
rhfD-RILSS 122 ARELATINAL DATA DICTIONARY COMPATIBLE WI1TH THE 1/
NATIONAL BUREAU OF STAND.. (U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CR R A KIRSCH DEC 85

UNCLSSIFIED F/ 3/2 NL

mhhhhhhhhhhhhl

4y

1.0 &32

MICROCOPY RESOLUTIOf TEST CKART.

N NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
ELECTE
MAR128 IM

THESIS
A RELATIONAL DATA DICTIONARY

COMPATIBLE WITH THE
NATIONAL BUREAU OF STANDARDS

INFORMATION RESOURCE DICTIONARY SYSTEM

by

Robert A. Kirsch II

~mm December 1985

C-,
ILLJ Thesis Advisor:

Daniel R. Dolk

.j Approved for public release; distribution is unlimited

86 3 12 031

I
SW:11

1 1 1

77~

SECURITY CLASSIFICATION OF THIS PAGE */)K' -2-

REPORT DOCUMENTATION PAGE
I&. REPORT SECURITY CLASSIFICATION Ib. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVlAILABILITY OF REPORT

2b. ECLSSIICATON DOWGRADNG CHEULEApproved for public Release; distribution
Zb. ECLSSIFCATON DOWGRAING CHEULEunlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School od 4Naval Postgraduate School
6c. ADDRESS (City, State. and ZiPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5100 Monterey, California 93943-5100

Ba. NAME OF FUNDING /SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
J ORGANIZATION (if APPliAble

Bc. ADDRESS (City. State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASK(WORK UNIT'

*ELEMENT NO. NO. NO.I ACCESSION NO.

I I TILE1 (Include Securiy Oic1.12011on0-) A RELATIONAL DATA -DICTIONARY COMPABITLE W~ITH THE NATIONAL

* BUREAU OF STANDARDS INFORMATION RESOURCE DICTIONARY SYSTEM

12 PERSQNAL AUTHOR(S)
Kirsch, Robert A., II
13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S. PAGE COUNT

* Master's Thesis FROM TO 1985 December 254
16 SUPPLEMENTARY NOTATION

7 COSATI CODES 18. SUBJECT TERMS (Continue an reverse if necessavy and itdentify by block number)
rED GROUP $uS-GROUP Data Dictionary, Relational, Information Resource Dictionar

* I- ISystem (dI.DS), National Bureau of Standard (NES)

2kABSTRACT (Continue on reve'e if necenaq and WWIVetf by blck number)
Data is a very valuable corporate asset. How it is managed and controlled can often

* determine the success or failure of a corporate venture. With this fact in mind many organi
zations are taking a close look at what tools are available to help them in this effort.

This thesis takes a look at two types of data management tools available today, the
Relational Data Base Base Management System (DBMS) and the Data Dictionary (DD). It dis-

* cusses desirable DBMS and DD characteristics with particular attention being paid to the
shortcomings of DDs. It also describes the effort of the National Bureau of Standards (NES)
to develop a DD standard and examines in detail the NBS Information Resource Dictionary
System (IRDS) and how the standard was implemented in a prototype IRDS.

20. DISTRIBUTION IAVAILAIUT OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATIONE
M UNCLASSIFIEDIUNUMTED 0 SAME AS ftP?. (3OTC USERS Unclassified

22a. NAME OF RESPONSIBLE INDEIIUAL 22b. TELEPHONEdwd Are. Cod#) 122t. OFFICE SYMBOL
* Daniel R. Dolk 1(408) 646-2 160 Code 54Dk

DD FORM 1473,84 MAX 3 APR edmton may be used unul exheustd. SECURITY CLASSIFIAMIN OF THIS PAGE
AN @6wveditions Nreoo e81e.

1.7.

IApproved for public release; distribution unlimited
A Relational Data Dictionary

Compatible with the
National Bureau of Standards

Information Resource Dictionary System

by

Robert A. Kirsch II
Captain, United States Army

B.S., University of South Alabama, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

NAVAL POSTGRADUATE SCHOOL
December 1985

Author:

,]obr -A-X

Approved by:
Daniel R. Dolk, Thesis Advisore<--

Paul W. Callahan, Second Reader

Willis R. Greer, Jr., Chairm
Department of Administrative S ces

Kneale T. rI xwZ.. ,. '%
Dean of Information and Policy~e~ces

.. .-- %

ABSTRACT

Data is a very valuable corporate asset. How it is managed and

controlled can often determine the success or failure of a corporate

venture. With this fact in mind many organizations are taking a close

look at what tools are available to help them in this effort.

This thesis takes a look at two types of data management tools avail-

able today, the Relational Data Base Management System (DBMS) and the

Data Dictionary (DD). It discusses desirable DBMS and DD characteristics

with particular attention being paid to the shortcomings of DDs. It

also describes the effort of the National Bureau of Standards (NBS) to

develop a DD standard and examines in detail the NBS Information Resource

Dictionary System (IRDS) and how the standard was implemented in a prototype

IRDS.

Page 28 is not missing but is misnumbered.
Per Ms. Elaine Evans, NPS/Code 014

Accession For

NTIS GRA&I
DTIC TAB

* Unanriinced 0

By--QDistribution/
, ,/ Availability Codes

Avail and/or

Det Speoial

3

TABLE OF CONTENTS

I. INTRODUCTION 9

A. BACKGROUND ... ,.................... 9

B. OBJECTIVES10

II. DATA DICTIONARY FUNCTIONS AND CAPABILITIES 13

A. GENERAL13

B. DBMS DATA DICTIONARY CAPABILITIES 13

C. DATA DICTIONARY CAPABILITIES 15

1. Dictionary Schema 17

2. User Dialogue 17

3. Dictionary Commands 19

a. Dictionary Maintenance Command 19

b. Report and Query Commands 20

c. Data Structure Interface Commands 20

d. Extensibilty Commands 20

e. Status-Related Commands 20

f. Security Commands 20

g. Dictionary Processing Control Commands20

h. Dictionary Administrator Commands 20

4. Extensibility 21

5. Status Facilities 21

6. Report Processor21

7. Query Processor 21 g

8. Convert Function 21

9. Software Interface. 21

4

10. Data Management. 21

D. ADVANTAGES OF DATA DICTIONARIES 22

E. EXISTING DBMS DATA DICTIONARY CAPABILITIES. 26 N

II INFORMATION RESOURCE DICTIONARY SYSTEM31I

A. BACKGROUND 31

B. IRDS DESIGN OBJECTIVES 32

1. Outgrowth of Existing Systems. 32

2. Flexibility. 33 N

*3. Portability of Skill 33

C. IRDS DATA ARCHITECTURE 33

1. Framework. 34

2. IRDS Schema. 35

3. The System-Standard Schema 36

a. Entity-Types 36

b. Relational-Types 37

c. Attribute-Types. 38

4. Entity Names 39

D. FUNCTIONS AND PROCESS. 39

1. Populating and Maintaining the IRD 40

a. Entities 40

b. Relationships. 42

c. Copying Entities and Relationships43

2. IRDS Output Facility43

a. General Output. 44-

b. Output IMPACT-OF-CHANGE. 45

5

c. Output Syntax 47

d. Entity-lists 47

e. Procedures 47

3. Schem Maintenance and output. 47

a. Schema Control 48

b. Schema Manipulation. 50

c. Schema Output. 51

4. The IRD to IRD Interface 52

5. IRDS Control Facilities. 53

a. The Versioning Facility. 53

b. The Life-cycle-phase Facility. 54

c. Quality-Indicators . -..56

d. views. 58

e. Core Security. 58

6. User Interfaces. 60

a. Coammand Language 60

b. Panel Interface. 60

c. Operation on the Panel Interface 62

7. IRDS Modules *.................62

a. Entity Level Security. 63

b. Application Program (call) interface 63

c. Support of Standard Data Models. 63

E. CONCLUSION. 63

IV. NBS IEDS PROTOTYPE 65-

A. PROTOTYPING................................65

6

1. Advantages of Prototyping 67

2. Disadvantages of Prototyping 68

3. Types of Prototyping 70

4. Reasons for Prototyping 70

j B. THE IRDS PROTOTYPE 70

1. Relational Model of the IRDS 71

2. Interface 73

C. IRDS START-UP 73

D. SECURITY76

E. POPULATING AND MAINTAINING THE DICTIONARY 77......

1. Adding Entities .. 77..
1.AdngEttis................................77

2. Modifying Entities 81

3. Deleting Entities 84

4. Adding Relationships 84

5. Modifying Relationships 86

6. Deleting Relationships 87

F. THE DICTIONARY OUTPUT FACILITY 87

1. Entities 87

2. Relationships 90

3. Schema 95

G. QUERY95

H. SCHEMA MAINTENANCEi..... 100

1. Entity Meta-Data 102

2. Relationship Meta-Data103

I. FINAL COMMENTS 104

V. CONCLUSION 107

7

APPENDIX A; CORE STANDARD SCHEMA....................109

APPENDIX B; COMMAND SPECIFICATIONS . * 119

APPENDIX C: BOCKNAN DIAGRAMS....................127

APPENCIX D: STANDARD DATA MODELS...................127

APPENDIX E: PROTOTYPE SOFTWARE....................133

LIST OF REFERENCES............................250

INITIAL DISTRIBUTION LIST......................254

I. TNTRODUCTION

A. BACKGROUND

In the corporate world data is a very valuable resource. Many organi-

zations spend a great deal of time and corporate assets trying to control i

it. Data is used to facilitate the management decision process by pro-

viding the manager with timely, accurate and relevant information. Since

J,
the quality of the decisions made by today's managers is so important, it

is very critical that the corporate data resource be easy to access, as

accurate as possible, and properly and effectively managed. [Ref. 1]

Concern over corporate information resources has resulted from the

explosive growth in the size, complexity and number of data bases available

to managers. This data base explosion has also ushered in the need for

better tools to manage the corporate data base. A critical software tool

that has been developed to control and manage data is the Data Base Manage-

ment System (DBMS).

E. F. Codd has identified nine functions that the ideal DBMS should

have (See Figure 1.1) [Ref. 2]. Kroenke states that

DBMS products vary in the degree to which they provide these functions.
Currently, no commercial DBMS provides all nine functions entirely
satisfactorily. These functions are necessary and important, however,
and this situation should change as DBMS products evolve and as new
products are developed. [Ref. 3]

Of the nine functions listed in Figure 1.1, the one that is of particular

interest to the Data Administrator (the individual who is responsible for

the management of the data dictionary and for its effective use in the

pursuit of data resource goals) is the function of providing a user-accessible

catalog for data descriptions.

9

B. OBJECTIVES

The changes in today's end-user environment reflects the growth in

computer literacy and increased need for data. Users are demanding in-

creasingly better access to data via interactive processing, ad-hoc

queries, specialized reports and simpler man-machine communication. At

the same time there is growing concern over the timeliness, validity,

and relevance, and usability of the data that is available.

As a result, there has been a growing interest in two tools which .,%...

provide highly visible support for the information processing community-

data dictionaries and relational data bases. Most relational data base

products provide only rudimentary dictionary capabilities, "the offerings

provide little more than a method of defining the schema." (Ref. 6]

The relational data dictionary has become the link that connects the

user/analyst with the DBMS. [Ref. 7] V
The relational data dictionary, that is the data dictionary normally

provided with a relational DBMS has additional weaknesses besides the

ones mentioned above:

* They do not provide a full range of functions

* Their ability to interface with more than one DBMS is limited

or non-existent

* There is a broad divergence concerning the scope of data dictionaries
and until recently there has been no universally accepted standard

[Ref. 8], [Ref. 9].

It is interesting to note that these problems apply to data dictionaries

in general and not just to the relational variety. The purpose of this

work is to create a prototype of a relational dictionary based on the

10

The usefulness of the catalog is greater if it contains not only data
descriptions but also data about the relationship between programs
and data, e.g., which programs access which data, and what they do
with it. [Ref. 41

1. Store, retrieve, and update data

2. Provide integrity services to enforce data constraints

3. Provide a user-accessible catalog of data descriptions

4. Control concurrent processing *

5. Support logical transactions ,

6. Recover from failure

7. Provide security facilities

8. Interface with communications control programs

9. Provide utility services ... "

Figure 1.1 DBMS Functions

The problem that arises is that some DBMSs have limitations on how

well they maintain the meta-data (data that describes other data or

data bases). Meta-data include descriptions of the meaning of data
_1%

items, the ways in which the data are used: the sources of particular

data elements: the physical characteristics and rules or restrictions on

their forms or uses. When the meta-data deals strictly with where data

stored in the DBMS it is referred to as a Data Directory but this

capability is not enough. The Data Dictionary (DD) system is an expansion

of the DBMS description cataloging capability. The Data Dictionary sys-

tem is a key tool available to the Data Administrator for the management

of meta-data and information resources. The DD provides facilities for

recording, storing and processing descriptions of and organization's

data and data processing resources. [Ref. 5]

4

specified standards for dictionaries recently developed by the National

Bureau of Standards COBSi. Chapter 2 discusses dictionary concepts

in general and reviews functionality of existing dictionary capabilities

with special attention on relational systems. Chapter 3 discusses the

features and capabilities which form the basis of the NBS draft pro-

posal American National Standards (dp ANS) Information Resource Diction-

ary System (IRDS). Chapter 4 outlines and discusses the IRDS features

that were selected for inclusion in the relational dictionary prototype

and how those features were actually implemented.

12

J 11I1b--
__.__ - p _ _ _ _m-A

IE. DATA DICTIONARY FUNCTIONS AND CAPABILITIES
A. GENERAL

The Data Dictionary (DD) is of great importance to the DBMS admini-

strator and user because it allows the administrator to control how data

pV%
and data bases are described and structured and it provides the link that

connects the user to the DBMS. A data dictionary is a repository of data

about data and processes associated with a particular system or

organization.

B. DBMS DATA DICTIONARY CAPABILITIES

The data stored in a DBMS data base may be organized along hierarchical,

network or relational lines. This organizational capability also exists

for the data in the Data Dictionary, which in most cases is actually data

stored in the DBMS itself. Data dictionaries implemented in this fashion

are most often referred to as a DATA DIRECTORY (how the data is stored in the

data base). On the other hand the implementation of a data dictionary can

be on such a scale that it incorporates all of the data resources available

to an organization. An implementation such as this is often referred to as

INFORMATION RESOURCE MANAGEMENT. [Ref. 10 This thesis is most concerned

with data dictionaries of the information resource management type.

The DBMS acts as a librarian for the data base, storing and retrieving

data according to a particular format (Ref. 111. However, a DBMS does not

necessarily provide for the security, integrity, accountability, or

maintainability of that data. These objectives are best achieved when a

data dictionary is used in conjunction with the DO [Ref 12].

13

A DD is an instrument for describing an organization s meta-data.

Meta-data refers to that data which describes other data or data bases

and includes descriptions of the meaning of data items, the ways in which

the data are used; the sources of particular data elements; the physical

characteristics; and rules or restrictions on their forms or uses (Ref. 131.

There are additional capabilities that should be made available to

the DBKS user as part of the data dictionary IRef. 14]:

1. Retrieval and analysis capabilities which assist the user in
application development.

2. The ability to generate pre-defined, customized and user defined
reports via some type of report writer.

3. The ability to extend the data dictionary as necessary to meet the
DEMS user's unique needs.

4. Data management tools that are intended to ensure the security,
validity, recoverability and integrity of the data dictionary

system and its associated data bases.

- 5. Software interfaces that allow other software modules to access the
data base via the dictionary and the capabilities of translating
the meta-data into file definitions usable by the software.

M. T. Vanecek described the capabilities listed above as those most im-

* portant from a DBKS auditor's standpoint but it is easy to see that they

could apply to many types of users. (Ref. 15: pp. 15-16]

P. P. Uhrowczik describes the capabilities listed above as being

derived from the "management use mode." He goes on to identify additional

DD capabilities that should be available to the DEKS user in what he

calls the "computer use mode" [Ref. 16: pp. 332-3341:

1. Data Mapping. kbere the user is no longer concerned with what is
sometimes called the "physical-equal-logical" environment. This is
accomplished by removing the awareness of where data is stored
and giving it to the DD.

2. Data Conversion. During the mapping process, data can be converted
to a different format. For instance, data physically stored as

14

character can be retrieved and converted to decimal.

3. Data compaction. Data can be stored in a compacted form (encoded),
but presented to the user in a more meaningful format (decoded).

4. Input and output validation. Data entering a program (input) or
data entering physical storage (update) can be checked against
pre-established editing standards. For example, data can have a
specified format, and lie within a specified range of values.

5. Test-data generation. System-generated test data with characteristics
as described in the DD can be presented to the user.

6. Logical record and file definitions. A user is generally interested
in processing only certain data elements forming a logical record
and desires that these logical records be presented to him in a
certain sequence. In Figure 2.1 the user defines his logical record
as a series of element names and states his desire to process the
file sequentially in a DEPT/MANNO sort sequence. The fact that the
file comes physically from two different data sets is pre-defined in
the DD/D. Thus the system can deliver the logical records properly
assembled in the requested sequence. The user and the program do
not need to know about the two data sets that are required to produce
the view.

7. JCL Generation. Job Control Language (JCL) statements for physical

data sets can be automatically generated as required by the particular

operating system in use. This not only eliminates the user's pre-
occupation with JCL, but also facilitates migration to different
operating systems.

8. Access to distributed data bases. Data bases or portions of data
bases may be physically stored in different locations on different
computers, linked via data communication facilities. The data
directory located with each distributed data base would describe
the physical data located at that site, as well as, physical data
located at other sites. The DBMS can decide based on the information
provided by the DD whether to satisfy the request locally or from

-" a remote location.

C. DATA DICTIONARY CAPABILITIES

The capabilities listed above describe the data dictionary capabilities

that should be available to any DBMS user. However this view of the desired

data dictionary capabilities is limited, since it perceives the data diction-

ary as an extension of the DBMS itself and not as a true data dictionary.

It is possible, on the other hand, to view the data

15

USER REQUEST (PROBLEM PROGRAM)

USER ID 87601

RETRIEVE FILE SEQUENTIALLY IN
SEOUENCE BY DEPT/MAtNNO

LOGICAL RECORD DEFINITION

DEPT
M(44NO I
SALARY > READ ONLY
NAME I
MANAGER I
YRS OF SERVICE /

JOB TITLE UPDATE

LAST APPRAISAL READ ONLY

AVAILABLE DATA SETS

PAY ROLL PERSONNEL
DATA SET DATA SET

STORED RECORD STORED RECORD
DEFINITI ON DEFINITION

MANO (KEY) I I MANNO (KEY)
NAME I PRIMARY I NAME
SALARY I INDEX OF I DEPT
YTD GROSS BOTH DATA JOB TITLE
DEDUCTIONS I SETS IS ON I HIRE DATE

I MANNO I LAST APPRAI SAL
I I MANAGER

Figure 2.1 Logical Record and File Definitions

16

.4!

dictionary as an entity unto itself whether it is from standing or

DBMS dependent. The capabilities and functions shown in Figure 2.2

and described below represent a joing of the capabilities and functions 6

described by Allen et al iRef. 17: pp. 248-253) and Lefkovits et al

[Ref. 18: pp.2-7 thru 2-29].

1. Dictionary Schema

Denotes the structure of the dictionary. Both sources agree that,

at a minimum, a DD should allow for the definition of Entities, Relation-

ships and Attributes. Entities are the basic unit of the dictionary and

represent real world objects or things about which certain information

exists in the dictionary. Relationships provide information about associa-

tions between entities whereas attributes provide information about

entities and relationships that exist in the dictionary. Figures 2.3

and 2.4 show examples of commonly used entities and relationships.

Data Dictionary Maintenance
Schema
Entity-types
Attribute-types
Relationship-types

User Dialogue
Dictionary Commands
Extensibility
Status Facilities
Report Processor
Query Processor
Convert Function
Software Interface
Data Management

Security
Integrity
Concurrent Control
Internal access to DD

Figure 2.2 Data Dictionary Capabilities

Intity nas should be unique but facilities to track duplicate

names in the form of aliases or synonym hould be provided. Additionally,

.17

Ilk 9

DAAAK 1V

R~r~n USETEUMINE

G110 9

TRNSC L EPR

SYSTEM/ SUBSYSTEM

PROGRAM/MODULE

FILE

GROUP/RECORD

ITEM/DATA ELEMENT

Figure 2.4 Hierarchy of Entity-types
(from Lefkovits et al)

4i

the D should allow a mininun of three groupings of entity-types:

Data-Element, Processes, and Usage.

The dictionary system should also provide a means of grouping

together dictionary elements that have the same characteristics. This

can be accomplished through the establishment of Entity-types, Relation- LA

ship-types and Attribute-types. It can also be accomplished through the

establishment of a Key-word In-context feature. Neither author provided

specific examples of atribute or relationship types. Both did agree that I|
Most DD provide enough attribute-types and relationship-types to meet

• Do... m

the average user needs. In addition they identified the extensibility ,,*-.

feature which would allow a DD user to expand the DD to meet his indivi-

dual requirements.

2. User Dialogue

The method used by the DD to communicate with the user and vice

versa.

a. keyword-driven language

b. position-sensitive transactions

c. interactive, prompted input

d. interactive, performatted screens or menus

3. Dictionary Commands

Provide user with the ability to use the DO system to its fullest

extent. Dictionary commands can be divided to the following categories.

a. Dictionary Maintenance Commiands

Those comands that allow entities, relationships, and

attributes to be created, modified and deleted from the dictionary.

19

b. Report and Query Commands -4.,

Those commands that allow the user to request the system

to generate listings of entities, relationships and attributes and generate

queries on such things as the usage of dictionary entities, keyword and ."

synonym searches.

c. Data Structure Interface Commands

These commands give the DD system the ability to generate

descriptions of data structures in such a way that they can be processed &.

by other language processors, such as language compilers or DBMS

schema/subschema utilities. L'.."-4

d. Extensibility Commands

These commands are discussed in 4 below.

e. Status-related Commands

Will be discussed in 5 below.

Sf. Security Commands
These commands provide the system with the ability to exclude

some users from access to the system or restrict his ability to modify

and change the system.

g. Dictionary Processing Control Conmands

These commands allow the user to perform such functions as

log-on, log-off, terminate operation upon error, etc.

h. Dictionary Administrator Commands

These commands will allow the dictionary administrator to:

* initially create the dictionary system

recover the dictionary after a failure

* set default values

20

1?t

* create back-up copies of the dictionary

4. Extensibility

A feature that allows the DD structure to be extended by

definition of additional entities, relationships, and attributes.

5. Status Facilities

Allows the dictionary system to be used in a System Life Cycle

environment, that is the system would allow for the designation of an

entity as being "Under Development," "Production" or "Archive" for

example.

6. Report Processor

This capability allows the user of the DD system to produce

predefined reports, the ability to customize reports and produce

user-defined reports.

7. Query Processor

This capability would give the D user the ability to generate

English-like queries of the system. This query capability is analogous

to the corresponding function in DBKSs for access to data bases.

B. Convert Function

This function allows the DD system to read application program,

libraries and schemata and generate DD maintenance input transactions to

automatically create a DD schema.

9. Software Interface

This capability provides a formatted pathway, enabling the DD

system to provide meta-data to other software system such as compilers.

10. Data Vlanajqment

This function would provide for the data base amnagement tasks

such as:

21

I

i

* Security

* Integrity

Concurrent control

Internal access of the DD

Not all data dictionary systems possess the capabilities listed

above in fact, early data dictionary systems were little more than docu-

ment generators, taking the meta-data that had been stored in them and .

printing out reports describing file and record structures. Other DD

which are DBMS-dependent obtain the capabilities listed above from the

DBMS they are associated with. Unfortunately even DBMS products that

are currently being marketed are limited in the data dictionary

capabilities they offer and very few if any offer what could be classified

as information resource dictionary systems. In addition to the limited

DD capabilities associated with DBMS, the additional problem of lack of

standardization exists.

D. ADVANTAGES OF DATA DICTIONARIES

The main advantage of a dictionary lies not in its ability to store
and catalogue information about data, but in its ability to assist in
the discipline of data design [Ref. 19].

This advantage can be expanded into a number of beneficial areas:

1. Information about data/corporate asset. Accurate information abouthow a company functions, about its employees and clients can be

V stored in a DBMS and defined in a data dictionary. By storing
this knowledge on a magnetic media and providing for adequate

backup and recovery to the data dictionary, the corporate asset
is being saved from catastrophe.

2. Public vs. Private Information. The situation where only a pro-
graner knows all of the information (Jnstitutional knowledge) about
a particular application, can cause many problems not only for those
who must pick up a project in mid-stream, but even for the programmer
himself if it has been several months since he last worked

22

on the application. By incorporating his institutional
knowledge about each application into a data dictionary as

each new application is developed, the information becomes public
knowledge for the application developer and anyone who follows
him. This will substantially reduce the effort required to
modify and enhance existing applications. %

3. Communication tool. The data dictionary can become a repository
of corporate information, i.e., minutes of meetings, memos, notes,
manuals and reference texts, which can be accessed by all areas of
a company. The central area of Figure 2.5 represents the communi-
cations value of a data dictionary.

DATA DATrA

DEPAR^TMENTS
MANA EM NT

, . ,

ri.

h .. J • .

Figure 2.5 Communication Value of a Data Dictionary

4. Safeguard against Data Redundancy. Old systems are difficult to
maintain because of lack of information, process redundance and
data redundancy. Information availability has been discussed above.
Process redundancy can be reduced through structured programming
techniques. Data redundancy however requires a different approach.
Data redundancy is a situation where the same data element pro- . .

liferates throughout the system.

It is not uncommon in an older system to find the same data element
stored in ten different locations and requiring ten different update
transactions to maintain it. This same data element may be referenced
by 50 different names through the system. Is it any wonder that such
systems are difficult to maintain. [Ref. 201

Listed below are various types of data redundancy:

4
23

, -,' -.', .' " '" "' .i "< . 't • , -r ,,j.3, .: i, -V

Ct

a. Reference Redundancy - when the same data element is
p referenced by different names.

b. Format Redundancy - when the same data element appears in the

system in different formats.

c. Group Redundancy - when data elements are grouped under a group - "@,

name when no requirement exists from them in the first place.

d. Occurrence Redundancy - when repetitious data names are used to
identify multiple generations of the same data element.

e. Definition Redundancy - when a data element is used for more than
one purpose thus the element has more than one definition.

f. Storage Redundancy - when the same data element is stored in more

than one location (redundancy of this type, sometimes serves a
purpose, in distributed systems for example).

These as well as other types of redundancy not mentioned can be controlled

through the use of a data dictionary.

5. Glossary of Terms. Another benefit of implementing a data diction-
ary is to use it as a glossary of terms. Which could be used in the

development of software and as a training tool.

The data dictionary can be very effective when used as a tool to
support structured analysis and design. It can be used to document
data store, data flow, and process entity types. The data dictionary
can also be used to generate, file segment, and record definitions
for a variety of programming languages. By doing so, we can cen-tralize the control of program data definitions. [Ref. 211

6. Documentation. The data dictionary can serve as an effective
medium for the presentation of documentation. The nature of a
data dictionary makes maintenance of documentation easier and
anyone who has access to a computer terminal can subsequently
access the documentation.

7. System development. The "data dictionary is one more tool to in-
crease user effectiveness in system development." [Ref. 22] the
traditional approach to systems development (see Figure 2.6) can
be enhanced to allow all involved in the development process,
access to the necessary information as it is generated. (see
Figure 2.7) This is accomplished by incorporating the DD into the
traditional development network.

All of the capabilities and benefits listed above are important, but

very few if any data dictionary systems available today can provide them

all. In other words there is no current standard from which all data

24

-. ~~~~ tl--.-.-

Figure 2.6 Systems Development Traditional Approach

DAA
R4

Figr 27Exade yse DeeomntAppoac

PF4.II DFNTO

259RSTF

f .. *4,,,DATA

dictionary products are developed. This situation is in the process of

being eliminated now that the National Bureau of Standards (NBS) has

formalized and published a standard for data dictionaries in the form

of the Information Resource Dictionary System IRDS) standard. The feature

and functions found in that standard are discussed in the next chapter.

E. EXISTING DBMS DATA DICTIONARY CAPABILITIES

As stated earlier very few DBMSs contain DDs that exhibit all the

capabilities discussed above and even fewer Relational DBMSs offer the

previously identified minimum DBMS dictionaries capabilities. Tables 2.1

thru 2.3 list the DD capabilities provided by the INGRES and ORACLE DBMS

products. It is easy to see from the list above that the dictionary

capabilities provided by ORACLE and INGRES are very limited from the stand-

point of offering full data dictionary capabilities.

But what alternatives exist to improve this situation? The NBS IRDS

standards offers a convenient vehicle to improve this situation. By

adopting this standard as an industry-wide starting point, all products

that use data dictionaries and the data dictionary itself will improve.

The next chapter discusses the NBS IRDS standard in detail.

26

TABLE 2.1

DBMS DICTIONARY CAPABILITIES

CAPABILITY INGRES ORACLE

Data Dictionary Maintenance P P

Schema a
Entity-types L A

Attribute-types L L

Relationship-types L A

User Dialogue

- Keyword-drive A A

Position-sensitive Trans N N

L Interactive L L

Prompted input L L

Preformatted screen A L

Menus L L

Facility/capability availability - A
Facility/capability available but limited L
Facility/capability not available = N
Facility/capability as part of DBMS only = F

P2

27/A!

TABLE 2.2

DBMS DICTIONARY CAPABILITIES

CAPABILITY INCRES ORACLE L

Dictionary Commands

Maintenance P P

Add N L

Modify L L

delete N L

Report P P

Query P P

Data Structure interface N N

Extensibility N P

Status-related N N

Security P P

Processing control N N

Facility/capability availability = A
Facility/capability available but limited = L
Facilitycapability not available = N
Facility/capability as part of DBMS only P

m9

Im

TABLE 2.3

DBMS DICTIONARY CAPABILITIES

CAPABILITY INGRES ORACLE i

Administration A A

Extensibility N P/L

Status Facilities N N

Report Processor P P

Query Processor P P

Convert Function A N

Software Interface P P

Data Management L P/L

Security P P

Integrity N P

Concurrent Control N N

Internal access to DD N L

Facility/capability availability A
Facility/capability available but limited = L
Facility/capability not available = N

Facility/capability as part of DBMS only P

30

III. INFORMATION RESOURCE DICTIONARY SYSTEM

This chapter discusses the features and characteristics which form

the basis of the draft proposal American National Standards (dp ANS) Infor-

mation Resource Dictionary System (IRDS). The chapter that follows will

4?
outline which of these features were chosen for incorporation into the "*

, °.

Prototype IRDS.

A. BACKGROUND

As the world's largest user of information processing technology, the

U. S. Government depends on this technology to carry out Government-wide

programs and deliver essential public services. As with most new technolo-

gies Data Dictionary/Directory Systems (DD/DS) were being developed by

numerous software suppliers each from a different set of standards. Since

it is estimated that the federal government could save "$120 million in

benefits by the early 1990s from use of a standard (IRDS)" [Ref. 23], the

American National Standards Institute (ANSI) and the National Bureau of

Standards (NBS) of the United States Department of Commerce were prompted

to initiate efforts to develop standards for dictionary systems. To this

end the ANSI committee for Information Systems (X3) convened a Technical

Comittee X3H4 to develop the standard for an IRDS in 1980. NES at the

same time established a similar committee to develop the "Federal Information

Processing Standards for Data Dictionary Systems" (PIPS DDS).

Although the ANSI X3H4 and the NBS committees used different titles

for standards they were developing, the two groups had identical goals

and similar development approaches. The two efforts came together with the

adoption of Proposal A83-020 in August 1983. The proposal called for the

acceptance of the draft PIPS DOS as the Base Document for any further

31

Irv _17 MPWW3W

development of IRDS standards and has since been developed into the

dp ANS IRDSs [Ref. 24], [Ref. 25], [Ref. 26], IRef. 27].

B. IRDS DESIGN OBJECTIVES

When specifications for the standard IRDS were being developed three

key objectives were always in the forefront of consideration. They were:

* The IRDS should contain the major features and capabilities found .1
in existing Data Dictionary Systems.

* The IRDS should be modularized to promote ease of implementation r .>P .1
and cost efficient development.

* The IRDS should support portability of skills and a wide range of 1,7

user environments.

In pursuit of this goal the Institute for Computer Science and

Technology of the National Bureau of Standards took the following steps:
* Preparing and disseminating the Prospectus for Data Dictionary Sys-

tem Standard [Ref. 28] in 1980. This document discussed the use of
Data Dictionaries and plans to develop a FIPS standard.

* Conducted a Data Base Directions workshop in October, 1980 that in-
vestigated how managers can evaluate, select, and effectively use
information resource management tools, in particular data dictionary
systems.

* Conducted interviews with government employees that were knowledgeable

in the area of data dictionaries to determine current and future re-
quirements for data dictionary systems. The Federal Requirements for
a Federal Information Processing Standard Data Dictionary System
(Ref. 291 was published as a result of those interviews.

* Conducted numerous workshops for users and vendors between 1982-84
to obtain feedback on previously published documents.

* Developed a functional specification for the development of a data

dictionary standard (Ref. 30].

* Prepared and disseminated in August 1983 the draft specifications for

the plaLned Federal Information Processing Standard for Data
Dictionary Systems, the document that later became the baseline
standard.

1. Outgrowth of Existing Systems

All vendors who were marketing developed IRDSs or were developing

IRDS were asked to review the proposed IRDS specification and make

32

5,

-AI II I I I

recommendations and suggestions on what should be included in or excluded

from the draft standards. Many of their recommendations were subsequently

included in the draft specifications. - .Wi

2. Flexibility

The proposed IRDS includes a "CORE" dictionary system (which is

the basis for the prototype to be discussed in Chapter 5) plus three

modules. The modules are designed to interface with the core system but I
be independent of each other so that any or all of the modules can be

implemented with the core system when desired. To provide additional

flexibility, capabilities are specified in the core IRDS that allow

organizations to customize or extend the IRDS as required.

3. Portability of Skill

The core IRDS contains two user interfaces: a menu driven

"Panel" interface and a command language interface. The panel interface

allows the system to be used by the inexperienced user. It incorporates

a series of interrelated screens that guide the user through the system.

The command language interface on the other hand is designed to allow

the more experienced user to access the system without viewing the

panels. The command language interface may be used in a batch or interface

mode.

An implementation of the IRDS standard is considered complete if

either of the interfaces are implemented.

C. IRDS DATA ARCHITECTURE

This section presents an overview of the framwork in which IRDS data

is organized and presented to the user.

33

4

-T i .V

1. Framework
4.,

The IRDS standard is specified in terms of entities,

relationships, and attributes (see Figure 3.1).

An IRDS entity represents or describes a real world concept, person, 4

event, or quantity, but is not the actual data that exists in an
application file or data base. [Ref. 311

A relationship is an association between two entities. An attribute

represents a property about an IRDS entity of rolationship as the IRDS
also allows relationships to have attributes. Relationships in the
Core IRDS are binary, denoting that an association exists between two
entities in the IRDS.

The Core system was restricted to binary relationiships because (1) t'ie

vast majority of current implementations use binary relationships and

(2) it was desired that the Core system be simple enough to implement on

microcomputers.

ENTITY u8-20 ENTITY-TYPE - SYSTEM

ASCAD DatabaseUpdate

WITH ATTRIBUTES

DESCRIPTION (START = 10e INCREIEIT - 10)

"This subs>stempro,.,ides the capability for
the staff to update the contents of the

ASCAD Database.",

SYSTEM-CATEGORY - 'subsystem*,

SECURITY = "datamgr";

Figure 3.1 Sample Entity Representation

An important asipect of the IkDS standard is the concept of TYPE

which is used as away of classifyinq entities, relationships and attri-

butes. Different attributes have diffreent meanJigs, for example the

.41

34

length of Payroll-Number or number of fields in a Payroll-Record are

different. But these attributes may appear many times in relationship *

to other entities, length of name, length of address or number-of-fields

in an Accounts-Payable record. The IRDS standard handles this situation

by declaring that each attribute is a specific type called an

"attribute-type." Thus there are attribute-types called length and

number-of-fields.

The concept of types is extended to the IRDS relationship and

entity in the form of "relationship-types" and "entity-types" see

Appendix A. S, .,

Relationships within the IRDS can also have attributes, for example

the relationship in Figure 3.1 between Payroll-Record and Payroll-Number

could have position attribute-type with a value of 3 indicating that the .'."i

Payroll-Number appears as the third element in the Payroll-Record.

The IRDS standard also allows for ordered sets of attributes

called attribute-groups. This capability was incorporated into the

standard because individual attribute-types don't always convey the com-

plete message about an entity. An example of this might be the allow-

able-range of an entity. The allowable range has a high value and a low

value which a singular attribute would not be able to convey. An attri-

bute-group on the other hand would be able to convey this information

quite easily.

2. IRDS Schema

The IPD schema describes the structure of the IRD. Thus for

every entity, relationship, attribute and attribute-group that can exist

in the IRD, a corresponding description of the entity-type, relationship-type,

35

attribute-type and attribute-group-type must exist in the IRD

schema. The proposed IRDS standard specifies a set of specifically

allowable entries of the types listed above which are collectively called L .

the "Core-System-Standard Schema" which will be discussed in 3. below.

The IRD schema is important for two reasons. First, the IRDS

specifications allow for facilities to modify and expand the core-system-

standard schema to meet the unique needs of individual users. Second,

the IRD schema supports the core system plus modules approach as discussed .

in Section 1 of this chapter and the IRD schema allows not only extension

of the schema data but also definition of additional IRDS functions.

3. The System-Standard Schema ,

The system-standard schema defines the allowable contents of the

IRDS and is expected to be part of every IRDS implementation (the proto-

type IRD in Appendix E only implements a subset of the system-standard

schema, this will be explained in Chapter 4). The core-system-standard

schema does not contain all possible entity, relationship and attribute-

types that an organization might desire. It does however represent the

consensus of the organizations which participated in the original IRDS

workshops and reviews. An overview of the core-system-standard schema

is provided below and a complete core-system-standard schema is provided

in Appendix A.

a. Entity Types

The core system-standard schema contains twelve entity-types

that conceptually can be grouped into three categories, Data, Process, and

External. [Ref. 32]

36

4....

Data Entity-Types
V?

* DOCUMENT, describes instances of human readable data, such as tax .4
forms and annual reports.

L.
* FILE, describes collections of records which represent an organiza-

tion's data, such as inventory and accounts receivable files.

* RECORD, describes instances of logically associated data, such as a

*payroll record.

* ELEMENT, describes an instance of data, such as a social-security- . * I
number.

* BIT-STRING, describes a string of binary digits, such as 01000101.

* CHARACTER-STRING, describes a string of characters, such as "house."

* FIXED-POINT, describes exact representations of numeric values.

* FLOAT, describes exact representations of approximate numeric values.

The last four are not used to represent application entities, but

are instead used by the "REPRESENTED-AS" relationship to describe the

characteristics of elements:

PROCESS Entity-types

* SYSTEM, describes a collection of processes and data, such as a

payroll-system or accounts-payable-system..

* PROGRAM, describes a particular process, such as print accounts-

payable check

* MODULE, describes a group of programs that are logically associated,

such as a sort module.

EXTERNAL Entity-types

* USER, describes an individual or organization that is using the IRDS,

such as the accounting department.

b. Relational-types

The relationship-types provided for in the IRDS core system-

standard schema represent virtually all connections that might be useful

to users. These relationship-types are grouped into eight classes (Ref. 33]:

37

CONTAINS, describes a situation were an entity-type contains other

entity-types, such as Accounts payable-file CONTAINS Accounts
Payable-record. ' "

PROCESSES, describes a situation where an entity-type acts upon

another entity-type, such as Payroll-program PROCESSES Payroll-
records.

RESPONSIBLE-FOR, describes an association between entities represent-

ing organizational components and other entities, to indicate
organizational responsibility. An example of such a relationship is
Accounting-department RESPONSIBLE-FOR General-ledger-file.

RUNS, describes an association between user and process entities,

such as user RUNS program.

GOES-TO, describes a situation where one process transfers control L

to another process. An example of this relationship is Accounts-
payable-aging-program GOES-TO Aging-report-program.

DERIVED FROM, describes a situation where an entity is derived from

another entity such as Annual-report DERIVED-FROM program-file.

• CALLS, describes a situation-where one entity calls another entity
such as Data-entry-program CALLS Aging-program.

REPRESENTED-AS, describes associations between ELEMENTs and certain
other entitles that document the ELEMENTs format. An example of
such a relationship-type is Employee-Name REPRESENTED-AS Ascii-char-
string.

c. Attribute Types

The attribute-types available as part of the core-system-standard

schema are the ones selected by conscientious of participating DD users

and DD software developers during the development of the IRDS standard.

They represent most of the attributes that an organization would need to

describe the core-system-standard entity and relationship-types. The

attribute-types provide [Ref. 34]:

Audit trail information, a typical audit attribute-type is DATE-
CREATED.

General documentation for entities, for example, DESCRIPTION and

COMMENTS.

See Appendix C for a complete list of the attribute-types.

38

ko

4. Entity Names

The core IRDS allows flexibility in the assigning of entity names.

The system also allows for several distinct names to be associated with an

entity and for each name to serve a specific purpose. The core system

allows for ACCESS NAME, DESCRIPTIVE NAME and ALTERNATE NAME.

The access name is the entity's primary identifier and it is the r

basis for the structure of most commands and panels. The access name is

designed to be short, for ease of use by the system and user. Normally a

user will provide the access name of an entity. However an option exists

for the IRDS to generate the access names for all entities of a given type. -.

The names that are generated by the system may be modified at a later date.

The descriptive name provides detailed information about the object

represented by the entity. So the brevity of the access name poses no ..

disadvantage to the system or user.

The IRDS does place a requirement on the user that all access and

descriptive names be unique throughout the system. This requirement was .

generated by the ANSI X3H4 and workshop participants to insure simplicity in

the command language and panel interfaces.

The core IRDS also allows for user assignment of ALTERNATE NAMES

for an entity. The term alternate name is used here in the same sense as

the terms "synonym" and "alias." The alternate name documents different

names used to represent the same real world things. For example, the

element whose access name is Social-Security-Number might have alternate

names, SSN, Soc-Sec, No, and Social-Security-Number.

D. FUNCTIONS AND PROCESSES

This section describes the functions and processes provided as part

of the core IRDS.

.39

I;-

1. Populating and Maintaining the IRD

The core IRDS provides Zunctions to add, modify, and delete

entities and relationships.

a. Entities %.%60

(1) Adding Entities. This function allows the user to

add/create entities to the IRD. Some important aspects of adding a new

entity are:

* Declaring the type of the entity.

* Designating the assigned access name.

* Assigning a descriptive name to the entity.

* Declaring attributes and attribute-groups for the new entity.

The designated entity-type must be one that exists in the IRD schema. /.

In order for the access name to be valid it must conform to the following

rules:

* The access name must conform to the length and picture requirements
of IRD schema.

* The access name used must not previously exist in the dictionary.

* If the system is to generate the access name the user must supply

the entity type and starting value see Figure 3.2 for examples.

(2) Modifying Entities. This function is used to change the

attributes of existing entities. When using the modify function the user

may accomplish the following:

* Creation of new attributes.

* Modification of existing attributes.

* Deletion of existing attributes.

The core IRDS also offers a modification option that allows the user

40

S . - - -= - - -- ,

ADD ENTITY u8-20 ENTITY-TYPE = SYSTEM
DESCRIPTIVE-NAME = ASCADDatabasepdate
WITH ATTRIBUTES

DESCRIPTION (START = 100 INCREMENT = 10)

"This subsystem provides the capability for
the staff to update the contents of the
ASCAD Database."
SYSTEM-CATGORY = "subsystem",
SECURITY E Y"datamgr";

Figure 3.2 Sample Command for Adding Entity

.4

14

to create a new entity which has all the values of the old entityt but

with some desired modification. This option allows for the easy genera- r

tion of a new version of an existing entity which would be identified as

a different form the original entity by a version number (Figure 3.3).

MODIFY ENTITY dd_01093
WITH ATTRIBUTES
DESCRIPTION = "A shared data field occupied by

either cntry_code or statecode",
SECURITY = "datamgr"
DATA-CLASS = "alphanumeric",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "cntrystcode",
ALTERNATE-NAME-CONTEXT = "pll");

Figure 3.3 Sample Command for Modifying Entity

(3) Deletion of Entities. The core IRDS allows entities to

be deleted by specifying any of the following:

* * The access name.

* Entity selection criteria (access names) which will result in the
creation of a new entity-list.

* The name of an existing entity-list created earlier in the session

or saved from a previous session.

b. Relationships

(1) Adding Relationships. The core IRDS allows for the

creation of new relationships other than those provided as part of the

core. The important considerations in creating a new relationship in-

clude designating:

" The entities that are to be members of the relationship.

" The relationship type.

" Optionally, attributes and attribute groups for the new relationship.

" The entity sequence for ordered relationships.

42

*t -- -i w -. w i qE j -- - .-. * . -. * -- - ;. - ' -" - - -- - . --- -. '

1% r

In creating a new relationship the user need only identify the access-

names of those entities associated with the relationship.

(2) Modifying Relationships. The core IRDS allows the user

to modify any existing relationship by identify the relationship by type

and the access associated with it. Using this function, allows the user

to:

* Change a relationship's attributes.

* Create new attributes.

* Delete existing attributes.

* Change the sequence of entities associated with the relationship.

(3) Deleting Relationships. The function is provided by the

core system to allow for leletion of relationships.
c. Copying Entities and Relationships.

The core IRDS allows for the creation of new entities with the

same attributes, attribute groups and relationships as an existing entity.

In order for the new entity to be created the user must activate the

copy function and specify a new access name which is not duplicated in

the system. Optionally the user may designate a new full descriptive

name for the entity to be copied.

2. IRDS Output Facility

The core IRDS provides a GENERAL OUTPUT function for producing

output of IRD entities, relationships, and attributes. The general output

capabilities are discussed in a. below. The-core IRDS also provides two

additional output facilities the IMPACT-OF-CHANGE function, which provides

a report of all entities that might be affected by a change to a specific

entity, and the SYNTAX-OUTPUT function which generates output in the same

43

-

format as data was entered to create the entity in the first place.

These two functions are discussed in detail below.

a. General Output

The core IRDS requires that seven steps be completed before

any output can be generated. Some of the steps are optional and therefore

default values are available. The seven steps required for output genera-

tion are:

(1) Specify the views to which retrieval applies. The view is associated __..

with the life cycle phase that the particular entity belongs to
(See Figure 3.4 for an example).

Select ENTITIES "Program-2 (*:*)"

Where *:* means all revision-numbers and all variation-numbers

Figure 3.4 Sample Command Line

(2) Selection of the entities to be output. This selection is performed
via the entering of selection criteria. Criteria is generally
entered at the initiation of the output process. Selection
criteria includes (See Figure 3.4

* The type(s) of entities to be retrieved.

* Characteristics of the assigned access or descriptive name.

* Characteristics of the associated version identifier.

* Designated attributes or attribute groups.

* Life-cycle-phases.

* Relationships

(3) Sorting the entities on a series of sort parameters. The available
parameters are the same as those listed in D.2 above. Suppose a
user wishes to sor the selected entities based on entity-type,
variation name, assigned-access-name, and revision-number.
Figure 3.5 shows how the coinand might look.

44

- - - . -. - - - ' . - -.- - -..

(4) Designating what information is to be displayed include:

* The kind of entity name (access, descriptive or alternate)

* The life-cycle-phase of the entity.

* One or more of the entity's attributes or attribute groups.

* One or more relationships in which the entity participates.

See Figure 3.6 for an example.

entity-type (ascending), variation.
(ascending), assigned-access-name
(ascending), revision (descending)

Figure 3.5 Sample Parameters

(5) Routing information which sends the output to a particular
destination.

(6) Assigning a title to the output.

(7) Providing a name for the output procedure to allow it to be re-
called at a later time, when the same output is required.

SHOW ASSIGNED-ACCESS NAME
ASSIGNED-DESCRIPTIVE-NAME

REVISION-NUMBER, VARIATION NAME

Figure 3.6 Sample Output Format Coiand Line

b. Output IMPACT-OF-CHANGE

AS previously stated, the IRDS allows for the printing or

displaying of an Impact of Change report. This report is generated by

a function that has two options. First, there is a cumulative impact-

of-change option that lista all entities that will be impacted by a

proposed change(s). Second, the Individual-Impact-Of-Change option

produces a separate list of entities for each of the originally specified

entity changes.

45

ENTITY-I
JAIl ENTITY-I information in the order in ,

which it was originally entered].

RELATIONSHIP-I The first relationship that the
entity participates in and all the information
associated with the relationship. -

RELATIONSHIP-j The jth relationship that the
entity participates in and all the information
associated with the relationship.

ENTITY-n
[All ENTITY-n information in the order in which it
was originally entered].

RELATIONSHIP-I The first relationship that the
entity participates in and all the information
associated with the relationship.

RELATIONSHIP-k The kth relationship that the
entity participates in and all the information
associated with the relationship.

Figure 3.7 Sample Output Syntax Report Format

ENTITY-1
[All ENTITY-1 information in the order in which
it was originally entered].

ENTITY-n
(All ENTITY-n information in the order in which
it was originally entered].

RELATIONSHIP-i The first relationship that the entities
participated in and all the information associated
with the relationship.

RELATIONSHIP-k The kth relationship that the
entities participated in and all the information
associated with the relationship.

Figure 3.8 Sample Output Syntax Report Format

46

c. Output Syntax

The output syntax function produces output that includes all

information about the entity that was entered during the add-entity or

add-relationship process. The output for this function has two formats.

The first, involves the listing of each entity and all relationships

associated with the entity (See Figure 3.7). The second, lists all for the

entities first and then lists all the relationships associated with those

entities (See Figure 3.8)

d. Entity-lists

The IRDS allows a user to create and manipulate lists of access

names which may then be used as input to other IRDS output functions.

The IRDS has functions that allow for the creation of entity lists, main-

tenance of entity lists, assigning of names to entity lists, output of

entity lists, output of entity list names and the performance of set

.operations on entity lists which include union, intersection and symmetric

difference.

e. Procedures

Finally the IRDS provides a PROCEDURE FACILITY that allows the

user to save a sequence of operations, used to produce an output. This

facility also allows for the saving of previously defined procedures under

unique names, execution of previously saved procedures by specifying its

name and outputting the names and structures of existing procedures.

3. Schema Maintenance and Output

This section expands the discussion of the IRD Schema which was

introduced in Section C.2 and also discusses schema maintenance and output.

In the previous sections the schema was shown to include:

ETITY-TYPES, RELATIONSHIP-TYPES, RELaTIOSHIP-CLAS-TYPES, ATTREMPTES-TYPES,

47

and ATTRIBUTE-GROUP-TYPES all of which are described in the schema

as meta-entities. Meta-entities represent real world entities in the IRD

schema. Real world entities are objects of concepts such as sales manager,

account, balance sheet and others. The entities that represent these ob-

jects, such as user, record or report are in turn linked by meta-relation-

ships and both can have meta-attributes associated with them.

a. Schema Control

As stated in D.3 above the IRD schema contains meta-entities

which are linked by meta-relationships with both the entities and relation-

ships being described via meta-attributes.

(1) Meta-entity. The IRD schema allows for the following

meta-entities:

* Entity-type

* Relationship-type

* Attribute-type

* Relationship-class-type

* Attribute-group-type

* Attribute-type-validation-procedure

* Attribute-type-validation-data

* Variation-names-data

* Life-cycle-phase

* Quality-indicator

* Schema-defaults

See Figure 3.9 for an example of an instance of each.

(2) Meta-relationships. Meta-relationships represent

relationships between two meta-entitiea. The core IRDS only allows one

48

*i *.I=- .• 7 " ' ., * . -
- ' - - "

.
- - -- - = "

- - -S - S

i .,"I~~~, 75 -4N.-.

iI

occurrence of a relationship between any two meta-entities. Also

meta-relationships are not given indi:idual names in the core IRDS.

Entity-type
Relat ionship-type
Attribute-type
Relationship-class-type

Attribute-group-type ..

Attribute-type-validation-procedure
Attribute-type-validation-data
Variation-names-data
Life-cycle-phase
Quality-indicator
Schema-defaults

Figure 3.9 Instances of Meta-Entities

The general form for a meta-relationship is meta-entity,

meta-relationship, meta-entity. See Figure 3.10 for an example of the

general form of a meta-relationship.

(3) Meta-attributes. Meta-attributes perform a descriptive

role with respect to meta-entities and meta-relationships. The core

IRDS allows for four general types:

* ADDED BY

* ALLOWABLE-VALUE

* DESCRIPTION

* LAST-MODIFIED-BY

* NUMBER-OF-LINES-OF CODE

Figure 3.10 Sample Meta-Attributes

• Documentation meta-attributes are used to document the purpose of
the meta-entity. See Figure 3.10.

49

* Audit et-attributes serve the same general purpose as the audit

attribute in the IRD, that being to provide an audit trail of what
has happened in the schema, see Figure 3.10.

* Schema control meta-attributes provide certain controls over what

can and cannot be done to the schema.

* Dictionary control meta-attributes which provide control over the

dictionary itself.

(4) A Sample Schema Structure. Figure 3.2 shows a sample

schema structure involving files. It demonstrates the use of meta-entities,

meta-relationships and meta-attributes in the formation of schema.

b. Schema Manipulation 0 wY

The core IRDS allows for the modification of the schema via

adding, modifying and deleting of meta-entities and relationships. These

functions are designed to be performed by only those individuals with the

proper access authorization.

(1) Adding meta-entities. The core IRDS will allow those

users with the proper authorization to add new meta-entities. The kinds

of meta-entities that can be added are listed in D.3 a.(l) above. New

meta-entities may not be assigned the name of a me -entity that already

exists.

(2) Modifying meta-entities. The core IRDS allows the user

to modify meta-entities by associating a new meta-attributes with the

meta-entity, by changing an existing meta-attribute or by deleting a

meta-attribute that already is associated with the meta-entity. In the

case of a changed or deleted meta-attribute the IRDS will insure that

the change did not adversely effect the dictionary.

(3) Deleting meta-entities. The core IR06 provides the

user with the ability to delete an existing meta-entity from the schema.

50

However the IRDS will insure that the integrity of the dictionary is

not violated.

(4) Adding Meta-relationships. The core IRDSgives t._ IRDS

user the ability to add new meta-relationships as he sees necessary. As

stated earlier meta-relationships are associations between meta-entities.

The process of adding a meta-relationship requires that the user specify

the meta-entities that are to be members of the relationship and any meta-

attributes that will be associated with the meta-relationship.

(5) Modifying, Deleting and Replacing Meta-relationships.

The core IRDS provides the user with the ability to modify, delete and

replace meta-relationships. The modifying and deleting of meta-relation-

ships is performed in the same manner as the modification and deletion

of entities as explained in D.3.b.(2) and D.3.b.(3) above. The replace-

ment of meta-relationships actually involves the combination of the %

delete meta-relationship and add meta-relationship functions. The replace-

ment function is organized in this manner to insure the integrity of

the IRD.

(6) Modification of Meta-entity Names. The core IRDS allows

the user to modify the meta-entity name. This process however falls

along the same lines as the meta-relationship replacement function. It

is the forced combination of the meta-entity deletion and add functions.

This process is again used to insure integrity of the IRD. One addi-

tional requirement exists and that is that the meta-entity name not be

duplicated anywhere in the IRD.

c. Schema Output

The core IRDS allows those authorized to work with the schema

the ability to output information about it. In order to produce the

51 -

,'V

* '.

output the user must select the meta-entities to be displayed. This

selection is accomplished by choosing one of the following:

* That all meta-entities be displayed.

* That all meta-entities of a specific type(s) be displayed.

The name of a specific meta-entity.

The resulting set of meta-entities may then be sorted on one of the fol-

lowing parameters:

* meta-entity-type

* meta-entity-name

Non repeating meta-attribute-types

Before the sorted list is displayed the user must specify the informa-

tion about each meta-entity he wishes to see. The display options avail-

able to him are one of the following:

* meta-name

* meta-type

* One or more of the associated meta-attributes

* All or none of the associated meta-relationships in which the
meta-entity participates

4. The IRD to IRD Interface

The IRD to IRD interface is an important feature of the core

standard IRDS because it is the only controlled means for moving data

between two IRDS. This facility allows an organization with more than

one IRD to transfer information between them. The facility is also de-

signed to allow IRDSs developed by different vendors to interface and

exchange information, provided a communication link exists and they have

52

. ..• .,

followed IRDS standards. The core standard IRDS only allows for the

transfer and does not have any means of providing the physical connection

between the IRDS. In allowing for the interface the only important

issue stressed is that the exporting and importing dictionaries and the

exporting and importing schema's must be compatible.

5. IRDS Control Facilities

The core IRDS contains five control facilities that are impor-

tant in populating and maintaining the IRD. These are:

* The Versioning Facility

The Life-Cycle-Phase Facility

* Quality-Indicators

* Views

* Security

An overview of these was provided in Section D. This section presents

additional detail on the structure and use of these facilities.

a. The Versioning Facility

The versioning facility provides the user with the ability to

distinguish between entities that would otherwise be considered the same.

The distinction is generated via the version-identifier which is composed

of two parts: (1) a required revision-number and (2) an optional vari-

ation-name.

In the command language syntax the user encloses the version-

identifier in parentheses and appends it to the access or descriptive

entity name. Within the parentheses the variation-name (if used) is

followed by the revision-number, separated by a colon. If the user does

not specify a revision-number the system will default with a value of

53

-

1 to indicate that no revision exists and a value of 1 greater than

the current value for any subsequent revisions.

For example, suppose a certain payroll module exists that

calculates state taxes for Alabama, Georgia, and Florida and another pay-

roll module of the same functionality calculates state taxes for California ""

and Texas. We can describe both with the same access name PAYROLL-MODULE,

4. and differentiate between the two with different variation-names. Thus

we could have PAYROLL-MODULE (AL-GA-FL:l) which would represent the Ala-

bama, Georgia, and Florida capable payroll module with no revision. The

California and Texas module which has had three revisions would be re-

presented as PAYROLL-MODULE (CA-TX:4).

b. The Life-Cycle-Phase Facility

The life-cycle-phase facility of the core IRDS: (1) allows

the user to define the life cycle phase to meet the methodology currently

being used; (2) Provides facilities to assign each entity to a particu-

lar phase; (3) Provides integrity rules concerning the passing of an

entity from one phase to another. Each phase is represented in the

schema as a meta-entity.

Every life-cycle-phase belongs to a "phase class" and the

core IRDS recognizes three such classes:

* UNCONTROLLED -- Uncontrolled phases are "specification," "design"
or "non-operational." There are no integrity rules for this class
and a user may identify as many phases with this class as desired.

CONTROLLED -- Controlled phases are those that are considered to be
"operational." The core IRDS allows only one such phase the
"CONTROLLED-PHASE" with its associated integrity rules. The

.integrity rules will be covered in the next section.

* ARCHIVED -- The core IRDS can only have one ARCHIVED life-cycle-

phase, called the "ARCHIVED-PHASE" and it is used to document and

54

• /.

classify entities no longer in use. This class also has special
integrity rules associated with it, those will also be discussed in
the next section.

(1) Integrity Rules. As mentioned previously, integrity rules

for the CONTROLLED and ARCHIVED life-cycle-phases are enforced by the

core IRDS. These rules are based on a dierarchy of system-standard entity-

types as defined by the following list. The highest in the hierarchy is

the first and the lowest is the last:

* SYSTEM

* PROGRAM

* MODULE

* FILE

* DOCUMENT

* RECORD

* ELEMENT

This means that the entities are "Phase-related." The hierarchy only

applies to the core standard IRDS entity types and not to any entities

added by the user via the extendability facility.

These are integrity rules in the sense of controlled

and archived but not in the sense of allowable ranges of attribute data

values, e.g.: "sex must be 'M' or 'F'. This type of integrity is handled

through the ATTRIBUTE-TYPE-VALIDATION-PROCEDURE-META-ENTITIES:

* RANGE-VALIDATION, which is used to restrict an attribute-type to an

allowable set of ranges.

* VALUE-VALIDATION, which is used to restrict an attribute-type to an

allowable set of values.

There are two relationship-class-types that are desig-

nated as phase-related, they are CONTAINS and PROCESSES they are combined

55

with the entity-type to form phase-related relationship-types. Listed

below in Table 3.1 are the relationship-types generated by this combination:

The general integrity rule for entities in the controlled

life-cycle-phase is:

An entity can be in the CONTROLLED life-cycle-phase only if all entities

whose types are below its type on the above hierarchy and that are con-

nected to it with phase-related relationships are also in the CONTROLLED
life-cycle-phase.

The ARCHIVED life-cycle-phase has an integrity rule similar to that above:

An entity can be in the ARCHIVED life-cycle-phase only if all entities
whose types are below its type in the above hierarchy and that are con-
nected to it with phase-related relationships are in either the CONTROLLED
or ARCHIVED life-cycle-phase.

The integrity rules are designed to insure that when an entity, for

example "PAYROLL-SYSTEM" is moved to a new phase, for example "OPERATIONAL-

PHASE" that all of the programs and modules associated with the system

are either already in the operational-phase or ready to be moved to it,

thus insuring the integrity of the system.

c. Quality-Indicators

The core IRDS allows the user to define quality-indicators

and assign them to entities. These quality-indicators denote such things

as:

* The level of standardization of an entity (e.g., program standards,
organization standards, company standards, and international
standards).

* The degree to which an entity meets the user quality assurance stan-

dards, etc.

All quality-indicators must be added to the IRD schema as

a meta-entity. Also the core system-standard schema does not include any

indicators, so all indicators must be user defined.

56

TABLE 3.1

PHRASE-RELATED RELATIONSHIPS-TYPES

SYSTEM-CONTAINS-SYSTEM
SYSTEM-CONTAINS-PROBLEM
SYSTEM-CONTAINS-MODULE
PROGRAM-CONTAINS-PROGRAM
PROGRAM-CONTAINS-MODULE
MODULE-CONTAINS-MODULE
FILE-CONTAINS-DOCUMENT
FILE-CONTAINS-RECORD
FILE-CONTAINS-ELEMENT
DOCUM ENT -CONTAINS-DOCUMENT
DOCUMENT-CONTAINS-RECORD
DOCUMENT-CONTINS-RECORD
RECORD-CONTAINS-RECORD
RECORD-CONTAINS-EL.EMENT
ELEMENT-CONTAINS-ELEMENT

SYSTEM-PROCESSES-FILE
SYSTEM-PROCESSES-DOCUM4ENT
SYSTEM-PROCESSES-RECORD
SYSTEM-PROCESSES-ELEMENT
PROGRAM-PROCESSES-FILE
PROGRAM-PROCESSES-DOCUMENT
PROGRAM-PROCESSES-RECORD
PROGRAM-PROCESSES-ELEMEN
MODULE-PROCESSES-FILE
MODULE-PROCESSES-DOCUMENT
MODULE-PROCESSES-RECORD
MODULE-PROCESSES-ELEM ENT

57

d. Views

Views are how the user logically perceives the dictionary and

as such it is generally a subset of the complete dictionary. A view may

be: (1) a set of entities with associate entities, attributes, and attri-

bute-groups; (2) a set of relationships with its associated entities,

attributes, and attribute-groups or (3) a set of specifications of opera-

tions that may be performed by the user. '

Structurally, VIEW is an entity-type in the core IRDS system-

standard schema and each view in the IRD is an instance of that entity-type.

For example, if a particular programmer is working on the Payroll-

system of an organization. His view of the IRD would be all the programs,

modules, files, records and elements contained in or processed by the

Payroll system.

The core IRDS allows an organization to define what views are

available to a user thus limiting his access to the dictionary. if more

than one view is available to a user, one will be designated as the default-

view and will be presented to the user each time he uses the system un-

less he specifically specifies otherwise. Views associated with each

user are stored in the IRD as attributes of the DICTIONARY-USER entity.

e. Core Security

The general mechanism that implements core IRDS security con-

sists of the following:

* For each authorized user of the IRDS, one DICTIONARY-USER entity

exists. Associated with this entity are attributes that define
the user's level of access.

* Associated with each VIEW entity are attributes that define the

permissions and restrictions that apply to all IRDS users allowed

58

iA

to use the view. These include the abilities (independently specified
for each entity-type), to read, add to, modify, and delete the entities
that comprise the view.

* Finally, each DICTIONARY-USER entity is linked to those views that

the user can access.

(1) Access Permission. Most IRD ACCESS PERMISSION is

associated with view entities, and, for each view, the permission applies

to all entities in that view. Each permission consists of several parts:

* The name of the entity-type for which the permissions are specified.

* An indicator showing if permission exists to read entities of the
specified type.

* An indicator showing if permission exists to add entities of the
specified type.

* An indicator showing if permission exists to modify entities of the

specified type.

* An indicator showing if permission exists to delete entities of the
specified type.

* An indicator showing which relationships are explicitly excluded
from that view.

* An indicator showing if permission exists to modify the life-cycle-
phase of entities of the specified type.

These permissions are stored in the IRD as a DICTIONARY-

PERMISSION attribute-group. Each view may have multiple permissions

associated with it.

The core IRDS specified five categories of permission:

* GLOBAL PERMISSION: All schema functions are allowed.

* GLOBAL PERMISSION FOR UNLOCKED META-ENTITIES: Permission to perform
all schema functions except those that modify or delete meta-entities
that have installation-lock set on.

* ATTRIBUTE-TYPE-VALIDATION-DATA WRITE PERMISSION: Read attribute type

59

validation data and modify their meta-attribute.

* ATTRIBUTE-TYPE-VALIDATION-DATA READ PERMISSION: permission to read
attribute-type-validation-data and their meta-attribute.

* REPORTING PERMISSION: permission to read the complete schema.

This facility is implemented through attributes of the DICTIONARY-USER
entity.

6. User Interfaces

This section discusses the command language and panel interfaces.

An implementation of the IRDS may contain either or both of the inter-

faces but each interface will support the full capabilities of the IRDS.

As stated earlier the IRDS interfaces are designed to allow the

system to communicate with the user and vice versa. The panel interface

is designed to prompt the novice through the system while the command

language interface is designed for the more experienced user and thus

skips most of the panels used in the panel interface.

a. Command Language

The COMMAND LANGUAGE interface supports both batch and inter-

active modes. The commands used by the command language interface cor-

respond closely with the functions discussed throughout this chapter.

The syntax of each of the command language commands is presented in the

Bacus-Naur form. Since the command language closely parallels the dis-

cussion presented in the previous sections a detailed discussion of each

command will not be attempted. A summary listing of the comeands and

their associated functions is provided in Appendix E. However the

command language is discussed and illustrated in depth in [Ref. 351.

60

.b. Panel Interface

The core IRDS provides the user of the system a structured

set of logical screens (or panels) which, when used in the proper sequence

perform the functions of the system. The panels can be considered to

be user friendly in that they guide the user through the procedures for -A
a function.

The core IRDS does not specifically identify a panel structure

of physical implementation of the panel interface. It is therefore up

to the user to define his own panel structure and panel map (which panel

follow which) for each function.

The core IRDS does provide rules for the structure of the

panels used by the IRD. They are:

* Each panel shall have a unique name.

" The panel interface is to have an inter-panel structure that de-
fines a default progression of panels.

* The first panel encountered is the HOME panel.

" The user may return to the HOME panel at anytime.

The structure of the panel interface is defined in terms of

panel trees and panel areas. A panel tree is the collection of one or

more panels used to perform a single function. A panel area is a portion

of a panel that is associated with a particular category of information,

and deals with the user interaction with the IRDS. The core IRDS identi-

fies six different areas associated with the panel. not all of which are

shown to the user at one time:

• STATE AREA -- This area will always be displayed to the user. It

informs the user of the name of the dictionary being accessed, and
what is being done with the current panel, for example, adding a
record.

61

* DATA AREA -- The data area supports the user in one of two ways:

It displays labels that guide the user while he/she performs data
entry; and, if the user is retrieving information, it displays the
results.

• SCHEMA AREA -- The schema area is primarily used during dictionary

update operations. Examples of the use area include:

- The listing of all valid entity-types, when adding an entity.

- Displaying names of attribute-types that may be associated with
an entity-type being entered.

* ACTION AREA -- The action area displays the options that a user has

when proceeding from the current panel to another.

* MESSAGE AREA -- This panel area displays any errors and warning
messages.

•HELP AREA -- The help area displays information that the system canV
provide in response to a request for help.

c. Operation on the Pane.l Interface

The panel interface will generally be available to all IRDS

users. The core IRDS does not however, require that the panel made avail-

able to a user be tailored to meet his view of the system. The panel

interface will still only allow the user to perform those functions and

operations allowed according to his view and current security.

7. IRDS Modules

The draft proposed IRDS standard contains specifications for

three modules which may be implemented along with the core IRDS. They

are:

* ENTITY LEVEL SECURITY. [Ref. 36]

* APPLICATION PROGRAM (CALL) INTERFACE. [Ref. 37]

* SUPPORT OF STANDARD DATA MODULES. [Ref. 381

Since the scope of this thesis deals primarily with the capa-

bilities of the core IRDS, the references listed above should be con-

sulted if any additional information beyond that provided is required.

62

a. Entity Level Security %

This module allows the user the ability to assign read and-.-,/

write limitations to individual entities. This facility operates in

addition to the security function provided inthe core IRDS.

To accomplish entity level security, the module introduces

the entity-type ACCESS-CONTROLLER, and a set of SECURED-BY relationship-

types that allow an ACCESS-CONTROLLER entity to be connected with entities 'Z

of all other types.

b. Application Program (call) Interface

This module provides an interface from a standard programming

language to the IRDS. This is accomplished by using the call feature of

the programing language. In this way the IRDS is treated as an applica-

tion program subroutine.

c. Support of Standard Data Models

An implementation of the specifications of this module would

assist an organization in describing network and relational databases,

particularly those supported by NDL and SQL command languages. The

describing of network and relational databases is accomplished through

the addition of three new entity-types, twelve new relationship-types,

and fourteen new attribute-types to the Core System-Standard Schema,

See Appendix D.

E. CONCLUSION
The NBS IRDS standards provide the Information Resource Management

arena a valuable tool. An implementation of an IRDS using the core -

standards as discussed above would deliver to the DBMS user tremendous

capability, flexibility and uniformity in describing and controlling an

63

Iw.

b

organizations data. Finally the capabilities described above far exceed

that which is currently available with most of the dictionaries provided

with DBMS products.

But is an IRDS implementation possible. The next chapter discusses

just such an implementation.

N

4%

64

IV. NBS IRDS PROTOTYPE

This chapter discusses the implementation of selected portions of

the NBS IRDS standards in the form of a relational prototype IRDS provided

as Appendix E. Before discussing the NBS IRDS capabilities included

in the prototype. It is necessary to discuss prototyping, its advantage/

°* disadvantages dnd why prototyping was chosen as the method for implement-

ing an IRDS.

A. PROTOTYPING [Ref. 39]

Webster's dictionary defines a prototype as one of three possible

things:

* An original or model after which anything is formed

* The first thing of its kind

* A pattern, an exemplar, an archetype

The second definition is probably the most relevant to this discus-

sion because prototypes are being used in data processing as a first attempt

at design which is then extended or enhanced. In general systems develop-

ment, a prototype is known as

a partially complete functional model of a target system whose

purpose is to provide a better understanding of the target system's
requirements [Ref. 40].

A software prototype is characterized by the following feature. It

is a working system, although of limited capability, rather than just

an idea on paper. A prototype may become, after iterative enhancement,

a production system. Its original purpose is to test assumptions about

requirements and/or system design architecture. A prototype is created

quickly. This has become possible only in recent years with more power-

ful languages such as dBase II and III which are less procedurally

65

' iI

X "NMEn X"EN X-AWRR-

oriented. Some would argue however, that prototyping was the way soft-

ware was developed before the advent of functional decomposition and the

system development life cycle whch is generally accepted and used today.

In the early days of software development writing programs was the
thing to do. After an explanation of the problem, a period of ques-
tions and answers, and research into the nuts and bolts of a method,
the programmer began his or her work. Starting with that portion of
the problem that was well understood, lines of rORTRAN, COBOL or ALGOL
would begin to appear. As time passed additional portions were coded

until the entire program was complete. Design was conducted implicitly,
if at all! [Ref. 411

A prototype should be inexpensive to build, at least less than it

would cost if a conventional high level language were used. Indeed, pro-

totyping in data processing originated only recently because until re-

cently, programming a protype was just as costly as programming the

working system [Ref. 421. The important point is to get something running

soon to establish effective communications with the user without the use

of extravagent resources. the follow-on development of a prototype is

an iterative process in which improvements are made in small increments

as the user developer work together and discover new requirements.

(Ref. 431

Mitchell Spiegel, formerly of Wang Laboratories, explains the proto-

typing approach as:

a process of modeling user requirements in one or more levels of
detail, including working models. Project resources are allocated to
produce scaled down versions of the software described by requirements.
The prototype version makes the software visible for review by users,
designers and management. This process continues as desired, with run-
ning versions ready for release after several iterations. [Ref. 441

Traditional management information system development follows a

series of steps (see Figure 4.1). Prototyping is considered as an

66

adjunct activity to the specification of requirements (See Figure 4.2).

The results of prototyping are input to the steps following requirement3

Feasibility Study

Requirements

Product/Preliminary Design

Detailed Design

Coding

Integration

Implementation

Operations and Maintenance K <
Figure 4.1 Steps in Traditional System Development

analysis, but may or may not be used actively in those steps.

1. Advantages of Prototyping-

There are several advantages associated with the use of proto- -

typing. First a prototype usually gets the product into use as early as

possible. Early use can provide assistance to the decision makers and

feedback to the builders. Second, prototyping is considerably cheaper

than a "full-build" approach, which delays installation until the pro-

duct is complete. Third, prototyping is a convenient way of keeping the

product simple, which is valuable to both builders and users. Fourth,

prototyping lowers risk and expectations. (Ref. 45] Fifth, it is easy

to write statements in a requirements document which say "the system

shall do x" and "the system shall be capable of y." However, both the

developer and the user get a more realistic feeling for the effort and

cost of a feature when they must actually add it to a working model.

Thus, the eventual model better represents what is feasible than a

document with a series of "shall statements." Even though the

functionality of a prototype product is minimal, the user is forced to think

674_-.

'-'M ~ ~ ~ ' -*~ -

more carefully about the task being automated. This should produce a

more accurate understanding of the problem [Ref. 29]. Finally, prototyping

unlike traditional methods builds an effective brigade across the com-

nunication gap between the user and the developer.

I 1. Identify basic needs

Feasibility Study 1 2. Develop working model

1 3. Demo in context &
Requirements ----------------- I Solicit refinements

14. Implement revis=ions
.. Product/ Preliminary Design . ee

1 5. Is prototype done ?
e i D gIf YES, go on to
Detailed Design detailed desi gn

"" If -NO go bacR to
I step

Coding

Integration

Implementation

Figure 4.2 System Development Using Prototyping

2. Disadvantages of Prototyping

Prototyping has some decided disadvantages as well. Prototyping

makes it difficult to plan resource use because a clear picture of what

the finished product will look like is not provided. It also makes it

difficult to decide whether to enhance an old version or build a new one.

Analysts and user can become bored after the nth iteration of the prototype.

68

- -~~~~~~~~~ ti.i t a t.- Tirn tlum i ul

In using the traditional development process there are specific require-

ments which, when met by proof of validation, clearly mark the job as corn-

plete. Because the prototype is changing continually, it creates a problem

keeping users abreast of the current version and what has been validated

and what has not. Prototyping can cause a reduction in discipline for proper

documentation and testing (although this has nothing to do with the prototype

itself). Because there is less emphasis on hard thinking and "desk check-

ing" there is a greater chance of missing a basic problem which could

negate assumptions essential to the product being developed. Also there

is the chance users may become so happy with the prototype that they consider

it a functional product and want the data processing people to start work

on something else. A study using-the ACT/I software package for prototyping

showed increased needs for computing resources. If the productivity gained

from using prototyping doesn't offset the cost of the increased computing

power, then the prototyping approach is serving at a disadvantage.

3. Types of Prototyping

There are two approaches to prototyping: the throwaway prototype

The throwaway prototype development process has the advantage that when

the developer can show the user an immediate capability when he is through,

he can just discard the product. This lo'vrs the developer's risk and

the user's expectations. The evolving prototype process on the other

hand is better suited for the development of an initial capability that

will evolve into a finished product. The evolving prototype has the

disadvantage that the user may accept the first version and thus short

circuit full development.

69

4. Reasons for Prototyping

Prototyping was chosen as opposed to full life cycle development,

because time constraints prevented full development of a DD system

whereas prototyping allowed a viewable product to be produced in the

given timeframe. Additionally the evolving prototype process was used to

develop the IRDS with the anticipation that additional capabilities as

specified in the NBS IRDS standards would be added according to user needs

as additional versions were implemented.

B. THE IRDS PROTOTYPE

dBASE III a Data Base Management System (DBMS) was selected as the

development tool for the IRDS prototype, because data dictionary systems

are essentially a specialized kind of database system. The prototype

could have been written in Pascal or COBOL but the time required to produce

a usable product would have been prohibitive. Additionally since the

prototype was developed using a DBMS system certain capabilities were al-

ready available, i.e., a query processor, file maintenance routines, and

high level language. The intention was not to develop a marketable pro-

product but to demonstrate and evaluage the capabilities described in the

NBS IRDS standard.

The IRDS prototype is based on a reasonable subset of the core features

presented in Chapter 3. The features listed below constitue IRDS Proto-

type Version 1.0 (See Appendix C):

* Panel Interface

* Security

* Add Entity

* Modify Entity

70

_ -.,

r~Ir

* Delete Entity

* Add Relationship

* Modify Relationship

* Delete Relationship

* Add Schema

* Modify Schema

* Delete Schema

* IRDS Output

* IRDS Query

The remainder of the features listed in Chapter 4, though desirable,

will be left for implementation in later versions.

1. A Relational Model of the-IRDS

The IRDS prototype accounts for several different relations in-

cluding users, systems, programs, modules, document, files, records and

elements. The generalized format of these relations is as follows:

* USER (access-name, id-name, duration-type, description, date-added,
added-by, comments, last-modification-date, last-modified-by, number-
of-modifications)

* SYSTEM (access-name, id-name, duration-type, description, date-added,
added-by, system-category, comments, last-modification-date, last-
modified-by, number-of-modifications)

* PROGRAM (access-name, id-name, duration-type, description, date-added,
added-by, lines-of-code, comments, last-modification-date, last-
modified-by, number-of-modifications)

* MODULE (access-name, id-name, duration-type, description, date-added,
added-by, lines-of-code, comments, last-modification-date, last-
modified-by, number-of-modifications)

* DOCUMENT (access-name, id-name, duration-type, description, date-
added, added-by, comments, last-modification-date, last-modified-by,
number-of-modifications)

71

" FILE (access-name, id-name, duration-type, description, date added,
added-by, number-of-records, comments, last-modification-date, last-
modified-by, number-of-modifications)

" RECORD (access-name, id-name, duration-type, description, date-added,

added-by, number-of-elements, size, comments, last-modification-date,
last-modified-by, number-of-modifications)

* ELEMENT (access-name, id-name, duration-type, descritpion, date-added,
added-by, element-type, element-length, low-of-range, high-of-range,

allowable-value, comments, last-modification-date, last-modified-by,
number-of-modifications)

for a detailed explanation of the attributes for these relations see

[Ref. 47].

Relationships among the various relations are tracked by having

relations with a verb name reflecting how one entity relates to another.

For example, since a program can contain several modules, a program-con-

tains-module relations is included in the dictionary. Its format is as

follows:

* PROGRAM-CONTAINS-MODULE (program-name,

module-name). An example of this relation would be:

PROGRAM-CONTAINS-MODULE (u-8, u-8-10)

(u-8, u-8-20)

(u-8, u-8-30)

The prototype implements twelve of the sixty-four relationships specified

in the NBS IRDS standard. See Appendix A for a complete listing of the

allowable relationships. Listed below are the twelve relationships in-

cluded in the prototype:

* PROGRAM-PROCESSES-RECORD (program-name, record-name)

* PROGRAM-PROCESS-FILE (program-name, file-name)

* SYSTEM-CONTAINS-FILE (system-name, file-name)

72

* USER-CONTAINS-SYSTEM (user-name, system-name)

* USER-RESPONSIBLE-FOR-SYSTEM (record-name, system-name)

* FILE-CONTAINS-RECORD (file-name, records-name)

* RECORD-CONTAINS-ELEMENT (record-name, element-name)

* USER-RESPONSIBLE-FOR-FILE (user-name, file-name)

* PROGRAM-PRODUCES-DOCUMENT (program-name, document-name)

* PROGRAM-CONTAINS-MODULE (program-name, module-name)

* SYSTEM-CONTAINS-PROGRAM (system-name, program-name)

* PROGRAM-PROCESSES-ELEMENT (program-name, element-name)

2. Interface

The NBS IRDS standard provides for two user interface capabilities:

The Command Language Interface and the Panel Interface. The Panel Inter-

face method was chosen because it provides a "user friendly" communica-

tion link between the IRDS and the user. Figures 4.3 thru 4.6 provide

a series of panel trees that diagrammatically represent panel interface

system used.

The panel structure itself followed the guidelines provided in

the IRDS standard (See Figure 4.7). The IRDS standard allows for six

possible areas to be defined in the panel state area, data area, schema

area, action area, message area and help area. All areas except the

help area are included in this prototype. Figure 4.7 shows what portions

of the screen are used for each of the areas.

C. IRDS START-UP

This IRDS prototype was written in dBASE III and uses panel interfac- ._

ing as the means of communication with the user. The first panel that

73

hO1E PNEL

I DICTIONARYI I I_ _ I_ _

I I i
I " TE I I I I I
IDIICTOAR II I-- -

OUTIT6WCE I I .1 I
IPELTREE I E I I I

I ITOIII ~~OUTPUTfI I I
I P~4EL TREE I I. ,I,,

I DICTIOfI RY I I
Q UERY I I I

I P- L TREE I

I SCHEHAI
I INTDME I I
P4EL TREE I I

SCHE] I
OTUT ff-I

PMEL TREE I

I

Figure 4.3 The Panel Idterface -- Overall Structure

DICTIORI
I AINTENWE
P4EL TREES -, ,

I Of I II
I MODIFY I I I
I ENTITY I IIII

II

I DELETE II
I YTITY I

I ~ADD
I ~RELATIOdSHIPI I

DELETE I I
I RELATIONSHIP I I

I I
I RETIM TO I

IN I

I I

Figure 4.4 Dictionary Maintenance Panel Tree

74

• II.* STATE AREA

ft *

ft ft

DTA AREA f

* SCHEA AREA

MESSAGEAREA #t

ft If

- - ------ 81 CIRACTERS - -----

ft ft

Figure 4.7 Panel Structure

75

that a user sees when signing on the system, is one that requires the

individual to insure that he/she has the computer in the proper mode

(Figure 4.8)

D. SECURITY

Security is provided in two ways. First, the system requires the

user to enter a user ID and password which are stored as attributes of

a TEST *
INFORMATION RESOURCE DICTIOIM SYSTBI

*J I
I iJ

* *e

* PLEASE INSURE TIT YOU *
I ~WE THE ' CAPS LOCK' *
* ON AS ALL AFMERS TO *
* QUESTIONS NEED-TO BE *
* IN UPPER CASE. *
I II

*, TEST HERE *
• PRESS RET TO CTIRU

F 4
I It
a ni

*J I
* i
*I I

Figure 4.8 Initial Panel

the SECURITY-ACCESS ENTITY. Second, the SECURITY-ACCESS ENTITY contains

additional attributes that pertain to which entities the user can view,

display and/or modify (See Appendix F for a detailed description the

entity structure). Figure 4.9 depicts the panel that requires the user

76

.4 -

-'7 -'3 - r r r rr'7 . ~.-

to log into the system using his user ID and password. Once a user has

entered his ID and password the system will grant or deny access to the

system. The system will allow the user three chances to enter his ID

and password correctly, if a proper logon has not been accomplished at

that time the system will terminate. If access is granted additional

variables will be loaded to the system that will restrict the user ability

to add, modify and change relations and relationships during the current

session. The data administrator is the only user capable of modifying

the attributes associated with a user's security-access entity. Once

the user has successfully logged in, the system will display the main

menu (Figure 4.10). From this point the user can proceed to any other

panel. This panel must always be returned before any other function can

be used.

E. POPULATING AND MAINTAINING THE DICTIONARY

The routines to add, modify and delete entities and relationships are

executed from the maintenance menu (See Figure 4.11). The user decides

which maintenance activity he want to do and makes the appropriate menu

selection. The system will then activate the appropriate maintenance

module and present a panel to the user showing him what his options are or

what input is required.

The following sections describe each of the five dictionary maintenance

functions available to the user as part of the prototype.

1. Adding Entities

If the prototype user selects the add entity option from the

maintenance menu, the system will prompt him as to which type of entity

he would like to add (See Figure 4.12). Once the user has indicated his

77

rwrw ~w~'w

N.

A

I
A

4.

p ~. ~.~

* *I I
* 1NVCB~TIG4 RESOURCE O1CTIG~RY SYSTBI 4
* *
* a
I *
* *
* *
* PLEASE BJTER USER ID __________ *

I PLEASE ENTER PASSIORD ___________ I 2
-A **

* *
* I
I *
* *

* II
in!.

Figure 4.9 Security Panel

~ -A

.1

V

A 78

A,

- 9

MAIN

* INFORMATIONI RESOURCE DICTIONRY SYSTEM

* t'MAIN MENU

I 1) DICTIOAR MAINT94WCE

* 2) DICTIMRY OUTPUT

* 3) DICTIONARY QaJlY

* 4) SCHMA MI'NTW4C

* 5) SCHMA OUTPUT

* 6) EXIT DICTIONARY SYSTEM

* ENTER YOUR CHOICE (1-6) FROM ABOVE:*

Figure 4.10 Main IRDS Panel

-. 79

* ~INFORMATION RESOURCE DICT1"RY SYSTEM *..~

* t'AINTOWCE MENU

* *q

* 1) ADD ENTITY-

* 2) MODIFY ENTITY*
* 3) DELETE ENTITY

k -

* 4) ADD RELATIOSH4IP

* I

* 5) DELETE RELATIONISHIP i 7

* *. ..O...4

6) RET IN TO IN T EN

StYOUR CHOICTE(1-6) FRO1 AIEM:
* *1

Figure 4.11 Maintenance Panel

ET o

-4
•) RTR4OMI

tl 4ERYU COC S(-)OMAOE

.w , .1 .pw'-,zv .. ' y, -..- -,L , r? r ' p.. T' ' , lW2% 3"'-.P " UO, P. -,~ %. ,' JVj.- v .' .T 'I.- ," W 'IJ i T, w "p - .i .. -. -'dwl'w "rg) I d l "-r- -. -]. .- - ..

choice, the system will present a panel prompting the user to enter the

appropriate attributes about the entity (See Figure 4.13). For a

'-6.e
.% o

-N

* INFORMATION RESOURCE DICTIONARY SYSTEM *

SADD ENTITY TY

*I) USER 6) FILE *

2) SYSTEM 7) RECORDS *

* 3) PROGRAM 8) ELEMENT * .,'

4) MOOULE 9) RETUII TO PREVIOUS MENU * -,,

* 5) DOC~tefT 1) RE U TO IN MENU. *
* ENTER YOUR CHOICE (1-19) FROM ABOE: 8 I

Figure 4.12 Add Entity Panel

complete list of all allowable entity attributes See Appendix A.

2. Modifying Entities

If the prototype user elects to modify an existing entity, the

system display a panel asking which entity he desires to modify (Figure

4.14 and 4.15). Once the user makes his selection as to which entity

to modify the system restrieves the desired tuple and presents a panel

displaying it's current contents. The user can then modify the tuple as

desired (Figure 4.16)

81

V......

TupleNo. 1

* ID NAME _____ __*

* DESCRIPT _ 1~

* DATE ADDED -7-7*~7
* ADDED BY __ ____

* ST MOD DT -7-7-
* LST1IOVBsy -

* N'MOF ROD f

tDURAflYPE
* LOCATrG _______f

ft SECURITY ___

Fiur 4.3AdEttfDttnu ae

INORATO REOUC DITOAYSSE
MOIF ENT

fttttffffttttffff1) ttffffttttUSER ff*ftfffttttffff6)ttff FILEft*ttffffttttffff

Figure 4.1 Add f Entity t nu Panel

ftt*fttffttttffffftttt~tttffffft*tftffftf*fftf***ttt*ffffttt82ffftttt

Itll~llllellletlllllllllllllllllllllll! .12l00 INFORMTION RESOURCE DICTIONARY SYSTEM 1

, H~ODIFY ELE WT, --

t ENTER TUPLE NLIBER OF THE ELEMENT
s YOU WISH TO MODIFY

Figure 4.15 Modify Entity Select Panel

STup I No. It r - -

* USR*
* ACC-* qE ACC t
* ID ME ACCESS NEE*

DESCRIPT The sh~rt -ae dven to an entity. This allows
* fo the easy access of entities.

* DATE ADEDUPLERL *

* ADlDED) BY Robert A. Kirsch 11
* COMF rs This is a standard attribute of the IRDS.
* LST MlOD DT 96/81/95* LST-YOD"SBY KiMsch
* NLUM-OF R OD 081l* D*RA VL 0
* *UPAT-7YPE WA

*LOCATTON Schema
* SECURIT none #

*1 *

0 USE/ AROS TO POSITION CURSER TO DESIRED FIELD.

Figure 4.16 Modify Entity Input Panel

83

- y-~ .r- *u hj 7YUhY o~. J l ".r- - - - -

3. Deleting Entities% k.,_N

If the prototype user selects the delete entity option, the system

presents a panel requesting that the user select an entity type to delete.

* INFORMATION RESOURCE DICTIORY SYSTEM *

* DELETE ENTITY -

1 1) USER 6) FILE -* ,
* 2) SYSTEM 7) RECORDS !

* 3) PROGRAM 8) ELEMENT *

* 4) MODULE 9) RETURN TO PREVIOUS MENU #
* I "

* 5) DOCUMENT 11) RETURN TO PAINlU MEN

S ENTER YOUR CHOICE (1-18) FROM ABOVE: 8 I

Figure 4.17 Delete Entity Panel

The system then request the user to identify the particular entity tuple

to be deleted and provided instructions on how to complete or short tht.

deletion. Once the user indicates which tuple he wishes to delete, the

system displays the tuple and waits for the user to complete the

trangaction (Figure 4.16 thru 4.18)

4. Adding Relationships

If the prototype user elects to add a relationship the system

present a panel asking him to select which type of relationship he wishes

84

S,-, " "_ -__"_.....- -REPRODUCED AT GOVERNMENT EXPENSE

I e
* 1.1.2.1.1.6 I

* INFO fTION RESOURCE DICTIMfN SYSTB

SMODIFY NTITY A

** ENTER TUPLE NUH OF THE ELEMENT,• ~YOU WISH TO DELETE. THE RECORD ...
I WILL BE DISPLAYED FOR YOU TO
~EXF1INE. IF YOU ARE SURE THAT
~YOU ARE DELETING THE RIGHT

m IF YOU DO) NOT WINT IT DELETED
" •DEPRESS '11' TO RETURN TO THE

e ~ENTER THE TUPLE NU0ER NOW:-e' "

Figure 4.18 Delete-Entity Selection Panel

I No. *

0 C-1 ACCNAME

* IDNNE ACCESS NAME
0 DESCRIPT The shirt ne ien to an entity. This allows
* for the easy accoss of entities. •

DATE ADDED 66/1/95
ADDEO BY Robert A. Kirsch II
*COMMWS This is a standard attribute of the IRDS.
LST 100 DT 6/11/85

I LS'-OD-iY Kirsch
SNLIM-F ROD I I
*DUT AL I *

2 * ODhrTYP WA
I LOTO Schema
• SECURITY none

USE ARRMOWS TO POSITIN CURSO R TO DESIRED FIELD.
I If

Figure 4.19 Delete Entity Confirmation Panel

85

-- r~~~~~ ~ ~ ~ --6 .:"
- --- 39PT --

.. REPRODUCED AT GOVERNMENT EXPENSE

to add (Figure 4.20). When the user makes his choice the system

executes the relationship add module and prompts the user for the required

input (Figure 4.21) This prototype version allows 12 relationships.

See Appendix A for a complete list of all relationships allowed in the

IRDS standard.

* l.l.4.i.S.SI
* ~INFORMTION RESOURCE DICTION"RY SYSTEI 0I * /

* ADD TO RELATIONSHIP*I I g

1 I) USER CONTAINS SYSTEM 8) FILE CONTAINS RECORDS *
* I

* 2) SYST84 CONTAINS PROGRAM 9) RECORD CONTAINS ELEENT
I *

* 3) PROGRA PROCESSES FILE 11) USER RESPONSIBLE FOR SYSTEM •
* I
* 4) PROGRAM PROCESSES RECORD 11) USER RESPONSIBLE FOR FILE I
I I
* 5) PROGRAM PROCESSES ELEMENT 12) PROGRAM PRODUCES DOCLtT *
* *
* 6) SYSTEM CONTAINS PROGRAtI 13) RETURN TO PREVIOUS MENU0 I

* 7) PROORAM CONTAINS MODULE 14) RETURN TO MAIN MENU
I I

* ENTER YOUR CHOICE (1-14) FROM ABOJE: *3I *

Figure 4.20 Add Relationship Selection Panel

5. Modifying Relationship)s

This version of the IRDS prototype does not contain a modify re-

lationship capability as the add relationship module serves the same

purpose.

86

6. Deleting Relationships

This module of the IRDS prototype allows the user to select a

tuple of a particular relationship and mark it for deletion. The user

U ISERWE __________

Figure 4.21 Add Relationship Input Panel

must identify which type of relationship he want to modify (Figure 4.24).

*After the user makes a selection, the delete module is loaded which prompts

the user to identify which tuple to delete and provides him with instruc-

tions on how to complete the transaction. The system then retrieves

the tuple and displays it for verification and transaction completion

(See Figures 4.25 and 4.26).

F. THE DICTIONIARY OUTPUT FACILITY

The IRDS prototype allows the user to generate dictionary output in

two f.,ris, screen and printer. When the user selects the dictionary output

87

r~ 0 A OVRNMENT eXP9NSFE %"

* •

* If~1OWTICN RESOURCE DICTIONARY SYSTB
* I

* DELETE FROM RELATIONSHIP *, 0
* 1) USER CONTAINS SYSTEM 8) FILE CONTAINS RECORDS *
* 2) SYSTEI CONTAINS PROGIWI 9) RECORD CONTAINS ELBB Iv

4) PROGRAM PROCESSES RECORD 11) USER RESPONSIBLE FOR FILE
* *
* 5) PROGftM1 PROCESSES ELEIBNT 12) PROG PRODUCES DOCUMENT

6) SYSTE CONTAINS PRO6It 13) RETURN TO PREVIOUS MENU

S 7) PROGM CONTAINS MODULE 14) RETURN TO tN MENUI •

MEER YOUR CHOICE (1-14) FROM ABOE: •

Figure 4.24 Delete Relationship Selection Panel

• ~INFOMTION RESOURCE DICTIMN SYSTEM
a •
* DELETE FROM RELATIONSHIP *
a a

• BTER TUPLE NUIER OF THE I

• USER-PROCESSES-SYSTM *

a TUPLE THAT YOU WISH TO HAWE DELETED
*THE TUPLE WILL BE DISPLAYED FOR
a YOU TO DEWINE. IF YOU ARE SURE
a THAT TOU ARE DELETIN THE RIGHT
a TUPLE DEPRESS 'U . IF YOUDO NOT •
SbWIT IT DELETED TYPE ' 0 . IF

• YOU WNT TO EXIT THE MODULE WITHOUT a
* IDEINTIFYIN A TUPLE DEPRESS I TO a
a RETIM4 TO THE PREVIOUS HB.
a a

* BITER THE TUPLE HNUM1 NW _a •

Figure 4.25 Delete Relationship Panel

88

REPRODUCED AT GOVERNMENT EXPENSE

option from the main menu, the system executes the dictionary output

module and presents to the user a panel (Figure 4.27) requesting that

he choose entities or relationships as output.

* Record No I

* USERkjE MY-DEPT S

SYrTIWf SAL-PMY
I ., '.,

Figure 4.26 Delete Relationship Tuple Verification Panel

1. Entities

If the user chooses the entity output option, the system presents

a panel requesting the type of entity to be output (Figure 4.28). The

i, system then prompts for whether output is to be generated and displayed

on the screen or sent to the printer (Figure 4.29). The system then

displays all tuples of the entity-type selected, one at a time for

screen output and all at once for printer output (Figure 4.30). The

current version of the IRDS prototype does not allow the user to select

which attributes will be displayed or limit the number of entities

displayed. However the query function does give the user the ability

89

to display selected entity types. This capability will be discussed in

Section G.

INFOWATIO2 RESOURCE DICTIONRY SYSTEM
m DICTIONR OUTPUT # -* .

I I

1) BITY

* 2) RELATIONSHIP *

* 3) RETUI TO MAIN ENU

* BITER YOUR CHOICE (1-3) FROG A8OJE:
*I I

i'Pill.

* *
* I

Figure 4.27 Dictionary Output Selection Panel

2. Relationships

If the prototype user decides to output the tuples associated with

a particular relationship, he makes the appropriate choice on the diction-

ary output panel (Figure 4.27). The system activates the appropriate

module and then requests that the user identify the relationship to be

output (See Figure 4.31. After the user selects the relationship, the

system prompts for whether output is to be generated to the screen or

printer (Figure 4.32). The system then displays all tuples of the entity-

type selected (Figure 4.33). This version of the IRDS prototype does

not allow the user to select which entities associated with the relationship

are to be displayed. However the query function does give the user the

*, ability to display selected entities with a relationship.

90

t 'REPRODUCED AT GOVERNMENT EXPENSE :-::

I

"-_-

* 1,2.1.l.1.3 *
* INFORMATION RESOURCE DICTIONARY SYSTEMI

* DIE"ITY OUTPUT -

1) USER 6) FILE ,

* 2) SYSTEM 7) RECORDS ,
*3) PROGRDII 8) ELEMENT

*4) MODULE 9) RWMR TO PREVIOUS MENU
* 5) DOCLItNT 11) RETURN TO MA IN MENU "

* ENTER YOUR CHOICE (1-11) FROI ABME: I •
It I

Y I* , *

Figure 4.28 Entity Output Panel

9 1' 1.2.1.1.1.1
" * INFOII TION RESOURCE D)ICTIOi R SYSTEMI

* ENTITY OUTPUT *

* I
* LISTED BELOW ARE THE CHOICES FOR HOM I
* YOUC HAJE THE RELATION UER I

* 1) SCREEN OUTPUT *
* *
*2) PRINTER OUTPUT
* *
*' 3) RIEI TO PRL:JIOUS IU i

.* DETER YOUR CHOICE (1-3) FRGII A9BOus *

II I

I *

Figure 4.29 Output Selection Panel

91

• It,

* •

T No. I *

ACC-WIE PAY-DEPT K

* ID IAM PAYROLL DEPART ENT
* DEMRIPT The department witiin the organization that pro- *
Sducts the companies weekly and monthly payroll. •
* DATE ADDED 86/81/85 *
A AODEI BY Robert A. Kirsch 11 *

I CUMlEWS This is a standard attribute of the IRDS. I

LST "OD OT 66/11/85 I
* LST D00-D3Y Kirsch *
* NIKOF 31 Ii

* LOCATION Schema I
* SECURITY none I

* PRESS RETUR4 TO SEE TIE NEXT TUPLE. ,
* * &

Figure 4.30 Entity Output

92

- ~~~~ ~ % -v .I S dt.

I.%

* INFORMTION RESOURCE DICTIOIWRY SYST*EM

*RELATIONSHIP OUTPUT #

1 1) USER CON4TAINS SYSTEM 8) FILE CONTAINS RECORDS

* 2) SYSTEM CONTAINS PROGRAM 9) RECORD CWAIIS ELEMENT

* 3) PROGRAM PROCESSES FILE 18) USER RESPONSIBLE FOR SYSTEM

* 4) PR06RAMI PROCESSES RECORD 11) USER RESPON4SIBLE FOR FILE ?

* 5) PROGRAM PROCESSES ELEMENT 12) PROGRAM PRODUCES DOCUMIENT

* 6) SYSTEM CONTAINS PROGRAM- 13) RETURN TO PREVIOUS HINJU 4
* 7) PROG3RAM CONTAINS MODULE 14) RETURN TO MAIN MENU

I NTER YOUR CHOICE (1-14) FROM ABOVJE:

Figure 4.31 Relationship Ouptput Selection Panel

93

-7. 7 - J* X A - -_.

.} J
%~

. INFORMTION RESOURCE DICTIONARY SYSTEM

RELATIONSHIP OUTPUT
YOU C4 IBJE"TE,.EATII4SHI

LISTED BELOW ARE THE CHOICES FOR HOW *,
YOU CA W THE RELATIONSHP

*. USER PROCESSES SYSTEMI

DISPLAYED.,

S1) SCREEN OUTPUT

* 2) PRINTER OUTPUT

*.. z, 3) RETURN TO PREVIOUStIENU ME,.N.U -

* NTER YOUR CHOICE (1-3) FROM ABOVE:

Figure 4.32 Output Selection Panel

• ,.

I t*

* USER PROCESSES SYSTEM-

* RECOR I

" USER ACCESS NWE: PAY-DEPT *
" SYSTEM ACCESS NAME: SAL-PAY I

* PRESS RETURN TO SEE NEXT TUPLE * ,r_

Figure 4.33 Relationship Output

94

-. - - - - --~ wr~z wtuu -r.rr .

h

3. Schema

The IRDS prototype also allows the user to display the

schema for all entity-types and relationship-types. In order to exe-

cute this portion of the prototype the user selects SCHEMA OUTPUT

from the main menu (Figure 4.10). Once the selection has been made,

* INFOIftTI0N RESOURCE DICTIONARY SYSTEM I* *
* SCHEMA OUTPUT *

*, 1) ENTITY ,

* 2) RELATIONSHIP *

3) RETURN TO MAIN MENU *

S B"ETER YOUR CHOICE (1-3) FROM ABOVE: *

Figure 4.34 Schema Output Selection Panel

the system executes the schema output module and requests that the user

choose which type of schema to output and it's ACCESS-NAME (Figure 4.34

and 4.35). The user is then prompted by means of a panel to select the

output medium. The system will then display the requested schema struc-

ture (Figure 4.36 and 4.37). Figures 4.36 and 4.37 provided below depict

the output of an entity-type schema. The process for displaying a re-

relationship schema is identical and will not be explained further here.

G. QUERY

The IRDS prototype query function give the prototype user the ability

to generate ad hoc queries about any relationships that the system

95

'II

%'-w i
'L

.. ~I 1.1.3.8.1.1
* INFOItTION RESOURCE DICTIONARY SYSTE *

4.* 'ENTITY SCHEMA OUTPUT

1 1) USER 6) FILE I

" 2) SYSTEM 7) RECORDS

* 3) PROGRM 8) ELMEINT I• I
i 4) MODULE 9) RETUR TO PREVIOUS MENU

* 5) DOCIMENT 18) RETUF TO MIN MENU

* ENTER YOUR CHOICE (1-1i) FROM ABOVE: I *

'

Figure 4.35 Entity Select Panel

* *

* 1.11.6.8 INFOfIATION RESOURCE DICTIONARY SYSTEMI *

• ENTITY SCHEMA OUTPUT

* LISTED BELOW ARE THE CHOICES FOR HOW a
*YOU CP ItWJE THE SCHEMA FOR RELATIOH
* USER DISPLAYED.

S1) SCREEN OUTPUT

* 2) PRINTER OUTPUT

* 3) RETURI TO PREVIOUS MENU *

* ENTER YOUR CHOICE (1-3) FROM ABOVE:

Figure 4.36 Output Selection Panel

96-4

-AD-A±65 S22 A RELATIONAL DATA DICTIONARY COMPATIBLE WITH THE 2/3
NATIONAL BUREAU OF STAND..(U) NAYAL POSTGRADUATE SCHOOL
MONTEREY CA R A KIRSCH DEC 85

UNC LASIIEDFIE 5/ N

411.0 tkma W8

*1.25 11.4 gl166

=IRCP EOUINTS HR
=-N'RU 6-n -TA 'U-I.-

maintains. Not all of the IRDS standard relationships are im-

plemented in this version of the IRDS prototype (See Appendix A for a

* I

* Structure for database : C:USER.lbf
* Nmbr of data records: 7 *
0 Date of last update 18/04/85

* Field Field name Type Uidth Dec -• I USER Logical I
* 2 ACC WME Character I

3 ID RE Character 21
* 4 DESCRIPT Character lot I
S 5 DATE ADOED Date 9 *

* 6 ADDED BY Character 21 *
0 7 CatIENTS Character 50 *
- 8 LST MODT Date 8 0

9 9 LST-MOD-BY Character 21
I tI MI DF Numric 3

* *
* *

A" e e

Figure 4.37 Sample Schema Output

list of the allowable relationships). The remainder of the relationships

will be reserved for implementation in subsequent versions of the proto-

type. The prototype uses a keyword selection process to generdte a query

of the form SUBJECT-VERB-OBJECT and a query processor to process the

query and generate the resulting output. When the user selects the

query option from the main menu (Figure 4.10), the system executes the

query module and present a panel (See Figure 4.38) requesting that the

user choice which entity-type is to be the subject of the query. The

system then requires the user to enter the ACCESS-NAME of the entity

to be queried and select whether entries are to be verified before

97

t

-uA

* 1.3.1.6,1.6 0
* INFO0WTION RESOURCE DICTIOWRY SYSTEh

* GIUERY MNU*
* It

BITITY-1 RELATIONSHIP BfTITY-2
I
* 1) USER *

0 2) SYSTEM
3) PROfII
0 4) DOCIBr I
0 5) FILE -
* 6) RECORD
* 7) ELOT -
* 9) RETfiR TO PREVIOUS MENU i
I 11) RETUI TO IIN IB4U
* BITER YOM CHOICE (1-1l) FROM ABM. I

I DO YOU ISH TO VERIFY YOUR ENTRIES Y r NN

Figure 4.38 Query Entity-Type Selection Menu

9

i9

* *

.• INFOITION RESOURCE DICTIONARY SYSTE4
* I

* GQUERY MENU
,', I

. I USER RELATI ONSHIP BTITY-2 # "-

N BTER THE ACCESS-IWE FOR THE USER
* YOU WISH TO QUERY ON PRESS RETURN PAY-DEPT *
* •

• IS THIS THE BTITY YOU ISH TO OUERY ON PAY-DEPT Y ORN

Figure 4.39 Entity-i Selection Menu

I*II IIIHIIIIH*I*****I *II*i***•§JIIII 4I*II**I*III*III*

* 1.3.1.0.0,01
* INFOIHTION RESOURCE DICTIONARY SYSTB
I *

• OQUERY MENU
I I

* PAY-DEPT RELATIONSHIP BNTITY-2 *
I I

* 1) CONTAINS i
• * 2) IS RESPO4SIBLE FOR I
*" 3) RETUN4 TO PREVIOUS EBU I

BITER YOM CHOICE (1-3) FRiO M E: 2 •

F u 4

~Figure 4.40 Relationship Selection Menu

o9

being accepted by the system (Figure 4.39). The system next prompts

the user for the relationship-type that is the verb of the query.

Finally the system request the entity-type which acts as the object

to form the query (Figures 4.40 and 4.41). When the final form of the

* 1.3.1.1.1.3
* INFOITIGN RESOURCE DICTIOWqY SYSTEM
* I

* QUERY MEW
* MAY-DEPT RKLATIOHIP 9JI'Y-2 ,

I 1) SYSTBI
* 2) RETUI TO PREVIOUS *

E NT1ER YOUR CHOICE (1-3) FROM ABlE: I

I I

Figure 4.41 Entity-2 Selection Menu

query has been specified the system process the query, requests the

selection of an output medium for the query results, and then generates

the output (See Figure 4.42 thru 4.43).

H. SCHEMA MAINTENANCE

Even though the Core IRDS Standard Schema limits entity and re-

lationship meta-data (See Appendix A), it allows for extensibility in

that additional attributes may be added by the user. The schema main-

tenance facility of the IRDS prototype allows an authorized (authorization

is determined through the security function) user to add new attributes

and modify or delete existing ones. Notes That although the prototype

100

I. . b REPRODUCED AT GOVERNMENT EXPENSE

I I.2.1.I.O.U
* INFIE TION RESDURCE DICTIONNRY SYSTEI

* *
* B~~ENITY ONlif

I I

* LISTED BELOW ARE THE CHOICES FOR NOW I
* YOU CAN HETHE GUERY

* PAY-DEPT RESPNSI LE FOR SYSTEM •

* 1) SCREEN OWUl I

* 2) PRINTER OUTPUT
* 3) RETlWi TO PREVIOUS HBU *

S OENER YOIR CHOI CE (1-3) FROM ABU s

Figure 4.42 Output Selection Panel

• INFOMTICN RESOURCE DICTIONRY SYSTEI I C
• ,W RESULTS FOR* *
• PAY-DEPF RESFINSIBLE FOR SYSTEMI •
• IDEITIFIrATION IMIE: SM*V PAYROLL

* DESCRIPTIO: This system is used to product the monthly sal- -
* sied payroll for the cmpaxy. •

* IDE1TIFICATIO IWlE WEEKLY PAYROLL .

* DESCRIPTIlNl This systm Is used to produce the weekly par- I
* roll fa the cmipuy. I

fm.huuu. m.m.uu.h, N :umm#.hh-- mfu.h.uuuh..sh h- u .hu m ------ u

Figure 4.43 Query Result Panel

101

allows for the addition of entity ard relationship relations

the panel structure would require modification to make full use of any

relations that were added. When the user selects the schema maintenance

option from the main menu (See Figure 4.10), the system activates the

schema maintenance module and displays a panel requesting that the user

choose which type of schema is to be modified (Figure 4.44).

1 .4.i.O.l.1

* IWOIMTION RESOURCE DICTIONRY SYSTEM
m%

* 9SCIEM IAi WNCE MENUI *
1 1) ADO, ODIFY OR DELE ENTIT SCHEM

0 0

* 2) ADO, HODIFY OR DELETE RELATIONSHIP SM

S ENTOER YOUR CHOICE (1-3) FROM AIJOE: I
N 0
I 9

shi I m

t p9 9
9 9
* I

IS I
* I

Figure 4.44 Schema Maintenance Selection Pdnel

The user will then be allowed to identify particular entity or relation-

" ship type and perform maintenance. The following sections describe how

the IRDS prototype performs the schema maintenance functions of the IRDS

prototype.

1. Entity Meta-data

When the authorized user indicates that he desires to add, modify

or delete meta-data associated with the entity-type scema, the system

102

mm

presents a panel requesting that the user choose which entity he desires

to maintain (Figure 4.45). I.

* 1.4.1.I.g.I • ,

S FINFORTION RESOURCE DICTION SYSTE M

i •

S A D , MODIFY OR Etity MIT ta-da

t intesse eree h ceasrcu.,dsly it, n l4.46).6) IL

2. eltnShip E MetaECOaDa

•) DOCUMET 16) RETURN TO MAIN MENU

• WER YOUR CHOICE (1-11) FROMI ABOW: 8

Ahenrtheeauthoridedtusersindice ttyh e eis to add mdify,

Whnteatoie sriniae hth eie tadmdiy

or delete meta-data associated with the entity-type schema, the system

103

II

presents a panel requesting that the user choose which entity he desires

to maintain (Figure 4.47).

a. Adding, Modifying or Deleting Relationship

After the user has identified which relationship-type is to

I Field name Type Width Doc

I USER Logical eV..
1 2 ACC tWE Character to
0 3 1Dt0 W7 Character 21I
5 4 DESCRIPT Character 111 -
* 5 DTE ADMEDate 8
6 AMDEBY Character 20
7 CONMS Character 5-
§ 8 LST IW DT Date a
*9 LST'HO0VY Character 26 e

I W -OF ROD Nemeric 3
* I

0 Nimes start with letter; the rmainder may be letters, digits or
0i underscore
v DEPRESS Fl FOR INSTRUICTIOMS

Figure 4.46 Entity Schema Maintenance Panel

maintained, the system retrieves the schema structure, displays it. and

allows the authorized user to perform the desired maintenance (Figure

4.48).

I. FINAL COMMENTS

Although this prototype IRDS does not possess all of the features

that were described in Chapter 3, it does demonstrate that a relational

DBMS-dependent implementaion of the NBS IRDS is feasible as demonstrated

by the prototype. The extensibility feature described in the standard

104

P % -W It

* 1.4.2.I.I.I
a INFOftTION RESOURCE DICTIONARY SYSTEM a

* ADD, MODIFY OR DELETE RELATIONSHIP SCHEM

I) USER CONTAINS SYSTEM 8) FILE CONTAINS RECORDS *
L •

a 2) SYSTEM CONTAINS PROGRAM 9) RECORD CONTAINS ELBIET •

* 3) PROG1 PROCESSES FILE 11) USER RESPONSIBLE FOR SYSTEM '

• 4) PROGMI PROCESSES RECORD 11) USER RESPCNSIBLE FOR FILE *

• 5) PROGRNI PROCESSES ELEMENT 12) PROGRAM PRODUCES DOCUMENT '

* 6) SYSTEM CONTAINS PROGRAM 13) RETURN TO PREVIOUS MENU '

* 7) PROGRAM CONTAINS MODULE 14) RETUF TO MIN MENU a ?.

BNTER YOUR CHOICE 1-14) FRO ABOVE:* a

Figure 4.47 Relationship Selection Panel

* '
C:USER.dbf

Bytes remaining 3761 *
Fields defined d ll

Field name Type Width Dec e
* I

I U NNE Character 16 *
2 SW-AE Character to 0

I I
* *
• I

I Nies start with letter; the remainder may be letters, digits or I
* underscore I
SDEPRESS FI FOR INSTRUCTIONS Caa****aeIaCIIIII a*II ndaII ffa~aaIIulI **alIalI aaIatIealhaIaltIIll

Figure 4.48 Relationship Schema Maintenance Panel

105

P ~x '.w-x 4I~. .'-w x-. -. ~ -w--- ~ -. ~ - -

S.

. CLi
is enhanced because of the inherent flexibility of the relational ... A

environment. Finally the NES standards provide a firm foundation from

which to consider dictionary system implementation.

I.
'S

4

* -S...

-4.4

p

~.1. ~
vi.

4

N

.4

'S

4'

106

Nw -- -

-- _..

".-

V. CONCLUSION

This thesis has discussed and evaluated the value of data as a
*.4 ,%

cornorate asset and how Data Base Management Systems (DBMS) can be .

used to manipulate this corporate asset. It has described how the concern

over corporate data has led to the development and increased use of -; ."

Relational Data Bases and in particular Data Dictionaries (DD). Desirable '

DBMS and DD characteristics, capabilities and features were identified L

and discussed. Two existing relational DBMS were evaluated concerning

the data dictionary features they provided. The result of that evaluation .'

was that relational systems lack a majority of those dictionary features .

deemed necessary and desirable. Further, all existing DD products were

developed. 44'

This thesis then presented, described and discussed the National

Bureau of Standards (NBS) Information Resource Dictionary System (IRDS) . ,

standard. The standard provides a synthesis of baseline features, capa-

bilities and functions found in existing DD systems plus the additional

capabilities of being able to handle all three major types of data base

organization: hierarchical, network and relational. Of equal signifi-

cance, it offers the flexibility for user to expand the dictionary schema

to accomodate unique requirements.

This thesis developed a relational model of the NBS IRDS which was

implemented as a prototype using a personal computer and dBase III. The

prototype demonstrates that the features presented as part of the NBS IRDS

are implementable and usable in a relational environment.

107

It is recommended that the IRDS prototype undergo additional develop-

ment with the goal of implementing an operational production version of the

NBS IRDS standard.

1 'U
I -F

h-."

108

d=

........
................ ,

APPENDIX A ~
CORE STANDARD SCHEMA

This appendix describes the Core System-Standard Schema
and its structural characteristics. The Core
System-Standard Schema is defined as that specific set of
entity-types, relations-types, attribute-types, and other
schema descriptors supported by the Core Standard IRDS.
While this Core System-Standard Schema satisfies the
requirements of many IRDS environments, an organization can
customize its IRDS Schema using the Schema Extensibility
Facility discussed in previous chapters.

A.1 ATTRIBUTE-TYPES AND ENTITY-TYPES

In this section, the attribute-types and
attribute-group-types associated with each entity-type are
given. The following are the entity-types in the Core ..

System-Standard Schema:

* USER
*SYSTEM

• PROGRAM
" MODULE
" FILE
" DOCUMENT
" RECORD
" ELEMENT
" BIT-STRING
" CHARACTER-STRING
" FIXED-POINT
" FLOAT

The other entity-types found in the Core System-Standard
Schema are:

" DICTIONARY-USER, in support of the Security Facility.
" VIEW which supports the Secutity and View Facilities.

The following two tables present the attributes-types
and attribute-group-types accociated with the non-secutiry
related entity-types listed above. Attribute-group-types

can be identified by the existence of their component
attribute-types, which are indented and immediatedly follow
the attribute-group-type name. At the intersection of a row
and column, the following denote that an entity of the given
type:

S Can have no more than a single attribute of the
given type.

109

WS

T*W -

P Can have multiple attributes of the given type.

The first table shows the attribute-types accociated

with the following entity-types: | ri "

* USER (USR)
* SYSTEM (SYS)
* PROGRAM (PGM)
* MODULE (MDL)

* FILE (FIL)
* DOCUMNET (DOC)
* RECORD (REC)
* ELEMENT (ELE)

(ATTRIBUTE-GROUP-TYPE) ENTITY-TYPE __
AND

ATTRIBUTE-TYPE USR SYS PGM MDL FIL DOC REC ELE H
-------------------------------------- --- --- --- --- --- --- --- ---
ADDED-BY S S S S S S S S

(ALLOWABLE-RANGE) P
LOW-OF-RANGE
HI GH-OF-RANGE

ALLOWABLE-VALUE P

CLASSIFICATION P P P P P P P P
CODE-LI ST-LOCATION P

COMMENTS S S S S S S S S

DATA-CLASS S.

DATE-ADDED S S S S S S S S

DESCRIPTION S S S S S S S S

DOCUMENT-CATEGORY S

(DURATION) S S S
DURATI ON-VALUE
DURAT ION-TYPE

(IDENTIFICATION-NAME) P P P P P P P P
ALTERNATE-NAME
ALTERNATE-NAME-CONTEXT

LAST-MODIFICATION-DATE S S S S S S S $

LAST-MODIFIED-BY S S S S S S S S

110

LOCATION P P P P P P

NUMBER-OF-LINES-OF-CODE S S

NUMBER-OF-MODIFICATIONS S S S S S S S S

NUMBER-OF-RECORDS S

RECORD-CATEGORY S

SECURITY S S S S S S S S

SYSTEM S

A.2 RELATIONSHIP-CLASS-TYPES AND RTELATONSHIP-TYPES

This section presents the relationship-cl &ss-types and
relationship-types in the Core System-Standard Schema. The
relationship-class-types, where they exist, are provided in
bold print as headers to the relationship-types to which
they apply. The inverse-name (which alows the specification
of the member entity-tyupes in reverse order) and
abbreviated inverse-name are given for each
relationship-class-type, so the inverse-name and abbreviared
inverse-name for each relationship-type may be inferred.
Where no relationship-class-type applies to a particular
relationship-type, its inverse-name and abbreviated
inverse-name are given directly.

(ATTRIBtITE-6RMIP-1YM)
AND ABBREVIATED

ATTRIDIUrE-TYPE ASMATON IIIJRSEWIE INAMRS-9WK

CONTAINS CONi COTAINED-IN CON-IN
SYSTEI-COffAINS-SYST8I SYS-CM4-SS

* SYSTE1-CW4AINS-PR06MV Sys-CON-M9
SYSTBI-WAINS-MOMLE Srs-Cm-tgL
PR96ftVt-GAINS-PROBW~ PaI-Cm-S
PROWPAh-CWIAINS-IMUE PSI-34-ID
MDDILE-co4AINB-tI0DL MDL-CON-1.
FILE-cCKAINS-FILE FIL-CON-FIL
FILE-CSIAINS-DOCIHBI FIL-CO-WO
FILE-CUNAINS-RECORD FIL-CON-REC
FILE-CofAINS-ELEIBIT FIL-CON-E
OOUWE-CGAIN8-OOCWUT DOC-C9S4OC
DOCOWE-CW4AINS-RECORD D0C-Cv-EC
DOCLWB4-CmTAINS-ELSIET DON-RmE
RECRD-COIAINS-ECOR RC-CON-u
RECOD-CU4AINS-ELauMr AEC-Cm-ELE

ELB1BW-CWAINS-EU~lff ELE-Cd-ELE C

PROCSSES Pit PROCSSED-fl PR-W
USER-PROCESSES-FILE USREC-PR-ILIL
USER-PROCSSES-OOCLHWI USR-PR-DOC
USER-PROCESSES-RECORD USR-R-REC
USER-PROCESSES-EL~EMW USR-PR-ELE
SSTBI-PROCESSES-FILE SYS-PR-FIL
SYSTBI-PROSSES-DOWHT SYS-PR-DOC

SYST84-PROCESSES-RMCORD SYS-PR-RC

SYSTBI-R cSSES-ELEIBI SYS-PR-ELE
PRO6I1-PROCESSES-FILE P"IP-FR Ii
PRO96II-PROCESSES-OOCtLeff P"-PRDOC
PROGMI-PRCESSES-ECORD KS-P-RC
PROSW-PROCESSES-ELEMENT P-P-ELE
MODULE-PROCSSES-FILE MDL-PR-FIL
MOLE-PROCESSES-DC1IWN MDL-PR-DOC

M3 IOE-ORI~oR RESPSSIIILY-OF R-OF

USER-RES GESIJLE-FOR-SYSTOI USR-R-FOR-SYS
LSE-RESPfJJIBLE-FOR-PROBRAdl USR-R-FOR-PS'

USER-REPSSIDIE-FR-R"cCRD USR-R-FOR-REC
USER-ESPONSIBLE-FOR-KLBD4 USR-R-FOR-ELE

USER-RLH-SYSTB4 USR-RW-Sys
IJSER-RU4-PRO9JM USR-RN-PS
USER-Rtt4S-IOL USR-MW-IOL

GOES-TO To COO4RO FR
SI ST8-Oems-To-sys1S SYS-To-sys
PROGMl-60ES-TO-PRORPM PON-TO-PS

* IIODILE-OOES-TO-ICDULE tlDL-TO-IDL

OERIYED+FRO 0-FR PRWS PRD
DOCtIIEdI-OERIVED-FRON-FILE DOC-D-FR-FIL
DO WtPSIr- E'D- R~i-cWAMi DOC-0-FR-OOC
DOCLHEd1-DERIVED-FRI-MCOR DOC-0-FR-REC
ELBIS-IV-E!ED-FRGI-FLE ELE-O-FR-FIL
ELBIB4-WEIVED-FRG-DOCRIBIT ELE-"-R-DOC
ELDUW-WEIVED-FRSI-RcOR ELE-0O-RC

4ELSS IVD4- ~e ELE-O-FR-ELE
FILE-MOE-FROI-DOWIIB4 FIL-O-FR-DO

4 FILE-WERJED-FRON'-FILE FIL-D-FR-FIL
RECORD-OERIUED-FRON-DOW REC-O-FR-C
RECORD-OERtIVE-fRSIffLE REC-0-FR-FIL

112

RECORD-DERIVED-FRON-RECCR REC-O-FIR-RE

CALLS CLI CALLED-DY 0.0-B

PROGI-CALLS-IODILE PoK-LS4ID
MOOXILE-CALLS-tIODtLE 1UDL-MLS43

REFRE84ED-AS As RIWMUUES REP
ELB4-RPRESENTED-AS ELE-AS-BIT

-SIT-STRING
ELBIENT-REPRESS4ED-AS ELE-AS-M

-WCMTER-STRIN16
ELBIM4-REPRESSITED-AS ELE-AS-FIX

-FIXED-POINT
ELSIB4T-REPRESB'4TED-AS ELE-AS-FLO

-FLOAT

ELB1G4-STANOARD-FOR-ELBIENT ELf-ST-FOR-ELf
(Iverse is: ELB1B4-bTANARD-OF-ELB084 ELEST-OF-ELE)

FILE-W-SORT-KEY-ELBeff4 FIL-H-S-K-ELE
(Inverse is: fLE41N-SORT-cf-OF-FILE ELf -S-K-OF-FlL)

F! LE-W~-ACCESS-MEL99Il FIL-N-A-K-ELE
(Inverse is: ELSWf-ACCESS-WE-OF-FJLE ELE**-OF-FIL)

A.*3 ENTITY-TYPES AND RELATI ONSHI P-TYPES
The following two tables depict the entity-types

particulating as members of the non-security related
relationship-types in the Core System-Standard Schema. The
following notation in to denote that the entity-type is:

1 The first member of the relationship-type.

2 The second member of the relationship-type.

R Both the first and second member of the
relationship-typo

The first table shows the relationship-types
associated with the following entity-types:

" USER
" SYSTEM
" PROGRAM
" MODULE
" FILE
" DOCUMIENT
" RECORD
" ELEMENT

113

REATIWSHIP-a.AS-TYPE .J.-

RELATIMQIP-TYPE USR SYS POI tIDI FIL DOC REC ELE

CIANS
SYST84-CWIAINS-SYSTEM. R
SYST8l-CO41AINS-PRD6I 1 2

SYSTE*MLhIAINS-IOU 1 2 .

PROGW-CL1IAINS-PROWN R . . .

PROW-GIAINS-OLE 1 2 . . .

HDOtJL-CSAINS-MiOLE . . R .

FILE-C WTAINS-FILE . R . .

FILE-C TAINS-DOCUI~ff 1 2 . .

FILE-CS4AINS-ECORD 1 . 2
FILE-CWEAINS-EL84ENT . . . 1 2
D~cLIIEN-CCAINS-DOCtNIB4 R .

DOCUET-CNAINS-RECORD 1 2
DOCLtIBI-CONTAINS-ELtNT I *-

RECORD-C WAINS-RECOR R
RECORD-CONTAINS-ELNM I.MM 1 2
ELD9W-CUIAINS-ELB91T. * . R

USER-PROCESSES-FILE 1 . * . 2

USER-PROESSES-DOCUE4T 1 2 * '

USER-PROCESSES-RECOR 1 2
USER-PROCESSES-ELBe4 1 . * . . 2
SYST84-PROCESSES-FILE. 1 . 2 . .

SYST84-PRMcSSES-DOCIIET 1 . * . 2 .

SYSTDI-PR"cSSES-ECOD . 1 . . 2
SYSTBI-PROCESSES-EB4T I . . . * 2
PROGWl-PROCESSES-FILE * £ . 2 *

PRO9WI-PROCESSES-DOctIMT. . 2 .

MDDLE-PROCESSES-EORD . * I . 2
PROGWM-PROCESSES-ELE494 . 1 2
NODULE-PROESSES-FILE . * 1 2 2
IIOUIL-PROCSSES-D01141* W 1 * 2
NDULE-PROCESSES-RECOR 1 . * 2
NOULE-PROCESS-ELDIOhI . 6 1 * . * 2

REYOILE-MO
*USER-KMSM4IBILE-FOR-SYS1T 1 2 9

tJSER-KVM~dIBLE-FDRROMf 1 * 2 * .

USER-RESPOWSILE-FOR-400UE 1 * 2 *

LSER-NESPISE-FRRCR I * . 2 *

* USER-KESG4IBLE-FOR-OMWDI4 1 * . 2
USER-RESWMIB.E-MO-RECORD 1 2
USR-RSMSBILE-FOR-ELSIWf I * * . . * 2

114

USER-RLH-SYSTEI 1 2 . .

USER-RIH-PRO8 l I a 2
USER-RWI-MIOU 1 % 2 * . .

* SYSTEM-60ES-TO-SYSTEM R * *

PROORM-60ES-TO-PROBWl R *

tlOKtLE-OS-TO-MODULE .R

DERIVED410O
DOCINIB-DEIVED-FRMI-FILE * . . R *

DOCLHETDEIVED-FRW1DOtIT * 1 2 .

DOCIIIB4-DRIVED-fROM-RECORD. . 2 1 . .

ELBW4-DEIVED-FRO41FLE . 0 R
ELB194-MEI'JED-FR0M-OOClJB4HW* . 1 2

* ELle4T-DEIVED-FR0-REcCRD* . 2 1 *

ELEMENT-WEIVED-FRGI-ELBIB4T * * . 2 1
FILE-MDRDDCLctr . .* R
FILE-DEIVED-FROM1 LE . . . 2 . . I
RECORD-OERIVJED-FRMl-D0CLW4 I
RECORD-DERIVED-FR1lffILE . * . . * 2 1
RECORD-MEIVED-FR04-ECORD .* . . . R

PROGRA-e-CM.LS-PRDGOi * R ** *

PRO9MI-ALS-DOULE I
tlCMtE-MALS-IOOILE . . * R

ELBIB4-SM&MR-FOR-ELOWT..* R

FILE-W~-SORT-ME-ELDl4T.. 1 . .2

FILE-tMS-ACCESS-ME-ELB1Bf 1 2

The last three relationship-types art not members of a
relationship-class, and so are listed separet).

The second table shows the relationship-types
associated with the following entity-types:

* ELEMENT
* BIT-STRING
* CHARACTER-STRING
* FIXED-POINT
* FLOAT

RELATI O4N1P-CLASS-YP

REATI 019f 1P-TYPE ELE BIT 0WR FIX FLO

115

ELENWf-REPRESW4ED-AS-IT-MTING 1 2 . ..
ELSId-IERE1fED-AS-CWIMf-MTIN6 1 *2

ELSIEW-REPRESE4TED-AS-FIXED-POiff 1 2.
EL8OIT-REPRES9IlED-A-FL0AT 1 . . . 2 4

A.4 ATTRIBUTE-TYPES AND RELATI ONSHI P-TYPES
The following are the attribute-types assicociated with

the relationship-class-types and relationship-types in the
Core System-Standard Schema:

*The relationship-types
- SYSTEM-PROCESSES-FILE
- PROGRAM-PROCESSES-Fl LE
- MODULE-PROCESSES-FILE

have the single-valued attribute-type ACCESS-METHOD
associated with them.

*All PROCESSES and RUNIS relationship-types have the
single-valued attribute-typw FREQUENCT associated
with them.

aThe relationship-type RECORDS-CONTAINS-ELEMENT has the
single-valued attribute-type RELATIVE-POSITION

* associated with it.

" The relationship-type ELEMENT-REPRESENTED-AS-BIT-
STRING has the single-valued attribute-type LENGTH
and the multiple-valued attribute-type USAGE
associated the it.

" The relationship-type ELEMENT-REPRESENTED-AS-
CHARACTER-STRING has the single-valued
attribute-types LENGTH and JUSTIFICATION and the
multiple-valued attribute-typo USAGE associated with

4 it.

* The relationship-types
- ELEMENT-REPRESENTED-AS-FIXED-POINT
- ELEMENT-REPRESENTED-AS-FLOAT

have the single-valued attribute-types LENGTH,
PRECISION, and SCALE, and the multiple-valued
attribute-type USAGE associated with them.

A.5 SUPPORT FOR THE CORE SECURITY FACILITY

In addition to the entity-types DICTI ONA RY-USER and
VIEW the Core System-Standard Schema also contains the
relationship-type DICTIONARY-USER-tAS-VIEW, which assiclates
a IRDS user with the views he/she may use. A number of

116

attributes-types and attribute-group-types in the Core
System-Standard schema are used to specify the categories of
permissions that can be assigned to a IRDS user with a
particular view.

A.6 THE ATTRIBUTE-TYPE-VALIDATION-PROCEDURE META ENTITIES

The Core System-Standard Schema contains the following
two attribute-type-validation-procedure meta-entities:

* RANGE-VALIDATION, used to restrict the attributes of a
given attribute-type to a predefined set of ranges.

* VALUE-VALIDATION, used to restrict the attributes of a
given attribute-type to a predefined set of values.

A.? THE ATTRIBUTE-TYPE-VALIDATION-DATA META-ENTITIES

There are no attribute-type-validation-data
meta-entities specified in the Core System-Standard Schema.
To use this feature, an organization must define and add
these meta-entities to the schema.

A.8 THE LIFE-CYCLE-PHASE META-ENTITIES

The Core System-Standard Schema contains four
Life-Cycle-Phase meta-entities. These are:

* UNCONTROLLED-PHASE - Entities are in this
life-cycle-phase when they are added to the IRD.

* CONTROLLED-PHASE - Entities used in an operational
environment, for which structural integrity controls
are provided by the IRDS, are in this
life-cycle-phase.

* ARCHIVED-PHASE - This life-cycle-phase is used to

document those entities no longer in use.
* SECURITY-PHASE - This life-cycle-phase, of phase class

UNCONTROLLED is used for DICTIONARY-USER entities
associated with the Security Facility of the Core
Standard IRDS.

A.9 THE QUALITY-INDICATOR META-INTITIES
The Core System-Standard Schema does not contain any

pre-defined QUALITY-INDICATOR meta-entities. These
meta-entities may be defined by an organization.

A.10 THE VARIATION-NAMES META-ENTITIES
There are also no pre-defined VARIATION-AMWES

meta-entities in the Core System-Standard Schema. These
meta-entitles may be defined by an organization.

117

A.11 THE SCHEMA-DEFAULTS META-ENTITIES
-

Thor* is one SCHEMA-DEFAULTS meta-entity in the Core
System-Standard Schema. This meta-ettcle n
EXISTING-SCHEMA-DEFAULTS, is used to establish minimuman
maximum name lengths and minimum and maximum attribute
lengths in IRD.

I.t

lie

APPENDIX B 0
COMM'ND SPECIFICATIONS

SYNTAX:
All words shown in captials are required.
[] = Optional

= user supplied e
{0 = May be repeated as required
1. Schema Commands ' Ar

1.1 Schema Maintenance

* Add Meta-Entity Command

ADD META-ENTITY <Meta-entity-name>
META-ENTITY-TYPE = <Meta-entity-type>
WITH META-ATTRIBUTES

[{<Meta-attribute-name> = <Initial value))];,..-'

* Modify Meta-Entity Comand

MODIFY META-ENTITY <Meta-entity-name>
WITH META-ATTRIBUTES

(<Meta-attribute-name) = <new value>);

* Delete Meta-Entity Command -

DELETE META-ENTITY <Meta-entity-name>;

* Add Meta-Relationship Command -

ADD META-RELATIONSHIP
FROM <Meta-entity-name-1) TO <Meta-entity-name-2>
WITH META-ATTRIBUTES

[(<Meta-attribute-name> = <value>)];

* Modify Meta-Relationship Command

MODIFY META-RELATI ONSHI P
FROM <Meta-entity-name-1) TO <Meta-entity-name-2)
WITH META-ATTRIBUTES

(<Meta-attribute-name> = <value>)
[<Meta-entity-name-1> (Meta-entity-name>]
[<Meta-entity-name-2) = <Meta-entity-name>]
[{<Meta-attribute-name) = <New-value>)];

* Delete Meta-Relationship Command

DELETE META-RELATI ONSHI P
FROM <Meta-enti ty-name-1) TO (Meta-entity-name-2)
WITH META-ATTRIBUTES

C(<Meta-attribute-name) * <value))];

119

*Replace Meta-Relationship Command

REPLACE META-RELATI ONSHI P

WITH META-ATTRIBUTES
E((Meta-attribute-naie-1> <value))]

BY FROM <Meta-entity-name-1> TO <Meta-entity-name-3>
WITH META-ATTRIBUTES

[{<Meta-attribute-name-2) = (value))];

" Modify Mta-Entity Name Command

MODI1FY META-ENTITY-NAME
FROM <Meta-entity-nane-1> TO <Meta-entity-name-2N;

" Install Meta-Entity Command

INSTALL <Meta-ent ity-name>;

1.2 Schema Output Command

*OUTPUT SCHEA
SELECT CALL] or C(meta-entity-name-list>]

[WHERE <restriction-expression> boolean operator
<restriction-expression)]

[<Ti tle>]
I SHOW ALL] or
C SHOW ALL META-ATTRIBUTES or4
(Meta-attribute-list)] and/or

I SHOW ALL META-RELATIONSHIPS or
<Meta-relationships-list>] and/or

[ROUTE TO <Destination-list>];

2. Dictionary Commuands

2.1 Dictionary Maintenance Commands

*Add Entity Command

ADD ENTITY <entity-name>
ENTITY-TYPE a <entity-type>

WITH ATTRIBUTES
[(<attribute-name> - (Initial value>)]:

*Modify Entity Commuand

MODIFY ENTITY <entity-name>

[(<attribute-name> <New value))];

120

.-~ I. ww.j P _._ y L uyr _-7 _ 7 - - ' - V T~ I' T -. ..w .. ---

1.0

eDelete Entity Command

AN EUSING PROCEDURE - <Procedure-name>] or
[SELECT WHERE <restriction-expression) boolean

opertor(resricionexprssin>r

*Add Relationship Commuand

ADD RELATIONSHIP

(Entiy-nam-1)Relationship-type> Ett-ae2

MoiyRelationship Command

(Entty-ame1) islt-name>1;) Enit-nme

E accue-name> TO(New vacess-am>;;

DeleeReatioship Canwd

MOIFDELARTINSHIW

(Current dcesrpt-name> TO <New escripte-nae

MoiyEtt Life-Cycle-Phase Commuand

MODIY ENITYLIFE-CYCLE-PHASE

FROM<Curentlife-cycle-phase> TO <New life-cycle-

COPYENTTY<Entity-name>
[IHRELATIONSHIPS]

TO< entity-name> D)ip enm>

U, 121

[QUALITY = Quality-indicator>];

2.2 Dictionary Output Commiands

*General Output Commnand
OUTPUT DICTIONARY

[USING VIEW = ALL]
[USING VIEW = <view-name> or <view-name-list>]___
SELECT [ALL] or

[ENTITIES] ,b%
<restriction-expression)
<boolean operator>
<restriction-expression>

[SORT SEQUENCE = <sort-parm-list>]
SHOW <show-options)

(SHOW <Title>
(ROUTE TO <destination-list)]
[PROCEDURE-tWE = <procedure-name>;

*Output Impact-of-Change Command

OUTPUT IMPACT
(USING VIEW = ALL]
(USING VIEW = <view-name> or <view-name-list>]
SELECT [ALL] or

(ENTITIES]
(restrict ion-express ion> ~It
<boolean operator)
(restriction-expression>

(SORT SEQUENCE = <sort-parm-list>] K
SHOW <show-options>

(SHOW (Title>
(SHOW LIFE-CYCLE-PIASE1
(SHOW QUALITY-INDICATOR] %%

(SHOW ATTRIBUTES (ALL] or [NO] or
E(attr ibute-naine>]]

[SHOW DESCRIPTIVE-NAME3
(ROUTE TO <destina~tion-list)]
[PROCEDURE-NAME - <procedure-name)];

*Output Syntax Commands

OUTPUT SYNTAX
(USING VIEW - ALL]

(USING VIEW a (view-name) or <view-name-list>] I
SELECT CALL] or ".a

[ENTITIES]
<restriction-expression>
<boolean operator)

* <(restrict ion-expression>
(SORT SEQUENCE - sort-parm-list)]

122

*~~~~~~~~ .5. .~%~**\d .- ~ V *

SHOW (show-options)
[SHOW (Title)]
[SHOW LI FE-CYCLE-PHASE]
(SHOW QUALITY-INDICATOR]
[SHOW RELATIONSHIP <relationship-display-options>]
[SHOW RELATIONSHIP SYNTAX FOR EACH (entity-name>]

[ROUTE TO (destination-list>]
(PROCEDURE-Wt1E = (procedure-name>];

2.3 Dictionary Entity-List Commands

Build Entity-List Command

BUILD ENTITY-LIST
SELECT [ALL] or

[ENTITIES]
<restriction-expression>
(bool ran operator>.i
(restriction-expression>

[LIST-NAIE = (entity-list-name>]
[USING VIEW = ALL]
[USING VIEW = (view-name> or <view-name-list>]
[PROCEDURE-NME = <procedure-name>]
[PROCEDURE-DESCRIPTION = <short-string-literal>];

* Entity-List Union Command

UNION
<existing entity-list-name>,
(<existing entity-list-name>)

(new entity-list-name>;

* Entity-List Intersection Command

INTERSECTION
(existing entity-list-name>,
(<existing entity-list-name>)
= new entity-list-name);

"* Entity-List Difference Command

DIFFERENCE
(entity-l ist-l-name>,(entity-l ist-2-name)
- (new entity-list-name);

* Entity-List Subtraction Command

SUBTRACTION
S (entity-list-l-name),(entity-list-2-name>

* * (new entity-list-name);

123

* Name Current Entity-List Command

NAME CURRENT ENTITY-LIST entity-list-name>;

* Output Entity-List Command

OUTPUT ENTITY-LIST
[LIST-NW4E = <entity-list-name>]
[SHOW (Title>]
[ROUTE TO (destination-list>];

* Output Entity-List Names Command

OUTPUT ENTITY-LIST IAE
[SHOW (Title>]
[ROUTE TO <destination-list>];

2.4 Dictionary Procedure Commands

* Output Procedure Syntax command

OUTPUT PROCEDURE SYNTAX
ALL or <procedure-name>
[SHOW (Title>]
[ROUTE TO (destination-list)];

* Output Procedure Names Command

OUTPUT PROCEDURE-NAME
[SHOW PROCEDURE-DESCRIPTION]
(ROUTE TO <destination-list)];

* Run Output Procedure Command

RUN OUTPUT PROCEDURE <procedure-name>
[USING VIEW = ALL]
(USING VIEW - (view-name> or <view-name-list)]
[ROUTE TO (destination-list>];

* Run Entity-List Procedure Command

RUN ENTITY-LIST PROCEDURE <procedure-name>
(LIST-NAME • <entity-list-name)]
[USING VIEW - ALL]
[USING VIEW (<view-name) or <view-name-list>];

* Save Output Procedure Command

SAVE OUTPUT PROCEDURE
PROCEDURE-NWE - (procedure-name)
[PROCEDURE-DESCRIPTION (short-string-I i toral>];

124

%V I.

* Save Entity-List Procedure Commiand

SAVE ENTITY-LIST PROCEDURE
PROCEDURE-tNE - (procedure-name>
(PROCEDURE-DESCRIPTION - <short-string-i iteral>];

* Delete Procedure Commiand

3. Gnera ComandDELETE <procedure-type> PROCEDURE <procedure-name); -
3.1 IRD-IRD Interface Commands

*Create Dictionary Command

CREATE DICTIONARY <new-dictionary-name>
[LOCATION CLAUSE <implementor-defined)]
SCHEMA~ IS

[IN DICTIONARY <dictionary-name> I
(IN FILE <H ic-name>]
C STVA4DARD3

[LOAD DICTIONARY FROM <file-name>];

*Export Dictionary Command

EX(PORT DICTIONARY
[USING VIEW - ALL]
[USING VIEW = <view-name> or <view-name-i ist>]
E USING ENTITY-LIST- <Entity-list-name>]
(EXCLUDE RELATIONSHIP OF (<relationship-type>] or

[<relationship-ilist-name>]]
ESCHEt'A EXPORT FILE - <export-file-name>]
ESYNTAX - <short-string-literal>];

* Check Schema Compatibility Command

CHECK SCHEMA
CSOURCEI or ETARGET] SCHEMA IS
(IN DICTIONA~RY <dictionary-name> I
[IN FILE <file-name>]
[STAN4DARD];

* import Dictionary Command

IMPORT DICTIONARY
SCHM EXPORT FILE = <export-file-name>
DICTIONARY EXPORT FILE -

<dictionary-export-fle1-name>
[IN DICTIONARY (dictionary-nm.)]
[IN FILE (file-nom)

125

[STANDARDT
LIFE-CYCLE-PIASE = <1ife-cycle-phase-name);

3.2 Utility Coimmands

" Set Session Default Commuand

4.SETN
[VIEW - <view-name>]
[MODE - <mode-type>)
[SHOW ATTRIBUTES

[ENCODED or DECODED]]
[(<implementor-def med-opt ions>)) U

" Session Status Command

STATUS le
[ALL)
[DICTIONARY]

[ENTITY-LIST]
[MODE]
[VIEWS)
[PROFILES)
[DEFAULTS]
[<implementor-defined-options>);

" Help Command

HELP
(ALL]
[<comand-imperat i e-substr ing>];

" Exit Dictionary System Command

EXIT;

" Enter Panel Dialogue Command

PANEL NAME - <panel-name>;

126

*1A APPENDIX C

BACHMo*N DIAGRpVIiS
vv

.16

3.%

.USE

SYSTEM

RUA

127

APPENDIX.

SUPPORT OF STANDARD DATA MODELS

This appendix describes the new entity-types, *

relationship-types and attribure-types which can be added to
the IRD to allow the system to map into NDL and SOL data
structures.ERef 9, pages 16-201

D. 1 NETWORD MODEL MAPPINGS

The following tables describe the mappings between the
generic entity-types of the Core IRD and the Network Model
entities and relationships.

I Network Vata Model Mapping - Entity types i

I NDL I IRD Generic Mode)
-------------- --- -----------------------------I

I Schema I Schema.
I Subscema I SubscemaI
IDatabase I DatabaseI

I Record I Record*
I Component I Element * I
I Module I Module*I
I Database Procedure I Program *I
I Data Type I Element *

I NetworK Vata Model Mappings - relationSflip-tYpeS I

I NDL I IRD Generic Model ++I

li Conasceai I Rceor-Contains-Elemn I
I Shm isI Elhemn-Contains-Eleen I

I dwentifie I Set-Has-Sr-Key-Elmen
I Mmesae I Reco-eefis-Record I
I otisI Sechema-Defins-atbem
II Element-Asoctiatd-t-Element

I _ _ _ __ _ _ _ I _______________________________ I

*Note - these are already defined in the Core IRDS
Standard.

++ Note - these NDL relationships are in addition to those
appearing in the IRDS Specifications in the Core IRDS. A
relationship that is in the Cope Standard doesnot appear
here unless a different NDL relationship maps into it.

128

0.2 RELATIONAL MODEL MAPPINGS

The following tables shows the mappings between the
generic and Relational Model entities and relationships:

I Network Vata Model Mapping - Entity types

I SOL I IRD Generic Model I
I------------------I---------------------- ---------- I

I Schema I Schema
I Table I Record*
I Column I Element *
I Data Type I Element *
I Query & Olperations I Se t

I (Join, Projection, etc.) I

I I

I Relational D~ata Model Mappings -Relationship-types

I SQL I IRD Generic Model ++ I
11--- ----------- I
I Submodel id tables I Schema-Contains-Schema
I I Schema-Contains-Set
I is made up of Table I Schema-Contains-Record
Iidentified by I Record-Has-Access-Key-Element I

II Element-Identifies-Element I
I Element-Identifies-Record Ir- 6

I is made up of Columns I Record-Contains-Element

II Element-Associated-With-ElementI

*Note - these are already defined in the Core IRDS
Standard.

++ Note - these SQL relationships are in addition to those
appearing in the IRDS Specifications in the Core IRDS. A
relationship that is in the Core Standard doesnot appear

* here unless a different NDL relationship maps into it.

129

D.3 ENTITY-TYPES AND RELATIONSHIP-TYPES
The following table identify now and existing

entity-types and gives their applicability to the SOL and
NDL database models:

I Applicaability Matrix of Entity-Types

IN ~ SCHEMA: DATABASE: RECORD: SETI ELEMENTIMDLI PROGRAMI

IlEnt itylI Y I Y I I YI I I
I y e IItI I I

I SOL I Y I y I Y I YI Y I 1
I Model I I I I I I I-----
I NDL I Y I Y I Y I YI Y I Y I y I
I Model I I I I I I II

The following table identifies new and existing
relationship-types and gives their applicaability to the SOL
and NDL database models:

---------------Applicability Matrix of Relationship-Types I

Re-I II I I I I I IIY II IIEIEY ISY I
1Nonw h I I I I I I I I I I I I I I I

-typelI I I I I I I I I I I I I I I
I NDL I YI YI YI YI YI YI yI YI YI I YI I YI yI
I Model I I I I I I I I I I I I I I I
I SOL I I YI YI I YI YI I YI I YI YI YI YI YI
I M odel I I I I I I I I I I I 1 11 1 1

DESCRIPTION LEGEND:

ECE - Relationship-Type "Element-Contains-Element"
RCE -Relationship-Type T Rcord-Contains-Element"
RAE - Relationship-Type "Rocord-Has-Access-Kty-Element"
RRR -Relationship-Type *Record-Rodefines-RecordO
SCS - Relationship-Type OSchtma-Contains-SchemamISCT - Relationship-Type OSchtma-Contalns-SetO
SOE - Relationship-Type "Set-Has-Sort-Key-Elemont"
SMR - Relationship-Type uftt-Molmbr-Is-Rocordf
SOR - Relationship-Type OSot-Owner-Is-Recordw
EIR - Relationship-Type uElement-Idontifies-Record"
SDD - Relationship-Typt OSchoma-Doefints-Databas*4
EIE - Relationship-Type uElemont-Idontlfles-Element"

130

EAE = Relationship-Type "Element-Associated-With
-Element"

SCR = Relationship-Type "Schema-Contains-Record"

D.4 ATTRIBUTE-TYPE ASSOCIATIONS

The following table depicts the association between
attribure-types and the entity-types to whic'h they apply.
The NcommonN attribute-types defined as part of the Core
Standard IRD apply as well.

I Applicability Matrix of Attribute-Types to Entity-Types I *

I Attribute-Type ISCHI DBAI RCDI SETI ELMIMDLI PGMII ---- ------ --- I. --.I. --. I.---l --- I --- I --- I
I LANGUAGE IX I X I X II I
I INITIAL-POPULATION I I X I I I I I .
I RATE-OF-ARRIVALS I I X I I I I I
I RATE-OF-DEPARTURES I I IX I I I I
IRATE-OF-ACCESS I I IX I I I
IRATE-OF-UPDATE I I IXI I I I
DEFAULT-CLAUSE I I I I X I I I

IUSAGE IX IX IX IX I X I X I.

DESCRIPTION LEGEND:

SCH - Entity-type "SCHEMA"
DBS = Entity-type "DATABASE-
RCD = Entity-type "RECORD .1

SET = Entity-type "SET"
ELM = Entity-type "ELEMENT"
MDL - Entity-type "MODULE"
PGM = Entity-type "PROGRAMN

131

I

The following table shows the attribute-types
associated with relationship-types:I I
I Applicability Matrix of attribute-types to Relationship-Types I

Attribute-Type ISMRIRAEIEAEISOEI SCSISCTISORIRRRI
-------I------------------------

ACCESS-METHOD I IXI I I I I I I
I KEY-SELECT I I X I I I I I I I
I ORDER-CLAUSE IXI I I I I I I I
I INSERTION-MODE lX I I I II I I I
I RETENTION-MODE IXI I I I I I I I
I ORDER I IXI IX I I I I I
I DUPLICATES IXI I I I I I I I
I OCCURS-CLAUSE I I I X I I I I I I
I LANGUAGE I I I I I I I IXI
IUSAGE I I I X I IX I X I

DESCRIPTION LEGEND:

SMR = Relationship-type "SET-MEMBER-IS-RECORD"
RAE = Rel at i onsh i p-type "RECORD-SA-ACCESS-KEY-ELEMENT"
EAE - Relationship-type "ELEMENT-ASSOCIATION-WITH

-ELEMENT"
SOE - Rel at ionshi p-type "SET-HAS-SORT-KEY-ELEMENT"
SCS - Relationship-type "SCHEMA-CONTAINS-SCHEMA"
SCT - Relationship-type "SCHEMA-CONTAINS-SET"
SOR - Relationship-type "SET-OWNER-IS-RECORD"
RRR = Relationship-type "RECORD-REDEFINES-RECORD"

I
, 132

I

APPENDIX E __ad
IRDS PROTOTYPE SOFTWARE

* MAIN.PRG
* MODULE NAME. MAIN
* INPUT FILES: NONE

* * OUTPUT FILES: NONE
* ROUTINES THAT ChLL THE MODLUE: NONE

*ROUTINES THAT THE MODULE CALLS:1.1.0.O0O0O0 1.2.0.0.0.0, 1.3.0.0.0.0, e
* 1.4.0.0.0.0, 1.5.0.0.0.0, 1.6.0.0.0.0
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED.
* one-time: USED TO INSURE THAT THE ASSOCIATED ROUTINE IS RUN ONLY ONCE.
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* test : USED TO ALLOW THE USER TO TEST FOR CAPS LOCK DOWN.INPUT FILES: NONE
OUTPUT FILES: NONE

* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II

BASIC FUNCTION OF MODULE:
* THIS PROGRAM STARTS THE INFORMATION RESOURCE DICTIONARY SYSTEM
* IT ALLOW THE USER TO CHOOSE WHICH FUNCTION WITHIN THE SYSTEM
* HE WOULD LIKE TO DO.

SET SAFETY OFF
STORE- .t. TO one time
DO WHILE one timi
CLEAR
STORE ' , TO test
@ 1,1 SAY "MAIN"
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM" .
@ 11,31 SAY "PLEASE INSURE THAT YOU"
@ 12,31 SAY "HAVE THE ' CAPS LOCK '"
@ 13,31 SAY "ON AS ALL ANSWERS TO"
@ 14,31 SAY "QUESTIONS NEED TO BE" -
@ 15,31 SAY "IN UPPER CASE"
@ 17,31 SAY "TEST HERE"
@ 17,42 GET test
@ 18,31 SAY "PRESS RETURN TO CONTINUE"
READ
STORE .f. TO onetime
SAVE TO mem var
do while at.
clear
@ 0,1 SAY "MAIN"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,36 SAY "MAIN MENU"
@ 6,22 SAY --1) DICTIONARY MAINTENANCE"
@ 8,22 SAY --2) DICTIONARY OUTPUT"
@ 10,22 SAY ") DICTIONARY QUERY"
@ 12,22 SAY "4) SCHEMA MAINTENANCE"
@ 14,22 SAY "5) SCHEMA OUTPUT"
@ 16,22 SAY "6? EXIT DICTIONARY SYSTEM"
@ 17,22 SAY " "

.. ACCEPT ' ENTER YOUR CHOICE (1-6) FROM ABOVE. ' TO choice
DO CASE

a CASE choice = "1"*
do 110000
CASE choice = "2"
DO 120000
CASE choice = "3"
Do 130000
CASE choice = "4"
DO 140000
CASE choice = "5"
DO 150000
CASE choice = "6"--
CLEAR
RELEASE ALL

133

- ..

RETURN
OTHERWISEi@ 2L,4 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 6 ONLY"
@ 3,4 SAY "PRESS RETURN TO TRY AGAIN!"%
ACCEPT TO hold
ENDCASE
ENDDO

-RETURN

.13

' - .- .. . -- 7.- - - -v - .7.

t

* 110000.PRG
* MODULE NAME: 1.1.0.0.0.0

-INPUT FILES: NONE
OUTPUT FILES: NONE

* ROUTINES THAT CALL THE MODLUE: MAIN, 1.1.1.0.0.0, 1.1.2.0.0.0, 1.1.3.0.0.0
* 1.1.4.0.0.0, 1.1.5.0.0.0.
* ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0, 1.1.2.0.0.0, 1.1.3.0.0.0,
* 1.1.4.0.0.0, 1.1.5.0.0.0, MAIN. -
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL.
* hold: USED TO STOP ACTION FOR USER DECISION.
* DESIGNED BY: ROBERT A. KIRSCH II
WRITTEN BY: ROBERT A. KIRSCH II

* BASIC FUNCTION OF MODULE:
* THIS PROGRAM ALLOWS FOR THE MAINTENANCE OF ENTITY RELATIONS,
* AND RELATIONSHIP RELATIONS.

do while .t.
CLEAR
@ 0,1 SAY "1.1.0.0.0.0"S
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,31 SAY "MAINTENANCE MENU"
@6,22 SAY "1) ADD ENTITY"
@ 8,22 SAY "2) MODIFY ENTITY"
@ 10,22 SAY "3) DELETE ENTITY"
@ 12,22 SAY "4) ADD RELATIONSHIP"
@ 14,22 SAY "5) DELETE RELATIONSHIP"
@ 16,22 SAY "6) RETURN TO MAIN MENU"
@ 17,22 SAY " "
ACCEPT ' ENTER YOUR CHOICE (1-6) FROM ABOVE: ' TO choice
DO CASE
CASE choice = "1"
do 111000
CASE choice = "2"
DO 112000
CASE choice = "3"
DO 113000
CASE choice = "4"
DO 114000
CASE choice = "15"1
DO 115000
CASE choice = "6"
RETURN TO MASTER
OTHERWISE
CLEAR
@ 2,18 SAY choice
@ 2,21"SAY "IS NOT A VALID CHOICE"
@ 3,18 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 6 ONLY"
@ 4,18 SAY "PRESS RETURN TO TRY AGAIN!"
WAIT TO hold
ENDCASE
ENDDO
RETURN

135

-'i '-

* 111000.PRG
* MODULE NAME: 1.1.1.0.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0

ROUTINES THAT THE MODULE CALLS:1.1.l.1.0.0, 1.1.1.2.0.0, 1.1.1.3.0.0, .. "
* 1.1.1.4.0.0, 1.1.1.5.0.0, 1.1.1.6.0.0, 1.1.1.7.0.0, 1.1.1.8.0.0, 1.1.0.0.0.0
* MAIN
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL.
* hold: USED TO STOP ACTION FOR USER DECISION.
* DESIGNED BY: ROBERT A. KIRSCH II
*WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RALATION
* TO ADD TUPLES TO.. *

set color to 0/3,3
set talk off
CLEAR
do while .t.
CLEAR
@ 0,1 SAY "1.1.1.0.0.0""
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "ADD ENTITY"
@6,15 SAY "I) USER 6) FILE"
@ 8,15 SAY "2) SYSTEM 7 RECORD"
@ 10,15 SAY "3 PROGRAM 8) ELEMENT"
@ 12,15 SAY "4 MODULE 9) RETURN TO PREVIOUS MENU"
@ 14,15 SAY "5 DOCUMENT 10) RETURN TO MAIN MENU"-
@ 15,22 SAY"'
ACCEPT ' ENTER YOUR CHOICE (1-10) FROM ABOVE: ' TO choice
SET EXACT ON
DO CASE .:
CASE choice = "1"
do 111100
CASE choice = "2"-,
DO 111200
CASE choice = "3"
DO 111300
CASE choice = "4"
DO 111400
CASE choice = "5"""
DO 111500
CASE choice = "6"
DO 111600
CASE choice = "7"
DO 111700
CASE choice = "8"
DO 111800
CASE choice = "9"
RETURN
CASE choice = "10"
RETURN TO MASTER
OTHERWISE
CLEAR
@ 2,3 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY"
@ 3,3 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold
ENDCASE
ENDDO
RETURN

136

Z ,

W-%r v- U- - .- ,- --

i E

* 111100.PRG
* MODULE NAME : 1.1.1.1.0.0
* INPUT FILES : USER
* OUTPUT FILES: USER
* ROUTINES THAT CALL THE MODLUE: 1.1.1..0.0
* ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0
* LOCAL VARIABLES USED:

* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* INPUT FILES: USER
* OUTPUT FILES: USER

* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE USER RELATION.

USE
do while t.
CLEAR
@ 0,1 SAY "1.1.1.1.0.0""
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM" %

@ 3,36 SAY "ADD USER"
@ 6,22 SAY "This program will allow you to enter"
@ 7,22 SAY "additional tuples to the USER relation."
@ 8,22 SAY "Instructions for entering data are"
@ 9,22 SAY "provided at top of entry screen."
@ 10,22 SAY 1'"
wait to choice
SET MENU ON
USE USER
APPEND
SET MENU OFF
RETURN

137

_% -4.- -..

111200.PRG
MODULE NAME . 1.1.1.2.0.0

* INPUT FILES : USER
OUTPUT FILES: USER

* ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
• CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
SMODIFIED, DELETED FROM OR OUTPUT.

* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
• LOOP.
* INPUT FILES: SYSTEM.
* OUTPUT FILES: SYSTEM.
* DESIGNED BY: ROBERT A. KIRSCH II

WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:

THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE SYSTEM RELATION.

USE
do while .t.
CLEAR
@ 0,1 SAY "1.1.1.2.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "ADD SYSTEM"
@ 6,22 SAY "This program will allow you to enter"
@ 7,22 SAY "additional tuples to the SYSTEM relation."
@ 8,22 SAY "Instructions for entering data are"
@ 9.22 SAY "provided at top of entry screen."@ 16,22 SAY "
wait to choice
SET MENU ON
USE SYSTEM
APPEND
SET MENU OFF
RETURN

138

*111300.PRG
* MODULE NAME : 1.1.1.3.0.0
* INPUT FILES : USER
* OUTPUT FILES: USER
* ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.1.1.0.0. 0
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. HAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* INPUT FILES: PROGRAM.
* OUTPUT FILES: PROGRAM.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE PROGRAM RELATION.

USE
set color to 0/3,7/0,3
set talk off
do while t.
CLEAR
@ 0,1 SAY "1.1.1.3.0.0"- -

@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "ADD PROGRAM"
@ 6,22 SAY "This program will allow you to enter"
@ 7,22 SAY "additional tuples to the PROGRAM relation."
@ 8,22 SAY "Instructions or entering data are"
@ 9,22 SAY "Provided at top of entry screen."
@ 10,22 SAY
wait to choice
SET MENU ON

* USE PROGRAM
APPEND
SET MENU OFF
RETURN

139

* -. * *,. .

* 111400.PRG /

* MODULE NAME 1.1.1.4.0.0
* INPUT FILES a USER
* OUTPUT FILES: USER
* ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.1.1.0.O.0
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE

CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* INPUT FILES: MODULE.
* OUTPUT FILES: MODULE.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE MODULE RELATION.

USE
do while .t.
CLEAR
@ 0,1 SAY "1.1.1.4.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,36 SAY "ADD MODULE"
@ 6,22 SAY "This program will allow you to enter"
@ 7,22 SAY "additional tup les to the MODULE relation."
@ 8,22 SAY "Instructions or entering data are"
@ 9,22 SAY "Provided at top of entry screen."
@ 10,22 SAY " 1
wait to choice
SET MENU ON
USE MODULE
APPEND
SET MENU OFF
RETURN

140

IMA

* 111500.PRG
* MODULE NAME : 1.1.1.5.0.0
* INPUT FILES USER
* OUTPUT FILES: USER
* ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* INPUT FILES: DOCUMENT. j
* OUTPUT FILES: DOCUMENT.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE DOCUMENT RELATION.

USE
set color to 0/3,7/0,3
set talk off
do while .t.
CLEAR
@ 0,1 SAY "1.1.1.5.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,36 SAY "ADD DOCUMENT"
@ 6,22 SAY "This program will allow you to enter"
@ 7,22 SAY "additional tules to the DOCUMENT relation."
@ 8,22 SAY "Instructions or entering data are"
@ 922 SAY "Provided at top of entry screen."@ 16,22 SAY "
wait to choice
SET MENU ON
USE DOCUMENT
APPEND
SET MENU OFF
RETURN

141

* 111600.PRG ,
* MODULE NAME : 1.1.1.6.0.0
* INPUT FILES : USER
* OUTPUT FILES: USER
* ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0
* choice CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* t REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* INPUT FILES: FILE.
* OUTPUT FILES: FILE.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:-.44.
* THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE FILE RELATION.

USE
do while t.
CLEAR
@ 0,1 SAY "1.1.1.6.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,36 SAY "ADD FILE"
@ 6,22 SAY "This program will allow you to enter"
@ 7,22 SAY "additional tuples to the FILE relation."
@ 8,22 SAY "Instructions for entering data are"
@ 9 22 SAY "provided at top of entry screen."
@ 1w,22 SAY
wait to choice
SET MENU ON
USE FILE
APPEND
SET MENU OFF
RETURN

142

SI

* 1700.PRG
* MODULE NAME : 1.1.1.7.0.0
* INPUT FILES : USER
* OUTPUT FILES: USER
* ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.1.1.0.O.0 '
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE ?
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* INPUT FILES: RECORD.
* OUTPUT FILES: RECORD.
* DESIGNED BY: ROBERT A. KIRSCH II
WRITTEN BY: ROBERT A. KIRSCH II

* BASIC FUNCTION OF MODULE:*THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE RECORD RELATION.

USE
do while .t.
CLEAR
@ 0,1 SAY "1.1.1.7.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,36 SAY "ADD RECORD"
@ 6,22 SAY "This program will allow you to enter".
@ 7,22 SAY "additional tuples to the RECORD relation."
@ 8,22 SAY "Instructions for entering data are"
@ 9,22 SAY "provided at top of entry screen."
@ 10,22 SAY 1"
wait to choice
SET MENU ON
USE RECORD
APPEND
SET MENU OFF
RETURN

143

111800.PRG USER
MODULE NAME : 1.1.1.8.0.0INPUT FILES : USER

* OUTPUT FILES: USER.
*ROUTINES THAT CALL THE MODLUE: 1.1.1.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0
* choice CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* t REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* INPUT FILES: ELEMENT.

OUTPUT FILES: ELEMENT. .,q

* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS PROGRAM ALLOWS THE USER TO ENTER NEW TUPLES TO THE ELEMENT RELATION.

USE
do while .t.
CLEAR
@ 0,1 SAY "1.1.1.8.0.0" ",",.
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM" ,.
@ 3,36 SAY "ADD ELEMENT" '. ,,
@ 6,22 SAY "This program will allow you to enter"
@ 7,22 SAY "additional tuples to the ELEMENT relation."
@ 8,22 SAY "Instructions or entering data are"
@ 9,22 SAY "provided at top of entry screen."
@ 10,22 SAY ' "
wait to choice
SET MENU ON
USE ELEMENT
APPEND
SET MENU OFF
RETURN

144

* 112000.PRG
* MODULE NAME: 1.1.2.0.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
*ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0

* ROUTINES THAT THE MODULE CALLS:1.1.2.1.0.0, 1.1.2.2.0.0, 1.1.2.3.0.0,
*1.1.2.4.0.0, 1.1.2.5.0.0, 1.1.2.6.0.0, 1.1.2.7.0.0, 1.1.2.8.0.0, 1.1.0.0.0.0 ~

*MAIN
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL. %
* hold: USED TO STOP ACTION FOR USER DECISION.
* INPUT FILE: HEM VAR. [.
* OUTPUT FILE: MER VAR.
* DESIGNED BY: ROBERT A. KIRSCH II
WRITTEN BY: ROBERT A. KIRSCH II

* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION
* TO MODIFY.

do while .t.
CLEAR
@ 1,1 SAY "11.1.2.0.0.0"
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,35 SAY "MODIFY ENTITY"
@ 7,15 SAY "1) USER 6) FILE"
@ 9,15 SAY "2) SYSTEM RECORD"
@ 11,15 SAY "3) PROGRAM) ELEMENT"
@ 13,15 SAY "4 MODULE 9) RETURN TO PREVIOUS MENU"
@ 15,15 SAY "S DOCUMENT 10) RETURN TO MAIN MENU"
@ 16,22 SAY "
ACCEPT ' ENTER YOUR CHOICE (1-10) FROM ABOVE: ' TO choice
DO CASE
CASE choice = "1"
store 'USER' to choice
save to mem vardo 112100
CASE choice = "2"
store 'SYSTEM' to choice
save to memvar
DO 112100
CASE choice = "3"
store 'PROGRAM' to choice
save to mem var
DO 112100CASE choice = "14"
store 'MODULE' to choice
save to mem var
DO 112100
CASE choice = "5"
store 'DOCUMENT' to choice
save to mem var
DO 112100
CASE choice = "6"
store 'FILE' to choice
save to mem var
DO 112100
CASE choice = "7"
store 'RECORD' to choice
save to mem var
DO 112100
CASE choice = "8"
store 'ELEMENT' to choice
save to mem var
DO 112100
CASE choice = "9"
RETURN
CASE choice a "10""
RETURN TO MASTER

145

OTHERWISE .4

CLEAR
@ 2,*3 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY"
@ 3,3 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold
ENDCASE
ENDDO
RETURN

146-

-~.7 -T .r T . ~ ~ - T-

* 112100.PRG
* MODULE NAME: 1.1.2.0.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.1.2.1.0.O, 1.1.2.2.0.0, 1.1.2.3.0.0,
* 1.1.2.4.0.0, 1.1.2.5.0.0, 1.1.2.6.0.0, 1.1.2.7.0.0, 1.1.2.8.0.0, 1.1.0.0.0.0
* MAIN
*LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
hold CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,

MODIFIED, DELETED FROM OR OUTPUT.
hold : USED TO STOP ACTION FOR USER DECISION. - "
rec num : CONTAINS THE VALUE OF THE POINTER TO THE TUPLE TO BE CHANGED. ..

Sstog : USED TO STOP ACTION FOR USER DECISION.
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES* ~LOOP. -'

INPUT FILES: MEM VAR, USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD,
* ELEHENT.
OUTPUT FILES: MEM VAR, USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD,

* ~ELEMENT. .-

* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE: ,**.
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION
* TO MODIFY.
RESTORE FROM mem var

STORE 0 TO rec num, stop
CLEAR
STORE .t. TO TRUE
do while TRUE
CLEAR
@ 0,1 SAY "1.1.2.1.0.0"-@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "MODIFY ENTITY"
@ 7,24 SAY "ENTER TUPLE NUMBER OF THE"
@ 7,51 SAY choice
ACCEPT' YOU WISH TO MODIFY ' TO rec num
IF (rec num <= '0') .OR. (recnum > '99999')
CLEAR
@ 1,24 SAY rec num
@ 1,32 SAY "IS-NOT A VALID RESPONSE"
@ 2,23 SAY "TUPLE NUMBER MUST BE GREATER THAN 0"
@ 3,23 SAY "AND LESS THAN 99999."
WAIT TO stop
ELSE
STORE .F. TO TRUE
ENDIF
ENDDO
DO CASE
CASE choice = 'USER'
USE USER
EDIT(VAL(recjnum))
RETURN
CASE choice = 'SYSTEM'
USE SYSTEM
EDIT(VAL(rec_num))RETURN

CASE choice = 'PROGRAM'
USE PROGRAM
EDIT(VAL(recnum))RETURN
CASE choice ='MODULE '
USE MODULE

147

EDIT(VAL(rec num))
RETURN
CASE choice ='DOCUMENT'
USE DOCUMENT
EDIT(VAL(rec num))
RETURN
CASE choice ='FILE'
USE FILE
EDIT(VAL(rec-num))
RETURN
CASE choice = 'RECORD'
USE RECORD
EDIT(VAL(recjnum))
RETURN
CASE choice = 'ELEMENT'
USE ELEMENT
EDIT(VAL(rec-num))

@ 42,1 SAY "RETURN]"

p~ 148'

* 113000.PRG
• MODULE NAME: 1.1.3.0.0.0
* INPUT FILES: NONE
• OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0
* ROUTINES THAT THE MODULE CALLS:I.I.3.1.0.0, MAIN
* LOCAL VARIABLES USED:* choice: CONTAINS THE NUMBER OF ACTION SELECTED ALSO USED TO TRANSFER THE
* RELATION NAME TO NEXT PROGRAM.
* t: REPRESTENTS NO VALUE AT ALL.
* hold: USED TO STOP ACTION FOR USER DECISION.
* INPUT FILE: MEM VAR.

OUTPUT FILE: MER VAR. ',-

* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
• BASIC FUNCTION OF MODULE:
• THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION ,.'
* TO MODIFY.

SET EXACT ON
set color to 0/3,3
set talk off
CLEAR
do while .t.
ERASE mem var.mem 0%
CLEAR '
@ 1,1 SAY "1.1.3.0.0.0"
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,35 SAY "DELETE ENTITY"
@ 7,15 SAY "1) USER 6) FILE"
@ 9,15 SAY "2) SYSTEM 7) RECORD"
@ 11,15 SY") PROGRAM 8) ELEMENT"
@ 13,15 SAY "4) MODULE 9) RETURN TO PREVIOUS MENU"
@ 15,15 SAY "5) DOCUMENT 10) RETURN TO MAIN MENU"
@ 16,22 SAY ,, .
ACCEPT ' ENTER YOUR CHOICE (1-10) FROM ABOVE: ' TO choice

-4 DO CASE
CASE choice = "1"
store 'USER' to choice
save to mem var
do 113100
CASE choice = "2"
store 'SYSTEM' to choice
save to mem var
DO 113100
CASE choice = "3"
store 'PROGRAM' to choice
save to mem var
DO 113100
CASE choice = "4"
store 'MODULE' to choice
save to mem var
DO 113100
CASE choice = "5"
store 'DOCUMENT' to choice
save to mem var
DO 113100
CASE choice = "6"
store 'FILE' to choice
save to mem var
DO 113100
CASE choice - "7"
store 'RECORD' to choice
save to mem var
DO 113100
CASE choice - "8"
store 'ELEMENT' to choice
save to memvar

149

0 %

DO 113100
CASE choice = "9"
RETURN___
CASE choice = "110" p
RETURN TO MASTER
OTHERWISE- o
CLEAR

.

@ 2,18 SAY choiceI
@ 2,21 SAY "IS NOT A VALID CHOICE
@ 3,18 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY"
@ 4,21 SAY "PRESS RETURN To TRY AGAIN!"
ACCEPT TO hold
ENDCASE
ENDDO *

RETURN

Ne

t4

1502

* 113100.PRG
* MODULE NAME: 1.1.3.1.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE

ROUTINES THAT CALL THE MODLUE : 1.1.0.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.1.3.0.0.0
* LOCAL VARIABLES USED:
• choice : CONTAINS THE NUMBER OF ACTION SELECTED.
• t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES -
* LOOP.
• stop : USED TO STOP ACTION FOR USER DECISION.
* true : USED AS A BOOLEAN VALUE IN LOOPS.

rec num: CONTAINS THE VALUE REPRESENTING THE RECORD CHANGED.
• INPUT FILES: USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD, ELEMENT
* OUTPUT FILES: USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD, ELEMENT
* mem var.mem
* DESTGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION
* TO DELETE TUPLES FROM.
SET MENU ON

RESTORE FROM mem var
STORE 0 TO rec_num, stopCLEAR
STORE .t. TO TRUE
do while TRUE
CLEAR
@ 0,1 SAY "1.1.3.1.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "DELETE ENTITY"
@ 7,24 SAY "ENTER TUPLE NUMBER OF THE"
@ 7,51 SAY choice
@ 8,24 SAY "TUPLE YOU WISH TO HAVE DELETED."
@ 9,24 SAY "THE RECORD WILL BE DISPLAYED"
@ 10,24 SAY "FOR YOU TO EXAMINE. IF YOU ARE"
@ 11,24 SAY "SURE THAT YOU ARE DELETING THE"
@ 12,'24 SAY "RIGHT RECORD DEPRESS -U."
@ 14,24 SAY "IF YOU DO NOT WANT IT DELETED DEPRESS"
@ 16,24 SAY "'0' TO RETURN TO MAINTENANCE MENU."
ACCEPT' ENTER THE TUPLE NUMBER NOW ' TO rec num
IF recnum > '99999'
CLEAR
@ 1,24 SAY rec num
@ 1,32 SAY "IS-NOT A VALID RESPONSE"
@ 2,23 SAY "TUPLE NUMBER MUST BE GREATER THAN 0"@ 3,23 SAY "AND LESS THAN 99999."
WAIT TO stop
ELSE
IF REC NUM <= '0'
RETURN-
STORE .F. TO TRUE
ENDIF
ENDDO
DO CASE
CASE choice = 'USER'
USE USER
EDIT(VAL(rec num))
RETURN
CASE choice = 'SYSTEM'
USE SYSTEM
EDIT(VAL(recnum))
RETURN -
CASE choice = 'PROGRAM'
USE PROGRAM
EDITAL(rec_.r1um))

RETU51

7- ~~~~~, .p.Tr -' _ P

CASE choice IM'ODULE'
USE MODULE
EDIT(VAL(rec-num))
RETURN
CASE choice ='DOCUMENT'
USE DOCUMENT

EDIT(VAL(rec num))
RETURNU
CASE choice ='FILE'
USE FILE
EDIT(VAL(rec-num))
RETURN
CASE choice = 'RECORD'
USE RECORD
EDIT(VAL(rec-num))
RETURN
CASE choice = 'ELEMENT'
USE ELEMENT
EDIT(VAL(rec-num))
RETURN
ENDCASE

152

* 114000..PRG
* MODULE NAME: 1.1.4.0.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.1.4.1.0.0, MAIN
* LOCAL VARIABLES USED:
* choice CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* hold : USED TO STOP THE SCREEN OUTPUT FOR A USER DECISION.
* t • REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* title : CONTAINS THE CHARACTER STRING THAT DESCRIBES THE RELATIONSHIP
* BEING ADDED TO, DELETED FROM OR OUTPUT.
* INPUT FILES: MEM VAR
* OUTPUT FILES: MER VAR
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH RELATIONSHIP HE WOULD
* LIKE TO ADD TUPLES TO.

CLEAR
do while .t.
ERASE mem.var.mem
CLEAR
@ 0,1 SAY "1.1.4.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,32 SAY "ADD TO RELATIONSHIP"
@ 5,9 SAY "1) USER CONTAINS SYSTEM 8) FILE CONTAINS REC"
@ 5,64 SAY "ORDS"
@ 7,9 SAY "2) SYSTEM CONTAINS PROGRAM 9) RECORD CONTAINS E"
@ 7,64 SAY "LEMENT"
@ 9,9 SAY "3) PROGRAM PROCESSES FILE 10) USER RESPONSIBLE"
@ 9,64 SAY "FOR SYSTEM"
@ 11,9 SAY "4) PROGRAM PROCESSES RECORD 11) USER RESPONSIBLE"
@ 11,64 SAY "FOR FILE"
@ 13,9 SAY "5) PROGRAM PROCESSES ELEMENT 12) PROGRAM PRODUCES"
@ 13,64 SAY "DOCUMENT"
@ 15,9 SAY "6) SYSTEM CONTAINS PROGRAM 13) RETURN TO PREVIOU"
@ 15,64 SAY "S MENU"
@ 17,9 SAY "7) PROGRAM CONTAINS MODULE 14) RETURN TO MAIN ME"
@ 17,64 SAY "NU"
@ 18,22 SAY " "-
ACCEPT ' ENTER YOUR CHOICE (1-14) FROM ABOVE: ' TO choice
DO CASE
CASE choice = "1"
store 'U PROC S' to choice
store 'UgER-PNOCESSES-SYSTEM' TO title
save to mem var
do 114100 -
CASE choice = "2"
store 'S PROC P' to choice
store 'SYSTEM-PROCESSES-PROGRAM' TO title
save to mem var
do 114100
CASE choice = "3"
store 'P PROC F' to choice
store 'PXOGRAN-PROCESSES-FILE' TO title
save to mer var
do 114100 -
CASE choice = "4"
store 'P PROC R' to choice
store 'PgOGRAR-PROCESSES-RECORD' TO title
save to .memvar
do 114100
CASE choice a '5I"

153

store 'P PROC El to choicer
store IPIZ0GRAK-PROCESSES-ELEMENT' TO title
save to me._var
do 114100
CASE choice = "16"
store IS CONT P' to choice

store 'SYSTEl-FCONTAINS-PROGRAM' TO title

save to mem varU
store 'P CONT M' to choice
store IPROGRAR-CONTAINS-NODULE' TO title
save to mem var
do 114100-
CASE choice "18"
store IF CONT R' to choice V
store IFTLE-CONrAINS-RECORD' TO title
save to mem var
do 114100-
CASE choice = "9"
store 'R CONT E' to choice
store 'RECORD:'C0NTAINS-ELEMENTI TO title
save to mem var
do 114100
CASE choice U "10" *
store 'U RESP 5' to choice

store 'USER-RESPONSIBLE-FOR-SYSTEM' To title

save to mem var '
store 'U RESP F' to choice
store 'UgER-PZSPONSIBLE-FOR-FILE' TO title
save to mem var
do 114100
CASE choice = "112"1
store 'P PROD DI to choice
store 'PROGRAK-PRODUCES-DOCUMENT' TO title
save to mem var
do 114100
CASE choice = "13"1

* RETURN
CASE choice = "14"1
RETURN TO MASTER
OTHERWISE
CLEAR
@ 1,21 SAY choice
@ 1,28 SAY "IIS NOT A VALID CHOICE"
@ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 14 ONLY"
@ 3 20 SAY "PRESS RETURN TO TRY AGAIN!"I
ACWiT TO hold
ENDCASE
ENDDO
RETURN

154

* 114100.PRG
* MODULE NAME: 1.1.4.1.0.0

INPUT FILES: NONE*OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.1.4.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.1.4.0.O.0
* LOCAL VARIABLES USED:
* choice • CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* hold : USED TO STOP ACTION FOR USER DECISION.
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* title : CONTAINS THE CHARACTER STRING THAT DESCRIBES THE RELATIONSHIP
* BEING ADDED TO, DELETED FROM OR OUTPUT.
* INPUT FILES: HEM VAR, USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD,
* ELEHENT, U CONTS, U CONT S, U CONT P, P PROC F, P PROC R,
* P PROC R.-P PROC E7 S CNT P7 P CTM7 F CNTR RCUNT E,
* U-RESP-S, U-RESP-F, P-PRED-D. -
* OUTPUT FILES: MEM VAR, USZR, SYST, PROGRXM, MODULE, DOCUMENT, FILE, RECORD,

ELEMENT, TEMP U CONTS, U CONT S, U CONT P, P PROC F, P PROC R,
P PROC R. P PRO E. S CORT P,-P CORT M,-FCOTR R,-R CONT E,-

S- -RESPS URESP-F, P-PRED-D.

* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW FOR THE ACTUAL INPUT OF ADDITIONAL TUPLES TO THE
* RELATIONSHIP RELATION SELECTED.

CLEAR
do while t.
RESTORE FROM mem var
CLEAR
@ 0,1 SAY "1.1.4.1.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,32 SAY "ADD RELATIONSHIP"
@ 8,22 SAY "YOU ARE ABOUT TO BEGIN ADDING TUPLES"
@ 9,22 SAY "TO THE"
@ 9,30 SAY TITLE
@ 10,22 SAY "RELATION."
WAIT TO STOP
DO CASE
CASE choice = "UPROCS"
USE U PROC_S
APPEND
RETURN
CASE choice = "S PROCP"
USE.S PROCP
APPEND
RETURN
CASE choice = "P PROC F"
USE P PROCF
APPEND
RETURN
CASE choice = "PPROC_R
USE P PROCR
APPEND
RETURN
CASE choice = "P_PROCE"
USE P PROCJE
APEN
RETURN
CASE choice -"CONTP"
USE S CONT..
APPEND
RETURN
CASE choice a "PCONTN"

155

USE P CONT M4%
APPEND
RETURN
CASE choice = "F_CONTR"'
USE F CONTR-
APPEND
RETURN
CASE choice = "R CONT E"UUSE R CO~N, E - -
APPEND

RETURN
CASE choice = "URESPS"
USE U RESP S
APPEND -
RETURN
CASE choice 1"U RESP F'

-

USE U RESPF - -
APPEND
RETURN
CASE choice = "PPRODD"
USE P PROD D
APPEND
RETURN
CASE choice = "13"
RETURN
CASE choice = "114
RETURN TO MASTER
OTHERWISE
CLEAR

, @ 1,21 SAY choice
@ 1,28 SAY "IS NOT A VALID CHOICE"
@ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 14 ONLY"
@ 3,20 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold.
ENDCASE
ENDDO
RETURN

.15

* 115000.PRG
MODULE NAME: 1.1.5.0.0.0

* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.1.5.1.0.0, MAIN
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,

MODIFIED, DELETED FROM OR OUTPUT.
* hold : USED TO STOP ACTION FOR USER DECISION.
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* title : CONTAINS THE CHARACTER STRING THAT DESCRIBES THE RELATIONSHIP
* BEING ADDED TO, DELETED FROM OR OUTPUT.

%* INPUT FILE : MEM VAR.
,* OUTPUT FILES: MEM-VAR.

* DESIGNED BY: ROBERT A. KIRSCH II -
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH RELATIONSHIP HE WOULD
* LIKE TO DELETE TUPLES FROM. %

do while .t.
ERASE memvar.mem y .

.
' CLEAR

@ 0,1 SAY "1.1.5.0.0.011
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,29 SAY "DELETE FROM RELATIONSHIP"
@ 5,9 SAY "1) USER CONTAINS SYSTEM 8) FILE CONTAINS REC"
@ 5,64 SAY "1ORDS"1
@ 7,9 SAY "2) SYSTEM CONTAINS PROGRAM 9) RECORD CONTAINS El
@ 7,64 SAY "L EENT"

9,9 SAY 13) PROGRAM PROCESSES FILE 10) USER RESPONSIBLE"
@ 9,64 SAY "FOR SYSTEM"
@ 11,9 SAY "4) PROGRAM PROCESSES RECORD 11) USER RESPONSIBLE"
@ 11,64 SAY "FOR FILE"
@ 13,9 SAY "'5) PROGRAM PROCESSES ELEMENT 12) PROGRAM PRODUCES"
@ 13,64 SAY "DOCUMENT"
@ 15,9 SAY "6) SYSTEM CONTAINS PROGRAM 13) RETURN TO PREVIOU"
@ 15,64 SAY "S MENU"
@ 17,9 SAY "7) PROGRAM CONTAINS MODULE 14) RETURN TO MAIN MEi
@ 17,64 SAY "NU"
@ 18,22 SAY "11

ACCEPT ' ENTER YOUR CHOICE (1-14) FROM ABOVE: ' TO choice
DO CASE
CASE choice = "1"
store 'U PROC S' to choice
store 'USER-PROCESSES-SYSTEM' TO title
save to memvar
do 115100
CASE choice = "2"
store 'S PROC P' to choice
store 'SYSTEMXPROCESSES-PROGRAM' TO title
save to mem var
do 115100
CASE choice a "3"
store 'P PROC F' to choice
store 'PROGRAN-PROCESSES-FILE' TO title
save to mem var
do 115100
CASE choice u "4"
store 'P PROC R' to choice
store 'PROGRAN-PROCESSES-RECORD' TO title
save to mem var
do 115100 -
CASE choice - "5"
store 'PPROC_;' to choice

157

store 'PROGRAM-PROCESSES-ELEMENT' TO title
save to memrevar
do 115100
CASE choice = "6"
store 'S CONT P' to choice
store 'SYSTEM-CONTAINS-PROGRAM' TO title
save to mem var
do 115100 -
CASE choice = "7"
store 'P CONT M' to choice
store 'PROGRAM-CONTAINS-MODULE' TO title
save to mem var
do 115100 -
CASE choice = "8"
store IF CONT RI to choice
store 'FTLE-CONTAINS-RECORD' TO title
save to mem var
do 115100
CASE choice = 11911
store 'R CONT E' to choice I
store 'RECORD-CONTAINS-ELEMENT' TO title
save to mem var
do 115100
CASE choice = "10"
store 'U RESP S' to choice
store 'USER-RESPONSIBLE-FOR-SYSTEM' TO title
save to mem var
do 115100
CASE choice = "11"
store 'U RESP F' to choice
store 'UgER-RSPONSIBLE-FOR-FILE' TO title
save to mem var
do 115100
CASE choice = "12"
store 'P PROD D' to choice
store 'PTOGRAX-PRODUCES-DOCUMENT' TO title
save to mem var
do 115100
CASE choice = "13"
RETURN
CASE choice = "14"
RETURN TO MASTER
OTHERWISE
CLEAR
@ 1,21 SAY choice
@ 1,28 SAY "IS NOT A VALID CHOICE"
@ 2,20 SAY "PLEASE ENTER VALUES BETWEEN I AND 14 ONLY"
@ 3,20 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold
ENDCASE
ENDDO
RETURN

* 115100.PRG "Nh*MODULE NAME: 1.1.5.1.0.0 V.I -
* INPUT FILES: NONE

* OUTPUT FILES: NONE
ROUTINES THAT CALL THE MODLUE: 1.1.5.0.0.0

* ROUTINES THAT THE MODULE CALLS:1.1.5.0.0•0
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* hMODIFIED, DELETED FROM OR OUTPUT.
*hold : USED TO STOP ACTION FOR USER DECISION.
* num : CONTAINS THE VALUE OF THE POINTER TO THE TUPLE TO BE CHANGED.
*t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.

title : CONTAINS THE CHARACTER STRING THAT DESCRIBES THE RELATIONSHIP
* BEING ADDED TO, DELETED FROM OR OUTPUT.
* INPUT FILES: MEM VAR, U CONTS, U CONT S, U CONT P, P PROC F, P PROC R,
* P PROC R.-P PROC E. S CUNT P P CUNTM, FCNT R_ CUNT E,
* U-RESP-S, URESPF, P-PRED-D. R_
* OUTPUT FILES: MEM VAIT, U UONTS7 U CUNT ST U CONT P, P PROC F, P PROC R,
* P PROC R. P PROC E.-S CORT P,-P CO TMF CORT_ R,_RCORTE,
* U-RESP-S, URESPF, P-PRED-D.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW FOR THE ACTUAL DELETION INPUT OF ADDITIONAL TUPLES
* FROM THE DESIGNATED RELATIONSHIP FILE SELECTED.

do while .t.
RESTORE FROM mem var
CLEAR
@ 0,1 SAY "1.1.5.1.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,29 SAY "DELETE FROM RELATIONSHIP"
@ 8,21 SAY "ENTER TUPLE NUMBER OF THE"
@ 10,24 SAY TITLE
@ 12 21 SAY "TUPLE THAT YOU WISH TO HAVE DELETED."
@ 13,21 SAY "THE TUPLE WILL BE DISPLAYED FOR"
@ 14,21 SAY "YOU TO EXAMINE. IF YOU ARE"
@ 15,21 SAY "SURE THAT YOU ARE DELETING THE"
@ 16,21 SAY "RIGHT TUPLE, DEPRESS -U . IF"
@ 17,21 SAY "YOU DO NOT WANT IT DELETED,"
@ 18,21 SAY "TYPE 0 FOR TUPLE NUMBER"
@ 19 21 SAY "TO RETURN TO PREVIOUS MENU."
@ 20,21 SAY " "
ACCEPT' ENTER THE TUPLE NUMBER NOW ' TO rec-numDO WHILE rec-num <> '0'
DO CASE
CASE choice = "U PROC_ S"
USE U PROC S
GOTO TVAL(iecnum))
EDIT
RETURN.
CASE choice = "SPROC P"
USE S PROC P
GOTO TVAL(fecnum))
EDIT
RETURN
CASE choice = "P PROCF"
USE P PROCF -
GOTO TVAL(Fecnum))
EDIT
RETURN
CASE choice - "PPROCR"
USE P PROC R
GOTO TVAL (Fecnum))
EDIT

159

RETURN
CASE choice = "P PROC E"
USE P PROC E
GOTO "VAL(fec num))
EDIT
RETURN
CASE choice = "S CONT P"
USE S CONT P
GOTO TVAL(ec num))
EDIT
RETURN
CASE choice = "P CONT H"
USE P CONTH -
GOTO TVAL(Fec-num))
EDIT
RETURN
CASE choice = "F CONT R"
USE F CONT R
GOTO TVAL(Fec_num))
EDIT
RETURN
CASE choice = "RCONT E",
USE R CONT E
GOTO TVAL(Fec num))
EDIT
RETURN
CASE choice = "U RESPS"
USE U RESP S
GOTO TVAL(Fecnum))
EDIT
RETURN
CASE choice = "U RESP..F"
USE U RESP F
GOTO TVAL(FecnUm))
EDIT
RETURN
CASE choice = "PPRODD"USE P PROD D
GoTo "(VAL(fec nur))
EDIT
RETURN
ENDCASE
ENDDO
RETURN

160

i

* 120000.PRG
* MODULE NAME: 1.2.0.0.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: MAIN
* ROUTINES THAT THE MODULE CALLS:.2.1.0.0.0, 1.2.2.0.0.0, MAIN.* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.

t: REPRESTENTS NO VALUE AT ALL.
* hold: USED TO STOP ACTION FOR USER DECISION.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS PROGRAM ALLOWS THE USER TO SELECT ENTITY RELATIONS,
* AND RELATIONSHIP RELATIONS FOR OUTPUT.

do while .t.
CLEAR
@ 0,1 SAY "1.2.0.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,31 SAY "DICTIONARY OUTPUT"

6,22 SAY -I ENTITY"
@8,22 SAY "2) RELATIONSHIP"
@ 10,22 SAY " RETURN TO MAIN MENU"
@ 11,22 SAY
ACCEPT ' ENTER YOUR CHOICE (1-3) FROM ABOVE: ' TO choice
DO CASE
CASE choice = "1"
do 121000
CASE choice = "2"
DO 122000
CASE choice = 1131
RETURN TO MASTER
OTHERWISECLEAR
@ 2,18 SAY choice

2,21 SAY "IS NOT A VALID CHOICE"
3,18 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"

@ 4,18 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold
ENDCASE
ENDDO
RETURN

161

* 121000.PRG
* MODULE NAME: 1.2.1.0.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.2.0.0.0.0
ROUTINES THAT THE MODULE CALLS:1.2.0.0.0.O, 1.2.1.1.0.0 MAIN* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.

* t: REPRESTENTS NO VALUE AT ALL.
* hold: USED TO STOP ACTION FOR USER DECISION.
* INPUT FILE : MEM VAR.
OUTPUT FILE: MEM-VAR
DESIGNED BY: ROBERT A. KIRSCH II

* WRITTEN BY: ROBERT A. KIRSCH II* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION
* TO OUTPUT.

do while .t.
ERASE memvar.mem
CLEAR
@ 0,1 SAY "1.2.1.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,34 SAY "ENTITY OUTPUT"
@ 6,15 SAY 1) USER 6 FILE"
@ 8,15 SAY 12) SYSTEM 7 RECORD"
@ 10,15 SAY "3) PROGRAM 8) ELEMENT"
@ 12,15 SAY "4) MODULE 9j RETURN TO PREVIOUS MENU"
@ 14,15 SAY "5) DOCUMENT 10 RETURN TO MAIN MENU"
@ 15,1 SAY "
ACCEPT' ENTER YOUR CHOICE (1-10) FROM ABOVE: 'TO choice
DO CASE
CASE choice = "1"
store 'USER' to choice
save to mem var
do 121100 -
CASE choice = "2"
store 'SYSTEM' to choice
save to mem var

CASE choice = "3"
store 'PROGRAM' to choice
save to mem var
DO 121100 -
CASE choice = "4"
store 'MODULE' to choice
save to mem..var
DO 121100
CASE choice = "5"
store 'DOCUMENT' to choice
save to memvar
DO 121100
CASE choice = "6"
store 'FILE' to choice
save to mem varDO 121100
CASE choice = "7"
store 'RECORD' to choice
save to mem var
DO 1211000 -
CASE choice = "8"..
store 'ELEMENT' to choice
save to mem var
DO 121100
CASE choice = "9"
RETURN
CASE choice = "10"
RETURN TO MASTER
OTHERWISE

162

CLEAR
@ 1 ,23 SAY choice

* @ 1,31 SAY "IS NOT A VALID CHOICE"
@ 2,18 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY"
@ 3,18 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold
ENDCASE
ENDDO

RETURN

47i
%

163

121100.PRG
* MODULE NAME: 1.2.1.1.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.2.1.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.2.1.0.0.0
* LOCAL VARIABLES USED:
* choice CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* hold : USED TO STOP ACTION FOR USER DECISION.
* option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN
* OR THE PRINTER.
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* true : USED AS A BOOLEAN VALUE IN LOOPS.
* INPUT FILES: MEM VAR
* OUTPUT FILES: MER VAR

* * DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE: I* THIS MODULE ALLOW THE USER TO CHOOSE WHETHER THE OUTPUT WILL BE
* DISPLAYED ON THE SCREEN OR PRINTED.
RESTORE FROM mem var

STORE 0 TO rec num, stop
STORE .t. TO TRUE
do while TRUE
CLEAR
@ 0,1 SAY "1.2.1.1.0.0"
RESTORE FROM mem var
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,33 SAY "ENTITY OUTPUT"
@ 8,23 SAY "LISTED BELOW ARE THE CHOICES FOR HOW"
@ 9,23 SAY "YOU CAN HAVE THE RELATION"
@ 9,50 SAY CHOICE
@ 10,23 SAY "DISPLAYED." 7
@ 12,28 SAY "1) SCREEN OUTPUT"
@ 14,28 SAY "2) PRINTER OUPUT"
@ 16,28 SAY "3) RETURN TO PREVIOUS MENU"

4. @ 17,1 SAY""
ACCEPT' ENTER YOUR CHOICE (1-3) FROM ABOVE 'TO option
ERASE mem var.mem
SAVE TO mem_var
DO CASE
CASE option = '1'
DO CAS
CASE CHOICE = 'USER'
DO 121110
CASE choice = 'SYSTEM'
DO 121110
CASE CHOICE = 'PROGRAM'
DO 121110
CASE choice = 'MODULE'
DO 121110
CASE CHOICE = 'DOUCMENT'
DO 121120
CASE choice = 'FILE'
DO 121120
CASE CHOICE = 'RECORD'
DO 121120
CASE choice = 'ELEMENT'
DO 121120
ENDCASE
CASE option = '2'DO CASE n= 2
CASE CHOICE = 'USER'

DO 121130

164

-

CASE choice = 'SYSTEM'
DO 121130
CASE CHOICE = 'PROGRAM'
DO 121130
CASE choice = 'MODULE'
DO 121130 ='OCETCASE CHOICE = IDOUCMENTI
DO 121140
CASE choice = 'FILE'
DO 121140
CASE CHOICE = 'RECORD'
DO 121140
CASE choice = 'ELEMENT'
DO 121140 %
ENDCASE
CASE option = '3'
RETURN
OTHERWISE
CLEAR
@ 0,27 SAY o tion
@ 0,34 SAY "IS NOT A VALID CHOICE"@ 1,26 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"'.
ACCEPT TO holdENDCASE '>
ENDDQ

165

121110.PRG
* MODULE NAME: 1.2.1.1.1.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.2.1.1.0.0
* ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.

t: REPRESTENTS NO VALUE AT ALL.
stop, hold: USED TO STOP ACTION FOR USER DECISION.
count: KEEPS TRACK OF ACCOUNT NUMBERS.

* INPUT FILE: MEM VAR.
* OUTPUT FILE: MEN VAR.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE: ",-
* THIS MODULE WILL DISPLAY ON THE SCREEN USER, SYSTEM,
* PROGRAM AND MODULE RELATIONS
*RESTORE FROM mem var
CLEAR -
@ 0,1 SAY "1.2.1.1.1.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,30 SAY "ENTITY SCREEN OUTPUT"
@ 5,22 SAY "THIS MODULE WILL DISPLAY"
@ 5,48 SAY choice
@ 7,22 SAY "IF YOU DO NOT WISH TO DISPLAY"
@ 8,22 SAY "THIS ENTITY, TYPE '0' TO"
@ 9,22 SAY "RETURN TO THE PREVIOUS MENU."
WAIT TO stop
DO CASE
CASE stop = 101
RETURN
OTHERWISE
ENDCASE
DO CASE
CASE choice = 'USER'
CLEAR
USE USER
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD
'I

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED:"
@ 6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLE ADDED BY:"
@ 7,28 SAY ADDED BY
@ 8,1 SAY "DATE TUPLE LAST MODIFIED:"
@ 8,28 SAY LST MOD DT
@ 9,1 SAY "TUPrE LIST MODIFIED BY:"
@ 9 28 SAY LST MOD BY
@ 16,1 SAY "NURBER-OF MODIFICATIONS:"
@ 10,28 SAY NUN OF MOD
@ 11,1 SAY "DESCRIPTIONs"
@ 11,28 SAY DESCRIPT
@ 15,1 SAY "COMMENTS:"
@ 15,28 SAY COMMENTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIPENDDO
RETURN

166

*Y . ''

I-

CASE choice = 'SYSTEM'
USE SYSTEM
STORE 1 TO count
SET HEADING OFFDO WHILE .NOT. EOF()0
CLEAR

@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME-"
@ 4,28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED:"
@ 6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLE ADDED BY:"
@ 7,28 SAY ADDED BY
@ 8,1 SAY "DATE TUPLE LAST MODIFIED:"
@ 8,28 SAY LST MOD DT
@ 9,1 SAY "TUPEE LIST MODIFIED BY:"
@ 9,28 SAY LST MOD BY
@ 10,1 SAY "NURBER-OF MODIFICATIONS,"
@ 10,28 SAY NUM OF MOD
@ 11,1 SAY "DESCRIPTION0"
@ 11,28 SAY DESCRIPT
@ 15,1 SAY "COMMENTS:"
@ 15,28 SAY COMMENTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
CASE choice = 'PROGRAM'
USE PROGRAM
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED:"
@ 6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLZ ADDED BY:"
@ 7,28 SAY ADDED BY
@ 8 ,1 SAY "DATE TUPLE LAST MODIFIED"
@ 8,28 SAY LST MOD DT
@ 9,1 SAY "1TUPrE LIST MODIFIED BY:"
@ 9 28 SAY LST MOD BY@ 16,1 SAY "NURBER-OF MODIFICATIONS:"
@ 10,,28 SAY NUN OF MOD
@ 11,1 SAY "DESCRIPTION0"
@ 11,28 SAY DESCRIPT
@ 15,1 SAY "COMMENTS,"
@ 15,28 SAY COMMENTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
CASE choice = 'MODULE'
USE MODULE

167

STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 2,33 SAY CHOICE
@ 4,1 SAY "RECORD
If

@ 4,11 SAY count
store count + 1 to count
@ 6,1 SAY "ACCESS NAME•"
@ 6,28 SAY ACC NAME
@ 7,1 SAY "IDENTIFICATION NAME:"
@ 7,28 SAY ID NAME
@ 8,1 SAY "DATE TUPLE ADDED:"
@ 8,28 SAY DATE ADDED
@ 9,1 SAY "TUPLE ADDED BY:"
@ 9,28 SAY ADDED BY
@ 10,1 SAY "DATE-TUPLE LAST MODIFIED:"
@ 10,28 SAY LST MOD DT
@ 11,1 SAY "TUPrE LKST MODIFIED BY:"
@ 11,28 SAY LST MOD BY
@ 12,1 SAY "NUM9ER UF MODIFICATIONS:"
@ 12,28 SAY NUM OF MOD
@ 13,1 SAY "DESCRIPTION-"
@ 11,28 SAY DESCRIPT
@ 17,1 SAY "COMMENTS:"

15,28 SAY COMMENTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold~SKIP

ENDDO
RETURN
ENDCASE

168-a.1

ai

121120.PRG
* MODULE NAME- 1.2.1.1.2.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.2.1.1.0.0
* ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL.
* stop, hold: USED TO STOP ACTION FOR USER DECISION.
* count: KEEPS TRACK OF ACCOUNT NUMBERS.
* INPUT FILE: MEM VAR.
* OUTPUT FILE: NE VAR.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:

THIS MODULE WILL DISPLAY ON THE SCREEN DOCUMENT, FILE,
* RECORD, AND ELEMENT RELATIONS.
RESTORE FROM mem vat
STORE 0 TO rec-num, stopCLEAR
@ 0,1 SAY "1.2.1.1.2.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"@ 3,30 SAY "ENTITY SCREEN OUTPUT"
@ 5,22 SAY "THIS MODULE WILL DISPLAY"
@ 5,48 SAY choice
@ 7,22 SAY "IF YOU DO NOT WISH TO DISPLAY THIS"
@ 8,22 SAY "ENTITY, TYPE '0' TO RETURN TO"
@ 9,22 SAY "PREVIOUS MENU."
WAIT TO stop
DO CASE
CASE stop = '0'
RETURNOTHERWISE
ENDCASE
DO CASE
CASE choice = 'DOCUMENT'
USE DOCUMENT
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORDI$
@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED:"
@ 6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLE ADDED BY:"
@ 7,28 SAY ADDED BY
* 8,1 SAY "DATE TUPLE LAST MODIFIED:"
@ 8,28 SAY LST MOD DT
@ 9,1 SAY "TUPrE LXST MODIFIED BY:"
@ 9 28 SAY LST MOD BY@ 16,1 SAY "NURER-OF MODIFICATIONS:"
@ 10,28 SAY NUM OF MOD
@ 11,1 SAY "DESCRIPTIONt"
8 11,28 DESCRIPT
* 15,1 SAY "COMMENTS:"
8 15 28 COMMENTS
ACCEfT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO

169

-, -Ln . w[v WP-11,W

RETURN
CASE choice = 'FILE'
USE FILE
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED"
@ 6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLE ADDED BY:"
@ 7,28 SAY ADDED BY
@ 8,1 SAY "DATE TUPLE LAST MODIFIED:"

8 8,28 SAY LST MOD DT
@ 9,1 SAY "1TUP1rE LAST MODIFIED BY:"
@ 9,28 SAY LST MOD BY
@ 10,1 SAY "NUBER-OF MODIFICATIONS:"
@ 10,28 SAY NUM OF MOD
@ 11,1 SAY "DESCRIPTION:"
@ 11,28 DESCRIPT
@ 15,1 SAY "COMMENTS:"
@ 15,28 COMMENTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
CASE choice = 'RECORD'
USE RECORD
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY ID NAME
8 6,1 SAY "DATE TUPLE ADDED:"
@6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLT ADDED BY:"
@ 7,28 SAY ADDED BY

8 8,1 SAY "DATE TUPLE LAST MODIFIED:"
@ 8,28 SAY LST MOD DT
@ 9,1 SAY "TUPrE LKST MODIFIED BY:
@ 9 28 SAY LST MOD BY@ 16,1 SAY "NUBER-OF MODIFICATIONS:"
@ 10,28 SAY NUM OF MOD
@ 11,1 SAY "DESCRIPTION:"
@ 11,28 DESCRIPT
@ 15,1 SAY "COMMENTS:"
@ 15'28 COMMENTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
CASE choice = 'ELEMENT'

170

4i

USE ELEMENT
STORE 1 TO count
SET HEADING OFF
DO WHILE..NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD
to

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED:"
@ 6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLE ADDED BY:"
@ 7,28 SAY ADDED BY
@ 8,1 SAY "DATE TUPLE LAST MODIFIED:"
@ 8,28 SAY LST MOD DT
@ 9,1 SAY "TUPrE LXST MODIFIED BY:"
@ 9 28 SAY LST MOD BY@ 16,1 SAY "NUHBER-OF MODIFICATIONS:"
8 10,28 SAY NUM OF MOD
@ 11,1 SAY "DESCRIPTION:"
@ 11,28 DESCRIPT
@ 15,1 SAY "COMMENTS:"
@ 15,28 COMMENTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
ENDCASE

171

.4 2 - ., ,

* 121130.PRG
* MODULE NAME: 1.2.1.1.3.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.2.1.1.0.0
* ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL.

stop, hold: USED TO STOP ACTION FOR USER DECISION.
* count: KEEPS TRACK OF ACCOUNT NUMBERS.
* INPUT FILE: MEM VAR.
* OUTPUT FILE: MEN VAR.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE WILL OUTPUT THE USER, SYSTEM, PROGRAM AND MODULE
* RELATION FILES TO THE PRINTER.
RESTORE FROM mem var

STORE 0 TO recjnum, stopCLEAR -! i

@ 0,1 SAY "1.2.1.1.3.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,29 SAY "ENTITY PRINTER OUTPUT"
@ 6,23 SAY "THIS MODULE WILL PRINT"
@ 6,47 SAY choice
@ 8,23 SAY "PLEASE INSURE THAT YOUR PRINTER"
@ 9 23 SAY "IS TURNED ON AND IN THE ONLINE"
@ 16,23 SAY "MODE"
@ 12,23 SAY "IF YOU DO NOT WISH TO PRINT"
@ 13,23 SAY "THIS ENTITY, TYPE '0' TO"
@ 14,23 SAY "RETURN TO THE PREVIOUS MENU"
WAIT TO stop
DO CASE
CASE stop = '0'
RETURN
OTHERWISE
ENDCASE
SET DEVICE TO PRINT
SET CONSOLE OFF
DO CASE
CASE choice = 'USER'
USE USER
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED:"
@ 6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLI ADDED BY:"
@ 7,28 SAY ADDED BY
@ 8,1 SAY "DATE TUPLE LAST MODIFIED:"
@ 8 28 SAY LST MOD DT
@ 9,1 SAY "TUPrE LIST MODIFIED BY:"
@ 9 28 SAY LST MOD BY
@ 16,1 SAY "NUBER-OF MODIFICATIONS,"
@ 10,28 SAY NUM OF NOD
@ 11,1 SAY "DES RIFTION,"
@ 11,28 SAY DESCRIPT

172

..

@ 15,1 SAY "COMMENTS:"
@ 15,28 SAY COMMENTS
@ 18,1 SAY " "SKIP
ENDDO
CASE choice = 'SYSTEM'
USE SYSTEM
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR@ 0,33 SAY CHOICE@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED:"
@ 6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLI ADDED BY:"
@ 7,28 SAY ADDED BY
@ 8,1 SAY "DATE TUPLE LAST MODIFIED:"
@ 8,28 SAY LST MOD DT
@ 9,1 SAY "TUPEE LIST MODIFIED BY:"
@ 9,28 SAY LST MOD BY
@ 10,1 SAY "NUMBER-OF MODIFICATIONSs"
@ 10,28 SAY NUM OF MOD
@ 11,1 SAY "DESCRIPTION:"
@ 11,28 SAY DESCRIPT
@ 15,1 SAY "COMMENTS:"
@ 15,28 SAY COMMENTS
@ 18,1 SAY " "
SKIPENDDO
CASE choice = 'PROGRAM'
USE PROGRAM
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD
4,

@ 2,11 SAY count
store count + I to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
§ 5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED:"
@ 6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLK ADDED BY:"
@ 7,28 SAY ADDED BY
@ 8,1 SAY "DATE TUPLE LAST MODIFIED:"
@ 8,28 SAY LST MOD DT
@ 9,1 SAY "TUPrE LIST MODIFIED BY:"
@ 9,28 SAY LST MOD BY
@ 10,1 SAY "NURBER7OF MODIFICATIONS :"
@ 10,28 SAY NUM OF MOD
@ 11,1 SAY "DESCRIPTION:"
@ 11,28 SAY DESCRIPT
@ 15,1 SAY "COMMENTS:"
@ 15, 28 SAY COMMENTS
@ 18,1 SAY " "
SKIP

173

ENDDO
CASE choice = 'MODULE'
USE MODULE
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD
a'

@ 2,11 SAY count
store count + I to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED:"
@6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLr ADDED BY:"
@ 7,28 SAY ADDED BY
@ 8,1 SAY "DATE TUPLE LAST MODIFIED:"
@ 8,28 SAY LST MOD DT
S9,1 SAY "TUPrE LIST MODIFIED BY:"
@ 9,28 SAY LST NOD BY
@ 10,1 SAY "NURBER-OF MODIFICATIONS:"
@ 10,28 SAY NUN OF MOD
@ 11,1 SAY "DESCRIPTION:"
@ 11,28 SAY DESCRIPT
@ 15,1 SAY "COMMENTS:"
@ 15,28 SAY COMMENTS
@ 18,1 SAY " "
SKIP
ENDDO
ENDCASE
SET DEVICE TO SCREEN
SET CONSOLE ON
RETURN

: 174

* 121140.PRG
* MODULE NAME: 1.2.1.1.4.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.2.1.1.0.0
* ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL. ' . 4
* stop, hold: USED TO STOP ACTION FOR USER DECISION.
* count: KEEPS TRACK OF ACCOUNT NUMBERS.
* INPUT FILE: HEM VAR.
* OUTPUT FILE: MER VAR.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE WILL OUTPUT THE FIRST FOUR RELATIONSHIP
* RELATION FILES TO THE PRINTER.

RESTORE FROM mem var
STORE 0 TO rec nm, stop
CLEAR
@ 0,1 SAY "1.2.1.1.4.0" '@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM" '."

3,29 SAY "ENTITY PRINTER OUTPUT"
@ 6,23 SAY "THIS MODULE WILL PRINT"
@ 6,47 SAY choice
@ 8,23 SAY "PLEASE INSURE THAT YOUR PRINTER"
@ 9,23 SAY "IS TURNED ON AND IN THE ONLINE"
@ 10,23 SAY "MODE"
@ 12,23 SAY "IF YOU DO NOT WISH TO PRINT"
@ 13,23 SAY "THIS RELATION, TYPE '0' TO"
@ 14,23 SAY "RETURN TO THE PREVIOUS MENU"
WAIT TO stop
DO CASE
CASE stop = '0'
RETURNOTHERWISE
ENDCASE
SET DEVICE TO PRINT
SET CONSOLE OFF
DO CASE
CASE choice = 'DOCUMENT'
USE DOCUMENT
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@4,28 SAY ACC NAME
@ 5,1 SAY "IDERTIFICATION NAME:"
@ 5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED:"
@ 6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLN ADDED BY:"
@ 7,28 SAY ADDED BY
@ 8,1 SAY "DATE TUPLE LAST MODIFIED:"
@ 8,28 SAY LST MOD DT
@ 9,1 SAY "TUPrE LAST MODIFIED BY:"
@928 SAY LST MOD BY

@ 16 1 SAY "1NUHBER7OF MODIFICATIONS:"@ 10,28 SAY NUM OF MOD
@ 11,1 SAY "DESCRIPTION:"
@ 11,28 DESCRIPT

175

..........

* 16

Iv.. ..'

@ 15,1 SAY "COMMENTS:"
@ 15,28 COMMENTS '
@ 18,1 SAY " "
SKIP
ENDDO
CASE choice = 'FILE'
USE FILE
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

store count + 1 to count

@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED'"
@ 6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLE ADDED BY:"
@ 7,28 SAY ADDED BY
@ 8,1 SAY "DATE TUPLE LAST MODIFIED:"
@ 8,28 SAY LST MOD DT
@ 9,1 SAY "TUPrE LXST MODIFIED BY:"
@ 9,28 SAY LST MOD BY
@ 10,1 SAY "NUBEROF MODIFICATIONS:"
@ 10,28 SAY NUM OF MOD
@ 11, 1 SAY "DESCRIPTION:"
@ 11,28 DESCRIPT
@ 15,1 SAY "COMMENTS:"
@ 15,28 COMMENTS
@ 18,1 SAY " "
SKIP
ENDDO
CASE choice = 'RECORD'
USE RECORD
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4 28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED:"
@ 6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLZ ADDED BY:"
@ 7,28 SAY ADDED BY
@ 8,1 SAY "DATE TUPLE LAST MODIFIED:"
@ 8,28 SAY LST MOD DT
@ 9, "SAY "TUPrE LKST MODIFIED BY:"
@ 9 28 SAY LST MOD BY
@ 16,1 SAY "NURBER-OF MODIFICATIONS:"
@ 10,28 SAY NUM OF MOD
@ 11,1 SAY "DESCRIPTION,"
@ 11,28 DESCRIPT
@ 15,1 SAY "COMMENTS:"
@ 15,28 COMMENTS
@ 18,1 SAY "

SKIP

176

1- 1 (] lj 16111

VIC

ENDDO
CASE choice = 'ELEMENT' - -
USE ELEMENT
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()CLEAR
@ 0,33 SAY CHOICE 2
@ 2,1 SAY "RECORD'I

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME;"
@ 4,28 SAY ACC NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@5,28 SAY ID NAME
@ 6,1 SAY "DATE TUPLE ADDED:"
@ 6,28 SAY DATE ADDED
@ 7,1 SAY "TUPLE ADDED BY:"
@ 7,28 SAY ADDED BY
@ 8,1 SAY "DATE TUPLE LAST MODIFIED:"
@ 8,28 SAY LST MOD DT
@ 9,1 SAY "TUPrE LIST MODIFIED BY:"
@ 9,28 SAY LST HOD BY
@ 10,1 SAY "NURBER-OF MODIFICATIONS:"
@ 10 ,28 SAY NUN OF MOD
@ 11,1 SAY "DESCRIPTION'"
@ 11,28 DESCRIPT
@ 15,1 SAY "COMMENTS:" r L'
@ 15,28 COMMENTS '

@ 18,1 SAY
SKIP -t -
ENDDO -

ENDCASE
SET DEVICE TO SCREEN
SET CONSOLE ON
RETURN

it-

177

-zivmwNl

* 122100.PRG
* MODULE NAME: 1.2.2.1.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.2.2.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.2.2.0.0.0
• LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
• CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
• MODIFIED, DELETED FROM OR OUTPUT.
* hold : USED TO STOP ACTION FOR USER DECISION.
* option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN
* OR THE PRINTER.
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* INPUT FILES: HEM VAR.
* OUTPUT FILES: HER VAR.* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
• THIS MODULE ALLOW THE USER TO CHOOSE WHETHER THE OUTPUT WILL BE
* DISPLAYED ON THE SCREEN OR PRINTED.

RESTORE FROM mem var
STORE 0 TO rec num, stop
STORE .t. TO TRUE
do while TRUE
CLEAR
@ 0,1 SAY "1.2.2.1.0.0"
RESTORE FROM mem var
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,29 SAY "RELATIONSHIP OUTPUT"
@ 8,23 SAY "LISTED BELOW ARE THE CHOICES FOR"@ 9,23 SAY "HOW YOU CAN HAVE THE RELATIONSHIP"@ 11,24 SAY TITLE

@ 13,23 SAY "DISPLAYED."
@ 15,28 SAY "1) SCREEN OUTPUT"
@ 17,28 SAY "2) PRINTER OUPUT"
@ 19,28 SAY "3) RETURN TO PREVIOUS MENU"
@ 20,1 SAY " "
ACCEPT' ENTER YOUR CHOICE (1-3) FROM ABOVE 'TO option
ERASE mem var.mem
SAVE TO memvar
DO CASE
CASE o tion = '1'
DO CASE
CASE CHOICE = 'UPROC5S'
DO 122110
CASE choice = 'SPROCP'
DO 122110
CASE CHOICE = 'P PROCQF'
DO 122110
CASE choice = 'PPROCR'
DO 122110
CASE CHOICE = 'PPROCE'
DO 122120
CASE choice = 'SCONTP'
DO 122120
CASE CHOICE = 'PCONTM'
DO 122120
CASE choice = 'FCONTR'
DO 122120
CASE CHOICE = 'R CONT E'
DO 122130
CASE choice = 'U RESPS'
DO 122130
CASE CHOICE = 'U_RESPF'
DO 122130

178

CASE choice = 'P PROD D' *

DO 122130 - -%
ENDCASE
CASE option = '2'
DO CASE
CASE CHOICE = 'U PROC S'
DO 122140 - -
CASE choice = 'SPROCP'
DO 122140
CASE CHOICE = 'P PROC F1
DO 122140 RO-
CASE choice = 'PPROCR' r
DO 122140
CASE CHOICE = 'PPROCE'
DO 122150
CASE choice = 'SCONTP.
DO 122150
CASE CHOICE = 'P CONT M'
DO 122150
CASE choice = 'F CONTR'
DO 122150
CASE CHOICE = 'RCONTE'
DO 122160
CASE choice = 'U RESPS'
DO 122160 -
CASE CHOICE = 'U RESPF'
DO 122160 - %
CASE choice = 'PPRODD'
DO 122160
ENDCASE
CASE option = '3'
RETURN
OTHERWISE
CLEAR
@ 0,27 SAY option
@ 0,34 SAY "IS NOT A VALID CHOICE"@ 1,26 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"

2,26 SAY "PRESS RETURN AND TRY AGAIN!"
ACCEPT TO hold
ENDCASE
ENDDO

179

% ; -

. "~. -o%

* 122110.PRG . .
* MODULE NAME: 1.2.2.1.1.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.2.2.1.0.0
* ROUTINES THAT THE MODULE CALLS:1.2.2.1.0.0
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE

'. * CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
• MODIFIED, DELETED FROM OR OUTPUT.
* count : USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED.
hold : USED TO STOP ACTION FOR USER DECISION.
option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN

• OR THE PRINTER.
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
• LOOP.

INPUT FILES: HEM VAR U CONTS, S_CONT_P, P PROC F, PPROC ..
* OUTPUT FILES: MEN VAR.- , -"-R
• DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
• BASIC FUNCTION OF MODULE:
* THIS MODULE WILL DISPLAY ON THE FIRST FOUR RELATIONSHIP TO THE SCREEN.

RESTORE FROM memvar
CLEAR
@ 0,1 SAY 11.2.2.1.1.0".
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,28 SAY "RELATIONSHIP SCREEN OUTPUT"
@ 5,22 SAY "THIS MODULE WILL DISPLAY"
@ 7,23 SAY TITLE
@ 9,22 SAY "IF YOU DO NOT WISH TO DISPLAY"
@ 10,22 SAY "THIS RELATIONSHIP, TYPE '0' TO" , ,.
@ 11,22 SAY "RETURN TO THE PREVIOUS MENU."
WAIT TO stop
DO CASE
CASE stop = '0'
RETURN
OTHERWISE
ENDCASE
DO CASE
CASE choice = 'U PROCS'
CLEAR
USE U PROC S
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@2,33 SAY TITLE
@ 4,1 SAY "RECORD

@ 4,11 SAY count
store count + 1 to count
@ 6,1 SAY "ACCESS NAME:"
@ 6,28 SAY U NAME
@ 7,1 SAY "IMENTIFICATION NAME:"
@ 7,28 SAY S NAME
@ 9, 1 SAY "1 7r
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
CASE choice = 'S PROC P'
USE S PROC P
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 2,33 SAY TITLE

180

4u >[' ' .:i '. ' "

@ 4,1 SAY "RECORD

@ 4,11 SAY count
store count + 1 to count
@6,1 SAY "ACCESS NAME:"
@ 6,28 SAY S NAME
@ 7,1 SAY "IDENTIFICATION NAME:"
@ 7,28 SAY P NAME
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
CASE choice = 'PPROC F'
USE P PROC F
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 2,33 SAY TITLE
@ 4,1 SAY "RECORD

@ 4,11 SAY count
store count + 1 to count
@ 6,1 SAY "ACCESS NAME:"
@ 6,28 SAY P NAME
@ 7,1 SAY "IENTIFICATION NAME:"., A
@7,28 SAY F NAME
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
CASE choice = 'P PROC R'
USE P PROC R
STORE-1 TO -count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 2,33 SAY TITLE
@4,1 SAY "RECORD

@ 4,11 SAY count
store count + 1 to count
@ 6,1 SAY "ACCESS NAME:"
@6,28 SAY P NAME
@ 7,1 SAY "IDENTIFICATION NAME:"
@ 7,28 SAY R NAME
@ 8,1 SAY "COMMENTS:"'
DISPLAY OFF COMMENTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
ENDCASE
• MODULE NAME: 1.2.2.0.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0
* ROUTINES THAT THE MODULE CALLS:TBD, MAIN
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL.
• hold: USED TO STOP ACTION FOR USER DECISION.
• INPUT FILE: MEM VAR.
• OUTPUT FILE: MER VAR.
* DESIGNED BY: ROBERT A. KIRSCH II
• WRITTEN BY: ROBERT A. KIRSCH II
• BASIC FUNCTION OF MODULE:
• THIS MODULE ALLOW THE USER TO CHOOSE WHICH RELATIONSHIP HE WOULD
• LIKE TO DELETE TUPLES FROM.

181

- - - -"-.."- -

* do while .t.
ERASE mem-var.mem
CLEAR
@ 0,1 SAY 11.2.2.0.0.0-
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,29 SAY "RELATIONSHIP OUTPUT"
@ 5,9 SAY "1) USER CONTAINS SYSTEM 8) FILE CONTAINS REC"j@ 5,64 SAY "IORDS" '

@ 7,9 SAY "2) SYSTEM CONTAINS PROGRAM 9) RECORD CONTAINS E"
@ 7,64 SAY "LEMENT"
@ 9,9 SAY "13) PROGRAM PROCESSES FILE 10) USER RESPONSIBLE"
@ 9,64 SAY "FOR SYSTEM" - ,

@ 11,9 SAY "4) PROGRAM PROCESSES RECORD 11) USER RESPONSIBLE"
@ 11,64 SAY "FOR FILE"
@ 13,9 SAY "O5) PROGRAM PROCESSES ELEMENT 12) PROGRAM PRODUCES"
@ 13,64 SAY "DOCUMENT"
@ 15,9 SAY "6) SYSTEM CONTAINS PROGRAM 13) RETURN TO PREVIOU"
@ 15,64 SAY "S MENU"
@ 17,9 SAY "17) PROGRAM CONTAINS MODULE 14) RETURN TO MAIN ME"
@ 17,64 SAY "NU"
@18,22 SAY " "
ACCEPT ' ENTER YOUR CHOICE (1-14) FROM ABOVE:'TO choice
DO CASE
CASE choice = "1"
store 'U PROC S' to choice
store 'USER PROCESSES SYSTEM' TO title
save to mem var
do 122100
CASE choice = "2"
store 'S PROC P' to choice
store 'SYSTEM-PROCESSES PROGRAM' TO title
save to mem var
do 122100
CASE choice = "3"
store 'P PROC F' to choice
store 'PROGRAM PROCESSES FILE' TO title
save to mem var
do 122100
CASE choice = "4"
store 'P PROC R' to choice
store 'PROGRAM PROCESSES RECORD' TO title
save to mem var
do 122100
CASE choice = "5"
store 'P PROC E' to choice
store 'PROGRAM PROCESSES ELEMENT' TO title
save to mem var
do 122100
CASE choice = "6"
store 'S CONT P' to choice
store 'SYSTEM-CONTAINS PROGRAM' TO title
save to mem var
do 122100
CASE choice = "7"
store 'P CONT M' to choice
store 'PROGRAM CONTAINS MODULE' TO title
save to mem var
do 122100
CASE choice = "8"
store 'F CONT R' to choice
store 'FTLE CUNTAINS RECORD' TO title
save to mem var
do 122100 -
CASE choice = "9"
store 'R CONT E' to choice
store 'RKCORD-CONTAINS ELEMENT' TO title
save to mem-var

182

do 122100
store 'U RESP 5' to choice
CASE choice = "10"

store 'USER RESPONSIBLE FOR SYSTEM' TO title
save to mem var
do 122100 -
CASE choice = "11"
store 'U RESP F' to choice
store 'U3ER RESPONSIBLE FOR FILE' TO title
save to memvar
do 122100
CASE choice = "12"1
store 'P PROD D' to choice
store 'PROGRAR PRODUCES DOCUMENT' TO title A'-
save to mem var
do 122100
CASE choice = "13"
RETURN
CASE choice = "14"
RETURN TO MASTER
OTHERWISE ,.

CLEAR
@ 1,21 SAY choice : .: :
@ 1,28 SAY "IS NOT A VALID CHOICE"
@ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 14 ONLY"
@ 3,20 SAY "PRESS RETURN TO TRY AGAINI",
ACCEPT TO hold
ENDCASE
ENDDO
RETURN

183

a

122120.PRG
* MODULE NAME: 1.2.2.1.2.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.2.2.1.0.0
* ROUTINES THAT THE MODULE CALLS:1.2.2.1.0.0
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* count : USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED.
* hold : USED TO STOP ACTION FOR USER DECISION.
* option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN

OR THE PRINTER.* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.

INPUT FILES: HEM VAR P PROC E, S CONT P, P CONT M, F CONT R.,'i
OUTPUT FILES: MER VAR.-

* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE WILL DISPLAY THE NEXT FOUR RELATIONSHIP TO THE SCREEN.

RESTORE FROM mem-var
CLEAR
@ 0,1 SAY "1.2.2.1.2.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,28 SAY "RELATIONSHIP SCREEN OUTPUT"
@ 5,22 SAY "THIS MODULE WILL DISPLAY" ,,.-
@ 7,23 SAY TITLE ., .
@ 9,22 SAY "IF YOU DO NOT WISH TO DISPLAY" i....

@ 10,22 SAY "THIS RELATIONSHIP, TYPE '0' TO"
@ 11,22 SAY "RETURN TO THE PREVIOUS MENU."
WAIT TO stop
DO CASE
CASE stop = '0'
RETURN
OTHERWISE .-
ENDCASE "..
DO CASE
CASE choice = 'P PROCE'.CLEAR - -
USE P PROC E
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 2,33 SAY TITLE
@ 4,1 SAY "RECORDIf

@ 4,11 SAY count
store count + 1 to count
@ 6,1 SAY "ACCESS NAME:"
@ 6,28 SAY P NAME
@ 7,1 SAY "IENTIFICATION NAME:"
@ 7,28 SAY E NAME
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
CASE choice = 'SCONT-P'
USE S CONT P C P
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 2,33 SAY TITLE
@ 4,1 SAY "RECORD

184

%V1-.,,w V% v---.- rv - -. -wv

@ 4,11 SAY count
store count + 1 to count
@ 6,1 SAY "ACCESS NAME:"
@ 6,28 SAY S NAME
@ 7,1 SAY "IDENTIFICATION NAME:"
@ 7,28 SAY P NAME
ACCEPT 'PRESs RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
CASE choice = 'P_CONTM'
USE P CONT M
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 2,33 SAY TITLE
@4,1 SAY "RECORD

@ 4,11 SAY count
store count + 1 to count *.K-
@ 6,1 SAY "ACCESS NAME:"
@ 6,28 SAY P NAME
@ 7,1 SAY "IENTIFICATION NAME:"
@ 7,28 SAY M NAME
ACCEPT 'PRESs RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
CASE choice = 'F_CONT_R'
USE F CONTR
STORE-1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 2,33 SAY TITLE
@ 4,1 SAY "RECORD

@ 4,11 SAY count
store count + 1 to count
@ 6,1 SAY "ACCESS NAME:"
@ 6,28 SAY F NAME
@ 7,1 SAY "IENTIFICATION NAME:"
@ 7,28 SAY R NAME
@ 8,1 SAY "CUMMENTS•"
DISPLAY OFF COMMENTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
ENDCASE

185

* 122130.PRG
* MODULE NAME: 1.2.2.1.3.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.2.2.1.0.0
* ROUTINES THAT THE MODULE CALLS:1.2.2.1.0.0
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL.

hold: USED TO STOP ACTION FOR USER DECISION.
count: KEEPS TRACK OF ACCOUNT NUMBERS.

* option:
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE WILL DISPLAY ON THE FIRST THREE RELATIONSHIP
* RELATIONS

SET EXACT ON
set color to 0/3,3
set talk off
set menu on
SET EXACT ON
RESTORE FROM mem var
CLEAR
@ 0,1 SAY 111.2.2.1.3.0" 1
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,28 SAY "RELATIONSHIP SCREEN OUTPUT"
@ 5,22 SAY "THIS MODULE WILL DISPLAY"
@ 7,23 SAY TITLE
@ 9,22 SAY "IF YOU DO NOT WISH TO DISPLAY"
@ 10,22 SAY "THIS RELATIONSHIP, TYPE '0' TO"
@ 11,22 SAY "RETURN TO THE PREVIOUS MENU."
WAIT TO stop
DO CASE
CASE stop = '0'
RETURN
OTHERWISE
ENDCASE
DO CASE
CASE choice = 'RCONTE'
CLEAR
USE R CONT E
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 2,33 SAY TITLE
@ 4,1 SAY "RECORD
I'

@ 4,11 SAY count
store count + 1 to count
@ 6,1 SAY "ACCESS NAME:"
@ 6,28 SAY R NAME
@ 7,1 SAY "IMENTIFICATION NAME:"
@ 7,28 SAY E NAME
ACCEPT 'PRES9 RETURN TO SEE NEXT TUPLE'TO holdSKIP
ENDDO
RETURN
CASE choice = 'URESPS'-
USE U RESP S
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR

2,33 SAY TITLE
*4,1 SAY "RECORD

186

@ 4,11 SAY count
store count + 1 to count
@ 6,1 SAY "ACCESS NAME:"
@ 6,28 SAY U NAME
@ 7,1 SAY "IDENTIFICATION NAME:"
@ 7,28 SAY S NAME
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLEITO hold .SKIP
ENDDO
RETURN
CASE choice = 'URESP_F'
USE U RESP F
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 2,33 SAY TITLE
@ 4,1 SAY "RECORD

@ 4,11 SAY count
store count + 1 to count
@ 6,1 SAY "ACCESS NAME-" .--. -
@ 6,28 SAY U NAME
@ 7,1 SAY "IDENTIFICATION NAME:"
@ 7,28 SAY F NAME
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
CASE choice = 'P PROD D'
USE P PROD D
STORE- TO-count ..
SET HEADING OFF, -
DO WHILE .NOT. EOF()
CLEAR
@ 2,33 SAY TITLE
@ 4,1 SAY "RECORD

@ 4,11 SAY count
store count + 1 to count
@ 6,1 SAY "ACCESS NAME:"
@6,28 SAY P NAME
@ 7,1 SAY "IDENTIFICATION NAME:"
@ 7,28 SAY D NAME
@ 8,1 SAY "COMMENTS:"
DISPLAY OFF COMMENTS
ACCEPT 'PRESS RETURN TO SEE NEXT TUPLE'TO hold
SKIP
ENDDO
RETURN
ENDCASE

187

i- r

122140. PR

. . , .p

* 122140.PRG e,.
MODULE NAME: 1.2.1.1.4.0

* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.2.1.1.0.0
* ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* count : USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED.
* stop, hold : USED TO STOP ACTION FOR USER DECISION.
*option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN
* OR THE PRINTER. .. '

* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* INPUT FILES: MEM VAR.
* OUTPUT FILES: MER VAR.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE WILL OUTPUT THE USER, SYSTEM, PROGRAM AND MODULE
* RELATION FILES TO THE PRINTER.

RESTORE FROM mem var
STORE 0 TO rec nm, stop
CLEAR
@ 0,1 SAY "1.2.1.1.4.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,27 SAY "RELATIONSHIP PRINTER OUTPUT"
@ 6,23 SAY "THIS MODULE WILL PRINT"
@ 8,24 SAY TITLE

10,23 SAY "PLEASE INSURE THAT YOUR PRINTER"
@ 11,23 SAY "IS TURNED ON AND IN THE ONLINE"
@ 12,23 SAY "1MODE"1
@ 14,23 SAY "IF YOU DO NOT WISH TO PRINT"
@ 15,23 SAY "THIS RELATIONSHIP, TYPE '0' TO"
@ 16,23 SAY "RETURN TO THE PREVIOUS MENU"
WAIT TO stop
DO CASE
CASE stop = '0'
RETURN
OTHERWISE
ENDCASE
SET DEVICE TO PRINT
SET CONSOLE OFF
DO CASE
CASE choice = 'U PROC'
USE U PROCS
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD
,1

@ 2,11 SAY count
store count + i to count
@ 4,1 SAY "ACCESS NAME :"
@ 4,28 SAY U NAME
@ 5,1 SAY "IENTIFICATION NAME:"
@ 5,28 SAY S-NAME
SKIPENDDO
CASE choice = 'SPROCP'
USE S PROC P
STORE- TOcount
SET HEADING OFF

188

DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY S NAME

*, @ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY P NAME
SKIP
ENDDO
CASE choice = 'P PROCF'
USE P PROC F
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY P NAME
@ 5,1 SAY "IENTIFICATION NAME:"
@ 5,28 SAY FNAME
SKIP
ENDDO "• "-
CASE choice = 'PPROCR' .* -
USE P PROC R
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY P NAME
@ 5,1 SAY "IENTIFICATION NAME:"
@ 5,28 SAY R-NAME
SKIP
ENDDO
ENDCASE
SET DEVICE TO SCREEN
SET CONSOLE ON
RETURN

189

L j

* 122000.PRG

a'

a'

'a

p. ___

F

-

I,

a'

190

4

- P

122150.PRG
* MODULE NAME: 1.2.1.1.5.0

INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.2.1.1.0.0
* ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,

MODIFIED, DELETED FROM OR OUTPUT.
* count : USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED.
* hold : USED TO STOP ACTION FOR USER DECISION.
• option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN

OR THE PRINTER.
St : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

LOOP.
* INPUT FILE: P PROC E. SCONT P, P CONTM, F CONT R.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
• BASIC FUNCTION OF MODULE:

* THIS MODULE WILL OUTPUT THE NEXT FOUR RELATIONSHIP
* RELATION FILES TO THE PRINTER.

RESTORE FROM mem var
STORE 0 TO rec num, stop
CLEAR
@0 ,1 SAY "1.2.1.1.5.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,27 SAY "RELATIONSHIP PRINTER OUTPUT"
@ 6,23 SAY "THIS MODULE WILL PRINT"
@ 8,24 SAY TITLE
@ 10,23 SAY "PLEASE INSURE THAT YOUR PRINTER"
@ 11,23 SAY "IS TURNED ON AND IN THE ONLINE"
@ 12,23 SAY "MODE""
@ 14,23 SAY "IF YOU DO NOT WISH TO PRINT"
@ 15,23 SAY "THIS RELATIONSHIP, TYPE '0' TO" P-
@ 16,23 SAY "RETURN TO THE PREVIOUS MENU"
WAIT TO stop
DO CASE
CASE stop = '0'
RETURN
OTHERWISE
ENDCASE
SET DEVICE TO PRINT
SET CONSOLE OFF
DO CASE
CASE choice = 'P PROC_E'
USE P PROC E
STORE-1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@4,1 SAY "ACCESS NAME:
@ 4,28 SAY P NAME
@ 5,1 SAY "IENTIFICATION NAME:"
@ 5,28 SAY ENAME
SKIPENDDO
CASE choice = 'S_CONT_P'
USE S CONTP
STORE-1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()

191

CLEAR
@0,33 SAY CHOICE
@ 2:1 SAY "RECORD'S I
@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY S NAME
@ 5,1 SAY "I]ENTIFICATION NAME:"
@ 5,28 SAY P NAME
SKIP
ENDDO
CASE choice = 'P_CONT_M'
USE P CONT M
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY P NAME
@ 5,1 SAY "IENTIFICATION NAME."
@ 5,28 SAY M-NAME
SKIP
ENDDO
CASE choice = 'F CONT R'
USE F CONT R
STORE-1 TO-count
SET HEADING OFF
DO WHILE NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD
@ 2,11 SAY count
store count + 1 to count
@, 1 SAY "ACCESS NAME:"
@ 4,28 SAY F NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5:28 SAY R NAME
SKIP
ENDDO 9'

ENDCASE
SET DEVICE TO SCREEN
SET CONSOLE ON
RETURN

192

'

,,4

A-w'

R-.... .22 A RELATIONAL DATA DICTIONARY COMPATIBLE WITH THE L3
NATIONAL BUREAU OF STAN.. CU) NAVAL POSTORROURTE SCHOOL
MONTEREY CA R A KIRSCH DEC 85

UNCLSSIFIED F/G 5/2 N

ENOMONEEhhf
Ehh~mhhmm u

"L3.

*~~ II A 1 .

L as
1.2 1 1.4 11.6

MICROCOPY RESOLUTION~ TEST CHANT
"'ARWJ"Il n)F "ANDAQIM 1*3-A

* 122160.PRG
* MODULE NAME: 1.2.1.1.6.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.2.1.1.0.0
* ROUTINES THAT THE MODULE CALLS:1.2.1.1.0.0
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* count : USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED.
* hold : USED TO STOP ACTION FOR USER DECISION.
* option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN

OR THE PRINTER.
t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES

* LOOP.
* INPUT FILES: RCONTE, URESP_S, URESP_F, P PREDD. ,C

* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE WILL OUTPUT THE LAST FOUR RELATIONSHIP FILES TO THE PRINTER.

RESTORE FROM mem var
STORE 0 TO rec_num, stop
CLEAR
@ 0,1 SAY "1.2.1.1.6.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,27 SAY "RELATIONSHIP PRINTER OUTPUT"
@ 6,23 SAY "THIS MODULE WILL PRINT!'
@ 8,24 SAY TITLE
@ 10,23 SAY "PLEASE INSURE THAT YOUR PRINTER"
@ 11,23 SAY "IS TURNED ON AND IN THE ONLINE"
@ 12,23 SAY "MODE"
@ 14,23 SAY "IF YOU DO NOT WISH TO PRINT"
@ 15,23 SAY "THIS RELATIONSHIP. TYPE '0' TO"
@ 16,23 SAY "RETURN TO THE PREVIOUS MENU"
WAIT TO stop
DO CASE
CASE stop = '0'
RETURN
OTHERWISE
ENDCASE
SET DEVICE TO PRINT
SET CONSOLE OFF
DO CASE
CASE choice = 'RCONTE'
USE R CONT E
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

8 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY R NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY ENAME
SKIP!NDDO
CASE choice m 'U RESPS'

4r. USE U RESP S
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()

193

I .. I I I

CLEAR
S0,33 SAY CHOICE
@ 2,1 SAY "RECORD
if

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"

4,28 SAY U NAME
@ 5,1 SAY "IDENTIFICATION NAME'"
@ 5,28 SAY SNAME
SKIPENDDO
CASE choice = 'URESP_F'
USE U RESP F
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:"
@ 4,28 SAY U NAME
@ 5,1 SAY "IDENTIFICATION NAME:"
@ 5,28 SAY F NAME
SKIPENDDO
CASE choice = 'P_PROD_D'
USE P PROD D
STORE-1 TO-count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,33 SAY CHOICE
@ 2,1 SAY "RECORD
Is

@ 2,11 SAY count
store count + 1 to count
@ 4,1 SAY "ACCESS NAME:1"
@ 4,28 SAY P NAME
@ 5,1 SAY "IDENTIFICATION NAME•"
@ 5,28 SAY DNAME
SKIPENDDO
ENDCASE
SET DEVICE TO SCREEN
SET CONSOLE ON
RETURN

1ft4

* 130000.PRG
* MODULE NAME: 1.3.0.0.0.0
* ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0
* ROUTINES THAT THE MODULE CALLS: 1.3.1.0.0.0, 1.3.2.0.0.0, 1.3.3.0.0.0
* 1.3.4.0.0.0, 1.3.5.0.0.0, 1.3.6.0.0.0, MAIN
* LOCAL VARIABLES USED:
* choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL.
* hold: USED TO STOP ACTION FOR USER DECISION.
* name: CONTAINS THE ENTITY RELATION NAME.
* entity1: CONTAINS THE ACCESS-NAME FOR THE ENTITY RELATION BEING ?
* QUERIED.
* OUTPUT FILE: MEM VAR.
* DESIGNED BY: RONERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RALATION
* AND ACCESS NAME VALUE THAT WILL BE USED IN THE QUERY

set color to 0/3,3
set talk off
SET EXACT ON
ERASE memvar.mem
CLEAR
STORE .t. TO true
do while true
CLEAR
@ 0,1 SAY "1.3.0.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ 5,11 SAY "ENTITY-1 RELATIONSHIP ENTITY"
@ 5,66 SAY "1-2"1
@ 8,10 SAY "1) USER"
@ 9,10 SAY "2) SYSTEM"
@ 10,10 SAY "3 PROGRAM"
@ 11,10 SAY "4 MODULE"
@ 12,10 SAY "5 DOCUMENT"
@ 13,10 SAY "6 FILE"
@ 14,10 SAY "7 RECORD"
@ 15,10 SAY "8) ELEMENT"
@ 16,10 SAY "9 RETURN TO PREVIOUS MENU"
@ 17,9 SAY "10 RETURN TO MAIN MENU"
@ 18,4 SAY " "
ACCEPT' ENTER YOUR CHOICE (1-10) FROM ABOVE: 'TO choice
STORE .f. TO true
DO CASE
CASE choice = "1"
STORE 'USER' TO name
CASE choice = "2"
STORE 'SYSTEM' TO name
CASE choice = "3"
STORE 'PROGRAM' TO name
CASE choice = "4"
STORE 'MODULE' TO name
CASE choice z "5"
STORE 'DOCUMENT' TO name
CASE choice = "6"
STORE 'FILE' TO name
CASE choice - "7"
STORE 'RECORD' TO name
CASE choice a "8'"
STORE 'ELEMENT' TO name
CASE choice a "9"
RETURN
CASE choice - "10"
RETURN TO MASTER
OTHERWISE C
CLEAR

195

" A

@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAINI"
ACCEPT TO hold
STORE .t. TO true
ENDCASE
ENDDO
STORE 'N' TO correct
DO WHILE correct = 'N'
CLEAR
STORE ' ' TO entityl
@ 1,1 SAY "1.3.0.0.0.0"
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,35 SAY "QUERY MENU"
@6,12 SAY name
@ 6,31 SAY "RELATIONSHIP ENTITY-2"
@ 8,4 SAY "ENTER THE ACCESS-NAME FOR"
@8,31 SAY name
@ 9,4 SAY "YOU WISH TO QUERY ON"
@ 9,26 GET entityl
@ 10,4 SAY "AND PRESS RETURN"
READ
STORE 'Y' TO correct
@ 13,3 SAY "IS THIS THE ENTITY YOU WISH TO QUERY ON"
@ 13,44 SAY ENTITY1
@ 13,56 SAY "Y OR N"
@ 13,64 GET correct
READ
ENDDO
DO CASE
CASE choice = "1"
STORE 'USER' TO choice
STORE 100 TO selection
SAVE TO mem var
do 131000
CASE choice = "2"
STORE 'SYSTEM' TO choice
STORE 200 TO selection
SAVE TO mem var
do 132000
CASE choice = "3"
STORE 'PROGRAM' TO choice
STORE 300 TO selection
SAVE TO mem var
do 133000
CASE choice - "4"
STORE 'MODULE' TO choice
STORE 400 TO selection
SAVE TO mem var
do 134000
CASE choice = "S"
STORE 'DOCUMENT' TO choice
STORE S00 TO selection
SAVE TO mem var
do 135000
CASE choice - "6"
STORE 'FILE' TO choice
STORE 600 TO selection
SAVE TO mem var
do 136000 -
CASE choice a "7"
STORE 'RECORD' TO choice
STORE 700 TO selection
SAVE TO mee var
do 137000 -
CASE choice a "8"
STORE 'ELEMENT' TO choice
STORE 800 TO selection
SAVE TO mev-ar

196

do 138000
ENDCASE

*19

* 131000.PRG
* MODULE NAME: 1.3.1.0.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE

' ROUTINES THAT CALL THE MODLUE- 1.3.0.0.0.0
* ROUTINES THAT THE MODULE CALLS: 1.3.1.1.0.0, 1.3.1.2.0.0
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED.
* hold ; USED TO STOP ACTION FOR USER DECISION.
* entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
* IN A QUERY STRING.
* rel ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
* VALUE IN A QUERY STRING.
* true : USED AS A BOOLEAN VALUE IN LOOPS.
* correct : USED AS TO HOLD USER'S CHOICE FOR LOOP TERMINATION.
SELECTION : USED TO HOLD THE VALUE IDENTIFYING WHICH QUERY TO EXECUTE.
INPUT FILES: MEM VAR

" OUTPUT FILES: MEN VAR
* mem var.mem : USED TO TEMPORARILY STORE THE MEMORY VARIABLE VALUES.* tem .dbf : USED TO STORE THE RESULT OF QUERY EXECUTION.

DES ED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP
* VALUE WILL BE USED IN THE QUERY

RESTORE FROM mem var
ERASE mem-var.mem
CLEAR
STORE 'N' TO correct
DO WHILE correct = 'N'
STORE .t. TO true
do while true
CLEAR
@ 0,1 SAY "1.3.1.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ 5,11 SAY entityl
@ 5,33 SAY "RELATIONSHIP ENTITY-2"
@ 8,32 SAY "1) CONTAINS"
@ 9 32 SAY "2) IS RESPONSIBLE FOR"
@ 16,32 SAY "3) RETURN TO PREVIOUS MENU"
@ 11,4 SAY " "
ACCEPT' ENTER YOUR CHOICE (1-3) FROM ABOVE: 'TO choice
STORE .f. TO true
DO CASE
CASE choice = "1"
STORE 'CONTAINS ' TO relship
CASE choice = "2"
STORE 'IS RESPONSIBLE FOR' TO rel ship
CASE choice = "3"-
RETURN
OTHERWISE
CLEAR
@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAINI"
ACCEPT TO hold
STORE .t. TO true
ENDCASE
ENDDO
CLEAR
* 0,1 SAY "1.3.1.0.0.0"
8 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
f 3,35 SAY "QUERY MENU"

5,12 SAY entityl
5,32 SAY rel ship

* 5. 54 SAY "ENTITY-2"
STOAE 'Y' TO correct

198

@ 10,3 SAY "IS THIS THE RELATIONSHIP THAT"
* 11,3 SAY "YOU WISH TO QUERY ON"

11,25 SAY rel ship
@ 12,3 SAY "Y O N"
@ 12,11 GET correct
READ
ENDDO
DO CASE
CASE choice = "1"
STORE 'PROCESSES' TO choice
STORE selection + 10 TO selection
SAVE TO mem var
do 131100
CASE choice = "2"
STORE 'IS RESPONSIBLE FOR' TO choice
STORE selection + 20 TO selection
SAVE TO mem var
do 131200
ENDCASE

4%

i19

199

* 131100.PRG
* MODULE NAME: 1.3.1.1.0.0* ROUTINES THAT CALL THE MODLUE: 1.3.1.0.0.0
* ROUTINES THAT THE MODULE CALLS: 1-.3.1.0.0.0
* LOCAL VARIABLES USED:
* choice CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* entityl z CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE

IN A QUERY STRING.
* entityl2: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE SECOND VALUE
* IN A QUERY STRING.
* hold : USED TO STOP ACTION FOR USER DECISION.

rel ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
* - VALUE IN A QUERY STRING.

t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* true : USED AS A BOOLEAN VALUE IN LOOPS.* INPUT FILES: MEM VAR.
* OUTPUT FILES: MEN VAR.* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RALATION
* AND ACCESS NAME VALUE THAT WILL BE USED IN THE QUERY

set color to 0/3,3
set talk off
SET EXACT ON
ERASE memvar.mem
CLEAR
STORE 'N' TO correct
DO WHILE correct = 'N'
STORE .t. TO true
do while true
CLEAR
@ 0,1 SAY "1.3.1.1.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3 ,35 SAY "QUERY MENU--
a 5,12 SAY entitY1@ 5,34 SAY re1 s~ip
@ 5,60 SAY "ENTITY-2"
@ 8,54 SAY "1) SYSTEM"
@ 9,54 SAY "2) RETURN TO PREVIOUS"
@ 10,59 SAY "MENU"
@ 11,4 SAY " "
ACCEPT' ENTER YOUR CHOICE (1-2) FROM ABOVE: 'TO choice
STORE .f. TO true
DO CASE
CASE choice = "1"
STORE 'SYSTEM' TO entity2
CASE choice = "2"
RETURN
OTHERWISE
CLEAR
@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 2 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold
STORE .t. TO true
ENDCASE
ENDDO
CLEAR
@ 0,1 SAY "1.3.1.1.0.0"1
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ 5,12 SAY entity1
@ 5,32 SAY rel ship
1 5 59 SAY entlty2
STOE 'Y' TO correct
@ 8,3 SAY "IS THIS THE ENTITY YOU WISH TO QUERY ON"

200

*8,44 SAY entity2
@ 8,56 SAY "Y OR N"
@ 8,64 GET correct
READ
ENDDO
DO CASE
CASE choice = 1"1
SAVE TO mem var
SELECT 2
USE SYSTEM
SELECT 1
USE U PROC S
JOIN WITH 3YSTEM TO TEMP FOR U NAME =eritityl .AND. SNAME=
SYSTEM->ACC NAME FIELDS ID NAME, DESCRIPT
SELECT 2
USE
SELECT 1
USE
do 139000
ENDCASE

201

* 131200. PRG
* MODULE NAME: 1.3.1.2.0.0 . %...

* ROUTINES THAT CALL THE MODLUE: 1.3.1.0.0.0
* ROUTINES THAT THE MODULE CALLS: 1.3.1.0.0.0
* LOCAL VARIABLES USED:

choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE , .
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS
* CORRECT OR NOT.

entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
* IN A QUERY STRING.
* entity2 : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE SECOND VALUE
* IN A OUERY STRING.
* hold : USED T0 STOP ACTION FOR USER DECISION.
* rel ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP , . .,"

* - VALUE IN A QUERY STRING.
true : USED AS A BOOLEAN VALUE IN LOOPS. "'-.
INPUT FILES: MEM VAR. --
OUTPUT FILES: HER VAR..

* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:

THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RALATIONSHIP
THAT WILL BE USED IN THE QUERY

ERASE memvar.mem .
CLEAR
STORE 'N' TO correct
DO WHILE correct = 'N'
STORE .t. TO true
do while true
CLEAR
@ 0,1 SAY "1.3.1.1.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ 5,11 SAY "ENTITY-i RELATIONSHIP ENTITY"
@ 5,66 SAY "-2"
@ 8,54 SAY "1) SYSTEM"
@ 9,54 SAY"2) FILE"
@ 10,54 SAY "3) RETURN TO PREVIOUS"
@ 11,59 SAY "MENU"
@ 12,4 SAY " "
ACCEPT' ENTER YOUR CHOICE (1-10) FROM ABOVE: 'TO choiceSTORE .f. TO true
DO CASE "
CASE choice = "1"
STORE 'SYSTEM' TO name
CASE choice = "2" -
STORE 'FILE' TO name
CASE choice = "3""
RETURN
OTHERWISE
CLEAR
@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold
STORE .t. TO true
ENDCASE
ENDDO
CLEAR
@ 0,1 SAY "1.3.1.2.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ 5,12 SAY entity1
@ 5,32 SAY rel ship
@ 5 59 SAY name
STORE 'Y' TO correct

202

@ 8,3 SAY "IS THIS THE ENTITY YOU WISH TO QUERY ON"
@ 8,44 SAY name
@ 8,56 SAY 11Y OR N11
@ 8,64 GET correct
READ

DO CASE .
CASE choice = 1"1
SELECT 2
USE SYSTEM
SELECT 1
USE U RESP S
JOIN W1ITH 9YSTEM TO TEMP FOR UNAME =ENTITY1 AND. SNAME =SYSTEM-> ACC NAME;
FIELDS ID NAME, DESCRIPT
SELECT 2
USE
SELECT 1
USE
DO 139000
CASE choice = "2"
SELECT 2 h
USE FILE
SELECT 1
USE U RESP F
JOIN WITH 9YSTEM TO TEMP FOR UNAME =ENTITY1 .AND. S NAME =SYSTEM-> ACCNAME;
FIELDS IDNAME, DESCRIPT: -

SELECT 2 -..
USE
SELECT 1
USE - .

DO 139000
ENDCASE* -

203

* 132000.PRG
* MODULE NAME: 1.3.2.0.0.0
* ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0
* ROUTINES THAT THE MODULE CALLS: MAIN
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
, * CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,

* MODIFIED, DELETED FROM OR OUTPUT.
correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS

* CORRECT OR NOT.
* entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
* IN A QUERY STRING.
relship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP

* VALUE IN A QUERY STRING.
*true USED AS A BOOLEAN VALUE IN LOOPS.

* INPUT FILES: MEM VAR.
* OUTPUT FILES: MER VAR.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RALATIONSHIP
* THAT WILL BE USED IN THE QUERY

set color to 0/3,3
set talk off
SET EXACT ON
RESTORE FROM mem var
ERASE memvar.mem
CLEAR
STORE 'N' TO correct
DO WHILE correct = 'N'
STORE .t. TO true
do while true
CLEAR
@ 0,1 SAY "1.3.2.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ 5,11 SAY entityl
@ 5,33 SAY "RELATIONSHIP ENTITY-2"
@ 7,29 SAY "1) PROCESSES"
@ 9,29 SAY "2) IS PROCESSED BY"
@ 11,29 SAY "3) CONTAINS"
@ 13,29 SAY "4) RETURN Td PREVIOUS MENU"
@ 14,4 SAY " "
ACCEPT' ENTER YOUR CHOICE (1-4) FROM ABOVE: 'TO choice
STORE .f. TO true
DO CASE

.' CASE choice = "11
STORE 'PROCESSES' TO relship
CASE choice = "2"
STORE 'IS PROCESSED BY' TO relship
CASE choice = "3"
STORE 'CONTAINS' TO rel.ship
CASE choice = "4"
RETURN• OTHERWISE
CLEAR
@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 4 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAINI"
ACCEPT TO hold
STORE .t. TO true
ENDCASE
ENDDO
CLEAR
@ 0,1 SAY "1.3.2.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ 5,12 SAY entityl

204

VIA 11.1_

@ 5,32 SAY rel ship p .p
@ 5,58 SAY "ENTITY-2".
@ 7,4 SAY "IS THIS THE RELATIONSHIP"
@ 8,4 SAY "THAT YOU WISH TO QUERY ON"
@ 8,31 SAY rel ship
@ 9,4 SAY "Y OR N"
@ 9,12 GET correct
READ
ENDDO
DO CASE
CASE choice
STORE selection + 10 TO selection
SAVE TO mem var
do 132100
CASE choice = "2"
STORE selection + 20 TO selection
SAVE TO mem var
do 132200 - -.
CASE choice = "31
STORE selection + 30 TO selection
SAVE TO mem var
do 132300
ENDCASE

2'05

i

205

133000.PRG
* MODULE NAME: 1.3.3.0.0.0

ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0
* ROUTINES THAT THE MODULE CALLS: MAIN
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE

7* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
MODIFIED, DELETED FROM OR OUTPUT..ml

correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS
* CORRECT OR NOT.

entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
* IN A QUERY STRING.
* rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
* VALUE IN A QUERY STRING.
* true : USED AS A BOOLEAN VALUE IN LOOPS.
* INPUT FILES: MEM VAR.
* OUTPUT FILES: MEN VAR.
* DESIGNED-BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RALATION
* AND ACCESS NAME VALUE THAT WILL BE USED IN THE QUERY
*

RESTORE FROM mem var
ERASE memvar.mem
CLEAR
STORE 'N' TO correct
DO WHILE correct = 'N'
STORE .t. TO truedo while true
CLEAR
@ 0,1 SAY "1.3.3.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ 5,11 SAY entity1@ 5,33 SAY "RELATIONSHIP ENTITY-2"
@ 7,28 SAY "1) PROCESSES"
@ 9,28 SAY "2) IS PROCESSED BY"
@ 11,28 SAY "3) CONTAINS"
@ 13,28 SAY "4) PRODUCES"
@ 15,28 SAY "5) IS THE RESPONISBILITY OF"
@ 17,28 SAY "6) IS CONTAINED IN"
@ 19,28 SAY "7) RETURN TO PREVIOUS MENU"
@ 20,4 SAY " "
ACCEPT' ENTER YOUR CHOICE (1-7) FROM ABOVE: 'TO choice
STORE .f. TO true
DO CASE
CASE choice = "1"
STORE 'PROCESSES' TO rel-ship
CASE choice = "2"
STORE 'IS PROCESSED BY' TO rel_ship
CASE choice = "3"
STORE 'CONTAINS' TO rel-ship
CASE choice = "4"
STORE 'PRODUCES' TO rel-ship
CASE choice = "5"
STORE 'IS THE RESPONSIBILITY OF' TO relship
CASE choice = "6"
STORE 'IS CONTAINED IN' TO relship
CASE choice = "7"
RETURN
OTHERWISE
CLEAR
@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 7 ONLY"
@ 3 14 SAY "PRESS RETURN TO TRY AGAINI"
ACCEPT TO hold
STORE .t. TO true
ENDCASE

206

ENDDO
CLEAR
@ 0,1 SAY "1.3.3.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ S,12 SAY entity1
@ 5,32 SAY rel ship
@ 5,58 SAY "ENTITY-2"
@ 7,4 SAY "IS THIS THE RELATIONSHIP"
@ 8,4 SAY "THAT YOU WISH TO QUERY ON"
@ 8,31 SAY rel ship
@ 9,4 SAY "Y OR N"
@ 9,12 GET correct
READ
ENDDO
DO CASE
CASE choice = "1"
STORE selection + 10 TO selectionSAVE TO mem var
do 133100 -
CASE choice = "2"
STORE selection + 20 TO selectionSAVE TO mem var
do 133200 -
CASE choice = "3"
STORE selection + 30 TO selection

*_ SAVE TO mem var
do 133300 -
CASE choice = "4"
STORE selection + 40 TO selection
SAVE TO mem var

"-* do 133400
, CASE choice = "5"

STORE selection + 50 TO selection
SAVE TO mem.var
do 133500
CASE choice = "6"
STORE selection + 60 TO selection
SAVE TO mem.var
do 133600
ENDCASE

207

'Ii

4..

* 134000.PRG
* MODULE NAME: 1.3.4.0.0.0
* ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0
* ROUTINES THAT THE MODULE CALLS: MAIN
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS
* CORRECT OR NOT.
* entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
* IN A QUERY STRING.
* relship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
* VALUE IN A QUERY STRING.
* true - USED AS A BOOLEAN VALUE IN LOOPS.
* INPUT FILES: MEM VAR.
* OUTPUT FILES: MEH VAR.
* THIS MODULE ALLOW-THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE
* USED IN THE QUERY.

RESTORE FROM mem var
ERASE memvar.meim
CLEAR
STORE 'N' TO correct
DO WHILE correct = 'N'
STORE .t. TO true
do while true
CLEAR
@ 0,1 SAY "1.3.4.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ 5 ,11 SAY entity1
@ 5,33 SAY "RELATIONSHIP ENTITY-2"
@ 7,29 SAY "1) IS CONTAINED IN"
@ 9,29 SAY "2) IS PROCESSED BY"
@ 11,29 SAY "3) IS THE RESPONSIBILITY OF"
@ 13,29 SAY "4) RETURN TO PREVIOUS MENU"
.@ 14,4 SAY " "
ACCEPT' ENTER YOUR CHOICE (1-4) FROM ABOVE: 'TO choice
STORE .f. TO true
DO CASE
CASE choice = "1"
STORE 'IS CONTAINED IN' TO rel-ship
CASE choice = "2"
STORE 'IS PRODESSED BY' TO rel ship
CASE choice = "3"
STORE 'IS THE RESPONSIBILITY OF' TO rel ship
CASE choice = "4"-
RETURN
OTHERWISE
CLEAR
@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 4 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAINI"
ACCEPT TO hold
STORE .t. TO true
ENDCASE
ENDDO
CLEAR
@ 0,1 SAY "1.3.4.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ 5,12 SAY entityl
@ 5,32 SAY rel snip
@ 5,58 SAY "ENTITY-2"
@ 7,4 SAY "IS THIS THE RELATIONSHIP"
S8,4 SAY "THAT YOU WISH TO QUERY ON"
@ 8,31 SAY rel ship
@ 9,4 SAY 1Y OR N"1

208

@ 9,12 GET correctREAD
ENDDO
DO CASE -

CASE choice = g"li"
STORE selection + 10 TO selection
SAVE TO memvar
do 134100 II
CASE choice = "2"
STORE selection + 20 TO selection
SAVE TO mem var
do 134200 -

CASE choice = "3"
STORE selection + 30 TO selection
SAVE TO mem var
do 134300 -
ENDCASE

209

* 135000.PRG
* MODULE NAME: 1.3.5.0.0.0
* ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0
* ROUTINES THAT THE MODULE CALLS: MAIN
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.

* * correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS
* CORRECT OR NOT.
* entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
* IN A QUERY STRING.
*rel ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
* VALUE IN A QUERY STRING.
* true : USED AS A BOOLEAN VALUE IN LOOPS.
* INPUT FILES: MEM VAR.
" OUTPUT FILES: MEN VAR.

THIS MODULE ALLOW-THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE
* USED IN THE QUERY.
set color to 0/3,3
set talk off
SET EXACT ON .'"

RESTORE FROM mem var ,"
ERASE memvar.mem
CLEAR
STORE 'N' TO correct
DO WHILE correct = 'N'
STORE .t. TO true
do while true
CLEAR
@ 0,1 SAY "1.3.5.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@5,11 SAY entityl
@ 5,33 SAY "RELATIONSHIP ENTITY-2"
@ 8 28 SAY "1) IS PRODUCED BY"@ 16,28 SAY "2) RETURN TO PREVIOUS MENU"
@ 11,4 SAY

")
ACCEPT' ENTER YOUR CHOICE (1-2) FROM ABOVE: 'TO choice
STORE .f. TO true

z- DO CASE
CASE choice = "1"
STORE 'IS PRODUCED BY' TO relship
CASE choice = "2"
RETURN
OTHERWISE
CLEAR
@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN I AND 2 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold
STORE .t. TO true
ENDCASE
ENDDO
CLEAR
@ 0,1 SAY "1.3.5.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ 5,12 SAY entityl
@ 5,32 SAY rel snip
@ 5,58 SAY "ENTITY-2"
@ 7,4 SAY "IS THIS THE RELATIONSHIP"
@ 8,4 SAY "THAT YOU WISH TO QUERY ON"
@ 8,31 SAY rel ship@ 9,4 SAY "Y ON N11
@ 9 12 GET correct
RE6ENDDO
DO CASE

210

I,

CASE choice = "1"
STORE selection + 10 TO selection
SAVE TO mem var
do 135100

. ENDCASE

,2.

211

* 136000.PRG
* MODULE NAME: 1.3.6.0.0.0
* ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0
* ROUTINES THAT THE MODULE CALLS: MAIN
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS

* CORRECT OR NOT.
entity1 : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE

* IN A QUERY STRING. A
* rel ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP

VALUE IN A QUERY STRING.
true • USED AS A BOOLEAN VALUE IN LOOPS.

* INPUT FILES: MEM VAR.
* OUTPUT FILES: MEH VAR.
* THIS MODULE ALLOW-THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE" .
* USED IN THE QUERY.

RESTORE FROM mem var
ERASE mem var.mem
CLEAR
STORE 'N' TO correct
DO WHILE correct = 'N'
STORE .t. TO true
do while true
CLEAR
@ 0,1 SAY "1.3.6.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ 5,11 SAY entityl
@ 5,33 SAY "RELATIONSHIP ENTITY-2"
@ 7,28 SAY "1) CONTAINS"
@ 9,28 SAY "2) IS PROCESSED BY"
@ 11,28 SAY "3) IS THE RESPONSIBILITY OF"
@ 13,28 SAY "4) RETURN TO PREVIOUS MENU"@ 14,4 SAY "1 "ACCEPT' ENTER YOUR CHOICE (1-4) FROM ABOVE: 'TO choice

STORE .f. TO true
DO CASE
CASE choice = "1"
STORE 'CONTAINS' TO relship
CASE choice = "2"
STORE 'IS PROCESSED BY' TO rel-ship
CASE choice = "3"
STORE 'IS THE RESPONSIBILITY OF' TO relship
CASE choice = "4"
RETURN
OTHERWISE
CLEAR
@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 4 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAINI"
ACCEPT TO hold
STORE .t. TO true
ENDCASE
ENDDO
CLEAR
@ 0,1 SAY "1.3.6.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"

*@ 5,12 SAY entityl
* 5,32 SAY rel ship
@ 5 58 SAY "ENTITY-2"
@ 7@ 4 SAY "IS THIS THE RELATIONSHIP"
@ 8,4 SAY "THAT YOU WISH TO QUERY ON"
@ 8:31 SAY rel ship
@ 9,4 SAY "Y Ol N"

212

@ 9,12 GET correct
READ
ENDDO
SORCAE cto 10T seeio
CASE choice = 1"1

STORE "2"cio +1 TO selection

CASE choice =11211
*STORE selection + 30 TO selection

SAVE TO mem var
do 136300

- ENDCASE

21

* 137000.PRG
* MODULE NAME: 1.3.7.0.0.0
* ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0
* ROUTINES THAT THE MODULE CALLS: MAIN
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED IIALUE IS
* CORRECT OR NOT.
* entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
* IN A QUERY STRING.
* rel ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
* - VALUE IN A QUERY STRING.
* true : USED AS A BOOLEAN VALUE IN LOOPS.
* INPUT FILES: MEN VAR. P
* OUTPUT FILES: MEN VAR.
* THIS MODULE ALLOW-THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE
* USED IN THE QUERY.

RESTORE FROM mem var
ERASE mem var.memfi
CLEAR .
STORE 'N' TO correct
DO WHILE correct = 'N'
STORE .t. TO true
do while true
CLEAR
@ 0,1 SAY "1.3.7.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"S E "'-"
@ 3,35 SAY "QUERY MENU"
@ 5,11 SAY entityl
@ 5,33 SAY "RELATIONSHIP ENTITY-2"
@ 7,27 SAY "1) CONTAINS"
@ 9,27 SAY "2) IS CONTAINED IN"
@ 11,27 SAY "3) IS PROCESSED BY"
@ 13,27 SAY "4) IS THE RESPONSIBILITY OF"

15,27 SAY 1"5 RETURN TO PREVIOUS MENU"
@ 16,1 SAY " "
ACCEPT' ENTER YOUR CHOICE (1-5) FROM ABOVE:'TO choice
STORE .f. TO true
DO CASE
CASE choice = "1"
STORE 'CONTAINS' TO relship
CASE choice = "2"
STORE 'IS CONTAINED IN' TO rel ship
CASE choice = "3"-
STORE 'IS PROCESSED BY' TO relship
CASE choice = "4"
STORE 'IS THE RESPONSIBILITY OF' TO rel ship
CASE choice = "5"
RETURN
OTHERWISE
CLEAR
@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 5 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAIN!""
ACCEPT TO hold
STORE .t. TO true
ENDCASE
ENDDO
CLEAR
@ 0,1 SAY "1.3.7.0.0.0".
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"
@ 5,12 SAY entityl
* 5,32 SAY rel s ip
Q 5,58 SAY "ENTITY-2"
@ 7,4 SAY "IS THIS THE RELATIONSHIP"

214I!

@ 8,4 SAY "THAT YOU WISH TO QUERY ON"
@8,31 SAY rel ship "
@ 9,4 SAY "Y ON N"
@9,12 GET correct
READ
ENDDO
DO CASE
CASE choice = "1"
STORE selection + 10 TO selection
SAVE TO mem var
do 137100
CASE choice = "2"STORE selection + 20 TO selection
SAVE TO mem var
do 137200CASE choice = "3" -1

STORE selection + 30 TO selection
SAVE TO mem var
do 137300 -
CASE choice = "4"
STORE selection + 40 TO selection
SAVE TO mem var
do 137400 *.
ENDCASE

215

W7s

* 138000.PRG
* MODULE NAME: 1.3.8.0.0.0
* ROUTINES THAT CALL THE MODLUE: 1.3.0.0.0.0
* ROUTINES THAT THE MODULE CALLS: MAIN
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS
* CORRECT OR NOT. '

? entity? ? CONTAIN? TH? CHARACTE? STRIN? THA? REPRESENT? TH? FIRS? VALUE
* IN A QUERY STRING.
? entity2 ? CONTAIN? TH? CHARACTE? STRIN? THA? REPRESENT? TH? SECOND VALUE
* IN A QUERY STRING.
* rel ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
* - VALUE IN A QUERY STRING.
* true : USED AS A BOOLEAN VALUE IN LOOPS.
* INPUT FILES: MEM VAR.
* OUTPUT FILES: MEF VAR.

THIS MODULE ALLOW-THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE
* USED IN THE QUERY.
*RESTORE FROM mere var ,.
ERASE mem var.meff L,-
CLEAR - ""
STORE 'N' TO correct -, 5.
DO WHILE correct = 'N',.5.
STORE .t. TO true
do while true
CLEAR
@ 0,1 SAY "1.3.8.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,35 SAY "QUERY MENU"

5,11 SAY entit 1
@ 5,33 SAY "RELATIONSHIP ENTITY-2"_
@ 7,27 SAY "i) IS CONTAINED IN"rV
@ 9,27 SAY "2) IS PROCESSED BY"

11,27 SAY " IS THE RESPONSIBILITY OF" .5

@ 13,27 SAY "4 RETURN TO THE PREVIOUS MENU""" @ 14,4 SAY ",'
ACCEPT' ENTER YOUR CHOICE (1-4) FROM ABOVE: 'TO choice -
STORE .f. TO true
DO CASE
CASE choice = "1"
STORE 'IS CONTAINED IN' TO relship
CASE choice = "2"
STORE 'IS PROCESSED BY' TO relship
CASE choice = "3"
STORE 'IS THE RESPONSIBILITY OF' TO rel_ship
CASE choice = "4"
RETURN
OTHERWISE
CLEAR
@ 2,14 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 4 ONLY"
@ 3,14 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold
STORE .t. TO true
ENDCASE
ENDDO
CLEAR
@ 0,1 SAY "1.3.8.0.0.0"
* 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"

4@ 3,35 SAY "QUERY MENU"
@ 5,12 SAY entityl
@ 5,32 SAY rel snip

5 ,58 SAY "ENTITY-2"
7,4 SAY "IS THIS THE RELATIONSHIP"

* 8,4 SAY "THAT YOU WISH TO QUERY ON"

216

@ 8 31 SAY rel ship
@ 9,4 SAY "Y OR N"
@ 9,12 GET correct
READ
ENDDO v
DO CASE

* CASE choice
STORE selection + 10 TO selection
SAVE TO mem var
do 138100
CASE choice = "2"
STORE selection + 20 TO selection
SAVE TO mern var
do 138200
CASE choice = "3"
STORE selection + 30 TO selection
SAVE TO mem var
do 138300
ENDCASE

217

* 139000.PRG
* MODULE NAME: 1.3.9.0.0.0
* ROUTINES THAT CALL THE MODLUE: 1.3.1.1.0.0 THRU 1.3.8.3.0.0
• ROUTINES THAT THE MODULE CALLS:1.3.1.1.0.0 THRU 1.3.8.3.0.0
• LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* true USED AS A BOOLEAN VALUE IN LOOPS.
* option : USED TO HOLD THE VALUE REPRESENTING THE CHOICE OF PRINTER OR
• SCREEN OUTPUT.
* INPUT FILES: MEM VAR.
* OUTPUT FILES: MER VAR.

THIS MODULE ALLOW-THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE
* USED IN THE QUERY.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHETHER THE OUTPUT WILL BE
* DISPLAYED ON THE SCREEN OR PRINTED.

RESTORE FROM mem var
STORE 0 TO recnum, stop
CLEAR
STORE .t. TO TRUE
do while TRUE
CLEAR
@ 0,1 SAY "1.3.9.0.0.0"
RESTORE FROM mem var
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,34 SAY "QUERY OUTPUT"
@ 8,23 SAY "LISTED BELOW ARE THE CHOICES FOR HOW"
@ 9,23 SAY "YOU CAN HAVE THE QUERY"

@ 11,28 SAY entit
@ 11,57 SAY entI2
@ 13,23 SAY "DISPLAYED."
@15,28 SAY "I) SCREEN OUTPUT"
@ 17,28 SAY "2) PRINTER OUPUT"
@ 19,28 SAY "3) RETURN TO PREVIOUS MENU"
@20,1 SAY""
ACCEPT' ENTER YOUR CHOICE (1-3) FROM ABOVE 'TO option
ERASE mem var.mem .*,-

SAVE TO mem var
DO CASE
CASE option = '1'
CASE option = '2'

DO 139 0~~DO 139200 .
CASE option = '3'
RETURN
OTHERWISE U, CLEAR

"'. @ 0,27 SAY opt'o ?.
@ 0,34 SAY " NS OT A VALID CHOICE"
@ 1,26 SAY "PLEASE ENTER VALUES BETWEEN i AND 3 ONLY"
@ 2,26 SAY "PRESS RETURN AND TRY AGAIN!"
ACCEPT TO hold
ENDCASE

* ENDDO

* 218

'U

V i~ ~~. .'. .-

* 139100.PRG
MODULE NAME: 1.3.9.1.0.0

* ROUTINES THAT CALL THE MODLUE: 1.3.9.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.3.9.0.O.0
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
-w * MODIFIED, DELETED FROM OR OUTPUT.
* hold : USED TO STOP ACTION FOR USER DECISION.
* option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN
* OR THE PRINTER.
* stop : USED TO STOP ACTION FOR USER DECISION.
* t : REPRESTENTS THE BOOLEAN TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE
* IN A QUERY STRING. n

entity2 : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE SECOND VALUE zj
* IN A QUERY STRING.

rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
* VALUE IN A QUERY STRING.* INPUT FILES: MEM VAR.
* OUTPUT FILES: HER VAR.
* THIS MODULE WILL DISPLAY THE RESULTS OF THE QUERY ON THE SCREEN.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE WILL DISPLAY THE RESULTS OF THE QUERY
* ON THE SCREEN.
* PROGRAM AND MODULE RELATIONS
,

RESTORE FROM memvar
CLEAR
@ 0,1 SAY "1.3.9.1.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,30 SAY "QUERY SCREEN OUTPUT"
@ 5,22 SAY "THIS MODULE WILL DISPLAY THE RESULTS OF"
@ 7,21 SAY entity1
@ 7,38 SAY rel sKip

7,59 SAY entity2
@ 9,22 SAY "IF YOU DO NOT WISH TO DISPLAY THIS RELATION,"
@ 10,22 SAY "TYPE '0' TO RETURN TO THE PREVIOUS MENU."
WAIT TO stop
DO CASE
CASE stop = '0'
RETURN
OTHERWISE
ENDCASE
CLEAR
USE TEMP
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
CLEAR
@ 0,1 SAY "1.3.9.1.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,32 SAY "QUERY RESULTS FOR"
@ 5,21 SAY entit 1
@ 5,38 SAY rel s ip
@ 5,59 SAY entity2
USE TEMP
STORE 1 TO count
SET HEADING OFF
DO WHILE .NOT. EOF()
@ 7, 1 SAY "RECORDI'
@ 7,9 SAY count
@ 9,1 SAY " "
store count + 1 to count
@ 10,4 SAY "IDENTIFICATION NAMEs"

219

@ 10,31 SAY ID NAME
@ 12,4 SAY "DESCRIPTION:"
@ 12,21 SAY descript
@ 17,4 SAY 11 "
WAIT TO hold
ENDDO
RETURNj

220

* 139200.PRG
* MODULE NAME: 1.3.9.2.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.3.9.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.3.9.0.0.0
* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* correct : CONTAINS USER RESPONSE AS TO WHETHER THE DISPLAYED VALUE IS

* CORRECT OR NOT.
* entityl : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE FIRST VALUE

IN A QUERY STRING.
entity2 : CONTAINS THE CHARACTER STRING THAT REPRESENTS THE SECOND VALUE

* IN A QUERY STRING.
* rel_ship: CONTAINS THE CHARACTER STRING THAT REPRESENTS THE RELATIONSHIP
* VALUE IN A QUERY STRING.
* true : USED AS A BOOLEAN VALUE IN LOOPS.
* INPUT FILES: HEM VAR.
* OUTPUT FILES: MER VAR.
* THIS MODULE ALLOW-THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE
* USED IN THE QUERY.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE WILL OUTPUT THE QUERY TO THE PRINTER.

SET EXACT ON
set color to 0/3,3
set talk off
set menu on
SET EXACT ON
RESTORE FROM mem var
STORE 0 TO rec_num, stop
CLEAR
@ 0,1 SAY "1.3.9.2.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,29 SAY "QUERY PRINTER OUTPUT"
@ 6,23 SAY "THIS MODULE WILL PRINT QUERY"
@ 8,20 SAY entityl
@ 8,37 SAY rel ship
@ 8,56 SAY namue
@ 10,23 SAY "PLEASE INSURE THAT YOUR PRINTER"
@ 11,23 SAY "IS TURNED ON AND IN THE ONLINE"
@ 12,23 SAY "MODE"
@ 14,23 SAY "IF YOU DO NOT WISH TO PRINT"
@ 15,23 SAY "THIS RELATION, TYPE '0' TO"
@ 16,23 SAY "RETURN TO THE PREVIOUS MENU"
WAIT TO stop
DO CASE
CASE stop ='0'
RETURN
OTHERWISE

/. ENDASE
SET DEVICE TO PRINT
SET CONSOLE OFF
USE TEMP
STORE 1 TO count
DO WHILE .NOT. EOFj)0O
0 29,1 SAY "1.39 9 0.0"
@ 30,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 32,32 SAY "RESULTS FOR QUERY"
@ 34,20 SAY entityl
@ 34 ,37 SAY rel snip
* 34,56 SAY name
* 40,1 SAY "RECORD #"
0 40,11 SAY count

221

store count + 1 to count
ft. @ 42,3 SAY "IDENTIFICATION NAME:"0

@ 42,30 SAY ID NAME h
@! 44 ,3 SAY "DESCRIPTION:"1
@ 44,19 SAY desci-ipt
SKIP
ENDDO
SET DEVICE TO SCREEN
SET CONSOLE ON
RETURN

222t

7 11 1 1 1 11 1 11 11

*ii H'Aml~ll'

%

* 140000.PRG
* MODULE NAME: 1.4.0.0.0.0

INPUT FILES: NONE
* OTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: MAIN
* ROUTINES THAT THE MODULE CALLS:1.1.1.0.0.0, 1.1.2.0.0.0, 1.1.3.0.0.0,
* 1.1.4.0.0.0, 1.1.5.0.0.0, MAIN.
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL.
* hold: USED TO STOP ACTION FOR USER DECISION.

* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE%
* THIS PROGRAM ALLOWS FOR THE MAINTENANCE OF ENTITY SCHEMA,
* AND RELATIONSHIP SCHEMA.

do while .t.
CLEAR
@ 0,1 SAY "1.4.0.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,31 SAY "MAINTENANCE MENU"6,22 SAY "1) MODIFY ENTITY SCHEMA"

@ 8,22 SAY "2) MODIFY.RELATIONSHIP SCHEMA"
@ 10,22 SAY "3) RETURN TO MAIN MENU"
@ 11,1 SAY " "
ACCEPT ' ENTER YOUR CHOICE (1-3) FROM ABOVE: ' TO choice
DO CASE

CASE choice = "1"
do 141000
CASE choice = "2"
DO 142000
CASE choice = "3"
RETURN TO MASTER
OTHERWISE
CLEAR
@ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"
@ 3,20 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold
ENDCASE
ENDDO
RETURN

223

_I.
-- , ..

• 141000.PRG
* MODULE NAME: 1.4.1.0.0.0
• INPUT FILES: NONE

OUTPUT FILES: NONE
• ROUTINES THAT CALL THE MODLUE: 1.4.0.0.0.0
• ROUTINES THAT THE MODULE CALLS: MAIN
• LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
• t: REPRESTENTS NO VALUE AT ALL.
• hold: USED TO STOP ACTION FOR USER DECISION.
• INPUT FILES: MEMVAR, USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD,
• ELEMENT.
* OUTPUT FILES: MEM VAR, USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD,
• ELEMENT !
• DESIGNED BY: ROBERT A. KIRSCH II
• WRITTEN BY: ROBERT A. KIRSCH II
• BASIC FUNCTION OF MODULE-
• THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION \

• TO MODIFY.

do while .t.
CLEAR
@ 0,1 SAY "1.4.1.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,31 SAY "MODIFY ENTITY SCHEMA"
@ 6,15 SAY "1) USER 6) FILE"
@ 8,15 SAY "2) SYSTEM 7) RECORD"
@ 10,15 SAY "3) PROGRAM 8) ELEMENT"
@ 12,15 SAY "4) MODULE 9) RETURN TO PREVIOUS MENU"
@ 14,15 SAY "5) DOCUMENT 10) RETURN TO MAIN MENU"
@ 16,1 SAY " "
ACCEPT' ENTER YOUR CHOICE (1-10) FROM ABOVE: 'TO choice
DO CASE
CASE choice = "1"
USE USER
MODIFY STRUCTURE

CASE choice = "2"
USE SYSTEM
MODIFY STRUCTURE
CASE choice - "3"
USE PROGRAM
MODIFY STRUCTURE
CASE choice - "4"
USE MODULE
MODIFY STRUCTURE
CASE choice ' "S"
USE DOCUMENT

224

MODIFY STRUCTURE
CASE choice = "6"
USE FILE
MODIFY STRUCTURE
CASE choice = "7"
USE RECORD
MODIFY STRUCTURE
CASE choice = "8"
USE ELEMENT
MODIFY STRUCTURE
CASE choice = 11911RETURN~t+

CASE choice = "10"
,,,. RETURN TO MASTER

OTHERWISE
CLEAR
@ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY"
@ 3,20 SAY "PRESS RETURN TO TRY AGAINI"
ACCEPT TO hold
ENDCASE
ENDDO
RETURN

225

' 41.-.:

• 142000.PRG
* MODULE NAME: 1.4.2.0.0.0

* ROUTINES THAT CALL THE MODLUE: 1.4.0.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.4.0.0.0.0, MAIN
• LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL.
• hold: USED TO STOP ACTION FOR USER DECISION.
• INPUT FILES: MEM VAR , UCONTS, UCONTS,

* U_CONT_P, PPROCF, PPROCR,
SPPROC R. P PROC E. SCONTP, PCONTM, FCONTR, RCONTE,

* UESP S, URESPF, P_PREDD.
• OUTPUT FILES: HEM VAR, ELEMENT, UCONTS, UCONTS,
* UCONT P, P PROC F, PPROCR,

* P PROCR. PPROCE. SCONT_P, PCONTM, FCONT_R, RCONTE,
• U3RESPS, U RESPF, P_PREDD.

* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
• BASIC FUNCTION OF MODULE:
• THIS MODULE ALLOW THE USER TO CHOOSE WHICH RELATIONSHIP
* SCHEMA HE WOULD LIKE TO MODISY.

do while .t. 4
CLEAR
SET MENU ON
@ 1,1 SAY "1.4.2.0.0.0"
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,25 SAY "RELATIONSHIP SCHEMA MAINTENANCE"
@ 6,9 SAY "1) USER CONTAINS SYSTEM 8) FILE CONTAINS REC"
@ 6,64 SAY "ORDS"
@ 8,9 SAY "2) SYSTEM CONTAINS PROGRAM 9) RECORD CONTAINS E"

- @ 8,64 SAY "LEMENT"
" @ 10,9 SAY "3) PROGRAM PROCESSES FILE 10) USER RESPONSIBLE"

@ 10,64 SAY "FOR SYSTEM"
@ 12,9 SAY "4) PROGRAM PROCESSES RECORD 11) USER RESPONSIBLE"
@ 12,64 SAY "FOR FILE"
@ 14,9 SAY "5) PROGRAM PROCESSES ELEMENT 12) PROGRAM PRODUCES"
@ 14,64 SAY "DOCUMENT"
@ 16,9 SAY "6) SYSTEM CONTAINS PROGRAM 13) RETURN TO PREVIOU"
@ 16,64 SAY "S MENU"
0 18,9 SAY "7) PROGRAM CONTAINS MODULE 14) RETURN TO MAIN ME"
@ 18,64 SAY "NU"
@ 19,1 SAY " "
ACCEPT ' ENTER YOUR CHOICE (1-10) FROM ABOVEa ' TO choice
DO CASE
CASE choice - "1"

226

_-~ m . *.b L W. " .1 'W' .w7 .--

USE U PROC S ..
MODIFY STRU5CTURE

CASE choice = "12"
USE SPROC P
MODIFY STRUCTURE
CASE choice = "3" A-
USE PPROC F
MODIFY STRUCTURE

CASE choice = "4"
USE PPROCR
MODIFY STRUCTURE
CASE choice = "

USE PPROCE
MODIFY STRUCTURE ..
CASE choice = "5"
USE S CONT P
MODIFY STRUCTURE
CASE choice = "6" 711
USE PCONT MMODIFY STRUCTURE

CASE choice = "7"
USE FCONTR
MODIFY STRUCTURE
CASE choice = "9" .USE RCONTR
MODIFY STRUCTURE

CASE choice = "10
USE URESPS_
MODIFY STRUCTURE
CASE choice = "10"
USE URESP_
MODIFY STRUCTURE
CASE choice = "12"
USE P PROD D

MODIFY STRUCTURECASE choice = 12"3
CASE choice = "13"
RETURN
CASE choice = "14"
RETURN TO MASTER
OTHERWISE
CLEAR
@ 1,21 SAY choice
0 1,28 SAY "IS NOT A VALID CHOICE"
@ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 14 ONLY"
0 3,20 SAY "PRESS RETURN TO TRY AGAINI"
ACCEPT TO hold

227

ENDCASE

RETURN

F1

22

* 150000.prg
* ODULE NAME: 1.5.0.0.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: MAIN
* ROUTINES THAT THE MODULE CALLS: MAIN.
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.

t: REPRESTENTS NO VALUE AT ALL.

DESIGNED BY: ROBERT A. KIRSCH II
WRITTEN BY: ROBERT A. KIRSCH II

* BASIC FUNCTION OF MODULE:
* THIS PROGRAM ALLOWS FOR THE THE SELECTION OF WHICH TYPE OF
SCHEMA WILL BE OUTPUT. .,,

do while .t.

CLEAR
@ 0,1 SAY "1.5.0.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,34 SAY "SCHEMA OUTPUT"
@ 6,22 SAY "1) ENTITY"
@ 8,22 SAY "2) RELATIONSHIP"
@ 10,22 SAY "3) RETURN TO MAIN MENU"
@ 11,22 SAY "
ACCEPT ' ENTER YOUR CHOICE (1-3) FROM ABOVE: 'TO choice
DO CASE
CASE choice = "1"
do 151000
CASE choice = "2"
DO 152000
CASE choice = "3" I
RETURN TO MASTER
OTHERWISE
CLEAR
@ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"
@ 3,20 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold
ENDCASE
ENDDO
RETURN

229

I _ __ .-.. - = _ _..-. ..

F . r-.' ,V' . ' V'W W ,v - ", W~~ , L .1 ' . . - ? v. - r W "-- . - . - w. ,- .- - -. .- - . -"" -, ,

oe

• 121000.PRG
* MODULE NAME: 1.5.1.0.0.0
* ROUTINES THAT CALL THE MODLUE: 1.5.0.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.5.0.0.0.0, 1.5.1.1.0.0 MAIN
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL.
* hold: USED TO STOP ACTION FOR USER DECISION.
* INPUT FILES: MEM VAR.

* OUTPUT FILES: HEM_VAR.
THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BEi•USED IN THE QUERY. ---.
DESIGNED BY: ROBERT A. KIRSCH II
WRITTEN BY: ROBERT A. KIRSCH II

* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF ENTITY RELATION.*
* TO OUTPUT.

SET EXACT ON
set color to 0/3,3
set talk off
CLEAR
do while .t.
ERASE memvar.mem
CLEAR

@ 0,1 SAY "1.5.1.0.0.0-
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,29 SAY " ENTITY SCHEMA OUTPUT" .

@ 6,15 SAY "1) USER 6) FILE"
@ 8,15 SAY "2) SYSTEM 7) RECORD"
@ 10,15 SAY "3) PROGRAM 8) ELEMENT"

@ 12,15 SAY "4) MODULE 9) RETURN TO PREVIOUS MENU"
@ 14,15 SAY "5) DOCUMENT 10) RETURN TO MAIN MENU"
@ 15,1 SAY " "

ACCEPT' ENTER YOUR CHOICE (1-10) FROM ABOVE: 'TO choice
DO CASE
CASE choice = "1"
store 'USER' to choice
save to mem_var
do 151100
CASE choice = "2"
store 'SYSTEM' to choice
save to mem var
DO 151100
CASE choice "3"
store 'PROGRAM' to choice
save to mem.var

230

DO 151100 -

CASE choice = "4"
store 'MODULE' to choice
save to mem var ,.
DO 151100
CASE choice = "5"
store 'DOCUMENT' to choice
save to memvar
DO 151100
CASE choice = I6"1
store 'FILE' to choice
save to memvar
DO 151100
CASE choice = "7"
store 'RECORD' to choice
save to mem var ..
DO 151100
CASE choice = "8"
store 'ELEMENT' to choice
save to mem var
DO 151100
CASE choice = "9"
RETURN''
CASE choice = "10"-
RETURN TO MASTER
OTHERWISE
CLEAR
@ 1,23 SAY choice
@ 1,31 SAY "IS NOT A VALID CHOICE" ,,

@ 2,18 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 10 ONLY"
@ 3,18 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold
ENDCASE
ENDDO
RETURN

231.5-5._..
a, ! * W ' ' r • " '' ' -*

: "
' ; " . " " "

-

* 151100.PRG

* MODULE NAME: 1.5.1.1.0.0
* INPUT FILES: NONE
* OUTPUT FILES: NONE
* ROUTINES THAT CALL THE MODLUE: 1.5.1.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.5.1.0.0.0
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL.
* hold: USED TO STOP ACTION FOR USER DECISION.
* count: KEEPS TRACK OF ACCOUNT NUMBERS.
* option: USED TO SELECT PRINTER OR SCREEN.
* INPUT FILES: MEM VAR.
* OUTPUT FILES: MEM VAR.
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE
* USED IN THE QUERY.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE ALLOW THE USER TO CHOOSE WHETHER THE OUTPUT WILL BE
* DISPLAYED ON THE SCREEN OR PRINTED.

RESTORE FROM memvar
STORE 0 TO rec num, stop
CLEAR
STORE .t. TO TRUE
do while TRUE
CLEAR
@ 0,1 SAY "1.5.1.1.0.0"
RESTORE FROM memvar -
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,29 SAY "ENTITY SCHEMA OUTPUT"
@ 8,23 SAY "LISTED BELOW ARE THE CHOICES FOR HOW"
@ 9,23 SAY "YOU CAN HAVE THE RELATION"
@ 9,50 SAY CHOICE
@ 10,23 SAY "DISPLAYED."
@ 12,28 SAY "1) SCREEN OUTPUT"
@ 14,28 SAY "2) PRINTER OUPUT"
@ 16,28 SAY "3) RETURN TO PREVIOUS MENU"
@ 17,1 SAY "
ACCEPT' ENTER YOUR CHOICE (1-3) FROM ABOVE 'TO option
ERASE mem var.mem
SAVE TO mem-var
DO CASE
CASE option = 'I'
DO CASE
CASE CHOICE = 'USER'

232

DO 151110
CASE choice = 'SYSTEM'
DO 151110
CASE CHOICE = 'PROGRAM'
DO 151110
CASE choice = MODULE'

DO 151110
CASE CHOICE = DOUCMENT'

*' DO 151110

CASE choice = 'FILE'
-DO 151110"" CASE CHOICE ' RECORD' '

DO 151110
CASE choice = ELEMENT'
DO 151110
ENDCASE
CASE option = '2'
DO CASE
CASE CHOICE = 'USER'
DO 151120
CASE choice = 'SYSTEM'
DO 151120
CASE CHOICE = 'PROGRAM'
DO 151120
CASE choice = 'MODULE'
DO 151120
CASE CHOICE = 'DOCUMENT'
DO 151120
CASE choice = 'FILE'
DO 151120
CASE CHOICE = 'RECORD'
DO 151120
CASE choice = 'ELEMENT'
DO 151120
ENDCASE
CASE option = '3'
RETURN
OTHERWISE
CLEAR
@ 0,27 SAY option
@ 0,34 SAY "IS NOT A VALID CHOICE"
@ 1,26 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"
WAIT TO stop
ENDCASE
ENDDO

233

* 151110.PRG
* MODULE NAME: 1.5.1.1.1.0
* ROUTINES THAT CALL THE MODLUE: 1.5.1.1.0.0
* ROUTINES THAT THE MODULE CALLS:1.5.1.1.0.0

LOCAL VARIABLES USED: El* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* count : USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED.
* stop USED TO STOP ACTION FOR USER DECISION.
* t REPRESTENTS THE BOOLEAN FALUE TRUE IS USED TO CREATE A CONTINUES .
* LOOP.
* INPUT FILES: MEMVAR.
* OUTPUT FILES: MEM VAR.
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE
* USED IN THE QUERY.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE WILL DISPLAY ON THE SCREEN ENTITY RELATION SCHEMA.

SET EXACT ON
set color to 0/3,3
set talk off
set menu on
SET EXACT ON
RESTORE FROM mem var
CLEAR
@ 0,1 SAY "1.5.1.1.1.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,26 SAY " ENTITY SCHEMA SCREEN OUTPUT"
@ 5,22 SAY "THIS MODULE WILL DISPLAY"
@ 5,48 SAY choice
@ 7,22 SAY "IF YOU DO NOT WISH TO DISPLAY"
@ 8,22 SAY "THIS SCHEMA, TYPE '0' TO"
@ 9,22 SAY "RETURN TO THE PREVIOUS MENU."
WAIT TO stop
DO CASE
CASE stop = '0'
RETURN
OTHERWISE
ENDCASE
* 1,1 SAY "1.5.1.1.1.0"
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,30 SAY "RELATION SCHEMA FOR"
@ 6,37 SAY choice

234

I

2 9,1
DO CASE
CASE choice = 'USER'
CLEAR
USE USER
DISPLAY STRUCTURE
WAIT TO stop
RETURN
CASE choice = 'SYSTEM'
CLEAR
USE SYSTEM
DISPLAY STRUCTURE
WAIT TO stop
RETURN
CASE choice = 'PROGRAM'
CLEAR
USE PROGRAM e

DISPALY STRUCTURE
WAIT TO stop
RETURN
CASE choice = 'MODULE'
CLEAR~ ~~USE MODULE. .

DISPLAY STRUCTURE
WAIT TO stop
RETURN
CASE choice = 'DOCUMENT'
CLEAR
USE DOCUMENT
DISPLAY STRUCTURE
WAIT TO stop
RETURN

-I CASE choice = 'FILE'
CLEAR
USE FILE
DISPLAY STRUCTURE
WAIT TO stop

-- RETURN
CASE choice = 'RECORD'
CLEAR
USE RECORD
DISPALY STRUCTURE
WAIT TO stop

* RETURN
". CASE choice = 'ELEMENT'

CLEAR

235

USE ELEMENT
DISPLAY STRUCTURE
WAIT TO stop
RETURN
ENDCASE

236

* 151120.PRG
* MODULE NAME: 1.5.1.1.2.0

ROUTINES THAT CALL THE MODLUE: 1.5.1.1.0.0
*ROUTINES THAT THE MODULE CALLS:1.5.1.1.O.O

* LOCAL VARIABLES USED:
* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.
* count : USED TO KEEP TRACK OF THE RECORD NUMBER BEING DISPLAYED.
* hold : USED TO STOP ACTION. FOR USER DECISION.
* option : CONTAINS THE USER'S CHOICE ON WHETHER TO OUTPUT TO THE SCREEN
* OR THE PRINTER.
* t : REPRESTENTS THE BOOLEAN FALUE TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* INPUT FILES: MEN VAR, USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD,
* ELEMENT.
* OUTPUT FILES: MENVAR USER, SYSTEM, PROGRAM, MODULE, DOCUMENT, FILE, RECORD,
* ELEMENT.
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE
* USED IN THE QUERY.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:
* THIS MODULE WILL OUTPUT THE USER, SYSTEM, PROGRAM AND MODULE
* RELATION FILES TO THE PRINTER.

SET EXACT ON
set color to 0/3,3
set talk off

set menu on
SET EXACT ON
RESTORE FROM mem-var
STORE 0 TO rec num, stop
CLEAR
@ 0,1 SAY "1.5.1.1.2.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,27 SAY "ENTITY SCHEMA PRINTER OUTPUT"
* 5,23 SAY "THIS MODULE WILL PRINT"
* 5,47 SAY choice
@ 7,23 SAY "PLEASE INSURE THAT YOUR PRINTER"
* 8,23 SAY "IS TURNED ON AND IN THE ONLINE"
@ 9,23 SAY "MODE"
* 11,23 SAY "IF YOU DO NOT WISH TO PRINT"
Q 12,23 SAY "THIS SCHEMA, TYPE '0' TO"
Q 13,23 SAY "RETURN TO THE PREVIOUS MENU"
WAIT TO stop

237

.Wil .

DO CASE
CASE stop = '0'
RETURN
OTHERWISE
ENDCASE
SET DEVICE TO PRINT
SET CONSOLE OFF
@ 1,1 SAY "1.5.1.1.2.0'
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,31 SAY "RELATION SCHEMA FOR"
@ 6,35 SAY choice
@ 8,1 SAY " "

DO CASE
CASE choice = 'USER'
USE USER
DISPLAY STRUCTURE TO PRINT
CASE choice = 'SYSTEM'
USE SYSTEM
DISPLAY STRUCTURE TO PRINT
CASE choice = 'PROGRAM'
USE PROGRAM
DISPLAY STRUCTURE TO PRINT
CASE choice = 'MODULE'
USE MODULE
DISPLAY STRUCTURE TO PRINT
CASE choice = 'DOCUMENT'
USE DOCUMENT
DISPLAY STRUCTURE TO PRINT
CASE choice = 'FILE'
USE FILE
DISPLAY STRUCTURE TO PRINT
CASE choice = 'RECORD'
USE RECORD
DISPLAY STRUCTURE TO PRINT
CASE choice = 'ELEMENT'
USE ELEMENT
DISPLAY STRUCTURE TO PRINT
ENDCASE
SET DEVICE TO SCREEN
SET CONSOLE ON
RETURN

238

* 152000.PRG
* MODULE NAME: 1.5.2.0.0.0
* ROUTINES THAT CALL THE MODLUE: 1.1.0.0.0.0

ROUTINES THAT THE MODULE CALLS:TBD, MAIN

* LOCAL VARIABLES USED:

* choice : CONTAINS THE NUMBER OF ACTION SELECTED. MAY ALSO CONTAIN THE
* CHARACTER STRING THAT IDENTIFIES THE RELATION BEING ADDED TO,
* MODIFIED, DELETED FROM OR OUTPUT.

* hold : USED TO STOP ACTION FOR USER DECISION.
* t : REPRESTENTS THE BOOLEAN FALUE TRUE IS USED TO CREATE A CONTINUES
* LOOP.
* title : CONTAINS THE CHARACTER STRING THAT DESCRIBES THE RELATIONSHIP
* BEING ADDED TO, DELETED FROM OR OUTPUT.
*INPUT FILES MEM VAR.

OUTPUT FILES: MEM VAR.
THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE

* USED IN THE QUERY.
*DESIGNED BYs ROBERT A. KIRSCH ZI

WRITTEN BY: ROBERT A. KIRSCH II
* BASIC FUNCTION OF MODULE:

THIS MODULE ALLOW THE USER TO CHOOSE WHICH RELATIONSHIP HE WOULD
* LIKE TO DISPLAY THE SCHEMA OF.

SET EXACT ON
set color to 0/3,3
set talk off
CLEAR
do while .t.
ERASE memvar.mere
CLEAR
@ 0,1 SAY "1.5.2.0.0.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,27 SAY "RELATIONSHIP SCHEMA OUTPUT"
@ 5,9 SAY "1) USER CONTAINS SYSTEM 8) FILE CONTAINS REC"
@ 5,64 SAY "ORDS"
@ 7,9 SAY "2) SYSTEM CONTAINS PROGRAM 9) RECORD CONTAINS E"
@ 7,64 SAY "LEMENT"
@ 9,9 SAY "3) PROGRAM PROCESSES FILE 10) USER RESPONSIBLE"
@ 9,64 SAY "FOR SYSTEM"
@ 11,9 SAY "4) PROGRAM PROCESSES RECORD 11) USER RESPONSIBLE"
@ 11,64 SAY "FOR FILE"
@ 13,9 SAY "5) PROGRAM PROCESSES ELEMENT 12) PROGRAM PRODUCES"
* 13,64 SAY "DOCUMENT"
@ 15,9 SAY "6) SYSTEM CONTAINS PROGRAM 13) RETURN TO PREVIOU"

239

€7

@ 15,64 SAY "S MENU"
@ 17,9 SAY "7) PROGRAM CONTAINS MODULE 14) RETURN TO MAIN ME"

ACCEPT S ENTER YOUR CHOICE (1-14) FROM ABOVE:'TO choice

DO CASE
CASE choice = "1"
store 'U_PROCS' to choice
store 'USER CONTAINS SYSTEM' TO title
save to mem-var
do 152100
CASE choice = "2"
store 'SPROCP' to choice
store 'SYSTEM CONTAINS PROGRAM' TO title

save to mem var
do 152100
CASE choice = 11311

store 'P_PROCF' to choice
store 'PROGRAM PROCESSES FILE' TO title
save to memvar
do 152100
CASE choice = "4"
store 'P_PROC R' to choice

store 'PROGRAM PROCESSES RECORD; TO title

save to memvar
do 152100
CASE choice = "5"

store 'PPROC E' to choice
store 'PROGRAM PROCESSES ELEMENT' TO title
save to mem_var
do 152100
CASE choice = "6"
store 'SCONT_P' to choice
store 'SYSTEM CONTAINS PROGRAM' TO title
save to mem var
do 152100

CASE choice = "7"
store 'P_CONTM' to choice
store 'PROGRAM CONTAINS MODULE' TO title
save to mem-var
do 152100
CASE choice = "8"
store IFCONTRI to choice

store 'FILE CONTAINS RECORD' TO title
save to mem var
do 152100

240

____ ____ _-__

p~~ _________________

CASE choice : "9"
store 'RCONT_E' to choice
store 'RECORD CONTAINS ELEMENT' TO title
save to memuvar
do 152100

CASE choice = "1"011
store I' _RESPS ' to choice

store 'USER RESPONSIBLE FOR SYSTEM' TO titlesave to mem var ,
do 152100
CASE choice = "12"
store 'U RESPD' to choice
store 'USER RESPONSIBLE FOR FILE' TO title
save to memvarI= do 152100
CASE choice = "12".store 'P_-PRODD' to choice
store ' PROGRAM PRODUCES DOCUMENT' TO title
save to mem var
do 152100

CASE choice 11134"

RETURN TO MASTER

OTHERWISE
CLEAR
@ 1,21 SAY choice

@ 1,28 SAY "IS NOT A VALID CHOICE"
@ 2,20 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 14 ONLY"
@ 3,20 SAY "PRESS RETURN TO TRY AGAIN!"
ACCEPT TO hold
ENDCASE
ENDDO

RETURN

241

* 152100.PRG
* MODULE NAME: 1.5.2.1.0.0
* ROUTINES THAT CALL THE MODLUE: 1.5.2.0.0.0
* ROUTINES THAT THE MODULE CALLS:1.5.2.0.0.0
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* t: REPRESTENTS NO VALUE AT ALL.
* hold: USED TO STOP ACTION FOR USER DECISION.
* count: KEEPS TRACK OF ACCOUNT NUMBERS.

* option:
* INPUT FILES: MEN-VAR.
* OUTPUT FILES: MENVAR.
* THIS MODULE ALLOW THE USER TO CHOOSE WHICH TYPE OF RELATIONSHIP WILL BE

USED IN THE QUERY.
* DESIGNED BY: ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
BASIC FUNCTION OF MODULE:

* THIS MODULE ALLOW THE USER TO CHOOSE WHETHER THE OUTPUT WILL BE
* DISPLAYED ON THE SCREEN OR PRINTED.
,

RESTORE FROM mvar
STORE 0 TO rec num, stop
CLEAR ,.' .

STORE .t. TO TRUE
do while TRUE
CLEAR
@ 0,1 SAY "1.5.2.1.0.0"
RESTORE FROM mem var
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,22 SAY " RELATIONSHIP SCHEMA OUTPUT"
@ 8,23 SAY "LISTED BELOW ARE THE CHOICES FOR"
@ 9,23 SAY "HOW YOU CAN HAVE THE SCHEMA FOR"
@ 10,24 SAY TITLE
@ 11,23 SAY "DISPLAYED."
@ 13,28 SAY "1) SCREEN OUTPUT"
@ 15,28 SAY "2) PRINTER OUPUT"
@ 17,28 SAY "3) RETURN TO PREVIOUS MENU"
@ 18,1 SAY " "

ACCEPT' ENTER YOUR CHOICE (1-3) FROM ABOVE 'TO option
ERASE memvar.mem
SAVE TO mem-var
DO CASE
CASE option = '1'
DO CASE
CASE CHOICE - 'U PROC S'
DO 152110
CASE choice a 'S..ROC_P'

242

DO 152110
CASE CHOICE = 'P.PROC_F'
DO 152110
CASE choice = 'P PROCR (,

DO 152110
CASE CHOICE = 'PPROCEl
DO 152110
CASE choice = 'SCONT_P'
DO 152110
CASE CHOICE = 'PCONT.M'
DO 152110 ,
CASE choice = 'F CONT R'
DO 152110
CASE CHOICE = 'RCONT_E'

DO 152110
CASE choice = 'U RESPS'
DO 152110
CASE CHOICE = 'U RESP F'
DO 152110
CASE choice = 'P PRODD'
DO 152110
ENDCASE

CASE option = '2'
DO CASE
CASE CHOICE = 'UPROCS'
DO 152120
CASE choice = ISPROCP'
DO 152120
CASE CHOICE = 'PPROC_F'
DO 152120
CASE choice = 'P_PROCR'
DO 152120 i:

CASE CHOICE = 'P PROC E'

DO 152120
CASE choice = S.CONT P'
DO 152120
CASE CHOICE = PCONTM'
DO 152120
CASE choice = FCONTR'
DO 152120
CASE CHOICE = 'RCONT.E'
DO 152120
CASE choice = 'URESPS'
DO 152120
CASE CHOICE a 'URESPF'
DO 152120

243

CASE choice I PPRODD'
DO 152120
ENDCASE
CASE option =031

RETURN
* . OTHERWISE

CLEAR
@ 0,27 SAY option
@ 0,34 SAY "IS NOT A VALID CHOICE"
@ 1,26 SAY "PLEASE ENTER VALUES BETWEEN 1 AND 3 ONLY"

@ 2,26 SAY "PRESS RETURN AND TRY AGAIN!"il
ACCEPT TO hold

ENDDO

2".."

-r. I t -7 . O r -7

*152110.PRG
* MODULE NAME: 1.5.2.1.1.0
* ROUTINES THAT CALL THE MODLUE: 1.5.2.1.0.0
* ROUTINES THAT THE MODULE CALLS:1.5.2.1..0
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* hold: USED TO STOP ACTION FOR USER DECISION.
* INPUT FILES: MEM_VAR UCONTS, UCONT_S, U CONTP, PPROC F, PPROCR, r
* P_PROCR. PPROCE. S CONTP, PCONTM, FCONT_R, R_CONT_E,
* URESPS, URESPF, PPRED'D.

OUTPUT FILES : MENVAR... '
* U CONTS U-CONTS, UCONTP, P PROC F, PyPROC_ R,
* PPROCR. PPROC E. S CONTP, PCONTM, FCONTR, R_CONTE,
* URESPS, URESP_F, PPREDD.
DESIGNED BY: ROBERT A. KIRSCH II --

* WRITTEN BY: ROBERT A. KIRSCH II V
* BASIC FUNCTION OF MODULE:
* THIS MODULE WILL DISPLAY ON THE RELATIONSHIP SCHEMAS

RESTORE FROM mem var
CLEAR
@ 0,1 SAY "1.5.2.1.1.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,25 SAY "RELATIONSHIP SCHEMA SCREEN OUTPUT"
@ 5,22 SAY "THIS NODULE WILL DISPLAY"
@ 7,23 SAY TITLE
@ 9,22 SAY "IF YOU DO NOT WISH TO DISPLAY"
@ 10,22 SAY "THIS SCHEMA, TYPE '0' TO"
@ 11,22 SAY "RETURN TO THE PREVIOUS MENU."
WAIT TO stop
DO CASE
CASE stop = '0'
RETURN
OTHERWISE
ENDCASE
CLEAR
@ 0,1 SAY "1.5.2.1.1.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,28 SAY "RELATIONSHIP SCHEMA FOR"
@ 5,27 SAY title
@ 7,1 SAY " "
DO CASE
CASE choice = 'U PROCS'
USE UPROCS
DISPLAY STRUCTURE
WAIT TO hold
RETURN

245

CASE choice = 'S_PROC_P'
USE SPROC P
DISPLAY STRUCTURE
WAIT TO hold
RETURN
CASE choice = 'P_PROCF'
USE PPROC F
DISPLAY STRUCTURE
WAIT TO hold
RETURN
CASE choice = 'P_PROC_R'
USE P PROC_R
DISPLAY STRUCTURE
WAIT TO hold
RETURN
CASE choice = 'PPROCE'
USE PPROCE.
DISPLAY STRUCTURE
WAIT TO hold
RETURN - ,
CASE choice = 'S_CONT_P'
USE S CONT P
DISPLAY STRUCTURE
WAIT TO hold
RETURN
CASE choice = 'P CONT MI
USE P CONT M
DISPLAY STRUCTURE
WAIT TO hold
RETURN
CASE choice = 'F_CONTR'.
USE FCONT_R
DISPLAY STRUCTURE
WAIT TO hold
RETURN
CASE choice = 'R_CONT_E'
USE RCONTE
DISPLAY STRUCTURE
WAIT TO hold
RETURN
CASE choice = 'URESP_S'
USE URESPS
DISPLAY STRUCTURE
WAIT TO hold
RETURN
CASE choice ' URESPF'

246

pI

Z-% LZ TL K- - .s. 4.-"

LA1

USE URESPF
DISPLAY STRUCTURE
WAIT TO hold
RETURN
CASE choice = 'PPROD_D'
USE P PROD D
DISPLAY STRUCTURE
WAIT TO hold
RETURN

.'

4

24

~, ~W ~ . -- ,- .

• 152120.PRG
• MODULE NAME: 1.5.2.1.2.0
• ROUTINES THAT CALL THE MODLUE: 1.5.2.1.0.0
• ROUTINES THAT THE MODULE CALLS:1.5.2.1.0.0
* LOCAL VARIABLES USED: choice: CONTAINS THE NUMBER OF ACTION SELECTED.
* hold: USED TO STOP ACTION FOR USER DECISION.
* INPUT FILES: MEMVAR UCONTS, UCONTS, UCONTP, P PROCF, PPROC_R,
• P_PROCR. PPROCE. SCONTP, PCONTM, FCONTR, RCONTE,
• U_RESPS, URESPF, P PRODD.

OUTPUT FILES: MEm VAR I
UCONTS, UCONTS, UCONT_P, PPROC_F, PPROCR,

• P_PROCR. PPROCE. SCONT P, PCONTM, FCONT_R, RCONTE,
* U_RESPS, URESPF, PPROD._D.
* DESIGNED BY- ROBERT A. KIRSCH II
* WRITTEN BY: ROBERT A. KIRSCH II
• BASIC FUNCTION OF MODULE:
* THIS MODULE WILL OUTPUT THE USER, SYSTEM, PROGRAM AND MODULE
• RELATION FILES TO THE PRINTER.

RESTORE FROM mem var
STORE 0 TO recum, stop
CLEAR
@ 0,1 SAY "1.5.1.1.2.0"
@ 1,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 3,27 SAY "RELATIONSHIP PRINTER OUTPUT"
@ 6,23 SAY "THIS MODULE WILL PRINT"
@ 8,24 SAY TITLE
@ 10,23 SAY "PLEASE INSURE THAT YOUR PRINTER"
@ 11,23 SAY "IS TURNED ON AND IN THE ONLINE"
@ 12,23 SAY "MODE"*
@ 14,23 SAY "IF YOU DO NOT WISH TO PRINT"
@ 15,23 SAY "THIS RELATION, TYPE '0' TO"1
@ 16,23 SAY "RETURN TO THE PREVIOUS MENU"
WAIT TO stop
DO CASE
CASE stop = '0'
RETURN
OTHERWISE
ENDCASE
SET DEVICE TO PRINT
SET CONSOLE OFF
@ 1,1 SAY "1.5.1.1.2.0"
@ 2,22 SAY "INFORMATION RESOURCE DICTIONARY SYSTEM"
@ 4,36 SAY "SCHEMA FOR"
* 6,28 SAY title
@ 9,1 SAY " "

248

DO CASE
CASE choice = IUPROCS'
USE UPROCS
DISPLAY STRUCTURE TO PRINT
CASE choice = SPROC-P'
USE SPROCP
DISPLAY STRUCTURE TO PRINT
CASE choice = 'PPROCF'
USE PPROCF
DISPLAY STRUCTURE TO PRINT
CASE choice = 'P PROCR'
USE PPROCR
DISPLAY STRUCTURE. TO PRINT
CASE choice = 'PPROC_E

l

USE PPROC E
DISPLAY STRUCTURE TO PRINT
CASE choice = 'S_CONT_P'
USE SCONTP
DISPLAY STRUCTURE TO PRINT
CASE choice = 'PCONTM'
USE PCONTM
DISPLAY STRUCTURE TO PRINT
CASE choice = 'F_CONT_R'

USE FCONTR
DISPLAY STRUCTURE TO PRINT
CASE choice = 'RCONTE'
USE RCONTE
DISPLAY STRUCTURE TO PRINT
CASE choice - 'U_RESPS'
USE URESPS
DISPLAY STRUCTURE TO PRINT
CASE choice = 'URESPF'
USE URESPF
DISPLAY STRUCTURE TO PRINT
CASE choice = 'PPRODD'
USE PPRODD
DISPLAY STRUCTURE TO PRINT
ENDCASE
SET DEVICE TO SCREEN
SET CONSOLE ON
RETURN

249

LIST OF REFERENCES

1. Leong-Hong, B., and Marron, B., Technical Profile of
Seven Data Element Dictionary/Directory Systems, NBS
Special Publication 500-3, Feburary, 1977.

2. Codd, E. F., "Relational Database: A Practical
Foundation for Productivity.", In Communication of the
ACM, Vol 25, No2, February 1982.

3. Kroenke, David, DATABASE PROCESSING: Fundamentals,
Desion. Imolementation, Second Edition, Science Research
Associates, Inc., p. 401, 1983.

4. Ibid, p. 402.

5. Konig, P.A. and Goldfine, A.H., A Technical Overview of
the Information Resource Dictionary System, National "
Bureau of Standards, Gaithersburg, MD, March, 1985.

6. Lefkovits, H. C., Sibley, E. H., and Lefkovits, S. L.,
Information Resource/Data Dictionary Systems, QED
Information Sciences, 1977, pp. 1-46

7. Seesing, Paul R., A Data Dictionary Model For Relational
Database.1, U.S. Dept of Energy, October, 1983.

S. Curtice, Robert M., Data Dictionaries: An Assessment of
Current Practice and Problems, IEEE, 1981.

A 9. Ibid, pp. 564-565

10. Curtice, Robert M., Data Dictionaries: An Assessment
of Current Practice and Problems, IEEE, 1981.

11. Kroenke, David, DATABASE PROCESSING: fundamentals.

Desion. Imolementation.

12. Landin, S. L., and Owens, R. L., An Analysis fo Data
Dictionaries and Their Role in Information Resource
M, Thesis, Naval Postgraduate School,
Monterey, California, September 1984.

13. Noel, A., Relational Data Dictionaries and Prototypino,
Masters Thesis, Naval Postgraduate School, Monterey,
California, June 1985.

14. Vanecek, M., T., Solomon I,. and Mannino M., V., 'The
Data Dictionary: an Evaluation from the EDP Audit
Prospective', MIS Quarterly Volume 7, Number 1, March,
1983.

250

15. Vanecek, M., T., Solomon I,. and Mannino M., V., "The
Data Dictionary: an Evaluation from the EDP Audit
Prospective".

16. Uhrowczik, P. P., "Data Dictionary/Directioriesm,
Computing Surveysm Vol. 16, No. 1, pp. 332-358, March
1984.

17. Allen, F.. W., Loomis, M. E. S., and Mannino M. V., "The
Integrated Dictionary/Directory system', Computing
Surveys, Vol. 14, No. 2, June 1982.

18. Lefkovits, H. C., Sibley, E. H., and Lefkovits, S. L.,InformAtion Resource/Data-Dictionary Systems, pp. 1-46.

QED Information Sciences, 1977.

19. Durell, W., 'Disorder to Disciplime Via the Data
Dictionary', Journal of Systems Management, May, 1983.

28. Ibid, pp. 14-15.

21. Ibid, p. 17.

22. Ibid, p. 18.

23. Allen, F. W., Loomis, M. E. S., and Mannino M. v., The
Intgrated Dictionary/Directory System, Computing
Surveys, Vol. 14, No. 2, June 1982.

24. American National Standards Institute, ANSI X3H4,
(Draft Proposed) American National Standard Information
Resource Dictionary System: Part 1 -- Core Standard,
New York, 1985.

25. American National Standards Institute, ANSI X3H4,
(Draft Proposed) American National Standard Information
Resource Dictionary Systemi Part 2 -- Core Standard,
New York, 1985.

26. American National Standards Institute, ANSI X3H4,
(Draft Proposed) American National Standard Information
Resource Dictionary System: Part 3 -- Core Standard,
New York, 1985.

27. American National Standards Institute, ANSI X3H4,
(Draft Prooosed) American National Standard Information
Resource Dictionary System: Part 4 -- Core Standard,
New York, 1985.

28. National Bureau of Standards, NOSIR 66-2115,
Prospectus for Data Dictlonary fystem Standard,
Application Systems Division, G<hersburg, MD,
September, 1986.

251

38. National Bureau of Standards, Gaithersburg, MD, NBSIR
82-2619, Functional Specifications for a Federal
Information Processino Standard Data Dictionary System,
P. A. Konig, A. H. Goldfine, and J. J. Newton,
September, 1980.

31. American National Standards Institute, ANSI X3H4,
(Draft Proposed) American National Standard Information
Resource Dictionary System: Part I -- Core Standard,
New York, 1985.

32. Ibid, pp. 578-600.

33. Ibid, pp. 681-685.

34. Ibid, pp. 686-743.

35. Codd, E. F., "Relational Database: A Practical
Foundation for Productivity.1, In Communication of the
ACH, Vol 25, No2, February 1982.

36. American National Standards Institute, ANSI X3H4,
(Draft Proposed) American National Standard Information
Resource Dictionary System: Part 2 -- Core Standard,
New York, 1985.

37. American National Standards Institute, ANSI X3H4,
(Draft Proposed) American National Standard Information
Resource Dictionary Systems Part 3 -- Core Standard,

4New York, 1985.
4.

38. American National Standards Institute, ANSI X314,
(Draft Proposed) American National Standard Information
Resource Dictionary Systemi Part 4 -- Core Standard,
New York, 1985.

39. Noel, A., Relational Data Dictionaries and Prototyping,
Masters Thesis, Naval Postgraduate School, Monterey,
California, June 1985.

40. Carey, T. T. and Mason, R.E.A., "Prototyping
Interactive Information Systems", Communications of the
AC1, V26, May 1983.

41. Pressman, R. S., Software Enoineerino, A Practitioner's
Aproc, McGraw-Hill, New York, NY, 1982.

42. American National Standards Institute, ANSI X3H4,
(Draft Proposed) American National Standard Information
Resource Dictionary Systems Part 3 -- Core Standard,
New York, 1985.

252

t. 0

43. Blum, B. I., "Rapid Prototyping of Information

Management Systems", ACM SIOSOFT Software Engineering
Notes, V7, December 1982.

44. Pressman, R. S., Software Engineering: A Practitioner's
, Approach, McGraw-Hill, New York, NY, 1982.

45. Sprague R. H. and Carlson E. D., Building Effective

Decision Suppcort Systems, Printice-Hall, Inc., i
. Englewood Cliffs, New Jersey, 1982.

"46. Wasserman, A. 1. and Shewmake, D. T. "Rpi
-" ~Prototyping of Interactive infromation Systems",_ACM -,."
i'.- SIGSOFT Sofrware Engineering Notes, V7, December 1982.

47. American National Standards Institute, ANSI X3H4,
(Draft Pros~osed) American National Standard Information
Resource Dictionary System:i Part 1I- Core tandlard,,...,;
New York,-1985.

253

II

INITIAL DISTRIBUTION LIST

No. Copies

1. MAJ Robert A. Kirsch II 4
5458 Suwannee Circle
Mobile, Alabama 36698

2. Professor Daniel R. Dolk, Code 54Dk 5
Naval Postgraduate School
Monterey, California 93943-5884

3. LCDR Paul W. Callahan, Code 52Cs 1
Naval Postgraduate School
Monterey, California 93943-5884

4. Computer Technology Programs, Code 37 1
Naval Postgraduate School
Monterey, California 93943-5884

5. Library, Code 8142 2
Naval Postgraduate School
Monterey, California 93943-5882

6. Defense Technical Information Center 2

Cameron Station

Alexandria, Virginia 22384-6145

-25'

254

-' r

S....

'. .

.. 4.

1~

I

FILMED I

A .r

4

- *
* I

5'

IL
U * S. ~ .~ -S. A* *1~

w.
-.5

