- ND-R165 007	ASYMMETRIC NITH ANISO	TROPIC SU	COPLANAR-T	YPE TRANS	NISSION LI T URDANA	NES 1/1	,
UNCLASSIFIED	UILU-ENG-8	6-2206 NO0	814-84 -C- 81	49	F/8 9/	5 NL	
		<u> </u>					
			END				
			PILMED				
			PTIC	R.			

		28	2.5
		32 36	2.2
		140 1	2.0
	E C.I		1.8
1.25	<u> .</u>	4	1.6

ļ.

よったたいたいでないというからなかです。

ţ

.

...

MICROCOPY RESOLUTION TEST CHART

UILU-ENG-86-2206

COORDINATED SCIENCE LABORATORY College of Engineering

AD-A165 007

ASYMMETRICAL COUPLED COPLANAR-TYPE TRANSMISSION LINES WITH ANISOTROPIC SUBSTRATES

T. Kitazawa Y. Hayashi R. Mittra

COPY

FIE

JE

3

86

60 7

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

CORFF CLASSIFICATION OF T	IS PAGE		71	<u>r/1/62</u>			
		REPORT DOCUM	ENTATION PAG	E		_	
A REPORT SECURITY CLASSIFIC	CATION		16. RESTRICTIVE MARKINGS				
Unclassified			None				
N/A			Approved for public release, distribution				
DECLASSIFICATION DOWNER	ADING SCHED	ULE	unlimited.	p			
N/A							
PERFORMING ORGANIZATION	REPORT NUM	BER(S)	5. MONITORING OF	RGANIZATION RI	EPORT NUMBER	(5)	
UILU-ENG-86-2206			N/A				
NAME OF PERFORMING ORG	ANIZATION	60 OFFICE SYMBOL	78. NAME OF MONI	TORING ORGAN	ZATION		
Laboratory, Univ. o	f Illinois	N/A	Office of Naval Research				
. ADDRESS (City, State and ZIP C	lode :	1	75. ADDRESS (City.	State and ZIP Cod	(e)		
1101 W. Springfield	Avenue		800 N. Qu	incy Street			
Urbana, Illinois 6	1801		Arlington	, VA 22217	,		
NAME OF FUNDING SPONSOR		BL OFFICE SYMBO	9. PROCUREMENT	INSTRUMENT ID	ENTIFICATION		
ORGANIZATION Joint Se	ervices	(If applicable)					
Electronics Program	n	N/A	Contract #	N00014-84-0	-0149		
ACORESS (City State and ZIP C	Code :		10. SOURCE OF FU	NDING NOS.			
Arlington VA 222	ec 17		PROGRAM ELEMENT NO.	PPOJECT NO.	NO.	NORK UNIT	
Asymmetrical Couple	d Coplana:	r-Type Trans-	N/A	N/A	N/A	N/A	
mission Lines with	Anisotrop:	ic Substrates	<u></u>	<u></u>	L		
7 868668181 31173208(6)							
T. Kitazawa, Y. Ha	vashi and	R. Mittra					
T. Kitazawa, Y. Ha	vashi and	R. Mittra	14. DATE OF REPO	AT (Yr., Mo., Dey)	15. PAGE	COUNT	
T. Kitazawa, Y. Ha T.YPE OF REPORT Technical	vashi and 136. TIME C FROM	R. Mittra	14. DATE OF REPO Februar	ят (Yr. Mo., Dey) у 1986	15. PAGE 30	COUNT	
T. Kitazawa, Y. Ha T. Kitazawa, Y. Ha Type of Report Technical Supplementary Notation N/A	Vashi and 136. TIME C FROM	R. Mittra ovened to	14. DATE OF REPO Februar	вт (Yr. Mo., Dey) у 1986	15. PAGE 30	COUNT	
Z PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha La TYPE OF REPORT Technical S SUPPLEMENTARY NOTATION N/A	vashi and 136. TIME C FROM	R. Mittra overed	14. DATE OF REPO Februar	RT (Yr. Mo., Dey) y 1986	15. PAGE 30		
2. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha IL TYPE OF REPORT Technical SUPPLEMENTARY NOTATION N/A COSATI CODES	vashi and	R. Mittra OVERED TO 18. SUBJECT TERMS (C	14. DATE OF REPO Februar	RT (Yr. Mo., Dey) y 1986 recessory and identi	15. PAGE 30		
T. Kitazawa, Y. Ha T. Kitazawa, Y. Ha La TYPE OF REPORT Technical S SUPPLEMENTARY NOTATION N/A COSATI CODES EVELO GROUP S	Vashi and 136. TIME C FROM	R. Mittra overed to 18. Subject terms of microwave & m	14. DATE OF REPO Februar	RT (Yr. Mo., Dey) y 1986 eccessory and identit es; coplana	fy by block numbers	COUNT ", sion lines;	
Z. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha Ja TYPE OF REPORT Technical S SUPPLEMENTARY NOTATION N/A COSATI CODES FIELD GROUP S	Vashi and 136. TIME C FROM	R. Mittra overed to to nisotropic s	Continue on reverse of n illimeter wav ubstrate; pla	NT (Yr. Mo., Day) y 1986 eccessory and (denti es; coplana nar wavegui	ify by block numb ir transmis .des	COUNT sion lines	
2. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha Ja TYPE OF REPORT Technical 5. SUPPLEMENTARY NOTATION N/A 7. COSATI CODES FIELD GROUP S 2. ABSTRACT Continue on revenue	Vashi and 136. TIME C FROM UB. GR.	R. Mittra OVERED TO 18. SUBJECT TERMS (C microwave & m anisotropic s 1 denlify by block number	Tontinue on reverse if n illimeter wav ubstrate; pla	WT (Yr. Mo., Dey) y 1986 eccessory and identi es; coplana nar wavegui	fy by block number fy by block number fr transmis des	COUNT ", sion lines	
2. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha Ja TYPE OF REPORT Technical 5. SUPPLEMENTARY NOTATION N/A 7. COSATI CODES FIELD GROUP S 9. ABSTRACT Continue on reverse In this paper	vashi and 136. TIME C FROM UB. GR.	R. Mittra OVERED TO TO 18. SUBJECT TERMS (microwave & m anisotropic s d identify by block number etrical coupled	Ja. DATE OF REPO Februar	y 1986 y copiana es; copiana nar wavegui e transmiss	15. PAGE 30	COUNT sion lines C-CTL)	
2. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha 3. TYPE OF REPORT Technical 5. SUPPLEMENTARY NOTATION N/A 7. COSATI CODES FIELD GROUP S 9. ABSTRACT Continue on reversu In this paper with an anisotropic	vashi and 136. TIME C FROM FROM UB. GR UB. GR the asymmetry substrate	R. Mittra overed TO TO IS SUBJECT TERMS (C microwave & m anisotropic s dentify by block number etrical coupled e is investigat	Continue on reverse if n illimeter wav ubstrate; pla coplanar-typ ed using both	eccessory and identi es; coplana nar wavegui e transmiss the quasis	15. PAGE 30 30 30 30 30 30 30 30 30 30 30 30 30	COUNT sion lines C-CTL) od and	
2. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha 3. TYPE OF REPORT Technical 5. SUPPLEMENTARY NOTATION N/A 2. COSATI CODES E-IELD GROUP S 9. ABSTRACT Continue on reverse In this paper with an anisotropic the hybrid-mode for pagation constant a	US. GR.	R. Mittra OVERED TO 18 SUBJECT TERMS (C microwave & m anisotropic s dentify by block number etrical coupled to is investigat The line cha	Tontinue on reverse if n Februar Continue on reverse if n illimeter wav ubstrate; pla r coplanar-typ ed using both racteristics pedances of t	e transmiss the quasis of interest	is page 30 ify by block number transmis des sion line (static meth types of C	C-CTL) od and e pro-	
Z. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha Ja TYPE OF REPORT Technical 5 SUPPLEMENTARY NOTATION N/A 7 COSATI CODES 5 SUPPLEMENTARY NOTATION 9 ABSTRACT Continue on reverse In this paper with an anisotropic su with anisotropic su	vashi and 13b. TIME C FROM UE. GR. UE. GR. the asymmoty substrate mulations nd the cha bstrate.	R. Mittra OVERED TO TO TO TO TO TO TO TO TO TO	In DATE OF REPO Februar	y 1986 recessory and identi es; coplana nar wavegui e transmiss the quasis of interest he various	is page 30 ify by block numb it transmis des sion line (static meth t, e.g., th types of C	COUNT sion lines C-CTL) od and e pro- -CTLS	
 Z. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha T. Kitazawa, Y. Ha T. Kitazawa, Y. Ha T. CORTICOLS SUPPLEMENTARY NOTATION N/A COSATI CODES SUPPLEMENTARY NOTATION N/A 	vashi and 136.TIMEC FROM FROM UB. GR. UB. GR. UB. GR. UB. STATE substrate nd the cha bstrate, o	R. Mittra overed to to microwave & m anisotropic s dentify by block number etrical coupled e is investigat . The line cha aracteristic im are presented.	It DATE OF REPO Februar Continue on reverse of n illimeter wav ubstrate; pla coplanar-typ ed using both racteristics pedances of t	e transmiss the quasis of interest he various	ty by block number transmis des tatic meth- t, e.g., th types of C	COUNT sion lines C-CTL) od and e pro- -CTLs	
 Z. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha Ja TYPE OF REPORT Technical 6 SUPPLEMENTARY NOTATION N/A Z. COSATI CODES FIELD GRCUP S P. ABSTRACT Continue on reversa In this paper with an anisotropic the hybrid-mode for pagation constant a with anisotropic su 	vashi and 136.TIMEC FROM UB.GR UB.GR the asymmetry substrate mulations nd the cha bstrate, a	R. Mittra overed TO TO TO IS SUBJECT TERMS (C microwave & m anisotropic s dentify by block number etrical coupled e is investigat . The line cha aracteristic im are presented.	It DATE OF REPO Februar Continue on reverse if n illimeter wav ubstrate; pla coplanar-typ ed using both racteristics pedances of t	e transmiss of interest he various	15. PAGE 30 30 30 30 30 30 30 30 30 30 30 30 30	COUNT sion lines C-CTL) od and e pro- -CTLS	
 Z. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha TYPE OF REPORT Technical SUPPLEMENTARY NOTATION N/A COSATI CODES SELD GROUP S ABSTRACT Continue on reverse In this paper ABSTRACT Continue on reverse In this paper ABSTRACT Continue on reverse In this paper With an anisotropic the hybrid-mode for pagation constant a with anisotropic su 	vashi and 136.TIME C FROM UE.GR UE.GR the asymmetry substrate mulations nd the chi bstrate, o	R. Mittra overed To To nicrowave & m anisotropic s dentify by block number etrical coupled e is investigat . The line cha aracteristic im are presented.	14. DATE OF REPO Februar Continue on reverse of n illimeter wav ubstrate; pla coplanar-typ ed using both racteristics pedances of t	e transmiss the quasis of interest he various	15. PAGE 30 30 30 30 30 30 30 30 30 30 30 30 30	C-CTL) od and e pro- -CTLS	
T. Kitazawa, Y. Ha T. Kitazawa, Y. Ha Technical SUPPLEMENTARY NOTATION N/A COSATI CODES FIELD GROUP S ABSTRACT Continue on reverse In this paper with an anisotropic the hybrid-mode for pagation constant a with anisotropic su	vashi and 136. TIME C FROM UE. GR. UE. GR. UE. SR. the asymmo substrate mulations nd the cha bstrate, a	R. Mittra OVERED TO TO TO TO TO TO TO TO TO TO	It DATE OF REPO Februar	e transmiss the quasis of interest he various	15. PAGE 30 30 30 30 30 30 30 30 30 30 30 30 30	COUNT sion lines C-CTL) od and e pro- -CTLS	
Z. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha Ja TYPE OF REPORT Technical 5 SUPPLEMENTARY NOTATION N/A 7 COSATI CODES FIELD GRCUP 9. ABSTRACT Continue on reverse In this paper with an anisotropic the hybrid-mode for pagation constant a with anisotropic su	vashi and 136.TIMEC FROM UB.GR UB.GR the asymmetry substrate mulations nd the cha bstrate, of	R. Mittra overed TO TO IS SUBJECT TERMS (C microwave & m anisotropic s dentify by block number etrical coupled e is investigat . The line cha aracteristic im are presented.	It DATE OF REPO Februar	e transmiss the quasis of interest he various	15. PAGE 30 30 30 30 30 30 30 30 30 30 40 50 40 50 40 50 50 30 40 50 50 50 50 50 50 50 50 50 50 50 50 50	COUNT sion lines C-CTL) od and e pro- -CTLS	
2. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha Ja TYPE OF AEPOAT Technical 5. SUPPLEMENTARY NOTATION N/A 7. COSATI CODES FIELD GRCUP S 4. ABSTRACT Continue on reverse In this paper with an anisotropic the hybrid-mode for pagation constant a with anisotropic su	vashi and 136.TIMEC FROM UB. GR UB. GR the asymmetry substrate mulations nd the chi bstrate, o	R. Mittra overed TO TO Is subject terms of microwave & m anisotropic s dentify by block number etrical coupled e is investigat . The line cha aracteristic im are presented.	It DATE OF REPO Februar	PT (Yr. Mo., Dey) y 1986 recessory and identi- es; coplana nar wavegui e transmiss the quasis of interest he various	15. PAGE 30 30 30 30 30 30 30 30 30 30 30 40 30 40 50 40 50 30 40 50 50 50 50 50 50 50 50 50 50 50 50 50	C-CTL) od and e pro- -CTLS	
2. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha 3. TYPE OF REPORT Technical 3. SUPPLEMENTARY NOTATION N/A COSATI CODES FIELD GROUP S ABSTRACT Continue on reverse In this paper with an anisotropic the hybrid-mode for pagation constant a with anisotropic su	vashi and 136.TIME C FROM UE. GR. UE. GR. UE. SR. UE. SR. UE. SR. UE. SR. UE. SR. Substrate mulations nd the cha bstrate, o	R. Mittra TO TO TO Is SUBJECT TERMS (microwave & m anisotropic s definity by Nock number etrical coupled to is investigat The line cha aracteristic im are presented.	Februar Februar	e transmiss the quasis of interest he various	15. PAGE 30 30 30 30 30 30 30 30 30 30 30 30 30	COUNT sion lines C-CTL) od and e pro- -CTLS	
2. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha 3. TYPE OF REPORT Technical 6. SUPPLEMENTARY NOTATION N/A 7. COSATI CODES FIELD GROUP S 9. ABSTRACT Continue on reverse In this paper with an anisotropic the hybrid-mode for pagation constant a with anisotropic su	vashi and 136.TIMEC FROM UB. GR UB. GR UB. GR the asymmetry substrate mulations nd the cha bstrate, a	R. Mittra overed TO TO TO IS SUBJECT TERMS (microwave & m anisotropic s dentify by block number etrical coupled e is investigat . The line cha aracteristic im are presented.	Continue on reverse of n illimeter wav ubstrate; pla coplanar-typ ed using both racteristics pedances of t	e transmiss the quasis of interest he various	15. PAGE 30 30 30 30 30 30 30 30 30 30 30 30 30	COUNT sion lines C-CTL) od and e pro- -CTLS	
2. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha 3. TYPE OF REPORT Technical 5. SUPPLEMENTARY NOTATION N/A COSATI CODES FIELD GRCUP S ABSTRACT Continue on reverse In this paper With an anisotropic the hybrid-mode for pagation constant a With anisotropic su) DISTRIGUTION ALALLABIL T NG NEEEED MINING VY	US. GR.	R. Mittra overed To To nicrowave & m anisotropic s identify by block number etrical coupled is investigat The line cha aracteristic im are presented.	21 ABSTRACT SEC	RT (Yr. Mo., Dey) y 1986 recessory and identi- es; coplana nar wavegui e transmiss the quasis of interest he various	15. PAGE 30 30 30 30 30 30 30 30 30 30 30 30 30	COUNT sion lines C-CTL) od and e pro- -CTLS	
2. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha 3. TYPE OF REPORT Technical 6. SUPPLEMENTARY NOTATION N/A 7. COSATI CODES FIELD GROUP S 9. ABSTRACT Continue on reverse In this paper with an anisotropic su 9. ABSTRACT Continue on reverse In this paper with an anisotropic for pagation constant a with anisotropic su 0. DISTRIBUTION ALAULABIL T NCLASSIF ED UNUMITED XX	UE. GR.	R. Mittra OVERED TO TO III SUBJECT TERMS (microwave & m anisotropic s III demn(y by Nock number etrical coupled e is investigat . The line cha aracteristic im are presented.	21 ABSTRACT SEC Unclassif	PT (Yr. Mo., Dey) y 1986 recessory and identic es; coplana nar wavegui e transmiss the quasis of interest he various	(15. PAGE 30 30 30 30 30 30 30 30 30 30 30 30 30	COUNT sion lines C-CTL) od and e pro- -CTLS	
2. PERSONAL AUTHOR(S) T. Kitazawa, Y. Ha 3. TYPE OF REPORT Technical 6. SUPPLEMENTARY NOTATION N/A 7. COSATI CODES FIELD GROUP S 9. ABSTRACT Continue on reverse In this paper with an anisotropic su 4. MARCE STRACT CONTINUE ON REVERSE 0. DISTRIBUTION ALAULABILE NCLASSIFIED UNLIMITED XX 2. NAME OF RESPONSIBLE NO	vashi and 136.TIMEC FROM FROM UB.GR UB.GR the asymmetry substrate mulations nd the cha bstrate, of SAME AS APT TOPAL	R. Mittra OVERED TO TO TO TO TO TO TO TO TO TO	21 ABSTRACT SEC Unclassif	RT (Yr. Mo., Dey) y 1986 recessory and identi es; coplana nar wavegui e transmiss the quasis of interest he various	15. PAGE 30 17 by block number for transmis des sion line (static mether , e.g., th types of C	COUNT sion lines; C-CTL) od and e pro- -CTLS	

Ľ

. . .

SECURITY CLASSIFICATION OF THIS PAGE

۰.,

.

.

J.

•

 .

ASYMMETRICAL COUPLED COPLANAR-TYPE TRANSMISSION LINES

WITH ANISOTROPIC SUBSTRATES

Toshihide Kitazawa, Yoshio Hayashi and Raj Mittra

ABSTRACT

۲

r

In this paper the asymmetrical coupled coplanar-type transmission line (C-CTL) with an anisotropic substrate is investigated using both the quasistatic method and the hybrid-mode formulations. The line characteristics of interest, e.g., the propagation constant and the characteristic impedances of the various types of C-CTLs with anisotropic substrate, are presented.

I. INTRODUCTION

Various types of transmission lines with anisotropic substrates have been investigated for use in microwave- and millimeter-wave integrated circuits [1]: These include single and coupled striplines [2] - [7], slot lines [8], and coplanar-type transmission lines [9] - [11]. The coplanar-type transmission lines (CTLs) are promising because of their easy adaptation to shunt element connections [12], [13]. The application of coupled coplanar-type transmission lines to filters and couplers was proposed by C. P. Wen [14]. The propagation characteristics of coupled coplanar-type transmission lines (C-CTL) have been studied based on the quasistatic [14], [15] and hybrid-mode formulations [16], [17], and accurate numerical values are available for the cases with isotropic and/or anisotropic substrates. However, most of them assume the structural symmetry. The theoretical approach for the asymmetrical version is available only for the propagation constant of the case with a single isotropic substrate [16]. There is no information available for the characteristic impedances of asymmetrical C-CTLs, even for the simplest case with an isotropic substrate, although it is required to utilize the advantages of the asymmetrical structure, the impedance transform nature and the additional flexibility.

In this paper, we present the analytical method for the general structure of asymmetrical coupled coplanar-type transmission lines with an anisotropic substrate. This method includes both the hybrid-mode and the quasistatic formulations and is useful for accurately computing the characteristic impedances as well as propagation constants of various types of asymmetrical coupled coplanar-type transmission lines.

II. THEORY

A. <u>Variational Expressions for the Elements of the Capacitance Matrix of a C-CTL</u> The variational method will be described for the quasistatic characteristics of the general structure for asymmetrical, coupled coplanar-type transmission lines (C-CTLs; Fig. 1) with uniaxially anisotropic substrates, whose permittivities are given by the following dyadic:

$$\varepsilon_{i} = \begin{pmatrix} \varepsilon_{i,xx} & \varepsilon_{i,xy} \\ \varepsilon_{i,xy} & \varepsilon_{i,yy} \end{pmatrix} \varepsilon_{0}$$
(1)

The quasistatic characteristics of the symmetrical C-CTL can be expressed in terms of the scalar line capacitance [15], whereas, for the asymmetrical C-CTL case considered here, they are described by the capacitance matrix which is defined as:

$$\begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} = \begin{bmatrix} c_1 & -c_m \\ -c_m & c_2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
(2)

where V_1 and Q_1 are the potential and the total charge on the right strip, and V_2 and Q_2 are those on the left strip, respectively. The variational expressions of the self and mutual capacitances C_1 , C_2 , and C_m will be derived in the following.

The charge distribution on the conductors can be expressed in terms of the aperture field $e_x(x)$ [15];

$$\sigma(\mathbf{x}) = \iint_{-\infty}^{\infty} G(\alpha; \mathbf{x} | \mathbf{x}') e_{\mathbf{x}}(\mathbf{x}') d\alpha d\mathbf{x}'$$
(3)

with

T

. .X

ł

i i

) (

$$G(\alpha; \mathbf{x} | \mathbf{x}') = -j \frac{\alpha}{2} F(\alpha) e^{j\alpha(\mathbf{x} - \mathbf{x}')}$$
(4)

$$F(\alpha) = \frac{\varepsilon_0}{\pi |\alpha|} \left(Y_U(\alpha) + Y_L(\alpha) \right)$$
(5)

where Y_U and Y_L can be obtained by utilizing the simple recurrent relation (Appendix). The total charge located between x_1 and x_2 is given by

$$Q(x_1, x_2) = \int_{x_2}^{x_1} \sigma(x) dx$$
 (6)

When x_1 and x_2 lie in slots, $Q(x_1, x_2)$ should be constant, that is,

$$Q(x_{1}, x_{2}) = Q_{1}(|x_{2}| < a \text{ and } b_{1} < x_{1} < c_{1})$$

$$= Q_{2}(-c_{2} < x_{2} < -b_{2} \text{ and } |x_{1}| < a)$$
(7)

We consider the following sets of excitations to determine the capacitances:

i)
$$v_1 \neq 0$$
, $v_2 = 0$ (8a)

ii)
$$V_1 \neq 0, \quad V_2 \neq 0$$
 (8b)

iii)
$$v_1 = -v_2$$
 (8c)

Multiplying (6) by $e_x(x_1)$ and integrating over the right slot $(b_1 < x_1 < c_1)$, we obtain

$$Q_{1}V_{1} = \int_{b_{1}}^{c_{1}} e_{x}(x_{1}) Q(x_{1}, x_{2}) dx_{1}$$

= $\frac{1}{2} \iint_{-\infty}^{\infty} F(\alpha) e_{x}(x') e^{j\alpha x'} \{\int_{b_{1}}^{c_{1}} e_{x}(x_{1}) e^{-j\alpha x_{1}} dx_{1} - V_{1} e^{-j\alpha x_{2}}\} d\alpha dx'$
 $(|x_{2}| < a)$ (9)

by utilizing

i.

t

1

4

٢,

$$V_{1} = \int_{b_{1}}^{c_{1}} e_{x}(x) dx = -\int_{a}^{a} e_{x}(x) dx$$
(10)

Then, multiplying Eq. (9) by $e_x(x_2)$ and integrating over the left slot, we obtain

$$-Q_{1}V_{1}^{2} = \int \int e_{x}(x_{1}) Q(x_{1},x_{2}) e_{x}(x_{2}) dx_{1} dx_{2}$$

$$= \frac{1}{2} \int \int_{-\infty}^{\infty} F(\alpha) e_{x}(x') e^{j\alpha x'} \{-V_{1} \int_{b_{1}}^{c_{1}} e_{x}(x_{1}) e^{-j\alpha x_{1}} dx_{1}$$

$$= \frac{-b_{2}}{-V_{1} \int_{-c_{2}}^{-c_{2}} e_{x}(x_{2}) e^{-j\alpha x_{2}} dx_{2} \} d\alpha dx' \qquad (11)$$

That is,

$$Q_1 V_1 = \int \int \int F(\alpha) e_x(x') \cos \alpha (x - x') e_x(x) dx' dx d\alpha$$
(12)

Therefore, we obtain the stationary expression of C_1 as follows:

$$C_{1} = \frac{Q_{1}}{V_{1}} |_{V_{2}} = 0$$

$$= \frac{\int \int \int e_{x}(x) F(\alpha) \cos \alpha(x - x') e_{x}(x') d\alpha dx' dx}{\{\int e_{x}(x) dx\}^{2}}$$
(13)

Equation (13) gives an upper bound to the exact value. Similar expressions for C_2 and $C_1 + 2C_m + C_2$ can be obtained by using (8b) and (8c), respectively. The Ritz procedure will be applied to the variational expressions (13) for the numerical computation.

There are two fundamental modes of propagation in asymmetrical coupled coplanar-type transmission lines (C-CTL), that is, c- and π -modes, which become even and odd modes in the symmetrical case, respectively. The propagation characteristics of an asymmetrical C-CTL can be expressed in terms of two propagation constants, β_c , β_{π} , and four characteristic impedances, $Z_{i,c}$, $Z_{i,\pi}$ (i = 1,2), where i = 1 and 2 stand for the right and left strips, respectively. The quasistatic values of the propagation constants and the characteristic impedances for two fundamental modes can be calculated by [6], [18]

$$\beta_{c,\pi} = \frac{\omega}{\sqrt{2}} \left\{ L_1 C_1 + L_2 C_2 - 2 L_m C_m \pm U \right\}^2$$

$$Z_{1,c} = \frac{\omega}{\beta_c} (L_1 - L_m/R_\pi)$$

$$Z_{1,\pi} = \frac{\omega}{\beta_{\pi}} (L_{1} - L_{m}/R_{c})$$

$$Z_{2,c} = -R_{c}R_{\pi} Z_{1,c}$$

$$Z_{2,\pi} = -R_{c}R_{\pi} Z_{1,\pi}$$

$$R_{c,\pi} = \frac{L_{2}C_{2} - L_{1}C_{1} \pm U}{2(L_{m}C_{2} - L_{1}C_{m})}$$

$$U = \left\{ (L_{2}C_{2} - L_{1}C_{1})^{2} + 4(L_{m}C_{1} - L_{2}C_{m})(L_{m}C_{2} - L_{1}C_{m}) \right\}^{1/2}$$
(14)

where L_1 , L_2 , and L_m are the self and mutual inductances, which can be obtained from C_1 , C_2 , and C_m for the case without a substrate.

B. Hybrid-mode Analysis

The network analytical method of electromagnetic fields has been successfully applied to analyze the propagation characteristics of various types of planar transmission lines with isotropic and/or uniaxially anisotropic substrates whose optical axis is coincident with one of the coordinate axes [5], [9], [10]. This method is based on the hybrid-mode formulation, and no approximations for simplication are used in the formulation procedure. The propagation constants of an asymmetrical C-CTL can be obtained easily by using the extended version of this method and applying the Galerkin's procedure. The characteristic impedance is not uniquely specified because of the hybrid mode of propagation. The definition chosen here is

$$Z_{i,j} = \frac{V_{i,j}}{I_{i,j}}$$
 (i = 1,2; j = c, π) (15)

where $I_{1,j}$ and $V_{1,j}$ are the total current on the right strip and the voltage difference between the right strip and the ground conductor, respectively, and $I_{2,j}$ and $V_{2,j}$ are those for the left strip. The frequency-dependent hybridmode solutions for propagation constants and characteristic impedances are presented in Section III.

C. Coplanar-type Transmission Line

The quasistatic and hybrid-mode formulations described above are quite general and applicable to various configurations, e.g., coupled coplanar waveguide (C-CPW; Fig. 2(a)), coupled CPW with double-layered substrate (Fig. 2(b)), coupled sandwich CPW (Fig. 2(c)) and coupled coplanar three strips (Fig. 2(d)). In the coplanar-strip case of Fig. 2(d), the charge and current distribution on the strips are the basic quantities as opposed to the aperture fields in the CPW cases of Figs. 2(a) - (c). Numerical results for these coplanar-type transmission lines are included in the next section.

III. NUMERICAL EXAMPLES

Figure 3 shows the quasistatic characteristics of an asymmetrical coupled coplanar waveguide with an isotropic substrate. Figures 3(a) and (b) depict the effective dielectric constants $e_{eff,j}$ and the characteristic impedances $Z_{i,j}(j = c,\pi)$ as a function of the strip width ratio S_{2/S_1} . $e_{eff,j}$ is obtained by

$$\varepsilon_{\text{eff,j}} = (\beta_j / \omega \sqrt{\varepsilon_0 \mu_0})^2$$
(16)

The values for the symmetrical case($S_{2/S_1} = 1$) are in good agreement with those of [15]. Another check on the results can be made by investigating the limiting case as S_{2/S_1} becomes very large, where the left slot is decoupled and $\epsilon_{eff,\tau}$ converges to that of the asymmetrical coplanar waveguide (ACPW)[15] shown in Fig. 4(a). As S_{2/S_1} becomes very small, $e_{eff,c}$ converges to that of ACPW shown in Fig. 4(b), which can be considered as the limiting case of $S_{2/S_1} = 0$. Figures 5 and 6 show the quasistatic characteristics of asymmetrical coupled double-layered (Fig. 2(b)) and sandwich (Fig. 2(c)) coplanar waveguides, respectively. They depict $\epsilon_{eff,j}$ and $Z_{i,j}(j \neq c,\pi)$ as functions of the ratio of the thickness of the upper to the lower layer d/h. Figure 7 shows the frequency dependence of the effective dielectric constants for various types of a coupled coplanar waveguide with uniaxially anisotropic substrates cut with their planar surface perpendicular to the optical axis. The frequency-dependent hybrid-mode values of each mode converge precisely to the corresponding quasistatic values in lower frequency ranges for all cases. The phase velocities of two fundamental modes of the case with double-layered substrates have close values in the higher-frequency range, but they never coincide because of the mode coupling.

The mode of propagation can not be identified as the c- or π -mode by investigating the voltage and current. Figure 8 shows the frequency dependence of the characteristic impedances of a coupled coplanar waveguide. Figure 9 shows the effective dielectric constants and the characteristic impedances of coupled coplanar three strips (Fig. 2(d)) with a uniaxially anisotropic substrate. The definition for the characteristic impedance of coupled coplanar strips is chosen as

$$Z_{i,j} = \frac{V_{i,j}}{I_{i,j}}$$
(17)

where $I_{1,j}$ and $V_{1,j}$ are the total current on the right strip and the voltage between the right and the center strips, and $I_{2,j}$ and $V_{2,j}$ are those for the left strip. Again, the frequency-dependent values converge to the quasistatic values in the lower-frequency ranges.

Figure 10 shows $\epsilon_{eff,i}$ and $Z_{i,j}$ of an asymmetrical coupled coplanar waveguide on a uniaxially anisotropic substrate cut with its surface at γ to the optical axis.

V. CONCLUSIONS

This paper describes the analytical method for the general structure of asymmetrical coupled coplanar-type transmission lines (C-CTLs) with anisotropic media. It consists of the quasistatic and the hybrid-mode formulations. The former gives variational expressions for the line parameters of the cases with the uniaxially anisotropic substrate cut with its planar surface at an arbitrary angle to the optical axis; the latter gives the rigorous frequency-dependent characteristics for the cases with the anisotropic substrate cut with its surface perpendicular to the optical axis. Some numerical examples showed the accuracy of the method and presented the propagation characteristics, the propagation constants as well as the characteristic impedances of the various types of C-CTL with anisotropic media, for the first time.

APPENDIX: RECURRENT RELATIONS

The Fourier transform of the electric field E_x and the electric flux density D_y in the layer $i(y_{i+1} > y > y_i)$ can be expressed as:

$$\widetilde{E}_{x}(\alpha; x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} E_{x}(x, y) e^{-j\alpha x} dx$$

$$= \exp(-b_{i}y)[A_{i}\cosh(p_{i}y) + B_{i}\sinh(p_{i}y)]$$
(A1)

$$\widehat{D}_{y}(\alpha; \mathbf{x}) = \varepsilon_{i,xy} \varepsilon_{0} \ \widehat{E}_{x} + \varepsilon_{i,yy} \varepsilon_{0} \ \widehat{E}_{y}$$

$$= -\varepsilon_{i,yy} \varepsilon_{0} \ \mathbf{p}_{i} \ \exp(-\mathbf{b}_{i}y) [\mathbf{A}_{i} \sinh(\mathbf{p}_{i}y) + \mathbf{B}_{i} \cosh(\mathbf{p}_{i}y)]$$
(A2)

where A_i , B_i are unknown constants and

$$b_{i} = j \frac{\varepsilon_{i,xy}}{\varepsilon_{i,yy}} \alpha$$
 (A3)

$$p_{i} = \frac{\epsilon_{i,e}}{\epsilon_{i,yy}} |\alpha|$$
(A4)

$$\varepsilon_{i,e} = \sqrt{\varepsilon_{i,xx}} \frac{\varepsilon_{i,yy}}{\varepsilon_{i,xy}} - \frac{\varepsilon_{i,xy}^2}{\varepsilon_{i,xy}}$$
(A5)

We will derive the recurrent relation in the upper region y > 0. Define the following quantity at the lower surface of the layer i (Fig. 11):

$$Y_{i} = \frac{j\alpha}{\varepsilon_{i,e}\varepsilon_{0}|\alpha|} \cdot \frac{\widetilde{D}_{y}}{\widetilde{E}_{x}} |_{y=y_{i}} + 0$$
(A6)

Considering the continuity conditions at the y = y_{i+1} plane, we obtain the following recurrent relation with respect to Y_i

$$Y_{i} = \frac{\frac{\varepsilon_{i+1,e}}{\varepsilon_{i,e}} Y_{i+1} - tanh(p_{i}d_{i})}{1 = \frac{\varepsilon_{i+1,e}}{\varepsilon_{i,e}} Y_{i+1} tanh(p_{i}d_{i})}$$
(A7)

The electric flux density at the y = +0 plane (the slot plane) can be obtained as

$$\widetilde{D}_{y}(\alpha; y = +0) = \frac{\varepsilon_{N,e}\varepsilon_{0}|\alpha|}{j\alpha} Y_{N}\widetilde{e}_{x}$$
(A8)

where \tilde{e}_x is the Fourier transform of the aperture field $e_x(x)$. Then, Y_U in Eq. (5) can be obtained as

 $Y_{u} = \varepsilon_{N,e} Y_{N}$ (A9)

A similar recurrent relation holds in the lower region y < 0, and Y_L can be determined.

REFERENCES

- N. G. Alexopoulos, "Integrated-circuit structures on anisotropic substrates," <u>IEEE Trans. Microwave Theory Tech.</u>, vol. MTT-33, pp. 847-381, Oct. 1985.
- [2] N. G. Alexopoulos, C. M. Krowne, and S. Kerner, "Dispersionless coupled microstrip over fused silica-like anisotropic substrates," <u>Electron. Lett.</u>, vol. 12, pp. 579-580, Oct. 1976.
- [3] N. G. Alexopoulos and C. M. Krowne, "Characteristics of single and coupled microstrips on anisotropic substrates," <u>IEEE Trans. Microwave Theory Tech.</u>, vol. MTT-26, pp. 387-393, June 1978.
- [4] M. Kobayashi and R. Terakado, "Method for equalizing phase velocities of coupled microstrip lines by using anisotropic substrate," <u>IEEE Trans.</u> Microwave Theory Tech., vol. MTT-28, pp. 719-722, July 1980.
- [5] T. Kitazawa and Y. Hayashi, "Propagation characteristics of striplines with multilayered anisotropic media," <u>IEEE Trans. Microwave Theory Tech.</u>, vol. MTT-31, pp. 429-433, June 1983.
- [6] T. Kitazawa and R. Mittra, "Analysis of asymmetric coupled striplines," IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 643-646, July 1985.
- [7] T. Kitazawa, Y. Hayashi, K. Fujita, and H. Mukaihara, "Analysis of broadside-coupled strip lines with anisotropic substrate," <u>Trans. IECE</u> Japan, vol. 66-B, no. 9, pp. 1139-1146, Sept. 1983.
- [8] Y. Hayashi, T. Kitazawa and M. Suzuki, "Dispersion characteristic of slot line on a sapphire substrate," <u>Trans. IECE Japan</u>, vol. 63-B, no. 10, pp. 1013-1014, Oct., 1980.
- [9] Y. Hayashi, T. Kitazawa and S. Sasaki, "Analysis of coplanar strip lines on an anisotropic substrate using Galerkin's method," <u>Trans. IECE Japan</u>, vol. 64-B, no. 7, pp. 666-673, July 1981.
- [10] T. Kitazawa and Y. Hayashi, "Coupled slots on an anisotropic sapphire substrate," <u>IEEE Trans. Microwave Theory Tech.</u>, vol. MTT-29, pp. 1035-1040, Oct. 1981.
- [11] T. Kitazawa and Y. Hayashi, "Quasi-static characteristics of coplanar waveguide on a sapphire substrate with its optical axis inclined," <u>IEEE Trans.</u> <u>Microwave Theory Tech.</u>, vol. MTT-30, pp. 920-922, Oct. 1982.
- [12] C. P. Wen, "Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," <u>IEEE Trans. Microwave</u> <u>Theory Tech.</u>, vol. MTT-17, pp. 1087-1090, Dec. 1969.

[13] J. B. Knorr and K. D. Kuchler, "Analysis of coupled slots and coplanar strips on dielectric substrate," IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp. 541-548, July 1975.

- [14] C. P. Wen, "Coplanar-waveguide directional couplers," <u>IEEE Trans. Microwave</u> Theory Tech., vol. MTT-18, pp. 318-322, June 1970.
- [15] T. Kitazawa and R. Mittra, "Quasistatic characteristics of asymmetrical and coupled coplanar-type transmission lines," <u>IEEE Trans. Microwave Theory</u> <u>Tech.</u>, vol. MTT-33, pp. 771-778, Sept. 1985.
- [16] B. J. Janiczak, "Behaviour of guided modes in systems of parallelly located transmission lines on dielectric substrates," <u>Electron. Lett.</u>, vol. 19, pp. 778-779, Sept. 1983.
- [17] T. Kitazawa and Y. Hayashi, "Coupled coplanar waveguide with anisotropic substrate," to be published.
- [18] T. Kitazawa and Y. Hayashi, "Analysis of unsymmetrical broadside-coupled striplines with anisotropic substrates," to be published.

LIST OF ILLUSTRATIONS

Ŀ

1

Fig. l.	General structure of asymmetrical coupled coplanar-type transmission lines with anisotropic substrates.
Fig. 2.	(a) Asymmetrical coupled coplanar waveguide (C-CPW).
Fig. 2.	(b) Asymmetrical coupled coplanar waveguide with double-layered substrate.
Fig. 2.	(c) Asymmetrical coupled sandwich coplanar waveguide.
Fig. 2.	(d) Asymmetrical coupled coplanar three strips.
Fig. 3.	Quasistatic characteristics of asymmetrical coupled coplanar waveguide versus strip-width ratio S ₂ /S ₁ .
	(a) Effective dielectric constants(b) Characteristic impedances
	$\varepsilon_{1xx} = \varepsilon_{1yy} = 9.6, \ \varepsilon_{1xy} = 0$
	$2a/h = 1$, $S_{1/h} = 2$, $W_{1/h} = 2$, $W_{2/h} = 2$.
Fig. 4.	Asymmetrical coplanar waveguide (ACPW).
Fig. 5.	Quasiscatic characteristics of asymmetrical coupled coplanar waveguide with double-layered substrate.
	$\epsilon_{1xx} = 9.4, \ \epsilon_{1yy} = 11.6, \ \epsilon_{2xx} = \epsilon_{2yy} = 2.6, \ \epsilon_{1xy} = 0 (i = 1, 2)$
	$S_{1/h} = 1.0, S_{2/h} = 0.5, W_{1/h} = 1.5, W_{2h} = 2.0.$
Fig. 6.	Quasistatic characteristics of asymmetrical coupled sandwich coplanar waveguide.
	$\epsilon_{1xx} = \epsilon_{2xx} = 9.4, \ \epsilon_{1yy} = \epsilon_{2yy} = 11.6, \ \epsilon_{ixy} = 0 \ (i = 1, 2)$
	$s_{1/h} = 1.0$, $s_{2/h} = 0.5$, $w_{1/h} = 1.5$, $w_{2/h} = 2.0$.

Fig. 7. Dispersion characteristics of various types of coupled coplanar waveguides.

$$S_{1/h} = 1.0, S_{2/h} = 0.5, W_{1/h} = 1.5, W_{2/h} = 2.0$$

(a) Asymmetrical coupled coplanar waveguide (C-CPW).

 $\epsilon_{1xx} = 9.4$, $\epsilon_{1yy} = 11.6$, $\epsilon_{1xy} = 0$.

(b) Asymmetrical coupled coplanar waveguide with double-layered substrate.

atic

$$\epsilon_{1xx} = 9.4, \ \epsilon_{1yy} = 11.6, \ \epsilon_{2xx} = \epsilon_{2yy} = 2.6,$$

 $\epsilon_{1xy} = 0$ (i = 1,2), d/h = 0.1.

(c) Asymmetrical coupled sandwich coplanar waveguide.

Fig. 8. Frequency dependence of the characteristic impedances of coupled coplanar waveguides.

Dimensions are the same as in Fig. 7(a).

Fig. 9. Frequency dependence of the effective dielectric constants and the characteristic impedances of coupled coplanar three strips

Fig. 10. Effective dielectric constants of coupled coplanar waveguide versus y.

 $\varepsilon_{1xx} = 3.40, \ \varepsilon_{1yy} = 5.12, \ \varepsilon_{1xy} = 0 \text{ when } \gamma = 0$ $S_{1/h} = 1.0, \ S_{2/h} = 0.5, \ W_{1/h} = 1.5, \ W_{2/h} = 2.0.$

Fig. 11. The i-th layer of stratified anisotropic substrates.

فالمحدث فالمحمد والملاحد

i

•

11

.

. r

.

í.

この書きたいとうないた。書たったい、たちには書いたがです。

Fig.1 General structure of asymmetrical coupled coplanar-type transmission lines with anisotropic substrates.

<u>,</u> 1

.

1-

.

..

. . .

I.I.

Ì

r= I

-``

Ę

. ...

r.

÷.,

1

Ï

•

Fig.2 (a) Asymmetrical coupled coplanar waveguide (C-CPW).

Fig.2 (b) Asymmetrical coupled coplanar waveguide with double-layer substrate .

Fig.2 (c) Asymmetrical coupled sandwich coplanar waveguide.

Fig.2 (d) Asymmetrical coupled coplanar three-strips.

 $\epsilon_{1xx} + \epsilon_{1yy} = 9.6$, $\epsilon_{1xy} = 0$ 2a/h = 1, $s_{1/h} = 2$, $w_{1/h} = 2$, $w_{2/h} = 2$

2] 2]

Fig.5 Quasistatic characteristics of asymmetrical coupled coplanar waveguide with double-layer substrate.

 $\varepsilon_{1xx} = 9.4$, $\varepsilon_{1yy} = 11.6$, $\varepsilon_{2xx} = \varepsilon_{2yy} = 2.5$, $\varepsilon_{ixy} = 0$ (i = 1, 2) $S_{1/h} = 1.0$, $S_{2/h} = 0.5$, $W_{1/h} = 1.5$, $W_{2/h} = 2.0$

Fig.6 Quasistatic characteristics of asymmetrical coupled sandwich coplanar waveguide.

Ĺ

 $\varepsilon_{1xx} = \varepsilon_{2xx} = 9.4$, $\varepsilon_{1yy} = \varepsilon_{2yy} = 11.6$, $\varepsilon_{1xy} = 0$ (i = 1, 2) $S_{1/h} = 1.0$, $S_{2/h} = 0.5$, $W_{1/h} = 1.5$, $W_{2/h} = 2.0$

Fig.7 Dispersion characteristics of various types of coupled coplanar waveguide.

$$S_{1/h} = 1.0$$
, $S_{2/h} = 0.5$, $W_{1/h} = 1.5$, $W_{2/h} = 2.0$

(a) Asymmetrical coupled coplanar waveguide (C-CPW).

 $\varepsilon_{1xx} = 9.4$, $\varepsilon_{1yy} = 11.6$, $\varepsilon_{1xy} = 0$

(b) Asymmetrical coupled coplanar waveguide with double-layer substrate .

$$\varepsilon_{1xx} = 9.4$$
, $\varepsilon_{1yy} = 11.6$, $\varepsilon_{2xx} = \varepsilon_{2yy} = 2.6$,
 $\varepsilon_{ixy} = 0$ (i = 1, 2), $d/h = 0.1$

(c) Asymmetrical coupled sandwich coplanar waveguide.

 $\varepsilon_{1xx} = \varepsilon_{2xx} = 9.4$, $\varepsilon_{1yy} = \varepsilon_{2yy} = 11.6$, $\varepsilon_{ixy} = 0$ (i = 1, 2), d/h = 1.0

______ : Hybrid-mode, ______ : Quasistatic

___: Hybrid-mode, ______: Quasistatic

20

 $S_{1/h} = 1.0$, $S_{2/h} = 0.5$, $W_{1/h} = 1.5$, $W_{2/h} = 2.0$

· +] |

16

.

30

1.11-15 1919.19

END

FILMED

4-86

DTIC