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Concept Study of a Multiple Beam Lens Antenna
With an Internal Phase Shift Mask

1. INTRODUCTION

Because of the proliferation of users of satellite communications antennas, and
the decreasing number of available orbital slots, fixed-beam antennas are becoming
less attractive, Current emphasis is shifting toward antennas with multiple,
independent, retargetable beams. Phased arrays prove too expensive because they
require a sceparate set of phase shifters and a separate corporate feed network for
each beam. Conventional lens or reflector concepts are also undesirable because
the focal array will contain an extremely large number of elements, with a separate
feed network for each of many fixed beams, or a large switching matrix to access
all possible beam locations. In any case, phased array or reflector or lens, the
number of control elements is too high, and the antenna too expensive.

Mailloux] has proposed a multibeam antenna design that may solve this dilemma.
It is comprised of a passive beamforming lens with a small number of subarrays on
its focal surface. Between the lens and focal surface is a layer similar to a phased-
array lens, antenna elements on both surfaces interconnected by phase shift modules,

which steers a focusing wave from the lens to the nearest subarray. This report

shows that such an antenna will be capable of forming simultaneous, low sidelobe

_— Accesion For \
(Received for publication 27 August 1985
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beams within non-overlapping sectors. The required number of control elements
is far fewer than would be required for a phased array with the same number of
beams.

Although the system concept as proposed by Maillouxl is much more general,
we have chosen to apply it to the problem of a receive-only communications
satellite in geosynchronous orbit. We will ultimately show that in that application,
an untenna with nineteen very small subarrays can provide complete earth coverage
with very fine angular resolution. Provided that no two users are within a few

beamwidths of each other, low sidelobes can be maintained.

2. THE SYSTEM CONCEPT

The basic concept is depicted in Figure 1. A constrained, or "bootlace" lens
focuses an incident plane wave onto the focal arc. Ordinarily, scanning a given
angular region would require that the focal arc be completely populated with
receiving elements at intervals of a lens beamwidth. But in this case, the phase
shift layer captures the converging spherical wave and redirects it to one of a small
number of ''subarrays.' Since the phase shift layer does no focusing, we will refer
to it as the ''mask’ to distinguish it from similar lens structures that are used for
focusing as well as beam steering (phased array lenses).

As the converging waves from sources at different locations in angle approach
the focal arc, they become more and more separated. Provided they do not over-
lap too much on the mask, they can be steered to the nearest subarray without sig-
nificant degradation in pattern guality. But no matter how close the mask is to the
focal arc, there will always be some overlap when the far-field sources are near
enough in angle. Thus, the immediate question is what the practical limits are on
the angular separation of the independent beams. Those limits will determine the
extent of the coverage regions, and the number of users that can be served simul-

taneously.

3. LIMITED SCAN SYSTEM

The system we have chosen to simulate is depicted in Figure 2. The passive
lens, whose aperture width is L., focuses a wave from the far field onto a focal arc
of radius F. The steering mask is located a distance D from the center of the

focal arc.
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At geosynchronous altitude, the earth subtends a solid angle of 17°. We would
typically design for 18° to allow for platform boresight error. To cover 18° in one
plane only, three subarrays are positioned at -6°, 0° and +6° on the focal arc.

Those are the nominal scan angles a,, a, and a,. Each subarray will scan % 3°

1 2 3
about its nominal scan angle.

This section deals with "system' issues: the lens design; the subarray design;
and the required number and spacing of elements in the lens, mask and subarrays

that will prevent grating lobe effects.

3.1 Beamforming Lens

We initially considered the simplest type of constrained lens as a beamformer.
Radiating elements on opposing faces are joined by transmission lines whose lengths
are longest in the center and shortest at the edges:

Wip) = W_+ F - (124 yB /2 ()
However, such a lens is not capable of forming quality beams over more than a few
beamwidths off its boresight axis. Figure 3 illustrates the progressive degradation
as a single feed element is moved along the focal arc from 0° (Figure 3a) to
2.5° (Figure 3b) and 5° (Figure 3c). This simulation used saraple parameters of
F: L=200A with 3. 4Xx spacing between lens elements. The severe coma (third order)
aberrations of this lens would therefore prevent a small subarray at no more than
2.5° from the lens axis from synthesizing a low sidelobe pattern.

There are a number of multifocal beamformer designs that are certainly
capable of scanning a low sidelobe beam over the required + 9°. Howe er, from
the standpoint of a three-dimensional lens, that is, for scanning in azimuth and
elevation, they are undesirable because at least one of the faces must be curved,
making fabrication difficult. I instead, both lens faces are flat, but the feed side
elements are displaced, as shown in Figure 4, the focusing is near-perfect over
at least £+ 12.5°. Complete details of this lens design are given in Reference 2.

The position y of a back face element in terms of the position 71 of its corresponding

front face element is

2 2 . 2 1/2
y=n | = sin 8 (2
F -7

2. MecGrath, D. T. (1985 Two Degree of Freedom Linear and Planar Microwave
Array Lenses, RADC-TR-84-215, AD A153701.

DO AL .\'j.-_’ ﬂ;),:é‘.-.".\-,;.~ A RN PO S N L TR IR C O Gl




EONC A G AT A A A A A A Mt Gl Aed Sl b e Al s e g TR " " v . 9

By
20.0
-

—

RELATIVE POWER
-30.0
-+

40.0

IR

-50.¢

(b)

(c)

Figure 3. Effects of Scanning Aberrations With a One Degree
of Freedom Lens: (a) On-axis Beam Pattern, (b) Scanned
Beam, and (c) 6. 0° scanned Beam

~ a—

A T AR T T S e S e e N
NN e

\}\}.’7-“. .\ X \.\"-t.'-;'*-"1\‘-". \'.';.'\.."-' Y
A

(LS - ‘
» - . R S ;
TR T DA I RSB MO ARG TSGR PO AN




T I o T T R O W T W Wt W o TP s X ae

where 8 is the off-axis angle of the two perfect focal points, The pair of elements
I at y and 7 are joined by a transmission line of length

W=w,_+F-05F4y?-2yF singlt/?- 0577+ y2 4 29F sing)/2 (3)
where Wo is an arbitrary constant. Beam patterns for this lens, again with
F=1L=200A, are Figures 5a and 5b (3 =0°)., Note that the first sidelobes of thcse

beams are not at -12 dB as one would expect for a uniform aperture illumination

B L oF ol SN}

because of the cosine patterns of feed and lens elements. R
Notice that there is some deterioration in the main beam region of Figure 5b, T
caused by quadratic phase error. That '"focus' aberration is corrected by moving the
I feed closer to the lens center. The optimum distance G of the feed from the lens

center is a function of angle:

2 2
__F sin "z sin” o
Gla) = cos 1+0.5 1 -~ secz] [1 + sinz sin a] (4a)
L z = sin_l(L/ZF) (4b)

resulting in the improved beam pattern of Figure 5c.
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3.2 Subarrays

As shown in Reference 2 this lens can form low sidelobe patterns with subarrays
of only three elements (seven for a lens that scans in both azimuth and elevation).
Since with L= 200X the beamwidth is about 0. 3°, the subarray elements must be at
0. 3° intervals along the focal arc. Appendix A of Reference 2 shows that when three
adjacent subarray elements have relative amplitudes of 0,426, 1.0, and 0. 426, the
peak sidelobe is -48 dB, Figures 6a and 6b are patterns of subarrays at 0° and +6°
for a 200X diameter lens with F/L= 1. In these patterns and all others shown in this
re%orét all elements are assumed to have cosine element patterns. Attenuation of
R0

to the beam peak of a single on-axis subarray element.

is assumed between elements within the lens. Patterns are gain referenced

With 0. 3” spacing in angle, the distance between subarray elements is about
1.05x. That spacing will be unacceptable when the mask is inserted, because
subarrav grating lobes will form on the mask. Therefore, for F/L= 200X, we would
choose to use a seven-element subarray with 0, 15° spacing and amplitude weights
of 0.2264, 0,426, 0.8174, 1,00, 0.8174, 0,4260 and 0.2264. In a system that scans
in both azimuth and elevation, the subarray will actually be a two-dimensional
equilateral triangular lattice of elements. A subarray seven elements across would
contain 37 elements. The subarray elements must have both amplitude and phase
controi: amplitude control for low-sidelobe synthesis; and phase control for beam

steering.

3.3 Grating Lobe Analysis

When the phase shift mask is added to the antenna there are three additional
grating lobe conditions. Not only must the lens not produce grating lobes on the
earth, it must also not produce any on the mask. The latter requirement is much
more restrictive since the mask has a greater angular extent (viewed from the lens)
than does the earth, Similarly, the mask must not be allowed to produce grating
lobes on either the lens or the subarray.

Figure 7 shows the geometry relevant to this problem., We find the width of
the mask, I“M' from the requirement that a focused wave (receive case) from
tgmax not spill over the mask edge:

LM 2 DL/F + 2(F -D) sin emax .

The angle of the mask edge from the lens centerpoint is

-1
Yy Ctan (L /2(F-D)).
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The maximum spacing of elements is now found from

d = i i .
A/ L 5 | sin ypp + sin emaxl (M

Figure 8 shows dLmax as a function of the mask position D for a few choices
of F/L, As expected, the closer the mask is to the focal arc, the larger the
permissible lens element spacing.

Lons - Mask Limit

] Figure 8. Maximumn Lens
Element Spacing vs Mask
Position
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In this antenna the lens elements are passive. The mask elements, on the
other hand, contain phase shifters and we would like to have as few of them as
possible for reasons of cost. To find out how widely we can space them we refer
again to Figure 7. The lens limits the mask element spacing to

Ald,, =1 si i
/ m S !siny 0+ sin emax' (8)
where

v = tan D [L/2(F-D)] . (9)
The subarray limits dy to .

'\/dM s |sin Ysm * sin emaxl 10) : - :

. e -
where
-1 .

Ygm = tan  [Fsing /D). (11)
These two limits are plotted in Figure 9. Figure 10 shows the number of mask
elements required for a lens with a circular aperture of 233A diameter:

N, = 1[L /24, ) (12)

M M Mo

I Subarray Limit

Figure 9, Maximum Mask
Element Spacing vs Mask
Position
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By comparison, a phased array with the same aperture size would need approxi-
mately 4170 elements. The minimum number of mask elements is about 4850.
Thus, it is clear that this antenna has no advantage in the ability to steer a single
beam. For multiple beams, however, the phased array would need a separate

feed network and a separate bank of phase shifters for each beam. The next section

shows how the mask can steer multiple beams with only a small increase in the
number of its elements.
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4. SCANNING CHARACTERISTICS

4.1 Beam Steering Algorithm

A wave incident on the lens from an angle a would normally focus at (yo, z,
(yo, zo) = (=G sin o, = Gcos a). The focal length G is a function of a which equals
F only at the points of perfect focus, a=1+ 8.

As Figure 11a shows, the mask must redirect the wave so that it focuses at

(ys. ZS) = (-G(B) sin 8, -G(B) cos B)., To do so, the mask applies a phase shift of

v, =k (Ro - Rs) (13)

where k= 27/ and

R, = [y, -y, )+ (2 -z )%t/ (14)

2,1/2

o
"

[(yS —ym)2 + (zs —zm) . (15)

13
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We must also apply a phase shift to the subarray to steer it to that part of the

mask illuminated by the focusing wave (Figure 11b):

¥_ = k(Ry-R)) (16)

(g -yp)” + (2 -2p) 22 (17)

= [(y yz) +(z -2, ) ]1I2 (18)

Note that neither of these phase shift terms is linear. The linear phase shifts
that come closest to the correct 'I/m and ;,’/S would be found using the first terms of
binomial expansions of the square roots in Eqs. (14), (15), (17), and (18). However,
because of the small distances between the mask and the subarrays those '"paraxial"

approximations are inadequate.

4.2 Single Beam Scanning

Figure 12 demonstrates the effectiveness of our beam steering algorithm. The
approximate WS and d/m are applied to, respectively, the 6° subarray and the mask
to steer that beam to 3° and 9°. In Figure 12a the mask is located at D= F/8 from
the center of the focal arc, and fairly good patterns are maintained at these maximum
scan angles, However, with the smaller mask-focal arc separation (D= F/ 16) of
Figure 12b, there is considerable degradation in sidelobe levels as well as a loss in
gain, The reason for this, shown in Figure 13, is that the mask is illuminated at a
very oblique angle by the (transmitting) subarray. The resulting mask and lens
amplitude distributions are quite asymmetric.

Clearly, making D large will prevent this effect since it would limit the angle
a subarray must scan relative to its own boresight. But that poses a conflict with
the need for multiple beams, which will overlap on the mask unless D is small, as
illustrated in the following section,

4.3 Multiple Beam Scanning

When several subarrays are required to scan simultaneously, their beams will
overlap on the mask if their respective users are close to each other in angle.
Figure 14 shows the percentage overlap for two subarrays steered to within a degrees
of each other for various D/F ratios, calculated as

%Overlap = 1 -sin a(F2 -DF)/DL .
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to 9°: (a) Geometry, (b) Mask Amplitude Distribution and (c) Lens Amplitude
Distribution

e By finding the allowable % beam overlap, we will determine the permissible range
ot of D/F.
The minimum separation depends to some extent on how the phase shifters are

set in that overlap region, If the mask phases are set properly for one beam, the

o
.;-'; area available to the other beam is truncated. If the phases in the overlap region
-~ are randomized, that much mask area is denied to both beams, with a consequent
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reduction in gain, The best approach is to find the point on the mask where the
amplitude due to each beam is the same, or the crossover point, and set the phases
on either side of that point to satisfy the nearest subarray, That point is very nearly
halfway between the peaks of each beam's amplitude distribution on the mask, which
is assumed in the following simulations, The allocation of the mask to adjacent
subarrays is illustrated in Figure 15a.

Figures 15b and 15¢ show the effect on the unsteered 6° subarray when the 0°
subarray is steered to various angles, for D/F=8 and D= F/16, respectively. In
the D/ F = 8 case, the patterns are acceptable until the two beams are steered to
within 7° of each other, For D/F= 16, on the other hand, they may come to within
3.5°, which implies that adjacent beams may not overlap by more than 10 percent

on the mask (see Figure 14).

100 T T Y T T T T

1 LA S
D R TS
Y \":\’.-.' "9
. LS CRTA CLF
| Figure 14. Percentage L g .}.'4
Mask Overlap by RNCREL LAY
Adjacent Subarrays o N

ol
AN

Percentage Beam Overlap on Mask




A bl vie e T wrw LR

Overlap

Mask
S S S SSSSISEISSEAINIANA™N

<- Allocated to
& Subarray

2272772777 (O)
—Allocated to —™
0° Subarray

Focal Arc

oy

-g° o -
-8° 0 O

o (b)

N ; -
bis s
7 zr
/
. i
K e |
. / o
‘ v , E \f"
J AN
: AN
A
S . 0 B . 4 s
&0 s $.00 3 .50 9.00 10.50 12.00

4’50 ‘ .0C
; ANGLE  (DEGREES)

\ (c)

o& N'/\/\‘J \(_\A E
: ‘ v‘Aﬂ ) 7.5(;

) t go,oo REETY 3.00 © 450 s.00 9.00 10.50 12.00
) T 7 ANGLE (DEGREES) "

; Figure 15. Effect on 6° Subarray's Pattern Due to Scanning of 0° Subarray, l-:"':"::'h-‘:"'{
: F=L=200A, 7-Element Subarray: (a) Allocation of Mask Area to Overlapping Ry '.\‘;\
. Beams, (b) D=F/8, and (¢c) D=F/16 Aty
' ."‘.\.\ SO
' \‘\“- NNy
18 & g

L

N3N

.'&.“\.-1"-.,\.'.




M e i man saus aua 2 g 3
St Rl

Figure 16 is the opposite case—the 0° subarray remains at broadside scan
while the 6° subarray is steered. Here we see not only the effects of mask overlap,
but also the previously mentioned beam steering effects. For the small mask
displacement, D=F/16 the overlap effects are less, but steering effects are greater
since the subarray must scan to wider angles. It is interesting to note that the
decrease in gain is nearly the same for the 3° scan in both Figures 16a and 16b
even though its cause is different.

There are essentially two possible ways around this problem: (1) increase the
focal length; or (2) use more subarrays. A larger focal length causes the beams to
overlap less for a given D/F ratio. Figure 17 shows the improvement gained by
increasing the lens focal length to twice its length (F/L =2). Unfortunately, that
requires an increase in the mask diameter to 135A (see Eq. (5}], and a consequent
increase to 12, 600 phase shifters.

Alternatively, we could increase the number of subarrays. The simulations
discussed thus far have used a configuration of three subarrays, corresponding
to seven for a three-dimensional system (an equilateral lattice three
subarrays across). With five subarrays across, the 3D system would have a total
of 19. Each of those 19 would have to cover about a 3.6° solid angle, or+ 1.8° in
all directions around their unsteered angles. Figure 18 indicates that spacing
would be adequate. It shows the patterns of a subarray located at -4°, with adjacent
subarrays at 0° and -8°. Because the -4° subarray must only scan the region from
2° to 6°, there is little degradation due to the beam steering, although there are
still overlap effects, indicated by the higher near-in sidelobes. Because increasing
the number of subarrays does nothing to eliminate the overlap, there is no

improvement between Figure 18b and Figure 15c.

If each subarray is an equilateral lattice seven elements across, or a total of
37 elements, the total number of focal elements increases from 259 to 703 with
19 subarrays instead of seven. This seems a far better alternative than increasing

the F/L ratio to two, which trebles the number of mask elements.
In conclusion, the antenna design we would recommend based on the foregoing

results would use a 200-wavelength diameter lens, for a beamwidth of 0.3°, and
F/L ratio equal to one. The mask would be located at F/16 from the center of the T S
focal arc, which would contain and equilateral lattice of subarrays, five subarrays 7
across, for a total of 19. Each subarray would contain 39 elements in an equi-
lateral lattice seven elements across. Variable phase control over the subarray
elements is required, but only fixed amplitude control. Phase control only is
usged at the mask.
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Figure 17. Scanned Patterns With Long Focal Length,
=2L=400y, D=F/8: (a) 0° Subarray Scanned and
(b) 6° Subarray Scanned
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N 5. CONCLUSIONS
d In conclusion, this antenna architecture does allow scanning of multiple,
) independent beams. Pattern quality is reasonable provided that no two users
': within 1.5° of each other are to be served simultaneously. A system capable of
4 providing full earth coverage with a 0,5° beamwidth will contain less than 5000 phase
shifters in the mask—only 20 percent more than required for a single-beam phased )
- array for the same coverage region. e :’:._:‘-_.'_-_;.
N In this first look at a new concept, we have tried to keep the system geometry f—f}.‘-'}':::'::
: as simple as possible for reasons of being able to interpret the results. It is quite el
possible that other variations will yield better results. For example, if the "'mask" o
‘ were curved concave to the focal arc, skewing of the subarray beams would not be
' such a problem. Also, it may be possible to locate the subarrays behind the focal
" surface, and use the mask phase shifts for refocusing as well as steering. Indeed,
- it is quite possible that varying the shape of the mask surfaces and the length of
. lines connecting its two faces will yield a lens with still better off-axis focusing
® properties. These are all potential areas of further study.
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