AD-A165 022 A RELATIONAL DATA DICTIONHRV COMPATIBLE MITH THE
NATIONAL BUREAU OF STAND.. (U) NAYAL POSTGRADUATE SCHOOL
MONTEREY CA R R KIRSCH DEC 85

UNCLRSSIF lED F/G 3/2

k s e ?
¢ . kmt,.\v.rl s
b h JURR - e ~
) " g A X .
s K ~ g
e = F) fclllll/:
» . . am——— o
& Ao ;
f
‘
.
.
»

5 EEE]

m—mmmunuuu.m
= =
=

o , C s

'

MICROCOPY RESOLUTION TEST CHART .
SATIMA RUREM! AF CTANDARDS-1963-A

st o g B 7 AN T R SR . PRI P e e -
b 3% j T o, ooy G 1y % S TR G S ARSI TS D
e ' b t...\iul\i G i i O - ‘Vy}agk

N,

[]

AD-A165 022

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THESIS

A RELATIONAL DATA DICTIONARY
COMPATIBLE WITH THE
NATIONAL BUREAU OF STANDARDS
INFORMATION RESOURCE DICTIONARY SYSTEM
by
Robert A. Kirsch II

December 1985

Thesis Advisor: Daniel R.

OIC FILE coPY

R g Ao

Approved for public release; distribution is unlimited

-

I A T S O TR X DT SN

LRl Wl e DA il ghiehd B Gl B faitfi diee Lot & AR ALAALA 2% O AW oAl gty X

SECTRITY CLASSICAYION OF YRS PACE AD-—/Q./QLé'Q?,’L,
REPORT DOCUMENTATION PAGE
T REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

¥

T T T I Y T T TV v
N 2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

e ——————————————————— Approved for public Release; distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SY':II:,OL Ta. NAME OF MONITORING ORGANIZATION
: (it applica
Naval Postgraduate School Code 54 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADORESS (City, State, and ZIP Code)

Monterey, California 93943-5100 Monterey, California 93943-5100

WO T

83. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (f applicable)

8¢c. ADDRESS (City, State, and 2P Code) 10. SOURCE OF FUNDING NUMBERS ,\Jﬁzit

PROGRAM PROJECT TASK WORK UNIT® Ll
ELEMENT NO. INO. NO. ACCESSION NO. oG

e e e 2 a8 8

- N — rT) 3 *f ;é* v
"1 TITLE (include Security Classification) p RELATIONAL DATA DICTIONARY COMPABITLE WITH THE NATIONAL e
BUREAU OF STANDARDS INFORMATION RESOURCE DICTIONARY SYSTEM RN

12 PERSQNAL AUTHORI(S) ‘ ._;v‘;:zf,f
Kirsch, Robert A., II S

i3a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) ['5. PAGE COUNT

Master's Thesis FROM 10 1985 December 254

16 SUPPLEMENTARY NOTATION

w o ¥y B0
L]

S tr P E D

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Data Dictionary, Relational, Information Resource Dictionat)u
System (iRDS), National Bureau of Standard (NBS)

1
VKA‘BSTRACT (Continue on reverse if necessary and identify by block number)

Data is a very valuable corporate asset. How it is managed and controlled can often
determine the success or failure of a corporate venture. With this fact in mind many organi-
zations are taking a close look at what tools are available to help them in this effort.

This thesis takes a look at two types of data management tools available today, the
Relational Data Base Base Management System (DBMS) and the Data Dictionary (DD). It dis-
cusses desirable DBMS and DD characteristics with particular attention being paid to the
shortcomings of DDs. It also describes the effort of the National Bureau of Standards (NBS) o
a to develop a DD standard and examines in detail the NBS Information Resource Dictionary
System (IRDS) and how the standard was implemented in a prototype IRDS. P

it]
[« —E :
()

~

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION P

|_Sunciassirieounumiteo O SAME As ReT._ CJonc users | Unclassified |

X 22a. NAME OF RESPONSIBLE INOIVIOUAL 22b. TELEPHONE Ares Code) [22¢. OFFICE SYMBOL
) Daniel R. Dolk @08) 646-2260 Code 54Dk

. DDFORM 1473, seman A e e e eausted. . SECUNTY QASHIFICATION OF THI5 PAGE____

-

e e o - R B Y Y Yy T P Syt S Sh U i e e g
P TR & L TR R YL T o Mt N [2 xf € N r':‘q“ﬂ'ﬁ OO S S s T d

Approved for public release; distribution unlimited

A Relational Data Dictionary
Compatible with the
National Bureau of Standards

XA LIS

Information Resource Dictionary System '
! ‘
B
by
g
B Robert A. Kirsch II
s Captain, United States Army
B.S., University of South Alabama, 1973

"
by
2
: Submitted in partial fulfillment of the !
3 requirements for the degree of 3
> -
': MASTER OF SCIENCE IN INFORMATION SYSTEMS 'f
:: :
e NAVAL POSTGRADUATE SCHOOL : - B
' December 1985 o
- L ke
"] .
3 =
"
0 .

K;L(\uéwsae\ 2 .
W Author: ; R
A Approved by: AR . i
= Daniel R. Dolk, Thesis Advisor

5

» Paul W. Callahan, Second Reader e

1 . A w‘

; W N0 A | .
Willis R. Greer, Jr., Chai

Department of Administrative Scilences

o

by "
< “

il_’ Kﬂl

o Kneale T. o

. Dean of Information and Policy ces

.

: ~

-y e e

« R P S8 .

A Pl

e

IRDS.

ABSTRACT

Data is a very valuable corporate asset. How it is managed and
controlled can often determine the success or failure of a corporate
venture. With this fact in mind many organizations are taking a close
look at what tools are available to help them in this effort.

This thesis takes a look at two types of data management tools avail-
able today, the Relational Data Base Management System (DBMS) and the
Data Dictionary (DD). It discusses desirable DBMS and DD characteristics
with particular attention being paid to the shortcomings of DDs. It
also describes the effort of the National Bureau of Standards (NBS) to
develop a DD standard and examines in detail the NBS Information Resource

Dictionary System (IRDS) and how the standard was implemented in a prototype

Page 28 is not missing but is misnumbered.
Per Ms. Elaine Evans, NPS/Code Ol4

Accession For

NTIS GRAXI
DTIC TAB
Unannounced O

Juﬂttf;cation_________J

N
: By_.
@ | Distribution/

XAy Availability Codes
“Avail and/or
Dist special

| .

'j TABLE OF CONTENTS

W

" I. INTRODUCTION . « . « 4 « o 4 o o o o 2 ¢ o o o s o o s o s o o o 9
]

&

o

A. BACKGROUND . . ¢ ¢ « ¢ o ¢ o ¢« o 2 ¢ o o s = o o o o ¢« o s ¢ 9

e

B. OBJECTIVES . . . « « = o o o o o = o o e o s o o o s s o o « 10

II. DATA DICTIONARY FUNCTIONS AND CAPABILITIES « « . « « o 13

o

A. GENERAL . . . « « ¢ o o o s o o o o o o s o o o s s s « « o« 13

o

B. DBMS DATA DICTIONARY CAPABILITIES . . . « ¢« « « « « « « o o 13

" C. DATA DICTIONARY CAPABILITIES « ¢« « « 2« « « o « « « « 15
.é 1. Dictionary Schema « ¢ ¢ ¢ &« ¢ ¢ o ¢ o o « « « « 17
'; 2. User Dialogue « ¢ « o ¢ o o o o s o o o« o o« o 2 17
M 3. Dictionary Commands.-. T &]
ji a. Dictionary Maintenance Conmand 19

b. Report and Query Commands . . . « . . « « « « « « » 20
i c. Data Structure Interface Conmands 20
d. Extensibilty Commands. . . « . . + « « o « « « « o« o 20
' e, Status-Related Commands « ¢« + ¢« « &+ « « » «» 20
f. Security Commands . « « ¢« « « ¢ ¢ ¢ ¢ s o o o + o o 20
g. Dictionary Processing Control Commands 20
i h. Dictionary Administrator Coomands « « « . &« 26
4. Extensibility . . . ¢« ¢ & ¢ ¢ o ¢ o o o« s « o s 0 o . 21

S. Status Facilities . . « . ¢« o ¢ ¢ ¢ ¢ o o ¢ ¢« ¢ o o » « 21

.

6. RepOTt PXOCESSOX o + =« o o o o o o o s o o o o o s o o o 21

f 7. QUEry ProcCesSsSor . . . « ¢ « o o o s o o o o o o s o o « 21
;- 8. Convert Function . . . ¢ « ¢ ¢ ¢ ¢ ¢ ¢ o o o s o o ¢ o o 2}
:? 9. Software Interface « ¢ . . ¢ o ¢ s s 0 oo .o 21
4 o

by,

7 ‘

g Aty 379 k' £ te iy P Wiy WY, BOa 8, 8 ‘e B a 172 852 8'n X'a Yia 2% 8% h'm Ot BY ‘e -2 8 m 2w £ 8- <

10, Data Management . . .« ¢ . ¢ « o ¢ o« o 2 o o o = « o « o+ 21

D. ADVANTAGES OF DATA DICTIONARIES . . « - o « o o« = o o » o« o 22

. E. EXISTING DBMS DATA DICTIONARY CAPABILITIES , « « . . 26
III. INFORMATION RESOURCE DICTIONARY SYSTEM « « « » . « - 31

: A. BACKGROUND . . « & « « o « o o o v s o o o o s o o o oo . 31
B. IRDS DESIGN OBJECTIVES . . . « « o o o o s s o o « o« o« » o 32
: 1. Outgrowth of Existing Systems 32
2, Flexibility . . . ¢« & & ¢ ¢ ¢« ¢ ¢ ¢« ¢« o o o s & o &« « = 33

O 3. Portability of Skill « ¢ &+ o ¢« « & « « . . 33
C. IRDS DATA ARCHITECTURE « = ¢ o« ¢ = « » =« » o « 33

1. FramewoXK . « « ¢ « 2 « o o « ¢ o o o o o o o o o » « « 34

2. IRDS Schema . . . « . ¢ v ¢ o o o o « o o s s o s =« » o« 35

- 3. The System-Standard Schema« « ¢« « ¢ =+ « « =« « « 36

a. Entity-Types . . ¢« ¢ v 2« ¢ o ¢ o« o o o o s o o o« » 36
L b. Relational-TYPeS . « . o « « « « o o « o o o « o « 37
. c. Attribute-Types« ¢ ¢« « « o « o« ¢ « « « . . 38
)

4, Entity NameS . . . ¢ « ¢ ¢ « o « o a s o o« » s o « « « 39
D. PUNCTIONS AND PROCESS . &« ¢ &« 2 o o o s o o o« o o = s « o« » 39

1. Populating and Maintaining the IRD e e e e e e ... 4O

Pac s A4

Aa. Entities . . . ¢ ¢ ¢t o it t e e e s e s s e s . . 40

b. Relationships ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ & « o« » « 42

c. Copying Entities and Relationships 43
2. IRDS Output Facility &+ ¢ ¢ ¢ ¢ ¢ ¢« &« ¢« +» « 43
a. General Output . . ¢ . ¢ o o ¢ s s ¢ s o 0 o o o . @4 -

b. Output IMPACT-OF-CHANGE . . . + &+ + « ¢ « o « « « « 45

&

C. Output SYyntax ¢ ¢ ¢ o ¢ o o o« ¢ o o o o o o « o« - 47
d., Entity=1lists . . ¢ . & ¢ ¢ 4 4 e o o e o o e e s s o« . . 47
€. Procedures 2 ¢ « . o o 2 o e e 2 o o e s o o o 47

3. Schema Maintenance and Output . . . + « « ¢ o ¢ o o o o o » - 47

a. Schema Control . . . o« ¢ o o o o » o o o s s o o« « o« + « 48

b. Schema Manipulation ¢« ¢« + ¢« ¢« ¢ ¢« =« « + « « . 50
C. Schema Output RN RN LR NN S1 ’ﬂég f
: 4. The IRD to IRD Interface . . -« . « « ¢ ¢« + « & o« « « &« » « « 52 Uy
5. IRDS Control Facilities ¢« +« ¢ ¢ ¢ ¢ o ¢ o o « « &« o« 53
a. The Versioning_Facility e o o s = e s s a s o = s+ o = o o 53
b. The Life-cycle-phase Facility « . . 54
¢c. Quality-IndicatOrs . - . « « ¢ « « « s s o o« o » o « « « 56
d. Views . . ¢ . ¢ ¢ttt s 4 s 4 e s e s s e s s e e s . 58
e. Core Secuiity e o o e o s s s s s s s s s e e e o a2 o s . 58
6. User INterfacCeS . « « « o s o o o o s o s o o o s o o o o« « « 60
a. Command LANGUAGE . . « + « 2« o = o s« s s « o o« » « « « « 60 o
. b. Panel Interface « « + « « o « s « = « +« =« o + « « 60
c. Operation on the Panel Interface c o e o s . 62

7. IRDS MOAULES . + + « = o« « o o o s o o« s » s o o o a =« o« « » 62

a, Entity Level Security . . . « ¢« ¢« v ¢ ¢« ¢ ¢ ¢« =« « o « « . 63
b. Application Program (call) Interface « 63 =
c. Support of Standard Data Models 63

E. CONCLUSION . 2 = o o 2 o« o o o s o o s s o s s s s o s s s s o+« 63

IV. NBS IRDS PROTOTYPE . . . « « « s o o o s o o ¢ o s o ¢ s s o « « 65 -

A - PRMP ING - . . L4 L L d . . L L) L] - . L - - . . L . L] - L) . 65

T

Y AN NANRAL SONMCIRRPLICt W PEW SN

TR TR
-

IR
et

;b

&

AT o
>

ARG T

E S

l.J-.— -

Frrs U,

]
\
",
)
"

v.

1. Advantages of Prototyping

2. Disadvantages of Prototyping
3. Types of Prototyping
4. Reasons for Prototyping
B. THE IRDS PROTOTYPE « « « « « &
1. Relational Model of the IRDS
2. Interface ¢ ¢ ¢ « ¢« &« o o
C. IRDS START-UP . . &« 2 & « ¢« o o o o = o =
D. SECURITY &« & ¢ ¢ o o « o o s+ o«
E. POPULATING AND MAINTAINING THE DICTIONARY
1. Adding Entities
2. Modifying Entities s e e e e e e e
3. Deleting Entities
4. Adding Relationships
5. Modifying Relationships
6. Deleting Relationships
F. THE DICTIONARY OUTPUT FACILITY
1. Entities ¢ o o . o . .

2. Relationships

. 70

. 73

.

.

. 84

3. Schema . « ¢« ¢ ¢ v &+ « o ¢ ¢ s + o @
Ge QUERY . &+ v v ¢ v o v o o o« o o o o « o &
H. SCHEMA MAINTENANCE . . . « + « ¢ « « o =
l. Entity Meta~Data « « « « o+ »
2, Relationship_Meta-Data e o s e o v o
I. FINAL COMMENTS ¢« ¢« ¢ ¢ o o o o &

CONCLUS I ON . . . L) » - - . . L] - - L) - L] L . -

.100
.102
.103

104

. 107

AN A SRR SR W e Y, (PN LS e B b 9 A NP L RNy s Lo WOy y o 8% Rk Bgt ‘B, . aat mb pam rar—

| -- ‘—'-
- -

APPENDIX A; CORE STANDARD SCHEMA . . . « + « « « « =+ o = o« » » » » 109

e o

APPENDIX B: COMMAND SPECIFICATIONS . . . « . « « ¢« s = &+ o « « » « 119

APPENDIX C: BOCKMAN DIAGRAMS ¢ ¢ o o + o « = o« 2 = « o« » « 127 .

T

o

APPENCIX D: STANDARD DATA MODELS . . . ¢ « « « « o o o » « o = « » 127

P
-

APPENDIX E: PROTOTYPE SOFTWARE « « « « o o o o« « +» « « - 133
14 LISTOF REFERENCES ¢ ¢ + ¢ ¢ ¢« o o o o o o o o o « « « « « 250

,-’ INITIAL DISTRIBUTION LIST . « - « o « o o o o o« « o o o o« o « o . . 258

a A WA

vl

‘l
A

’

£ - © s R T T b . s i, .
h ’l"“v‘l". REA KNS "‘xs"&:‘r",r‘(h}"l;ﬁ""})x‘. R e R A S e A R

» et T,

: jaitptis L4 tle)0 Ril £ W VLN v Nt O QY e TR A ST g LR o AN o S I b ANk M ek ol g sl b gl ood ol ol ud

I. TYNTRODUCTION

A. BACKGROUND

- T

In the corporate world data is a very valuable resource. Many organi-
N zations spend a great deal of time and corporate assets trying to control
it. Data is used to facilitate the management decision process by pro-

viding the manager with timely, accurate and relevant information. Since

the quality of the decisions made by today's managers is so important, it
N . is very critical that the corporate data resource be easy to access, as
accurate as possible, and properly and effectively managed. [Ref. 1]

Concern over corporate information resources has resulted from the

.
: explosive growth in the size, complexity and number of data bases available
“ .

to managers. This data base explosion has also ushered in the need for
"
<. better tools to manage the corporate data base. A critical software tool
.
< that has been developed to control and manage data is the Data Base Manage-

ment System (DBMS).
: E. F. Codd has identified nine functions that the ideal DBMS should
2 have (See Figure 1.1) [Ref. 2]). Kroenke states that

DBMS products vary in the degree to which they provide these functions.

. Currently, no commercial DBMS provides all nine functions entirely e
o satisfactorily. These functions are necessary and important, however, Ly
3 and this situation should change as DBMS products evolve and as new ST
j products are developed. [Ref. 3] B
- Of the nine functions listed in Pigure 1.1, the one that is of particular .

interest to the Data Administrator (the individual who is responsible for -
S the management of the data dictionary and for its effective use in the o
1

pursuit of data resource goals) is the function of providing a user-acceasible e
. catalog for data descriptions.
“ 9

ey

PP RP e . " o - . o Pey® o T .
LDV X R R OCRTAS Xy (Rl XAl ale DR T AT R TR

AR

7T

b o
-

“4SS S

\-
LN

MMM

APUN IR

i

.
5La %%y

.
LS

Imr.

-J'J}

.4
-

R)

A i}

'

B. OBJECTIVES

The changes in today's end-user environment reflects the growth in
computer literacy and increased need for data. Users are demanding in-
creasingly better access to data via interactive processing, ad-hoc
queries, specialized reports and simpler man-machine communication. At
the same time there is growing concern over the timeliness, validity,
and relevance, and usability of the data that is available.

As a result, there has been a growing interest in two tools which
provide highly visible support for the information processing community-
data dictionaries and relational data bases. Most relational data base
products provide only rudimentary dictionary capabilities, "the offerings
provide little more than a method of defining the schema.” [Ref. 6]

The relational data dictionary has become the link that connects the
user/analyst with the DEMS. [Ref. 7]

The relational data dictionary, that is the data dictionary normally
provided with a relational DEMS has additional weaknesses besidas the
ones mentioned above:

* They do not provide a full range of functions

* Their ability to interface with more than one DEMS is limited
or non-existent

* There is a broad divergence concerning the scope of data dictionaries
and until recently there has been no universally accepted standard
[Ref. 8], [Ref. 9].

It is interesting to note that these problems apply to data dictionaries
in general and not just to the relational variety. The purpose of this

work is to create a prototype of a relational dictionary based on the

10

Bye s

[REELCNE N BN Wl

A Y Ll Wy e i l“"—(, « f@}‘:&'.':fﬁ“ “1-:2":\;*:’,“,“”;,1‘“' W ’l:“_*}s‘-:_}v_ KW ~‘.«“‘ !""if S BT Y
CETE TR R LU RN . E

The usefulness of the catalog is greater if it contains not only data
descriptions but also data about the relationship between programs

and data, e.g., which programs access which data, and what they do
with it. [Ref. 4]}

1.
2.
3.

Store, retrieve, and update data

Provide integrity services to enforce data constraints
Provide a user-accessible catalog of data descriptions
Control concurrent processing

Support logical transactions

Recover from failure

Provide security facilities

Interface with communications control programs

Provide utility services

Figure 1.1 DBMS Functions

The problem that arises is that some DBMSs have limitations on how

. well they maintain the meta-data (data that describes other data or

data bases).

Meta-data include descriptions of the meaning of data

items, the ways in which the data are used: the sources of particular

data elements: the physical characteristics and rules or restrictions on

their forms or uses. When the meta-data deals strictly with where data

stored in the DBMS it is referred to as a Data Directory but this

capability is not enough. The Data Dictionary (DD) system is an expansion

of the DBMS description cataloging capability. The Data Dictionary sys-

tem is a key tool available to the Data Administrator for the management

of meta-data and information resourees. The DD provides facilities for

recording, storing and processing descriptions of and organization's

data and data processing resources. [Ref. 5]

Nt

.
.5
N AW A)

v

a A L A

e

WHANINE'

NN

LRy
A
LIPS Y

o i R |
el '-“":":" : it | ‘AN

p It 1! -
> > P

v

S R -
{ ‘,Aa'n G \’.th

Bt rt S S T e 0t Y S e L A i S B St SN AR A S S St Bl e R Pkl R

specified standards for dictionaries recently developed by the National
Bureau of Standards (NBS). Chapter 2 discusses dictionary concepts

in general and reviews functionality of existing dictionary capabilities
with special attention on relational systems. Chapter 3 discusses the

features and capabilities which form the basis of the NBS draft pro-

posal American National Standards (dp ANS} Information Resource Diction-

ary System (IRDS). Chapter 4 outlines and discusses the IRDS features
that were selected for inclusion in the relational dictionary prototype

and how those features were actually implemented.

12

¥ p A LR T T T

W TR
R ACREE

LA

EACY
{f.:#]

L"\

II. DATA DICTIONARY FUNCTIONS AND CAPABILITIES

A. GENERAL
"Gl The Data Dictionary (DD) is of great importance to the DBMS admini-
¥ strator and user because it allows the administrator to control how data ij
; and data bases are described and structured and it provides the link that gﬁg%
.E connects the user to the DBMS. A data dictionary is a repository of data g%é%}
X AL

about data and processes associated with a particular system orx

organization.

B. DBMS DATA DICTIONARY CAPABILITIES

The data stored in a DBMS data base may be organized along hierarchical,
network or relational lines. This organizational capability also exists
for the data in the Data Dictionary, which in most cases is actually data
stored in the DBMS itself. Data dictionaries implemented in this fashion

are most often referred to as a DATA DIRECTORY (how the data is stored in the

v ete alea Al

data base). On the other hand the implementation of a data dictionary can

a4

be on such a scale that it incorporates all of the data resources available

L to an organization. An implementation such as this is often referred to as

INFORMATION RESOURCE MANAGEMENT. [Ref. 10] This thesis is most concerned

with data dictionaries of the information resource management type. .
The DBMS acts as a librarian for the data base, storing and retrieving
data according to a particular format [Ref. 1l]. However, a DBMS doe; not ;ﬁ?u
b necessarily provide for the security, integrity, accountability, or - .

maintainability of that data. These objectives are best achieved when a

data dictionary is used in conjunction with the DBMS [Ref 12].

13

ey - = -
ki K ? ¥] ik ’ W AL P » .
A A ‘l‘, e,) AP S S LM ¢ AP NN R b e

o

Yroedddd AN)

.,l;‘- G-t b N

4 Forigal i A

Ses Bk aod

)

e

W RSP RGN BT RS

A DD is an instrument for descrihing an organization's meta-data.
Meta-data refers to that data which describes other data or data bases
and includes descriptions of the neanin§ of data items, the ways in which
the data are used; the sources of particular data elements; the physical N
characteristics; and rules or restrictions on their forms or uses [Ref. 13].
There are additional capabilities that shoﬁld be made available to
the DBMS user as part of the data dictionary [Ref. 14]:

1. Retrieval and analysis capabilities which assist the user in
application development.

2. The ability to generate pre-defined, customized and user defined
reports via some type of report writer.

3. The ability to extend the data dictionary as necessary to meet the
DBMS user's unique needs.

4. Data management tools that are intended to ensure the security, N T,
validity, recoverability and integrity of the data dictionary :
system and its associated data bases.

5. Software interfaces that allow other software modules to access the -
data base via the dictionary and the capabilities of translating
the meta-data into file definitions usable by the software.

M. T. Vanecek described the capabilities listed above as those most im~

portant from a DBMS auditor's standpoinf but it is easy to see that they
could apply to many types of users. [Ref. 15: pp. 15-16]

P. P. Uhrowczik describes the capabilities listed above as being
derived from the "mnagex;uent use mode.” He goes on to identify additional
DD capabilities that should be available to the DBMS user in what he

calls the "computer use mode" [Ref. 16: pp. 332-334]:

1. Data Mapping. Where the user is no longer concerned with what is o
sometimes called the "physical-equal-logical” environment. This is o
accomplished by removing the awareness of where data is stored
and giving it to the DD.

2. Data Conversion. During the mapping process, data can be converted
to a different format. For instance, data physically stored as ‘

B

14

R A e e

-V WL

character can be retrieved and converted to decimal.

3. Data compaction. Data can be stored in a compacted form (encoded),
but presented to the user in a more meaningful format (decoded).

4. Input and output validation. Data entering a program (input) or
data entering physical storage (update) can be checked against
pre-established editing standards. For example, data can have a
. specified format, and lie within a specified range of values.

5. Test~data generation. System-generated test data with characteristics
as described in the DD can be presented to the user.

oA

[A

6. Logical record and file definitions. A user is generally interested
in processing only certain data elements forming a logical record
and desires that these logical records be presented to him in a
certain sequence. In Figure 2.1 the user defines his logical record
as a series of element names and states his desire to process the
file sequentially in a DEPT/MANNO sort sequence. The fact that the
file comes physically from two different data sets is pre-defined in

- the DD/D. Thus the system can deliver the logical records properly

- assembled in the requested sequence. The user and the program do

& not need to know about the two data sets that are required to produce

N the view.

f 7. JCL Generation. Job Control Language (JCL) statements for physical

- data sets can be automatically generated as required by the particular
operating system in use. This not only eliminates the user's pre-
occupation with JCL, but also facilitates migration to different

operating systems. éigg
. 8. Access to distributed data bases. Data bases or portions of data Hﬁﬁé
S bases may be physically stored in different locations on different ﬁkig
) computers, linked via data communication facilities. The data s
N directory located with each distributed data base would describe xaz
- the physical data located at that site, as well as, physical data :;
. located at other sites. The DBMS can decide based on the information ﬁg'
- provided by the DD whether to satisfy the request locally or from ﬂ‘ﬁ;
2 a remote location. St

Fy

C. DATA DICTIONARY CAPABILITIES

The capabilities listed above describe the data dictionary capabilities

LA

that should be available to any DBMS user. However this view of the desired

data dictionary capabilities is limited, since it perceives the data diction-

ary as an extension of the DBMS itself and not as a true data dictionary.

2 LTk

It is possible, on the other hand, to view the data

[NV

15 o

LAY

&

s

Y
:f‘.h A NINS W g X 5 Ve %

e
189

'5‘..‘\ A] ‘ ’Q i

R R

by b

2 89 A4

r‘

Ny G

el

USER PEQUEST (PROBLEM PROGRAM)

USER 1D B7é01

RETPIEVE FILE SEQUENTIALLY IN
SEQUEMCE BY DEPT/MANNO

LOGICAL PECORD DEFINITIOM

\

DEPT |

MaliNG |

SALARY > READ OHNLY

MHAME [

MaNAGER |

YRS OF SERVICE /

JOB TITLE UPDATE

LAST APPRAISAL READ ONLY

= = EEEREEEEEE
AVAILABLE DATA SETS
PAYROLL PERSONNEL
DATA SET DATA SET
STORED RECORD STORED RECORD
DEFINITION CEFINITION
MANND (KEY) | I MANNO (KEY)
NAME | PRIMARY | NAME
SALARY ! INDEX OF | DEPT
YTD GROSS > BOTH DATA ¢ JOB TITLE
DEDUCTIONS | SETS IS OMN I HIRE DATE
! MANND | LAST APPRAISAL
| I MANAGER

Figure 2.1 Logical Record and File Definitions

16

- SRR ANy Aty L

-7

B

v L

n

s S

. .A':’./ o

- -

-

.

S5

AR

;--.«
;

x)

B2 Bie NR Rt A%, 8% 8%y 87, Bha Bl £%a g, PP IRLN * b g \ e o gt

dictionary as an entity unto itself whether it is from standing or
DBMS dependent. The capabilities and functions shown in Figure 2.2
and described below represent a joing of the capabilities and functions
described by Allen et al [Ref. 17: pp. 248-253) and Lefkovits et al
[Ref. 18: pp.2-7 thru 2-29].

1. Dictionary Schema

Dehotes the structure of the dictionary. Both sources agree that,
at a minimum, a DD should allow for the definition of Entities, Relation-
ships and Attributes. Entities are the basic unit of the dictionary and
represent real world objects or things about which certain information
exists in the dictionary. Relationships provide information about associa-
tions between entities whereas attributes provide information about
entities and relationships that exist in the dictionary. Figures 2.3

and 2.4 show examples of commonly used entities and relationships.

Data Dictionary Maintenance
Schema
Entity-types
Attribute-types
Relationship-types
User Dialogue
Dictionary Commands
Extensibility
Status Facilities
Report Processor
Query Processor
Convert Function
Software Interface
Data Management
Security
Integrity
Concurrent Control
Internal access to DD

Figure 2.2 Data Dictionary Capabilities

Entity names should be unique but facilities to track duplicate

names in the form of aliases or synonyms hould be provided. Mditionally,

17

A

W)

2

I d

$4

AQ DATARASK USER

, J

;‘,! SUBSCUFMA |, PROCESS leg=—d PROCESSOR

; Z X * .

g RELAT IONSIHEP F1LE LINE

- . l

N

Y

- . RECORD TERMINAL
cROUP 1

o ; ' TRANSACTION REPORT

o L__-A FLEMENT o

n'.:

.

N

Figure 2.3 Logical Structure of a Typical DD
(from Allen et al)

|} '
Y "
4 USER/USAGE R
~J ¢

. |)
-] SYSTEM/SUBSYSTEM

f] -

PROGRA';I/’NODULE

v ' n
t FILE
v |
thy)
R . GROUP /RECORD .
) ' -
3 ITEM/DATA ELEMENT -

<
f;: .

! Figure 2.4 Hierarchy of Entity-types e
ox (from Lefkovits et al)

2

18

et “a e g

» .

P A N 2)

oAyl

P Ve, ¥]

ol Y W %

S S v s oty A . mh B b wat e »og b o #im ol v, £ ai o AT L

the DD should allow a minimum of t}mee»g:oupingé of entity-types:
Data-Element, Processes, and Usage.

The dictionary system should also provide a means of grouping
together dictionary elements that have the same characteristics. This
can be accomplished through the establishment of Entity-types, Relation-
ship-types and Attribute-types. It can also be accomplished through the
establishment of a Key-word In-context feature. Neither author provided
specific examples of atribute or relationship types. Both did agree that
most DD provide enough attribute-types and relationship-types to meet
the average user needs. In addition they identified the extensibility
feature which would allow a DD user to expand the DD to meet his indivi-

dual requirements.

2, User Dialogue

The method used by the DD to communicate with the user and vice
a. keyword-driven language
b. position-sensitive transactions
c. interactive, prompted input
d. interactive, performatted screens or menus

3. Dictionary Commands

Provide user with the ability to use the DD system to its fullest
extent. Dictionary commands can be divided to the following categories.
a. Dictionary Maintenance Commands
Those commands that allow entities, relationships, and

attributes to be created, modified and deleted from the dictionary.

19

e oSS THEEE AT AT AR L e Y

v _ v ...
. «
M LA

R~ A Y

AR R

G

.
.

Pl RSN

> R
N -

..’

b. Report and Query Commands

Those commands that allowj the user to request the system
to generate listings of entities, relationships and attributes and generate
queries on such things as the usage of dictionary entities, keyword and
synonym searches.
¢. Data Structure Interface Commands
These commands give the DD system the ability to generate
descriptions of data structures in such a way that they can be processed
by other language processors, such as language compilers or DBMS
schema/subschema utilities.
d. BExtensibility Commands
These commands are discussed in 4 below.
e. Status-related Commands
Will be discussed in 5 below.
f. Security Commands
These commands provide the system with the' ability to exclude
some users from access to the system or restrict his ability to modify
and change the system.
g. Dictionary Processing Control Commands
These commands allow the user to perform such functions as
log-on, log-off, terminate operation upon error, etc.
h. Dictionary Administrator Commands
These commands will allow the dictionary administrator to:
* initially create the dictionary system
* recover the dictionary after a failure

* get default values

20

T e A e e A s

S
N

»

A
¥

o

)
S

Ll
) "

v
.

“ef
LA

NN

R]
e

'l . .

Jl.'."

~. "-‘r *,
My Ay s
A

"

g 2%

A H

e

X

& 1§
R
v
<y

¥ anl ol

575

L/
- g
> -

oy

2F

o

P
el

-
¥, 2

* create back-up copies of the dicticnary

4. Extensibility

A feature that allows the DD structure to be extended by
definition of additional entities, relationships, and attributes.

S. Status Facilities

Allows the dictionary system to be used in a System Life Cycle
environment, that is the system would allow for the designation of an
entity as being "Under Development," "Production" or "Archive" for
example.

6. Report Processor

This capability allows the user of the DD system to produce
predefined reports, the ability to customize reports and produce

user-defined reports.

7. Query Processor

This capability would give the DD user the ability to generate

L CEHEEGCAAA TV ST P S RS EEEE V.0 .77 T A R s —"— . —— - w — = — -

VLT, L LA L Y e e

English-like queries of the system. This query capability is analogous
to the corresponding function in DEMSs for access to data bases.

8. Convert Function

This function allows the DD system to read application programs,
libraries and schemata and generate DD maintenance input transactions to
automatically create a DD schema.

9. Software Interface

This capability provides a formatted pathway, enabling the DD
system to provide meta-data to other software systems such as compilers.

10. Data Management
This function would provide for the data base managemsnt tasks

ove s JIEBE XIS,

v ¥ ¥
-

such as:

.,

R, P& T s

T T o T e T e T8 87 O, R E N TSR L

C . " e
I APLPAPPS S

A SALPLA IS

T BRI A

e

* Security

* Integrity

* Concurrent control

* Internal access of the DD

Not all data dictionary systems possess the capabilities listed

above in fact, early data dictionary systems were little more than docu-
ment generators, taking the meta-data that had been stored in them and
printing out reports describing file and record structures. Other DD
which are DBMS-dependent obtain the capabilities listed above from the
DBMS they are associated with. Unfortunately even DBMS products that
are currently being marketed are limited in the data dictionary
capabilities they offer and very few if any offer what could be classified
as information resource dictionary systems. 1In addition to the limited
DD capabilities associated with DBMS, the additional problem of lack of

standardization exists.

D. ADVANTAGES OF DATA DICTIONARIES

The main advantage of a dictionary lies not in its ability to store
and catalogue information about data, but in its ability to assist in
the discipline of data design [Ref. 19].

This advantage can be expanded into a number of beneficial areas:

1. Information about data/corporate asset. Accurate information about
how a company functions, about its employees and clients can be
stored in a DBMS and defined in a data dictionary. By storing
this knowledge on a magnetic media and providing for adequate
backup and recovery to the data dictionary, the corporate asset
is being saved from catastrophe.

2. Public vs. Private Information. The situation where only a pro-
grammer knows all of the information (institutional knowledge) about
a particular application, can cause many problems not only for those
who must pick up a project in mid-stream, but even for the programmer
himself if it has been several months since he last worked

TS LS RIS S S F T VT S -

]

ST % 2 Ty

v

e v Ty TV v
MNAR oL LA

L r v
CNRY

.,

rip s e 8 8

Al A "B S

e a b & AN

on the application. By incorporating his institutional

knowledge about each application into a data dictionary as

each new application is developed, the information becomes public
knowledge for the application developer and anyone who follows
him. This will substantially reduce the effort required to
modify and enhance existing applications.

? 0 ,
(SO
7~ 14

-
’ ~

e
7

v."
(I

e

)
-
-

‘v -

3. Communication tool. The data dictionary can become a repository
of corporate information, i.e., minutes of meetings, memos, notes,
manuals and reference texts, which can be accessed by all areas of
a company. The central area of Figure 2.5 represents the communi-
cations value of a data dictionary.

2{'
%
LA

E
-

DATA
PROCESS ING

Figure 2.5 Communication Value of a Data Dictionary

4. Safeguard against Data Redundancy. O0ld systems are difficult to
maintain because of lack of information, process redundance and
data redundancy. Information availability has been discussed above.
Process redundancy can be reduced through structured programming
techniques. Data redundancy however requires a different approach.
Data redundancy is a situation where the same data element pro-
liferates throughout the system.

It is not uncommon in an older system to find the same data element

stored in ten different locations and requiring ten different update

transactions to maintain it. This same data element may be referenced

by 50 different names through the system. Is it any wonder that such ~
systems are difficult to maintain. [Ref. 20})

Listed below are various types of data redundancy:

23

N
.
3

¥y,
¢

. . B k,‘

. .. e - . . . wer g ZIE) N %
O Rt L IR LR AT OL O T Y Y ' o) : DN T T O AT DD I LA
A A A \ W/) p A

i
L

> W 16 RAAEA DE NN i At (LR R L oy 3

LA LV

3 .t"n-.q

QwC)
LI

LALONEALTY O O

LTS AENEN

K
-

Sty

[
LEN

DA =1 I8

*
Y

-
'
‘ A Woa o w,
L0 M 3 XY 3% 0 O

b.

These as well as other types of redundancy not mentioned can be controlled

Reference Redundancy - when the same data element is
referenced by different names.

Format Redundancy - when the same data element appears in the
system in different formats.

Group Redundancy - when data elements are grouped under a group
name when no requirement exists from them in the first place.

Occurrence Redundancy - when repetitious data names are used to
identify multiple generations of the same data element.

Definition Redundancy - when a data element is used for more than
one purpose thus the element has more than one definition.

Storage Redundancy - when the same data element is stored in more
than one location (redundancy of this type, sometimes serves a
purpose, in distributed systems for example).

through the use of a data dictionary.

very

all.

LA

W 2y 1M

5. Glossary of Terms. Another benefit of implementing a data diction-
ary is to use it as a glossary of terms. Which could be used in the
development of software and as a training tool.

The data dictionary can be very effective when used as a tool to
support structured analysis and design. It can be used to document
data store, data flow, and process entity types. The data dictionary
can also be used to generate, file segment, and record definitions
for a variety of programming languages. By doing so, we can cen-
tralize the control of program data definitions. [Ref. 21]

6. Documentation. The data dictionary can serve as an effective
medium for the presentation of documentation. The nature of a
data dictionary makes maintenance of documentation easier and
anyone who has access to a computer terminal can subsequently
access the documentation.

7. System development. The "data dictionary is one more tool to in-
crease user effectiveness in system development." [Ref. 22] the
traditional approach to systems development (see Figure 2.6) can
be enhanced to allow all involved in the development process,
access to the necessary information as it is generated. (see
Figure 2.7) This is accomplished by incorporating the DD into the
traditional development network.

All of the capabilities and benefits listed above are important, but
few if any data dictionary systems available today can provide them

In other words there is no current standard from which all data

BN At el e ACASEA R L R SRR A ME T R g i - S il SY S o ri S g o~ gt R gl e AN g

s
B

g

y
/’:‘
‘. -4

&

.
'."‘n

< 7
e
AR

o
o
Fd

K e s 070 8,

P o b2 i

»
PR

ARSI AR b

\ talal

DEFARTNENT

USRR STAFF

ANALYSIS

DATA PROCKSSING STAFF

'—.1 PESICN

TPSTING

1PV FUENTATEON

Figure 2.6 Systems Deveibpment Traditional Approach

USER STAFP

USFER
'ROCESS
DEFINITION

DATA
KLEMENT
DEFINITION
DATA
1CTJONARY
DATA GICAL
ADMINTSTRATION DATARASE

DATA PRUCESS ING
STAFFY

PHYSECAL
DATA HARE

DATARARE

ADNINISTRATION

PATA P'RINESSTNG
PRFINITION

Figure 2.7 Expanded System Development Approach

T

A AT s

25

*y 'y
27
DA o WA

‘h
Y]

m
o

LIRS A St S Sl A IE S N B S A LI Sl Sl Al nr il el il Al P AR TR RTEVARANT

%’ dictionary products are developed. This situation is in the process of

;j being eliminated now that the National Bureau of Standards (NBS) has

; formalized and published a standard for data dictionaries in the form by

;f of the Information Resource Dictionary System IRDS) standard. The feature . 92?%
E and functions found in that standard are discussed in the next chapter. . A
4 E. EXISTING DBMS DATA DICTIONARY CAPABILITIES

K

& As stated earlier very few DBMSs contain DDs that exhibit all the

0

h capabilities discussed above and even fewer Relational DBMSs offer the

. previously identified minimum DBMS dictionaries capabilities. Tables 2.1

;} thru 2.3 list the DD capabilities provided by the INGRES and ORACLE DBMS

o

;' products. It is easy to see from the list above that the dictionary

5 capabilities provided by ORACLE and INGRES are very limited from the stand- %53;
f point of offering full data dictionary capabilities. 5
" But what alternatives exist to improve this situation? The NBS IRDS)

- standards offers a convenient vehicle to improve this situation. By . ; gﬁ;
*E adopting this standard as an industry-wide starting point, all products Rffé
N that use data dictionaries and the data dictionary itself will improve.

:j The next chapter discusses the NBS IRDS standard in detail.

g

1

L]
el
oy
}’1‘-".
’D ',' “',
'l Ty
e P
:i\.n’
B
« -
3
Y
%
a
-
L]
2 -
1

R 26

L . a0 W s TV TR L v

=D

SVEYYr: L ARAR

q -~

<

1y

A

A

e

- TABLE 2.1

. DBMS DICTIONARY CAPABILITIES

~‘ CAPABILITY INGRES ORACLE

: \ Data Dictionary Maintenance P P

\ Schema '22T 1222

\ Entity-types - L A S,
» Attribute-types L L k8
oy Relationship-types L a LR
-~y .

User Dialogue Ll REkd

v Keyword-drive A A

> -

-; Position-sensitive Trans N N

. '\' Interactive . L L

‘ Prompted input L L

.. Preformatted screen A L

::- Menus L L

g

’. Facility/capability availability = A)
Facility/capability available but limited = L NE

Facility/capability not available = N

:: Facility/capability as part of DBMS only = F

15g

)

v_"

- T
'? -

.'

e

o)

‘.

7

'

“

29
4

‘:)t‘ AN ERE I

o

‘(._ £ al .A‘w;"“&l -

Fg

s Le

(3
O

L 2 Sy

- ¥ :
pt b R0 B Be 4

e g

YT YT LT T AT T T e T

TABLE 2.2

DBMS DICTIONARY CAPABILITIES

CAPABILITY INCRES ORACLE

Dictionary Commands kiek AR Y
Maintenance -
Add
Modify

delete
Report
Query
Data Structure interface
Extensibility

Status~-related

Security

2 v 2 2 Z2 v v Z 0 2 v
2 "W Z2 v Z W w ¢ © o o

Processing control

Facility/capability availability = A
Facility/capability available but limited = L
Facilitycapability not available = N
Facility/capability as part of DBMS only = P

hod
R}

Rt ag g A

D N I

TABLE 2.3

DBMS DICTIONARY CAPABILITIES

CAPABILITY

Administration
Extensibility
Status Facilities
Report Processor
Query Processor
Convert Function
Software Interface
Data Management

Security

Integrity

Concurrent Control

Internal access to DD

2 2 Z2 W P v » WY Z Zz p

Facility/capability availability = A

Facility/capability available but limited = L
Facility/capability not available
Facility/capability as part of DBMS only = P

30

N

INGRES

ORACLE

A
P/L

v =2 w v =

P/L

o Z v v

LLL:

2

XX,
A
.

Lol 4 Fp
,
SN
7.

,
3
3R

u)\}‘\d.

A

III. INFORMATION RESOURCE DICTIONARY SYSTEM

This chapter discusses the features and characteristics which form

the basis of the draft proposal American National Standards (dp ANS) Infor- Qﬁﬂ;
; “

mation Resource Dictionary System (IRDS). The chapter that follows will Fﬁiﬁ
o LA

outline which of these features were chosen for incorporation into the RS
Gy

Prototype IRDS. o,
et

A"

A. BACKGROUND

.
;f As the world's largest user of information processing technology, the
]
) U. S. Government depends on this technology to carry out Government-wide

programs and deliver essential public services. As with most new technolo-
gies Data Dictionary/Directory Systems (DD/DS) were being developed by
X numerous software suppliers each from a different set of standards. Since

it is estimated that the federal government could save "$120 million in

<
a benefits by the early 1990s from use of a standard (IRDS)" [Ref. 23], the i
t: American National Standards Institute (ANSI) and the National Bhreau of
C Standards (NBS) of the United States Department of Commerce were prompted
;? to initiate efforts to develop standards for dictionary systems. To this
ﬁf end the ANSI committee for Information Systems (X3) convened a Technical
T Committee X3H4 to develop the standard for an IRDS in 1980. NBS at the
)
‘5 same time established a similar committee to develop the "Federal Information
% Processing Standards for Data Dictionary Systems” (FIPS DDS). o
e Although the ANSI X3H4 and the NBS committees used different titles .- .
E: for standards they were developing, the two groups'had identical goals
E; and similar development approaches. The two efforts came together with the ‘
& adoption of Proposal A83-020 in August 1983. The proposal called for the 'FH

acceptance of the draft FIPS DDS as the Base Document for any further

A 1

L1

development of IRDS standards and has since been developed into the

dp ANS IRDSs [Ref. 24], [Ref. 25), [Ref. 26],]Ref. 27].

B.

- s 8 A A B

*

S A

Ko -

-‘ *

(NI

a

L}

IRDS DESIGN OBJECTIVES

When specifications for the standard IRDS were being developed three

key objectives were always in the forefront of consideration. They were:

The IRDS should contain the major features and capabilities found
in existing Data Dictionary Systems.

The IRDS should be modularized to promote ease of implementation
and cost efficient development.

The IRDS should support portability of skills and a wide range of
user environments.

In pursuit of this goal the Institute for Computer Science and

Technology of the National Bureau of Standards took the following steps:

Preparing and disseminating the Prospectus for Data Dictiénary Sys-
tem Standard [Ref. 28] in 1980. This document discussed the use of
Data Dictionaries and plans to develop a FIPS standard.

Conducted a Data Base Directions workshop in October, 1980 that in-
vestigated how managers can evaluate, sgselect, and effectively use
information resource management tools, in particular data dictionary
systems.

Conducted interviews with government employees that were knowledgeable
in the area of data dictionaries to determine current and future re-
quirements for data dictionary systems. The Federal Requirements for
a Federal Information Processing Standard Data Dictionary System

(Ref. 29] was published as a result of those interviews.

Conducted numerous workshops for users and vendors between 1982-84
to obtain feedback on previously published documents.

Developed a functional specification for the development of a data
dictionary standard (Ref. 30].

Prepared and disseminated in August 1983 the draft specifications for
the plauned Pederal Information Processing Standard for Data

Dictionary Systems, the document that later became the baseline
standard.

1. oOutgrowth of Existing Systems
All vendors who were marketing developed IRDSs or were developing

a IRDS were asked to review the proposed IRDS specification and make

[3¢ 3

Iy

24 S

f 40 ¥ S I ’ *
v AR A TR Ry

32

. 3
AN

g

» o gt G *

recommendations and suggestions on what should be included in or excluded
from the draft standards. Many of their recommendations were subsequently

included in the draft specifications.

e s &

1 2. Flexibility
The proposed IRDS includes a "CORE" dictionary system (which is

the basis for the prototype to be discussed in Chapter 5) plus three
; modules. The modules are designed to interface with the core system but
be independent of each other so that any or all of the modules can be
implemented with the core system when desired. To provide additional
flexibility, capabilities are specified in the core IRDS that allow
organizations to customize or extend the IRDS as required.

.

N 3. Portability of Skill

The core IRDS contains two user interfaces: a menu driven
"Panel" interface and a command language interface. The panel interface
allows the system to be used by the inexperienced user. It incorporates

a series of interrelated screens that guide the user through the system.

The command language interface on the other hand is designed to allow

the more experienced user to access the system without viewing the

L L L

panels. The command language interface may be used in a batch or interface

mode .
An implementation of the IRDS standard is considered complete if

either of the interfaces are implemented.

4 C. IRDS DATA ARCHITECTURE - -

This section presents an overview of the framework in which IRDS data

evi%a%e

P, is organized and presented to the user.

33

T e m e A,

BN o Tl 2 o I L N N TR

222 T T s 2T R Y Y,

<
4
)4
N
<
y *
.

o e Y,

1. Framework

The IRDS standard is specified in terms of entities,
relationships, and attributes (see Figure 3.1).

An IRDS entity represents or describes a real world concept, person,
event, or quantity, but is not the actual data that exists in an
application file or data base. [Ref. 31}

A relationship is an association between two entities. An attribute
represents a property about an IRDS entity of rolationship as the IRDS
also allows relationships to have attributes. Relationships in the
Core IRDS are binary, denoting that an association exists between two
entities in the IRDS.

The Core system was restricted to binary relationships because (1) tne
vast majority of current implementations use binary relationships and
(2) it was desired that the Core system be simple cnough to implement on

microcomputers.

ENTITY u8-20 ENTITY-TYPE = SYSTEM
ASCAD Database_Update
WITH ATTRIBUTES
BESCRlPTIDH (START = 198 IMCREMENT = 18)

"This subsrsteh rovides the capability for
the staff to updage the contentspof thoy

ASCAD Database.",
SYSTEM-CATEGUORY = "subsystem*®,
SECURITY = “"datamgr";

Figure 3.1 Sample Entity Representation

An important aspoct of the IKDS standard is the concept of TYPE
which is used as a way of classifying entities, rolationships and sttri-

butes. Different attributes have different meanings, for example the
Y

34

HaLH55EE T -ED A L 4 VR S

"

¥ _*
LR L

TP

v

oo D, LY T

SRR RN L S g

ST YR a8 37 s 0 HEETE TR T VL IEE AL a7 8

o« N2 LIRS A o Sal Gy 1ol AN A LA L WL AN M SAR pU 41 TRETE SR,

length of Payroll-Number or number of fields in a Payroll-Record are
different. But these attributes may appear many times in relationship
to other entities, length of name, length of address or mumber-of-fields
in an Accounts-Payable record. The IRDS standard handles this situation
by declaring that each attribute is a specific type called an
"attribute-type." Thus there are attribute-types called length and
number-of-fields.

The concept of types is extended to the IRDS relationship and
entity in the form of "relationship-types" and "entity-types" see
Appendix A.

Relationships within the IRDS can also have attributes, for example
the relationship in Figure 3.1 between Payroll-Record and Payroll-Number
could have position attribute-type with a value of 3 indicating that the
Payroll-Number appears as the third element in the Payroll-Record.

The IRDS standard also allows for ordered sets of attributes
called attribute-groups. This capability was incorporated into the
standard because individual attribute-types don't always convey the com-
plete message about an entity. An example of this might be the allow-
able-range of an entity. The allowable range has a high value and a low
value which a singular attribute would not be able to convey. An attri-
bute~group on the other hand would be able to convey this information
quite easily.

2. IRDS Schema
The IRD schema describes the structure of the IRD. Thus for

every entity, relationship, attribute and attribute-group that can exist

in the IRD, a corresponding description of the entity-type, relationship-type,

35

Pt

-

T T e WSS W e e Vv ¥ fEamm—— -

¢ NSRSy W TR N N e € .

T e T DRSS T T e

} ‘ . ‘ t“&‘ -Jt- »')‘ v !

attxibute~type and attribute-group-type must exist in the IRD

schema. The proposed IRDS standard specifies a set of specifically
allowable entries of the types listed above which are collectively called
the "Core-System-Standard Schema" which will be discussed in 3. below.

The IRD schema is important for two reasons. First, the IRDS
specifications allow for facilities to modify and expand the core-system-
standard schema to meet the unique needs of individual users. Second,
the IRD schema supports the core system plus modules approach as discussed
in Section 1 of this chapter and the IRD schema allows not only extension
of the schema data but also definition of additional IRDS functions.

3. The System-Standard Schema

The system-standard schema defines the allowable contents of the
IRDS and is expected to be part o; every IRDS implementation (the proto-~
type IRD in Appendix E only implements a subset of the system-standard
schema, this will be explained in Chapter 4). The core-system~standard
schema does not contain all possible entity, relationship and attribute-
types that an organization might desire. It does however fepresent the
consensus of the organizatiéns which participated in the original IRDS
workshops and reviews. An overview of the core-system-standard schema
is provided below and a complete core-system—standard schema is provided
in Appendix A.

a. Entity Types
The core system-standard schema contains twelve entity-types

that conceptually can be grouped into three categories, Data, Process, and

External. [Ref. 32]

36

Tt AL I Al p bost e T R Sy Ty S R T Y
A e . O R N O R

x

v w § TP NS D B TR W W W w o e w

* A SEEEE T A AL, R AAA S, .

2 A 0

BN S SR e 78 TV Y ST N L T Y . NAar . . s e v 2

"-")‘f‘;{t‘ L

kR

SOP A

Data Entity-Types

*

DOCUMENT, describes instances of human readable data, such as tax
forms and annual reports.

FILE, describes collections of records which represent an organiza-
tion's data, such as inventory and accounts receivable files.

RECORD, describes instances of logically associated data, such as a
payroll record.

ELEMENT, describes an instance of data, such as a social-security-
number.

BIT-STRING, describes a string of binary digits, such as 0100010l.
CHARACTER-STRING, describes a string of characters, such as "house."
FIXED~POINT, describes exact representations of numeric values.
FLOAT, describes exact representations of approximate numeric values.

The last four are not used to represent application entities, but

are instead used by the "REPRESENTED-AS" relationship to describe the

characteristics of elements:

PROCESS Entity-tvypes

*

SYSTEM, describes a collection of processes and data, such as a
payroll-system or accounts-payable-system.

PROGRAM, describes a particular process, such as print accounts-
payable check

MODULE, describes a group of programs that are logically associated,
such as a sort module.

EXTERNAL Entity-types

*

USER, describes an individual or organization that is using the IRDS,
such as the accounting department.

b. Relational-types

The relationship-types provided for in the IRDS core system-

standard schema represent virtually all connections that might be useful

to users. These relationship-types are grouped into eight classes [Ref. 33]

37

‘-‘
e

Pl o A A

!‘:’\f
REX
. G,

P

i
A

ffff‘f
YR
LAY

58
>y

'8

,’-
[4

A 4 o

4
(A,

% ‘Y
‘:."c
P X

)

[

A

v
Y

)
b2

e

apeae

SN T W LTI ETNER)

~ s e N T Y L N T T P T Ty DR i it R ey Bt g e,

A laad
SN
y

A

* CONTAINS, describes a situation were an entity-type contains other
entity-types, such as Accounts payable-file CONTAINS Accounts
Payable~record.

'y '. . " .
'l " -l
verE

- .I'A

s

s
ﬁ& ,

* PROCESSES, describes a situation where an entity-type acts upon
another entity-type, such as Payroll-program PROCESSES Payroll-
records.

* RESPONSIBLE-FOR, describes an association between entities represent-
ing organizational components and other entities, to indicate

organizational responsibility. An example of such a relationship is E_ A
Accounting-department RESPONSIBLE-FOR General-ledger-file. ‘fiﬁﬁﬁ
(WLSANL

. : . . . LN \§.

* RUNS, describes an association between user and process entities, :i${\;
such as user RUNS program. v@?:ﬁ

LY *‘w !

GOES~TO, describes a situation where one process transfers control
to another process. An example of this relationship is Accounts-~
payable-aging-program GOES-TO Aging-report-program.

o
y
Im

[P

* DERIVED FROM, describes a situation where an entity is derived from
another entity such as Annual-report DERIVED~FROM program-file.

* CALLS, describes a situation-where one entity calls another entity
such as Data-entry~program CALLS Aging-program.

| v - - . .
S Y D Y T R T S R S e v e o o .
»

* REPRESENTED-AS, describes associations between ELEMENTs and certain
other entitles that document the ELEMENTs format. An example of
such a relationship-type is Employee-Name REPRESENTED-AS Ascil-char-

string.
c. Attribute Types
The attribute-types available as part of the core-system-standard

schema are the ones selected by conscientious of participating DD users

and DD software developers during the development of the IRDS standard.

They represent most of the attributes that an organization would need to .
describe the core-system-standard entity and relationship-types. The
attribute-types provide [Ref. 34]:

* Audit trail information, a typical audit attribute-type is DATE-
CREATED.

General documentation for entities, for example, DESCRIPTION and
COMMENTS .

See Appendix C for a complete list of the attribute-~types.

38

F e ST . "« " «"« "2 T JEETIYNYEXCEB P, F S AL
.
»
|

e T, AT T - rn LI ’
A WD NNV AR UE 0 EENEE

2
s e S

L)
»

-

SaMMANY,

AN

.

g e

- L)
AT '.v".

T
..5l~

! "- ”- ..o ,I "l '.l I.I.

TP

*r
[Y

I'

LR R L A

24

-" 's'-".;‘;;- i ‘.l

[

.
'

r
RN |

]
oy

'SR

a,

. T3¢ W ¢ S PPN - R
t ' f *) w ' .. U ." s ‘ A -

Al Rl Aol S hERACH A A R A A S A R M A IS i S R e f T R AR A A P e A Ib B wo A b AR S RS BT BNLE R
A
. > e

4. Entity Names

The core IRDS allows flexibility in the assigning of entity names.
The system also allows for several distinct names to be associated with an
entity and for each name to serve a specific purpose. The core system
allows for ACCESS NAME, DESCRIPTIVE NAME and ALTERNATE NAME.

The access name is the entity's primary identifier and it is the
basis for the structure of most commands and panels. The access name is
designed to be short, for ease of use by the system and user. Normally a
user will provide the access name of an entity. However an option exists
for the IRDS to generate the access names for all entities of a given type.
The names that are generated by the system may be modified at a later date.

The descriptive name provides detailed information about the object
represented by the entity. So the brevity of the access name poses no
disadvantage to the system or user.

The IRDS does place a requirement on the user that all access and
descriptive names be unique throughout the system. This requirement was .
generated by the ANSI X3H4 and workshop participants to insure simplicity in
the command language and panel interfaces.

The core IRDS also allows for user assignment of ALTERNATE NAMES
for an entity. The term alternate name is used here in the same sense as
the terms "synonym" and "alias.” The alternate name documents different
names used to represent the same real world things. For example, the
element whose access name is Social-Security-Number might have alternate

names, SSN, Soc-Sec, No, and Social-Security-Number.

D. FUNCTIONS AND PROCESSES
This section describes the functions and processes provided as part

of the core IRDS.

39 i

gt
;“,k;;‘z'
g’g‘.; ‘.»'
& ke

IO T T i C racar — P ——
AR TSNS S N O U O 4 A, S R O RSN

s 2
P4
“h)
.l'..l X
IR
A

araali
3
3
OO
. PO
. e
. 1. Populating and Maintaining the IRD :5§J
Dyt WM,
xwgi
The core IRDS provides functions to add, modify, and delete F
AL,
Tt
entities and relationships. a:::i
Cotal
W R
. a. Entities ::::f{-;
(1) Adding Entities. This function allows the user to | S
[
- \"_’.'._'.
- add/create entities to the IRD. Some important aspects of adding a new ARV
L AN
- ~ -
entity are: -
* Declaring the type of the entity.
. * Designating the assigned access name.
t * BAssigning a descriptive name to the entity.
i * Declaring attributes and attribute-groups for the new entity.
'; The designated entity-type must be one that exists in the IRD schema.
- In order for the access name to be valid it must conform to the following
rules:
. * The access name must conform to the length and picture requirements
X of IRD schema.
S * The access name used must not previously exist in the dictionary.
- * 1If the system is to generate the access name the user must supply
- the entity type and starting value see Figure 3.2 for examples.
f (2) Modifying Entities. This function is used to change the
attributes of existing entities. When using the modify function the user
]
. may accomplish the following:
3 * Creation of new- attributes.
4
* Modification of existing attributes.
~ -
N
g * Deletion of existing attributes.
»
Y

The core IRDS also offers a modification option that allows the user

40

-8 3 YT,

>_am e e -

-

AR NN e kR B0 $2 D5 R I AAAAGH AN,

SECURITY = "datamgr";

4 - . Al I8 Ans T d Al S i A g i BN A . Ak et e Al el AR S i

e e " oS

0

13

~

N

N

N

A

*

]

M)

u

W

i

NS

<

L

ADD ENTITY u8-20 ENTITY-TYPE = SYSTEM

N DESCRIPTIVE-NAME = ASCAD Database Update

::. WITH ATTRIBUTES

" DESCRIPTION (START = 100 INCREMENT = 10)
,3 "This subsystem provides the capability for
™ the staff to update the contents of the
» ASCAD Database."

7. SYSTEM-CATEGORY = "subsystem",

&.-

Figure 3.2 Sample Command for Adding Entity

et Rt aut g NRR Y ol by g e AV AN Y Jat g Y 80§80 8,89 0 5t BN B P p.Y §.0 Bon @6 Bb 2.4 0 BN 0% 4 v 2t QP g3 B-

to create a new entity which has all the values of the old entityt but
with some desired modification. This option allows for the easy genera-
tion of a new version of an existing entity which would be identified as

a different form the original entity by a version number (Figure 3.3).

- o

MODIFY ENTITY dd_01093
WITH ATTRIBUTES
DESCRIPTION = "A shared data field occupied by
either cntry_code or state_code”,
SECURITY = “"datamgr"
\| DATA-CLASS = "alphanumeric”,
IDENTIFICATION-NAMES =
(ALTERNATE-NAME = "cntry st code”,
ALTERNATE-NAME-CONTEXT = "pll");

Figure 3.3 Sample Command for Modifying Entity

Sl S Tl W A g a8

(3) Deletion of Entities. The core IRDS allows entities to
be deleted by specifying any of the following:

* The access name.

s a2 &8 .4

* Entity selection criteria (access names) which will result in the
creation of a new entity-list.

* The name of an existing entity-list created earlier in the session
or saved from a previous session.

b. Relationships

(1) Adding Relationships. The core IRDS allows for the

creation of new relationships other than those provided as part of the

core. The important considerations in creaiing a new relationship in-
. clude designating:
* The entities that are to be members of the relationship.

* The relationship type.

* Optionally, attributes and attribute groups for the new relationship. -
. * The entity sequence for ordered relationships.
ot
42

L LA

¥ it Lo ‘; ,':;—t’r' B .t'.'..,{:,—;‘:";:.»',‘u._;.‘p TN e o e

NI 7Y

BARAPYRY
e tate’s

¢

.‘ l‘l '

»
.'

P N

% i
L

[
-
»

A7

RN X

£

13

AN

¥

| I o B——
LA i 3 £ b B
e Y LR T

- P ol <o o et ML A AN S aep e ai A L A SO A4 B 2 2 A 0 e e R UL L AR ek R g

In creating a new relationship the user need only identify the access-
names of those entities associated with the relationship.

(2) Modifying Relationships. The core IRDS allows the user

to modify any existing relationship by identify the relationship by type
and the access associated with it. Using this function, allows the user
to:

* Change a relationship's attributes.

* Create new attributes.

* Delete existing attributes.

* Change the sequence of entities associated with the relationship.

(3) Deleting Relationships. The function is provided by the

core system to allow for leletion of relationships.
c. Copying Entities and Relationships.

The core IRDS allows for the creation of new entities with the
same attributes, attribute groups and relationships as an existing entity.
In order for the new entity to be created the user must activate the
copy function and specify a new access ﬂame which is not duplicated in
the system; Optionally the user may designate a new full descriptive

name for the entity to be copied.

2. IRDS Qutput Facility

The core IRDS provides a GENERAL OUTPUT function for producing
output of IRD entities, relationships, and attributes. The general output
capabilities are discussed in a. below. The 'core IRDS also provides two
additional output facilities the IMPACT-OF-CHANGE function, which provides
a report of all entities that might be affected by a change to a specific

entity, and the SYNTAX-OUTPUT function which generates output in the same

43

P S L IR I 875 .
ERWEE R

0y

B

format as data was entered to create the entity in the fi;st place.
These two functions are discussed in detail below.
a. General Output
The core IRDS requires that seven steps be completed before
any output can be generated. Some of the steps are optional and therefore
default values are available. The seven steps required for output genera-
tion are:
(1) Specify the views to which retrieval applies. The view is associated

with the life cycle phase that the particular entity belongs to
(See Figure 3.4 for an example).

Select ENTITIES "Program-2 (*:*)"
Where *:* means all revision-numbers and all variation-numbers

Figure 3.4 Sample Command Line

(2) Selection of the entities to be output. This selection is performed
via the entering of selection criteria. Criteria is generally
entered at the initiation of the output process. Selection
criteria includes (See Figure 3.4
* The type(s) of entities to be retrieved.

Characteristics of the assigned access or descriptive name.

* Characteristics of the associated version identifier.

* Designated attributes or attribute groups.

* Life-cycle-phases.

* Relationships

(3) Sorting the entities on a series of sort parameters. The available
parameters are the same as those listed in D.2 above. Suppose a
user wishes to sor the selected entities based on entity-type,
variation name, assigned-access-name, and revision-number.

Figure 3.5 shows how the command might look.

44

- SR

g Qe R R T Bl . 8, R A D) Lol olia™ ok Ealat e,

{4) Designating what information is to be displayed include:
* The kind of entity name (access, descriptive or alternate)
; * The life-cycle-phase of the entity.
* One or more of the entity's attributes or attribute groups.
B * One or more relationships in which the entity participates.

. See Figure 3.6 for an example.

entity-type (ascending), variation .
(ascending), assigned-access-name
A (ascending), revision (descending)

Figure 3.5 Sample Parameters

(5) Routing information which sends the output to a particular
3 destination.

: (6) Assigning a title to the output.

(7) Providing a name for the output procedure to allow it to be re-
called at a later time, when the same output is required.

[2 AT

SHOW ASSIGNED-ACCESS NAME
ASSIGNED-DESCRIPTIVE-NAME
REVISION~NUMBER, VARIATION NAME

-

Figure 3.6 Sample Output Format Command Line

v

4

o

y b. Output IMPACT-OF-CHANGE

‘ AS previously stated, the IRDS allows for the printing or =
o KL

b ,‘;‘i -
3 displaying of an Impact of Change report. This report is generated by W
', .

a function that has two options. First, there is a cumulative impact- St
of-change option that lista all entities that will be impacted by a han
proposed change(s). Second, the Individual-Impact-Of-Change option

: produces a separate ligt of entities for each of the originally specified -

entity changes. ggf
, 45

4
¢
k
N A A RN

Sl o e Al B 20 K Noie 300 K G KL T 1 St X S I A G A W T Saugr G B A - arwe o o prh FY o R

ENTITY-1
[All ENTITY-1 information in the order in
which it was originally entered].

RELATIONSHIP-1 The first relationship that the
entity participates in and all the information
! associated with the relationship.

" RELATIONSHIP-j The jth relationship that the
) entity participates in and all the information
o associated with the relationship.

ENTITY-n
[All ENTITY-n information in the order in which it
was originally entered].

.. RELATIONSHIP-1 The first relationship that the

- entity participates in and all the information

2 associated with the relationship.

\

RELATIONSHIP-k The kth relationship that the

) entity participates in and all the information
. associated with the relationship.

- Figure 3.7 Sample Output Syntax Report Format

<

»

I ENTITY-1
A [All ENTITY-1 information in the order in which

’ ‘ it was originally entered].

j:

ENTITY-n
[All ENTITY-n information in the order in which
it was originally entered].
¥
i RELATIONSHIP-1 The first relationship that the entities
ot participated in and all the information associated
with the relationship.
S RELATIONSHIP-k The kth relationship that the
¥ entities participated in and all the information
associated with the relationship.
Figure 3.8 Sample Output Syntax Report Format e

Ll -
b:

~

4 46
|

et fa

:' R ("-" o

ety vl 8

AN ‘0".'.1.-'
I R

8 R a2

c. Output Syntax

The output syntax function produces output that includes all
information about the entity that was entered during the add-entity or
add~relationship process. The output for this function has two formats.
The first, involves the listing of each entity and all relationships
associated with the entity (See Figure 3.7). The second, lists all for the
entities first and then lists all the relationships associated with those
entities (See Figure 3.8)

d. Entity-lists

The IRDS allows a user to create and manipulate lists of access
names which may then be used as input to other IRDS output functions.

The IRDS has functions that allow for the creation of entity lists, main-
tenance of entity lists, assigning of names to entity lists, output of

entity lists, output of entity list names and the performance of set

. operations on entity lists which include union, intersection and symmetric

difference.
e. Procedures
Finally the IRDS provides a PROCEDURE FACILITY that allows the
user to save a sequence of operations, used to produce an output. This
facility also allows for the saving of previously defined procedures under
unique names, execution of previously saved procedures by specifying its

name and outputting the names and structures of existing procedures.

3. Schema Maintenance and Output -8
This section expands the discussion of the IRD Schema which was |
introduced in Section C.2 and also discusses schema maintenance and output.
In the previous sections the schema was shown to include:

ENTITY-TYPES, RELATIONSHIP-TYPES, RELATIONSHIP-CLASS-TYPES, ATTRIBUTES-TYPES,

47

and ATTRIBUTE-GRQUP-TYPES all of which are described in the schema
ﬁ as meta-entities. Meta-entities represent real world entities in the IRD
schema. Real world entities are objects of concepts such as sales manager,

account, balance sheet and others. The entities that represent these ob-

. jects, such as user, record or report are in turn linked by meta-relation-
ships and both can have meta-~attributes associated with them.

i a. Schema Control

As stated in D.3 above the IRD schema contains meta-entities

' which are linked by meta-relationships with both the entities and relation- S
» .‘~*.h‘ §
t ships being described via meta-attributes. ﬁ}i %é
. M f

NNt

' (1) Meta-entity. The IRD schema allows for the following L“ﬁﬂ
| - ‘.4“
. meta-entities: . R
3 'jrv 3
{ * Entity-type \i?.qz
3 % 3 f
L. * Relationship-type *3315

* Attribute-type

Relationship-class-~type

*

* Attribute-group-type ') !
* Attribute-type-validation-procedure
; * Attribute-type-validation-data
* Variation-names-data

* Life-cycle-phase

* Quality-indicator A
* Schema-defaults

See Figure 3.9 for an example of an instance of each.

(2) Meta-relationships. Meta-relationships represent

relationships between two meta-entities. The core IRDS only allows one

o
- '.35«

4 L P L N I o I W T S I PP SR
"‘"-‘)’» . S ;{P',, G 1-,"\7‘1.‘%& LIRS AN A N '

occurrence of a relationship between any two meta-entities. Also

meta-relationships are not given indifidual names in the core IRDS.

WV NN L L E N R ARV X ¥ .5

Entity-type

Relationship-type
Attribute-type
Relationship-class-type
Attribute-group-type
Attribute-type-validation-procedure
Attribute-type-validation-data
Variation-names-data
Life-cycle-phase
Quality-indicator
Schema-defaults

T Taa

[TR

Figure 3.9 Instances of Meta-Entities

S SN YD SO

The general form for a meta-relationship is meta-entity,
meta-relationship, meta-entity. See Figure 3.10 for an example of the
general form of a meta-relationship.

(3) Meta-attributes. Meta-attributes perform a descriptive

role with respect to meta-entities and meta-relationships. The core

WOV S O

IRDS allows for four general types:

*

ADDED BY

A A A

* ALLOWABLE-VALUE
* DESCRIPTION
LAST-MODIFIED~BY

* NUMBER-OF-LINES-OF CODE

T/ MO OuTY) 1 ‘N
»

Figure 3.10 Sample Meta-Attributes

t* *# Documentation meta-attributes are used to document the purpose of
the meta-entity, See Figure 3.10.

. 49

I TR T T e A —~ -

Y e g a

* Audit meta-attributes serve the same general purpose as the audit
attribute in the IRD, that being to provide an audit trail of what
has happened in the schema, see Figure 3.10.

* Schema control meta-attributes provide certain controls over what
can and cannot be done to the schema.

* Dictionary control meta-attributes which provide control over the
dictionary itself.

(4) A Sample Schema Structure. Figure 3.2 shows a sample

schema structure involving files. It demonstrates the use of meta-entities,
meta~relationships and meta-attributes in the formation of schema.
b. Schema Manipulation
The core IRDS allows for the modification of the schema via
adding, modifying and deleting of meta-entities and relationships. These
functions are designed to be performed by only those individuals with the
proper access authorization.

(1) Adding meta-entities. The core IRDS will allow those

users with the proper authorization to add new meta-entities. The kinds

of meta-entities that can be added are listed in D.3 a.(l) above, New
meta-entities may not be assigned the name of a me .-entity that already
exists.

(2) Modifying meta-entities. The core IRDS allows the user

to modify meta-entities by associating a new meta-attributes with the
meta-entity, by changing an existing meta-attribute or by daletiﬁq a
meta-attribute that already is associated with the meta-entity. 1In the
case of a changed or deleted meta-attribute the IRDS will insure that
the change did not adversely effect the dictionary.

(3) _Deleting meta-entities. The core IRDS provides the

uger with the ability to delete an existing meta-entity from the schema.

P AR NSt st il i A A el R i A darafier e

5

.
w0y
.
v
-

LR
PRt

Pl
e,

Pl

'f' .8
A

*
e
o
IAARA,

¥

T T S P P ey B W v T £ PRI TOTE WIS,
e e
I AZA
N
>/
. . . , . L. . L
However the IRDS will insure that the integrity of the dictionary is o
0
.
not violated. o
(4) Adding Meta-relationships. The core IRDSgives th= IRDS %Qh\
A R
. . yELLY
user the ability to add new meta-relationships as he sees necessary. As 5\;\
e
AN
stated earlier meta-relationships are associations between meta-entities. N ~
The process of adding a meta-relationship requires that the user specify 25§5
[MR
s"_..“‘\
the meta-entities that are to be members of the relationship and any meta- p}g:}
: e
attributes that will be associated with the meta-relationship. g
]
(5) Modifying, Deleting and Replacing Meta-relationships. ?L‘{.
AL
AR
The core IRDS provides the user with the ability to modify, delete and :,“,*
1 .‘N".h-'
. RO
: replace meta-relationships. The modifying and deleting of meta-relation- h:‘
ships is performed in the same manner as the modification and deletion ﬂ};ﬁ.
3 «* .
BORLN
: of entities as explained in D.3.b.(2) and D.3.b.(3) above. The replace- ﬁ{%§
NNt
<%
ment of meta-relationships actually involves the combination of the . 'u’u§g

l delete meta-relationship and add meta-relationship functions. The replace-
ment function is organized in this manner to insure the integrity of
the IRD.

(6) Modification of Meta-entity Names. The core IRDS allows

the user to modify the meta-entity name. This process however falls
along the same lines as the meta-relationship replacement function. It
is the forced combination of the meta-entity deletion and add functions.
; This process is again used to insure integrity of the IRD. One addi-

N tional requirement exists and that is that the meta-entity name not be
duplicated anywhere in the IRD. -7

¢c. Schema Output

- NV W

The core IRDS allows those authorized to work with the schema

the ability to output information about it. In order to produce the

51

e J

i"Y PRI L Sl g we By Y

» e ey OTODITILT OO R AN R — =
W» A O Y o N N T R i R R PN S

TETE N NS e WS e B N IS v v W e =

sl p Wi g e {8 RLDERRAP AR ISAUIINTRE LI SR RA SRS AR o DI

W W Nw w e

i
L

1

output the user must select the meta-entities to be displayed. This
selection is accomplished by choosing one of the following:

* That all meta-entities be displayed.

* That all meta-entities of a specific type(s) be displayed.

* The name of a specific meta-entity.
The resulting set of meta-entities may then be sorted on one of the fol-
lowing parameters:

* meta-entity-type

* meta-entity-name

* Non repeating meta-attribute-types
Before the sorted list is displayed the user must specify the informa-
tion about each meta-entity he wishes to see. The display options avail-
able to him are one of the following:

* meta-name

* meta-type

* One or more of the associated meta-attributes

* All or none of the associated meta-relationships in which the
meta-entity participates

4. The IRD to IRD Interface

The IRD to IRD interface is an important feature of the core
standard IRDS because it is the only controlled means for moving data
between two IRDS. This facility allows an organization with more than
one IRD to transfer information between them. The facility is also de-
signed to allow IRDSs developed by different vendors to interface and

exchange information, provided a communication link exists and they have

52

-

Iy O

ryx.

la-Re "Ria et Nl tedo e d S Sl Sl At YA Al s N A i A N SR i A A SR RIE S A P

R AN -

followed IRDS standards. The core standard IRDS only allows for the
transfer and does not have any means of providing the physical connection
between the IRDS. fn allowing for the interface the only important

issue stressed is that the exporting and importing dictionaries and the
exporting and importing schema's must be compatible.

S. IRDS Control Facilities

The core IRDS contains five control facilities that are impor- '

"
v

tant in populating and maintaining the IRD. These are:
* The Versioning Facility
* The Life-Cycle-Phase Facility :
* Quality-Indicators
* Views -
* Security
An overview of these was provided in Section D. This section presents
additional detail on the structure and use of these facilities.
a. The Versioning Facility

The versioning facility provides the user with the ability to
distinguish between entities that would otherwise be considered the same.
The distinction is generated via the version-identifier which is composed
of two parts: (1) a required revision-number and (2) an optional vari-
ation-name.

In the command language syntax the user encloses the version-
identifier in parentheses and appends it to the access or descriptive
entity name. Within the parentheses the variation-name (if used) is -
followed by the revision-number, separated by a colon. If the user does

not specify a revision-number the system will default with a value of

S

-
L G2 & 45 %]

—“

44 0,

Dythe

*

+
IR

LA A

| AN

o~ .
PrPSPP el

?Mp’

s L TR

1 to indicate that no revision exists and a value of 1 greater than
the current value for any subsequent revisions.

For example, suppose a certain payroll module exists that
calculates state taxes for Alabama, Georgia, and Florida and another pay-
roll module of the same functionality calculates state taxes for California
and Texas. We can describe both with the same access name PAYROLL~MODULE,
and differentiate between the two with different variation-names. Thus
we could have PAYROLL~MODULE (AL-GA-FL:1) which would represent the Ala-
bama, Georgia, and Florida capable payroll module with no revision. The
California and Texas module which has had three revisions would be re-
presented as PAYROLL-MODULE (CA-TX:4).

b. The Life-Cycle-Phase Facility

The life-cycle-phase facility of the core IRDS: (1) allows
the user to define the life cycle phase to meet the methodology currently
being used; (2) Provides facilities to assign each entity to a particu-
lar phase; (3) Provides integrity rules concerning the passing of an
entity from one phase to another. Each phase is represented in the
schema as a meta-entity.

Every life-cycle-~phase belongs to a "phase class" and the
core IRDS recognizes three such classes:

* UNCONTROLLED -- Uncontrolled phases are "specification,”" "design"
or "non-operational.” There are no integrity rules for this class
and a user may identify as many phases with this class as desired.

* CONTROLLED -- Controlled phases are those that are considered to be
“operational." The core IRDS allows only one such phase the
"CONTROLLED-PHASE" with its associated integrity rules. The

integrity rules will be covered in the next section.

* ARCHIVED -- The core IRDS can only have one ARCHIVED life-cycle-
phase, called the "ARCHIVED-PHASE" and it is used to document and

54

P

P
o

A]

..‘
l“" [
Y
.“Q. !'
LI BT)
' B

N '.';-.

TR

classify entities no longer in use. This class alsoc has special
integrity rules associated with it, those will also be discussed in
the next section.

Sy 5o ™25 *om ki 9

(1) Integrity Rules. As mentioned previously, integrity rules

»

for the CONTROLLED and ARCHIVED life-cycle-phases are enforced by the

Ly e

core IRDS. These rules are based on a dierarchy of system-standard entity-
types as defined by the following list. The highest in the hierarchy is

the first and the lowest is the last:

«
! * SYSTEM
B * PROGRAM
* MODULE
- * FILE
, * DOCUMENT A
* RECORD
- * ELEMENT

This means that the entities are "Phase-related." The hierarchy only

applies to the core standard IRDS entity types and not to any entities

added by the user via the extendability facility.
. These are integrity rules in the sense of controlled
f and archived but not in the sense of allowable ranges of attribute data
L values, e.g.: "sex must be 'M' or 'F'. This type of integrity is handled

through the ATTRIBUTE-TYPE-VALIDATION-PROCEDURE-META-ENTITIES:
: * RANGE-VALIDATION, which is used to restrict an attribute-type to an
Y allowable set of ranges.

* VALUE-VALIDATION, which is used to restrict an attribute-type to an :«Tﬁl

: allowable set of values. -)

There are two relationship~class-types that are desig-

nated as phase-related, they are CONTAINS and PROCESSES they are combined

-
S i)

55

LALLM o~

oy By-By s

o
’a.'.l 4 -

5 o

DA
LR S

A S

. o e
Fet v

)

ey

with the entity-type to form phase-related relationship-types. Listed

below in Table 3.1 are the relationship-types generated by this combination:

The general integrity rule for entities in the controlled

life-cycle-phase is:

An entity can be in the CONTROLLED life-cycle-phase only if all entities

whose types are below its type on the above hierarchy and that are con-

nected to it with phase-related relationships are also in the CONTROLLED

life-cycle-phase.
The ARCHIVED life-cycle-phase has an integrity rule similar to that above:

An entity can be in the ARCHIVED life-cycle-phase only if all entities
whose types are below its type in the above hierarchy and that are con-

nected to it with phase-related relationships are in either the CONTROLLED

or ARCHIVED life-cycle~-phase.

The integrity rules are designed to insure that when an entity, for

example "PAYROLL-SYSTEM" is moved to a new phase, for example "OPERATIONAL-

PHASE" that all of the programs and modules associated with the system
are either already in the operational-phase or ready to be moved to it,
thus insuring the integrity of the system.
c. Quality-Indicators
The core IRDS allows the user to define gquality-~-indicators

and assign them to entities. These quality-indicators denote such things
as:

* The level of standardization of an entity (e.g., program standards,

organization standards, company standards, and international

standards).

The degree to which an entity meets the user quality assurance stan-
dards, etc.

All quality-indicators must be added to the IRD schema as
a meta-entity. Also the core system-standard schema does not include any

indicators, so all indicators must be user defined.

56

b ¥ -3 Y X T AR AR X s T e =
AN AL T A SRR G e T T e R R SRR

- oh

ot ' ! Rak Bt Gat Bk Rat o 2 T Rah Bg% Bab S Sud Bt ot Dot At Bef Rav Fat Nt 6s® Kot Wn 08’ ha @a% ba' Ba* 0% 4 . PR ST _

e e

CA L

TABLE 3.1

PHRASE-RELATED RELATIONSHIPS-TYPES =Y
SYSTEM-CONTAINS-SYSTEM _ » ‘;
SYSTEM-CONTAINS-PROBLEM . 5
SYSTEM-CONTAINS~-MODULE hitd
PROGRAM-CONTAINS-PROGRAM S5
PROGRAM-CONTAINS-MODULE
MODULE-CONTAINS-MODULE

. FILE-CONTAINS-DOCUMENT

N FILE-CONTAINS-RECORD

FILE-CONTAINS-ELEMENT RO
DOCUMENT-CONTAINS-DOCUMENT © B
DOCUMENT-CONTAINS-RECORD
DOCUMENT-CONTINS-RECORD

: RECORD-CONTAINS-RECORD

< RECORD-CONTAINS-ELEMENT

ELEMENT-CONTAINS-ELEMENT

SYSTEM-PROCESSES-FILE
; SYSTEM-PROCESSES~DOCUMENT
j SYSTEM-PROCESSES-RECORD

. SYSTEM-PROCESSES-ELEMENT
' PROGRAM-PROCESSES-FILE
PROGRAM-PROCESSES-DOCUMENT
PROGRAM-PROCESSES-RECORD
PROGRAM-PROCESSES -ELEMENT
MODULE-PROCESSES-FILE
: _ MODULE-PROCESSES-DOCUMENT

’ MODULE-PROCESSES~RECORD

MODULE-PROCESSES~ELEMENT

A A Ay
£

P

4

.
.
S
= ¢

L2

R d

-

=
“:;:."
Y
N w):\."qﬁ
P

P

o
e

N

_§

L -

; | 57

I

il;l?g':fc,,'r,- .~

e TR PU R g
s QR A Ka i e

y -

4]

d. Views
Views are how the user logically perceives the dictionary and
as such it is generally a subset of the complete dictionary. A view may

be: (1) a set of entities with associate entities, attributes, and attri

bute-groups; (2) a set of relationships with its associated entities,
attributes, and attribute-groups or (3) a set of specifications of opera-
tions that may be performed by the user.

Structurally, VIEW is an entity-type in the éore IRDS system-
standard schema and each view in the IRD is an instance of that entity-type.
For example, if a particular programmer is working on the Payroll-
system of an organization. His view of the IRD would be all the programs,
modules, files, records and elements contained in or processed by the
Payroll system.

The core IRDS allows an organization to define what views are
available to a user thus limiting his access to the dictionary. if more
than one view is available to a user, one will be designated as the default-
view and will be presented to the user each time he uses the system un-
less he specifically specifies otherwise. Views associated with each
user are stored in the IRD as attributes of the DICTIONARY-USER entity.

e. Core Security

The general mechanism that implements core IRDS security con-
sists of the following:

* For each authorized user of the IRDS, one DICTIONARY-USER entity
exists. Associated with this entity are attributes that define

the user's level of access.

* Associated with each VIEW entity are attributes that define the
permissions and restrictions that apply to all IRDS users allowed

58

- L
RANS
Al ol
X I

=3

RS
o 5 %,
PN s IR

0y
Y
YL

i
o
2

TS

L 0 T e .

e a2 8 e

to use the view. These include the abilities (independently specified
for each entity-type), to read, add to, modify, and delete the entities
that comprise the view.

* Finally, each DICTIONARY-USER entity is linked to those views that

the user can access.

(1) Access Permission. Most IRD ACCESS PERMISSION is

associated with view entities, and, for each view, the permission applies

to all entities in that view. Each permission consists of seﬁeral parts:

*

*

The name of the entity-type for which the permissions are specified.

An indicator showing if permission exists to read entities of the
specified type.

An indicator showing if permission exists to add entities of the
specified type.

An indicator showing if permission exists to modify entities of the
specified type. .

An indicator showing if permission exists to delete entities of the
specified type.

An indicator showing which relationships are explicitly excluded
from that view.

An indicator showing if permission exists to modify the life-cycle-
phase of entities of the specified type.

These permissions are stored in the IRD as a DICTIONARY-

PERMISSION attribute-group. Each view may have multiple permissions

associated with it.

The core IRDS specified five categories of permission:
GLOBAL PERMISSION: All schema functions are allowed.
GLOBAL PERMISSION FOR UNLOCKED META-ENTITIES: Permission to perform
all schema functions except those that modify or delete meta-entities

that have installation-lock set on.

ATTRIBUTE-TYPE-VALIDATION-DATA WRITE PERMISSION: Read attribute type

59

S
e

o g

S
PR G W ¥ o
.
T H ol

R
g‘ﬁ.
5 2 o

",
o

Sl

>
F

5%
e
®

ST,
A
e
k3

C P

validation data and modify their meta-attribute.

* ATTRIBUTE-TYPE-VALIDATION-DATA READ PERMISSION: permission to read
attribute-type-validation-data and their meta-attribute.

* REPORTING PERMISSION: permission to read the complete schema.
This facility is implemented through attributes of the DICTIONARY-USER
entity.

6. User Interfaces

This section discusses the command language and panel interfaces.
An implementation of the IRDS may contain either or both of the inter-
faces but each interface will support the full capabilities of the IRDS.

As stated earlier the IRDS interfaces ;re designed to allow the
system to communicate with the user and vice versa. The panel interface
is designed to prompt the novice éhrough the system while the command
language interface is designed for the more experienced user and thus
skips most of the panels used in the panel interface.

a. Command Language

The COMMAND LANGUAGE interface supports both batch and inter-

active modes. The commands used by the command language interface cor-
respond closely with the functions discussed throughout this chapter.
The syntax of each of the command language commands is presented in the
Bacus-Naur form. Since the command language closely parallels the dis-
cussion presented in the previous sections a detailed discussion of each
command will not be attempted. A summary listing of the commands and
their associated functions is provided in Appendix E. However the

command language is discussed and illustrated in depth in [Ref. 35].

60

Augl A LA I i A T I B o K e DA e St et et e e

. b. Panel Interface
The core IRDS provides the user of the system a structured
4 ' set of logical screens (or panels) which, when used in the proper sequence .
Y perform the functions of the system. The panels can be considered to
be user friendly in that they guide the user through the procedures for

a function.

XA
.

- The core IRDS does not specifically identify a panel structure
of physical implementation of the panel interface. It is therefore up
to the user to define his own panel structure and panel map (which panel

follow which) for each function.

Chl MESENENEN

The core IRDS does provide rules for the structure of the
panels used by the IRD. They are:
A * Each panel shall have a unique name.

* The panel interface is to have an inter-panel structure that de-
fines a default progression of panels.

4 * fThe first panel encountered is the HOME panel.
* The user may return to the HOME panel at anytime.

The structure of the panel interface is defined in terms of
panel trees and panel areas. A panel tree is the collection of one or °*
more panels used to perform a single function. A panel area is a portion
of a panel that is associated with a particular category of information,
and deals with the user interaction with the IRDS. The core IRDS identi~
fies six different areas associated with the panel. not all of which are

shown to the user at one time:

* STATE AREA -- This area will always be displayed to the user. It _
informs the user of the name of the dictionary being accessed, and '
what is being done with the current panel, for example, adding a . -
record.

61

i)

L35

4 D B L B T
¥ : ’ Co oA

* DATA AREA -- The data area supports the user in one of two ways: A
It displays labels that guide the user while he/she performs data ﬂ%h(.
entry; and, if the user is retrieving information, it displays the Fa
results.

'
!
[
v
»
\
\

* SCHEMA AREA -- The schema area is primarily used during dictionary
update operations. Examples of the use area include:

- The listing of all valid entity-types, when adding an entity.

) - Displaying names of attribute-types that may be associated with
; an entity-type being entered.

* ACTION AREA -- The action area displays the options that a user has
when proceeding from the current panel to another.

* MESSAGE AREA -~ This panel area displays any errors and warning
messages.

Ta e s AT)N T S

* HELP AREA -- The help area displays information that the system can
provide in response to a request for help.

c. Operation on the Panel Interface
The panel interface will generally be available to all IRDS
users. The core IRDS does not however, require that the panel made avail-
able to a user be tailored to meet his view of the system. The panel
interface will still only allow the user to perform those functions and
operations allowed according to his view and current security.
7. IRDS Modules
The draft proposed IRDS standard contains specifications for

three modules which may be implemented along with the core IRDS. They

1A o e M v Coaiatet e ge i, iR MRS B S

t

are:

Yol

* ENTITY LEVEL SECURITY. [Ref. 36]

* APPLICATION PROGRAM (CALL) INTERFACE. [Ref. 37]

B b T

* SUPPORT OF STANDARD DATA MODULES. [Ref. 38] N
Since the scope of this thesis deals primarily with the capa~
bilities of the core IRDS, the references listed above should be con=-

sulted if any additional information beyond that provided is required.

62

AL Ak Aua pagt e i

FETPIOTW WINITF. 7L ".'"‘!‘i"' ¥4y

; l;éﬁx
i i
| bk
E a. Entity Level Security _ : ké%g
E This module allows the user the ability to assign read and ;:;f;
' write limitations to individual entities. This facility operates in g\;_g
..

E addition to the security function provided inthe core IRDS. $Eﬁ:&
; To accomplish entity level security, the module introduces . 3\5
i the entity-type ACCﬁSS—CONTROLLER, and a set of SECURED~BY relationship-);;;?
j types that allow an ACCESS-CONTROLLER entity to be connected with entities Eé;g;

of all other types. ;iﬁﬁ;

b. Application Program (call) Interface

o st s HENER YV

This module provides an interface from a standard progrémming
language to the IRDS. This is accomplished by using the call feature of
the programming language. In this way the IRDS is treated as an applica-
tion program subroutine.

c. Support of Standard Data Models

An implementation of the specifications of this module would

2.7 Ll % S A e,
PLILN (& L £

assist an organization in describing network and relational databases,

particularly those supported by NDL and SQL command languages. The

describing of network and relational databases is accomplished through

oo Y Y

the .addition of three new entity-types, twelve new relationship-types,
and fourteen new attribute-types to the Core System-Standard Schema,

See Appendix D.

M0 1| RS

E. CONCLUSION

b}

4

The NBS IRDS standards provide the Information Resource Management
arena a valuable tool. An implementation of an IRDS using the core .

standards as discussed above would deliver to the DBMS user tremendous

capability, flexibility and uniformity in describing and controlling an

gl - oo, d

i

63

T E A
7

R PN
LR ICN ot

)
P

o Yol Y L W i N R R D O IRARNACOERNE AR AN AN
POATIAY ASONGLAERREN URSIRTAR ThLEAE ' - :

Dl
Ll

77 PP LA DCET O
A R RS SN SN

e

organizations data. Finally the capabilities described above far exceed

that which is currently available with most of the dictionaries provided

with DBMS products.

But is an IRDS implementation possible. The next chapter discusses

just such an implementation.

64

$ RYWR 12V Y Sl W

i‘
K]
»

-
b

LANL Sl S dul St L A i e M g dary RANRANLSC AL AN SND g i sl ik

IV. NBS IRDS PROTOTYPE

This chapter discusses the implementation of selected portions of
the NBS IRDS standards in the form of a relational prototype IRDS provided
as Appendix E. Before discussing the NBS IRDS capabilities included
in the prototype. It is necessary to discuss prototyping, its advantage/
disadvantages and why prototyping was chosen as the method for implement-
ing an IRDS.
A. PROTOTYPING [Ref. 39]
Webster's dictionary defines a prototype as one of three possible
things:
* An original or model after which anything is formed
* The first thing of its kind
* A pattern, an exemplar, an archetype

The second definition is probably the most relevant to this discus-

sion because prototypes are being used in data processing as a first attempt

at design which is then extended or enhanced. In general systems develop-
ment, a prototype is known as

. . . a partially complete functional model of a target system whose

purpose is to provide a better understanding of the target system's

requirements [Ref. 40].

A software prototype is characterized by the following feature. It

is a working system, although of limited capability, rather than just
an idea on paper. A prototype may become, after iterative enhancement,
a production system. Its original purpose is to test assumptions about
requirements and/or system design architecture. A prototype is created
quickly. This has become possible only in recent years with more power-

ful languages such as dBase 11 and III which are less procedurally

65

~e

Yy

oriented. Some would argue however, that prototyping was the way soft-

T T SR T

2

ware was developed before the advent of functional decomposition and the

P

system development life cycle whch is generally accepted and used today.

In the early days of software development writing programs was the
thing to do. After an explanation of the problem, a period of gques-
tions and answers, and research into the nuts and bolts of a method,
the programmer began his or her work. Starting with that portion of
the problem that was well understood, lines of I'ORTRAN, COBOL or ALGOL
would begin to appear. As time passed additional portions were coded

T AEER A D
4

NV
e

if at all! ([Ref. 41]

o

-

A prototype should be inexpensive to build, at least less than it

<

. would cost if a conventional high level language were used. Indeed, pro-

"l

-; totyping in data processing originated only recently because until re-

.j cently, programming a protype was just as costly as programming the

;: working system [Ref. 42]. The important point is to get something running

) soon to establish effective communications with the user without the use

- of extravagent resources. the follow-on development of a prototype is
an iterative process in which improvements are made in small increments
as the user developer work together and discover new requirements.

r. (Ref. 43]

“

*i Mitchell Spiegel, formerly of Wang Laboratories, explains the proto-

; typing approach as:

2 . + . a process of modeling user requirements in one or more levels of

o detail, including working models. Project resources are allocated to

. produce scaled down versions of the software described by requirements.

= The prototype version makes the software visible for review by users,

designers and mahagement. This process continues as desired, with run-

8 ning versions ready for release after several iterations. [Ref. 44]

)

N Traditional management information system development follows a

&

" series of steps (see Figure 4.1). Prototyping is considered as an

3

3

L 66

L0

LY

i:

bl

- l".,)-‘l r‘x,ﬁﬁlﬁ'.ﬁ;}{ %'hv'l’.;,- AT N R, W A e~ T

until the entire program was complete. Design was conducted implicitly,

-

"l
TR

N Sy
Ve

S
'
*

,...
el
& - A ¥
PAT,

o
S S

D
Y

ry
?3

Ity
T

-

NN

ar a8 8

v P LA

'
s

.'Jl "
)

Al

r e .
et

1

0

el ey

" ‘\‘ A\ .0.‘.| 'I". .'

AYAP Y

L
i

Tt
T8 s o & AT

LA RGN

Toa®™

3

L

r
<
[/

A\ STAT R LI AT C R A O S O

WRELA

-

adjunct activity to the specification of requirements (See Figure 4.2).

-
(3
]

The results of prototyping are input to the steps following requirements

Feasibility Study N
Requ@rements
Product/Preliminary Design . .
Detailed Design
Coding

Integration

Implementation

- -
'y

[

Operations and Maintenance

4

Figure 4.1 Steps in Traditional System Development

oL

analysis, but may or may not be used actively in those steps.

1. Advantages of Prototyping-

There are several advantages associated with the use of proto-
typing. First a prototype usually gets the product into use as early as
possible. Early use can provide assistance to the decision makers and
feedback to the builders. Second, prototyping is considerably cheaper
than a "full-build" approach, which delays installation until the pro-
duct is complete. Third, prototyping is a convenient way of keeping the
product simple, which is wvaluable to both builders and users. Fourth,
prototyping lowers risk and expectations. [Ref. 45] Fifth, it is easy
to write statements in a requirements document which say "the system
shall do x" and "the system shall be capable of y." However, both the
developer and the user get a more realistic feeling for the effort and
cost of a feature when they must actually add it to a working model. : =
Thus, the eventual model better represents what is feasible than a
document with a series of "shall statements."” Even though the

functionality of a prototype product is minimal, the user is forced to think
67

0

W
G
»

- i
ik 2 IS ASL S

DA

&~
e 2

e -
ALY

b .

more carefully about the task being automated.

more accurate understanding of the problem [Ref. 29].

This should produce a

Finally, prototyping

unlike traditional methods builds an effective brigade across the com-

nunication gap between the user and the developer.

Feasibility Studyr
Requirements————-——-c-ee———m-
Product/ Preliminary Design

Detailed Design

—— e, T — . T s e T s T i, T e

Coding

Identify basic needs
Develop workKing model

Demo in context &
Soclicit refinements

Implement revisions

Is prototype done ?
1§ YES, go on to
detailed desngn

If NO, go back to
step 3

Integration

Implementation

Figure 4,2 System Development Using Prototyping

2, Disadvantages of Prototyping

Prototyping has some decided disadvantages as well.
makes it difficult to plan resource use because a clear picture of what
the finished product will look like is not provided.

difficult to decide whether to enhance an old version or build a new one.

Prototyping

It also makes it

1

DY
R
s T

>
*
s s

" e
.

- -
'm"
s 2 i |

T
e

*

e
'

N
e
Ny

. Analysts and user can become bored after the nth Iteration of the prototype.

68

2 5 B0y, e L
R LR

» e 1 oo S A
’r“\,‘,.tj_-_,l, "".\;t €% el B A

Ak

ST

X4

IOJURRKEY .‘.l(..')i'.l,’ftx e R skt T RS

I e e

In using the traditional development process there are specific require-
ments which, when met by proof of validation, clearly mark the job as com-
plete. Because the prototype is changing continually, it creates a problem

keeping users abreast of the current version and what has been validated

and what has not. Prototyping can cause a reduction in discipline for proper

documentation and testing (although this has nothing to do with the prototype
itself). Because there is less emphasis on hard thinking and "desk check-
ing" there is a greater chance of missing a basic problem which could

negate assumptions essential to the product being developed. Also there

is the chance users may become so happy with the prototype that they consider
it a functional product and want the data processing people to start work

on something else. A study using-the ACT/1l software package for prototyping
showed increased needs for computing resources. If the productivity gained
from using prototyping doesn't offset the cost of the increased computing
power, then the prototyping approach is serving at a disadvantage.

3. TIypes of Prototyping

There are two approaches to prototyping: the throwaway prototype
The throwaway prototype development process has the ad#antage that when
the developer can show the user an immediate capability when he is through,
he can just discard the product. This lovvrs the developer's risk and
the user's expectations. The evolving prototype process on the other
hand is better suited for the development of an initial capability that
will evolve into a finished product. The evolving prototype has the
disadvantage that the user may accept the first version and thus short

circuit full development.

SEANAL,

> -

e

ST
LA

,. j . '-.." _‘l ..l '.".

v

oy

¥

S kY
[T RENE AN P A

.'.'. WS

4. Reasons for Prototyping

Prototyping was chosen as opposed to full life cycle development,
because time constraints prevented full de?elopment of a DD system
whereas prototyping allowed a viewable product to be produced in the
given timeframe. Additionally the erlying prototype process was used to
develop the IRDS with the anticipation that additional capabilities as
specified in the NBS IRDS standards would be added according to user needs
as additional versions were implemented.

B. THE IRDS PROTOTYPE

dBASE III a Data Base Management System (DBMS) was selected as the
development tool for the IRDS prototype, because data dictionary systems
are essentially a specialized kind of database system. The prototype
could have been written in Pascal or COBOL but the time required to produce
a usable product would have been prohibitive. Additionally since the
prototype was developed using a DBMS system certain capabilities were al-
ready available, i.e., a query processor, file maintenance routines, and
high level language. The intention was not to develop a marketable pro-~
product but to demonstrate and evalusge the capabilities described in the
NBS IRDS standard. .

The IRDS prototype is based on a reasonable subset of the core features
presented in Chapter 3. The features listed below constitue IRDS Proto-
type Version 1.0 (See Appendix C):

*# Panel Interface
* Security
* Add Entity

* Modify Entity

70

)
N
i
::'i * Dpelete Entity

%v * Add Relationship
:, * Modify Relationship .
o
of; * Delete Relationship
[}

L :

o * Ad4 Schema . ¢
N * Modify Schema

Y

= * Delete Schema

148

.“.

* IRDS Output ’

E 1

) * IRDS Query Afﬁi
5 [
C.o . The remainder of the features listed in Chapter 4, though desirable, ’3\5
AR) A
N will be left for implementation in later versions. ~;;;
. 1. A Relational Model of the_IRDS JW}f
k2 "I ~
t: The IRDS prototype accounts for several different relations in-

\

ot cluding users, systems, programs, modules, document, files, records and

<o elements. The generalized format of these relations is as follows:

if * USER (access-name, id-name, duration-type, description, date-added,

,: added-by, comments, last-modification-date, last-modified-by, number-
by s of-modifications)

- * SYSTEM (access-name, id-name, duration-~type, description, date-added,

".. added-by, system-category, comments, last-modification-date, last-

- modified-by, number-of-modifications)

e .

f: * PROGRAM (access-name, id-name, duration-type, description, date-added,

] added-by, lines-of-code, comments, last-modification-date, last-

s modified-by, number-of-modifications)

e

3 * MODULE (access-name, id-name, duration-type, description, date-added,

ol added-by, lines-of-code, comments, last-modification-date, last- L
\f modified-by, number-of-modifications) —
L Ty
3 * DOCUMENT (access-name, id-name, duration-type, description, date- . _ f:f
J added, added-by, comments, last-modification-date, last-modified-by, f[
> number-of-modifications) }
B *

- ’ n:
B

%

W) 71

o

L5 \ -
bl ’

i a W - o B 3N PR Y g AP s vy X TR EPSAE TEE) ‘r. r '\':-.‘_' R NN - ne W, W oweaw
.,lc'b' Nk ,}, Y .A.f“.‘O'A‘-‘;JO‘. _ﬂ-,_"».\;, CIGTR MU 2 ¥ ".;“-n. b ‘,’541 3 RO e N

CENERARS b i KDy 6408 v BARYE e Bl £ e Fhun f i f5'a 420 P M V) S b e K e D B! T Y I I Y Y I X e SO TTN Y YTy T T

|
" * FILE (access—-name, id~name, duration-~-type, description, date added,

i added~-by, number-of-records, comments, last-modification-date, last-
s modified-by, number-of-modifications)

¢ * RECORD (access-name, id-name, duration-type, description, date-added,
f added-by, number-of-elements, size, comments, last~modification-date,
Bt last-modified-by, number-of-modifications)

. .

"

" * ELEMENT (access—-name, id-name, duration-type, descritpion, date-added,

added-by, element-type, element~length, low-of-range, high-of-range,
. allowable-value, comments, last-modification-date, last-modified-by,
> number-of-modifications)
e/
b
;; for a detailed explanation of the attributes for these relations see
% .
[Ref. 47].
j Relationships among the various relations are tracked by having

relations with a verb name reflecting how one entity relates to another.

For example, since a program can contain several modules, a program-con-

%

tains-module relations is included in the dictionary. Its format is as

'ulalal

L

u follows:
.F - .
* PROGRAM-CONTAINS~MODULE (program-name,

. module-name). An example of this relation would be:
‘s

:_’ PROGRAM-CONTAINS-MODULE (u-8, u-8-10)

, (u-8, u-8-20) o
N L
~ (u-8, u-8-30)
55 The prototype implements twelve of the sixty-four relationships specified g
? in the NBS IRDS standard. See Appendix A for a complete listing of the
'y allowable relationships. Listed below are the twelve relationships in-

5 cluded in the prototype:

* PROGRAM-PROCESSES-RECORD (program-name, record-name) lhA

. * PROGRAM-PROCESS-FILE (program-name, file-name) T B

LS
:' * SYSTEM-CONTAINS~FILE (system-name, file-name)
L4

oy

.

: * USER—CONTAINS-SYSTE& (user-name, system-name)
AS * USER-RESPONSIBLE-FOR-SYSTEM (record-name, system-name)
A * PILE-CONTAINS-RECORD (file-name, records-name)
?“ * RECORD-CONTAINS-ELEMENT (record-name, element-name)
* USER-RESPONSIBLE-FOR-FILE (user-name, file-name) .
o * PROGRA&-PRODUCES—DOCUMENT (program-name, document-name)
4 * PROGRAM-CONTAINS-MODULE (program-name, module-name)
* SYSTEM-CONTAINS-PROGRAM (system-name, program-name)
4 * PROGRAM-PROCESSES~ELEMENT (program-name, element-name)
f; 2. Interface

[The NBS IRDS standard provides for two user interface capabilities:

d .‘}.
w? b
’ «,,»1 F/

The Command Language Interface and the Panel Interface. The Panel Inter-

]
¥ -
!

P
-

. face method was chosen because it provides a "user friendly" communica- ,$$§5
L3 DA

. ' o
. - tion link between the IRDS and the user. Figures 4.3 thru 4.6 provide . %ﬁiﬁ
. a series of panel trees that diagrammatically represent panel interface -

L]
54 A B L

! system used.
¥ The panel structure itself followed the guidelines provided in

the IRDS standard (See Figure 4.7). The IRDS standard allows for six

S possible areas to be defined in the panel state area, data area, schema

area, action area, message area and help area. All areas except the

help area are included in this prototype. Figure 4.7 shows what portions ™=
? of the screen are used for each of the areas.
K C. IRDS START-UP -
3l This IRDS prototype was written in dBASE III and uses panel interfac- a— s
vz ing as the means of communication with the user. The first panel that |
)
) -

N 73

)

—— e T e T e T o " v T G T — ——— — . — = —

| |
[HOME P%EL :
|
| | | 1 1 | 1
| } | | } |
1 DICTIOMARY | 1 | | |
| MAINTENANCE | i I | |
: PANEL TREE | : : { :
| DICTIONARY 1 | | |
{ OUTPUT | | | |
I' PANEL TREE | : |l 'l
| OICTIONARY { i i
| QUERY | | §
: PANEL TREE | : |l
) SCHEMA | }
| MAINTENANCE ! l
Il PANEL TREE [lI
| SCHEMA I
| QUTPUT |
: PARHEL TREE :
{ |
| |
Figure 4.3 The Panel Iidterface -- Overall Structure
DICTIINARY
MAINTENANCE
WNﬂ\ﬂEES
I T 1 |] |
| | | i |
ADD | | | | !
ENTITY) : : } |
|
MODIFY { | | %
ENTITY | % ‘ %
DELETE | | |
ENTITY | : :
ADD | |
RELATIONSHIP |
OELETE |
RELATIONSHIP i
RETURN T0
MAIN

Figure 4.4 Dictionary Maintenance Panel Tree

74

, . . . s A
£ %e t-g) frg S An g g K. x Rat 2 i gt G by d A gie L) & a4 d LI B W <3

-
P o
- "“:1
* ',-3 .
€, ,
; ‘ .;’
N ';fkf
Y Ql“
} A

By

B w3 =3
ty - t‘:pl“:
A ViV
3 » o
Vv S,
: . :::': v
v - ”g}t"‘, I
, ~aaaeac
¢ »
4
% .
~ SRR IR I 6 I U303 339303 S I 00 0 S
STATE AREA *
HHERRSEREHHHHEEHE RN R R AR R R R RN RN
A » #
-
= b #
N) »
", # 3
») ¥
b * *
oy # DATA AREA]
9y # »
5’_’ # SCHEMA AREA)
3%] *
»
"’ * MESSABE AREA &
‘. » # .
4 #* #
» #
» *
% 80 CHARACTERS)1] .
” HHHHHHHHHEE S HEHHHHHHUE NN R U R R R RN R B
] #
1 # »
] * ACTION AREA o .
- »)
) i T it Tt I T s YT i i o HE
Y :
:
» Figure 4.7 Panel Structure
™
N p
‘f R
.)]
- AR
2, * T
N
.
it .
W,
'~
g . 75
' .
»:‘

't g X IR R R BRSO Uy g e R R g e Sy e e S
e S L N AU AOS PEAEL MLS A S AP R L RN ’ ‘

A AT S . -,

e =

PP it WRANAESENASL S,

£

Y, Y s

e frhy Serty

o e
ol A

St

o

o

i T Yy A

E

o,
iU
[

A IS S

that a user sees when signing on the system, is one that requires the R
individual to insure that he/she has the computer in the proper mode
(Figure 4.8)
D. SECURITY

Security is provided in two ways. First, the system requires the

user to enter a user ID and password which are stored as attributes of

TSI A0 SIS0 00000000 T 6 0 0 U0 IO 00 S ST S A0 S 040 000 00 000 0 00 TR 0 0 B

#
» TEST *
: INFORMATION RESOURCE DICTIONARY SYSTEM #
N #

]
]
[] g
= 4
4 [
PLEASE INSURE THAT YOU 3
* HAVE THE ‘ CAPS LOCK / *
* ON AS ALL ANSWERS TD 2
* QUESTIONS NEED TD BE *
: IN UPPER CASE.]
|]

* TEST HERE *
* PRESS RETURN TU CORTIRUE *
*
L} #
]
#
]
L}
RESRRHRRRRRRARRARRRRRERARRBRRERRHERBEHRR SRR RRR BRI B RHERER B R R SRR

Figure 4.8 1Initial Pancl

the SECURITY-ACCESS ENTITY. Second, the SECURITY-ACCESS ENTITY contains

additional attributes that pertain to which entities the user can view,

digplay and/or modify (See Appendix F for a detailed description the ;f

entity structure). Figure 4.9 depicts the panel that requires the user

76

N T I SRR A) > g -

L
i

. N
J k52
N} . , RIAgS
b to log into the system using his user ID and password. Once a user has %’*ﬁ
3 o
3 entered his ID and password the system will grant or deny access to the \;

.
system. The system will allow the user three chances to enter his ID 453
. 1
)
(N
and password correctly, if a proper logon has not been accomplished at i'ﬁﬁ
e“'ei :
that time the system will terminate. If access is granted additional « B
‘ variables will be loaded to the system that will restrict the user ability iy
" NN
¥ to add, modify and change relations and relationships during the current :ﬁg’
3 St

session. The data administrator is the only user capable of modifying 4 o

the attributes associated with a user's security-access entity. Once

P

‘
'Il R T PR

the user has successfully logged in, the system will display the main

B By

‘e
»

menu (Figure 4.10). From this point the user can proceed to any other

"~
He®

STV
.-..
V}\
f‘:"\

panel. This panel must always be returned before any other function can

2 T oy
Y o8
N be used. 2{» A
q %ﬁi

™ : 5
N E. POPULATING AND MAINTAINING THE DICTIONARY - BN

¥ The routines to add, modify and delete entities and relationships are ape

A

‘ -.l-"-’

executed from the maintenance menu (See Figure 4.11). The user decides

which maintenance activity he want to do and makes the appropriate menu
selection. The system will then activate the appropriate maintenance
module and present a panel to the user showing him what his options are or

what input is required.

The following sections describe each of the five dictionary maintenance

functions available to the user as part of the prototype.

A,
1. Adding Entities .
b
: If the prototype user selects the add entity option from the -« -
]
‘t
ﬂ maintenance menu, the system will prompt him as to which type of entity
'Q
K he would like to add (See Figure 4.12). Once the user has indicated his ‘
_ ‘ m
é .
77

Lty

O T S AV . LT T 2T VIR T S

oa 2
.

AT Sl s S

14

EMTN N

v e
ne Yy

.

YN W

YT

B

AAN AN

»

X AN

- o
tetat.

>
)
"8 - ¥

[i et stttz 2z a2 2a 2ttt e it izt ates i rasetissdddossddd]

]
SECURITY
* INFORMATION RESOURCE DICTIONARY SYSTEM

PLEASE ENTER USER 1D
PLEASE ENTER PASSWORD

]

*

] #
]
4
*
*]
* #
®]
] #
] #
&
$
]]
] *
] *
#
] #
]
*
#
* *
#
T S I I 0300 30 S S 0036 00000 B ST OO O 00 0 OO I 0 S S D 4

Figurc 4.9 Security Panel

78

-

Fo

)L
A
i

.................

FAREHHHHHHHHEHHHHHHHHHHHOHEH DN R R HHHHEHOHHH R
*

* MAIN

* INFORMATION RESOURCE DICTIONARY SYSTEM

MAIN MENU

1) DICTIONARY MAINTENANCE
2) DICTIONARY OUTPUT

3) DICTIONARY QUERY

4) SCHEMA MAINTENANCE

5) SCHEMA OUTPUT

6) EXIT DICTIONARY SYSTEM

ENTER YOUR CHOICE (1-6) FROM ABOVE:

Mok W o M g W o W ax M g W A Mt ax W kW ok W
WMo W s W oap W o W s W o W g S ax Mtk & W m W

RRRRRRRRPRBRRRRBRARBERRARRBRRRFRRERBERURFERERRARBRARRERLRRERRBRRRBERENE

Figure 4.10 Main IRDS Panel

RO DT, S 1 SRR e

ST 3 I 30130 36 00 00 0000 3006 T T 00000 T2 3T 00 363 T 00 T30 00 00 06 0020 00 06 060 300 3000 36 30 00 300 6 3 30 06 30 00 3 3006 2

]
*1.1.0.0.0.0
* INFORMATION RESOURCE DICTIONARY SYSTEM

MAINTENANCE MENU

»

*

¥

*

: 1) ADD ENTITY .

: 2) MODIFY ENTITY

: 3) DELETE ENTITY

: 4) ADD RELATIONSHIP

» 5) DELETE RELATIONSHIP
*

* 4> RETURN TO MAIN MENU
*

* ENTER YOUR CHOICE (1-4) FROM ABOVE:
*

*

*

»

*

*
&
*
#
4
*
]
#
*
*
*
#*
*
#
*
#
*
»
*
#
*
#

]
*
ST I I A O N R ST T 0 TS0 I I R ST 0 ST B S 00 S S

Figure 4.11 Maintenance Panel

'y . —

.u‘,ﬂ."ﬁ.i‘v W A AT T el TR AR S A ASAERE VA N L e Rt A AR Y

-
:", choice, the system will present a panel prompting the user to enter the
ﬂ:

» appropriate attributes about the entity (See Figure 4.13). For a

HREREERERERERERERR R EE R RIS T I I 0SS0 I 0000 00030 30002 2 00000 0 B

ENTER YOUR CHOICE (1-18) FROM ABOVE: 8

: INFORMATION RESOURCE DICTIONARY SYSTEM
: ADD ENTITY
: 1) USER é) FILE
: 2) SYSTEM 7) RECORDS
: 3) PROGRAM 8) ELEMENT
. : 4) MODULE ?) RETURN TO PREVIOUS MENU
: 5> DOCUMENT 18} RETURN TO MAIN MENU
*
*
*
*
¥

#
[4
*
*
*
#
]
]
*
| 4
¥
]
*
#
#
|]
|]
]
#*
#
]
#

SIS0 T I 0T 0 02300 A T 0 00 0030 0630 06 06 00000 00000 30 0030 000 40 00 0 30 000 0000 00 0100 00 S0

Figure 4.12 Add Entity Panel

complete list of all allowable entity attributes Sec Appendix A.

.,:: 2. Modifying Entities

> If the prototype user elects to modify an existing entity, the -

system display & panel asking which entity he desires to modify (Figure

g 4.14 and 4.15). Once the user makes his selection as to which entity
- to modify the system restrieves the desired tuple and presents a panel
displaying it's current contents, The user can then modify the tuple as

“ desired (Figure 4.16)

&

4

-

N ASAS

.
‘A

N, a4

Y .
A R

LY
~
&

3
LY
“~

‘,

FRATE I I T30 00T 00 000363690 63000 00 0 303003006 6 96 30 30 8 30 90 3 3600 0 6 3008 36 26 06 3036 0090 S0 3090030 00 S0 6 00 00 0 0

» *
*
Tuple No. 1 *
% EL *
% ACCNAME *
1D NAME *
: DESCRIPT :
s DATE ADDED _/7_ 7/ *
% ADDED BY %
* COMMENTS 3
s LSTMOD DT 7 7 *
® LSTMOD BY *
» NIMOF FOD — *
* QAL *
DURAT TYPE *
» LOCATTON *
% SECURITY *
* -)
» *
* *
PPYTTTY Ty TSR SR E VYIRS 22 2ess2es 2z st s Tnes szt sssqsqdaqssssisiliid]

Figure 4.13 Add Entity Data Input Panel

PR iaad ettt izttt tia sttt esat izt otttz dstdtdinisdsesdisssssl i

¥ 1.1.2.0.0.0 '
.. INFORMATION RESOURCE DICTIONARY SYSTEM .
: MODIFY ENTITY '
' 1 USER & FILE '
E 2 sysTe 7 RECORDS E
: 3 PROGRAY 8 ELDNT '
¥ o MODULE 9 RETURN TO PREVIOUS MENMY #
Z S) DOCUMENT 10) RETURN TO MAIN MENU E
» ENTER YOUR CHOICE (1-18) FROM ABIVE: 8 4
' '
* *
* *
:"“".l"*’*"’.'i‘."*"”l.""l!*".*'*.*l.*"Q*”.'*"."l*.'l":

Figure 4.14 Modify Entity Panel

82

d “ ‘ ‘. M;ﬁ-~ -.\‘.‘nr,lv'A-\'v", ﬂ"ﬁ“k‘ - l"?‘;,;l j{"’!.ﬁ_k X _'

FY U R RAC A TOC RN

g

AR

[‘l’ "v'-.'-' X : !

fﬂi’"

>
ah

L

3
-

T,

o T

i A ¢
T,

o
3

B i Y'Y

e
AN

[l 5

- ek rF-
k&fdﬁ:nf 2

%
P %

e

X

X,
1y
iy

“
"'
XA

T I0 130 1036 20 0608 3000 006 J030- 306 36 30030 T8 3000 30 30 0636 3000 300000 30 00 3036 30 00 30 000 30 036 36 00 6 06 300 36 3690 900 90 30 -3¢

] *
% 1,1.2.1.0.0 .
* *

*

Sy A Y Y AN e
v
2

INFORMATION RESOURCE DICTIONARY SYSTEM
MODIFY ELEMENT

ENTER TUPLE NUMBER OF THE ELEMENT
YOU WISH TO MODIFY __

M

[\
oA

r 7
.

*
* *
] *
* *
]]
* *
*]
* *
* *
* *
* |]
* #*

F3 0TI 3 0 36 00030 30030 600 30000 030000000 3600 6 36 00 3030 0600 130 0036 36 3690 6 3830 30 36 30 00 6 30 0600 3 30300 36 3000 0136 90 30 36 30 36

Figure 4.15 Modify Entity Select Panel

~
h.-
'
-§
.
~ .
",
)
.
V)
Y
) e
-,
a -
S
l.’
'
-_'
)
'
V-

) FHERHHHREHHINEHHHHEE HHEEHHEHEOHEE R EEHHHNHHEEE SO .
* : *
) *
* *
* *
* Tugle No. i » -
USER *
ACCNAME ACC NAME '3
* 1D NAME ACCESS_NAME _) '
-DESCRIPT The short name given to an entity. This allows *
for the easy access of entities.
% DATE ADDED 84/081/85 *
% ADDED BY Robert A. Kirsch 11 . *
% COMMERTS This is a standard attribute of the IRDS.]
LST MDD DT 8é4/91/85) »
) & LST'MOD BY Kirsch *
.. * NUMTOF FOD et *
- * DURAT DAL 9 *
DURATTTYPE N/A »
* LOCATION Schema]
- : SECURITY nune :
$: USE ARROWS TD POSITION CURSER TO DESIRED FIELD. :
N FHHHEHHHRH I HHHEHHHHEHHHEHEHHE S IHHHOHE R HHHEE
J' -
3 Figure 4.16 Modify Entity Input Panel -
]
N

83

#
f
)
¢
’.
Lt
R

18
#

2y

hi g Nty R PR 3 - > " 5 ety " v s yRor % 80 I -
T TR VT W 38y RN 0 1T AN S TAR YA B e O b A W R

3. Deleting Entities

If the prototype user selects the delete entity option, the system

presents a panel requesting that the user select an entity type to delete.

SIRIEI I 200 T 0000 I 00 00 30 30000 30 0000 028 30000 3000030 000 000000006 0030 3000 3000 36 00 310 30 9000 00 1130 36 00 3 916 36 46 36 96 %

: 1.1.3.8.0.8 :
: INFORMATION RESOURCE DICTIONARY SYSTEM :
: DELETE ENTITY :
: 1) USER é) FILE :
: 2) SYSTEM 7) RECORDS :
: 3) PROGRAM _B) ELEMENT :
: 4) MODULE ?) RETURN TO PREVIOUS MENU :
: 3) DOCUMENT 10) RETURN TD MAIN MENU :
: ENTER YOUR CHOICE (1-18) FROM ABOVE: 8 :
EHHEHRHEHHE R R R R RO R R R AR RS

Figure 4.17 Delete Entity Panel

The system then request the user to identify the particular entity tuple
to be deleted and provided instructions on how to complete or short the
deletion. Once the user indicates which tuple he wishes to delete, the
system displays the tuple and waits for the user to complete the

trangaction (Pigure 4.16 thru 4.18)

4. Adding Relationships

If the prototype user elects to add a relationship the system

present a panel asking him to select which type of relationship he wishes

84

o ' s ata” N AL A) AT AN D OGO DBRDCASTE
N L VAN MY NI By o W RO Tt Mttt flfin. I SO IO L B O S e O

DA el i g NN A e I A Ml T i CESOL N CLENRT A o P g S <O T AR (VI e ¥V

S T N " REPRODUCED AT GOVERNMENT EXPENSE },'p;l'-

SRS

-

L px
t)f-f

if nunmnuuuuﬁunn;;;;innnnnuuﬁuuunu:unnuuuuu
30_;"'] *
'E} * ll!uan-.o. *
) * INFORMATION RESOURCE DICTIONARY SYSTEM : .
*
. * MODIFY ENTITY :
N)
29] ENTER TUPLE NUMBER OF THE ELEMENT »
W » YOU WISH TO DELETE. THE RECORD *
7 * WILL BE DISPLAYED FOR YOU TO ~ »
-1 L EXAMINE. IF YOU ARE SURE THAT *
- * YOU ARE DELETING THE RIGHT *
: RECORD DEPRESS ‘U. :
2] IF_YOU 00 NOT WANT IT DELETED ¥
< * DEPRESS ‘8”7 TD RETURN TO THE *
Y : MAINTENANCE MENU. :
) ' ENTER THE TUPLE NUMBER NOW: __ :
‘ *
‘ FEHEE S HHHHEHHEHUHEHRHEEHEE R
+
- Figure 4.18 Delete Entity Selection Panel
-~ -
: ,~ :mmnmmmnuﬁuuaum&un&u&muuunun&mn&unuuu—]
' H
1y, . ' *
' *
-y : Tuple No. 1 ¥
.5 ACC-NAME .
& 1D NAME ACCESS_NAME *
[® DESCRIPT The short name given to an entity. This allows *
o » for the easy access of entities. * :
by * DATE ADDED 084/81/85 %
= % ADDED BY Robert A. Kirsch II ¥ g
e & COMMENT This is a standard attribute of the IRDS. H —
" & LST MOD DT 04/01/8S * Bk
: g G :
x * DURATUAL 8 ' Ll
. & DURAT TYPE N/A * e
5 # LOCATION Schema % - :
~ : SECURITY none * e
= L
o : USE ARROWS TD POSITION CURSER TO DESIRED FIELD.) N
I »
SHHHHHHHH HHHHHHEHHHHHHHHEHHHHEHHHHHHHHHHHHH U I
o
, Figure 4.19 Delete Entity Confirmation Panel -
e .
' 85
1 ‘
,'i"

A r B e O U R A R

MP I VRN "V LNy VLY

NT EXPENSE :.: .

e

<’i
M
3
4
2
mo

-
!

[
e

D N Y S

to add (Figure 4.20). When the user makes his choice the system

executes the relationship add module and prompts the user for the required

input (Figure 4.21) This prototype version allows 12 relationships.

See Appendix A for a complete list of all relationships allowed in the

W IRDS standard.

RERERER R RRNR IR I T I 0 I 0 0000000000 000 U000 00 00000 300000 0 00 0 0000 0000 0 30

1.1.4.0.0.0
INFORMATION RESOURCE DICTIONARY SYSTEM

]

4

]

&

: ADD TO RELATIONSHIP .

: 1) USER CONTAINS SYSTEM 8) FILE CONTAINS RECORDS
& 2) SYSTEM CONTAINS PROGRAM 9) RECORD CONTAINS ELEMENT
]
*
#
]
]
*
]

» .Y l'.l,_..._'

3) PROGRAM PROCESSES FILE 18) USER RESPONSIBLE FOR SYSTEM
4) PROGRAM PROCESSES RECORD 11) USER RESPONSIBLE FOR FILE
9) PROGRAM PROCESSES ELEMENT 12) PROGRAM PRODUCES DOCUMENT

LR B REERFEENEERRERESRDNE R K B BN

"] 6) SYSTEM CONTAINS PROGRAM 13) RETURN TD PREVIOUS MENU
]

% : 7) PROGRAM CONTAINS MODWLE 14) RETURN TO MAIN MENU

b

. d ENTER YOUR CHOICE (1-14) FROM ABOVE:

y *

:’ FHHHHEHHER R I I I3 I 0O I 0 0 DI R
: Figure 4.20 Add Relationship Selection Panel
5

5. Modifying Relationships

v

< This version of the IRDS prototype does not contain a modify re-
"
2 lationship capability as the add relationship module serves the same
& purpose. -
" "
l
l
l

"

T .
- .

s 7
p 86

)

o - P — . N LA P e e IR TS T
A i " : Fe S SR ’

A 2 2 >

S5555

[N n'_l'-

L

v

; 2 -}}f -

PSP)

A ALY

St

e
FL

6. Deleting Relationships

This module of the IRDS prototype allows the user to select a

tuple of a particular relationship and mark it for deletion. The user

THEHHHEEHEHHEHEHHHHNENHEHHEEHHHENE USRI

*
' :
*
® Record No 1 #
*
*
: USER_NAME *
»
: SYSTEM_NAME »
) :
HHHHHHHHHEHHHEHHHHEHEHEHHEHHEE S EHHEES S HEHHHHE R R R R 58

Figure 4.21 Add Relationship Input Panel

must identify which type of relationship he want to modify (Figure 4.24).
After the user makes a selection, the delete module is loaded which prompts

the user to identify which tuple to delete and provides him with instruc-

e
[T

tions on how to complete the transaction. The system then retrieves

A

i . I

oy
2y

the tuple and displays it for verification and transaction completion

o~ "Mﬁd"
P
R
A
phadadid

(See Figures 4.25 and 4.26).

-
-~
»,

F. THE DICTIONARY OUTPUT FACILITY - -

The IRDS prototype allows the user to.generate dictionary output in

two furms, screen and printer. When the user selects the dictionary output

87

| AL \ N S . T —
e e S BN o 5 Tty S St RN A M N A S T T TR T T T T ey T

v

- -

i e

+ WGP PO

oty terte T

1§)
2
K))
4
)]
é)
7

*
&
4
#
#
#
L]
#
#
]
4
]
#
#
#
*
#
#
4

HHHHHHHHHHHHHH R
»
® 1.1.5.0.0.0

INFORMATION RESOURCE DICTIONARY SYSTEM
DELETE FROM RELATIONSHIP

USER CONTAINS SYSTEM ®
SYSTEM CONTAINS PROGRAM 9)
PROGRAM PROCESSES FILE 10
PROGRAM PROCESSES RECORD 11)
PROGRAM PROCESSES ELEMENT 12)
SYSTEM CONTAINS PROGRANM 13)
PROGRAM CONTAINS MODULE 14)

FILE CONTAINS RECORDS
RECORD CONTAINS ELEMENT
USER RESPONSIBLE FOR SYSTEM
USER RESPONSIBLE FOR FILE
PROGRAM PRODUCES DOCUMENT
RETURN TO PREVIOUS MENU
RETURN TO MAIN MENU

ENTER YOUR CHOICE (1-14) FROM ABOVE:

'S FE EEEREREREESEERERERES RN B B B
.

HHHHHHH HHHHEHHHHEHHEHHH S EHHE NS N R

Figure 4.24 Delete Relationship Selection Panel

ARRERRERRE R AR AR R R R AR E P R R R R R R

#*
' lcl.S.ll.o.

'E T R R EEFE R EEE R ER KR B J

INFORMATION RESOURCE DICTIONARY SYSTEM
DELETE FROM RELATIONSHIP

ENTER TUPLE NUMBER OF THE
USER-PROCESSES-5YSTEM

TUPLE THAT YOU WISH T0 HWE DELETED

THE TUPLE WILL BE

SPLAYED F

)] R
YOU TD EXAMINE. IF YOU ARE SURE
THAT 1

TYPE ° END
YOU WANT TO EXIT THE MODULE WITHOUT
IDENTIFYING A TUPLE DEPRESS § TO
RETURN oUsS MBENU.

TO THE PREVI

HHHHHHHE

'S T X EEEEEE EEFER BB R B B N R

i
g
%

Figure 4.25 Delete Relationship Panel

-

P4

»
'l
W
)
[}
9,

Pt 3

o 0

PRSI

¢ Nl

b b £ 0, Ay &

o -2 .8

ez N E TR TR ot i S o

Cdia'Y Te - «

REPRODUCED AT GOVERNME

option from the main menu, the system executes the dictionary output
module and presents to the user a panel (Figure 4.27) requesting that

he choose entities or relationships as output.

!“’H'“Iml“ll!lllllIil!ﬂl’il’!‘llﬂl'lil’!l“l!il’!“!’!l!ll“l!!ll

3 *
] #*
: Record No 1 #
OUSRME PAY-OEPT '
P SISTBINME SAL-PAY '
#
)
'“‘m“"".ﬂml‘l"“i'wi""'."I'“'“"‘l****'*““l’“l’ml‘!:

Pigure 4.26 Delete Relaiionship Tuple Verification Panel

1. Entities

e e a atg

NT EXPE

If the user chooses the entity output option, the system presents

a panel requesting the type of entity to be output (Figure 4.28). The
system then prompts for whether output is to be generated and displayed
on the screen or sent to the printer (Fiqure 4.29). The system then
displays all tuples of the entity-type selected, one at a time for

screen output and all at once for printer output (Figure 4.30). The

current version of the IRDS prototype does not allow the user to select
which attributes will be displayed or limit the number of entities

displayed. However the query function does give the user the ability

89

NSE f“ :

el

YT
& SRR

GOSN

o

DY WY PR

AP

AN

‘ -‘_:L;‘l .I 'l’il.\ .. ‘ L)

A e U %

to display selected entity types. This capability will be discussed in

Section G.

RARRERERRRERBERRRRRRRRRRRHHRERERAREREBRRERHRRRBRRBEDRBRRERRRE B RER2E BRE

* 2
. ‘12..0.0". .
: INFORMATION RESOURCE DICTIONARY SYSTEM :
: DICTIONARY OUTPUT :
]]
: 1)y ENTITY :
: 2) RELATIONSHIP :
: 3) RETURN TD MAIN MENU :
: ENTER YOUR CHOICE (1-3) FROM ABOVE: :
¥ #
* *
* *
» #
*]
* *
* ¥
* -]
*]
HHEHEHHHHHHHHHHHHHHHHHHHH R R R R S R

Figure 4.27 Dictionary Output Selection Panel

2. Relationships

If the prototype user decides to output the tuples associated ‘with
a particular relationship, he makes the appropriate choice on the diction-
ary output panel (Figure 4.27). The system activates the appropriate
module and then requests that the user identify the relationship to be
output (See Figure 4.31. After the user selects the relationship, the
system prompts for whether output is to be generated to the screen or
printer (Figure 4.32). The system then displays all tuples of the entity-
type selected (Figure 4.33). This version of the IRDS prototype does
not allow the user to select which entities associated with the relationship

are to be displayed. However the query function does give the user the

ability to display selected entities with a relationship.

90

ERCC IR N - - . e S Y - P ..‘ﬂ“ A) -
REPRODUCED AT GOVERNMENT EXPENSE ;‘
el

; .
h)
. » 1,2.1.0.0.0 *
5 : INFORMATION RESOURCE DICTIONARY SYSTEM *
5 #*
: ENTITY OUTPUT :
. : 1) USER 8 FILE *
> *
. : 2) SYSTEM 7) RECORDS L]
) #
' : 3) PROGRAM 8) ELEMENT *
~ 4
: 4 MODULE #) RETURN TO PREVIOUS MENU :
. : S) DOCUMENT 10) RETURN TO MAIN MENU :
\
: : ENTER YOUR CHOICE (1-18) FROM ABOVE: | :
; ¥ *
]] *
- s *
]
) - #
*
RRHHHERRR R RN R R R SRR RN R SRR RN RERRRRRRR RSB ERERE SRR
Figure 4.28 Entity Output Panel
‘: l!llllil!*li!l!!lli;!lll!!*l*ll&!l*!lili{!ll!llllillll!i!&llll{!*!l!Il* :
, #
: ’ l'2l1.l.". .
, * , INFORMATION RESOURCE DICTIONARY SYSTEM
ENTITY OUTPUT
»,
X LISTED BELOW ARE THE CHOICES FOR HOM
4 YOU CAN HAVE THE RELATION USER L
3 DISPLAYED.
F 3

#*
#*
#*
*
»
*
»
#
|
*
*
*
#
#
#
*
#
4
#
4
#
4]

1) SCREEN OUTPUT

2) PRINTER OUTPUT

) RETURN TO PREVIOUS MENU
ENTER YOUR CHOICE (1-3) FROM ABOVE: __

IS X R E R EREEEREERERRE R ERR K J

THHHHHHHHHH R HHHHEHHE HHHHHHHHHH R R R R S R AR R R R R R R R RS

Figure 4.29 Output Selection Panel

QSN ARG LR

ety NS,

|

SR G et iy (e o AL e i ol AR ARt R Ea Y S0 »‘1!;‘ ot bk oo e s

I SIS SN S I 303 0 D SO I 0T 00 0 TSI 3300 0 S S0 I S T

» *
* *e
]]
* *
& Tuple No. i *
* M£R »
ACC-NAME PAY-DEPT %
1D NAME PAYROLL DEPARTMENT o ¥
DESCRIPT The department within the organization that rro— ¥
* duces the companies weekiy and monthly payroll. »
® DATE ADDED 04/81/85 *
& ADDED BY Robert A. Kirsch II B
: This is a standard attribute of the IRDS. :
LST MOD OT 84/01/85 »
& LSTMOD BY Kirsch *
* NMOF POD 881 ¥
LOCATION Schema ¥
: SECURITY none :
: PRESS RETURN TD SEE THE NEXT TUPLE. :
8 &

)

SR IHE T3 S I I IHE TSI I B 3 S BT R

Figure 4.30 Entity Output

22

E
!
i
r
L

T e

FHHHHH NP NI I3 0034 T30 0 S0 S %

” -

*

*

]

L S)
¥

¥ 2
]
L)
*
4
]
LA
]
LI
%
D
]
¥

*
*
]
#

1.2.2.8.0.8

INFORMATION RESOURCE DICTIONARY SYSTEM
RELATIONSHIP OUTPUT

USER CONTAINS SYSTEM 8
SYSTEM CONTAINS PROGRAM 9
PROGRAM PROCESSES FILE 18)
PROGRAM PROCESSES RECORD 11)
PROGRAM PROCESSES ELEMENT 12)
SYSTEM CONTAINS PROGRAM- 13)
PROGRAM CONTAINS MODULE 14)

*

]

*

*

#

*
FILE CONTAINS RECORDS :
RECORD CONTAINS ELEMENT :
USER RESPONSIBLE FOR SYSTEM :
USER RESPONSIBLE FOK FILE *
]

PROGRAM PRODUCES DOCUMENT #
RETURN TO PREVIOUS MENU *
&

RETURN TO MAIN MENU :
*

*

#

4

#

ENTER YOUR CHOICE (1-14) FROM ABOVE:

J R I IO S T IS 0000 30 T T IE 363030 0630 00 30 0026 00 30 0T 30 00 00 00 03600 00 06 00 3600 0000 T 00 00 00006 330 00 00 0036 30 30 3

Figure 4.31 Relationship Ouptput Selection Panel

. v, . . .] ¥ pa _ga ad v el
ERARIEERAE A DA & U AP O N I AR AR A S A D) - CR T e AL uih ol o LA AdERE R 3 o

I. l. l-. -a..
- P
g S
<

RS
o l,[o N
3 A
’ PR
y HEHHHHEHEHHEHHHH R R RS,
. . -
. *1.2.1.1.8.0 ¥ &é’ i
-~ * INFORMATION RESOURCE DICTIONARY SYSTEM : %& !
. » _ ‘
o * RELATIONSHIP OUTPUT ' 58
y Y » \H'
*]
¥ LISTED BELOW ARE THE CHOICES FOR HOW *
* YOU CAN HAVE THE RELATIONSHIP * A
¥ g I
. * USER PROCESSES SYSTEM } T
3 & Fag
- s DISPLAYED. ' R
>, * T
. ¥ 1) SCREEN OUTPUT * PR
- * ¥ AT
* 2) PRINTER OUTRUT : P 1
¥ TR
b ' 3 RETURN TO PREVIOUS MENU ' e
.) ’ -'.'\.'.7'
. ¥ ENTER YOUR CHOICE (1-3) FROM ABOVE: _ : ::,-2,;‘.‘
. * CR N,
» HHEHHHHHHEHEHHHI R O 8 4 ‘.;'.:".‘
- Figure 4.32 Output Selection Panel Rt 5“.‘;
L eSS
s Res
¢
3
. :nnuunuuuim!uuuuu*uuuuuuuluuuununuun"i
bt d
¥ *
: USER PROCESSES SYSTEM]
. *
*
2 : RECORD # 1 :
-]
® USER ACCESS NAME: PAY-DEPT
. : SYSTEM ACCESS NAME: SAL-PAY :
2 ']
3 .
. : PRESS RETURN TO SEE NEXT TUPLE :
"‘ lunnnuunnnunuuunuu“nu"luunununinnuuuu:
%’. . Figure 4,33 Relationship Output
)
a:l
¢
-
o
! A 94
'
» - R . - [P, e e .
A O Oy P Eon @ RIS NN A O 10 5 Lot 0,V K s o 0 B le 8 Tacrts, Sy I IO, T R T T T Tt T e e T

]
'y r:f:':
MO
; 3. Schema e
) PN
t '.\ ‘,'n »
The IRDS prototype also allows the user to display the PN
AN
schema for all entity-types and relationship-types. In order to exe- Nty
- LY -~
cute this portion of the prototype the user selects SCHEMA OUTPUT :{:gx
"\ Yo

P L)
b from the main menu (Figure 4.10). Once the selection has been made, b

:

¢ HEHHHEHHHEHH HHHHEHEHHHHHE R HHE HHHHEE SO OO QXA
: ¥ s
‘ i] 1.5...0-0-. * ‘;{,‘S_:_";
; : INFORMATION RESOURCE DICTIONARY SYSTEM H e
* '.‘-'.‘-‘
¥ SCHEMA DUTPUT ¥ I
* ¥ =
' ' b
' 1 ENTITY ' e
% * .\'::.‘\.
' 2) RELATIONSHIP ' i
* CU T
: ' 3 RETURN TO HAIN HEN ' oot
* .
' BNTER YOLR CHOLCE (1-3) FROM ABOVE: ' Eﬁ
M
* - # >
, ' * NN
» * ’?&':\"
. *] ‘::\:*\:
t * # F“.{\‘
. ' * - g
¥ *
HHHHHEEHEER I EHEHHE O H IR RS AR AR <7
ENASA
RN
4 Figure 4.34 Schema Output Selection Panel ' Q?:#

the system executes the schema output module and requests that the user

E choose which type of schema to output and it's ACCESS-NAME (Figure 4.34 Ejéé
) and 4.35). The user is then prompted by means of a panel to select the E#:?
output medium. The system will then display the requested schema struc- .;;

. 1)

; ture (Figure 4.36 and 4.37). Figures 4.36 and 4.37 provided below depict f§§%
s the output of an entity-type schema. The process for displaying a re- Sig

relationship schema is identical and will not be explained further here.

G. QUERY

. The IRDS prototype query function give the prototype user the ability .
to generate ad hoc queries about any relationships that the system

95

PSRN A A el Ly S A A S N R N e N T T IV TV VI VWY VI VI XY VI X TS PN~ "N T 3 7 W wawary

............

*l
K
}
t
k
A
8
. L
; . IR I 00 30 00 30 30 38 06 30 3000 3030 00 06 30 36 36 30 00 3090 36 3630 3698 90 38 3838 3098 30 30 9630 6 2006 98 36 90 30 48 3 36 30 3% 36 01 96 6 38 3 3 3 30 3 3 9 % 9% }
. * M \
:. ¥1.1.3.0.0.0 ' .
. ' INFORMATION RESOURCE DICTIONARY SYSTEM : :
4 n
s ENTITY SCHEMA OUTPUT * \
*
') USER & FILE : £
-
* 2) SYSTEM 7) RECORDS 3 :
] L) S
* 3) PROGRAM 8) ELEMENT : “
' :
: 4) MODULE 9) RETURN TO PREVICUS MENU : N
' 5) DOCUMENT 10) RETURN TO MAIN MENU : £
v
' ENTER YOUR CHOICE (1-18) FROM ABOVE: | : !
* L
BRI 00 I T R I IR R RN RARRRRRRRARRRERRRRR S

T.TEYR T Y Y .,

Figure 4.35 Entity Select Panel

SRRRRREFRRRRRSRRRRSRBBRRREERRSRRERERRRHRRIERFRRRRRRRR R R RS R EREEERR S

INFORMATION RESOURCE DICTIONARY SYSTEM
ENTITY SCHEMA QUTPUT

Lage WiV AV Pl s o i S T e 2 g

*

*

*

»

]

®

d LISTED BELOW ARE THE CHOICES FOR HOW
] YOU CAN HAVE THE SCHEMA FOR RELATION
: USER DISPLAYED.

: 1) SCREEN OUTPUT

: 2) PRINTER OUTPUT

: 3) RETURN TO PREVIOUS MENU

» ENTER YOUR CHOICE (1-3) FROM ABIME: __

M W s M e M g MK A MR ae M5 s 06 a ME e MK A NS
-

FHERIIHER IR HEHEHHHEHEONUE ISR I3

Figure 4.36 Output Selection Panel

Ot DI CR O

AD-A165 €22 A RELATIONAL DRTR DICTIONRRV CDHPRTIDLE HITH HE 273
NATIONAL BUREAU OF STAND.. l.l NﬁVﬂL POSTGRADUATE SCHOOL
MONTEREY CA R R KIRSCH DEC

UNCLHSSIFIED F/G 5/2

1

, LY B R o AT i [: & : 2
,.v. - - .rw.) »
—_~—
v .
4

; \\
a. 4._.~
A
1]
.
! . »P . .

o

1 .‘ .5 o~ o - &

EEEFFEE ¥

2 5%
8§

m ddaq .
{ - g:
! EEEEET TR — S
; FH 3
¢ = g:

1
: Ol - =l w -

————— g
. 3 .
% 4
w
5 .
; P
: L..”w-' .

LTy
il
N

¥
L

o

2
",
A

f

»,

i e
. s
e »5)
8 / A
L, ra AN
\ '
S

- SR SR SR IR
%
2
R

L AP W e | TN SO

.1
]
t
t!
M)
¥
~
-
A\
»
p)
4
"]
P
o
'4
N
.‘-
»
9
A
)
3
",
L
l
1]
J
Ly
1)
‘l
o
&
5

" A A -

53
s .
¢ maintains. Not all of the IRDS standard relationships are im-
. plemented in this version of the IRDS prototype (See Appendix A for a
»,
" TR R AR R L RN R R R R SR R R R RS R R E SR ENNN RS
of . '
|]
] #
® Structure for database : C:USER.dbf 4
s # Number of data records : 7 #
: Date of last update s 08/84/85 s
> #
: & Field Field name Type Width Dec 0
» 1 USER Logical]
2 2 ACC NAME Character 18 *
s 3 1D RAME Character 2 *
» 4 DESCRIPT Character 108 d
Fe. 4 S DATE ADDED Date 8 *
N * 4 ADDED 8Y Character 28 ¥
. 4 7 COMERTS Character L]]
8 LST MOD DT Date 8 *
., # 9 LSTMOD BY Character . | *
‘ : 10 NMOF ROD Numeric 3 ¥
- #
]
R] -)
: ' .
" L
. # #
N HHEHEHHHHHHHHHHHH R R A DR R R ER O R R R E R R R A AR
o Figure 4.37 Sample Schema Output
.b. -
i] list of the allowable relationships). The remainder of the relationships
=
will be reserved for implementation in subsequent versions of the proto- W
.l .-
:: type. The prototype uses a keyword selection process to generate a query
of the form SUBJECT-VERB-OBJECT and a query processor to process the
%
query and generate the resulting output. When. the user selects the - d
i
query option from the main menu (Figure 4.10), the system executes the
;_;
, gquery module and present a panel (See Figure 4.38) requesting that the
1}
- user choice which entity-type is to be the subject of the query. The o
:: system then requires the user to enter the ACCESS~NAME of the entity
'*'
; to be queried and select whether entries are to be verified before .

97

.; -
e
!
'
[}
b
-
‘I.
-(:.
v
':1: FRASRA SRR AR AR AR BRER AR R A AR R AR E R R AR R NRRRARERRR B ERRARBRERES SR RRRREER
N] #
' #1.3.0.0.0.0 :
- . INFORMATION RESOURCE DICTIONARY SYSTEM .
o . QUERY MENU '
]]
- : ENTITY-1 RELATJ ONSHIP ENTITY-2 :
N, » 1) USER *
- » 2) SYSTEM '
X » 3) PROGRAM *
) *) o
* 3) FILE *
* &) RE »
S * D ELBENT *
* 9) RETURN TO PREVIOUS MENU ’
o ' 1) RETURN TO MAIN MBNY '
§ : ENTER YOUR CHOICE (1-18) FROM ABOVE:) .
¥ * DO YOU WISH TO VERIFY YOUR ENTRIES Y or N N . .
! SRRHARRRERRRR AR AN RRRARRARBARVRHERRBRARIRERR R R RRREEEERE H RS EHR A RNS
: L :
N Figure 4.38 Query Entity-Type Selection Menu '
163 :
: -
!
¥
)
v“
2
'! Fwe |
2 98
-
!
‘.‘.

N I AN

;\'1
1;::
’:.; FRHH R R R R S A R R R
" \ » #
o » 1.3.0.0.0.0 4 '
: INFORMATION RESOURCE DICTIONARY SYSTEM :
) ’ QUERY MENU '
) # *
N # USER RELATIONSHIP ENTITY-2 # AN
22 . o ey
o * ENTER THE ACCESS-NAME FOR THE USER ' N
R * YOU ISH TO QUERY ON PRESS RETURN PAY -DEPT ' a;;
L g gy
2 * 1S THIS THE ENTITY YOU WISH TO GUERY N PAY-DEFT Y RN _ ¢ PR
‘:.: I T L T T T T I T T LT T T T T rprrr Ty rrrrrroprerve v ;?‘;
9'. . n;
Figure 4.39 Entity-1 Selection Menu \i
4 i
& s
N
:a f'g,i\
{ - R
y .
T T T T LTI TE T T T T TP TP AT PTT P T TR ooy Prrn pen ey ven sy ST T L
® s
% *1.3.1.0.0.0 ' .|
X : Mmﬂm RESOURCE DICTIONARY SYSTEM : ‘
: ' QUERY MENU '
y M *
' : PAY-DEPT RELATIONSHIP ENTITY-2 :
. * 1) CONTAINS '
o0 L) 2) 1S RESPONSIBLE FOR M
- : 3) RETURN TO PREVIOUS MBNU :
¥ * BNTER YOUR CHOICE (1-3) FRIN ABOVE: 2 .
’ ' ' o
%, ' .
* *
b AR R N R R R AR R AR A S SRR A HEEHRA HRER R RN ANE
»
e
N Figure 4.40 Relationship Selection Menu
$)
)
Ry
1, .
2
.. 99
xS

-
-y

7
%
P

oo N]

gl

-

5"‘

) - 8g e oty I 21 - 5 't el 2t a'h 2 4 &' ha’k sl L EREANER LREws

being accepted by the system (Figure 4.39). The system next prompts
the user for the relationship-type that is the verb of the query.
Finally the system request the entity-type which acts as the object

to form the query (Figures 4.40 and 4.4l1). When the final form of the

S4ERHER RAR R R R SRR R RRH R S H AR SRR AR R RN SRR ER AR AR REHHRBHRRBERER0E
*

$ 1.3.1.1.0.8

INFORMATION RESOURCE DICTIONARY SYSTEM
QUERY MENU
PAY-DEPT RELATIONSHIP ENTITY-2

]
]
»
]
*
¥
*
1) SYSTEM #
2) RETURN TO PREVIOUS & .
*
ENTER YOUR CHOICE (1-3) FROM ABOVE: 1 *
*
#
]
#
#
]

:.'...-..‘...-‘.

ISR R R R R AR R R DR AR RS HH AR AR RS R AR R R R RE R AR E P HRERHHRRER

Figure 4.41 Entity-2 Selection Menu

query has been specified the system process the query, requests the

selection of an output medium for the query results, and then generates [F{”

the output (See Figure 4.42 thru 4.43).

H. SCHEMA MAINTENANCE — :
Even though the Core IRDS Standard Schema limits entity and re-

lationship meta-data (See Appendix A), it allows for extensibility in

that additional attributes may be added by the user. The schema main-

tenance facility of the IRDS prototype allows an authorized (authorization

is determined through the gecurity function) user to add new attributes

and modify or delete existing ones. Note: That although the prototype

100

AR T IWIV wY

""REPRODUCED AT GOVERNMENT EXPENSE fosog.
% ;
-vt ¥ a
!
(=
¥ :I:l;.:;:l:’:mlﬂilﬂm;m!l“lll"!“lll“"“l“".ll;l.ll
Wl shsled ¥, 4
{:; : INFORMATION RESOURCE DICTIONARY SYSTEM »
]
5! D) ENTITY OUTPUT *
ot s *
: &
] LISTED BELOW ARE THE CHOICES FOR HOW #
> : YOU CAN HAVE THE QUERY :
.-:: : PAY-DEPT RESPONSIBLE FOR SYSTEM L
P 2
N : 1) SCREEN OUTPUT 1
. .
: 2) PRINTER OUTPUT 8
s : 3) RETURN TO PREVIOUS MENU :
Q) : ENTER YOUR CHOICE (1-3) FROM ABOVE: __ :
s" SRR HHHHE HHHHHHHH R R S R R SRR R RS R S

Figure 4.42 Output Selection Panel

v !.(by b, 'n. .

3 #1.3.9.1.0.9 » .
: : INFORMATION RESOURCE DICTIONARY SYSTEM :
13 ' QUERY RESULTS FOR .
. * PAY-DEPT RESPONSIBLE FOR SYSTEM :
P]
v : IDENTIFICATION NAME: SALARY PAYROLL :
$j L DESCRIPTION: This system is used to produce the monthiy sal- #
;:. : sried payroll for the company. :
: IDENTIFICATION NAME: WEEKLY PAYROLL :
g 2 DESCRIPTION: This system is used to produce the weekly pay- @
- # roll for the company.]
% P ®
> FHHHHMHHHEHHHHHHHHHHHHHHHHHHHHHHH R S R
~
P Figure 4.43 Query Result Panel)
o
Q)
) -
iy '
g

§»
r 101

R

ot

-

.
o

Al P

Ot %,

*.

-

b & S

S AU YIRS, Ly, 0

wFxt oo 4,

A
"

A2

= %

e
-

K
X
‘

ISN RN G

allows for the addition of entity and relationship relations

the panel structure would require modification to make full use of any
relations that were added. When the user selects the schema maintenance
option from the main menu (See Figure 4.10), the system activates the
schema maintenance module and displays a panel requesting that the user

choose which type of schema is to be modified (Figure 4.44).

HEHHHH RS R R R R R ER R R E RS F RN
1.4.0.68.0.8

INFORMTION RESOURCE DICTIONARY SYSTBM
SCHEMA MAINTENANCE MENU
1) ADD, MODIFY OR DELETE ENTITY SCHEM
2) ADD, MODIFY OR DELETE RELATIONSHIP SCHEMA
ENTER YOUR CHOICE (1-3) FROM ABOVE: 1

R R R E R E RN RN ENENERZSRER.N]
LA R E R R X R ERBERERREENERERNNN)

HEHHHH I HEHHHHHHEHHUHH R R R R AR R -
A8
ey
Figure 4.44 Schema Maintenance Selection Panel 3
The user will then be allowed to identify particular entity or relation-
ship type and perform maintenance. The following sections describe how .
the IRDS prototype performs the schema maintenance functions of the IRDS
5k
prototype.
1. Entity Meta-data
When the authorized user indicates that he desires to add, modify
s

or delete meta-data associated with the entity-type scema, the system

102

:',".-"7"»"'-" . R L f)

o
g
.
.
.,
W
q
A
&
3
X
.
A
.
TTRAT
-~

&

Y

: “’(‘:‘:
.l VNSS!
:]
! e
R) gﬁk’
i presents a panel requesting that the user choose which entity he desires "';"“'
Ly to maintain (Figure 4.45). . .a:’:&
;: 0‘.\
e 'll"":;"'
’~ ?:ly ::'

:nuuunnnuuinnunni:unanluuuuunuununnunnu E& oy
] :

2 »1.4.1.0.0.0 ' \" N

k : INFORMATION RESOURCE DICTIONARY SYSTEM L e
h-\a't

0 » ADD, MODIFY OR DELETE ENTITY SCHEMA ' N
p ' * Y
* 1) USER &) FILE * -'

' e # 0 A

~ ' 2 SYSTRM 7) RECORDS » '*".*'».'-

~ 2 e
N ' 3 PROGRAM ® ELEENT . PRy

'_‘- I} % d

< ' 4 MODILE 9 RETURN TO PREVIOUS MENU ' K
N] Al

1! : 5) DOCIMENT 1) RETURN TO MAIN MENU * ke

¥ oich

» ENTER YOUR CHOICE (1-18) FROM ABOVE: 8 s :::;._-;..

= : s R X
: » ' %
:. 4 : .Ai;,';_{;'
bt # * M P '

: '

- nuuuumu"nuuununnuu!mnutmonmuuuuulm;: RS
3 s
< . .

-: Figure 4.45 Delete Entity Schema Maintenance Panel N\

LY

“ a. Adding, Modifying or Deleting Entity Meta-data
. After the user identifies which entity-type is to be main-

]

tained, the system retrieves the schema structure, displays it, and al- "
lows the authorized user to perform the desired maintenance (See Figure

N 4.46).
~,

' 2. Relationship Meta-data v

When the authorized user indicates that he desires to add, modify,

3

&

or delete meta-data associated with the entity-type schema, the system

L}

T e
)

103

ot
El

presents a panel requesting that the user choose which entity he desires

Do B aF SR 4

to maintain (Fiqure 4.47).
a. Adding, Modifying or Deleting Relationship

After the user has identified which relationship-type is to

FRSRRRRRERRREREEERERERANERRARRERERRERRRRRRRRFRERARARERSRARR AR B HRBRRRERE

C:USER. dbt
Bytes remaining 3768
Fields defined 10

Field name Type Width Dec

" 1 USER Logical |
. 2 ACC NAME Character 19
:- 3 I0fWME Character 20
4 DESCRIFT Character 100 -
; S DATE ADDED Date 8

6 ADDED BY <Character 28

7 COMERTS Character 3§
5 8 LST MOD OT Date 8
X 9 LSTMOD"BY Character 20
- 16 NMM_OF_FOD Numeric 3
‘.-

Names start with letter; the remainder may be letters, digits or

underscore
: DEPRESS F1 FOR INSTRUCTIONS

#
4
]
[]
|]
#
#*
#
*
]
]
#
]
&
]
]
]
&
*
]
#
L
&
SHHESRAERSERERRRRARERRHREERRRRREHRHTRRRABEHRREHRBRERR R B R AR RRRRA RIS

..-.
I-‘.
--'

Figure 4.46 Entity Schema Maintenance Panel

(9
-'
e
-

maintained, the system retrieves the schema structure, displays it, and

E allows the authorized user to perform the desired maintenance (Figure

Q 4.48).

A

'F I. FINAL COMMENTS

§ Although this prototype IRDS does not possess all of the features

E that were described in Chapter 3, it does demongtrate that a relational L5
~

b DBMS~dependent implementaion of the NBS IRDS is feasible as demonstrated

H

: . by the prototype. The extensibility feature described in the standard

104

T T

P Y W IR N S TR B L O W
. ‘4.5(, P Ea ‘1““9‘5".L'a!¥""r .‘-‘v'.b”»:,-‘t'\’x.\i Nk el w -_‘»' AT P AR N

g
e

" LY LA % e TR T R r—m T - W R

]
)
2
LN })
) 3
N 2
-. .
- LI)]
.]
- * 4)
%
! -
]
¢ v
o L]
:I' # 7)
]
o 3
] »
2
n: F
: '

AR

3

»

*

'

. M

*

3 '

X *
b '
5 y

»

rt]

A »

»

N *

\ *

ﬁ

. -

INFORMATION RESOURCE DICTIONARY SYSTEM

ADD, MODIFY OR DELETE RELATIONSHIP SCHEMA

USER CONTAINS SYSTEM)
SYSTEM CONTAINS PROGRAM 9
PROGRAM PROCESSES FILE 1D
PROGRAM PROCESSES RECORD 11)
PROGRAM PROCESSES ELEMENT 12)
SYSTEM CONTAINS PROGRAM 13)
PROGRAM CCNTAIN§ MODWE 14)

FILE CONTAINS RECORDS
RECORD CONTAINS ELEMENT

USER RESPONSIBLE FOR SYSTEM

USER RESPONSIBLE FOR FILE
PROGRAM PRODUCES DOCUMENT
RETURN TO PREVIOUS MENU
RETURN TO MAIN MENU

ENTER YOUR CHOICE (1-14) FROM ABOVE:

Figure‘4.47 Relationship Selection Panel

C:USER.dbf

HARRHER AR REERRRRRERARERRRRRRERERBRAFRIRERERRRRRFERFRRERRE R E LS 42

Bytes remaining 3748

Fields defined

Field name Type Width Dec

U_NAME Character 11
STNAE Character 10

& DEPRESS F1 FOR INSTRUCTIONS

e -
o 1

105

& Names start with letter; the remainder may be letters, digits or
% underscore

Figure 4.48 Relationship Schema Maintenance Panel

IR AR R R R R R R R R R R
*
§1.4.2.0.0.0
*

*
#
4
%
#
4
#
*
#
|]
|]
]
]
#
#
#
]
4
L
#
8

FHHEE R B R T N R R 3 R TR R R R R R

L X XS FEREREE R ERE X R F N B

FHRRRRRRRRERAREHBRR RS HARD R AR RHRER AR HR RN RERRRER AR RS RRRE SRR R R R R R RE

Ry

is enhanced because of the inherent flexibility of the relational
environment. Finally the NBS standards provide a firm foundation from

which to consider dictionary system implementation.

APYWYYY SRARSSEE SRR N R

PR

0y etel el e

(N 2 Bt]
PR PRI

Iv_l_n_.] 4._.

-

106

A=y S g

XXX

AP . L 0 = T, N 2P T
Y R A ORI e T A I O e D A

AR Al g AN AP A sl IR S A ST S]

.'
18
\
! V. CONCLUSION
v\
j: This thesis has discussed and evaluated the value of data as a
;% cormorate asset and how Data Base Management Systems (DBMS) can be
R
. used to manipulate this corporate asset. It has described how the concern
S
ft over corporate data has led to the development and increased use of
E; Relational Data Bases and in particular Data Dictionaries (DD). Desirable
- DBMS and DD characteristics, capabilities and features were identified
j; and discussed. Two existing relational DBMS were evaluated concerning
jz the data dictionary features they provided. The result of that evaluation
;v was that relational systems lack a majority of those dictionary features
Ej deemed necessary and desirable. Further, all existing DD products were
E developed.
: This thesis then presented, described and ﬁiscussed the National
Ei Bureau of Standards (NBS) Information Resource Dictionary System (IRDS)
:E standard. The standard provides a synthesis of baseline features, capa-
‘: bilities and functions found in existing DD systems plus the additional
'g capabilities of being able to handle all three major types of data base
3: organization: hierarchical, network and relational. Of equal signifi=~
3 cance, it offers the flexibility for user to expand the dictionary schema
o
o to accomodate unique requirements.
4
; This thesis developed a relational model of the NBS IRDS which was
) implemented as a prototype using a personal computer and dBase III. The
:3 prototype demonstrates that the features presented as part of the NBS IRDS
;. are implementable and usable in a relational environment.
T} 107
X
N

.}

T T AT I N A RN AN OO R TN MU

’-)
;‘ s g "4
Pt 2. - R
TR L s

‘; o
)'!9 N I‘.Q‘ > P DTS FRNSFIG SIS LA SIS TN }rlr A

[A NN

e

L g ot

CLA TR I e 4

o 8 e s 2 a &

DI A ANO A A A DA A A A B AR RS A% A e 2 AN e s bcaae Aol

G i i S T B A e Rl Rl i il ~afh n il h S o ia el
E,

It is recommended that the IRDS prototype undergo additional develop-
ment with the goal of implementing an operational production version of the

NBS IRDS standard.

108

0
M

APPENDIX A
CORE STANDARD SCHEMA

This appendix describes the Core System-Standard Schema
; and its structural characteristics. The Core
System-Standard Schema is defined as that sgspecific set of
. entity-types, relations—types, attribute-types, and other
schema descriptors supported by the Core Standard IRDS.
While this Core System-Standard Schema satisfies the
o requirements of many IRDS environments, an organization can
customize its IRDS Schema using the Schema Extensibility
Facility discussed in previous chapters.

A.1 ATTRIBUTE-TYPES AND ENTITY-TYPES

- In this section, the attribute—~types and

- attribute-group—-types associated with each entity~type are
given. The following are the entity—-types in the Core
System—-Standard Schema:

USER

SYSTEM
PROGRAM
MODULE

FILE
DOCUMENT
RECORD
ELEMENT
BIT-STRING
CHARACTER-STRING
FIXED-POINT
FLOAT

YIS A
K ook K ok Kk ok K ok K Kk Xk Kk

The other entity-types found in the Core System-Standard
Schema are: .

* DICTIONARY-USER, in support of the Security Facility.
* VIEW which supports the Secutity and View Facilities.

The following two tables present the attributes-types
and attribute-group-types accociated with the non-secutiry
related entity-types listed above. Attribute-group-types
can be identified by the existence of their component
attribute-types, which are indented and immediatedly follow
the attribute-group—-type name. At the intersection of a row
and column, the following denote that an entity of the given
type:

S Can have no more than a single attribute of the

given type.

-

109

) S T -y 2 7,3 8. Yy rx) 0 T NS D IR
“"’:?‘ LA i.'.l (it l.f..‘l) & WY, Iél .v‘l‘:‘\'x.n.l'\&l‘.'i‘r et ty, 9'1"“ TN ! ! o ' N

f 4

."-’-’%
»_A .,
.I"'j

A
A E

X
o:'

Py 3% 4
: }; ; >
3.. : [l

LY
LA

P Can have muitipie attributes of the given type.

£

The first table shows the attribute-types accociated
with the following entity-types:

I
é * USER (USR»
* SYSTEM (SYS)
e * PROGRAM (PGM)
* MODULE (MDL)
®* FILE (FIL) :
* DOCUMNET <DOC) e Zel
* RECORD (REC) e
* ELEMENT (ELE) §§:#
(ATTRIBUTE-GROUP-TYPE) ENTITY-TYPE gggs
AND eseeeecaee- l‘__
. ATTRIBUTE-TYPE USR SYS PGM MDL FIL DOC REC ELE axgﬂ
. Cmmmmememememmememee il e
: ADDED-BY § 8 8 8 8 S8 8§ 5 ;ﬁﬁﬁ
f'.-‘,:s
R (ALLOWABLE-RANGE) P 2

LOW-0F -RANGE
HI GH-0F -RANGE

ALLOWABLE-VALUE P
CLASSIFICATION P P P P P P P P
. CODE~-LIST-LOCATION P
s COMMENTS s 8 8 8§ 8§ 8 S §
< DATA-CLASS S -
9 DATE-ADCED s s 8§ 8 § s S s
o DESCRIPTION S 8§ 8 8 © 8 § s
:
" DOCUMENT -CATEGORY s
3 (DURATION) s s s
- DURAT I ON-VALUE
< DURAT 1 ON-TYPE
> ¢ IDENTIFICAT I ON-NAME) P P P P P P P P '
2 ALTERNATE-NAME 5
7 ALTERNATE-NAME-CONTEXT ,
: LAST-MODIFICATION-DATE S8 8 &8 8 8 -8 8 s
LAST~MODIFIED-BY S 8 8§ 8 8 8§ 8 s

) 110

e

&

AN

2 R A Al "

ry
a W

Sl S

S e a,

ats PR R TR

P .
" -

LOCATION P P P P P P

NUMBER-OF-LINES~-OF-CODE S]
NUMBER-OF-MODIFICATIONS S S s S S S s S
NUMBER-OF-RECORDS S
RECORD-CATEGORY S
SECURITY S S S] S S S S
SYSTEM S

A.2 RELATIONSHIP-CLASS-TYPES AND RTELATONSHIP-TYPES

This section presents the relationship-class~types and
relationship-types in the Core System-Standard Schema. The
relationship-class-types, where they exist, are provided in
bold print as headers to the relationship-types to which
they apply. The inverse-name (which alows the specification
of the member entity—-tyupes in reverse order) and
abbreviated inverse-name are given for each
relationship-class—type, s0o the inverse—-name and abbreviared
inverse—name for each relationship-type may be inferred.
Where no relationship-class—-type applies to a particular
relationship-type, its inverse-name and abbreviated
inverse-name are given directly.

(ATTRIBUTE-GROUP-TYPE)
AD ABBREVIATED
ATTRIBUTE-TYPE ABBREVIATON INVERSE-NAME INVERSE-NAME

CONTAINS CON CONTAINED-IN CON-IN
SYSTEM-CONTAINS-SYSTEM SYS-CON-5YS

SYSTEM-CONTAINS-PROGRAM 5YS-CON-PGM

SYSTEM-CONTAINS-MODULE SYS-CON-MOL

PROGRAM-CONTAINS-PROGRAM PEM-CON-PEM

PROGRAM-CONTAINS-MODULE PEM-CON-MOL

MODULE-CONTAINS-MODULE MOL-CON-MDL

FILE-CONTAINS-FILE FIL-CON-FIL

FILE-CONTAINS-DOCUMENT FIL-CON-DOC

FILE-CONTAINS-RECORD FIL-CON-REC

FILE-CONTAINS~ELEMENT FIL-CON-ELE

DOCUMENT ~CONTAINS~DOCUMENT DOC-CON-00C

DOCUMENT-CONTAINS~RECORD DOC-CON-REC

DOCUMENT -CONTAINS-ELEMENT DOC-CON-ELE

RECORD-CONTAINS-RECORD REC-CON-REC

RECORD-CONTAINS-ELEMENT REC-CON-ELE

111

E

TrrevrryY

-

6 8 4 '

by | 2t

o

3
13
1
t

ELBMENT-CONTAINS-ELEMENT

PROCESSES
USER-PROCESSES-FILE
USER-PROCESSES-DOCUMENT
USER-PROCESSES-RECORD
USER-PROCESSES-ELEMENT
SYSTEM-PROCESSES-FILE
SYSTEM-PROCESSES-DOCUMENT
SYSTEM-PROCESSES-RECORD
SYSTEM-PROCESSES~ELEMENT
PROGRAM-PROCESSES-FILE
PROGRAM-PROCESSES-DOCUMENT
PROGRAM-PROCESSES-RECORD
PROGRAM-PROCESSES-ELEMENT
MODULE-PROCESSES-FILE
MODULE-PROCESSES-DOCUMENT
MODULE-PROCESSES-RECORD
MODULE-PROCESSES-ELEMENT

RESPONSIBLE-FOR
USER-RESPONSIBILE-FOR-SYSTEM
USER-RESPONSIBLE-FOR-PROGRAM
USER-RESPONS1BLE-FOR-MODULE
USER-RESPONSIBLE-FOR-RECORD
USER-RESPONSIBLE-FOR-DOCUMENT
USER-RESPONSIBLE-FOR-RECORD
USER-RESPONS1BLE-FOR-ELEMENT

RUNS
USER-RUNS-SYSTEM
USER~RUNS-PROGRAM
USER~RUNS-MODULE

G60ES-TO
SYSTEM-GOES-TO-SYSTEM
PROGRAM-GOES-T0-PROGRAM
MODULE-B0ES-TO-MODILE

DERIVED-FROM
DOCUMENT-DERIVED-FROM-FILE
DOCUMENT -DERIVED-FROM~DOCUMENT
DOCUMENT -DERIVED-FROM-RECORD
ELEMENT-DERIVED-FROM-FILE
ELEMENT~DERIVED-FROM-DOCUMENT
ELEMENT-DERIVED-FROM~RECORD
ELEMENT-DERIVED-FROM-ELEMENT
FILE-DERTVED-FROM-DOCUMENT
FILE-DERIVED-FROM-FILE
RECORD-DERIVED-FROM-DOCUMENT
RECORD-DERIVED-FROM-FILE

ELE-CON-ELE

PR PROCESSED-8Y PR-BY
USREC-PR-FILIL
USR-PR-DOC
USR-PR-REC
USR-PR-ELE
SYS-PR-FIL
SYS-PR-DOC
SYS-PR-REC
SYS-PR-ELE
PGM-PR-FIL
PGM-PR-DOC
PEM-PR-REC
PEM-PR-ELE
MOL-PR-FIL
MOL-PR-DOC
MOL-PR-REC
MOL-PR-ELE

R-FOR RESPONSIBILITY~OF R-0F
USR-R-FOR-5YS
USR-R-FOR-PGM
USR-R-FOR-MOL
USR-R-FOR-REC
USR-R-FOR-DOC
USR-R-FOR-REC i
USR-R-FOR-ELE 8

RINS RUN-BY RUN-BY X
USR-RUN~SYS , e S
USR-RUN-~PEM o
USR-RUNS-MOL . P

0 COMES-FROM R 130
SYS-T0-5YS o
MDL-TO-MOL ’

D-FR PRODUCES PRO
DOC-D-FR-FIL
DOC-D-FR-DOC
DOC-D-FR-REC
ELE-D-FR-FIL .
ELE-D-FR-DOC
ELE~D-FR-REC
ELE-D-FR-ELE
FIL-0-FR-DOC
FIL-D-FR-FIL
REC-D-FR-DOC
REC-D-FR-FIL

112

ol

RPN ¥ &

- e
e ¥ueFut

T,

e gy !

=
o

L I G SADREA LN
RAEUAE A LT L

RECORD-DERIVED~FROM-RECORD REC-D-FR-REC
CALLS as CALLED-BY CLo-8Y
PROGRAM-CALL S-PROGRAM PEM-CLS~-PGM
PROGRAM-CALLS-MODULE PaM-CLS-HOL
MODULE-CALLS-MODILE MOL-CLSDL
REPRESENTED-AS AS REPRESENTS REP
ELEMENT-REPRESENTED-AS ELE-AS-BIT
-BIT-STRING
ELEMENT -REPRESENTED-AS ELE-AS-CHR
~CHARACTER-STRING
ELEMENT-REPRESENTED-AS ELE-AS-FIX
~FIXED-POINT .
ELEMENT-REPRESENTED-AS ELE-AS-FLO
-FLOAT

ELEMENT -STANDARD-FOR-ELEMENT ELE-ST-FOR-ELE
(Inverse is: ELEMENT-STANDARD-OF-ELEMENT ELE-ST-OF-ELE)

F1LE-HAS-SORT-KEY-ELEMENT FIL-H-S-K-ELE
(Inverse is: EI.BBJT-SNT-KEY—W-FILE ELE-S-K-0F-FIL)

FILE-HAS-ACCESS-KEY-ELEMENT FIL-H-A-K-ELE
(Inverse is: ELEMENT-ACCESS-KEY-OF-FILE ELE-A-K-DF-FIL)

A.3 ENTITY-TYPES AND RELATIONSHIP-TYPES

The following two tables depict the entity—types
particulating as members of the non-security related
relationship-types in the Core Srstem-Standard Schema. The
following notation in to denote that the entity-type is:

1 The first member of the relationship-type.

2 The second member of the relationship-type.

R Both the first and second member of the
relationship~type

The first table shows the relationship-types
associated with the following entity—-types:

USER

SYSTEM

PROGRAM .
MODULE

FILE

OOCUMENT

RECORD

ELEMENT

* ok X k X & X %

113

)
R
X
)
' RELATIONSH]P-CLASS-TYPE
. AND
! RELATIONSHIP-TYPE USR SYS PEM MDL FIL DOC REC ELE
CONTAINS
SYSTEM-CONTAINS-SYSTEM S
SYSTEM-CONTAINS-PROGRAM S
SYSTEM-CONTAINS-MODULE A R I
- PROGRAM-CONTAINS-PROGRAM . . R .. e
: PROGRAM-CONTAINS-MODULE S T 2
MODULE-CONTAINS-MODULE . v . R ..
: FILE-CONTAINS-FILE . e . . R ..
- FILE-CONTAINS-DOCUMENT e e ..y o2
FILE-CONTAINS-RECORD S T T
\ FILE-CONTAINS-ELEMENT S
N DOCUMENT ~CONTAINS-DOCUMENT R
N DOCUMENT ~CONTAINS-RECORD e e e e .2,
9 DOCUMENT~CONTAINS-ELEMENT R T
\ RECORD-CONTAINS~RECORD A
; RECORD-CONTAINS-ELEMENT T T
; ELEMENT-CONTAINS-ELEMENT e« « « < « . R
" PROCESSES
- USER-PROCESSES-FILE A SO
A USER-PROCESSES-DOCUMENT
USER~PROCESSES-RECORD 12
3 USER-PROCESSES-ELEMENT SO -
s SYSTEM-PROCESSES-FILE A
"y SYSTEM-PROCESSES-DOCUMENT A e
) SYSTEM-PROCESSES-RECORD S e
SYSTEM-PROCESSES-ELBMENT L
PROGRAM-PROCESSES-FILE A L
‘, PROGRAM-PROCESSES-DOCUMENT P L
. MODULE-PROCESSES-RECORD N S
N PROGRAM-PROCESSES-ELEMENT S L
. MODULE-PROCESSES-FILE A D S
o~ MODULE~PROCESSES-DOCUMENT e e . 02 .
MODULE-PROCESSES-RECORD A L 2
: MODULE-PROCESSES-ELEMENT S L c
- RESPONSBLE-FOR 22
i~ USER-RESPONSIBILE-FOR-SYSTEM 02 v v e e e o
USER-RESPONS] BLE-FOR-PROGRAM 1 . 2 ... e . 5
_ USER-RESPONS] BLE-FOR-MODULE I . . 2 e Ty
‘;‘ - mml“*mm l [] . [] 2 L] - [B
: USER-RESPONS] BLE-FOR-DOCUMENT - S
. USER-RESPONS] BLE-FOR-RECORD A
. USER-RESPONS] BLE-FOR-ELEMENT .
€
- "o
3
A 114
- ey
B
a
|
'y

B2 Pade byt Ve Va0 0@y ol t e R BT TN e : TR

5 i » TN LI 3y € 10)% IS 4 J 4 gt o B S
?
K)
o RN
1¢ USER-RUNS-SYSTEM i 2
B USER-RUNS-PROGRAM 1 « 2
USER-RUNS-MODULE { . . 2 i
o
>, 60ES-TO
: SYSTEM-G0ES-TO-SYSTEM . R
.:‘ + MS.TO.PRM . Y R
MODULE-BOES-TO-MODULE . . . R
A DERIVED-FROM
DOCUMENT-DERIVED~FROM-FILE R . . .
:'. DOCUMENT-DERIVED~FROM-DOCUMENT 1 2 . .
N DOCUMENT-DERIVED~FROM-RECORD 2 1 . .
ELEMENT -DERIVED-FROM-FILE R . .
ELEMENT-DERIVED-FROM-DOCUMENT { 2 .
o ELEMENT -DERIVED-FROM-RECORD 201 .
o ELEMENT-DERIVED-FROM-ELEMENT 2 . { .
‘:l F]LE-DERIWHW . [. . . . R .
": FILE‘DER“EHRN'FI LE 2 . . l
RECORD-DERIVED-FROM-DOCUMENT 2 . 1
y RECORD-DERIVED~FROM=-FILE 2 ¢
z RECORD-DERIVED-FROM-RECORD R
- CALLS
::' mm’l-mLs-m . . R . . . [} hd
PROGRAM-CALLS-MODULE . . 1 2
oy MODULE-CALLS-MODULE . . . R
% -
b ELEMENT-STANDARD-FOR-ELEMENT T
FILE-HAS-SORT-KEY-ELEMENT B
3 FILE-HAS-ACCESS-KEY~ELEMENT 1 . . 2
.': The last three relationship-types are not members of a
< relationship~class, and s0 are listed separetl.
s The second table shows the relationship-types
4 associated with the following entity-types:
2 * ELEMENT
A * BIT-STRING
(3 » CHARACTER~STRING
f * FIXED-POINT
- * FLOAT .
i RELATIONSHIP-CLASS-TYPE
f AND
4 RELATIONSHIP-TYPE ELE BIT OR FIX FLO .
: 3
4
(X 115
s
".
()
z
3 = — e . S S
RTINS T 'f;-'

Y T e W ey -

o
o,

a s .
n‘l‘"

LA/l CS
o,
[}
(A

[] .*\]
% N
: REPRESENTED-AS NS
ELEMENT-REPRESENTED-AS-BI T-STRING NP
ELEMENT-REPRESENTED-AS-CHARACTER-STRING t . 2 .. ¢
. ELEMENT-REPRESENTED-AS-F IXED-POINT T S L3
g ELEMENT-REPRESENTED-AS-FLOAT 1 . . .2 hay

O
*
oy gy,

A.4 ATTRIBUTE-TYPES AND RELATIONSHIP-TYPES

The following are the attribute-types assicociated with
the relationship-class-types and relationship-types in the
Core System—-Standard Schema:

The relationship-types
- SYSTEM-PROCESSES-FILE
- PROGRAM-PROCESSES-FILE
- MODULE-~PROCESSES-FILE
have the single-valued attribute-type ACCESS-METHOD
associated with them.

” * All PROCESSES and RUNS relationship-types have the
- single-valued attribute-typw FREQUENCT associated
S With th.m-

* The relationship-type RECORDS-CONTAINS-ELEMENT has the
single-valued attribute-type RELATIVE-POSITION
- . associated with it.

The relationship~type ELEMENT-REPRESENTED-AS-BIT-
STRING has the single-valued attribute-type LENGTH
and the multiple-valued attribute-type USAGE
associated the it.

o s
PLAR N

»
L

*# The relationship~type ELEMENT-REPRESENTED-AS-
CHARACTER-STRING has the single-valued

- attribute-types LENGTH and JUSTIFICATION and the

1 multiple-valued attribute~type USAGE associated with

S it.

* # The relationship-types

it - ELEMENT-REPRESENTED-AS-FIXED-POINT

3 - ELEMENT-REPRESENTED-AS-FLOAT

- have the single-valued attribute~types LENGTH,

, PRECISION, and SCALE, and the multiple-valued

g attribute~type USAGE associated with them.

E A.S5 SUPPORT FOR THE CORE SECURITY FACILITY

WY

% In addition to the entity~types DICTIONARY-USER and

M VIEW the Core System-Standard Schema also contains the
relationship-type DICTIONARY~-USER~-MHAS-VIEW, which assiciates -

¥, a IRDS user with the views he/she may use. A number of

¥

",

"

K 116

K ~ . F 0 . PN R R AR N I O A R S X T AR A
o -‘F,v' e ‘v'h’r d .' '1"‘ \""t"“!"‘x"’(’l‘ ’.-"h."“.‘ “-“.‘\”*« f‘v‘ .b.“.‘."u""u‘ﬁ’. 3 gﬁl,ﬁ"i_-*- *l“‘ ‘:".5 EALNRL i e R AP R “ .'!E,r";*) I N

3V v,

CSVL Y

T VR]

‘wTe BOR B

ad a4

!
/
)
L}
¥
i

T P ST BLEY U NN G W W W e —r————— e —

attributes—-types and attribute—group~types in the Core
System—-Standard schema are used to specify the categories of
permissions that can be assigned to a IRDS user with a
particular view,

A.6 THE ATTRIBUTE-TYPE-VALIDATION-PROCEDURE META ENTITIES
The Core System-Standard Schema contains the following
two attribute-type-validation-procedure meta-entities:

* RANGE-VALIDATION, used to restrict the attributes of a
given attribute-type to a predefined set of ranges.

* UVALUE-VALIDATION, used to restrict the attributes of a
given attribute-~type to a predefined set of values,

A.7 THE ATTRIBUTE-TYPE~VALIDATION-DATA META-ENTITIES

There are no attribute-type-validation-data
meta-entities specified in the Core System—-Standard Schema.
To use this feature, an organization must define and add
these meta-entities to the schema.

A.8 THE LIFE-CYCLE-PHASE META-ENTITIES

The Core System—Standard Schema contains four
Life-Cycle-Phase meta—-entities. These are:

UNCONTROLLED-PHASE -~ Entities are in this
life-cycle-phase when they are added to the IRD.

CONTROLLED-PHASE - Entities used in an operational
environment, for which structural integrity controls
are provided by the IRDS, are in this
life-=cycle-phase.

ARCHIVED-PHASE - This life-cycle-phase is used to
document those entities no longer in use.

SECURITY-PHASE - This life-cycle-phase, of phase class
UNCONTROLLED is used for DICTIONARY-USER entities
associated with the Security Facility of the Core
Standard IRDS.

A.? THE QUALITY-INDICATOR META-INTITIES

The Core System-Standard Schema does not contain any
pre-defined QUALITY-INDICATOR meta-entities. These
meta-entities may be defined by an organization.

A.10 THE VARIATION-NAMES META-ENTITIES

There are also no pre-defined VARIATION~-NAMES
meta-entities in the Core System-Standard Schema. These
meta-entities may be defined by an organization.

117

PN

Tl -ty » ¥ ¥ ¥

S LA S TEEN.T A -8 % % s e b4 AN TSI 0 2 ..

-

», L oy o" ALY,
N B v."\.‘ EANN T\l LN S50

A.11 THE SCHEMA-DEFAULTS META-~ENTITIES

There is one SCHEMA-DEFAULTS meta-entity in the Core
System-Standard Schema. This meta-entity, called
EXISTING-SCHEMA-DEFAULTS, is used to establish minimum and
maximum name lengths and minimum and maximum attribute
lengths in IRD.

118

e

N RO IL R U T S R R T .
’:\‘4“.‘1\"‘1‘ A AN R

R m——

vh At

e 0Ty Wy

W T Timee W v W T e TWTTeUTNNLEEE - TE e T e T e W TN s T T e

D
»
.
»:
’.
»
[
»
?
v,
’
?
?
2
”
‘
¢
)
'
0

bie
‘,'.;\",'.
1
By Ny
AR
O
I.A'_.'
APPENDIX B NS
COMMAND SPECIFICATIONS NN
SYNTAX 1 [
Al) words shown in captials are required. 3 7."’
{] = Optional Wiy 3
<) = yser supplied N
{} = May be repeated as required ;’-" v
1. Schema Commands _,ﬁ_.-,‘
1.1 Schema Maintenance :?E’
xﬁ g
* Add Meta-Entity Command *‘Qg
';.}'.; ,,,'
ADD META-ENTITY <(Meta-entity~name> eold

META-ENTITY-TYPE = (Meta-entity~-type>
WITH META-ATTRIBUTES

e

[((Meta-attribute-name> = <Initial value>}l: N
* Modify Meta-Entity Command N
SN
MODIFY META-ENTITY (Meta-entity-name> 3
WITH META-ATTRIBUTES SR
{{Meta-attribute-name> = {new value’}; Ao
o L
K el dd
* Delete Meta-Entity Command ty '

DELETE META-ENTITY {Meta-entity-name);
* Add Meta-Relationship Command .

ADD META-RELATIONSHIP
FROM {Meta-entity-name-1)> TQO {Meta-entity-name-2>
WITH META-ATTRIBUTES
{({Meta-attribute~-name> = {valued>}];

Modify Meta-Relationship Command

MODIFY META-RELATIONSHIP
FROM {Meta-entity-name-i> TO {(Meta-entity-name-2>
WITH META-ATTRIBUTES
{{Meta-attribute-name> = <{value))

[{Meta-entity-name-1> = (Meta-entity-name>] %o
[{Meta-entity-name-2> = {(Meta-entity-name>) va
[{{Meta-attribute-name) = {New-value’>]; S
PN

Delete Meta-Relationship Command -

DELETE META-RELATIONSHIP
FROM {Meta-entity-name~-1> TO {Meta-entity-name-2>

WITH META-ATTRIBUTES -

{({Meta~attribute-name) = {value’}]; p -3

119 | S

T S A O A NS R S OO O BN L A e X

ERRAP LA N PR T A L S Shekc Ralt AT+ S S S O AN T 0 8 SRy b A A A

L
PN
AR
AN
n.;\’.:-‘..'
% Replace Meta-Relationship Command e
REPLACE META-RELATIONSHIP },,m .
FROM (Meta-entity-name-1> TO <(Meta~entity-name-2> PN
WITH META-ATTRIBUTES W
[{{Meta-attribute-name-1> = <value’}] . Yads
BY FROM <(Meta-entity-name-1)> TO {Meta-entity-name-3> KR
WITH META-ATTRIBUTES E
[{{Meta-attribute-name-2> = <{value’}]; KSR LY
N2
Modify Meta-Entity Name Command j.:-j.j-;.:: ;
RGN
MODIFY META-ENTITY-NAME e

FROM (Meta-entity-name-1> TO (Meta-entity-name-2>:
* Install Meta-Entity Command
INSTALL {(Meta-entity-name>;
1.2 Schema Qutput Command

QUTPUT SCHEMA
SELECT [ALL) or [{meta-entity-name-list)]
: [WHERE <(restriction-expression)> boolean operator
. {restriction-expression>] \
[(Title>] '
[SHOW ALLI or ;
[SHOW ALL META-ATTRIBUTES or '
{Meta-attribute-list>] and/or
{ SHOW ALL META-RELATIONSHIPS or
{Meta-relationships-list>] and/or
{ROUTE TO <Destination-list>];

Ry
han

‘.,

»

-~
g™,

2. Dictionary Commands

'i' _,’

2.1 Dictionary Maintenance Commands

e 2
-
-,
4

i * Add Entity Command

ADD ENTITY <entity-name>

[ENTITY-TYPE = {(entity-type>

l WITH ATTRIBUTES

\ [{{attribute-name> = (Initial value’));
)

i # Modify Entity Command

]

; MODIFY ENTITY <(entity-name)

i C{<attribute-name) = {(New value’}];

(

: 120 <
3 1Pty R A A R R T T ST LTAA e e T T T R T R e TR e

3

g
v

OANOSYLES . N

Delete Entity Command

DELETE ENTITY
L [{Entity-name>] or -
,L;Q [USING = <Entity-list-name>] or
N [USING PROCEDURE = <{Procedure-name>] or
S [SELECT WHERE <{restriction-expression> boolean
operator {restriction-expression>];
R * Add Relationship Command
v,
< ADD RELATIONSHIP
b - {Entity-name-1> <Relationship-type> <(Entity-name-2:
o WITH ATTRIBUTES
({{attribute-name> = (Initial value>}];
- # Modify Relationship Command
ﬂ; MODIFY RELATIONSHIP
oy {Entity-name-1> <{Relationship-type> {Entity-name-2>
" [{{attribute~name> = {(New value’>}];
o * Delete Relationship Command
.
o MODIFY RELATIONSHIP
Y [<Entity-name-1)> {Relationship-type)> <Entity-name-2:]
{{Relationship~list-name>);
{i % Modify Access-Name Command -
L " MODIFY ACCESS-NAME
Ca

{Current access~name> TO {(New access—name);
Modify Descriptive-Name Command

MODIFY DESCRIPTIVE-NAME
{(Current descriptive-name> TO {New descriptive-name’;

Modify Entity Life-Cycle-Phase Command

MODIFY ENTITY LIFE-CYCLE-PHASE
FOR (Entity-name> or {Entity-list-name>
FROM {Current life-cycle-phase) TO <(New life-cycle-
phase?;

| TONNONNDY ! SONONMNOY.

Copy Entity Command -

COPY ENTITY <Entity-name>
{WITH RELATIONSHIPS]
TO {New entity-name)
[DESCRIPTIVE-NAME = (Descriptive-name>]

Ay

N 121

-
N - . - - - T TNy Wt e g i, R R VDR N Sl v, s
B ?VSJ,L LA TR EA Y T Ml Ca L, C D i S e N A e S e R R SR A A LA

| 8 NN I AR

)

»
\J
.

i

B A G R R AT A IS S AL AT

[QUALITY = <Quality-indicator>];
2.2 Dictionary Output Commands

* General Output Command
QUTPUT DICTIONARY
[USING VIEW = ALL]
[USING VIEW = {view=-name> or {view-name-list’>]
SELECT [ALL]) or
(ENTITIES]
{restriction-expression?
{boolean operator’
{restriction-expression>
[{SORT SEQUENCE = <(sort-parm-list>]
SHOW <(show-options>
{SHOW <Title>
[ROUTE TO {destination-list)>]}
[PROCEDURE-NAME = <{procedure-name?;

% QOutput Impact-of-Change Command

OUTPUT IMPACT
[USING VIEW = ALL]
[USING VIEW = {view=-name> or <view-name-list>]
SELECT [ALL] or
[ENTITIES]
{restriction-expression>
{boolean operator)
(restriction-expression>
[SORT SEQUENCE = <{(sort-parm=-list>]
SHOW {show-options)
[SHOW (Titie)
{SHOW LIFE-CYCLE-PHASE]
(SHOW QUALITY-INDICATOR]
{SHOW ATTRIBUTES [ALL1 or [NQO1 or
[<attribute-name>11]
{SHOW DESCRIPTIVE-NAME]
[ROUTE TO {(destination-1ist>]
{PROCEDURE-NAME = {procedure-name>];

% QOutput Syntax Commands

OUTPUT SYNTAX
(USING VIEW = ALL]
[USING VIEW = (view-name> or {view-name-list>]
SELECT {ALL] or
(ENTITIES]
{restriction-expression>
{boolean operator’
{restriction-expression>
(SORT SEQUENCE = <(sort-parm-list>]

122

O A L g RO LT TR AR, U R Ay AR RN e
oL SN SO S ST S O S SR TR T 2R AR ERAR AT R R RS

e
)

A
o~
v"
»

.
5'
]
"

#00

»

l.'- J
= Ay
IV
PN L
P

L]
e

-

LY "‘v LY ‘v'/'v

,

O
N
LI

OO
LA

i
7
SN

-

Ay AyAy

S AN

Sl el

5 5 3, %]

” .
LA el

Al AAl

L Ay St

S SN

., '- ‘I

L

Frrrd

Weva?a% ' Yo

R

vetd)

Sk S A At S ML

SHOW (show-options)
[SHOW <Title>]
[SHOW LIFE-CYCLE-PHASE]
[SHOW QUALITY-INDICATOR]
[SHOW RELATIONSHIP <{relationship-display-options>}
[SHOW RELATIONSHIP SYNTAX FOR EACH <entity-name>)
[ROUTE TO {(destination-1ist)]
[PROCEDURE-NAME = <{procedure-name>];

2.3 Dictionary Entity-List Commands

Build Entity-List Command

BUILD ENTITY-LIST
SELECT [ALL1 or
[ENTITIES])
{restriction-expression)
{boolean operator>
{restriction-expression)
[LIST-NAME = <{entity-list~name)]
[USING VIEW = ALL)
[USING VIEW = {view-name)> or {(view-name-~list>]
[PROCEDURE-NAME = (proceduyre-name>]
[(PROCEDURE-DESCRIPTION = {short-string-literal>];

Entity-List Union Command

UNION
{existing entity-list-name>,
{{existing entity-list-name>2}
= (new entity-list-name);

Entity~List Intersection Command

INTERSECTION
{existing entity-list-name),
{{existing entity-list-name>?2
= {new entity-list-name);

Entity~-List Difference Command
DIFFERENCE
{entity=-list-1-name),{entity-list-2-name>
= {new entity-list-name);
Entity-List Subtraction Command
SUBTRACTION

{entity-list-i-name),<entity~list=-2=name>
= (new entity-list-name’;

123

. - -

*# Name Current Entity-List Command

NAME CURRENT ENTITY-LIST <entity-list-name’; -

P AL

. o
3 % Output Entity-List Command ;.;;'_*:4
i‘ “:P‘-‘:
- OUTPUT ENTITY-LIST ;-(f‘]
[LIST-NAME = <{entity-list-name))]

(SHOW <(Title>l :

! [ROUTE TO (destination-1list>}; A

rT A

-
e R

Qutput Entity-List Names Command

-yt
Y

-
"3

OUTPUT ENTITY-LIST NAME
[SHOW <(Title>]

- [ROUTE TO <destination-list>]; NG
t -":‘f“:'
. 2.4 Dictionary Procedure Commands I

- # Qutput Procedure Syntax command

OUTPUT PROCEDURE SYNTAX
ALL or {procedure-name>
[SHOW <Title>]
(ROUTE TO <destination~list>};

L]

Output Procedure Names Command

.
<

FIV W
vt a o
.y
L7
-

OUTPUT PROCEDURE-NAME

S [SHOW PROCEDURE-DESCRIPTION) £ %
k- [ROUTE TO <destination-list)1; A
Run Output Procedure Command ;:;v‘{

SIS

RUN OUTPUT PROCEDURE <procedure-name) e

y CUSING VIEW = ALL]
. {USING VIEW = (view~name) or <{view-name-list)l] .
[ROUTE TO {destination-list>); =

Run Entity-List Procedure Command

RUN ENTITY-LIST PROCEDURE {procedure-name>
(LIST-NAME = (entity-list-name>]
[USING VIEW = ALL)

2 [USING VIEW = (view=-name) or {(view-name-list>];

T
e .

Save Output Procedure Command

PLIPS N

SAVE OUTPUT PROCEDURE
PROCEDURE-NAME = <procedure-name> o
[PROCEDURE-DESCRIPTION = (short-string-literaldly

Y 124

,,,,,,,

AR
\ . . e
. % Save Entity-List Procedure Command by
®
SAVE ENTITY-LIST PROCEDURE
) PROCEDURE-NAME = {procedure-name>
2 [PROCEDURE-DESCRIPTION = <(short-string-literal>);
‘
: * Delete Procedure Command .
A
s DELETE <{procedure-type> PROCEDURE <procedure-name);
'_‘.:' 3. General! Commands
b
- 3.1 IRD-IRD Interface Commands
Create Dictionary Command
N
-3 CREATE DICTIONARY <new-dictionary-name)
N {LOCATION CLAUSE {implementor-defined>]
o SCHEMA IS
™ {IN DICTIONARY <(dictionary~name>] 4
- [IN FILE (file-name>] o5
[STANDARD] LY
[LOAD DICTIONARY FROM <{file-name>]; 3
y * Export Dictionary Command . b
. EXPORT DICTIONARY
N [USING VIEW = ALL] o
g [USING VIEW = (view-name) or {(view-name-list>] &
A% - (USING ENTITY-LIST= (Entity-list-name>] R
™ [EXCLUDE RELATIONSHIP OF (<relationship-type>] or £.8
[<{relationship-list-name>]] y
1 [SCHEMA EXPORT FILE = {export-file-name)] i
: [SYNTAX = (short-string-literal)l; ‘;’gjf*
S x"”’é:»,
E: # Check Schema Compatibility Command 5‘,'
- CHECK SCHEMA
(SOURCE) or [TARGET) SCHEMA 1S
) [IN DICTIONARY {dictionary-name) 1
o {IN FILE <(file-name>]
3 [STANDARD] ;
‘“-' .
».
& # import Dictionary Command
. IMPORT DICTIONARY i
~ SCHEMA EXPORT FILE = {export-file-name)
i DICTIONARY EXPORT FILE =
vl {(dictionary=-export=-file=-name) .
" [IN DICTIONARY <dictionary-name)) ¥
[IN FILE <file=name’])
kK
.;J
;é 125
l‘.“
4

o T T B T E VS M A T,
5 il AT 8t v

10 M PV A
.f.ﬂ" p 4,“‘2) ",0

[STANDARDY
LIFE-CYCLE-PHASE = (life~cycle-phase-name);

3.2 Utility Commands
Set Session Default Command

b SET ‘
[VIEW = (view-name>]
[MODE = {mode-type>]
[SHOW ATTRIBUTES
{ENCODED or DECODED]1]
[{{implementor~defined-options’2]
[SAVE] ;

Session Status Command

STATUS

[ALL)

(DICTIONARY]
(ENTITY-LIST]
{MODE]
[VIEWS]
[PROFILES]
(DEFAULTS]
[{implementor-defined-options)];

% Help Command
HELP
[ALL]
{ {command-imperative~substring>l;

Exit Dictionary System Command Pl

EXIT;

B
% Enter Panel Dialogue Command X

PANEL NAME = {panel-name);

PR St

126

3 P— § o b T v . Y l-, o igh m e IR P i B N v .
hOP O DASERICF SULH S I M(PN e LR MWL A b JEN 4 SR R A R v . X

e

o APPENDIX C

BACHMAM DIAGRAMS

-'..ﬁav)

D, iy,

SYSTENM

ChP Rt B R

=

WL R AR

MODULE

T G o

o

R s 2 2 VY

o

127

APP
SUPPORT OF STANDARD DATA MODELS

This appendix describes the new entity-types,

......

LI
RN
N
-l.l r
S
.
".".'.'.

"" "w

«

T
Yy

R
vy
R 00

o, 7
]

'f'f:'?l

...
ey

relationship-types and attribure-types which can be added to y
) the IRD to allow the system to map into NDL and SQL data
R - structures,.[Ref 9, pages 146-201]

L 3% 4
fﬁkﬁ
. ‘-'_*.'?."'f_l

0.1 NETWORD MODEL MAPPINGS E?@f

The following tables describe the mappings between the
generic entity—-types of the Core IRD and the Network Mode!l o
entities and relationships. ' o

Network Data Model Mapping — Entity types

I
o i D Tt S . ——— . ====='—'=8==-======—-====--====|
)

IRD Generic Model

|

)

| 1

} I |

| Schema] |

| Subscema I |
} Database | Database |

- i Record | Record * !

3 | Set | Set |
| - {
| | |
f { |
I l |
i | 1

Schema
Subscema

Component Element =
Module Module %

Database Procedure Program %
Data Type Element *

| Ne tworK Data H E I Happlngs - relationship-types

l e o e e R e R R T s Rs

!
|
NDL I IRD Generlc Model ++ :
Subschema in Schema*Contanns-Schema i
Schema is Schema-Contains—-Set |
Schema-Contains-Record |
Set-Owner~Is—-Record }
Se t-Member-ls-Record :
{

|

{

{

i

{

|

(R SENEERE,

Owner is
Members are
Contains

Identifier

Record-Contains—-Element
Element-Contains-Element
Set-Has-Sort-Key—-Element
Record-Redefines-Record

Schema~Defines-Database
Element-Associated-Wi th-Element

— Ay T iy T gy S e, S s T s
— Ty, T oy, T s T g W e

Note ~ these are already deflnod in the Core IRDS
Standard.

SRS

++ Note - these NDL relationships are in addition to those
appearing in the IRDS Specifications in the Core IRDS. A
relationship that is in the Core Standard doesnot appear
here unless a different NOL relationship maps into it.

, % 5 9

R CATC

-

.0

XXM

+

* A

.

' -“\" N

*aa’ats

S
P

Y _"\". al

4

e

Qe oCaee

TN NSRS A T RGN RGNS

0.2 RELATIONAL MODEL MAPPINGS

The following tables shows the mappings between the
generic and Relational Model entities and relationships:

| NetworkK Data Model Mapping - Entity tyrpes !

| R R N R N R N T e a=ms

Query & Operations Set

(Join, Projection, etc.h

|__saL |___IRD Generic Model !
| | !
| Schema { Schema

I Table | Record =

I Column ! Element *

: Data Type #

i !

|

t
.'
Element #* ;
!
]

Kelational Data Model Mappings - Relaticnshrip-types
= —_—— =
SOL IRD Generic Model ++

Submodel id tables

ie made up of Table
identified by

——

!
i
| !
| Schema-Contains-Schema]
| Schema-Contains-Set {
| Schema-Contains—Record |
| Record-Has-Access-Key-Element |
| Element-Identifies—Element |
: Element-~Identifies—Record :
{ |
i i
|

Record-Contains—-Element

|
!
]
|
|
‘ is made up of Columns
|

|

Element-ﬁssociated-with-Element|

Note ~ these are already defined in the Core IRDS
Standard.

++ Note - these SOL relationships are in addition to those
appearing in the IRDS Specifications in the Core IRDS. A

relationship that is in the Core Standard doesnot appear
here unless a different NDL relationship maps into it.

129

SRR SCCOETIOG GG SIS

RO SR

)

.'.'-‘-'-‘v—-_-.—--v
.

DR FUSPAPRAPA Y A

AN

PN

¢ AAARSAN

l“"" .

L
a

¥

QUMLAEVESE S

s

L ¥
)l

-...-
S,

X XA

k 8

i

"’JS%

-
W2 1 3 E)

D.3 ENTITY-TYPES AND RELATIONSHIP-TYPES

The following table identify new and existing
entjty—-types and gives their applicability to the SQL and
NDL database models:

4
3
j
|

o'"nff.l» !
£ X "‘)

L4

5,

.,..
v, s I'.l'
o

Applicaability Matrix of Entity-Types

s,
| =5
§ e

R R R R R R R E NN EEEEEEE N R R R REBEEDSEESESETEREREEE '

——— ey - ———

<

<

—— A o, S oy, T, S e

The following table identifies new and existing

SCHEMAIDATABASEIRECORD:SET:ELEMENT:MODULEIPROGRAM:

v
.

oy tptel
it

'1 £
-
> N A

A

/, v,
XX

_“F’ <,
’l
o

%

- - ——

)
e
N
N
o
.
o
.

relationship~-types and gives their applicaability to the SQL

and NDL database models:

Applucabllnty Hatrlx of Relatlonshnp-Types 7

{
|
L
Mode1 : :
SOL } Y'Y Y1IY 1Y Yivylytityipy
Mode1 ‘ .

DESCRIPTION LEGEND:

ECE = Relationship-Type "Element-Contains-Element*
RCE = Relationship-Type "Record-Contains-Element"
RAE = Relationship-Type "Record-Has-Access-Key—-Element"
RRR = Relationship-Type "Record-Redefines-Record"
SCS = Relationship-Type "Schema-Contains~Schema"

SCT = Relationship-Type “Schema-Contains-Set"

SOE = Relationship~Type "Set~Has-Sort-Key—-Element"
SMR = Relationship-Type “Set-Member-]s—-Record"

SOR = Relationship~Type "Set-Owner-ls-Record"

EIR = Relationship~Type "Element-Identifies—-Record"
SDD = Relationship-Type “Schema-Defines-Database”
EIE = Relationship-Type "Element-Ildentifies-Element"

130

rac® " : . ry Ty NN LARARENESENE RN 1,560 "
Ty !l——‘,‘u YRR AL a L A WA R LI »‘-\‘o‘l! R R R TR

..‘l.
'[l
NN
A
EAE = Relationship-Type "Element-Associated-With :;}:::
~-Element" ity
SCR = Relationship-Type “Schema-Contains-Record* B
D.4 ATTRIBUTE-TYPE ASSOCIATIONS f:-_’é:‘.f..
A
i d
‘ The following table depicts the association between Qﬂa
} attribure-types and the entity—types to which they apply. - 51]
The "common® attribute—trpes defined as part of the Core ;)
Standard IRD apply as well, A%
edort
<) W
|] : i E‘\éi—
| Applicability Matrix of Attribute-Types to Entity-Types | , A
\ | = s s e e e e e s e s s e sy s e s e | [2%
l : Attribute-Type :SCH:DBA:RCD:SET:ELM:MDL:PGM:
! ILAN UAGE bX | I X | I X | ! | AN
. I INITIAL- POPULATION | 1 P X | | | i | N
' 1 RA E-OF-ARRIVALS i | | X 1 { I 1 | RO
. | RATE- OF-DEPARTURES | l X 1 | { | | 4
: | RATE-OF-ACCESS R T T T B B T 3205
' | RATE-OF-UPDATE | | I X | 1 | |] a8,
I I DEFAULT- CLAUSE | | | | | X 1 | | - 4
| USAGE FX E X 1 X 1 X1 X1 X | | Rocll
. i I { | | | | } | Gt v
hytant
DESCRIPTION LEGEND: .::.;:yS
RN
' SCH = Entity-type "SCHEMA" - R
| DBS = Entity-type "DATABASE"
. RCD = Entity-type "RECORD"
. SET = Entity-type “SET"
. ELM = Entity-type "ELEMENT"
X MDL = Entity-type "MODULE"
\ PGM = Entity-type "PROGRAM*
A
]
X
!
i oy
. .
\
"
IJ
b g
’
P
g 131
i o
E
" .

" ’ o N ERATLS TN a By B v, N gy, RN R AR R
I e R o P N O N N e D D S U P DTN

M AN s 0 it e e

R L

—— .. ,. [N " RS e S o I.! .l .I ..' I,._"‘*‘ AR T o S ol G A e B e o i 4 S G e e e 8 e abie -0 b4

The following table showe the attribute—types
associated with relationship-types:

Applncabulntr Hatrlx of attrnbuto-types to Relatlonshup-Types

| |
| |
{ Attribute-Type ‘SMR%RAE%EAE{SOE%SCS}SCT:SOR‘RRR%
| ACCESS-METHOD | 1 X |] | 1 | l
| KEY-SELECT | I X |1 | i { | | {
| DRDER-CLAUSE P X 1 |] | | 1 |]
| INSERTION-MODE I X | | | i | i | |
| RETENTION-MODE 1 X 1 | | |] | | |
| | 1 X | 1 X | 1 | 1 !
I DUPLICATES D | l | | i i 1 1
| OCCURS~CLAUSE JRCHN N I O I T R S
1 LANGUAGE | 1 | | | i | I X |
| USAGE | | 1 i { X | X X |
i R JURRN U NN (RN DR (R P S
A
DESCRIPTION LEGEND: ::«‘;3:\
. :'-:::-.:\
SMR = Relationship~type "SET-MEMBER-1S-RECORD" .»:;&;.»"‘
RAE = Relationship-type "RECORD-~-SA-ACCESS-KEY-ELEMENT" o
EAE = Relationship~type "ELEMENT-ASSOCIATION-WITH
- =ELEMENT"
SOE = Relationship-type "SET-HAS-SORT-KEY-ELEMENT"
SCS = Relationship-type “SCHEMA~CONTAINS-SCHEMA"
SCT = Relationship~type "SCHEMA~CONTAINS-SET"
SOR = Relationship~type "SET-OWNER-IS-RECORD"
RRR = Relationship—-type "RECORD~REDEFINES-RECORD"

’
».
‘s
’
¥
2
v
A

et d
o

”
’ 1
M -
o g

J -’,‘n
: ,
i AR
r AN
: e
. \)\'
I '*J o,
. APPENDIX E R
’ IRDS PROTOTYPE SOFTWARE Ny
. * MAIN.PRG 27
! * MODULE NAME: MAIN . f
‘ * INPUT FILES: NONE N
. * OUTPUT FILES: NONE N
, * ROUTINES THAT CALL THE MODLUE: NONE \
K * ROUTINES THAT THE MODULE CALLS:1.1.0.0.0.0, 1.2.0.0.0.0, 1.3.0.0.0.0, dndoy
K * 1.4.0.0.0.0, 1.5.0.0.0.0, 1.6.0.0.0.0 AARAL
N * LOCAL VARIABLES USED: - NN
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. AW 4t
! * one-time: USED TO INSURE THAT THE ASSOCIATED ROUTINE IS RUN ONLY ONCE. [
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES il
r * test : USED TO ALLOW THE USER TO TEST FOR CAPS LOCK DOWN. m
s * INPUT FILES: NONE b
“ * OUTPUT FILES: NONE e
: * DESIGNED BY: ROBERT A. KIRSCH II e
; * WRITTEN BY: ROBERT A. KIRSCH II A
* BASIC FUNCTION OF MODULE: e
* THIS PROGRAM STARTS THE INFORMATION RESOURCE DICTIONARY SYSTEM L
. * IT ALLOW THE USER TO CHOOSE WHICH FUNCTION WITHIN THE SYSTEM R
- * HE WOULD LIKE TO DO. RS
: SET SAFETY OFF _ RN
STORE: .t. TO one_time Kb
DO WHILE one_timée e
CLEAR PN,
STORE ' ' TO test

@ 1,1 SAY "MAIN"

v @ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
2 @ 11,31 SAY YPLEASE INSURE THAT YOU"
3 @ 12,31 SAY "HAVE THE ' CAPS LOCK '"
~ @ 13,31 SAY "ON AS ALL ANSWERS TO"
~ @ 14,31 SAY "QUESTIONS NEED TO BE" .
@ 15,31 SAY "IN UPPER CASE"
i ¢ 1731 SAY iz pane:
‘ ’ es <
* @ 18/31 SAY "PRESS RETURN TO CONTINUE" §¢$§§
,, §§3§E-r6f . TO one_time "‘;Q‘\f"::
' mem_var ¥
r do while .t7 ‘k?‘:,\a
, clear MNCH
i @ 0,1 SAY "MAIN" -
. 8 g,gg gig :ﬁgggngggggn RESOURCE DICTIONARY SYSTEM" el
- @ 6,22 SAY "1 DICTIONARY MAINTENANCE" '
v @ 8,22 SAY "2 DICTIONARY OUTPUT"
- @ 10,22 Say DICTIONARY QUERY"
S @ 12,22 SAY "4 SCHEMA MAINTENANCE"
b @ 14,22 SAY "S SCHEMA OUTPUT"
: 8 i?'%% ggg "g) EXIT DICTIONARY SYSTEM“
. %gcgggﬁ' ENTER YOUR CHOICE (1-6) FROM ABOVE: ' TO choice
o CASE choice = "1
“ do 110000
CASE choice = "2"
’, DO 120000 ‘
i CASE choice = "3
X DO 130000
r, CASE choice = "4" -
’. DO 140000
) CASE choice = ns»
& DO 150000
” g%SE choice = "g" .
g RELEASE ALL -
2 133
]
s

TR B L R A A R oo

4
zmﬂﬁﬂﬁﬂﬁﬁ'ifﬁhﬂumk;?u

o

RETURN !
OTHERWISE e
CLEAR bl
@ 2,4 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 6 ONLY"

@ 3,4 SAY "PRESS RETURN TO TRY AGAIN!" B
ACCEPT TO hold i
ENDCASE
ENDDO
RETURN

" e .
ot
L

[l
1
a3

3
'
-
-
-
a5

0

A

- l[’
S,
P Y 4
o 3t gt o

.
'
[
0
v

.

l'.
vel e
(]

»

P/

5o r“" o
.
o,

B .

o
v

)
»
9y

B o
M
A
)

(LN

.
2ay

IR
e I

2

.

'K

K
.
0

P

s

A

VAR G B S Y e e) TR A MR, e WS W8 e v o rm——— = -

AV

¥ W
DRI

AR NARAMMWM. Lo

P

L g

134

BRI O Te A AT € M e e I A NAD AR A

E

X * 110000.PRG
. * MODULE NAME: 1.1.0.0.0.0
a S * INPUT FILES: NONE
* QUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: MAIN, 1.1.1.0.0.0, 1.1.2.0.0.0, 1.1.3.0.0.0
*1.1.4.0.0.0, 1.1.5.0.0.0.
L * ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0, 1.1.2.0.0.0, 1.1.3.0.0.0,
52 *1.1.4.0.0.0, 1.1.5.0.0.0, MAIN.
. * LLOCAL VARIABLES USED: ch01ce CONTAINS THE NUMBER OF ACTION SELECTED.
‘ * t: REPRESTENTS NO VALUE AT ALL.
: * . hold: USED TO STOP ACTION FOR USER DECISION.
A * DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
N * BASIC FUNCTION OF MODULE:
r. * THIS PROGRAM ALLOWS FOR THE MAINTENANCE OF ENTITY RELATIONS,
: AND RELATIONSHIP RELATIONS.
. do while .t.
- CLEAR
2 @ 0,1 say "1.1.0.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
; @ 3,31 SAY "MAINTENANCE MENU"
N @ 6,22 SAY "1 ADD ENTITY"
N @ 8,22 SAY "2 MODIFY ENTITY"
>, @ 10,22 SAY " DELETE ENTITY"
A @ 12,22 SAY "4 ADD RELATIONSHIP"
X @ 14,22 SAY "5 DELETE RELATIONSHIP"
' @ 16,22 SAY "6 RETURN TO MAIN MENUY
' @ 17,22 SAY " ' _
C ACCEPT ' ENTER YOUR CHOICE (1-6) FROM ABOVE: ' TO choice
- DO CASE
3 CASE choice = "1
s do 111000
\ CASE choice = "2"
\ DO 112000 .
» CASE choice = "3"
DO 113000
y CASE choice = "4"
. DO 114000
- CASE choice = "5" .
; DO 115000
» CASE choice = "6"
o RETURN TO MASTER
e OTHERWISE

@ 2,18 SAY choice

@ 2,21-SAY "IS NOT A VALID CHOICE"

@ 3,18 saYy "PLEASE ENTER VALUES BETWEEN 1 AND 6 ONLY"
@ 4,18 SAY "PRESS RETURN TO TRY AGAIN!"

" 4, e Ate A . B N .
. Mo WL WO REaE AL A S e &S TS - SR N BIL AR o Lo Ch 2t ath Pl atl oSl ol (¥

j& LN

£y
”'
-
Y
r)
2ol

o
.

"«
(g
r_a®

.

SCRDI
18 (A

g * 111000.PRG N
; * MODULE NAME: 1.1.1.0.0.0 e
* INPUT FILES: NONE
* OUTPUT FILES: NONE , Y
. * ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0 AN
. * ROUTINES THAT THE MODULE CALLS:1.1.,1.1.0.0, 1,1:1.2.0.0, 1.1.1.3.0.0, KO0
. * 1:1.1.4.0.0,71.1.1.5.0.0, 1.1.1.6.0.0,1.111.7.0.0,1.111.8.0.0, 1.110.0.0.0 e
Y * LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED. farota
* t: REPRESTENTS NO VALUE AT ALL. et
* hold: USED TO STOP ACTION FOR USER DECISION. s
* DESIGNED BY: ROBERT A. KIRSCH II ood
. * WRITTEN BY: ROBERT A. KIRSCH II AOANY
- * BASIC FUNCTION OF MODULE: oy
: * THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RALATION e
) * TO ADD TUPLES TO. SN

B : set color to 0/3,3
set talk off
CLEAR
4 do while .t.
b CLEAR
. @ 0,1 SAY "1.1.1.0.0.0"
,22 SAY "INFORHATION RESOURCE DICTIONARY SYSTEM"
35 SAY "ADD ENTITY"
15 SAY "1 USER 6; FILE"
15 SAY "2 SYSTEM 7 RECORD"
,15 say " PROGRAM 8 ELEMENT"
,15 SAY "4 MODULE 9 RETURN TO PREVIOUS MENU"
a 4,15 SAY "S5 DOCUMENT © 10 RETURN TO MAIN MENU"
. @ 15,22 say * b

ACCEPT ' ENTER YOUR CHOICE (1-10) FROM ABOVE: ' TO choice

CASE choice = "1®
do 111100
. CASE choice = "2u
N DO 111200
CASE choice = "3¢
K DO 111300
N CASE choice = "4"
. DO 111400 .
CASE choice = 5"
DO 111500
CASE choice = “g»
k. DO 111600
k. CASE choice = "7t
. DO 111700
- CASE choice = "g"
- DO 111800
" CASE choice = ngn
' RETURN
- CASE choice = "10"
s RETURN TO MASTER
5 OTHERWISE
- CLEAR
. @ 2,3 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY"
} @ 3,3 SAY "PRESS RETURN TO TRY AGAIN!"
q ACCEPT TO hold
ENDCASE
ENDDO
. RETURN

e

‘Q '. "h "

AT]

| £V A LAY

3
(8

U
-

-

2 n
LI
i
>
P24

Vit

|
o' d
At
"

* 111100.PRG

* MODULE NAME : 1.1.1.1.0.0

* INPUT FILES : USER

* QUTPUT FILES: USER \

* ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0 .

* ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0

* LOCAL VARIABLES USED:

* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE

* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,

* MODIFIED, DELETED FROM OR OUTPUT.

: t 3 EgggESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

* INPUT FILES: USER

* OUTPUT FILES: USER

* DESIGNED BY: ROBERT A. KIRSCH II

* WRITTEN BY: ROBERT A. KIRSCH II

* BASIC FUNCTION OF MODULE:

: THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE USER RELATION.

USE .

do while .t.

CLEAR

@ 0,1 sAY "1.1.1.1.0.0"

@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"

@ 3,36 SAY "ADD USER" _

@ 6,22 SAY "This program will allow you to enter"

@ 7,22 SAY "additional tuples to the USER relation."

@ 8,22 SAY "Instructions for entering data are"

@ 9,22 SAY "Prov1ded at top of entry screen."

@ 10,22 say o

wait to choice

SET MENU ON .

USE USER

APPEND

SET MENU OFF

RETURN .
3z

137

=

s

¥

- et g 4
Ea AL N Nle el te vty P N R P R]

ARSI

¥

- g5 A O

TR o |

R

]
%

l

l

(=2 0 2 2 0 b B 3 R B I

111200.PRG

MODULE NAME : 1.1.1.2.0.0

INPUT FILES : USER

OUTPUT FILES: USER

ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0

ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

t + REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

LOOP.
INPUT FILES: SYSTEM.
OUTPUT FILES: SYSTEM.
DESIGNED BY: ROBERT A. KIRSCH II
WRITTEN BY: ROBERT A. KIRSCH II
BASIC FUNCTION OF MODULE:
THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE SYSTEM RELATION.

SE
do while .t.

CLEAR

@o0,l say "1.1.1,2.0.0"

@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"

@ 3,35 SAY "ADD SYSTEM" .

@ 6,22 SAY "This program will allow you to enter"

@ 7,22 SAY "additional tuples to the SYSTEM relation."
@ 8,22 SAY “"Instructions for entering data are®

@ 9,22 sSAY "Prov1ded at top of entry screen."

@ 10,22 say " :

gSE SYSTEM

PPEND
SET MENU OFF
RETURN

U

138

D O S S A R TR T e,

.
S

P

%

a"a

T

i L h SN

et s

»
~ ¥ e o8

e b8,

1 A
PR S]

RN

e

=y P

111300.PRG

MODULE NAME : 1.1.1.3.0.0

INPUT FILES : USER

OUTPUT FILES: USER

ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0

ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

t : EgggESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

INPUT FILES: PROGRAM.

OUTPUT FILES: PROGRAM.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE PROGRAM RELATION.

USE

set color to 0/3,7/0,3
set talk off

do while .t.

bR b b B I R I I b O

22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
35 SAY "ADD PROGRAM"

22 SAY "This program will allow you to enter"

22 SAY "additional tuples to the PROGRAM relation."
22 SAY "Instructions for entering data are"

22 SAY "RrgVLded at top of entry screen."

USE PROGRAM
APPEND
SET MENU OFF
RETURN

139

. “»
111400.PRG N0
MODULE NAME : 1.1.1.4.0.0 N,
INPUT FILES : USER :
OUTPUT FILES: USER
ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0
ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0
choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE

CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.
t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

OO0P.
INPUT FILES: MODULE.
OUTPUT FILES: MODULE.
DESIGNED BY: ROBERT A. KIRSCH II
WRITTEN BY: ROBERT A. KIRSCH II
BASIC FUNCTION OF MODULE:
THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE MODULE RELATION.

SE
o while .t.

1l say #1.1.1.4.0.0"

22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
36 SAY "ADD MODULE")

%2 SAY "This program will allow you to enter"

2

gac»»******»w****»*»{

2 SAY "additional tuples to the MODULE relation."
2 SAY "Instructions for entering data are"
9,22 SAY "grgvided at top of entry screen."

USE MODULE
APPEND

SET MENU OFF
RETURN

140

AR WA Per L LS

e et w8
o il N N L

L}
]
t
4
)

S % 3 ok ok Ok 3k ok Ok X % Ok N N N NN

111500.PRG

MODULE NAME : 1.1.1.5.0.0

INPUT FILES : USER

OUTPUT FILES: USER

ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0

ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

t : EgggESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

INPUT FILES: DOCUMENT.

OUTPUT FILES: DOCUMENT.

DESIGNED BY: ROBERT A. KIRSCH Il

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE DOCUMENT RELATION.

USE

set color to 0/3,7/0,3
set talk off

do while .t.

CLEAR

@0,1 SAY "1.1.1.5.0.0"

@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,36 SAY "ADD DOCUMENT"

@ 6,22 SAY "This program will allow you to enter"
@ 7,22 SAY "additional tuples to the DOCUMENT relation."
@ 8,22 SAY "Instructions for entering data are"

@ 9,22 SAY "provided at top of entry screen."

@ 10,22 say " v

wait to choice

SET MENU ON

USE DOCUMENT

APPEND

SET MENU OFF

RETURN

141

avsVE 8" a

»

S Y e

111600.PRG

MODULE NAME : 1.1.1.6.0.0

INPUT FILES : USER

OUTPUT FILES: USER

ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0

ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

t H EgggESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

INPUT FILES: FILE.

OUTPUT FILES: FILE.

DESIGNED BY: ROBERT A. KIRSCH 1I

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE FILE RELATION.

8******************

E
o while .t.

AR
1l sAY "1.1.1.6.0.0"
22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
36 SAY “ADD FILE" .
%2 SAY "This program will allow you to enter"
2

[+

2 SAY “"additional tuples to the FILE relation.”
2 SAY "Instructions for entering data are"

9,22 SAY "Prov1ded at top of entry screen."

@ 10,22 say " v

SET MENU ON
USE FILE
APPEND

SET MENU OFF
RETURN

RO 9

T AT AW R AN TN, it gt fay v Pl Gl AP A AP RariC i ga gua gy SN S gL At aan G gul oAl g Sl S A A 8- A bS L AR AL

“&h
D

T v
L]

a
Etn.

*

> v w
'.I_ P4
.
X
~"- 5"-
PrLLL

ol
S

111700.PRG

MODULE NAME : 1.1.1.7.0.0

INPUT FILES : USER

OUTPUT FILES: USER

ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0 -

ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

t : EgggESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

INPUT FILES: RECORD.

OUTPUT FILES: RECORD.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE RECORD RELATION.

USE

do while .t.

CLEAR

@90,1 say "1.1.1.7.0.0"

X
\

rx

R 2 S B B I B I

e

i @ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
N @ 3,36 SAY "ADD RECORD"
- @ 6,22 SAY "This program will allow you to enter'™
\ @ 7,22 SAY "additional tuples to the RECORD relation.”
: @ 8,22 SAY "Instructions for entering data are'
@ 9,22 SAY "Prov1ded at top of entry screen."
" @ 10,22 say
- wait to choice
- SET MENU ON
S USE_RECORD
- APPEND
- SET MENU OFF . .
RETURN
.

[}

<
4 - .
3

.

&

o

B 143

o -

= g S &4

b B b b I I I b b]

PR\ ety A -va - O B - B e ik St 8

111800.PRG

MODULE NAME : 1.1.1.8.0.0

INPUT FILES : USER

OUTPUT FILES: USER.

ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0

ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT. .

t : EgggESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

INPUT FILES: ELEMENT.

OUTPUT FILES: ELEMENT.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE ELEMENT RELATION.

USE

do while .t.
LEAR

0,1 sAYy "1.1.1.8.0.0"
.22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
,36 SAY "ADD ELEMENT"
,22 SAY "This program will allow you to enter"
.22 SAY "additional tuples to the ELEMENT relation."
.22 SAY "Instructions for entering data are"
,22 SAY “Prov1ded at top of entry screen."
10,22 SAY

USE _ELEMENT
APPEND
SET MENU OFF
RETURN

144

Bt ancab ae aie atl
LR

::: N '\
NS
N @\\z
~ $S§2
- * 112000.PRG Ny
N * MODULE NAME: 1.1.2.0.0.0 e,
* INPUT FILES: NONE -
l * QUTPUT FILES: NONE Ly
’ * ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0 N ,.
’ * ROUTINES THAT THE MODULE CALLS:1.1.2.1.0.0, 1.1.2.2.0.0, 1.1.2.3.0 A
4 * l1’1.&}.,2.4“0.0, 1.1.2.5.0.0, 1.1.2.6.0.0, 1.1.2.7.0.0, 1.1.2.8.0.0, 1. 1 .0.0.0.0 \.::
i * LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER os ACTION SELECTED. o e
: * t: REPRESTENTS NO VALUE AT AL)
* hold: USED TO STOP ACTION FOR USER DECISION.
‘* INPUT FILE: MEM VAR. b
“ * OUTPUT FILE: MEH VAR. A
0 * DESIGNED BY: ROBERT A. KIRSCH II NS
* WRITTEN BY: ROBERT A. KIRSCH II LR
s * BASIC FUNCTION OF MODULE: IO
- * THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION
- * TO MODIFY. s
' do while .t. -
CLEAR ST
@1,1 SAY "1.1.2.0.0.0" RSO
e @ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
o @ 4,35 SAY "MODIFY ENTITY"
@ 7,15 SAY "1 USER 6 FILE" ot
@ 9,15 SAY "2 SYSTEM 7 RECORD" o)
y @ 11,15 say “ PROGRAM ELEMENT" £
i @ 13,15 SAY "4) MODULE 9 RETURN TO PREVIOUS MENU"
: @ 15,15 SAY "§ DOCUMENT 10 RETURN TO MAIN MENU"
) @ 16,22 SAY " f : .
oY ACCEPT ENTER YOUR CHOICE (1-10) FROM ABOVE: ' TO choice
A DO CASE
:* CASE choice = "1"
x store 'USER' to choice .
save to mem_var
do 112100
‘ CASE choice = u2¢

h g

LR]

store 'SYSTEM' to choice

save to mem_var

DO 112100

CASE choice = "3¢ .
store 'PROGRAM' to choice
save to mem var

DO 112100

CASE choice = "4" .
store 'MODULE' to choice
save to mem_var

DO 112100

CASE choice = u§n ,
store 'DOCUMENT' to choice
save to mem_var

DO 112100

CASE choice = “6"
store 'FILE' to choice
save to mem_var

DO 112100

CASE choice = n7»

store 'RECORD' to choice
save to mem_var

DO 112100

CASE choice = "g" .
store 'ELEMENT' to choice

save to mem_var

DO 112100

CASE choice = ng»

RETURN

CASE choice = "10Q" S
RETURN TO MASTER i

LY

:'Jﬂ II.

N

=~

Ky

-.-‘,

$

CrATP e

Y MY
Ll

ot R e v 1R
-

145

e

SR
E

I:’J)J.‘ .,a" G ‘,; O A D R O N DO W v ‘«‘\"‘ AT n., ,u A e e e b

'ﬂ‘ .—_ by ”_ .,v‘ - !!' M A A e N S e i Yo S i S

OTHERWISE
@ 2,3 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY" e
@ 3,3 SAY "PRESS RETURN TO TRY AGAIN!"

ACCEPT TO hold ;
ENDCASE P8
ENDDO ot
RETURN ‘ w

146

ST e w TR T W e N SN . UM e e - . W

", - T 3 WL e AT, 5 R AT A 2 N i X Ralt%d
A Y Ya R '.,v.- oA) AT AR ") ’ﬁ'.&” .:yn‘)\ Ry “h@ \‘,,‘ 5

-‘ .l-JI'.\.ll— — '.".-.ln""r DAL T ANE M Jaaier an e tu i - S i A i B e Bt g b A S L G A S B GRS

L
(&)

o
. f. ,",~

T
¢ .

Ny

112100.PRG :
MODULE NAME: 1.1.2.0.0.0 N
INPUT FILES: NONE

OUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.
ROUTINES THAT THE MODULE CALLS:1,1.2.1.0.0, 1.1.2.2.0.0, 1
1.1.2.4.0.0, 1.1.2.5.0.0, 1.1.2.6.0.0, 1.1.2.7.0.0, 12,

MATNU, s.':él
L]
LOCAL VARIABLES USED: e

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE

CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO, ~

MODIFIED, DELETED FROM OR OUTPUT. oS
hold + USED TO STOP ACTION FOR USER DECISION. o
rec_num : CONTAINS THE VALUE OF THE POINTER TO THE TUPLE TO BE CHANGED. oo
stop : USED TO STOP ACTION FOR USER DECISION. -
t : ggg%ESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES "
INPUT FILES: EEMKVAg USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD,

EN
OUTPUT FILES: gggﬂghg USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD,

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

%gIgoggggLE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION

v RESTORE FROM mem_var

< STORE 0 TO rec_num, stop
" CLEAR

N STORE .t. TO TRUE

) ; do while TRUE

i CLEAR)
il Q 0,1 SAY "1.1.2.1.0.0"

N T e A AN
s

I CA'AS
S o)

0.0.0 b]
1 .

% Ok 3 % % % N

RENA 2223
'
Rl -
v TS
. e
1
>

o A Ok ok ok Ok o % 3k %k %k % kRN A F

1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
3,35 SAY "MODIFY ENTITY"
7,24 SAY YENTER TUPLE NUMBER OF THE" .

7.51 SAY choice
YOU WISH TO MODIFY ' TO rec_num
F ;Eec num <= '0') .OR. (rec_num > '99999')

,24 SAY rec_num

32 SAY "IS"NOT A VALID RESPONSE"

23 SAY "TUPLE NUMBER MUST BE GREATER THAN O"
23 SAY "AND LESS THAN 99999.!

’
Hawa@mma
(]
(2]
£
o
-3

@@@@g
(»Nhndm

DO CASE

CASE choice = 'USER'
USE USER

EDIT(VAL(rec_num))
RETURN

CASE choice = 'SYSTEM'
USE SYSTEM

gg%aéth(rec_num)) "

P of

s B
L
> o*

4

A

(l

s 1M P

CASE choice = 'PROGRAM' ST

B Rt e num) i
rec_num LAY

nsruﬁn - '

CASE choice = 'MODULE' *
USE MODULE =

Ve,

o

Lot

Ol <2

e e

‘e

147

ot ‘l\

]
]

PEEER-V . s s e e s

e TV SWER- % ¥ s

Ty v W

EDIT(VAL(rec_num))
RETURN

CASE choice = 'DOCUMENT'
USE DOCUMENT
EDIT(VAL(rec_num))
RETURN

CASE choice = 'FILE'
USE FILE
EDIT(VAL(rec_num))
RETURN

CASE choice = 'RECORD'
USE RECORD
EDIT(VAL(rec_num))
RETURN

CASE choice = 'ELEMENT'
USE ELEMENT
EDIT(VAL(rec_num))
RETURN

@ 42,1 Say "RETURN]}"

148

W, s
. ¢ .
.

»

I.v-v

w0
. &
2

s
ﬂﬁ(
X%

»
»

T
o
g;l

r_'-' .'f‘." . :ﬁ'
e o)
PN
LA
[l’..l,‘

<o pel
4

%

ALY
X 'y

kS

¥ %

~
..,

A Al “AP
S
I

.-

v %Y
N e
’
v

.“::.r.«

).’
-
7

PR

113000.PRG
MODULE NAME: 1.1.3.0.0.0
INPUT FILES: NONE
OUTPUT FILES: NONE
ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0
ROUTINES THAT THE MODULE CALLS:1.1.3.1.0.0, MAIN
LOCAL VARIABLES USED:
choice: CONTAINS THE NUMBER OF ACTION SELECTED ALSO USED TO TRANSFER THE
RELATION NAME TO NEXT PROGRAM.
t: REPRESTENTS NO VALUE AT ALL.

hold: USED TO STOP ACTION FOR USER DECISION.
INPUT FILE: MEM VAR.
OUTPUT FILE: MEN VAR.
DESIGNED BY: ROBERT A. KIRSCH II
WRITTEN BY: ROBERT A. KIRSCH II
BASIC FUNCTION OF MODULE:
%glgoggggLE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION

SET EXACT ON

set color to 0/3,3

set talk off

CLEAR

do while .t.

ERASE mem_var.mem

LEAR

1,1 say "1.1.3.0.0.0"
22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
35 SAY "DELETE ENTITY"

iS SAY "li USER 6; FILE"

0'~ vy,
o0 A

ARy

L)
LR RE R

-
bR I b D I b b b B b b b B B 2 b B

P
s %

N

A

o
/.

)y

"‘:.' N4
3. ""t
R

SYSTEM 7 RECORD"
PROGRAM 8 ELEMENT"
RETURN TO PREVIOUS MENU"
]

fa,'"; -
I;.‘ R

15 say "4

£
LA

MODULE 9
5,15 SAY "5 DOCUMENT 10 RETURN TO MAIN MENU"
16,22 SAY "

ACCEPT ' ENTER YOUR CHOICE (1-10) FROM ABOVE: ' TO choice

CASE choice = "1

store 'USER' to choice

save to mem_var

do 113100

CASE choice = "2¥)

store 'SYSTEM' to choice

save to mem_var

DO 113100

CASE choice = "3V)

store 'PROGRAM' to choice :
save to mem_var

DO 113100

CASE choice = "4t \

store 'MODULE' to choice

save to mem_var

DO 113100

CASE choice = "5 .

store 'DOCUMENT' to choice

T save to mem_var

- DO 113100

N CASE choice = "6"

store 'FILE' to choice

save to mem_var

. DO 113100

> CASE choice = "1 .

o store 'RECORD' to choice

s save to mem_var
h
(]

L/

PEOEDADDOD Y
= = D D

o
(o]
2]
>
4]
m

e ot a4 s

‘.l
XX
RN

e e
BT ‘l
A5 N
43&#*,

L,

AL AL YL B

DO 113100

CASE choice = "g#

store 'ELEMENT' to choice
save to mem_var

" 149

. .y . vy - o Lo ¥ S e O3 e R ARSI SRR R
) : ’ Y X AN AT R34 r“f’a‘?lﬂm' ‘T"‘,“‘";"ﬂ A.L?‘;":‘&‘.ﬁ:;"u"—‘.i" R N WAPAR L AR "'r S AT RS GR TR T

DO 113100

CASE choice = "g®

RETURN

CASE choice = »10"

RETURN TO MASTER

OTHERWISE

CLEAR

@ 2,18 SAY choice

@ 2,21 SAY "IS NOT A VALID CHOICE

@ 3,18 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY"
@ 4,21 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold

ENDCASE

ENDDO

RETURN

150 WL

O RCAE A A NN, » > a0 R R R PR OGRS RS C TR IRT AR e L,

»
g

-
A

113100.PRG

MODULE NAME: 1.1.3.1.0.0

INPUT FILES: NONE

OUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0

ROUTINES THAT THE MODULE CALLS:1.1.3.0.0.0

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED.

t : EgggESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

stop : USED TO STOP ACTION FOR USER DECISION.

true : USED AS A BOOLEAN VALUE IN LOOPS.

rec num : CONTAINS THE VALUE REPRESENTING THE RECORD CHANGED.

INPUT FILES: USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD, ELEMENT
OUTPUT FILES: USER, SYSTEM, PROGRAM, MODULE DOCUMENT, FILE RECORD ELEMENT
mem_var.mem

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION

TO DELETE TUPLES FROM.

SET MENU ON

RESTORE FROM mem_var
STORE 0 TO rec_num, stop
CLEAR

STORE .t. TO TRUE
doEwhlle TRUE

0,1 SAY "*1.1.3.1.0.0%
WINFORMATION RESOURCE DICTIONARY SYSTEM"
“DELETE ENTITY"
"ENTER TUPLE NUMBER OF THE"
51 SAY choice
"TUPLE YOU WISH TO HAVE DELETED."
“"THE RECORD WILL BE DISPLAYED"
"FOR YOU TO EXAMINE. IF YOU ARE"
"SURE THAT YOU ARE DELETING THE"
"RIGHT RECORD DEPRESS -~U , ©
"IF YOU DO NOT WANT IT DELETED DEPRESS"
10! TO RETURN TQO MAINTENANCE MENU."
ACCEPT' ENTER THE TUPLE NUMBER NOW ' TO rec_num
IF rec_num > '99999!
CLEAR
@ 1,24 SAY rec_num
@ 1,32 SAY "IS NOT A VALID RESPONSE"
@ 2,23 SAY "TUPLE NUMBER MUST BE GREATER THAN O“
@ 3,23 SAY "AND LESS THAN 99999."
WAIT To stop
ELSE
IF REC_NUM <= '0'
RETURN™
STORE .F. TO TRUE
ENDIF
ENDDO
DO CASE |
CASE choice = 'USER'
USE USER
EDIT(VAL(rec_num))
RETURN

CASE choice = 'SYSTEM'
USE SYSTEM
EDIT(VAL(rec_num))
RET

CASE choice = 'PROGRAM'
USE P

EDTU£NAL(rec num))

S 3 Ok % Ok O Ok Ok b O 3 Ok 3 O O % 3 % O b %
% ("1&’.}7“- PV TI]
R 7 zpiﬁﬁ?ﬁdtﬁf
. By

= = 4 =00 00 ~I ~3) i
~

CLEAR
@
@
@
@
@
@
@
@
@
@
@
e

-
)8
N
B
5
<

b g 8 e

LA Y

"l

.

) e

[SLRCNERE N

. |,

. Pl
SR 8 A.a.n.

¥ s

I P RO

"
&

ol AR g S

CASE choice = 'MODULE'
USE MODULE
EDIT(VAL(rec_num))
RETURN

CASE choice = 'DOCUMENT'
USE DOCUMENT
EDIT(VAL(rec_num))
RETURN |

CASE choice = 'FILE®

USE FILE
EDIT(VAL(rec_num)) -
RETURN

CASE choice = 'RECORD'
USE RECORD
EDIT(VAL(rec_num))
RETURN

CASE choice = 'ELEMENT'
USE ELEMENT
EDIT(VAL(rec_num))
RETURN

ENDCASE

152

e

req

h
>
.y
N

114000.PRG
MODULE NAME: 1.1.4.0.0.0
INPUT FILES: NONE
OUTPUT FILES: NONE
ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0 .
ROUTINES THAT THE MODULE CALLS:1.1.4.1.0.0, MAIN
LOCAL VARIABLES USED:
choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,

N AT
-

" MODIFIED, DELETED FROM OR OUTPUT. :
hold -~ : USED TO STOP THE SCREEN QUTPUT FOR A USER DECISION.
t : Egg%ESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
title : CONTAINS THE CHARACTER STRING THAT DESCRIBES THE RELATIONSHIP

BEING ADDED TO, DELETED FROM OR OUTPUT.
INPUT FILES: MEM VAR

OUTPUT FILES: MENM VAR

DESIGNED BY: ROBERT A. KIRSCH II ;
WRITTEN BY: ROBERT A. KIRSCH II 1
BASIC FUNCTION OF MODULE: |
THIS MODULE ALLOW THE USER TO CHOOSE WHICH RELATIONSHIP HE WOULD o
LIKE TO ADD TUPLES TO. :—

CLEAR
do while .t. Wi
ERASE mem_var.mem r£¥
CLE AR

1 SsAyY "1.1.4.0.0.0" oS
2 SAY "INFORMATION RESOU%CE DICTIONARY SYSTEM" »?ﬁi

S HSER CONTAINS SYSTEM 8) FILE CONTAINS REC"

B 2t
SAY "2) SYSTEM CONTAINS PROGRAM 9) RECORD CONTAINS E" ﬁrq
4 SAY YLEMENT" . - AR
SAY "3) ' “PROGRAM PROCESSES FILE 10) USER RESPONSIBLE"
4 SAY TFOR SYSTEM

9 SAY "4; PROGRAM PROCESSES RECORD 11) USER RESPONSIBLE"
64 SAY FOR FILE

9 Say "sg PROGRAM PROCESSES ELEMENT 12) PROGRAM PRODUCES"
64 SAY "DOCUMENT" 3
9 SAY "6) SYSTEM CONTAINS PROGRAM 13) RETURN TO PREVIOU" g5
9 SAY "7) PROGRAM CONTAINS MODULE 14) RETURN TO MAIN ME" =
64 SAY “NU* e

Sgcgggg' ENTER YOUR CHOICE (1-14) FROM ABOVE: ' TO choice
CASE choice = "1" . .
store 'U PROC S' to choice ht iy
store 'USER-PROCESSES-SYSTEM' TO title G T
= save to mem_var .

do 114100 o
CASE choice = "2" .
store 'S PROC_P' to choice
store 'SYSTEM-PROCESSES-PROGRAM' TO title
save to mem_var
do 114100
i CASE choice = "“3"
i store 'P PROC F' to choice —
) store 'PROGRAM~PROCESSES-FILE' TO title 5.4
N, save to mem_var .
: do 114100

CASE choice = "4n
N store 'P_ PROC R' to choice
“» store 'PROGRAH-PROCESSES-RECORD' TO title
; save to mem_var .
do 114100 .
CASE choice = "§» L

IR RS

o
T a A a8,

o M X N N Ok OF % N N O N N Ok O N NN H

%‘lf'.. "‘-
BN
N> 4

(]
om

A R b D D N T W

qqmmwwpp. [ar gty

¥ v
N
wn
e
<
%?
o
E?
R
5,
]
S
2
wn
£
'ﬂ
-
s

.
e

5 0
<
=
O~
R
2
x
.Y

a

Sy s s s s ONDG‘\DCNOWN

2 v
PDROBDDPDDVDDRVDDDDDD

LA,

Yo d

i 153

N R Y R R S N s S

B b b e st AR LU RA N o 20 eol 3
fal

S
LR RA
N

store 'P PROC E' to choice)
store 'PROGRAM-PROCESSES-ELEMENT' TO title
save to mem_var

do 114100

CASE choice = "g" .

store 'S CONT_P' to choice .
store 'SYSTEM-CONTAINS-PROGRAM' TO title
save to mem_var

.
"
X
\d

do 114100
. CASE choice = "7%
store 'P_CONT M' to choic kA
store 'PROGRAE-CONTAINS-HODULE‘ TO title ‘
g save to mem_var A
3 do 114100 st
: CASE choice = "g" . e
R store 'F_CONT R' to choice , }}Wa
3 store 'FILE-CONTAINS-RECORD' TO title Eﬁaé
save to mem_var IR,
do 114100 el

CASE choice = "g")
N store 'R CONT _E' to choice

"~r
A

-
store 'RECORD=CONTAINS-ELEMENT' TO title I
save to mem_var RS
do 114100 e
A CASE choice = "10" Hee

store 'U RESP S' to choi
store 'U§ER-RESPONSIBLE FOR SYSTEM' TO title
save to mem_var

, do 114100 x
4 CASE choice = "11" O
; store 'U RESP F' to choi <5
store 'USER- RESPONSIBLE FOR-FILE' TO title i
h save to mem_var Ty
1 . do 114100 1‘{
' CASE choice = "12" T

store 'P PROD D' to choice .
store 'PROGRAM-PRODUCES-DOCUMENT' TO title
save to mem_var

AR do 114100
N CASE choice = "13"
A RETURN

CASE choice = "14"
MAS

' @1 21 SAY choice
: @ 1,28 SAY "IS NOT A VALID CHOICE"
: e 2 20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 14 ONLY"
20 SAY “PRESS RETURN TO TRY AGAIN'™
' ACCEBT 10 hold
ENDCASE

ENDDO e
s RETURN el

: 154

i

(" o~ I E— PO —
P N S A LN S L T O N D L R U AR

B A S
L 'I v'\
~ -ftj\
DA YSY
a RGN
* 114100.PRG ,f\$~
= * MODULE NAME: 1.1.4.1.0.0 .i*ﬂ
W * INPUT FILES: NONE -C
* OUTPUT FILES: NONE !
R * ROUTINES THAT CALL THE MODLUE: 1.1.4.0.0.0 .
o * ROUTINES THAT THE MOOULE CALLS:1.1.4.0.0.0
) * LOCAL VARIABLES USED:
. * choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
z * CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
" * MODIFIED, DELETED FROM OR OQUTPUT. -
* hold : USED TO STOP ACTION FOR USER DECISION.
: t 3 EgggESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
ba .
o’ * title :+ CONTAINS THE CHARACTER STRING THAT DESCRIBES THE RELATIONSHIP
. * BEING ADDED TO, DELETED FROM OR OUTPUT
v, * INPUT FILES: MEM VAR, USER SYSTEM, PROGRAM, MODULE DOCUMENT FILE, RECORD,
> * EHENT, u_ CONTS U CONT S, U CONT P, P _PROC_F, P_PROC_ R,
j * P_PROC_R.™P PROC CGNT UNT F_ CUNT R, R_ CUNT E,
Y * U"RESP™S, U RESP_ F PTPRED_D
* OUTPUT FILES: MEM VAR, USER, SYST PROGRKH MODULE, DOCUMENT, FILE, RECORD,
* ELEHMENT, TEMP U CONTS u CONT S, U CONT P, P PROC F, P_PROC R,
4 * P_PROC R. P_PROC_E. CONT CONT M, CONT R,"R_CORT_E,
‘ * UTRESP_S, U_RESP_F, PPRED
o
o * DESIGNED BY: ROBERT A. KIRSCH II
Y * WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW FOR THE ACTUAL INPUT OF ADDITIONAL TUPLES TO THE g
: RELATIONSHIP RELATION SELECTED. kﬁ?
? L
G CLEAR e
5 do while .t. :
> RESTORE FROM mem_var N;
2 CLEAR 18
‘ @ 0,1 SAY "1.1.4.1.0.0" e
@ 1,22 SAY " INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,32 SAY "ADD RELATIONSHIP" AR
» @ 8,22 SAY "YOU ARE ABOUT TO BEGIN ADDING TUPLES" Y
o @ 9,22 SAY "TO THE" .
N @ 9,30 SAY TITLE
N Q@ 10 22 SAY "RELATION."
¥ WAIT TO STOP . v
N DO CASE i
CASE ch01ce = "U_PROC_S" oo
USE U PROC_S
1 APPEND
‘,- RETURN
* CASE choice = "S_PROC_P"
e USE_S_PROC_P
- APPEND
" RETURN
CASE choice = "P_PROC_F" -1
USE P PROC_F :
i APPEND .
. RETURN
gy CASE choice = "P_PROC_R"
K USE P _PROC_R
& APPEND)
& RETURN
' CASE choice = "P_PROC_E"
USE P_PROC_E N
APPEND -
b RETURN
. gggxscggégert "S_CONT p*
1) -
¥ APPEND

RETURN
CASE choice = "P_CONT_ M

155

o e - -
"o e e

-}

X

P

b : - -

S T b R (3 T TR SR e R N e L TR T

-

haONACA AR A e AR it A e AP M Rt ey

USE P_CONT_M

APPEND

RETURN

CASE choice = "F_CONT_R"
USE F_CONT_R

APPEND

RETURN

CASE choice = "R_CONT_E"
USE R_CONT_E

APPEND

RETURN |

CASE choice = "U_RESP_S"
USE U RESP_S

APPEND

RETURN | .
CASE choice = "U_RESP_F"
USE U RESP_F

APPEND

RETURN

CASE choice = "P_PROD_D"
USE P_PROD_D

APPEND

RETURN

CASE choice = "13"
RETURN

CASE choice = "14"
RETURN TO MASTER
OTHERWISE

CLEAR ,

@ 1,21 SAY choice

@ 1,28 SAY "IS NOT A VALID CHOICE"

@ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 14 ONLY"
@ 3,20 SAY "PRESS RETURN TO TRY AGAIN!"

ACCEPT TO hold,
ENDCASE

ENDDO

RETURN

156

PRl A i St A b e T i ol S Al Al P MR Y Al Y S At e s § 20 s e Bin e £ 0n aie i A San e S de Sl den fro]
o et .

LA
‘i‘f*'r

ool

\ AZde

Sy

&

S

“ _,
Y

s
et e

N
R

3.0 _l
a

AN

AT

l’\ltl“l_ lﬁ“ ’1

K

-

115000.PRG

MODULE NAME: 1.1.5.0.0.0

INPUT FILES: NONE

OUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0

ROUTINES THAT THE MODULE CALLS:1.1.5.1.0.0, MAIN

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

hold : USED TO STOP ACTION FOR USER DECISION.
t : EgggESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
title : CONTAINS THE CHARACTER STRING THAT DESCRIBES THE RELATIONSHIP

BEING ADDED TO, DELETED FROM OR OUTPUT.
INPUT FILE : MEM_VAR.
OUTPUT FILES: MEM VAR.
DESIGNED BY: ROBERT A. KIRSCH Il
WRITTEN BY: ROBERT A. KIRSCH II
BASIC FUNCTION OF MODULE:
THIS MODULE ALLOW THE USER TO CHOOSE WHICH RELATIONSHIP HE WOULD
LIKE TO DELETE TUPLES FROM.

do while .t.

ERASE mem_var.mem
CLEAR

@0,1 sAay "1.1.5.0.0.0"

Sk S M b ok Ok X N 0k Ok Ok 3k A Ok Ok 0k % A X

@ 1,22 SAY “INFORMATION RESOURCE DICTIONARY SYSTEM"

@ 3,29 SAY "DELETE FROM RELATIONSHIP"

@ 5.9 SAY "1) USER CONTAINS SYSTEM 8) FILE CONTAINS REC"
@ 5,64 SAY "ORDS"

@ 7.9 SAY "2) ~SYSTEM CONTAINS PROGRAM 9) RECORD CONTAINS E"
@ 7,64 SAY "LEMENT"

@ 9.9 SAY "3) 'PROGRAM PROCESSES FILE 10) USER RESPONSIBLE"
@ 9,64 SAY "FOR SYSTEM"

@ 11,9 5ay “4) PROGRAM PROCESSES RECORD 11) USER RESPONSIB

@ 11,64 SAY 'FOR EILE"

@ 13,9 SAY "S) PROGRAM PROCESSES ELEMENT 12) PROGRAM PRODUCES"
@ 1384 SAY "DOCUMENTH

@ 15,9 SAY "6) SYSTEM CONTAINS PROGRAM 13) RETURN TO PREVIOU"
@ 15,64 SAY "§ MENU"

@ 17.9 SAY "7) PROGRAM CONTAINS MODULE 14) RETURN TO MAIN ME"
@ 17,64 SAY “NU"

@ 18,22 SAY " " ,
ACCEST ENTER YOUR CHOICE (1-14) FROM ABOVE: ' TO choice

CASE choice = "1" .

store 'U PROC_S' to choice .
store 'USER-PROCESSES-SYSTEM' TO title
save to mem_var

do 115100

CASE choice = "2"

store 'S PROC_P' to choice

store 'SYSTEM-PROCESSES-PROGRAM' TO title
save to mem_var

do 115100

CASE choice = "3n

store 'P PROC F' to choice

store 'PROGRAH-PROCESSES-FILE' TO title
save to mem_var

do 115100

CASE choice = "4

store 'P_ PROC_R' to choice

store 'PROGRAM-PROCESSES-RECORD' TO title
save to mem var

do 11510

CASE choice = 5%

store 'P_PROC_E' to choice

157

I e

,
L)

7

v,

M ry

.

A
Ak R

»

3

A~ 'b'b\-

A S

St A ;

-, H_,_‘**"A" d

L Y W

store 'PROGRAM-PROCESSES-ELEMENT' TO title : 3
save to mem_var D
do 115100 B
CASE choice = "g" .

store 'S CONT _P' to choice .
store 'SYSTEM-CONTAINS-PROGRAM' TO title
save to mem var

do 115100

CASE choice = "7 .

store 'P_CONT M' to choice .
store 'PROGRAM-CONTAINS-MODULE' TO title
save to mem_var

do 115100

CASE choice = "g" .

store 'F_CONT R' to choice)

store 'FILE-CONTAINS-RECORD' TO title

save to mem_var

do 115100

CASE choice = "9" .

store 'R _CONT E' to choice .
store 'RECORD-CONTAINS-ELEMENT' TO title
save to mem_var

do 115100

CASE choice = "10*¥

store 'U RESP S' to choi

store 'USER-RESPONSIBLE FOR-SYSTEH' TO title
save to mem_var

do 115100

CASE choice = "11"

store 'U RESP F' to choice

store 'USER-RESPONSIBLE-FOR~FILE' TO title
save to mem_var

do 115100

CASE choice = "12"

store 'P PROD D' to choi

store 'PROGRAM-PRODUCES- DOCUMENT' TO title
save to mem_var

do 115100

CASE cho1ce = "3v

RETURN

CASE choice = "14"

RETURN TO MASTER

OTHERWISE

CLEAR .

@ 1,21 SAY choice

Q@ 1,28 SAY "“IS NOT A VALID CHOICE"

@ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 14 ONLY"
@ 3,20 SAY "PRESS RETURN TO TRY AGAINI"
ACCEPT TO hold

ENDCASE

ENDDOQ

RETURN

G d LT T

Ee

e, .*iﬁ{;

,_',&.
[R5y

"
)

{4 ‘“’F
i, 1
£

GRS

158

R Bt S Bl e i e o 2l g Y A i e b+

rod
-
SN
[5‘0{"-$
SN
* 115100.PRG ;:::;»:-i
* MODULE NAME: 1.1.5.1.0.0 NN
* INPUT FILES: NONE WA
* OQUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.1.5.0.0.0 u'~q2
[* ROUTINES THAT THE MODULE CALLS:1.1.5.0.0.0 TR
* LOCAL VARIABLES USED: T
X * choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE $pz,g
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO, s
* MODIFIED, DELETED FROM OR OUTPUT. . L
* hold : USED TO STOP ACTION FOR USER DECISION. A
* rec_num : CONTAINS THE VALUE OF THE POINTER TO THE TUPLE TO BE CHANGED. F)
: t : EgggESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES &SR,
' . WSS LY,
. * title : CONTAINS THE CHARACTER STRING THAT DESCRIBES THE RELATIONSHIP ;aja,
N * BEING ADDED TO, DELETED FROM OR OUTPUT i
\ * INPUT FILES: MEM VAR, U_CONTS, U_CONT S, U_CONT P, P_PROC_F, P_PROC_R AN
\ * P PROC. R ~P_PROC_E- S_CONT_P, P_CONT_M; F_CONT_R cGNT _E, RO
\ * U_RESP”S, U_RESP_F, P_PRED_D. Z
| * QUTPUT FILES: MEH VAR U_TONTS, U_CONT ST U_CONT P, P_PROC_F, P_PROC_R
* PROC P_PROC E coNT P P_CORT_M, F_CONT_R, R coNT E,
. * u RESP s, UCRESP_F, P —PRED_D
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW FOR THE ACTUAL DELETION INPUT OF ADDITIONAL TUPLES
: FROM THE DESIGNATED RELATIONSHIP FILE SELECTED.

do while .t.

RESTORE FROH mem_var
CLEAR

@ 0,1 SAY "1.1.5.1.0.0"

1,22 SAY “INFORMATION RESOURCE DICTIONARY SYSTEM" : .
3,29 SAY "DELETE FROM RELATIONSHIP"

8,21 SAY "ENTER TUPLE NUMBER OF THE"

0,24 SAY TITLE

12,21 sAY "TUPLE THAT YOU WISH TO HAVE DELETED."

13,21 sAY "THE TUPLE WILL BE DISPLAYED FOR" v
14,21 SAY "YOU TO EXAMINE. IF YOU ARE"

15,21 SAY "SURE THAT YOU ARE DELETING THE"

16,21 say "RIGHT TUPLE, DEPRESS -~U . IF"

17,21 SAY "YOU DO NOT WANT IT DELETED, "

18,21 say "TYPE 0 FOR TUPLE NUMBER"

19,21 sAY "TO RETURN TO PREVIOUS MENU."

"
4
u
'.
p
i

@@@@@@@@@@@@@
-

20,21 say " v
ACCEPT' ENTER THE TUPLE NUMBER NOW ' TO rec_num
Y DO WHILE rec_num <> '0'
. DO CASE
! CASE choice = "U_PROC_S"
USE U_PROC S
GOTO TVAL(tec num))
; EDIT
. RETURN.)
: CASE choice = "'S_PROC_P" e
' USE S_PROC P RN
3 gggo TVAL(Tec_num))
X * RETURN
CASE choxce = "P_PROC_F" .
B QR
d rec_num i .
: EDIT
RETURN
! CASE choice = "P_PROC_R"
; USE_P_PROC_R
) ggro TVAL(Tec_num)) .

159

LAl g Mg

e W e W B e wawew w —e v —

o - - -
SHEE TS AR ST N S

Y

’.

YRR N

AL

>
S

. .-
M

At | L AAR

ll.’]

RETURN
CASE choice =
USE P_PROC E

EDI

RETURN
CASE choice =
USE S_CONT P

EDI

RETURN
CASE choice =
USE P CONT M

Gorg TVAL(rec_|

“WP_PROC_E"
num))

"S_CONT_P"

GOT% TVAL(Trec_num))

"P_CONT_M"

GOTO TVAL(Trec_num))

EDIT

RETURN
CASE choice =
USE F CONT R

"F_CONT_R"

GOTO TVAL(Tec_num))

EDIT

RETURN |
CASE choige =
USE R_CONT_E

"R_CONT_E"

GOTO {VAL(Trec_num))

EDIT

RETURN |
CASE choice =
USE U _RESP_S

EDI

RETURN

CASE choice =
USE U _RESP _F

"y_RESP_S"

GOTg TVAL(Tec_num))

"y_RESP_F"

GOTO TVAL(Trec_num))

EDIT

RETURN
CASE choice =
USE P_PROD D

“p_PROD_D"

GOTO TVAL(Trec_num))

EDIT

160

:‘ .lr'i. -0

s .8
Sy

d
.

LA e
\'k““.‘

"
.

CORERE D 3P PNL AN AR L 22 TR,

l;lu‘ an AR o

K

120000.PRG

MODULE NAME: 1.2.0.0.0.0

INPUT FILES: NONE

OUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE: MAIN

ROUTINES THAT THE MODULE CALLS:1.2.1.0.0.0, 1.2.2.0.0.0, MAIN.

t: REPRESTENTS NO VALUE AT ALL.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS PROGRAM ALLOWS THE USER TO SELECT ENTITY RELATIONS,
AND RELATIONSHIP RELATIONS FOR OUTPUT.

while .t.
AR

@@@@@@@{38-******#********

E
0,1 say "1.2.0.0.0.0"
1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
3,31 SAY "DICTIONARY OUTPUT®
6,22 SAY "1 ENTITY"
8,22 SAY "2 RELATIONSHIP"
10,22 SAY ") RETURN TO MAIN MENU"
11,22 SAY !
ACCEPT ' ENTER YOUR CHOICE (1-3) FROM ABOVE: ' TO choice
DO CASE |
CASE choice = u1n
do 121000
CASE choice = w2n
DO 122000

CASE choice = "3

RETURN TO MASTER

OTHERWISE

CLEAR ,

@ 2,18 SAY choice

@ 2,21 SAY "IS NOT A VALID CHOICE"

@ 3,18 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"
@ 4 18 SAY "PRESS RETURN TO TRY AGAIN!"®
ACCEPT TO hold

ENDCASE

ENDDO

RETURN

161

:, N R A AN SR
lnfu' 54 lh’v," R 5, g RN

LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
hold: USED TO STOP ACTION FOR USER DECISION.

L5

RPN ally it B LR RS o SR

X
b

Sy

. T
s

AP W P,

* 121000.PRG

* MODULE NAME: 1.2.1.0.0.0

* INPUT FILES: NONE

* QUTPUT FILES: NONE

* ROUTINES THAT CALL THE MODLUE: 1.2.0.0.0.0

* ROUTINES THAT THE MODULE CALLS:1.2.0.0.0.0, 1.2.1.1.0.0 MAIN

* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.

* t: REPRESTENTS NO VALUE AT ALL.

* hold: USED TO STOP ACTION FOR USER DECISION.
- * INPUT FILE : MEM VAR.

* OUTPUT FILE: MEM VAR

* DESIGNED BY: ROBERT A. KIRSCH II

* WRITTEN BY: ROBERT A. KIRSCH II

* BASIC FUNCTION OF MODULE:

* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION

: TO OUTPUT.

do while .t.

ERASE mem_var .mem

CLEAR

@O0,1 say "1.2.1.0.0.0"

@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"

@ 3,34 SAY "ENTITY OUTPUT"

@ 6,15 SAY "1 USER 6; FILE"

@ 8,15 SAY "2 SYSTEM 7 RECORD"

@ 10,15 say " PROGRAM 8 ELEMENT"

@ 12,15 SAY "4 MODULE 9 RETURN TO PREVIQUS MENU"

g %5 lssgeY""g DOCUMENT 10 RETURN TO MAIN MENU"

%gcgggé ENTER YOUR CHOICE (1-10) FROM ABOVE: 'TO choice

CASE choice = "1"
store 'USER' to choice
save to mem _var

do 121100

CASE choice = "2¢ .
store 'SYSTEM' to choice
save to mem _var

DO 121100

CASE choice = 3" ,
store 'PROGRAM' to choice
save to mem_var

DO 121100

CASE choice = 44" .
store '‘MODULE' to choice
save to mem_var

DO 121100

CASE choice = "5 .
store 'DOCUMENT' to choice
save to mem_var

DO 121100

CASE choice = "g"

store 'FILE' to choice
save to mem_var

DO 121100

CASE choice = "0

store 'RECORD' to choice
save to mem_var

DO 1211000

CASE choice = "g"

store 'ELEMENT' to choice
save to mem_var

DO 121100

CASE choice = ngn

RETURN

CASE choice = "10"
- RETURN TO MASTER
OTHERWISE

162

' ,‘ Dy ,'A,!\ 1 ‘)’?“‘;’."‘ ‘;‘J' 3 n. 'ﬂ‘.ﬁ;\‘}.‘l.‘, ‘v,, "“.) Skt ‘,, ’.. ‘~A 0 ..-4. L -\ (\ ‘\'}l',r""" PN B o X L 5‘) R : H

LD
Ry
S0

‘ 'r*i'r

%y
s
LY

Wy

LR T PUWOWO L Wy * 9o g Satataval caEL ai, Bha AVa ATa gt '
r'.

.ﬁ

“ CLEAR .

o @ 1,23 SAY choice

] @ 1,31 SAY "IS NOT A VALID CHOICE"

@ 2,18 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY"
X @ 3,18 SAY "PRESS RETURN TO TRY AGAIN!" .
. ACCEPT TO hold
“ ENDCASE
~ ENDDO
~ RETURN
N

o
[ROIRT

‘o by

Bl

2 163

»I

13
'

e

8
N

3 o & 5w AN oI RO KA Lo DS i Y Y T EISN X R S S SN N L, AT N O e, o 4

A A N N T T W o Y PT T T rvr_e v
i

AN
AN

Lt
O

R *w
L] . ‘- \
il
E
CX .':’.':F
, Ny,
- et
ot
$ * 121100.PRG *%
< * MODULE NAME: 1.2.1.1.0.0 A
‘ * INPUT FILES: NONE B
* OUTPUT FILES: NONE ;r
A * ROUTINES THAT CALL THE MODLUE: 1.2.1.0.0.0 B/
A * ROUTINES THAT THE MODULE CALLS:1.2.1.0.0.0 e
. * LOCAL VARIABLES USED: NN
4] * choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE Bﬁ}{
£ * CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO, 5;5‘
g * MODIFIED, DELETED FROM OR OUTPUT. Pod
* hold : USED TO STOP ACTION FOR USER DECISION. allul
* option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN
e * OR THE PRINTER.
- : t : EgggESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
. * true : USED AS A BOOLEAN VALUE IN LOOPS.
- * INPUT FILES: MEM VAR
. * OUTPUT FILES: MEM VAR
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
. * BASIC FUNCTION OF MODULE:
-~ * THIS MODULE ALLOW THE USER TO CHOOSE WHETHER THE OUTPUT WILL BE
= : DISPLAYED ON THE SCREEN OR PRINTED.
P RESTORE FROM mem_var
- STORE 0 TO rec_num, stop

s STORE .t. TO TRUE
do while TRUE
CLEAR

. @0,1 SAY "1.2.1.1.0.0"
- RESTORE FROM mem var

- @ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
L @ 4,33 SAY "ENTITY OUTPUT"
- @ 8,23 SAY "LISTED BELOW ARE THE CHOICES FOR HOW"
@ 9,23 SAY "YOU CAN HAVE THE RELATION"
@ 9,50 SAY CHOICE
@ 10,23 SAY "DISPLAYED."
e @ 12,28 SAY "1) SCREEN OUTPUT"
2 @ 14,28 SAY "2 PRINTER OUPUT"
L @ 16,28 SAY "3) RETURN TO PREVIOUS MENU"
“ @ 17,1 SAY * ¢
“r ACCEPT' ENTER YOUR CHOICE (1-3) FROM ABOVE 'TO option
‘ ERASE mem_var .mem
SAVE TO mem_var
DO CASE
o CASE option = '1!
) DO CAS
. CASE CHOICE = 'USER'
- DO 121110
. CASE choice = 'SYSTEM!'
e DO 121110
v CASE CHOICE = 'PROGRAM'
A DO 121110
- CASE choice = 'MODULE'
- DO 121110
. CASE CHOICE = 'DOUCMENT'
- DO 121120
* CASE choice = 'FILE'
¥ DO 121120
CASE CHOICE = 'RECORD'
= DO 121120 ey
X CASE choice = 'ELEMENT' S
o DO 121120 1
A ENDCASE
0N CASE oEtion = 12!
~ DO CAS
¥ CASE CHOICE = 'USER'
' DO 121130 -
16 4 AS
L
d
]

£Q)

oY
B OO ST

N 2 B T O S A S O 0 RN

A

CASE choice
DO 121130
CASE CHOICE 'PROGRAM'
DO 121130
gt CASE choice = 'MODULE' -
ot DO 121130
N CASE CHOICE = 'DOUCMENT'
N DO 121140
q CASE choice = 'FILE'
o DO 121140
CASE CHOICE ‘RECORD'
'ELEMENT'

'SYSTEM'

]

DO 121140
CASE choice
DO 121140
ENDCASE
CASE option
RETURN
OTHERWISE
CLEAR .
@ 0,27 SAY option

@ 0,34 SAY "IS NOT A VALID CHOICE"

@ 1,26 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"
ACCEPT TO hold

|3I

5&@%ﬁ? B
e ERy

>

-

Nl The
"r;f ’

ot
7
ﬁghr'

. ENDCASE K

2 ENDDQ E‘* A
.:,': e,
~ 3
. 058

Tk

2

RS &

0
3

! L AN

e S A

Al

Ay

165
&
b
X

-.'I o a3 s \ - T &
R Nl S S PR HL N S S W)

o FINEY VL . N I R LTINS P P AT i e o e RS S AT S N BRI
W A R PR TR R SIS Y T T SRR T D T TR RO

»

AR DS

‘-
”

" -
AL >

RSN FAODAE

RS ALY

LTSy

o+
»
e
$

121110.PRG
MODULE NAME: 1.2.1.1.1.0

INPUT FILES: NONE

OUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE: 1.2.1.1.0.0
ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0

LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
t: REPRESTENTS NO VALUE AT ALL.

stop, hold: USED TO STOP ACTION FOR USER DECISION.
count: KEEPS TRACK OF ACCOUNT NUMBERS

INPUT FILE: MEM VAR.

OUTPUT FILE: MEM VAR.

DESIGNED BY: ROBERT A. KIRSCH Il
WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE WILL DISPLAY ON THE SCREEN USER, SYSTEM,
PROGRAM AND MODULE RELATIONS

*RESTORE FROM mem_var

CLEAR
@ 0,1 SAY "1.2.1.1.1.0"
1,22 SAY "INFORHATION RESOURCE DICTIONARY SYSTEM"
,30 SAY "ENTITY SCREEN OUTPUT"

,22 SAY "THIS MODULE WILL DISPLAY"

8 SAY choice

22 SAY "IF YOU DO NOT WISH TO DISPLAY"
22 SAY "THIS ENTITY, TYPE '0' TO"

22 SAY YRETURN TO THE PREVIOUS MENU."

5 % O % M N N K NN N F N HF

OTHERWISE

ENDCASE

DO CASE

CASE choice = 'USER!'
CLEAR

USE USER

STORE 1 TO count
SET HEADING OFF

DO WHILE .NOT. EOF()
CLEAR

@ 0,33 SAY CHOICE
2,1 SAY "RECORD

2,11 SAY count

tore count + 1 to count

1 SAY "ACCESS NAME :'

8 SAY A NAME

SAY "IDENTIFICATION NAME ;"'
8 SAY ID NAME

SAY "DATE TUPLE ADDED:"

8 SAY DATE ADDED

o

RO
vy

P o

PO/RODDVDADDDODDODODDN M =M

- 300

SAY "TUPLE ADDED BY:"
8 SAY ADDED BY
SAY "DATE TUPLE LAST MODIFIED:"
8 SAY LST M
SAY WTUPLE LEST MODIFIED BY:"
8 SAY LST MOD_BY
1 SAY "NUMBER™OF MODIFICATIONS :"
28 SAY NUM_OF MOD .
1 SAY "DESCRIPTION:" B
za SAY DESCRIPT Gy
1 SAY "COMMENTS:" Rl
15,28 SAY COMMENTS :

o~

e 3

- -
P

RS Tee
s
P

~ s s w o~ NHNHNHNHNHN

AECEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold e,

ENDDO
RETURN

166 .

, ") X R A A R MR RN
» Y ‘L“t‘ s I 0% c‘.l‘u‘ A U AL UL SR R AR ‘l'..l‘t‘!‘.'i"‘l“!f'»dl‘ A R " - ‘

< a" o

L

OO

P

YT
S

4y

»
A

PR 'Y

A

oo e d

| S

l..‘ \

£)J“)J P

*

b]

W

-

bd "!.’“!"'}.’?"E.Ii;“;‘"’?";? ",

CASE choice = 'SYSTEM'
USE SYSTEM

STORE 1 TO count

SET HEADING OFF

DO WHILE .NOT. EOF()

@ 0, 33 SAY CHOICE
2,1 SAY "RECORD

2,11 SAY count
t re count + 1 to count
1 SAY "ACCESS NAME:"
28 SAY ACC NAME
1 SAY "“IDENTIFICATION NAME:"
28 SAY ID NAME
1 SAY "DATE TUPLE ADDED:"

SAY “"TUPLE ADDED BY:"
8 SAY ADDED BY
SAY "DATE TUPLE LAST MODIFIED:"
8 SAY LST MOD_D
SAY "TUPLE LKST MODIFIED BY:"
8 SAY LST MOD_BY
1 SAY "NUMBER OF MODIFICATIONS:"
28 SAY NUM_OF MOD
1 saY "DESCRIPTION:"
1,28 SAY DESCRIPT
15,1 sAay "COMMEg%S:"

PDORDDEPDOADDOERDRDPEDDN P =M
~ sy NN

CASE choice = 'PROGRAM!'
USE PROGRAM

STORE 1 TO count

SET HEADING OFF

DO WHILE .NOT. EOF()
CLEAR

@ 0,33 SAY CHOICE

q 2,1 SAY “RECORD

@ 2,11 SAY count

store count + 1 to count

1 SAY "ACCESS NAME:"

8 SAY ACC NAME

SAY "IDENTIFICATION NAME:"
8 SAY ID NAME

SAY "DATE TUPLE ADDED:"

8 SAY DATE ADDED

SAY "TUPLE ADDED BY:"

SAY ADDED BY
SAY "DATE TUPLE LAST MODIFIED:"
8 SAY LST MOD_DT

SAY "TUPLE LKST MODIFIED BY:"
8 SAY LST MOD_BY

1 SAY "NUMBER OF MODIFICATIONS:"
28 SAY NUM_OF MOD
1 SAY “DESCRIPTION:"
28 SAY DESCRIPT
1 SAY "COMMENTS:"

NTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold

NI L L ey e

[
w
[d
@
S
<
Q
ég

RETURN
CASE choice = 'MODULE'
USE MODUL

167

— - £ ¢
REJCE XA EASARIE N, ORC “-»p NP RN S a2, LN

l‘" b‘ §A !

WERSASR AN

v il 2

,:,,
.:gégwﬁ

rt of &4

T
Ed

biicy

e s M

N e

'4 o

WANRVNY

Al

-
N

o ¥

YRR

»
4
*
*
ey
»

STORE 1 TO count
SET HEADING OFF

DO WHILE .NOT. EOF()
CLEAR

@ 2,33 SAY CHOICE

g 4,1 SAY "RECORD

@ 4,11 SAY count
store count + 1 to count
1 SAY "ACCESS NAME:"
,28 SAY ACC_NAME
,1 SAY "IDENTIFICATION NAME:"
.28 SAY ID NAME
.1 SAY "DATE TUPLE ADDED:"
,28 SAY DATE ADDED
,1 SAY "TUPLE ADDED BY:"
Y 8 SAY ADDED_BY
0,1 SAY "DATE TUPLE LAST MODIFIED:"
0,28 SAY LST MOD DT
{,1 SAY "“TUPLE LKST MODIFIED BY:"
2
2
3

Y Ll Ll L

,28 SAY LST MOD
.1 SAY "NUMEER UF HODIFICATIONS !
,28 SAY NUM_O
.1 SAY "DESCRIFTION "
1,28 SAY DESCRIPT
@ 17,1 SAY "COMMENTS:"
@ 15,28 SAY COMMENTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold

o}
@e6,1
@6
Q7
@7
@es
@8
@9
@9
@l
el
el
@1
@1
@1l
@1
el

ENDCASE

168

121120.PRG

MODULE NAME: 1.2.1.1.2.0

INPUT FILES: NONE

OUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE: 1.2.1.1.0.0 .
ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0

LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.

t: REPRESTENTS NO VALUE AT ALL.

stop, hold: USED TO STOP ACTION FOR USER DECISION.

count: KEEPS TRACK OF ACCOUNT NUMBERS. -
INPUT FILE: MEM VAR.

OUTPUT FILE: MEHM VAR.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE WILL DISPLAY ON THE SCREEN DOCUMENT, FILE,

RECORD, AND ELEMENT RELATIONS.

RESTORE FROM mem_var

STORE 0 TO rec_num, stop

CLEAR

0,1 SAY "1.2.1 2.0"

1,22 SAY “INFORHATION RESOURCE DICTIONARY SYSTEM"
3,30 SAY "ENTITY SCREEN QUTPUT

5,22 SAY "THIS MODULE WILL DISPLAY“

5,48 SAY choice

7,22 SAY "IF YOU DO NOT WISH TO DISPLAY THIS"
8,22 SAY "ENTITY, TYPE '0O' TO RETURN TO"

9,22 SAY "PREVIOUS MENU."

*
x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

i

. ',. ‘,‘ ";{l,;l, l.

""“‘"‘"‘ .T" '. .' .."‘
®®

3

L 3
S
(=
o
g N
wn
<]

u'.n/;

CASE stop = '0!

RETURN

. OTHERWISE -
- ENDCASE

DO CASE

CASE choice = 'DOCUMENT'

USE DOCUMENT

STORE 1 TO count .
SET HEADING OFF

DO WHILE .NOT. EOF()

CLEAR

@ 0,33 SAY CHOICE

2,1 SAY "RECORD

2,11 SAY count
t re count + 1 to count
SAY "ACCESS NAME ;"
28 SAY ACC _NAME
SAY "mr.m'xucuxon NAME : "
8 SAY ID NAME
SAY "DA'I'E TUPLE ADDED:" _
8 SAY DATE_ADDED v
SAY "TUPLE ADDED BY:" A
8 SAY ADDED BY
SAY "DATE TUPLE LAST MODIFIED:" it
8 SAY LST MOD D e
SAY "TUPLE Lxsr MODIFIED BY:" . "
8 SAY LST MOD BY el
SAY "NUHBER OF MODIFICATIONS:" &
8 SAY NUM_OF MOD <
A "DESCRIPTION:"

SCRIPT
SAY "COHHENTS:"
28 COMMENTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold

AL AN
[N A AR
nmo =

[YWY XA ’."’.}‘

4

Yy
)

1
.

[y
p gt]

}

> s NENEHENENEN -

o Xy
s’
Ll N L aad N 1
m

o
4,1
4
S
5
6
6
7
7
8
8
9
9
1
1
1
1
1
1

0
0
1
1
5.1
5

. ¥ Aal")
T TPOCAA

-

L
2]

‘A’I

169

e

3
&
xﬁ

f }v-*?lﬂmm O TR

" o’ 2V P N B AT e 8

0 Ky : T I R DS
(7‘1‘0\"\. XL 'a ‘b,n W q‘w MM ERRX) o

2araNa

[N A AL LA

'@
4
W3 A

- M

U,

RETURN

CASE choice = 'FILE'
USE FILE

STORE 1 TO count
SET HEADING OFF
DoEgglLE .NOT. EOF()

»33 SAY CHOICE
.1 SAY "RECORD

11 SAY count
e count + 1 to count
1 SAY “ACCESS NAME:“
8 SAY ACC NAME
SAY "IDENTIFICATION NAME : "
8 SAY ID NAME
SAY "DATE TUPLE ADDED:*"
8 SAY DATE_ADDED
SAY "TUPLE ADDED BY:"
8 SAY ADDED BY
SAY “DATE TUPLE LAST MODIFIED:"
SAY LST MOD
SAY “TUPLE LXST MODIFIED BY:"
8 SAY LST MOD_BY
1 SAY "NUMBER™ OF MODIFICATIONS "
28 SAY NUM_OF M
% SAY "DESCRIFTION "

SAY "COMMENTS:"
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold

PRI ST ST e ot T

r
0
0
1
1
5.1

DAODODDDDDRDODDDDDDDDN @ =®@g

[
w
N
@
g
m
5
w

CASE choice = 'RECORD'
USE RECORD

STORE 1 TO count

SET HEADING OFF

DO WHILE .NOT. EOF()

@ 0, 33 SAY CHOICE
2,1 SAY "RECORD

2,11 SAY count

tore count + to count

1 SAY "ACCESS NAME : "

8 SAY ACC NAME

SAY "IDEN{&%ICATION NAME : "

SAY I
SAY "DATE TUPLE ADDED:"
8 SAY DATE_ADDED

SAY "TUPLE ADDED BY:"
8 SAY ADDED BY
SAY "DATE TUPLE LAST MODIFIED:"
8 SAY LST _MOD_DT
SAY "TUPLE LAST MODIFIED BY:"
8 say LST MOD_BY
1 SAY Y"NUMBER™ OFDMODIFICATIONSz“

8 AY NUM_OF
1 saY "DESCRIPTION:"

1 SAY "COMMENTS:"

15 28 COMMENTS

gﬁggﬁT '"PRESS RETURN TO SEE NEXT TUPLE'TO hold
ENDDO

RETURN

CASE choice = 'ELEMENT'

0w =

-]

oL R R R R N

PNODRDDADDDDODDDDRODD
Ll 1
[«]
(=]
m
112
[2]
x
-
vJ
-3

170

5 3%
o

USE ELEMENT

STORE 1 TO count

SET HEADING OFF

DO WHILE' .NOT. EOF()

CLEAR

@ 0,33 SAY CHOICE .
2,1 SAY “"RECORD

2,11 SAY count

tore count + 1 to count

,1 SAY "ACCESS NAME:" -
8 SAY ACC NAME

8SAY "IDEgTIFICATION NAME:"

SAY ID NAME
SAY "DATE TUPLE ADDED:"
8 SAY DATE ADDED
SAY "TUPLE ADDED BY:"
8 SAY ADDED BY
SAY "DATE TUPLE LAST MODIFIED:"
8 SAY LST MOD_DT
SAY "TUPLE LAST MODIFIED BY:"
8 SAY LST MOD_BY
1 SAY "NUMBER OF MODIFICATIONS:"
28 SAY NUM_OF MOD
1 SAY "DESCRIPTION:"
,28 DESCRIPT
15,1 SAY "COMMENTS:"
15,28 COMMENTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold

Ay Aty

”~

s " g g

»

A ‘v ‘r%b-

e
B

- b = OO OO NTUTR D
. n v BN R N N = N A

PRDDDADDDDADDVODRDDODDN M =M
PO » % % s v s oo

PO

ENDCASE

1 N N

23 WP

-

171

g Sl R

W Nk NN NN NN NN N NN NN

RESTORE FROM mem_var
CLEAR

PDODDDDDDDD

WAIT TO stop

DO CASE

CASE stop = '0°
RETURN

OTHERWISE

ENDCASE

SET DEVICE TO PRINT

DO CASE |

CASE choice = 'USER’
USE USER

STORE 1 TO count
SET HEADING OFF

DO WHILE .NOT. EOF()
CLEAR

@ 0,33 SAY CHOICE

: .l”’:l_l._i._l_

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME ;"

PDRDDVDDODDDDD DD
= == OO PO~

OO ~ ~ s v s v oo~

121130.PRG
MODULE NAME: 1.2.1.1.3.0

INPUT FILES: NO E

OUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE: 1.2.1.1.0.0

ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0

LOCAL VARIABLES USED: ChOICe: CONTAINS THE NUMBER OF ACTION SELECTED.
t: REPRESTENTS NO VALUE AT A

stop, hold: USED TO STOP ACTION FOR USER DECISION.

count: KEEPS TRACK OF ACCOUNT NUMBERS.

INPUT FILE: MEM VAR.

OUTPUT FILE: MEM VAR.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE WILL OUTPUT THE USER, SYSTEM, PROGRAM AND MODULE
RELATION FILES TO THE PRINTER.

STORE 0 TO rec_num, stop

0,1 Say "1.2 1.3.0"
SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"

SAY "ENTITY PRINTER OUTPUT"
SAY "THIS MODULE WILL PRINT"
SAY choice
"PLEASE INSURE THAT YOUR PRINTER"

SAY "IS TURNED ON AND IN THE ONLINE"
23 SAY "MODE"
2,23 SAY "IF YOU DO NOT WISH TO PRINT"
13,23 SAY "“THIS ENTITY, TYPE 'O' TO"
14,23 SAY "RETURN TO THE PREVIOUS MENU"

WWAWON
4
-

~ NN#NNN

HH\omo\a\wH
Os ~ % ~ » ~

SET COgSOLE OFF

9 2,1 SAY "RECORD

4,28 SAY ACC NAME
,1 SAY "IDENTIFICATION NAME : "
28 SAY NAME
1 SAY "DATE TUPLE ADDED:"
28 SAY DATE_ADDED
1 say "TUPLE ADDED BY:" :
28 SAY ADDED BY
1 SAY "DATE TUPLE LAST MODIFIED:"
28 SAY LST_MOD_DT
1l Say ! TUPﬂE LKST MODIFIED BY:"
28 SAY LST MOD_BY
.1 SAY "NUHBER OF MODIFICATIONS:"
,28 SAY NUM_OF MOD
.1 SAY "DESCRIPTION:“
.28 SAY DESCRIPT

2 TN T NN A A W AR

e

P

R

&
a! aVelalat sl »

YN NN

SOQROORT OO

g

¥

LI %

{ T TR X

ey &N

RSO ey ek n Gl g s i d s g R i g ia ey dins 2 -

@ 15,1 SAY "COMMENTS:"
@ 15,28 SAY COMMENTS
@ 18,1 SAY n ¢

SKIP

ENDDO .

CASE choice = 'SYSTEM'
USE SYSTEM

STORE 1 TO count
SET HEADING OFF
Do WHILE .NOT. EOF()

O 33 SAY CHOICE
,1 SAY "RECORD

11 SAY count

e count + 1 to count

1 Say "ACCESS NAME : "

8 SAY ACC _NAME

8SAY “IDENTIFICATION NAME:"

Y ID NAME
SAY "DATE TUPLE ADDED:"
8 SAY DATE_ADDED
SAY "TUPLE ADDED BY:"
8 SAY ADDED BY
SAY "DATE TUPLE LAST MODIFIED:"
8 SAY LST MOD_D
SAY "TUPLE LKST MODIFIED BY:"
8 SAY LST MOD_BY
1 SaY "NUHMBER OF MODIFICATIONS:"
%8 SAY NUM_OF MOD
2
1
2
1

t

SAY "DESCRIPTION:"
8 SAY DESCRIPT
SAY "COMMENTS:"

=t gt b b b = = DO O DN NN BO N N
Se s s s s s NENDENENENEN

r
0
0
1
1
5
S
8

U"DEDGDGﬂaﬁiﬁiﬁﬂaﬁDGDGMBﬁDﬁDGMDﬁDﬁBw15)=ﬁDﬁD()

KIP

ENDDO .

CASE choice = !'PROGRAM'
USE PROGRAM

STORE 1 TO count

SET HEADING OFF

DO ngLE .NOT. EOF()

@ 0,33 SAY CHOICE
9 2,1 SAY "RECORD

@ 2,11 SAY count

tore count + 1 to count

1 SAY "ACCESS NAME:"

8 SAY ACC_NAME

SAY "IDENTIFICATION NAME:"
D _NAME

SAY I
SAY "DATE TUPLE ADDED:"
8 SAY DATE _ADDED
SAY "TUPLE ADDED BY:"
8 SAY ADDED BY
SAY "DATE TUPLE LAST MODIFIED:"
8 SAY LST M
SAY "TUPEE LKST MODIFIED BY:" -
8 SAY LST MOD_BY
% SAY “NUHBER gF MODIFICATIONS :"
1
2
1

[]

[CRV 1o To RN ERTOY YT TV - -3

WO OO ~ ~ » ~ v s ~ ~ ~ » ~

8 SAY NUM O

SAY "DESCRIPTION:"
8 SAY DESCRIPT

SAY "“COMMENTS:"

28 SAY COMMENTS
lsay » v

N N T N Y T N YIRS TR Y=Y

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
e
@
s

- .- J
DS S, Y .p""' " A

Tl 1= s 1t et s et b

Fol

173

g T AT VA o VN B =¥ SR WA g Wt Ly gk I T S B T
; :(. L (;_ :’%‘“". % "'“3"*5"‘ s ";."?“?"»‘\&'~"2‘5."_» el o ARRA R T SN

4

i
»
’
¥
»
#
.
’
t
B
»
&

ENDDO .

CASE choice = 'MODULE'
USE MODULE

STORE 1 TO count

SET HEADING O

2gEWHILE .NOT. EOF()
@ 0,33 SAY CHOICE

g 2,1 SAY "RECORD

@ 2,11 SAY count
tore count + 1 to count
1 SAY "ACCESS NAME : "
28 SAY ACC NAME
SAY "IDENTIFICATION NAME :*
28 SAY ID N
SAY "DATE TUPLE ADDED:"
8 SAY DATE ADDED
SAY "TUPLE ADDED BY:"
8 SAY ADDED BY
SAY "DATE TUPLE LAST MODIFIED:"
8 SAY LST MOD D
SAY "TUPLE LKST MODIFIED BY:"
8 SAY LST MOD_BY
1 SAY "NUMBER OF MODIFICATIONS:"
8 SAY NUM_OF MOD
1 SAY "DESTRIPTION:"
28 SAY DESCRIPT
% SAY "COMMENTS:"
1

XD P F LIRS .

o

L

¥
»

1

L4

—

| R Aariana P

I"

-

8 SAY a”nmNTs
SAY " W

PDRODDODDRDADDDDBDDDODD W
R = OO DRIV TUD B

mmm.—q—aoo.s~...~.~s~.
~s--'\; DD = N = N\ = D) 1=

S

L e
mn
g5
O
(=]

ENDCASE

SET DEVICE TO SCREEN
SET CONSOLE ON
RETURN

“

! P

YW)

- 174

g , o LAY A D P e L~ T TS Y S e ok A e e
< JEAN, bt S RN R AT b a0 I R A B A R I B AN

4 A AN B Y ce—— oy -

P LR

SEE. S 0 ¢ 0 T, Y. e YV YV v 5. T R

ALARES NS | ! LR RN

RIS, e s s N

i

* 121140.PRG \, N
* MODULE NAME: 1.2.1.1.4.0 XN
* INPUT FILES: NONE sty
* QUTPUT FILES: NONE]
* ROUTINES THAT CALL THE MODLUE: 1.2.1.1.0.0 . AT
* ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0 g
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED. oy
* t: REPRESTENTS NO VALUE AT ALL. ISy
* stop, hold: USED TO STOP ACTION FOR ussn DECISION. R
* count: KEEPS TRACK OF ACCOUNT NUMBER - FeatEN
* INPUT FILE: MEM V kil
* QUTPUT FILE: MEM VAR. .
* DESIGNED BY: ROBERT A. KIRSCH II Nty
* WRITTEN BY: ROBERT A. KIRSCH II o
* BASIC FUNCTION OF MODULE A N
* THIS MODULE WILL OUTPUT THE FIRST FOUR RELATIONSHIP »;Q*h*
* RELATION FILES TO THE PRINTER. RRTA

A
RESTORE FROM mem_var RS
STORE 0 TO rec_num, stop
CLEAR

0,1 SAY "1.2.1.1.4.0"

"INFORMATION RESOURCE DICTIONARY SYSTEM"
"ENTITY PRINTER OUTPUT"
"THIS MODULE WILL PRINT"
choice
"PLEASE INSURE THAT YOUR PRINTER"
3 SAY "IS TURNED ON AND IN THE ONLINE"
23 SAY "MODE"
.23 SAY "IF YOU DO NOT WISH TO PRINT"
3,23 SAY "THIS RELATION, TYPE '0O' TO"
14,23 SAY "RETURN TO THE PREVIOUS MENU"
WAIT TO stop
DO CASE
CASE stop = '0!
RE

TURN
OTHERWISE
ENDCASE
SET DEVICE TO PRINT .
SET CONSOLE OFF
DO CASE
CASE choice = 'DOCUMENT'
USE DOCUMENT
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()

CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

Y
ON
ge
K

~ NNEN
WJw
gy
Kk

PODIDDVDDDDD
= OOMN W
NO~ ~ =~ ~ ~

t re count + 1 to count
SAY "ACCESS NAME :

28 SAY A NAME
1 SAY "IDENTIFICATION NAME : "
28 SAY ID_NAME

SAY "DATE TUPLE ADDED:"

8 SAY DATE ADDED

SAY "TUPLE ADDED BY:"

1

2

1

2 ED_BY

1 SAY "DATE TUPLE LAST MODIFIED:" .
28 SAY LST MOD_DT

1 sAY "TUPLE LAST MODIFIED BY:."

28 SAY LST MOD_BY

, SAY "NUHBER OF MODIFICATIONS:"

8 SAY NUM_OF MOD
SAY “DESCRIFTION:" .
8 DESCRI

NH

175

Ay

> WS

PN -
'-‘-.!"rl'l

-

K asass

L {l‘ 'F,"u'.

SAY "COMMENTS:"

CASE choice = 'FILE!
USE FILE

STORE 1 TO count
SET HEADING OFF

DQ WHILE .NOT. EOF()
CLEAR

@ 0,33 SAY CHOICE

@ 2,1 SAY "RECORD

2,11 SAY count
t re count + 1 to count
SAY "ACCESS NAME :"
28 SAY A NAME
1 SAY "IDENTIFICATION NAME : "
28 SAY ID NAME
SAY "DATE TUPLE ADDED:"
8 SAY DATE ADDED
SAY "TUPLE ADDED BY:"

1
2
2
1 say "DATE TUPLE LAST MODIFIED:"
28 SAY LST_MOD_DT

1 SAY "TUPLE LKST MODIFIED BY:"
28 SAY LST MOD_B

,1 SAY "NUMBER™ OF MODIFICATIONS:"
,28 SAY NUM_OF_MOD

e
s
@
@
@
@
@
@
@
@
@
@
@
@
g
8 SAY "DESCRIPTION:"
@

e

Q
4,1
4,
5,
5,
6,
6,
7,
7,
8,
8,
9,
9,
10
10
11
11
15
15

@ 18
SKIP
ENDDO

CASE choice = 'RECORD!'
USE RECORD

STORE 1 TO count

SET HEADING OFF
Do ngLE .NOT. EOF()

.33 SAY CHOICE
.1 SAY "RECORD

2

1

28 SAY ID N

1 SAY "DATE TUPLE ADDED:"

28 SAY DATE ADDED

1 sAY "TUPLE ADDED BY:"

28 SAY ADDED BY

1 SAY "DATE TUPLE LAST MODIFIED:"
28 SAY LST M

1° SAY “TUPLE LKST MODIFIED BY:"

28 SAY LST MOD

.1 SAY “NUHBER OF MODIFICATIONS ;"
' SAY NUM_OF_MOD

,1 SAY "DESCRIPTION:"

MDBDDDDDDDDDDDBDIADDDDN D =@@g

(4]

J'

...-»-,

ARARII
| AN
| RPN

| R

q"l, 4 ."s,.?xfh‘.ﬁ'. 1) ;‘A‘,r’i XY, ,‘f“ ’v't.-’&.:' r’f 4, ;".l'k‘ '&,1 (A

; ENDDO . .

¥ CASE choice = 'ELEMENT'
’ USE ELEMENT

STORE 1 TO count

SET HEADING OFF

Do HHILE .NOT. EOF()
CLE

@ 0,33 SAY CHOICE

g 2 1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
4,1 SAY "ACCESS NAME:"
,28 SAY ACC _NAME
1 say "IDENTIFICATION NAME:"
28 SAY ID NAME
SAY "DATE TUPLE ADDED:"
8 SAY DATE ADDED
SAY "TUPLE ADDED BY:"
8 SAY ADDED
SAY "DATE TUPLE LAST MODIFIED:"
8 SAY LST MOD
SAY "TUPLE LKST MODIFIED BY:"
8 SAY LST MOD_BY
SAY "NUMBER OF MODIFICATIONS:"
,28 SAY NUM_OF MOD
1 SAY "DESCRIPTION:"
,28 DESCRIPT
,1 SAY “COMMENTS:"
,28 COMMENTS
'1 SAY " u

X ENDDO

: . ENDCASE .
SET DEVICE TO SCREEN
SET CONSOLE ON
RETURN

R A A

-~

N L e L

x@@@@@@@@@@@@@@@@@@@
QUUIHS OO ~ ~ ~ ~ ~ ~ ~

HHHHHHHﬂmmmmqqmmmmb

wn
e}

>

ol

177

-

Ny Y R A s

-~ - - - P " g o 9 (
R R R R e T e L e R S R R LR A

PR N

oA

7 €
LS FEN

.
v %

.
»

".4."‘. 4"’-" PR R -" -'r\" n"! v h ." ." ."

Y _;'.." :‘ -" ..

G A YR

choice :
hold s
option :
t

DISPLAYED

Ok Ok M Ok Ok %k ok ok 5k O o %k O O X O % % % N kN

fa i A A N ard g g W T T \ S v e Ty

122100.PRG
MODULE NAME:
INPUT FILES: NONE

OUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE:
ROUTINES THAT THE MODULE CALLS:1.2,2.0.0.0
LOCAL VARIABLES USED:

1.2.2.1.0.0
1.2,2.0.0.0

CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE

CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

USED TO STOP ACTION FOR USER DECISION.

CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN
OR THE PRINTER.

: REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

LOOP.
INPUT FILES: MEM VAR.
OUTPUT FILES: MEM VAR.
DESIGNED BY:
WRITTEN BY:
BASIC FUNCTION OF MODULE:
THIS MODULE ALLOW THE USER TO CHOOSE WHETHER THE OUTPUT WILL BE

ROBERT A. KIRSCH II
ROBERT A. KIRSCH II

ON THE SCREEN OR PRINTED.

RESTORE FROM mem_var

STORE 0O

TO rec_num,

stop

STORE .t. TO TRUE
do whlle TRUE

CLEAR

@ 0,1 SAY "1.2.2.1.0.0"
RE5S5TORE FROM mem var

@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,29 SAY "RELATIONSHIP OUTPUT
@ 8,23 SAY "LISTED BELOW ARE THE CHOICES FOR"
@ 9,23 SAY "HOW YOU CAN HAVE THE RELATIONSHIP"
@ 11 24 SAY TITLE
@ 13 23 SAY "DISPLAYED."
Q@ 15, /28 SAY "1 SCREEN OUTPUT"
@ 17,28 SAY "2 PRINTER OUPUT"
@ 19,28 SAY "3) RETURN TO PREVIOUS MENU"
@ 20,1 say v v
ACCEPT' ENTER YOUR CHOICE (1-3) FROM ABOVE 'TO option
ERASE mem_var.mem
SAVE TO mem_var
DO CASE
CASE option = '1'
DO CAS
CASE CHOICE = 'U_PROC_S'
DO 122110
CASE choice = 'S_PROC_P'
DO 122110
CASE CHOICE = 'P_PROC_F'
DO 122110
CASE choice = 'P_PROC_R'
DO 122110
CASE CHOICE = 'P_PROC_E'
DO 122120
CASE choice = 'S_CONT_P'
DO 122120
CASE CHOICE = 'P_CONT_M!'
DO 122120
CASE choice = 'F_CONT_R'
DO 122120
CASE CHOICE = 'R_CONT_E'
DO 122130
CASE choice = 'U_RESP_S'
DO 122130
CASE CHOICE = 'U_RESP_F'
DO 122130
178
oo G GV G O O N R TR (S LG RO, IR DR L R T S

b

s
L)
3
>

ol G

r

¢ "'
[

ALY
O o

<
e

'

P

.
s
TR
!
o~
oy
v
——

TeTaw 4 s K
.”:}":"" 'I‘ l"'] ¢

"4
fl

Ak

e

e 1 S e
e E'.» 2,

,

e v
by e
PN

Ay Y ".l‘ ¥
i

£a

l.!'!'ﬂ!‘!lﬂ'ul.'-!.l‘l.'..hl-l -

EEIT.T T aT W e ™o N A G A B N BN AW B S

TeTelalaN s, T T T

Dy]

% V.-‘ -..I‘ -.

e tatst

O b S R A X

" TIRLS. S

ALY

TSox]

CASE choice
DO 122130
ENDCASE
CASE option
DO CAS

CASE CHOICE
DO 122140
CASE choice
DO 122140
CASE CHOICE
DO 122140
CASE choice
DO 122140
CASE CHOICE
DO 122150
CASE choice
DO 122150
CASE CHOICE
DO 122150
CASE choice
DO 122150
CASE CHOICE
DO 122160
CASE choice
DO 122160 .
CASE CHOICE
DO 122160
CASE choice
DO 122160
ENDCASE
CASE option
RETURN
OTHERWISE

@ 2,26 SAY

L eea it sl e ol s _srea asedic

'P_PROD_D"

10
'U_PROC_S"
'S_PROC_P'
'"P_PROC_F"
'P_PROC_R'
'"P_PROC_E'
'S_CONT_P'
'P_CONT_M'
'F_CONT_R'
'R_CONT_E*
"U_RESP_S'
'U_RESP_F'

'P_PROD_D'

I3I

option
"IS NOT A VALID CHOICE"

“PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"®
"PRESS RETURN AND TRY AGAIN!"

ACCEPT TO hold

ENDCASE
ENDDO

179

il ARE: vl i AN aae N SR s el dnls pch

L LY Y, AL A A
o

MCRENEY A

X LG AIN R " te " ¢ sl.n Al

N
o, AW LML

admEN A e R

AR I ok 2rl vl gl st S e s B & i o S s S s QAR E St o b A A

o

»

(SR
(SR

3
).

v v.v‘v‘.- '.'.,‘
| Ay
. Pd &
Tra sy s

A

:f”.ﬁgé‘f'

l_‘l
*‘\.L\; .

-, A‘

1A'1; g’_ «

R
[y
.
-.;
)
-

e

B
‘ot
L4

LR RN
LN
N I ALY
LAV]
.
)

sl

S

SN

e Sl

e) -
RSalals00 s

LD

v
-

Y S

A

. -9 . b o ol A e, At R i Pt A diadi AR i e A Sl B Y A e A B ode i 4 A weihdie & e o len JS A Jhles Al S in e gl 23

.....

122110.PRG

MODULE NAME: 1.2.2.1.1.0

INPUT FILES: NONE

OUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE: 1.2.2.1.0.0

ROUTINES THAT THE MODULE CALLS:1.2.2.1.0.0

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

count : USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED.

hold ¢ USED TO STOP ACTION FOR USER DECISION.

option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN
OR THE PRINTER.

t : ggg%ESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

INPUT FILES: MEM VAR U_CONTS, S_CONT_P, P_PROC_F, P_PROC_R.

OQUTPUT FILES: MEM VAR.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH I1I

BASIC FUNCTION OF MODULE:

THIS MODULE WILL DISPLAY ON THE FIRST FOUR RELATIONSHIP TO THE SCREEN.

RESTORE FROM mem_var
CLEAR

.22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
28 SAY "RELATIONSHIP SCREEN OUTPUT"

22 SAY "THIS MODULE WILL DISPLAY"

%3 SAY TITLE

S % Ok Ok X Ok Ok % % Ok 3 3k % Ok % O O 3 % % %

2 SAY "IF YOU DO NOT WISH TO DISPLAY"
22 SAY "“"THIS RELATIONSHIP, TYPE 'O' TO"

OTHERWISE

ENDCASE

DO CASE

CASE choice = 'U_PROC_S'
CLEAR

USE U_PROC_S

STORE 1 TO count
SET HEADING OFF

DO WHILE .NOT. EOF()
CLEAR

@ 2,33 SAY TITLE

9 4,1 SAY "RECORD

@ 4,11 SAY count
store count + 1 to count

@6,1 SAY "ACCESS NAME:"

@ 6,28 SAY U NAME

e 7, 28<a¢. "IDENTIFICATION NAME:"

@ 7,28 SAY 5 NAME

@9.1 SA

ggggpr 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
ENDDO

RETURN

CASE choice = 'S_PROC_P'

USE S_PROC_P

STORE™1 TO count
SET HEADING OFF

DO WHILE .NOT. EOF()
CLEAR

@ 2,33 SAY TITLE

180

T TN T W TR YN e v s e

E

o b hal et J

& § 4,1 SAY "RECORD
@ 4,11 SAY count
store count + 1 to count
@ 6,1 SAY "ACCESS NAME:"
s @6 28 SAY S _NAME
@ 7,1 SAY "IDENTIFICATION NAME:"
@7, 28 SAY P_NAME
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE‘TO hold

RETURN |
CASE choice = 'P_PROC_F'
X USE P_PROC_F
N STORE 1 TO count
. SET HEADING OFF
R DO WHILE .NOT. EOF()
5 CLEAR
. @ 2,33 SAY TITLE
q 4,1 SAY "RECORD

@ 4,11 SAY count

store count + 1 to count

@6 SAY "ACCESS NAME:"

@6 28 SAY P _NAME

@ 7,1 SAY "IDENTIFICATION NAME :*

@ 7, .28 SAY F_NAME

§§§§PT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold

¥ S UL RN R A S

CASE choice = 'P_PROC_R'
USE P_PROC_R

STORE 1 TO count

SET HEADING OFF -
DO WHILE .NOT. EOF()
CLEAR

@ 2,33 SAY TITLE

9 4,1 SAY "RECORD

@ 4,11 SAY count
store count + 1 to count

Valera 1, & &

El

a @ 6,1 SAY "ACCESS NAME :"
. @6 28 SAY P_NAME
@ 7,1 SAY "IEENTIFICATION NAME :"
) @ 7 28 SAY R_NAME
X @ 8,1 SAY "COMMENTS:"

. DISPLAY OFF COMMENTS
o ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold

SKIP
ENDDO
RETURN
ENDCASE
* MODULE NAME: 1.2.2.0.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
. * ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0
. * ROUTINES THAT “HE MODULE CALLS:TBD, MAIN
. * LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
: * t: REPRESTENTS NO VALUE AT ALL.
* hold: USED TO STOP ACTION FOR USER DECISION.
* INPUT FILE: MEM VAR. .
y * OUTPUT FILE: MEN VAR.
2 * DESIGNED BY: ROBERT A. KIRSCH II
; * WRITTEN BY: ROBERT A. KIRSCH IT
. * BASIC FUNCTION OF MODULE:
» X THIS MODULE ALLOW THE USER TO CHOOSE WHICH RELATIONSHIP HE WOULD .

LIKE TO DELETE TUPLES FROM.

181

A RN YN e RN I G LS p D e D O o S N D A AR O R e MR RS SRS

NAEA

)

* VN

)

Y

*

do while .t.
ERASE mem_var.mem

CLEAR

@ 0,1 SAY "1.2.2.0.0.0"

@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM

@ 3,29 SAY "RELATIONSHIP OUTPUT"

8 ?’2452§Y"3) USER CONTAINS SYSTEM 8) FILE CONTAINS REC"
@ 7,9 SAY "2) _SYSTEM CONTAINS PROGRAM 9) RECORD CONTAINS E"
@ 7,64 SAY "LEMENT"

@ 9,9 SAY "3) PROGRAM PROCESSES FILE 10) USER RESPONSIBLE"
@ 9,64 SAY "FOR SYSTEM"

@ 1i,9 SAY “"4) ~PROGRAM PROCESSES RECORD 11) USER RESPONSIBLE"
@ 11,64 SAY "FOR FILE"

@ 139 SAY v5) PROGRAM PROCESSES ELEMENT 12) PROGRAM PRODUCES'
@ 13,64 SAY "DOCUMENT

@ 139 SAY n6) SYSTEM CONTAINS PROGRAM 13) RETURN TO PREVIOU"
@ 15,64 SAY "§ MENUY

@ 17,9 SAY "7) PROGRAM CONTAINS MODULE 14) RETURN TO MAIN ME"
@ 17,64 SAY “Ny"

@ 18,22 SAY " ® .

ACCEET ENTER YOUR CHOICE (1-14) FROM ABOVE:'TO choice

CASE choice = "1 .

store ‘U PROC_S' to choice .

store 'USER PROCESSES SYSTEM' TO title
save to mem_var

do 122100

CASE choice = "2¢ .

store 'S PROC _P' to choice .
store 'SYSTEM PROCESSES PROGRAM' TO title
save to mem_var

do 122100

CASE choice = "3" .

store 'P PROC F' to choice .
store 'PROGRAM PROCESSES FILE' TO title
save to mem_var

do 122100

CASE ch01ce = 1ngqn

store 'P PROC R' to choi

store 'PROGRAM PROCESSES RECORD' TO title
save to mem var

do 12210

CASE ch01ce = hgn)

store 'P_PROC E' to choice .
store 'PROGRAM PROCESSES ELEMENT' TO title
save to mem_var

do 122100

55 o

.?
A

[/

PR AR .,»
fa "

Z.2
125:

CASE choice = "6" . Q}: A
store 'S CONT _P' to choice . AL
store 'SYSTEM CONTAINS PROGRAM' TO title a8

save to mem _var

do 12210

CASE ch01ce = ugn

store 'P _CONT M' to choice

store 'PROGRAM CONTAINS MODULE' To title
save to mem_var

do 122100

CASE choice = "a"

store 'F_CONT R' to choice

store 'FILE CONTAINS RECORD' TO title !
save to mem_var

do 122100

CASE choice = ugn

store 'R_CONT E' to choice

store 'RECORD CONTAINS ELEMENT' TO title
save to mem_var

A

182

X R R » B ALl i) “‘ s X8 N 7 “e
i o SRR (R WSRO R RGORN A, pAE g

k Ya® “Shafic iy PR M 1 Pl T T B Bt g 2 K B f f ok S R]

)
rs
Al
l-\
- do 122100
A CASE choice = "10" .
store 'U RESP_S' to choice .
store 'USER RESPONSIBLE FOR SYSTEM' TO title
Y save to mem_var .
¥ do 122100
N CASE choice = "11"
oo store 'U RESP F' to choice .
h store 'USER RESPONSIBLE FOR FILE' TO title
I, save to mem_var .
x do 122100
CASE choice = "12% .
\ store 'P_PROD D' to choice .
N store 'PROGRAM PRODUCES DOCUMENT' TO title
N save to mem_var
> do 122100
oy CASE choice = "13%
- RETURN
CASE choice = "14"
RETURN TO MASTER
A OTHERWISE RN
A CLEAR) LN
. @ 1,21 SAY choice iy
- @ 1,28 SAY "IS NOT A VALID CHOICE"
@ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 14 ONLY"
A @ 3,20 SAY "PRESS RETURN TO TRY AGAIN!"
% ACCEPT TO hold
: ENDCASE
. ENDDO
3 RETURN
A
s -
‘)
b .
)
oK
1Y
¥
“(.
¢
N
-
..4
53
)
- TR
s i
> .
»
\: [
B L -3
[L
¥
‘- 183
‘{I

3
3
)
i

— o — T T ————
’,' r ety N e ’-'ﬁr‘;"} 7y AGTNLER 'tfn R H P e T AR e TR DERENIONA SN

«
LTS

statey bl

a4

ba s P

Dol g

122120.PRG

MODULE NAME: 1.2.2.1.2.0

INPUT FILES: NONE

QUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE: 1.2.2.1.0.0

ROUTINES THAT THE MODULE CALLS:1.2.2.1.0.0

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

count :+ USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED.

hold : USED TO STOP ACTION FOR USER DECISION.

option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN
OR THE PRINTER.

t : EEPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

INPUT FILES: MEM VAR P_PROC_E, S_CONT_ P, P_CONT_M, F_CONT_R.
OUTPUT FILES: MEM VAR.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH I1I

BASIC FUNCTION OF MODULE:

THIS MODULE WILL DISPLAY THE NEXT FOUR RELATIONSHIP TO THE SCREEN.

ESTORE FROM mem_var

R
0,1 say "1.2.2.1.2.0"
,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
28 SAY "RELATIONSHIP SCREEN OUTPUT"
22 SAY "THIS MODULE WILL DISPLAY"
%3 SAY TITLE

CIF ok Ok b o 36 2k 2 %k bk %k X% kNN NN

[
=1
o

2 SAY "IF YOU DO NOT WISH TO DISPLAY"
22 SAY "THIS RELATIONSHIP, TYPE '0Of TO"
11,22 SAY "RETURN TO THE PREVIOUS MENU."

DRDDDDDDD
SO JUNWk

CASE stop = 'O
RETURN

OTHERWISE

ENDCASE

DO CASE

CASE choice = 'P_PROC_E'
CLEAR

USE P_PROC_E

STORE 1 TO count
SET HEADING OFF

DO WHILE .NOT. EOF()

CLEAR
@ 2,33 SAY TITLE
1 SAY "RECORD

2,
4
4,11 SAY count

tore count + 1 to count
6,1 SAY "ACCESS NAME :"
6,28 S

7,1

7,

SAY "IBENTIFICATION NAME : "
28 SAY E_NAME

§§§§PT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
ENDDO

RETURN |

CASE choice = 'S_CONT_P'

USE S_CONT_P

STORE 1 TO count

SET HEADING OFF

DO WHILE .NOT. EOF()

CLEAR

@ 2,33 SAY TITLE

@ 4,1 SAY "RECORD

PEEDVUD =

184

". ,n “l“. A‘:"L‘i\—'

y

Y

Dcuoste s
RN

» Y
2

AR TR

6 XADORAOON

M N
s

e
¥
aatat.

N

GUIRRY _ SRRy

»

Rl X

P

RN

PO

R0

@ 4,11 SAY count

store count + 1 to count

Q@ 6,1 SAY "ACCESS NAME : #

@ 6,28 S NAME

@ 7,1 SAY “IﬁENTIFICATION NAME: "
@ 7,28 SAY P_NAME

QEEEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
ENDDO

RETURN

CASE choice = 'P_CONT_M!'

USE P_CONT_M

STORE 1 TO count

SET HEADING OFF

DO WHILE .NOT. EOF()

CLEAR

@ 2,33 SAY TITLE

Q 4,1 SAY "RECORD

@ 4,11 SAY count

store count + 1 to count
@6 SAY “ACCESS NAME:"

Q 6 28 SAY P NAME

@7 SAY "IDENTIFICATION NAME:"

Qe7, 28 SAY M_NAME

gg%gPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold

CASE choice = 'F_CONT_R'
USE F_CONT R

STORE 1 TO count

SET HEADING OFF

DO WHILE .NOT. EOF()

EAR
33 SAY TITLE
1 SAY "RECORD

2,
4,
4,11 SAY count

tore count + 1 to count
6,1 SAY "ACCESS NAME :*
6, NAME

7,

7

ENDCASE

185

T
Y,

O 6‘(,}! P R A AR M N e e

2V el a_a A 48

Ll et el]

» Al"

¥ X L
’. e l'.A .l

Y

o

£ Tt AN

B

* 122130.PRG

* MODULE NAME: 1.2.2.1.3.0

* INPUT FILES: NONE

* QUTPUT FILES: NONE

* ROUTINES THAT CALL THE MODLUE: 1.2.2.1.0.0

* ROUTINES THAT THE MODULE CALLS:1.2.2.1.0.0

* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT A

* hold: USED TO STOP ACTION FOR USER DECISION.
* count: KEEPS TRACK OF ACCOUNT NUMBERS.
* option:

* DESIGNED BY: ROBERT A. KIRSCH II

* WRITTEN BY: ROBERT A. KIRSCH II

* BASIC FUNCTION OF MODULE:

* THIS MODULE WILL DISPLAY ON THE FIRST THREE RELATIONSHIP

: RELATIONS

SET EXACT ON

set color to 0/3,3

set talk off

set menu on

SET EXACT ON

RESTORE FROM mem_var

CLEAR

@0,1 SAY "1.2.2.1.3.0"

.22 SAY “INFORMATION RESOURCE DICTIONARY SYSTEM"
,28 SAY "RELATIONSHIP SCREEN OUTPUT"

.22 SAY "THIS MODULE WILL DISPLAY"

,23 SAY TITLE

,22 SAY "IF YOU DO NOT WISH TO DISPLAY"
0,22 SAY "THIS RELATIONSHIP, TYPE '0O' TO"
@ 11,22 SAY "RETURN TO THE PREVIOUS MENU."
WAIT TO stop

DO CASE

CASE stop = '0'

RETURN

OTHERWISE

ENDCASE

DO CASE

CASE choice = 'R_CONT_E'
CLEAR

USE R_CONT_E

STORE 1 TO count
SET HEADING OFF

DO WHILE .NOT. EOF()
CLEAR

@ 2, 33 SAY TITLE

9 4,1 SAY "RECORD

@ 4,11 SAY count
store count + 1 to count

DD
oW
~ NINNN

@e6,l SAY "ACCESS NAME :"

Q 6 NAME

@7 SAY “IUENTIFICATION NAME : "

@ 7,28 SAY E_NAME

gﬁgg?T 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
ENDDO

RETURN

CASE choice = 'U_RESP_S'

USE U_RESP_S

STORE™1 TO count
SET HEADING OFF
DOEWHILE .NOT. EOF()

@ 2,33 SAY TITLE
@ 4,1 SAY "RECORD

186 o

3 R A T L R S R e O S R

@ 4,11 SAY count

store count + 1 to count
@ 6,1 SAY "ACCESS NAME:"

@6 28 SAY U NAME

Q@ 7,1 SAY “IUENTIFICATION NAME : " ,
A @7, 28 SAY S_NAME

K< ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold

.2 0 4 »

CASE choice = 'U_RESP_F'
USE U_RESP_F

STORE 1 TO count

SET HEADING OFF

DO WHILE .NOT. EOF()
CLEAR

@ 2,33 SAY TITLE

@ 4,1 SAY "RECORD

@ 4,11 SAY count
store count + 1 to count
SAY WACCESS NAME:"

SAY U NAME
SAY "IDENTIFICATION NAME:"
@ 7 ,28 SAY F_NAME
éﬁggPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold

o

B

CASE choice = 'P_PROD_D'
USE P_PROD_D
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 2,33 SAY TITLE
4,1 SAY "RECORD

4,11 SAY count .
tore count + 1 to count

g SAY "ACCESS NAME :"

7

7

SAY P_NAME
AY "IﬁEggéFICATION NAME : "

28
,28
8,1 SAY "CUMHENTS "
DISPLAY OFF COMMENT
éﬁgng ‘PRESS RETURN TO SEE NEXT TUPLE'TO hold
ENDDO
RETURN
ENDCASE

N
A
’

>
¥

v
’

WA MO SN

-y
o
F ol W' o

A

1

@
s
@
@
@
@
@

ST 4t

LS A

)
-

N 187 ,

ik ,:":'.“."‘p"~‘(;,‘l x Py S LATE LT

PR L S A AR M RN SENC AN SN i Gt G ARt oA MO AR A st aARS Sl LR e S S ko e S 2 i _J

j

.
',
a

LR

E :‘;' N
! !N' LS
3 el
: el
S 122140.PRG e
: MODULE NAME: 1.2.1.1.4.0 RN

INPUT FILES: NONE 2oty

QUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE: 1.2.1.1.0.0

ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

count : USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED.
stop, hold : USED TO STOP ACTION FOR USER DECISION.
y option : ggNgaéNgR¥HEE§SER‘S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN
. t : EgggESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

INPUT FILES: MEM VAR.

OUTPUT FILES: MEM_ VAR,

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE WILL OUTPUT THE USER, SYSTEM, PROGRAM AND MODULE
RELATION FILES TO THE PRINTER.

%ok b kN Ok R N N Ok M 0 R Ok Ok N NN N

X RESTORE FROM mem_var
’ STORE 0 TO rec_num, stop
- CLEAR
@ 0,1 SAY "1.2.1.1.4.0"
> @ 1,22 say "INFORMATION RESOURCE DICTIONARY SYSTEM"
. @ 3,27 SAY "RELATIONSHIP PRINTER OUTPUT"
. @ 6,23 SAY “THIS MODULE WILL PRINT"
w @ 8,24 SAY TITLE
- @ 10,23 SAY "PLEASE INSURE THAT YOUR PRINTER"
- @ 11,23 SAY "IS TURNED ON AND IN THE ONLINE"
@ 12,23 SAY "MODE"
@ 14,23 SAY "IF YOU DO NOT WISH TO PRINT"
@ 15,23 SAY "THIS RELATIONSHIP, TYPE '0*' TO"
@ 16,23 SAY "RETURN TO THE PREVIOUS MENU"
- WAIT TO stop
DO CASE
. CASE stop = '0!
. RETURN
- OTHERWISE
ENDCASE

- SET DEVICE TO PRINT
. SET CONSOLE OFF

- DO CASE |
3 CASE choice = 'U_PROC_S'
.. USE U_PROC_S
- STORE 1 TO count
— SET HEADING OFF
DO WHILE .NOT. EOF()
o CLEAR
.¥~ @ 0,33 SAY CHOICE
89 9 2,1 SAY "RECORD
'ﬁj @ 2,11 SAY count
v, store count + 1 to count
ol @ 4,1 SAY "ACCESS NAME "
@ 4,28 SAY U
X @ 5,1 sAY "IEENTIFICATION NAME ;"
o @ 5,28 SAY S
Y SKI P
o ENDDO
A CASV choice = 'S_PROC_P!'
.y USE S_PROC_P
¢ . STORE™1 TO count
B SET HEADING OFF
3
Y
o\
m 188
)

LI - A G LT VUAA TR ST R RN MO R R u“n'h'l;““i“«‘ SANERMN A

WS, -
LS

DO WHILE .NOT. EOF()

CLEAR
@ 0,33 SAY CHOICE
1 SAY "RECORD

0,
@ 2,

2,11 SAY count

tore count + 1 to count
4,1 SAY "ACCESS NAME:"
4,28 SAY S _NAME

5,1 SAY "IDENTIFICATION NAME:"
gx§p28 SAY P_NAME

ENDDO

CASE choice = 'P_PROC_F'
USE P_PROC_F

STORE"1 TO count

SET HEADING OFF

DO WHILE .NOT. EOF()
CLEAR

@ 0,33 SAY CHOICE

? 2,1 SAY "RECORD

@ 2,11 SAY count

store count + 1 to count
,1 SAY "ACCESS NAME:"

Q 4, 28 SAY P _NAME

(C] 5,1 SAY "IﬁENTIFICATION NAME:"

@ 5,28 SAY F

SKIP

ENDDO |

CASE choice = 'P_PROC_R'

USE P_PROC_R

STORE 1 TO count

SET HEADING OFF

DO WHILE .NOT. EOF()

CLEAR

@ 0,33 SAY CHOICE

Q 2,1 SAY "RECORD

2,11 SAY count
tore count + 1 to count

4,1 SAY "ACCESS NAME :"

4, 28 SAY P _NAME

5,1 SAY "IEENTIFICATION NAME :"
gK%PZB SAY R_NAME

@
s
@
@

c]
s
@
@
@

E
SET DEVICE TO SCREEN
SET CONSOLE ON
RETURN

‘ % ",‘i ri‘&h"f ?! AN p 2 a.f, EX3 ERA SR EE

..
RS

)

T NV

IR NN

©
o
(-]}
[=
o
o
N
N
-t
x

.

>

LI O L

PR ALY &

R

L.!..tr b‘k

190

v

AR L

a3

6T

~
¢

T AT A RO

P,
’

AR SO0

Sy

*

Y

P2 ovss s EF

»

AL IS S

F I o, AR %

)

L 1) o W AN
TAEIEE LD G AN

122150.PRG

MODULE NAME: 1.2.1.1.5.0

INPUT FILES: NONE

OUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE: 1.2.1,1.0.0

ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

count + USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED. .

hold : USED TO STOP ACTION FOR USER DECISION.

option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN

OR THE PRINTER.
t : EEPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

INPUT FILE: P_PROC E. S_CONT_P, P CONT_M, F_CONT_R.
DESIGNED BY: ~ROBERT A. KIRSCH I

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE WILL OUTPUT THE NEXT FOUR RELATIONSHIP
RELATION FILES TO THE PRINTER.

RESTORE FROM mem_var
STORE 0 TO rec_num, stop
CLEAR

@ 0,1 SAY "1.2.1.1.5.0"

M Ok ok % 3k Ok ok b Ok % % Ok b Ok N NN

@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,27 SAY "RELATIONSHIP PRINTER OUTPUT!

@ 6,23 SAY "THIS MODULE WILL PRINT"

@ 8 24 SAY TITLE

@ 10,23 SAY "PLEASE INSURE THAT YOUR PRINTER"

@ 11,23 SAY "IS TURNED ON AND IN THE ONLINE"

@ 12,23 SAY "MODE"

@ 14,23 SAY "IF YOU DO NOT WISH TO PRINT" .
@ 15,23 SAY “THIS RELATIONSHIP, TYPE '0' TO"

@ 16,23 SAY "RETURN TO THE PREVIOUS MENU"

WAIT TO stop

DO CASE

CASE stop = '0!

RETURN

OTHERWISE

ENDCASE

SET DEVICE TO PRINT
SET CONSOLE OFF

DO CASE

CASE choice = 'P_PROC_E'
USE P_PROC_E

STORE 1 TO count
SET HEADING OFF

DO WHILE .NOT. EOF()
CLEAR

@ 0,33 SAY CHOICE

g 2,1 SAY "RECORD

@ 2,11 SAY count

tore count + 1 to count
4,1 SAY "ACCESS NAME:"
g ,28 S

s

e

@ NAME

@5,1 SAY “IﬁENTIFICATION NAME : "
gx% ,28 SAY E

ENDDO *
CASE choice = 'S_CONT_P'

USE S_CONT_P

STORE 1 TO count

SET HEADING OFF .
DO WHILE .NOT. EOF()

191

-\ -C? L Q d

3" SIS ARENROERRE T S MO 5 NN X EREAL NS PN NN s \"

LA A S S it B i Chali i ot stadl i §

-
)
K
A

a

PR e e P e S ot A S e i L ARSI N ML A - aes S S B MR A e il o e Ty TN

Proeon

-

-y W

N
¥

a'a

A

AR
,33 SAY CHOICE
,1 SAY "RECORD

E
o]
2
2,11 SAY count
[o]
4
q,
S,

“r
VY

S bl

re count + 1 to count

.1 SAY "ACCESS NAME : ¢

28 SAY S NAME

1 SAY "IEENTIFICATION NAME :"
5 28 SAY P_NAME

AP AT AR e .1

=
-
g~
LT

TP A

CASE choice = 'P_CONT_M'
USE P_CONT_M

STORE 1 TO count

SET HEADING OFF

DO WHILE .NOT. EOF()
CLEAR

@ 0,33 SAY CHOICE

9 2,1 SAY "RECORD

@ 2,11 SAaY count

store count + 1 to count
@ ¢,1 SAY "ACCESS NAME:"

] 4 28 SAY P_NAME

@5 SAY "IEENTIFICATION NAME : "
@ 28 SAY M_NAME

ENDDO

CASE choice = 'F_CONT_R'
USE F_CONT_R A

STORE 1 TO count

SET HEADING OFF

DO WHILE .NOT. EOF()
CLEAR

@ 0,33 SAY CHOICE

9 2,1 SAY "RECORD

@ 2,11 SAY count

store count + 1 to count
@ 4,1 SAY "ACCESS NAME : "
@ 4 28 SAY F_NAME

@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY R_NAME

SKIP

ENDDO

ENDCASE

SET DEVICE TO SCREEN

SET CONSOLE ON

RETURN

SN,

LA

D
A s

-
’

4y

, w1,

.. -

-
'l

[g, FPARSSNINETRLEE, L P

192

AD-A165 022

A RELATIONAL DATR DlCTIONﬁRV CONPHTIBLE HITH THE 3/3

NATIONAL BUREAU OF STAND. . NRVRL POSTGRADUATE SCHOOL
MONTEREY CA R A KIRSCH DEC

UNCLﬂSSIFIED F/G 5/2

‘7

LAl

Y

2o

N,

o N W,

%

P e Cw iy

-

hiote i
TR

=
N
O

1.4

MICROCOPY RESOLUTION TEST C"MRT .

SHTIOWNAL AURCET NF CTANDARDS-1963-A

o s
® s

2

Byt S

' ARSI,

»
i

r 882

e

Vo 8 gty Rgh ot of o f o)

122160.PRG
MODULE NAME: 1.2.1.1.6.0
INPUT FILES: NONE
OUTPUT FILES: NONE
ROUTINES THAT CALL THE MODLUE: 1.2.1.1.0.0 .
ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0
LOCAL VARIABLES USED:
choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

MODIFIED, DELETED FROM OR OUTPUT. .

count : USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED.

hold : USED TO STOP ACTION FOR USER DECISION.

option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN

OR THE PRINTER.
t o Egpgssrzurs THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
INPUT FILES: R_CONT_E, U_RESP_S, U_RESP_F, P_PRED_D. é;f-
[N

DESIGNED BY: ROBERT A. KIRSCH II ukgb

WRITTEN BY: ROBERT A. KIRSCH II ,

BASIC FUNCTION OF MODULE: R

THIS MODULE WILL OUTPUT THE LAST FOUR RELATIONSHIP FILES TO THE PRINTER. g hY

A

RESTORE FROM mem_var ARy
STORE 0 TO rec_num, stop : qgg&
CLEAR Pl
@ 0,1 sAY "1.2.1.1.6.0" e
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM" 3
@ 3,27 SAY "RELATIONSHIP PRINTER OUTPUT" ' s
@ 6,23 SAY "THIS MODULE WILL PRINT“ A
@ 8,24 SAY TITLE 16K
@ 10,23 SAY "PLEASE INSURE THAT YOUR PRINTER" N E
@ 11,23 SAY "IS TURNED ON AND IN THE ONLINE" 45
@ 12,23 SAY "MODE" < et
@ 14,23 SAY "IF YOU DO NOT WISH TO PRINT" %
@ 15,23 SAY "THIS RELATIONSHIP, TYPE 'Q' TO“ a
@ 16,23 SAY "RETURN TO THE PREVIOUS MENU" o
WAIT TO stop
DO CASE .
CASE stop = '0!

. OTHERWISE .
ENDCASE , -
SET DEVICE TO PRINT =
SET CONSOLE OFF o
DO CASE o
CASE choice = 'R_CONT_E' O
USE R_CONT_E :
STORE™1 TO « count

SET HEADING OFF
DO WHILE .NOT. EOF()

CLEAR LS
@ 0,33 SAY CHOICE aa
9 2,1 SAY "RECORD

2,11 SAY count

tore count + 1 to count
4,1 SAY "ACCESS NAME : "
HEW

: SAY "IEENTIFICATION NAME ; .
éz Y E_NAME N

"'NDDO
CASE choice = 'U_RESP_S'
USE U_RESP_S

e
s
e
e
e
@

G O
DO WHILE .NOT. EOF() e

193

L

EAR
0,33 SAY CHOICE
.1 SAY “RECORD

2,11 SAY count

ore count + 1 to count

4,1 SAY "ACCESS NAME:"

4 28 SAY U NAME

S,1 SAY "IBENTIFICATION NAME :"
K?st SAY S_NAME

ENDDO .
CASE choice = 'U_RESP_F'
USE U_RESP_F
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
2.1 SAY "RECORD

11 SAY count

e count + 1 to count

1 SAY "ACCESS NAME:"

28 SAY U NAME

1 SAY "IBENTIFICATION NAME : "
28 _NAME

uRR @ P

LA

e la a0 e 0 0

@2,
stor
@4,
Q@ 4,
@s,
@ 5,
KIP

ENDDO

CASE choice = 'P_PROD_D'
USE P_PROD_D

STORE™1 TO count

SET HEADING OFF
DOEWHILE .NOT. EOF()

@ 0,33 SAY CHOICE
Q 2,1 SAY "RECORD

@ 2,11 SAY count

store count + 1 to count
@4,1 SAY "ACCESS NAME ;"
@ 4,28
@5,1
@ 5,

SAY P_NAME
SAY ”IEENTIFICATION NAME : "
28 SAY D_NAME

0> ENDDO

y ENDCASE

o SET DEVICE TO SCREEN

R SET CONSOLE ON
RETURN

W Iy

e

s 5o

. 194

9

¥
4
B

. LY 3 o e T X T A e T
AN N T e e T , ;

130000.PRG
MODULE NAME: 1.3.0.0.0.0
ROUTINES THAT CALL THE MODLUE: 1. 1 0 0.0.0

1.3.4.0.0.0, 1.3.5.0.0.0, 1.3.6.0.0.0, MAIN

LOCAL VARIABLES USED:

choice: CONTAINS THE NUMBER OF ACTION SELECTED.

t: REPRESTENTS NO VALUE AT ALL.

hold: USED TO STOP ACTION FOR USER DECISION.

name: CONTAINS THE ENTITY RELATION NAME.

egﬁ;g é: CONTAINS THE ACCESS-NAME FOR THE ENTITY RELATION BEING ?
UTPUT FILE: MEM VAR.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RALATION

AND ACCESS NAME VALUE THAT WILL BE USED IN THE QUERY

set color to 0/3,3
set talk off

SET EXACT ON

ERASE mem_var.mem
CLEAR

STORE .t. TO true
do Xglle true

W % o o O Ok % % % % % N NN

CL

@ 0,1 say "1.3.0.0.0.0"

@ 1,22 say "INFORHATION RESOURCE DICTIONARY SYSTEM"

@ 3,35 SAY "QUERY MENU"

@ 5,11 SAY "ENTITY-1 RELATIONSHIP ENTITY"
@ 5,66 SAY "-29

@ 8,10 SAY "1 USER"

@ 9,10 say "2 SYSTEM"

@ 10,10 SAY " PROGRAM"

@ 11,10 say "4 MODULE"

@ 12,10 SAY "5 DOCUMENT**

@ 13,10 SAY "6 FILE"

@ 14,10 SAY "7 RECORD"

@ 15,10 SAY "8 ELEMENT"

@ 16,10 SAY "9 RETURN TO PREVIOQUS MENU"

@ 17,9 SAY "10 RETURN TO MAIN MENU"

@ 18,4 say ¢+ v

ACCEPT! ENTER YOUR CHOICE (1-10) FROM ABOVE: 'TO choice
SEORE .£f. TO true

CASE choxce = mn

STORE 'USER' TO name
CASE choice = u2n

STORE 'SYSTEM' TO name
CASE choice = "3"

STORE 'PROGRAM' TO name
CASE choice = "4"

STORE 'MODULE' TO name
CASE choice = "5

STORE 'DOCUMENT' TO name
CASE choice = "g"

STORE 'FILE' TO name
CASE choice = "7w

STORE 'RECORD' TO name
CASE choice = g%

STORE 'ELEMENT' TO name
CASE choice = "g®

RETURN
CASE choice = "10"

195

ROUTINES THAT THE MODULE CALLS: 1.3.1.0.0.0, 1.3.2.0.0.0, 1.3.3.0.0.0

. 4

Ty e e Y

@ 2,14 SAY "“PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAIN!"

ACCEPT TO hold

STORE .t. TO true

ENDCASE

ENDDO

STORE 'N' TO correct

DO WHILE correct = 'N'

CLEAR)

STORE ' ' TO entltyl

.1 SAY "1.3.0.0.0.0"

,22 SAY "INFORHATION RESQURCE DICTIONARY SYSTEM"
,35 SAY "QUERY MENU"

.12 SAY name

,31 SAY "RELATIONSHIP ENTITY-2%

,4 SAY "ENTER THE ACCESS-NAME FOR"

.4 SAY "YOU WISH TO QUERY ON"
,26 GET entltg
0,4 SAY "AND PRESS RETURN"

D

RE 'Y' TO correct

3 SAY "IS THIS THE ENTITY YOU WISH TO QUERY ON"
44 SAY ENTITY1

56 SAY "Y OR N“

64 GET correct

HHHHO&H\DOQQO\O\&NH

g@@@@g g@@@@@@@@@@
WWwww

’
’
,
,

ENDDO

DO CASE

CASE choice = "1"
STORE 'USER' TO_choice
STORE 100 TO selection
SAVE TO mem_var

do 131000

CASE choice = "2" ,
STORE 'SYSTEM' TO choxce
STORE 200 TO selection
SAVE TO mem_var

do 132000

CASE choice = "3»)
STORE 'PROGRAM' TO choice
STORE 300 TO selection
SAVE TO mem_var

do 133000

CASE choice = "4

STORE 'MODULE‘ TO choice
STORE 400 TO selection
SAVE TO mem_var

do 134000

CASE choice = "§»

STORE 'DOCUMENT' TO choice .
STORE 500 TO selection
SAVE TO mem var

do 13500

CASE choice = hgn

STORE 'FILE' TO choice
STORE 600 TO selection

do 136000

CASE choice = "7v

STORE 'RECORD' TO choice
STORE 700 TO selection

do 137000 ~

CASE choicc = ngn

STORE 'ELEMENT' TO choice
STORE 800 TO selection
SAVE TO mem_var

196

I
AL

A A,

AN

- LA
o n

[

P

B
e
)

do 138000
ENDCASE

197

O R 3

24

* oA Gk Yy

PR

ee s A8 @

Rt e N, ST

by 4 4 4

*
*
*
*
"%k
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

AR VY ™S L 3 e 8,
Ju_.ag__‘t"l,l‘i.“‘ oF Jtt-tv n

131000.PRG

MODULE NAME: 1.3.1.0.0.0

INPUT FILES: NONE

OUTPUT FILES: NONE .

ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0

ROUTINES THAT THE MODULE CALLS: 1.3.1.1.0.0, 1.3.1.2.0.0

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED.

hold : USED TO STOP ACTION FOR USER DECISION.

entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE

. IN A QUERY STRING.

rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
VALUE IN A QUERY STRING.

true : USED AS A BOOLEAN VALUE IN LOOPS.

correct : USED AS TO HOLD USER'S CHOICE FOR LOOP TERMINATION.

SELECTION : USED TO HOLD THE VALUE IDENTIFYING WHICH QUERY TO EXECUTE.

INPUT FILES: MEM VAR

OUTPUT FILES: MEN VAR :

mem_var.mem : USED TO TEMPORARILY STORE THE MEMORY VARIABLE VALUES.

temp.dbf : USED TO STORE THE RESULT OF QUERY EXECUTION.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP

VALUE WILL BE USED IN THE QUERY

RESTORE FROM mem_var
ERASE mem_var.mem
CLEAR

STORE 'N' TO correct
DO WHILE correct = 'N!
STORE .t. TO true

do while true

CLEAR

@0,1 SAY "1.3.1.0.0.0"

@1, AY "INFORMATION RESOURCE DICTIONARY SYSTEM"

€33} By ey ot

@ 5,33 SAY "RELATIONSHIP ENTITY-2"

@ 8,32 SAY "1 CONTAINS"

@ 9/32 Say "2 IS RESPONSIBLE FOR"

g i?,izsggvu"“) RETURN TO PREVIOUS MENU"

ACCEPT' ENTER YOUR CHOICE (1-3) FROM ABOVE: 'TO choice

STORE .f. TO true
DO CASE

CASE choice = "1v

STORE 'CONTAINS' TO rel_ship

CASE choice = "2V .
STORE 'IS RESPONSIBLE FOR' TO rel_ship
CASE choice = “3"

RETURN

8{g§§WISE
@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"

@ 3,14 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold

gea
:

SAY "1.3.1.0.0.0"
SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
SAY "QUERY MENU"

198

[] N RO KAV Y] RN I R L Troaco
RS '1‘-"'_:_._’ M _;'«_.’, RS AV (o I

.&Q

A

R

-

SAY "IS THIS THE RELATIONSHIP THAT"

5 SAY rel ship

SAY "Y OR N®
@ 12,11 GET correct
READ

@ 10,3
@ 11,3 SAY "YOU WISH TO QUERY ON“
@11,2
@ 12,3

CASE choice = "1v .

STORE 'PROCESSES' TO choice |
STORE selection + 10 TO selection
SAVE TO mem_var

do 131100

CASE choice = "2% .
STORE 'IS RESPONSIBLE FOR' TO choice
STORE selection + 20 TO selection
SAVE TO mem_var

do 131200

ENDCASE

199

4

Ty
v,

a1

T8
¥

LENVOER AL

[V NET R N A |

0
Tt etaa’

Y R T T T T Rk o T T

L

Ly L] L] s o
',)."l. (R u."u.,‘ SO TG A LN

131100.PRG
MODULE NAME: 1.3.1.1.0.0
ROUTINES THAT CALL THE MODLUE: 1.3.1.0.0.0
ROUTINES THAT THE MODULE CALLS: 1:3.1.0.0.0
LOCAL VARIABLES USED:
choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
, CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
, IN A QUERY STRING.
entityl2: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE SECOND VALUE
IN A QUERY STRING.
hold : USED TO STOP ACTION FOR USER DECISION.
rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
VALUE IN A QUERY STRING.
t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

LOOP.
true : USED AS A BOOLEAN VALUE IN LOOPS.
INPUT FILES: MEM VAR.

OUTPUT FILES: MEM VAR.* DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RALATION
AND ACCESS NAME VALUE THAT WILL BE USED IN THE QUERY

set color to 0/3,3
set talk off

SET EXACT ON

ERASE mem_var.mem
CLEAR

STORE 'N' TO correct
DO WHILE correct = 'N'
STORE .t. TO true

do while true

LEAR

1l say "1.3.1.1.0.0"

22 SAY “INFORMATION RESOURCE DICTIONARY SYSTEM"
35 SAY "QUERY MENU"
12 SAY entityl
24 SAY rel ship
S

5

*
x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0 SAY "ENTITY-2"

4 SAY "1 SYSTEM"

4 SAY "2 RETURN TO PREVIOQUS"
,59 SAY "MENU"

11,4 SAY " ¢

ACCEPT' ENTER YOUR CHOICE (1-2) FROM ABOVE: 'TO choice
STORE .f. TO true

DO CASE

CASE choice = "1

STORE 'SYSTEM' TO entity2
Chsgnﬁho1ce = n2n

8EEERWISE

@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 2 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAIN!"

ACCEPT TO hold

STORE E.t:. TO true

3

5,12 SAY entitx

5, ip
59 SAY entity 2

5
TORE '¥' TO correct
8,3 SAY "IS THIS THE ENTITY YOU WISH TO QUERY ON"

200

,,,,,

» r\'u l‘@!-":‘l"‘,“l".‘l 'l.'f?gﬂ-"s*:’;“"f'{.;"?‘!*f,"'!" T e IR

Ko+ a4 3 LAC NI S g T a T A TA LT - EERN o T e U oa T 4 N AT AN Tl A A Sl Gl Badh Sadfel Bkl diag Sk SV Rt Se) Aot oo ey

@ 8,44 SAY entity2
@ 8,56 SAY "Y OR N"

" @ 8,64 GET correct

READ
: ENDDO .
: DO CASE

CASE choice = "1
’ SAVE TO mem_var
: SELECT 2

USE SYSTEH .

SELECT

USE U PROC_S
1 JOIN WITH SYSTEM TO TEMP FOR U NAME = entityl .AND. S_NAME = ;
. SYSTEM->ACC_NAME FIELDS ID_NAME, DESCRIPT

SELECT 2

USE

SELECT 1

USE

do 139000

ENDCASE

b -

- 201 %
A}

A’ p)‘ ."-_') q'l 2 & n* [a X3 L WA ' qb ;‘ t?u,"'i_g'ﬂﬂ'l t’ Y l'[Q!(aﬁ‘l.a‘\u "Q,' 3 A"!n ;'b 2o . h‘ '!' “. S WIS 5:;. N l?“. .Ea““:,f?;‘;w'.‘;"i.‘_"?‘o"' '

R IR R R o

[RENER e g v SLoL Ly

e R M et s .t

Fa¥a¥a®

Aty T VLT e

v I
'rA K
'.0,’

‘ -$ -

K '\.'_\.';

RO
131200.PRG e
MODULE NAME: 1.3.1.2.0.0 :,:éf.
ROUTINES THAT CALL THE MODLUE: 1.3.1.0.0.0 il

ROUTINES THAT THE MODULE CALLS: 1.3.1.0.0.0

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS

. CORRECT OR NOT.
entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
. IN A QUERY STRING.

entity2 : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE SECOND VALUE
IN A QUERY STRING.

hold : USED TO STOP ACTION FOR USER DECISION.

rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
VALUE IN A QUERY STRING.

true : USED AS A BOOLEAN VALUE IN LOOPS.

INPUT FILES: MEM VAR.

OUTPUT FILES: MEM VAR.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RALATIONSHIP

THAT WILL BE USED IN THE QUERY

ERASE mem_var.mem
CLEAR

STORE 'N' TO correct
DO WHILE correct = 'N!
STORE .t. TO true

do while true

CLEAR

bk b A O b IR I O B b B B B O

@ 0,1 say "1.3.1.1.0.0"

@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"

c) 3,35 SAY "QUERY MENU"

@ 5,11 SAY "“ENTITY-1 RELATIONSHIP ENTITY"
@ 5,66 SAY "-2"

@ 8,54 SAY "1 SYSTEM"

@ 9,54 sSay "2 FILE"

@ 10,54 say "3) RETURN TO PREVIOUS"

@ 11,59 SAY "MENU" R
@ 12,4 say * »

ACCEP pT ! ENTER YOUR CHOICE (1-10) FROM ABOVE: 'TO choice
STORE .f. TO true

DO CASE

CASE choice = "1"
STORE 'SYSTEM' TO name
CASE choice = "2"
STORE 'FILE' TO name
CASE choice = "3¢

RET

@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAINI"

ACCEPT TO hold

STORE .t. TO true

@ 0 1 sAy "1.3.1.2.0.0"
1,22 Say "INFORHATION RESOURCE DICTIONARY SYSTEM"
3/35 SAY WQUERY MENU"
,12 SAY entitg
,32 SAY rel_ship
59 SAY name
RE 'Y' TO correct

202

-‘ B e ! % Aaie Whe R A geg & wblos Jbut el B aiibbcthe AoiC i v i Rakan) MU AL I et g S B R it i b Al A S Rt i At L R e A SRR £oy o 0o o

k)
; @ 8,3 SAY "IS THIS THE ENTITY YOU WISH TO QUERY ON"
@ 8,44 SAY name
@ 8,56 SAY "Y OR N"
@ 8,64 GET correct
READ
ENDDO .
. DO CASE
~ CASE choice = "1%
- SELECT 2
USE SYSTEM
b SELECT 1 -
USE U RESP_ S
JOIN WITH 5YSTEM TO TEMP FOR U_NAME = ENTITY1l .AND. S_NAME = SYSTEM-> ACC_NAME;
" FIELDS ID_NAME, DESCRIPT
. SELECT 2
S USE
" SELECT 1
- USE
R DO 139000
CASE choice = "2"
SELECT 2
X USE FILE
N SELECT 1
. USE U RESP F
- JOIN WITH 3YSTEM TO TEMP FOR U_NAME = ENTITY1 .AND. S_NAME = SYSTEM-> ACC_NAME; v
s FIELDS ID_NAME, DESCRIPT e
s SELECT 2 oA
- USE ol
SELECT 1 |
S USE : T
- DO 139000 A
, ENDCASE i
. [P I s
E SO
- .)_\
.
Y
oy
\ h K ".
: Q}»

e
Ry ™
R ;:.

- il M

203

RAALLAA

2 e 8 "R AN V!, TN PN TN T { - WP Tl R ey 4 o3 e PR N I T AL N R RO A .:M‘_).“
L ‘. ~l. . W AL AR RLSE o. WY, '2“ PR AN SN S RN AR T (IR ORI R A S-S : SO

X i e DM RSl na o Sivie e e tp A Sp et Sa (e npd (Al gt Saty *ally "ol aed, Ap i Nl “pA R i ~a o ath snd Aata gl el an B “ah T % TN TN T U TN
- .
X oy
;.J
) X
S bt
,i'\i
* 132000.PRG L
* MODULE NAME: 1.3.2.0.0.0 v
* ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0 ﬁéﬁ
* ROUTINES THAT THE MODULE CALLS: MAIN i
" * LOCAL VARIABLES USED: s
" * choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE 'qi
. * CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO, &UQ
: * MODIFIED, DELETED FROM OR OUTPUT. .
5 * correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS v 2
) * . CORRECT OR NOT. m
- * entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
A * _IN A QUERY STRING. i
. * rel ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP N
¥ * VALUE IN A QUERY STRING. o
. * true : USED AS A BOOLEAN VALUE IN LOOPS. Y
- * INPUT FILES: MEM VAR. S
* QUTPUT FILES: MEM VAR. vl
* DESIGNED BY: ROBERT A. KIRSCH II P
* WRITTEN BY: ROBERT A. KIRSCH II AN
* BASIC FUNCTION OF MODULE: i
: * THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RALATIONSHIP Jaeh
k> : THAT WILL BE USED IN THE QUERY oo
. set color to 0/3,3
£ set talk off o
: SET EXACT ON o
b RESTORE FROM mem_var aa
ERASE mem_var.mem)
CLEAR >
STORE 'N' TO correct '{}
DO WHILE correct = 'N' S
STORE .t. TO true N
do while true hﬁ:
5 : CLEAR AN
- @ 0,1 say "1.3.2.0.0.0" b
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU" o
. @ 5,11 SAY entityl Oy
N @ 5,33 SAY "RELATIONSHIP ENTITY-2" -
~ @ 7,29 SAY "1) PROCESSES")51
g @ 9,29 SAY "2 IS PROCESSED BY" *T
N @ 11,29 SAY " ; CONTAINS" f:?
- @ 13,29 SAY "4 RETURN TO PREVIOUS MENU" .
@ 14,4 say » v
- ACCEPT' ENTER YOUR CHOICE (1-4) FROM ABOVE: 'TO choice
“ STORE .f. TO true b
. DO CASE 30
N CASE choice = "1# . 3
N STORE 'PROCESSES' TO rel_ship b
. CASE choice = "2" . ﬁf
STORE 'IS PROCESSED BY' TO rel_ship !
, CASE choice = "3# . '
8 STORE 'CONTAINS' TO rel_ship
-, CASE choice = "4g"
- RETURN
- OTHERWISE
- CLEAR
- @ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 4 ONLY"
- @ 3,14 SAY "PRESS RETURN TO TRY AGAIN!"
= ACCEPT TO hold
N STORE .t. TO true
. ENDCASE
: ENDDO
X CLEAR
. @ 0,1 say "1.3.2.0,0.0"
*, @ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
A @ 3,35 SAY "QUERY MENU"
@ 5,12 SAY entityl
od
4

~
.

NN

Dl e}

- WL,

e W ews s NN

32 SAY rel ship

58 SAY "ENTITY-2"

4 SAY "IS THIS THE RELATIONSHIP!
4 SAY "THAT YOU WISH TO QUERY ON"
31 SAY rel ship

4 SAY "Y OR N

CASE choice = "1 ,
STORE selection + 10 TO selection
SAVE TO mem_var

do 132100

CASE choice = "2V ,]
STORE selection + 20 TO selection
SAVE TO mem_var

do 132200

CASE choice = "3" .
STORE selection + 30 TO selection
SAVE TO mem_var

do 132300

ENDCASE

205

ol P S R G a ol Sak Fa0 Fad ME P G par vag % ‘2t al Y UGN Y Mt &, B Y Ny,

x4

133000.PRG

MODULE NAME: 1.3.3.0.0.0

ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0

ROUTINES THAT THE MODULE CALLS: MAIN ,

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS

, CORRECT OR NOT.
entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
_ IN A QUERY STRING.

rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
VALUE IN A QUERY STRING.

true : USED AS A BOOLEAN VALUE IN LOOPS.

INPUT FILES: MEM VAR.

OUTPUT FILES: MEM_VAR.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RALATION

AND ACCESS NAME VALUE THAT WILL BE USED IN THE QUERY

RESTORE FROM mem_var

ERASE mem_var .mem

CLEAR

STORE 'N' TO correct
DO WHILE correct = ‘N!
STORE .t. TO true

do while true

CLEAR
@0,1 SAY "1.3.3.0.0.0"

SAY “INFORMATION RESOURCE DICTIONARY SYSTEM"

SAY "QUERY MENU"

SAY entityl

SAY "RELATIONSHIP ENTITY-2"
SAY "1 PROCESSES"

SAY "2 IS PROCESSED BY"
8 SAY "
8 SAY "4 PRODUCES"

8 SAY "5 IS THE RESPONISBILITY OF"
28 SAY "6 IS CONTAINED IN"
9,28 SAY "7 RETURN TO PREVIOUS MENU"

ACCEPT' ENTER YOUR CHOICE (1-7) FROM ABOVE: 'TO choice
STORE .f. TO true S
DO CASE | L
CASE choice = "]" . S
STORE 'PROCESSES' TO rel_ship -
CASE choice = "2" .
STORE 'IS PROCESSED BY' TO rel_ship
CASE choice = "3% o
STORE 'CONTAINS' TO rel_ship ’
CASE choice = "4 . LS
STORE 'PRODUCES' TO rel_ship
i CASE choice = "§"
. STORE 'IS THE RESPONSIBILITY OF' TO rel_ship
~ CASE choice = "g"
* STORE 'IS CONTAINED IN' TO rel_ship

CASE choice = 70

TURN

RE

- OTHERWISE

Y CLEAR

o @ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 7 ONLY"
@ 314 SAY "PRESS RETURN TO TRY AGAIN!"

N ACCEPT TO hold

i : STORE .t. TO true
' ENDCASE

Y,

RIS

Catata,
P I U T b R 3 3 B I 3 I I B

3
®eta"s

e

A

> v v s NNWHWN

P o®

AL
NN W UNIN

PEADVDDDVDOD
s ot b s =D D NV

NN AN

&

BRONE !

W 206

o

b

) ENDDO
s CLEAR
¢ @ O, SAY "1.3.3.0.0.0"
v @ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@3, .35 say "QUERY MENU"
< @ 5.12 SAY entit 1 ,
‘ @ 5,32 SAY rel ship
) @ 5,58 SAY "ENTITY-Z"
) @ 7,4 SAY "IS THIS THE RELATIONSHIP"
f\ @ 8,4 SAY "THAT YOU WISH TO QUERY ON"
: @ 8,31 SAY rel ship .
bl @ 9,4 SAY "Y OR N"
@ 9,12 GET correct
b READ
w ENDDO
A DO CASE
- CASE choice = "1")
., STORE selection + 10 TO selection
-, SAVE TO mem_var
= do 133100
CASE choice = "2")
STORE selection + 20 TO selection
e SAVE TO mem_var
.~ do 133200
N CASE choice = "3" ,
™ STORE selection + 30 TO selection
- SAVE TO mem_var
" do 133300
y CASE choice = "4" . "
: STORE selection + 40 TO selection o
> SAVE TO mem_var ‘é%
. do 133400 R
o CASE choice = "5¢ , a8
X% STORE selection + S0 TO selection e
XN SAVE TO mem_var N o
- do 133500 =
CASE choice = "g"
. STORE selection + 60 TO selection
o SAVE TO mem_var
> do 133600 .
. ENDCASE
Y
]
-
-
.
. :
-~ ne
L. I
e
: -
1
‘d
‘1
o
"
B L4
-4
3 207
%
p

S0

» ety > g A A 2t R P R N e T TSN Y P e ce Dy
AR LS T ML LN S k ALK A A S) O T P . L N

<

\; SN YN

AT

IV TP

A O

DERDRDRDDDDD
= O ~J NN -

134000.PRG

MODULE NAME: 1.3.4.0.0.0

ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0

ROUTINES THAT THE MODULE CALLS: MAIN

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

correct : gggg%égsogS§§TRESP0NSE AS TO WHETHER THE DISPLAYED VALUE IS

entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE

. IN A QUERY STRING.

rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
VALUE IN A QUERY STRING.

true : USED AS A BOOLEAN VALUE IN LOOPS.

INPUT FILES: MEM VAR

QUTPUT FILES: MEH V

THIS MODULE ALLOW THE "USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE

USED IN THE QUERY.

RESTORE FROM mem_var
ERASE mem_var.mem
CLEAR
STORE 'N' TO correct
DO WHILE correct = 'N!
STORE .t. TO true
do while true
CLEAR
0,1 SAY "1.3.4.0.0.0" :
,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
35 SAY "QUERY MENU"
1 SAY entityl

o o X Ok % Ok b e e ok b ok Ok 3 N N NN

.1
,33 SAY "RELATIONSHIP ENTITY-2"
,29 SAY "1 IS CONTAINED IN"
,29 SAY "2 IS PROCESSED BY"
1,29 SAY " ; IS THE RESPONSIBILITY OF"
3,29 SAY "4 RETURN TO PREVIOUS MENU"
14,4 SaY " v)
ACCEPT' ENTER YOUR CHOICE (1-4) FROM ABOVE: 'TO choice
Dgogﬁs .£. TO true

CASE choice = "1"

STORE 'IS CONTAINED IN' TO rel_ship

CASE choice = "2"

STORE 'IS PRODESSED BY' TO rel_ship

CASE choice = "3»

STORE 'IS THE RESPONSIBILITY OF' TO rel_ship
CASE choice = "4"

@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 4 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAIN!"

ACCEPT TO hold

STORE .t. TO true

ENDCASE

ENDDO

CLEAR

@ 0,1 SAY "1.3.4.0.0.0"

22 SAY "INFORHATION RESOURCE DICTIONARY SYSTEM"
35 SAY "QUERY MENU"

12 SAY entitgl

32 SAY rel s i

58 SAY "ENTITY-2"

4 SAY "1S THIS THB RELATIONSHIP"
4 SAY "THAT YOU WISH TO QUERY ON"
31 SAY rel ship

4 SAY "Y OR N

DOBDDDDDDD
DO JUUIUIW G

208

)
’..
1]
N
4
-
""'- @ 9,12 GET correct
N READ
Pl ENDDO
DO CASE |
s CASE choice = "1" . !
" STORE selection + 10 TO selection
> SAVE TO mem_var
" do 134100
Y CASE choice = "2¢)
" STORE selection + 20 TO selection -
¥ SAVE TO mem_var
do 134200
K CASE choice = "3V .
! STORE selection + 30 TO selection
Y SAVE TO mem_var 5
~ do 134300 by
o ENDCASE o
2 .a.f'
.. P,
¥ R
_:. ;‘1:;;"
N: “hote,
-

o
-

¥
Y ‘j v N3
[} & ‘E;«
h d
o - ;Ez%’,ﬁl‘.
t :
1 T
il TR EA
g &
S by W
} 5":"«‘?:
ong
\::v >
2
-
¢_“ *
]
» - .
>
kS
’
’ l
M, .
O
3 209
8,

T,

e

[4 % WA N

AWl

PR M B aF e a 4L

by A AR

AP ey v B,

l*. AR

L T X
a s

=

B

;;.
)
"l

AOEDEDEOR

135000.PRG

MODULE NAME: 1.3.5.0.0.0

ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0

ROUTINES THAT THE MODULE CALLS: MAIN

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

correct : ggg§§é¥sog55RTRESPONSE AS TO WHETHER THE DISPLAYED VALUE IS

entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE

] IN A QUERY STRING.

rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
VALUE IN A QUERY STRING.

true USED AS A BOOLEAN VALUE IN LOOPS.

INPUT FILES MEM VAR

OUTPUT FILES: MEM_V

THIS MODULE ALLOW ™ THE "USER TO CHOOSE WHICH TYPE QOF RELATIONSHIP WILL BE

USED IN THE 9UERY.

set color to 0/3,3

set talk off

SET EXACT ON

RESTORE FROM mem_var

ERASE mem_var.mem

CLEAR

STORE 'N' TO correct

DO WHILE correct = 'N'

STORE .t. TO true

do while true

..?v

SR A
B X,

b R o R B I B

o
» w-

‘.' .l'
A !

XXX
A
v

CLE

@ 0,1 SAY "1.3.5.0.0.0"

@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"

@ 3,35 SAY "QUERY MENU"

@ 5.11 SAY entityl

@ 5.33 SAY "RELATIONSHIP ENTITY-2"

@ 8,28 say "15 IS PRODUCED BY"

g i?’i 2) "RETURN TO PREVIOUS MENU"

ACCEPT' ENTER YOUR CHOICE (1-2) FROM ABOVE: 'TO choice
ggogﬁ .£. TO true

CASE ch01ce = uin
STORE 'IS PRODUCED BY' TO rel_ship
CA%E choice = "2"

@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 2 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAINi"

ACCEPT TO hold

STORE E.:t‘.. TO true

EAR
0,1 say "1.3.5.0.0.0"
22 say "INFORHATION RESOURCE DICTIONARY SYSTEM"
35 SAY "QUERY MENU
12 SaY entitg
32 SAY rel s i
58 SAY "ENTI w3
4 SAY "1IS THIS THE RELATIONSHIP" =L
SAY "THAT YOU WISH TO QUERY ON"
1 SAY rel ship
Y "y OK N*
2 GBT correct

\DW@\IU‘U!UIN!-'

LR R Y SR M SR Y

4
3
4 S
1

O

g@@@@@@@@@@@n
N

22
o8

210

frs

B T T T R T A I NS

- » 2] .
’ —
—
o~
[]
o
-
/ +
O
; a3
! v
7]
o
|]
} =]
-4
= 4+
-
-2
! o
’ n-A>
o |
! QUE
vee
- EO
OO0 O
L NO—I
3} TSM
ﬂ o
53] WIC
daa ol
QSSdE
)

Ty Ty L AARARRY SIECEER, RANINNMY IR XA DAL AN CRREIARE | e

- » by

AN

136000.PRG
MODULE NAME: 1.3.6.0.0.0
ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0

ROUTINES THAT THE MODULE CALLS: MAIN

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS

, CORRECT OR NOT.

entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
IN A QUERY STRING.

rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
VALUE IN A QUERY STRING.

true : USED AS A BOOLEAN VALUE IN LOOPS.

INPUT FILES: MEM VAR.

OUTPUT FILES: MEM_VAR.

THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE

USED IN THE QUERY.

RESTORE FROM mem_var
ERASE mem_var .mem
CLEAR

STORE 'N' TO correct
DO WHILE correct = 'N!
STORE .t. TO true

do Xglle true

P b R B b 2

CLE

@o0,1l say *1.3.6.0.0.0"

g %,3% SA¥ :éggggﬂﬁgﬁgN RESOURCE DICTIONARY SYSTEM"
@ 5,11 SAY entityl

@ 5,33 SAY "RELATIONSHIP ENTITY-2"

@ 7,28 SAY "1 CONTAINS"

@ 9,28 SAY "2 IS PROCESSED BY"

@ 11,28 Say " ; IS THE RESPONSIBILITY OF"

8 {E,EBSihY""ﬁ RETURN TO PREVIOUS MENU"

ACCEPT' ENTER YOUR CHOICE (1-4) FROM ABOVE: 'TO choice
ggORE .£. TO true

CASE choxce = un

STORE 'CONTAINS' TO rel_ship

CASE choice = “2"

STORE 'IS PROCESSED BY' TO rel_ship

CASE choice = "3%

STORE 'IS THE RESPONSIBILITY OF' TO rel_ship
cagz choice = "4"

@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 4 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAIN!"

ACCEPT TO hold

STORE ét. TO true

AR
0 SAY "1.3.6.0.0.0"
1,22 SAY "INFORHATION RESOURCE DICTIONARY SYSTEM"

8 SAY "ENTITYE "

AY “THAT YOU WISH TO QUERY ON"
1 SAY rel ship
SAY "y OR N*

w28
<
=
(7]
o
"~
wn
EN
8
£
3
g
2
€x
(]
g

212

- oty T BB P e
T N O T e SO SRR)

rv':'- 'es. A

259 -W L
AL

s

Ty -

3 .

,

A

!

LA SN LN gtle SR M i gt '*v'_v'v;(-v\v*"—~_vj_v:._ S SV md e Soll Al A At Al 2l st

- AN
> N
M N
{ E
: o
l'.().
by SO0
> @ 9,12 GET correct Ay
! READ v '-!':.
f ENDDO s
DO CASE ot
" CASE choice = "1") Vv
', STORE selection + 10 TO selection R 4 00
" SAVE TO mem_var kp.c:
" do 136100 o
» CASE choice = "2"))
\ STORE selection + 20 TO selection
7 CASE choice = "3 .
STORE selection + 30 TO selection "
- SAVE TO mem_var XN
- do 136300 LY N
ENDCASE X o
Ll

£

£

(D .'l . v&'—‘

SHEL

~

) ".-,;..;_-;

v v
Lt
o

"
»

] ST AXARALL 0

.
*yt
AP AR

A

Y

213

SAAAL AAARATY

LY

oy

T O S O T T R

?ﬁl‘i
.
d
.
e

137000.PRG

MODULE NAME: 1.3.7.0.0.0

ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0 A
ROUTINES THAT THE MODULE CALLS: MAIN ' R
LOCAL VARIABLES USED: v,

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE -*;uqé
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO, bty
MODIFIED, DELETED FROM OR OUTPUT. g
correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS Nty
CORRECT OR NOT. 43:;;

entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE n!
. IN A QUERY STRING.

rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP

VALUE IN A QUERY STRING.

true : USED AS A BOOLEAN VALUE IN LOOPS.

INPUT FILES: MEM VAR.

OUTPUT FILES: MEM_VAR.

THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE

USED IN THE QUERY.

RESTORE FROM mem_var
ERASE mem_var.mem
CLEAR

STORE 'N' TO correct

. DO WHILE correct = 'N'
' STORE .t. TO true

N doEwhile true

AR
0,1 sAY "1.3.7.0.0.0"
22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
35 SAY "QUERY MENU"
11 SAY entityl
33 SAY "RELATIONSHIP ENTITY-2"
%7 SAY "lg CONTAINS"

]
3# -

e
i
XK

",
.4"'.

l"

% %k ok O O % b OF 3 0k 3 Ok Ok Ok % % % *
A
v
v

IS CONTAINED IN"

IS PROCESSED BY"

IS THE RESPONSIBILITY OF"
RETURN TO PREVIOUS MENU"

ENTER YOUR CHOICE (1-S) FROM ABOVE:'TO choice
STORE .f. TO true

CASE choice = "1" .

STORE 'CONTAINS' TO rel_ship

CASE choice = "2")

STORE 'IS CONTAINED IN' TO rel_ship

CASE choice = "3W _

STORE 'IS PROCESSED BY' TO rel_ship

CASE choice = "4"

STORE 'IS THE RESPONSIBILITY OF' TO rel_ship
CASE choice = "§"

RETURN

8{g§§w15E

@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 5 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAIN!" 2
ACCEPT TO hold P
STORE .t. TO true R
ENDCASE

NDDO

R R & RN T A .«
- 4
[}
0
]
g
[}

SAY "1.3.7.0.0.0" o
SAY "INFORMATION RESOURCE DICTIONARY SYSTEM" ’
SAY “QUERY MENU"

214

LN ER. o ¢ 2 4 v ST AT eV Tt EB AP ST e WY & o ¢ 8 T

-
-

-
P
-
K
2

]
-

3

@ 8,4 SAY "THAT YOU WISH TO QUERY ON"
@ 8,31 SAY rel ship

@ 9,4 SAY "Y OR N"

@ 9,12 GET correct

s ¢ ¢S NN 2”870 07870 sHEERT T 0" aT o T 07 T SN ¥ N "

READ .

ENDDO

DO CASE

CASE choice = "1" .

STORE selection + 10 TO selection :

SAVE TO mem_var -

do 137100

CASE choice = "2% . -

STORE selection + 20 TO selection A

SAVE TO mem_var e

do 137200 el

CASE choice = "3" . . 1ﬂf\?

STORE selection + 30 TO selection RYSOL
- SAVE TO mem_var Y

do 137300
l CASE choice = "4" . Lv]
v STORE selection + 40 TO selection AT
. SAVE TO mem_var q}ix
. do 137400 N
. ENDCASE ~ Sy
A Npir
* *u *\
i -

A

215

LR ASA RN " ¢ Y CREEE TS v T Ty e NVEINLT VN,V T, T s

w & B,

AN *00 ~ 7 P A AR RICE ¥ R
) yl.‘. ASALASAOSOY ‘F‘-".~“Q“—" SR

[
Ly
r
[
.
(4
r,
H
¥,
(]
¥
r
P
'
¥
L}
.
L4
.
-
¥
[}

138000.PRG

MODULE NAME: 1.3.8.0.0.0 :

ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0

ROUTINES THAT THE MODULE CALLS: MAIN

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS
CORRECT OR NOT.

entity? ? CONTAIN? TH? CHARACTE? STRIN? THA? REPRESENT? TH? FIRS? VALUE

. IN A QUERY STRING.
entity2 ? CONTAIN? TH? CHARACTE? STRIN? THA? REPRESENT? TH? SECOND VALUE
. IN A QUERY STRING.

rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
VALUE IN A QUERY STRING.

true USED AS A BOOLEAN VALUE IN LOOPS.

INPUT FILES: MEM VAR.

OUTPUT FILES: MEM_VAR.

THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE

USED IN THE QUERY.

i

PES ST ST AN XA T

TV YW
RN

ot)
L)
b I I R i I UIVES CLVES b 3 3 3 O b O

.

Lf RESTORE FROM mem_var t:;:.
f, ERASE mem_var.mem SR
- CLEAR . LR»:_;
. STORE 'N' TO correct WS
N DO WHILE correct = 'N! .

- STORE .t. TO true
- do while true X
> CLEAR : BoA

- @o0,]1 say "1.3.8.0.0.0"
- @ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
- @ 3,35 SAY "QUERY MENU"
R @ 5,11 SAY entityl
. @ 5,33 SAY "RELATIONSHIP ENTITY-2"
@ 7,27 SAY "1 IS CONTAINED IN"
@ 9,27 SAY "2 IS PROCESSED BY"
- @ 11,27 say ; IS THE RESPONSIBILITY OF"
. 8 12 27S§$Y""ﬁ RETURN TO THE PREVIOUS MENU"
g ACCEPT' ENTER YOUR CHOICE (1-4) FROM ABOVE: 'TO choice
. STORE .f. TO true
. DO CASE

CASE choice = "1"

STORE 'IS CONTAINED IN' TO rel_ship

CASE choice = "2"

STORE 'IS PROCESSED BY' TO rel_ship

CASE choice = "3"

STORE 'IS THE RESPONSIBILITY OF' TO rel_ship
CASE choice = "4¢

RETURN

OTHERWISE

CLEAR

@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 4 ONLY"“
@ 3,14 SAY "PRESS RETURN TO TRY AGAIN!"

~ ACCEPT TO hold

- STORE ét. TO true

SAAAMN

AR
0 1 SAY "1.3.8.0.0.0"
22 SAY “INFORHATION RESOURCE DICTIONARY SYSTEM"
3,35 SAY "QUERY MENU"
12 SAY entitg
32 SAY rel ship
58 SAY "ENTITY-2"
: SAY "IS THIS THE RELATIONSHIP"

5,
5,
3'
8,4 SAY "THAT YOU WISH TO QUERY ON"

216

' -

o . P 'y PRl % S e W
: S TR UAR LN ":‘,':‘Q ‘;‘{ M N SN ‘.‘\:ﬂ"-ﬁ" TR AR XK %,t PRAEL ’.'(‘“:'-'15 SOUAY

A b e il) A ST e AR TR LR TR TR A AR D .V-‘-I;'»‘-"."'-‘-'-‘.‘."-"-‘l:"\."-"-.'L".';‘;ﬁ‘."-".‘7.‘.-.“- AR

4 SAY "Y OR N"

8 8,31 SAY rel ship
$ @ 9,12 GET correct

. CASE choice = "1")
STORE selection + 10 TO selection
SAVE TO mem_var
do 138100 .
CASE choice = "2¢ .
STORE selection + 20 TO selection
SAVE TO mem_var

- do 138200
3 CASE choice = "3" .
: STORE selection + 30 TO selection
- SAVE TO mem_var
~ do 138300
: ENDCASE
::;{ﬁﬂ
N
r.'a::,“]
AN
. T
:: » '-:;"-
e : PNy N
Al “ w's
3 b
F 1
- ;! Fag
’ N
: R
: iR
-:' ’
- 217

139000.PRG

MODULE NAME: 1.3.9.0.0.0

ROUTINES THAT CALL THE MODLUE: 1.3.1.1.0.0 THRU 1.3.8.3.0.0

ROUTINES THAT THE MODULE CALLS:1.3.1.1.0.0 THRU 1.3.8.3.0.0

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

true : USED AS A BOOLEAN VALUE IN LOOPS.

option : USED TO HOLD THE VALUE REPRESENTING THE CHOICE OF PRINTER OR
SCREEN OUTPUT.

INPUT FILES: MEM VAR.

OUTPUT FILES: MEM_VAR.

THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE

USED IN THE QUERY.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE ALLOW THE USER TO CHOOSE WHETHER THE OUTPUT WILL BE

DISPLAYED ON THE SCREEN OR PRINTED.

RESTORE FROM mem_var

,v
'-.n'l‘n'.

- ". '.' '.- ’r 'l'v.

X Ok Ok N N Ok M N O Ok N N N N A N N NN

. STORE .t. TO TRUE
- do while TRUE

CLEAR
- @ 0,1 SAY "1.3.9.0.0.0"

RESTORE FROM mem var
- 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
4,34 SAY "QUERY OUTPUT"
8,23 SAY "LISTED BELOW ARE THE CHOICES FOR HOW"
9,23 SAY "YOU CAN HAVE THE QUERY"
11,24 saAY entltK;
11,38 SAY rel_ship

entity2

13,23 SAY "DISPLAYED."
15,28 SAY "1 SCREEN OUTPUT"
17,28 SAY "2) PRINTER OUPUT"
19,28 SaY "3 RETURN TO PREVIOUS MENU"

, ACCEPT' ENTER YOUR CHOICE (1-3) FROM ABOVE 'TO option
> ERASE mem_var.mem

SAVE TO mem_var

DO CASE
= CASE option 'l
3 DO 139100 .
ye CASE option ‘2!
. DO 139200

CASE option '3

TURN

DRERDDDVDDDD
—
-
wn
~3
>
<

@ 0,27 SAY option
@ 0,34 SAY "IS NOT A VALID CHOICE"
@ 1,26 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"
; @ 2,26 SAY "PRESS RETURN AND TRY AGAIN!"
e ACCEPT TO hold
. ENDCASE
4 ENDDO

L)
- 218
3
J

e S T PR e o . BTV "L L [AT T Y RN PO
. ‘ :'. ", ~“."‘ v, '.‘ > } .;5* %o .u ’3‘-’.- - e,,#:’w‘q .}l ,’lfg ,'\“J?n", ‘4".1»»

- “’r."“ ” .
>

-,

”
-
.
%
R

v
[
55

Xk
§ S

- 7
e n e T
' rute

139100.PRG

MODULE NAME: 1.3.9.1.0.0

ROUTINES THAT CALL THE MODLUE: 1.3.9.0.0.0

ROUTINES THAT THE MODULE CALLS:1.3.9.0.0.0

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

5 hold : USED TO STOP ACTION FOR USER DECISION.
> option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN
OR THE PRINTER.
+ stop : USED TO STOP ACTION FOR USER DECISION.
t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

entityl : %gNXAI§§R$H§T§¥ﬁSACTER STRING THAT REPRESENTS THE FIRST VALUE

entity2 : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE SECOND VALUE
. IN A QUERY STRING.

rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP

VALUE IN A QUERY STRING.

INPUT FILES: MEM VAR.

OUTPUT FILES: MEM VAR

THIS MODULE WILL DISPLAY THE RESULTS OF THE QUERY ON THE SCREEN.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE WILL DISPLAY THE RESULTS OF THE QUERY

ON THE SCREEN.

PROGRAM AND MODULE RELATIONS

ESTORE FROM mem_var
LEAR

.1l say "1.3.9.1.0.0"

,22 SAY "INFORMATION RESQURCE DICTIONARY SYSTEM" .

.30 SAY "QUERY SCREEN OUTPUT" -
%2 SAY "THIS MODULE WILL DISPLAY THE RESULTS OF"
3

NN W

AR

L}

oS

.
I

Q20 % 5k 3 2k b Ok o X Ok b b X Ok ok 3k Ok Ok Ok Xk % X 2 N H o H % ¥ FH %

1 SAY entityl

8 SAY rel_shi
59 SAY entity2 .
9,22 SAY "IF YOU DO NOT WISH TO DISPLAY THIS RELATION,"

10,22 SAY "TYPE '0' TO RETURN TO THE PREVIOUS MENU."

855 AN

OTHERWISE
ENDCASE .
CLEAR
USE TEMP
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
0,1 sAY "1.3.9.1.0.0"
,22 SAY "INFORHATION RESOURCE DICTIONARY SYSTEM"
32 SAY "QUERY RESULTS FOR P
,21 SAY entltx o
rel ship
,%g SAY entztyz

STORE 1 TO coun kv
4 SET HEADING OFF .
) DO WHILE .NOT. EOF')
7,1 SAY "RECORD &'
7,9 SAY count
9,1 SAY ¢+ ¥
tore count + 1 to count
10,4 SAY "IDENTIFICATION NAME:"

tatafet

1 A0

(N

ﬁ@@@@@@
L AL T
4
g
o

s 2 |

gy

219

L

T
—

-

o

L

RERALS ARSI N EN ! L SPELAEM R N IR % W
RPN i S " "’_1,.,"' LN PLARARNE SN

RIS SEIPL LI
HEAAN

Pl o

SO

Fod

' S Y

I e & %

-
-

> »

e

;

R A R

RS KSR LANE I

2,31 SAY ID_NAME

@l
el
@1

2,21 SAY ‘d'e'script

@ 17,4 SAY '
WAIT TO hold
SKIP

ENDDO

RETURN

¥ ANERE MY

4 SAY "DESCRIPTION:"

PO SR
AR,

220

xz

',
Yy
ﬁ
-,
Y

PP AL,

o NND

Wi,

r Al

‘:- a‘i'.*l“:‘ b

- '

™ s
M

>
.
2~

» a W - - W WL Ba By

139200.PRG

MODULE NAME: 1.3.9.2.0.0

INPUT FILES: NONE

OUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE: 1.3.9.0.0.0

ROUTINES THAT THE MODULE CALLS:1.3.9.0.0.0

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS

) CORRECT OR NOT.
entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
. IN A QUERY STRING.
entity2 : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE SECOND VALUE
. IN A QUERY STRING.

rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
VALUE IN A QUERY STRING.

true : USED AS A BOOLEAN VALUE IN LOOPS.

INPUT FILES: MEM VAR.

OUTPUT FILES: MEM_VAR.

THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE

USED IN THE QUERY.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE WILL OUTPUT THE QUERY TO THE PRINTER.

SET EXACT ON
set color to 0/3,3
set talk off
set menu on
SET EXACT ON
RESTORE FROM mem_var
STORE 0 TO rec_num, stop
CLEAR
0,1 SAY "1.3.9.2.0.0"
,22 SAY "INFORMATION RESQOURCE DICTIONARY SYSTEM"
29 SAY ! %UERY PRINTER OUTPUT"
HIS MODULE WILL PRINT QUERY"

0 SAY entltg

ip

P 2 2 I I I N B b B

PRODDDDDDDDDD

1
3,
6,2
8,2
8,37 SAY rel_s
8,56 SAY nam
10,23 SAY "PLEASE INSURE THAT YOUR PRINTER"
11,23 SAY "IS TURNED ON AND IN THE ONLINE"
12,23 SAY "MODE"
14,23 SAY "“IF YOU DO NOT WISH TO PRINT"
15,23 SAY "THIS RELATION, TYPE '0' TO"
16,23 SAY "RETURN TO THE PREVIOUS MENU"
WAIT TO stop
DO CASE
CASE stop = '0°
URN
OTHERWISE
ENDCAS

E
SET DEVICE TO PRINT
SET CONSOLE OFF
E TEMP

STORE 1 TO count

DO WHILE .NOT. EOFs)
@ 29,1 SAY "1.3 0.0"

30 22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"

"1 SAY WRECORD #"
,11 SAY count

221

o e 6 g AL NG I Bh T 2 A Tl PO . EGAR Tuve gt e
EERE R I S a1 & B ISERNN el

P
.

l. >
ar s

o

&

-.
2ae'e
a5

|

.

Y I

K 2 2

12 a8

~» .i.h.“«’ -' .. .AJ "

-

t.ore count + 1 to count
2% SAY "IDENTIFICATION NAME:"

NAME
44.3 SAY “DESCRIPTION "
@ 44 19 SAY descript

s
@
e
@

ENDDO

SET DEVICE TO SCREEN
SET CONSOLE ON
RETURN

S Y TR AR A R A WA —
T T o R T A T I T T S AR s

222

R R

by Y
) lJ o
o ;k.‘-r. I

AN Y
d .'4‘ [
it ¥ A

-

h)

7

-

D
*

.,

it 3
A

o

>
3
~\
3

.................................

R
n"-"\
3
i
N
o, :,,'
kX *.sj
* 140000 .PRG fhﬁi
* MODULE NAME: 1.4.0.0.0.0
! * INPUT FILES: NONE ’
i * QUTPUT FILES: NONE
: * ROUTINES THAT CALL THE MODLUE: MAIN
' * ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0, 1.1.2.0.0.0, 1.1.3.0.0.0, .
' * 1.1.4.0.0.0, 1.1.5.0.0.0, MAIN.
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
. * t: REPRESTENTS NO VALUE AT ALL.
N * hold: USED TO STOP ACTION FOR USER DECISION.
k.. * DESIGNED BY: ROBERT A. KIRSCH II
» * WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS PROGRAM ALLOWS FOR THE MAINTENANCE OF ENTITY SCHEMA, l,ﬁr
”, * AND RELATIONSHIP SCHEMA. :::f
N * LN
A do while .t. <3
7 CLEAR RS
' @ 0,1 SAY "1.4.0.0.0.0"
- @ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
o @ 3,31 SAY "MAINTENANCE MENU" A
5 @ 6,22 SAY "1) MODIFY ENTITY SCHEMA" $:Hb
- @ 8,22 SAY "2) MODIFY RELATIONSHIP SCHEMA" . &:ﬁj
- @ 10,22 SAY "3) RETURN TO MAIN MENU" AN
@ 11,1 SAY " v *
| ACCEPT ! ENTER YOUR CHOICE (1-3) FROM ABOVE: ' TO choice -
N DO CASE ' e
3y CASE choice = "1" T
e do 141000
N CASE choice = "2v
; DO 142000 :
CASE choice = "3" il
A RETURN TO MASTER ° o
’ OTHERWISE b
X CLEAR ,
~ @ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"
f @ 3,20 SAY "PRESS RETURN TO TRY AGAIN{"
_ ACCEPT TO hold
W ENDCASE
b2 ENDDO
W RETURN
(s,‘ .
.\
"’ \]
>
~
8 :
-
_, 223
3
»
.l
,!
o .

5 .

R L 7 . e B vy SRR T TN
R e A A AR T SR DO TR A

* 141000.PRG
* MODULE NAME: 1.4.1.0.0.0

* INPUT FILES: NONE

* OUTPUT FILES: NONE

* ROUTINES THAT CALL THE MODLUE: 1.4.0.0.0.0

* ROUTINES THAT THE MODULE CALLS: MAIN

* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.

* t: REPRESTENTS NO VALUE AT ALL.

* hold: USED TO STOP ACTION FOR USER DECISION.

* INPUT FILES: MEM_VAR, USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD,

* ELEMENT.

* OUTPUT FILES: MEM_VAR, USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD,
* ELEMENT

* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION
* TO MODIFY.
*

do while .t.
CLEAR

@ 0,1 SAY "1.4.1.0.0.0"

@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"

@ 3,31 SAY "MODIFY ENTITY SCHEMA"

@ 6,15 SAY "1) USER 6) FILE"

@ 8,15 SAY "2) SYSTEM 7) RECORD"

@ 10,15 SAY "3) PROGRAM 8) ELEMENT" '
@ 12,15 SAY "4) MODULE 9) RETURN TO PREVIOUS MENU"
@ 14,15 SAY "“5) DOCUMENT 10) RETURN TO MAIN MENU"
@16,1 say " » ’

ACCEPT' ENTER YOUR CHOICE (1-10) FROM ABOVE: 'TO choice

DO CASE

CASE choice = "1"

USE USER

MODIFY STRUCTURE
CASE choice = "2
USE SYSTEM

MODIFY STRUCTURE
CASE choice = n3»
USE PROGRAM

MODIFY STRUCTURE Sl
CASE choice = "4" RO
USE MODULE

—~
MODIFY STRUCTURE S
CASE choice = "S»
USE DOCUMENT

.

224

Y

fh PRI ——— e
SRR WAET A R

St g T e

s A, ¢ L y .
O s O O e R O R

| SAIMEAER R AL LG St il ACaL I L S AR Al Sl St S Se S At A A A N N IR e DA Dt E S S Rau i i B Son Sta S0 2300 i M RS0 £ 4 v.-lt- -

| A

MODIFY STRUCTURE
> CASE choice = "6"
. USE FILE
v MODIFY STRUCTURE
0 CASE choice = "7
USE RECORD
4 MODIFY STRUCTURE
W CASE choice = "g*
- USE ELEMENT
- MODIFY STRUCTURE
’ CASE choice = "9v
RETURN
CASE choice = "10"
hd RETURN TO MASTER
’ OTHERWISE
) CLEAR
‘ @ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY"
b @ 3,20 SAY "PRESS RETURN TO TRY AGAIN!"
4 ACCEPT TO hold
- ENDCASE
- ENDDO
2 RETURN
* -
N .
¥
LS
e
~
A
-
\
‘ -
N 7
’
3 225
-
@
A
NI DT A D 8Tl gyt T S REDEN DT 2 ANEIEN S 5 70 A I 4 LS g

s TR NN XS S Y VS IR Ca s s ¢

* 142000.PRG
* MODULE NAME: 1.4.2.0.0.0
* ROUTINES THAT CALL THE MODLUE: 1.4.0.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.4.0.0.0.0, MAIN
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
’ * t: REPRESTENTS NO VALUE AT ALL.

* hold: USED TO STOP ACTION FOR USER DECISION. iy
* INPUT FILES: MEM_VAR , U_CONTS, U_CONT_S, N
* U_CONT_P, P_PROC_F, P_PROC_R, ey
* P_PROC_R. P_PROC_E. S_CONT_P, P_CONT_M, F_CONT_R, R_CONT_E, AN

o * U_RESP_S, U_RESP_F, P_PRED_D. Sxdnty
* OUTPUT FILES: MEM_VAR, ELEMENT, U_CONTS, U_CONT_S, NN

i * U_CONT_P, P_PROC_F, P_PROC_R, i J
5 * P_PROC_R. P_PROC_E. S_CONT_P, P_CONT_M, F_CONT_R, R_CONT_E, iy
.‘: * U_RESP_S, U_RESP_F, P_PRED_D. RS
" .. u'ﬁ:
- * DESIGNED BY: ROBERT A. KIRSCH II t:§f‘ N
N * WRITTEN BY: ROBERT A. KIRSCH II hgls
b * BASIC FUNCTION OF MODULE: ‘

. * THIS MODULE ALLOW THE USER TO CHOOSE WHICH RELATIONSHIP D
- * SCHEMA HE WOULD LIKE TO MODISY. RoX
* OO

: do while .t. t‘,\ F

CLEAR o o
SET MENU ON o
@ 1,1 SAY "1.4.2.0.0.0" a7,
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM" : “vj;f‘
@ 4,25 SAY "RELATIONSHIP SCHEMA MAINTENANCE" LA
@ 6,9 SAY "1) USER CONTAINS SYSTEM 8) FILE CONTAINS REC" §$’\
@ 6,64 SAY "ORDS" el
@ 8,9 SAY "2) SYSTEM CONTAINS PROGRAM 9) RECORD CONTAINS E" -
@ 8,64 SAY "LEMENT" R
@ 10,9 SAY "3) PROGRAM PROCESSES FILE 10) USER RESPONSIBLE" AR
@ 10,64 SAY "FOR SYSTEM" 5
@ 12,9 SAY "4) PROGRAM PROCESSES RECORD 11) USER RESPONSIBLE"
@ 12,64 SAY "FOR FILE" S
@ 14,9 SAY "S) PROGRAM PROCESSES ELEMENT 12) PROGRAM PRODUCES" e
@ 14,64 SAY "DOCUMENT" ‘
@ 16,9 SAY "6) SYSTEM CONTAINS PROGRAM 13) RETURN TO PREVIOU"

@ 16,64 SAY "S MENU"

@ 18,9 SAY "7) PROGRAM CONTAINS MODULE 14) RETURN TO MAIN ME"

@ 18,64 SAY "Nu"

@ 19,1 SAY # it
ACCEPT ' ENTER YOUR CHOICE (1-10) FROM ABOVE: ' TO choice ‘

DO CASE

CASE choice = "1"

226

USE U_PROC_S
MODIFY STRUCTURE
CASE choice = "2"
USE S_PROC_P
MODIFY STRUCTURE
CASE choice = "3"
USE P_PROC_F
MODIFY STRUCTURE
CASE choice = "4"
USE P_PROC_R
MODIFY STRUCTURE
CASE choice = "§®
USE P_PROC_E
MODIFY STRUCTURE
CASE choice = "g"
USE S_CONT_P
MODIFY STRUCTURE
CASE choice = "7
USE P_CONT_M
MODIFY STRUCTURE
CASE choice = "8"
USE F_CONT_R
MODIFY STRUCTURE
CASE choice = "9v
USE R_CONT_E
MODIFY STRUCTURE
CASE choice = "10"
USE U_RESP_S
MODIFY STRUCTURE
CASE choice = "11"
USE U_RESP_F
MODIFY STRUCTURE
CASE choice = "12"
USE P_PROD_D
MODIFY STRUCTURE
CASE choice = "13"
RETURN

CASE choice = "14%
RETURN TO MASTER
OTHERWISE

CLEAR

@ 1,21 SAY choice

@ 1,28 SAY "IS NOT A VALID CHOICE"
@ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 14 ONLY"
@ 3,20 SAY "PRESS RETURN TO TRY AGAIN{"

ACCEPT TO hold

.'r

v Y
; L}
*
4,

* -' .
" 0

P
a0, 0

P AR
4¥‘

|

GO TF ORE™

« s P v e o -

Te ¢ 4 s ¢ & e——

S TSR R M. 2 SRR WY VWG T4 % L Yy TeTeT s 6 TR NS, KR, N A SN .

ENDCASE
ENDDO
RETURN

2 Kol
. f.:-’..-'
> e
K .
1 ad
_M ..‘o 4
" o
’, ,.-“’
: e
. * 150000.prg . -
\ * MODULE NAME: 1.5.0.0.0.0 LI
3 * INPUT FILES: NONE 'f_.;-‘:
g * OUTPUT FILES: NONE ow"
‘ * ROUTINES THAT CALL THE MODLUE: MAIN 4l
* ROUTINES THAT THE MODULE CALLS: MAIN. - RGN
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED. S
’ * t: REPRESTENTS NO VALUE AT ALL. -)?
A * hold: USED TO STOP ACTION FOR USER DECISION. a
. * DESIGNED BY: ROBERT A. KIRSCH II el
- * WRITTEN BY: ROBERT A. KIRSCH II o S
* BASIC FUNCTION OF MODULE: S
i * THIS PROGRAM ALLOWS FOR THE THE SELECTION OF WHICH TYPE OF b
. * SCHEMA WILL BE OUTPUT. FTd
« * 0
do while .t. PRI,
. CLEAR ;;,:.‘- f
- @ 0,1 say "1.5.0.0.0.0" RN
‘ @ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM" .
\ @ 3,34 SAY "SCHEMA OUTPUT" e
5 @ 6,22 SAY "1) ENTITY" N
g @ 8,22 SAY "2) RELATIONSHIP" 505
o @ 10,22 SAY "3) RETURN TO MAIN MENU" 40
iy @ 11,22 SAY " " -
. ACCEPT ' ENTER YOUR CHOICE (1-3) FROM ABOVE: 'TO choice -
. DO CASE
; CASE choice = "1" ' .
- do 151000
N CASE choice = "2#
- DO 152000
CASE choice = 3"
, RETURN TO MASTER
b OTHERWISE
-2 CLEAR 4
. @ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"
- @ 3,20 SAY "PRESS RETURN TO TRY AGAINI"
2 ACCEPT TO hold
‘ ENDCASE
3 ENDDO _
2 RETURN
"
- w{
"% e
;
¢ -
3
" 229
2
. - <
:
] B
‘ .
,; e e —— S RS

)

2

’ O 3 T LW RN TR RS e . L I S PP RN ey
LA T A A T L e L I N N O IR e OO

LTEEEY e A 5 & B WS P
s

* 121000.PRG
* MODULE NAME: 1.5.1.0.0.0
: * ROUTINES THAT CALL THE MODLUE: 1.5.0.0.0.0
: * ROUTINES THAT THE MODULE CALLS:1.5.0.0.0.0, 1.5.1.1.0.0 MAIN
p * LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
. * t: REPRESTENTS NO VALUE AT ALL.
* hold: USED TO STOP ACTION FOR USER DECISION.
. * INPUT FILES: MEM_VAR.
N * OUTPUT FILES: MEM_VAR.
K * THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE
> * USED IN THE QUERY.
; * DESIGNED BY: ROBERT A. KIRSCH II
' * WRITTEN BY: ROBERT A. KIRSCH II
i * BASIC FUNCTION OF MODULE:
- * THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION
; * TO OUTPUT.
R *
" SET EXACT ON
i set color to 0/3,3
-~ set talk off
CLEAR

do while .t.

ERASE mem_var.mem

N) CLEAR

@ 0,1 sAY "1.5.1.0.0.0"

@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"

@ 3,29 SAY " ENTITY SCHEMA OUTPUT" '

@ 6,15 SAY "1) USER 6) FILE"

@ 8,15 SAY "2) SYSTEM 7) RECORD"

@ 10,15 SAY "3) PROGRAM 8) ELEMENT"

@ 12,15 SAY "4) MODULE 9) RETURN TO PREVIOUS MENU"
@ 14,15 SAY "5) DOCUMENT 10) RETURN TO MAIN MENU"

@ 15,1 SAY "

ACCEPT' ENTER YOUR CHOICE (1-10) FROM ABOVE: 'TO choice
DO CASE

CASE choice = "1"

store 'USER' to choice
save to mem_var

do 151100

CASE choice = n2#

store 'SYSTEM' to choice
save to mem_var

DO 151100

CASE choice = "3

store 'PROGRAM' to choice
save to mem_var

- JERS YN

2

)

1 230

: NS
\ oA

al -. ;- - :.\!' .d_;v‘- '.; -. '- ’ : ‘ v'.v-. ,,“ 7Y 'x K J‘\ - -‘ '“I g r.“f‘:;.‘j,‘,"ﬂ;q‘};‘

A NS N A NG A S A I A S AR T A R A R
Pati l‘l"ac DSl .’,r‘-. ",_".'“. e YoaEL y A

=
4
-
)
R
N
..
A
™
DO 151100 .
e CASE choice = "4"
S store 'MODULE' to choice
e . save to mem_var
o DO 151100 ;
W CASE choice = "5"
store ‘DOCUMENT' to choice
. save to mem_var
:% DO 151100
" CASE choice = "g"
:: store 'FILE' to choice
save to mem_var
DO 151100
- CASE choice = "7v
A store 'RECORD' to choice
- save to mem_var
{; DO 151100
- CASE choice = "8"
store 'ELEMENT' to choice
o save to mem_var
- DO 151100
. CASE choice = "g®
= RETURN
y CASE choice = "10"
RETURN TO MASTER
1 OTHERWISE
o CLEAR
;) @ 1,23 SAY choice
199 @ 1,31 SAY "IS NOT A VALID CHOICE"
! @ 2,18 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY"
@ 3,18 SAY "PRESS RETURN TO TRY AGAIN!"
.~ ACCEPT TO hold
o ENDCASE
X ENDDO
O RETURN
) '-:
N
\i
3 231
| -\:
o
04
4

[}
r 2
‘I
[
PP

151100.PRG . g?
MODULE NAME: 1.5.1.1.0.0 oA
INPUT FILES: NONE ;{5{q
OUTPUT FILES: NONE . N
ROUTINES THAT CALL THE MODLUE: 1.5.1.0.0.0 Pt
ROUTINES THAT THE MODULE CALLS:1.5.1.0.0.0
LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
t: REPRESTENTS NO VALUE AT ALL.
hold: USED TO STOP ACTION FOR USER DECISION.
count: KEEPS TRACK OF ACCOUNT NUMBERS.
option: USED TO SELECT PRINTER OR SCREEN.
INPUT FILES: MEM_VAR.
OUTPUT FILES: MEM_VAR.
THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE
USED IN THE QUERY.
DESIGNED BY: ROBERT A. KIRSCH II
WRITTEN BY: ROBERT A. KIRSCH II
BASIC FUNCTION OF MODULE:
THIS MODULE ALLOW THE USER TO CHOOSE WHETHER THE OUTPUT WILL BE
DISPLAYED ON THE SCREEN OR PRINTED.

* Ok % Rk % R Ok % % N % % N N X A N X H ¥ F

i RESTORE FROM mem_var
: STORE 0 TO rec_num, stop
" CLEAR
STORE .t. TO TRUE
do while TRUE
CLEAR
@ 0,1 say "1.5.1.1.0.0"
RESTORE FROM mem_var
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,29 SAY "ENTITY SCHEMA OUTPUT"
8,23 SAY "LISTED BELOW ARE THE CHOICES FOR HOW"
23 SAY "YOU CAN HAVE THE RELATION"
50 SAY CHOICE
0,23 SAY "DISPLAYED."
2,28 SAY "1) SCREEN OUTPUT"
4,28 SAY "2) PRINTER OUPUT"
6,28 SAY "3) RETURN TO PREVIOUS MENU"
@17,1 say " »
ACCEPT' ENTER YOUR CHOICE (1-3) FROM ABOVE 'TO option
ERASE mem_var.mem
SAVE TO mem_var
DO CASE
CASE option
DO CASE
CASE CHOICE

c
@9,
@9,
. @1
el
@1
@1

b ¥y Ta e R

Ill

'USER'

¥ 232

TS Y A YA LA A S R G SE N ST LN S IR RN I &

A

« w e '{'
afutetatats’

:" ...

Q:
AR

.
g 8
ELe

e
-

2

DO 151110
CASE choice
DO 151110
CASE CHOICE
DO 151110
CASE choice
DO 151110
CASE CHOICE
DO 151110
CASE choice

.DO0 151110

CASE CHOICE
DO 151110
CASE choice
DO 151110
ENDCASE
CASE option
DO CASE
CASE CHOICE
DO 151120
CASE choice
DO 151120
CASE CHOICE
DO 151120
CASE choice
DO 151120
CASE CHOICE
DO 151120
CASE choice
DO 151120
CASE CHOICE
DO 151120
CASE choice
DO 151120
ENDCASE
CASE option
RETURN
OTHERWISE
CLEAR

' SYSTEM!

' PROGRAM'

'MODULE'

' DOUCMENT'

‘FILE'

'RECORD'

'ELEMENT'

lzl

'USER'

*SYSTEM'

' PROGRAM'

'*MODULE'

' DOCUMENT'

'FILE'

'RECORD'

'ELEMENT'

l3l

@ 0,27 SAY option

@ 0,34 SAY "IS NOT A VALID CHOICE"
@ 1,26 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"

WAIT TO stop

ENDCASE
ENDDO

o B W

"lfl}l

P 1 Y
A
Tati "

S e .
EL et

%J :'A' o

1AL | Y ANy

. g
¢ e
FaS. SR

&

F X % ok Nk Ok N N N N ¥ N N X X ¥ N X H *

151110.PRG

MODULE NAME: 1.5.1.1.1.0

ROUTINES THAT CALL THE MODLUE: 1.5.1.1.0.

ROUTINES THAT THE MODULE CALLS:1.5.1.1.0.

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

0
0

count : USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED.
stop : USED TO STOP ACTION FOR USER DECISION.
t : REPRESTENTS THE BOOLEAN FALUE TRUE IS USED TO CREATE A CONTINUES

LOOP.
INPUT FILES: MEM_VAR.
OUTPUT FILES: MEM_VAR.
THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE
USED IN THE QUERY.
DESIGNED BY: ROBERT A. KIRSCH II
WRITTEN BY: ROBERT A. KIRSCH II
BASIC FUNCTION OF MODULE:
THIS MODULE WILL DISPLAY ON THE SCREEN ENTITY RELATION SCHEMA.

SET EXACT ON

set color to 0/3,3

set talk off

set menu on

SET EXACT ON

RESTORE FROM mem_var
CLEAR

@ 0,1 sAYy "1.5.1.1.1.0"

e1,

@ 3,2

@5,2

@ 5,48 SAY choice
@ 7,2

@8,2

@9,2

22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
6 SAY " ENTITY SCHEMA SCREEN OUTPUT"
2 SAY "THIS MODULE WILL DISPLAY"

2 SAY "IF YOU DO NOT WISH TO DISPLAY"
2 SAY "THIS SCHEMA, TYPE '0' TO"
2 SAY "RETURN TO THE PREVIOUS MENU."

WAIT TO stop
DO CASE
CASE stop = '0!

@1,1 say "1.5.1.1.1.0"

.22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"

@2
@ 4,30 SAY "RELATION SCHEMA FOR"
@6

)':”“?‘-,A‘ﬂ."-'» XA 7‘, -\"Qt"’v . o

,37 SAY choice

234

R N RNEL ST 2
NIRRT 8 T T A T

Ly

2 9'1 "w

DO CASE -

W, CASE choice = 'USER'

iy CLEAR

USE USER

DISPLAY STRUCTURE

WAIT TO stop _
CASE choice = 'SYSTEM' ii%
CLEAR
USE SYSTEM b
DISPLAY STRUCTURE i
WAIT TO stop

RETURN

CASE choice = 'PROGRAM'
CLEAR

USE PROGRAM

DISPALY STRUCTURE

WAIT TO stop

RETURN

CASE choice = 'MODULE'

CLEAR

USE MODULE

DISPLAY STRUCTURE

WAIT TO stop

RETURN X%
CASE choice = 'DOCUMENT' . . af
CLEAR G

USE DOCUMENT

DISPLAY STRUCTURE

WAIT TO stop

RETURN

CASE choice = 'FILE'

CLEAR

USE FILE

DISPLAY STRUCTURE

WAIT TO stop I
RETURN

' CASE choice = 'RECORD'

" CLEAR

USE RECORD

DISPALY STRUCTURE

WAIT TO stop 3o
RETURN -

CASE choice = 'ELEMENT!

CLEAR

18 LAA

DRI

1.).'))

-

",,.‘.

»
el el

e OANERNN

P2

F AR

235

o

.

¥
?
»
]

i I LN W IS DN A T e 4t o e
A O TR ARG A L o A .

XXX]

L € T Val,L,¥."e™

et

o

USE ELEMENT
DISPLAY STRUCTURE
WAIT TO stop
RETURN

ENDCASE

236

AL SN Al W A et e e i e e e s
-.
.
e
L4

AL HAS

151120.PRG

MODULE NAME: 1.5.1.1.2.0 ‘

ROUTINES THAT CALL THE MODLUE: 1.5.1

ROUTINES THAT THE MODULE CALLS:1.5.1

LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT.

count + USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED.

hold : USED TO STOP ACTION.FOR USER DECISION.

option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN
OR THE PRINTER.

t : REPRESTENTS THE BOOLEAN FALUE TRUE IS USED TO CREATE A CONTINUES
LOOP.

INPUT FILES: MEM_VAR, USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD,

ELEMENT.
OUTPUT FILES: MEM_VAR USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD,
ELEMENT.

THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE

USED IN THE QUERY. .

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II Yo

BASIC FUNCTION OF MODULE: . P

THIS MODULE WILL OUTPUT THE USER, SYSTEM, PROGRAM AND MODULE

RELATION FILES TO THE PRINTER.

.1.0.0
.1.0.0

F ok X % % % X % N N ¥ % A N N N H N N N F N ¥ X F X

. SET EXACT ON ’ .
- set color to 0/3,3
» set talk off
o set menu on

SET EXACT ON
. RESTORE FROM mem_var
$j STORE 0 TO rec_num, stop :
C. CLEAR
i‘ @ 0,1 say "1.5.1.1.2.0"

e 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
,27 SAY "ENTITY SCHEMA PRINTER OUTPUT" ;
,23 SAY "THIS MODULE WILL PRINT" e
,47 SAY choice R
,23 SAY "PLEASE INSURE THAT YQUR PRINTER"
,23 SAY "IS TURNED ON AND IN THE ONLINE"
‘ SAY "MODE"
1,23 SAY "IF YOU DO NOT WISH TO PRINT" e
2,23 SAY "THIS SCHEMA, TYPE '0' TO" v '
3,23 SAY "RETURN TO THE PREVIOUS MENU"
WAIT TO stop

(R |

hy° - o
NNNBNN
WWwWwIWw-

-

@ 3,2
@s
es
e7
es
@9
@1
e1
el
I

Gy

AT

237

- N A
ot o on

.

Lt.,:.“‘ﬂ"c,ﬂ.-;‘;‘-\‘.ﬁ- ROREITSILAN Rl A ;~:.~ N BN

AP ICACAONE F) M0 3L BN A I N SN

Prr LS

DO CASE
N CASE stop = '0!
RETURN
) OTHERWISE
Y ENDCASE
R - SET DEVICE TO PRINT
_ SET CONSOLE OFF
. @1,1 say "1.5.1.1.2.0"

. @ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
. @ 4,31 SAY "RELATION SCHEMA FOR"
= @ 6,35 SAY choice

. @8,1 SAY " "

DO CASE

N CASE choice = 'USER'
X USE USER
; DISPLAY STRUCTURE TO PRINT

.. . CASE choice = 'SYSTEM'

N USE SYSTEM

DISPLAY STRUCTURE TO PRINT
CASE choice = 'PROGRAM'
USE PROGRAM
DISPLAY STRUCTURE TO PRINT
CASE choice = 'MODULE'
USE MODULE
DISPLAY STRUCTURE TO PRINT
CASE choice = 'DOCUMENT'
i . USE DOCUMENT

DISPLAY STRUCTURE TO PRINT
CASE choice = 'FILE'
USE FILE
DISPLAY STRUCTURE TO PRINT
CASE choice = 'RECORD‘
USE RECORD
DISPLAY STRUCTURE TO PRINT
CASE choice = 'ELEMENT'

Aoa 84t

Qo

-4 &

X USE ELEMENT
: DISPLAY STRUCTURE TO PRINT
v, ENDCASE
o SET DEVICE TO SCREEN
3 SET CONSOLE ON
;* RETURN
B,
%, A
e ,
3
%
)
% 238
i
%

1

S KN T O Y YR

A

152000.PRG

MODULE NAME: 1.5.2.0.0.0

ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0
ROUTINES THAT THE MODULE CALLS:TBD, MAIN

* % ¥ *

*

LOCAL VARIABLES USED:

* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* hold : USED TO STOP ACTION FOR USER DECISION.
* t : REPRESTENTS THE BOOLEAN FALUE TRUE IS USED TO CREATE A CONTINUES
* LOOP. e
* title : CONTAINS THE CHARACTER STRING THAT DESCRIBES THE RELATIONSHIP revnd
* BEING ADDED TO, DELETED FROM OR OUTPUT. g
5 * INPUT FILES: MEM_VAR. NSRER
X, * QUTPUT FILES: MEM_VAR. RN
. * THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE PARRE,
) * USED IN THE QUERY. =
- * DESIGNED BY: ROBERT A. KIRSCH II
v * WRITTEN BY: ROBERT A. KIRSCH II
Y * BASIC FUNCTION OF MODULE:
; * THIS MODULE ALLOW THE USER TO CHOOSE WHICH RELATIONSHIP HE WOULD
* * LIKE TO DISPLAY THE SCHEMA OF.
*
W SET EXACT ON i
W set color to 0/3,3 ' T
1 set talk off el
ot CLEAR e
¥ do while .t. S
ERASE mem_var.mem w
& CLEAR B,
A @ 0,1 SAY "1.5.2.0.0.0"
. @ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM" ,
o @ 3,27 SAY "RELATIONSHIP SCHEMA OUTPUT" : KOS
o3 @ 5,9 SAY "1) USER CONTAINS SYSTEM 8) FILE CONTAINS REC" g
k @ 5,64 SAY "ORDS" Reved
¢ @ 7,9 SAY "2) SYSTEM CONTAINS PROGRAM 9) RECORD CONTAINS E" R
7 @ 7,64 SAY “LEMENT" A
10 @ 9,9 SAY "3) PROGRAM PROCESSES FILE 10) USER RESPONSIBLE"
v @ 9,64 SAY "FOR SYSTEM"
@ 11,9 SAY "4) PROGRAM PROCESSES RECORD 11) USER RESPONSIBLE" :
@ 11,64 SAY "FOR FILE" . E3
% @ 13,9 SAY "S) PROGRAM PROCESSES ELEMENT 12) PROGRAM PRODUCES"
*3 @ 13,64 SAY "DOCUMENT"
* @ 15,9 SAY "6) SYSTEM CONTAINS PROGRAM 13) RETURN TO PREVIOU"

rz

239

A S

3
L
)
5
|/

BB § v ¥ 2 F AL e T S S g L P
YA "“I'.,]',‘}'!‘Q’{’S”al"p (18 r"'o R : 4

(st

W s AL JF ¢ EEES 5 AT XL P A

o

v - 3
S AT

@ 15,64 SAY "S MENU"

@ 17,9 SAY "7) PROGRAM CONTAINS MODULE 14) RETURN TO MAIN ME"

@ 17,64 SAY “NU"

@ 18,22 say " "

ACCEPT ' ENTER YOUR CHOICE (1-14) FROM ABOVE:'TO choice
DO CASE :

CASE choice = "1%

store 'U_PROC_S' to choice

store 'USER CONTAINS SYSTEM' TO title

save to mem_var

do 152100

CASE choice = %2"

store 'S_PROC_P' to choice

store 'SYSTEM CONTAINS PROGRAM' TO title
save to mem_var

do 152100

CASE choice = "3"

store 'P_PROC_F' to choice

store 'PROGRAM PROCESSES FILE' TO title
save to mem_var

do 152100

CASE choice = "4"

store 'P_PROC_R' to choice .

store 'PROGRAM PROCESSES RECORD' TO title
save to mem_var

do 152100

CASE choice = "5"

store 'P_PROC_E' to choice

store 'PROGRAM PROCESSES ELEMENT' TO title
save to mem_var

do 152100

CASE choice = “"6"

store 'S_CONT_P' to choice -

store 'SYSTEM CONTAINS PROGRAM' TO title
save to mem_var

do 152100

CASE choice = "7"

store 'P_CONT_M' to choice

store 'PROGRAM CONTAINS MODULE' TO title
save to mem_var

do 152100

CASE choice = "8"

store 'F_CONT_R' to choice

store 'FILE CONTAINS RECORD' TO title

save to mem_var
do 152100

240

A R AN NN

P

CASE choice = "94

store 'R_CONT_E' to choice

store 'RECORD CONTAINS ELEMENT' TO title
save to mem_var

do 152100

g N CTRUATS i V. A

CASE choice = "10" '-\
. store 'U_RESP_S' to choice
:n store 'USER RESPONSIBLE FOR SYSTEM' TO title ,:‘}_ .
3 save to mem_var SN
e CATA L
. do 152100 el
= CASE choice = "11" et
by store 'U_RESP_F' to choice N
‘ store 'USER RESPONSIBLE FOR FILE' TO title ‘
- save to mem_var 0ty
- do 152100 oaed
- CASE choice = "12" QR
T store 'P_PROD_D' to choice Aty
¢ store 'PROGRAM PRODUCES DOCUMENT' TO title v‘fﬁ"—:.

save to mem_var - 3

do 152100 B
Y CASE choice = "13" 7318
) RETURN 4
Ny CASE choice = "14" 3
< RETURN TO MASTER ~Eog

OTHERWISE -
o CLEAR RN
N @ 1,21 SAY choice . :f,*‘
;'-' @ 1,28 SAY "IS NOT A VALID CHOICE" s
b." @ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 14 ONLY" :»
h @ 3,20 SAY "PRESS RETURN TO TRY AGAIN!" .
i ACCEPT TO hold ‘
P ENDCASE s
E EWDDO :
,.:Z RETURN
K -
e
‘L’.

N

241

Y R S R R

Y
A *“‘
& ":;:,
1) ")
’ .i;éé
e
* 152100.PRG 1
* MODULE NAME: 1.5.2.1.0.0 KRl
* ROUTINES THAT CALL THE MODLUE: 1.5.2.0.0.0 \;“- n
* ROUTINES THAT THE MODULE CALLS:1.5.2.0.0.0 k
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED. ;. :, ”,:
* t: REPRESTENTS NO VALUE AT ALL. BX
* hold: USED TO STOP ACTION FOR USER DECISION. .
* count: KEEPS TRACK OF ACCOUNT NUMBERS. RN
* option: _ iiiﬁfi
* INPUT FILES: MEM_VAR. ,--';%i;‘{;:
* OUTPUT FILES: MEM_VAR. By
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE el
* USED IN THE QUERY. [3
* DESIGNED BY: ROBERT A. KIRSCH II NMNE
* WRITTEN BY: ROBERT A. KIRSCH II AN
* BASIC FUNCTION OF MODULE: R
* THIS MODULE ALLOW THE USER TO CHOOSE WHETHER THE OUTPUT WILL BE -3\3-‘;
* DISPLAYED ON THE SCREEN OR PRINTED. NN
* E 3
RESTORE FROM mem_var . W 5
STORE 0 TO rec_num, stop oy
CLEAR AT
STORE .t. TO TRUE g
do while TRUE A
CLEAR F 4
@ 0,1 SAY "1.5.2.1.0.0" :‘.:ut'.g".?
; RESTORE FROM mem_var QQ\Ggﬁ
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM" Wy
@ 4,22 SAY " RELATIONSHIP SCHEMA OUTPUT" RS
@ 8,23 SAY "LISTED BELOW ARE THE CHOICES FOR" DREARNN
@ 9,23 SAY "HOW YOU CAN HAVE THE SCHEMA FOR" ' s
@ 10,24 SAY TITLE R
@ 11,23 SAY "DISPLAYED."
@ 13,28 SAY "1) SCREEN OUTPUT"
@ 15,28 SAY "2) PRINTER OUPUT"
@ 17,28 SAY "3) RETURN TO PREVIOUS MENU"
@ 18,1 SAY " »
ACCEPT' ENTER YOUR CHOICE (1-3) FROM ABOVE 'TO option

ERASE mem_var.mem
SAVE TO mem_var
DO CASE
CASE option = '} ‘
DO CASE
d CASE CHOICE = 'U_PROC_S'
DO 152110
CASE choice = 'S_PROC_P'

242

AR

L T,
R A

RRRN, &

B

o0 ' -

PP

Al wf
o

- - W
.l‘ .O.

e

i

. F¥ AR

DO 152110
CASE CHOICE
DO 152110
CASE choice
DO 152110
CASE CHOICE
DO 152110
CASE choice
DO 152110
CASE CHOICE
DO 152110
CASE choice
DO 152110
CASE CHOICE
DO 152110
CASE choice
DO 152110
CASE CHOICE
DO 152110
CASE choice
DO 152110
ENDCASE
CASE option
DO CASE
CASE CHOICE
DO 152120
CASE choice
DO 152120
CASE CHOICE
DO 152120
CASE choice
DO 152120
CASE CHOICE
DO 152120
CASE choice
DO 152120
CASE CHOICE
DO 152120
CASE choice
DO 152120
CASE CHOICE
DO 152120
CASE choice
DO 152120
CASE CHOICE
DO 152120

'P_PROC_F'
'P_PROC_R'
'P_PROC_E'
'S_CONT_P'
'P_CONT_M'
'F_CONT_R'
'R_CONT_E'
'U_RESP_S'
'U_RESP_F"

'P_PROD_D'

(21
'U_PROC_S'
'S_PROC_P"
'P_PROC_F"'
'P_PROC_R'
‘*P_PROC_E'
'S: CONT_P'
'P_CONT_M'
'F_CONT_R'
'R_CONT_E'
'U_RESP_S'

'U_RESP_F'

4 ¥ & WSS W B = e

"o £ § AN . VEEES O - a7

-

e 2 SHES G LT

-V Y- AL UV BN EA S N Tty TR A L

CASE choice
DO 152120
ENDCASE
CASE option
RETURN
OTHERWISE
CLEAR

@ 0,27 SAY option

@ 0,34 SAY "IS NOT A VALID CHOICE"

@ 1,26 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY“
@ 2,26 SAY "PRESS RETURN AND TRY AGAIN!"

ACCEPT TO hold

ENDCASE

ENDDO

'P_PROD_D'

I3I

244

-
'y

A

kL. 7,

DA v
Yok Yyt T]

s B
P
€« XA

» PN

Y

. -
LA

a

i

BooX - o

POV v

d

R A IES

152110.PRG

MODULE NAME: 1.5.2.1.1.0

ROUTINES THAT CALL THE MODLUE: 1.5.2.1.0.0

ROUTINES THAT THE MODULE CALLS:1.5.2.1.0.0

LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.

hold: USED TO STOP ACTION FOR USER DECISION.

INPUT FILES: MEM_VAR U_CONTS, U_CONT_S, U_CONT_P, P_PROC_F, P_PROC_R,
P_PROC_R. P_PROC_E. S_CONT_P, P_CONT_M, F_CONT_R, R_CONT_E,
U_RESP_S, U_RESP_F, P_PRED_D.

OUTPUT FILES: MEM_VAR
U_CONTS, U_CONT_S, U_CONT_P, P_PROC_F, P_PROC_R,
P_PROC_R. P_PROC_E. S_CONT_P, P_CONT_M, F_CONT_R, R_CONT_E,
U_RESP_S, U_RESP_F, P_PRED_D.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE WILL DISPLAY ON THE RELATIONSHIP SCHEMAS

TORE FROM mem_var
AR

22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
25 SAY "RELATIONSHIP SCHEMA SCREEN OUTPUT"

22 SAY “THIS MODULE WILL DISPLAY"

23 SAY TITLE

22 SAY "IF YOU DO NOT WISH TO DISPLAY"

@ 10,22 SAY "THIS SCHEMA, TYPE '0O' TO" '
@ 11,22 SAY "RETURN TO THE PREVIOUS MENU."

WAIT TO stop

DO CASE

CASE stop = '0!

RETURN

OTHERWISE

ENDCASE

CLEAR

@ 0,1 SAY "1.5.2.1.1.0"

@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,28 SAY "RELATIONSHIP SCHEMA FOR"

@ 5,27 SAY title

@7'1 SA nn

DO CASE

CASE choice = 'U_PROC_S'

USE U_PROC_S

DISPLAY STRUCTURE

WAIT TO hold

RETURN

@@@@@@gg********}*********

S
E
0
1
3
5
7
9

245

A S R A A A A e T grTn T, KAv,Wiﬂfvwr_"wﬂme“mmw
‘.3 Do,
E
A (:js
. &f::::;i
| A
, CASE choice = 'S_PROC_P' {} -
W USE S_PROC_P et
DISPLAY STRUCTURE oo
WAIT TO hold ;.-,.;::;
> RETURN .&&
- CASE choice = 'P_PROC_F' .
USE P_PROC_F g‘._.,}._.
DISPLAY STRUCTURE sk
: WAIT TO hold e
N RETURN .:j.-_-j.
r CASE choice = 'P_PROC_R' RO
. USE P_PROC_R ENN
DISPLAY STRUCTURE
s WAIT TO hold
N RETURN
L CASE choice = 'P_PROC_E'
} USE P_PROC_E
¢ DISPLAY STRUCTURE
- WAIT TO hold
- RETURN
- CASE choice = 'S_CONT_P'
> USE S_CONT_P
- DISPLAY STRUCTURE
WAIT TO hold
RETURN
. CASE choice = 'P_CONT_M'
T USE P_CONT_M

DISPLAY STRUCTURE

WAIT TO hold

RETURN]
CASE choice = 'F_CONT_R'
USE F_CONT_R

DISPLAY STRUCTURE

WAIT TO hold

- RETURN

: CASE choice = 'R_CONT_E'
USE R_CONT_E

DISPLAY STRUCTURE . N
- WAIT TO hold ‘
2 RETURN wioinn
A CASE choice = 'U_RESP_S' :
2 USE U_RESP_S : 2l
DISPLAY STRUCTURE :
. WAIT TO hold R
RETURN X
CASE choice = 'U_RESP_F' AN
¥ - 5t
i o
[}
+
246
R] . o

"N -, “¢ Lot BTy O LAt AR TN B R S TR ey T e e
f';t' X . L A .» v !H’* AU LAt m“l 8" a,l;.lr"& l‘a?"t'.“l",lh‘.ﬁ b R ,iv‘jf“,'tﬂ !.‘.\t R N ;Tfa.": LR L LPY A L E

e L 3 ot A T it s 200 ity B (N 10 4 s M A o A At Ml A

USE U_RESP_F

DISPLAY STRUCTURE

WAIT TO hold

RETURN

CASE choice = 'P_PROD_D'
USE P_PROD_D

DISPLAY STRUCTURE

WAIT TO hold

RETURN

2R
-

R 'i:'n,,“

o
~

-
L I A

. .l' .I

AN

‘e a €. ¥
MU

»
LR

i XA

a AR L N T o
i 3
R Pl b L

L

%l e YR

i o & LS

[

156

X 247

TN NG e e

PRLPTILLL AL

152120.PRG

MODULE NAME: 1.5.2.1.2.0

ROUTINES THAT CALL THE MODLUE: 1.5.2.1.0.0

ROUTINES THAT THE MODULE CALLS:1.5.2.1.0.0

LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.

hold: USED TO STOP ACTION FOR USER DECISION.

INPUT FILES: MEM_VAR U_CONTS, U_CONT_S, U_CONT_P, P_PROC_F, P_PROC_R,
P_PROC_R. P_PROC_E. S_CONT_P, P_CONT_M, F_CONT_R, R_CONT_E,
U_RESP_S, U_RESP_F, P_PROD_D.

OUTPUT FILES: MEM_VAR
U_CONTS, U_CONT_S, U_CONT_P, P_PROC_F, P_PROC_R,
P_PROC_R. P_PROC_E. S_CONT_P, P_CONT_M, F_CONT_R, R_CONT_E,
U_RESP_S, U_RESP_F, P_PROD_D.

DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:

THIS MODULE WILL OUTPUT THE USER, SYSTEM, PROGRAM AND MODULE

RELATION FILES TO THE PRINTER.

X % K % O % N % % X F N H X N X F

*

RESTORE FROM mem_var

STORE O TO rec_num, stop

CLEAR

@0,1 say "1.5.1.1.2.0"

1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"

.27 SAY "RELATIONSHIP PRINTER OUTPUT"

23 SAY "THIS MODULE WILL PRINT"

24 SAY TITLE ’
,23 SAY "PLEASE INSURE THAT YOUR PRINTER"

SAY "IS TURNED ON AND IN THE ONLINE"
,23 SAY "MODE"

4,23 SAY "IF YOU DO NOT WISH TO PRINT"

@ 15,23 SAY "THIS RELATION, TYPE '0O' TO"

@ 16,23 SAY "RETURN TO THE PREVIOUS MENU"

WAIT TO stop

PADDO®O®BMD®
N O~
N
w

DO CASE

CASE stop = '0'

RETURN ol
OTHERWISE W%

B
ENDCASE AR
SET DEVICE TO PRINT o
SET CONSOLE OFF

@ 1,1 Say "1.5.1.1.2.0"

,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM" g

.36 SAY "SCHEMA FOR" .

.28 SAY title :

1

2
4
6
9,1 SAY " »

248

»4_“)‘-

DO CASE
CASE choice = 'U_PROC_S' ‘

N‘

N USE U_PROC_S

2 DISPLAY STRUCTURE TO PRINT
X CASE choice = 'S_PROC_P'
,l,h

USE S_PROC_P ‘
DISPLAY STRUCTURE TO PRINT

CASE choice = 'P_PROC_F'

USE P_PROC_F

DISPLAY STRUCTURE TO PRINT

CASE choice = 'P_PROC_R'

USE P_PROC_R

DISPLAY STRUCTURE.TO PRINT

g

o o P P

., CASE choice = 'P_PROC_E'
N USE P_PROC_E
P DISPLAY STRUCTURE TO PRINT
2 CASE choice = 'S_CONT_p' .
) USE S_CONT_P
‘ DISPLAY STRUCTURE TO PRINT
QO CASE choice = 'P_CONT_M'
., USE P_CONT_M
L DISPLAY STRUCTURE TO PRINT
N CASE choice = 'F_CONT_R'
USE F_CONT_R
DISPLAY STRUCTURE TO PRINT
CASE choice = 'R_CONT_E' ot
. USE R_CONT_E - v
e DISPLAY STRUCTURE TO PRINT 0y
2 CASE choice = ‘'U_RESP_S'
4 USE U_RESP_S
DISPLAY STRUCTURE TO PRINT e
- CASE choice = 'U_RESP_F' gt
g USE U_RESP_F e
A DISPLAY STRUCTURE TO PRINT
s CASE choice = 'P_PROD_D'
¥, USE P_PROD_D
§ DISPLAY STRUCTURE TO PRINT "l
ENDCASE e
] SET DEVICE TO SCREEN _
) SET CONSOLE ON
.‘7 RETURN “ ::’
8
T 4
)
b

ey

B 249

oA AN,

Rt

.)I..". 'p.‘, .

IS

e tmbyr ity Yy N

ey

“hin . v vy o
~ 20 - g Py S N

B

L

~ F I A

9.

1al

11.

12.

13.

14,

LIST OF REFERENCES

Leong-Hong, B., and Marron, B., Technical Profile of
Seven Data Element Dictionary/Directory Systems, NBS
Special Publication 500-3, Feburary, 1977.

Codd, E. F., "Relational Database: A Practical
Foundation for Productivity.", In Communication of the
ACM, Vol 25, No2, February 1982,

Kroenke, David, DATABASE PROCESSING: Fundamentals,
Design, Implementation, Second Edition, Science Research
Associates, Inc., p. 401, 1983.

Ibid, p. 4062.

Konig, P.A. and Goldfine, A.H., A Technical Overview of

the Information Resource Digtionary Srstem, National
Bureau of Standards, Gaithersburg, MD, March, 1985,

Lefkovits, H. €., Sibley, E. H., and Lefkovits, 8. L.,

Information Resource/Data Digti Qg;cz Srgtems, GED
Information Sciences, 1977, pp. 1-44

Seesing, Paul R., A_Data Digtionary Model For Relational
Ratabaces, U.S. Dept of Energy, October, 1983.

Curtice, Robert M., t icti i An _Assessment of
Curp Pr i ng P lemsg, IEEE, 1981,

Ibid, pp. 544-345

Curtice, Robert M., t i i ri 2 A nt
£ rr L i nd P 1 ,» IEEE, 1981.

Kroenke, David, DATABASE PROCESSING: fundamentals,

Landin, S. L., and Owens, R. L., An_Analysis fo Data
Dicti h | Their Role in Inf] R ~

Management, Thesis, Naval Postgraduate School,
Monterey, California, September 1984,

Noel, A., Relationa) Data Dictionaries and Prototrping
Masters Thesis, Naval Postgraduate School, Monterey,
California, June 198S.

Vanecek, M,, T., Solomon 1,. and Mannino M., V., "The
Data Dictionary: an Evaluation from the EDP Audit

Prospective®, MIS Quarterly Volume 7, Number 1, March,
1963,

250

Vet LS

o

-

-,
e

S

[

13.

18.

17.

18.

19.

20.
21,
22.

23.

24.

23,

26.

27.

28.

Vanecek, M., T., Solomon I,. and Mannino M., V., "The
Data Dictionary: an Evaluation from the EDP Audit
Prospective".

Uhrowczik, P. P., "Data Dictionary/Directiories”,

Computing Surveysm Vol. 16, No. 1, pp. 332-3506, March
1984.

Allen, F, W., Loomis, M. E. S., and Mannino M. V., "The
Integrated Dictionary/Directory srstem", Computing
Survevs, Vol. 14, No. 2, June 1982.

Lefkovits, H. C., Sibley, E. H., and Lefkovits, S. L.,
Information Resource/Data Dictionary Systems, pp. 1-44,
QED Information Sciences, 1977.

Durell, W., "Disorder to Disciplime Via the Data
Dictionary", Joyrnal of Srstems Management, May, 1983.

Ibid, pp. 14-15.

Ibid, p. 17.

Ibid, p. 18.

Allen, F. W., Loomis, M. E., S., and Mannino M, v., The
Intgrated Dictionary/Directory System, Compyting
Survevs, Vol. 14, No. 2, June 1982.

American National Standards Institute, ANSI X3H4,

(Draft Proposed) American Natjon formation
Resource Dictionary Srstem: Part } -- Core Standard,

New York, 198%5.

American National Standards Institute, ANSI X3H4,
{Draft Proposed) American National Standard Information
Resoyrce Digtionary Srstems Part 2 —- Core Standard,
New York, 1985.

American National Standards Institute, ANSI X3H4,
r Pr i

(Oraft Proposed) American National Standard Information
Resource Dictionary Srstem; Pact 3 -—— Core Standard,
New York, 19835.

american National Standards Institute, ANSI X3H4,
Resource Dictionary Sratem: Part 4 == Core Standard
New York, 1983, '
National Bureau of Standards, NBSIR 80-2113,

Prospectus for Data Dictionary Srstem Standard,
Application Systems Division, Gaithersburg, MD,
Sep tember, 1980.

251

b avi a el Rl gl S A SN o il e o gt e R i o R g i

PP IR 5ty & A 5 5 W

baad

30.

31.

32,
33.
34.

3S5.

34.

37.

38.

37.

49.

41.

42.

National Bureau of Standards, Gaithersburg, MD, NBSIR

82-24619, E 1 ifi i r F ral
i i Pr i t icgti r tem,

P. A. Konig, A. H. Goldfine, and J. J. Newton,
September, 1980.

American National Standards Institute, ANSI X3H4,

¢ £ r ri Nati r nformation
Resoyrce Dictionary Srstem; Part | -- Core Standard,

New York, 198S.

Ibid, pp. 686-743.

Codd, E. F., "Relational Database: A Practical
Foundation for Productivity.",]n Commynication of the
ACM, Vol 23, No2, February 1982.

American National Standards Institute, ANSI X3H4,
(Pr ig i r nformation

R r i i Part 2 - Core Standard,
New York, 1983,

American National Standards Institute, ANSI X3H4,
LS £ (o i i nformation

R C i § Part 3 ~—- Core Standard,
New York, 1983,

American National Standards Institute, ANSI X3H4,
. . i

i Part 4 -~ Core Standard,

icti
New York, 1989,

Noel, A., Relational Data Dictionaries and Prototrping
Masters Thesis, Naval Postgraduate School, Monterey,
California, June 198S.

s

Carey, T. T. and Mason, R.E.A., "Prototyping
Interactive Information Systems",
ACM, V24, May 1983.

Pressman, R. S., Software Engineerinai A Practitioner‘s

Approach, McGraw-Hill, New York, NY, 1982,
American National Standards Institute, ANSI X3M4,

L Part 3 == Core Standard,

New York, 198S3.

252

A h
<
s J

=
LY 99 - b
Aryraride:|

SO

73

g i
Lt
¥
o

%

X
-

e

Aprer
LA o M

ot ke 3 £
. eE Y '4
Py B

e

"

§:

YTV

DO -

Al
iy
iy
R

43.

44.

435.

44.

4?.

.....................

Blum, B. 1., "Rapid Prototyping of Information

Management Systems", ACM _SIGSQFT Software Engineering
Notes, V7?7, December 1982.

Pressman, R. S., Software Engineering: A Practitioner’s
Approagh, McGraw-Hill, New York, NY, 1982.

Sprague R. H. and Carlson E. D., Building Effective

Decision Support Systems, Printice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1982.

Wasserman, A. I. and Shewmake, D. T., "Rapid
Prototyping of Interactive infromation Systems", ACM
SIGSOFT Sofrware Engineering Notes, W7, December 1982,

American National Standards Institute, ANSI X3H4,

(Draft Proposed) American National Standard Informaticn

Resource Dictionary System: Part | -- Core Standard,
New York, 198S.

253

. . . s
R N Y 3 X I S B A U R o O DU

P

AN NE A TG SN it @ ' i arah? S0 el o iaP e -t

"
. TR WY UV R T a8 e 4

Se
oAb,

-

»
} INITIAL DISTRIBUTION LIST
- No. Copies
R 1. MAJ Robert A. Kirsch I1 4
Q 5458 Suwannee Circle
Q Mobile, Alabama 344088
! L]
* ' 2. Professor Daniel R. Dolk, Code 54Dk ’ S
: Naval Postgraduate School
W Monterey, California 93943-5004
Cd
2 3. LCDR Paul W. Callahan, Code 52Cs 1
’ Naval Postgraduate School
Monterey, California 93943-5004
‘5 4, Computer Technology Programs, Code 37 1
o Naval Postgraduate School
W) Monterey, California 93943-5004
‘ S. Library, Code 0142 2
) Naval Postgraduate School
‘o Monterey, California 93943-5002
d
W S, Defense Technical Information Center 2
£ ¢ Cameron Station)
Alexandria, Virginia 22384-414%5
:} ' f?;' .

s
W A
M . ‘
st
’
Lo
R
N
!
1)
A
g‘- ¢
4
!
d -
¥
= =
t'gr
1
!*; 254
i
J‘:,f
oA

= YR
e 8 m fie AR AR

P A P
N ™ oy St S \k_!}_p,';!.lﬁdm' R
'a 5

o

el

Ve
H
[}

.
-

e S

7

ek,

oy - _

oy o rR TS TR

f

