
entire determimant h(x,f) in the case of a common source; h,(x,f) is the
same determinant as for the common receiver case. Thus, (B18) and (B17) can

be used to write these determinants in terms of the parameters of ray

propagation:
3 r S
1+ ¢ (x)p,* P | p(x_,x) 8 lg
b, (x,8) = - [ - °z °] s sl—: s (B24)
P, (x) J(;s.;)
2 s r —
[1 +c(x)p.* P ] p(x_.x) % lg
h (x,8) = - : z f{ z (B25)

pfocz(g) Iz, .x)

The remaining two determinants, h,(x,£) and h,(x,£), are not so easily
dealt with. The reason is that the second and third rows do not involve
derivatives of the same travel time. That is, ome row has t(x,x,) while the
other has f(_x_.gr). Thus, & simplification to merely a ray determimant, J,
is not possible since these rows are related to different ray families. On
the other hand, each of the matrix entries is separately expressible in
terms of ray parameters and surface parameters, That derivation now

follows.

Let us consider a typical term, api(g.g)/az;j. for i,j = 1,2, and ¥ to
be evaluated along the ray to (and ultimately at) x, or x,. It is not
necessary consider derivatives of p,, because the eikonal equation (A3) can

be used to express them in temms of p, and p,:
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ap, _ P dp, p, Op,

3T, - "9 3. p. I (B26)
J ’ J ' J

For the derivatives of interest,

ap, 3 ap; ax

= ) = — . ui-1o. (B27)
j _ ax a9t .

k=1 k J

When ¥ is evaluated at X, or xr, the derivatives aik/acj simply become

derivatives of the expressions _x_s(g) and gr(g) with respect to the
components of &, Thus, these derivatives are known from the surface
geometry. For the other factor on the right in (B27), I again take the

point of view that p(x,X¥) is the negative of the initial value of the

p-vector along the ray starting from x and propagating to ¥, denoted above

by ps or p;. As moted in Appendix A, the first two components of these

vectors may be used as ray-labeling parameters: see the discussion below

(A6). Thus, as & first step,

ap 9.

_:i-_- ~1 . (B28)
axk axk

Now, as in Appendix A, the family of rays emanating from x and covering a

volume around that point are viewed as defining a transformation or change
of variables from ¥ to (p,q,P3,+0)» With the inverse of that transformation

mapping (p,,,p,;,,0) to X. The expression in (B28) is an element of the

Jacobi matrix of the latter transformation. On the other hand, the matrix

of the former transformation is more familiar. It is the matrix whose
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determinant J(x,3) plays a crucial role in the propagation of eamplitude

oo R
.
l“ll:i'. AR

[ W 3
-
R .'

along rays. Thus, let us introduce the matrix

= o3

'n" —

'-:: do

ax -

[Jij] | =, | det [Jij] = I(x,z). (B29)
o

] | %, |

Since the two transformations in question here are inverses of ome another,
i the matrices of transformation must also be inverses of one amother. (In
making this claim, I am assuming that there are no caustics in the ray
::L' family over the domain of interest.) Thus, the derivative in (B28) can be

"i rewritten in terms of the inverse of the matrix in (B29). The result is

~

v ap . ap e~ ax
- Ao 5 En) co | X (B30)

axk 3xk apio .

In this equation, cof demotes cofactor in the matrix [Jij] in (B29). _::' - .
- This result is now used in (B26) to write . g
: ) 3 oz ax
[y P e
5 5T =7 @D ) gp eof |- L=, (B31)
j o1 j ap 0 X -
>
= ST
-5 R
N T
| 38
. ———
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4. Two-and-one-half dimensions

PRAPRLE Y\ PR

There is a whole class of special cases where h(x,£) can be written

[AAR &

more simply. These are the so-called two and one half dimensional (2.5D)

['d

cases. Here, it is assumed that the earth parameters, ¢ and ¢ are functions

of (x,2) only (essentially two dimensional) while the wave propagation is

OAS 77«

three dimensional. Furthermore, only ome line of data is gathered, say, for
¥g = ¥r = 0. However, for such a medium, all lines parallel to the line
y = 0 would, of necessity, produce identical data and only the output of the

algorithm in—plane, that is, for y = 0, is required.

VAT AR
LI e

S
(] "

In the inversion fomula, (16), then, the data, D(£,w), is independent
of £, and the integration in &, can be carried out by the method of
stationary phase. The stationary point turns out to be ¢, = 0 and the
remainder of the integrand need omly be evaluated in-plane. In this case,
h(5,§) can be evaluated in termms of the in—plane ray Jacobians associated

with two dimensional wave propagation. Out-of-plane effects are accounted

for through a scaling by q:;. In particular, h(x,¢) is expressible in tems
of 2>2 determinants with the first row always being related to a p-vector,

Thus, a case like h,(x,E) or h,(x,f) cannot occur and h is expressible in

terms of the two Jacobians associated with rays between x and x, or between

i
b

:r x and x,.

[

F‘ In Bleistein, Cohen and Hagin, [1985), the details of this computation
,- were carried out for the cases of common source, common receiver and common
l'.

r offset. It should be noted that the 2.5D common source or common receiver
v cases do not arise directly from the 3D common source or common receiver
:

"

re

R T T T T P T U T
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case. In the 3D common source case, for example, there is only ome source
in the plane with y = 0. Thus, the data gathered on lines parellel to y =0
is not identical. To make lines of identical data as the 2.5D model
requires, the source must be moved to each new lime, y = const. when the
receivers are moved. Thus, 2.5D common source corresponds to the 3D case in
which there is a line of sources, say with x = O, and the data from each
source is gathered along an orthogonal line, y = const. Now each line of

experiments will be identical.

The results for h(x,t) in 2.5D will not be restated here because the
entire processing formula in 2.5D changes. That result is an integral over
the source/receiver line (or curve) with an adjustment of the imversion
integrands provided in this paper to account for the out-of-plane statiomary

phase computation.
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APPENDIX C: ANALYSIS OF THE STATIONARY PHASE CONDITIONS

The purpose of this Appendix is to discuss the conditions of stationmary
phase, that is, the conditions that the four first partial derivatives of &
in (30) are all equal to zero. The reader is reminded that the traveltime <t
is symmetric im its initial and final coordinates. Thus, each of the
gradients appearing in (30) is a p-vector directed tangent to the ray. For
example, V. v(x',x,) = p(xg x'), is &8 p-vector tangent to the ray from x' to
I, (from second argument to first argument) evalumated at X, (evaluated at
first argument). It has magnitude llcz(ss) and is directed away from the

initial point, x’, Similarly, V't(g',;s) = plx’,x;) is evaluated at x’, has

magnitude 1/c*(x') and is directed away from b P

The result (30) and the notation for gradients introduced here are used

to write the conditions that the phase be stationary as follows:

dxs dx dx d;s
p{x_.x’) - + p(x_,x') - = plx_,x) * + p(x_.x) ° ,
v ay, R Cay %, %,
(C1)
[2(5'.53) + p(;'.;r) ] . %-i =0 , m=1,2.

It is assumed that a proper parameterization has been used for which the two

vectors in each case (m = 1,2) are linearly independent.

The second condition is easier to interpret. It states that the

tangents to the rays from x_. and x  to the surface point x' have equal

projections on two linearly independent tangents in the reflecting surface.

Consequently, the projections of these two vectors onto Sj must be equal,




This is just Snell's law for reflection. The magnitudes of the p-vectors

must be equal (to 1/c¢*(x’)) and hence the out-of-plame components must be
equal in magnitude, as well. Indeed, the normal components of these vectors

are of the same sign and must, in fact, be equal.

The first condition in (Cl) ties the points on the two surfaces to the
output point, x. Let us consider the rays from x to the upper surface

points, X, and x Similarly, we consider the rays from x' to the upper

r
surface points, and x.. For each pair of rays we take projections on
tangents at their respective emergence points. The sum of these projections

for each pair of rays must be equal to one another., This must be true for

two linearly independent tnagents at each point.

At first glance, it may not seem apparent that such a condition can

ever be satisfied. Bowever, consider the case in which x is on the
reflecting surface, sj. Then, for x' = x (and o chosen accordingly) the two
pairs of rays overlay one another and these stationarity conditions are

automatically satisfied for any pair of surface points, x  and x.. Thus, we

would only have to find such a pair for which Snell’'s law is satisfied, as
well. Indeed, if there were no such pair in the seismic experiment being
modeled, then that subsurface point would not be ome for which the

stationarity conditions are satisfied and that point would not be imaged.

On the other hand, there are many candidates for source/receiver pairs

on the upper surface when x’ = x. To find them, proceed as follows. At

x' = x, pass a plane through the normal to Sj. In the plane, choose two

directions making equal angles with the nommal. Use these as initial
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directions for rays from the point. Snell’'s law is satisfied for this pair

of rays. The pair of emergence points at the upper sorface are candidates
for a source/receiver pair. Vary the opening angle of the ray pair in the
normal plane and rotate the plane. Thereby, obtain a two-dimensional

continuum of candidate source/receiver pairs in the upper surface.

Let us suppose now that such a pair is available in a given seismic
survey when x js on 8j. Given that pair, it is argued by contimuity that

for x nearby Sj there must by points x', x  and x, satisfying (C1) and

nearby the solution obtained in the limit when x js on Sj'

Constant Background Soundspeed

Further insight into the stationarity conditions is gaimed by
considering the case of constant background speed and flet layers, as in
Figure Cl. Given a point, x, a perpendicular is dropped to the surface S;-
This determines a point, x'. Pass a plane through the nommal and draw the
rays at equal angles to the upper surface. This determines a pair of
and x.- For this pair of points. the sum of

points, as candidates for x

projections on either side of the first 1lime of (Cl1) is equal to zero.

Thus, this triple of points satisfies both conditions of stationmarity.

The three points, x', X  and x; must be in the same plane in order that
Spell’s law be satisfied, If x were not in the same planme, then the
projections of its p-vectors would no longer be colipear and could not sum
to zero. On the other hand, the sum of projections of the p-vectors from x'

would remain zero. Thus, the first conditici: inmn (Cl) could not be

RS e Ari e ]




LR

ity by Y

a2 a

" .,

s
B Rl

[0 Al bl S

T L T L N L Y T W ‘I'\"- A Sl e 4 A A RO % "\v"‘_ ""_r".'\r\r_ L B i e sl anti -t addins
- AT A A O S A Sl B i Pl NS e Te e

satisfied, Similarly, if x is in the normal plane but not on the nommal
line the first condition could not be satisfied. That is, the conditions of
stationarity are satisfied by three points x', x, and x, which, along with x
lie in a plane normal to the reflector with x’ at the foot of the normal to
sj drawn from x. The only freedom left in these conditions, then, are the
opening angle of the rays at x’ and the orientation of the normal plane.
Below, I discuss how these are further constrained for particular
source/receiver configurations and this flat reflector comstant background

model.

Case 1: Zero-Offset

When the source/receiver pair are coincident, the opening angle of the

rays at x' must both be zero; both rays from x' to x_ and x_ must be the

S r

normal ray to the surface, passing through x. The statiomary point on the
upper surface and the point X' must have the same transverse coordinates as
x, itself. The stationarity conditions are completely satisfied by these
three points. Because of the degeneracy of this case, a specific normal
plane is not determined. However, that is secondary to determining the

actual triple of points, itself.

The generalization of this result to curved surfaces and variable
background is fairly straightforward. Given x, find a8 normal ray from Sj
which passes through x, The initial point of that ray on §; 1is the point
x'. The point where the ray emerges on the upper surface S, is the

source/receiver point which completes the triple of points satisfying (Cl1).

For x on sj' there is clearly only one stationary triple. On the other hand
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for x on the evolute of S‘i (the envelope of nommals to Sj) there will be
more than one triple. In order for the asymptotic methods used here to be
valid, it is necessary to assume that this evolute is a few wavelengths (at
least three) away from Sj. Thus, it is assumed that the reflector is not

severely curved; that is, the principal radii of curvature of the reflector

must be a few wavelengths long.

Case 2: Common Source

Let us suppose now that the source point is fixed. Given x, drop the

¢» X and x'.

normal to Sj and thereby determine x'. Pass a plane through x
This plane is normal to Sj. Draw the ray from x  to 3'. Draw the reflected
ray in the given normal plane. The emergence point on S, is the point x..
If x is on Sj. set x' = x and use the normal at that point and the fixed

point x_  to determine the normal plane. Then proceed to determine x, 8$s

S

before, with x not on sj‘

In a theoretical model, receivers are spread over the entire upper
surface. In practice, the spread is finite. Thus, the spread need not
extend to the determined x , In that case, the determined point, 1' will
not be part of a triple satisfying (Cl) and will not be imaged. In the text

1 have proceeded as if such candidate points are indeed statiomary points.

As above, 1 argue by continuity that for curved surfaces and variable
c(x), differing “"not greatly” from the constant background case, the

essential features of this analysis still spply.
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Case 3: Common Receiver

As in the previous appendix, one neced oniy isterchange the subscripts s
and r in the discussion of Case 2 tc obtain a completely analogous

conclusion here.

Case 4: Common Offset

It is asswmned that all of the offset pairs lie on lines that are
parallel. We rotate the normal plane containing x and x’ wuntil it is
parallel to this set oi lines. 1Indeed, the inters:ction of the normal plane
and the upper surface contains ome of those lines. hoosc the opening angle
of the rays from x’' so that the rays emerge &r tue upper surface at a

separation distance equal to the common offset distance. The emergence

points are the pair xg and x,.

Case 5: Common Midpoint

There will only be a solution to (C1) in this case if the common
midpoint and x lie along a common normal to S;. Furthermore, in that case,
all source/receiver pairs are statiomary points. The method of stationmary
phase breaks down since the statiomary points are no longer isolated. This

is a case which requires further investigation.
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APPENDIX D: MATRIX SIGNATURE

The purpose of this appendix is to show that the signature of the
matrix [ng] defined by (33) is equal to zero. To do so, I comsider first
the special case in which the background sound speed ¢ in the region between
the upper surface and the reflecting surface is constant, the layers are
flat and there is zero offset between sources and receivers. In this case,

the upper surface and the reflecting surface are defimed, respectively, by

(D1)

Furthemmore, the travel times are just the distances between initial and
final point, divided by c:

tx,x) = |x ~ x /e, wlxx) = |z - x |/e,

(D2)

t
—~
L]
.~
|
~
"

Iz* - x l/e. <xtx)) = |2

These results are used to simplify &, as definmed by (9) and then to
computed the determinant in (33). The analysis is further simplified by

setting x’ = x, The result is

) 0 -1/Rc 0
0 0 0 -1/He¢
[9 ]= . (D3)
Lo -1/He 0 1/He 0
| o -1/HRc 0 1/Rc |

For this matrix it is fairly straightforward to calculate the characteristic

._Dl._
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equation. The result is
-2 ) - - 3 ‘.
dotfi,, - 1] = na -+ 0* /a0 (D4)

This equation has two double roots, A = [1 % ‘5]/2. Since two of the roots

are positive and two are negative, sig[igc] =0,

Let us now consider deforming this constant background, zero offset,
flat layer model into the true model. If the signature is to change as the
model is deformed, then at some point in the deformation, at least one
eigenvalue must be zero., 1In fact, exactly two eigenvalues would have to be
zexo at this point, since det[!:ul is nonnegative and by assumption, the

signature changes.

In the next section, it is showr that det[igal is proportional to
h(;,;). It has been assumed that h is nonzero for the true model. I now
add to that the assumption that our true model is not so severely differesnt
from the flat earth case for b to have passed through a zero on the way from

one model to the other. Thus, sig[§§°] =0 for the true model, as well.
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APPENDIX E: RELATION BEIWEEN h(gx,r) AND det[‘gol AT THE STATIONARY POINT

In this appendix (41) will be verified. To do so, isnecessary to

e e
» s

evaluate |h(§,§)| as defined by (6) subject to the stationarity conditions,

AR
s ¢

{C1) and the additional condition that x = x', As a first step, x is

replaced by x’' in (6) and that equation is rewritten in temms of p-vectors.

The result is

p(x .;s) + p(;'.;!)

Q

h(x’,g) = det [p(;',;s) + p(g',;r)] . (E1)

[-%
e

-

L

[p(!"!s) * p(!'-!r)]

.

(-]

e
»

To calculate this determinant, the matrix is multiplied by a matrix whose

determinant is known. That matrix is

K = P ’
do do dn

[ dx’' dx' dx

where each vector here represents a column of K. We remark that

= JS. ’ (E3)
de, " do, i

with the second equality being equivalent to (29).

- Now, in multiplying K by the matrix in (El), we see that the first two
:; elements of the first row are both zero by (Cl), while the third element is
<

- - E1 -

“-
- - - - - » » ™ hl h N “» K - - - - , - = = -, . - N
Ce - AR A e e e T T LT T e e e e S LR . T e s - AP
» - - " - - - - . il - - - - - - - R T . ~ ‘ - - - . ™ . * " . . e * b
JL L{L A teta el PR R W R R PR PP VY. PRRANRAT Lo L PR A AT s
ﬂhi"‘ F AT NPRTRY AV SO WSS YA AV LYY W A ST W

et et S




SOhh:

gl

b

\... \.-.4_ -....
Ny

given by
. . .~ _ 2c0s 8
[p(; .5s) + plx .;r)] n = ~G (E4)

which follows from (40). Thus, in expanding the determinant of the product
by the first row, it is only necessary to consider the lower left 2)2 matrix

after multiplication. Thus, let us now consider a typical term,

? - S
—atk [p(;'.x_:s) + p(;’.;r)]° i - _EI"’_ lelx’,x) + <(x',5,))
(ES)
2
2@
= e, k,m = 1,2,
agkaum

It now follows that if the matrix in (E1) is multiplied by the matrix K

before calculating the determinant, the following result is obtained:

2¢cos 6

det h(x',E) rJ “ G det [9 o] - (E6)

for x' = x on Sj. The outer equality in (41) follows from this result. The

right equality in (41) follows from (40).
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. Beylkin“s inversion operator to obtain an operator whose output is an array
o of singular functions, one for each reflector {(discontinuity surface of the
sound speed) in the subsurface. The singular function of a surface is a
Dirac delta function whose support lies on that surface. Thus, the array of
o singular functions produces a reflector map of the subsurface. The
. validity of modification of Beylkin“s inversion operator is verified by
- applying it to band limited Born-approximate and then Kirchhoff-approximate
representations of the upward propagating wave field. Multi-dimensional
stationary phase is applied to the spatial integration over the variables of
the field representation and the variables of the observation surface. It
: is confirmed that the output is proportional to the band limited singular
= functions of the reflectors and further that one can estimate the jump in
- velocity across each reflector from the peak amplitude of the output on each
. reflector. This is done for the cases of common (or single fixed) source,
common receiver, and common {(or fixed) offset between source and receiver,
with zero offset or backscatter as a special case of the last of these.

[SENAD

TN

_____

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




MMRA WA RN B S n sl o de

T
L,

Tl T S kS

A
" e BB Dt Bk

AR I A AR

- B

e
p
]

RESE

hare s S o g 3

[ R 20 5 o0 4N
* A




