
AD-R164 998 RELATIONAL MODEL OF A DATA DICTIONARY(U) NAVALi/
POSTGRADUATE SCHOOL MONTEREY CA N G DEDEOGLU DEC 85

UNCLASSID F/ 92NL

EEEEEEmhEEohEI
EEEEEEEEolhEEEE
EohEEEmhEEEEEI
EEEEEEEEEEEEEE
EEmhEEEohEEEEEI .Inimmso

'U L-

11111.0

- *IEIIIII 1 4Ji/

MICROCOPY RESOLUTION TEST CHART
NATIONAL. BUREAUJ OF STANDARDS- 1963-A

I
I

1 7 ~ -"

AD-A164 998

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
RELATIONAL MODEL OF A DATA DICTIONARY

3 8 by

ti M. Gokhan Dedeoglu

December 1985

Thesis AdvisoT: Daniel R. Dolk

Approved for public release; distribution is unlimited

86 3 I13

SECURITY CLASSIFICATION OF THIS PAE Id-'

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSI FIED
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABIUTY OF REPORT

Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE disribution iu limied

'PRIdistribution is unlimited .

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)Naval Postgraduate School 52 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5100 Monterey, CA 93943-5100

Sa. NAME OF FUNDING/SPONSORING Ib. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

RELATIONAL MODEL OF A DATA DICTIONARY

12 PERSONAL AUTHOR(S)
Dedeoglu, M. Gokhan

13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month Day) S. PAGE COUNT
Master's Thesis FROM TO 1985 December 85

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Data Dictionary, Relational Model, ORACLE,

Prolog Expert Systms. . ..

ABSTRACT (Continue on revene if necessary and identify by block number)
The data dictionary system is an ixoportant tool for supporting information
resource management. It facilitates the management and control of data.
This thesis will develop a relation~l model of a data dictionary and
implement it on the ORACLE relation l data base management system. Then,
this data dictionary model will be i plemented using the logic-oriented
Prolog language. The Prolog model o a data dictionary will demonstrate
that logic programming can be used fo, relational data base applications
and that it provides more powerful di)tionary capabilities than the
relational model. h-...

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED 03 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Prof. Daniel R. Dolk 408-646-2260 S4Dk

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

, . - . . , ,..... ? - % . . , .,.j, , ,. -. 1,

Approved for public release; distribution is unlimited.

Relational Model of a Data Dictionary

by

M. Gokhan Dedeoglu
Lieutenant(j.g.) Turkish Navy

B.S., Turkish Naval Academy ,1979
B.S., Technical University of Istanbul , 1983

Submitted in partial fulfillment of the
requirements for the degree of

w MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1985

Author:
Mi. Go~han Dedeoglu

Approved by: ___ anl . MoIX, Tnesis Advisor

,i ! -?, j,<i/,.a.. H. H.IMo,,_" Second_ - Reader

: -'* 'Departet oi Computer Science

K
SDean of nfrainySciences

U 2

ABSTRACT

The data dictionary system is an important tool for

supporting information resource management. It facilitates

the management and control of data.

This thesis will develop a relational model of a data

dictionary and implement it on the ORACLE relational data

base management system. Then, this data dictionary model

will be implemented using the logic-oriented Prolog

language. The Prolog model of a data dictionary will demon-

strate that logic programming can be used for relational

data base applications and that it provides more powerful

dictionary capabilities than the relational model.

Acce 5ion For
' 'TIS cP'.,&I

Ui~3t ! : i, IL

I I

"QIALITY
INSP'ECTED

3'-

3

TABLE OF CONTENTS

I. INTRODUCTION 9

II. DATA DICTIONARY SYSTEM11

A. METADATA11

B. DICTIONARY AND DIRECTORY METADATA 12

C. METADATABASE 12

D. METADATABASE MANAGEMENT12

E. THE DATA DICTIONARY SYSTEM13

F. ACTIVE AND PASSIVE DATA DICTIONARY SYSTEMS . . 13

G. FUNCTIONS OF A DATA DICTIONARY SYSTEM 14

1. Maintenance Function 14

2. Extensibility Function14

3. Report Processor Function14

4. Query Processor Function 15

5. Convert Functions15

6. Software Interface Function15

7. Exit Facility15

8. Management Function16

H. SURVEY OF DATA DICTIONARIES16

1. DB/DC Data Dictionary16

2. Datamanager 18

3. Integrated Data Dictionary 19
4. Datadictionary 21

5. Extended Data Dictionary 22

6. UCC Ten23

7. Data Control System (DCS)25

III. RELATIONAL DICTIONARY MODEL26

A. THE RELATIONAL MODEL 26

B. OVERVIEW OF ORACLE SYSTEM27

4

C. A RELATIONAL DATA DICTIONARY MODEL 28

1. Description of Entity-types 28

2. Description of Attribute-types 30

3. Description of Relationship-types 32

4. The Relations of Dictionary 32

D. RELATIONSHIPS BETWEEN ENTITY-TYPES 35

E. EXAMPLES OF QUERIES38

F. USER MANUAL42

1. Creating A Table44

2. Inserting Data Into a Table44

3. Selecting Data From a Table45

4. Description of the columns of a Table . . 45

IV. DATA DICTIONARIES AND EXPERT SYSTEMS47

A. OVERVIEW OF EXPERT SYTEMS47

B. COMPONENTS OF EXPERT SYSTEMS 48

C. EXPERT SYSTEMS AND CONVENTIONAL DATA
PROCESSING SYSTEMS49

D. KNOWLEDGE REPRESENTATION 51

1. Predicate Calculus 51

2. Semantic Networks 52

3. Control Structures 52

E. METAKNOWLEDGE52

F. KNOWLEDGE REPRESENTATION IN PROLOG53

G. A PROLOG MODEL OF A SIMPLE DATA DICTIONARY . . 54

V. CONCLUSIONS 62

APPENDIX A: ORACLE TABLES OF ENTITY-TYPES AND
RELATIONSHIP-TYPES64

APPENDIX B: LISTING OF THE TUPLES IN THE DATA BASE . . . 70

LIST OF REFERENCES 79

BIBLIOGRAPHY 80

INITIAL DISTRIBUTION LIST 81

5

LIST OF TABLES

I ENTITY-TYPES OF NBS SYSTEM-STANDARD SCHEMA . . . 29

II RELATIONSHIP-TYPES OF NBS SYSTEM-STANDARD
SCHEMA 29

III ATTRIBUTE-TYPES OF NBS SYSTEM-STANDARD SCHEMA . . 30

IV RELATIONSHIPS BETWEEN ENTITY-TYPES 36

V ENTITY-TYPES AND ATTRIBUTE-TYPES OF DICTIONARY
MODEL 55

VI RELATIONSHIP-TYPES OF DICTIONARY MODEL55

6

* o '.

i"

LIST OF FIGURES

2.1 Example of the metadata for a data element 11

3.1 An ORACLE Table 27

3.2 Bachman Diagram of entity types. 37

3.3 An Example of Query 38

3.4 An Example of Query 39

3.5 An Example of Query 39

3.6 An Example of Query 40

3.7 An Example of Query 40

3.8 An Example of Query 41

3.9 An Example of Query 41

3.10 Creating aTable. 44

3.11 Inserting Data Into a Table. 44

3.12 Selecting Data From a Table. 45

M.3 Selecting Data From aTable. 45

3.14 Description of Columns of a Table. 46

4.1 Components of an Expert System 50

7

ACKNOWLEDGEMENTS

The author wishes to gratefully acknowledge his thesis

advisor, Prof. Daniel R. Dolk, for suggesting the basis of

this thesis, and for his invaluable advice and guidance

during the course of this work.

The author would also like to express his appreciation

to Prof. David H. Hsiao for his constructive critism as a

second reader.

!:i 8

I. INTRODUCTION

Data is a resource to be managed. Data is processed to

produce information. Data must be administered and

controlled to coordinate data usage in order to produce

information. The transformation of data into information is

the primary function of an information system. Information

supports the enterprise's structure and generates its busi-

ness processes. Enterprises need to manage their informa-

tion by centrally defining and storing their data resource.

The data dictionary system (DDS) plays an active and

central role in the management and control of the corporate

data resource. It is the repository of the information

* needed by the enterprise. A central source of documentation

helps improve communication between involved personnel and

offers improved system development.

The DDS has become basic-to all phases of data adminis-

tration. The DDS is used to satisfy requirements for infor-

mation resource management to aid in database design and to

provide the information needed for the effective auditing of

the data. The DDS can support many aspects of the informa-

tion resource management environment involving the manage-

ment and use of data.

The first part of Chapter 2 of this thesis explains the

concept of data dictionary system. It explains metadata,

metadatabase, data dictionary system, and the functions of

the data dictionary system.The second part of Chapter 2

surveys seven commercially available data dictionary

systems. The general characteristics of these dictionary

systems are discussed in this survey. In Chapter 3, a rela-

tional model data dictionary will be developed and imple-

mented on the ORACLE relational database management system.

Although a relational DBMS has many advantages over other

systems, it has limited dictionary capabilities.The first
it haslimite

part of the Chapter 4 will explain the general characteris-

tics of expert systems. In the second part of the Chapter 4

a Prolog model of a data dictionary system will be devel-

oped. Because of the characteristics of Prolog, the rules

about the information resource management data can be

4 defined more easily than in the relational DBMS environment.

By using the Prolog model we can implement information

resource management effectively and efficiently.

0.1

'4.:

* 10

II. DATA DICTIONARY SYSTEM

A. METADATA

In order to manage data as a resource, it is essential

that data about data be clearly specified by data objects.

These data objects are called entities. In a data base

environment the entities are represented in the form of

metadata entities such as data elements, records, files, or

data bases.

Metadata entities are described by means of meta-

data,that is, data about data. Metadata and user data are

4 different from each other. Metadata is used to describe the

* characteristics of user data.

An example of the metadata for a data element in a meta-

database is given in Fig. 2.1 . In this example, for the

data element "USNAME", the data dictionary contains the

attributes like description, length, and relationship, but

not the actual name of user. Thus, metadata contains

descriptive and definitional information about the data.

Name of metadata entity: data element
Identification: USNAME
Description: user name is entered as last name,

first initial, middle initial.
Length/size: 30 characters only alphanumeric

characters allowed.
Relationship/usage: this entity is used in files A, B,

and programs AA, and BB.

Figure 2.1 Example of the metadata for a data element.

4

, 11

o'

B. DICTIONARY AND DIRECTORY METADATA

The dictionary metadata is used by the system users. In

contrast, the directory metadata is used by the system

components. Directory metadata provides information about

the physical location of the data. It shows how the data

can be accessed, and it contains information about the

internal representation of the data entity.

The system which contains directory metadata is called

data dictionary/ directory system. Current systems do not
separate dictionary and directory functions. They offer

only a partial independence between these functions.

C. METADATABASE

.A metadata database is a collection of managed,

controlled, and related metadata and is referred to as a

0 metadatabase. The characteristics of the metadatabase are
.j -. the same as those of a user database which include data

sharing, data integrity, and data independence. The metada-

tabase is shared among the user groups, processes, and auto-

mated systems such as database management systems, report

generators, and query processors.

D. METADATABASE MANAGEMENT

The metadata needs a metadatabase management system,
just as the user data needs a database management system for

organization, access, and control. The data dictionary

system supports the management and control of the metadata

The DDS is a metadatabase management system which

provides user/system interface functions, such as query

processing and report generation required for the data
usage. The DDS also supports many administration and

control activities required for metadata management.

12

IiI

E. THE DATA DICTIONARY SYSTEM

A data dictionary system is a centralized repository of

data about data. A DDS is used for management and control

of data resources. It is a data base about the data bases,

and users of the data bases. The centralization of data
suggests that there is enterprisewide coordination and

control of the metadata. A DDS provides a wide range of

facilities and capabilities to support metadata management.

A DDS can be implemented in different forms. The scope

of a data dictionary can be narrow. For example, it can

consist of simple programs that cover only the data base

definitions to support a DBMS. On the other hand, it can be

implemented as a very sophisticated data resource management

and control tool that cover all the data important to an

organization.

A DDS can use a DBMS in its implementation, that is, it

can be a DBMS-dependent system, or it can be an independent

system. Thus, it can have a passive role by producing

information about the data base, or it can force other soft-

ware to manage and control the data.

F. ACTIVE AND PASSIVE DATA DICTIONARY SYSTEMS

There are two important implementation strategies for

integrating the DDS into the operating environment an

active DDS, and a passive DDS.

In an active DDS, processes or system components are

fully dependent upon the DDS for its metadata, that is, the

only source of metadata is in the DDS. By contrast, in a

passive DDS, processes and system components are not depen-

dent upon the DDS for its metadata. The required metadata

is obtained from other resources.

The active DDS has several advantages. It eliminates

redundant metadata definition, insures consistency in the

metadata, controls the metadata usage and metadata changes.

13

#J.

!7
Also, it achieves a great data independence by separating

the physical view from the logical view.

Although active DDS has several advantages, it has some

drawbacks. It introduces an overhead when binding time is

accomplished during execution. Also, the dependency of

processing components to the DDS causes bottlenecks in some

systems. [Ref. 1]

G. FUNCTIONS OF A DATA DICTIONARY SYSTEM

The functions of a typical DDS are the following

1. Maintenance Function

This function enables entities, relationships, and

attributes to be added, modified, and deleted from the

dictionary. The DDSs provide dictionary maintenance

commands to perform this function. Execution of these
commands is subject to security and restrictions. There are

several maintenance methods. Some systems offer batch input

to enter the new data. Other systems allow extraction of

dictionary data from existing file and database descrip-

tions as well as entering this data directly into the

system.

2. Extensibility Function

The extensibility function allows a user to modify
the standard dictionary schema to suit specific enterprise

needs. The user can add new entities and attributes to the

dictionary structure, and establish new relationships. Some

DDSs offer a specific meta-entity for extensibility feature.

Others offer a generic mechanism to allow the user to add

new entities and attributes.

3. Report Processor Function

Report processor function provides reports on a
4 number of dictionary entities. Report facilities are

invoked by means of specific commands. The common

categories of reports are

14

I. Reports of some or all entities of a given type.

2. Reports on all attributes for a specified entity

of any type.

3. Usage reports which show either how a given entity

is used by other entities, or how other entities use

a given entity.

4. A keyword-in context (KWIC) or keyword-out-of-context

(KWOC) facility that is used to search specified

attributes for a given keywords.

4. Query Processor Function

This function provides information about the usage

of dictionary entities, keyword searches, and synonym

searches. It allows English-like queries of the DDS. This

function is most often used in an interactive mode.

5. Convert Functions

The convert functions scan application programs,

library files, and dictionary schemata to generate metadata

from these sources to be input to the DDS maintenance func-

tion. There are several options for a convert function like

changing names, selecting lines to scan, selecting types of

transactions.

6. Software Interface Function

This function provides metadata to other software

systems such as DDL processors and compilers. Software

systems access the DDS either statically or dynamically by

means of software interfaces. Static interfaces produce

formatted statements for the software packages or create

encoded control files for their use. Dynamic interfaces

provide direct access to other software systems and use high

level interface commands.

7. Exit Facility

The exit facility enables the system user to extend
the routines delivered by the DDS vendor. For example, a

user can code a new security check for accessing an entity.

15

All DDSs do not contain the exit facility because of

possible side effects of user-written routines.

8. Management Function

The management function is responsible for security,

integrity, concurrency control and internal access for the

DDS. In DBMS-dependent dictionary systems, some of these

functions may be subsumed by the DBMS itself. [Ref. 2]

H. SURVEY OF DATA DICTIONARIES

There are several commercially available DDS packages in

the DDS marketplace. Most of them have introduced by the

DBMS software vendors. In this survey, the characteristics

of the following DDSs will be explained

1. DB/DC Data Dictionary(IBM).

2. Datamanager (MSP,Inc.).

3. Integrated Data Dictionary (IDD) (Cullinet Software,

Inc.).

4. Extended Data Dictionary (XDD) (Intel Systems

Corporation).

5. Datadictionary (Applied Data Research).

6. UCC Ten (University Computing Company).'

7. Data Control System (DCS) (Cincom Systems, Inc.).

The following information has been ontained from

Information Resource/ Data Dictionary Systems - Henry C.

Lefkovits, Edgar H. Sibley, Sandra L. Lefkovits, 1983, QED

Information Sciences Inc., Wellesley, Massachusetts 02181 ".

The more information about these dictionary systems can be
obtained from this reference. [Ref. 3]

1. DB/DC Data Dictionary

Vendor International Business Machines (IBM)

Hardware : IBM 360, 370, 30xx, 43xx

Source language : Assembler language.

Dependent DBMS : IMS or DOS PL/I.

Entity names : Database, Segment, Element, System,

16

Job, Program, Module, Transaction,

PSB, PCB, SYSDEF.

Extensibility : New entity-types, relationship-types,

and attribute-types can be defined.

4Dictionary schema has Extensibility

Control Information entity-types :

CATEGORY, RELTYPE, and ATTRTYPE.
Maintenance : Three different maintenance ways :

1. Keyword driven commands.

2. 3270 Interactive Forms.

3. The Batch Forms Input facility.

Reports and queries Reporting commands :

REPORT, SCAN, PUNCH.

Reports :

1. Entity-Specific reports.

2. Display form equivalent reports.

3. Indirect entity reference reports.

4. Glossary reports.

5. GUIDE reports.
Status facility Every entity have a status which is

being expressed by a status code.

Status codes

Test, Production, Installed and

user-defined.
Security facility : Access characteristics can be

iuJ assigned as follows

1. Status.

2. Entity-type.

3. SIGN-ON command.

DDUSER entity-type is used to

establish authorized users.
Bridge facility : DBD-IN, PSB-IN, COBOL-IN, PLI-IN

commands are used for reading these
descriptions and creating dictionary

17

-1 11 m a

entities and relationships

corresponding to them.

2. Datamanager

Vendor : Management Systems and Programming.

Hardware : IBM 360, 370, 30xx, 43xx, and plug

compatible machines.

Source language : Assembler language.

Dependent DBMS : Independent.

Entity-names : File, Group, Item, System, Program,

Module.

Extensibility: : By using User Defined Syntax facility

user can define extensibility entity-

types and attribute types.

Maintenance : A number of commands are available

for adding new entities, modifying

and deleting them. These commands

can be executed either on-line or
in batch mode. Also there are

commands for manipulating definitions

of entities.

Reports and queries : The report commands : Print, List,

Report, Glossary, Bulk Print, Bulk

Report, Switch, Skip, Space, Text.

The query commands :

What, Which, Whose, Who, Does, Show.

Both sets of commands can be used in

both batch and interactive modes and

they contain facilities for selecting

categories of entities.

Status facility : The dictionary administrator can

define up to 256 statuses, each one

of which has a name. There exist two

types of statuses : non-frozen and

frozen.

181

SK,~.)

Security facility : For entering the system a password

is supplied by the AUTHORITY command.

Individual entities can be assigned

levels of protection by the PROTECT

command. A user can also be assigned

a specific security level. Also, the

dictionary itself can be assigned an

insertion security level and

protection security level.

Bridge facility : Three bridge facilities available

1. The User Interface facility.

2. The Source Language Generation

Facility.

3. Interfaces to DBMSs and the MARK

IV File Management System.

S. Integrated Data Dictionary

Vendor : Cullinet Software, Inc.

Hardware : IBM 360, 370, 30xx, 43xx.

Source language : Assembler language.

Dependent DBMS : IDMS.

Extensibility : System supports a full range of

schema extensibility features that

allow to perceive and use additional

entity-types, relationship-types, and

attribute-types. There are two

mechanisms which are used for

extensibility :

1. The CLASS/ATTRIBUTE declaration.

2. The definition of relational keys.

Maintenance SET OPTIONS command is used for

control of the default processing

options. DDDL statements may be

19

4

executed either in a batch or

on-line. For on-line usage an option

exists for either full screen or

line mode entry of statements. Three

main maintenance commands are

ADD, MODIFY, DELETE.
Reports and queries : Four different ways for data

retrieving

1. Standard reports of the DDR

(Dictionary/Directory Reporter).
2. Facilities of the CULPRIT system.

3. Using DISPLAY/PUNCH command.

4. Using OLQ, accessing QFILEs.

The specific DDR reports

1. Detail reports.

2. Key reports.

3. Summary reports.

4. Cross-reference reports.
5. Special purpose reports.

Status facility VERSION mechanism is the major way

to provide different environments for
development, test, etc. By using

VERSION clause, a number appended to

the entity name.

Security facility This facility consists of both global

and local mechanism. The dictionary

administrator can establish security

for the entity-types and the

following functionality :
1. CLASS and ATTRIBUTE security.

2. LOAD MODULE security.

3. IDMS security.
4. IDMS-DC security.
5. IDD security.

20

k' Ik

6. OLQ security.

7. CULPRIT security.

Bridge facility There exist bridges from IDMS-DB/DC

to IDD as well as in the other

direction, from IDD to IDMS-DB/DC.

4. Datadictionary

Vendor : Applied Data Research (ADR).

Hardware : IBM 360, 370, 30xx, 43xx.

Source language : Assembler language.

Dependent DBMS : DATACOM/DB.

Entity-names : Element, Key, Field, Record, File,

Report, Area, Database, Dataview,

System, Program, Module, Job, Step,

Library, Member, Node, Authorization,

Panel, Person.

Extensibility : New entity-types, relationship-types,

and attribute-types can be introduced

Maintenance : Two primary maintenance ways :

1. On-line maintenance facility.

2. Batch execution transactions.

The Input Creation Facility analyzes

COBOL record descriptions and creates

corresponding entities.

Reports and queries System has two facilities to extract

data from the dictionary :

1.. The Batch Reporting facility.

2. The On-line Maintenance facility.

Status facility : Two status mechanisms

1. An entity may be assigned a

version number.

2. Every entity has an attribute of

type STATUS.

Security facility : Two security mechanisms

21

1. The use of Passwords.

2. The use of Locks and Override

Codes.

Additionally, through the use of

on-line interface a user can be

assigned a password, and an

authorization level.

Bridge facility Two bridge facilities

1. The Service facility.

2. The Source Language Generation

facility.

5. Extended Data Dictionary

Vendor : Intel Systems Corporation.

Hardware : IBM 360, 370, 30xx,43xx.

Source language : Assembler language.

Dependent DBMS : System 2000.

Entity names : Data Base, File, Work Area, Schema,

Record, Subschema Record, File

Record, Work Structure, Item, User

Application, Work Unit, Program.

Extensibility : New entity-types, attribute-types,

or relationship-types can be defined.

The master password is required for

this process.

Maintenance : Three maintenance ways:

1. Use of the XDD update and utility

strings.

2. Use of SCF (Self-Contained

Facility).
3. Use of QueX facility of System

. '2000.

Reports and queries: The Report Generation Procedures

provide five reports : CAT, DES,

22

VV

EXC, EXS, and EXI. Also, the PRODUCE

command provides explosion and impact

reports.

Status facility The status facility consists of the

use of multiple versions for entities

of all types. Every version of an

entity has a unique status. Multiple

versions can exist which have the

same status.

Security facility : A Master Password can be selected.

This password allows secondary

passwords to be assigned to the

users. Each such password has

associated authorities that control

dictionary operations.

Bridge facility Two bridge facilities

1. The dictionary mat be preloaded

using COBOL and COBOL PLEX program

Data Collection facilities to

extract meta data from the COBOL

or COBOL PLEX programs.

2. The XDD COBOL Generation Bridge

may be used to distribute

structures and logical views to

COBOL or COBOL PLEX programs.

6. UCC Ten

Vendor : University Computing Company.

Hardware : IBM 360, 370, 30xx, 43xx.

Source language : 90 % COBOL, 10 % Assembler language.
Dependent DBMS : IMS HIDAM databases.

Entity names : Field, List, Segment, Data, Group,

Set, File/Data Base, Transaction,

Module, Program, Job Application,

23

rI

Program Specification Block (PSB),

ID, and 23 more communication

oriented, message oriented, format

oriented and ADF oriented

entity-types.

Extensibility : None.

Maintenance : Three maintenance interfaces

1. Transactions that are submitted

in one of the following modes

On-line at terminal, On-line

Queue, Batch Queue, Batch DBA.

2. Input to the dictionary using

preformatted screens via 3270

terminals.

3. Fixed format input for adding

entities and certain
relationships.

Reports and queries : Three types of reports

1. Entity reports.

2. Text reports.

3. Keyword reports.
Status facility : System provides Text and Production

status with 255 sides.

Security facility : System contains a security user exit.

This exit is used for the password

protection of the DSTRUCTURE and

DABSOLUTE commands. IMS security

facilities are also available.

Bridge facility System contains facilities whereby
the contents of the dictionary can

be used to generate source statements

that can be used by other software

processors. These actions can be

invoked through the GENERATE

transaction.

24

.%

7. Data Control System (DCS)

Vendor : Cincom Systems, Inc.

Hardware : IBM 370, 30xx, 43xx.

Source language : COBOL and MANTIS.

Entity names : Element, File, Database, Report,

Source Document, Transaction, User

Application System, Program.

Extensibility : None.

Maintenance : Entities and relationships are added,

modified, and deleted by the use of

predefined screens. The types of

screens are:

1. Facility Selection-Menu.

2. Entity Screens.

3. Relationship Screens.

4. Table Definition Screens.

5. Mini Menus.

Reports and queries : System provides two facilities:

1. The Interactive Screen Interface

which can be used to display

information about entities and

relationships.

2. The Batch Reporting facility

which can be used to produce

preformatted reports.
Status facility : None.

Security facility : System contains a special

identification of a user called the

Master User. This Master User assigns

passwords to other users.

Bridge facility : The DCS Generation Facility which

consists of CSIDBIO1 and CSIDBI02

programs, can be used to control

database access to TOTAL databases.

25

III. RELATIONAL DICTIONARY MODEL

A. THE RELATIONAL MODEL

The relational model views a logical data base as a

collection of tables. These tables are two-dimensional and

are called relations. Relations contain single-valued

entries but no repeating groups or arrays. The columns of a

relation are called attributes, and the rows are called

tuples. Each column contains the same kind of data

(e.g.:dates), but the entries in rows are not identical.

The rows and columns can be ordered in any sequence without

affecting the information content. [Ref. 4]

The logical relationships are inherent in the data with

the relational model. Two tuples can have a relationship if

they have two attributes that arise from the same domain.

Users can access and combine data using data values.

The relational data base approach provides many advan-

tages in ease of use and simplicity, data independence, user

friendliness, flexibility, data base processing power, and

security controls. Also, it provides a good theoretical

foundation grounded in the mathematical theory of relations.

The relations are easy to understand by users.

Relationships between relations are easily expressed. With

relations, a high degree of data independence can be

achieved. A wide variety of relations can be derived easily

by using algebraic operations to satisfy different user

needs. By using these algebraic operations, users can be

constrained to specific instances of relations and

attributes.

26

B. OVERVIEW OF ORACLE SYSTEM

The ORACLE relational data base management system is a
computer program that manages data. Users access data via

the SQL nonprocedural data sublanguage which is a structured

query language with English keywords.
An ORACLE data base consists of tables which in turn

consist of columns and rows. A row is made up of fields

which contain data values. An example of a table is given

in Fig. 3.1

EMPLOYEE

EMPNO ENAME JOB

20 THOMAS SALESMAN
32 JOHNSON ANALYST
35 MARTIN MANAGER

Figure 3.1 An ORACLE Table.

A user can create tables via the SQL Data Definition

Language commands. The CREATE TABLE command is used to

create a new table. The column names and the data types of

the columns are specified for each table created. The DROP

TABLE statement deletes a table from the data base schema.

After a table is created, data can be entered into the

table via an INSERT command. Users can remove a row from a
table using the DELETE command. The UPDATE command allows a

user to modify a field in a row of a table.

The most common operation in ORACLE is to retrieve data

from tables by means of queries. The SELECT command is used

27

for this purpose. By using this command, we can select all

the columns or specific columns from a table. We can also

control the order columns are displayed, and prevent the.
selection of duplicate rows. The syntax of SELECT command

as following

SELECT some columns

FROM some tables

WHERE certain conditions are met.

SQL provides a powerful join operator as part of the

SELECT command. Two or more tables can be merged on the

basis of common fields, resulting in a single table. We can

list the tables to be joined in the FROM clause and the

relationships between the tables in the WHERE clause.

[Ref. 5]

C. A RELATIONAL DATA DICTIONARY MODEL

A relational data dictionary (RDD) model was developed
.and implemented using ORACLE. This RDD system runs on

VAX-VMS 11/780 computer.

The National Bureau of Standards (NBS) has developed

dictionary standards which capture the common features of
systems such as extensibility, maintenance, and report

processing. The dictionary system-standard schema has

specific entity-types, relationship-types, and attribute

types which are developed by the NBS. The system-standard

schema constitutes the core of the logical structure of this

dictionary. The entity-types, attribute-types, and

relationship-types are as shown in Tables I, II, and III.

1. Description of Entity-types

1. USER, describes a person or an organization that uses

the DDS.

2. SYSTEM, describes a collection of programs and/or

modules associated with a major function of the

enterprise.

28

TABLE I

ENTITY-TYPES OF NBS SYSTEM-STANDARD SCHEMA

aUSER

SYSTEM
PROGRAM
MODULE
FILE
DOCUMENT
RECORD
ELEMENT
BIT-STRING
CHARACTER-STRING
FIXED-POINT
FLOAT

TABLE II

RELATIONSHIP-TYPES OF NBS SYSTEM-STANDARD SCHEMA

CONTAINS
PROCESSES
RESPONSIBLEFOR
RUNS
GOES TO
DERIVED FROM
CALLS
REPRESENTED AS
STANDARD FOR
HAS SORT-KEY
HAS-ACCESSKEY

3. PROGRAM, represents information about a collection of

executable code.

4. MODULE, describes the parts of programs which are

logically associated with each other.

5. FILE, describes collections of records.

6. DOCUMENT, describes instances of data to document to the

user.

7. RECORD, describes instances of logically associated
!9 data.

29

* '4 a.

TABLE III

ATTRIBUTE-TYPES OF NBS SYSTEM-STANDARD SCHEMA

ADDED BY
ALLOWABLE RANGE
ALLOWABLE-VALUE
CLASSIFICATION
CODE LIST LOCATION
COMMENTS -
DATA CLASS
DESCRIPTION
DURATION TYPE
DURATION-VALUE
ENTITY NAME
ENTITY-TYPE
LAST MODIFICATION DATE
LAST-MODIFIEDBY -
LOCATION
NUMBER OF LINES OF CODE
NUMBER-OF-MODIFICATIONS
NUMBER-OF-RECORDS
RECORD-CATEGORY
SECURITY

8. ELEMENT, describes an instance of data.

9. BITSTRING, describes a string of binary codes.
10. CHARACTERSTRING, describes a string of characters.

11. FIXEDPOINT, describes the representation of numeric

- values.

Q 12. FLOAT, describes the representation of approximate

numeric values.

2. Description of Attribute-types

1. ADDEDBY, describes the person who inserts data into a

relation.
2. ALLOWABLERANGE, describes the allowable range of a data

element.
3. ALLOWABLEVALUE, describes the allowable value for a

data element.

4. CLASSIFICATION, describes the area of responsibility or

interest of an entity.

5. CODELISTLOCATION, describes the hardware location of

30

codes of a program or module.

6. COMMENTS, gives information about the characteristics of

an entity.

7. DATACLASS, describes the class of a data element.

8. DATEADDED, describes the insertion date of a data

element into the data base.

9. DURATIONTYPE, describes the type of duration of a

process.

10. DURATIONVALUE, describes the duration value required

for a process.

11. ENTITY_NAME, represents the name of an entity in the

data base.

12. ENTITYTYPE, describes the type of an entity in the

data base.

* 13. LASTMODIFICATIONDATE, describes the last modification

date of a data element in the data base.

14. LASTMODIFIEDBY, describes the user who makes the last

modification to a data element.

115. LOCATION, describes the hardware location of data in

the data base.

16. NUMBEROFLINES OF CODE, represents the number of codes

of a program or a module.

17. NUMBEROFMODIFICATIONS, represents the number of

V modifications of a data element.
18. NUMBEROFRECORDS, represents the number of records of

a file.

19. RECORDCATEGORY, describes the category of a record in

a file.

20. SECURITY, describes the security class of an entity for

explaining the authority level of a user to use it.

31

e%

3. Description of Relationship-types

1. CONTAINS, describes a relation where an entity-type

contains other entity-types.

2. PROCESSES, describes a relation where an entity-type

processes other entity-type.

3. RESPONSIBLEFOR, describes the responsibility of a user

to process a DDS element.
4. RUNS, describes an association between user and system

elements.

5. GOES TO, describes a relation where a process transfers

control to another one.

6. DERIVEDFROM, describes a relation where an entity is

derived from another one.

7. CALLS, describes a relation where an entity calls

another one.

8. REPRESENTED AS, describes the entities that document a

data element.

9. STANDARDFOR, describes the standard elements used to

describe an element.

10. HASSORTKEY, describes the sort key element of a file.

11. HASACCESSKEY, describes the access key element of a

file.

4. The Relations of Dictionary

The dictionary has several different relations. The
general of these relations is as follows :

USERX (username, description, classification, date_
added,addedby, lastmodification_date, last_

modified by, numberofmodifications, location,

comments, security)

SYSTEM (systemname, description, classification, date_
added, added_by, lastmodificationdate, last_

modified by, numberofmodifications, location,

duration_value, duration-type, comments, security)

32

PROGRAM (program-name, description, numberoflines of_
code, classification, dateadded, addedby, last_

modificationdate, lastmodifiedby, numberof_

modifications, location, duration_value, duration

-type, comments, security)

MODULE (modulenace, description, classification, date_
added, added_by, lastmodificationdate, last_

modified-by, location, numberoflinesofcode,

numberofmodifications, comments, security)

FILEX (file_name, description, classification, date_
added, added_by, lastmodificationdate, last_

modified by, location, number of modifications,

numberofrecords, comments, security)

DOCUMENT (document_name, description, classification,

dateadded, added_by, last modificationdate,

lastmodified by, location, number-of_

modifications, comments, security)

RECORD (recordname, description, classification, date_

added, added_by, lastmodificationdate, last_

modified-by, number of modifications, record_

category, comments, security)

ELEMENT (element_name, description, classification, date_
added, added_by, lastmodificationdate, last_

modified-by, number of modifications, allowable_

range, allowable_value, comments, code list_

location, dataclass, security)

CONTAINS (entity namel, entity_typel, entity_name2, entity

_type2)

PROCESSES (entity_namel, entity-typel ,entity_name2,

entity type2)

33

RESPONSIBLEFOR (entitynamel, entity_typel, entity_name2,

entity type2)

RUNS (entity_namel, entitytypel, entityname2, entity

1type2)

GOES-TO (entitynamel, entitytypel, entity_name2,

entitytype2)

DERIVEDFROM (entity_namel, entitytypel, entity_name2,

entitytype2)

CALLS (entity_namel, entitytypel, entity_name2,

entitytype2)

REPRESENTED AS (entitynamel, entitytypel, entityname2

entity type2)

STANDARDFOR (entity_namel, entitytypel, entity_name2,

entitytype2)

HASACCESSKEY (entity-namel, entitytypel, entity_name2,

entity_type2)

HASSORTKEY C entity_namel, entitytypel,entityname2,
S entity type2)

There are two special relations in the dictionary
schema ALIAS and CATEGORY. The ALIAS relation is used to

record synonyms. Synonyms are two or more names for the

same data item. In an enterprise every department can use
different names for the same data item in the data base. In

this case, the synonyms are recorded as aliases. The ALIAS

relation in the data dictionary is defined as

ALIAS (entity name, entity type, aliasname)

The CATEGORY relationship provides a key word in
. context (KWIC) capability which allows different entities to

be arbitrarily categorized by user-defined terms. For

example it may be desirable to classify certain files,

34

programs, reports, users, etc. as being PERSONNEL-related.

This can be done via CATEGORY by associating each such

entity with the PERSONNEL category. The format of CATEGORY

relation is defined as :

CATEGORY (entity_name, entity-type, category name)

The dictionary model has a specific relationship by

which we can represent the dictionary entities and the

specific relationships in which they participate. This

relationship makes the dictionary model self-descriptive.

Thus, it can describe its schema structure. The format of

this relationship as following :

RELATIONSHIP (entitynamel, entitytypel, entity_name2,
entitytype2, relation)

Another type of relationship of the dictionary model

is ENTITY by which we represent the entitytypes such as

'SYSTEM', 'FILE', etc. . The format of this relationship as

following :

ENTITY (entity_name, description, classification, date_

added, added by, lastmodificationdate, last_

modifiedby, number of modifications, location,

comments, security)

D. RELATIONSHIPS BETWEEN ENTITY-TYPES

The pairs of entity-types belong to a specific relation-
ship are as shown in Table IV (entity-typel and entity-

type2 are both assumed to be 'ENTITY' and are omitted for

the sake of clarity).

35

TABLE IV

RELATIONSHIPS BETWEEN ENTITY-TYPES

CONTAINS : PROCESSES

SYSTEM, SYSTEM USER, FILE
SYSTEM, PROGRAM USER, DOCUMENT
SYSTEM, MODULE USER, RECORD
PROGRAM, PROGRAM USER ELEMENT
PROGRAM, MODULE SYSTEM, FILE
MODULE MODULE SYSTEM, DOCUMENT
FILE, PILE SYSTEM, RECORD
FILE, DOCUMENT SYSTEM, ELEMENT
FILE, RECORD PROGRAM FILE
FILE, ELEMENT PROGRAM, DOCUMENT
DOCUMENT, DOCUMENT PROGRAM, RECORD
DOCUMENT, RECORD PROGRAM, ELEMENT
DOCUMENT ELEMENT MODULE, FILE
RECORD, RECORD MODULE, DOCUMENT
RECORD ELEMENT MODULE, RECORD
ELEMENT, ELEMENT MODULE, ELEMENT

RESPONSIBLEFOR RUNS :

USER, FILE USER, SYSTEM
USER, DOCUMENT USER, PROGRAM
USER, RECORD USER, MODULE
USER ELEMENT U
SYSTEM, FILE
SYSTEM, DOCUMENT GOES TO
SYSTEM, RECORD
SYSTEM, ELEMENT
PROGRAM, FILE SYSTEM, SYSTEM
PROGRAM, DOCUMENT PROGRAM, PROGRAM
PROGRAM, RECORD MODULE, MODULE
PROGRAM, ELEMENT
MODULE, FILE
MODULE, DOCUMENT DERIVED FROM
MODULE, RECORD
MODULE, ELEMENT DOCUMENT, FILE

DOCUMENT, DOCUMENT
DOCUMENT, RECORD

CALLS ELEMENT, FILE
ELEMENT, DOCUMENT

PROGRAM, PROGRAM ELEMENT, RECORD
PROGRAM, MODULE ELEMENT ELEMENT
MODULE, MODULE FILE, DOCUMENT

FILE FILE
RECORD, DOCUMENT

ELEMENT, ELEMENT REPRESENTED AS :

ELEMENT, BIT STRING
HAS SORT KEY & ELEMENT, CHARACTER STRING
HAS-ACCESS KEY ELEMENT, FIXED POINT

ELEMENT, FLCAT-
FILE, ELEMENT

36

---- >> USER T<<----------

v v

SYSTEM <<----------------- > FILE

v v

PROGRAM DOCUMENT

V V

MODULE RECORD

v

ELEMENT

Figure 3.2 Bachman Diagram of entity_types.

The relationships between the entity-types are shown in

Fig. 3.2 . In this diagram, we denote the relationship

one-to-one by a single- headed arrow (--->), and the rela-

tionship one-to-many by a double-headed arrow (--- >>
. <

The implementation of data dictionary model using ORACLE

has some shortcomings. We can represent entity-types, and

relationships between these entities easily. But, we also

need rules about data.

37

ORACLE implementation is not capable of defining rules. We

can only implement immediate data with ORACLE.

E. EXAMPLES OF QUERIES

By using SQL commands, we can represent several

different queries. These queries are two types : queries

concerning meta-entities and those concerning instances of

entities. There are several advantages of having the meta-

entity information. The quality of metadata should be moni-

tored by defining and inserting integrity checks. We can do

these checking by means of queries concerning meta-entities.

These queries also give information about the system-

standard schema of the dictionary system. That is, we can

describe the entity-types, attribute-types, and

relationship-types of the dictionary.

The listing of tuples in the data base is given in

Appendix B. The queries in this section are related with

these values. Suppose we have a query " Which systems

contain ACC5PROG program ? " The implementation of this

query and the answer to this query is given in Fig. 3.3

UFI> SELECT ENTITY NAMEl
2 FROM CONTAINS-X

WHERE ENTITY NAME2=' CC5PROG' AND
ENTITYTYPEI='SYSTEM

S ENTITYNAMEl
ACCOUNT-2
ACCOUNT-5

Figure 3.3 An Example of Query.

Other types of query examples follow

Query " Who is responsible for ACCOUNT-2 system ?

The implementation of this query is given in Fig. 3.4

38

UFI> SELECT ENTITY NAMEI
2 FROM RESPONSIBLE FOC
3 WHERE ENTITY NAME2= ACCOUNT-2';

ENTITY NAME1

JONES H.B.
ALLEN G.M.
SCOTT T.L.

Figure 3.4 An Example of Query.

Query " Which programs process PAYROLLS record ?

The implementation of this query is given in Fig. 3.5

UFI> SELECT ENTITY NAMEl
2 FROM PROCESSES

WHERE ENTITY NAME2='PAYROLL5' AND
ENTITYTYPEl=- PROGRAM ;

ENTITYNAME 1

ACCOUNT- 2
ACCOUNT-3
ACCOUNT -4

Figure 3.5 An Example of Query.

Query " What elements are contained in the PAYROLLS

record ? " The implementation of this query is given in

-. Fig. 3.6

or

Query: " What relationships does FILE participate in ?

. The implementation of this query is given in Fig. 3.7

-. 39

OJ.

'3

UFI> SELECT ENTITY NAME2
2 FROM CONTAINS-X
3 WHERE ENTITY §rAMEl='PAYROLL5' AND
4 ENTITYTYPE2 ELEMENT';

ENTITY NAME2

PRELEl
PRELE2
PRELEJ
PRELE4

Figure 3.6 An Example of Query.

UFI> SELECT ENTITY NAME1,RELATION,ENTIYNAME2
2 FROM RELATIONSHIP
3 WHERE ENTITYNAMEl='FILE';

ENTITYNAME1 RELATION ENTITYNAME2

FILE CONTAINS FILE
FILE CONTAINS DOCUMENT
FILE CONTAINS RECORD
FILE CONTAINS ELEMENT
FILE DERIVED FROM FILE
FILE DERIVED-FROM DOCUMENT
FILE HAS SORT KEY ELEMENT
FILE HAS-ACCESS_KEY ELEMENT

8 records selected.

Figure 3.7 An Example of Query.

Query " What aliases ACCOUNT-2 program has ? " The

implementation of this query is given in Fig. 3.8

Query " Which entities are in the CONTROL2 category ?

The implementation of this query is given in Fig. 3.9

We are not able to answer some kinds of queries with

this dictionary design. For example, a query What kind of

40

UFI> SELECT ALIAS NAME
2 FROM ALIAS
3 WHERE ENTITYNAME1='ACCOUNT-2';

ALIASNAME

ASEL
APRO

Figure 3.8 An Example of Query.

UFI> SELECT ENTITY NAMEENTITY TYPE
2 FROM CATEGORY-
3 WHERE CATEGORYNAME='CONTROL2';

ENTITYNAME ENTITYTYPE

ACCOUNT-2 PROGRAM
ACCSFILE FILE X
ACC6FILE FILE-X
PAYROLL5 RECORD
PAYROLL6 RECORD
PAYROLL7 RECORD

6 records selected.

Figure 3.9 An Example of Query.

entity is PRELEl ? cannot be answered easily. To answer

this kind of query, we have to implement every data element

as a separate entity in a special relation. This implemen-

tation causes overhead in the data base. Also a query

What entities appear in relationships but are not defined as

a tuple in any of the entity relations ? " cannot be

answered easily. For example PROCESSES

('ACCOUNT-2','PROGRAM','ACCREC','RECORD') is a tuple of

PROCESSES relation but 'ACCREC' is not a tuple in RECORD

relation. To answer this kind of query, we will have to

41

insert data into a separate relation for every data element

we want to represent in the data base.

These types of queries can be answered by means of a

different design. We can define two relations:

ENTITY (entityname, entitytype, attrl, attr2,

,attrM)

RELSHIP (relname, entitynamel, entitytypel,
entity_name2, entity_type2, attributes)

By using these relations we can answer the queries we have

asked above like following

SELECT entitytype

FROM ENTITY

* WHERE entity-mane = 'PRELE';

SELECT entity_namel

FROM RELSHIP

WHERE entitynamel NOT IN

(SELECT entity-name FROM ENTITY);

This design method also has disadvantages. For example in

the first example we will have null values for some attri-

butes of the relation.

F. USER MANUAL

This user manual explains the necessary procedures to

use the ORACLE system. Additional information can be

obtained from the ORACLE system manuals.

After entering the VAX-VMS system, you will see the

following on the screen:

To start ORACLE type " ORACLE" like following and press

' the RETURN key on the terminal

1-- $ ORACLE

I' 4

Then type " UFI " like following and press the RETURN

key :

$ UFI

After a few seconds a message will appear

ORACLE Utilities, Copyright (c) 1979, 1980, 1981, 1982,

RSI

UFI Version 3.5 - on Mon Nov 18 15:39:17 1985

Connecting to ORACLE V 4.2.2 - Interim Release

Enter user-name :

Enter password

Upon correctly entering the user-name, and password you

will receive the following on the screen

*k UFI>

Now, you are ready to enter ORACLE commands into the

system. When you want to exit the system type " EXIT " like

following

UFI> EXIT

Then you will see the following message on the screen

logged off from ORACLE $

If you want to log off from VMS system type " log "

$ log

Now, you have logged off the VMS system and you will see
the following message :

logging off the VAX 780 computer

43

1. Creating A Table

A table can be created using the CREATE TABLE

command. An example of this command is given in Fig. 3.10

UFI> CREATE TABLE CONTAIN X
2 ENTITY NAMEl CHAR (15)

ENTITY-TYPE1 CHAR (15),
ENTITY-NAME2 CHAR (15)

5 ENTITY-TYPE2 CHAR (15));

Table created.

Figure 3.10 Creating a Table.

02. Inserting Data Into a Table

After a table is created, rows can be entered into

the table using the INSERT command. An example of this

command is given in Fig. 3.11

UFI> INSERT INTO C9NTAINS X VALUES
2 (SACCOUNT-2', SYSTEM, 'ACC5PROG' ,'PROGRAM');

ENTITYNAME1 ENTITY TYPE1 ENTITY NAME2 ENTITY TYPE2

ACCOUNT-2 SYSTEM ACCSPROG PROGRAM

1 record created

Figure 3.11 Inserting Data Into a Table.

44

3. Selecting Data From a Table

The SELECT command is used to retrieve data from a

table. An example of this command is given in Fig. 3.12

UFI> SELECT ENTITY NAME1, ENTITYNAME2

2 FROM CONTAINS-X ;

ENTITYNAME1 ENTITY NAME2

ACCOUNT-2 ACC5PROG

Figure 3.12 Selecting Data From a Table.

If we want to select all the columns we can use an

* asterisk (*) in place of the list of column names. An

example is given in Fig. 3.13 . In this example, all the

columns of CONTAINSX table will be selected.

UFI> SELECT *

2 FROM CONTAINS_X

ENTITY NAME1 ENTITY TYPE1 ENTITY NAME2 ENTITY TYPE2

ACCOUNT-2 SYSTEM ACC5PROG PROGRAM

Figure 3.13 Selecting Data From a Table.

4. Description of the columns of a Table

The DESC command gives the brief description of the

columns used in a table. The description returned will

contain columns for the number of the column, the maximum

size of numeric or formatted data, the type of data, and the

name of the column. An example of this command will be

given in Fig. 3.14

45

UFI> DESC CONTAINS X

size csize t hpe name
15 1 Lcharacter ENTITY NAME1

2 15 1 1 character ENTITY-TYPE1
15 1 1 character ENTITY-NAME2
15 1 1 character ENTITY-TYPE2

Figure 3.14 Description of Columns of a Table.

4

~46

IV. DATA DICTIONARIES AND EXPERT SYSTEMS

A. OVERVIEW OF EXPERT SYTEMS

Expert systems are the most significant development in

the area of artificial intelligence. Expert or knowledge-

based systems are computer programs which represent and

apply specific knowledge to solve problems. Expert systems

use knowledge that is represented in computable form.

The rule-based system paradigm is the most popular

problem solving paradigm used for building expert systems.

The rule-based system paradigm is built around rules. The

rules cover the major situations in a domain and consist of

an "if" part and a "then" part

Rule(n) If condition 1

condition 2

condition n

then action 1

action 2

action n

The "if" parts of the rules consist of combinations of

known facts. The "then" parts specify new facts to be

deduced. We use forward chaining to move from existing

conditions to desired actions. Backward chaining hypoth-

esizes a conclusion and use the rules to work backward

toward the facts which lead to this conclusion. [Ref. 6]

Expert systems use different methodologies for solving

problems.

47

Some expert systems such as XCON use synthesis oriented

forward chaining. Others, such as MYCIN and PROSPECTOR use

analysis oriented backward chaining.

XCON's domain concerns the configuration of computer

system components. XCON knows the properties of component

types for VAX computers and XCON handles orders involving

these components. MYCIN aids medical doctors in diagnosing

blood and meningitis infections and in recommending antibi-

otic drug treatment. PROSPECTOR is used by geologists in

the exploration of ore deposits.

Expert systems can explain how and why they do things,

and they can estimate the quality of their results. They
can also demonstrate the stages of the task they have
performed as well as any remaining parts to be performed.

0An expert system must demonstrate efficient performance

and must find effective solutions. These two factors must
be traded off in certain cases. Some expert systems make

good decisions but very slowly. Some decisions, on the

other hand, require rapid response time, possibly at the

expense of accuracy. Expert systems must be built to

satisfy the particular requirements of each application

domain.

B. COMPONENTS OF EXPERT SYSTEMS

The essential components of an expert system are the

following :

1. Language Processor The user and expert system commu-

nicate with each other by means of a language processor.

The user enters the commands or questions into the
system by using the language processor. Conversely, the

information generated by the system is presented to the

user via the same mechanism.

2. Blackboard Intermediate decisions are recorded in a

blackboard. Generally, blackboards record three types

of decisions plan, agenda, and solution. Plan recoi-

mends a general solution methodology to the problem.

48

Agenda records the actions awaiting the execution. The

decisions and hypotheses about the problem are repre-

sented by solution elements.

3. Scheduler : The control of the agenda and the control

of the order of the rule processing are maintained by a

scheduler.

4. Interpreter The rules contained in the knowledge base

get applied to the agenda items by the interpreter.

5. Consistency enforcer : When new data are introduced,

the consistency enforcer adjusts the previous solutions

to the new data base.

6. Justifier : By using general types of question/

answering plans, the justifier explains the system's

behaviour to the user.

7. Knowledge base The facts and information about the

problem and problem solving rules are recorded in the

knowledge base. [Ref. 7]

The components of expert systems are given in Fig. 4.1

C. EXPERT SYSTEMS AND CONVENTIONAL DATA PROCESSING SYSTEMS

There are many ways in which expert systems differ from

both data processing systems and other AI systems.

AI systems involve several features such as symbolic

representation, symbolic inference, and heuristic search.

AI systems use one of several formal approaches developed

for these features. For example, one way to show what a set

of antecedent-consequent rules can do is, to draw a network

showing how the facts that are the consequents of one rule

serve as antecedents to the next. This network is called an

inference net in Al systems.

Expert systems perform their tasks in decision making

environments. They solve problems in narrow and specialized

domains. In contrast, the other AI systems use more general

methods.
Expert systems contain self-knowledge, that is knowledge

4 about its own structure and operation. By using

49

USER

LANGUAGE < -------- > KNOWLEDGEJ<........
PROCESSOR <---+ +--> BASE- <- -+

->JUSTIFIER --- > INTERPRETER <

BLACKBOARD < ------------ > SCHEDULER <--

< --------- *-

------ > CONSISTENCY
ENFORCER

Figure 4.1 Components of an Expert System.

self-knowledge, expert systems provide explanations and

justifications about their conclusions. This knowledge is

also used for modification and reorganization of the system.

Expert systems solve problems in several areas which can

be categorized as follows :

1. Interpretation systems signal interpretation, speech

understanding chemical structure elucidation.

2. Prediction system weather forecasting, crop

estimation.

3. Diagnosi3 systems medical, electronic, software

diagnosis.

4. Design systems : building design, budgeting.

50

5. Planning systems : robot, project, communication,

military planning problems.

6. Monitoring systems : nuclear power plant, air traffic,

disease, fiscal management tasks.

7. Debugging systems : computer aided debugging systems.

8. Repair systems : automotive, network, avionic systems.

9. Instruction systems : Diagnose of students behaviors.

10. Control systems : air traffic control,mission control,

business management.

D. KNOWLEDGE REPRESENTATION

There are many different kinds of knowledge. Basically,

knowledge can be represented by facts and procedures. Facts
are things that are true about the world, and correspond to

the meanings of nouns and adjectives. Procedures are
sequences of actions that do things and correspond to the
meanings of verbs. There are many different ways of

representing and manipulating knowledge by computer.

1. Predicate Calculus

Predicate calculus is one of the widely used forms

of knowledge representation. The syntax of symbols repre-

senting knowledge consists of terms and predicate symbols.

In predicate calculus logical connections between entities

and functions can be easily represented. Predicate calculus

can also express sentences involving universal quantifiers

and existential quantifiers. In predicate calculus, new

symbol structures can be created from old ones by using

rules of inference. Predicate calculus can express the

sentence "All parts are large " as

(ALL (x) ((IS A x PART)----> (LARGE x)))

51

wf&26 0P

.4

2. Semantic Networks
Many knowledge representations are built around some

form of semantic net. The syntax of a semantic net consists

of objects and relationships between pairs of objects. In

semantic nets, the objects are represented by labeled

circles and the relations are represented by labeled arrows.

The semantic nets have a restriction in that they only work

well for predicates of two arguments.

3. Control Structures

1. Unordered Control Structures In a rule based

system a set of antecedent-consequent rules can be repre-

sented by a network. By using AND/OR/NOT trees this network

can be represented. Facts are then input to this system.

An AND/OR/NOT tree reaches from base facts at the bottom,

through antecedent-consequent rules, to possible conclusion

at the top.

- 2. Backwards Chaining Control Structures This
structure imposes a single sequential ordering on everything

that happens. Backwards chaining starts with a hypothesized

conclusion and uses rules to work backward toward the facts

that support the hypothesis. Backwards chaining works well

whenever there are many more facts than goals.

3. Forward Chaining Control Structures In some

systems, there are many possible conclusions but just a few

facts. For these situations forward chaining is used by

starting with the facts and reasoning to conclusions.

E. METAKNOWLEDGE

Metaknowledge can be very important to building,

running, and modifying expert systems. Performance can be

improved by supplying various sets of metaknowledge that is

knowledge about the knowledge in the system.

Metaknowledge guides the location and selection of

rules. It records needed facts about knowledge.
Metaknowledge enhances the system's explanation abilities by

justifying rules.

52

.4.,

It facilitates the entry of new terms, facts, and heuristic

rules.

Information resource management is a potential domain

for the implementation of expert systems. Data dictionary

systems are currently used for representing metaknowledge

about organizational information resources. Especially,

extensibility features of data dictionary systems make it

easy to define new data types and relationships to represent

metaknowledge.

Information resource management data contains informa-

tion necessary to manage and control the data. This type of

data includes rules for performing its function. The rules

are the functions to be performed by the system relative to

data. The rules are very important in information resource

* management, because, they insure effective management

control of data. These rules guide the data base activities

and provide information about data.

We can store facts about information resources using

data dictionary systems, but current data dictionary systems

are unable to accommodate rules. Logic-oriented language
Prolog can be used to implement these rules. Prolog allows

user to define rules which are more compact than a list of

facts.

F. KNOWLEDGE REPRESENTATION IN PROLOG

The declarative, logic-based language Prolog is used for

solving problems that involve objects and relationships

between objects. The Prolog programmer asks what formal

relationships and objects occur in the problem, and what

relationships are true about the desired solution.

Programming in Prolog consists of declaring some facts

about objects and their relationships; defining some rules

about objects and their relationships and then asking ques-

tions about objects and their relationships subject to these

rules. [Ref. 8]

53

An explanation of an implementation of facts, rules, and

a query will be explained with the following example.

Suppose we have relations

male(gerry).

male(john).

female(mary).

female(cindy).

parents(gerry,betty,mike).

parents(mary,betty,mike).

brotherof(X,Y):-male(X),parents(X,M,F),

parents(Y,M,F).

Suppose we want to know if Gerry is the brother of

anyone. We can ask this question in Prolog like this

?-brother of(gerry,X).

Prolog prints X= mary. as an answer to this question.

G. A PROLOG MODEL OF A SIMPLE DATA DICTIONARY

The system-standard schema of the dictionary is defined

as a specific set of entity-types, relationship types, and

attribute types. This system-standard schema satisfies the

requirements of many IRDS environments. Also, this schema

is a standard schema developed by the National Bureau of

Standards.

Data dictionary entity-types, relationship types, and

attribute types are as shown in Tables V and VI

Using Prolog, implementation of a data dictionary with

the above entity-types and attribute types can be repre-

sented as predicates. For example we can represent the

-: SYSTEM entity-type as

system(name,description,date created,classification,

lastmodifiedby,numberof_programs).

Integrity constraints can be easily implemented by using

predicates involving relationships.

.5-

TABLE V
ENTITY-TYPES AND ATTRIBUTE-TYPES OF DICTIONARY MODEL

ENTITY-TYPES: ATTRIBUTE-TYPES.

USER ADDED BY
SYSTEM CLASSTFICATION
PROGRAM COMMENTS
MODULE DATE ADDED
FILE DESCRIPTION
DOCUMENT IDENTIFICATION NAME
RECORD LAST MODIFICATION DATE
ELEMENT LAST-MODIFIED BY -
BIT STRING NUMBER OF MODIFICATIONS
CHARACTER STRING NUMBER-OF-RECORDS
FIXED POINT NUMBER-OF-CATEGORY
FLOAT- NUMBER-OF-PROGRAMS

DATE CREATED
LOCATION
STANDARD FOR
HAS SORT-KEY
HAS-ACCESSKEY

TABLE VI
RELATIONSHIP-TYPES OF DICTIONARY MODEL

RELATIONSHIP-TYPES

CONTAINS
PROCESSES
RUNS
RESPONSIBLEFOR
GOES TO
DERIVED FROM
CALLS -
REPRESENTEDAS

The general format of these predicates are represented as

relation(entitynamel,entitytypel,entityname2,entitytype2).

We can represent "contains" relation in Prolog as

contains(system x,systemt,programx,programt).

contains(program x,program t,module_x,module_t).

55

Ii

contains(module_xmodule_t,record -x,record-t).

contains(record-X,record-t,element_x,elementt).

The other types of relationships can be represented as

followings

processes(systemxsystem-t,file-xfilet).

responsible for(user xuser-tsystem-x,system-t).

runs(user x,user-t,systemxsystem-t).

goes to(system-x,systemtsystem-x,system-t).

derived-from(document_x,document-t,file_x,file_t).

calls (program -x,program-t ,module_x,modulet).

represented_as(element_x,element-t,bit_stringx,

bit -string t).

standard-for(element_x,element_t,element_x,element t).

* has-sort-key(file_x,file_t,element-x,elementt).

has-access-key(file_x,file~t,keyx,keyt).

In Prolog, rules are used when we want to say that a

fact depenfds on a group of other facts. A rule is a general

statement about objects and their relationships.

We can represent queries and information about the data

base by using Prolog rules.

A relation in the data base can be derived from a rule

in Prolog. By using the relationship predicates we can

build rules as followings:

K contains(X,XX,Z,ZZ):-contains(X,XX,YYY),

contains(YYY,ZZZ).

processes(X,XX,Z,ZZ):-contains(X,XX,YYY),

processes(Y,YY,ZZZ).

4< calls(X,XX,Z,ZZ) :-contains(X,XX,Y,YY) ,calls(Y,YY,Z,ZZ).

Implementation of queries in Prolog will be explained

with the following examples:

Suppose we have following facts and rules about Data

Dictionary

56

S=4 A)

contains (system-l,system t ,program-a,program-t).

contains (system-l,system-t,program b ,program t).
contains(system. -l,system -t ,programcprogram -t).

contains (program l,program-t ,module-a,module-t).

contains (program 1, program t ,module b ,module_t).

contains (program i 1program-t ,module_c,module_t).

contains(programl_,program-t ,module_d,module_t).

contains(file_l,file_t,document_ldocument -t).

contains(file_l,file_t,document_2,document t).

contains(file_l,file_t,document_3.document-t).

processes(user -l,user -t,file_i~filet).

processes(user-luser-tfile_2,filet).

processes(user2user tfile_l,file t).

processes(user-2,user-t,file_2.filet).

responsible_for(user-luser -t,system -l,system-t).

responsible_for(user-luser t,system -2,qystem -t).

responsible_for~user-l,user-t,system_3.system-t).

responsible_for(user_2,user-t,system -i1system -t).

responsible_for(user_2,user-t,system_2,system-t).

Suppose we have a query : "Which systems contain
program-a ?" The implementation of this query and the

answer to this query will be as following:

?- contains (X, system t ,program-a,programt).

X= system_-1;

X= system_2;

no

The other type of query examples are the following

?- contains(program-l,program-t,X,modulet).

X= module a;

57

W y4 Xrkr
.....

X= module_b;

X= module_c;

X= module-d;

no

?processes(Xuser-t,file_2,file_t).

X= user_1;

X= user_2;

no

?- responsible for(user_1,user-t,X,system-t).

X= system_-1;

X= system_2;

*X= system_3;

no

?processes(X,user_t,Y,filet).

X= user_1, Y= file_1;

X= userI, Y= file_2;

X= user_-2, Y= file_1;

* X= user_2, Y= file_2;

no

We can also define rules about data base and ask

questions about these rules

contains(filel,filet,record_a,record_t).

contains(filel,file_t,record -b,record_t).

processes(system_1 ,system -t,file l,file_t).

processes(X,XX,Z,ZZ):-processes(X,XX,Y,YY),

4,. contains(Y,YY,Z,ZZ).

58

We can ask a question like this :"What does system_1

processes V9

A query related with the above rule and the answer to

this query will be as following:

?- processes(system_1 ,system-t,X,XX).

X= file_1, XX= file-t;

X= record -a, XX= record-t;

-~ X= record_b, XX= record-t;

no

If we want to know the records which are processed by

system_1, we can ask following question:

?- processes(system_1,system-t,X,record-t).

X= record a;

X= record_b;

no

This dictionary model is self-descriptive. That is, we

can represent the dictionary entities which participate in a

specific relationship. The following facts are used for

this purpose:

processes(user_x,entity t,file_x,entityt).

processes(user -x,entity t,document_xzentity_t).

processes(user_x,entity t,record-x,entity_t).

processes(user-x,entity_telement_xzentityt).

processes(system -x,entityt,file_x,entityt).
processes(system -x,entity_t,document-x,entity_t).
processes(systemx,entityt,record-X,entityt).

processes(systemx,entityt,element_x,entityt).

processes(program -x,entity t ,f ile_x,entityt).

processes (program-x,entity t,document-x,entityt).

V 59

processes(program-xzentity trecord-x,entity_t).

processes(programK entity telement_xentityt).

p-ocesses(module_xentity tfile_x,entity_t).

- ' processes(module_x entity t,document_x,entityt).

processes(module_x entity t,record_- c,entityt).

processes(module_x,entityt,element-x,entityt).

runs~user-x,entity tsystem-xentityt).

runs(user-x,entity t,program-X,entity_t).

runs(user-x,entity t,module_x,entityt).

Now, we can ask " Which entities can participate in the
'process' relationship ? " by :

?- processes(X,entityt,Y,entityt).

0 Prolog lists all the entities which participate this

relationship as:

X= user x, Y= file x;

X= user-x, Y= document_x;

X= user -x, Y= record-x;

X= user-x, Y= element_x;

X= system-c, Y= file_x;

X= system-x, Y= document_x;

X= system-x, Y= record-x;

X= system -x, Y= element_x;

X= program -x, Y= file_x;

X= program -x, Y= document_x;

X= program -x, Y= record_x;

X= program_x, Y= element x;

X= module-x, Y= file_x;

X= module-x, Y= document_c;

X= module_x, Y= record x;

X= module_x, Y= element_x;

no

60

As a second example, we can ask " Which entities can

participate in the 'runs' relationship ? " by

7- runs(Xentityt,Y,entityt).

X= user_x, Y= systemx;

X= user_x, Y= program-x;

X= user-x, Y= modulex;

Prolog rules help programmers to modularize knowledge.

It's a way of creating new predicates from old predicates

without specifying facts explicitly. The representation of

facts could become tedious, especially if there are hundreds

of facts about the same subject. By using rules, we can

represent all of these facts easily since the rules are more

compact than a list of facts. Thus, the rules save a great

deal of data entry effort. Prolog makes it easy to represent

indirect relationships. Prolog creates arbitrary data

structures by means of rules which are themselves data.

Prolog offers a wide variety of queries. In the structure

of Prolog program there are. precise representations for

these queries. Prolog offers a great extensibility in

declaring new facts and rules about the data base.

61

V. CONCLUSIONS

This thesis has explained the importance of metadata and

data dictionary systems in the management and control of the

enterprise's data resource. It has shown that the data

dictionary system is a central repository of information

which helps improve communication between system components

of an enterprise.

This thesis has surveyed seven commercially available
data dictionary systems. It has explained the characteris-

tics and the capabilities of these systems. Thus, the

reader can obtain information about these dictionary

systems, compare them, and investigate the needed

requirements for a new dictionary system.

This thesis has developed a relational data dictionary

model which was implemented on the ORACLE relational data-

base management system. This dictionary model is capable of

satisfying the requirements of many IRDS environments.

Although the relational model is the most popular data model

and it has come to be of great practical significance, its

dictionary capabilities are limited.

The ORACLE implementation of the data dictionary model

is capable of representing entity-types and relationship-

types between these entities. But, it is not capable of

representing rules about information resource management

data. Since information management data must contain rules

for its operational purposes, this is a shortcoming of

relational data dictionary models.

This thesis has explained the general characteristics of

expert systems. It has proposed a Prolog model of a data

dictionary as an expert system. Using logic-oriented

language Prolog, the rules about the information resource
management data can be implemented easily. This model shows

that logic programming is suitable for relational database

62

applications. Thus, the user can save a great deal of data

entry effort by using rules instead of representing data

explicitly. Prolog representation of data provides flexible

extensibility features especially when adding new data into

the database. Since Prolog is primarily a prototype tool,

however, this suggests that more research needs to be done

concerning the efficient implementation of rules in a

*relational environment.

R63

APPENDIX A

ORACLE TABLES OF ENTITY-TYPES AND RELATIONSHIP-TYPES

TABLE USER X

USERNAME CHAR (15) NOT NULL,

DESCRIPTION CHAR (60),

CLASSIFICATION CHAR (10),

DATEADDED CHAR (10),

ADDEDBY CHAR (15),

LASTMODIFICATIONDATE DATE,

LASTMODIFIEDBY CHAR (15),

NUMBEROFMODIFICATIONS NUMBER,

-* LOCATION CHAR(15),

COMMENTS CHAR (45),

SECURITY CHAR (10);

TABLE SYSTEM

SYSTEMNAME CHAR (10) NOT NULL,

DESCRIPTION CHAR (60),

CLASS-FICATION CHAR (10),

DATEADDED DATE,

ADDEDBY CHAR (15),

LASTMODIFICATIONDATE DATE,

LASTMODIFIEDBY CHAR (15),

, NUMBEROFMODIFICATIONS NUMBER,

LOCATION CHAR (15),

DURATIONVALUE NUMBER,

DURATIONTYPE CHAR (10),

COMMENTS CHAR (45),

SECURITY CHAR (10);

TABLE PROGRAM

PROGRAMNAME CHAR (10) NOT NULL,

DESCRIPTION CHAR (60),

64

NUMBEROFLINESOFCODE NUMBER,

CLASSIFICATION CHAR (10),

DATEADDED DATE,

ADDEDBY CHAR (15),

LASTMODIFICATIONDATE DATE,

LASTMODIFIEDBY CHAR (15),

NUMBEROFMODIFICATIONS NUMBER,

LOCATION CHAR (15),

DURATIONVALUE NUMBER,

DURATIONTYPE CHAR (10),

COMMENTS CHAR (45),

SECURITY CHAR (10);

TABLE MODULE

MODULENAME CHAR (10) NOT NULL,

* DESCRIPTION CHAR (60),

CLASSIFICATION CHAR (10),

DATEADDED DATE,

ADDEDBY CHAR (15),

LASTMODIFICATIONDATE DATE,

LASTMODIFIEDBY CHAR (15),

LOCATION CHAR (15),

NUMBEROFLINESOFCODE NUMBER,

NUMBEROFMODIFICATIONS NUMBER,

COMMENTS CHAR (45),

SECURITY CHAR (10);

TABLE FILE X

FILENAME CHAR (10) NOT NULL,

DESCRIPTION CHAR (60),

CLASSIFICATION CHAR (10),

DATEADDED DATE,

ADDEDBY CHAR (15),

LASTMODIFICATIONDATE DATE,

LASTMODIFIEDBY CHAR (15),

LOCATION CHAR (15),

65

NUMBEROFMODIFICATIONS NUMBER,

NUMBEROFRECORDS NUMBER,

COMMENTS CHAR (45),

SECURITY CHAR (10);

TABLE DOCUMENT

DOCUMENTNAME CHAR (10) NOT NULL,

DESCRIPTION CHAR (60),

CLASSIFICATION CHAR (10),

DATEADDED DATE,

ADDEDBY CHAR (15),

LASTMODIFICATIONDATE DATE,

LASTMODIFIEDBY CHAR (15),

LOCATION CHAR (15),

NUMBEROFMODIFICATIONS NUMBER,

COMMENTS CHAR (45),

SECURITY CHAR (10);

TABLE RECORD

RECORD NAME CHAR (10) NOT NULL,

DESCRIPTION CHAR (60),

CLASSIFICATION CHAR (10),

DATE ADDED DATE,

ADDEDBY CHAR (15),

LASTMODIFICATIONDATE DATE,

LASTMODIFIEDBY CHAR (15),

NUMBEROFMODIFICATIONS NUMBER,

RECORDCATEGORY CHAR (10),

COMMENTS CHAR (45),

SECURITY CHAR (10);

TABLE ELEMENT

ELEMENTNAME CHAR (10) NOT NULL,

DESCRIPTION CHAR (60),

CLASSIFICATION CHAR (10),

DATEADDED DATE,

ADDEDBY CHAR (15),

S66

LASTMODIFICATIONDATE DATE,

LASTMODIFIEDBY CHAR (15),

NUMBEROFMODIFICATIONS NUMBER,

ALLOWABLERANGE NUMBER,

ALLOWABLEVALUE NUMBER,

COMMENTS CHAR (45),

CODELISTLOCATION CHAR (15),

DATACLASS CHAR (10),

SECURITY CHAR (10);

TABLE CONTAINS X

ENTITYNAME1 CHAR (15),

ENTITYTYPEl CHAR (15),

ENTITYNAME2 CHAR (15),

ENTITYTYPE2 CHAR (15);

TABLE PROCESSES

ENTITYNAME1 CHAR (15),
ENTITYTYPEl CHAR (15),

ENTITYNAME2 CHAR (15),

ENTITYTYPE2 CHAR (15);

TABLE RESPONSIBLE FOR

ENTITYNAME1 CHAR (15),

ENTITYTYPEl CHAR (15),

ENTITYNAME2 CHAR (15),

ENTITYTYPE2 CHAR (15);

TABLE RUNS

ENTITY NAME1 CHAR (15),

ENTITY TYPEl CHAR (15)9

' ENTITYNAME2 CHAR (15),

ENTITYTYPE2 CHAR (15);

TABLE GOES TO

ENTITYNAME1 CHAR (15),

ENTITYTYPEl CHAR (15),

ENTITYNAME2 CHAR (15),

67

ENTITY TYPE2 CHAR (15);

TABLE DERIVED FROM

ENTITYNAME1 CHAR (15),

ENTITYTYPEL CHAR (15),

ENTITYNAME2 CHAR (15),

ENTITYTYPE2 CHAR (15);

TABLE CALLS

ENTITYNAME1 CHAR (15),

ENTITYTYPE1 CHAR (15),

ENTITYNAME2 CHAR (15),

ENTITYTYPE2 CHAR (15);

TABLE REPRESENTED AS

ENTITYNAME1 CHAR (15),

ENTITYTYPE1 CHAR (15),

ENTITYNAME2 CHAR (15),

ENTITYTYPE2 CHAR (15);

TABLE STANDARD FOR

ENTITYNAME1 CHAR (15),

ENTITY TYPEl CHAR (15),

ENTITYNAME2 CHAR (15),

ENTITYTYPE2 CHAR (15);

TABLE HAS SORT KEY

ENTITYNAME1 CHAR (15),

ENTITYTYPEl CHAR (15),

ENTITYNAME2 CHAR (15),

ENTITYTYPE2 CHAR (15);

TABLE HAS ACCESS KEY

ENTITYNAMEt CHAR (15),

ENTITYTYPE1 CHAR (15),

ENTITYNAME2 CHAR (15),

ENTITYTYPE2 CHAR (15);

TABLE ALIAS

68

,

ENTITY_NAME CHAR (15),

ENTITY_TYPE CHAR (15),

ALIASNAME CHAR (15);

TABLE CATEGORY

ENTITYNAME CHAR (15),

ENTITYTYPE CHAR (15),

CATEGORYNAME CHAR (15);

TABLE RELATIONSHIP

ENTITYNAME1 CHAR (15),

ENTITYTYPE1 CHAR (15),

ENTITYNAME2 CHAR (15),

ENTITYTYPE2 CHAR (15),

RELATION CHAR (15);

TABLE ENTITY

ENTITYNAME CHAR (15) NOT NULL,

DESCRIPTION CHAR (60),

CLASSIFICATION CHAR (10),

DATEADDED DATE,

ADDEDBY CHAR (15),

LASTMODIFICATIONDATE DATE,

LASTMODIFIEDBY CHAR (15),

NUMBEROFMODIFICATIONS NUMBER,

LOCATION CHAR (15),

COMMENTS CHAR (45),

SECURITY CHAR (10);

69

APPENDIX B

LISTING OF THE TUPLES IN THE DATA BASE

'-.41

C Zn

I.J IA ON A

*~06

I- I DS I I
-a I L.) I0..L

436 ~ r U cl~ nl, tCl

cr >-

EI, Li i Licn a
luZ I Z n 7

06, 3 f Cl, Cf

WI S LhJ 0L

03 6 I ~ tr 1 0
6 La I n

A I c17 L

ry LI5 13 CD z

70I 6

LA~ WA Ln

4 1J. COJ u

841

0-ew 1- 7w
4aa a nI Uc

C. > IO-

lo

(n-. a a) anL

4S'r Cr .

u. I LA- A

MIAS I I u n-

(naii
u L) S

u u-I I

A. 4 F- IL- j I w x

ol. SI n x 7 0r

L& IS r I LI M u
LI I 1 .9 n r

010 -S 4 O C 71C

U.I

corfn

'-"j

LI)j i) 7) CA

If i

S SI n C 0
SIg

0 c
I) I- I) t. 0) eSm-S 1~ Ia In x CL 4I0) -5. I nj a a- n

I In)
I uI I

0.LO.j-

I ty) I w I 0
LA Li.

ui I i I (

* 1Ll 0 LD 4C I I (~ o- Il a o- L)

S~~ 6 4 1 ILI.. -I1i I flox I Lt, a 1

Su -Sj # up to LA to LA) I ILu I.-

A #o) . Ir 0 0 z ILac" iI 4cI X- , I L G.u Li- u.J U u u

P" L i I _n-c I I n # . C)t
LLI u 0 0 t I -or -W- C

Li5 L 15 5 ~ . 47 2i

u
lo
1

I-

*L.

on I~

ILUI

LLL

IT re Io
I.4, I.,

4z4

*AJ WI U. Ii

ImI

-xi.1

U.

a~

C)I

La
46 z

o 46 1 L Sx cI CI SI-) L - . L -a . ar Iu 4 c C -*L SiL. UcU

5u41 I
A UI I r

-j- I eS

UU~ S7 0S14

IL* ar LL L4 Wa
a a a

I I- 87 0 I)- i u u0gc u r
r CI S I l U) M 44 9 m C L ' La

*4S~g 74

I

I

Is I

I (n a

f* I

CL I I

c I , I "- I
wz I

8~,an

*1 1 uj I
* 8

754 .

<
u ~ I I V
C, I ci) U) Cl)

I i I1 -a) AD

,C8Li u Li
O CI L IJ z z z

SUJS I I
1Ir~ I I

IIIL In

OAW In LA
I C% I m I m

-~a I wI I o V% 0

*~~~ S4LJS S 0

c m 3f!
e S II jf .tn z

W 1 . 1 .1 -C cS w Su
cn I~.J S iwC U j w

-WSI P£ - oP 0 -1NZ 0

eu1I (n L*4 n co 4nm WL

S4Sw 1 0 1- -I u I 0
-4 o a I u 1V. -9 a--q

7 ir 14 "I Ii -
j u La I S I

S I lzI Z z 0oxNL
IJ :r I

Li < I
Sj u ~ i u-. i -

61* I~T Sj IL N SP C) I

CC& -j) I..J -A IL Ag I L . 06 U U 04 Lw(

OS u . 4 JI9- 0 4.C 0 0.C

-e e- ' I c~t 0 cntt 0 &LU 76.-U

I U) U

1 6 4 1

1 U I ~I

>LJ~ IL

I c S I I

I-

I LL J 6 09

xo~ LL o a

1 46 1 Sj m

6 1 n I e I L.4
I 4. I AI -j I

I *- I SI u;

I S S IInIujI1
T., . I 0-Ic 4 1

*L B4 I -a 17 11 1C)LL)m c
S4S AJ I -j1- - eLI

*iI I * z n1 L0

S * 77

ah I a I
CL I IL

th a Liji -aLa- i 0

76Q L 1IL J cz = L 0

z ke ,2 1CY) r 7 6o-LJ LLJ C
LL Ia-0.37Lw 10-ov CLa.f A w Irr i

ue L&J6j

21 * in 7 w
48 6 0 4 - p-TL

c6L3Y r > 06, - > V- Z Z0

I-~6 4 LbW6C44'4 ~ t U 0A

o 6La n(s r f r0
u 6i US- uxc
u 6i u 6. uU b

-iI-

m8 467 w 0 7

I-s j u 0~i~ 0L b- U 5.J
cl' g cry M S' eA Xr r- CSn Z 0C j

0ir L La L607 U) 0 0booiuu..

cr. cmI

cr U.J I I- 0 D ILJ t- LCJ I
L) u6i ~ L 56 Li 5

46 5.J5 4 1J 487 X

uJ 4~- C. LJX 4 n -. j~ 4tDC .J
c/ui U .xI C LLJ C/. u/b)- C- -

- I-.610- iC 8.0C
A- - L 6 Wtj A I~ C6 0 I S A - 8 n coIIP~

-4N0.JJ (-J h-L)I.. b-Gn IUU j u 1 -L) crLU U

LL. 7 i -j -j i& ;P I LJ L) -a U. VI I u i IL Y Li
W6 cn 44 -3t -CJ4CCV) -Du Ca.0 c

78

ZII1

*6 1
I SjoLL

I =u 0:-IX a

43 4 - : tII 4

rr Cyi i x 14
CI C' bC u0C1I 0LiU

I U.

N IU I t

I. I I C 0 wk

L4& U- U 0- 1 I -
711 U)L L N

LLJ1 1 4 0

9-rn 79

Iz 0 1LA4
f* ~ cz vcf
LL. . 46c

7 1~ cf M f cn M 4 41-- WA
06 Z Z z 2 a m

L) U U L) Jin T

uj IZZZ

LU 2!~OO & LA

ru I L C L L O T

41Z z -k

>-i = C :F- J 277

- I L) U L6 6 Wj u5-
-~ ~~ _j .JJt.C.L_*L_

a 1

5-,1

- , < I-

>5, LLZn

9- I LA LU . J.L.4LA-L U

80 j~- . .

L I w DI !
Q I M !S

41 W4

I-S -1 1- 4 0

SI = M M LD 0-1 W Ir
I~ ~ ~ W n 0,-* 0 XIC

II
I

LO!II

.~I

r' I fl I

I .1- I

2 4 i *L LJ -ZI 7
I X _j x . WI JiL W.L..

0 I I ju L

I LS

U - I)-i I

-j -I-IWL 7 6

'- I CL3)ZD LO C I Pn
A 10.M 10- A - I cWWW r

A. uO O~ U. LiA."! ILwJWWLLJ ;

t) W) Ej & .7 1 cr C u

w, .9. 9- I(LC 4 .

81 ~ .

LIST OF REFERENCES

1. Leong-Hong B. W. and Plagman B. H., Data
Dictionary Directory Systems, John Wiley & Sons, Iff--.,

2. Allen, F. W. ,Loomis, E. S. , and Manninj, M. V., "The
Integrated Dic ionaryLDirectory System", Computing
Surveys, Vol. 14, No. Z, June 982.

3. Lefkovits H. C. , Sibley, E. H. and Lefkovits, S.
L. Information Resource L Data Dictionary Systems,
QED fnformation tciences, inc.,--W93.

4. Kroenke, D. Database Processing, Science Research

Associates, Inc.,t983.

5. Oracle Corporation, ORACLE Manual Vol. I, 1984.

6. Winston P. H. Artificial Intelligence, Addison
Wesley Publishing o. , Inc. ,1984.

7. Waterman, D. A. , and Lenat, D. B. Building Expert
Systems, Addison Wesley Pub. Co. , 1963.

8. Clocksin W F. and Mellish, C. S Programming in
Prolog, Sprlnger - Verlag, Berlin, i984.

'2

BIBLIOGRAPHY

Ber hql, H. L. Simplified Integration of Prolog with
RDB S , Data Base, 16, 3 Spring 1985 3-12.

Browne et al An Evolutionary Data Base Management System.
ProceeAings ot 4ompsac 4 Ti98,-- Ccago, 1L, uctoer
1980.

Cardenas A F. , Data Base Management Systems, 2nd ed.
Allyn anA Bacon, Inc. , Iv8oa

IEEE 1984 International Symposium on Logic Programming 6-9
Februy-1982.

Kerschberg, L. , Marchand, D. ,Sen, A. , Information
System Integration : A Metadata Management Approacn,
Proceedings - ol the 4rh Inernjtionai Conference on
Information Systems, Ross, K. (ed.), Houston, TX, December
1983.

Koltemann, J. E. and Konynski, B. R. Dynamic Metasystems
for Information Systems Development, Proceedigs of heTnernational Conierece on nformation Sys ems, Maggi,
L., King, J. L. ,and Kraemer, K. L. , (eds.), Tucson, AZ,
November 1984.

Mc Carthy, J. L. , Metadata Management for Large Statistical
Databases, Proceedings o1 STn Inuernafi-onl--onference on
Ver Large Data Bases (VLDB), Mexico City, Mexico, September

NBS Special Publication 500-92, Data Base Directions
Information Resource Management - Sr--aegles and MooNs,Golarine A. HT. 1e), -ptemDer- 1Z Oracie C-poratio,
ORACLE Manual VOl. I, 198.

Sturdza, P. , Data Dictionary Design with an Artificial
Intelligence Model,-- Proceedings9 o th t-th Hawaii
International onference on System Sciences, 1983.

Ullman, J. D. Principles of Database Systems, Computer
Science Press, Inc. ,IrZ.

83

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5100

3. Department Chairman Code 52MI 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4. Prof. Dolk D.R Code 54Dk 1
Department of Aaministrative Science
Naval Postgraduate School
Monterey, California 93943

5. Prof. Hsiao D.H., Code 53Fs 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

6. Gokhan Dedeoglu 4
Eminalipasa Cad. 91-4
Bostanci, Istanbul, TURKEY

7. Deniz Kuvvetleri Komutanligi 5
Personel Daire Baskanligi
Bakanliklar, Ankara TURKEY

8. Deniz Harb Okulu Komutanliji 1
Fen Bilimleri Bolum Baskan igi
Tuzla, Istanbul TURKEY

9. Deniz Harb Okulu Komutanligi 1
Kutuphanesi
Tuzla, Istanbul TURKEY

10. Istanbul Teknik Universitesi I
Bilgisayar Bilimleri Fakultesi
Kutuphanesi, Istanbul, TURKEY

11. Bogazici Universitesi 1
BiIgisayar Bilimleri Fakultesi
Kutuphanesi,Istanbul, TURKEY

12. Ahmet Corapcioglu 2
NPS SMC # 2913
Monterey, CA 93943

84

A

r ~

-.4

P

* *

V.

2

1-IC I* Id
~ N, **~* ~ N:~.4~N ~

