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' . ABSTRACT

In this paper the asymmetrical coupled coplanar-type transmission line

-m (C-CTL) with an anisotropic substrate is investigated using both the quasistatic
| method and the hybrid-mode formulations. The line characteristics of interest,
2.3., the propagation constant and the characteristic impedances of the various

types of C-CTLs with anisotropic substrate, are presented.
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I. INTRODUCTION

Various types of transmission lines with anisotropic substrates have been

investigated for use in microwave- and millimeter-wave integrated circuits [l]:

These include single and coupled striplines [2] ~ (7], slot lines [8], and

coplanar-type transmission lines [9] - [11]. The coplanar-type transmission
lines (CTLs) are promising because of their easy adaptation to shunt element
connections (12}, (13]. The application of coupled coplanar-type transmission

lines to filters and couplers was proposed by C. P. Wen (14]. The propagation

characteristics of coupled coplanar-type transmission lines QE:FTL) have been

studied based on the quasistatic [14], [15] and hybrid-mode formulations {[16],
{17], and accurate numerical values are available for the cases with isotropic
and/or anisotropic substrates. However, most of them assume the structural sym-
metry. The theoretical approach for the asymmetrical version is available only
for the propagation constant of the case with a single isotropic substrate [16].
There is no information available for the characteristic impedances of asym-
metrical C-CTLs, even for the simplest cese with an isotropic substrate,
although it is required to utilize the advantages of the asymmetrical structure,
the impedance transform nature and the additional flexibility.

In this paper: we present .the anaiytical method for the general structure
of asymmetrical coupled coplanar~type transmission lines with an anisotropic
substrate. This method includes both the hybrid-mode and the quasistatic for-
mulations and is useful for accurately computing the characteristic impedances
as well as propagation constants of various types of asymmetrical coupled

coplanar-type transmission lines.
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I1. THEORY

A. Variational Expressions for the Elements of the Capacitance Matrix of a C-CTL

The variational method will be described for the quasistatic characteristics
of the general structure for asymmetrical, coupled coplanar-type transmission
lines (C-CTLs; Fig. !) with uniaxially anisotropic substrates, whose permit-

tivities are given by the following dyadic:

1,Xx i,xy %

The quasistatic characteristics of the symmetrical C-CTL can be expressed in
terms of the scalar line capacitance [15], whereas, for the asymmetrical C-CTL
case considered here, they are described by the capacitance matrix which is

defined as:

= (2)

where V1 and Q are the potential and the total charge on the right strip, and
V, and Q, are those on the left strip, regspectively., The variational

expressions of the self and mutual capacitances C,, C,, and Cm will be derived
&

1’
in the following.

The charge distcibution on the conductors can be expressed in terms of the

aperture field e (x) [15];

-
-

LI S T T
- LIPS R
L T N

CaAa R aaiecaiutatec abe 4




a(x) = [[ Glasx|x") e (x') da dx' (3)

with

Glaixx') = -j § F(@) I 907XD (4)

(ty@ + ¥ (@) (5)

where Y.  and Y, can be obtained by utilizing the simple recurrent relation

U
(Appendix). The total charge located between X, and X, is given by
*1
Q(xl,xz) = [ o(x) dx (6)
*2

When x, and x

) 2 lie in slots, Q(xl,xz) should be constant, that is,

Q(xl,xz) = Ql(lle <aand b <x; <cy)

(7
* Qy(-cy < x5y < -by and |x; | < a)

We consider the following sets of excitations to determine the capacitances:

) v £0, v, =0 (8a)

ii) v, * 0, v, %0 (8b)

i1i) V1 = ‘Vz (8¢)
3
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. Multiplying (6) by e _(x,) and integrating over the right slot
.l x 71
- (b1 <xy < cl), we obtain
Qv = fb ex(xl) Qxy,x,) dx;
. - <y -, e S
== [] Fla) e (x") ed {[ e(x,) e dx, - V., e 2} da dx'
2 ', X b, X 1 1 1
. 1
-l -arals
(|x2| < a) (9)
.. by utilizing e
(.
“1 a o
V= e (x) dx o= - [ e (x) ax (10)
: b1 -a
N ]
- Then, multiplying Eq. (9) by e (x,) and integrating over the left slot, we
e obtain
- 2
-lel = ff ex(xl) Q(xl,xz) ex(xz) dxl dx,
) : 1 ® joax!' Cl ‘jaxl ~ -
S D [ ' - LA
: 5 /I Fla) ex(x ) e { v, / e (x;) e dx, o
le b [
l - -;‘—»"‘s
2 -jox, dxz} da dx’ (11) : o
_ -V j_cz ex(xz) e ::
) ‘-'. ) -"
That 1s,
o L ]
- QVv, = IO f{m F(a) ex(x') cos a(x - x') ex(x) dx' dx da (12)
,
i
.i

. v » A'.'.'v_.'-'n'n'.‘-'. ™. . .
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Therefore, we obtain the stationary expression of C, as follows: R
b
Q R
c, = '
1 'VI "
Vz =0 KR
t. -
L] -]
I ex(x) F(a) cos alx - x') e (x') da dx'dx
-==0 : (13) .
{] e (x) dx}
X -
Equation (13) gives an upper bound to the exact value. Similar expressions for
C, and C; + 2C_ + C, can be obtained by using (8b) and (8¢c), respectively. The ;ﬁ;l .

Ritz procedure will be applied to the variational expressions (13) for the
numerical computation.

There are two fundamental modes of propagation in asymmetrical coupled
coplanar-type transmission lines (C~CTL), that is, c- and ®m-modes, which becowme
aven and odd modes in the symmetrical case, respectively. The propagation
characteristics of an asymmetrical C-CTL can be expressed in terms of two propa-~
gation constants, Bc, B;s and four characteristic impedances, Zi,c’

Z. (i = 1,2), where 1 = | and 2 stand for the right and left strips, respec-
i,m

b
tively. The quasistatic values of the propagation constants and the charac-
teristic impedances for two fundamental modes can be calculated by [6], ([18]

2
+ L,Cy = 2L C * U}
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Y
» : 2 =g () - Ly/RY)
. 1
Zz,c = -RcRn Zl,c
2y 0 T RRLZ)
- o L,C, = LiCy U
C,TW mmcz = LICm—)
) 1» .
U = [(x.zc2 - L€ + 4L c - L,C (L C, - LiC)} (14) 5

v £
where Ly» L2, and L, are the self and mutual inductances, which can be obtained

from C C2, and Cm for the case without a substrate.

l)
| . B. Hybrid-mode Analysis i

The network analytical method of electromagnetic fields has been success-
fully applied to analyze the propagation characteristics of various types of
- planar transmission lines with isotropic and/or uniaxially anisotropic sub-

' strates whose optical axis is coincident with one of the coordinate axes [5], (9],
[10}. This method is based on the hybrid-mode formulation, and no approxima-
i N tions for simplication are used in the formulatioa procedure. The propagation
constants of an asymmetrical C-CTL can be obtained easily by using the extended
version of this method and applying the Galerkin's procedure. The charac-
; " teristic impedance is not uniquely specified because of the hybrid mode of pro- E‘::Y
4

pagation, The definition chosen here is

i 2. ==l (i*1,2; j=c,m (15) X%
' & 1).] Ii,j ET.':.
A NN
. '..i.\-'..d.
- . 90 ‘-c'. '-'
: 6 :-‘.;\i‘ Ca
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where Il 3 and V1 ; are the total current on the right strip and the voltage
2

\) 1]
i) r

difference between the right strip and the ground conductor, respectively, and

I, . and V are those for the left strip. The frequency-dependent hybrid-

. 2,] 2,] _
i e mode solutions for propagation constants and characteristic impedances are pre- e
AR

— ¥

sented in Section III. )

C. Coplanar-type Transmission Line

The quasistatic and hybrid-mode formulations described above are quite
general and applicable to various configurations, e.g., coupled coplanar wave-
guide (C-CPW; Fig. 2(a)), coupled CPW with double-layered substrate (Fig. 2(b)),
coupled sandwich CPW (Fig. 2(c)) and coupled coplanar three strips (Fig. 2(d)).
In the coplanar-strip case of Fig. 2(d), the charge and current distribution on
the strips are the basic quantities as opposed to the aperture fields in the CPW
cases of Figs. 2(a) - (¢). Numerical results for these coplanar-type

transmission lines are included in the next section.

e e AT
e e et d Lt



RAAuE el Sas Ba s e oa i e eas o g o Ll A el M Al ses ol ng mae i e s g

III. NUMERICAL EXAMPLES

Figure 3 shows the quasistatic characteristics of an asymmetrical coupled
coplanar waveguide with an isotropic substrate. Figures 3(a) and (b) depict the

effective dielectric constants €Coff ; and the characteristic impedances
3

Zi,j(j = ¢,m) as a function of the strip width ratio Sz/sl. eeff,j is obtained
oy
. - (s 2
"o ff, ] (Bj/wfsouo) (l6)
The values for the symmetrical case(Sz/S = 1) are in good agreement with those
1

of [15]. Another check on the results can be made by investigating the limiting
case as S,/s becomes very large, where the left slot is decoupled and
=T

€ converges to that of the asymmetrical coplanar waveguide (ACPW)[15] shown

2ff,
in Fig. 4(a). As S2/Sl becomes very small, eeff,c converges to that of ACPW
shown in Fig. 4(b), which can be considered as the limiting case of SZ/Sl = 0.
Figures 5 and 6 show the quasistatic characteristics of asymmetrical coupled
double-layered (Fig. 2(b)) and sandwich (Fig. 2(c¢)) coplanar waveguides, respec-
tively. They depict eeff,j and Zi,j(j = ¢c,n) as funutions of the ratio of the
thickness of the upper to the lower layer d/h. Figure 7 shows the frequency
dependence of the effective dielectric constants for various types of a coupled
coplanar waveguide with uniaxially anisotropic substrates cut with their planar
surface perpendicular to the optical axis. The frequency-dependent hybrid-mode
values of each mode converge precisely to the corresponding quasistatic values
in lower frequency ranges for all cases. The phase velocities of two fundamen-

tal modes of the case with double-layered substrates have close values in the

higher-frequency range, but they never coincide because of the mode coupling.

L
Lo
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The mode of propagation can not be identified as the c- or m-mode by investi-
gating the voltage and current. Figure 8 shows the frequency dependence of the
characteristic impedances of a coupled coplanar waveguide. Figure 9 shows the
effective dielectric constants and the characteristic impedances of coupled
coplanar three strips (Fig. 2(d)) with a uniaxially anisotropic substrate. The
definition for the characteristic impedance of coupled coplanar strips is chosen

as

where Il,j and Vl,j are the total current on the right strip and the voltage
between the right and the center strips, and IZ,j and V2,j are those for the
left strip. Again, the frequency-dependent values converge to the quasistatic
values in the lower-frequency ranges.

Figure 10 shows Eeff,i and Zi’. of an asymmetrical coupled coplanar wave-

guide on a uniaxially anisotropic substrate cut with its surface at y to the

optical axis.




V. CONCLUSIONS

This paper describes the analytical method for the general structure of
asymmetrical coupled coplanar-type transmission lines (C~CTLs) with anisotropic
media. It consists of the quasistatic and the hybrid-mode formulations. The
former gives variational expressions for the line parameters of the cases with
the uniaxially anisotropic substrate cut with its planar surface at an arbitrary
angle to the optical axis; the latter gives the rigorous frequency-dependent
characteristics for the cases with the anisotropic substrate cut with its sur-
face perpendicular to the optical axis. Some numerical examples showed the
accuracy of the method and presented the propagation characteristics, the propa-
gation constants as well as the characteristic impedances of the various types

of C-CTL with anisotropic media, for the first time.
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APPENDIX: RECURRENT RELATIONS

IR
Pr A N

X The Fourier transform of the electric field Ex and the electric flux density
o Dy in the layer ily, , > y > y;) can be expressed as: I
atatax
— l
1 ‘
B (aix) = i “jax gy
Ex(a,x) Ver im Ex(x,y) e x
- -
lv
= exp(-biy)[Aicosh(piy) + Bi51nh(piy)] (A1) :
e ! i
Dylasx) = €; 4y %0 Ex * %i,yy%0 By S
- ll = "€ ,yy% Pi exp(-biy)[Aisxnh(piy) + Bicosh(piy)] (a2) -
i
. where Ai’ Bi are unknown constants and
- €
: 1 €. R
3 L,yy et
€i,e . E -
) ~ s
p; = —— la] (a4) St
- 1,)'}’ .
g 2 b
_ “i,e ixx Si,yy T Si,xy (45) e
A We will derive the recurrent relation in the upper region y > 0. Define the il
] ) \g\.
. ! following quantity at the lower surface of the layer i (Fig. 11): géﬁﬁ
O OSRN
Lo Y
a0 -.\-. !
. .:,*.:,::
” 11 PR
' 1
- Yo
§ A




)
Y = JQ o_y
i L,eEO a E (a6)
x y'yi+0

Considering the continuity conditions at the y = y.

i+l plane, we obtain the

following recurrent relation with respect to Y,

€.
Arley L tanh(p.d,)

Y., = (A7)

The electric flux density at the y = +0 plane (the slot plane) can be

obtained as
By(a;y = 40) = =2~ Y a (a8)

where ;x is the Fourier transform of the aperture field ex(x). Then, Y, in

Eq. (5) can be obtained as
Y = ¢ Y (A9)

A similar recurrent relation holds in the lower region y < 0, and YL can be

determined.
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General structure of asymmetrical coupled coplanar-type transmission
lines with anisotropic substrates.

(a) Asymmetrical coupled coplanar waveguide (C-CPW).

(b) Asymmetrical coupled coplanar waveguide with double~layered
substrate.

(c) Asymmetrical coupled sandwich coplanar waveguide.

(d) Asymmetrical coupled coplanar three strips.

-
. A.‘ . ‘. T
-

Quasistatic characteristics of asymmetrical coupled coplanar waveguide
versus strip-width ratio S .
2/S1

(a) Effective dielectric constants
(b) Characteristic impedances
=

Elxx = Elyy =9.6, elxy

2a/h =1, Syyp =2, Wyp =2, Wy, =2
Asymmetrical coplanar waveguide (ACPW).

Quasiscatic characteristics of asymmetrical coupled coplanar waveguide
with double-layered substrate.

= 9.4, 11.6, €9pp = €29y = 2.6, €. =0 (i=1,2)

lyy © 1Xy

= 0.5, wl/h = 1.5, th = 2.0.

€1xx
S

= 1.0,

1/h $2/n

Quasistatic characteristics of asymmetrical coupled sandwich coplanar
waveguide.

Flxx T faxx T 9% = 11.6, ¢, =0 (1i=1,2)

“lyy © Cayy
Sih = 1-0, Sy 7 0.5, W, = 1.5, W, = 2.0.
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li Fig. 7. Dispersion characteristics of various types of coupled coplanar wave-
guides.

Sl/h = 1-0, SZ/h = 0-5, wl/h = 1.5, wZ/h = 2.0

. (a) Asymmetrical coupled coplanar waveguide (C-CPW).
- €1xx - 9.4, elyy = 11.6, elxy = 0.
(b) Asymmetrical coupled coplanar waveguide with double-layered S
substrate. A \-J
- €lxx 9.4, elyy = ]11.6, €oxx * 62yy = 2.6, ;. . é
eixy =0 (i=1,2), d/h = 0.1.
(¢) Asymmetrical coupled sandwich coplanar waveguide.
f €ixx - S2xx - 9.4, elyy = EZyy = 11.6,
Cixy = 0 (1= 1,2), d/h = 1.0.
: Hybrid-mode, - : Quasistatic
' II Fig. 8. Frequency dependence of the characteristic impedances of coupled

coplanar waveguides.
Dimensions are the same as in Fig. 7(a).
) Fig. 9. Frequency dependence of the effective dielectric constants and the
S characteristic impedances of coupled coplanar three strips
Eixx = 2% elyy = 11.6, slxy =0

Sl/h = 1.0, SZ/h = 0.5, Wl/h = 1.5, WZ/h = 2.0.

: Hybrid-mode, - : Quasistatic
Fig. 10. Effective dielectric constants of coupled coplanar waveguide versus Y.

. €
C Ixx

L Si/m

= 3.40, ¢ = 5.12, ¢

= 0 when = 0
lyy Y

Ixy

= 1.0, S = 0.5, W = 1.5, W = 2.0.

2/n 1/h 2/h

Fig. ll. The i-th layer of stratified anisotropic substrates.
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