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A METHOD FOR THE SIMULATION OF ENVIRONMENTAL DATA SETS
By
Raymond W. Alden III
Director
Applied Marine Research Laboratory

01d Dominion University
Norfolk, Virginia 23508 U.S.A.

ABSTRACT

.)A method was developed which allows the simulation of
multivariate data sets without requiring a characterization of the
distributional Z/hapes f each of the variables. The method is
based upon the concept that most data sets can be approximately
normalized by a family of power transformations. Conversely, a
matrix of normal deviates produced by a random number generator can
be adjusted to appropriate means and standard deviations and back-
transformed to simulate the shape of the observed data. The method
was successful in simulating data sets displaying a wide range of

theoretical distributions as well as rea]"}/ta from an ongoing

monitoring program. ba«n\k W ﬂma?,g L e (\x\_‘

Keywords: data simulation; multivariate data analysis
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1. INTRODUCTION

Environmental scientists are increasingly being called upon to
analyze and interpret large multivariate data sets. Sophisticated
statistical computer packages are often employed to test significant
patterns in the data. Unfortunately, most of these commonly
available statistical techniques are based upon assumptions, such as
the concent of multivariate normality which are seldom, if ever, met
by data collected from nature. One analytical approach gaining
popularity over the use of "cookbook" statistics is the utilization
of simulated data sets to test the robustness, power, and sensitivity
of various statistical models in the context of natural spatio-
temporal variability prior to their application.

Data sets can be simulated through the use of packaged computer
programs with random number generation functions (Raeside, 1976; and
Green, 1979). Capra and Elster (1971) have demonstrted a method that
uses a normal distribution random number generator to simulate data
sets with desired means, variances and covariances. Most packaged
computer programs today have random number generating functions based
upon various families of theoretical distributions (e.g. poisson,
binomial, negative binomial, gamma, exponential, etc.). Thus, non-
normal varjables can be simulated to have a wide range of
distributions. Unfortunately, each of the observed variables must be
empirically or mathematically evaluated in order to *fit" them with
the most appropriate type of distribution. This selection process
is often quite time-consuming if a large number of variables are to
be simulated, if there §s a diversity of distributions among the

varfables in the data set, or if a number of different data sets are




to be simulated.
L‘,\ g

) The major goal of thejpresent«study was to develop a simulation

method which could be applied by environmental scientists who may not

Sy e

have a strong background in distributional theory and, moreover, who DA
may not have ready access to a mainframe computer system (e.g. an
investigator working on a ship or at a field station). _ The study has
: . TErae e T T bl
resulted in the development of a method which simplifies the ‘ Ay
simulation of non-normal multivariate data sets. The method does not -

involve a preliminary evaluation and fitting of the distributions of

the variables to be sifwlated, nor does it require random number

generating functions which produce exotic families of non-normal

distributions. As a result, it can be used on most microcomputers, as

-
o

well as some of the more powerful programmable calculators. The new

simulation method is referred to as the "MDS" method for

R Y

"y Jtivariate data simuJation.® The term "observed data" is used for

the data to be matched with the simulation.
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2. METHODS

2.1 General
The development of the MDS method was inspired by a technique

presented by Green (1979). In order to simulate a variable with a
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skewed distribution, Green first employed a random number generator
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to produce a data set with a standardized normal distribution.
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deviation were, respectively, added to and multiplied by the
standardized normal deviates. The data set was then untransformed to
produce a new variable with a skewed distribution. The concept of
using a normal random number generator and the
transformation/untransformation process is key to the MDS method.

Box and Cox (1964) introduced a family of power transformations
which were designed to normalize data of wide range of distributions.

The family of transformations are described by the relationship:

yA) = (yrl)/, if 240 (1)
=Jog y , if 220
where y and y(’\) are the raw and transformed variates and » is a
transformation parameter which has been selected to best normalize
the data. Box and Cox (1964) presented a maximized log 1ike1ihood
process by which an optimum A value can be determined for any given
data set. This process is used in the MDS method to select a series
of transformations which best normalize each of the variables in the

"observed" data set prior to its simulation.

Each variable to be simulated is normalized by the selection

transformation where the mean and standard deviation are calculated e -
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for the transformed data. The mean value is added to each of a set
of normal standard deviates produced by a random number generator,
while the standard deviation value is multiplied by the deviates.
The data are then untransformed to produce a distribution of the same

type exhibited by the original variable.

2.2. The MDS Method
The MDS method has been incorporated into a computer package
programmed in APL (Gilman and Rose, 1976) on a DEC System-10
computer. It can be reddily adapted to other languages or computer
systems. The data to be simulated are entered as a rxc matrix, where
= the number of cases and ¢ = the number of variables. The process
proceeds one variable at a time until the entire data set has been
simulated. The basic steps in the procedure can be described as
follows:

1. Transformation of the variable to normalize: In order to

find the appropriate » for the optimum power transformation (1), a

modification of the maximized log likelihood method is employed. The

Tog 1ikelihood parameter Lmax(1) is defined by:

Lmax(*) = -1/2 n log (S(X;2)/n), (2)

where n = the number of replicates, and S();%) is the residual sum of

squares of 2(1). The standardized variate Z(1) is defined by:

() = (y* -1) /gl (3)
where y is the geometric mean of the original variable. The S(;2)

is calculated by:

s(h;a) = I (2(r1)-2-(n))e, (4)
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An initial level of A is chosen and the corresponding Lpax value is
calculated. Initial » values of -10 have been shown empirically to
be appropriate for most situations. The x values are then increased
incrementally and the Lmax Values are calculated until a maximum
value is found. The current MDS computer program jteratively focuses
on the Lmax Value until an optimum X value is defined to two decimal

places.

2. Statistical characterization of normalized observed data

E{ set: Once the optimum value for A has been defined, the observed
data is tranformed by (1). The mean (y"(*)) and standard deviation
(Sy(r)) are calculated for the transformed data set.

- 3. Creation of data set of normal deviates: A random number

generator is used to create a data set of appropriate size with a oy ,Q?

........
Pe et e

normal standard deviate distribution.

o 4. Adjustment of mean and standard deviation of simulated data:

The y(*) value is added to each of the values of the normal data set, e

while the Sy(x) value is multiplied by each of the standard deviates.

5. Back transformation of simulated data to the observed dis-

tributions: The new data set is then "back transformed," employing

atate oy

the relationship:

(X A)+1} /) | i\ #0

y
10¥ , if A 0 (5)

Yy

where X is the data set prior to back transformation and y represents

the data set that simulates the distribution of the observed
variable.

The program continues with cycles of steps 1-5 until all

variables have been simulated. Recently, an option has been included

. ,’q ; !;g: ];E ..] .']; ;"1"“2 -1~"-::1:.‘. :,
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: in the MDS computer program which allows the introduction of the
X observed autocorrelation/correlation patterns into the simulated data
set. The multivariate structure is reproduced by using the APL
"indexing" function to sort the values of each of the simulated
f variables into the same relative numeric order as is exhibited by the
observed date. A second option that is available in the program
allows the researcher to introduce "impacts” into the simulated data
‘ by mu1tiplying the final y values by various factors (e.g. the values
are multiplied by 0.5 to decrease them by half or by 2.0 to increase N
them by 100% etc.). ' ‘.'- '-:
. s
2.3 Tests of the MDS Method: i‘ﬁ
g The effectiveness of the MDS method has been tested for a :’:.Ef{ﬁ
‘ variety of theoretical distributions. An APL random number t:::-::'
; generating computer package was employed to produce data sets %:s‘ﬁ';
containing variables with various poisson, binomial, negative SRR
I binomial, and gamma distributions. Parameters were varied in each of
: the families of distribution to provide a wide range of
distributional shapes (e.g. from skewed, to normal, to uniform).
These data sets were used as the "observed" data to be simulated by
. the MDS method. Each of the observed data matrices were created to
have 200 cases and up to 9 variables of diverse distributions. !;f:;.;sa‘.g.‘
The poisson density is defined by the relationship: ‘;2
\ R e
; p (X;u) =uX(e=¥)/X! (6) ‘
J where p(X;u) is the probability of X occurrences and u is the "mean"
; parameter defining distributional shape. A data matrix consisting of
. a series poisson variables was generated using equation (6) & u i"’&"%
oL
R R R R L AR




values of 0.25, 0.50, 0.75, 1.0, 1.50, 2.0, 4.0, 5.0 and 10.0 to
: create the observed variabies.

The binomial density is defined by the relationship:

LA Nl R W B )

P(X;N,P) = NI/{XT(N-X)!}(P)X(Q)N-X (7)

-

where P is the "shape" parameters defining the probability of
success, Q = 1-P, and N is the sample size, set at a constant value
of 10 for these calculations. The values of P used to create the
observed data matrix were 0.10, 0.25, 0.50, 0.75, and 0.90.

The negative binomial density is defined by the relationship:

’l'.l .

NAL TR )

P(X,M,R) = T (M+X) (R)=X/{ X!r(M)(S)M*+X} . (8)

One interpretation of the relationship X is the number of trials

until M failures, where R = (1-P)/P, P being the probability of

success, S = 1+R, T is the gamma function and M was set arbitrarily

at 10. The values of R used were 0.10, 0.25, 0.50, 0.75, and 0.90.
The gamma density is defined by:

F(X) = (e-Xx2-1)/r(2), (9)

where is the “shape" parameters, which is also equal to the mean
and  is the gamma function. The values employed in the generation
of the nine variables in the observed data matrix were 0.25, 0.50,
0.75, 1.0, 1.5, 2.0, 4.0, 5.0, and 10.0.

The poisson, binomial, negative binomial and gamma data sets
were each introduced into the MDS program three times to test the %"M’“
; effectiveness of the simulations for each of the distributional " :
series. The degree of fit of each of the simulated to observed

variables was tested with a Kolmogorov-Smirnov two sample test
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(Siegel, 1956).

The MDS method was also subjected to a series of empirical tests
by simulating water quality data from a monitoring program. The
observed data was taken from six bimonthly cruises to a potential
dredged material disposal site in the coastal waters off the mouth of
the Chesapeake Bay. Each of the six data sets consisted of 16
variables measured on 18 samples. The simulated data was compared to

the raw data by Kolmogorov-Smirnov two sample tests.
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3. RESULTS

The results of the tests of the MDS simulations of theoretical
distributions are presented in Table I. None of the comparisons
indicated that the simulations were significantly different from the
"observed" data at the 2= 0.05 level. Graphical comparisons from
the four families of distributions were made to emphasize the
closeness of fit of the simulations for a wide range of poisson
(Figure 1), binomial (Figure 2), negative binomial (Figure 3) and
gamma (Figure 4) densitigs. The simulations appeared to fit equally
well for highly skewed data (e.g. Figure la-c; Figure 2a,d; Figure
3a; and Figure 4a,b), to more normal densities (e.g. Figure le;
Figure 2c; Figure 3c; and Figure 4e), to nearly uni- formdensities
(e.g. Figures 1f, 3d, 4c) and various intermediate patterns (e.g.
Figures 1d, 2b, 3b, 4d). The results of tests of MDS simulations of
field data are presented in Table II. Despite the fact that the
variables displayed a diversity of density patterns, only 3 of the 85
simulations were shown to be significantly different from the
observed data. This number of deviations between the dis-

tributional patterns of the raw data and simulations would be

expected to be due to chance alone.
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4.  DISCUSSION

The MDS method simulates multivariate data sets containing
variables with a wide variety of distributions. It has been
evaluated not only with the diverse test set of artifically created
distributions, but with numerous data sets collected from nature as
well. The method has consistently proven to be a rapid, effective
similation technique.

Techniques for the simulation of multivariate data sets such as
the MDS method provide the environmental scientist with numerous
techniques to aid in the evaluation of sampling/statistical regimes
or in the interpretation of data sets from nature. Green (1979)
reports that numerous investigators have evaluated statistical
methods in the face of violations of assumptions by simulating and
testing data which have the undesirable properties of the data from
nature, but which also have been designed to satisfy either the null
hypothesis (Hg) or alternate (HA) hypothesis models. Thus, the
actual levels of aand 8 errors can be compared to nominal values and
the effectiveness of the statistical models may be assessed prior to
their use. Green further suggests that in situations where the data
violate the assumptions of the method quite severely, simulation can
be used to test hypotheses directly. A series of data sets can be
simulated to have the desirable properties (i.e. non-normality), but
to also satisfy the Ho model. These data sets are then tested by
conventional statistical methods along with the observed data.
Rather than resorting to statistical tables of critical test values
for various levels, probability levels are defined by the

percentage of simulated test statistic values exceeded by the

10




observed data value(s). In other words, Hy can be rejected at ana =
0.05 if at least 95% of the simulated test statistics are exceeded by
the observed value.

A further use of simulated multivariate data sets is in the
evaluation of the effectiveness of environmental monitoring programs.

Data sets can be simulated to follow baseline distributions but with

;3' various levels of change in the means of the variables (i.e. true HA
'j mdels). The simulated data sets can be considered to represent data
i taken following an environmental impact. The data sets with increas-

ing levels of simulatéd "impacts" are sequentially tested with

appropriate statistical methods until the differences are large
enough that they can be detected routinely (at the predetermined
level) in the context of the natural spatio-temporal variability.
Thus, "minimum detectable impacts™ can be defined for each parameters
and the effectivenss of the monitoring program can be evaluated in
terms of the ecological changes potentially detectable for the level
of sampling effort. The MDS method of simulation has been

successfully used for each of these techniques.
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Distribution Type
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Omax (0.05) (for n1=n2=100) = 0.192
Dmax (0.01) (for njanp=100) = 0.231

Notes:
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TABLE II

Ko 1mogorov-Smirnov Dpax VYalues for comparisons of distributions of

empirical water quality data with simulated data.

Raw data were

collected from bi-monthly cruises in the coastal waters off the mouth

of the Chesapeake Bay.

Variable

Dissolved Oxygen
pH

"Turbidity

Nitrite
Nitrate
Orthophosphate
Total Phosphorous
TKN

Ammonia

Suspended Solids
Volatile Residue
Chlorophyl1l
Chlorophyll b

o

Chlorophyll ¢
Phaeophyt in

Mar. Apr. Jdun. Aug. Oct. Jan.
0.16 0.27 0.22 0.22 0.39 0.22
0.25 0.16 0.33 0.28 0.33 0.27
0.2% 0.13  0.11 0.28 0.22 0.20
0.05 0.25 0.22 0.39 -- 0.22

- 0.50* 0.05 - -- 0.25
- - -- 0.05 - 0.05
0.08 -- - 0.11 -- 0.10
0.20 0.19 o0.21 0.16 0.1  0.17
0.33 0.44* 0.11 0.28 0.22 0.34
0.16 0.16 0.44* 0.21 0.11 0.15
0.16 0.22 0.22 0.16 0.16 0.18
0.08 0.05 0.38 0.16 0.11  0.16
0.25 0.05 0.22 0.16 0.39 0.21
0.16 0.16 0.16 0.11 0.16 0.15
0.08 0.11  0.16 0.16 0.05 0.11

Notes: Dwax (0.05) (for ny=n2=18) = 0.44

Dmax (0.01) (for n1=n2=18) = 0.55
* Significant at a = 0.05 level

-=- Most or all samples below detection levels
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FIGURE LEGENDS

Figure 1. MDS simulations of representative variables from the
Poisson data set. Downswept crosshatched bars represent the density
of selected Poisson variables created by a random number generator.
Upswept crosshatched bars represent the mean density patterns of
three simulations and the vertical lines represent the 95% confidence

Timits.

Figure 2. MDS simulations of representative variables from the
Binomial data set. Downsv'lept crosshatched bars represent the density
of selected Binomial variables created by a random number generator.
Upswept crosshatched bars represent the mean density pattern of three
simulations and the vertical lines represent the 95X confidence

Timits.

Figure 3. MDS simulations of representative variables from the
Negative Binomial data set. Downswept crosshatached bars represent
the density of selected Negative Binomial variables created by a
random number generator. Upswept crosshatched bars represent the
mean density pattern of three simulations and the vertical lines

represent the 95% confidence limits.

Figure 4. MDS simulations of representative continuous variables
from the Gamma data set. Closed circles represent the density of
selected Ganma variables created by a random number generator. Open
circles represent the mean density pattern of three simulations and

the vertical lines represent the 95% confidence limits.
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