
-- A165 540 INTRODUCTION TO DIGITAL LOGIC SYSTEMS FOR ENERGY 1/ -
MONITORING RND CONTROL SYSTEMS(U) ARMY ENGINEER DIV
HUNTSVILLE AL MAY 85 HNDSP-85-ED-HE

UNCLASSIFIED F/G 18/3 I.

mImIollllllllEllllllEEEEEE
EIEllElllEllI
EIlEEllllllI

Il

liii! .012.0

I MALL

B. Io
*1IL25 111111.4 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

14 Army Corps
"ngineers
sville Division

I

INTRODUCTION TO DIGITAL
LOGIC SYSTEMS FOR
ENERGY MONITORING AND
CONTROL SYSTEMS

DTIC
FLECTE

C... MAR 13 986

0 B

Iz -Di'uSTlo!4 -rAa. _L,4 &

Ap ptr d lot plut' he

HNDSP 85-107-ED-ME
MAY 1985

.,

,.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2.GOV ESSIO N t , 7 E CIPIENT'S CATALOG NUMBER

HNDSP-85-107-ED-ME ________1_0

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

INTRODUCTION TO DIGITAL LOGIC SYSTEMS FOR ENERGY
MONITORING AND CONTROL SYSTEMS 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER()

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

U.S. Army Engineer Division, Huntsville
P.O. Box 1600
Huntsville, Alabama 35807-4301

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

MAY, 1985
13. NUMBER OF PAGES

82 PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of thie report)

UNCLASS IFlED
15a. DECLASSI FICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (of the abstract enlered In Block 20. if different from Report)

1. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree aide if necesary nd Identify by block number)

DIGITAL SYSTEMS ENERGY MANAGEMENT MONITORING ARMY CORPS OF ENGINEERS

20. ADmTNAcr (Vcata aw teveree ef*b H neeawm ad idewuity by block number)

RECENT ADVANCES IN THE STATE-OF-THE-ART OF DIGITAL ELECTRONIC TECHNOLOGY HAVE
MADE FEASIBLE THE CONCEPT OF DISTRIBUTED DATA PROCESSING'(DDP-Y3IN ENERGY

MONITORING AND CONTROL SYSTEMS (EMCS). THESE ADVANCES WERE BROUGHT ABOUT
LARGELY DUE TO THE ADVENT OF MICRO-MINIATURIZATION OF ELECTRONIC INTEGRATED
CIRCUIT COMPONENTS AND THE DEVELOPMENT OF THE MICROPROCESSOR, A DISCRETE

SEMICONIDUCTOR DEVICE WITH MANY OF THE CAPABILITIES OF THE CENTRAL PROCESSING
UNIT (CPU)-"OF THE FAMILIAR MAINFRAMES OR MINICOMPUTERS, BUT VASTLY REDUCED IN

DD I JANI 473 EDITION OF I NOV 61 IS O&SOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PA7-E (Wren Dote Entered)

'A .. ~

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(W omn Data Bnterod)

)SIZE AND COST. IT IS NOW POSSIBLE TO DESIGN A RELIABLE EMCS CONSISTING OF A
CENTRAL COMPUTER CONTROL SYSTEM AND REMOTE MICROCOMPUTERS WHICH CAN PERFORM
MANY FUNCTIONS INDEPENDENT OF THE CENTRAL SYSTEM. WHEN PROPERLY APPLIED,
THESE EMCS INSTALLAT;ONS CAN AID SIGNIFICANTLY IN CONSERVING OUR DWINDLING

; .SOURCES OF ENERGY. I",,

.i .i

NTIS '

;lvail
Diat 19

ON('TASSTFP

SECURITY CLASSIFICATION OF THIS PAFfHl- -., .. , .- o.d)

RVZ,
uZA N'. - ;L, -,,:3L

INTRODUCTION TO DIGITAL
LOGIC SYSTEMS

MY 19

..?,,,-.,
V o

CONTENTS
~Page

Section I PURPOSE I
Definition 1
Application to EMCS I

Section II REVIEW OF NUMBER SYSTEMS 3
Base 10 Number System 3
Binary Number System 3
Octal Number System 8
Hexidecimal Number System 8
Alphanumeric Codes 10

Section III COMPUTER LOGIC 14
Basic Considerations 14
Truth Tables 17

*de Morgan's Theorem 17
Basic Digital Logic 18

Section IV DIGITAL COMPUTER ARCHITECTURE 24
Definition and Major Requirement 24

of a Computer.- Computer Memory Storage 27
Central Processing Unit (CPU) 32
Instruction Sets 35
Hardware Interupts 43
Arithetic Hardware 44
Input to a Computer 45
Mass Storage Systems 46
Bus Structure 50

.ection V ASSEMBLY LANGUAGE PROGRAMMING 52
Machine Language 52
Hexidecimal Coding 54
Assembly Coding 55
Programming Procedures 60

Section VI HIGHER LEVEL LANGUAGE 63
Purpose 63

%. ' Language Structure 63
Compilers 65
Interpreters 66
FORTRAN 66<" ' BASIC 70
Other Languages 71
Command Line Mnemonic Language 71
Applications Software 72

i

CONTENTS Page
Page "

Section VII MICROPROCESSORS AND MINICOMPUTERS 73

Microprocessors versus Hardwired Processors 73

Microcomputers versus Minicomputers 73

Comparison of 8-Bit versus 16-Bit MPU's 74

Application to EMCS 74

Section VIII INTERFACING COMPUTER SYSTEMS 76

Bus Structures 76

Programmed Data Transfer 77

Direct Memory Access (DHA) 77

Control Word and Status Word 78

U

N

4,

.-:,:,

" '4 I " " '," - ".=.",",' . " , .' " -Z .- ''.
"-

",' - ' , .C .- -. ,"J.".- : " " - ,'"" "', ° *

*1 : i i l~l i l Tdl51i "m~ d i 'zi~ l]l l . . ." : m - - - '

Section I. PURPOSE

1-1. Definition. Digital logic systems encompass a broad class of electronic
hardware which includes the digital computer. Computers utilize digital logic

to perform various simple arithmetic or logical operations in step-by-step
sequences at extremely high speeds in order to solve complex problems. They
also may perform logical and arithmetic operations for controlling or moni-
toiing real time processes. Digital logic operations are generally carried
out by electronic devices which may exist in either of two possible states
expressed as "on" and "off". Some digital logic devices are dedicated to a
specific purpose, whereas computers are programmable; that is, they may be
adapted to a wide variety of tasks. A general purpose digital computer is
virtually unlimited in its ability to solve problems and control processes.
However, it is virtually useless without the addition of system software con-
sisting of a series of logical operations written in mathematical form to
direct the basic operations of the machine. This software, sometimes referred
to as the system monitor, reduces the task of programming from near impossibi-
lity to relative ease. A digital computer, in conjunction with other digital
hardware components and electromechanical devices, forms a system which can

automate numerous types of processes.

1-2. Application to EMCS.

a. Large buildings or building complexes are heavy consumers of energy.
They are therefore prime candidates for energy conservation. This reduction
in energy consumption could be performed by manually operating the building
utility equipment systems at their optimum efficiency points and by carefully
observing schedules to enable the shutdown of any equipment not required, such
as lights, fans, and chillers when personnel are not present. However, it
becomes nearly impossible for a human operator to accomplish this task when
buildings are large and complex. In addition, it is more difficult for a
human operator to analyze data trends and use this information to optimize the
starting and stopping of equipment. Digital computers are ideal for automated
monitoring and control of building energy systems.

b. Recent advances in the state-of-the-art of digital electronic tech-

nology have made feasible the concept of distributed data processing (DDP) in
Energy Monitoring and Control Systems (EMCS). These advances were brought
about largely due to the advent of micro-miniaturization of electronic
integrated circuit components and the development of the microprocessor, a
discrete semiconductor device with many of the capabilities of the central
processing unit (CPU) of the familiar mainframes or minicomputers, but vastly
reduced in size and cost. It is now possible to design a reliable EMCS con-
sisting of a central computer control system and remote microcomputers which
can perform many functions independent of the central system. When properly
applied, these EMCS installations can aid significantly in conserving our
dwindling sources of energy.

IF1

c. The following sections present the basic concepts of digital logical

systems, computer architecture, and the technological advances which have led

to current EMCS philosophy.

2

Section 11. REVIEW OF NUMBER SYSTEMS

Il-1. Base 10 number system.

a. Due to physiological considerations, mankind has come to base the
way he courts on the powers of ten; thus, we are said to have a base 10
(decimal) number system. In actuality, there is no particular reason or
mathematical advantage in using 10 as a base for arithmetic. Any particular

number would do, and humans could learn to perform arithmetic as well with any
of them if taught to do so from the beginning. In point of fact, numbers are
merely symbolic representations of the concept of "quantity", which may take
on an infinite number of values.

b. Mankind has long attempted to apply physical laws of nature in the

form of mechanical or electrical devices to aid in making arithmetic
calculations. The prime criteria for these devices are improvements in speed
and accuracy. Ultimately, mechanical calculators were built that could
perform arithmetic a good deal faster than humans. These machines were
designed to use base 10 numbers which made them ideal for the way humans do
arithmetic. However, as useful as these mechanical calculators have proven to
be, they bave two major defects:

(1) They are relatively slow.

'ye (2) They cannot be "programmed" to solve complex and unique problems.

c. It was observed that, through the use of electricity, calculators

could be made to operate at vastly higher speeds, limited only by the speed of
light. In addition, it was shown that programming these electronic
calculators would be possible. It was observed that working with base 10
numbers on electronic calculators is impractical because of the difficulty in
defining a correspondence between numbers and electrical properties. The most
easily detectable states of a physical property like electricity are "on" and
"off". Therefore, calculators are designed to utilize base 2 or "binary"

arithmetic. The translation of binary numbers to base 10 can be performed by
the computers themselves, in order to be more easily intelligible to humans.
To distinguish between number systems, the system base is written as a
subscript; for example, 2510 is the number 25 in base 10.

11-2. Binary number system. In the binary number system, as well as all

other number systems, the concept of "position" is of prime importance.
Position refers to the weighting factor assigned to the successive placement
of digits to the left of the first number, which is assumed to be in

the units position. The familiar base 10 system treats each position as a
power of 10. The number 2561 is constructed thusly:

* Po3ition 103: 102: 101: 100

Number 2 5 6 1 2xl0 3 + 5x10 2 + 6x10l + IxO0..
3

% %

Likewise, the binary number system treats each digit position (or "bit") as an
increasing power of 2. The number 1310 is constructed in base 2 as follows:

Position 23: 22: 21: 20
Number 1 1 0 1 = 1x2 3 + lx2 2 + 0x21 + 1x2 0 = 1310

a. Binary arithmetic functions. Binary numbers may be added,
substracted, multiplied, and divided in the same manner as base 10 numbers,
except that there are no extensive tables to remember. In fact, the whole
procedure of binary arithmetic is rather simple.

b. Binary addition. For addition, the only facts to consider are that 0
plus 0 equal 0, 1 plus 0 equals 1, and I plus 1 equals 0 with 1 to be carried
to the left. In mathematical form:

0+0=0

1 +0=0+ 1 = 1
1 + 1 = 10 (where the left digit is a carry)

With the above simple rules, any number expressed in binary form may be added.
As an example, the number 2310 and 1710 are added below in binary form:

(1 111) :carry
23 = 24 + 22 + 21 + 20 10111

+17 = 24 + 20 + 10001

407 101000

101000 = I x 25 + 1 x 23 = 32 + 8 = 4010

c. Binary subtraction. Subtraction is the inverse process of addition;
in binary arithmetic, it can be performed in an method analogous to that of
base 10 arithmetic. The rules defined for binary subtraction are similar to
that of base 10:

1 -1=0

0- 0=0
S1 -0= 1

0- 1 must borrow; or -1
10 - 1 borrow from lpft digit (10 equals 210)

4

Iz

%~ I

t., suibtracted from 3910

9 Z'2 + "" + 21 + 20 = 100111

- 27 2 4 + 23 + 21 + 20 = 11011
12 01100

1100 = 23 + 22 = 1210

Digital logic systems, however do not generally perform subtraction as defined

above for two reasons:

(1) Difficulties can arise in subtraction as well as addition when
dealing with negative numbers unless special care is taken in defining them.

(2) Digital electronic hardware does not always, for various reasons,

define a separate "subtract" function. Instead, when a subtraction operation
.% is desired, a number is converted to its complement (negative form) and added

to the other number.

d. Ten's complement. In the decimal number system the negative

representation of a number, known as the ten's complement, is determined by

finding a number, which when added to the absolute value of the desired
negative number equals zero (where carries beyond the number of digits of
interest are ignored.) To illustrate this, the ten's complement
representation of -3 is considered, where the maximum number capable of being
represented by the calculating device is 6 digits (999999):

1-31 3
3

+ 999997

1 000000
carried to
7th place

& ignored

The ten's complement of -3 is thus 999997 for 6 digit numbers. It can be

shown that a simple method of finding the ten's complement of any negative
number is to subtract the absolute value of the number from N digits of 9's
and add 1 to the result. The usefulness of ten's complement representation is
that the subtraction process can be reduced to an addition process without
worrying about signs. Any ten's complement number with a 5 or higher in the
most significant digit (left most) place is assumed to be a negative number.

5

/%

A minor disadvantage of this representation is that it limits the number of 11 Nwcll
positive numbers that can be represented for a particular number of digits.
Considering ten's complement two digit numbers for instance, positive numbers
raage between 1 to 49, while negative numbers are in the range from 50 to 99.
Sifice integers are infinite in extent, these limitations can be eliminated
merely by considering greater numbers of digits. The preceding discussion can
be extended to include decimal fractions as well. Ten's complement arithmetic
is not really important for working with base 10 numbers, since humans are

used to dealing in signs. However, the application of this concept to binary
numbers makes the arithmetic of computers more efficient. Sometimes a nine's
complement numerical representation is used for subtraction in computers. It
is formed in a manner similar to ten's complement except that a one is not

added after subtraction from the nines.

e. Two's complement arithmetic. Application of the above concepts to

the binary number system results in what is known as two's complement
arithmetic. rhe application of two's complement is simpler to implement in
binary numbers than in base 10 numbers. To form the two's complement of a
negative number, the O's and l's in the binary number are complemented by
interchanging all O's and l's and adding I to the result. In the example

Abelow, the two's complement of 110101 (5310) is formed:

Complement 001010

Add I I
001011 two's complement of 5310

The number 1011 (1i10) can be shown to be the. two's complement of 110101,
since when it is added to it, the sum is zero (with the 7th digit carried).

110101

1011
1 000000

carry
7th digit

As in the base 10 number system, half of the total possible numbers in a two's
complement representation will be positive; the other half will be negative.
If 8 digit binary numbers are used, two's complement representation yields
127 positive numbers and 128 negative numbers, since all numbers in the most
significant digit are negative.

6

% %
eel' . .'" "- " % ' -" "-- . . ." - - , . " . ! '' - ' "- 5

f. Multiplication and division. The ability to perform multiplication
and division is another essential function to be performed by digital
computers. In order to keep computer systems as simple as possible, many
machines have not been designed with specific multiply or divide functions.
Instead, the ability to perform multiplication and division is accomplished by
software (programmed operations) through a series of mathematical and logical
operations such as addition or subtraction. More expensive computer systems
have included hardware to perform multiply and divide ope itions. This
usually results in faster operation of the computer and added simplicity in

programming.

. Binary multiplication. Binary multiplication is performed
similarly to decimal multiplication in that the partial product is moved to
the left as each successively more significant multiplier digit is used. The
multiplication products of binary arithmetic are much simpler than in decimal

arithmetic as shown:

0 X 0 0

Ox I 1 x =0
lx11

NAs an example, the binary numbers 10001 (1710) and 1011 (1110) are multiplied
together:

10001 (17)

x 1011 (11)
10001

10001
00000

+10001

10111011 =18710

Binary multiplication is seen in the above example to be simple; however, it
is also very tedious and time-consuming when larger valued numbers are
considered. Consequently, binary multiplication is well suited to a
computing machine which operates at high speed and is oblivious to tedium.

h. Binary division. Binary division is analogous to decimal division.
In the example below, the number 1510 is divided by 510 and 1110 is divided by
210 using binary representation.

A 7

(a)(b
11 101.1

101)1111 10)1011.0
101 10
101 11
101 10
0 10

10
0

Example (b) shows binary fractional representation. In the decimal number
system, each digit to the right of the decimal point is successively divided
by 10 in value. In the binary system, each value to the right of the point is
successively divided by 2.

Thus, 101.1 in binary notation is equivalent to 5.5 in decimal numbers.

11-3. Octal number system. An octal number system has a base of 8;

therefore, the numbers 0 through 7 make up the system. By itself, the octal
number system is of little interest; hnwever, with respect to computers, it
provides an easier means of dealing with binary numbers which are clumsy to
use and difficult for the programmer to remember. Programmers who work in
computer machine language must deal frequently with binary numbers 8 to 32 or
more bits in length. Since 3 bits in binary notation can represent a total of
8 numbers, a long binary number can be broken up into groups of these bits
starting from the least significant bit, and the octal value can be
substituted As an example, the 16 bit number 1001101011011100 is converted to
octal notation:

1 : 001 : 101 : 011 : 011 :100

1 1 5 3 3 4

The octal number 115334 is somewhat easier to deal with and remember than its
binary equivalent; thus octal numbers are frequently used by programmers as a
shorthand method. Octal numbers are still less recognizable and efficient

than decimal numbers; Lhe octal number 1153348 is equivalent to 3964410.

11-4. Hexadecimal number system. Like the octal number system, Hexadecimal

numbers are useful as a shorthand notation of binary numbers for programmers.
* The hexadecimal number system is based on 16; therefore the numbers 0 through

15 make up the system. Since it iF- desirable that each number in the
hexadecimal system consist of one digit each, the two digit numbers 10 through
15 have been replaced with the alphabetical characters A through F. The
hexadecimal number system, like the decimal number system and all others, uses

'U 8

% 44

-.*.-. positional dependence with each position to the left being worth 16 times that
of its neighbor on the right. The correspondence of hexadecimal numbers to
decimal, octal, and binary numbers is shown in Table II-1. Since 4 binary bits
can be used to represent the numbers 0 through 15, a long binary number may be
broken up into groups of 4 bits and substituted by the hexadecimal values.
Taking the same binary number as in the previous example, 3964410, the
conversion to Hexa-decimal notation is as follows:

1001 : 1010 : 1101 : 1100
9 A D C

It can be seen that the hexadecimal number 9ADC is equivalent to 1153348 or
3964410. Thus, hexadecimal notation is an even more compact representation
than the decimal number system, although it is less easily recognizable to
those accustomed to the common base 10 system. The choice of which type of
notation to use rests with the programmer. However, many manufacturers have
written the instruction manuals of their particular computer or microprocessor
product about either the octal or hexadecimal number systems. Thus, a working
knowledge of both of these number systems is important.

Table II-I. Numerical code equivalents.

DECIMAL BINARY OCTAL HEXADECIMAL GRAY

0 0 0 0 0000
1 1 1 1 0001

4 2 10 2 2 0011
3 11 3 3 0010
4 100 4 4 0110
5 101 5 5 0111
6 110 6 6 0101
7 111 7 7 0100
8 1000 10 8 1100
9 1001 11 9 1101

10 1010 12 A 1111
11 1011 13 B 1110
12 1100 14 C 1010
13 1101 15 D 1011
14 1110 16 E 1001
15 1111 17 F 1000
16 10000 20 10
17 10001 21 11

I9 "

i .

11-5. Alphanumeric codes. The preceeding several paragraphs have dealt with
number systems useful in performing mathematical operations in a computer. A
computer is also capable of performing a variety of other functions, including
logic operations, control of processes, and manipulations of alphanumeric
data. For that reason, a number of symbolic codes have been developed in an
attempt to standardize the representation of all types of data, including
non-mathematical information, to make them available to computer systems.

a. ASCII code. The most commonly used code for alphanumeric symbolic
data is the ASCII code, an acronym standing for American Standard Code For
Information Interchange. The ASCII code represents the numerical digits from
0 through 9, the alphabet and a number of standard symbols such as $, #, ?,
etc. The code uses either 6, 7, or 8 binary bits to represent the
alphanumeric characters. Only 64 different characters can he represented by 6
binary bits, so codes using more than 6 bits must be used on computer systems
which recognize more than 64 characters. The 7 bit ASCII code, representing a
maximum of 128 characters, is the most popular code in present use. Eight bit
ASCII is a code where the 8th bit is used for parity checks for detecting
errors. To eliminate the tedious binary representation of the ASCII code,
octal or hexadecimal notation can be used. Table 11-2 presents the 6, 7, and 8
bit ASCII codes in their octal equivalent for alphanumeric characters.

TABLE 11-2. ASCII, BCD and EBCDIC alphabet codes.

Char- ASCII ASCII ASCII ASCII BCD EBCDIC
acter 6 Bit 7 Bit 8 Bit 8 Bit Octal Hexa-

Octal Octal Octal Octal decimal
W/O Parity Even Parity

A 01 101 301 101 61 Cl
B 02 102 302 102 62 C2
C 03 103 303 303 63 C3
D 04 104 304 104 64 C4
E 05 105 305 305 65 C5
F 06 106 306 306 66 C6
G 07 107 307 107 67 C7
H 10 110 310 110 70 C8
I 11 111 311 311 71 C9
3 12 112 312 312 41 D1
K 13 113 313 113 42 D2
L 14 114 314 314 43 D3
M 15 115 315 115 44 D4
N 16 116 316 116 45 D5
0 17 117 317 317 46 D6
P 20 120 320 120 47 D7
Q 21 121 321 321 50 D8
R 22 122 322 322 51 D9
S 23 123 323 123 22 E2
T 24 124 324 324 23 E3
U 25 125 325 125 24 E4
V 26 126 326 126 25 E5
W 27 127 327 127 26

10

' , . o - . - - , - .-..- - .*..- . .. - -. , ., ,

b. Baudot code. The Baudot code was created originally for teletype
and paper tape devices. It uses five information bits, to represent 32
characters. The binary l's or O's are represented as "marks" or "spaces" in a
current loop. Since this is insufficient for the 26 letters of the alphabet,
10 numbers and other symbols, a coded character is used to indicate a carriage
shift to send or receive the other characters on the upper case. The Baudot
code is obsolete; however, some older equipment which is still functioning
makes use of this code. The Baudot Alphanumeric equivalents may be found in
standard sources.

c. Binary coded decimal (BCD). The binary coded decimal code is not a
signal code but rather consists of a number of similar codes. BCD is capable
of representing decimal numbers from 0 to 9 by 4 bit binary number groups
which are the same as hexadecimal numbers for the same decimal values. The
decimal number "9542" would be expressed in its BCD equivalent as a single 16
bit binary number:

9 : 5 :4 : 2
1001 0101 0100 0010

Note that 1001010101000010 is not numerically equal to 954210; the computer
must be informed that it is dealing with numbers in BCD representation. The
BCD code has been extended to cover a total of 64 alphanumeric characters by
assigning a two digit decimal code to each one. Other BCD type codes are
created by assigning different values to the positions in each 4 bit number
other than the usual 8, 4, 2, 1 values. For example, one code uses 7, 4, 2,
1.

d. Extended binary coded decimal (EBCDIC). An extended BCD code known

as EBCDIC was introduced by IBM. It has become widely accepted as a coding
format because its 8 bit per character structure enables the representation of
256 characters, a number sufficient to accomplish the most demanding tasks.

e. Excess-3 BCD numbers. A representation known as Excess-3 BCD is
sometimes used in computer systems because it simplifies the nine's complement
format used in subtraction operations. The Excess-3 representation is
performed by adding 3 to the decimal digit and converting to the 4 bit binary
representation. The nine's complement Excess-3 BCD is formed by interchanging
O's and l's.

f. Gray code. The Gray code shown in Table II-1 is suitable for process
control and monitoring functions because each transition from one number to
the next results in a change of only one bit. This minimizes the ambiguity
which might be encountered by the controls of a physical device during the
momentary transition between two adjacent numbers. Also, data reading errors

':,..

U .11

are minimized when only one bit changes during adjacent number transitions,
whereas in actual binary numbers, the transition of 7 to 8 involves a change
in 4 bits (0111 to 1000), with a corresponding increase in the error rate.

* &" Parity and error considerations. It is inevitable that a computer
*' system which handles data at high speeds and stores large quantities of data

internally will occasionally lose one or more bits of information during its
operations. Among the causes of errors besides unreliable hardware are noisy
environments, line crosstalk, power fluctuation and thermal variations. The
computer has no way of knowing whether the transmission is correct without a
specific means of checking the data. The effects of even one erroneous bit of
information can range from relative unimportance to complete catastrophe in
terms of reliable output or actual computer operation, as will be apparent in
the sections dealing with computer architecture and programming.

(1) Parity bits. The simplest method of dealing with potential errors
in data involves the concept of parity. In computer parlance, parity refers
to the requirement that the total number of positive bits (values of 1) in the
data bit information group be either even or odd. Due to the architectural
considerations of a computer, data is usually handled internally in groups of
a constant number of bits, known as a "word". Also, the use of alphanumeric
codes such as ASCII has given rise to a bit group known as a "byte" which
normally is considered to consist of 8 bits (although it may sometimes be
considered as 6 bits). External transmission into and out of the computer may
consist of one or more bytes in a contiguious block of information. Parity is
applied to words or bytes in a variety of ways. For instance, 8 bit ASCII
data can be given even or odd parity by replacing a single binary "0" with a
"I" to some of the coded characters. This change is made to the most
significant bit or in such a way as not to upset the codes, which is possible
because only 128 of a possible 256 characters are represented by the 8 bit
ASCII code. The decision to use either even or odd parity is made by the
systems programmer or manufacturer. Data is sometimes stored in computer
memories which have extra parity bits to ensure against internal errors. This
also helps indicate whether portions of the memory are experiencing
failures. Parity is also applied to mass storage media such as magnetic tapes
and disks to decrease the probability of errors. This will be discussed in
more detail in Section IV. A weakness in the parity concept is that parity
can be used to detect errors in a single bit only. If two or more bits are in
error, the correct parity may still be observed with erroneous data. Errors
made by the programmer are, of course, not detectable by computer hardware or
software, except language syntax errors as discussed in Section V.

(2) Hamming codes. More advanced methods of error detection and
correction involve the use of sophisticated mathematical approaches
implemented via programs or hardware. One such technique make use of Hamming
codes, which are capable of detecting and correcting single bit and double bit
errors. The penalty to be paid for detection and correction of errors is that
extra bits must be transmitted containing coded information generated in
accordance with the data. The required number of error checking bits rises

12

r%

KI

, ';-" in correspondence to the number of simultaneous bits corrected. In one such

Hamming code method, each 4 bit group of data (referred to as a "Nybble") is
attached to four bits of Hamming code data. Since there are only 16 possible
data Nybbles, the resulting 16 bytes of data are unique among the 256
possibilities. Each time an encoded data byte is retrieved, four parity bits

are calculated. The value of these bits reveal the presence of a single or
double bit errror. If the error is in a single bit, the correct data can be
determined from three of the parity bits; if the error is two or more bits,
the computer informs the operator or attempts to retransmit the data. Other
Hamming codes can be used to correct errors of two bits.

(3) Checksums. Another correction and detection technique for single or
double bit errors involves the use of a quantity known as a checksum. In this
method, the positional values of each "on" bit in a data sequence are added
together to create the checksum, which is transmitted as part of the data. To
avoid a large checksum requiring many bits, modulus 16 or modulus 2 arithmetic
may be used, in which the checksum is reduced by 16 or 2 respectively, each
time it exceeds these values as it is computed bit by bit for serial data
transmission. When a piece of data is retrieved, the checksum is
recalculated at the receiving end and checked against the transmitted value.
Like Hamming codes, more checksum bits may be used to correct double or
multiple bit errors of the random or burst variety. Checksums may be

implemented by hardware in order to lessen the burden of the computer.

(4) Cyclic redundancy check (CRC) error. A commonly employed
technique, where error detection without correction is desired, uses CRC

• A- bits. The CRC bits are generated by treating the data as a binary polynomial
which is divided by a constant generator polynomial. The remainder of the
division is the CRC value. Each block of data is transmitted with its CRC

* data and is matched to the CRC value recomputed by the receiving hardware (or
*. computer). If the CRC values do not match, the entire block of data is

retransmitted. Care must be taken to insure that the correct block of data is
retransmitted; this requires a degree of cooperation (known as "protocol")
between the data sending and receiving circuitry.

13

U...

Section 111. COMPUTER LOGIC

11l-1. Basic considerations. The field of mathematics deals with the logic
of binary numbers, known as Boolean alegbra, which is a special case of the
more general mathematical theory of sets. A set is made up of a collection of

elements or quantities capable of being represented by a number or symbol.
The algebra of sets is concerned with the relationships of two or more sets of
these elements and the logical conclusions which can be made about their con-
tents.

a. Set theory. The two basic operations to be considered are the
"union" and "intersection" of two or more sets, represented by their respective
symbols " U" and "n". The union of sets A and B is represented pictorially
by a Venn diagram, shown in Figure III-l.a, and is represented mathematically by
the expression:

C = A "U" B (li-I)

In words, this can be stated as: "The union set C consists of all of the
elements of either A or B or both A and B". The intersection of sets A and B
is represented in Figure lll-l.b, and is represented mathematically by the
expression:

C = A "n" B (111-2)

I

* In words, this can be stated as: "The intersection set C consists of all of
the elements common to A and B". These statements can be generalized to as
nany sets as are desired. Another basic concept of sets is the null set. The
null set of A, expressed as A, is the complement of set A and consists of all
elements not included in A. If the set A would consist of everything outside
the circle.

Ira.
p.m

B.

a)

Union

4*b)

Ineseto

ToFgr 111Agba fSt:VenDarm

1

SdI . .

i% %

b. Boolean algebra. In Boolean algebra, only two elements exist: 0
and 1. The union and intersection operations are referred to in Boolean
Algebra as "OR" and "AND" operations, respectively. Their notation is
symbolized in various texts as ".", "X", or "V1 for "AND" (intersection) and

or + " for "OR" (union). The "NULL" operation is usually expressed by
the bar over the symbol. The logic operations of Boolean algebra are sum-
marized in rules known as Huntington's postulates, summarized in Table III-1.
The symbolic logic of the Boolean algebra rules must not be confused with the
operations and results of simple arithmetic. For instance, equation (2) of
Table 111-2., A + A = A, makes no sense in ordinary arithmetic. In Boolean
algebra, its meaning is that the union of two identical inputs, both either 0
or 1, result in an output equal to whatever the input is. Equation (3) states
that A + 1 - 1. The meaning of this is that the union of input A (either 0 or
1) and an input with a constant value of 1 result in an output equal to 1,
since the output equals A or 1. Like the more general set theory, Venn
diagrams may be used to visualize the Boolean algebra rules. However,
Karnaugh maps or truth tables, as they are known, are commonly used to analyze
Boolean algebra statements.

Table III-1. Boolean Algebra Rules

4.-

"OR" Functions "AND" Functions

(1) A + 0 A (10) A x I A
(2) A + A A (11) A x A A
(3) A + 1 1 (12) A x 0 0
(4) A + A (13) A x A 0
(5) A + B B + A (14) AxB BxA
(6) A + (B+C) (A+B) + C (15) Ax(BxC) - (AxB)xC
(7) A + BxC = (A+B)x(A+C) (16) Ax(B+C) - (AxB)+(AxC)

(8) A + (AxB) - A (17) A x (A+B) - A
(9) (A + B) - AxB (18) (A x B) A+B

* (19) (A) A

A, B, or C may take values of 0 or 1

wd'.

,%

.1a
, -,,... 16

.4.

U ** 44! lP~ W*~' . ' Z C

" 9

111-2. Truth tables. Each Boolean algebraic quantity (A, B, C, etc.) has two

possible values, 0 or 1. When N quantities are used as inputs, there are 2N

possible input combinations or states. The number of output state

combinations depends on the Boolean algebra operation being performed. In
the simplest case of two inputs, A and B are considered with the Boolean "AND"

operation. There are four possible input state combinations:

A=0 A=l A=0 A=1

or
B=0 B=0 B=l B=I

The output conditions can be determined by using Boolean algebra rules (14)

and (16) from Table III-1. To illustrate this, consider the A=0, B=0 case.
Equation (16) states: A x 0 = 0. Therefore, if A=0, then 0 x 0 = 0.

Consequently the result of A=0 and B-0 (AxB) is 0. Note that if AI and B=0,

AxB has the same "0" result. By symmetry, for A-0 and B=l, the result is 0.

For 1=I, B-1, equation (14) is used: A x 1 = A. This implies that the

result is 1 when A is I (also true for B-i). It is convenient to arrange the

above results in a truth table:

A B A x B Result
0 0 0

0 1 0
1 0 0
1 11

By the same reasoning, a Truth Table can be constructed for A + B:

A B A + B Result
0 0 0

0 1 1

1 0 I
1 1 l

Truth tables can be constructed for every possible Boolean algebra statement,

including all of those shown in Table III-I, and extended to any number of input
variables. Logic designers and manufacturers use truth tables extensively in

designing or presenting their product literature.

111-3. de Morgan's Theorem. Equations (9) and (18) of Table III-1. are special

cases of a very important relation in Boolean algebra known as de Morgan's
Theorem. The general form of de Morgan's Theorem is

f(A, B, C..., +, x) f(A, B, C,...,x, +) (111-3)

17

Ur
L t..n Is,

2 . *1- ,*1* - *,

The meaning of this equation is that an equivalent form of any Boolean algebra

formula involving a function of A, B, etc. and the "+" (OR) and "X " (AND)
operators may be derived by interchanging the operators and inverting the set
polarities (A to A or A to A). This general form of the theorem is stated
without proof; however equation (12) is shown to be true by means of the truth
tables shown in Table 111-2. The usefulness of de Morgen's Theorem lies in the
fact that many operators can be eliminated from any logic statement, thereby
enabling a computer designer to construct the logic circuitry of a computer
out of fewer different kinds of components resulting in considerable cost
savings. This will become more apparent in the next paragraph.

Table 111-2. Proof of equation (12) of Table III-1.

a) A+B INPUT OUTPUT

A B A+B A+B
0 0 0 1
0 1 1 0
1 0 1 0

i I 1 0

b) A x B INPUTS OUTUT

A B A B AxB
0 0 1 1 1

O 1 1 0 0
1 0 0 1 0

1 1 0 0 0

111-4. Basic digital logic.

a. Standard symbols. Standard symbols are used to indicate electrical
circuits performing Boolean algebra operator functions. The symbol for the
"AND" operation for two inputs, known as an AND gate is given by:

A
"AND" A x B
Gate

B

The symbol for the "OR" operation is given by:

A
"OR" A+B
Gate

B

18

I

The third basic operation of Boolean algebra is the "NULL", which indicates
the complement of the input and output value. Electrically, a device called an
inverter is needed to perform this function symbolized as:

inve rter"

gate

The AND, OR and inverter (NULL) functions or gates are contained on

semi-conductor chips, or integrated circuits (IC's) that contain a number

of transistors, resistors and diodes capable of performing logic operations.
The IC,s are categorized nominally into three groups to distinguish the

physical density of gates per chip they contain: small scale integration (SSI)
devices contain 12 or less gates; medium scale integration (MSI) devices

contain more than 12 but less than 100 gates; and large scale integration
(LSI) devices contain more than 100 gates, generally in the thousands. Rapid

advances in technology promise the introduction of very large scale
integration (VLSI) in the immediate future, with gate densities on the order
of tens of thousands. SSI devices were the first IC's to appear, but they are
by no means obsolete. Several major generations of SSI technologies have
evolved, the major ones being:

(1) Diode-Transistor Logic (DTL). DTL uses directional variation of

diode resistance to produce the switching effect. In this type of circuitry,

transistors are used as unit gain amplifiers to enable the inputs and outputs
of the diodes to be connected to other devices without the signal degradation
that is brought about by loading effects. The number of inputs a gate can
accept is termed the fan-in factor; the number of gates a gate can drive is
the fan-out factor. Figure l11-2.(a) shows a DTL NAND gate. DTL IC's are
still used to some extent but the technology is no longer under development
and has been superceded by transitor-transistor logic (TTL) technology devices.
ces.

9.

:9

19

.

Co.)

DTL v

(b.)

B

TTL

* FIGURE III-2.OTL AND TTL NAND GATES.

20

.. 1"17

(2) Resistor-Transistor Logic (RTL). RTL is a largely obsolete logic

% technology using resistors and transistors. It is a peculiar fact of
semiconductor IC technology that resistors are more difficult and costly to
fabricate than transistors, a reverse of the situtation encountered with
discrete electronic components.

(3) Transistor - Transistor Logic (TTL). TTL is currently the most
popular technology for SSI devices and is characterized by the replacement of
diodes with transistors having multiple emitters, as illustrated by the TTL
gate in Figure lll-2.(b). More importantly, the TTL devices have a specified
common level of voltages. A logic state of "I" (or high state) is interpreted

- ~ when a level of 2-6 volts is sensed. Generally, 5 volts is specified for the
- high state. The logic state of "0" (or low) binary state is interpreted as

being below .2 volts. Devices are said to be TTL compatible if they observe
these conventions. Some TTL devices are supplied without an internal power
supply resistor, known as the "pull up resistor", thus permitting the parallel
hookup of the inputs or outputs of several devices whose signals may be
effectively connected in a "Wired-OR" logic circuit.

b. MSI and LSI Devices. MSI and LSI devices contain a number of gates,

generally for special applications. A microprocessor is one such LSI device,
*and will be discussed in detail in later Sections.

c. NAND and NOR Functions. It is convenient to combine the AND and
INVERTER and the OR and INVERTER functions on a single IC device to make a
variety of other logic operations available. The most useful of these
are the NAND and NOR gates.

(1) NAND Gate. The NAND gate gets its name from a contraction of "NULL
AND", of which it is an equivalent function. Symbolically, the NAND gate is

shown as an AND gate with the addition of a dot on the output to indicate
inversion, as shown with an accompanying truth table:

A
AxB

"NAND"

A B AxB AxB

0 0 0 1

0 1 0 1

0 0 1 0

21

,. , %".

(2) NOR Gate. The NOR gate gets its name from a contraction of "NULL

OR". Like NAND, the NOR gate is shown as an OR gate with the addition of a

dot on the output to indicate inversion. A NOR gate is shown as:

4% A

"NOR" A+B

B

The Truth Table for NOR is the same as that shown in Table 1I-2.a.

(3) Negative and positive logic devices. A study of de Morgan's

Theorem indicates that an AND function can be performed with a NOR gate
and INVERTERS on the inputs.

AxB = A + B

The term A + B represents a gate with the following symbol and truth table:

AA

A+B = AxB

BV

A B A 7 A+ A+B
0 0 1 1 1 0
0 1 1 0 1 0
1 0 0 1 1 0
1 1 0 0 0 1

As can be seen, the last column of the above truth table is identical to the

truth table for AND shown previously. Likewise, it can be shown that an OR

function can be expressed by a NAND device with INVERTERS on the inputs:

A -

::A 'AxB = A+B

B B

The utility of these equivalencies lies in the fact that NAND and NOR gates,

sometimes referred to as negative logic devices, consume less operating power,

than positive logic devices (AND, OR gates), an important consideration to

designers and manufacturers. Thus, most TTL IC's are NAND and NOR gates

packaged with or without input !NVERTERS.

22

-. : -. ,

d. EXCLUSIVE - OR function (EOR). Another logic function which has
proven useful is the Exclusive-OR (EOR) function. The EOR gate is shown
symbolically as

A

"@EOR" B DQ

The EOR function is similar to the OR function with the exception that when
inputs A and B are both "1", the output Q is "0" instead of "I". Thus, the
truth table for EOR is

A B Q
0 0 0
0 1 1
1 0 1
1 1 0

The EOR function is useful in performing the complementing of binary
quantities in arithmetic operations. It replaces several separate AND, OR and
inverter gates, since the simplest form of the EOR function in terms of AND
and OR gates can be shown to be mathematically equal to:

Q = (AxB) + (AxB)

111-5. Integrated circuits. Using combinations of the logic gates described
in the preceding paragraph as building blocks, logic circuits with any degree
of complexity may be constructed. The gates described were shown with two
inputs; however, gates with three or more inputs are available. By sometimes
viewing the binary 0 (or "low") state as "true" in a truth table, it is
possible to design computers entirely with combinations of NAND gates and
inverters to minimize costs.

4.

23

%N

Section IV. DIGITAL COMPUTER ARCHITECTURE

IV-l. Definition and major requirements of a computer.

a. Six criteria for computers. The theoretical concept of the computer
evolved slowly throughout the history of mathematics. The computer
represented the practical desire of mathematicians and others to eliminate the
tedious manual operations of arithmetic used in computing mathematical tables
such as logarithms, astronomical tables, military ballistics, etc. The first
five important criteria defining the necessary characteristics of a practical
computer were first set down by Charles Babbage in 1830. An additional
criteria was proposed by Von Neumann in 1947. These criteria state:

(1) An input means must exist for entering data in the form of numbers
to be manipulated (operands) or instructions (operators) to direct the
operation of the machine.

(2) A storage system must exist to hold both the operands before and
after they are operated upon, and also the operating instructions.

(3) An arithmetic calculation section must exist that can perform the
instructions and retrieve or store the operands.

(4) A medium must exist for delivering the results (output) of the

computations to the user.

(5) The machine must be capable of deciding between alternative
sequences of operations depending upon the value or state of variables.

(6) Von Neumann proposed that the numerical data and machine
instructions should be stored in the same format, indistinguishable to the
machine. This would allow the machine to modify its own instructions. This
last criteria has proved to be a very powerful concept, enabling the computer
to operate faster and more efficiently, as well as reducing many of the
programming difficulties.

b. Practical computers. The first practical computer based on the above

criteria was completed in 1944. The machine utilized electro-mechanical
relays and switches, thus severely limiting its operating speed. Shortly after
this, work began on a computer utilizing vacuum tubes to act in place of the
relays and switches, a machine capable of far faster operation. The first
commercially produced computer appeared in 1951, utilizing the vacuum tube
technology. At this time, the newly invented transistor was making its
presence felt. Despite some disadvantages such as lack of ruggedness and
sensitivity to temperature extremes, the transistor has superiority over the
vacuum tubes for computer applications because of the following reasons:

24

(1) Lover power consumption; no filament power required.

(2) Physically smaller size for equivalent circuits.

(3) Cheaper to produce in large quantities.

(4) More reliable operation; more hours between equipment failure.

c. Deficiencies of early computers. The last criteria, reliability, is
an important consideration. The early vacuum tube computers where massive,
power hungry behemoths in constant need of maintenance. The transistor helped
alleviate that problem. Another major defect in the early computers was the
necessity of programmers to work solely in binary machine language. Writing a
program was a formidable task requiring a great deal of time and tedious
manual effort in entering the program into the machine. Mistakes were
inevitable, and thus, only very important problems could justify the expense
of computer solution. The introduction of assemblers and finally, high level
languages such as FORTRAN in the late fifties made the computer a practical
device available to a wide spectrum of the public.

d. Organization of computer equipment. Although computer systems vary
greatly both internally and externally and use a wide variety of
electro-mechanical devices, the major components perform according to the
criteria requirements as set down by Babbage and Von Neumann. The computer
equipment ("hardware") and internal operating system ("software")
architecture must encompass the components depicted in Figure IV-l. By
convention, the computer control and processing arithmetic-logic unit have
together come to be known as the central processing unit (CPU). Closely
associated with the CPU is the central memory, frequently referred to as core,
because of the widespread use of magnetic cores as memory storage devices.
The input and output components are usually referred to as peripheral devices.
They include such hardware as cardreaders, magnetic tape drives, magnetic
disks, cathode ray tube (CRT) terminals, keyboards, and printers.

-2

~25

.? I~.< ps~a~ -

INPUT CENTRAL MEMORY1

Keyboard Magnetic Core

Card Reader Semiconductor

Cassette Tape -(DMA) -Magnetic Drum

Paper TapeI
Magnetic Disk

- - __________________ - ________ -
I A .;

LOT---
DECODERI

ACCUM1,I-OR I

CLOCKOUTPUT

Printer
Card P'ini'h
Magnet i: i.pe (DMA)
Cai4-etre 1'ape- -

Paiper Taipe
%!agnetit: D* sk

Figure IV-1 Essential Components of a Computer

26

* -.

IV-2. Computer memory storage. In presenting details of computer architecture,

hit is useful to begin with a discussion of the memory system because of the
bearing that memory has on the architecture of the CPU. The memory of a
computer is organized around the characteristic data group, or word, by using
parallel lines to each bit location. The common lines on which data travels
to and from memory are called the data bus. The common lines which select a
particular word in memory are called the address bus. Modern general purpose
mini and mainframe digital computers have word sizes that commonly range from
12 to 64 bits. Word lengths of 8 bits or less appeared with the first

generation of microprocessors, but 16 bit word length machines are now
available, with longer word lengths expected. The word length is directly
related to the speed and accuracy with which the computer performs arithmetic.

In order for the CPU to be able to access a particular word of memory, each
word must be assigned a unique address. The number of words accessible to the
CPU by direct addressing is limited by the number of lines on the address
bus. For instance, a CPU with 16 address lines can access a maximum of 216 or
65,536 (expressed as 65 k) memory locations. In actual physical terms, there
are several methods and media for storing data currently in use, each having
its own characteristics of speed and capacity. Many computer systems use a
variety of these storage media. An ideal property of one type of computer
memory is that the time required to access every word in memory is the same
because each storage location is accessible by X and Y coordinates. Memory
with this characteristic is known as random access memory (RAM).

a. Fli -flops. The first practical random access memory devices

consisted of flip-flops, which utilized a pair of vacuum tubes configured in a
bistable arrangement. In this circuit arrangement, positive feedback is used

to hold a circuit element such as a vacuum tube in a conducting or
nonconducting (on or off) state after an input signal is removed. Vacuum
tubes proved to be unreliable and flip-flops composed of them had the added
disadvantage of volatility, that is, interruption of power caused loss of
memory information.

b. Magnetic Drum. The magnetic drum was the next storage medium to be
introduced. This device is a cylindrical component with an outer surface

covered with a magnetizable medium. Binary information is detected by a moving
magnetic head to determine the absence or presence of a magnetic field under
the rotating drum. The magnetic drum rotational speeds put a limitation on
the rate at which the CPU is able to retrieve or store data. Even at 9600 rpm,
retrieval of a word of data could take as much as 625 miliseconds, a time
period much longer than the cycle time between the CPU instructions of a
typical computer. Thus, magnetic drum devices (or the magnetic disk to be
described) are unsuitable for use as main memory for the CPU. They are,
however, well suited for mass storage of data which can be emptied or dumped
from faster central memory storage systems such as magnetic cores. Magnetic
drums are presently utilized for mass storage by only one remaining

manufacturer. The chief advantage of drum versus other mass storage devices
are physical ruggedness, and higher data transfer rates. However, data
recording densisties are generally lower. Magnetic drum and disk devices are

27

.. r

not truly random access devices, since the read or write times are dependent

upon the location of the magnetic head relative to the position of data on the
rotating drum.

c. Magnetic core. Magnetic core storage utilizes the direction of the
magnetic field in a highly permeable toroidal element to indicate the presence

of a binary 0 to i. To sense the polarity of the magnetic field on each bit
of the word, special circuitry is required. The core bit arrays are supported
by wires passing through them. These wires include a write winding, a sense
winding to detect magnetic polarity, and a clear winding to zero the bit.
Each time the core is "read", the information that is stored is destroyed and

thus must be rewritten into the memory. The advantages of magnetic core
memory are high speed input and output (I/0), low cost per bit, and
non-volatility. Disadvantages of magnetic core memory are high power

consumption, physical bulkiness of the core arrays and power supply, and
complicated, difficult to maintain circuity. Magnetic core memory is still
the most popular central storage medium for the large scale computer systems
known as mainframes.

(4) Semiconductor memories. The recent advent of LSI IC technology has

led to the widespread use of semiconductor RAM. Most of these devices are

based on the simple flip-flop circuits which were discussed above. A simple
semiconductor flip-flop circuit built out of two NOR gates is shown in Figure
IV-2.a. Its input timing diagram is shown in Figure IV-3. When both the set

and reset inputs are at 0, the output Q is 0. This output and the RESET,
which equals 0, becomes the inputs to the second NOR gate. The output of the
second NOR gate is then 1, and it is fed back to the second input of the first

NOR gate. Thus, even when the SET=O pulse is removed, the output of the first
NOR gate, and the flip-flop as a whole, remains at 1. Only by bringing the

RESET to 1 is the flip-flop output brought to 0. The SET and RESET inputs are
never brought to 1 at the same time. Semiconductor RAM IC's consist of as few

as 8 flip-flops to over 64 thousand on a single package (chip); each flip-flop
contains I bit of data. Generally, the RAM flip-flops operate under clock
control; that is, they can be activated to a 0 to 1 state only after a timing
pulse is sent by the CPU. Several types of clock controlled flip-flops exist:

(a) RS Flip Flop. The R (Reset) or S (Set) inputs of the RS flip-flop,

shown in Figure B-5, must be 1 during the leading edge of the clock timing
pulse to change the state of the output. Two auxiliary inputs are included, a

PRESET and CLEAR, neither of which are under clock control. Both of these
inputs are normally at the I level. Grounding the PRESET forces the flip-flop

into the I state; grounding the CLEAR forces the flip-flop into the 0 state.

(b) RS master-slave flip-floo. This flip-flop consists of two RS

flip-flop in series. The first flip-flop transfers incoming data to the
second flip-flop, which operates on the trailing edge of the clock pulse; thus
the output timing is offset by the width of a clock pulse.

(c) JK flipk-flop. This flip-flop is similar to the RS flip-flop with

the exception that when both the J (SET) and K (RESET) inputs are 1, the clock w

%
V,..

T7

N" 7'" . % % '. '''t '/ ..- ". .

pulse will complement the output to the opposite of whatever state existed. A

JK master-slave flip-flop is a flip-flop pair analogous to the RS master-slave
flip-flop.

(d) 0 flip-flop. The D flip-flop contains only one clocked input line
(D) which determines the output state. The leading edge of the clock pulse

activates the flip-flop.

(e) Latch. A Latch is a special flip-flop which, like the D flip-flop

has only one input. It is used to sample data when the changing data interval
is shorter than the clock, The output of the latch is determined by the input
state which exists at the trailing edge of the clock pulse.

(f) IC and RAM manufacturing technologies. Semiconductors are
manufactured by utilizing a variety of high technology processes and produce
devices with a wide range of characteristics and performance. A common factor
in the production of semiconductors is the use of highly refined, single
crystal silicon cut into thin wafers. Impurities are carefully and
selectively introduced in the silicon wafers by a process called doping, to
produce the semiconductor effect. Originally, only discrete devices such as
diodes or transistors were produced by these processes. Later, it was
discovered that through the use of microscopic "masks", a number of resistors
diodes and transistors could be etched onto multiple cells of a single small
silicon wafer (or "chip"). This process was first applied to bipolar
transistor technology to produce IC gates featuring very high speed but
relatively low gate density. More recently, a technology based on metal
oxide semiconductors (MOS) has achieved a high degree of popularity. This
technology is characterized by the use of etched field effect transistors (FET)
controlled by the electric field around a doped MOS gate. Several different
types of MOS devices exist which use P-type (PMOS) (for positive charge), N-
type (NMOS) (for negative charge) semiconductor material, or a combination of
the two called complementary MOS (CMOS). Each type of MOS device is charac-
terized by differing speeds, gate density, and fabrication cost. The latest
development in MOS, a CMOS process grown on a substrate of sapphire material,
known as silicon-on-sapphire (SOS) technology, exhibits very high speed capa-
bilities. Low power consumption is a desirable characteristic in semiconduc-
tor devices. To achieve this, the Schottky diode clamp has been applied to
TTL logic gates, leading to similar technologies for low power devices.
Another recent technology, integrated injection logic (IZL) has the potential
to become popular in the near future because it exhibits the traits of high
speed (near that of bipolar), a greater gate density than MOS devices, and low
power consumption. These technologies are used to manufacture not only RAM's
but other commonly used logic IC's such as TTL. RAM's are commonly produced
with a range of operating cycle times. Higher speed devices are more expen-
sive; thus RAM's are selected to match operating speed of the CPU's they
serve.

29

i I 3 %% "".'J- _' //' .- ' " " '2" e °¢f 2' ,g" "-€ ,t~e. . , , %

A) TYPICAL CIRCUIT COMPLEMENTARY OUTPUT 0

0 OUTPUT

NOR NOR

SET RESET

V 'HIGH' ------

SET
0

V 'HIGH' -----------------

RESET
0

V 'HIGH' ------

OUTPUT 0

FIGURE IV-2. FLIP-FLOP

, -

-, , , ~.-. , . , . .

Preset

dd %
SSet S

Reset R

Clock

Clear

SET (S)

RESET (R)

OUTPUT (Q) U_______

Clock
Pul se

TIME

Figuire IV-3. Timing of an RS Flip Flop

31

IV-3. Central processing unit (CPU).

a Architecture. The organizational structure of a digital computer
system, known as architecture, varies greatly according to the intent and
design philosophy of the various manufacturers. However, a number of common

design features are evident. The computer CPU is made up of a small number of
memory storage locations called registers, each typically containing a word of

data. In addition, the CPU contains logic circuitry the purpose of which is
to interpret machine instructions and provide paths for data to travel between

registers, or between the registers and memory storage areas outside the CPU

that are directly accessed by using the address and data bus as previously

A described.

b. Registers. The number of registers provided in a CPU is determined
by the computer designer and manufacturer. The registers are made up of a

-" series of flip-flops containing the characteristic number of bits in a word.
Several specialized registers are nearly always included.

(1) Accumulator. The accumulator is the most important register in the

CPU because it provides the "scratch pad" location in which all arithmetic and

logical operations take place for data travelling to and from the main
computer memory storage. The accumulator consists of a number of bits equal

to one computer word plus an extra bit in the most significant digit position
known as the carry (or "link") bit. The carry bit is used to indicate when

the result of an arithmetic operation exceeds the capacity of the accumulator. 5- ---
Another function of the carry bit is its use as a "flag" bit. This function

is connected to a machine instruction which shifts or rotates the data in the

accumulator in a loop right or left as shown below for an eight bit

accumulator:

Cary] L0 111 1 1 0 1 J110 o Rotate Right

, Carry or
~link bit

Accumulator

Ii 1 1 0 1 I 0 1 1 0 Result

Through the use of rotation instructions and of the carry bit, the state of

individual bits in a data word can be tested to choose between alternate

actions. The computer can perforw arithmetic and logical operations with only

two numbers (operands) at a time. One operand is held in the accumulat
while the other usually is obtained from other registers or from memory
storage. The contents of the accumulator may or may not be altered dep-nli!ig
upon the type of instruction encountered in the program.

(2) Program Counter (PC). The PC is a register whose purpose is to keep
track of the address of the instruction to be performed. The CPU operates by
putting the value stored in the PC on the address bus. The data stored in the
specified address travels to the CPU via the data bus where it enters the
instruction decoding circuits. While this is going on, the PC is
automatically incrementd by I so that it will "point" to the next instruction.
Generally, the computer will perform the instructions stored in memory in a
sequented manner. However, at times it is often necessary to skip to another
portion of memory by a process known as branching. When this happens, the PC
is modified to a new value by the CPU circuits, after which it again begins
stepping sequentially through the memory. The PC frequently contains more bit

positions than the word length of the computer to enable it to address more
memory locations. The number of bit positions in the PC is usually equal to
the number of address lines. Theoretically, an accumulator and PC are the
only registers necessary to allow a computer to operate, although in an
inflexible manner.

(3) Status register. The CPU contains a number of individual flag bits
to indicate several conditional states which can be tested under program
control if so desired. These independent individual bits can be considered to
be single status register. The conditions a CPU commonly monitors in the flag
bits include but are not limited to the following:

.. (a) Zero result flag. The result of the CPU operation leaves zero in
the Accumulator. Under this condition the zero flag is set.

(b) Negative flag. The result of the CPU operation leaves a negative

number in the accumulator. Under this condition, the negative flag is set.
When the CPU uses two's complement arithmetic, this also means that the most
significant bit in the accumulator (not including the carry bit) is set. The
usefulness of this concept will be explained in the paragraph dealing with
branching instructions.

(c) Overflow flag. If, after any arithmetic operation, the resulting
operand has a greater magnitude than can be expressed by the bits in the
accumulator, the overflow bit is set. The importance of this bit to the
programmer depends upon whether or not signed arithmetic is being utilized.
When the arithmetic is unsigned, the overflow bit is ignored. In signed

arithmetic, the overflow bit has the same meaning as the carry bit to the
programmer and indicates that a sign correction routine must be used when this
bit is set after an addition or substraction instruction.

(d) Interrupt disable flag. The usefulness of this flag bit will be-

come clearer following the discussion of interrupts in a later paragraph.
Briefly, it inhibits the ability of a signal from an outside device

connected to the computer to interrupt the programmed operation of the
CPU.

'I. 33

WA 9 7

(e) Carry bit flag. The carry bit has already been discussed. All -

of the above flag bits may be set or reset by the programmer and may be used
to make logical decisions under program control by the CPU.

(4) Stack pointer (SP). The concept of the stack is a fairly recent one

in the development of computers and represents an added dimension of power for
the programmer. Its use will become clearer during the discussion on machine
instruction sets. The stack, sometimes called a push-down stack, is a special
area set aside in memory used for the storage of data from the CPU registers.
The data is stored sequentially on a last-in, first-out (LIFO) basis. The SP
initially points to the highest numerical address in the stack. Each time
data is "pushed" onto the stack, the SP is decremented by one to point to the
next lower available address. Data may be retrieved or "popped" from the
stack by a reverse process in which the SP is incremented by one each time.
Not every CPU utilizes stack architecture in this described manner. Some
stacks are actually special registers in the CPU while others use memory

outside the CPU as described. The number of stack locations is determined by
the computer designer, and the programmer must be aware of these limitations.

* (5) Index registers. Many CPU's are provided with varying numbers of

index registers. These registers are commonly used as indexes or counters to

free the accumulator for more important tasks. The usual method of using an
index register is to load it with an integer value which is then decremented
by one until it reaches zero, a common programming operation utilized in
repetitive loops and timers. Index registers are also used by the programmer
as intermediate storage areas for arithmetic and logical operations.

(6) Other registers. Some CPU's are provided with additional general
purpose registers available to the programmer. Their chief benefit is that of

conserving operating time, since data transfers between registers are commonly
faster than transfers between the accumulator and memory. A second
accumulator is provided in some CPU's to allow additional latitude and
operating speed.

c. CPU clock. All semiconductor devices require a finite time to pass
the input data through to the output because of the limitations of the speed

of light in a material medium. This time, known as cycle time, varies from
device to device. In the CPU, some logic devices must "wait" for others while

the data signals stabilize in order to avoid ambiguous data conditions. The

operation of the CPU is then limited to that of its slowest logic circuit
components. To synchronize the operation of the CPU, a clock is utilized.
This clock outputs a continuous stream of square wave pulses at an unvarying

frequency. On the positive peaks, the individual logic circuits and the RAM's
are activated or enabled simultaneouly. Data is read, written or otherwise
manipulated only during the "on" pulses of the clock, although data may be in
transit in between clock pulses. In a typical computer system the address bus
will change during the first half of a clock cycle and the data will be

transferred in the latter half. Some CPU systems utilize multiphase clccks that

derive their pulses from a single timing source.

34

,I

d. Arithmetic logic unit (ALU). The ALU portion of the CPU performs the

capable only of performing addition, AND, OR and EOR functions. Some recent
CPU ALU's are designed to perform multiply and divide functions and floating

i point arithmetic operations as well. Normally, however, functions more

complicated than integer addition are handled by software programs supplied
with the computer.

e. Control unit. The control unit of the CPU contains circuitry to

decode program instruction codes, increment or decrement registers and act as

a gate for data paths between all parts of the computer. In order to maximize
the operating speed of the CPU, most control units are capable of performing
more than one operation at a time by utilizing a technique called pipelining.

As an illustration, while a CPU control unit is sending address information
to retrieve ("fetch") data, it may be simultaneously decoding the next

program instruction to be executed.

IV-4. Instruction sets. Theoretically, it has been shown that a computer

needs only two basic instructions in order to operate; on a practical level,

however, a variety of instructions are available to the programmer. A large
mainframe computer may have no more than 30 instructions, but what the CPU

lacks in versatility, it more than makes up in operating speed. Minicomputers
or microprocessors are usually equipped with many more instructions and a
variety of addressing modes to compensate for their slower CPU operating

speeds. The Zilog Z-80, an 8-bit microprocessor and the DEC LSI-ll, a 16-bit
microprocessor, each have well over 100 basic operating instructions in their
repertoire. The various addressing modes bring the LSI-11 instruction set to

* "over 400. Program instructions must be entered into the computer in the form
of binary codes. Unfortunately, no two computers are coded in the same way.
Some general features are common, however.

a. Instruction format. Instructions are written by the programmer and
stored in the form of an operating code (or OP code) followed by one or more
operands which usually represent memory addresses but can also represent
actual numbers. The number of operands appearing after the OP code is a
function of the word size of the computer. To represent 256 OP codes, for

example, 8 bits are needed. If the computer word length is 32 bits, then 24
bits a - available for the operand(s). In a typical microprocessor having an

8-bit word, no bits are left for the operand. In this case, the instructions

./. are obtained by the CPU by multiple fetches, in which the OP code is first
brought into the control unit to be decoded while the next sequential memory

location containing the operand is being fetched. Some instructions require
no operands. Most microprocessors with 8-bit word lengths contain an
addressing capability of 16 bits, so that instructions requiring the absolute
address of memory data cause the CPU to make two 8-bit fetches after the OP

code fetch. Thus, the operation of a microprocessor is slower than that
of a longer word length machine capable of fetching an OP code and

operand(s) at the same time.

35

b. Typical instructions. It is convenient to be able to transfer data
from one memory location to another. Most CPU's do not do this directly but
rather have a pair of instructions to transfer data to and from a memory
location via the accumulator. Many computers utilize several addressing

modes to accomplish data transfer to the accumulator:

(1) Absolute addressing. The location of the operand is specified by
the actual absolute memory address of the data. This mode of addressing
requires the most information and is thereby slower than some other addressing
modes.

(2) Relative addressing. The location of the desired data is specified
as an offset to some "base" memory address, usually the address of the current
instruction itself. In effect, the control unit adds the offset to the value
in the program counter and puts the result on the address bus. The value of
the offset is limited to one byte or one machine word of data, depending upon
the particular architecture of the CPU. In the case of an 8-bit
microprocessor, the offset is contained in 8 bits; thus the offset may be
either a maximum of 255 words ahead of the current location or between +127
and -128 words of the current locations depending upon particular machine
design. Some CPU designs have another form of relative addressing called pige
relative addressing. A "page" of memory consists of all the locations capable
of being addressed by one memory word. A CPU with an 8 bit word has a page
size of 256 memory locations; the total addressable memory (assuming 16
address lines) thus contains 256 pages of memory locations. In page relative
addressing, the offset is added to the lower boundary address of a particular
page, which in many CPU's is the lowest or "zero" page. Some CPU's use page
relative addressing from any memory page.

(3) Indexed addressing. This form of addressing is especially useful
when large quantities of data arranged in sequence is to be operated upon.
The operand becomes a base address and is added to the value contained in an
index register. The result is put onto the address bus and the data is
fetched to be operated upon by the instruction indicated by the OP code. This
process is shown symbolically by the example below in which the program
instruction located at address 0100 requests the CPU to load the accumulator
(expressed by the mnemonic LDA) with data located at address 1000 plus the
value stored in an index register X:

Location Instruction Operand
0100 LDA 1000 + X

(4) Indirect addressing. In indirect addressing, the operand following
the OP code acts as a pointer to another memory location. The operand is
treated as an address whose contents are the actual address of the desired
data. The method of implementation of this type of addressing varies greatly
among machines. It is frequently combined with indexed operations in a mode
called indirect indexed addressing. This mode of addressing is a form of
branching, since the contents of the memory at the address designated by the
operand can be altered during successive passes through the program. An
illustration of indirect addressing follows:

36

Location Memory Contents
Address Or Instruction Mnemonic

0100 LDI
0101 0200
0102 ADD Accumulator Contents

. . at beginning of
S.instruction 0102 - 50

110 50

0200 110

In the above illustration, the LDI instruction mnemonic stands for load
accumulator, indirect mode, and is actually stored in memory as a binary OP
code. The next address, 0101, contains the operand, 0200. The CPU control
unit decodes the LDI instruction and fetches the contents of 0200 (110) and
puts it on the address bus. The contents of 110, 50 in this case, are
consequently loaded into the accumulator and the CPU program counter advances
to the next instruction at address 0102.

wih(5) Immediate addressing. Immediate addressing is a special mode in

which data is not actually addressed. Instead, the operand itself is the
..-. data upon which the instruction operates.

c. Instruction types. The instructions available to the programmer of
a CPU may be grouped according to their basic functions. For the purposes
of this manual, instruction mnemonics will be designated in groups which
may or may not correspond to those encountered in actual practice:

(1) Arithmetic, logical or move instructions. Arithmetic and logical
instructions allow the programmer to add (subtract) or perform logical AND or
OR functions with values contained in the accumulator and the value of a
particular memory location. Memory contents are not altered except when the
CPU writes into them. Move instructions enable the programmer to fetch data
from memory and put it in the accumulator or other registers, and conversely,
to place data from the registers into memory. Logic operations are carried
out on a bit by bit basis. For instance, to perform the AND operation on data
contained in address 100 with binary 10101101 in the accumulator, the
following steps are performed:

Operation: Location Binary Contents
AND 100 100 00001101

Accumulator Contents 10101101 before execution AND operation

Results in Accumulator Contents 00001101

37

It is seen in the above illustration that the last four digits of the number
in the Accumulator are unchanged while the contents of the first four digits
are altered. This process, known as masking, may be generalized to allow the
programmer to use the AND instruction to selectively examine or alter bits in
any data byte or word for later use. The OR or EOR instructions may be used
in a similar fashion. Some possible instructions in this group include:

(a) LDA M - Load accumulator with data from memory location M. This
instruction and all others affect the status of some or all flag bits.

(b) STA H - Store data from accumulator in memory location M.

(c) TAX - Transfer accumulator contents to register X.

(d) TXA - Transfer register X contents to accumulator.

(e) LDX M - Load register X with contents of memory location M.

(f) STX M - Store register X contents in memory location M.

(g) ADD M - Add contents of memory location M to contents of
accumulator and carry if necessary (with carry bit).

(h) AND M - Perform AND operation on contents of accumulator with
contents of memory location M and store result in the accumulator.

(i) ORA M - Same as (h), but with OR operation.

(j) EOR M - Same as (h), but with EOR operation.

(k) DEX - Decrement Register X by one.

(1) INX - Increment Register X by one.

m) CMA M - Compare contents of memory with contents of accumulator.

Set the carry flag bit if value in memory is greater than the accumulsi
value. Set the negative flag bit if value in memory is less than the
accumulator value. If the contents of the memory and accumulator are epqc'A.
set the zero flag bit. Flag bits are reset for the reverse conditions.

(n) CMX M - Compare contents of memory with contents of regi-ter X.

Same results as in (m) above.

(o) DEC M - Decrement memory by one.

(p) DEX - Decrement register X by one

(q) PHA - Push accumulator onto stack

77e

(r) PLA - Pull accumulator from stack.

(s) PPS - Push processor status register contents onto stack.

Ct) PLS - Pull processor status register contents from stack.

(u) TSX - Transfer SP contents to register X.

(v) TXS - Transfer register X contents to SP.

(2) Control instructions. Instructions in this group are used where
decision making operations are required. Included are the following typical
instructions.

(a) BRK - Causes the CPU to "break" in its program execution to begin a
routine to allow the programmer to enter data or examine the status of the

CPU or contents of memory, register or displays. In a typical CPU, the PC
register contents are automatically pushed onto the stack. A break instruction
is a form of an interrupt under the control of the program instructions. To
differentiate between a programmed break and other kinds of interrupts, a flag
bit is set which can be examined by a programmed sequence.

(b) JMP P - The PC is reset to the value P, typically the absolute
address of the new location where processing is to continue.

(c) BNE N - Branch if the zero flag bit is not set, indicating that the
result of some previous operation was not zero in the register involved. The
value N, represents an offset (positive or negative) from the program counter.
The branch is limited to the maximum allowable values of N but branches beyond
this range can be accommodated by using this instruction in conjunction with
the JMP P instruction. If no branch occurs, the next sequential instruction is

executed.

d) BPL N - Branch if the result of a previous operation resulted in the
resetting of the negative flag bit indicating a positive result. The offset

operates the same as in the BNE instruction.

(e) BMI N - Branch by the value of offset N if the result of a previous

operation resulted in the setting of the negative flag bit indicating a

negative Cminus) result.

Cf) BVC N - Branch by the value of offset N if the overflow bit is not

set (clear).

(g) BVS N - Branch by the value of offset N if the overflow bit is set.

39

(3) Subroutine instructions. A subroutine is a programming instruction
concept that allows a programming sequence written once to be used

A. repetitively any number of times at any point in a program. The subroutine
, is usually written in a contiguous portion of memory and is accessed by

- instructions similar to a jump (JMP) instruction, except that the end of the
subroutine contains an instruction which causes the program counter to point
to the instruction immediately following the one which calls the subroutine.
Subroutines may also have within them calls to other subroutines, a process
called nesting. When this occurs, the CPU must have a means for remembering

4which subroutine it is in and to where it must return. Figure IV-3
illustrates the concept of subroutines. In this illustration, the stack
and SP are used by the CPU to keep track of the subroutine branch locations.
When the instruction to jump to subroutine A is encountered (instruction JSR
0300 starting at address 0204), the CPU places the address of the next
instruction the machine must execute after the completion of the subroutine,
in this case address 0206, onto the current top of the stack as indicated by
the SP. If the first subroutine (A) calls another subroutine (B) as in
Figure IV-3, the address of the next machine instruction after the second
subroutine call (at address 0310) and placed at the top (next location) of the

*stack. Since the SP always points at the top of the stack, it always receives
the next address it must execute in the subroutine or main program in the
proper order. This method of subroutine operation is not the only one
possible. Some CPU designs do not employ a stack to hold the return pointers
for subroutines. They may use another method which involves placing the
return address (next instruction after subroutine return) in a memory location
of the subroutine itself, and return to that address by jumping (branching) by

, the indirect addressing mode. The typical CPU will thus have two basic
subroutine instructions:

F

40

.

lp . .~ ~ (y C.(* * .~V - .

Address Instruction or operand

0100 0206 Port ion
0101 0310 ofk~ - ~ *Main

* •Program

0200 ADD
0201 0500
0202 STA
0203 0510
0204 JSR Jump to subroutine A
0205 0300 located at 0300
0206 LDA
0207 0230
0207 0230

0300 LDA Beginning of
0301 0331 subroutine A
0302 AND
0303 0330
0304 STA
0305 0330
0306 BNE
0307 0020
0308 JSR Jump to subroutine B located at 0400
0309 0400
0310 RTS

Return to main program

- Beginning of
0400 ADD Subroutine B
0401 0001
0402 RTS Return to subroutine A

Figure IV-3. Subroutines in a program.

41

(a) JSR M - Jump (branch) to subroutine located at memory address M, and
store, either on the stack or in the subroutine, a return address pointing to
the instruction immediately following the subroutine call.

(b) RTS - Return from the subroutine to the next instruction after the
subroutine. Some types of return instructions may have an indirect address
associated with them.

(4) Operational instructions. This group of instructions involves only a
single operand whose location is usually one of the registers, including the
accummulator or flag bits. The operand stays in its original location after
the instruction is executed. Some of the possible instructions of this group
include the following:

(a) CLC - Clear (reset) carry flag bit.

(b) CLO - Clear overflow flag bit.

(c) CLI - Clear interrupt flag bit.

d) LSR Z - Shift contents of register or memory.

(represented by operand Z) to the right by one bit position. The least

significant bit is stored as the carry flag bit. This instruction is
frequently used to enable the programmer to examine the status of the lowest
order bit.

(e) ASL Z - Shift contents of register or memory to the left, storing

the most significant bit in the carry flag bit and placing a binary 0 in the

least significant position. This instruction is frequently used by the
programmer in arithmetic operations such as multiplication routines to shift
the multiplicands prior to adding them, as suggested in paragraph II-2.g.

Cf) ROL Z - Rotate the contents of a register or memory location to the
left by one bit placing the most significant bit in the carry flag and moving
the carry flag to the least significant bit location.

(g) ROR Z - Rotate the contents of a register or memory location to the
right by one bit placing the least significant bit in the carry flag, and
moving the carry flag bit to the most significant location.

Ch) COM Z - Provide the complement of a register or memory location.
Zeros are substituted for one's and one's for zeros. If the accumulator is
the register to be complemented, the carry flag (link) bit is also
complemented. This type of instruction is frequently omitted if the CPU has
two's complement arithmetic built in. If necessary, this operation can be
performed by using a sequence of other instructions.

42

%

(i) NOP - No operation is performed. This instruction is useful to the
programmer as a "dummy" statement to aid in debugging programs by allowing
the later insertion or deletion of instructions or data without upsetting the
addressess of other instructions. Another use of this instruction is in
time delay routines since the CPU must take one or more clock cycles to
execute NOP even though no data is actually altered. Time dependent control
processes are applications where this instruction may be employed.

IV-5. Hardware interrupts. An interrupt consists of any action breaking the
normal operating sequence of a CPU under programmed control. In paragraph
IV-4.b.(2)(a), the Break instruction was discussed. That is an example of

a programmed interrupt. A programmed interrupt is used to halt the execution
of the CPU and enter a service routine. At other times, it is necessary to
interrupt the operation of the CPU to allow it to communicate with the

outside world at random intervals through peripheral devices not synchronized
with the CPU clock, such as keyboards, printers and A/D converters containing
data from control devices. One way to do this is by putting program
instructions at regular points in the program causing the CPU to interrogate
one by one every device connected to it from the outside world. This is seldom
done because it is wasteful in terms of the computer's operating time to
interrogate peripheral devices not having anything to communicate to the CPU.

a. Interrupt service routine. The CPU operating speed is often many
times that of the fastest I/0 devices to which it is connected, making it
necessary for the CPU to "wait" for the device to communicate. The hardware
interrupt is designed to allow the peripheral device to signal when it is
ready to receive or transmit data to the computer. When an interrupt control
signal is received by the CPU, it ceases execution of the program and places
whatever information is necessary to resume program execution at a later time
onto the stack (or elsewhere in memory). The information necessary for the
resumption of execution may include the PC, address in the data in other
registers, and a return address. The CPU then enters a specified location in
memory where the interrupt service routine resides. This routine is a special
program containing instructions for transmitting or receiving data from a
particulat I/O peripheral device. The end of the service routine contains a
return instruction to allow the CPU to resume execution of program
instructions using the stored information.

b. Polled interrupt. The interrupt process as described thus far is
simple to implement on a computer connected to only one peripheral device.
However, in the real world, a computer is often connected to a variety of
devices, all of which may require interrupt servicing. Since the CPU can
perform only one operation at a time, it must determine which device is
causing the interrupt signal. It is conceivable that more than one interrupt
could occur simultaneously. Also, some devices may have a higher priority than
others in terms of system operation. These difficulties may be handled by
performing what is known as a polled interrupt. The interrupt signal lines of
the various peripheral devices can be wire OR'd together in parallel into one
interrupt line. When one or more of the devices request interrupt service,

. -%" 43

:7
S,'

r• = I.,

this line is driven into an interrupt state. The CPU then completes the
current instruction, loads the stack with the essential data, and enters the
polling routine. At the beginning of this routine, the programmer may or may
not set a flag bit to prevent further interrupts from occurring. The polling
routine instructions direct the CPU to read the highest priority device's
status register through an I/0 port address to determine whether it is the
interrupting device. If it is not, the next instruction directs the CPU to
read the status register of the next highest device, and so on. At times, it
may be desirable to allow additional interrupts during the interrupt service
routine by nesting, much like subroutine operations. This is allowed when the
flag bit which prevents interrupts is reset during the service routine instead
of afterwards as it is usually done to permit additional interrupts.

c. Vectored interrupts. The time delay encountered in servicing
interrupts is sometimes crucial to peripheral devices,since it may cause the
loss of transmitted data. To increase the response time of the CPU in
servicing multiperipheral interrupts, the vectored interrupt is sometimes
utilized. A vectored interrupt is implemented when the interrupting peripheral
device or a wire OR'd common line responds to the interrupt acknowledgement
from the CPU by passing the address of the interrupting device's service
routine to the PC, thus saving the time required to execute a software polling
routine. Of course, more elaborate hardware external to the CPU must be
utilized to implement vectored interrupts.

d. Nonmaskable interrupts (NMI). Computers are frequently connected to
devices that cannot afford to wait until other interrupts are serviced or to
wait during times when the programmer has set the interrupt disable flag.
High speed devices such as magnetic disks often fit this restriction. Thus,
many computer CPU's are provided with a second interrupt line, the non-
maskable interrupt (NMI). Usually, the highest priority or highest speed
peripheral device is connected to this line and its interrupt service requests
are answered immediately before any other interrupt, whether or not the
interrupt disable flag is set. A vectored interrupt may be used to increase
the servicing speed to a NMI request. In many computer systems, software
polled interrupts are used for slower peripheral devices such as keyboards
and printers, while the NMI line is used for high speed disk storage devices.

IV-6. Arithmetic hardware.

a. Most current CPU instruction sets contain arithmetic instructions
limited to addition and subtraction of integers. A computer system must be

capable, however, of performing multiplication and division as well as to be
able to handle fixed and floating point arithmetic operations. Most computer
systems accomplish these tasks through the use of operating system software
programs in the form of mathematical subroutine packages or high level
languages having such built-in capabilities. A number of routines for dealing
with the common mathematical functions such as sine and cosine,
exponentiation, absolute values, logarithms, etc, are included in these
software packages. These routines (or algorithms) often utilize techniques
such as Taylor's expansion or power series to approximate the value of

-transcendental functions, although solutions to any desired degree of accuracy
can be developed.

44

UL

b. The use of software to perform mathematical operations other than
integer addition means that the CPU must execute numerous time consuming

instructions when mathematical calculations are required. This, in many
instances, severely limits the operating efficiency of CPU in terms of time
required to run programs. A possible solution to this is to use a hardware
device specially designed to do mathematical operations using high speed logic
circuits. CPU speed is increased because the time consuming steps of
instruction decoding, PC incrementing and movement of intermediate data
between registers or memory are reduced to a minimum. Arithmetic hardware
also allows increased pipelining, since the CPU can fetch and decode the next
instruction while the arithmetic hardware is performing the complex
mathematical manipulations.

IV-7. Input to a computer. To be useful, a computer must be able to receive

communications from the outside world through peripheral input/output devices.
Since the computer "speaks" in only binary numbers, the peripheral must be
capable of translating data meaningful to the programmer or other data source
into data meaningful to the computer, and vice versa. Also to be considered
is the disparity in operating speeds between the peripheral devices and the
CPU. The peripheral device is interfaced to the CPU through an I/O port. Two
classes of information must be transferred between the CPU and I/0 peripheral
devices: data and control (address and status) information. A dedicated I/0
bus is generally provided to carry data signals with a separate bus for
control signals. The I/O bus may be bidirectional (capable of carrying data

- -in one direction or the other, not simultaneously) or unidirectional (capable
of one direction only). Generally, a peripheral device is either an input or
an output device, although often both types of devices are packaged in one
unit, such as a CRT containing a display for output and keyboard for input.
An exception to this is a magnetic disk or tape storage, which functions as
both an input and output device. When the highest speed data transfers are
required, such as with a magnetic disk, a pair of unidirectional I/0 busses
may be used employing parallel address and data lines with each bus operating
in one direction.

a. Serial I/0 interface. Data generally travels between the CPU and the
peripheral I/O devices in bit groups consisting of bytes or words. It may
also travel in continuous blocks. The fastest way to transmit the data is via
parallel lines. However, many peripheral devices operate at low enough speeds
to consider the use of serial data transmission methods. Serial transmission
requires only a single or pair of I/0 data line for half or full duplex
operation. The bits are transmitted in a prescribed order and at a fixed rate.
In order for the CPU to correctly interpret the beginning and end bits of data
from certain devices such as keyboards, start and stop bits are usually placed
around the data words. These bits are later stripped off by the CPU during the
device interrupt service routines. Data transmission on serial lines is
frequently asychronous; it is not synchronized to the CPU clock and
communicates at random intervals (but at a constant rate) via interrupts. To
provide for interfacing serial transmission between different types of CPU's
and peripherals, thv EIA RS-232C, a standardized specification for voltage

". . 45

4

a~ ~ ~~~~~~~~~~~1 X,•,r .:';:''.-S ""Z: "':°"

levels and [/IJ aid control signal pir arrangements, has been adopted. C;li

standard ha' qom' serious limitations: its data transmission rate is limit
* to 20 K t' '-'o r, and it repui es two equal voltages o f opposite polri.,

the 5-25 volt. rang.p instead of the single +5 volts of TTL circuitry. f,

correct these :feiects, the EIA has introduced two standards, RS-422 al4
RS-423, tha , spe i v TTr, vul.tage levp-ls and a third, RS-449, which is :-; .a -

of 2 megahit, ler second. The tatter standard is intended to replace th,
RS-232C. However, the RS-232C iq adequate for low speed applications "s, ..
for EMCS) -ad will probably continue to be used for some time.

b. Pa.-ilk!e1 1/0 interface. High speed devices may be interfric.I

paralleI in j-r te. [he tFVIF-488 bus is widely accepted as the staniar.
interface dlvi -e for parallet (at a transmission. It consists of a 2's-tI ,
cable carrying paral 1eI I ta lines and 8 control I Ines. ,ppl icat i' i ,i
the lF--8 r 'ire :o-,8ed r: he unnecessary, since it is us; 1

i7' ; r Ma ot 9600 baud.

c. Haridshakint,. Peripheral devices such as printers and keyboad.a
eq~ite a si ifIcav9 a;mor' ,- time to perform their mechanical f,,ncti,

,-o ipa,-eJ to th,, tyid opei q1 iii (,F the CPU. To avoid delaying the CPU, Ih.

;-r. perip h-r , I : Iiz intercr ?,. t', signal the CPU when 'hey are ready, a
s c , ! ,, ii p-ir ,igraph TV-S. V, indicate when a data transfer operatii,,

)n[cor, It, ei. r t.o i'ro,.' (f<,r input transfers) ,ir th- peripherl f
l~ ij- T)~i !'r I q 10 r itev i ,- e. This procedore ,cal led

!aila. ,,t e iA> it S i ,11l before the re .eiviu or r .a ',

osp' v ~ 't 'lu! u f fe r In o Fri, po~ t r

ht)efo , .I : ts f,l t . The buffer not onlv isla!a:
t e -';'' i a~ 1) 11- :1n ot~atl b i s 1. t d ta '1 eu i

.I)J zt ',c 1S. 11 i' ls r, P,stguals ountrol the operation of ,hese l1 , "f

q, hol.u ri, int"T y sio tn , n r A ;2e r os t are (-) t

S ' till -11, 1 ic re ra!i ; t te Ihut a s igle , p "

parm I i thle memory .i.e,' 1 .Y addres lble by the CPU. Since mnst
,,,,,!,ut r -;v-'erns 1)t ilize a n3, e .,wher of programs and blocks of: 3 L

neres!,a y to haoe somee -raeRidiy transmi tting t-he programs awl
] rl- U r-r- i v, q qe r at d i :f-- t -,;)e o nass adorpg- I s tsems AIe -'

1.1'oic',;.) t ie -arl irst ,,ri- s t ,

' P ' ; I ; n 'v d'l fete lr t C r ' r ;4 '1a1 a r

C I~ |'t I,[t z' 'i,: ' 'I1 ., *'l. [) , I ** I, *ri ft t -. ' IA -f ia o r i , ~ 2. w * - :. . .
i au i 11 - ri .I i

t ~ ~ ~ ~ ~ .I h- ti ,Pvt A1 l -

data. The relative motion of the tape and head and the nonlinear

magnetization process introduces considerable mechanical and electronic
difficulties. Solution of these problems are worthwhile, because of the

fact that magnetic tapes are eraseable and rerecordable, making their use
highly economical.

(1) Tape recording format. Early tape systems utilized seven read/write

heads to produce seven parallel tracks of data across the width of the tape.
The trend has been to replace this with nine-track systems. Nine track tape

systems allow the recording of a byte or character of data (depending on the

coding system used), parity bits or CRC bits to minimize tape recording
errors. A few systems use as many as thirteen tracks. Tape data recording
densities have continued to increase; a density of 6250 bits per inch (bpi)
is in everyday use and densities of 20,000 bpi are under development.
However, the most commonly used densities are 800 or 1600 bpi. Between data

records, a 3/4" gap is inserted. End of file marks are inserted after a 3"

gap at the end of a file.

(2) Encoding methods. A variety of data encoding methods have been

employed to record data.

(a) Return to zero (RZ). A "I" is generated by a positive current

pulse; a "0" by a negative pulse. The head current passes through zero
between pulses. Recording densities are low but ciruitry is simplified.

(b) Nonreturn to zeio (NRZ). The current is reversed whenever the

bit status changes. However, if a bit is missed, the rest are read
incorrectly.

(c) Nonreturn to zero - IBM (NRZI). Current is always reversed on

a "I" and never on "0." This method must be used with odd parity to
insure the presence of at least one bit for clocking purposes. It is
susceptible to skew or tilting of the tape, thereby mixing bits from
different characters.

(d) Phase encoding. The most widely used method, it uses the direction

of flux transitions to indicate "l's" and "O's." Small flux reversals must

be inserted between bit positions to ensure that the proper direction is
recorded.

(e) Group coded recording. A modified NRZI method recently introduced

by IBM, this method encodes data with extra bit correcting information for
lost data.

(3) Advantages and disadvantages of tape. The chief advantage of

magnetic tape is high recording capacity. A typical 10.5" (standard reel

contains 2400 feet of tape. A 9-track recording at 1600 bpi could contain
a maximum of 46 million characters (bytes). However, the actual capacity of
this tape would probably be somewhere between 1/2 to 2.5 million characters

47

r%-

• ' % " j - . ., - ., .- . , .- - . . € - .- .- - . ,-- € . - -

due to the presence of numerous 3/4" blank record gaps. Another advantage of

tape is the low cost of storage per bit. Although the retrieval of any
particular byte of data could take considerable time due to non-random serial
storage, the data transfer rate is very high for contiguous blocks of data.

*. Tape is therefore an ideal storage medium for infrequently accessed programs

*- and data, and as a backup storage medium for other mass storage devices.

b. Magnetic cartridge disk. Magnetic cartridge ("hard") disks provide

semi-random access operation, because the access time depends on the location

of the read/write head relative to the data location on the disk. However,

access times are sufficiently rapid for the disk memory storage devices to be
considered random access in nature. The memory medium is composed of a number

of aluminum disks, typically 14" in diameter coated with iron oxide. The
surface of the disk must be extremely flat due to the fact that the gap

-between the read/write heads and the disk surface may be between 20 - 100

microinches. The rotational speed of a cartridge disk drive is typically
*. between 1500 - 3600 rpm. To maintain a constant data density and transfer
*i rate, only a narrow strip of the disk, approximately 2" wide, is recorded

upon. Data is recorded in a series of tracks and sectors. A sector is a

portion of a track, and contains header, synchronization, and CRC data for
error detection as well as the actual data. A hardware device known as a disk
controller is normally included as part of a magnetic disk storage system.
Its function is to supervise the recording of data by properly formatting it,
preparing header and CRC error data, and maintaining a recorded directory of
the contents of the disk. A single disk controller is typically capable of

controlling four disk drives. The data capacity of a disk depends upon the
recording density, a function of the number of bytes per sector (typically
128-512), the number of sectors per track (typically 12-96), and the number of

*. tracks per surface (typically 32-1450). This results in disk capacities of
2.5 - 44 megabytes per disk. The stacking of disks (disk packs) results in
capacities in excess of 300 megabytes per disk system, expandable to
multisystem units. Points to consider in selecting disk drives include
whether the disks are removable or fixed, top loading or front loading, and
average data access times. Magnetic disks have evolved into two basic

arrangements:

(I) Moving head disks. In this type of disk drive, the magnetic

read/write heads (one per disk surface) move from track to track through the
use of rotary positioning coils or highly accurate stepping motors utilizing

feedback methods to develop positioning error signals. This type of disk head
is currently the most popular.

(2) Fixed head disks. These drives employ multiple nonmovable heads,
one per track. The disk and head airays are commonly supplied in sealed units

capable of service in rugged environments where the integrity of data is
important. This type of disk drive is gradually becoming more popular.

48

%

c. Flexible ("floppy") disk. Flexible disk storage systems were
developed to fill the need for a low cost mass storage system to be used with
minicomputers having limited storage capacity requirements. The typical

Nfloppy disk is a mylar disk 8 inches in diameter and is flexible in comparison
with the larger aluminum sub-strated "hard" disks. A single moving head,

actuated by a stepper motor travels across 64 to 77 recording tracks of 26 to
h32 sectors each. Originally, each sector contained 128 bytes of data; thus a

total of 300 K bytes of data could be stored per disk. Presently, the data
capacity has been extended with the availability of double sided or double
density disk systems (or a combination of both). The floppy disks are always

contained within a plastic envelope for protection while mounted on the drive.
The read/write head, however, makes contact with the surface recording media

of the disk through openings in the envelope, thus limiting the useful life of
the disk to considerably less than that of the cartridge disk. A floppy disk
controller typically handles up to four disk drives; thus the maximum system
capacity is greater than one megabyte with a single disk controller. A floppy
disk rotates much slower than a cartridge disk (typically 360 rpm versus 3600
rpm); thus access and data transfer rates are lower. The tracking system for
head position is either "soft" (by electronic means) or "hard" sectoring (by
means of holes in the disk) depending upon the particular disk system manufac-
turer.

d. Semiconductor mass storage. The use of semiconductors for mass
storage has been inhibited because of the high cost per bit relative to tape
and disk storage and the volatility of the memories in the absence of power.
Recent technological innovations, however, have indicated that semiconductor
mass storage may soon become a reality:

(1) Bubble memory. Bubble memory utilizes the action of magnetic fields

on material in an addressable array. Single chips with 500 K bits have been
produced and higher capacities are expected. Costs per bit of bubble memory
are expected to be competitive with magnetic disk devices. Bubble memory is
nonvolatile when power is removed.

(2) Read-only memory (ROM). Read-only memory is a semiconductor device

containing software etched-in during the manufacturing process. It is a
useful storage medium for system software or often-used programs that are not
meant to be altered. The advantage of a ROM is its compactness and the fact
that it does not have to be "loaded" onto the computer system; it is
immediately addressable as is normal RAM. A ROM is noneraseable; however, a
ROM chip can be easily removed from the system and can be replaced by anotl-er
unit containing other software if desired. ROM's are not produceable by
computer users, but are rather produced by the semiconductor manufacturer at
the request of a computer or software designer. Individual ROM programming
and development costs are high but under high quantity mass production, the
cost of a ROM is low. A ROM is not meant to replace other read/write mass
storage systems, but can lessen the capacity requirements of such systems to
some degree by using them to store important software.

49

% R.

(3) Programmable read-only memory (PROM). In order to enable the

computer system builder or user to program his own ROM in the field or in a
factory, the PROM was developed. By using appropriate voltages to
selectively "blow" resistor fuses, the binary code is permanently imprinted
in the PROM device. Great care must be taken in both progamming and encoding

the PROM because mistakes are noneraseable. A computer may be used to perform
the actual task of entering the desired code into PROM if interfaced to the
proper hardware circuitry. PROM's are bipolar TTL devices and are therefore
extremely fast. Functions of the PROM are similar to that of ROM.

(4) Erasable programmable read-only memory (EPROM). An EPROM is a PROM

with the ability to be erased and rewritten a countless number of times. The
read/write times of EPROM's are assymetrical in the sense that it takes much

longer to erase the device (typically 15 minutes) than to write on it (1-2
minutes to fill it); thus, an EPROM is not used as a substitute for RAM, only

for software storage. The data in an EPROM can be erased only by shining an
* intense source of UV light through a quartz window on the chip. Individual

words or bits cannot be erased, only the data contained on the whole chip.
EPROM's have functions similar to ROM's and PROM's.

(5) Electrically alterable read-only memory (EAROM). A desire for an

EPROM with more symmetric erase/write times led to the development of the

EAROM. This device has the ability to be erased in 10 milliseconds and be
rewritten at the rate of 1 millisecond per word. Also, individual words can
be rewritten, rather than erasing the whole device. This makes the EAROM I?>
useful for program development and debugging, but not as a subsitute for RAM
since it is still too slow for that purpose. One defect of the EAROM is that

• .data can be retained for only a finite period of time before it "leaks" away;

this retention period can be for as long as ten years, but may decline to only
a period of several months if the device is cycled (erased and rewritten) a
million or more times.

IV-9. Bus structure. The bus structure of a computer consists of essentially

i* three busses:

a. Address bus. The address bus consists of the parallel lines of
number n, where n is the number of bits available to the program counter

4register in the CPU. The number of memory locations directly addressable by
the CPU is related to the number of address lines by the equation:

of locations = 2
n

The address bus is attached to every device having a memory address

including all of the RAM's, ROM's, etc.

b. Data bus. The data bus consists of n parallel lines, where n is the

* number of bits of a characteristic word of computer memory. The data bus may

". or may not be bidirectional. If it is not bidirectional, then separate buses

must be used for data traveling to and from the CPU.

50

d- % %- .

c. Control bus. The control bus carries the miscellaneous signals

necessary for the proper operation of the computer system. Many of the
signals on the control bus are generated by the CPU. Others, however, are

generated in other devices, such as peripherals, and are used to notify the
CPU of their status. Signals which appear on the control bus include:

(1) Clock pulses. The CPU clock signals are used to control the status
of many devices such as memory and peripherals. A positive clock pulse may be
used to enable the memory, synchronizing it to the operations of the CPU,

ensuring that the logic status of the data will be settled by the time the CPU
is ready to read or write it. Clock signals prevent a peripheral from sending
data before the CPU is ready.

(2) Read/write (R/W) enable. This control signal prevents any

extraneous data from entering or leaving memory. This would happen if data
was put on the data bus while the memory's address was on the address bus.
The data can enter memory only when the R/W line is enabled. Semiconductor

RAM chips commonly have a R/W pin for this control signal.

(3) Memory bank select. These lines are used to select a particular

memory bank. Normally, the computer memory is subdivided into banks, each

having less than the maximum number of address lines. The excess lines enter
a decoding circuit to convert the binary address into a memory bank enable
signal. Some computer memory banks may have their own address decoding

circuitry, making these control lines unnecessary.

(4) Interrupt lines. The maskable interrupt and NMI signals, as

previously discussed, are connected to the CPU via these lines.

(5) Reset line. A signal from an external device may provide a reset

signal to initialize the CPU and its internal registers.

(6) Bus available. The CPU provides this signal to indicate to an

external device, such as a direct memory access (DMA) controller (to be
discussed in Section VIII), that the CPU is stopped or performing internal

operations and the data and address busses may be used for purposes other than
CPU program execution.

(7) Ready. If the CPU is connected to the memr-y with slower access

times such as in PROM's and EAROM's, the CPU may be delayed for a single clock

cycle by enabling the r line. This allows time for the data from the
slower memories to stabilize.

51

Section V. ASSEMBLY LANGUAGE PROGRAMMING C)
V-1. Machine language. A digital computer operates by utilizing binary
numbers alone. All of the operations included in its instruction sets are
recognizable to the computer only as a binary code. The instructions such as
Add, AND, Jump, etc., must be translated to their binary code to be

interpreted by the machine. Since data is of the same binary form as the
instruction codes, extreme care must be taken to prevent the CPU from
interpreting numerical data or addresses as instruction code and vice versa.

There are times, however, when it is desirable for the CPU to do this when
instructions are themselves being modified by the machine. To illustrate some
basic machine language programming concepts, an abbreviated version of the
instruction set of an 8-bit microprocessor CPU, the 6502 developed by MOS,
Inc., is shown in Table V-i. Only a few instructions and addressing modes

are included 7ot simpLicity. In the example program shown in Table V-2, two
numbers from memory locations 10010 and 10110 are added together and the
result is stored in location 10210. In this simple program, the CPU would
begin execution at locations 0000 and proceed through location

000910 where it would halt awaiting external instructions. The CPU reads the
first instruction at 0000, 10101101, which it interprets as an instruction to
ioad the accumulator with the contents oF the memory at the location given by

the two bytes immediately following at 000110 and 000210. It is a peculiarity
of the 6502 CPU that the least significant address byte is required before the
high order address byte (the 6502 has a 2--byte or 16--bit address bus). Thus,
the two address bytes taken in reverse order read ("00000 00001100100"),
equalling 10010, the address of the f rst memory location of interest. The
content-s, ot this memory add-ess, 5, is loaded in the accumulator. At this
point, the program counter -:5 at 0003, where the next instruction is located.
The CPU interprets this instruction as "Add the contents of the address given
by the next two bytes (absolute address) to the accumulator." The next two
bytes give the address 10I10, conTaining 1410. This value is added to the
accumulator, which now contain, 1910. The iext instruction at 0006 directs
fhe CPU co store the contents ot the accumulator at 10210. The accumiflator

I.d memory location 01.0210 will then both contain 1910. The last instr'uction
in the program, 00000000, directs :he CPU to halt. Notice that this
instruction is numericall, the same as bytes located at addresses 0002, 0005
and 0008, but the CPU iiterpreted these locations as addresses rather thai
instructions. This e;-,-iip1e, although extremely simple in function, is tedious
to write out because o rhe use of binary numbers to express machine
operations. Several methods -an be employed for simplifying this process.

52

q %
-4

,'2 ',.....-''' '/.'< 't ., ,. ",."."_ . . '.., .,",."; " .. ."L"."..,, ; ." -.," " .'*,' . .." *S. , . .,- X. . ") ' *
•

",, i ' ,.j¢ ' '

14t Itble V-I. Simple computer instruct ion codes Ior an 8-bit CPV.

Address

Mnemon i c I ust rct ion Mode B i nary Code

APC Add to A Immed iate 01101001 xxxxxxxx
ADD M Add M to A Absolute 01101101 xxxxxxxx xxxxxxxx
_LPA Load A Immediate 10101001 xxxxxxxx
1EDA M Load M to A Absolute 10101101 xxxxxxxx xxxxxxxx
STA Store A in M Absolute 10001101 xxxxxxxx xxxxxxxx
BRK Break (halt) Implied 00000000

SYMBOLS

A - Accurmul at or
M - Memorv location
x - binary 0 or I, depending on memory contents

Table V-2. Example machine language program for an 8-bit CPU.

'emorv Location* Binary Contents Comments

0000 10101001 Load A (Absolute)

0001 01100100 Low Order Address
0002 00000000 High Order Address
0003 01101101 Add M to A (Absolute)
0004 01100101 Low Order Address

* 0005 00000000 High Order Address

000b 10001101 Store A at M (Absolute)
0007 01100110 Low Order Address

0008 00000000 High Order Address
0009 00000000 Halt

% 0100 00000101 Contents of 0100 = 510
0101 00001110 Contents of 0101 = 1410
0102 00010011 Contents of 0102 = 1910

*.Memory address location in base 10

;53

% "",-.%'N

M a s "c o n s
VI

V-2. Hexadecimal coding.

a. From Section II it was shown that the octal and hexadecimal number

systems could be used to simplify binary representation. Either of these
methods could be used to simplify the programming example of the previous
paragraph. The hexadecimal number system is employed here for the reason that
it was chosen by the 6502 microprocessor manufacturer because it is more
compact than octal and better fits the byte oriented architecture of the 8-bit
CPU. Table V-3 shows the same program of Table V-2 translated into

hexadecimal representation. The program is now less tedious to write but the
awkwardness of binary numbers has been traded for the difficulties associated
with the hexadecimal representation.

b. Programmers usually do not write their programs in the column format
shown thus far because it is easier to write the instructions and operands

together. This helps the programmer avoid leaving out part of an address when
he is dealing with absolute addresses versus relative or indirect addressing
requiring fewer bytes. Some instructions, BRK for example, are one byte
instructions for an 8 bit CPU. Table V-4 shows the example machine language
program of Table V-3 written with instructions and operands grouped together.

Table V-3. MACHINE LANGUAGE PROGRAM IN HEXADECIMAL

Memory Hexadecimal

Location (Hex) Contents Comments
0000 AD Load A (absolute)
0001 04 Low Order Address

0002 00 High Order Address
0003 6D Add M to A (absolute)
0004 65 Low Order Address
0005 00 High Order Address
0006 8D Store A at M (absolute)
0007 66 Low Order Address
0008 00 High Order Address
0009 00 Halt

0064 05 Contents of 10010 - 510

0065 OE Contents of 10110 - 1410
0066 13 Contents of 10210 - 1910

54

I%

Table V-4. Machine language program with grouped instructions.

Hexadecimal Instruction

Memory Location (Hex) and Operands
0000 AD 64 00

0003 6D 65 00
0006 8D 66 00
0009 00

0064 05
0065 OE
0066 13

V-3. Assembly coding.

a. The machine language coding procedures shown thus far are still
tedious in view of the fact that only a few instruction codes have been
considered for use in a short, simple program. The full instruction set of
the 6502 microprocessor, for instance, contains 54 instructions. With all
addressing modes considered, a total of 151 instructions and their operating
codes may be used. The programmer must either memorize every operating code
and remember its function, or else look up the proper code for every
instruction as programs are written. Added to this task is the requirement
that the programmer must assign and keep track of every address where data is

p to be stored. Should the programmer be forced to change some of the program
coding, as often happens, some or all of the data memory locations may have to
be changed. In a long, complicated program, this can be a time-consuming and
confusing task. To alleviate these problems, a program called the assembler
has been written to enable the programmer to use the computer itself to do
many of the tedious bookkeeping tasks associated with machine language
programming.

b. To utilize the assembler, the programmer must write the program in a

special format known as assembly language. Instead of having to remember the
actual hexadecimal OP codes, the programmer uses simpler 3-letter (upper case)
mnemonics to indicate machine instructions followed by lower case letters or
character symbols to differentiate between addressing modes where necessary.
Tables V-5 and V-6 summarize the operating instruction mnemonics and
addressing mode characters for the 6502 assembler. It is noted that each type
of CPU will have its own set of mnemonics and symbols for its own assembler
program. As an example, to indicate an instruction for the 6502 such as "load
immediate to accumulator the value FF16 ," the programmer writes:

LDA# FF

55

Some combinations of addressing modes are allowed in the 6502 microprocessor. '"

For example,the instruction "Store accumulator in memory indirectly indexed
with the base operand EA16 and index register Y" is given in assembler
format:

STAiy $EA

The interested reader should consult the manufacturers literature or various
texts detailing the various addressing modes available for the 6502
instructions. Assemblers for other microprocessors differ in details but not
in the basic format described.

a.

€ U..

56

I

- a-.*V *~.*-a* * * . * •. a . U' bi.*

.1

%

,, '.TABLE V-5. INSTRUCTION MNEMONICS

Mnemonic Mnemonic
ADC Add memory to A PHA Push A on stack

with carry PHP Push CPU status on stack
AND "AND" memory M with A PLA Pull A from stack
ASL Shift left 1 bit PLP Pull CPU status from

(M or A) stack
BCC Branch on carry flag ROL Rotate left 1 bit

clear (M or A)
BCS Branch on carry flag ROR Rotate 1 bit right

set (M or A)
BEQ Branch on result zero RTI Return from interrupt
BIT Test bits 6&7 in M RTS Return from subroutine

with A SBC Subtract M from A
BMI Branch on result minus w/borrow
BNE Branch on result not SEC Set carry flag

zero SED Set decimal mode
BPL Branch on result plus SEI Set interrupt disable
BRK Programmed interrupt flag
BVC Branch on overflow STA Store A in M

flag clear STX Store index X in M
BVS Branch on overflow STY Store index Y in M

* flag set TAX Transfer A to X
CLC Clear carry flag TAY Transfer A to Y
CLD Clear decimal mode TYA Transfer index Y to A
CLI Clear interrupt flag TSX Transfer stack pointer
CLV Clear overflow flag to X
CMP Compare M and A TXA Transfer X to A
CPX Compare M and index X TXS Transfer X to SP
CPY Compare M and index Y
DEC Decrement M by I
DEX Decrement index X by 1
DEY Drecrement index Y by 1
EOR Exclusive "OR" H with A
INC Increment M by I Abbreviations
INX Increment index by 1
INY Increment index Y by 1 A - Accumulator
JMP Jump (unconditional) M - Memory location
JSR Jump to subroutine SP - Stack pointer
LDA Load accumulator X - Index X
LDX Load index X Y - Index Y
LDY Load index Y
LSR Shift right I bit

(M or A)
NOP No operation

ORA "OR" M with A

"N 57

TABLE V-6. Addressing mode codes for 6502 MPU assembler.

Symbol Addressing Mode

@ or a Absolute

Immediate

$ Hexadecimal number

i Indirect

r Relative

y Y index

Z Zero page

c. In the example of assembler statements shown above, the operands were
shown as hexadecimal codes. They are necessary when the programmer wants to
indicate constants or initial values of data in the program. When, however,
the operand is intended to designate a memory location, it is not necessary to
indicate an actual address, but merely a unique alpha-numeric symbolic "name"
to stand for the location of a defined variable. The maximum number of
alphanumeric characters the programmer may use for a symbolic memory location jaT
name is a function of the particular assembler being used. Usually, six or
more characters are permitted, allowing more than enough unique variable names
for even the largest program. Additional operations meaningful to the
assembler may be added on at the end of a symbolic address. For example, the
instruction shown below tells the CPU to store the contents of the accumulator
at the zero page address calculated from the memory address assigned by the
assembler, to POINTH plus 1, added to the value of the index X:

STAzx POINTH+l

d. In the previous examples shown, the programmer was required to keep
track of the memory address locations of the program itself. This was
necessary to prevent the programmer from placing data where program code
exists and vice versa. The assembler can eliminate this chore, thereby
requiring the programmer to provide only symbolic labels for special
addresses, such as the beginnings of subroutines or branch points in the
program. The assembler will then assign addresses in the program subject to
the memory space available and instructions from the programmer indicating
where in memory the program is to begin. It is a desirable property of a
program to be able to move it to another point in memory from where it was
originally written. Programs with this property are said to be relocatable,
and they enable the programmer to move them about in memory without worrying
whether or not they will execute properly. Programs of this type make
extensive use of relative addressing. Some assemblers will produce code of
this type, but the programmer must be sure to use instruction modes that do -7-

58

x4.

not require absolute addressing. The assembler also allows the programmer to
write non-executable comments alongside the assembly language statements by
preceding them with a character, usually a semicolon, which delimits or
separates the comments and instructions. Thus, the typical assembler requires
a program statement format as shown in Table V-7. A program made up of such
statements is known as source code.

TABLE V-7. Typical assembly language statement format.

Label Instr. Operand ;Comment

Optional-used to make the
program logic more under
standable.

May or may not be needed by instruction.

The Operand can be one or two Hex bytes or
asymbolic name indicating an address*

Instruction-A 3-letter mnemonic sometimes followed
by other symbols differentiating between addressing
modes.

An optional name in alphanumeric code to indicate a particular
reference memory location. May be omitted if location is not
significant in program.

*This statement applies to an assembler for a CPU with an 8-bit word.

Other word length machines may have different operand parameters.

e. It is the purpose of the assembler to take the source code submitted
by the programmer and transform it into machine executable object code.
Assemblers differ in their ability to perform this task. A one-pass assembler
can take the assembly language program into executable code in a single step.
To do this in one step requires a considerable amount of memory space in the
computer because the assembler must scan the complete program to allocate and
assign memory locations and prepare symbolic names designated by the
programmer and addresses assigned by the assembler. A one-pass assembler
produces an output consisting of the object code side by side with the
corresponding assembly language statement (including comments). If any
program statement coding errors are present, most assemblers will also produce
a copy of the symbol table for the convenience of the programmer. Assemblers
that accomplish the same functions with two or more passes require less memory
space but are slower and more tedious to use. They require the programmer to

'I feed the output of the first pass back through the computer along with other
portions of the assembler and the original program. The object code, when
produced, may thereafter be used to execute the desired program without
further action by the assembler. However, if the programmer desires to change

4 any of the program statements, the program must be re-assembled.

59I-4

4i

l I

No -o Yes

mIs

NN - 11

L-.-No .. .N - 1)..Yes I N
.',, utput !

n
Figure V-i. Flow chart for program to calculate N factorial.

V-4. Programming procedures. It is difficult to teach programming procedures
without actually practicing the programming. However, several techniques are
presented concerning the philosophy of programming.

a. Flow charting. A useful technique available to the programmer is

flow charting. This procedure consists of preparing a logical diagram of the

sequence of operations the CPA must perform to solve the problem at hand.
.- Programmers commonly enclose logical or arithmetic statements in a rectangular

box, and use diamond shaped boxes to enclose statements in which a choice is
to be made in the program by branching. A typical flow chart is illustrated
in Figure V-i showing the logic for a program to calculate the value of the

4- familiar factorial function for integer N. Note that the logic directs the
program to first check to see if the value of N is 0 or 1. In that case, the
value of N is defined as 1 and the computer immediately outputs that result.
For other values of N, the computer multiplies decremented values of N
successively until N equals 1. Note the use of the intermediate variable, N1.

A .1, The flow chart logic solution to any problem, especially the more complicated
ones, are by no means the only ones possible.

60

(1) Each programmer develops a unique aproach to problem solving.

However, some solutions are better suited to a particular CPU and a programmer
may take advantage of CPU features to develop a solution capable of being

executed faster or more accurately than others.

(2) The programmer must also take into account the limitations of the
CPU with regard to thc maximum size of numbers, such as integers, that the
computer can represent. For example, an 8 bit microprocessor CPU can represent
integers no larger than 255 unless more complicated software techniques are

used.

(3) The example flow chart of Figure V-i is not detailed enough for the

assembly language programmer, since the program must also contain routines
instructing the CPU how to multiply. Routines such as that can be indicated

as subroutines on flow charts. High level languages, to be discussed in the
next section, may utilize flow charts such as that of Figure V-I.

b. Algorithms. Many standard procedures for obtaining common

"* mathematical quantities have been developed in routines known as algorithms.
The programmer may either obtain algorithms written specifically for the

particular CPU being used, translate them from the algorithms of other
machines or write them from mathematical procedures. Such algorithm packages
may include routines for multiplication and division, trigonometric
functions, fixed and floating point numbers. Each CPU can perform single

.* precision arithmetic by using a single or double byte to represent the value
". 0 of numbers. When more accuracy (greater number of digits) is needed, double

and triple precision algorithms exist, to be incorporated by the programmer
into programs.

c. Text editing. The actual process of writing programs into memory

can be a difficult and time consuming task on the assembly language level.
Text editor programs allow the programmer to write and manipulate the program

statements more rapidly. Statements may be added, deleted or changed by
simple commands and the editor can be made to keep track of addresses and
symbolic names. Text editors are frequently associated with assemblers.

d. Documentation. Information consisting of program source and object

code, comments, flow charts, useful data, operating procedures and
applications, makes up what is known as documentation. This information is
important not only to the original programmer, but especially to anyone else
who may utilize the program. Since programs are rarely "perfect" in the sense

that no errors exist for untried conditions, a programmer must occasionally
delve into the code to "debug" the program. Without proper documentation,

this task can become impossible.

e. Disassemblers. When no documentation exists for an object code

- program, it is possible to create an easier way to understand assembly code
* representation of the program (without the original comments) through the use

of a disassembler. The disassembler is a program that reverses the process of
an assembler by outputting OP code mnemonics and operands from the raw machine

. code.

61

.15,

f. Cross-assemblers. It is sometimes desirable to develop programs on
one particular computer for use on another containing a CPU with completely
different architecture. This can be accomplished by means of a program called

a cross-assembler. A cross-assembler is dedicated to transforming assembly
language code written for a specific host computer into object code executable

on one particular CPU. Thus, a mainframe computer could potentially be used
to create and debug programs executable on a microprocessor system. This
eliminates the need for separate assembler software for the microprocessor,
and the detailed knowledge for programming it. Standardized algorithms can
thus be rapidly made available to a wide range of CPU's through the use of

cross-assemblers.

y. Microprogramming. Microprogramming is a combined hardware/software
procedure enabling the programmer to, in effect, create an instruction set
based on simpler or "primitive" CPU instructions. Microprogramming is usually

implemented by storing in ROM the newly defined instruction codes and their
corresponding algorithms. This ROM, known as the control store, contains
sequences of simple machine operating instruction codes utilizing only a few
different instructions to make up the complete set of CPU instructions. Thus,

4 for every single micro-instruction utilized by the programmer, the CPU
internally undergoes several cycles of micro-instructions. The programmer is
normally oblivious to the internal CPU operations directed by the control

*" store. Some more recent CPU's enable the programmer to microprogram the CPU
and make changes in the microcode at will.

62

N .** ~ ,; .. S~
4 .1 V

Section VI. HIGHER LEVEL LANGUAGES.

VI-1. Purpose.

a. The concept of assembly language programming was developed in an
effort to make the programmer's job less tedious by utilizing the power of the
computer itself to convert simple instruction mnemonics and symbolic variable
and address names into machine code. Assembly code is very efficient in terms
of the compactness of program memory storage requirements and executing speed,
providing that it is well written. However, complex programming problems
still take an inordinate amount of time and effort by specialized programmers
skilled in the use of assembly lanaguage. It is for that reason that the
concept of higher level languages was developed.

b. High level languages are problem oriented; no single language is
ideal for all applications. Some languages are written to facilitate the
solution of scientific and engineering related mathematical problems,
while others are more adept at performing business oriented functions
such as filing and sorting of alphanumeric data or bookkeeping.

VI-2. Language structure.

a. Statements. Each high level language is provided with a limited set
of statements, each defining a single operation. In general, these statements
are English-like words or phrases, to aid the programmer in recognizing them
and remembering their function. The statements may have numbers associated
with them to act as statement ordering numbers (or sequence numbers) or
labels, similar to assembly language statements. Other numbers may appear as
operands. The statements themselves are generally more powerful than
individual machine instructions; a single high level language statement might
require a lengthy sequence of machine instructions to be executed.

b. Types of statements. To be useful, high level l.,iuages must have
some or all of the following types of statements:

(1) I/0 statements. The programming language must provide a means of
getting data into and out of the computer. It must be capable of allowing more
than one hardware data source to communicate with the machine, such as a
keyboard and a magnetic disk. The format of the data must be recognizable and
controllable in the high level language. For example, the programmer must be
able to utilize integers, floating point and fixed point numbers, and
designate in the program the format and location in which the output
quantities are to be placed on the output medium. The high level language
internally decodes the form by which the computer stores numbers and converts
them to the format required by the programmer. Thus, the high level language
must be tailored to the specific architecture of the machine upon which it is
implemented.

63

(2) Arithmetic and logical operations. Most languages allow the
programmer to perform arithmetic operations such as add, subtract, multiply
and divide, and compute higher level functions like exponentiation, roots,
trigonometric functions, modulus arithmetic and absolute values. Constants may
be stored in the program itself. Instead of single operations, the programmer
may utilize single complex algebraic statements. The programmer specifies
variables by the use of symbolic names rather than memory addresses. The high
level language contains internally the complicated algorithms for processing
the mathematical functions to arrive at solutions to a high accuracy within
the limitations of the machine architecture. Logic operations such as
"equals," "greater than," "less than," "AND" and "OR" are frequently included
in high level languages.

(3) Subroutine statements. An important ability for high level languages
is to allow the programmer to use subroutines. Subroutines are useful to the
programmer when procedures which are analogous to each other are used at
several points in the program. The method of subroutine operation allows the
passing of different data to variables each time a subroutine is called. The
procedure of jumping to a subroutine and returning to the next executable
statement is the same in high level languages as in machine and assembly code
execution.

(4) File or memory declaration statements. The high level language
program must indicate to the computer how much memory it will require on line
or in the mass storage devices. Every computer system is limited by the
number of memory or storage locations it can provide. Programmers sometimes
have to reorganize the data handling portions of their programs when these
limits are exceeded.

c. High level languages versus assembly language. High level languages
are easy to use, but are generally less flexible than assembly language. In
addition, much more elaborate computers with larger memories must be used with
high level languages because they require the use of extensive software pack-
ages generally residing on magnetic disks. Assembly language software, on the
other hand, may reside entirely on active RAM and be loaded into memory from
magnetic or paper tape. Some assemblers reside permanently on line in ROM's.
Computer systems capable of high level language operation are thus more costly
than assembler oriented systems. However, the increased costs can often be
traded-off due to the ease of use for less highly trained programming person-
nel and the inherently higher productivity afforded thereof. There are some
instances which preclude the use of high level languages, thus requiring
assembly coding. These include situations in which memory available to the
CPU is highly limited; situations in which CPU execution timing is critical to
real-time events; and situations in which software must provide critical pro-
tocol or handshaking signals to devices not provided for by high level
languages.

64

.4 . .--

VI-3. Compilers. Like assembly language, high level languages require
translation from the English-like statements recognizable to the programmer
into machine code executable by the CPU. The compiler is a program designed
to perform this function. Like the assembler, the compiler may be one-pass or
multi-pass in operation. Most recent computer systems use one-pass compilers.
The compiler is a large, highly sophisticated program by comparison with the
assembler. It performs several functions while operating on the high level
language program:

a. Syntax analysis. Syntax refers to the precise format requirements
for statements in a program written in a high level language. Those
requirements include proper spelling of instructions in the set recognized by
the language compiler, proper location of operands and symbolic labels,
correct representation of numbers, definition of variables, and other rules
peculiar to the language used. The program is first checked for syntax by the
compiler. Improper statements cause the compiler to issue error messages
corresponding to the statements and cease execution. Some compilers do not
find all program errors the first time, since improper syntax may conceal
errors in other statements. Complete elimination of syntax errors may thus
become a time consuming task requiring several tries. The compiler will not
begin to generate machine code until it is satisfied as to the correctness of
the program syntax.

b. Intermediate code. Many language compilers generate an intermediate

assembly code before producing the final executable code. The compiler must go
through the same steps as the assembler in developing a symbol table. In
addition, the compiler must allocate space in the computer memory in
accordance with statements in the program. At times, the program or its
memory requirements will exceed the RAM locations addressable to the CPU. In
this case, some compilers have the ability to segment the programs and operate
via overlays. Segmentation involves breaking up the disk stored program into
smaller pieces without upsetting the logic flow. This allows the CPU to
overlay, or bring various segments in and out of memory from disk as required
by program logic. This process slows down the execution of the program
considerably since large program and data blocks are involved, but it enables
the computer to handle programs of virtually unlimited size. Computer memory
may also be extended by the concept of virtual memory. In this scheme,
programs or data in mass storage are given an address partially corresponding
to the smaller active RAM. A hardware controller allows the programmer to
access data in mass storage as if it were in RAM.

c. Linkers and loaders. Main portions of programs and their subroutines
are generally compiled separately. Programs referencing built-in functions
such as sine and cosine or square roots cause the compiler to add the required
function algorithms to the program assembly code. When all of the program is
compiled into assembly code, all of the various components, the main program,
subroutines and functions must be connected together into a logicallly
consistent package. This operation is performed by the linker program in the
compiler. When this is complete, the compiler translates the assembly code

65

A4

into object code. Some compilers eliminate the assembly code and translate
directly from high level language to object code. Most compilers attach a
routine to the object code called a loader enabling the CPU to load the object
code from mass storage into RAM before execution. As a final step, the
compiler writes the object code into mass storage to await execution.
Programs too large to fit in the available memory are frequently compiled by a
type of segmentation process. If not, an error will result and the program
will not be compiled. The object code generally takes up far less memory
space than the high level source code.

d. Execution. At the successful completion of the preceding step, the
program is ready for execution. There is no guarantee, however, that it will
execute properly as a result of possible logic errors in programming. For
example, a common error is one in which the program attempts to make the
computer divide a number by zero. This can happen when the programmer does
not allow for variables used in the denominators of algebraic expressions
occasionally becoming equal to zero, a situation avoidable by careful
programming. In a division by zero, the computer operating system monitor
will cause the CPU to enter an error routine and halt execution, "bombing" the
program. The first execution of a program is the beginning of the debugging
process, possibly requiring the rewriting and recompilation of all or part of
the program by a process called link editing.

VI-4. Interpreters. An alternative exists to the compilation of high level
languages as described in paragraph VI-3, above. An interpreter is a software
program that translates a high level language program line by line into
executable code. This process is much less efficient in terms of execution
time than by the compiler method and requires far more memory, since the
source code is not transformed into stored object code. However, when source
codes are being debugged or being used in an interactive environment,
interpreters are very effective. Interactive environments are used when a
programmer wishes to execute programs in a conversational mode with the
computer. Keyboard/printers and CRTs are commonly utilized in such cases in
time-shared environment. Interpreters have an additional advantage in that
the software is usually much smaller than that of a compiler for the same
language. Frequently, interpreters are placed as permanent on-line software
resident in ROMs.

VI-5. FORTRAN.

a. General. The most popular scientific and engineering high level
language in use at present is FORTRAN, a mnemonic name standing for FORmula
TRANslation. This language is equipped with a set of statements enabling the
programmer to solve most kinds of problems. Some of these statements are
presented. Many more have been added, but these included are the basis of the
language.

66

% V

b. Statement format. FORTRAN statements vary in their format, but must
be written conforming to common column location requirements. The statements
are written up to 80 characters wide. The first five columns (characters) are
allocated for any optional numerical labels. The sixth column is reserved to
indicate a continuation; statements too long for the 65 available character
columns may be indicated on the next program line. The program statement area
extends from column 7 to column 72. The last eight columns may contain
sequence numbers, used only in line editing by batch systems.

c. I/O statements. Input and output devices are indicated by assigning
hardware to integer logical unit numbers. The basic I/0 statements include:

(1) READ. The READ statement has a format as shown below: Label

READ (m,n) VARI, VAR2,...VARN

The "n" in the above statement is the logical unit number of a hardware
device. By convention, a card reader or keyboard is given a logical unit
number of 5. The operands VARI through VARN represent "N" variable symbolic
names assigned to memory locations by the compiler/interpreter. The label
refers to an optional number assigned by the programmer to allow branches from
elsewhere in the program to that point. The symbol "m" refers to the FORMAT
statement label.

(2) WRITE. The WRITE statement has a format identical to the READ
statement and allows output to various logical devices. By convention, the
printer is assigned a logical unit number of 6.

(3) FORMAT. READ and WRITE statements are accompanied by FORMAT
statements as shown below:

Label FORMAT (a,b,...)

The symbols a,b,... refer to parameters directing the compiler or interpreter
to properly space alphanumeric data and to represent numbers as integers,
fixed or floating point quantities, determining where the decimal point, if
any, is to be. A "PRINT" statement is sometimes also used in place of WRITE
and FORMAT statements in some newer versions of FORTRAN.

(4) File declaration statements. The format of these control
statements varies from computer to computer. They assign a particular data
file to a logical unit number which may appear in READ and WRITE statements.

d. Decision making statements. A number of decision making statements

are available in FORTRAN:

(1) IF. The IF statement has two formats as shown below:

67

A

I.

L

Label IF (arithmetic and/or logic statement) k,m,n, i
Label IF (arithmetic and/or logic statements) algebraic

equation or GO TO n

The arithmetic or logical statements inside the parentheses may use two or
more symbolic variables separated by arithmetic or logical symbols including
+, -, * (multiply), / (divide), .EQ. (equals), .LE. (less than or equal), .LT.
(less than), .GE. (greater than or equal to), .GT. (greater than), .NE. (not
equal to), .AND., and .OR. functions. The symbols k, m, and n refer to
statement label numbers to branch to if the result in the expression in the
parenthesis is negative, zero or positive, respectively.

(2) GO TO. The GO TO statement has two different formats. The first
is an absolute GO TO corresponding to an absolute addressed jump, and the
second is a computed GO TO, corresponding to an indirect jump. The format is
as shown below:

ft" Label GO TO N
Label GO TO (LABEL1,...,LABELN),N

In the second statement, the value of variable integer "N" existing at the
time the statement is executed determines the statement number to which the
branch occurs.

(3) DO. While not exactly a decision making statement, the DO statement

allows repetitive looping until a counter is satisfied. The format of the DO
statement is as shown below:

DO LABEL J - M,N

Label CONTINUE (or most other statements)

,. The statement indicated by the LABEL is the last statement in the DO loop. The
,p repetition counter is J, with an initial value of M and a final value N. Both

H4 and N may be constants or variables. CONTINUE is the end statement of a DO
loop; however, more recent versions of FORTRAN allow DO loops to end on most
other labeled statements.

(4) STOP and END. Program break statements. The STOP causes a halt and

an END terminates execution. These statements are required at the end of the
main program. The end of a subroutine requires an END statement.

e. Subroutine statements. A subroutine may be called by using the

following statements:

-t (1) CALL. The CALL statement has the format shown below:

CALL SUBROUTINE LABELNAME (A,B,...)

68

IL

The LABELNAME is a unique symbolic name for the subroutine. The symbols
A,B,... refer to various values of variables passed to and from the
subroutine. Other subroutines may be called while in the subroutine.

(2) RETURN. The subroutine is terminated by the RETURN statement
(followed by END). This statement has no operands. Its effect is to cause a
transfer back to the program statement immediately following the subroutine
CALL statement.

f. Memory and other declaration statements. Several statements are
used to allocate memory and declare the variable types:

(1) DIMENSION. The DIMENSION statement is used to allocate memory to
multidimensional arrays. The format is as shown below:

DIMENSION VARNAMEI(N,...), VARNAME2,...

The symbol(s) N refers to the number of variables in row, column, etc. of the
array.

(2) REAL. The REAL statement declares variables with symbolic names
beginning with either 1, J, K, L, M, or N to be real numbers. Normally, only
integer variables begin with one of these six letters (all symbolic names must
begin with a letter). The format of this statement is as shown:

REAL INANE, JNAE,...

(3) INTEGER. The INTEGER statement is similar to the REAL statement.
It declares that the variables following it beginning with the non-integer
characters (any letters but I, J, K, L, M. and N) are to be considered
integers.

(4) DATA. This statement allows the programmer to insert numerical
constants into the program assigned to variable names as single values or

indexed multidimensional arrays.

&. Arithmetic statements. FORTRAN allows algebraic expressions to be
evaluated. This is done by setting an equivalence between a variable label
name on the left side of an equals sign, and an algebraic expression on the
right side made up of constants, arithmetic symbols, and variable label names.
The variable quantity on the left is set equal to the quantity on the right
through the use of an equals sign; thus, its value set equal to that of the

evaluated algebraic expression.

h. Efficiency of the FORTRAN compiler. The efficiency of FORTRAN object

code in terms of compactness and speed is less than that of assembly code
written by a skilled programmer. The differences are largely machine
dependent; however, compilers of different machines produce varying results.
Although FORTRAN is a universal, standardized language, programs can rarely be

Srun on different machines without some modification. All high level languages

are, therefore, hardware dependent.

69

VI-6. BASIC.

a. General. A second very popular high level language for scientific

and engineering applications is BASIC. In many ways, BASIC is similar to
FORTRAN, although it is not as powerful. The chief difference between BASIC

and FORTRAN lies in the fact that BASIC is almost entirely an interpreted

language while FORTRAN IS predominantly a compiled language. The BASIC
language is, therefore, more easily implemented on smaller computer systems,
frequently resident in the system on ROM. Deficiencies of computers using
interpreted BASIC include their slower execution time and large memory space
requirements. BASIC is also deficient in its ability to handle data files, on
magnetic disk, although more recent enhanced versions of the language have

added this capability.

b. BASIC statements. The commands in the BASIC repertoire are briefly

summarized:

(1) DIM. Corresponds to the FORTRAN dimension statement.

* (2) IF...THEN. Corresponds to the FORTRAN IF statement.

(3) LET. This statement corresponds to the FORTRAN algebraic equivalence

*I statements.

(4) FOR...TO. Corresponds to the FORTRAN DO statement.

(5) NEXT. Corresponds to the CONTINUE or other end statement of a FORTRAN DO

loop.

(6) GOSUB. Corresponds to a FORTRAN subroutine call.

The subroutine is designated by the program line statement number (all
BASIC statements are numbered).

(7) RETURN. Same as RETURN in FORTRAN.

(8) INPUT. Corresponds to a FORTRAN READ statement.

(9) READ. Used to read BASIC DATA statements.

*(10) DATA. Contains data constant values.

(11) PRINT. Corresponds to FORTRAN WRITE and PRINT statements. Basic

does not use FORMAT statements but allows some latitude to the written output

by using tabs for placement and built in scientific notation.

(12) END. Corresponds to FORTRAN END statement.

(13) REM. Corresponds to a CONTINUE statement in that it is a dumny

statement, frequently used to enter comments into the program for

documentation purposes.

70

- .V. ** ~w* L/~V V~.,~.*~'.%';. .. I.- - -

ItL . 4 4 . .. f~*'~ A

VI-7. Other languages. As many as 200 distinct computer languages have been
developed over the years by various manufacturers, universities, and users.
Of these, a small number have achieved widespread popularity:

V~ a. COBOL. COBOL was developed primarily as a business oriented language. It

is especially useful for manipulating files containing various types of data.
COBOL is implemented on most mainframes and minicomputer systems.

b. ALGOL. This language was the first of the so-called structural
languages. ALGOL combines aspects of COBOL and FORTRAN, thus classifying it
as a powerful all purpose language. Originally developed by the Burroughs
Corporation for its own line of computers, ALGOL has been implemented on many
other mainframe and minicompuer systems. It sufers from the deficiency that
I/0 statements are not defined and must be individually developed for each new
type computer system.

c. RPG. Introduced originally by IBM, this language is wholly oriented
for business use. It is especially useful in generating and formatting
reports.

d. PL/I. This language represents a family of similar FORTRAN-like
languages developed for use with IBM Corporation computer systems.

e. APL. Unlike most other languages, this language was developed to be
used in an interactive environment. It is suited towards the solution of
mathematic problems in engineering and scientific work. Very powerful
mathematical tools are built into APL. For example, a matrix can be inverted
by invoking a single command.

f. PASCAL. The most recent development in structured programming, this
language bears a strong resemblance to ALGOL. Like ALGOL, it suffers from a
lack of definition in its I/0 statements. The language features powerful

* -. operational capabilities in a concise and orderly format. It is very useful
in programming the solutions to large, complex problems; however, it is a

* difficult language to learn and requires a large RAM to support the compiler.

VI-8. Command line mnemonic (CLM) language.

a. Computer systems are generally provided with operating systems
software capable of performing many useful utility functions, including data
file manipulations, control of I/0, text editing, and control of language
compilers/interpreters. The programmer or system operator controls the
operating system by means of commands directly input into the computer through
a keyboard or other input device. These commands are usually simple and
English-like, to enable the operator to become familiar with commands.
Sometimes the commands and their parameters must be entered in a strict syntax
to be understandable to the operating system.

71

.r- -. .

.3. .V.W

b. The EMCS is provided with an operating system containing a command
line mnemonic (CLM) interpreter. The CLM acts in a manner similar to the
operating system of a general purpose computer system, except that it is
dedicated to the function of operating controls and monitoring instrumentation
connected to building utility systems. The CLM is designed to operate
interactively with the EMCS operator. Commands are entered in the form of easy
to remember mnemonic abbreviatons of English words. The commands are entered
one at a time by the operator and the EMCS computer responds with either a
request for a specific piece of information or output data requested by the
operator. Single commands or responses from the operator may be accompanied
by a set of data parameters. If the operator's response does not contain
sufficient information, the CLM prompts the operator for the balance of it.
If the operator makes requests which are illegal or impossible for the EMCS to
perform, the CLM informs the operator of the reason in plain English. A
skilled EMCS operator may disregard the command/response manner of operation
by using multiple commands in a shortcut mode to shorten the response time of
the EMCS. 1/0 to the CLM may be through a CRT or keyboard/printer. Mnemonics
may be entered letter by letter or by dedicated keys.

c. The CLM is implemented by means of an interpreter. It has a list of
commands to enable the operator to display or adjust the parameters associated
with a control point, such as temperature, pressure, on, off, alarm status,
etc. In addition, the CLM commands allow the operator to print out control or
monitor point data selectively, activate or deactivate a point, enter the
automatic point operating mode, connect the intercom to a particular point
location, and categorize the types of controls and sensors under an arbitrary
name.

d. The operator gains access to the CLM by entering a password.
Operators are given passwords corresponding to their various levels of
priority. Operators with higher priority may effectively "lock-out" operators
of lower priority from CLM access to specific control or monitoring points by
entering appropriate commands.

4. VI-9. Applications software.

a. The EMCS is provided with applications programs. These programs
should be written in a high level language and accompanied by documentation in
the form of source code listings and an explanation of the algorithms
utilized. This will allow the EMCS operating staff to make any necessary
modifications in the control logic.

b. Where required, cross-compilers and cross-assemblers shall be
included to provide the means to create new applications software for
microprocessor based FIDs not provided with high level language capabilities
of their own. These cross-compilers or assemblers should be capable of
producing relocatable machine code so that new applications programs can be
placed anywhere in the FID memory.

72

Section VII. MICROPROCESSORS AND MINICOMPUTERS

VII-1. Microprocessors versus hardwired processors.

a. Microprocessors (MPU). The MPU is a relatively new development in

the field of semiconductor technology, first becoming commercially available
in 1971 with the introduction of the Intel 4004, a 4-bit word length machine.
The microprocessor uses LSI as applied to MOS and other technologies to place

a complete, functional CPU on a single silicon chip or set of chips. The
early 4-bit MPU was followed by 8 bit machines beginning with the Intel 8008
and 8080 MPU's. Currently, a variety of 8- and 16-bit MPU's from different
manufacturers are available and 32-bit machines are expected in the near

future.

b. Characteristics of microprocessors. An important characteristic of

the MPU is cycle time. Cycle time refers to the length of time between
externally supplied clock pulses. Normally, the MPU can perform one program
instruction in each clock pulse, although internally, many operations may be
occurring sequentially or simultaneously in carrying out the programmer's
instructions. Typical cycle times of currently available MPUs are between 1/4
and I microsecond. In each clock cycle, the MPU can at best alter only one
word at some location. On the other hand, a CPU built from discrete SSI and
MSI IC components, referred to as hardwired processors, may alter all of the
CPU counters and registers simultaneously on each clock pulse. A hardwired
minicomputer processor using conventional bipolar TTL components is thus
considerably faster than current MPUs. However, the MPU is considerably less
expensive than its hardwired counterpart by a factor of a thousand times or
more, since many MPUs cost $25 or less. Thus, there is a performance versus

cost tradeoff that the computer system designer or user must consider when
analyzing needs.

VII-2. Microcomputers versus minicomputers.

a. The differences between microcomputers, minicomputers and mainframes

are chiefly those of scale, but there are widening areas of overlap in the
characteristics of these systems. The performance characteristics of many
state-of-the-art minicomputers surpass the capabilities of many so-called
mainframe computers of an earlier vintage. It is expected that upcoming
development in computer and semiconductor technology will further blur the

lines of demarcation between micro, mini, and mainframe computer systems.

b. The MPU, like the CPU, is useless by itself. It must be incorporated

into a complete computer system through the addition of an external clock,

memory, I/0 devices and software.

c. Some MPU's have been designed to emulate the performace of a com-
mercially produced hardwired minicomputer CPU; that is, the same instruction

set and software may be used by the programmer. In terms of code execution

speed, the MPU emulator will be inferior to the hardwired device but it may be
adequate to serve the task.

73

* .~ * *II~ ~ ~ ~..49Y > * *
16~ L&

- - -- -- ~,--~ -- *-

d. Microprocessors were orginally intended for use as dedicated control
devices with rather limited memories and peripheral device I/0 ports. The
limited MPU cycle speeds were adequate to meet all but the most stringent
requirements in monitoring and control applications. The use of MPU's,
particularly the 8-bit variety, in complete microcomputer systems has strained
their capabilities. This strain has been alleviated to some extent by the
appearance of better high level language and applications software, faster
MPU's, and the appearance of longer word length MPH's. It is expected that
continuing advances in the science of semiconductor technology will bring the
performance level of microprocessor based computers closer to that of the
present day hardwired minicomputers.

VII-3. Comparison of 8-bit versus 16-bit MPU's. The word length of a computer
CPU is important because it is the limiting factor in the amount of data a
computer can handle at once. Machines with a short word length must make
multiple fetches in memory to retrieve instructions and operands (data and
addresses), each of which take up a CPU cycle. A longer word length machine
may require fewer or even one fetch to accomplish the same task. The word
length also limits the data representation capabilities in the CPU registers
or memories, thus requiring additional software and execution time to achieve
the same degree of arithmetic accuracy in longer word machines. Thus, it can
be said that in general, a longer word length means enhanced computer
performance when considering microcomputers. However, the word length chosen
should be tailored to meet the requirements of the application for a cost
effective solution. For example, the use of a CPU with a 60-bit word length
would result in "overkill" for a process control application. Once again, a
tradeoff must be made in price versus performance.

VII-4. Application to EMCS.

a. Requirements of computers. An EMCS must have the potential to monitor
and/or control thousands of points. In an EMCS with a central computer, these
points must be scanned one-by-one and decisions must be made regarding control
strategy during each scan. Besides decision making calculations, the CPU must
perform time consuming I/0 operations. Thus, a considerable number of machineV instructions must be performed continuously. Although minicomputer CPUs P-e

4capable of relatively high execution speed, a large number of control points
may overwhelm the capabilities of an EMCS minicomputer CPU and cause it to
operate inefficiently. In some cases, the control point scanning rate might
have to be reduced, sometimes jeopardizing the ability of the system to
properly control dynamic processes.

b. Distributed processing architecture. In cases where many processes
require simultaneous control, the burden on a single central control system
can be alleviated by utilizing a network of parallel CPUs each operating fully
or semi-independently. In the past, the cost of such systems using hardwired
CPUs was prohibitive. The availability of low cost MPU systems has removed
that constraint. Although an individual MPU does not generally match the
performance capability of a hardwired CPU, a group of MPU's connected in

74

%4

parallel in a distributed network can divide the workload provided that the

workload is made up of a large number of individual small tasks and not one

large task. In an EMCS, it is not the purpose to use distributed processing

to eliminate the central minicomputer, but rather to relieve it of many of the
time-consuming overhead tasks, such as I/0 data handling, parameter range
checking, and simple on-off time scheduling functions. The minicomputer is
then free to execute more sophisticated energy control optimizing applications

programs. The independent MPU's also provide increased system reliability
because their performance does not depend on the continuous operation of the

minicomputer; if it fails, they will continue to operate with their own

software.

c. Benefits. The chief virtue of the MPU is its low cost. In

addition, MPU's are configured in such a way as to make them interchange-

able to some degrees between different manufacturers. Thus, sufficient

competition exists between manufacturing to keep costs reasonable. Expan-

sion of existing EMCS facilities becomes a matter of purchasing competi-
tively priced components.

*75

iakai

Section VIII. INTERFACING COMPUTER SYSTEMS

VIII-1. Bus structures.

a. Generally, the individual components of computer systems are not
interchangeable without modifications, if they are interchangeable at all.
This includes peripheral devices using controllers that are designed for a
particular computer system. However, some peripheral devices, such as those

utilizing the serial RS-232C interface, are more or less universal. The

hardwired CPU generally does not fit this category. Since only one
minicomputer is used in an EMCS, this is of no consequence. It is expected

that an EMCS will be expanded by adding MPU FID's. It is desirable to be able
to use the MPU's of other manufacturers selected on the basis of competitive

economics.

b. The MPU has evolved in such a way that it may often be interchanged

with those of other manufacturers. The reason for this is that several common
bus structures have come into widespread usage. The pin connections of most
MPU chips are generally incompatible; however, they are mounted on circuit
boards along with support components and the bus lines terminate in connectors
with common pin arrangements. The most popular busses in use at present are:

(1) S-100 bus. The first MPU bus to achieve prominence, at first

chiefly among hobbyists was the MITS Altair bus, designated the S-100 bus __

because of its 100-pin connections (50 on each side of a double-sided circuit
board). Although no governing body or organization has certified the pin

* arrangement of any of the conflicting manufacturer's specifications, a large
number of manufacturers and suppliers have built computer components

compatible to this bus, including MPUs, memories, I/0 boards, etc.

(2) Multibus. The Multibus was introduced by INTEL for its Intellec

microcomputer development system. It has 86-pin connections supporting 16
address and 16 data bus lines. The specifications of this bus have been
published by Intel.

(3) LSI-11 and Unibus. Both of these buses were developed by Digital
UEquipment Corporation (DEC) for use on its PDP-11 16-bit minicomputer family

and the LSI-11 16-bit microprocessor. Both buses have 72-pin connections but
are not interchangeable without adding a bus converter to the LSI-11 bus. The
Unibus is patented and the LSI-11 bus is published by DEC.

(4) Benton Harbor bus. This is a 50-pin bus developed by the Heath

Company for its 8-bit computer system. Its specification has been published.

(5) Radio Shack Z-80. This bus was designed for the highly popular
Z-80 8-bit MPU based computer marketed by Tandy Corporation.

76

¢%,

VIII-2. Programmed data transfer.

a. It is important that the CPU or MPU in an EMCS be able to communicate
with their peripheral measuring and control devices. The exchange of
information between the peripheral and the computer may be controlled either
by the computer software or by specially designed hardware in the peripheral.
When controlled by the computer, this process is called programmed data
transfers, and is performed by an I/0 transfer instruction. This instruction
can be utilized for such tasks as:

(1) Command. Send a command to the peripheral to turn on, off, etc.

(2) Status. To receive data from the peripheral describing its
status.

(3) Output. To send data from the computer to the peripheral for
storage, display, control, etc.

(4) Input. To receive input from the peripheral device such as measured

parameters.

b. Methods of implementation. The transfer instructions in the
preceeding paragraph may be implemented by several methods:

- .. (1) Unconditional transfer. Peripherals monitoring or controlling
events at fixed intervals may transfer data by this method. The data must be
in a ready state by the time the transfer instruction is executed to avoid
loss of information.

(2) Conditional transfer. This type of transfer is used when it is
expected that the peripheral device will usually be available for
communication when the computer requests the transfer. If the device is not
ready, the computer will loop until the device is available. This type of
transfer permits synchronization of operation between the computer and the
peripheral, but it may waste a great deal of CPU execution time in looping.

(3) Interrupt transfer. This iethod of transfer is the most efficient
because the CPU ignores the peripheral until it signals its readiness via an
interrupt. No time is wasted by looping, and randomly occcurring events can
be handled.

VIII-3. Direct memory access (DMA). When the data transfer between the computer

and the peripheral is to be controlled entirely by the peripheral device, a
DMA device may sometimes be used to facilitate the transfer. The DMA enables
the peripheral to transfer data directly into memory, bypassing the CPU, by a
process known as cycle stealing . Cycle stealing occurs when the CPU is busy
executing instructions that do not require the use of the data or address bus
lines, such as when it is incrementing registers, shifting bits, etc. During
these cycles, the CPU puts out a bus available status signal, thus activating

77

4.

the DMA. The DMA then takes over the data bus and transfers data at high
speed directly into or out of the memory locations. This saves the CPU a
great deal of time by eliminating the need for it to act as the middleman in
transferring peripheral data in or out of memory.

VIIE-4. Control word and status word. Peripheral devices typically contain
registers to receive commands and to send their status to the computer. These
registers are designated as the control word register for commands and the
status word register. A simple peripheral device, such as a magnetic tape,
may have eight or more distinct operations (rewind, read one record, write one
record, write record mark, etc.). Also, a computer may be connected to more
than one tape drive. The control word must be able to differentiate between
all of these possibilities. The control word or status word is communicated
by means of the programmed data transfers. If serial communication is used,
the peripheral must be able to convert the serial data to parallel data
conforming to the register word format. The status word is generally used by
the peripheral to signal the computer that is ready to send or receive data or
that it detected an error in transmission.

2t

78

. ' v \. ". .. . ' % {

S160

- -

