- ‘RD-A164 998 RELATIONAL MODEL OF A DATA DICTIONARY(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA M G DEDEOGLU DEC 85

UNCLASSIFIED F/G 9/2

N

Il

Ll
His s

I

o
FEEEE

FEEE
K F

———

.

——
EFEEE
Fe

IIII

Wla l

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

q DS
X v.i‘g‘.:;v‘i.n.“ RGN

ls'ln'x"

1 ‘

/

|

oWt
.,'.43‘ o N

-~
oMy B
A ”. had

AD-A164 998

NAVAL POSTGRADUATE SGHOOL

Monterey,[}alifurnia

THESIS

RELATIONAL MODEL OF A DATA DICTIONARY

]

by
M. Gokhan Dedeoglu

December 1985

oG it wbY

\ Thesis Advisor; Daniel R. Dolk

Approved for public release; distribution is unlimited

4
E}m:;&{-m&m;mw

Prolog/fjxpert Systems. _.

¢ 4 ¢
SECTRTY CCASSFICAYION OF YA PACE. PO Alo 4258
REPORT DOCUMENTATION PAGE

L T TE—— e~ e

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT
RS soer e e Approved for public release;

2b. DECLASSIFICA WNGRADIN v distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL [7a. NAME OF MONITORING ORGANIZATION

(If applicable)

Naval Postgraduate School 52 Naval Postgraduate School

6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5100 Monterey, CA 93943-5100

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (f applicable)
8¢c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. |NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification) .

RELATIONAL MODEL OF A DATA DICTIONARY

12. PERSONAL AUTHOR(S)

4 Dedeoglu, M. Gokhan .
13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [1S. PAGE COUNT
Master's Thesis FROM TO 1985 December 85
] 16. SUPPLEMENTARY NOTATION
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Data Dictionary, Relational Model, ORACLE,

4§ ABSTRACT (Continue on reverse if necessary and identify by block number)

The data dictionary system is an important tool for supporting information
resource management. It facilitatds the management and control of data.
This thesis will develop a relation@al model of a data dictionary and
implement it on the ORACLE relationil data base management system. Then,
this data dictionary model will be ixplemented using the logic-oriented
Prolog language. The Prolog model off\ a data dictionary will demonstrate
that logic programming can be used fox relational data base applications
and that it provides more powerful dictionary capabilities than the
relational model. f..... ., - -

N

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
I UNCLASSIFIEDUNLIMITED [SAME AS RPT. [OTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) [22¢c. OFFICE SYMBOL
Prof. Daniel R. Dolk 408-646-2260 54Dk
DD FORM 1473, 8a MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.
1

R A e

el e

_— WU WY R U Y v VPP T W W Ywey
a

+

o |
RS

v

-

g
K ﬁ' o

.~

—"

R Al
:

: :‘7 ", .l "

,1::"'..

L IOE i Al
Rl D,

o e

]
Tae e >
=D "_ N

LENERVACAY

Approved for public release; distribution is unlimited.

Relational Model of a Data Dictionary
by

. M. Gokhan Dedeoglu
Lieutenant(j.g.)_ Turkish Na
B.S., Turkish Naval Academ¥ s, 1979
B.S., Technical University of Istanbul , 1983

Submitted in partial fulfillment of the
requirements for the degree o

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 1985

Author: -/< Z :

4] N1 Dedecglu

Approved by: Q#;;Q Q Q&
fniie Visor

Lol T S e
e o

. - i

e — Y B W . —

AT
Dean of Information 2w ‘iéy Sciences

ABSTRACT

The data dictionary system is an important tool for
supporting information resource management. It facilitates
the management and control of data.

This thesis will develop a relational model of a data
dictionary and implement it on the ORACLE relational data
base management system. Then, this data dictionary model
will be implemented ~using the logic-oriented Prolog
language. The Prolog model of a data dictionary will demon-
strate that 1logic programming can be used for relational
data base applications and that it provides more powerful
dictionary capabilities than the relational model.

' Accession For
’ CATIS gRAgl
TTIC Tan ,

BLAAE LK BTl IR WSS

E

. MR R U N e]
1
HA S ——"
Diotril é
-
Avi lev it 5 !

- Py i (v

vist { Sovhol

QUALITY
INSPECTED

3

~

o " T WY T AR 6 1 0% PR SR R TR A e R R Y SRS TN N I I R I A ‘~;'-Ji

LR FARECRE AL XA U N G E O OSLERERERRA S, L\ s EK!

TABLE OF CONTENTS

I. INTRODUCTION . . &« + ¢« ¢ o o s o« o s o o o o« o« « .9
II. DATA DICTIONARY SYSTEM +. ¢« « +« &+ « « « . 11
A. METADATA B B

B. DICTIONARY AND DIRECTORY METADATA 12

C. METADATABASE ¢« + ¢« ¢ & o « =« « « + 12

D. METADATABASE MANAGEMENT 12

E. THE DATA DICTIONARY SYSTEM 13

F. ACTIVE AND PASSIVE DATA DICTIONARY SYSTEMS . . 13

G. FUNCTIONS OF A DATA DICTIONARY SYSTEM 14

1. Maintenance Function 14

2. Extensibility Function 14

3. Report Processor Function 14

4. Query Processor Function 15

5. Convert Functions 15

6. Software Interface Function 15

7. Exit Facility « + . . . 15

8. Management Function 16

H. SURVEY OF DATA DICTIONARIES 16

1. DB/DC Data Dictionary 16

2. Datamanager« « ¢« & + + ¢ « « . . 18

3. Integrated Data Dictionmary 19

4. Datadictionary ¢« ¢ ¢ ¢ s v . . .21

5. Extended Data Dictionary 22

6. UCCTen e e e e e e e . . 23

7. Data Control System (DCS) B 3.)

III. RELATIONAL DICTIONARY MODEL 26
A. THE RELATIONAL MODEL « « « « « .« . 26

B. OVERVIEW OF ORACLE SYSTEM 27

4

YTy T

IO L OO AT L 0 Y T PO TR O L0 AT S GO A UM A s

C. A RELATIONAL DATA DICTIONARY MODEL 28
1. Description of Entity-types 28
2. Description of Attribute-types 30
3. Description of Relationship-types 32
4. The Relations of Dictionary 32
D. RELATIONSHIPS BETWEEN ENTITY-TYPES 35
E. EXAMPLES OF QUERIES 38
F. USERMANUAL « ¢ ¢ « &« &+ o o o o o« o« o 42
1. Creating A Table 44
2. Inserting Data Into a Table 44
3. Selecting Data From a Table 45
4. Description of the columns of a Table . . 45
Iv. DATA DICTIONARIES AND EXPERT SYSTEMS 47
A. OVERVIEW OF EXPERT SYTEMS 47
B. COMPONENTS OF EXPERT SYSTEMS 48
C. EXPERT SYSTEMS AND CONVENTIONAL DATA
PROCESSING SYSTEMS . c e .. . b9
D. KNOWLEDGE REPRESENTATION 51
’ 1. Predicate Calculus 51
2. Semantic Networks 52
3. Control Structures 52
' E. METAKNOWLEDGE e« + s e« « . 52
F. KNOWLEDGE REPRESENTATION IN PROLOG 53
G. A PROLOG MODEL OF A SIMPLE DATA DICTIONARY . . 54
V. CONCLUSIONS . . ¢ v &+ & « o o o o o o « & & o« « . 62
APPENDIX A: ORACLE TABLES OF ENTITY TYPES AND
RELATIONSHIP-TYPES . « v . . . 64
APPENDIX B: LISTING OF THE TUPLES IN THE DATA BASE . . . 70
LIST OF REFERENCES « +« + ¢« v ¢ v o o o « o o « 79
BIBLIOGRAPHY + ¢ + & ¢« o « o« o« « « « « . . 80
INITIAL DISTRIBUTION LIST « « + &+ « « « +« « « « . 81

LIST OF TABLES

3 I ENTITY-TYPES OF NBS SYSTEM-STANDARD SCHEMA A

.3 II RELATIONSHIP-TYPES OF NBS SYSTEM-STANDARD
N - SCHEMA ¢ e e e e 4 4 4 s e s e s e e e e 29

& III ATTRIBUTE-TYPES OF NBS SYSTEM-STANDARD SCHEMA . . 30
?ﬂ IV RELATIONSHIPS BETWEEN ENTITY-TYPES« . 36

;:5'?: \' ENTITY- TYPES AND ATTRIBUTE TYPES OF DICTIONARY
figd MODEL . « « . . 55

\'2¢ RELATIONSHIP-TYPES OF DICTIONARY MODEL « « « . . 55

XXX XX A
-y

wTa .

B Dol vin o

i
AN
-~

A

v
= Gk

s r
S
PI NS

-

I3

,"; 0
e S
N
L]

‘E ,;~

".'-’{;
£E

W T
sl Y
AWk

o

-
e

,1"‘:5

» 2.5

O DA o . 1 T RP AT) "h \\\
RS LRGBSl RSN S SR A 534 14 D3 < R AT e £ STV o R L '-." o \;}j

LIST OF FIGURES

Example of the metadata for a data element 1l
An ORACLE Table « v ¢ v v v o o o o« « « o« 27
Bachman Diagram of entity types 37
An Example of Query +« .+ « 38
An Example of Query ¢« ¢ « .+ . . 39
An Example of Query + ¢ + ¢ 4« « « .« . 39
An Example of Query « + + « + « 2+ « . . 40
An Example of Query « .+ .« .« . . . 40
An Example of Query « ¢« + ¢ o .« . . 41
An Example of Query « « « + + 41

W 00 N O U & WD -~

-
o

Creating a Table 4
Inserting Data Into a Table 44

-
N

Selecting Data Froma Table 45

-
w

Selecting Data From a Table 45

[
£

Description of Columns of a Table 46

S W WWwWwWwWwwwwwwwwwanN

-

Components of an Expert System 50

ACKNOWLEDGEMENTS

The author wishes to gratefully acknowledge his thesis
¥y, advisor, Prof. Daniel R. Dolk, for suggesting the basis of
N this thesis, and for his invaluable advice and guidance

T "

during the course of this work.

-
-
-

oS

The author would also like to express his appreciation

[
. x
- -

-

to Prof. David H. Hsiao for his constructive critism as a

LELY,

second reader.

R)
N

=

ol - - -
g
N N

O
o

" .J ’
Sz

A‘
4§$
[/
A

-

R?

o e

RN R R e N f\."\"\fj
":.'::l‘;‘xﬁ.‘.f&':s'.:.t-. bﬁs‘c‘\'{\f’

Sy
ey
R
i
(2
I. INTRODUCTION
Data is a resource to be managed. Data is processed to
produce information. Data must be administered and
controlled to coordinate data usage in order to produce
information. The transformation of data into information is
the primary function of an information system. Information
supports the enterprise's structure and generates its busi-
ness processes. Enterprises need to manage their informa-
- tion by centrally defining and storing their data resource.
3:: The data dictionary system (DDS) plays an active and
k&ﬁ central role in the management and control of the corporate
ﬁ% data resource. It is the repository of the information
zr needed by the enterprise. A central source of documentation
g ; helps improve communication between involved personnel and
58 offers improved system development.
5:‘ . The DDS has become basic to all phases of data adminis-
o tration. The DDS is used to satisfy requirements for infor-
:iﬁ mation resource management to aid in database design and to
Tuts provide the information needed for the effective auditing of
o the data. The DDS can support many aspects of the informa-
?? tion resource management environment involving the manage-
: 2 . ment and use of data.
:fp The first part of Chapter 2 of this thesis explains the
?}? concept of data dictionary system. It explains metadata,
(& metadatabase, data dictionary system, and the functions of
Y é the data dictionary system.The second part of Chapter 2
‘§5 surveys seven commercially available data dictionary
;?%i systems. The general characteristics of these dictionary
1 systems are discussed in this survey. In Chapter 3, a rela-
;:ﬁ tional model data dictionary will be developed and imple-
’3& mented on the ORACLE relational database management system.
gfﬁ Although a relational DBMS has many advantages over other
; systems, it has limited dictionary capabilities.The first
5 ‘4!,
) __:; 9
-
ey
®.
gp
n)'

. L ~ 3 o ‘* e F] "t YR e ‘_"_“' _'."\ . el
R R A R RS A e A R NI &) YoM Al . e SR \

SR W RN WTRLTE T YWY W WOrwY TRy WL -

part of the Chapter 4 will explain the general characteris-
,h* tics of expert systems. In the second part of the Chapter 4
a Prolog model of a data dictionary system will be devel-

Lt
-

oped. Because of the characteristics of Prolog, the rules

—“:‘ ;
‘.-0.‘

about the information resource management data can be

i

o N
"2 & £

defined more easily than in the relational DBMS environment.

“Fe

By using the Prolog model we can implement information

P
]

resource management effectively and efficiently.

T R

- e~
-
-

Dy

Q)
nony 10

S

-."v,\.'

.y X

o S " . .
ST s L YR T e Y ,,‘._*,._,_. NN a7
. £y B R . » L. X [- . A

IR I IR I IO T e
q

Mt e e T T R n T Py .. I | K
R L RS S A NS

A

s et

N E
v -
‘.'A"“'lo-} [l M

N
i

il
)

o
-
oK

g e o

i

-
e
l‘
4

- o
~F P
'&:l

PR
o

9
e
=
LY
.

Yo e

Pkl

Lo ol s

e
&

II. DATA DICTIONARY SYSTEM

A. METADATA

In order to manage data as a resource, it is essential
that data about data be clearly specified by data objects.
These data objects are called entities. In a data base
environment the entities are represented in the form of
metadata entities such as data'elements, records, files, or
data bases.

Metadata entities are described by means of meta-
data,that is, data about data. Metadata and user data are
different from each other. Metadata is used to describe the
characteristics of user data.

An example of the metadata for a data element in a meta-
database is given in Fig. 2.1 . In this example, for the
data element "USNAME", the data dictionary contains the
attributes like description, length, and relationship, but
not the actual name of user. Thus, metadata contains
descriptive and definitional information about the data.

Name of metadata entity: data element
Identification: USNAME
Description: user name is_entered as last_name,
. first initial, middle_initial.

Length/size: 30 characters, only alphanumeric

. " characters allowed" . .
Relationship/usage: this entity is used in files A, B,

and programs AA, and BB.

Figure 2.1 Example of the metadata for a data element.

11

L I L N PR TS
WIRAN AT

WO RN
(a0l

O U L T S O JTUL e .
,. . o -~._!.“- et T TN o T Ly

L)

B. DICTIONARY AND DIRECTORY METADATA

The dictionary metadata is used by the system users. In
contrast, the directory metadata is used by the system
components. Directory metadata provides information about
the physical location of the data. It shows how the data
can be accessed, and it contains information about the
internal representation of the data entity.

The system which contains directory metadata is called
data dictionary/ directory system. Current systems do not
separate dictionary and directory functions. They offer
only a partial independence between these functions.

C. METADATABASE

.A metadata database is a collection of managed,
controlled, and related metadata and is referred to as a
metadatabase. The characteristics of the metadatabase are
the same as those of a user database which include data
sharing, data integrity, and data independence. The metada-
tabase is shared among the user groups, processes, and auto-

"mated systems such as database management systems, report

generators, and query processors.

D. METADATABASE MANAGEMENT
The metadata needs a metadatabase management system,
just as the user data needs a database management system for
organization, access, and control. The data dictionary
system supports the management and control of the metadata
The DDS is a metadatabase management system which

provides user/system interface functions, such as query
processing and report generation required for the data
usage. The DDS also supports many administration and

control activities required for metadata management.

12

A E. THE DATA DICTIONARY SYSTEM

‘%& A data dictionary system is a centralized repository of
data about data. A DDS is used for management and control
ﬁﬁg ' of data resources. It is a data base about the data bases,
%&; and users of the data bases. The centralization of data
§$§ suggests that there 1is enterprisewide coordination and
?w control of the metadata. A DDS provides a wide range of
?;& facilities and capabilities to support metadata management.
ood A DDS can be implemented in different forms. The scope
{ % of a data dictionary can be narrow. For example, it can
= consist of simple programs that cover only the data base
}lﬁ definitions to support a DBMS. On the other hand, it can be
(p implemented as a very sophisticated data resource management
o and control tool that cover all the data important to an
: organization.
o A DDS can use a DBMS in its implementation, that is, it
%ﬁ, can be a DBMS-dependent system, or it can be an independent
:ﬂa‘ ; system. Thus, it can have a passive role by producing

information about the data base, or it can force other soft-

ware to manage and control the data.

&
Ix

T o o
SRPRI RN S
gt ol A

F. ACTIVE AND PASSIVE DATA DICTIONARY SYSTEMS
There are two important implementation strategies for ‘

v)7t
:,;V

-

integrating the DDS into the operating environment : an
active DDS, and a passive DDS.

s
7

In an active DDS, processes or system components are
fully dependent upon the DDS for its metadata, that is, the

avel
{ : only source of metadata is in the DDS. By contrast, in a
'$§ passive DDS, processes and system components are not depen-
(N0

10gd dent upon the DDS for its metadata. The required metadata
. is obtained from other resources.

Yglbd

e The active DDS has several advantages. It eliminates
l":l y

2 redundant metadata definition, insures consistency in the
54: metadata, controls the metadata usage and metadata changes.
Vo

&

i

2 13

%4

o

-

¥
" -r,

- e
e
-

NV LI N P AR TN BRI NCAK SN A AN B ’ Sy
A A Y N R e

€.

i -~ . |

R Also, it achieves a great data independence by separating

E % the physical view from the logical view.

i Although active DDS has several advantages, it has some

e drawbacks. It introduces an overhead when binding time is]

%sq accomplished during execution. Also, the dependency of

%& processing components to the DDS causes bottlenecks in some

oS systems. [Ref. 1]

“afad

N

fin G. FUNCTIONS OF A DATA DICTIONARY SYSTEM

%ﬁg The functions of a typical DDS are the followihg :

- 1. Maintenance Function

R This function enables entities, relationships, and

fg attributes to be added, modified, and deleted from the

i&g dictionary. The DDSs provide dictionary maintenance

“ commands to perform this function. Execution of these

:ﬁf commands is subject to security and restrictions. There are |

iél several maintenance methods. Some systems offer batch input

;%‘ to enter the new data. Other systems allow extraction of v
. dictionary data from existing file and database descrip-

%ﬁ tions as well as entering this data directly into the

;&* system.

;Eﬁ 2. Extensibility Function

J The extensibility function allows a user to modify

;gg the standard dictionary schema to suit specific enterprise '

%&{ needs. The user can add new entities and attributes to the }

%ﬁ dictionary structure, and establish new relationships. Some ‘

(W DDSs offer a specific meta-entity for extensibility feature.

%;’ Others offer a generic mechanism to allow the user to add

g N new entities and attributes. }

e 3. Report Processor Function

%,. Report processor function provides reports on a

!i; number of dictionary entities. Report facilities are

'

invoked by means of specific commands. The common
categories of reports are :

14

13 .
-‘D\ . ™ T Y FIR TR0 3 . [¥% 1€ > NIy ~ » [. % ¥ W%y] THOSN LY AR RN s.-j
s Vs O, .’o-.lpﬁ’..&“q ALAS AR Y AL Sin,? 2.4, f‘lv., aLhinhe ."l"‘l‘ 4 e m&hﬁ.:&m&lm E‘.}i‘fﬂ}'

i 1. Reports of some or all entities of a given type.

ﬁ% 2. Reports on all attributes for a specified entity
) of any type.

§§§) 3. Usage reports which show either how a given entity
%ﬁ is used by other entities, or how other entities use
3& ' a given entity.
BN : 4. A keyword-in context (KWIC) or keyword-out-of-context
.mg (KWOC) facility that is used to search specified
ﬁa attributes for a given keywords.
%g 4. Query Processor Function

This function provides information about the usage
;%: of dictionary entities, keyword searches, and synonym
Qﬂ searches. It allows English-like queries of the DDS. This
%é function is most often used in an interactive mode.
':* 5. Convert Functions
fi The convert functions scan application programs,
}ﬁ% library files, and dictionary schemata to generate metadata
%é- from these sources to be input to the DDS maintenance func-
N tion. There are several options for a convert function like
Wik changing names, selecting lines to scan, se}gcting types of
g& B transactions.
:Eg 6. Software Interface Function
:; This function provides metadata to other software
0 systems such as DDL processors and compilers. Software
: X systems access the DDS either statically or dynamically by
'ig means of software interfaces. Static interfaces produce
é~' formatted statements for the software packages or create
) encoded control files for their use. Dynamic interfaces
\ provide direct access to other software systems and use high
3“ level interface commands.
K

7. Exit Facility
The exit facility enables the system user to extend

N 3 - P
v
<

¥ the routines delivered by the DDS vendor. For example, a
e user can code a new security check for accessing an entity.
» »

}’n
30 15
x .'
I} ’
a9
‘, ‘

i -

23Y 3 G, GAOO0AGN0 O "
[fa""‘&‘. AL LA la‘e*"d-‘;‘-,.a“.t','-’!‘.',-'?.l'?"l".,a'f‘h"’d .‘s’..-'n". J'.J.,'. ".C. 29 Ol

All DDSs do not contain the exit facility because of
possible side effects of user-written routines.
8. Management Function

The management function is responsible for security,
integrity, concurrency control and internal access for the
DDS. In DBMS-dependent dictionary systems, some of these
functions may be subsumed by the DBMS itself. [Ref. 2]

H. SURVEY OF DATA DICTIONARIES
There are several commercially available DDS packages in

the DDS marketplace. Most of them have introduced by the
DBMS software vendors. In this survey, the characteristics
of the following DDSs will be explained :

1. DB/DC Data Dictionary(IBM).

2. Datamanager (MSP,Inc.).

3. 1Integrated Data Dictionary (IDD) (Cullinet Software,

Inc.).
4. Extended Data Dictionary (XDD) (Intel Systems
Corporation).

5. Datadictionary (Applied Data Research).

6. UCC Ten (University Computing Company).:

7. Data Control System (DCS) (Cincom Systems, Inc.).

The following information has been ontained from "

Information Resource/ Data Dictionary Systems - Henry C.
Lefkovits, Edgar H. Sibley, Sandra L. Lefkovits, 1983, QED
Information Sciences Inc., Wellesley, Massachusetts 02181 ".
The more information about these dictionary systems can be
obtained from this reference. [Ref. 3]

1. DB/DC Data Dictionary

Vendor : International Business Machines (IBM)
Hardware : IBM 360, 370, 30xx, 43xx

Source language : Assembler language.

Dependent DBMS : IMS or DOS PL/I.

Entity names : Database, Segment, Element, System,

16

R
%ﬁ' Job, Program, Module, Transaction,
ﬁg, PSB, PCB, SYSDEF.

. Extensibility : New entity-types, relationship-types,
,f% and attribute-types can be defined.
g 0 Dictionary schema has Extensibility
%M; Control Information entity-types :

') ' CATEGORY, RELTYPE, and ATTRTYPE.

R Maintenance Three different maintenance ways
§?, 1. Keyword driven commands.
$§ 2. 3270 Interactive Forms.
3. The Batch Forms Input facility.
_ﬁﬁ Reports and queries : Reporting commands :
g REPORT, SCAN, PUNCH.
;$§\ Reports :
ry . Entity-Specific reports.

. Display form equivalent reports.
Indirect entity reference reports.
Glossary reports.

GUIDE reports.

Status facility : Every entity have a status which is

[T IO g

being expressed by a status code.
Status codes :
Test, Production, Installed and
user-defined.

Security facility : Access characteristics can be
assigned as follows :
1. Status.
2. Entity-type.
3. SIGN-ON command.
DDUSER entity-type is used to
establish authorized users.

Bridge facility : DBD-IN, PSB-IN, COBOL-IN, PLI-IN
commands are used for reading these
descriptions and creating dictionary

Bty 17

LS}

AT ORIOLMOC, ' MY LA - " A W UG >
AR *’"'-'\'.‘«'sﬁ"‘t‘n‘:'a‘. AN ?‘a AANA «.‘r-’i“-."w‘:' nE) n‘!""%‘:’n !'!\30.‘20 25 !I..‘. ot MO-.\. OO ‘.I,"l", Ot T SR L R M

7y S)]

ey
éé? entities and relationships
2&5 corresponding to them.

2. Datamanager

Aﬁg Vendor : Management Systems and Programming.
jr@ Hardware : IBM 360, 370, 30xx, 43xx, and plug
|u¥* compatible machines.

;ﬁm Source language : Assembler language.

jﬁg Dependent DBMS : Independent.

;ﬁ% Entity-names : File, Group, Item, System, Program,
h Module.

el Extensibility: : By using User Defined Syntax facility
X £¢ user can define extensibility entity-
} :g types and attribute types.

A Maintenance : A number of commands are available
'ﬁﬁ for adding new entities, modifying
aﬁ‘ and deleting them. These commands
"Q'g can be executed either on-line or

088 in batch mode. Also there are

" t commands for manipulat;ng definitions
0 s of entities.

g R Reports and queries : The report commands : Print, List,
Lk Report, Glossary, Bulk Print, Bulk

f? Report, Switch, Skip, Space, Text.
qt\ The query commands :

&y% What, Which, Whose, Who, Does, Show.
‘4£' Both sets of commands can be used in
S, both batch and interactive modes and
;h: they contain facilities for selecting
S%“ categories of entities.

::_‘ Status facility : The dictionary administrator can

ol define up to 256 statuses, each one
‘:? of which has a name. There exist two
;'f types of statuses : non-frozen and
O frozen.

&,

2:5 18

i

Al

¥

RS OOBOSRIS OGN o0t 060 . § Vi Wk TRCATRERE L 0y
W et s e R N A 2 (X h‘?‘:“.h’. R A ,‘a !'n !'- Y .. : A '."’A'a (i

2 aa

Security facility

Bridge facility

For entering the system a password
is supplied by the AUTHORITY command.
Individual entities can be assigned
levels of protection by the PROTECT
command. A user can also be assigned
a specific security level. Also, the
dictionary itself can be assigned an
insertion security level and
protection security level.
Three bridge facilities available :
1. The User Interface facility.
2. The Source Language Generation
Facility.
3. Interfaces to DBMSs and the MARK
IV File Management System.

3. Integrated Data Dictionary

Vendor
Hardware

Source language
Dependent DBMS
Extensibility

Maintenance

Cullinet Software, Inc:

IBM 360, 370, 30xx, 43xx.

Assembler language.

IDMS.

System supports a full range of
schema extensibility features that
allow to perceive and use additional
entity-types, relationship-types, and
attribute-types. There are two
mechanisms which are used for
extensibility :

1. The CLASS/ATTRIBUTE declaration.
2. The definition of relational keys.
SET OPTIONS command is used for
control of the default processing
options. DDDL statements may be

19

- . e a - . -—* "-n --W' s, ~ ‘l'; TS - Il T AT AT AT R TR AW LS T R S
. -‘.'(r. -3 ~ -,)-",;-*,- 5"'...\ 5 0% 3 W ™ ‘.(»-J, J,\v_,,‘-)'_. “ .J,\

e A7y WV A% N

& T
[}
3
>
3 executed either in a batch or
§& on-line. For on-line usage an option
-# exists for either full screen or
Kyt line mode entry of statements. Three
i' main maintenance commands are :
73. ADD, MODIFY, DELETE.
Ry Reports and queries : Four different ways for data i
é; retrieving :
‘ﬁﬁ 1. Standard reports of the DDR J
,§ (Dictionary/Directory Reporter). %
B 2. Facilities of the CULPRIT system. i
ﬁﬁ 3. Using DISPLAY/PUNCH command. ‘
35 4, Using OLQ, accessing QFILEs. |
é‘ The specific DDR reports : 3
& 1. Detail reports. |
‘?: 2. Key reports. !
:é 3. Summary reports. }
;% . 4. Cross-reference reports.
%" . 5. Special purpose reports.
v Status facility ¢ VERSION mechanism is the major way
§§ to provide different environments for .
ﬁ% ' development, test, etc. By using
N VERSION clause, a number appended to
33. the entity name.
$: Security facility : This facility consists of both global
g& and local mechanism. The dictionary
hﬁ administrator can establish security
%_ for the entity-types and the
3 following functionality

1. CLASS and ATTRIBUTE security.
KK, 2. LOAD MODULE security.
&‘ 3. IDMS security.
bs 4., IDMS-DC security.
3¢ 5. IDD security.

ay!
ROy ah 900 St S
R R AR IR AN

St
LA AT

2, S

‘\‘:" .l
E.%idb%'

A

»
]
)

Y

v -
AN

)

Bridge facility :

4. Datadictionary

Vendor

Hardware

Source language
Dependent DBMS
Entity-names :

Extensibility

Maintenance

Reports and queries

Status facility :

Security facility :

- 0 -,!-y-‘.}-‘:’.'<a‘,-_ o

MR WG,

: Applied Data Research (ADR).

: Assembler language.
: DATACOM/DB.

: New entity-types, relationship-types,

AETTERTERETe T T Te AR TR g TETE T TU R T T T Tu T T e R e R wer gy

6. OLQ security.

7. CULPRIT security.

There exist bridges from IDMS-DB/DC
to IDD as well as in the other
direction, from IDD to IDMS-DB/DC.

IBM 360, 370, 30xx, 43xx.

Element, Key, Field, Record, File,
Report, Area, Database, Dataview,
System, Program, Module, Job, Step,
Library, Member, Node, Authorization,
Panel, Person.

and attribute-types can be introduced
Two primary maintenance ways :

1. On-line maintenance facility.

2. Batch execution transactions.

The Input Creation Facility analyzes
COBOL record descriptions and creates
corresponding entities.

System has two facilities to extract
data from the dictionary :

1. The Batch Reporting facility.

2. The On-line Maintenance facility.

Two status mechanisms

1. An entity may be assigned a
version number.

2. Every entity has an attribute of
type STATUS.

Two security mechanisms

21

1;9;:
)
}jﬁ 1. The use of Passwords.
sz 2. The use of Locks and Override
'v“ Codes.
i Additionally, through the use of
s“ on-line interface a user can be
%ﬁ _ assigned a password, and an
L$. authorization level.
;ﬁ: Bridge facility : Two bridge facilities :
ﬁﬁ‘ 1. The Service facility.
?ﬁ&‘ , 2. The Source Language Generation
facility.
e
[y
3&? 5. Extended Data Dictionary
Cn Vendor : Intel Systems Corporation.
" Hardware : IBM 360, 370, 30xx,43xx.
iiﬁ% Source language : Assembler language.
&éz Dependent DBMS : System 2000.
: Entity names : Data Base, File, Work Area, Schema,
e Record, Subschema Record, File
:%&: Record, Work Structure, Item, User
&‘@ : Application, Work Unit, Program.
J Extensibility : New entity-types, attribute-types,
é$§ _ or relationship-types can be defined.
é&?' The master password is required for
k&ﬁ this process.
{ ® Maintenance : Three maintenance ways :
f?; 1. Use of the XDD update and utility
13w strings.
3&‘ 2. Use of SCF (Self-Contained
AE, Facility).
‘&}f 3. Use of QueX facility of System
Wty 2000.
?ﬁ% Reports and queries : The Report Generation Procedures
[provide five reports : CAT, DES,
o
ﬁﬁ“t 22
3

g
'J.f;

o,
‘XY

I
T
-

."

i e e 1 L Lt L R St e e e e A et et A e et A e At A At At A
e e e A e o o e A 2 Y g Y
A R ; » - N A e,) o DY Lh A R T, (= N, TR

-

I
{)

’-‘-i f'?“"hl'q"-\"l"\
W h ORI TR J' v ‘v«..'\. {Ls

AT

oo

>

bl

- .
o

o o - e

b aw o P

e

o2 4

g

A R

. . n
n.‘ l':'l’. L ¥y .

L
(V)

Status facility

Security facility

Bridge facility

6. UCC Ten

Vendor
Hardware

Source language
Dependent DBMS
Entity names

o A h’;;\.A' '.——" o PRI
O AN ‘.’i,ﬁ\ '?:it ”.‘b:'l‘. ’& &

EXC, EXS, and EXI. Also, the PRODUCE
command provides explosion and impact
reports.

The status facility consists of the

use of multiple versions for entities

of all types. Every version of an
entity has a unique status. Multiple
versions can exist which have the
same status.

A Master Password can be selected.

This password allows secondary

passwords to be assigned to the

users. Each such password has
associated authorities that control
dictionary operations.

Two bridge facilities :

1. The dictionary mat be preloaded
using COBOL and COBOL PLEX program
Data Collection facilities to
extract meta data from the COBOL
or COBOL PLEX programs.

2. The XDD COBOL Generation Bridge
may be used to distribute
structures and logical views to
COBOL or COBOL PLEX programs.

: University Computing Company.

IBM 360, 370, 30xx, 43xx.

90 7 COBOL, 10 % Assembler language.

IMS HIDAM databases.

Field, List, Segment, Data, Group,
Set, File/Data Base, Transaction,
Module, Program, Job Application,

23

AN AT ARG R T T T G WS
V*{\Hr . A* \“'!". Urh Y 0 + '}:‘ * '\.

) -‘\-y:‘\q S =
LM N

LRI)
e
Lq)

o
Fid

"

ﬁﬁ Program Specification Block (PSB),
%? ID, and 23 more communication

. oriented, message oriented, format
. oriented and ADF oriented

?5 entity-types.

3ﬁ Extensibility : None.

[%' Maintenance ¢ Three maintenance interfaces :

ib 1. Transactions that are submitted
}3 in one of the following modes

éﬁ On-line at terminal, On-line

" Queue, Batch Queue, Batch DBA.
e 2. Input to the dictionary using

;?; preformatted screens via 3270

éx terminals.

vt 3. Fixed format input for adding

N entities and certain

;E? relationships.

K- Reports and queries : Three types of reports :

'e " 1. Entity reports.

% 2. Text reports.

:ﬁ 3. Keyword reports.

:ﬁ Status facility ¢ System provides Text and Production
o status with 255 sides.

&i Security facility : System contains a security user exit.
Q. This exit is used for the password
£ protection of the DSTRUCTURE and

Bt

L

DABSOLUTE commands. IMS security
facilities are also available.

v e g7 le

Bridge facility : System contains facilities whereby

T,

the contents of the dictionary can

2
3& be used to generate source statements

- that can be used by other software

3 2 processors. These actions can be

,-: invoked through the GENERATE

K transaction.

{ﬁ: 24

N¢

e

e,

o _

DR e e X T I A N A N N A A A N N U AR NN O

7. Data Control System (DCS)

R T TR

Vendor : Cincom Systems, Inc.

Hardware : IBM 370, 30xx, 43xx.

Source language : COBOL and MANTIS.

Entity names : Element, File, Database, Report,

Source Document, Transaction, User

Application System, Program.

.

Extensibility : None.

5355

Maintenance : Entities and relationships are added,
modified, and deleted by the use of
predefined screens. The types of

L)

" SCcreens are

i,
.

[

Facility Selection-Menu.
. Entity Screens.
Relationship Screens.

Table Definition Screens.

n H O

Mini Menus.

P R

Iy

Reports and queries : System provides two facilities
' 1. The Interactive Screen Interface
which can be used to display
information about entities and

v —
& N 4 (}I..‘

relationships.

!

2. The Batch Reporting facility

)

which can be used to produce
preformatted reports.

e
L au B b

Status facility : None.
Security facility : System contains a special

i ng P g

identification of a user called the

Ty
Al

Master User. This Master User assigns
R passwords to other users.
Bridge facility : The DCS Generation Facility which
- consists of CSIDBIOl and CSIDBIO2
- programs, can be used to control

database access to TOTAL databases.

III. RELATIONAL DICTIONARY MODEL

A. THE RELATIONAL MODEL

The relational model views a 1logical data base as a
collection of tables. These tables are two-dimensional and
are called relations. Relations contain single-valued
entries but no repeating groups or arrays. The columns of a
relation are called attributes, and the rows are called
tuples. Each column contains the same kind of data
(e.g.:dates), but the entries in rows are not identical.
The rows and columns can be ordered in any sequence without
affecting the information content. [Ref. 4]

The logical relationships are inherent in the data with
the relational model. Two tuples can have a relationship if
they have two attributes that arise from the same domain.
Users can access and combine data using data wvalues.

The relational data base approach provides many advan-

'tages in ease of use and simplicity, data independence, user

friendliness, flexibility, data base processing power, and
security controls. Also, it provides a good theoretical
fodndation grounded in the mathematical theory of relations.

The relations are easy to understand by wusers.
Relationships between relations are easily expressed. With
relations, a high degree of data independence can be
achieved. A wide variety of relations can be derived easily
by using algebraic operations to satisfy different user
needs. By using these algebraic operations, users can be
constrained to specific instances of relations and

attributes.

26

LS V.\" -.’""\\--_".A'.‘,.‘., ,““
0SS 93P AT IRT W SN NI

0 YDA e

Lt

RSN
\\t\-ﬁ\\i

Ri

AN

T,

> < B. OVERVIEW OF ORACLE SYSTEM

%@A The ORACLE relational data base management system is a
i computer program that manages data. Users access data via
a the SQL nonprocedural data sublanguage which is a structured
é;; query language with English keywords.

;gfg An ORACLE data base consists of tables which in turn
) consist of columns and rows. A row is made up of fields

which contain data values. An example of a table is given
in Fig. 3.1 .

;-_z’-'a‘ - -:
ek X e P

-

e
hon
i
o EMPLOYEE
o , . _
EMPNO | ENAME JOB

4
1555 20 THOMAS SALESMAN
oY 32 JOHNSON ANALYST
b1 35 MARTIN MANAGER

Figure 3.1 An ORACLE Table.

=

Ay

,f& A user can create tables via the SQL Data Definition
ﬁk Language commands. The CREATE TABLE command is used to
”k: create a new table. The column names and the data types of
}55 the columns are specified for each table created. The DROP
|‘j TABLE statement deletes a table from the data base schema.
5{? After a table is created, data can be entered into the
’*ji table via an INSERT command. Users can remove a row from a
:“‘ table using the DELETE command. The UPDATE command allows a
L N user to modify a field in a row of a table.

’$~§ The most common operation in ORACLE is to retrieve data
%‘j from tables by means of queries. The SELECT command is used
% 27

2

o,

o

o)

¥ R R B B O et B Ter RS e e e LR R

1A

?ém for this purpose. By using this command, we can select all
% the columns or specific columns from a table. We can also
¥

control the order columns are displayed, and prevent the

f 5 selection of duplicate rows. The syntax of SELECT command

g&é as following :

b)

3?; SELECT some columns

3) FROM some tables

yl: WHERE certain conditions are met.

§5§ SQL provides a powerful join operator as part of the

oL SELECT command. Two or more tables can be merged on the

?:q basis of common fields, resulting in a single table. We can

R list the tables to be joined in the FROM clause and the

%m‘ relationships between the tables in the WHERE clause.

”‘ [Ref. 5]

‘:ﬁ: C. A RELATIONAL DATA DICTIONARY MODEL

;FE A relational data dictionary (RDD) model was developed

16 .and implemented using ORACLE. This RDD system runs on ‘
AT VAX-VMS 11/780 computer.

;\2 The National Bureau of Standards (ﬁBS) has developed 1
' dictionary standards which capture the common features of

:) systems such as extensibility, maintenance, and report

NN processing. The dictionary system-standard schema has

-
@S

specific entity-types, relationship-types, and attribute

R an

;: types which are developed by the NBS. The system-standard
i%ﬁ schema constitutes the core of the logical structure of this
ivé dictionary. The entity-types, attribute-types, and
izf relationship-types are as shown in Tables I, II, and III.

& E 1. Description of Entity-types

;_;~ 1. USER, describes a person or an organization that uses
x the DDS.

yvt 2. SYSTEM, describes a collection of programs and/or
5&?, modules associated with a major function of the
L2 enterprise.

k“ 28

R

L

Hh

B

G0

R S R Y

R e e e ‘ U e . .
A A » L\ LSRN A R
SRSl A "l"\l. STty 9'0!9 LX 3 ORI SN N TR 3

'ﬂ
Ao

h o

)
g .

TABLE I
ENTITY-TYPES OF NBS SYSTEM-STANDARD SCHEMA

USER

SYSTEM

PROGRAM

MODULE

FILE

DOCUMENT

RECORD

ELEMENT
BIT-STRING
CHARACTER-STRING
FIXED-POINT
FLOAT

TABLE II
RELATIONSHIP-TYPES OF NBS SYSTEM-STANDARD SCHEMA

CONTAINS
PROCESSES
RESPONSIBLE_FOR
RUNS

GOES_TO
DERIVED_ FROM
CALLS —
REPRESENTED_AS
STANDARD FOR

HAS_SORT-KEY
HAS—ACCESS_KEY

PROGRAM, represents information about a collection of
executable code.

MODULE, describes the parts of programs which are
logically associated with each other.

FILE, describes collections of records.

DOCUMENT, describes instances of data to document to the
user,

RECORD, describes instances of 1logically associated
data.

29

LI
R
e
o
Qﬁ) TABLE IIIX
’ ATTRIBUTE-TYPES OF NBS SYSTEM-STANDARD SCHEMA
o
¢ ADDED BY
L5 ALLOWABLE_RANGE
B ALLOWABLE VALUE
Y CLASSIFICATION
i CODE LIST LOCATION
v) COMMENTS —
e DATA CLASS
"4 DESCRIPTION
231) DURATION TYPE
a ; DURATION VALUE
W ENTITY NaME
R ENTITY _TYPE
5 LAST MODIFICATION DATE
LAST"MODIFIED BY —
. LOCATION
NUMBER OF LINES OF CODE
;5‘ NUMBER_OF MODIFICATIONS
T NUMBERTOF REC
ot RECORD_CATEGORY
RIS SECURITY
"’9‘
®
l;;.i
;~:|‘.
2*. 8. ELEMENT, describes an instance of data.
2; . 9. BIT_STRING, describes a string of binary codes. .
o 10. CHARACTER_STRING, describes a string of characters. _
b 11. FIXED POINT, describes the representation of numeric .
R + values.
yf: 12. FLOAT, describes the representation of approximate
~) numeric values.
R
%& 2. Description of Attribute-types
)
2«! 1. ADDED_BY, describes the person who inserts data into a
ii.: relation.
e
i‘ 2. ALLOWABLE RANGE, describes the allowable range of a data |
%$ element.
e 3. ALLOWABLE VALUE, describes the allowable value for a
faﬂ data element.
:{E 4. CLASSIFICATION, describes the area of responsibility or
h ? interest of an entity.
3
180 5. CODE_LIST_LOCATION, describes the hardware location of
*
Qﬂ~ 30
3,
g
’}.:'
R

-

L R R T T T o I S e O R T R v N N T TS

.-. \‘

P, P P A AR T R R >
,. - - %
WD 2 a AT A £ " ‘b‘g:g“,;:i}

-
o
-
«e

B! 1 P - ? 'vt'v‘.v e T ARNTATE YA R
3 '.'-' ,‘ "-~"- t“.‘» v A ;"l-k s .ls‘b .h. ~-)y . " "' ..(\ .“"

|t

AN,

-

8 otle oo pe

10.

11.

12.

13.

14.

. 15.

16.

17.

18.

19.

20.

codes of a program or module.

COMMENTS, gives information about the characteristics of
an entity.

DATA_CLASS, describes the class of a data element.
DATE_ADDED, describes the insertion date of a data
element into the data base.

DURATION_TYPE, describes the type of duration of a
process.

DURATION_VALUE, describes the duration value required
for a process.

ENTITY NAME, represents the name of an entity in the
data base.

ENTITY_TYPE, describes the type of an entity in the
data base.

LAST_MODIFICATION_DATE, describes the last modification
date of a data element in the data base.
LAST_MODIFIED BY, describes the user who makes the last
modification to a data element.

LOCATION, describes the hardware location of data in
the data base.

NUMBER_OF_LINES_OF_CODE, represents the number of codes
of a program or a module.

NUMBER_OF_MODIFICATIONS, represents the number of
modifications of a data element.

NUMBER_OF_RECORDS, represents the number of records of
a file.

RECORD_CATEGORY, describes the category of a record in
a file.

SECURITY, describes the security class of an entity for
explaining the authority level of a user to use it.

31

,"1 A A TN S S S N RS O -.3,'\'\\‘\;. RSN ;:.-,:\‘- ’:- NG EREREN \'(..'(:.\

,.. A<<
o xS ;l i
Sl .'_‘:,‘ !

T a¥
-K
A, R

s

K J
-
s

ZxA

¥ 5

L
-

RO gt
EAT ARt S

.,,,,.._‘
At

r"r“-‘_

s

[
tal

"e"

Y

3. Description of Relationship-types

1. CONTAINS, describes a relation where an entity-type
contains other entity-types.

2. PROCESSES, describes a relation where an entity-type
processes other entity-type.

3. RESPONSIBLE_FOR, describes the responsibility of a user
to process a DDS element.

4. RUNS, describes an association between user and system
elements.

5. GOES_TO, describes a relation where a process traunsfers
control to another one.

6. DERIVED FROM, describes a relation where an entity is
derived from another one.

7. CALLS, describes a relation where an entity calls
another one.

8. REPRESENTED_AS, describes the entities that document a
data element.

9. STANDARD_FOR, describes the standard elements used to
describe an element.

10. HAS_SORT_KEY, describes the sort key element of a file.

11. HAS_ACCESS_KEY, describes the access key element of a
file.
4, The Relations of Dictionary

The dictionary has several different relations. The
general of these relations is as follows

USER_X (user_name, description, classification, date_
added,added_by, last_modification_date, last_
modified_by, number_of modifications, location,
comments, security)

SYSTEM (system_name, description, classification, date_
added, added_by, last_modification_date, last_
modified_by, number_of_modifications, location,

duration_value, duration_type, comments, security)

K

ey

c'._'

5‘:: '

o

R PROGRAM (program _name, description, number of lines_of_
code, classification, date_added, added_by, last_
modification_date, last_modified_ by, number_of_
modifications, location, duration_value, duration

Ny ' _type, comments, security)

3&? MODULE (module_name, description, classification, date_

i% added, added by, last modification date, last_

el modified by, location, number_of lines_of code,

- number of modifications, comments, security)

[

;: FILE_X (file_name, description, classification, date_

o added, added by, last modification_date, last_

f‘ modified_by, location, number_of modifications,

0 number of_ records, comments, security)

.0

':'o' DOCUMENT (document _name, description, classification,

é.: ; date_added, added_by, last modification_date,

. last_modified_by, location, number_of_

;“": modifications, comments, security)

_3 .: RECORD (record_name, description, classification, date_

L added, added_by, last _modification_date, last_

, modified_by, number_of modifications, record_

ﬁ_:, category, comments, security)

.: ELEMENT (element_name, description, classification, date_

(™ added, added_by, last_modification_date, last_

:-j modified_by, number_of_modifications, allowable_

range, allowable_value, comments, code_list_

’;t location, data_class, security)

:f CONTAINS (entity_namel, entity_typel, entity name2, entity

’35?: _type2)

ot

E::': " ’ PROCESSES (entity_namel, entity typel,entity nameZ2,

I entity type2)

‘.

%

i, 33

S

2

e .

% L : LR] - \‘i'h‘--}\}h] -‘-h\"',".-“".- e Y ""\.'\(‘-\.
1,0 1. 8% A%, .,.Qu. J8,8.8,5 9,8 ROSDAT N " "

...... - BN O

A SR IS S

b. ; | o » -
" OO U .
'ﬂ'?‘-':‘ L ?.l\n'\‘.'l !h"‘q"’m“’x ..'a.. i‘!‘l‘!‘vk.\.‘

e 4 w - T TR TR T P ra e r v e g R Ty o e reweny

RESPONSIBLE_FOR (entity_namel, entity typel, entity name2, ,

t;:::‘l' ' entity_type2)
Wha
'}:: RUNS (entity_namel, entity typel, entity name2, entity !
A
e : _typeZ)
PNy . : ,
J?:.‘,: GOES_TO (entity namel, entity typel, entity_name2,
o
:S:::E: entity type2)
l"'l‘
;" () ,
o DERIVED_FROM (entity_namel, entity_typel, entity name2,
:::as entity_type2) |
;?:.: CALLS (entity_namel, entity typel, entity name2, ;
L i
'::g,g' entity type2)
® |
_s.- REPRESENTED_AS (entity_namel, entity_typel, entity_name2
- \-.‘
-i'_\,-: entity type2) (
1555
)8 STANDARD_FOR (entity_namel, eatity typel, entity name2,
entity_type2) 1
T et d I
1Sy ;
AL HAS_ACCESS_KEY (entity-namel, entity typel, entity name2, j
[\ h ,
:?' entity type2) :
AL |
) HAS_SORT_KEY (entity_namel, entity typel,entity_name2,
200 entity type2)
A -
Py
0N There are two special relations in the dictionary
s:'}; schema : ALIAS and CATEGORY. The ALIAS relation is used to
5.:, record synonyms. Synonyms are two or more names for the
:-:: same data item. In an enterprise every department can use
N
:_E different names for the same data item in the data base. 1In
.‘“.n‘ this case, the synonyms are recorded as aliases. The ALIAS
v relation in the data dictionary is defined as
%R
ol
2o ALIAS (entity_name, entity type, alias_name)
-!_..':;:
The CATEGORY relationship provides a key word in
' :.f. context (KWIC) capability which allows different entities to
":'.j be arbitrarily categorized by user-defined terms. For
[/ -' ,
A example it may be desirable to classify certain files,
5 “.
'n.
. 34 ‘
et |
Cal
o

181 3 [y LT Y (7Y . (%) N NG S T

-
e

e

- e
CHELS

- -
- P 1”' ER S 3
ERXF " a2

b

-y

[4 :.!

3SR

- ¥ ST el s bk TWeRTosewoeewow

programs, reports, users, etc. as being PERSONNEL-related.
This can be done via CATEGORY by associating each such
entity with the PERSONNEL category. The format of CATEGORY
relation is defined as :

CATEGORY (entity_name, entity type, category_name)

The dictionary model has a specific relationship by
which we can represent the dictionary entities and the
specific relationships in which they participate. This
relationship makes the dictionary model self-descriptive.
Thus, it can describe its schema structure. The format of
this relationship as following :

RELATIONSHIP (entity_namel, entity_typel, entity name2,
'entity_typez, relation)

Another type of relationship of the dictionary model
is ENTITY by which we represent’ the entity_types such as
'SYSTEM', 'FILE', etc. . The format of this relationship as
following :

ENTITY (entity_name, description, classification, date_
added, added_by, last_modification_date, last_
modified by, number_of modifications, location,
comments, security)

D. RELATIONSHIPS BETWEEN ENTITY-TYPES

The pairs of entity-types belong to a specific relation-
ship are as shown in Table IV (entity-typel and entity-
type2 are both assumed to be 'ENTITY' and are omitted for
the sake of clarity).

35

'\.:.\' WAL BF B SN AL AP P © AR A S A SRR Ay a;,'\" e T A '.;.:.;’\:_:.;,x NSRS

. . -‘_'d o .
FJ .r.rr./; CaiE LXx C AP

'a AW,

-
>

"

A
A

v

-
]

“
S

v
)
)
)
)

X
ANy

. e
gl S
: ;5_‘! -“x"l.. L i

_—
X

RUAS

i

e .
\a‘a\'la . \t O Ll

TABLE IV

RELATIONSHIPS BETWEEN ENTITY-TYPES

CONTAINS

FILE, E EM

ECORD
RECORD. ELEMENT
ELEMENtT, ELEMENT

RESPONSIBLE FOR :
USER, FILE

USER., DOCUMENT
USER, RECORD

ER. ELEMENT
TEM, FILE

TEM, Doggunur

PROGRAM, PROGRAM
PROGRAM, MODULE
MODULE, 'MODULE

STANDARD_FOR :

ELEMENT, ELEMENT

HAS_SORT KEY &
HAS"ACCESS KEY :

FILE, ELEMENT

PROCESSES

SYSTEM, ELEMENT
PROGRAM, FILE
PROGRAM, DOCUMENT
PROGRAM, RECORD

D ILE
MODULE, DOCUMENT
RECORD
ELEMENT

USER, SYSTEM
USER, PROGRAM
USER, MODULE

GOES_TO :

SYSTEM, SYSTEM
PROGRAM, PROG
MODULE, 'MODULE

DERIVED FROM :
DOCUMENT, FILE
DOCUMENT, DOCUMENT
DOCUMENT . RECORD
ELEMENT, 'FILE
ELEMENT, DOCUMENT
ELEMENT, RECORD
ELEMENT. ELEMENT
FILE, DOCUMENT
FILE, FILE
RECORD, DOCUMENT

REPRESENTED_AS

ELEMENT, BIT STRING
ELEMEN CHARACTER_ STRING
ELEMENT, FIXED POINT
ELEMENT FLCAT™

-~ -

SERRIRBE A

\

s
o

36

L T A e A S A Aﬂ

T VIR NN TR T —— TTETTFRTIRTTETITEETs s m mE s R e e e emm ey pEE R
' 7§ 1
o

! ' v
A] PROGRAM | DOCUMENT |
'y
'.‘-)-‘l,
SN .
B
Ny
0 | v | | v |
LA\ .
R] MODULE l . RECORD l
(N
) —
)
R

v
- : T 1
s | ELEMENT ,
o '

(]
"~
3

s rut ek &
A A Y

x5
o

Figure 3.2 Bachman Diagram of entity_types.

obkuk

The relationships between the entity-types are shown in

-

48

Fig. 3.2 . In this diagram, we denote the relationship
one-to-one by a single- headed arrow (--->), and the rela-
tionship one-to-many by a double-headed arrow (--->>).

S T
)
Ay Ay
PSP

E:

The implementation of data dictionary model using ORACLE
has some shortcomings. We can represent entity-types, and
relationships between these entities easily. But, we also
need rules about data.

RN
g ¢
3 v

Pl i it

-
e
it i "‘.
ik Sl A A

37

e
Pl

,,
Lt

T N T S N R B R I R R LR L PR Gt R A O L e A L S P
e AL AR AN, C ..b., e L I L el 2 VRO O LR Y RS

hoaha al

hediat ol aniih o gl - dh] TR T T

ORACLE implementation is not capable of defining rules. We
can only implement immediate data with ORACLE.

E. EXAMPLES OF QUERIES

By using SQL commands, we can represent several
different queries. These queries are two types : queries
concerning meta-entities and those concerning instances of
entities. There are several advantages of having the meta-
entity information. The quality of metadata should be moni-
tored by defining and inserting integrity checks. We can do
these checking by means of queries concerning meta-entities.
These queries also give information about the system-
standard schema of the dictionary system. That is, we can
describe the entity-types, attribute-types, and
relationship-types of the dictionary.

The 1listing of tuples in the data base 1is given in
Appendix B. The queries in this section are related with
these values. Suppose we have a query " Which systems

contain ACC5PROG program ? The implementation of this

query and the answer to this query is given in Fig. 3.3

UFI> SELECT ENTITY NAME1
2 FROM CONTAINS_X
WHERE ENTI Y_HAMEZ ACCSPROG AND
ENTITY _TYPE1l='SYSTEM

ENTITY_ NAME1l

ACCOUNT-2
ACCOUNT-5

Figure 3.3 An Example of Query.
Other types of query examples follow :

Query : " Who is responsible for ACCOUNT-2 system ? "
The implementation of this query is given in Fig. 3.4

38

TVECES T A YL T W vy

L aa et ad - ekt o _ ek Al ool ek et el a8 k.ol Al kil i ek S AR AR kLAl

UFT> SELECT ENTITY NAMEL
2" FROM_RESPONSIBLE FOR ,
3 WHERE ENTITY NAME2='ACCOUNT-2';

ENTITY_ NAMEl
JONES H.B.
ALLEN G.M.
SCOTT T.L.

Figure 3.4 An Example of Query.

Query : " Which programs process PAYROLLS record ?
The implementation of this query is given in Fig. 3.5

UFI> SELECT ENTITY NAME1
2 FROM PROCESSES
WHERE ENTITY NAMEZ PAYROLL5 AND
ENTITY_ TYPE1l='PROGRAM'

ENTITY_ NAME1l
ACCOUNT-2
ACCOUNT-3
ACCOUNT-4

Figure 3.5 An Example of Query.

Query " What elements are contained in the PAYROLLS
record ? " The implementation of this query is given in
Fig. 3.6

Query : " What relationships does FILE participate in ?

1"

The implementation of this query is given in Fig. 3.7

39

5 ‘--\' \“; . :»‘7’"-‘1" AN

& ¢S
4
)
¥
) UFI> SELECT ENTITY NAME2
e 2 FROM CONTAINS"X , :
Y 3 WHERE ENTITY_QAME1= P%YROLLS AND
Qﬁ 4 ENTITY TYPE2='ELEMENT';
%u ENTITY_ NAME2
[hX PRELEL
V) PRELE2
14 PRELE
e, PRELE
o
g
r¥ Figure 3.6 An Example of Query.
A
a .!
:
?*m
.9. UFI> SELECT ENTITY NAME1l,RELATION,ENTIY NAME2
oy 2 FROM RELATIONSHIP |] -
M 3 WHERE ENTITY NAMEl='FILE';
) ENTITY NAME1l RELATION ENTITY_NAME2
FILE CONTAINS FILE !
FILE CONTAINS DOCUMENT
W FILE CONTAINS RECORD
iy FILE CONTAINS ELEMENT
N FILE DERIVED FROM FILE - .
Y FILE DERIVED"FROM DOCUMENT
'b FILE HAS SORT KEY ELEMENT
“.. FILE HAS"ACCESS _KEY ELEMENT
:)' 8 records selected.
W

- QOO-Q.“.
T

-
-y

Figure 3.7 An Example of Query.

‘\ -

068 Query : " What aliases ACCOUNT-2 program has ? " . The

>

zf implementation of this query is given in Fig. 3.8

A Query : " Which entities are in the CONTROL2 category ?

3%‘ " . The imrlementation of this query is given in Fig. 3.9 . %
i" . !
N] .
K We are not able to answer some kinds of queries with :
" |
£ this dictionary design. For example, a query " What kind of

% |
s 40

" e e W w, .

h *) p-? > "‘p-,ﬁ -,-‘. - K ‘-*‘, “w,
LA G N, NS AR WAL A Gt R Y AOAAS,

AGRIATLY

g N YT WY N YT >N
n-.«l'-: f ol :a-.l- ', n ..4!“2 " WA

i L NIRRT IR RV RN RN WS TN S PR W W WA TR TN USSR OCETIRCRSNT W W W W WL O Wy W .’

e
’;"‘t'
bt
i |
Sy |
o8 3 i~ |
. UFI> SELECT ALIAS_NAME
2 FROM ALIAS , :
e 3 WHERE ENTITY_NAMELl='ACCOUNT-2'; ‘
W) {
3}_5: ALIAS_NAME |
i ASEL |
a3 APRO
)
WYY,
b3
W
ﬁ&: Figure 3.8 An Example of Query.
B X
UFI> SELECT ENTITY NAME,ENTITY TYPE
2 FROM CATEGORY \ — ,
WHERE CATEGORY_NAME='CONTROL2';
F; ENTITY_NAME ENTITY_TYPE !
L ACCOUNT - 2 PROGRAM |
§ ACCSFILE FILE X !
355 ACC6FILE LE_X
25N PAYROLLS RECORD
. PAYROLL®6 RECORD
PAYROLL7 RECORD
-
a D 6 records selected.
s 3
1508
A4
) . I
P Figure 3.9 An Example of Query.
ftﬂ
é?g entity is PRELEl ? " cannot be answered easily. To answer
5&3 this kind of query, we have to implement every data element
(™ as a separate entity in a special relation. This implemen-
FQJ ' tation causes overhead in the data base. Also a query "
;,% What entities appear in relationships but are not defined as
. []
,', . a tuple in any of the entity relations ? " cannot be
T answered easily. For example PROCESSES
T
o ('ACCOUNT-2', 'PROGRAM','ACCREC','RECORD') is a tuple of
190 PROCESSES relation but 'ACCREC' 1is not a tuple in RECORD
,ﬁQ relation. To answer this kind of query, we will have to
!"
‘ 41
)
)
R
@
‘l. (R) P TP AN PN M LT R) ST SRR S NP x|
'v’&ta.lag!l SN ?I;: . ‘o’l«.l‘a:l'w‘ .il’\.a, .) e L A ,l'. VN 11 5N 2L AR Y AN NS BN LA R R A Y ,. Al iR IO M r'

by
b

=2
-

ol
T

X
-,

..
5
L7

,
10K

- -y iy - .
EWTE
" :

A4
B A P

AT AN N SRLN

insert data into a separate relation for every data element

we want to represent in the data base.

These types of queries can be answered by means of a
different design. We can define two relations:
ENTITY (entity_name, entity_ type, attrl, attr2,
... j,attrM)
RELSHIP (relname, entity_namel, entity_typel,
entity_name2, entity type2, attributes)
By using these relations we can answer the queries we have
asked above like following :
SELECT entity_type
FROM ENTITY
WHERE entity_mane = 'PRELE';
SELECT entity namel
FROM RELSHIP
WHERE entity_namel NOT IN
(SELECT entity_name FROM ENTITY);
This design method also has disadvantages. For example in

the first example we will have null values for some attri-

butes of the relation.

F. USER MANUAL

This user manual explains the necessary procedures to
use the ORACLE system. Additional information can be

obtained from the ORACLE system manuals.
After entering the VAX-VMS system, you will see
following on the screen:

$

the

To start ORACLE type " ORACLE" like following and press

the RETURN key on the terminal

$ ORACLE

1('

TH N W SRy wew

Then type " UFI " like following and press the RETURN
key :

$ UFI
After a few seconds a message will appear :

ORACLE Utilities, Copyright (c¢) 1979, 1980, 1981, 1982,
RSI

UFI Version 3.5 - on Mon Nov 18 15:39:17 1985

Connecting to ORACLE V 4.2.2 - Interim Release

Enter user-name

Enter password :

Upon correctly entering the user-name, and password you
will receive the following on the screen :

UFI>

Now, you are ready to enter ORACLE commands into the
system. When you want to exit the system type " EXIT " like
following :

UFI> EXIT
Then you will see the following message on the screen :
logged off from ORACLE $
If you want to log off from VMS system type " log "

$ log

Now, you have logged off the VMS system and you will see
the following message

logging off the VAX 780 computer

MM N, AL CRYETAT . : ; [RT
RS UAN A DR U i ONOUUCER IO N A, N WU TR R X PN o i 1‘ g8,

'6
A 1. Creating A Table

A table can be created using the CREATE TABLE
command. An example of this command is given in Fig. 3.10

UFI> CREATE TABLE CONTAINS X
o 2 ENTITY NAME1l CHAR (15
0 2 ENTITY TYPEl1 CHAR (15),
ENTITY NAME2 CHAR (15
K . 5 ENTITY_TYPEZ CHAR (15

P Table created.

Figure 3.10 Creating a Table.

® 2. Inserting Data Into a Table

é?: After a table is created, rows can be entered into
ol the table using the INSERT command. An example of this
command is given in Fig. 3.11 . ‘

J UF]> INSERT INTQ CONTAINS X VALUES . ,
2 ("ACCOUNT-2',"SYSTEM™,'ACC5PROG','PROGRAM');

%& ENTITY_NAMEl ENTITY_TYPEl1l ENTITY NAME2 ENTITY_TYPE2
P ACCOUNT-2 SYSTEM ACCS5PROG PROGRAM
2= 1 record created

4y Figure 3.11 Inserting Data Into a Table.

o 44

I ! IS . - - - LN) - . R -l e -, . P L LN . DI R R -, . ‘
n g PR RPN LTINS U5 N SO I8 6 TR Sy S rrT R ™ oy R T SO e g g
RO ST DN L3422 S0 LBt P 0082 200 LT P AT el LOASTE RN BeR N

L
= " P B L PO K e B A o B Pl M0 PN B,

odd

?,” 3. Selecting Data From a Table

££ The SELECT command is used to retrieve data from a

i table. An example of this command is given in Fig. 3.12

2t

i

':.,. UFI> SELECT ENTITY NAMEL, ENTITY_NAME2

v) 2 FROM CONTAINS'X ;

h ENTITY NAME1 ENTITY_NAME2

B | ACCOUNT-2 ACC5PROG

§

U

f\é Figure 3.12 Selecting Data From a Table.

ThiS

:x. If we want to select all the columns we can use an

° asterisk (*) in place of the list of column names. An

53‘ example is given in Fig. 3.13 . In this example, all the

%\ columns of CONTAINS_X table will be selected.

; W

8 |
7 1
. ' UFI> SELECT * |
! 2" FROM CONTAINS X ; |
J ENTITY NAMEl ENTITY TYPEl ENTITY NAME2 ENTITY TYPE2 |
oo ACCOUNT-2 SYSTEM ACC5PROG PROGRAM |
f:}

A

£

;5§ Figure 3.13 Selecting Data From a Table.

i; 4. Description of the columns of a Table

gh: The DESC command gives the brief description of the

- columns used in a table. The description returned will

‘ii contain columns for the number of the column, the maximum

‘(ﬁ size of numeric or formatted data, the type of data, and the

b name of the column. An example of this command will be

given in Fig. 3.14

3 45

ey

Y- T
e SN

T R Y
e

= IS

"'ﬂu 3

LR]

.I‘A, ¥ e

L s Aol con s)

by

ARANAS RN

UFI> DESC CONTAINS X ;
size c¢size type
f siz T 1P

5 character
2 15 1 1 character
2 15 1 1 character
15 1 1 character

name

ENTITY NAMEl
ENTITY TYPEL
ENTITY NAME2
ENTITY_TYPE2

et N gl () rn® h
O BN P T QORI N MK o Un

Figure 3.14

46

Description of Columns of a Table.

> m~ar L) hh‘F‘{I Lﬂu".‘ Pt
s L T TN D Lot T D Lo T D

IV. DATA DICTIONARIES AND EXPERT SYSTEMS

A. OVERVIEW OF EXPERT SYTEMS

Expert systems are the most significant development in
the area of artificial intelligence. Expert or knowledge-
N based systems are computer programs which represent and

) apply specific knowledge to solve problems. Expert systems
I

$ use knowledge that is represented in computable form.

! The rule-based system paradigm is the most popular
. problem solving paradigm used for building expert systems.
! The rule-based system paradigm is built around rules. The
5 rules cover the major situations in a domain and consist of
f an "if" part and a "then" part

q

u Rule(n) If condition 1

? condition 2

R

V .

\ ’ condition n

: then action 1

’ action 2

X .

)

A

h)

Y .

o action n

)

£ The "if" parts of the rules consist of combinations of

known facts. The ''then" parts specify new facts to be
deduced. We use forward chaining to move from existing

o it

conditions to desired actions. Backward chaining hypoth-

esizes a conclusion and wuse the rules to work backward
5 toward the facts which lead to this conclusion. [Ref. 6]

b, Expert systems use different methodologies for solving
‘ problems.

-

47

P e e
~N

- a Y - . . T

h ; e . s - e e . e . A cA-
A 0 hn Yy, \ S " < Y .S W
RAWAEADA N vy LA WG M, Mg ! ” 9 1 O 3 A LN LR A .9 A BTN &A!\.ké:ﬁ.. t:'l,. \" A ‘.,.. 3'-

f
ALl

- -
P
- . 3

TR BT

-
- 39
oy

LT

Ry
]
s Ik

»
ry

e P - an
s
) ,AES?;

-

P]

v,

14
. P .~

 ap i e v

o

1'1'-,4 %!

S Y

PR A]
o

e
- Iy

-« 4“‘ v~
o A
"

>

-
]
v ¢ b"':‘"&‘,‘\..

Some expert systems such as XCON use synthesis oriented
forward chaining. Others, such as MYCIN and PROSPECTOR use
analysis oriented backward chaining.

XCON's domain concerns the configuration of computer
system components. XCON knows the properties of component
types for VAX computers and XCON handles orders involving
these components. MYCIN aids medical doctors in diagnosing
blood and meningitis infections and in recommending antibi-
otic drug treatment. PROSPECTOR is used by geologists in
the exploration of ore deposits.

Expert systems can explain how and why they do things,
and they can estimate the quality of their results. They
can also demonstrate the stages of the task they have
performed as well as any remaining parts to be performed.

An expert system must demonstrate efficient performance

and must find effective soluticns. These two factors must
be traded off in certain cases. Some expert systems make
good decisions but very slowly. Some decisions, on the

. other hand, require rapid response time, possibly at the
expense of accuracy. Expert systems must be built to
satisfy the particular requirements of each application
domain.

B. COMPONENTS OF EXPERT SYSTEMS
The essential components of an expert system are the

following

1. Language Processor : The user and expert system commu-
nicate with each other by means of a language processor.
The user enters the commands or questions into the
system by using the language processor. Conversely, the
information generated by the system is presented to the
user via the same mechanism.

2. Blackboard : Intermediate decisions are recorded in a
blackboard. Generally, blackboards record three types
of decisions : plan, agenda, and solution. Plan recom-
mends a general solution methodology to the problem.

48

QOO "'*"\"(w',

00 [OO0 t RSV n 4 . O O OO
"14""’1“.\‘ ’M, ?‘ .v‘.l(“‘l“, ..‘.“ell‘.'l.’i(.,’t‘!'n']."h‘!'p"é".. ,h‘. '\ 0.!'. g"“;'l‘.. R .‘.‘..‘.’) $ N 1) MA » & Q.ﬁ B ". ?'l 4 o S

ig& Agenda records the actions awaiting the execution. The
$§: decisions and hypotheses about the problem are repre-
S sented by solution elements.

ﬁ?? ' 3. Scheduler : The control of the agenda and the control
§?$ of the order of the rule processing are maintained by a
:‘ ﬁ: ' scheduler.

?{' 4. Interpreter : The rules contained in the knowledge base
i$& get applied to the agenda items by the interpreter.

:ﬁﬁ 5. Consistency enforcer : When new data are introduced,
Py the consistency enforcer adjusts the previous solutions

to the new data base.

5?: 6. Justifier : By using general types of question/
j$~ answering plans, the justifier explains the system's
:{ ? behaviour to the user. '

*; ! 7. Knowledge base : The facts and information about the
;it problem and problem solving rules are recorded in the

knowledge base. [Ref. 7]
(fd The components of expert systems are given in Fig. 4.1

C. EXPERT SYSTEMS AND CONVENTIONAL DATA PROCESSING SYSTEMS
AN There are many ways in which expert systems differ from
. both data processing systems and other AI systems.
{ﬁﬂ AI systems involve several features such as symbolic

;é. representation, symbolic inference, and heuristic search.
é?; Al systems use one of several formal approaches developed
aﬁg for these features. For example, one way to show what a set
%‘ . of antecedent-consequent rules can do is, to draw a network
(_ showing how the facts that are the consequents of one rule
:ﬂu serve as antecedents to the next. This network is called an
'ﬁﬁ: inference net in AI systems.

‘{J Expert systems perform their tasks in decision making

environments. They solve problems in narrow and specialized
domains. 1In contrast, the other AI systems use more general
methods.

Expert systems contain self-knowledge, that is knowledge

)_\»"‘r"
2,

o

about its own structure and operation. By using

&

49

@k

bl s S di Sl nal el bl S aln . lhec S At A A e 4 Al R TR SEATENeE e T E TR W

USER
LANGUAGE |<=-=-=~-===-=~-=-- >| KNOWLEDGE
PROCESSOR| <~---+ l-—> BASE Cemmmmmmcce e +
+-->| JUSTIFIER +--->| INTERPRETER |[<--
B +
BLACKBOARD : ------------ Tt > SCHEDULER <--
tommm- >| CONSISTENCY
X ENFORCER <-4
38 «
:Ea Figure 4.1 Components of an Expert System.
:’l a

self-knowledge, expert systems provide explanations and

X justifications about their conclusions. This knowledge is
-5, also used for modification and reorganization of the system.
" Expert systems solve problems in several areas which can
(™ be categorized as follows
i' 1. Interpretation systems : signal interpretation, speech
;: understanding chemical structure elucidation.
5 g 2. Prediction system : weather forecasting, crop
o estimation.
::’ 3. Diagnosis systems : medical, electronic, software
"‘: diagnosis.
%“EE:. 4., Design systems : building design, budgeting.

=

3 50
1

hlladdl. B R _al ta aad Lol _ak ol Lok 2ol aal tak asi Bak valk Aok Sal el Sah 2l fad Sak Bk dak el Bl Soh)

SSilrlitr.
- A

o
%z 5 Planning systems : robot, project, communication,
Q} military planning problems.

A 6. Monitoring systems : nuclear power plant, air traffic,
R ' disease, fiscal management tasks.

R~ 7. Debugging systems : computer aided debugging systems.
g; ' 8. Repair systems : automotive, network, avionic systems.
lm 9. 1Instruction systems : Diagnose of students behaviors.
g 10. Control systems : air traffic control,mission control,

business management.

e D. KNOWLEDGE REPRESENTATION
There are many different kinds of knowledge. Basically,
knowledge can be represented by facts and procedures. Facts

o are things that are true about the world, and correspond to
:5. the meanings of nouns and adjectives. Procedures are
e sequences of actions that do things and correspond to the
4 . : .

v meanings of verbs. There are many different ways of
e

{? representing and manipulating knowledge by computer.

4

- 1. Predicate Calculus

N Predicate calculus is one of the widely used forps
N of knowledge representation. The syntax of symbols repre-
% ' senting knowledge consists of terms and predicate symbols.

In predicate calculus logical connections between entities

0 and functions can be easily represented. Predicate calculus
55 can also express sentences involving universal quantifiers
A
:* and existential quantifiers. In predicate calculus, new
A symbol structures can be created from old ones by using
*f rules of inference. Predicate calculus can express the
o sentence "All parts are large " as

(S

-.i (ALL (x) ((IS.A x PART) ----> (LARGE x)))
."
|/
.
R
oW
A
g

" 51
"
b/
¥
.;‘
@

2
K-

ARV SR SNy ‘..:_
> P ,.4'.\

e

LY. %4 MERCSEARILS PR T T A Lt e e e LT e T IS FOLIE SN J T I I e T T rw-_,"n“."
R A R e e * T AN T AR R I R AN LS S N R D RS G N SRR S (SRR LY

O A
DR E

AN
N s

1N
o
"
I‘i-'
,'9
<

2. Semantic Networks

Many knowledge representations are built around some
form of semantic net. The syntax of a semantic net consists
of objects and relationships between pairs of objects. In
semantic nets, the objects are represented by 1labeled
circles and the relations are represented by labeled arrows.
The semantic nets have a restriction in that they only work
well for predicates of two arguments.

3. Control Structures

1. Unordered Control Structures : In a rule based
system a set of antecedent-consequent rules can be repre-
sented by a network. By using AND/OR/NOT trees this network
can be represented. Facts are then input to this system.
An AND/OR/NOT tree reaches from base facts at the bottom,
through antecedent-consequent rules, to possible conclusion
at the top.

2. Backwards Chaining Control Structures : This
structure imposes a single sequential ordering on everything
that happens. Backwards chaining starts with a hypothesized
conclusion and uses rules to work backward toward the facts
that support the hypothesis. Backwards chaining'works well
whenever there are many more facts than goals.

3. Forward Chaining Control Structures : In some
systems, there are many possible conclusions but just a few
facts. For these situations forward chaining is wused by
starting with the facts and reasoning to conclusions.

E. METAKNOWLEDGE

Metaknowledge can be very important to building,
running, and modifying expert systems. Performance can be
improved by supplying various sets of metaknowledge that is
knowledge about the knowledge in the system.

Metaknowledge guides the 1location and selection of
rules. It records needed facts about knowledge.
Metaknowledge enhances the system's explanation abilities by
justifying rules.

52

“w e -‘JI\.(_‘\ K BTSN Py ..'r.'-'\ el R S R “'J'.',{..' .\')_'.}«.‘:_'.-_ PSRN -_:.-_' Rt e
PN A A L LU AN o PSS 2 o
n, ﬁ M&&ﬂ :'1?-.&}*“' T I e A N A TR NS AN SO AL R AL R LRl L S

T W Ll e S B alang A ARl 2 el Al ac s oo WO B e PR It U NG RNWET NN ERNTHEN RN ENEN EMER BN N EAE N Wy RTY

LA
Shn

,
;.3 It facilitates the entry of new terms, facts, and heuristic
Sﬁ‘ rules.
. Information resource management is a potential domain
?j4 ' for the implementation of expert systems. Data dictionary
‘Eﬁ systems are currently used for representing metaknowledge
t%; ' about organizational information resources. Especially,
;3 extensibility features of data dictionary systems make it
lﬁé easy to define new data types and relationships to represent
Tlg metaknowledge.
fﬁﬁ Information resource management data contains informa-

tion necessary to manage and control the data. This type of

L; data includes rules for performing its function. The rules
33 are the functions to be performed by the system relative to
Pf: data. The rules are very important in information resource
';ﬂ management, because, they insure effective management
o {. control of data. These rules guide the data base activities
;?i and provide information about data.
iiﬁ We can store facts about information resources using
Wl data dictionary systems, but current data dictionary systems
fﬁ are unable to accommodate rules. Logic-oriented language
Rl Prolog can be used to implement these rules. Prolog allows
ﬁ" ' user to define rules which are more compact than a list of
; ‘ facts.
&é» F. KNOWLEDGE REPRESENTATION IN PROLOG
jh: The declarative, logic-based language Prolog is used for <
f‘; solving problems that involve objects and relationships
‘? between objects. The Prolog programmer asks what formal
;*i felationships and objects occur in the problem, and what
i:g relationships are true about the desired solution.
:;d : Programming in Prolog consists of declaring some facts
;; about objects and their relationships; defining some rules
; f about objects and their relationships and then asking ques-
i,‘ _ tions about objects and their relationships subject to these
b rules. [Ref. 8]
g

.52’ 53

An explanation of an implementation of facts, rules, and
a query will be explained with the following example.
Suppose we have relations :

male(gerry).
male(john).
female(mary).
female(cindy).
parents(gerry,betty,mike).
parents(mary,betty,mike).
brother of(X,Y):-male(X),parents(X,M,F),
parents(Y,M,F).
Suppose we want to know if Gerry is the brother of
anyone. We can ask this question in Prolog like this

?-brother_of(gerry,X).
Prolog prints X= mary. as an answer to this question.

G. A PROLOG MODEL OF A SIMPLE DATA DICTIONARY

The system-standard schema of the dictionary is defined
as a specific set of entity-types, relationship types, and
attribute types. This system-standard schema satisfies the
requirements of many IRDS environments. Also, this schema
is a standard schema developed by the National Bureau of
Standards.

Data dictionary entity-types, relationship types, and
attribute types are as shown in Tables V and VI

Using Prolog, implementation of a data dictionary with
the above entity-types and attribute types can be repre-
sented as predicates. For example we can represent the
SYSTEM entity-type as

system(name,description,date_created,classification,
last_modified_by,number_of programs).

Integrity constraints can be easily implemented by using
predicates involving relationships.

54

o b Pl "
) AN O S A %‘-
X 5 g AX W IO L N I *F.Ls' o "m'C.J.& \.t\"'_ ":&"hh

1.--

TABLE V
ENTITY-TYPES AND ATTRIBUTE-TYPES OF DICTIONARY MODEL

ENTITY-TYPES : ATTRIBUTE-TYPES :
USER ADDED_BY
SYSTEM CLASSTFICATION
PROGRAM COMMENTS
MODULE DATE ADDED
FILE DESCRIPTION
DOCUMENT IDENTIFICATION NAME
RECORD LAST MODIFICATION DATE
ELEMENT LAS ODIFIED BY —
BIT STRING NUMBER OF MODIFICATIONS
CHARACTER_STRING NUMBERTOF—RECORDS
FIXED POINT NUMBERTOF_CATEGORY
FLOAT NUMBER_OF_PROGRAMS
DATE_CREATE
LOCATIO

HAS T_KEY
HASTACCESS_KEY

TABLE VI
RELATIONSHIP-TYPES OF DICTIONARY MODEL

RELATIONSHIP-TYPES :

CONTAINS
PROCESSES

RUNS
RESPONSIBLE_FOR
GOES TO __ —
DERIVED FROM

CALLS
REPRESENTED_AS

The general format of these predicates are represented as
relation(entitynamel,entitytypel,entityname2,entitytype2).
We can represent "contains" relation in Prolog as

contains(system_x,system_t,program_x,program t).
contains(program_x,program_t,module_x,module_t).

55

e Syl o SR R

TR ww o WYY RIS LNPCTRIY A - Tame o Ll e |

’-—“:-‘-
i

éﬁ
%§~ contains(module_x,module_t,record_x,record_t).

Qﬂ contains(record_x,record_t,element_x,element_t).

‘ﬁ?. The other types of relationships can be represented as

0;) followings :

s;_ processes(system_x,system_t,file_x,file t). '
H} responsible_for(user_x,user_t,system_x,system_t).

*ﬁ runs (user_x,user_t,system_x,system_t).

iﬁs goes_to(system_x,system_t,system_x,system_t).

'ﬁé .derived_from(document_x,document_t,file x,file_t).

) calls(program_x,program_t ,module_x,module_t).

imh represented_as(element_x,element_t,bit_string_x,

gﬁ bit_string t).

3&3 standard_for(element_x,element_t,element_x,element_t).

® has_sort_key(file _x,file_t,element_x,element_t).

ﬁ% has_access_key(file x,file_t,key_x,key_t).

é?‘ In Prolog, rules are used when we want to say that a

?ﬂ, fact depends on a group of other facts. A rule is a general v
By statement about objects and their relationships.

;:Q We can represent queries and information about the data .
fjﬁ base by using Prolog rules.

iﬁ : A relation in the data base can be derived from a rule

e in Prolog. By using the relationship predicates we can

égﬁ build rules as followings :

R contains(X,XX,2,2Z):-contains (X,XX,Y,YY),

7 contains(Y,YY,Z,22Z).

{i; processes(X,XX,Z,2Z):-contains (X,XX,Y,YY),

158 processes(Y,YY,Z,2Z).

;', calls(X,XX,Z,ZZ):-contains(X,XX,Y,YY),calls(Y,YY,Z,2Z).

:“ Implementation of queries in Prolog will be explained

50% with the following examples:

;@i Suppose we have following facts and rules about Data

& Dictionary :

PN

;'3" 56

T}

‘4

R

N

A R T PO P IO T 7T »® 5 P P 3 "N PN <y » AU =P LA e . - " R R A T R L
"‘.El‘oli“\ﬂp s hlls \’4|t5,0‘nn i P Dv X h"‘ .k\\ .. ,.5.,. .’ ! 3 ’* lq. o} !‘ 1) X ! ‘. X } } ‘.- . N y % '

2
|
1

. e

¥

o

ﬁﬁ contains(system_l,system_t,program_a,program t).
T contains(system_l,system_t,program b,program t).
. contains(system_l,system_t,program c,program t).
éé contains(program_l,program_t,module_a,module_t).
i; : contains (program_l,program_t,module_b,module_t).
fl contains(program_l,program_t,module_c,module_t).
fﬁ contains(program_l,program_t ,module_d,module t).
ﬁ? contains(file_1l,file_t,document_l,document_t).
%a contains(file_1,file_t,document_2,document_t).

contains(file_l,file_t,document_3.document_t).

-
i
.

processes(user_l,user_t,file_1,file t).
processes(user_l,user_t,file_2,file_t).
processes(user_2,user_t,file 1,file t).
processes(user_2,user_t,file_2.file_t).

LR

Wood
-

responsible_for(user_l,user_t,system_l,system_t).

s

%5
‘“

responsible for(user_l,user_t,system_2,system_t).

-
~

responsible_for(user_l,user_t,system_3.system_t).

M responsible_for(user_2,user_t,system_l,system_t).

DAY

S responsible_for(user_2,user_t,system_2,system_t).

?‘ ([

i,‘ Suppose we have a query : "Which systems contain
;) program_a ?" The implementation of this query and the
{5 answer to this query will be as following :

o

¥

Ry 3

it

A

f@ ?- contains(X,system_t,program_a,program_t).

" X= system_1;

ii X= system_2;

{7

o no

The other type of query examples are the following :

35

» ?- contains(program_l,program_t,X,module_t).
i; X= module_a;

L

3

.%.,» 57

o

XA

e

o

- -
-
»"ad " 28)

A J y 5 AN 1A N WA N AN Y ¢ ’ P W v Ry T
:'- I EN ‘Q’l"h."') lfll.'o a AV, -""'l" b B T DO e Mbe YO 1L ! 333,049, 4)

X= module_b;
X= module_c;
X= module_d;

?- processes(X,user_t,file_2,file_t).
X= user_l;
X= user_2;

?- responsible_for(user_l,user_t,X,system_t).
X= system_l;
X= system_2;
X= system_3;

?- processes(X,user t,Y,file_t).
X= user_1l, Y= file_1;
X= user_1l, Y= file_ 2;
X= user_2, Y= file 1;
X= user_2, Y= file 2;

We can also define rules about data base and ask
questions about these rules

contains(file_1,file_t,record_a,record_t).
contains(file_1,file_t,record_b,record_t).
processes(system_1l,system_t,file_1,file_t).
processes(X,XX,Z,Z2):-processes(X,XX,Y,YY),
contains(Y,YY,Z,22).

58

g

o s S et e .. AT et

We can ask a question like this : "What does system_1l
processes ?"

A query related with the above rule and the answer to
this query will be as following :

?- processes(system_l,system_t,X,XX).

X= file 1, XX= file t;

X= record_a, XX= record t;
X= record_b, XX= record_t;
no

If we want to know the records which are processed by
system_l, we can ask following question :

?- processes(system_l,system_t,X,record_t).

o)
"

record_a;
X
no

record_b;

This dictionary model is self-descriptive. That is, we
can represent the dictionary entities which participate in a
specific relationship. The following facts are used for
this purpose :

processes(user_x,entity_t,file x,entity_t).
processes(user_x,entity_t,document_x,entity_t).
processes(user_x,entity_t,record_x,entity_t).
processes(user_x,entity_t,element_x,entity_t).

processes(system_x,entity t,file_x,entity_t).
processes(system_x,entity_t,document_x,entity_t).
processes(system_x,entity t,record_x,entity_t).
processes(system_x,entity_t,element_x,entity_t).

processes(program_x,entity t,file_x,entity t).
processes (program_x,entity_t,document_x,entity_t).

59

O OO0
0.‘00‘!' 4

T RO R R TN TR T TR TN T TSR TR T VAT AEEN TR TR TN a AR T W e m e

processes (program_x,entity_t,record_x,entity t).
processes(program_x,entity_t,element_x,entity t).

p-ocesses(module_x,entity_t,file_x,entity_t).
processes(module_x,entity_t,document_x,entity_t).
processes (module_x,entity_t,record_x,entity_t).
processes(module_x,entity_t,element_x,entity_t).

runs (user_x,entity_t,system _x,entity_t).
runs (user_x,entity_t,program_x,entity t).
runs (user_x,entity_t,module_x,entity_t).

Now, we can ask " Which entities can participate in the
'process' relationship ? " by :
?- processes(X,entity_t,Y,entity t).

Prolog 1lists all the entities which participate this
relationship as :

X= user_x, Y= file_x;

X= user_x, Y= document_x;

X= user_x, Y= record x;

X= user_x, Y= element_x;

X= system_x, Y= file x;

X= system_x, Y= document_x;
X= system_x, Y= record_x;

X= system_x, Y= element_x;
X= program_x, Y= file_x;

X= program_x, Y= document_x;
X= program_x, Y= record_x;
X= program_x, Y= element_x;
X= module_x, file_x;

X= module_x, document_x;

< g g
w onon

X= module_x, record_x;

X= module_x, Y= element_x;

60

et 0 SR T e T N T TN TS T R S R R T TR TS TS
e e R A i_ e ij:':"' >
: L‘:.mﬁi.s:r NIRRT TN, LR RERY ¥

X As a second example, we can ask " Which entities can
" participate in the 'runs' relationship ? " by :

w A ?- runs(X,entity_t,Y,entity_t).

N X= user_x, system_x;

< <
noon

jﬁ X= user_x, program_x; ‘

o X= user_x, Y= module_x;

&' Prolog rules help programmers to modularize knowledge.
§

Q: It's a way of creating new predicates from old predicates
${ without specifying facts explicitly. The representation of

facts could become tedious, especially if there are hundreds

Q of facts about the same subject. By using rules, we can
k- represent all of these facts easily since the rules are more
%‘ compact than a list of facts. Thus, the rules save a great

deal of data entry effort. Prolog makes it easy to represent 1
l{ indirect relationships. Prolog creates arbitrary data 1
}i structures by means of rules which are themselves data. !
N Prolog offers a wide variety of queries. In the structure |
) ’ of Prolog program there are precise representations for |
’: these queries. Prolog offers a great extensibility in

declaring new facts and rules about the data base.

P A X
[4

N -
Ps

P

3
- S

ol w O i w
o

s

.)
ol AL LVCa O |

o

o

22 61

AL Gl LS

L

U OOGHC G e t% W gt ™ Ve 0y :
hoTea r ittt T I Tt e P LIRSt Y Ry

. -y)
-l ' ‘1. - 3
T

-

2
5
oy V. CONCLUSIONS

. This thesis has explained the importance of metadata and
gqi data dictionary systems in the management and control of the
%{ enterprise's data resource. It has shown that the data
‘%% dictionary system is a central repository of information
'y which helps improve communication between system components
' of an enterprise.
3; This thesis has surveyed seven commercially av-ilable
e data dictionary systems. It has explained the characteris-
il tics and the capabilities of these systems. Thus, the
:§E reader can obtain information about these dictionary
N@ systems, compare them, and investigate the needed
W requirements for a new dictionary system.
: This thesis has develoﬁed a relational data dictionary

-

ol

.* model which was implemented on the ORACLE relational data-
@* base management system. This dictionary model is capable of
'3L satisfying the requirements of many IRDS environments.
;ﬁﬁ Although the relational model is the most popular data model

P

and it has come to be of great practical significance, its
dictionary capabilities are limited.

e g s

o

The ORACLE implementation of the data dictionary model

)

is capable of representing entity-types and relationship-

o
o ol

types between these entities. But, it is not capable of

o -
o o vy
ol

e
e’
Palei’s

representing rules about information resource management

‘ég data. Since information management data must contain rules
V“ for its operational purposes, this is a shortcoming of
ﬂg relational data dictionary models.
%& This thesis has explained the general characteristics of
N expert systems. It has proposed a Prolog model of a data
E{ dictionary as an expert system. Using 1logic-oriented
g&: language Prolog, the rules about the information resource
; management data can be implemented easily. This model shows

that logic programming is suitable for relational database

l..’ 62

LA AN AR CAN 2\ R N . at N2t N N N .. IR D W W -~
SN R R P N e S A S L0 0 S R

(NN applications. Thus, the user can save a great deal of data
kﬂ: entry effort by using rules instead of representing data
explicitly. Prolog representation of data provides flexible
extensibility features especially when adding new data into
e the database. Since Prolog is primarily a prototype tool,
h o however, this suggests that more research needs to be done
) concerning the efficient implementation of rules in a
'%%7 relational environment.

W 63

A T c W e AR L) [P LS bl e "‘--\7-«\.‘-‘*‘-').1-\
ROODCL AN *z““!'»m-l‘bl‘!‘t bllt.b”i .'l.' ! n.ha:."n.. yo,'!‘.h‘, .. k,u-,'-!' !' KN ,l.. Ilr~ B Y 3= .“

W W W W I W T VT TFAN. N WP IRMN MM TuRe L T AT _.__1

APPENDIX A
ORACLE TABLES OF ENTITY-TYPES AND RELATIONSHIP-TYPES

TABLE USER X
USER_NAME CHAR (15) NOT NULL,
DESCRIPTION CHAR (60),
CLASSIFICATION CHAR (10),
DATE_ADDED CHAR (10),
ADDED_BY CHAR (15),
LAST_MODIFICATION DATE DATE,
LAST_MODIFIED BY CHAR (15),
NUMBER_OF_MODIFICATIONS NUMBER,
LOCATION CHAR(15),
COMMENTS CHAR (45),
SECURITY CHAR (10);

TABLE SYSTEM

SYSTEM_NAME CHAR (10) NOT NULL,
DESCRIPTION CHAR (60),
CLASS_FICATION CHAR (10),
DATE_ADDED DATE,

ADDED BY CHAR (15),
LAST_MODIFICATION DATE DATE,
LAST_MODIFIED BY CHAR (15),
NUMBER_OF_MODIFICATIONS NUMBER,
LOCATION CHAR (15),
DURATION_VALUE NUMBER,

DURATION TYPE CHAR (10),
COMMENTS CHAR (45),

SECURITY CHAR (10);

TABLE PROGRAM
PROGRAM_NAME CHAR (10) NOT NULL,
DESCRIPTION CHAR (60),

64

NUMBER_OF_LINES OF CODE NUMBER,
CLASSIFICATION CHAR (10),
DATE_ADDED DATE,

ADDED BY CHAR (15),

LAST _MODIFICATION DATE DATE,
LAST MODIFIED BY CHAR (15),
NUMBER_OF MODIFICATIONS NUMBER,
LOCATION CHAR (15),
DURATION_VALUE NUMBER,

DURATION TYPE CHAR (10),
COMMENTS CHAR (45),

SECURITY CHAR (10);

TABLE MODULE
MODULE_NAME CHAR (10) NOT NULL,
DESCRIPTION CHAR (60),
CLASSIFICATION CHAR (10),
DATE_ADDED DATE,
ADDED_BY CHAR (15),
LAST_MODIFICATION DATE DATE,
LAST_MODIFIED_BY CHAR (15),
LOCATION CHAR (15),
NUMBER_OF_LINES_OF_CODE NUMBER,
NUMBER_OF MODIFICATIONS NUMBER,
COMMENTS CHAR (45),
SECURITY CHAR (10);

TABLE FILE X
FILE _NAME CHAR (10) NOT NULL,
DESCRIPTION CHAR (60),
CLASSIFICATION CHAR (10),
DATE_ADDED DATE,
ADDED_BY CHAR (15),
LAST_MODIFICATION DATE DATE,
LAST_MODIFIED BY CHAR (15),
LOCATION CHAR (15),

65

S N AR RN R AL ST R ety “'"»'s".'w.\\-.-‘-.‘«.-.-.
3 " _'a.‘- y e N0, N L * J. 2% <. :_ s "J

..‘.-.\\\‘ ’\\"\ L LN
PN

J‘:.

NUMBER_OF MODIFICATIONS NUMBER,
" NUMBER_OF RECORDS NUMBER,

E‘ COMMENTS CHAR (45),

SECURITY CHAR (10);

. 3 TABLE DOCUMENT
%”' DOCUMENT_NAME CHAR (10) NOT NULL,
& DESCRIPTION CHAR (60),

)

CLASSIFICATION CHAR (10),
DATE_ADDED DATE,

ADDED_BY CHAR (15),
LAST_MODIFICATION DATE DATE,
LAST MODIFIED BY CHAR (15),

S

L X L)
R R LIAESS

.
-

5%& LOCATION CHAR (15),

5;5 NUMBER_OF MODIFICATIONS NUMBER,
s COMMENTS CHAR (45),

o SECURITY CHAR (10);

NN

L TABLE RECORD

QM? RECORD_NAME CHAR (10) NOT NULL,]
- DESCRIPTION CHAR (60),

129 CLASSIFICATION CHAR (10),

o DATE_ADDED DATE, 1
ikz ADDED_BY CHAR (15),

B LAST_MODIFICATION DATE DATE,

= LAST MODIFIED_BY CHAR (15),

;fs NUMBER_OF MODIFICATIONS NUMBER,
Giod RECORD_CATEGORY CHAR (10),

- _ COMMENTS CHAR (45),

55 SECURITY CHAR (10);

;;b TABLE ELEMENT

Ao ELEMENT NAME CHAR (10) NOT NULL,
o DESCRIPTION CHAR (60),

?ﬁ; CLASSIFICATION CHAR (10),

L DATE_ADDED DATE,

RN ADDED_BY CHAR (15),

-‘ ‘.

! f 66

)

i

[

1) I P LR, R R R N W)
A pie, " "' RACACRTRE -’\.\'_.,\ .
) ‘.0".-"’« NGNS 1 C. 'y w. } . o NV s

e T T R '-»,\'Q}'\: ﬂ ‘:}.-(j LR ﬁ:}‘ COLoEN :3‘-‘ ‘i".\-‘ﬂ
Chor pcin "mesu X h.-".\‘.CM‘ IR W \,\): W

baad i a8 ook ol Aokl Zak Lol Aok 2ok S S 2 h falb dad ok Bk bk Bl SL ik L ASE ACh A h a il A a-h Bl At ads el o d ath TR ot s LR ol -—--us—w“—-j

LAST_MODIFICATION DATE DATE,
LAST MODIFIED BY CHAR (15),
NUMBER_OF MODIFICATIONS NUMBER,
ALLOWABLE_RANGE NUMBER,
ALLOWABLE_VALUE NUMBER,
COMMENTS CHAR (45),

CODE_LIST LOCATION CHAR (15),
DATA CLASS CHAR (10),

SECURITY CHAR (10);

TABLE CONTAINS X
ENTITY NAME1l CHAR (15),
ENTITY TYPELl CHAR (15),
ENTITY NAME2 CHAR (15),
ENTITY TYPE2 CHAR (15);

TABLE PROCESSES
ENTITY NAMEl CHAR (15),
ENTITY_TYPEl CHAR (15),
ENTITY NAME2 CHAR (15),
ENTITY TYPE2 CHAR (15);

TABLE RESPONSIBLE FOR
* ENTITY_NAMEl CHAR (15),
ENTITY_TYPEL CHAR (15),
ENTITY NAME2 CHAR (15),
ENTITY_TYPE2 CHAR (15);

TABLE RUNS
ENTITY_NAMEl CHAR (15),
ENTITY_TYPEl CHAR (15),
ENTITY NAME2 CHAR (15),
ENTITY_TYPE2 CHAR (15);

TABLE GOES TO
ENTITY NAMEl CHAR (15),
ENTITY_TYPEl CHAR (15),
ENTITY_NAME2 CHAR (15),

67

X

LX)

%2 ENTITY TYPE2 CHAR (15);
:;. TABLE DERIVED FROM

'». ENTITY_NAMEl CHAR (15),
%g ENTITY_TYPEL CHAR (15),
ko ENTITY NAME2 CHAR (15),
o ENTITY TYPE2 CHAR (15);
é} TABLE CALLS

gﬁ ENTITY_NAMEL CHAR (15),
ﬁ% ENTITY TYPEl CHAR (15),
P ENTITY NAME2 CHAR (15),
o ENTITY_TYPE2 CHAR (15);
8 TABLE REPRESENTED AS

o ENTITY NAMEl CHAR (15),
® ENTITY_TYPELl CHAR (15),
o ENTITY NAME2 CHAR (15),
f; ENTITY_TYPE2 CHAR (15);
P , TABLE STANDARD FOR -
p” ENTITY_NAMEl CHAR (15),
i ENTITY_TYPEL CHAR (15), .
o, o ENTITY NAME2 CHAR (15),
@ ENTITY TYPE2 CHAR (15);
o) TABLE HAS SORT KEY

&y ENTITY_NAMEL CHAR (15),
%i ENTITY_TYPEl CHAR (15),
' ENTITY NAME2 CHAR (15),
fal ENTITY TYPE2 CHAR (15);
)

g TABLE HAS ACCESS KEY

N ENTITY NAMEL CHAR (15),
P ENTITY_TYPEL CHAR (15),
. ENTITY_NAME2 CHAR (15),
o ENTITY TYPE2 CHAR (15);
'

s TABLE ALIAS

%

¥ °
R

‘l]

h l-'e‘l n i] '| K -~) :. BRI ._:"_1 .,';f'. DR TR TSR .:qu_:.\- " ‘(1-.-(.‘.."\-:\-(\ fJ‘n‘\E*i“ -I‘,s-"m
N o T D L D S, ‘ A IRORCATR LN TN N i A G b Al

za ENTITY_NAME CHAR (15),
%ﬂ ENTITY TYPE CHAR (15),
RO

ﬁ% ALIAS_NAME CHAR (15);

N) TABLE CATEGORY
b ENTITY_NAME CHAR (15),

s ENTITY_TYPE CHAR (15),
W CATEGORY NAME CHAR (15);
ﬁﬁ TABLE RELATIONSHIP

ﬁ? ENTITY_NAMELl CHAR (15),
N ENTITY_TYPEL CHAR (15),

‘ ENTITY NAME2 CHAR (15),
o ENTITY_TYPE2 CHAR (15),
" RELATION CHAR (15);

R TABLE ENTITY

! ENTITY_NAME CHAR (15) NOT NULL,
| ﬁ DESCRIPTION CHAR (60),
;'3 CLASSIFICATION CHAR (10),
R - DATE_ADDED DATE,

ADDED_BY CHAR (15),

LAST _MODIFICATION DATE DATE,
LAST_MODIFIED BY CHAR (15),
NUMBER_OF_MODIFICATIONS NUMBER,
LOCATION CHAR (15),

COMMENTS CHAR (45),

SECURITY CHAR (10);

o
e o
S R &1L ot

e
O

»

U3

~
cl

AL

S
-

W
Tl e o g
A

- h"‘qﬂ‘rf
N

o ge

, 69

DA R N R RN g L s R R A S A ety

WGIRON RO R IR IRSAIR PR PR VNS

APPENDIX B
LISTING OF THE TUPLES IN THE DATA BASE

NOSNHOS

Q04

qd04

4IdCw2 LSV

SSVYIINN

Sg=-9Nv=-¢l

SSvIINN

Sg-d3s=-2¢

SSYIINN
cg=-TIr=sl

Al19nJ3S

[QUW2 LSV

At20300Y Judv=231vAd T47sSvd

. ¥s1a
QYCd Sy~Ayn=01 HISVYAVK
»SIqQ
SINCL S¥=NNT=SI VNV SAS
»SIqQ
GANCIK S8=-¥dv=22 t9Cud

S1N3kn0I

NOILv3GT

2

¥3Sit SQcC ININ
3

¥3sr SqcC SYrCk1 -
l

43S Sac NOSKhHCT

SNOTLYITAIUCWI4CA8TEAIN

NOTLdI»3S3IC 3Ihvhad3ISN

fxa33sn wWO¥s 2
¥ 133738 <14n

< BT L S b\..rn.\,u-. A5 G R ST AN % R
; a2~ 4 o h o, oW d
2 JTOXnens: RN) AR Jinannr| | RREEAES

n'("l.“r
.t A’
P

PN

v-‘.
Lol

Y

-

>

-”

AP

1L

70
'f' q,'

"
Ud

o

2

RIS ¥5

WA,

& ...% "

- G AR

SSY1JiN
ASId &1 A3NIrY
CH=120=12 NOSHIANY SE=-1Ar-1¢ SAS S37v¢S ERLAS [4vS
134238
NSIQ S SCGI3IFKS
SB=9NV=061 JLivy Sg=-AvVn=91 b# SAS LJY¥YISIN HIYv IS I S=S3Y
SSYIIIMN
NSId ¢ SIANCT
Q¥=d3S-n2 11038 SH=yvk=S| 24 SAS INPCIIV INPQS DY 2=2J3v ﬂu A
B2
coceeoweoene e s ome®os -\ﬂ..
ALI¥rd3s SINIWKCI W
L T X T N X § X J R ey A o e Y R X R LN L X A4 LR X R W W=y R R N R R R R N N) L XK B XN X N 3 ,-.J\\Ihm
J9NOT LN 3NTvALMOILVAENG NUTLIYIOT SHCTILIVvIIATICOA-40283unnn 4IC0OW1LSYT m
1d0n+1SVY A8-4030¢v 30Qv-=23Llvy I41Ssv) NGILldI¥M3S 30 nwILSAS wvl an3JLSAS W
"-j
$aJ1ISAS WON4 2 ”.
¥ 12373S <I4n A
Py
SRS \»vﬁlnrw SO <, acs Py URIMAIRIES. ol R oy IS I T, PSR 1 o o s D
P :o.,n‘n.i e T e e @ B e S A A G *(S WS S S RN RS) R

-y —————

TR

XS14Q

ASId

ASIa

7 °1 1103S S@=~d3iS-9l 1 %1 1163S S8=9nv=£2
J0¢dSJIv AC 3114 (rdinC TvI33dS

SSYI1IAN
n - 0
W *9 N3ITTV SE-9rv-g?2
9CHYdSIIV 40 3714 904d ALV VIVC

SSVIIMN
S {
°7 °1 11038 S8=435-50 *7 °1 1103S $9-9ry=-s¢
9C¥eSIIV 40 3714 1NeNI

SSVI1aAnN
8 I

IMNNQI3Y
3714933y

INNGIZY
3714433v

INNGIZY
37134932y

NS10 W °9 N3Ny S8=-9My=0% ®7 °1 11028 S8=-9iv-G2 INNOIZY o
90:dSI3Y 46 3114 1r4ing 31148923y m~
ALI¥i)3S SININRC)
SCHCIIYAICHL Fan'h SNOTIVII4LIUCAIICEIARAN
NOTLVY3CT usUIIJ1AUW+1SYT 1QOwLSY AE+U304Qv 300v43LvC vIildissyl)
NOTLdINISIC 3InvA+3714
EX23714 wCus ¢
¥ 1337138 <14dn
-~ PO E - e e e - e o - P A T) ¥ .‘-r- ol R \)l.l“% ‘\rﬂn,-ﬂnl .,wwl o v. -J!n‘l N '“!”'l'll.llﬂ.‘h . wﬁ!-.ll!hﬁﬁ;mlbrﬂw “Wﬂ.““v”!"m
AW R s v e 7 e P A R O RS I s Y o W R R, @ L X

- - - sSYIn S .
9 2

ALINN]3S

STt ePTacra®etnteeaGeaecnataTenTRnYaceweStSa®goaTan

SiINIWKWCD

. SCU0IFA*ILHEIEWNN SKOTLVIL 4TACKS 4CHEIERMIN

TaYeCeNe® NSO TSN EREE AanEmEuOeToes PRTeP gl

NOTIvICT 44031 41A0m24SYT 1QOW2LISYT At=203ddy 3Q0v+3tvC vILJIISSVT)

WOL1al®3S3C Fnvh23714

73

LURE
T

g 3 .A Y
DN ﬁ‘s‘0.,7l‘,Jflr‘f"zf%§‘}‘l.f453‘§l&35

dh

"

°7 °1 11038 S€=-9ny~-01 13INAQSY3d
GYUIJY ¥3Iwwveaalye SNOS¥3d

SSyIJAN

T3INNOSH3d)
7 *1 11038 S8=-120~60 7 *1 1163S S€-9nv=~GS1 13INNOS¥IJ
Q¥0GI3Y4 NVKSITVS PAOS¥3¢

SSyIIAN

INNGIIV 0O
*H °f 300 Ssg=-1nr=11 INNCIJY
G¥CI3Y T0UAVE 98 - 971 ToYAVE

© 8SYIIAN

INNGIIY 9
*helC 300 Sg=1r=171 INNOJ2Y
GyLI3Y V0HAVd S S170¥AVd

*H °r 3CG SE=INr=gI

ALlyna3s

SINhIwnG] LvI+CYCIIY SNOLIVIT S1ACKI 4CHETHRI N

§+0314100W21SVY7 [QCGR21SVT Ae2G3dav 300v431ve vII41SSvI)

.'--l'--'--"--'----'------'--'---'-'--I-"----'-‘-'-'--'. e GSgeaSsgeo-e

AOLLIdI&ISIC wWyNaGNCI3N

fQuCI3M nwCyd 2
¥ 133738 <14n

- Ay p S A e oy L, Ao e S L e ! -
LRI\ SIEENE N SSSRAR | AT
S L Tk \J s R R e R P e

74

Chad L. . U

-

t,l,'_,, WS

Py,
3 AL

>

MR

P 3
A l‘;.‘ N

o » 1
!h A !h "

»
v‘d" Wv 6,0 Wy

W
W

e PO
(A RIERNEIEOGAO R

()
Wt

L o DA .
LA ;‘?*e"v‘\“ﬁ‘!‘v:‘?‘ﬁﬂﬁ'-

AW

i L)
RO

AR

:

e

; o Ll T T FRS AL P P) gL .

o e e M ¢ ‘\v A fv 12 e e X B , iy N
O - 4) Kl Rl e o, e g Y . SR, .
el ey | T T TS e e a e o A AN

. SSYINN
A36M0SY3 O

ALiyna3s i

MATETOT RPN RT R R RERO AT LA B RERRR N AN R BDOBD O RSB MEE G eI O ST e e m "

SINTWR0D Lyl uCIY SANOTEIVIL 4IGCRI4CABTIERTN

e rmtceetecanes enmmcacms Feemeaeacetsces Seemtefes SecaTacese ~

84C3TJIUCKW21SYT TQUR+ISYT AE403ICAY 30ay+3{vC VIl 416eSvy)

75

Lo hed Al Bl Al R R R R R R X R A L R P X L R X RN I YRR R R Y R P R Ry e L T .

|
. NOLLdIedS3C AVNAGH0TTY M

c YR e

*H °f 300 S8=-9Nv-02 Swo*9 N3NV SE-nr-21 13NMNOSYH3d

801 40 ¥v3IA NOILWNIWE3| h3td
SSVIINN TINNDS Y 3d %¥s1a
4
*H °r 30¢ S8~-9Nv=S1 ‘W *S A3V Se-INr=21 13NNOSY3d
AVACIAIGONT 40 v3dv 111IAS t3xd
SSYIINN . INACIIY ¥S1a
0
*H °r 300 S8-=1nr-=si INNGI3Y
AVFAIAIONT 34C SS3yuav SILvIICNI €323v
SSVIINN 1&NCIIv AS1Q
t
*H *f 30G S8=-9ny-8¢ *H °f 300 Sg=Tnr-tl 1NNGI3V
AVNATAIGNT 40 A¥YIVS S3LVIICN] 2333v
L T X L N L ¥ X ¥ 1 Y P L Y Y LY K N ¥ 0 N E L K L N L X A R 2 X T ¥ T & E X L X K X L X A & & X J eSS ocoaneenSeTegoaes n
- ALI¥MI3S | S1N3wW0) SSVI34vLve

LVIGI91SI 143400 INAVASITAYVOTITY JINVY2IIAVACTTIY SLOTLVITIIACKAIJCHAEAURTN

H0JTJIAC21SvT [QGw41Sw AE23G300v 30Qv43LivC vll4isSvY)

NOTLATHIS3C wN2LANIRITT

£In3n 373 WCHS 2
¥ 13373S <I4n

NPT W AR AR AR T ees T e T WA e e@ i e W e - 'AL.T
1

Nrve 4
PO 0‘.; WSO

Q?

SSvIIanNN NINANDSH I ¥S1a
. . P4

*H °r N3y SQ=d3S=-2! ‘H °f 300 S8=-9ny=¢2 T1INNOSY5d

gor 40 37111 S3kd

SSyl1anNn - - : - - T3INNOSH3d Sl
13

A A% :
AN CE XA RN (XA K

4

&

=
=
d
<
2
.
G
g%,

L X N L ¥ X ¥ ¥ ¥ 3 Y T I ry v I ryr rr yr o rx Y ¥ X X 0 X N N B ¥ ¥ F ¥ X ¥ ¥ KX L ¥ X X J oo oeaeeee®"geeme

AlIdn)3s : SIKINWDD Ssvllavivg

1Y2CT21S11433a02 INIVAITHYNUGTITIY JINVYIITAYMCITY SnOELVITJLUCK2ICIEIBRIN

8031 4TQ0W21SYT [Q0OR21SVT A62¢3007 Jauv=+31vyC viIl4IsSv)

NOTLJdTH3STIC wN2ENIAIT]I

77
30

ARy

BN N

.

SRR

VR

1

g 4.0

PO AN

-8

- ~
s g e "o e - e g - r— & - KR, Y *2* - bd RS, S
RIS BERENE, eSS EEEEERR A e | VRS \ERRET
Celeegma T et e e SR XS € o n < S R KR XA B e O et vawe @ . Y. e T

IN3WNJ0Q
qy0J3¥
qu033¥

ERF

23dALlALTING

hV¥9GC¥d
370QGh
AR RIe-T-

CAdAL+ALTIINT

IIHACHK
KWV YIQdd
WvYyJ0ed

CAdAL»ALILNT

37148232y

200@832Jv FRIE

HNOSH3d ILEIERE] t 3ed

tNOSH3d IN3IWrJ0a 2Cycy3d

3714922V IN3JIFJ04 JLgsaily
CIhYNAALTIINT 13dAl+A11INT T3nyAaALTLINT

£A0E490Q3A1YHI0 wWlNH4 2
¥» 133713S <I4n

Z2=23v n3ILSAS [=-vsS
o193V 3 dCw Cov 1SJ3Y
69dJ3v wWv¥s0¥d 69dJ3v
CINVHhaALIING T3dAlaAglNg 13nuN2ALTINT

£01453C9 wCyx4 2
¥ 133735 <I4n

¢or 1933y £3Isn *n *9 KNIV
t9dIIv 35N NI VY
¥9d422Jv L3Ln °7 1 11028

IInyh+ALTINT

CINVNSALTIING 13dAt+ALI10L3

ISNFY woys 2
¥ [J473S <I4dn

WOl X+3714 3114922y
wol X314 3114S33v
WUl : Wvy90yd 917084AVd
WGJ wWva904d S17084Avd
Wol wWYdS0dd 2=1MnCIJv

FWVN2AYU9T VYD AdAl+AL 1113 Jnvh2ALTINT

£A80931VI WOY¥4 » £3373S <I4n

0xdY wvdld0ud 2=1kn03J3v

.
Oydv WY H904d 1AN0JZY .54
J3asv WY¥S0dd 2=1nNG3I3V %

Ay}

Y

Jrvp2SYI Y ER Y IR RIE] Invin+ALTLNT

e
&,

4
L3

ISVITv wO¥d 2
¥ 133736 <T14n

"

L) ‘;, .(,‘.l. \

)
’ﬁ‘n.l @.‘l.

400
et

’\'n?

2}
o

: Q
"f'.~ ‘,",' ALY

g
1

F ot ek o] - AN

L8123 |as sFJ4CId4 ¢

AIN4SS3IIVISYH 1n3k3IT3 IN3R3TS 34 3714
AIX21YOUSHSVH IGELERE] Lh3Iw33 EREEE ERNE
WO¥4203IATH3C ERIFE a4 3714 314
WO 4203IANIYIC INIWNI0d IN3wi3ua 3714 314

SMNIVING] INIW3T3 INIWI3 34 3714
SNIVINCD Q¥033Y Q4033 3I4 EREIF|
SNIVING] IN3r(13CQ LM3Wid0a nl4 3714 o
SNIVINGI 314 A 314 ERRE 3714 ©
NOILVI3Y 23dALALLIENT 2InvihaALTLNT 13aAl2A11EN] 1IWVASALTING

£ gThSLOTLVIIN KWCY¥a 2
) ¥ 1231735 <I4r

SO AR ey T
2 r . ; !

a
L% «
Ea 0~ & Ay~

Bar-Tar~ir- ae AT

AR A PPV O R Wy .~
oo MvutL .vrx.,q 4.8 7, &4 S T Sl

D |

e TR e TR TS

T WO U R L WL ok, -
M Al Ada-aze s Al Aia Ate e S Al MS didhdi i bt

TN NN WPV WY

lvol4d nLd
ONTHIS28VHD I1HD
INIOd-03XxI4 Sd4
INTHLSHHYHI €HD
C3dALALLLINT CIAVNSALILINT
Wvy90¥d £9d¥3d
37NQ0h aow 1932y
37NQ0K T GOR19)dv
3INACK ¢owisSJay
2AdALaALTINT SIaVUNSAL{INT

IN3IN33 InT 4
1N3In33 £333v
IN3In33 h3td
IN3In3IT3 £ 3ed
13cAlaALTINT [3nvhaALTIN]T

ISvYQ31MISIE4IY KWOHS 2
¥ 1203738 <I4n

WV¥390da 99423V
3radon AGWl 1923V
WVYd9Qad 9433y
WYHEOLd 8942y
13dALaAL]1v 3 t3nviad [IN]T

$¢6T1Iv wCHd ¢
v+ 1237138 <14n

WV T TTE YT R X TEE NP ON W T WO ITEOvT T TTTEVTISTON IR (M g P A MM AT T, T

LIST OF REFERENCES

1. Leong-Hong, = B. Ww. and Plagman_ B. H., Data
D1ct10nary7D1rectq;y Systems, John Wiley & Sons, Inc., '
1982

2. %l%en, E.dW.D,Loqmis, Eﬁ.s. ¢ and gan?ing, M.CV., :Ihe
ntegrate ictionar irecto stem omputing
Survgxs, Vol. 12, No.yé, June {382.y ’
3. Lefkovits C. , Sibley, E H and Lefkovits, S. |

H. . .
Information Resource / Data Dictionary Systems,

QED Information Sciences, Inc. , 1983

4. Kroenke, D. _, Database Processing, Science Research
Associates, Inc.™, .

5. Oracle Corporation, ORACLE Manual Vol. I, 1984.

6. Winston P. H. Artificial Intelligence, Addison
Wesley ?ubllshlng Co.= Inc. , 1984,

7. Waterman, D. A. , and Lenat, D. B.
, Systems, Addison’Wesley Pub. Co. , 1983

Building Expert

8. Clocksin, W. F. and Mellish, C Programming in

. S.
Prolog, Springer - Verlag, Berlin, 1984.

BIBLIOGRAPHY

Berghel H. L. ,. "Simplified Integration of Prolog with
RDBHS', 'Data Base,’16, 3 (Spring 198595 3-13" &

Browne, et al An Evolutionary Data Base Management System.
ggggee&ings of 4Th IEEE‘CEE§§E% 1980, Chicago, , O%fEBEr

Cardenas, A. F. _, Data Base Management Systems, 2nd ed. |,
lyn and Bacon, Inc. , 19857

IEEE 1984 International Symposium on Logic Programming 6-9
February 1982, SYmpos - & & :

Kerschberg, L. , Marchand, D. ,Sen, A. , Information

System Integration : A ~ Metadita Managemént~ Approach,

P%Bﬁiéd1h§§—s-6f"fhe 4Th InEETﬁ“tldﬁEIg Conference on
ed.),

{gggrmation Systems, Ross, K. Houston, TX, December

Koltemann, J. E. and Konynski, B. R. , Dynamic Metasystems
for Information Systems Development, EroE%EHTﬁEs‘Ef E%e'Stﬁ
fiterfiationa Conference on Information Systems, Maggi,
L.,King, J. L. ,and Kraemer, K. L. , (eds.), Tucson, AZ,
November 1984. .

Mc Carthy, J. L. , Metadata Management for Large Statistical
8fﬁ‘§ﬁf“?ﬁ

Databases, Proceeding 0 nternation _.Conference_on
¥g§§‘t§f§e Data Bases (VLDB), Mexico City, Mexico, September
NBS Special Publication 500-92, Data Base Directions

Information Resource Management - Strategies and Tools
Goldfine A. -HT‘_%EK),‘—Szgféﬁbér—l984 Uf§c1e Lorporatlon:
ORACLE Manual Vol. II, 1984.

Sturdza, P. Data Dictionary Design with an Artificial
Intelligence ModeT, Proceedlngg“—ﬁé“ “the_ Toth Hawaii
Iﬁfﬁfhigiﬁﬁﬁl Conference on System Sciences, 1983.

Ullman, J. D. _, Princigles of Database Systems, Computer
Science Press, Inc.™, .

83

A L D R R B M N

10.

11.

12.

Rodia Aot _aile b ohiiete bt it ol e et

INITIAL DISTRIBUTION LIST

No.

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Librar¥, Code 0142
Naval ostEraduate.Schoo%
Monterey, California 93943-5100

Department Chairman, Code 52MI
Department of Compufer Science
Naval Postéraduate_Schoo
Monterey, California 93943

Prof. Dolk D.R., Code 54Dk .
Department of Administrative Science
Naval Postgraduate_School

Monterey, California 93943

Prof. Hsiao D.H., Code 53Fs
Department of Computer Science
Naval Postéra¢uate_8choo%
Monterey, California 93943

Gokhan Dedeoglu
Eminalipasa Cad. 91-4
Bostanci, Istanbul, TURKEY

Deniz Kuvvetleri Komutanligi
Personel Daire Baskanliél
Bakanliklar, Ankara TURKEY

Deniz Harb Okulu Komutanligi .
Fenn_Bilimleri Bolum Baskan§1g1
Tuzla, Istanbul TURKEY

Deniz Harb Okulu Komutanligi
Kutuphanesi
Tuzla, Istanbul TURKEY

Istanbul Teknik Universitesi |
Bilgisayar Bilimleri_Fakultesi
Kutuphanesi, Istanbul, TURKEY

Bgﬁa;ici Universitesi .
Bilgisayar Bilimleri Fakultesi
Kutuphanesi,Istanbul, TURKEY

Ahmet Corapcioglu
NPS SMC # 2913
Monterey, CA 93943

84

. «-‘vg

Copies

L

TR S e RN

4

BAY:

S

T T e e T e R e

|
i
“1
1'

