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INTRODUCTION

The potential benefits of an electrically conductive polymer consist of the pos.sib.il.ity of com-
bining the attractive characteristics of polymers such as low density, processing variability, and rea-
sonable environmental stability with the electrical properties of a semi-conductor or metal.' These
materials possess an enormous potential as possible candidates for use in lightweight batt.enes, poly-
meric electromagnetic shielding components, photovoltaic cells, electrodes, and electronic switches.
In principle, the well-established ability to tailor a polymer for a specific set of physical and me-
chanical properties is now broadened to include electrical behavior.

The usefulness of electrically conductive polymers has been limited by either the iack of envi-
ronmental stability, inherent processing constraints, or poor mechanical behavior. While an exten-
sive effort has been directed towards synthetic chemistry and electrical properties, few studies have
focused on structure/mechanical behavior relationships {1-5]. However, utilization of such materi-
als will depend on understanding the mechanical behavior based on the chemical structure along
with understanding the physical behavior.,

This study is directed at defining and understanding the role of the dopant species in the me-
chanical behavior of several polypyrrole/dopant anion systems. Conductive polypyrrole has exhib-
ited creditable environmental stability with minimal conductivity losses upon exposure to the atmo-
sphere [6]. Although it is intractable, the noteworthy mechanical integrity of Polypyrrole has
prompted continued interest in its study for potential electronic applications. Conductive polypyr-
role is actually a composite on a molecular level with an ionic attraction between polymer and
dopant species. Understanding the relationship of this structure to the material behavior may aid in

controlling the strength, compliance, and energy-absorbing characteristics (toughness) of the mate-
rial.

STRUCTURE/PROPERTY STUDIES

Of the many structure/property studies undertaken in conductive polymers, the majority of
these efforts have been on polyacetylene or polyacetylene blends [1-3, 7-10). The chara. .2rization
usually consists of one or more types of spectroscopy (such as IR, UV-VIS, NMR, XPS, etc.) in
addition to thermal analysis, electrical conductivity, and diffraction studies. Heterocyclic conduc-
tive polymers such as polypyrrole and polythiophene have also been studied extensively. Pfluger
and Street have used XPS to characterize the chemical and physical properties [11]. In this study
XPS techniques were used to investigate the structural disorder in polypyrrole and polybithiophenes
grown electrochemically. Nazzel and Street have used radiochemical technique to determine the
molecular weight of pyrrole-based polymers [12]. The results showed that the average number of
pyrrole units was about 750 for polydimethylpyrrole perchlorate which corresponds to 8 molecular
weight of about 100,000. However, the molecular weight of polypyrrole itself may be significantly
different in view of the potential role of the beta-carbons in chain branching. X-ray diffraction
studies by Wegner have been used to derive a structural model of polypyrrole with various alkyl-

sulfonates. In addition, there have been numerous other studies on the chemical structure and
physical properties [13-16] . '

The mechanical properties have not been addressed as extensively, Diaz and coworkers have
reported on the effects of the preparation conditions on the mechanical behavior [4]. Their results
indicate a change in conductivity and tensile strength with electrolyte solvent. Wynne and Street
have examined the mechanical behavior of polypyrrole while improving the synthetic procedure
[17]. In this study it was found that polypyrrole could be grown on vitreous carbon electrodes




LA

Lo

G
d _5.. S

-_._C‘;; P

e

et
L e

P

a2
s

-
- /‘t". A

o

& %o i
» S0 ik

»

1

DO
A

NN
S

4 &
I

74

&

e
Py
.l' "

L% ¥ “'
s,

"
"
3]

‘l. LS

)

T

R DL Ll P

Qana0s ]

NADC-85160-60

which allow the use of high voltages and high currents to permit the growth of thick films in rela-
tively short times. Ogasawara et al., have obtained improved strain to failure and increased electri-
cal conductivity via various preparation conditions, [18].
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EXPERIMENTAL

MATERIALS

An electrolytic cell was used in the synthesis of the polypyrrole/anion films. Tvyo sizes were
employed. One was a 200 mi capacity beaker with a vitreous carbon anode (Ato!nenc Chemetals)
and a platinum mesh-cathode that produced approximately 18 em< of polymer film. The larger cell
consisted of a 2.0 liter capacity battery jar with vitreous carbon and platinum mesh el.ec.trodes that
produced approximately 75 cm of film. AnAg/Ag* (Ag in 0.1M AgNO3 and acetonitrile) refer-
ence electrode was used to determine the potential. This reference electrode was checked against a
standard calomel electrode and showed a 0.345 V potential difference. This value fell within the
range of 0.28 to 0.35 V reported in the literature [19]. All of the syntheses were performed under
constant potential while monitoring the current density. In addition all of the syntheses were per-
formed under ambient conditions {23°C and approximately 60% RH).

The polypyrrole films were prepared according to the method developed by Wynne and Street
for production of PP/OTs films without special precautions to exclude air [17]. The cell solution
consisted of pyrrole {0.3M), the dopant species (0.15M), and acetonitrile. The pyrrole was passed
through 300 mesh activated alumina prior to use. Spectral grade acetonitrile was used without fur-
ther purification. The tetraethylammonium p-toluene sulfonate (OTs) and silver p-toluene sul-
fonate were used as received (Alfa). A small amount of water (0.5%) was added to the solution to
provide the cathode reaction which is the reduction of protons.

Other para-substituted benzene sulfonates were synthesized for use as the dopant counterion.
In each case, the acid was mixed with tetraethyammonium hydroxide (TEA-OH) on a 1:1 molar
basis. The TEA-OH is supplied as 40% in solution with water. For example, 42.8 m| (0.283 moles)
of ethylbenzenesulfonic acid was reacted with 100 ml (0.283 moles) of tetraethylammonium hy-
droxide (40% in water) in a stirred flask. To remove the water and isolate the salt the compounds
were placed in a large evacuated dessiccator with P20s. The purity of the product salt was exam-
ined by proton NMR. The tetraethyammonium saits of benzenesulfonate (BS), ethyulbenzenesul-
fonate (EBS), and dodecylbenzenesulfonate (DBS) were made in the above manner. For the per-

chlorate films the lithium salt was used as received. These films were prepared in tetrahydrofuran
under dry box conditions [20] .

COMPOSITION AND PHYSICAL STUDIES

Elemental analyses were performed on samples that were extracted in a soxhlet apparatus for a
minimum of 4 hours and dried at 95°C under dynamic vacuum for 8 hours. The analyses were per-
formed by Schwarzkopf Laboratories. Electrical conductivity was determined by a four-point
probe technique as described by Wieder [21]. If t (sample thickness) <<S (probe spacing) then the
sample may be considered as essentially two-dimensional and the following equation may be used.

] p = resistivity
. mt

—_ P = —

Oe vii In2 v/i = resistance

The flotation densities were measured using a density gradient column of CC1 4 and toluene
with a calibrated range of 1.35 to 1.38 g/cm3. The column was prepared in the following manner.
The high density solution was formed from a mixture of 200 mi of cclg and BOO ml of toluene with
a resulting density of 1,446 g/cm3. The low density solution was formed from a mixture of 400 m|
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cclg and 600 ml of toluene with a resulting density of 1-302 g/cm3. After attaining hydrostatic
equilibrium, the solutions were slowly allowed to fill the column simuitaneously to form the den-
sity gradient. The column-filling procedure took 4 hours. Thermogravimetric analysis (TGA) was
perform_ed with the DuPont 1090 system at a heating rate of 10°C/min. with atmospheres of nitro-
gen or air.

MECHANICAL BEHAVIOR

The mechanical behavior was assessed by determining the tensile strength, strain to failure,
and modulus using an Instron test machine. A strain rate of .05’'/min was used. Air grips were em-
ployed to prevent slippage. The testing was performed at 23°C. Dynamic mechanical tests were
run using the DuPont 982 DMA with 1090 control system and an automated (IMASS) rheovibron.
The heat-up rates of these systems were 5°C/min and 1°C/min respectively. The DMA from DuPont
measures the power necessary to maintain the resonant frequency of the sample as the temperature
changes. The stress state is complex and the frequency is constantly changing with temperature. In
the rheovibron a sinusoidally varying tensile strain is applied to one end of the sample and the re-
sulting stress response is measured. The frequency remains constant while the temperature changes.
To assume a linear viscoelastic response the amplitude of the strain is kept small. The rheovibron
was run at frequencies of 11 and 110 Hz.

DIFFRACTION STUDIES AND MICROSCOPY

Electron diffraction was performed on polypyrrole samples that were ion milled at liquid ni-
trogen temperatures. The optimum thickness is between 500 and 1000A and can be achieved by
slowly { 48 hrs.) milling the sample until penetration and then using the thinned sample near the
hole. The conductive nature of the samples in addition to their intractibility decrease the possi-
bility of degradation of the material. A Joel 200CX electron microscope was used at 200 kV for
the electron diffraction and transmission electron microscopy (TEM) studies.

X-ray diffraction studies were performed on as-prepared samples in the reflection and trans-
mission modes. Wide angle x-ray scattering (WAXS) and small-angle x-ray scattering (SAXS) were
used to study each of the materials. The equipment consisted of a TEC 210 proportional counter,
Picker x-ray, Ortec power supply, and Lecroy 3500 minicomputer.
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RESULTS AND DISCUSSION

Coupling the behavior of a polymeric material to its structure and morphology requires defini-
tion of the critical issues to be addressed. In this study the polymer is actua!ly a composite of poly-
pyrrole and the anion species, of which the latter may be present in substantial quantity. it there-
fore follows that the concentration of the anion as well as the size or shape may be significant in
determining structure/property correlations. Control of the structure through variations in the
synthesis may ultimately provide the desired properties. The following sections will present experi-
mental results and discussion relevant to these issues.

COMPOSITION AND CHARACTERIZATION

Elementa! analysis was performed on PP*/OTs" films prepared at several electrode p-tentials
to investigate the possible influence of potential on polymer/dopant compositions. Table | contains
the first set of elemental data for potentials that ranged from 0.54V to 1.2V vs the Ag/Ag+ refer-
ence electrode. Oxygen was determined by difference. The sulfur/nitrogen (S/N) ratio was found
to increase with synthesis potential. A second set of data was generated on additional samples made
with high and low synthesis potential to check the previous results. These data, also given in Table
I, show the same trend which is the S/N increase with potential. A third set of data (see Table I},
using silver tosylate, indicated no “‘entrapped’’ salt (i.e., no silver was found in the films) and
showed the same relationship of increasing S/N with increasing potential. The S/O ration remained
fairly constant for all of the samples. These results indicate the possibility of an increase in the
anion concentration as the synthesis potential is increased.

Diaz and coworkers have reported a S/N ration of 0.32 for PP*/OTs™ prepared at potentials of
0.8 to 1.3V vs. the saturated sodium calomel electrode (SCC) [4]. This corresponds to 0.46 to
0.96V vs. the Ag/Ag+ electrode in which the S/N ratio was greater (0.37 to 0.40). The films with
the lower S/N ratio were removed from the electrode, rinsed with acetonitrile, and dried in air.
Therefore, it is possible that residual acetonitrile remained in the samples causing a lower S/N ratio.
Street et al. reported a S/N ratio of 0.43 for PP*/OTs" films prepared at an applied potential of
3V [5]. These films were dried in dynamic vacuum at 95°C.

The flotation densities of the first set of PP*/OTs™ films (0.54V to 1.20V) were measured and
were found to decrease as the potential increased. The data support the notion of an increase in
anion concentration with synthesis potential which will distort the structure and decrease the den-
sity.

Other dopant counterions were used in this study and are shown in Figure 1. The benzene
(BS), ethylbenzene (EBS), and dodecylbenzene (DBS) derivatives where chosen to compare other
para-substituted benzene suifinates with toluenesulfonate (OTs). The biphenylsulfonate was also
attempted but failed to yield films of adequate mechanical integrity for further testing. Perchlorate
films were also studied.

The electrical conductivity of each polypyrrole/anion system was measured via a 4-point probe
apparatus and indicated small differences with respect to the dopant anion. No significant con-
ductivity differences were noted for OTs films prepared at different potentials. Literature values
for PP*/OTs™ are approximately 100 (OHM-CM)-1. Recent studies have addressed the stability of
the electrical conductivity of polypyrrole/anion systems at ambient and elevated temperatures
[22, 23] . In the first study, Munstedt and coworkers show the influence of various comonomers
and counterions on the conductivity [22] . The polypyrrole with benzenedisulfonicacid showed
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Figure 1. Counterion Chemical Structures.
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A

the highest stability with a 50% drop in conductivity at 140°C in 150 days for bezenesulfonicacid,
1.4 days for Cl04; 15 days for BF 4, and 1.9 days for PFg. In the other study, Druy and coworkers
found PP*/OTs™ to be intrinsically stable with respect to conductivity loss in an inert atmosphere

J j‘ [23] . This was the first conducting polymer to make that claim. Activation energies from that
2 study predict a loss of one decade in conductivity for a 3-year ambient exposure period. PPY/OTs”
"-:: was also shown to be thermally stable up to 150°C (in an inert atmosphere) with respect to con-
s ductivity loss and only 35% loss at 200°C for 16 hours. It is evident from both of these studies
that the dopant anion can influence the environmental stability of the polymer.
A0 MECHANICAL BEHAVIOR
'\
b Compositional effects on the ultimate tensile strength were investigated for PP*/OTs™ at each
.. potential. The tensile strengths were determined at room temperature and indicate a loss in
strength with increasing synthesis potential or S/N ratio (see Figure 2). If the increase in S/N ratio
o represents an increase in anion content corresponding to an increase in oxidation of the polypyr-
:: , role, then the loss in strength is due to the incorporation of more anions within the polypyrrole/
A anion structure. An effect due to current density was also observed. At the lower density (0.51
:. mA/cm2 vs. 1.0 mA/cm2) the ultimate tensile strength was approximately 30% higher. The same
2 relationship has been noted for polybithiophene/perchlorate where films electrochemically grown
® under lower current densities tended to have superior mechanical integrity [48]. The ultimate
X tensile strength was also found to decrease with other dopant anions. A summary of the ultimate
) tensile strength, tensile modulus, and strain to failure is given in Table 1l. Note the difference be-
-:; tween PP+/OTs™ (dry) which was prepared in a dry box. The ultimate tensile strength was approxi-
"y mately the same but the modulus (tensile modulus) was higher and the strain to failure less than
: half. The plasticizing effect of moisture decreases the modulus and increases the strain to failure as
* shown in Table II. This same effect was seen by Street and coworkers for PP*/OTs™ films which
N were dried before testing (5, 17] .
[}
"r“ The stress-strain behavior was determined by taking the average of 14 samples for the ultimate
! tensile strength and strain to failure and then using a sample that most closely represented the
X average to determine the stress-strain curves. The data in both cases show no distinct yield point
< but rather a smooth elastic-plastic transition. This same behavior was noted by Street and co-
v workers [17] . The ultimate tensile strength, tensile modulus, and strain to failure are decreased for
: PP*/DBS as well as for all of the other dopant anions compared to OTs (see Figure 3). In this
$ figure the best attainable materials are compared. The PP*/DBS™ and PP*/BS™ samples were pre-
b pared in the small cell arrangement at a potential and current density that yielded films with the
::’,U best mechanical integrity. Attempts to prepare these films at lower potentials and current densities
“ yielded very thin, brittle films unsuitable for further testing. The preparation current densities of
. PP*/DBS™ and PP*/BS" are higher than that of PP*/OTs™ prepared in the larger cell arrangement.
- Using the data of Figure 2 (PP*/OTs™ made in the small cell) the ultimate tensile strength of
x PP*/DBS" is approximately the same as PP*/OTs™ while that of PP*/BS™ is slightly lower (7%). The
*3 dry OTs™ and Cl04~ samples were made with the larger cell (lower current density) and conse-
. quently show higher ultimate tensile strengths compared to the materials made in the smaller cell
‘ (higher current density). This significant effect due to the preparation conditions may explain the
o rather wide range of ultimate tensile strength values given in the literature and in this study. For an
; equal comparison of PP*/OTs™ and PP*/DBS™ with respect to synthesis potential and current den-
’ > sity, the stress-strain curves are given in Figure 4. Note the ultimate tensile strengths are approxi-
% mately equal.
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The dynamic mechanical behavior of the PP*/OTs™ films was studied by two independent
techniques, the constant frequency rheovibron and the variable frequency DMA from DuPont.
Examples are given in Figures 5 and 6. Both tests indicate a small transition in the storage modulus
(E’) at about 40°C. A broad peak in the loss modulus (E*) and tan delta also occurs. This result
was very consistent for the PP*/OTs™ films and was not affected by the synthesis potential. This
small transition was also not affected by the type of dopant anion. This behavior was repeatable
and corresponds to the temperature at which all of the films were prepared. The relatively stiff
structure of polypyrrole would indicate a glass transition temperature (Tg) much greater than 40°C.
Therefore this small change in the modulus is not a Tg and resembles a secondary transition that is
most likely due to a slight movement of a short segment of the polypyrrole backbone. In the high
temperature rheovibron run shown in Figure 7 there is no indication of a true glass transition. Fig-
ure 7 shows the excellent thermal stability of the PP*/OTs™ material. The storage (E’) and loss (E*’)
moduli are not affected by temperature up to 230°C in air. This material withstands a relatively
wide range of temperature (~150 to 230°C) without a large change in modulus and exists as a
flexible film within the entire range.

STRUCTURE AND MORPHOLOGY STUDIES

Electron diffraction studies of several of the polypyrrole/anion systems showed the diffuse
rings typical of amorphous polymers. The outer rings in the patterns give d-spacings of 1.1 and
2.2 A and are most likely harmonics of the inner ring which gives a spacing of 3.2 A. These results
are close to the value reported in the literature by Geiss and coworkers for polypyrrole chains [24] .
Discernible differences between the electron diffraction patterns of these amorphous polymers did
not provide optimum information on chain spacings due to the diffuse nature and low contrast in
the center of the pattern. Photometer readings did not aid in interpreting these results.

X-ray diffraction studies were performed in the transmission and reflection modes. In the re-
flection mode d-spacings perpendicular to the plane of the film are observed while in the transmis-
sion mode d-spacings paraliel to the plane of the films are observed. A comparison of the reflection
patterns for PP*/OTs™ and PP*/DBS" is shown in Figure 8. Note that the lowest 26 value is 7.5
degrees which was due to the geometrical constraint of the sample holder. The PP*/OTs™ material
exhibits a sharper peak at 20 = 25.778° compared to each of the other PP/anion systems. This
represents a greater degree of order which does not exist in the other systems. PP*/OTs™ also ex-
hibited the best mechanical behavior. The mechanical behavior of the PP*/C1O4‘ system ranked
second and correspondingly had the next sharpest peak at 20 = 25.143°. The x-ray data indicate
the greater the degree of order the better the mechanical behavior.

Transmission x-ray data for PP*/OTs™ is shown in Figure 9. Data collected down to 26 = 2°
shows a small-angle peak at 26 = 5.317°, The wide-angle peak was shifted to a lower 20 value
indicating a non-homogeneous structure (compared to the reflection data). Table Il| contains the
d-spacings that correspond to each wide-angle peak for each of the materials in the reflection
mode. The spacing of coplanar pyrrole rings is reported to be 3.41 A, which also corresponds to
the -electron cloud thickness of aromatic hydrocarbon rings [25] . The d-spacings for the transmis-
sion data are found in Table IV. The wide-angle spacings are consistently greater in transmission
than in reflection, thus indicating a difference in morphology paraliel and perpendicular to the
plane of the film. This difference in the spacing exists for each polypyrrole/anion system. The
Van Der Waal's length for each counterion was calculated and is also given in Table IV [26]. The
various sizes of the anions correspond to the d-spacings given by the small-angle peak. Wegner has
reported a similar relationship for polypyrrole/tenside materials {27] . Further studies by Wernet
and coworkers have led to a hypothetical model where the stacks of polypyrrole chains between the
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13 tenside ion double layers are postulated to be analogous to the structure of radical cation salts

p, of simple arenes (28, 29] .

e The anisotrophy that is indicated by the difference between the reflection and transmission

: *-\j modes can be more clearly seen by comparing the data on the same 20 scale and calculating the

o integral breadth which is equivalent to area of the peak divided by the maximum intensity for each.

;Z In addition to the obvious peak shift there is also a broadening in the transmission mode. The in-

E - tegral breadths were calculated and found to be 4.24 degrees for the reflection mode and 6.0 de-

v . grees for the transmission mode. This indicates an increase in order normal to the plane of the film

12 (reflection mode) compared to within the film plane (transmission mode).

*; An approximation of the extent of order can be calculated by using the Debye-Scherrer equa-

] tion [34]. Table V contains a list of the crystallite sizes and the integral breadths from which they

*.':’ were derived. The PP*/DBS™ material had less than half the average crystallite size of PP*/OTs",
thus indicating a significantly less ordered structure. This decrease in order was reflected in the

o poorer mechanical behavior of the PP*/DBS™ system. The difference in order that was seen among

X the anions was found to be primarily a function of the synthesis current density. For example,

> A PP*/OTs™ film prepared at 6V and 7.4 mA/em2 showed the same extent of broadening in the

; wide-angle x-ray peak that was seen for PP*/DBS™ made at 4V and 2.3 mA/cm2. Films compared

K at the same current density for the tosylate and perchlorate anions show a small difference in the

Py extent of order (see Table V). This suggests that the size and shape of the anion will affect the ex-

gl tent of order and consequently the mechanical behavior of the polymer. One must remember that

%j oxidized polypyrrole is amorphous and any order that exists is short ranged (30 A) at best.

)

>y The structure of neutral polypyrrole has been proposed by Geiss & Street as chains of pyrrole

: N rings (mostly a -bonded) lying coplanar and separated by the Van Der Walls radii of the hydrogens
within the plane and by the 7 -electron cloud thickness of aromatic groups through the plane [24] .

2 The anions in conductive polypyrrole are reported to be interculated between the chains within

;_" the plane [25] . Based on these statements a model of conductive pypyrole with tosylate as the

anion is shown in Figure 10. In this model the chain spacing in the plane without the anion is
determined to be 4.8 A. The observed wide-angle spacing within the plane was 4.35 A for PP*/
OTs™. With the anion the spacing is calculated to be 16.9 A. The observed low-angle spacing within
- the plane was 16.6 A. The observed wide-angle spacing through the plane was 3.45 A compared to
3.41 A given in the literature [25] . Thus, the structural model of conductive polypyrrole given in
Figure 10 fits reasonably well with the experimental data.
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CONCLUSIONS

The synthesis, physical and mechanical properties, and structure of oxidized, electrically con-
ductive polypyrrole have been studied and relationships have been investigated. The composition
of PP*/OTs™ was found to change with the synthesis potential. Elemental analysis showed an in-
crease in the sulfur/nitrogen ratio upon increasing the synthesis potential. This indicates an in-
crease in the anion content with synthesis potential. The ultimate tensile strength of PP*/OTs™
was found to decrease as the synthesis potential and current density were increased during the
preparation. The tosylate anion showed the best mechanical behavior of al! of the polypyrrole/
anion systems investigated in this study. In support of this result the tosylate anion also exhibited
the most order structure as determined by x-ray diffraction analysis. This effect was due not only
to the anion but to the synthesis current density as well. A higher synthesis current density yielded
a less ordered material. The strain to failure was found to be less for PP*/OTs™ synthesized under
dry box conditions in agreement with previous findings in the literature. The mechanical proper-
ties of PP*/OTs™ were dependent on the preparation conditions and the optimum properties are
realized at the lower synthesis potentials and current densities. The optimum tensile strength and
modulus of non-dry-box prepared PP*/OTs™ were 10589 PS| [73 MPa] and 2.08 x 105 PSI [1.43
GPa] . Strain-to-failure ranged from 0.08 to 0.42,

Reflection and transmission x-ray diffraction of all of the PP*/anion materials showed a dif-
ference in d-spacing and order exists perpendicular and paralle! to the plane of the films, thus in-
dicating a non-homogeneous structure. Reflection x-ray data for PP*/OTs™ indicated a d-spacing
normal to the plane of the film that corresponded to the -electron cloud thickness of pyrrole rings
(3.41 A). Transmission x-ray data indicate a larger spacing and less order within the plane of the
film for all polypyrrole/anion systems. D-Spacings for the low-angle peaks correspond to the Van
Der Waals size of the anion. The experimental data from the x-ray studies fit reasonably well to
the proposed model,

Examination of the dynamic mechanical behavior revealed a small change in the tensile storage
modulus (E’) at approximately 30°C independent of the dopant anion. This small change in the
modulus is most likely due to a slight movement of a short segment of the polypyrrole backbone
that is similar to the secondary transition exhibited by amorphous polymers.
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