_ MO-A164 956 METHODOLOGY INVESTIGATION MULTILINGUAL STATIC MVSIS 11
TOOL (HSﬂT)(U) RRIIV ELECTRONIC PROVING GROUND F
HURCHUCA AZ L ANDERSON NOV 8

UNCLASSIFIED F/G 9/2

WAPRERCMEN =}

hd
»>

s Y

L AN

o
Yo

[

e

. " -
k - N
A -

A 2

o & b =
—_ s 32

£ W W20 ::j,::

L7

—)

i "
Hi22 s s &

MICROCOPY RESOLUTION TEST CHART '.r
FATIONAS RURTAIN NF CTANDARNG.1063.4 A

‘;. 2y ‘ N i
; . Y 25 AR
L0 ' K N A:‘» n H. ‘."sﬁswm

PG T T LT T

UNCLASSIFIED

DDC AD NUMBER

FUNDING PROJECT NO._ 176657020625

TECOM PROJECT (TRMS) NUMBER__7-C0-R85-EP0-007

TEST ACTIVITY REPORT NO.

. TEST SPONSOR: U.S. ARMY TEST AND
EVALUATION COMMAND

METHODOLOGY INVESTIGATION

FINAL REPORT

MULTILINGUAL STATIC ANALYSIS TOOL

(MSAT)

AD-A164 956

by
Edward L. Anderson

November 1985

- .

) US ARMY ELECTRONIC PROVING GROUND ELECTE
be MAR 0 5 1986
IR FORT HUACHUCA, ARIZONA
o5 E
—

3

UNCLASSIFIED

0 n o T oa
- ~ Q Q
ST A SRS
M *".\v o7 ", -s\-"‘c

e .'k\“ &3 ;":" LN RN AL NS Sl AR b

RS !_‘.. - ~‘ IS PN W SO AR AR T RN S AT »?‘_.r‘,t“—a".; QTS "% " > -1;,-‘ T e e :T\g‘ﬁ., “:
o .t . R . B -

%
CRIICIR Y
- el ". I' ‘.' ‘:
- * 3 *
. ' A °y
. .'_ ." 4'. ." o -'.

&Y
X
14
Lo

s,
3
R

¥

B
B

F e

O3 e DASA AR is A D iiie WA
.

3 .
DISPOSITION INSTRUCTIONS T
- Destroy this report in accordance with appropriate regulations when no :ﬂ"}":":
longer needed. Do not return it to the originator.
v "‘"
s ;::2:511
’ DISCLAIMER e
o - v
Information and data contained in this document are based on input
available at the time of preparation. Because the results may be subject to
change, this document should not be construed to represent the official E-':&'.:}
N position of the U.S. Army Materiel Command unless so stated. .:I:‘.‘.‘
A L eheld
X The use of trade names in this report does not constitute an official ‘;\J
- indorsement or approval of the use of such commercial hardware or software. ;-’-}‘q:
This report may not be cited for purposes of advertisement. N
.
..n
& ST
- Sy
" 1‘3"‘3:
L4 “‘
o e
% NN
\: :’? {,‘,l(
ERANY
KreE
] 3 ad
‘ ’ 4
i

5

e T T A e L g ey e e ey it
Lo AT A ORI £ o AT e L . D ALY AT Y ks . S * "3"&“&“‘31

TR R AT AR AL Lt Tl A it i AN WAV IR TR R

DEPARTMENT OF THE ARMY T .?'.’-P"
HEADQUARTERS, U.S. ARMY TEST AND EVALUATION COMMAND j,.,{.}:._l'.:f,
ABERDEEN PROVING GROUND. MARYLAND 21008 — 8085 .'-_‘,."‘,.{.‘-'-‘
A,
REPLY TO etes
ATTENTION OF Atangraval
-
LA | HnTeYe oY L0
AMSTE-TC-M < ¢ JANISES :'-"'."-‘1:};\"'.:-_
‘.._- - -..‘ -}
a XA wt e
SUBJECT: Methodology Investigation Final Report, TECOM Project Number hf‘\-qh
7-CO-R85-EP0-007 I

Commander

U.S. Army Electronic Proving Ground
ATTN: STEEP-MT-DA

FORT HUACHUCA, AZ B85613-7110

1. Subject report is approved.
2. Test for the Fest,.

FOR TEE COMMANDLGR:

¢ s 2 g /‘,
Accession FoT GROVER H. SHELTON
TNTIS GRA&I C, Metk Imprv Div

DTIC TAR 0 Technology Directorate
Unanuncane~d

Justitication o AN
- - ——d mﬁ
By. e e ___.-J

;N
L2

(-1

o

pistritutiou/ R d

Availnbilit: Cofes RN

T iAvas i unidjor ‘) -’lﬁ
Dist Speeind !

. 4 \

rl'IV‘("i'\v.'.T'. LA AR U MRaE o e AR i ARt S e A YT AT T T TR AT R AT AT AT AT AL YATY
et A . AN L AL SN A

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
TRMS No, 7-CO-R85-EP0-007 / }#M{

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
METHODOLOGY INVESTIGATION FINAL REPORT-MULTI- .
LINGUAL STATIS ANALYSIS TOOL (MSAT) Final Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Edward L. Anderson

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
. . AREA & WORK UNIT NUMBERS

US Army Electronic Proving Ground

Fort Huachuca, AZ 35613-7110 176657020625

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Test and Evaluation Command Nov 1985

Attn: AMSTE-TC-M 13. NUMBER OF PAGES

Aberdeen Proving Ground, MD 21005-5055 84

4. MONITORING AGENCY NAME & ADORESS(If ditferent from Controlling Office) 1S. SECURITY CL ASS. (of thie report)

Unclassified

1Se. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited,

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, It ditferent trom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree side {f necessary and identify by block number)

Software Measurement Software Static Analysis Tool
Software Metrics Software Testing
Software Quality Software Assessment

20. APSTRACT (CTontfnue an reverse siste if naceesary and identify by dlock number)

The Multilingual Static Analysis Tool (MSAT) investigation was conducted to
develop a software tool to automate the collection and reporting of software
design and quality characteristics in a multilingual milieu. The goal of MSAT
is to minimize the manual effort associated with the static software assessment
of a target software system's design, structure, maintainability, modifications
and conformance with documented design and development standards. MSAT
consists of a flexible, language-independent data collection component which

F
DD, n EDITION OF 1 NOV ¢85 IS OPSOLETE

UNCLASSIFIED

SECUMTY CLASSIFICATION OF THIS PAGE (When Deta Entered)

extracts and stores items of interest in a DBMS; static analysis/report N

e
e
X
X

Ay

" e P
Pas
Lol
(g
Na A S
AR
LR AN

P
L)
03
~

I".
7

<
hY

;E!Ffrvgi
* A

2ty
i}

- ‘. ’t "

]

“e e v e
SO

o

)
[N
"

e S e
‘,
o

"’
..

.-:.-
'):'V'J
‘- ..
(EA
. »
o
’

v!-
4
3

".

»

4
XA
>

]
.

v vy
P
»
‘e

»
2

LA
5

(am o

.. '.{ '.l

LA,

. P A A

(UNCLASSIFIZD)

SECURITY CLASSIFICATICN OF THIS PAGE(When Data Zntered)

1

b generation components for calculating and presenting software metrics and
reports; and an executive control component which provides a user-friendly

g

interface. = .. . | RS S me et Onde

ool L T f

- e

o P Iy S S e S WAL PR O I TN s I U 2 A PRI I S e g SN R T 3 RS by . ? _A
;W_'.\itn‘.‘.‘.':*i'\ TN o T T i e IR RS HIMBRERE R Skl ok Iy Wiy O SR

(UNCLASSIFIED)

SESURITY LASSIFICATICN OF THIS PAGE’When Jeta Entereq)

l“\‘T‘\‘.' A \"""'d"o""“ v"v-rr4._i'-‘~. - e e - e e AR e i i B CRadCHR Sy Pt B bt Yk TS T e T B §

e
] :
v AL,
" AN
> TABLE OF CONTENTS NN
N “.0*:“.
: R
' Page P
:) O
- FOREWORD . v it iieieeenneeecsooasssnsasasnancossosoncnssonsasesanseonns vii ‘;::.::j.:- '
N RN o,
5 RSN
1] '~.
i Paragraph £
. Number Page ."f-f:l]
- SECTION 1. SUMMARY AR
1ol RACKGroUNG. . ittt ittt eieieeneeesocenssoacencsenosonoacocnonnes 1
' . 1.2 OBJECETVE. «uventeeneeneeanenneeneeneensansenneaneeaenneanenn 2 :
1.3 Summary of Procedures.........cieeeiiiierrinnniiecnnnnaaiann 2
1.4 Summary Of ReSUTES..eiirreinernuneeerrossceoncoasassessannns 2 A
N 1.5 ANATYSTS.eeetnieenereuuonsososnneesoesassosossonasncsssnannns 3 ERE
2 1.6 Conclusions.......... e teeriiiiietet ettt 4 S
'i 1.7 RecommendationS.cceeeeeereeierennerneaannosennseesnnesnnsanas a N
= SECTION 2. DETAILS OF INVESTIGATION
L.
- 2.1 Scftware Test Methodology ..o e reiiiriereresrenenenneesanenns 5
3 2.2 Requirements Definmition..uueeeeeeeieeeneereeennnsneennnnonnes 5
i 2.3 MSAT Development. . veeeeeeereeenncenoranssenssosnacnannnsnnses 9
. 2.3.1 Concept of Operatwns 10
& 2.3.2 Desigr Goals and Approach......cveiiiiiierinnnenecenannas 10
t;. 2.3.3 MSAT RequirementsS..u.e.eeuieeeeesesensseioscesoesasasansnsns 12
o 2.3.4 Development PhaseS................ teteesesaesesnnnn cesvee 15
2.8 MSAT DesCription...eeceeieeeecearoceecansocncsoennsanns Ceveas 19
' 2.8.1 OVErVieW....eeeesveeeeononnnaennes Cerereertinaaaaa. ceeeen 19
2.4.2 Detailed Design Aspects Cerecctoteantsenosaesans 26
o 2.5 MSAT Operational ASpPeCtS....ceieieeeeeoneencconsencanans Ceeeen 32
. 2.5.1 Personnel RequirementsS...cceveeeceraroncncannns Certeenees 32
- 2.5.2 MSAT Operational Procedures.........ceeeeeeenesnnss ceeee. 33
. 2.6 Future Development......cvciireenenncnscasenancnas cerees cesean 35

2.6.1 Candidate Tasks for MSAT e N cesesesess 35
t 2.6.2 Software Test Methodology........cv... cesserans Cesrinsnes 37

PR R P L P S - - ; R I SN B L R T O PE ks 0 X . Bk Y
T NS Y A RS M I S G S O A R SO LG G2 G P QR E AU R L AP e B K e i 3

Paragraph

Number Page

SECTION 3. APPENDIXES

Methodology Investigation Proposal.......cceeieiivncnecnnenns
RE eI N S e v ettt neeesssossenssasssacsasssasssassonasnsasasns
Acronyms and Abbreviations.........ciiiiiiiiiiiiiiiiiiiiien.,
Software Hierarchy Definitions.....cceeiiiiiiiierreecreannnnns
MSAT GlOSSa Y et ieneeeesencosonsonstossassoaestoansennenaons
Software Standards ComparisOn....ceeeievercracsocesossnasnnns
10 TR 1 o7 A o 4G

OOMMoOoO O @I

|
) PREVIOUS PAGE
. 1S BLANK

O

ALY
AN

¥,
3
ll
D.'
*
x
b .’
r " N
l.. .
-\.-
o
b
.
)
\
‘l
L]
o
'y
A
.
o
.l
"
.
"
-l
",
Ay
3
4
'
r
v .
o
['4

.

N X

LIST OF FIGURES

TV LA 1

Figure

MSAT Concept of OperationS....c.ceereeriesenceccesnroancannsnanas
MSAT Functional Components...cseeriiiensrensnirensersnronsnnnens
MSAT CSCI Architecture. . iuveeeeretnenssansnescsncssnssansensaanss
MSAT Data/Control Flow.....veeeereieneeenenonennnnsnsoncsnsasnans
MSAT Logical Data Base FileS..iievieiiiiiiieiinnnnnsnnnsoncanes
MSAT Target Software System Information.........cveviienvnennnn.
Pre-Planned Product Improvement......c.cviiiniirenennnencoranenas
Software Hierarchy...ooveeeniniiireiunoneneeresssencacanonneenes

TeTv L 048 Y S

OO AWM

LIST OF TABLES

Table

W4

Systems Requiring ASSessment.....eeeieeeneneenenueenencaannnnnn
Language Processors Required......ieerieerieninnneecacanconanns
Proposed MSAT Static Analysis Functions.......eeveeeinennnnenns
MSAT Implementation ISSUES...cveererneenenenrareerncencenanennns
MSAT Initial Cperational Capability.....cviiiiiinniiinnenennnn.
VI MSAT Developrent Phases and Products......coviiiniieiencnnnnnn.

—
b—t 4
<7 ol =t -4

8 OPLAAPACAD CEER PR

é '!-.I{I "i "."."" '-..

s

SRR | ANV IRN
i

v
-
. .1"
-
I3

s e e 5
2%
- -

»
- °
. g

. JRE,

<HTERAR
_‘.
» L]

e e N R N N R R S S Y S S S S A T AR i

-y 3) TR) 4 becdid | ™
o A ¥, RN & ...-m..-h, ,v.... o

J‘lh 4 a2 oy h,
e Y b T w e gt 4 - " k
KX 200, s,
) Sy gy SORY
. n.g..:k-.-.-$ PR W, P
ﬁ,
p
2
4
)
24 @
/ o
9 c
L @]
a w MK
. .S sm
: ©© 3¢
. e w.
3M v W.b
. s
‘ o «
o+ &
S o .
C 4 m
3 R =X=]
c o
. cecd
— O 1
p. — O
3] a0
, v ©m
< E &~
B O o
b, + aco
. v QO —
. > & e
v ow
p. <L
o L va
[x|l o< —
<t © P o —
. = (=% [}] >
., Qd VO
. o - E
b, o © 3
: o co=
. © QO
. Pu R}
N. v v o
V- ©
' c v
: U n L
wu Y o
3 @ <
\ o oo
c
w o
ENQ
Q— T
P
e 3
>
w Ll
© o
g
2 n
—
o>
©
o
-
W
o~
)
. p « 8 Y -' . ;
e M 2 Attt u BN, A, DR /., JOBSARRIN .

(R Uy A TR BATRYY)
RN X A H.’

N A

O SRTe T,

.,

A asen Jan dia- ARCHENC SSl 2O Suir s ol il e ahk e cub il ane oohi aodh aohh AR afle st il ahd e o T A A A Sianet

L.}

1. SUMMARY

A

. 1.1 Background

. This document comprises the final report for the methodology

. investigation for the development of the Multilingual Static Analysis Tool

A (MSAT). The MSAT concept was conceived during earlier investigations on the

" Program Flow Aralyzer (PFA). PFA research into software static analvsis tools
. and associated software metrics culminated in the recommendation to develop a

multilingual software analysis system [1].

The U.S. Army Electronic Proving Ground (USAEPG) and other Installa-

P tion/Field Cperating Activities (I/FOAs) have been tasked by the U.S. Army

- Test and Evaluation Comrand (TECOM) to perform software testing of systems
containing embedded computer resources. Comprehensive software testing
includes both the dynamic testing of performance and reliability (using
instrumentation such as the Test Item Stimulator and Hybrid
(hardware/software® Monitor) and the static testing of software quality (using
tools Tike PFA ard MSAT). Because complex system functionality in DoD systems
is increasingly provided by software, the task of assessing performance and
quality features cf software is becoming a critical factor in the addition of
viable systems tr *he inventory.

Static aralysic tools, by examining the actual target system source code,
provide visibility of the software design ard quantitative measures of
software queiity as actually implemented. An obvious by-product is the

- ebility to eralyze the ccrrectness of documentation with respect to the

- implementation. Less apparent are the support of :ynamic analysis and various
~ uses during Life-Cycle Software Engineering Center (LCSEC) activities (e.g.,
- automatic docurentation gereration and version ccrparison). LUse of static

. analysis techniques to support testing of mairtainability issues is
N potentially highiy cost-effective since up to 80 percent of software costs are DY
~ associated with maintenance. N
N The test ervironment at USAEPG and other 1/FO0As provides some unique B
3 challenges for software testing. Unlike many development/test orcanizations NN
g with a limitec number of software languages and computer architectures. DoD]
~ systems are characterized by a plethora of larguages and architectures. In 3*:§&
- addition to the multilingual requirement is the need to accommocate a number S
of evolvirg software development standards. On 10 systems tested &t USAEPG, -
13 software laenguages and 4 software standards were analyzed. R

Justification for a multilingual/multistandard tool is obvious, given the R
unique environment. Automation of static analysis is difficult to dispute RN
also, since, in one test alone, a cost savings of $500,000 was realized with a e
static analysis tocl relative to performirg the same level of analysis manual-
i ly. Besides being labor-intensive, manual static analysis tends to be error
g prone, less comprehensive, and far less consistent (because of "sampling"
” practices) than automated techniques. Further evidence of the utility of
Eutomateg static arclysis for software testing is provided in the references
- 2, 3, 4j.

> PREVIOUS PAGE
D IS BLANK

Y

%]

P e Nl ¢ . WA AR, vy
‘.I.‘I\ (A

. N R
i S A R G G OSSR &

- = B e T I T
- M G A2 AT GG I SR S S s bl el Rt Rl ath AR M o S S e T > .
tud o ‘h ‘~ (. - ‘u,‘- - .5 . . R

The MSAT investigation was conducted to develop a software tool to
automate the collection and reporting of software design and quality charac-
teristics in a multilingual environment. The goal of MSAT is to minimize the
manual effort associated with the static software assessment of a target
software system's design, structure, maintainability, modifications, and
conformance with documented design and development standards. MSAT consists
of a flexible, language-indepenient data collection component which extracts
and stores items of interest in a data base management system (DBMS); static o
analysis (SA)/report generation (RG) components for calculating and presenting Oy
software metrics and reports; and an executive control component which
provides a user-friendly interface.

1.2 Objective

The objective of this investigation was to develop MSAT, incorporating Sl
the proven concepts of previous investigations. Supplementary goals included .o
the following: R

o Reducticn of the effort required to add languages and standards.

¢ Creation of a user-friendly man-machine interface. T

e Ircorpcration of new metrics as identified by previous research 2
ar¢ ¢ design which facilitates augmentation of metrics, SA, &nd . 1
RG capabilities.

e Validation and configuration management of a single tool to
repicce the "femily" of existing tools.

1.3 Summary of Procedures

Initial efforts on the MSAT investigation focused or determining the
requirements for a static analysis tool to satisfy the stated objectives.
Preliminary software requirements were derived by examining existing tcels and
test needs. Thece were developed intc proposed specification documents and
used as & basis for defining the needs of other I/FOAs. The preliminary
specifications were then updated to reflect the initial operational capability
(10C) agreed upon by TECCM Software Technical Committee (TSOTEC) review.

Development of MSAT proceeded, following the guidelines established by
the {then) proposed DOD-STD-SDS (now DOD-STD-2167). A Digital Equipment
Corperation (DEC) VAX-11/VMS system with VAX FORTRAN, and the INGRES DBMS were
provided as the host environment. VAX FORTRAN and Intel 8085 assembly were
chosen as the first two target languages with DOD-STD-SDS as the default
software standard. Plans for MSAT included provisions for training, sustain-
ing, and cerfiguration management of the tool. While part of the plan, these
activities will not be initiated until completion and validation of the I0C.

Cerew o,y ‘.,

1.4 Summary of Results

The MSAT investigation resulted in the development of & general purpose
tool for software static analysis in a multilingual environment. Examination
of projected test neecds and a survey of existing tools revealed that a multi-
lingual requirement, which was not satisfied by available software products,
remained valid despite the trend toward Ada. MSAT software requirements were
based on previous investigations at USAEPG, verified by other tool designs,

........................
.......

- . .
" K

. e e S Wi
................................... \v: '-‘;.\'.&' T o R ')'A')‘j -

o Cal MR AEr M Ant i S i N A v AT B e e vite Bhan mie it fale Aol Al Al Al An bk Ane el I A A AV BN S e Sl i At e aad

and coordinated with other TECOM I/FOAs. The investigation continued with the)
design and implementation of the MSAT 10C, following an incremental approach

which stressed flexibility to allow for enhancements. aﬁ;

The MSAT design was centered around two reusable software components. An sl
existing parser generator was used as the basis for a table-driven Tanguage A
processor to minimize the amount of language-dependent software in MSAT. S
INGRES, a commerical DBMS product, provided a flexible data base schema as N
well as data base management, user-friendly forms/menu features, and data :&j

retrieval mechanisms. Additional flexibility was designed into the system to
allow adaptation to various software development standards and for supplement- A
ing the initial SA/RG capability.

Validation and corfiguration management of MSAT were planned as post-
development activities. As such, these and the related activities of distri-
bution, maintenance, and training remain to be accomplished.

Ore of the design goals of MSAT was to provide for future enhancements
during the initial development. A number of candidate tasks were proposed for
further improvement of the initial product. At a higher level, the need to
maintain currency with advances in software test methodology was identified. o
A known deficiency ir this area includes the lack of systematic methods for =
determining test coverage (thoroughness). 4

1.5 Analysis

The design and development approach of MSAT were obvious means of satis-
fying the stated objectives. First, the desigrn was based upon previcus
efforts at USAEPG, with input from other I/FOAs and lessons learned by other b v
tool developers. A table-driven technique provides the requisite reduction of 1
effort to expand the language processing capability. Also, a commercial DBMS "
supplies extensible features and a user-friendly man-machine interface. o
Although numerous metrics, in addition to those implemented for 10C, are N
conceivable, provision for supplemental measures exists in the data base and [:‘
SA/RG components, '

Validation and maintenance activities associated with a software product
such as MSAT are desirable after completion of the initial tool. A programmer/

librarien function is normally the means applied to ensure that proper config- g
uration management requirements are met. Additional support of users ir [i:
applying MSAT to software assessment or LCSEC functions could be achieved by o
developing guidelines to assist the analyst. A by-product of these guidelines "
could be a standardized software assessment procedure for more consistent N

reporting and analysis.,

Proposed enhancements to MSAT are best integrated incrementally in
consonance with the evolutionary design philosophy. In accordance with this
approach, investigations would be conducted to identify and prototype
additional software quality metrics and SA/RG functions. After evaluation,
desirable capabilities would be incorporated into a documented, production
version of the tool. More advanced investigations are necessary in areas
where little research has been accomplished or consensus is wanting relative
to the validity of various metrics.

v v ryyE VT]

MM NE Ja- oo SOV SEL AR SN A Shg it 20e sae ceas s e en e o and B At R e A A e B A e Ad tedh And e an Bl i n o s db el

1.6 Conclusions

The MSAT development achieved the objectives and goals of the methodology
investigation, contingent upon validation of the tool, training other I/FOA
personnel in the use of the tool, and performance of sustaining obligations.
MSAT currently provides an automated means to observe and measure various
software quality features in an environment characterized by diverse language
requirements. In this capacity, MSAT possesses unique capabilities not
duplicated by available static analysis tools. Exploitirg the inherent
flexibility to enhance the initial capability was both pre-planned and essen-
tial to the viability of technologically current instrumentation,

1.7 Recommendations

The following recommendations, in order of precedence, are suggested for
compietely satisfving the objectives and fulfilling the needs determined
during the investigation.

a. Validetion of MSAT should be performed by an independent test
activity. Following acceptance of the tool, sustaining functions including
distribution, mainterance, training, and configuration management should be
initiated. A desirable product from this effort is a set of quidelines for
applicatior of the MSAT.

b. An investigation should be conducted to supplement the basic
features of MSAT by implementing the proposed enhancements. This would result
in improved perforrance and additional static analysis capabilities. Priority
should be assigred to those functions which would berefit the majority of
users, both I/FOAs and LCSECs.

¢. More advanced investigations should be initiated to examine
advances in software test methodology. The objective would be to mairtain
currency with the state-cf-the-art by developing quantifiable parameters to
measure software attributes. Efforts should focus on deficiencies in current
methodology with the goal of developing practical, as well as theoretically
sound, solutions.

..........

BN

L

b -

O XY
et e w’”";-

» "y
) g"l .
- " R4 'l

-~

v S

®

P AL
Y
Y

O P P O P S o o P P e e o=

2. DETAILS OF INVESTIGATION

The MSAT investigation accomplished the development of a software static
analysis tool suited to the multilingual test environment at the USAEPG.
Software static analysis requirements were re-examined to identify current
technology; requirements were formalized and reviewed for applicability by
TECOM I/FOAs, and a fully documented tool was produced. The results of this
effort are summarized below. Persons unfamiliar with the software hierarchy
terminology endorsed by DOD-STD-2167 should refer to appendix D; terms associ-
ated with static analysis and MSAT may be found in appendix E.

2.1 Software Test Methodology

Software testing may be dichotomized into the complementary components of
static and dynamic analysis. Static analysis tools and techniques examine
program source code and software materials in a non-executable environment.
Static methods inherently are able to analyze every software statement in a
system, furnish visibility into design and quality, and provide a basis for
dynamic analysis. In contrast, dynamic analysis examines characteristics of
program performance. While analysis cf every instruction may be impractical,
dynamic tools can measure performance attributes which can only be collected
during or after executicn of the software. If the staggering cost of software
maintenance is nc cbject, dynamic analysis alone can demonstrate the baiance
of the critical issues: correct functionality, reliability, timing, and
resource utilization. Comprehensive software testing exploits the synergism
of both dynamic performance and static quality assessment.

2.2 Requirements Definition

Experience with previous static analysis tocls had proven the utility and
cost-effectiveress of automated techniques and dencnstrated the feasibility of
a language-independent tool. The experiential feecback from actual software
testing served to identify those features of static analysis which contribute
the greatest assistance to the software analyst. Although earlier investiga-
tions [1] identified the reed for a multilingual tcol and developed prototype
tools based on the premise that such tools were nonexistent, these issues were
re-examined for validity.

A compilation of software systems to be tested at USAEPG included more
than 10 tactical systems, using twice as many languages. Table I lists a
representative sample of the systems and the software languages. Viewed by
level of language, table II, the fact that roughly half of the languages
requiring processing are assembly (ASM) becomes readily apparent. These
results are contrary to what would be expected from a review of software
engineering principles and government standards which dictate the use of high
order languages (HCLs).

Previous conclusions that a multilingual tcol was required to satisfy
test needs is cleariy substantiated by the findings; nor has the need subsided
in the interim. Althcugh Ada may be expected to replace many of the current
language requirements, cother languages are gaining popularity for specialized
applications (e.g., LISP for Artificial Intelligence). Use of very high order
languages (VHOL) and specialized languages such as ATLAS (used in automated
test equipment) is anticipated to continue in non-tactical systems. (The
reason for EQUEL and VAX FORTRAN appearing as required languages will become
obvious shortly.)

g oy AN

'. .l A]
o
LA LA |

l;l
P

)
Cd

,l E«n

- hir e ATl aPa ane aun afe sl aSur el ah Rl SO A e A

"
2 SR
Table 1. 3%
SYSTEMS REQUIRING ASSESSMENT (April 1984) ?{hr
l?ﬁ;ﬁ
|
- SYSTEM i
: UNDER TEST LANGUAGE St
. - _,:-:,
Teampack ROLM 1602 ASM fu=u
RPY FORTRAN IV (DEC) o
PL/M-80 2
SKC FORTRAN
8085 ASM A
MACRO-11 ASM -
SKC 3121 ASM T
JTIDS SKC FORTRAN :
SKC 3132 ASM
AMZ 8002 ASM :
REGENCY '.C7 MICROTEK PASCAL k..
OMST PASCAL S
8085 ASM
- AMD 2901 ASM s
- RCA 1802 ASM :.
\ TRATLELAZER C
- ROLM FORTRAN
; 68000 ASM
o
.
: RS
. .'.:_.—\‘.
N Lot
N

it L T DA B U S B D S L "ol S B Ao ie it At Srierh i ninPe Afa b ata ket hCeAr S ta el B ARt aie Rie St S oea vl Mee S s S s She 8t She S0 ol o 8 s e 4 03 0 4 Ao oY

................

Table I1. S
LANGUAGE PROCESSORS REQUIRED

VHOL HOL AsM
INGRES EQUEL* C ROLM 1602
FORTRAN IV (DEC) 68000
MICROTEK PASCAL 8085
OMSI PASCAL AMD 2901
PL/M-80 AMZ 8002
ROLM FOPTRAN MACRO-11
SKC FORTRAN RCA 1802
VAX FORTRAN* SKC 3121/3132

* Implementation languages of MSAT.

DAt
i
\'\.‘-"\
LGS
AT T T R TN Y P I TR T N R N T A R R T TR T VI AAY)
29 .*."’“" L% "\'—".v TR IR S A N TS AL CYP K AT BRI SRR SRR R TG A"nv'(- W, TN

TR el ditie 0 2 T R R R R N T RN T Nmr—" n ——. EA AR A i i

{

e

Ancillary information on software development standards was acquired }ﬁj}

while compiling the language requirements for a static analysis tool. Fre- RO

quently encountered were MIL-STD-1679, DOD-STD-1679A, and variations of these ey

standards. DOD-STD-2167 (DOD-STD-SDS at the time) had not been approved but (

has now been promulgated and will supercede earlier development standards in RS

future testing. Systems without a specified software development standard

typically have the most recent standard applied during testing. o

The impact of accommodating various software standards was assessed by a
comparison of those most frequently encountered (see appendix F). This
assessment indicated that some degree of flexibility was required, but enough
commorality exists among the quantifiable criteria tc assign standards flexi- "
bility minor importance. One aspect of the standards which did influence the L
design was the rew terminology: wunit vs module, computer software component hARA
(CSC) vs computer program component (CPC), etc. This presented difficulties .
beyond the initial expectations. Whereas it was easy to conceive of a too!l .
which could label items either CSC or CPC, some terms were so well established LA
in the literature that an abrupt change was hard to imagine (e.g., unit e
(module) coupling, internal routine {procedure)). A compromise was adopted AR

! whereby the new terminology would supplant the old except for well-established el
’ usage. Y
- 1
- The multiiirgual requirements encompassing both HOL and ASM proved to be &ﬁfﬁi
- the most stringent criteria for selecting an existing tool to satisfy the R
- needs. Ideally, if proponents of static analysis techniques were correct in O
assessing the utility of this method, numerocus tools for performing static R

analysis functions should already exist. Indeed, they do. A survey of NG

accessions in government and industry software ' brary catalogs revealed C

hundreds of static analysis tools. R

. oy
. Though a 1ict of tools and developers is toc extensive for purposes of ::}:<
. this report, a few sources were found to contain a majority of the available $u$$;
- toois. The Federal Scftware Exchange Catalog [5], National Bureau of Stan- e
dards (NBS) [6], and Software Research Associates [7] produce detailed EE::

descriptions cf most of the static analysis tools of interest. (The NBS

.
»
».
*

-; catalog has been acaquired and revised by the Data and Analysis Center for '“ﬂéi
', Software (DACS), an Information Analysis Center of the Defense Technical :l;ﬂ
- Information Center (DTIC)). Before attempting to use these sources, one Y

should be aware of the pitfalls in surveying test tools. One document which

addresses the prcblems as well as provides descriptions of 43 tools was

2 produced by the Software Test and Evaluation Project (STEP) [8]. It is

-~ sufficient at this point to realize that most of the existing tools are poorly
. documented, vravailable, lack flexibility and maintainability, and are limited
- functionally to @ single target language.

While some tonols address sophisticated testing issues, their single
" target language capability and host environment constraints preclude use at
USAEPG. At the very least, a collection of tools would be required to satisfy
the test needs--an untenable situation given the lack of documentation,
incompatible design, diverse operating procedures, and challenges of conversion

MY

. and maintenance. However, organizations requiring an analyzer for FORTRAN,
Y COBOL, or JOVIAL could well find existing tools a viable approach to testing
y~y needs.

X

.l

e

@

e

' 8

“

R B L N R B T 8 P D N R DA R TP R AR X R oL o

ARAdnlatad anatuis Andetie Ble 40 00 24 Bl ah S el s o

.
-

-
-

o

¥

. . -~y
D) o f T PR A
DAL ASVE g SN

-

{

A

-CWRLLAOR

{

.
One approach to language independence in static analysis tools was the AR
Automated Measurement Tool (AMT) development sponsored by Rome Air Development %3}?‘
Center (RADC), and the U.S. Army Computer Systems Command [9]. Although the s
objective of the RADC work was to further the enhancement of software quality St
metrics and, as such, the AMT was experimental, it nevertheless possessed some - 4

general-purpose language processing features.

The AMT employed a syntax-directed (table-driven) parser with a language-
dependent scanner to examine and automatically extract data items related to
software quality. This information, in conjunction with manually entered
data, was stored in a data base for analysis and report generation. With the
exception of the LL(1) parser, the AMT was conceptually similar to language
independent tools being developed at the USAEPG. Although the prototype AMT
was more suited as a research instrument than a production tool, the
similarity with USAEPG tcols provided additional insight into the desirability
of certain architectural features. Among the recommendations for further
developmert of the AMT were:

Additiun of a form entry system.

More rlexible repcrt generation services.

interface to a statistical package.

Autcration of the collection of additional metrics.
Incorrerate processing capability for another language.
Experd data base capabilities.

Examination cf the prototype USAEPG static analysis tools revezled
shortcomings typical of other products. The family of PFA tools could be
enhanced by modification of the following aspects:

® Reducticn of effort for adding languaje capability.

e Addition of a user-friendly man-machine interface with forms/
merus.,

o Creaticn of a single tool with similar operating procedures for
all lanquages.

o New metrics and flexible means to accommodate new software
standards and SA/RG functions.

o Completely cdccumented ard maintairable software.

e Validation of the tool and configuration management.

In summary, although existing tools provide advantages for particular
applications, none provided a general purpose, flexible cepability suited for
a multilingual environment. An integrated tool bench constructed of
individual! component tools is not feasible, or at least not practical.
Perhaps the greatest benefit to be derived from an examination of current
offerings is the contribution to the design of a new tool.

2.3 MSAT Development

Once the requirement for multiple language capability was reconfirmed and
a survey of existirg tools offered design guidance, the effort to develop MSAT
continued. Previcusly mentioned goals were retained and supplemented by
lessons learned at the USAEPG and by other tool developers. A concept of
operations (CONOPS) evolved at this time, followed by formalizing the software
specifications and development plans.

ey ade aibsaie Do S A e B Anchachie B e B Acate sun Machie AhAA AG S MEINE A At b Sha At Rrn e St 4 gt o A e g B AU S M NARA A AL A nt 0b ad 24 o d Al A ARl A A el B ekl

':-~'.-~
P he”

e
el

. -5

MRy
2.3.1 Concept of Operations R

MSAT was defined to be a software static analysis tool to automate the :’:v;

collection and reporting of target software design and quality characteris-
tics. MSAT would provide software analysis data for development, in support ey
of test and evaluation of systems under test (SUT) by I/FOAs, and for mainte- RSl
nance and software systems support by LCSECs. Figure 1 depicts the relation- A
ship among SUT software source, MSAT and MSAT reports, the analysis process, e
and the final product for test reporting. Use of MSAT for svpport activities ﬁ7"¢
is similar, though the final product is a modified software system with some ~
documentation automatically generated by MSAT. O

2.3.2 Design Goals and Approach

A user-friendly interface was conceived for MSAT which would provide the
user software language, standards, analysis, and reporting options. Threcugh
an evolutionary development process that was preplanned, MSAT would grow in
capability without premature obsolescence caused by changing language and
standards requirements. Flexibility was perceived as a necessity to meet
these goals.

Less critical. yet still important, was the desire to eliminate as many

as possible of the shortcomings of previous tools and incorporate recommended NG
modifications. Also important was the need to implement functionality with R
existing software in order to minimize development and maintenance costs. Ry
.. ..\--
Documentation was a key element absent from most existing static analysis e
tools. A software development plan was produced *or MSAT which followed the)
guidelines of proposed DOD-STD-SDS. This served two purposes. First, it RO
ensured adequate documentation, although the development plan did tailor the ﬁnjq
documentation required to a quantity commensurate with the size of the task. {ti}
Secondly, DOD-STD-SDS (or its firal form DOD-STD-Z167) would be applied to Y
future SUTs. Actual use of a standard for development would provide valuable S
experience for testing with the standard as criteria. o

Consistent with this approach was the specification of software quality R
factors for MSAT which mirrored those used in software testing. One means of O
assessing conformance to the guidelines is through use of a static analysis P\
tool. In this case, MSAT would be used as the tool to determine conformance A
to standards of MSAT software source code. In a sense, MSAT would be self-
testing and automatically produce some of its final documentation (e.g.,
structure charts). This was the purpose for listing the MSAT implementation
languages as a required capability.

Numerous functions are part of the domain of software static analysis.
Because no single tool could include all the desirable functions in the 10C, a
phased, or incremental, development was proposed for MSAT. This evolutionary
approach possessed the following qualities:

o A subset of the final capabilities available prior to completion,
allowirg early feedback on desirable modifications.

e The I0C MSAT would contain limited SA functions and the capabil-
ity for processing one HOL and one ASM language.

I T T O I I S I SR AL RIETAATIL RI R I PR TL A Aty Ty TN LN Y - MR A AN R T A e Xy k
. A N AT N S SR AT DY R NN A TSP NN I IR TR },r\ o)) el AL A R A

3 N N

..-'_"_ LA SANE &K U S RN P AT & SALASRIE S dr i arT R

L SN

. MACHINE READ-
.. ABLE SUT SOURCE

.
l conveRTzl T

MSAT STA%NDARD
FORMAT

+

- HSAT 1
. REPORTS

o AN

s's e

SuT
SOLRCE

NN o R RV A R A F AN

.
[N

sy VTR

O AR RN P R R A R R R R A N S e A L R S A TS SR LR R TR LS TR L
._.:.-,.-.*.-, o G 2R AN AN PG KNS AL, A

SENT TO U.S. ARMY PROVIMNG GROUND
FOR SOFTWARE ASSESSMENT

I

—>

ADDITIONAL
SUT FILE
DESCRIPTGCRS

ANALYST

ADDITICHNAL
. SOFTWARE SUBTEST
INFORMATION

Figure 1.

11

ISAT-
LANGUAGE PROCESSIM
ANALYSIS

REPORT GENERATION

Sut
TEST
REPORT

MSAT CONCEPT OF OPERATIONS

b A

<, i

:« o
A"
G
2o AN
3 3 > 4 Lt 2

MR I B R N I 0

e YR A Ce T8,

AT e

‘RSSO

SN RS

o A preplanned product improvement (P3I) approach to incorporate
new functions and/or metrics not available initially, but deemed
useful.

o A testbed for experimental language development and software
quality metrics study.

Successful development of an incrementally produced product requires
consideration of future capabilities and a design with clean functional
separation of components and inherent flexibility. One of the hallmarks of
such an approach is the definition of design items not essential to the
immediate goal. Unlike a typical software development where extraneous
software is considered a shortcoming, the early definition of functions and
data items for P31 is to be encouraged. These objectives were applied first
to formalizatior of MSAT requirements and sustained through the remainder of
the development process.

2.3.3 MSAT Requirements

The descripticrn of the investigation (appendix A) included coordination
with other I/FOAs in formulating requirements and reviewing the design of
MSAT. Design reviews were scheduled to coincide with TSOTEC meetings up
through preliminary design review (PDR). Coordinating requirements with other _
I/FOAs was more challenging since meetings were of insufficient length and too
infrequent to allcw for preparation of software specifications by committee.
The solution was to draft preliminary specifications, based on past experience
and results of the investigation, with review and comments by interested
I/FCAs.

The major functional components of MSAT were easily defined since most
mature static analysis tools employ conceptually similar architectures.
Figure 2 illustrates the basic functions defined as follows.

a. MSAT Executive Control (MEC). The purpose of the MEC is to provide a
centralized component for the user interface, control the other MSAT compo-
nents, and perform data base management.

b. Automated Language Processing (ALP). The ALP scans the target source
code to extract the data elements required for the various SA functions.
Information is stored in the data base for further processing.

c. Static Analysis. SA functions process the stored data elements to
provide metrics or design information as desired. Output from SA is also
stored in the data base.

d. Report Generation. RG retrieves information from the data base to
formulate output reports.

Having defined the basic architecture and major functions, additional
requirements were proposed to accomplish the design goals mentioned above.
The conly remaining requirement of any significance, and one which demanded
coordination with other I/FQAs, was determining which of the myriad of static
analysis techniques should be implemented for the MSAT I0OC.

The field of static analysis suffers from a lack of standardized termi-
nology and dozens of overlapping categories. Obviously, the selection of MSAT
SA functions would be quite difficult under these circumstances. An answer to

DR N T S T TR)

MO| 4 [043U0) Hv

Sjuauodwo) LeuoL3dung JySu

"7 2:inbyy -

MO| {4 Ple(] |||mV

:puaba

3Sva viva

RV
! L

3

NOT1YYINI9
1404

STSATYNY
JLLVIS

104LNOD
JATLNIIX3
1YSW

 GEEER - ' 2 222 EER. . 1

. .‘.. “‘\‘;.'.{ .

S T
- ..%

405532044
JIVNINY T
Q3LYWoLNY

13
SRS

-

WA Tl A IR AT, (MG

‘A Paee o e ube ane o LSSl e an e conir s et s LGN SN A R S aicaA SRR L GR SER Shh st it MR AR s aeth SUNN abe som A ot it SR SV oA Sul uBe oAb a2t o
Al A . Akl 4 A g 3 L N) % e

this problem was provided by an NBS publication on tool features for the Ada
programming support environment [10]. The NBS report included a taxonomy of
software tool features which included 15 entries under static analysis.

The contribution of the NBS taxonomy to selecting SA functions for MSAT
was considerable. First, a manageable number (15) of categories was defined
with a consistent terminology. Second, a prioritization of tool features was
suggested, along with a discussion of various SA features. Additional utility
was provided by the criteria used to select the listed functions. Only those
features within the current state of software practice were listed (i.e.,
theoretical and experimental techniques not applicabie to a production
environment were excluded). Also of some consequence was the authoritative
nature of the work, results having been reviewed by representatives from
industry, government, and academia.

The static analysis functions derived from the NBS report were used as a
generic list of potential SA functions in the MSAT System/Segment
Specification (SSS). This was presented to the TSOTEC fer prioritization and
selection of initial MSAT capability. The following are the 15 functional
categories.

a. Auditing (standards compliarce). Conducting an examination to
determine whether or not predefined rules have been followed.

b. Comparison (change analysis). Determining and assessing simi-
larities between two or more items. In particular, performing change analysis
on two versions ¢f the same computer progaram to identify changes in the source
code, documentation, or hierarchical structure,

c. Completeness checking. Assessing whether or not an entity has
all its parts present and if those parts are fuliy developed. A tool that
examines the source code for missing parameter values has this feature.

d. Complexity measurement. A methcd of determining how complicated
an entity is (e.g., module . . . system) by evaluating some number of associ-
ated characteristics.,

e. Consistency checking. The determination of whether or rot an
entity is internally consistent in the sense that it contains uniform notation
and terminology, or is consistent with its specificaticn. For example,
checking for consistent usage of variable names or consistency between design
specifications and code.

f. Cross-reference. Referencing entities to other entities by
logical means. In particular, a cross-reference could illustrate all the
variables and routines referenced by a unit.

g. Data flow analysis. A graphical analysis of the sequential
patterns of definitions and references of data.

h. Error checking. The determination of discrepancies, their
importance, and/or their cause (e.g., identification of possible program
errors, such as misspelled variable names, arrays out of bounds, and modifica-
tions of a loop index).

Lol MARNARS Bt A ShCAA I YO AT e At I i iiachie Teie aile Wi Al Sad i Al Al i Dol s St T AUl S ade s Sie oAt A aUMR i it e aah et ey s T wTNTwT YT

»

D

R i. Interface analysis. The checking of the interfaces between

j program elements for consistency and adherence to predefined rules and/or

- axioms. In particular, checking parameter usage (type, number) in calling and

h called routines. Determining the various degrees of module coupling might
also be included in interface analysis.

E\ j. Input/output (I/0) specification analysis. The analysis of the
- I/0 specifications in a program, usually for the generation of test data.

. K. Scanning. Examination of an entity sequentiaily to identify key
areas or structure. For example, examining source code and extracting key
information for generatinc documentation or source analysis.

1. Statistical profiling (analysis). Performing statistical data
collection ard analysis on software source code.

m. Structure checking. Detecting structural flaws within a program
(e.g., recursive calls, calls to a tcp-level routine, reference to undefined
routines).

o n. Type analysis. The evaluation of whether or not the domain of
E values attributed tc ar entity are properly and consistently defined.

o. Units analysis. The determination of whether or not the units
or physical dirmersions attributed to ar entity are properly defined and
consistently used, ensuring variables used in computations have proper units
(e.g., hertz--cycles/seconds).

Teble TII indicates the five functicral categories agreed upon by the
TSOTEC for I0C. Ir addition, structure checking was required by the USAEPG to
retain functionality provided by existing tools. Furthermore, a minimal
amount of error checking would result as a by-crocuct of other SA functions.
Selection of these categories was partially based on the usefulness demon-
strated during software testing. Additional emphasis was placed on not
duplicating functions provided by support software (e.g., cross-reference).

Subsequent reviews of the MSAT development resulted in the definition of
implementation issues. The host environment for the initial version was
specified as a VAX-11/VMS architecture with VAX FORTRAN as the primary
language and the INGRES DBMS. The arguments for and against these choices are
listed in table IV,

The preliminery set of requirements was expanded to produce the MSAT
Software Requirements Specification (SRS). This document provided detail to
further refine the specifications (since SA functions are never comprehensive
for a given category) and develop the software design. Although further
requirements surfaced throughout the development (e.g., enhanced security
controls, automated source instrumentation, embedded procedure and language
capability), the btasic requirements for I0C remained as summarized in table V.

2.3.4 Development Phases

The specification documentation, SSS and SRS, were produced during the
requirements definition phase. These specifications are analogous to the
system (or A-level) specifications of previous development standards. BRecause

15

T e —— Pebane ey Rl A Wi Sadmng St At Sed Sed Ak Auil ek and Al Al bef Jed e e el i

; PROPOSED MSAT
.

4

, L.

N Initial 2.

Implementation 3.

*7.

" **g,
S 9.
- 10.
3 11.

il d
s
N

Table III.
STATIC ANALYSIS FUNCTIONS

Auditing

Complexity Measurement
Statistical Analysis
Interface Aralysis
Comparison
Consistency Checking
Error Checking
Structure Checking
Completeness

Data Flow Analysis
I/0 Specification
Cross-Reference
Scanning

Type Analysis

Unit Analysis

* Produced as a byproduct of other functions

** Reguired to retain

T e et WL ey .
AP WERES ‘\. . Ad .
CERCE S 3 AR T S R A

P IR
) L) LA
3 5 g

. - N L] - -l - - - “j -
Jeae, JLIN) ')- A e . ..-"-). -
" .
3 3

currert tool capability

16

b s
LA

":'.q‘.’,'d: _r.*."_" . ':_F'I')‘- N DI I

e tal M BAa e e e She Vi B 0 I IR B IR S0 R At A |

. - -
.',_'.'_l:.r_"

R A
ALYy

- v,
P e
’ L] L.
1. o
B AL AL
St .
[1 PP '
2 . Py
- sl e,

»

<
»
N

3 o .
‘.. - *
IO -
. -
. -
e
I:::j
g

)

>

L4 ~
A
""'\-.‘
r -

it/
o

R
Y

<

-
L)

v % v Y anl ki

Yy
r)

AR R S A e o N S A e e £ e S A B/ S et i A e et Ani el it ekttt A AR I A M S A A

1+ + +

o+ o+ o+

"+

Table IV.
MSAT IMPLEMENTATION ISSUES

VAX-11 Implementation

Available for MSAT Development (USAEPG, Ultrasystems)
Standard Architecture for LCSECs

Ada Language System (ALS) available for P3I
Availability at other I1/FCAs

VAX FORTRAN

FORTRAN dialects widely used

Interfaces to DBMS

"Retter" than F-77

Data structures not suited to string, list processing
Not as portable as Ada will be

INGRES D3MS

increases flexibility
Reduces development effort
- Time
- Risk
- Cost

Gevernment policy to utilize exist:ng software packages (SDS)

Prcvides:

- File management
Forms management
Report Writer
Graphics

- Statistics

Isolates data base functions
May limit portability

TV Ty IV

g
P
»

14
[P

T
.'JV"" »
SR

/
4,

£

'ﬂ'i Eﬁi

™~
Y

"v o
LN

bR e - ke i

.

Ty,

vy

(s340day 40u4u3)

140eY) 34n3INU15

SOL439) A3Lien) auaemijog
stsAeuy 8dejudlu]

s1sA|euy abuey)

$3U33U07) J0 3|qe]/buLlsL] 3d24nog
douel | dwoy Spaepuelg

s340day

e PTREZDNRSE, RIS -

J01 403 A3iiiqeded |ewtuty ~ ()

sabenbue] suem3jos waysAg 1abae] j0
Aaeaqt *Sotuysp/suolidung ys 49y3Q

$404 Jed

(buLy29y) 40443)
butyrayy aan3oanals
stshieuy |eoL3sL3els

sisALeuy 37e4433u] (13nd3 SIHINI)
uosLaeduwo)

uamaanseady Aj1xa|dwo) ASY 3408

buLitpny NVY1d0d XVA

suoL30ung yS sobenbue]

A3ritqede) (euotijenadp |eLILUT LYSW
“A 3lqel

. R e a9, N, 1e - e o e n_ e

) .\(«M\ . Pl <
alard 4, 23, A
CAPALAICA A, Lo,

@
—

AN
DOD-STD-2167 introduces new terms for software products, table VI, listing the OIS

development phases and products, is supplied. The contents of other documents e

will not be described further in this report since the MSAT documentation is A

available upon request from the USAEPG. ;—‘-*

W

. 2.4 MSAT Description ?j;%f
. .\‘.. - - ‘.
The following section provides a brief description of MSAT, ti.ft

Documentation listed in table VI should be referred to for a comprehensive
understanding of the design and operational aspects.

- G-
: .
E I

B
e

2.4.1 Overview

Cha o
s

Static analyzers are generally composed of four major components:
language processor, data base, error analyzer, and report generator [8]. MSAT
follows this basic architecture, auamented by features to provide a multilin-
gual and flexible cepebility. User interface and control functions are
isolated, along with multiple language/standards/terminology and data base
management functions, in the executive control component. Language processing
and the data bace have design features tailored to the multilingual require-
ment; the error arclysis/report generator functions are modularized in the
SA/RG components *~ readily allow expansion. Figure 2 shows these major
components, descrif«d further in the following paragraphs.

L AR AR S asasas

MSAT was desicred as a single computer software corfiguration item (CSCI)
comprised of CSCs enrd units. The executive CSC, called the MEC, cortrols the
environment of othker CSCs. The major comporents defined earlier were assigned
the status of top-level CSCs (TLCSCs) and functicrally decomposed into other
TLCSCs. Figure 3 shows this architecture, except ‘or the individual SA and PG
functiors, and the hierarchical identification nomenclature assigned each
function.

Overall data and control flow is depicted in figure 4. The input and
output data flows shown are described below:

a. Annctated Source. The input source which has been tagged with
key symbols by the ALP for use by the SA/RG functions.

t. Default Standards. Predefined standards (e.g., MIL-STD-1679A)
which may be used for determining standard's compliance in lieu of or in
addition to user-defined standards.

c. External References. A list of references supplied by the user
which are external to the target software source which would otherwise be
jdentified by MSAT as uncefined references (e.g., operating system or library
routines).

d. Manual Data Entry. Data which must be entered manually into the
data base. For exzwplie, data which cannot be collected automatically or data
collected which must be supplemented or modified prior to analysis.

e. Metrics. Software metrics produced by the SA function; includes
summaries, statistics, counts, etc.

Ll el a

——y

R NN

T

2.t LA)

(LD4) @due3dasdy 3onpoad puj

(¥Q02) matAdy
ubisag Leal3ta)

(4ad) maLaay
ubiLsag AaeutwiL 344

(44S) maLAay
S3uU3Wa3J4Lnbay auemiyog

SQU03SA| LW

NN SRR L

JuaWNJ0Q uoL3dLadsaq UOLSUIA

S3|NS3y 153]

(WdS) tenuey

(9dueuajuiey) s,4ouwedbouq 34emyos
(WNS) Lenuey S,43SM) 94BM]}0S

(das ‘gasa ‘aalLs)

uoL3edL}123ds 3INpodqd axem} oS

S3| L4 3Lqe3ndaxy *323lfgp “9234n0s
(paiepdn) |enuep s,43S)) 34eM}40S
(dLS) ue|d 31sa] aJdemljos

(4aS) s49p|04 juawdo|3A3(] 34eM3J0S

(s340daa/snuaw Aueulwi|34d) [Pnuel S,43sN
(aasg) 2uswndoq ubiLsaq aseq eieq
(0Q11S) uswndog ubisag |3As7-doj auemyjos
(4as) uepd 3uawdo|3araq 34eM1}0§

(S¥s)
uo13122314109ds sjusawaainbay auemi)os

$32Npo.d

S1INA0¥d ONY S3SWHd INIWA0T3A3A LVSW
“IA 3Lqel

a|qe3niax3
¢32alqQ *¢924nos

$40S

aanis

SYS

SSS

sindu]

1531

12N435U0)

ubiLsag pajrelaq

(Aaeutwt [34d)

ubtsag
(quswaatnbay)
3uLjaq
saseyd

20

L)
R)

RIS OR s AN

o G ._\..'r .-. '-:,\','w :

“n
At

L)

'*\)'r

Y

. -
oo™ 70 Ty
G AT

. " ,‘- "u)\
- ‘

I
N

L4
L4
:n
A ~

Y

gLy X, 3y oy

3

MSAT
EXECUTIVE
CONTROL
(MEC)
MS.ME

.}

AUTOMATED
LANGUAGE
PROCESSING

(ALP)

MS.AL

STATIC
ANALYSIS
(SA)

MS.SA

REPORT
GENERATION
(RG)

"SRG

LANGUAGE
TABLE
GENERATION
(L76)
“SLALL1

SOURCE |

DECOM- |

| POSITION
(SD)

“SAL.2

SOURCE
INSTRUMENTATION

(ST)
MS.AL.2.1

DATA
COLLECTIGON

(0C)
MS.AL.2.2

Figure 3. MSAT CSCI Architecture

AR St e S St At e Bl e g 8o 0

. MO| 4 [04IU0)/PIRQ LYSW ‘p 3unby4

3 10¥N0S 0ILYLONNY 35v9 ¥1¥Q SILNGIYLLY FAYMLAOS
L, T , [3oun0s aaLvionwy
SOTYLIN

: S 14043y S3LNITYLLY

YYMLA0S (¥3sSn aNy LInv43q)
SOYYANYLS 3IYYMLA0S

AYIN3
Y1Y0 NOT 1d1¥2S30
0y 9 TYNNYW 0°¢ VS 0°2 d¥ 3249N0S
. ‘ ! 329N0S
) R N JYYML40S 1393V
) SIINI¥ISIY TYNYILX3
. SYIL IUVAYd
: - 1NdN]
] NEMNL
_

: 0°T 23u

SYILIWYYYd LNINT ¥3sn SY3L3IWYEYd LNdNT ¥3sn

i

SYILIWYYYd LNdNT ¥3SN

e .. . N R P . - e - T, . . .
E T . 1.-.....-..- DL NS Sy - s R S k. . Ce R : ' YT T T et R DY T ek] A R A N

A T T T R T T T e T T T Lol A o Al ol ade i afeneiioin o hat it e’ She plin- e 2™ - dhe

f. Reports. Reports output by the RG function.

g. Target Software System (TSS) Source. The original (raw) source :EJ;V
code file which will be transformed into the MSAT standard input format. The —
source code may be composed of HOL with embedded ASM, embedded VHOL, or both.

“

h. Source (Language) Description. The language grammars (i.e., N
modified Backus-Naur Form (BNF) for HOL and ASM). SN

i. Software Attributes. Those attributes of the software which are g

extracted by the ALP (e.g., rumber of lines of code (LOC) per unit, control
structure, etc.).

- j. User Input Parameters. The data and control information which
i' will be input by the user through the MSAT user interface.

- k. User Standards. Standards (criteria values) input by the user
a to be used for stancards compliance, e.g., SUT-specific standards. A user

might also specify a specific set of predefined standards which will be

i retained for rererence in the MSAT data base: MIL-STD-SDS, MIL-STD-1679A,

- etc.

.F 2.4.1.1 MSAT Execu’ive Control

- The MEC function is the user's interface to the MSAT system. Inputs are
o vie a forms/menu facility provided by the INGRES DBMS. MEC performs the
. following major functions:

0o User interface through forms/menus with input validation/recovery
and on-line assistance.

o Data base management: initializaticr. data entry, and language/
standards library maintenance.

o Initiation and control of the ALP, SA, and RG interactively or
as batch processes.

2.4.1.2 Automated Language Processing iﬁ {;

The ALP performs furctions related to automated language processing of §ii
TSS source code. The ALP includes language table generaticn (LTG) and source KSR
decomposition (SD) functions. (SD consists of source instrumentation (SI) and t q
data collection (DC) functions.) These generate source language descriptions ST

and extract the TSS information (TSSI) from MSAT standard input files (MSIFs)
for stcrage in the MSAT data base (MSDB).

-
-
-
.
» ¥

2.4.1.2.1 Language Table Generation TN

The LTG is an independent process which creates the MSAT language-proces- AR :
sing capability for each target programming language. The LTG requires RN
language descriptions to generate the language-specific tables which are used -juj_ﬁ
by the SD function to drive an LR(1) parser to recognize specific constructs NN
when that language is scanned. .?u%si

T R T J N T S S SO P SUNE R AT VR ORGSO L RN RN S W
--------------------- -, » .y
LI P AT T AT e e et o

L e
L CRAAE AT AR RSN,
SURPE] Y R0 A W, W, W, ST, SSRGS, T, Y

LA

3
-t ¥y

2.4.1.2.2 Source Instrumentation

The SI process performs an initial scan of the TSS source code to insert
(where possible) instrumentation lines which identify items such as the
beginning and ending of units, beginning and ending of internal procedures,
and language context switches. SI consists of a number of instrumenters for
converting raw source code to an MSIF, adding instrumentation lines, and
preprocessing source code for the subsequent parser processing. Instrumenters
are tailored to a specific language or class of languages.

2.4.1.2.3 Data Collection

The DC process consists of a scan of the MSIF to parse source code in
individual units and collect the data items required for the SA and/or RG
functions. These collected items are placed in the MSDB for further process-
ing or reporting. The user may specify that the entire MSIF or a selected
subset of the units be parsed for data collection.

2.4.1.3 Static Analysis

The SA component of MSAT uses the TSSI collected by the ALP and supple-
mented by manually entered data in the MSDB to perform various static
analyses. Results ere returned to the MSDB for reporting by RG.

2.4.1.4 Report Generation

The RG function retrieves TSSI from the MSDB at the specified
hierarchical level (cor cluster of units), calculates any metrics dependent on
the arouping, and generates reports (files or hard copy).

2.4,.1.5 MSAT Data Base

The MSDB provides storage and retrieval of information related to the
target software source and MSAT system. Four major categories of information
are defined: MSOB information, source language descriptions, software stan-
dards (criteria), and TSSI.

The major data base files, corresponding to the four major categories of
information, are depicted in figure 5. The purpose of each file (implemented
as a set of INGRES tables) is described below:

a. MSDB Information. The MSDB information contains MSAT system
information and information or the location of other data. Access to all
information in the data base (both INGRES tables and VAX files) is initiated
through reference to these tables,

b. Source Language Description. The source language description
consists of a library of grammar rules, syntax tables, and source preproces-
sors.

c. Software Standards. The software standards information is
capable of containing a library of default standards (e.g., 1679A, SDS) and
user-defined criteria.

q
(
R >

l'l

«Te’t
Y
el

A4 Yy

[

‘o

Aty
AT

*>, “!.}

o,

»

e o
‘ul‘{

]
1

o
=

o

MSDB
INFORMATION

I N

—

SOURCE
LANGUAGE
DESCRIPTION

—d

TN A T

® LANGUAGE DESCRIPTIONS
® SYNTAX TABLES

ety el

SOFTWARE
STANDARDS

Figure 5. MSAT Logical Data Base Files

25

ot A T T Y e Tt T TR LT T RS e T
."'.n.\.._f‘.'.n_‘.n ".r"'.,.'*p' J' . ‘.-" "- o e&“\ ‘-.'.‘ -

e DEFAULT STANDARDS {SDS)
e USER CRITERIA

y—

—

{ TARGET
SOFTWARE
SYSTEM

|
|

INFORMATION

‘T

o SYSTEM-LEVEL
o CSCI-LEVEL
e UNIT-LEVEL

AT LT A

Lo

Trew e LA

AW}t

d. TSSI. The TSSI data consists of information at the system,
CSCI, and unit Tlevels for the TSS. The TSSI contains information from the
implementation (code) phase of the software, although the flexibility exists
for future inclusion of information from the design and test phases.
Standards and environment data (e.g., external reference definitions) are

N capable of being specified at the CSCI level. Figure 6 shows the logical
N organization of data within the TSSI.
i 2.4.2 Detailed Design Aspects
- The following paragraphs expand on the overview above to provide some

additicnal detail of the MSAT design. Again, the reader is referred to MSAT
X documentation for a comprehensive understanding since only the salient
: features are described herein.
i 2.4.2.1 MSAT Executive Contro]
3 MEC is the first component executed upon initiation of the MSAT system.
: Six functional operations are entered through the top-level menu:
: a. TSS! - Invokes the TSSI menu/form to allow:
ﬁ
; ® ritial MSDB initialization for a TSS.
: e “SCI data entry.

e (1 language descriptions.
e 7SS standards specification.

. b. Llarcuege Installation - Invckes the LTG menu/form to allow the
- creation of, or MSDB insertation of, new source language description tables.
f c. Prccess MSIF (7SS Source Code) - Invokes the SD meru/form to
. allow:
) e Automated MSIF instrumentation.
| o Data collection.
& e MSIF editing.
o d. SA - Invokes the SA menu/form to allow the user to specify SA
- functions for a 7SS or groups of units (clusters).
. e. RG - Invokes the RG menu/form to allow a user to specify various
> reports for a TSS or groups of units (clusters).
5 f. Marual Query/Entry - Invokes the Manual Query/Data Entry menu/
- form to allow more flexible queries or specific manual data entry by a user.
f Forms/menus are provided within these major functional categories to
E obtain additiorail levels of detailed data and control information.
5 The various processes within MSAT may be initiated in an interactive or
-, batch mode. In the interactive mode, the user waits for the requested action
§ (meru selection) tc complete, and the results are displayed on the terminal
i and written in a user log file. In the batch mode, the requested action or
- group of actions is submitted as a batch process to the VAX/VMS system and all
N
W
g
"] 26
:

RO AR E R E T L SUEL LRI AORC
FCTC AL N PPN, 2% 26 3G R A LN

S NS

TSSI
(SYSTEM-LEVEL)
DESIGN , ~ TEST
/ AN
IMPLEMENTATION N
‘A ’ INF ORMAT TON T - - ==
INFORMATION | INFORMATION
| FROM | FROM i
| DESIGN PHASE | | TEST PHASE |
|
| oo o e e R |
! TSSI
| (CSCI-LEVEL)
L
TEMPORARY 441
SA/RG
FILES
= =1
TSSI
(UNIT-LEVEL)
ANNOTATED
SOURCE
---P31 CAPABILITY
Figure 6. MSAT Target Software System Information
27
._.r..- O\ O CL LY \\n AN UL ¢ . .: I ..\._a\ & ‘\ '.:,‘ ;..;.:_,'.:,; '{‘:\\ :..- A N

L

5T
.

¢ <

[N

N

. "'ﬁ’i‘
hg

S,

v

LR A A A I

T . .

T N Y T VWV TV P YV I e

output is directed to the standard output device and the user log file. When
a user specifies a menu selection (e.g., the default SA functions) in the
batch mode, appropriate commands are written in an MSAT batch command file.
Each requested batch action is placed in this file in the order requested.
This batch command file is normally submitted when the user "exits" MSAT (or
optionally by another menu command).

A trace mode, available in a brief, verbose, and test form, provides the
capebility to generate additional details about the execution of the various
processes within MSAT (i.,e., LTG, SI, DC, SA, and RG). Use of the trace mode
assists in the follcwing types of activities:

e Verifying the correct placement of instrumentation iines within
the MSIF (DC).

e "Debucaing” new language tables (LTG).

e Determining the source of error in inaccurate report data (RG).

MSAT will accommcdate three types of users: normal users who would run
MSAT to prccess TSS source code and produce reports, advanced users who would
add language and standards capability, and super users for data base adminis-
trator functiors. A1l levels of users are assisted in performing their
activity by help reru options.

2.4.2.2 Autometed lLanguage Processing

The ALP provides the capability to automatically scan the MSIF, idertify-
ing and ccilectirg the data elements required to perform *he varicus SA
functions and %o cererate the required reports. “he ALP is made ur of two
major CSC divisions: LTG and SD. LTG generates the language-specific tables
required fcr the ST to identify and collect the necessary cdata from the MSIF.

The SD scans the MSIF, instrumenting the TSS source and/or collecting the
date elements required for the various SA functions. The SD is logicaily
broken into the following subfunctions: SI and DC. The LZ function uses the
language parsing tatles (which are produced by the LTG and installed ir the
MSDB) to drive the LR(1) parser to recognize language-speci€ic constructs.
The SI attempts to partially instrument and otherwise prepare the MSIF for
processing by DC. The DC gathers data on each of the TSS units passed to the
SD, and stores the data collected in the data base.

The ALP functions, LTG and SD (SI and DC), are described ir the following
paragraphs.

2.4.2.2.1 Language Table Generation

The purpose of the LTG function is to generate a set of tables used for
recognizing and prccessing source code of a given language. These tables must
exist before any source code of the language can be processed by other MSAT
functions.

The LTG gererectes parse, semantic, and token tables for a given source
language from input descriptions of the lanquage (augmented BNF) and its
terminal symbols (regular expressions). Together, these tables allow the
recognition of language constructs and the collection of construct-specific
data. In this way, automatic processing of the source code occurs according
to the user-specified language definition.

e

4 . 8
."'-{ !(9
y Sx tx

7.7

*'0,':;.\, Jo i,
\.‘. 2

8

d

A e o e At A ki e e i S e A B S e i e o e s e e e 8 et e e s s g ate en e oa oo o
ST e [e T T e e R - . - - . S - o

The LTG function requires a working knowledge of compiler tool usage,
namely the LR(1) parse table generator and a scanner generator. These tools
require the usual inputs of an augmented BNF grammar and regular expression
I file, respectively. Semantic action routines are specified in the augmented
BNF by mnemonics.

There are two major algorithms within the LTG function: the LR(1) parser
generator algorithm and the token table generator algorithm.

The LR(1) parser generator, a tool called LR, was originally developed by
the Lawrence Livermore Laboratories [11]. LR is one of the existing tools
(the INGRES DBMS being arother) used to reduce the risk and lower the develop-
ment effert of MSAT. (LR is listed in the Federal Software Exchange Catalog

L KN PRI

[5].) The &lgorithr, as implemented in MSAT, is based on an article appearing 1

in Acta Informatica [12]. This algorithm creates LR(1) parse tables from an S

| - irput BNF grarmar cescription of a target software language. - ‘-?
The firct step in the algorithm is to read the BNF grammar, find all f’;fﬂ

productions, termiral and ronterminal symbols, and detect any syntactic errors
ir. the BNF grarrc: - tatements. The next step is to find the goal symbol of
the grarmar. The -zl symbol is the nonterminal symbol which all statements

i evertually redur= *~, and is5 assumed tc be the first nonterminal symbol in the

. BNF. The gramrer .rtols are then sorted so that all terminals precece

' nontermirais anc .. t' sublists are alphabetized. Two verification checks are
performed: checrir: to see that all symbols are cornnected to the goal symbol,

and checking to <r. that no nonterminals are defined entirely in terms of
themselves. Firsliy, confiquration sets are built tc represent each of the

l states ¢f the parcer. The tables are then outpi.- to a file for eventual
stcrage in the MULE.

The LR pregrar and BNF grammar were augmentec to allow specification of
semantic action rcouvtirnes to be activated during TC. Semantic actior tables
are produced wrich list the rcutines to be executed when a particular language

l construct is recocrized.

The tcken tabie gererator ({scanner generator) algorithm follows the
outline providecd ir Principles of Compiler Cesign, by A. V. Aho, and J. D.
L1lrman [13]. The basic algorithm parses each regular expression and creates a
nondeterministic finite autcmaton (NFA) to represent it. This NFA becomes
) part of a larger NFA for all the regular expressions in the file. Once the
- NFA is complete, it is converted and minimized to a deterministic finite
: automaton (DFA!. The final states of the DFA are matched up with the terminal
symbol numbers generated by the LR algorithm. Any action routines to be
performed at token recognition are entered into tables, and the token tables
are complete ard ready for storage in the MSDB during language installation

processing.
.
- 2.4.2.2.2 Source Irctrumentatior
‘.-
o The SI formats, preprocesses, and partiaily instruments the MSIF to
- identify and flag items such as the following:
E e Unit start and end.
- e Internal procedures start and end.
% ¢ Changes from cre language to another (context switches).
o«
-
o

Formatting consists primarily of converting tab characters to spaces and
indenting the source code to aid in readability of the modified MSIF.
Preprocessing is required to eliminate ambiguities in the target software
language which would prevent proper functioning of the parser. Preprocessing
may also be used to simplify the BNF description of a language by ignoring or
simplifying constructs not analyzed by MSAT (e.g., FORTRAN format specifica-
tions). Instrumentation is an attempt to reduce the manual effort required to
identify certain structures in the TSS,

Automatically generated instrumentation may not be completely accurate.
The degree of accuracy in the SI is always dependent upon the TSS source code
(i.e., coding standards and consistency of coding techniques), the particular
language being scanned, and the degree to which that language can be described
in the BNF.

2.4.2.2.3 Data Collection

The DC extracts information on the TSS from an instrumented MSIF., DC
processing incluces extracting a unit from the MSIF, obtaining the appropriacte
syntax and semantic action tables from the MSDB, and using the LR(1) parsing
technique to identify (perform lexical analysis and parse) language censtructs
and collect date for storage in the MSDB.

Semantic action routines defined in the BNF for a language are used to
affect the manner in which a given construct is treated (e.g., STOP may be
counted as a potential singularity, a conditional return may be treated both
as a conditioral statement for control complexity and as an exit point). The
processing of a LOC by the DC is indicated by flays prefixed to each LOC in
the annotated source files for each unit. Annotation shows nesting level,
language type, statement type, executable/nonexecutable flags, and other items
of interest.

2.4.2.3 Static Analysis

The SA functicns use the data collected by the SD (TSSI) to calculate and
store various software quality metric primitives on a unit-by-unit basis.
These may then be combined by the user and/or RG function for the different
reports required.

The I0C of MSAT provides static analysis functionality in the following
areas:

a. Complexity measurement. Initially, the calculation of McCabe's
Cyclomatic Complexity.

b. Structure chart preparation. The intermediate processing
required prior to structure chart RG.

c. Error checking. The identification of the following types of
errors:

e Unresolved external references.
e Units present in the TSS source code but not referenced.
o Units which call a top-level unit.

PURPL LN

DRSS o)

d. Interface analysis. Initially, the determination of the number
of formal parameters passed by a calling unit which deviate from those
expected by the called unit or routine.

e. Standards compliance. The comparison of the metrics of each
unit in a TSS (or the TSS cluster metrics) to that system's designated
standards criteria.

f. Change analysis. The comparison of one version of a TSS to
another version of that same TSS in the following ways:

e Metric compare.
e Structure compare.

g. Statistical profiling (analysis). Data collection and analysis
is performed by DC anc RG using features of tne DBMS (i.e., noc SA "statistical
analysis" function will be implemented).

2.4.¢c.4 Report Gereration

RG functions produce reports based on the information in the MSDB. KG
components usually, but not necessarily, correspond to a related SA component
(i.e., the same set of information may be displayed in different form by more
than one RG functicrn). Reports produced for the MSAT 10C include the follow-
ing:

a. Source listing/teble of conterts (TOC). A source listing

containinrg page/lire sequence nurberirg, which is referenced by the 70C. The
T0C is an alphebetized unit 1ist with a unit description (when available) and

v

a reference to the unit's lccation in the source listing.
b. Software quality metric reports:
{1} Details. One page per unit,

(2) Unit summary. List of all units and their metric values
in a columnar format.

(3) Summary. For specified cluster (e.g., TSS, CSC, group of
units, etc.).

c. Structure chart. A hierarchical centrol structure chart showing
the nesting level of calls.

d. Error report. A summary of the errors found at a given cluster
Tevel.

e. Interfuace analysis report. A summary of the deviations ncted in
the nurber of parane-ers passed between units for a given cluster level.

f. Standards ccmpliance reports:

(1) Standards exception. A list of units and metrics for
those units which were non-compliart (when compared to TSS-specific criteria).

I —— ——— M M e s e LANA Ranih et Jent Mg Jeh Sl S S s S B A e At Mg g s i igh Acdh A A And Andl AaSCNes Sl and Aol dedh Al Sud el and g |

(2) Unit summary compliance. The number and percentage of ﬁ;f;i
units which complied for each criterion for that TSS. SOy
L

(3) System compliance. System- or CSCI-level metrics compared P

to applicable TSS-specific criteria.

g. Change analysis reports. An analysis of the changes from one
version of a TSS to another, to include detailed unit, unit summary, and
system change reports for metric and structure data.

2.4.2.5 MSAT Data Base

The purpose of the MSDB is to provide an information storage and
retrieval capability for the MSAT system. The MSDB utilizes the INGRES DBMS
and the VAX/VMS file management system to accomplish the storage and retrieval
of all TSS-related information. INGRES, a relational DBMS from Relational
Technology, Inc., is being used to incorporate the advantages of the
relational data model into the overall design of MSAT. The use of INGRES
provides the flexibility required to facilitate future enhancements, menus and
forms generation, report writer capabilities for the creation of user-friendly
interfaces and TSS-specific repert generation, and a comprehensive query
language for aiding the analyst in extracting metrics for software
assessments. The VAX/VMS file maragement system is used to maintain those
files which do not lend themselves to storage by the DBMS due to their content
and usage.

2.5 MSAT Operational Aspects

The following paragraphs provide additional detail on the types of users
and their functicns which MSAT supports. A synopsis of the operating proce-
dures follows to clarify the operational aspects of the functional components
described above.

2.5.1 Personnel Pequirements

MSAT supports three types of users. This serves to minimize specializa-
tion requirements for the average user while providing a degree of security
and data base integrity by limiting access to critical functions. The user
categories and typical functions are as follows:

a. Normal user. The normal user is expected to be familiar with
logging on and off the VAX/VMS operating system, to have a basic understanding
of the VAX/VMS file system and editing functiors, and to understand how MSAT
> - output is utiltized to evaluate a TSS. This user will typically perform the

T e
AR

Y AR Pl
x .

. o Lot

(] ch e N

.)

— PREFU ARSI S

» following types of activities:
o Manually enter TSS-specific information on CSCls, languages, DN
and standards. &&s’»
Instrument TSS source manually and/or via the SI function. BN
Invoke the DC function to perform automatic data collection. wonie

Invoke SA functions.
Request reports in various formats. <

.“‘ -'\.‘v'.._".t?'. ".N"__sr'_vﬁ AN T TAN S T W TR T W TR _‘-.') TorvernTivLre Il S e Ba s 2 - » " - ARA-I A 0 S 20 Wl A e A B S e —— -y .

b. Advanced user. The advanced user is expected to have experience
in the use of compiler-generator tools, such as parser generators and scanner
generators, and to have experience in the specification of a language grammar
and semantic actions (augmented BNF grammar). This requires familiarity with
the specific source language(s) of a TSS. In addition, the creation of an AR
instrumenter requires familiarity with VAX/VMS FORTRAN. The advanced user
will perform all normal user functions, as well as the following:

e Create language-specific instrumenters, -
e Create BNF and Regular Expression files for use in the LTG
function.

e Add language tables to the MSDB.
o Generate tailored reports via the INGRES Report Writer
(requires INGRES and MSDB knowledge.)

o Install new standard documents and their associated .

criterion. Tt
c. Super user. The MSAT super user is an individual with MSAT

"system" privileges. This person must be familiar with the normal and

advanced activities, as well as have a complete understanding of the INGRES

: OBMS and MSAT use of INGRES capabilities. This person is expected to be an

i; MSDB administrator with the capability to grant user privileges and manually
menipulate data base tables. The super user might also be an MSAT mainterance

programmer, with tke privileges required to change the MSDB structure and/or

MSAT software. Super users typically perform the following types of

activities:

PRCNEN

—

e Archive a TSS to tape and delete it from the MSDB.

o Modify the default SA and RG furctions in the menu system.
e Ceiete language tables currently cvailable in the MSDB.

e Aid users with problems running MSAT.

2.5.2 MSAT Qperational Procedures

The purpose of MSAT is to automate the collection of various software
design and quality characteristics to support the software assessment of a
specific TSS. This includes the automatic extraction of data elements, line/
statement counts, and statistics from source code files, the application of
various SA functions (e.g., complexity calculations) to the extracted data and
counts, and, ultimately, the generation of detailed and summarized reports
containing the extracted data and the results of the SA functions. The
following paragraphs describe the individual steps invelved in the use of
MSAT:

a. Convert Source to VAX/VMS Standard Format. The analyst's first
step is the conversion of the delivered TSS source to the required input
format--an MSIF. An MSIF is a VAX/VMS file which contains ANSI standard ASCII
characters, and VAX/VMS end-of-line characters.

b. Initialize MSDB for a New TSS. Prior to processing a new TSS, i
the analyst must perform a one-time initialization function so that MSAT may NSRS
create TSS-specific data tables and directories, and update the MSAT informa- Ei;:
tion tables. At this point, the analyst may enter TSS-specific software A
development standards, as well as other TSS and CSCI identification informa- S
tion and language specifications. The MSAT menu/forms interface guides a user Y
through the TSS initialization process. St

c. Build New Language-Specific Instrumenter. If MSAT does not
possess an automated instrumenter for the desired implementation language, the
analyst may either write an instrumenter for that language or choose to
manually insert the required MSAT Instrument Lines (MIL). The process of
writing an instrumenter is facilitated by some standard shell routines P s
provided by MSAT. After testing the new instrumenter, the analyst uses a Z

menu-driven installation process to make the MSAT system aware of the new ﬁi}
instrumenters. i
. ‘..‘/.i

d. Run SI to Automatically Instrument the MSIF. After the analyst
has placed the TSS source in the MSIF format and initialized the MSDB for the i
new TSS, the SI function is executed. This consists of a scanning process -
which attempts to automatically insert MILs in the MSIF. The capabilities of
the instrumenter are language-dependent, but generally this includes marking PN
the start and end of units, the start and end of internal procedures, and L
1ang?age context switches (changes from one language to another within the .
MSIF). D

e, Customize MSIF Instrumentation. After running the instrumenter,
the analyst may need to customize the instrumented MSIF by inserting
additional instrumentation lines or modifying the SI-inserted MILs to reflect
the desired handlirg of certain source constructs, both intramodule and system
level. Other lines may be manually inserted at this time to identify, for
example, the begin and end of prologues and/or indicate how particular TSS
LOCs should be interpreted (counted) during the execution of the DC function.

S A
* ; AL
PP
. U
¢ Ay 4y e Ty e e e,
L U A

..‘,,...._-
P
. o el e
NN o
M . PR
o, L
PP A

A
'

f. Manually Instrument the MSIF. Manual insertion of the MILs (via
a VAX/VMS editor) is an option available for source languages which have no
MSAT instrumenter, or for which writing an instrumrenter is less efficient than
manual methods. Prior to running DC, the user must have the MSIF in a fully
instrumented version, with all required and opticral MILs.

MO
1

,r,
.

PN
DO

.
-ty _'r'-—!'. O

»

- -5

R o
s

e

v Y X

. » ¥

e L]

g. Create New Language "Parsing" Tables. If MSAT does not possess
the semantic, parse, and token tables required to process the TSS implementa-
tion language, the analyst must generate new language-description tables for

this language. (This effort is simplified and automated by the LTG function; e
however, the creation of the augmented BNF file and the regular expression P
file are non-trivial tasks and are not expected of the normal MSAT user.) P

Once the language table files have been created, the analyst must install this
new set of language tables in the MSDB. An MSAT menu aids the user in the
installation of new language table files in the MSDB, thus providing the user
(and all subseauent users) with the capebility to process source code in that
language.

o "
.
'
e e
. e
te
- -~
o
Ei,-&.
e N
DA
St
S
Y
B
)

h. Run DC to Perform Data Collection. The DC function scans the
instrumented MSIF, and collects software metric data on a unit-by-unit basis.
An annotated source file is created at this time for each unit and saved
within the MSAT/TSS directories for later report generation. (Any instrumen-
tation anomalies are brought to the attention of the user during the collec-
tion process. An analyst may then perform another iteration of the customize-
MSIF-and-run-DC to collect the data as desired for the subsequent SA and RG
functions.)

i, Run SA Functions. After the collection pass has been success-
fully completed, the analyst requests the particular SA functions required for
the associated reports. The most commonly desired SA functions are available
as a default set to simplify this task.

j. Generate Reports. After the SA functions have executed, any of
a variety of reports may be generated. If a non-standard report format or
query against the TSS data in the MSDB is desired, the analyst may use the
manual data base entry menus and/or the INGRES Report Writer to create a
report tailored to the specific situation.

2.6 Future Development

The I0C of MSAT was designed to provide the essential functions required
of a static analysis tool in the given environment. An integral part of the
design included provisions for P3I, graphically portrayed in figure 7. Some
P31 tasks have already been identified while others will require further
methodological investigation.

2.6.1 Candidate Tasks for MSAT P31

The tasks deccribed below represent additions to the I0C of MSAT and are
achievable with current technology as demonstrated by existing tools.
Although future functionality will be dependent upon prioritization by TECOM
I/FCAs, other users, and feedback from application of MSAT, some recommernded
additions to the current capabilities are possible based on present knowledge.
A partial list of candidate tasks for future enhancement of MSAT follows:

a. Creation of a language library for a robust language description
of each major language category likely to be ercountered. Subsequent
additions to the library would consequently be subsets or minor variatiens
(dialects) of existing descriptions, resulting in considerable savings for
implementation of new languages.

b. Augmentation of automatic SI. Automatic prologue, entry point,
etc. instrumentation would increase efficiency over manual methods.

c. Prologue processor capability (collecting and reporting statis-
tics on items within target software prologues). Manual assessment is rarely
performed because of cost. Approximately 30 to 1 increase in efficiency may
be expected by automating.

d. Cptimization of SI/DC processing. The goal would be to reduce
wall clock processing time to effect a similar savings in analyst "idle" time.
One area offering considerable savings is reducing the number of passes and
copies of the MSIF.

e. Software metric enhancement. Addition of Halstead's software
science measures (e.g., program length) and software modification assessment
metrics would provide more accurate and efficient software quality parameters.
These parameters would enhance the objectivity and consistency of software
assessment.

A I I P>’ T RSP,)
FRIS55557 S SR0IA A0 SN RSN

X\

.
(]
»
L)

DRI A
',n"/"'.'('f.
(A

o Y

WAL S

f

.
(]

(3
¢

‘e e .
O
o

B 0

. <
. l":
1. Fr il

hY
L4

»_9_*
. (4
i
A

o
&

L)
-

03¢
|~*"’

.\- \

w juawdAoadw] 3INpodd pauue|d=9dd °/ d4nbl4
y
.

iSvd \
v1vd

ey owe

7

T

T B 4

PR

] Jd ¥S dy

I

36

.
et el

-

L i

LAt

A AN ard

v L e e s - R L BT . Do s . s o e e e T e w b0 DL
0 KRR, AR SR DR RRAR] . ! .

l

RN

f. Assembly language construct processing. Because assembly SH:*-

language typically comprises 40 percent of software tested at USAEPG, greater S?:ﬁ
efficiency in testing would result from enchancing assembly language 'uixﬁ
processing capability (e.g., macro/conditional assembly language, equates/ : q
include files, entry point/ internal routine definitions, and indirect addres- e
sing/interrupt service routine handling.) E}iu:
N

g. Source compatibility preprocessor. Creation of a library or daf:‘

tool bench of reusable software would aid in converting foreign (non-VAX) file 333%5

formats to an MSAT/VAX-compatible form. Examples are: ROLM to VAX tape
conversion, intelligent/table-driven editor, symbol definition/substitutior
(for include/copy or conditional code processing), etc.

. h. Software performance/reliability capability. This would result e

b - in expanding the static software parameters in the MSAT data base to include s
I. . dynamic performance parameters. Initially, this would include reliability i
- information (software Test Incident Reports) to satisfy the requirements for T

performing the standard software maturity subtests.

i. Sizing/timing information. The MSAT data base could be expanded
to include sizing ard timing information. Sizing information, in conjunctior
with software reliability information, is required to address reliability per
B DOD-STD-1679A. Timing information can provide valuable information for
N examining critical functions in time-sensitive epplications.

J. Text compression. The most significant amount cf textual
information used by MSAT resides in the TSS source code (MSIF) and anrotated
source files. Text compression techniques used t, some document processing
systems provide a method to reduce the storage requirements of the annotated
source contained in the MSDB,

2.6.2 Software Test Methodology

It is well known that the software testing arena suffers from a lack of
quantitative, gererally accepted test methods and criteria. The current

-
o
.
S
.
i
ol
.
B «
: -
i "™
’i:i,

Ls

h)

methodology is sufficiently mature to provide some results for evaluation, but ;;_";\

o is largely inadequate from a theoretical viewpoint. A major deficiency is the ggeg:
- absence of systematic methods for identifying critical furctions and level of ;«fi:
test (thoroughness), not presently addressed quantitatively by test and e

evaluation guidance [14]. Y

Since the software testing discipline lacks maturity, a characteristic N

shared by software development in general, continual monitoring of advances in Q}:E

" the technology is required. As new techniques are developed to a stage of ;C{qi
- practical applicability, they should be incorporated into tools such as MSAT. Pk

. B

Significant technological progress should be accompanied by reevaluation and
revision of the software test methodologay to maintain currency of the test and
evaluation process.

pr l:"r] .
v : *
. l '

1‘ l'_ ({.‘ '.<

R ..
)

L ahe v~ " o

A A TR B S e

e WAt st A

T

\I':‘

o

A 4

APPENDIX A

METHODOLOGY INVESTIGATION PROPOSAL

. MR |
L e

y)

b

]

~

PR A A A

hJ

i

39

e

L}

T

. "EEER4e s+ v T,

LR A

CeTHERS s vV T Y) VIEBNR . v

TsT s ®

....................

','.'. ".“'_'\ fha Sl S A Ak MCR Y Dt 2 I T R M A ol "t IRA R B i T A S Y A B A4 e She B0 She tade b Al Auh Anh s tad Sad Sed Al o Aok S o & AR B ‘A
‘-.>‘:-»"'.A.\‘
W et Lt
{ q
' A]

el
'.'_'.":.J

June 1984 <

-

METHODOLOGY INVESTIGATION PROPOSAL
1. TITLE. Multilingual Static Analysis Tool.
2. CATEGORY. VISTA, DC3I, SMI/Software, Interoperability.

3. INSTALLATION. U.S. Army Electronic Proving Ground, Fort Huachuca, Arizona
85613.

4. PRINCIPLES IMVESTIGATOR. Mr. Richard G. Jacques, Software and Automation
Branch, STEEP-MT-OF, AUTOVON 879-1957.

5. STATEMENT OF THE PFROBLEM. The techniques and measures of performance
(MOPs) to aid an aralyst in assessing the gquality features of a software
system under test (SUT) have evoived to the point of practical application.
TECOM has such an application tocl, the Program Flow Analyzer (PFA). The
application, however, has to evolve in the same manner that software and C31
technology are evclving to produce a desigr that requires less resources to
tailor to different host processors/languages expected to be tested by TECCM,
and be user-friendly in identifying and providing the desired reports to the
analyst.

6. BACKGROUND. The PFA was conceived under TECOM Project No. 7-C0-RD7-EP1-
001, Position Locat‘on Reporting System (PLRS) Software Test Methodology. An
A-level specification was developed which provided the requirements for a PFA.
The PFA design, ccding, testing, and documentaticr was performed under TECOM
Project No. 7-CO-RDO-EP1-004. The DEC-10 system and SNOBOL type derivative
language was used as the implementing host process;or and language. The PFA
concept and utility was validated on the PLRS anc Tactical Computer System
(TCS) DT I1 software evaluations. The time required to generate the proces-
sor/language-specific (front end) portion is estimated to take from two to six
man-months of effort, based on complexity of the software SUT. The PFA
methodology plus elements of a new concept to shorten the front end
development time were applied to the USAEPG's Integrated Inertial Navigation
System (IINS) prcgram and to the SGT. York Fire Control Computer (FCC) program
in support of USAAPG's overall software assessment effort. The new concept
shortens the development time of the front end. In addition, the PFA has
evolved to more than a flow analysis tool; it is a static software analysis
tool. The software and C31 technology evolution, life cycle software support
center's (LCSSCs), and pre-planned product improvement (P31) processes require
a software test too! that is tailored to the Developer-Tester community.
Hence the rew name and acronym, Multilingual Static Analysis Tool (MSAT).

7. GOAL. Develop a software analysis tool with initial implementation on the
VAX T1/78C using the ccncepts proven by the PFA. Sub-goals of this inves-
tigation are:

a. Develop MSAT which will greatly reduce the time and effort to create
the processor and language-specific front end.

b. Develop a user-friendly, interactive, man-machine interface to the
MSAT report writers which will assist the software analyst in obtaining the

desired output reports.
" T]

& ’\‘ "‘%"‘ ‘.\'. SN '-.._n_- L OOV » o --.‘: O SO X R T 7, -~ .~ »

- n " WA) 4 Sl ot AL AN LA LML 4,

e "".'.-
. :‘

e e

WY

¥y Ay
s e d
W

s

LA A N
.
2

v

)

Iy
(4
V)

3' o
L

I".

At

»

L)
(4

l‘

L) X K =
e 2% L W L A0 0 Y

M o ahd oA e i M S -l e SO SR A SR Ll M i S s SME ame g Y (A B A G LA/ A i il i ek S Aalh oul Al e

c. Incorporate new metrics as identified by the PFA methodology into
MSAT.

d. Validate and configuration manage the MSAT to the development and
test community.

8. DESCRIPTION OF INVESTIGATION

a. The U.S. Army Electronic Proving Ground will tzke the concepts,
results, and experience from TECOM Project No. 7-C0-RDO-EP1-004, Program Flow
Analyzer, and design, implement, test, and document a computer program to
assist a software analyst in assessing the quality features of the software
system under test.

b. USAEPG will:

(1) Coordinate with other I/FOAs as to their unique requirements
for a software analysis tool (MSAT).

(2) Ccordinate with cther I/FOAs on the design of MSAT by having
the I/FOAs actively participate in quarterly program reviews which will be
held in conjunction with the TECOM Software Technical Committee (TSOTEC)
meetings.

(3) Provide technical and program management directions for MSAT
development to best meet the needs of USAEPG and other I/FOAs in satisfying
test project worklcads for software quality assessments.

(4) Design, code, test, and document MSAT.

(5) Train appropriate personnel (EPG, other I/FOA, and other
personnel) in the use of MSAT,

(6) Sustain, maintain, and perform configuration maragement of
MSAT.

c. Investigation Schedule.

Milestone/Phase Schedule
FY 84 (Qtrs) FY 85 (Qtrs)
1 2 3 4 1 2 3 4
MSAT Requirements Definition (SRR) X
Preliminary Design Review X
Critical Design Review X
MSAT Coding X X X X
Initial Support to Projects X
MSAT Documentation X X X X X X
Software Requirements Specification X X
B-5 or Equivalent X X X
C-5 or Equivalent X X X X
Maintenance X X
User's Manual X X

LTI S A i A A D R A R YA S i iy il > el vad At e P Ay e i DU g e A M el i S DB MR S Pl S St

Milestone/Phase Schedule
FY 84 (Qtrs) FY 85 (Qtrs)
1 2 3 4 1 2 3 4
Configuration Management/P3I X
Training X
Project Final Report X

d. This investigation will result in a more capable, more efficient,
user-friendly, and transportable software analysis tool.

e. Environmental Impact Statement. The execution of this task will not
have an adverse impact on the quality of the environment.

f. Health Hazard Statement. MNo health hazards are anticipated.

9. JUSTIFICATION

a. Mission ard Impact Statements.

(1) Association with mission., The USAEPG/TECOM mission includes
the responsibility to conduct software testing of systems containing embedded
computer resources. Scftware testing includes the assessment of the quality
of the software for post-deployment supportability. MSAT is a tool usable by
the analyst to meet this test requirement. The proportion of systems being
developed which ccntein embedded computer resources is growing. Current
estimates are that USAEPG will have test responsibility for over 120 of the
166 systems containing embedded resources that are under development within
DARCCM, with others being tested by other TECOM I,fFOAs.

(2) Present Capability, Limitations, Improvement, and Impact on
Test if not approved. The PFA is a general purpose software analysis tool.
USAEPG project officers have identified the need tc develop as many as 12
different language/processor front ends. USAEPG has used the results from
application of the PFA methodology (USAEPG support to USAAPG for the SGT YORK
FCC software assessment) and realizes the value of such a tool. USAAPG has
informed USAEPG of the desire to use PFA on the other SGT YORK processors and
several training simulator devices (exact number of front ends is unknown,

however, each system usually has two front ends, one for the HOL, and one for i
the assembly routines). The personnel and the time required to understand PFA P
to generate the necessary front ends are not available; a faster means to }}{}ﬁ
generate the front ends and more user-friendly report writers must be created gayﬁﬁ
in order to adequately support the test workload, hence the need to develop @5:;*
MSAT. 2N
b. Dollar Savings. Manpower savings using MSAT is estimated on the NROE
average ratio of 30:1. Some of the reports provided by MSAT would not A
normally be attempted manually because of the sheer volume and inherent :3:B)
mistakes which are often made. A
-
SN
t:'ﬁ":'a
8¢
\&.“f)
43 [4
AYANELY
RN

LU N Rl T ‘-'4'-‘_-'.'.".'._- CATACS -'_-.---‘ \.\.u N). W e “n g s ‘*.\,..\..'.‘.“..‘\-\ .- LR ->\ -aw ..‘ - '.,f
g < 'y RTINS < " -"\\\\\.'f-i" o, W “‘\.',] A\ P ol ‘\ ‘,‘l

| acaamara s o oo s a0 o —— . V—-FT—:‘W T —‘\‘._‘.ﬁ:'u{A"'.‘ T W T O T

: c. Workload. The following Army Battlefield Automated Systems are
examples of systems under development which are programmed for testing by
TECOM during the timeframe shown.

' System Test Schedule (FY)
; 85 86 87 88 89 90
i JTIDS X X
N MCS X X X X
| RPY X X X X
- PLRS X X
BTSS X X X
: SHORAD C2 X X X
- JINTACCS X X X X
5 Improved GUARDRAIL V X
I REGENCY NET X
PJH X X X X
GPS X X X X .
. ASAS X X X X ..
- FIREFINDER X X X X L
: HAWK PHASE 171 X el
: SHORAD €2 X X ar
A\ AN/TSGQ-73 Softweve benchwork X X X X X - ’!
- PATRIOT Growth Frogram X X X X X 0
5 d. Recommer-ed TRMS Priority. Refer to the workload paragraph (10c) and .
" the ODCSOPS priorit: Yisting. This project supports the DOD STARS initiative, o
. and CADAS Letter, Development Testing of C3I, dates 1 August 1683.] q
o e. Asscciatior with Requirements Documents. The requirement for this
methodclogy is not cerived from the requirements documents associated with
specific material developments. The requirement ic identified, however, by:

l (1) Firdings of the Army Science Board. L

B (2) DOD STARS program. Paias
v (3} ABIC, AC2MP, JINTACCS. R
-': -':' -'::o
¥ to develop automated software tools to facilitate the fielding of software in f:ﬁ{
N embedded computer systems. e
, \

" f. Others. None. s
., . »\:-(; .
. 10. RESOUPCES. e
- e
2 a. Firancial. R AN
: .
- (1) Funding Breakdown. RO
5 N
2 N
> WA
Y -
= N
AN LY
» 1.{-.
x Vot

................

Dollars (Thousands)

e FY 84 FY 85
- In-House Qut-of-House In-House Out-of-House
. Personnel Compensation 8 6
5 Travel 1.5 1.5
~ Contractual Support 100.0 219.0
—~ Academia
" Materials & Supplies 0.5 0.5
- ADP 2.0
Subtotals 10.0 100.0 10.0 219.0
2
: FY Totals 110.0 229.0

(2) Explanation of Cost Categories.

R N TS
e P A

assigred to the investigation,

(b) Travel. Task coordination and technical Tiaison with
support contractor.

(c) Contractual Support. A major portion of the investigation
will be accomplished by tasking the USAEPG Software/Interoperability Support
Contractor.

' . (a) Personnel Compensation. Pay of in-house personnel
t

(d) Materials and Supplies. Routine support materials.
(e) ADP. ADP utilization for the generation of software.

b. Anticipated Delays. None.

c. Obligation Plan (FY 84).

-L.vr.
FY QTR 1 2 3 4 Total RS
Obligation Rate (SK) 105.0 5.0 110.0 f-::-;.v
d. In-House Personnel. Ay
e
(1) SR
FY 85 RO
% Manhours oo
- Number Required — Available A
’ Elect Engr, GS-0855 1 300 300 Ry
Comp Sci, GS-0334 1 100 100 i
(2) Resolution of Non-Available Personnel. Required in-house e
personnel are expected to be available. B
11. INVESTIGATION SCHEDULE (FY 84). R
y ONDUJF MAMUIIAS
<, In-House - - - 1 . 2 T
. Contract I T R N S el
~ '.i',:.-;"(
C Symbols: - - - Active investigation work (all categories). ::-';:i:::
W . . Contract monitoring (in-house only). oS e
1 Interim report to HQ TECOM. | %
N 2 Interim report to HQ TECOM. G2
- NS
. \{‘.\{:
. VRSN
AN
5 HRAS
45 r v | 4
- l:’ . "

et et ts T KT A . C e P L T N N P R S R UL T IO B S I A S I TR TP JPNL X UL SR BN w -

.‘ e T W T a4 . B . » » u.' 4 - -~ - _" e . - . " - *e .‘ .. ,- - o
e O b e i e e ey it s e L R

12. ASSOCIATION WITH TOP PROGRAM. TOP 1-1-056, Software Testing, will need
to be revised as a result of this investigation.

FOR THE COMMANDER:

(signed)

MELVIN FOWLER
LTC, SigC
Directcer of Materiel Test

* Ry - / N -".l\ o \)'?“o“_._\." s_\" R ..\.".._ L '.

! .1; . o \- -4 QQI -.1 vilﬂll. 4 *) .- " -A \.. .
! oL LA A L A
DL/ Bﬂﬁ.-q\-& PP e

V.
4
-.
y
4
3
y

-l

APPENDIX B
REFERENCES

~ .

h adh ied

< REFERENCES

1. Methodology Investigation Final Report Program Flow Analyzer, dated
January 1984. TECOM Project No. 7-CO-RDO-EP1-004. U.S. Army Electronic
Proving Ground, Fort Huachuca, Arizona 85613.

:i 2. Methodology Investigation Final Report PLRS Software Test Methodology,
= dated 4 April 1980. TECOM Project No. 7-CO-RD7-EP1-004. U.S. Army

Electronic Proving Ground, Fort Huachuca, Arizona 85613. ‘?
3. Methodology Investigation Final Report Program Flow Analyzer, dated 30 ﬁ{;ff
October 1982. TECOM Project No. 7-C0-RDO-EP1-004. U.S. Army Electronic el
Proving Ground, Fort Huachuca, Arizona 85613. v
b 4. Letter Report, Program Flow Analyzer (PFA) for Air Defense Weapon S
Computer Processors, TECOM Project No. 7-CO-RD3-EP1-005, STEEP-MT-DA, :
19 October 1983. "

5. Federal Software Exchance Catalog, PB85-904001, National Technical ;3}$}.
Information Service (NTIS), General Services Administration (GSA), 1985. S

] 6. "Software Deveicprent Tools", NBS Special Publication 500-88, National
- Bureau of Standards (NBS), 1982.

7. Software Engireering Autcmated Tools Index, Software Research Associates,
San Francisco, California, December 1982.

8. 0SD/DDT&E Software Test and Evaluation Project (STEP) Final Report,
Volume 2, Software Test and Evaluation: State-of-the-Art, 0SD/DDT&E,
Washington, D.C., Georgia Institute of Technclogy, Atlanta, Georgia, June
1983.

CRCEREE:

9. Automation of Quality Measurement, Final Technical Peport,
RADC-TR-82-247, Rome Air Development Center, Griffiss AFB, NY, U.S. Army

- Computer Systems Command, Georgia Institute of Technology, Atlanta,

S Georgia, General Electric Company, September 1982.

. 10. A Taxonomy of Tool Features for the Ada Programming Support Environment
. (RPSE), NBSIR £2-2625, National Bureau of Standards, Washington, D.C.,
February 1983.

11. "LR-Automatic Parser Generator and LR(1) Parser," Wetherell, Charles ard
Shannon, Alfred, IEEE Transactions on Software Engineering, Vol. SE-7,
No. 3, May 1981,

12. "A Pratical Gereral Methcd for Constructing LR(k) Parsers," Pager, David,
Acta Informatica, Vol. 7, 1977.

-, 13. Principles of Compiier Design, Aho, A.V. and Ullman, J.D.,
X Addison-Wesley, 1977.
."
. 14, Policy Recommerdations for Software Test and Evaluation: System Level
-? Test Issues, DeMillo, P.A., et al, Software Test and Evaluation Project e
s (STEP) Georgia Institute of Technology. RN
RS
b KLY
e ""'\S":LI:‘SNMQ: #)
‘ 49 z ';:]i=" i
1.’.- -‘.
, oo dEEE

v \ -

* PP T AN

-ty

APPENDIX €

B
at
DNV

ACRONYMS AND ABBREVIATIONS

PREVIOUS PAGE
1S BLANK

51

TSORARTR R,
AR 4 At

X

"ok)

-~

AL

NN

ACRONYMS AND ABBREVIATIONS

ABIC.......... Army Battlefield Interface Concept
ACZMP......... Army Command and Control Master Plan
ADP........... Automatic Data Processing

S Artificial Intelligence

ALP........... Automated Language Processing
ALS....ccvuenn Ada Language System

AMC........... U.S. Army Material Command

AMT . evvennns Automated Measurement Tool

APSE.......... Ada Programming Support Environment
ASAS.......... A11 Source Analysis System

ASCII......... American Standard Code for Information Interchange
ASM........... Assembly

ATLAS......... Abbreviated Test language for A1l Systems
BNF...ovovvnn.s Backus-Naur Form

[S Command, Control, Communications, and Intelligence
COR..evvvvnn.. Critical Design Review

COBOL......... Common Business Oriented Language
Comp.vveanannn Computer .
CONOPS........ Concept of Operation

CPC.evnvan.., Computer Program Component

CSCevvvnennnns Computer Software Component
CSCI.....n..s. Computer Software Configuration ltem
DACS.....vut.. Data and Analysis Center for Software
DARCOM, U.S. Army Materiel Development and Readiness Command (now AMC)
DBDD...vovnns Data Base Design Document

DBMS.......... Data Base Management System

) O Data Collection

DC3L...evutnts Distributed C3I

DDT&E......... Director Defense Test and Evaluation
DEC.....vvvuen Digital Equipment Corporation
dept.......... Department

0] 2 Deterministic Finite Automaton

DIVAD......... Division Air Deferse
DoDevevevnnnnn Department of Defense
[0 I .. Developmental Test

DTIC.......... Defense Technical Information Center b

DTSS...cvvevee Digital Topographic Support System
Elect...ovne. Electronic

Engr.......... Engineer

EPG..eveinnnt, (see USAEPG)

EQUEL......... INGRES Embedded Query Language

FCCovrvrvrnnn. Fire Control Computer (Sqt. York DIVAD)
Fortran....... Formula Translation

[0} Formal Qualification Test

| A Fiscal Year

GPS...cvvevenn (see NAVSTAR GPS)

GSA....ovvunnn Gereral Services Administration

HOL........... High-Order Language

HQuvevverennnn KHeadquarters

IEEE....ccvvnn Institute of Electrical ard Electronics Engineers, Inc.
I/FOA......... Irctailation/Field Operating Activity
TINS....ovune Integrated Inertial Navigation System
INGRES........ Irteractive Graphics and Retrieval System
1/00cvvenne.. Input/Output

I0C....ovvee Tnitial QOperational Capability

JINTACCS...... Joint Interoperability of Tactical Ccmmand and Control Systems
JTIDS......... Joint Tactical Information Distribution System
LCSEC......... Life Cycle Software Engineering Center
LCSSC......... Life Cycle Software Support Center (now LCSEC)
LISP..... ..., List Programming Language

[Line of Code

LRevurennnnn .. Left-to-Right (Parser)

LR(1)..e...... Left-to-Right With (One) Lookahead
LTC.vvevennne. Lieutenant Colorel

LTG.evveen.... Language Table Generation

MCS....envtnes Maneuver Control System -

MEC........... MSAT txecutive Control

MiL........ <o+ MSAT Instrument Line
MOP.......... . Measures of Performance
MSAT.......... Multilingual Static Analysis Tool
MSDB.......... MSAT Data Base

MSIF...cvuet.. MSAT Standard Input File

NAVSTAR GPS... Glcbal Positioning System

| A afi e ptattatie AR A et e i e _Art bt i St I S A St A i i e Al B A S T AN A Se a8 e B aurs i e Rudt e ind bl Sl Sl el hoand aulh e b oted St and Aado T Skl

TN
NBS..oveennnnn National Bureau of Standards S
NFA........... Nondeterministic Finite Automaton
NTIS.......... National Technical Information Service
t 0DCSOPS....... Office of the Deputy Chief of Staff, Operations
0SDevevennnnn. Office of the Secretary of Defense
P3l..ieenn... Pre-Planned Product Improvement
PDR....ovavns. Preliminary Design Review
, PFA........... Program Flow Analyzer
: POHu e vnnennn. PLRS/JTIDS Hybrid
PLRS.......... Position Location Reporting System
PROLOG........ Frogramming in Logic
! QTR. . ivvvnat Quarter
E RADC.......... Rome Air Development Center
i RG..ovvvunnnn Repert Generation
121 20" Remotely Piloted Vehicle
b Rgmts......... Requirements
E 1) A P Static Analysis
! SCivevnennnnn Scientist
SDevsiienans Source Decomposition
SDF...vvvn... Software Development Folder f:
i SDP.eeennnnnn Software Development Plar E.;:Es
Y] D P Software Development Standard i'f:E:
SHORAD c2,.... Short-Range Air Defense, Command and Control -
i L) P Source Instrumentation ﬁ;jgke
; 1) Soldier Machine Interface i
{ SNOBOL........ String-Oriented Symbolic Language fﬂé;;
i SPM...iventn.. Software Programmer's Manual =
g SRR..eovennnn. Software Requirements Review oty
¢ SRSevuernnnns Software Requirements Specification E}:iﬁ
[1Y System Segment Specification B
STARS......... Software Technology for Adaptable Reliable Systems
STEP.......... Software Test and Evaluation Program
{ STLDD..... «... Software Top-Level Design Document
4) Software Test Plan
SUM..ieiinnnen Software User's Manual
{ SUT.eveiennnns System Under Test
[TCS....... ..., Tactical Computer System

ey Pl AN AR SE A —— ”
[e S Ty e e,

..... .
CIACILIN N
Il'.-

U.S. Army Test and Evaluation Command
Top-Level CSC

Table of Contents

Test Operations Procedure

Test Resource Management System

TECOM Software Technical Committee
Target Software System

TSS Information

U.S. Army Aberdeen Proving Ground
U.S. Army Electronic Proving Ground
Virtual Address Extension

Very High Order Language

Very Intelligent Surveillance and Target Acquisition System
Variable Message System

(4

v 'y

- - S
.“‘-'..-.
.--.- D‘ -
‘;\' " !
TN
k)

Y
s
Ay

. 4‘.
Yy 4y
’

4

.—‘l
A

v t 8
2
[

(%

.

)
-
/]

a
N

RN -,
(LAY v
K Tolete
P RN (¥

e P 0 b 8
DAL, ! p

L 3
o

Ay
lA a -

¥)
s
Far

3 Ty
L,
s '
L’
v 7 "

PR

v, 70

»
f‘ g]
5

-
'-.

L

L4
Y

%

[
7,

T,
L g
o,
A

PO
100y 0
CAPA S
» B -~

. A
£ L

BN
]

Y

"’
"o oSy
AL

»
Lo

i i Y

A

e,

AN B A" St lion Aund B A A% A 0ee & an s e dien

2, A4

Wl g CEIFEPRA | LR
% -n..&..&ﬁwi« oy
W 7

GG
- PANAAL

) » oy
A

»

o a8
Ll

'-y

"‘J-.‘

(%)
N .
o
— M
T
= e
— ?l'
] “
> > 3
— ®
[N Fal
& < P B
a o
a w s
<C o h
L A
& :
= .
— "
n..w .
’
2] e
N
-\"-
.-.,

-
Loy

-

SIS T

o

R
A3

. .

by

’ e e e e, oy IR @ e e e N e . e v e s b e 1.s e s . L [N P RS " A e e - - ‘o %
. TN AL B Lo 2T e ey P R P e RN v D RPN, ¢ R PLIE PLIR R ™ voe et

ITEIM DA _a.e 2 X R W™ v s e

SN SIERT .

SR

L’F"

ey -
LA
1.0 Scope. The following paragraphs, and figure 8, identify and define the :iliti
terms which shall be used to describe the MSAT software hierarchy, as well as Vit
the software hierarchies of the SUTs which are processed by MSAT, K ’,
‘

Software System

.
a T
~

‘- '.

A combination of associated CSCIs and computer data required to enable
the computer hardware to perform computational or control functions.

Computer Software Configuration Item

An aggregate of computer software which satisfies an end use function and
is designated for configuration management.

Computer Software Component

A functioral or lcgically distinct subset of a CSCI, consisting of one or
mere units or CSCs.

Unit (Module)

The lowest '«ve¢l logical entity specified in the detailed design which
completely describ=s a non-divisible function in sufficient detail to allow
implementing code -¢ be produced and tested independently of other units.
Units may ccrnsist of one or more routines.

Routine

A set of instructions and/or statements that exist as an identifiable
entity and carry out some weli defined operation or set of operations. A
routine is usually the smallest compilable element of a software system. The
terminology for this, and lower levels, of the software hierarchy varies with
the particular language. Terms which may be synonymous are procedure, subrou-
tine, function, subprogram, package, etc.

Block

A sequence of statements that are well defined for block-structured
languages but are less apprcpriate for other languages. Other entities which
may appear at this level of the hierarchy, but are language-dependent, are:
internal procedure, loop and case constructs, etc.

Segment

A logical segment (or decision-to-decision path) is the set of statements
in a program which are executed as the result of the evaluation of some
predicate (conditicnal) within the program. The segment should be thought of
as including the s:nsing of the outcome of a conditional operation and the
subsequent statemert execution up to and including the computation of the next
predicate value, but not including its evaluation.

PREVIOUS PAGE
1$ BLANK

fydaeaay aa 3wuom ‘8 a4nby 4) .

mn e

e e T N

fachA B

T v

ik S

~

S

JSI €

1252

.‘_:{-

o
' e

LI
-

* a

™

W3ILSAS

u\{‘ .

-

“r e

‘
s,
]
C ot

)

A A 2R 0 AN A" S i~ S A A AL LR e L St e S e SO S SRS e A p ARt I SN AP AL A A N L G A S SN S P AR ST

- e W Y 4 8 ¢

Statement

An instruction or set of lexical elements delineated by the syntax of a
particular language. Executable statements cause some action to be performed.

Line of Code

A string of characters contained in one logical record of the program
source. Usually, one LOC contains cre statement. The concept of "LOC" is
used to identify lines which contain multiple statements and to supplement
statement level metrics where a statement may be composed of multiple lines of
code.

Sy ' YWV 2 HEE.- - - s

ot LV T e

MCORERR L SRR

i 61

A A L I ST LIS SR T SN N S S S SRR S NP Sl LAY SPE T B S
I R o S T oo G AT 4

KARAA AKX |¢Ns-.uu LA
APAAT . Wil I (R,
D A%, KA A ,hi.»
'I
o]
ot
p’ O A <
N w * L2
; : 4
g \ll
‘s —ad
w ;
. (<]
v <y ’
. wZ s
o UM
. %% 5
a W_.h (-
b
4 o
b
&
b L
] L
3 .
3
- -ﬂ ‘
9 Iy
3 o
b B
o .
3 %
) W=
R o)
7 > w -‘
v.. — o ™ -\
. Q o
Y = O o pLF
. (V) - .v-
[« 4
_,.A a < h)
b < @ e
3 >
3 ~5
3 wx
3 4
. A
3 i
¢l Il
T, ”\
1.. r\
.. l'-
. e
b, Y
' Pl
ﬂ
K’
9 5
h »
[]
[X
. ?
: %
. X
;
, X
: v
. o]
3 . -‘J
¥ OX
e e s s o s + 3 A s g SN, - ¢ CEEEN . S e L R -.-l.!hiih-.\c\u\.'—f-fof:’.f

e s N N S T N e T T O e R N T T T WV e W R W W o e ey,

1.0 Scope. The following terms are identified and defined as they are used
throughout the MSAT software development process. Some of the terms are
included to standardize their usage with respect to the software attributes
collected, metrics generated, and static analysis functions performed by MSAT.

Annotated Source File

W N

An annotated source file is created for each unit found in the MSIF, The
annotated source file contains line numbers and various flags which are
indicative of the way each particular source line was interpreted by the
parser,

Auditing

- Conducting examination to determine whether or not predefined rules have
i - been follcwed.

Augmented BNF Grammer File

Contains the source language descriptions required by the LTG for the
generation of a parser that will recognize the language. This BNF grammar is
* augmented by statements that indicate what semantic action(s) are to be taken
= in the event a given construct within the language is recognized. The BNF
grammar is the input to the LR(1) parse table generator.

g Block :
I A sequence of statements acting or regarded c¢s a single entity. i
Cluster Mi:i?
[N ':\ ':
Any TSS-defined (e.g., CSCI) or user-defined (e.g., a list of certain e
units) logical grouping of units for the purposes of report generation or S
manual data base retrieval. [i y
Cohesion ;ﬂitj:
SN
A measure of the strength of association of the elements within a module. RRON
AN
afa’
Comment =

A lexical element used to annotate a program. Comments usually have no
affect upon proper execution of the software. "Comment" usually refers to a
non-blank LGC which contains a comment statement or a portion thereof.

Comparison

Determining and assessing similarities between two or more items. In
particular, performing change analysis on two versions of the same computer
program to identify changes in the source code, documentation, or hierarchical
structure.

vious PAGE 284
PREYBLANK

3
DRI
ol
LSy
b
. B R T T SR R SR N W R TR T e e Tt o~ T ST I Ty TR N N P P PTG, s AL
G N S L L R R SR «?‘.) S L AN PO R X ¢ PO, e okly e,] i T T T

.- .,'~. "v
- Completeness Checking o
Assessing whether or not an entity has all its parts present and if those ;:;;

parts are fully developed. A tool that examines the source code for missing —

parameter values has this feature. Q:jﬁ

.‘:\.‘\:

Complexity Measurement RN

A method of determining how complicated an entity is (e.g., model ... : :

system) by evaluating some number of associated characteristics. \‘{‘5

Computer Software Component o

A functional or legically cistinct subset of a CSCI, consisting of one or kf

more units or CSCs, o

A

Computer Software Configuration ltem -

e

An aggregate of computer software which satisfies an end use function and YRR

is designated fcr ccnfiguration manacement. i 1{;

Consistency Ghecking -

The determination of whether or not an entity is internally consistent in
the sense that it containc uniform notation and terminology, or is consistent
with its specification. For example, checking for consistent usage of vari-
able names or ccreistency between design specifications and code.

Construct

A statement or set of related statements, e.g., the five structured
programming ccrtrol structures: SEQUEMCE, IF-THEN-ELSE, CASE, DO-WHILE, N
DO-UNTIL. AL A

. -
COUE] 1”9 ':‘_:"_

A measure of the interdependence of mocdules in a design structure; the
type of data and control shared between two modules.

Cross-Reference

Referencing entities to other entities by logical means. In particular,
a cross-reference could illustrate all the variables and routines referenced
by a unit.

Data Flow Arslysis

A graphical analysis of the sequential patterns of definitions and
references of data.

Decision-to-Decision Path

See segment,

A SR g Jiate e S Rt Shae Baate JShh Set Befiomat Sk S Bed Snge e S Yt S e — — e
AACIRC RN A T A S - P Pt - A LA TS i S AaCh Sl A

Decision Node

A node in a directed flow graph which corresponds to a decision statement
within the source code.

Default Standards

Predefined standards (e.g., MIL-STD-1679A) which may be used for
determining compliance with the standard in lieu of or in addition to user-
defined standards.

Directed Graph

A directed graph (digraph) consists of a set of nodes which are intercon-
nected with oriented arcs. A program digraph normally has only one entry and
one exit node.

Entity

Anything that can be named in a program. A hierarchy of entities and
constituent elements may be defined.

Error Checking

The determination of discrepancies, their importance, and/or their cause,
e.g., identification of possible program errors, such as misspelled variable
names, arrays cut of bounds, and modifications of a loop index.

Executable Statement

A statement which causes some action to be performed, as opposed to a
declaration which defines an entity.

Expandability

Those attributes of software that provide for increased data storage or
computational functional capability.

ALY
rd

External Reference

/

A 1ist of references supplied by the user which are external to the
target software source, which would otherwise be identified by MSAT as unde-
fined references (e.g., operating system library routines).

. 0 r e e T
P PR I
« a_1_ od» L P)
s ‘0 fe e e RN
’
e .
- . 1 ’ .
EURCTANR (R -'l.',' et
PR AL e ¢ v

S
3'..1’..
P

e
!
5

Fan-In

The fan-in of a module is the number of distinct medules that call this
modu]e)(e.g., the number of modules that are immediately superordinate to this
module).

Rt
|

)

'l"
/
. .
. r‘_t_
‘l

Fan-Out

The fan-out of a module is the number of distinct modules that are called
by this module (e.g., the number of immediately subordinate modules).

............... RN TS TS TR e TR
’ . - > * -~ Coeta e Y,

R YRS LAWY

.......

Hierarchical Structure Design

A design method in which interactions between modules are restricted to
flow of control between a predecessor module and its immediate successor
modules.

Hierarchy Level (or Cluster)

The grouping of units or a hierarchy level (System, CSCI, etc.) desired
for a specific request.

Identifier

One of the basic lexical elements of a language. An identifier may be
used as the name of an entity or as a reserved word.

Instrumented MSAT Standard Input Files

The modified MSIF contains updated {or new) instrumentation from the SI
process or manual insertion.

Interface Aralysis

The checking of the interfaces betweer program elements for ccnsistency
and adherence tc rredefined rules and/or axioms. In particular, checking
parameter usage (type, number) in calling and called routines. Determining
the various degrees of module coupling might alsc be included in interface
analysis.

Input/OQutput Specification Analysis AENGR

The aralysic of the input and output specifications in a program usually
for the generation of test data.

Language Dialect

The particular dialect of a language version (e.g., Singer-Kearfott
FORTRAN).

Level (Detail, Summary)

The level, as used here, refers to the level of report which is desired
in a particular user request (e.g., detailed or summarized unit level software
quality metrics).

Library

A collection of routines (or data) which are frequently used (e.g., 1/0,
SINE) and are externally referenced or included in the software being devel-
oped.

Line of Code

A string of characters contained in one logical record of the program
source. Usually, one LOC contains one statement.

{_ BaAAh e J gt s M Ak T JacCliin it el e e e gl ae SR B gr S A A 4 S g 8- AL A AL B I gt U S S A Sl AT B S The G el Aa Ak Aafl il Al Sol Bed Al Al Aull bod And dedAnd &
<

F Log File R
) A history of the actions performed (summary statistics) and error RO
messages generated during the execution of a given function or set of ¥ (

functions. KXATAY

I

; - E}Fﬁ}
- LR is a pair of programs--an automatic parser generator and an LR(1) ’*“i\
‘ parser. LR uses a powerful algorithm to generate a space efficient parser for] {
. any LR(1) (left to right with (1) lookahead) grammar. The parser generator T
~ reads a cortext-free grammar in a modified BNF format and produces tables el
N which describe an LR(1) parsing automaton. The parser is a set of subroutines Lo
- that interpret the tables tc parse an input stream of tokens supplied by a RS
(Tocally written) lexical analyzer. e

Manual Data Entry ?:J}f

Data which must be entered manually into the data base; for example, data
which cannot be cellected automatically, or data collected which must be
supplemented or rcdified prior to analysis.

Meru Opticns

Menu selections which occur during the MEC interaction with a user. The
user selects an available option and the MSAT MEC acts upon this selection.

Meta-Language

A meta-lencuage is a set of symbols and worcds used to describe another
language (in which these symbols do not appear). The most common application
is in the definition of programming languages (e.g.. BNF grammars).

Metrics
Software metrics produced by the SA function; includes summaries iﬁﬁiﬁ
- statistics, courts, etc. L
- O
: Module Q;gij
An independently compilable software component. The term "module" is PSRN
frequently used in industry to be syncnymous with "unit" as defined herein. e
. MSAT Da*e EBase :
: Includes VAX/YMS files and INGRES data tebles. The MSDB contains TSSI, “'I
including software attributes and anrotated source. NN
N fur iy
MSAT Standard rput File el
I3
MSAT expects a standard format for its input files, the "MSIF" in this -~
document implies any user specified input file containing 7SS source in the
MSAT format. This file may contain one or more units of TSS source code. N
LY ¢
S
DA
: RN
Fin, .
69 [
: R
T N N Sp T e e e e O S

1,

P CRAMO S et e ne e e — e Ml 2 2 T 0 0Bl A SLE Al A b See B e o AW S 8% B AR e Bae gl e al o
I = o T ——rrye T Ty Y RIS A i 4 S At bt haee 2} A r———

t:: R

o
f Parse Tables
; These tables are used with a parser and lexicai analyzer to recognize the

source code input to MSAT., The tables give the parser the "knowledge" to
recognize a production within the grammar or determine that another symbol is
required before such a recognition can occur.

: Path Segment
"
See segment.
Process Tl
The transformation of input data flow(s) into output data flow(s). :ﬁg;:
. SR
Routine :
= it
" A set of instructions and/or statements that exist as an identifiable e
- entity and carry out some well defined operation or set of cperations. A <

< routine is usually the smallest compilable element of a software system. The
- terminology for this, and lower levels, of the software hierarchy varies with
the particular language. Terms which may be synonymous are: procedure,

subroutine, function, subprogram, package, etc. ,,}3
. s
Scanning s
. oy
Examination of an entity sequentially to identify key areas or structure. ooy

For example, examining source code and extracting key information for generat- t
ing documentation or source analysis. EARA

o Segment

A logical path segment (or Decision-to-Decision Path) is the set of
statements in a module which are executed as the result of the evaluation of
N some predicate (conditional) within the program.

o Software Quality

The composite of attributes, including performance, which describe the
degree of excellence of the software; features and characteristics of a
software product or a related service to satisfy a given need.

Software System Independence

Those attributes of the software that determine its dependency on the

software environment (operating systems, utilities, I/0 routines, etc.). [:“”
- RS
- Source (Language) Description ﬁ;;ﬁ
_; e \'.-i
. The language grammars and prologue format descriptions, (e.g., modified N
A BNF for HOL and ASM). e
! el
£ o
t W
1 A
-~ :%ﬂ:;v
70 8
. .ifr
» i:)
g e e A U (o (s N L L LSS PNt 2o T AL 7T TSI ET AT TN =

Statement

An instruction or set of lexical elements delineated by the syntax of a
particular language.

Static Analysis

Examining the scurce code statically (not under execution conditions) and
performing syntax analysis, structure checks, module interface checks, event
sequence and analysis, and other similar functions.

Statistical Analysis

Performing statistical data collection and analysis on software source
code.

Structure Checking

Detecting structural flaws within a program (e.g., improper loop
nestings, unreferenced labels, unreachable statements, and statements with no
successors).

Subroutine

An indeperdently compilable sequence of statements that performs e
specific function (usually used to mean "exterral" routines or routines
belonging to a library; see also routine).

System

A combinatiocr of associated computer programs and computer data required
to enable the corputer hardware to perform computational or control functions.

Token Tables

The token tables contain information used to detect ali the terminal
symbols of the language, that is, those which cannot be further reduced. Such
symbols are keywords, numerals, operators, and identifiers. These tables
allow the lexical analyzer to recognize the terminal symbols of the language
and pass this information to the parser.

Trace File

A trace file is produced whenever a user requests either the brief,
verbose, or test trace mode. This file contains detailed information tracing
the activities of the major MSAT CSCs. It is used primarily for detecting
BNF/1anguage table problems, inaccurate or missing instrumentation in an MSIF,
and aiding in MSAT development and/or enhancement.

TSS Hierarchy Terminology

The software hierarchy terminology used by a specific TSS for report
genergtion. (The default is DOD-STD-SDS terminology: system, CSCI, CSC, and
unit.

- - - &
» . - Y - r L B 4 - - g ' -y . K59 D) af £ AN A‘ |
28 ’ ' © .‘ Lol n‘(' X ”".‘r 0 .o et L A P A A SR "'"“1 -"“i'“‘*-'!ﬁ‘.‘ ","’ .?ir ‘Y

L A0
SRS W AN
b A AN [P LI e

-
-
Y
(W

Py V K ." .)

» 'y
~
' = N

P 2k 4

b
DA
o _N
&

.
.
!
e
reZa’

s
AT
YR
{
N AN
. RS
TSS Source T
The original (raw) software source code file which will be transformed féﬁﬁ
into the MSAT standard input format. The source code may be composed of HOL H—
with embedded ASM, embedded VHOL, both, or may consist of a single language. N
~:,_u'\
Type Analysis Ny
\.}\;\‘
The evaluation of whether or not the domain of values attributed to an }3&@
entity are properly and consistently defined. : .

Unit :

l; The Towest level logical entity specified in the detailed design which .
" completely describes a non-divisible function in sufficient detail to allow .
implementing code to be produced and tested independently of other units. (A T
unit may be made up of several routines.) e
el
- Units Analysis ﬁlfi}
N The determination of whether or not the units or physical dimensions e
attributed to an entity are properly defined and consistently used ensuring f“tj
variables used in computations have proper units (e.g., hertz = cycles/ TR

second).

5 Unreachability .

A statement (or segment) is unreachable if there is no logically obtain- f'.]

able set of input data which can cause the statement (or segment) to be HESA
traversed. -

User Input Parameters ; wl

) The data and control information which will be input by the user through é::j
S the MSAT user interface. RO
- User Standards i
- e
: Standards (criteria values) input by the user to be used for standard's Fi ;i
compliance, e.g., TSS-specific standards. A user might also specify a L_ ¥
specific set of predefined standards which will be retained for reference in e
the MAST data base: MIL-STD-SDS, MIL-STD-1679A, etc. . ';{{{:

1 LN NN .
LI PP PR

’ 72 o
3 o

AP]

R TR ST I IR Y RO Lo T T L S S N P e Sy . - g -
A ST RN TN N S g S A e e e T 0l 4 s T et T T TA T SA TR T

4

|

w 5
>< -
— v..m
o
= I,
il)
o »
o. 1LY2
< »
»
IS
-
o
»

»

SOFTWARE STANDARDS COMPARISON
73

" A
0%

Oy Ty ¥
i Yo Y.

U \\.-. o~ ‘e Tetet .\-J Tttt SRS & UL T) -....---:-.....- YA » -~ e ‘S ..A.‘

BHAIAN

I T LY IV Y Y WL w

;S e TN Y pw G v T wy wy e T

T ol Rl — e e

LSRR R ot St Rl o

v wTw— e

~ s Lt

L} Wt ..
.I.Ixf.-f..‘i.\

..

ANYIg g

I9vy SNOIA Yy

papn(aut 3oN

(£°€°G) sues

(3°€°6)
A28q 30U pUBMAOS Youedq
A{uo 3snu *paroudde 41

(sa4n3on43g

1043u0) 3jepnuts

03 3uoQg 3soy)
30N) buiryoueug -°g

papnout 310N

pPapn|out 30N

(9°€°G) a4n3293
-LYdJe pajuaLao }oe3s
404 1d33x3 *pasn 0N

SI|NpO IALSANIIY °/

((€)°€°2°02) awes

(G°€°G) oawes

(6°€°G) PailLqiyouqd

UOLIBIL4LPOW-3[3S °9

papniout 3oN

papniout 3oN

(r°€°G) paaes

9q pLNOYS S| geLJBA
led201 48ylo g *s3adipul
‘saajaweded Jo sanjep

sanjeAa 430
aaes ‘3dnaaazu]
uodn £A3t{iqeadeay -g

((9)°€72°02) aues

(p°€°g) sweg

(€7€°5) 3txd 3jbuig
‘fa3ud a|buls

31x3-Aajuy p

papn(out 30N

(§T°%°5)
asn juawbas aALILIaday
(€°€°g) swes

(2°5°t°S) siuawbas
3AL3113d34 404 pasn

(2°€°) ALuo T0H uI

s3uawbasg
pardo)/papnidou]l °g

saan3onuls g (2°2°02)
(2°1°2°02)
43 tdwodaad asn a0 ajejnwis

(2:€°6)

(1°¢°9)
3se) ¢|L3un-og
‘9L LymM-0Q *8s|3-uayl-4]

03} aiqLsstwuad ©aweg :J150Q G awes *92u3anbag :21seQ G SIUNIINAYS |04JUO) °2
(£°2:02) 001 > 3beaane _(9°¢°9) (L°¢°9)
002 > yoea ,aiqepuedxa (swes) QT > A5eJaAe 001 3beaane

-uou, satyLoads ‘aues 002 > Yoe3 00Z > yoe3 3zLg aNPoR [
€8 230 ¢ €8 3120 ¢¢ 8/61 23Q

(pasodoud) $@S-01$-000

T e) LR

[A

¥6.91-01S-d0d

6L91-01S-1IW

PRI

-QYVANVIS

DA A A AN

s *
. v A e

PRSP

75

A,

SN

»

(6°2°02) punoduod (£°6°p°G) xajdwod sjuawalels

-uou ‘sjuswalels aibuig (91°p°g) awes 40 punodwod 3q 30U [|eYS adxanos ‘1
(01°2°02) Au03sty (y saweu Jauwwedaboad (L
uotieadd jo ajep (b Ka03s1y (y
*3dap buruweaboud (4 sanjea jo sabueua ejep (b
d|geLaea |e2d0f § |eqolb (3 uot3diLadsap ejep (3
0/1 (p o4 4-pa|1ed (9
9o5uanbas paj|ed sa|npow (p
butyled B pajLed> ,s3tun, (o (8°v°G) wyjtaobre (2
aoejuajzul ‘sjwba ‘uoriduny (q aweu Auedwod (° 0/1 (9

asodund (e :sapnout 3daoxs Luweg uot3ouny jo uolldradsap (e $30e41SQY €1
($°¢°G) (2°€t°S)

(9°2°02) 6,91 se owes

Ipn|ouL 0} JaALRM
J13123ds aainbay

SIUBUMIOD UL PaqLAISIP
€2191ssod uaym paplLOAy

SpOW PaxtW °21

(2°9°G) (nsbuLuesw
g 3nbLun Ssaweu ©°2313

‘anpow ‘uolryisod AydsueuastLy SUOLJUIAUO)
(6°2°0¢) suwes (2p°G) swes AjrjuapL “3noybnouyy waoyLun butwey 1T
(vr272)
94N3INAIS elep JO 3IZLS
9 ‘3|qe] e uL SuoLledo| (1°¢°9) udwuoLLAUS 3Y) sdalaueded

9AL1P|34 °SJURISUOD U0} PIS)

(1°¢°G) awes

AQ p3323}49 531URISUOD U0

aLoquis Q1

(82°02) € >
butisau (£°2°0z) buLjuapul
g buLyo0|q ‘burydesbeary

(01°p°G) awes

(01°€°G) ALl tqepead
404 pajuapul aq plnoys

buLysaN
/uoLiuapuy ‘6

£8 230 G
(pasodoud) $GS-01S-000

RISy - RISy e ..._.

€8 320 ¢2¢
¥6/91-015-000

3461 22Q
6.91-0LS-TINW

< GYVANYLS

AR “u ey

76

RS AT FY A

RS e SV T2e s

LR Rty 234

Dl 3

-i.-1

—

A

TE e =Y

-

P Y

LY

-

WY X WL

cLr Y ERY R Y VLY.L, R Y.,

(21°#°9)
sbutyst] 9duaud434-5S043D
‘(€1°v°G) sdey peoq sppy

(2°2°02) papaau

(£°5°5) (panoadde

JaALteM (1°2°02) ALuo 10H (1°¢°4) aues 3SLMIAYI0 ssajun) Ajuo 10H abenbueq -91
apnpou |33}
43ybLy e [peo jou Aew |3A3|
£6o|ouLwadl Aysaeaaty JA9M07 (2°G) (S3uaniiisuod uoLyejudwajdw] %
34BM]40S MBU YJLlM Jde|Lwls aweg weaboud) Jeynpom 3 umop-do] 34n3anu3§ weabouqd -G
€8 990 G €8 120 ¢2¢ 8L61 3°Q
(pasodoad) $aS-01S-000 ¥6.91-01S-000 6,91-01S-1IW :QYVANVLS

" H .

RIS ARSI ¥ IPUNLESLEN)

LA ot

)

Pt SN

W er: NN

i (AR,

D

S ALl

e SRSt L e e S ol g%

APPENDIX G
DISTRIBUTION

PREVIOUS pa
1S BLANK ae

e T NN W W N W S eWEFT S 9 3 5 e » oy - "

hiakatandie ARaiuie}le o 4o srs Bl 0 St

DISTRIBUTION LIST

i Number
Addressee of Copies
: Commander
' U.S. Army Test and Evaluation Command
' ATTN: AMSTE-TC-M 3
l AMSTE-TO 2
AMSTE-EV-S 1
AMSTE-TE 6

Aberdeen Proving Ground, MD 21005-5055
Lo~ Commander
I . Defense Techrical Information Center

ATTN: DTIC-DDR 2

Cameron Station

Alexandria, VA 22314-5000
. Commarder
i U.S. Army Aberdeer Proving Ground
; ATTN: STEAP-MT-M 2
¥ Aberdeen Proving Ground, MD Z21005-5000
. Commander
- U.S. Army Yuma Proving Ground
i ATTN: STEYP-MSA 2
y Yuma, AZ 85634-5000
y Commander
N U.S. Army Jefferson Proving Ground
. ATTN: STEJP-TD-E 1
l Madison, IN 47250-5000
ﬁ Commander
3 U.S. Army Dugway Proving Ground
g ATTN: STEDP-PQO-P 1
. Dugway, UT 84022-5000
! Commander
- U.S. Army Cold Regions Test Center
. ATTN: STECR-TM 1

APO Seattle, WA 98733-5C00
; ‘ Commander
3 U.S. Army Electronic Proving Ground
Ny ATTN: STEEP-TM-AC 4
N Fort Huachuca, AZ 85613-7110
- Commander L
ﬁ U.S. Army Tropic Test Center ‘
" ATTN: STETC-TD-AB 1 A
g APO Miami, FL 34004-5000 VA
: RN
4 s
r. PREVIOUS PAGE SR
i 81 IS BLANK } ﬁ
E e
3 ',5\%‘!
E T Y B 2 e S R T (e Gt R T e e

[5
Ei
{ A}
Ky
N
tj Number
e Addressee of copies
Commander
U.S. Army White Sands Missile Range
ATTN: STEWS-TE-PY 4
STEWS-TE-0 1
STEWS-TE-M 1
STEWS-TE-A 1

White Sands Missile Range, NM 88002-5000

ARAN o
4
"
.

i
e
N

Pastinn S AP At AR ol Ol din o SRy g ol a-a i il A -t AN o N o i SN o o SN At S e/l arui ateh abb A A e Dl A i Al Aol Al Al Al Al il At Sk ded Aall, Sl dun

(BLANK PAGE)

b .
.
o ln.lA_'
. Clven
e e !'.'-'
“~ 0.: 1':*
- et
. DALY
« - "' ..1
' AR Y
-' - \. \.
. OO
: AN
-‘ «*
A
G
. DI
., - -
s ‘q. .\‘ N
g e
A _n:‘ .-"
-0 ™
- O
‘;
"
4
i
v
=4
-
-
.
3
<.
-,
<+,
..

83

-

var .'- ﬁ-» -, ." "r,.v .' “.w _*r L

WY v}
b 1YY,

g
» L s

. B Y L T8 3% Tt Y
"‘r\ Y '-"&" '. s " f‘. "‘.'q My «” \._ W \k ‘. A LA LA M

T PR AL -
..,.......u ﬁ..n ;_ *
-- .n. n. l- l' -.-:- -.»{.‘ U’V}\}‘»\- s,

A

-

rr—pr———————"
= -
W7

NI

L

. z,
y . — '
- L
= (5]
s <C

o
4 <
v >
b = @
v = -

)

[Fa)

S

R wgraes

ST

-

NN

d

Aatad) Sa

o=~

.

Al
A
V‘.I

fa N | Lt et T e R T P s e s e e . P T T e v 8t e @ RPNy . -

3
I
L
fL™

-

. - - - - - :“r. s 5. N -':’. -
XFERT AT DT AL '.:f.-“??u}I ey

