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S 1. Introduction

The specification of prognostic variable values on the

lateral boundaries of limited-area numerical models

continues to be a serious problem in atmospheric modeling.

The computational model requires boundary values where

natural atmospheric boundaries do not exist. Theory has

provided little guidance in the method of choosing these

boundary values. For this reason, lateral boundaries have

become an area in which pragmatic experimentation has been

the primary source of boundary condition formulation. This

is especially true in light of theoretical results which

show that, in the general case, it is impossible to

formulate truly well-posed boundary conditions (Klemp and

Lilly, 1978). A large number of lateral boundary conditions

have been formulated and used successfully in various types

of atmospheric models. No particular formulation has been

shown to be clearly superior, and indeed, the "best"

boundary condition is usually determined by the nature of

4. the problem under consideration.

The problem under consideration in this study is the

5 successful modeling of the meso-beta scale with a

three-dimensional hydrostatic model. The lateral boundary

conditions are particularly crucial on this scale because

the model's grid spacing is small enough to resolve

IN
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high frequency atmospheric waves (such as internal gravity

waves and lee waves) while the time and space scales are

large enough to require inclusion of the Coriolis effect.

A successful boundary condition must minimize the reflection

of outgoing waves by the boundary since the reflected wave

energy might destroy the interior solution. The boundary

condition must also accurately prescribe the boundary

values or else the errors may be geostrophically

transmitted to the interior.

A complete discussion of geostrophically adjusted

boundary errors was presented by Anthes and Warner (1978).

We can think of the mean values of velocity and temperature

over the domain in terms of wavenumber zero flow. The

mean velocities in the domain are related geostrophically

only to gradients of the mass variables across the domain.

An error in one of the mass variables on the boundary will

imply a change in the large scale gradient and lead to

a change in the mean geostrophic velocity in the domain.

The mean geostrophic velocity error is proportional to the

boundary value error divided by the domain width. Thus,

the meso-beta scale should be much more suseptable to this

type of error.

This report will present several lateral boundary

condition formulations in the context of the meso-beta

dscale. The emphasis will be on radiation-type conditions

2

LItL



because it will be shown that this type holds the most

promise of acceptable results. This study is not meant to

represent an exhaustive comparison of boundary condition

formulations, but it does provide a comparison of a large

number of conditions and especially considers several

variations on the radiation condition.

For computational economy, ease of interpretation, and

availability of theoretical results, the study reported here

concentrates on the use of a one-dimensional, shallow water

model to test the various boundary condition formulations.

This model filters out many forms of waves important in the

atmosphere and cautions about the generality of some of the

results obtained will be made at the end of this report.

The model provides a good test-bed for the boundary

conditions, however, and yields some very important results

concerning modeling on the meso-beta scale.

2. The One-Dimensional Model

The one-dimensional equations governing the veloci'ties

u and v and the depth 17 (see fig. 1) using the shallow

water approximation on an f-plane can be written

a --( 7U f (,qV) =- _Lg - ~(,q U)

2 (3)

( )+ jl(u7y) + f (nu) =V (77v), ?

S+ J' x(7)U)O ( 3)

W.3
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where g is the acceleration of gravity, f is the Coriolis

parameter, and Y is an eddy viscosity. The height-

weighted velocities, 77u and qv, are analogous to the

pressure-weighted velocities used as prognostic variables in

many meso-scale hydrostatic models (Anthes and Warner, 1978;

Nickerson, 1979) and the continuity equation, (3), is

analogous to the pressure tendency equation in a hydrostatic

model. In fact, the set (1) through (3) is identical to the

equation set which is obtained when a hydrostatic mesoscale

model is collapsed to one-dimension along the x-axis.

We nondimensionalize the equations using the

undisturbed height, H, as a scale. Thus, letting primes

denote the nondimensional quantities, we have

77= H 7'

u /gH u

V Vg- ~Pv'

C t = H/,gR" t' H j"g t', (4)

x H x',

f (H F/'Hf' = f

= H.-,.. K'.

Then the nondimensional equations are (dropping primes)

.(( 7 u) + (u,?u)- f(,V) =+ K i" (7 u) , (5)

, (770 + Lu77v + f (77u) = K xz7 ,(6)

+ " ('qU) 0 (7)
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Note that K may now be regarded as an inverse Reynolds

number.

The choice of a value for the nondimensional Coriolis

parameter determines a relationship between the height scale

and the implied latitude. Thus, if a latitude of interest

is prescribed, a dimensional length scale must be implicitly

chosen even in the nondimensional analysis. We chose to let

f = 10 - 4 s - I ( ( = 43*Lat), and choose a height scale H = 8

km (approximately the density scale height). This yeilds a

gravity wave speed of v = 280 m/s.

The equations are finite differenced on a staggered

.grid as shown in fig. 1. Time integration is accomplished

with the leapfrog scheme with and Asselin filter (Asselin,

1972) to control timesplitting. The Asselin filter factor

is set at 0.5 as suggested by Schlesinger et al. (1983) for

the "lagged", weak diffusion used in the model. The normal

model domain has 26 grid points for 7. A larger domain

with 50 grid points for 77 can also be run. The

-". nondimensional grid spacing is chosen to be Ax = 2.5 which

corresponds to 20 km. This value, and the resulting domain

size of 500 km is typical of meso-beta models. It also

assures that all waves resolved in the model satisfy the

shallow water assumption on which the equations are based.

With the parameter values chosen, a nondimensional time of

1.0 corresponds to 28.6 s. The timestep is chosen to be



=At 0.8. This is about half the size required for linear

stability (including the reduction required by the use of
A the Asselin filter), but is typical of the value required in

a 2-D or 3-D model with the same Ax value. The inverse

Reynolds number is set at K = 7.813 x 10- 3 which

corresponds to an eddy viscosity of 1.75 x 104 m2/s. The

model has been coded with a variety of lateral boundary

conditions. These will be described in the following

sections along with the results of each type of condition.

.1

3. Description of the Adjustment Experiments

The major concern of most lateral boundary condition

formulations is their ability to allow waves generated in

the domain to exit (or be absorbed) without reflection. If

this is accomplished, the lateral boundary will appear

transparent and allow the limited area model to better

represent the unbounded region it is simulating. Another

concern is the possibility of errors in the large scale

.6' gradients implied by the boundary values being

geostrophically adjusted throughout the domain. On the

meso-beta scale, temperatures and windspeeds must be

.*- specified with errors of less than about 10 C and 2 m/s,

respectively, in order to give acceptable geostrophically

adjusted interior errors (Anthes and Warner, 1978).

A major source of waves in the domain during a

6
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simulation is the geostrophic adjustment of imbalances

between the dynamic fields. In general, at the start of the

integration, the velocity and mass fields will not be in

perfect gradient balance and gravity and Lamb waves will be

generated during the adjustment process. These waves radiate

away from the imbalance to leave behind a balanced state.

If the lateral boundary conditions of a numerical model

reflect some or all of the wave energy back into the

interior, the reflected waves will unrealistically influence

the simulated solution, interfering with the balance and

j prohibiting the adjustment process.

In this study, experiments were conducted with two

different types of initial imbalances as initial conditions.

Initial condition 1 is a perturbation in the height field and

, initial condition 2 is an imbalanced local wind. The scale

of these imbalanced regions is smaller than the domain size

*0 of the model (500 km) and therefore much smaller than the

Rossby radius of deformation (X = C/f = 2.8 x 103 km).

Theory predicts that the pressure should adjust to the winds

with the wind field remaining essentially unchanged.

Each of these two initial conditions were rui in the

large domain model in order to determine their natural

evolution during adjustment. For these simulations, the

model used a radiation lateral boundary condition with the

phasespeed set to the analytical value of C 1.0. This
a
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*will be shown to be the least reflective formulation.

The first imbalance (initial condition 1) is a

perturbation in height only with the velocities set to zero.

* The initial height field and its evolution are shown in fig.

2. The perturbation is a height deficit of 0.3 %

(comparable to a pressure deficit of 3 mb) in the center of

the domain. Height excesses are located on either side of

the deficit so that the equalibrium height is 7= 1.0. As

linear shallow water theory would predict, the evolution of

this disturbance is for two deficit waves to propagate in

opposite directions at the shallow water wavespeed, C = ±1.0,

leaving a (trivially) balanced state behind. The Coriolis

effect plays little role in this adjustment as indicated by

a simulation with f = 0 (not shown) which yeilded

essentially identical results. The primary velocities are

in the u component due to the height gradient. Small values

of v are accelerated geostrophically as the first half of

the wave passes a point. However, these are quickly

-. diminished as the sign of the acceleration changes during

the passage of the rest of the wave. Note that by t = 72,

the wave is no longer present in the area covered by the

small domain and the height field is level.

In the second adjustment experiment, the height field

is initially specified as 77= 1.0, but a limited jet is

imposed in v with u initially zero. This is essentially the

.',
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.4- geostrophic adjustment problem studied by Cahn (1945) using

a linear shallow water model. The t = 0 frame of fig. 3

shows the extent of the jet, which was set at v = 10 m/s

(dimensionally). The remainder of the figure shows the

evolution of the height field. As predicted by linear

theory, the height field adjusts to the imbalance by

"w producing a wave of excess which moves to the right and a

wave of deficit which moves to the left. The resulting
'4..

height field has a height gradient in geostrophic balance

with the velocity in the region of the jet and a constant

height in balance with the zero velocities away from the

jet. Note that, unlike initial condition 1, the

.. Z balanced state requires final boundary values to be

different from their inttial values. Also note that while

the Coriolis effect plays little role in the evolution of

initial condition 1, it is essential to the evolution shown

in fig. 3. If f = 0, the v component is decoupled from the

. other variables in equations (1) through (3) and no

adjustment would be necessary.

In the following sections, specific lateral boundary

condition formulations will be described and the results of

tests using these conditions in the one-dimensional model

will be presented. All boundary conditions were tested with

both initial conditions. In the figures which allow

V comparison of the boundary conditions, the height field

K 9
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labeled "LD" is the large domain's center 26 grid points and

may be thought of as the "exact" solution. Each boundary

condition formulation will be denoted with a three or four

letter descriptor (such as FXD for fixed conditions) as is

used in the figures.

4. Results Using Fixed or Extrapolated Boundary Conditions

a) Boundary Condition Formulations

2 1) Fixed boundary condition (FD). This boundary

*condition consists simply of specifying boundary values

initially and holding these values constant throughout

the integration. It may be written

where * is any prognostic variable ( 7, u, or v in

the present model). This approach eliminates the

potential problem of geostrophically adjusted boundary

errors, provided the initial boundary values are

correctly chosen. This boundary condition is not

mathematically well-posed, however, in that it results

in an overspecification of the problem. It also is

purely reflective of waves generated in the domain's

interior.

2) Combination of fixed and extrapolated (FEX). In

order to allow the boundary to be more "open", while

10



still controlling geostrophically adjusted errors, some

mesoscale models use fixed conditions on some variables

while extrapolating others (Anthes and Warner, 1978;

Nickerson, 1979). The typical approach is to fix the

pressure and thermodynamic variables and set the

horizontal gradients of the velocities equal to zero

(Anthes and Warner, 1978). Here, the formulation

follows Nickerson (1979) with the height specified and

the velocities extrapolated only when the flow is

outward. That is

at 0

ax ax for u outward, (9)

[a -- 0 for u inwardt at

3) Zero-gradient condition (GRD). This condition

extrapolates all variables on the boundary by

specifying the horizontal gradient to be zero. This

may be writtten

= (10)

where 7 = , u, or v. This condition is implemented

by setting the boundary value equal to the value one

grid point interior to the boundary at each timestep.

4) Sponge condition (SPG). This condition follows the

formulation of Perkey and Kreitzberg (1976). The

A.!
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boundary values are specified and do not change in

time. However, the time tendencies at the gridpoints

-. ' are modified such that

t= MPt(Ila)

where

0.0 for I = boundary grid points
0. for I = boundary-i grid points

W(I) = 0.7 for I = boundary-2 grid points (llb)
0.9 for I = boundary-3 grid points
1.0 for all interior grid points

This type of boundary condition absorbs waves by

reducing their phase speed to zero as they approach the

boundary (Perkey and Kreitzberg, 1976). As the

phasespeed is reduced, the wavelength also becomes

smaller. This adds energy to 2 Ax waves. Therefore, a

filter of some sort is required. A fourth-order

diffusion term is used in this study to remove this 2Ax

energy.

b) Comparison of the Boundary Condition Tests

Figures 4 and 5 show the height field in comparative

test results for initial condition 1 at the nondimensional

times t = 36 and t = 72, respectively. The height field

N labeled LD is the center 26 grid points of the large domain

model and may be thought of as the solution resulting from

truly open lateral boundaries. It is clear that all of the

12"-JL
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boundary conditions shown here have serious problems with

reflection of the outward propagating waves.

The fixed and fixed/extrapolated (FXD and FEX)

conditions produced nearly identical results. This suggests

that extrapolation of only the velocities does not allow the

boundary to be more open to the outgoing wave.

Extrapolation of all the variables through the zero-gradient

condition (GRD) is not adequate either. How-ver,

this condition appears to produce errors of comparable

magnitude (though of different phase). The sponge condition,

while the best of this set of conditions, fails to

completely absorb the wave. This may be a result of the

small number of gridpoints in the model (which is typical of

the number of grid points in one direction in a 3-D model).

It may also be a result of the relatively rapid phasespeed

of the wave in this model. Tests of the sponge condition

reported by Perkey and Kreitzberg (1976) which showed nearly

completed absorption involved internal gravity waves which

required many timesteps to traverse the width of the sponge.

A similar comparative display for initial condition 2

at times t = 36 and t = 72 is shown in figures 6 and 7. It

is impossible for any of the boundary conditions which hold

the boundary value fixed (FXD, FEX, SPG) to achieve the

balanced final state. This leads to a very disturbed

solution as the initial jet in the v component continually

13
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" forces a height gradient but the reflection of the waves

generated interferes with the height field adjustment. The

only acceptable balanced final state for these conditions is

for the jet in v to be diminished to zero. Since the

geostrophic adjustment on this scale is made by the height

field, however, v is only diminished by the small viscosity
in the model.

The zero-gradient condition (GRD) which is not

constrained by fixed endpoint values appears initially to be

allowing the adjustment to proceed with only small errors.

At t = 36, the height gradient in the jet region is

apporximately correct. We can see also that the endpoints

*have adjusted in the right sense, although they are further

v £ "om the equalibrium height than they should be. However,

by t = 72, it is clear that this condition is not handling

the adjustment properly.

Aqain, the sponge condition appears to yield the best

results despite the specified values on the endpoints. The

condition tends to concentrate the imbalance in the sponge

region near the boundaries and maintains a partial

adjustment in the interior. While not ideal, this condition

could be considered adequate in many situations, especially

if the initial conditons contained only small imbalances.

14



5. Results Using Radiation Type Boundary Conditions

a) Radiation Condition Formulations

Radiation type lateral boundary conditions are based on

the Sommerfeld radiation condition

at (12)

where q is the variable of interest on the boundary and C

is the phasespeed of the outgoing wave. Variations in the

radiation condition formulation arise from the various

methods that can be used to specify the phasespeed, C, and

to finite difference the equation. For the shallow water

model, all waves move at the shallow water wavespeed, so C =

1.0 exactly. In the general case, however, the wavespeed is

not known and must either be calculated from information

available in the interior, or specified at some reasonable

value. Klemp and Lilly (1978), for example, specified the

phasespeed as the expected internal gravity wavespeed

calculated from the environmental stability. However, Clark

(1979) showed that a calculated variable phasespeed gave

less reflection. Most studies using radiation conditions

have used a variable C. We will consider several variable

phasespeed formulations.

In all the radiation condition formulations, C is

required to satisfy the Courant-Friedrichs-Levy (CFL)



condition. In addition, if C is calculated to be inward, it

must be set equal to zero to prevent spurious generation of

waves. Thus, C must satisfy

r 0 for C inward

C = C for 0 < C < Ax/At (13)
AX/ at for C > Ax/At

Note that for C = 0, (12) reduces to a /at = 0 for that

* timestep.

1) Orlanski-type centered on previous timestep (ORP).

This is the original formulation by Orlanski (1976).

It calculates C by inverting (12) and evaluating
:0"

a /t and 601#x at the previous timestep and one grid

point interior to the boundary. Then
.- .

-C (14)

where

S - (15)
at 2 at Lb- b-12

and

I b-I b-2
In the above, Pb-i is the ith grid point interior to

the boundary and the superscript denotes the timestep.

The term in parenthesis in (16) is used to prevent

timesplitting on the boundary point. The new boundary

*value is then given by

-.41
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(i-CAt/Ax) T-i + 2CA'lAX FT (17)
b D b D b-i

where D = 1 + C At/Ax.

2) Orlanski-type centered on current timestep (0RC).

As suggested by Raymond and Kuo (1984), when an

explicit time scheme is used in a model, the

calculation of C can be centered on the current

timestep. Then the calculation of C is identical to

(14) through (16) with r replaced by r + 1. The

boundary value calculation is still identical to (17).

3) Upstream technique (UPS). Bannon (1979) and Miller

and Thorpe (1981) have both proposed using upstream

differencing to evaluate the radiation equation (12).

Inverting the equation to obtain C then gives

C d.k E " 1 -1(18)
at a

as before, but now

P= Lr-r (19)t tb-I Ob-I

and

ax AX (20)

The boundary point is then given by

+ C_[L TT (21)

17
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4) Radiation conditions with the exact phasespeed (ORE

and UPE). For the shallow water model, the exact

phasespeed is known (C = 1.0) so this value may be used

in the radiation condition to isolate errors resulting

from the finite difference representation alone. When

the exact phasespeed is used, ORP and ORC become

identical and this form is denoted ORE. The upstream

form, UPS, is denoted UPE when the exact phasespeed is

used. This approach is useful in the present study,

but is not applicable in a more general model which

admits waves of different phasespeeds.

b. Comparison of the Radiation Condition Tests

Figures 8 and 9 show a comparison of the radiation

condition formulations for initial condition I at

nondimensional times t = 36 and t = 72. Again, the LD

solution may be thought of as giving an exact boundary

value. We find here that all of the radiation condition

formulations yield superior results to the boundary

conditions used to produce figures 4 and 5. Differences

between the individual radiation conditions are most

apparent at t = 72 (fig. 9).

Clearly, the conditions using the exact phasespeed are

the best (ORE and UPE). However, even these result in a

slight reflection of wave energy. This reflection is due to

,.'4,
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the finite differencing of (12) and shows that even perfect

calculation of C in a more general model will result in a

small error at the boundary. This result is also noted in

the formal analysis carried out by Miller and Thorpe (1981).

An important and very noticable point in the three

variable phasespeed formulation results (ORP, ORC, and UPS)

is that the height field has dropped below the equilibrium

level of 71 = 1.0 at t = 72. This indicates that mass has

* been lost through the open boundaries as waves exited. This

is a potentially serious problem which could adversely

affect the performance of a more complicated atmospheric

model. This is clearly related to the variable phasespeed

since the exact phasespeed results do not exhibit a

noticable change in mass.

The flux of mass through the boundaries appears to be

related to two factors. First, the phasespeeds used in the

radiation condition are calculated seperately for each

variable. Despite the strength and coherence of the waves

generated by initial condition 1, the calculated phasespeeds

bear little resemblance to the theoretical ideal. Fig. 10

shows the phasespeeds calculated by ORP for each of the
three variables as a function of time. As can be seen, they

oscillate wildy between zero and CFL limit. Further, there

is little relation between the phasespeeds calculated for

the different variables. This can lead to boundary
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tendencies which are not consistent with continuity of mass

and a resulting mass flux through the boundary. Plots of

the phasespeeds versus time for ORC and UPS show similar

characteristics.

The second factor which appears to be important in the

flux of mass through the boundary is the nature of the

staggered grid. The boundary gridpoints on which the

velocities are modified by the boundary condition are one

.. half grid spacing outward from the boundary points for

height. Thus, even if all three variables use the same

value of C, this value is being used at different spatial

points on the wave. Thus, unless C is calculated perfectly

at every timestep, different parts of the wave will be

advected at different speeds through the boundary, resulting

in a net mass flux. Results obtained using averages of C,

which demonstrate this conclusion, will be shown in the next

section.

Figures 11 and 12 show the performance of the radiation

conditions on initial condition 2 at t = 36 and t = 72.

Since the boundary values are able to evolve naturally in

time, all of the radiation condition formulations allow a

natural adjustment to take place. Again, ORE and UPE give

the best results, but all of the formulations give

satisfactory results. There was little evidence of a change

in mass in the experiments using initial condition 2.
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c. Results Using Averages of the Phasespeeds

As can be seen in fig. 10, while the individual

phasespeeds calculated for each variable oscillate wildy, an

average of them would tend to be closer to C = 1.0. Each of

the radiation condition formulations was tested with the

phasespeed being the average of the phasespeeds calculated

using 7, u, and v alone. These versions of ORP, ORC, and

UPS are denoted ORPA, ORCA, and UPSA, respectively. The

phasespeed as a function of time for ORPA using initial

condition 1 is shown in fig. 10 as the heavy solid line.

Note that this is not exactly the same as the average of the

S.. individual phasespeeds from ORP because the evolution of the

flow in ORPA is modified. As anticipated, the phasespeed in

ORPA (as well as in ORCA and UPSA which are not shown but

similar) remained closer to the analytic phasespeed, C =

1.0.

Figures 13 and 14 show the height field for initial

conditions 1 and 2 at t = 72 for the radiation conditions

using the average phasespeed. These results are somewhat

. closer to the results obtained with the analytic phasespeed.

It is evident in fig. 13 that there is still a mass flux

through the boundary. Now, however, the mass of the domain

is increasina rather than decreasing.

d. The Higher Order Upstream Scheme (UPHO)

Miller ar. Thorpe (1981) presented a radiation
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condition formulation using upstream differencing which has

a formal accuracy of higher order than ORP, ORC, or UPS.

The model results using this condition (denoted UPHO) with

initial condtions 1 and 2 are shown in figures 13 and 14,

respectively. As can be seen, this condition does not allow

the waves to exit the domain without reflection. Since this

condition is formally more accurate than the previously

discussed radiation conditions, its relatively poor

performance is somewhat surprising. Raymond and Kuo (1984)

tested this higher order scheme in a two-dimensional model

and also found it to give unsatisfactory results. This

section will outline the formulation of this condition and

seek to explain why its practical accuracy is far less than

its formal accuracy.

Following the notation of Miller and Thorpe (1981) we

can let r = C At/Ax be a nondimansional phasespeed. The

CFL and ouflow conditions reduce to 0 < r < 1 (for r

positive on outflow). Then the normal upstream calculation

of the phasespeed given by equaitons (18) through (20) may

be written

r a -I I b-I[ ],[_ T (22)

which can be shown to be of second order accuracy (Miller

and Thorpe, 1981) Two other possible calculations of r are
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given by ,"r " r; ][r - 1
b-I i-- - -I j- 2  'b- 1 (23)

and

T2 [- ] b- (24)

Miller and Thorpe (1981) then show that the proper

combination of these three, given by

r = r I + r2 -r (25)

achieves a formal truncation error which is third order.

Thus, this combination should give higher accuracy. To

implement this condition, we find r using equations (22)

through (25), then let C = r Ax/At and use equaiton (21) to

update the boudary value.

',.' Extensive testing with the one-dimensional model has

confirmed a rather simple explanation for the poor

performance of this condition. The calculations of ru and r,

both rely on an upstream difference at a point one grid

spacing interior to the boundary, and differ only in the

timestep on which the calculation is based. For an existing

wave which requires several timesteps to pass through the

boundary, both ru and r, would be expected to give similar

results. The calculation of r2, however depends on a time

difference on the boundary point itself. Therefore, r2 is

coupled to the boundary condition itself and will yield a
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nonzero result only when the boundary condition allows a

change in the boundary value. If the boundary value has not

changed in two timesteps, r =0, and r = r- r. But, -

r = rU , so their difference will be approximately zero and

may be negative. A negative r indicates inflow (assuming r

positive on outflow), so r is set to zero and the boundary

value is not modified. This feedback maintains r2 = 0 and

results in essentially fixed conditions with the resulting

reflection. In the simulations made using UPHO, brief

periods on nonzero r interupted longer periods when the

condition set r to zero. Thus, for some brief periods of

the integration, waves were able to exit the domain.

6. Adjustment to Large Scale Imbalances

The results for initial conditions 1 and 2 described

above involve geostrophic adjustment of imbalances on scales

smaller than the Rossby radius of deformation. In these

cases, the height field adjusts to the winds. The model's

response to imbalances in the large scale ("wavenumber

zero") fields yields results of importance to both model

initialization and lateral boundary condition formulation.

Even though the model domain is smaller than the radius of

deformation, a constant gradient of height which is out of

balance with a constant wind will be treated by the model as

an infinitely large disturbance. In this case, theory
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predicts that the winds should adjust to the pressure.

One experiment involved initializing the model with a

constant height gradient which would be in geostrophic

balance with a v velocity of 2 m/s. The initial v component

was set to zero, however, so the fields were out of balance.

The adjustment process in this case is fairly clear from a

consideration of equations (1) through (3). The height

gradient accelerates a u velocity (from (1)) which in turn

accelerates a v velocity (from (2)). As v becomes larger

and approaches geostrophic balance with the height gradient,

* the acceleration of u is diminished and eventually u is

decelerated to zero leaving only the geostrophically

balanced v component and height gradient. Simulations with

the one-dimensional model show this adjustment process to be

an order of magnitude slower than the adjustment of a

localized disturbance. By the nondimensional time t = 240,

the v component had been accelerated to a dimensional value

of only 0.44 m/s. Other simulatior's using a variety of

large scale imbalanced initial conditions have confirmed

this slow adjustment process.

This result indicates that it is very important for the

large scale gradients to be very close to balance in an

atmospheric model's initialization. The local imbalances

due to topography or higher resolution data present in the

initialization will balance quickly provided an appropriate
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lateral boundary condition is used. Imbalances in the large

scale gradients, however, will adjust in a time scale

-: comparable to the inertial period (-17 hours).

This result also indicates that the concern of Anthes

and Warner (1978) about geostrophically adjusted boundary

value errors is not warranted in meso-beta models, which

*, typically make forecasts for periods much shorter than one

day. However, it may still be important for larger scale

models which forecast for a day or more. The adjustment

process is sufficiently slow that errors produced by the

boundary conditions will require several hours to

significantly affect the mean geostrophic flow in the

interior. In chosing lateral boundary conditions for

meso-beta models, then, emphasis should be placed on the

ability of the condition to deal with waves generated in the

interior of the domain by natural processes or the

geostrophic adjustment of initial local imbalances.

7. Conclusions and Future Activities

This report has discussed the test results lateral

boundary conditions in a one-dimensional shallow water

model. The results show conclusively that radiation

conditions allow waves to exit the domain without serious

reflection and allow the boundary points to evolve with the

geostrophic adjustment of the interior so that a balanced
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state may be reached. Of the non-radiation type conditions

tested, only the sponge condition of Perkey and Kreitzberg

(1976) showed signs of being adequate, though still

inferior. One of the primary reasons for chosing the sponge

condition or some other fixed boundary value condition, has

been the concern of geostrophically adjusted large scale

gradient errors due to the boundary condition (Anthes and

Warner, 1978). This has been shown to be of secondary

importance on the meso-beta scale. A potential problem with

radiation contitions, however, is the flux of mass through

the lateral boundary which may result in a total change in

mass for the domain. This problem is reduced if the

phasespeeds are calculated accurately.

The analysis of lateral boundary conditions using a

one-dimensional model does not replace boundary condition
testing in a full three-dimensional model. It does,

however, compliment it. The one-dimensional modeling allows

a large number of variations of boundary conditions to be

tested economically. Further, since the one-dimensional

model equations are much simpler than the three-dimensional

set, physical interpretation of the results is much simpler.

The price of this simplification is that some types of

motion (such as internal gravity waves) may be filtered out,

so the easy physical interpretation in the one-dimensional

case may not always extend to the three-dimensional model
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results. Thus, it is useful to use both approaches. The

one-dimensional model can eliminate obviously inadequate

boundary conditions and test minor variations in the

reasonable ones, and the three-dimensional model can test

the most promising candidates revealed from the

one-dimensional tests.

Some experiments using fixed/extrapolated, sponge, and

radiation conditions have been carried out with the full

three-dimensional model. These tests have basically

supported the results presented in this report. Future

work will involve further testing in the three-dimensional

model. Work will also continue with the one-dimensional

model. This will involve the inclusion of time dependent

data on the lateral boundaries which is important for meso-

beta models nested in larger scale models.
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