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INTRODUCTION
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. One method of establishing the shear stress-strain
relation of a material involves applying torsion to a
circular cylinder. This approach has the advantage of
experimental simplicity, but the disadvantage that the
specimen is nonuniformly loaded, thus requiring a somewhat
sophisticated data analysis. Fortunately the required
analysis has already been worked out for the case of solid
cylinders made of an isotropic g;astic material. Such an
analysis was furnished by Nadai "(1]. Unfortunately, some-
times only an approximate analysis is performed, and results
are only reported as the resulting approximate shear stress-
strain relation. Fortunately however, as we shall show, this
type of approximate result can be easily corrected to get
the proper result without having to go back to the original
torque—~twist data, which may no longer be available.

A second contribution of the paper 1is to extend the
analysis to the case of hollow cylinders. A third is to call
attention to the fact that some cases of combined loads can
also be analyzed in essentially the same manner. This is of
particular interest in the case of highly anisotropic
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materials, in which compression-shear interaction may be T
large. o
We first derive the standard result, using an approach Y

that emphasizes the physical aspects of the problem, and :;ﬁ
R

serves as the basis of the extension to hollow cylinders.

o

SOLID ISOTROPIC CYLINDER

Consider first a solid circular cylinder in wuniform
torsion, in which the twist is 8 radians per unit length.
The shear strain is then given by
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where r is the radius of the field point under consi-
deration. If the cylinder is linearly -elastic, the shear
stress t 1s proportional to the radius as shown in Fig. 1.

f":v’ [

ey

o If the material yields at a stress below the maximum shown L
e in the figure, a plot of 1 vs. r will be nonlinear. Also L
. included in the figure 1is a nonlinear plot for the same N
- applied torque. T
" In the elastic case, the analysis 1is quite straight- b&x

e

forward. The torque is given by
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where G is the shear modulus of the material, and a is
the radius of the cylinder. The shear stress at the cylinder
surface is given by

t2(a) = G8a = 2M / na’ (3)

An approximate shear stress-strain curve for the
nonlinear case can be obtained by assuming that for any
value of twist (3) applies. Since (3) is only valid in the
elastic case, we shall refer to this as the quasi-elastic
(QE) solution. It is equivalent to replacing the curve in
Fig. 1 by the straight line and finding the shear stress-
strain relation at the surface. It is clear that this
overestimates the shear stress for a given strain, but it is
not immediately obvious how big the error might be.

The standard result (1-3] is

. a (4)
Ha) = = [3M + 05 ]

One way to derive this result is as follows. In the
nonlinear case, for twist 8 the torque is

M(8) = £2nr2‘t(r9)dr = { MNdr (5)

where, for simplicity, T denotes the integrand. When the
torque is increased to M + dM the twist becomes 8§ + de¢ . By
virtue of (1), every stress contour moves toward the center
a distance equal to r d§ /e . This is depicted graphically
in Fig.2.

It is convenient to consider the torque for M + dM to
be composed of two parts, the part contributed by stresses
below t (a, 8 ) and the part contributed by stresses larger
than this value. Thus

a(l - d9,9) a

M (8 +de) = | nar+ f Mdr (6)
v a(l < d8/0)

Since each r and the dr in the first integral are decreased
by the factor (1 - de /9 ) while the product r6 remains
unaffected by the increase in g , Wwe can write

a(l - d6/9) ol

Mdr = (1 -d8/0)PM(0) el

0 N

49 (7 l\:"l

= (1 —3—9—-\”(9) ) e

Note that this result holds regardless of the form of t (y ). jﬁ%
The second term is simply DR
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a
Mdr = t(a)2ra’d0/o (8)
a(1 - d0/8)

Combining (5)-(8) we obtain

M (0 +d0)-M(8)=dM (0)

= [-3M + 2na’t(a)]d9/6 (9)
whence
I aM
t{(a) = = [3M +ed9 ] (4)

From (4) it is evident that the proper reduction of the
torque-twist data requires knowing both the ordinate and the
slope of the torque-twist curve. What can we do about it if
we only have the QE approximation referred to earlier?
Fortunately the correction is very easily made.

The approximate result was obtained by assuming that
(3) applies. Let us designate the resulting shear stress by
the symbol ¥ . Thus

¥ =2M /ra’ (10)

Then
=1 | am .y 2™
t(a) = Y [ M + 0 20 ] + -
=% 1 |~ d¥(a)
-t - 4 [1er- 001 "
Since vy = a8 we finally obtain
P U P4 (12)
T=1- P ydy]

It is readily seen from Fig. 3 that the term in the square A
bracket in (12) is simply the ¥ -intercept of the tangent to ¥ :
the approximate (QE) shear stress-strain curve taken at any réz
chosen value of vy . Below the elastic limit the term is e

zero. The term increases as the slope decreases, becoming
equal to the ordinate when the slope is zero. Assuming the
slope never becomes negative (at least for values of y that
are of practical interest) the correction never exceeds 258%.
The correct curve is thus bounded by the two curves ¥ (a) and
0.75 ¥ (a) as sinown schematically in Fig. 4.
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HOLLOW CYLINDER

From Eq. (9) we see that in the case of a solid
cylinder the increment in torque resulting from an increment
in twist 1is composed of two parts, one negative and one
positive. The negative one is associated with the shrinking
radius of each of the shear stress contours, while the
positive one is the consequence of a higher stress being
generated at the outer surface. The latter contains the
surface stress 1 (a, 6 ) as a factor. On physical grounds one
can anticipate the same or similar terms will be present in
the case of a hollow cylinder; additionally there will be a
negative term containing the factor t (b,8) because when the
twist increases the lowest stress zone moves out of the
cylinder from the inner surface, r = b.

To make these qualitative considerations quantitative,
consider a hollow cylinder with outer and inner radii equal
to a and b respectively. The torque M required to twist the
cylinder through an angle 8 per unit length can be regarded
as the difference in the torques M_(6 ) and My (#® ) required
to twist solid cylinders of radii“a and b through the same
angle. That is,

M(8) =M,(8) - M, (8) (13)

Now from (4) the exterior surface stresses on the two

solid cylinders are 1 M,
t(af) = M, + @
(a9 = a7 [3 MRT) ] (14)
_1_ 15
T(b0) = [3M,,+Ode] (15]
Thus
a’t(a.0) - b3t (b,8) = -2—- [3M ﬂ;—] (16)
or
ta8)= =1 |3+ 0dM | L B2 h0 (17)
2na’ d0 a’ )
Comparing (17) with (4) it 1is evident that, as

expected, the surface stress =t (a) is a little larger for a
hollow cylinder than for a so0lid one with the same torgue
applied. Also as b+a, 1 (b) + t (a), a= expected.

The torgue-twist curve of the holiuw cylinder enables
us to evaluate the term in square brackets. But this yields
only a single equation to evaluate the two unknown stress-
es t(a, 9) and +t (b, 6). We can, nevertheless, solve for
shear stress as a function of strain; but in contrast to the
solid cylinder case, it must be done iteratively. We start
by choosing a value of 6 such that t(b,6 ) is known, namely
one at which it 1is at or below the elastic limit t . In
this case, ¢
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wb,8) = Gbo (18)
.,
" If G is not already known, it can be obtained by employing
1 the equation found by changing the lower limit in (2) from 0
to b:
M=-’2£(a‘-b‘)ce (19)
QI If the next angle of twist is chosen to be larger by the

- factor a/b, the corresponding value of t (b) is equal to the
initial value of rt{a), i.e.,

t(b192)=1(avel) (20)

g
- .

N}

Repeating this process one will always know the value
of T (b) needed to evaluate 7t (a), but only for the sequence
of twist angles 6; =(a/b) 1~lg;.If this procedure resuits in
the calculated points on the shear stress-strain curve being
too far apart and more points are desired, we can proceed as
follows:

Choose 6; to be equal to or slightly below the twist at
which the torque-twist curve becomes nonlinear. Then choose
successive values of twist to satisfy the relation

PN

'T " 'l y

-,
>

B
' ioA

(9

Oi,1=6,~(a/b)“/ (21)

oJufs)

where j-1 is the number of points desired between successive
pairs of points obtained by the previous procedure. Note
that for i< Jj, t(b,8;) is at or below the elastic limit
and thus 1is known from (18). The corresponding values of
outer surface shear stress =« (a, 8 ) can thus be found from
(17). For i>j,

et

X

l. P ‘v' E
v LA N vl

15.8) = 1a.8,_,) (22)

so that each rt (b) 1is equal to a previously calcula-
ted 1 (a).

By following the above procedure, t (a , ® ) can be
evaluated over the entire range of twist 6 . The
corresponding shear strain, of course, is equal to a® .

2

DISCUSSION
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The discussion up to this point has assumed that the
material under consideration 1is isotropic. Actually, of
course, the procedure 1is equally applicable to planar
isotropic materials, provided that the cylinder axis |is
normal to the plane of isotropy. The shear stress-strain

curve obtained in this case is 7 vVs.y,, Oor alternative-
g ly T,y Vs. v,y where the x and y axes lie in the plane of
R isotropy.
;( We note in <losing that although the preceding analysis
2 assumed that the applied axial stress is zero, it continues
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to hold for any other constant value of axial stress. That
is because in this case the combined stress contours move in
toward the center of the cylinder in just the same way as
they do for pure torsion. A cylinder torsion test under
constant applied axial load thus offers a good experimental
means for testing shear-compression coupling in planar-
isotropic materials. This coupling 1is currently quite
inadequately understood; but it can be very important when
the compressive modulus is orders of magnitude greater than
the shear modulus.

CONCLUSIONS

1. A new derivation has been given for the correct procedure
for converting the torque-twist relation into a shear
stress-strain relation in the case of a solid isotropic
cylinder. While the result is not new, the derivation is
based more on physical considerations and less on
mathematical ones than most previous derivations, and
therefore may be preferred by some readers.

2. It 1is shown that results sometimes reported wusing the
quasi-elastic (QE) approximation for this purpose can be
easily processed to give the correct result.

3. A procedure is described for similarly finding the shear
stress—-strain curve from the the torque-twist curve obtained
using a hollow cylinder.

4. The procedure described is also applicable to the
analysis of planar—-isotropic materials provided the cylinder
axis 1s normal to the plane of isotropy.

5. Cylinder torsion tests provide a potentially valuable

means for studying shear-compression interaction in highly
anisotropic planar-isotropic materials.
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Fig.3 Diagram shows Y- intercept of the tangent to the approximate
shear stress-strain curve. Note that AC - AB equals square
bracket term in Eqn. (12).
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