
R-ft64 956 METHODOLOGY INVESTIGATION MULTILINGUAL STATIC AAYSIS 1/1
V TOOL (NSAT)(U) RY ELECTRONIC PROVING GROUN FORT

NUACHUCA AZ E L ANDERSON NOV 85
UNCLASSIFIED F/G 9/2 N

))V.

~L

%

k ".

1.0 L4-' -1.

96 L O

1.1W

MICROCOPY RESOLUTION TEST CHART

--..... ... -......................... , '.... ,-..--

- ~W ~ - Lot --

UNCLASSI FIED

DDC AD NUMBER__ _ __ _ _ _ _ _

FUNDING PROJECT NO. IT665702D625

TECOM PROJECT (TRMS) NUMBER 7-CO-R85-EPO-007

TEST ACTIVITY REPORT NO._ _ _ _ _ _ _

TEST SPONSOR: U.S. ARMY TEST AND
EVALUATION COMMAND

METHODOLOGY INVESTIGATION

FINAL REPORT ,.* '.','..

MULTILINGUAL STATIC ANALYSIS TOOL

(Xa
(MSAT)

by ~

Edward L. Anderson

November 1985

•. DTIC
US ARMY ELECTRONIC PROVING GROUND ELECTE

- MAR 051986
FORT HUACHUCA, ARIZONA

' UNCLASSIFIED

DISPOSITION INSTRUCTIONS

Destroy this report in accordance with appropriate regulations when no
longer needed. Do not return it to the originator.

DISCLAIMER

Information and data contained in this document are based on input
available at the time of preparation. Because the results may be subject to

* change, this document should not be construed to represent the official
* position of the U.S. Army Materiel Coimmand unless so stated.

The use of trade names in this report does not constitute an official
* ~indorsement or approval of the use of such commercial hardware or software. __

This report may not be cited for purposes of advertisement. -

r~

DEPARTMENT OF THE ARMY
HEADOUARTERS, U.S. ARMY TEST AND EVALUATION COMMAND

ASBERDEEN PROVING GROUND, MARYLAND 2l0S- M.

FTTLY TO

AMSTE-TC-N
SUBJECT: Methodology Investigation Final Report, TECOM Project NumberT-CO-R85-EPO-007

Commander
U.S. Army Electronic Proving Ground
ATTN: STEEP-MT-DA
FORT HUACHUCA, AZ 85613-7110 l

1. Subject report is approved. ,.-

2. Test for the Fest.

FOR THE COMMAIDIEIR: " -

Accesi~nForGROVER H. SHELTON -

' C' T "

r ta i; ic %
1Jull fi2 At

Avai t ce

Dist Sc i

IP1

-V .T. -

- -. -. -- -.

UNCLASSIFIED - " -"
SECURITY CLASSIFICATION OF THIS PAGE (W7ne Date Entered)

REPORT DOCUMENTATION PAGE READ OSTRUCTIONS .BEFORE COMPLETrNG FORM .-. "-
• .- .Irq~

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TRMS No. 7-CO-R85-EPO-007 ,I_,______
4. TITLE (mid Subtitle) S. TYPE OF REPORT & PERIOD COVERED

METHODOLOGY INVESTIGATION FINAL REPORT-MULTI- *
LINGUAL STATIS ANALYSIS TOOL (MSAT) Final Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(.)

Edward L. Anderson

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK *' --A RE A & WO RK U N IT N UM BE RS " ' " -

US Army Electronic Proving Ground A.' O"UI'UBR

Fort Huachuca, AZ 35613-7110 IT665702D625

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE * 4
US Army Test and Evaluation Command Nov 1985
Attn: AMSTE-TC-. 13. NUMBER OF PAGES

Aberdeen Proving Ground, MD 21005-5055 84
14. MONITORING AGENCY NAME & ADORESS(II different from Controlling Office) IS. SECURITY CLASS. (of Chia report)

Unclassified
IS&. DECLASSIFICATION/DOWNGRADING

SCHEDULE%

16. DISTRIBUTION STATEMENT (of this Report) . * -

Approved for public release; distribution unlimitpd.
SII

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, If different from Report)

" . .--...0

-. -....
III. SUPPLEMENTARY NOTES

. % .o

19. KEY WORDS (Continue on reverse aide It neceeary aid Identify by block number)

Software Measurement Software Static Analysis Tool ,'
Software t.Metrics Software Testing
Software Quality Software Assessment

20. ArBSTRACT (Camftoe a rverse eir Nf I necessay and Identify by block rnumbet)

The Multilingual Static Analysis Tool (MSAT) investigation was conducted to
develop a software tool to automate the collection and reporting of software. '''

design and quality characteristics in a multilingual milieu. The goal of MSAT
is to minimize the manual effort associated with the static software assessment
of a target software system's design, structure, maintainability, modifications
and conformance with documented design and development standards. MSAT
consists of a flexible, language-independent data collection component which
extracts and stores items of interest in a DBMS; static analysis/report .

ANOE 147 I o Noo',ov.sssoOLETI UNCLASSIFIED .

SECURITY CLASSIFICATION OF THIS PAGE (Wmn Data nier*E)

. -it

(UNCLASSIFIED)

SECURITY CLASSIFICATICN '3F "rxiS PdkGE(Whim Dote Znornd)L

generation components for calculating and presenting software metrics and
reports; and an executive control component which provides a user-friendly
i n t e r f a c e . . .

',,)"

.-. :*.l
4.

w ., ,,,*

.% ..

*

. 1 .

.1*

(UNCLASIFIED L L C . ..

,
I* , . ,g5,

* S

I
31[~ ~~~~~ ~ ~~~CJA I" X.ASSIIC * : N O * *S m G f 'o ' -

I7

TABLE OF CONTENTS

Pae

FOREWORD.. vii

Number Page

SECTION 1. SUMMARY

1.1 Background... 1
1.2 Objective.. 2
1.3 Summu'ary of Procedures..................................... 2
1.4 Summary of Results.. 2
1.5 Analysis... 3
1.6 Conclusions .. 4
1.7 Recommendat'iors .. 4

SECTION 2. DETAILS OF INVESTIGATION

2.1 Software Test Methodology 5
2.2 Requirements Definition 5
2.3 MSAT Development ... 9

2.3.1 Concept of Operations................................. 10
2.3.2 Design Goals and Approach 10
2.3.3 MSAT Reauirements..................................... 12
2.3.4 Development Phases.................................... 15

2.4 MSAT Description ... 19
2.4.1 Overview... 19p2.4.2 Detailed Design Aspects............................... 26

V.2.5 MSAT Operational Aspects.................................. 32
2.5.1 Personnel Requirements................................ 32 .7
2.5.2 MSAT Operational Procedures 33

2.6 Future Development 35
2.6.1 Candidate Tasks for MSAT P31 35
2.6.2 Software Test Methodology 37

&- r v

OWL 4

Paragraph
Number Page

SECTION 3. APPENDIXES IV

A Methodology Investigation Proposal......................... 39
B References... 47
C Acronyms and Abbreviations................................ 51
D Software Hierarchy Definitions 57
E MSAT Glossary.. 63
F Software Standards Comparison 73
G Distribution... 79

pitaVI-. PAGEv

15 BLAN

IZ .

* -. .- .-- s.-** . *. .- .- o - *** --'*- -* - *- - -' 9%. .%' %-. .W W - X . L -w -. . . -. -t

LIST OF FIGURES

Figure Page

1 MSAT Concept of Operations 11
2 MSAT Functional Components13
3 MSAT CSCI Architecture 21 -"
4 MSAT Data/Control Flow .. 22
5 MSAT Logical Data Base Files 25
6 MSAT Target Software System Information 27
7 Pre-Planned Product Improvement36
8 Software Hierarchy .. 59

LIST OF TABLES

Table Page

I Systems Requiring Assessment 6
II Language Processors Required 7

III Proposed RSAT Static Analysis Functions 16
IV MSAT Implementation Issues 17
V MSAT Initial Cperational Capability 18

VI MSAT Developrerit Phases and Products 20

p"

, . ,°

5'..

- F - 4

FOREWARD

Ultrasystems Defense and Space Systems, Incorporated,
Sierra Vista, Arizona assisted in the preparation of this document

under Contract Number DAEA18-83-C-0003.

IF

- **

PRIV°, P!

ISBL ..

vii'*- ..-

.*°*" **

9I-

f. .. % % -. o- ..- :.. ' .J W .\~-~- '-.:

* . - " . - - .- -.

1. SUMMARY

1.1 Background

This document comprises the final report for the methodology
investigation for the development of the Multilingual Static Analysis Tool
(MSAT). The MSAT concept was conceived during earlier investigations on the
Program Flow Aralyzer (PFA). PFA research into software static analysis tools
and associated software metrics culminated in the recommendation to develop a
multilingual software analysis system [I].

The U.S. Army Electronic Proving Ground (USAEPG) and other Installa-
tion/Field Operating Activities (I/FOAs) have been tasked by the U.S. Army
Test and Evaluation Command (TECOM) to perform software testing of systems
containing embedded computer resources. Comprehensive software testing
includes both the dynamic testing of performance and reliability (using
instrumentation such as the Test Item Stimulator and Hybrid
(hardware/softwarel Monitor) and the static testing of software quality (using
tools like PFA ard MSAT). Because complex system functionality in DoD systems
is increasingly provided by software, the task of assessing performance and
quality features ct software is becoming a critical factor in the addition of
viable systems f the inventory.

Static aralysis tools, by examining the actual target system source code,
provide visibility o' the software design and quantitative measures of
software quality as actually implemented. An obvious by-product is the
ability to aralyze the correctness of documentation with respect to theimplementation. Less apparent are the support of U!yna'ic analysis and various
uses during Life-C~cle Software Engineering Center (LCSEC) activities (e.g.,
automatic docurEntation generation and version cryr-parison). Use of static
analysis techniques to support testing of mairtainability issues is
potentially highly cost-effective since up to 80 percent of software costs are
associated with maintenance.

The test environment at USAEPG and other I/FOAs provides some unique
challenges for software testing. Unlike many development/test orcarizations
with a limitec number of software languages and computer architectures, DoD

- systems are characterized by a plethora of languages and architectures. In
addition to the multilingual requirement is the need to accommocate a number .
of evolving software development standards. On 10 systems tested at USAEPG,
13 software !anguages and 4 software standards were analyzed.

Justification for a multilingual/multistandard tool is obvious, given the
unique environment. Automation of static analysis is difficult to dispute
also, since, in one test alone, a cost savings of $500,000 was realized with a
static analysis tool relative to performing the same level of analysis manual-
ly. Besides being labor-intensive, manual static analysis tends to be error

* prone, less comprehensive, and far less consistent (because of "sampling"
practices) than automated techniques. Further evidence of the utility of
automated static arlysis for software testing is provided in the references
[2, 3, 4].

fPEVIOUS PAGE

IS BLANK

S . ,-,"'.o

%~

,..°.-

The MSAT investigation was conducted to develop a software tool to
automate the collection and reporting of software design and quality charac-
teristics in a multilingual environment. The goal of MSAT is to minimize the
manual effort associated with the static software assessment of a target 4
software system's design, structure, maintainability, modifications, and
conformance with documented design and development standards. MSAT consists
of a flexible, language-indepenJent data collection component which extracts
and stores items of interest in a data base management system (DBMS); static
analysis (SA)/report generation (RG) components for calculating and presenting
software metrics and reports; and an executive control component which 4
provides a user-friendly interface.

1.2 Objective

The objective of this investigation was to develop MSAT, incorporating
the proven concepts of previous investigations. Supplementary goals included
the following:

* Reduction of the effort required to add languages and standaras.
* Creation of a user-friendly man-machine interface.
* Incorpcration of new retrics as identified by previous research

ard a d.esign which facilitates augmentation of metrics, SA, and
RG cap,.bil1i ties.

s Validation and configuration management of a single tool to
repic:ce the "family" of existing tools.

1.3 Summary of Procedures

Initial efforts on the MSAT investigation focused on determining the
requirements for a static analysis tool to satisfy the stated objectives.
Preliminary software requirements were derived by examining existing tools and
test needs. These were developed into proposed specification documents and
used as a basis for defining the needs of other I/FOAs. The preliminary
specifications were then updated to reflect the initial operational capability -
(IOC) agreed upon by TECOM Software Technical Committee (TSOTEC) review.

Development of MSAT proceeded, following the guidelines established by
the (then) proposed DOD-STD-SDS (now DOD-STD-2167). A Digital Equipment
Corporation (DEC) VAX-11/VMS system with VAX FORTRAN, and the INGRES DBMS were
provided as the host environment. VAX FORTRAN and Intel 8085 assembly were L

chosen as the first two target languages with DOD-STD-SDS as the default
software standard. Plans for MSAT included provisions for training, sustain-
ing, and configuration management of the tool. While part of the plan, these
activities will not be initiated until completion and validation of the IOC.

1.4 Summary of Results

The MSAT investigation resulted in the development of a general purpose
tool for software static analysis in a multilingual environment. Examination
of projected test needs and a survey of existing tools revealed that a multi-
lingual requirement, which was not satisfied by available software products,
remained valid despite the trend toward Ada. MSAT software requirements were
based on previous investigations at USAEPG, verified by other tool designs,

..,. _____ ____. _ __ ____. ____ _ -_ .___ ,,

and coordinated with other TECOM I/FOAs. The investigation continued with the
design and implementation of the MSAT 1OC, following an incremental approach
which stressed flexibility to allow for enhancements.

The MSAT design was centered around two reusable software components. An
existing parser generator was used as the basis for a table-driven language
processor to minimize the amount of language-dependent software in MSAT.
INGRES, a commerical DBMS product, provided a flexible data base schema as
well as data base management, user-friendly forms/menu features, and data
retrieval mechanisms. Additional flexibility was designed into the system to
allow adaptation to various software development standards and for supplement-
ing the initial SA/RG capability.

Validation and configuration management of MSAT were planned as post-
development activities. As such, these and the related activities of distri-
bution, maintenance, and training remain to be accomplished.

Ore of the design goals of MSAT was to provide for future enhancements
during the initial development. A number of candidate tasks were proposed for
further improvement of the initial product. At a higher level, the need to
maintain currency with advances in software test methodology was identified.
A known deficiency in this area includes the lack of systematic methods for
determining test coverage (thoroughness).

1.5 Analysis

The design and development approach of MSAT were obvious means of satis-
fying the stated objectives. First, the design was based upon previous
efforts at USAEPG, with input from other I/FOAs and lessons learned by other
tool developers. A table-driven technique provides the requisite reduction of
effort to expand the language processing capability. Also, a commercial DBMS
supplies extensible features and a user-friendly man-machine interface.
Although numerous metrics, in addition to those implemented for 1OC, are
conceivable, provision for supplemental measures exists in the data base and
SA/RG components.

Validation and maintenance activities associated with a software product
such as MSAT are desirable after completion of the initial tool. A programmer/
librarian function is normally the means applied to ensure that proper config-
uration management requirements are met. Additional support of users in
applying MSAT to software assessment or LCSEC functions could be achieved by
developing guidelines to assist the analyst. A by-product of these guidelines
could be a standardized software assessment procedure for more consistent
reporting and analysis.

Proposed enhancements to MSAT are best integrated incrementally in

consonance with the evolutionary design philosophy. In accordance with this
approach, investigations would be conducted to identify and prototype
additional software quality metrics and SA/RG functions. After evaluation,
desirable capabilities would be incorporated into a documented, production
version of the tool. More advanced investigations are necessary in areas
where little research has been accomplished or consensus is wanting relative
to the validity of various metrics.

3

1.6 Conclusions

The MSAT development achieved the objectives and goals of the methodology
investigation, contingent upon validation of the tool, training other I/FOA
personnel in the use of the tool, and performance of sustaining obligations.
MSAT currently provides an automated means to observe and measure various
software quality features in an environment characterized by diverse language
requirements. In this capacity, MSAT possesses unique capabilities not
duplicated by available static analysis tools. Exploiting the inherent
flexibility to enhance the initial capability was both pre-planned and essen-
tial to the viability of technologically current instrumentation.

1.7 Recommendations

The following recommendations, in order of precedence, are suggested for
completely satisfying the objectives and fulfilling the needs determined .
during the investigation.

a. Validation of MSAT should be performed by an independent test
activity. Following acceptance of the tool, sustaining functions including

*. distribution, mainterance, training, and configuration management should be
initiated. A desirable product from this effort is a set of guidelines for

7 application of the 11SAT.

b. An investigation should be conducted to supplement the basic
features of MSAT by implementing the proposed enhancements. This would result . . -

in improved perfor:'ance and additional static analysis capabilities. Prior4 ty
should be assigned to those functions which would berefit the majority of
users, both I/FOAs and LCSECs.

c. More advanced investigations should be initiated to examine
advances in software test methodology. The objective would be to maintain
currency with the state-of-the-art by developing quantifiable parameters to
measure software attributes. Efforts should focus on deficiencies in current
methodology with the goal of developing practical, as well as theoretically
sound, solutions.

% ., -

44
17 %',

2. DETAILS OF INVESTIGATION

The MSAT investigation accomplished the development of a software static
analysis tool suited to the multilingual test environment at the USAEPG.
Software static analysis requirements were re-examined to identify current
technology; requirements were formalized and reviewed for applicability by
TECOM I/FOAs, and a fully documented tool was produced. The results of this
effort are summarized below. Persons unfamiliar with the software hierarchy
terminology endorsed by DOO-STD-2167 should refer to appendix D; terms associ-
ated with static analysis and MSAT may be found in appendix E.

2.1 Software Test Methodology

Software testing may be dichotomized into the complementary components of
static and dynamic analysis. Static analysis tools and techniques examine
program source code and software materials in a non-executable environment.
Static methods inherently are able to analyze every software statement in a
system, furnish visibility into design and quality, and provide a basis for
dynamic analysis. In contrast, dynamic analysis examines characteristics of
program performance. While analysis of every instruction may be impractical,
dynamic tools can measure performance attributes which can only be collected
during or after execution of the software. If the staggering cost of software
maintenance is nc 'object, dynamic analysis alone can demonstrate the balance
of the critical issues: correct functionality, reliability, timing, and
resource utilization. Comprehensive software testing exploits the synergism
of both dynamic perFormance and static quality assessment.

2.2 Requirements Definition .

Experience with previous static analysis tools had proven the utility and
cost-effectiveress of automated techniques and dencnstrated the feasibility of
a language-independent tool. The experiential feedback from actual software
testing served to identify those features of static analysis which contribute
the greatest assistance to the software analyst. Although earlier investiga-
tions [1] identified the need for a multilingual tool and developed prototype
tools based on the premise that such tools were nonexistent, these issues were
re-examined for validity.

A compilation of software systems to be tested at USAEPG included more
than 10 tactical systems, using twice as many languages. Table I lists a
representative sample of the systems and the software languages. Viewed by
level of language, table II, the fact that roughly half of the languages
requiring processing are assembly (ASM) becomes readily apparent. These
results are contrary to what would be expected from a review of software
engineering principles and government standards which dictate the use of high
order languages (HOLs).

Previous conclusions that a multilingual tool was required to satisfy
test needs is clearly substantiated by the findings; nor has the need subsided r
in the interim. Although Ada may be expected to replace many of the current
language requirements, other languages are gaining popularity for specialized
applications (e.g., LISP for Artificial Intelligence). Use of very high order
languages (VHOL) and specialized languages such as ATLAS (used in automated
test equipment) is anticipated to continue in non-tactical systems. (The
reason for EQUEL and VAX FORTRAN appearing as required languages will become
obvious shortly.)

5 V
.:m .,..:.-.--

Table I.
SYSTEMS REQUIRING ASSESSMENT (April 1984)

SYSTEM
UNDER TEST LANGUAGE

Teampack ROLM 1602 ASM

RPV FORTRAN IV (DEC)
PL/M-80
SKC FORTRAN
8085 ASM
MACRO-li ASM
SKG 3121 ASM

JTIDS SKC FORTRAN
SKC 3132 ASM
AMZ 8002 ASM

REGENCY V'MICROTEK PASCAL
OMSI PASCAL
8085 ASM
AMD 2901 i'SM
RCA 1802 ASM

TRAIL6LAZER C
ROLM FORTRAN
68000 ASM

6

-I. %7

rr 7',n W fl-rnn---r

Table II.
LANGUAGE PROCESSORS REQUIRED

VHOL HOL ASM

INGRES EQUEL* C ROLM 1602 ".* .

FORTRAN IV (DEC) 68000

MICROTEK PASCAL 8085

OMSI PASCAL AMD 2901 -

PL/M-80 AMZ 8002

ROLM FOPTRAN MACRO-I-.

SKC FORTRAN RCA 1802

VAX FORTRAN* SKC 3121/3132

• Implementation languages of MSAT.

• . ",

7

* .- ,.* .. * . .,

.. . . ', .-.. * - .. -. -... . . -..: , , ,. .,.,,' . . * ~ ' ,,** N , .- ,,
* .- J

Ancillary information on software development standards was acquired
while compiling the language requirements for a static analysis tool. Fre-
quently encountered were MIL-STD-1679, DOD-STD-1679A, and variations of these
standards. DOD-STD-2167 (DOD-STD-SDS at the time) had not been approved but
has now been promulgated and will supercede earlier development standards in .
future testing. Systems without a specified software development standard
typically have the most recent standard applied during testing.

The impact of accommodating vario.us software standards was assessed by a
comparison of those most frequently encountered (see appendix F). This
assessment indicated that some degree of flexibility was required, but enough
commonality exists among the quantifiable criteria to assign standards flexi-
bility minor importance. One aspect of the standards which did influence the
design was the rew terminology: unit vs module, computer software component
(CSC) vs computer program component (CPC), etc. This presented difficulties
beyond the initial expectations. Whereas it was easy to conceive of a tool g
which could label items either CSC or CPC, some terms were so well established
in the literature that an abrupt change was hard to imagine (e.g., unit . -

(module) coupling, internal routine (procedure)). A compromise was adopted
whereby the new terminology would supplant the old except for well-established
usage.

The multilirgual requirements encompassing both HOL and ASM proved to bethe most stringent criteria for selecting an existing tool to satisfy the

needs. Ideally, if proponents of static analysis techniques were correct in
assessing the util't'y of this method, numerous tools for performing static
analysis functions should already exist. Indeed, they do. A survey of
accessions in government and industry software 'brary catalogs revealed
hundreds of static analysis tools.

Though a list of tools and developers is too extensive for purposes of
this report, a few sources were found to contain a majority of the available ,
tools. The Federal Software Exchange Catalog [5], National Bureau of Stan-
dards (NBS) [6], and Software Research Associates [7] produce detailed
descriptions of most of the static analysis tools of interest. (The NBS
catalog has been acquired and revised by the Data and Analysis Center for
Software (DACS), an Information Analysis Center of the Defense Technical
Information Center (DTIC)). Before attempting to use these sources, one
should be aware of the pitfalls in surveying test tools. One document which
addresses the problems as well as provides descriptions of 43 tools was
produced by the Software Test and Evaluation Project (STEP) [8]. It is
sufficient at this point to realize that most of the existing tools are poorly
documented, unavailable, lack flexibility and maintainability, and are limited
functionally to e single target language.

While some tools address sophisticated testing issues, their single
target language capability and host environment constraints preclude use atUSAEPG. At the very least, a collection of tools would be required to satisfy "''

the test needs--an untenable situation given the lack of documentation,
incompatible design, diverse operating procedures, and challenges of conversion
and maintenance. However, organizations requiring an analyzer for FORTRAN,
COBOL, or JOVIAL could well find existing tools a viable approach to testing
needs.

.9 8

Z-. Z,", '' , ,-," " ? ," " " ." - • " "- - , -w . . . ' ';' '-_ / - LL, 'Y.%! " . . - ' %' tvL(

One approach to language independence in static analysis tools was the
Automated Measurement Tool (AMT) development sponsored by Rome Air Development
Center (RADC), and the U.S. Army Computer Systems Command [9]. Although the
objective of the RADC work was to further the enhancement of software quality
metrics and, as such, the AMT was experimental, it nevertheless possessed some
general-purpose language processing features.

The AMT employed a syntax-directed (table-driven) parser with a language-
dependent scanner to examine and automatically extract data items related to
software quality. This information, in conjunction with manually entered
data, was stored in a data base for analysis and report generation. With the .4
exception of the LL(1) parser, the AMT was conceptually similar to language
independent tools being developed at the USAEPG. Although the prototype AMT
was more suited as a research instrument than a production tool, the
similarity with USAEPG tools provided additional insight into the desirability
of certain architectural features. Among the recommendations for further
development of the AMT were:

@ Additiur of a form entry system.
@ More flexible report generation services.

Interface to a statistical package.
* Autc ration of the collection of additional metrics.
* Incor -rate processing capability for another language. --
e Expard data base capabilities.

Examination cf the prototype USPEPG static analysis tools revealed
shortcomings typical of other products. The family of PFA tools could be
enhanced by modification of the following aspects:

9 Reduction of effort for adding langucu3e capability.
e Addition of a user-friendly man-machine interface with forms/

menus. . ,

. Creation of a single tool with similar operating procedures for
all languages.

* New metrics and flexible means to accommodate new software
standards and SA/RG functions.

* Completely dccumented and maintainable software.
9 Validation of the tool and configuration management.

In summary, although existing tools provide advantages for particular
applications, none provided a general purpose, flexible capability suited for
a multilingual environment. An integrated tool bench constructed of
individual component tools is not feasible, or at least not practical.
Perhaps the greatest benefit to be derived from an examination of current
offerings is the contribution to the design of a new tool.

2.3 MSAT Development

Once the requireirent for multiple language capability was reconfirmed and
a survey of existir- tools offered design guidance, the effort to develop MSAT
continued. Previcusly mentioned goals were retained and supplemented by
lessons learned at the USAEPG and by other tool developers. A concept of
operations (CONOPS) evolved at this time, followed by formalizing the software
specifications ana development plans.

9-

2.3.1 Concept of Operations

MSAT was defined to be a software static analysis tool to automate the
collection and reporting of target software design and quality characteris-
tics. MSAT would provide software analysis data for development, in support ..-
of test and evaluation of systems under test (SUT) by I/FOAs, and for mainte-
nance and software systems support by LCSECs. Figure 1 depicts the relation-
ship among SUT software source, MSAT and MSAT reports, the analysis process,
and the final product for test reporting. Use of MSAT for svpport activities
is similar, though the final product is a modified software system with some
documentation automatically generated by MSAT.

2.3.2 Design Goals and Approach

A user-friendly interface was conceived for MSAT which would provide the
user software language, standards, analysis, and reporting options. Through
an evolutionary development process that was preplanned, MSAT would grow in
capability withcut premature obsolescence caused by changing language and
standards requirements. Flexibility was perceived as a necessity to meet
these goals.

Less critical, yet still important, was the desire to eliminate as many
as possible of the shortcomings of previous tools and incorporate recommended
modifications. Also important was the need to implement functionality with
existing software in order to minimize development and maintenance costs.

Documentation was a key element absent from most existing static analysis
tools. A software development plan was produced tor MSAT which followed the
guidelines of proposed DOD-STD-SDS. This served two purposes. First, it
ensured adequate documentation, although the development plan did tailor the
documentation required to a quantity commensurate with the size of the task. '.
Secondly, DOD-STD-SDS (or its final form DOD-STD-2167) would be applied to
future SUTs. Actual use of a standard for development would provide valuable
experience for testing with the standard as criteria.

Consistent with this approach was the specification of software quality LV
factors for MSAT which mirrored those used in software testing. One means of
assessing conformance to the guidelines is through use of a static analysis %'

tool. In this case, MSAT would be used as the tool to determine conformance
to standards of MSAT software source code. In a sense, MSAT would be self-
testing and automatically produce some of its final documentation (e.g.,
structure charts). This was the purpose for listing the MSAT implementation
languages as a required capability.

Numerous functions are part of the domain of software static analysis. .
Because no single tool could include all the desirable functions in the IOC, a
phased, or incremental, development was proposed for MSAT. This evolutionary
approach possessed the following qualities:

' A subset of the final capabilities available prior to completion,
allowing early feedback on desirable modifications.

s The IOC MSAT would contain limited SA functions and the capabil-
ity for processing one HOL and one ASM language.

10

. ."

.1

MACHINE READ- ____SENT TO U.S. AR!-!Y PROVINIG GROUND
ABLE SUT SOURCE FOR SOFTWARE ASSESSMENT

SAT-

?SAT STADARFS ORTA

TO DDITLOSIL

A A

RERSATRAREPORTSAR REOR GEEATO

DESCR-PTEST

RPRSUT----bRPR

-7' A~JTLST

ADDITIONAL
SOFTWARE SUBTEST
INFORMATION 14

Figure 1. MSAT CONCEPT OF OPERATIONS

e%

s A preplanned product improvement (P31) approach to incorporate
new functions and/or metrics not available initially, but deemed
useful.

* A testbed for experimental language development and software

quality metrics study.

Successful development of an incrementally produced product requires
consideration of future capabilities and a design with clean functional
separation of components and inherent flexibility. One of the hallmarks of
such an approach is the definition of design items not essential to the
immediate goal . Unlike a typical software development where extraneous

*software is considered a shortcoming, the early definition of functions and
data items for P31 is to be encouraged. These objectives were applied first
to formalization cf MSAT requirements and sustained through the remainder of
the development process.

2.3.3 MSAT Requirements

The description of the investigation (appendix A) included coordination
with other I/FOAs in formulating requirements and reviewing the design of

*MSAT. Design reviews were scheduled to coincide with TSOTEC meetings up
through preliminary design review (PDR). Coordinating requirements with other
1/FOAs was more challenging since meetings were of insufficient length and too
infrequent to allow for preparation of software specifications by committee.
The solution was to draft preliminary specifications, based on past experience
and results of the investigation, with review and comments by interested

* 1/FOAs.

The major functional components of MSAT were easily defined since most
mature static analysis tools employ conceptually similar architectures.

* Figure 2 illustrates the basic functions defined as follows.

a. MSAT Executive Control (MEC). The purpose of the MEC is to provide a
centralized component for the user interface, control the other MSAT compo-
nents, and perform data base management.

b. Automated Language Processing (ALP). The ALP scans the target source
code to extract the data elements required for the various SA functions.
Information is stored in the data base for further processing.

c. Static Analysis. SA functions process the stored data elements to
provide metrics or design information as desired. Output from SA is also
stored in the data base.

d. Report Generation. RG retrieves information from the data base to
.r formulate output reports.

Having defined the basic architecture and major functions, additional
% requirements were proposed to accomplish the design goals mentioned above.

% The only remaining requirement of any significance, and one which demanded
coordination with other I/FOAs, was determining which of the myriad of static
analysis techniques should be implemented for the MAT IOC.

The field of static analysis suffers from a lack of standardized terwi-
nology and dozens of overlapping categories. Obviously, the selection of MAT
SA functions would be quite difficult under these circumstances. An answer to

12.- ~ ~~

-- L

I. C9
0

LL.

vii

CDC
<I

13a

%* % -

this problem was provided by an NBS publication on tool features for the Ada
programming support environment [10]. The NBS report included a taxonomy of
software tool features which included 15 entries under static analysis.

The contribution of the NBS taxonomy to selecting SA functions for MSAT
was considerable. First, a manageable number (15) of categories was defined
with a consistent terminology. Second, a prioritization of tool features was
suggested, along with a discussion of various SA features. Additional utility -....

was provided by the criteria used to select the listed functions. Only those
features within the current state of software practice were listed (i.e., L
theoretical and experimental techniques not applicable to a production
environment were excluded). Also of some consequence was the authoritative
nature of the work, results having been reviewed by representatives from
industry, government, and academia.

The static analysis functions derived from the NBS report were used as a L
generic list of potential SA functions in the MSAT System/Segment
Specification (SSS). This was presented to the TSOTEC for prioritization and
selection of initial MSAT capability. The following are the 15 functional
categories.

a. Auditing (standards compliarce). Conducting an examination to
determine whether or not predefined rules have been followed.

b. Comparison (change analysis). Determining and assessing simi-
larities between two or more items. In particular, performing change analysis
on two versions of the same computer program to identify changes in the source
code, documentation, or hierarchical structure.

c. Completeness checking. Assessing whether or not an entity has
all its parts present and if those parts are fully developed. A tool that
examines the source code for missing parameter values has this feature.

d. Complexity measurement. A method of determining how complicated
an entity is (e.g., module . . . system) by evaluating some number of associ-

ated characteristics.

e. Consistency checking. The determination of whether or not an
entity is internally consistent in the sense that it contains uniform notation
and terminology, or is consistent with its specification. For example,
checking for consistent usage of variable names or consistency between design
specifications and code.

f. Cross-reference. Referencing entities to other entities by
logical means. In particular, a cross-reference could illustrate all the L

variables and routines referenced by a unit.

g. Data flow analysis. A graphical analysis of the sequential
patterns of definitions and references of data.

h. Error checking. The determination of discrepancies, their
importance, and/or their cause (e.g., identification of possible program
errors, such as misspelled variable names, arrays out of bounds, and modifica-
tions of a loop index).

14
* " % ,•

• - -. . -, .-. . . -.-.- .- .- , , -.- -- - - -, .. -, -. ... - - - % . .. , , . -# . € -. '. ".' II

i. Interface analysis. The checking of the interfaces between
program elements for consistency and adherence to predefined rules and/or
axioms. In particular, checking parameter usage (type, number) in calling and
called routines. Determining the various degrees of module coupling might

also be included in interface analysis.

j. Input/output (1/O) specification analysis. The analysis of thej
1/0 specifications in a program, usually for the generation of test data.

K. Scanning. Examination of an entity sequentially to identify key
areas or structure. For example, examining source code and extracting key
information for generating documentation or source analysis.

1. Statistical profiling (analysis). Performing statistical data .
collection and analysis on software source code.

m. Structure checking. Detecting structural flaws within a program
(e. g. , recu rs ive c alls , call1s to a top-l1eve l rou ti ne, ref erence to undef ined
routines).

n. Type analysis. The evaluation of whether or not the domain of

o. U'nits analysis. The determination of whether or not the units
or physical dircrsions attributed to an entity are properly defined and
consistently used, ensuring variables used in computations have proper units
(e.g., hertz--cycles/seconds).

Table III indicates the five functional categories agreed upon by the
TSOTEC for IOC. Ir addition, structure checking was required by the USAEPG to
retain functionality provided by existing tools. Furthermore, a minimal
amount of error checking would result as a by-product of other SA functions.
Selection of these categories was partially based on the usefulness demon-
strated during software testing. Additional emphasis was placed on not
duplicating functions provided by support software (e.g., cross-reference).

Subsequent reviews of the MSAT development resulted in the definition of
implementation issues. The host environment for the initial version was
-specified as a VAX-il/VMS architecture with VAX FORTRAN as the primary
language and the INGRES DBMS. The arguments for and against these choices are
listed in table IV._

The preliminary set of requirements was expanded to produce the MSAT
Software Requirements Specification (SRS). This document provided detail to
further refine the specifications (since SA functions are never comprehensive

requirements surfaced throughout the development (e.g., enhanced security
controls, automated source instrumentation, embedded procedure and language
capability), the basic requirements for IOC remained as summarized in table V.

2.3.4 Development Phases

The specification documentation, SSS aind SRS, were produced during the
requirements definition phase. These specifications are analogous to the
system (or A-level) specifications of previous development standards. Because

15

Table III.
PROPOSED MSAT STATIC ANALYSIS FUNCTIONS

I _i

1. Auditing

Initial 2. Complexity Measurement

Implementation 3. Statistical Analysis

4. interface Analysis

5. Comparison

6. Consistency Checking

*7. Error Checking

**8. Structure Checking

9. Completeness

10. Data Flow Analysis

11. I/O Specification

12. Cross-Reference

13. Scanning

14. Type Analysis

15. Unit Analysis

Produced as a byproduct of other functions
Required to retain current tool capability

i- 0,%.

16

cann.ng J.....

- -. ~ * . - . *- "*e

•)~*~.~ Prdue as a byrdc fohrfntos- eure orti urn olcpblt

-' K"°

Table IV.
MSAT IMPLEMENTATION ISSUES

VAX-Il Implementation

+ Available for MSAT Development (USAEPG, Ultrasystems)
+ Standard Architecture for LCSECs
+ Ada Language System (ALS) available for P

31
- Availability at other I/FOAs

VAX FORTRAN

FORTRAN dialects widely used
+ Interfaces to DBMS
+ "Fetter" than F-77
- Data structures not suited to string, list processing
- Not as portable as Ada will be

INGRES DBMS .

+ ncreases flexibility
-, -duces development effort

- Time
- Risk
- Cost

+ Government policy to utilize exist-ng software packages (SDS)
+ Provides:

- File management
- Forms management

Report Writer
-Graphics --.

- Statistics
+ Isolates data base functions
- May limit portability

'. ° °

, V.

J.1
*i--.. . ~I

,'. . .-

4J 4-)
S_~ .

M4 4%*
c*.

0 4-1 LLJ

ca.)

00

(-14

sL u

w) a) 4.)

E _ 4 - s-_ (
0 o . . zC 'u oC S_...

0. 0- C 4- 4.-) 0~

L-) 4> v) V)

3 U 0

4-V S.. .

40 44-)i

0.L

CC

IL Z(C) (

- L(-

_j 00

0 ~... : *.*18

DOD-STD-2167 introduces new terms for software products, table VI, listing the
development phases and products, is supplied. The contents of other documents
will not be described further in this report since the MSAT documentation is
available upon request from the USAEPG.

2.4 MSAT Description

The following section provides a brief description of MSAT.
Documentation listed in table VI should be referred to for a comprehensive
understanding of the design and operational aspects.

2.4.1 Overview

Static analyzers are generally composed of four major components:
language processor, data base, error analyzer, and report generator [8]. MSAT
follows this basic architecture, augmented by features to provide a multilin-
gual and flexible capability. User interface and control functions are
isolated, along with multiple language/standards/terminology and data base
management functions, in the executive control component. Language processing
and the data base have design features tailored to the multilingual require-
ment; the error aralysis/report generator functions are modularized in the
SA/RG components +r, readily allow expansion. Figure 2 shows these major
components, descri.r:d further in the following paragraphs.

MSAT was desicred as a single computer software configuration item (CSCI).
comprised of CSC ard units. The executive CSC, called the MEC, controls the
environment of othe- CSCs. The major components defined earlier were assigned
the status of top-level CSCs (TLCSCs) and functio, ally decomposed into other
TLCSCs. Figure 3 shows this architecture, except 'or the individual SA and PG
functions, and the hierarchical identification romenclature assigned each
function.

Overall data and control flow is depicted in figure 4. The input and
output data flows shown are described below:

a. Annotated Source. The input source which has been tagged with

key symbols by the ALP for use by the SA/RG functions.

b. Default Standards. Predefined standards (e.g., MIL-STD-1679A)
which may be used for determining standard's compliance in lieu of or in
addition to user-defined standards.

c. External References. A list of references supplied by the user
which are external to the target software source which would otherwise be
identified by MSAT as undefined references (e.g., operating system or library
routines).

d. Manual Data Entry. Data which must be entered manually into the

data base. For ey.-ple, data which cannot be collected automatically or data
collected which must be supplemented or modified prior to analysis.

e. Metrics. Software metrics produced by the SA function; includes
summaries, statistics, counts, etc.

19

4.4)
CC

4a) C
S)- cm c

4-) 4-' E 3 u 3

C) a)*)- 0.

Ln C)))

4-) (U 3) E 3CA3
4)) a- cu - -' *

-D 4- V) 0 m4) o U -- 0

Z~L cd) to~L)~

CL (A - LA -) -
Q1 ~ C V(=A c (

V')- 4-'U QJ =
V)~I = V -t

E E) Q) S o m L L

a- C- 4L) (A C) (A (. C) A
t-. _.j .- E C) L) = 4) S

(0 0- I LA w 4- S- u 'a L CmS

U) >) CL w v) > o w 0 M 4)w
4-J w/ 0 Ln 2 s(~*- - - 4-) 5)

0.L (1 m. C) 0cm (A

C) t (LU 0)0 (U X: -- '.-. Q) Q) Q))L
4- LI) - - ro C 00- S- 4.- U

0.. (A 2.. to I- LA 4 .(a m- o (01

LI) 4-) V 4-3 4- (0 S- 4-) - 4 S - 4- -J U- -) =--) v

S- LU 0- C C Z 0 0 0 0 0 0 L 4). C ..
I- a)V V) 4I C) Ln) L~ V) 4)

V) %)0> C 0 0 ~ 4)C

.0 - ~J . - - 4-' 4-5

(U~V I- 4) I (. 4 - . U- V ..)
V)y >0= in 0U > A 4 4 0 C) 4 x(

0- 4) (U) V) (I) .:.

0 ~ G ea3 3 3 U 3) 3 '

C) 0 4-C) 4--.) 4 4 4 4- -1- A 5

5. 0 LI 00 LA(0 0 0 () 0 (4) 4

ea 4) S-4+
(v 0 Z4)

20-

.IN

''o

MSAT
EXECUTIVE .
CONITROL

(MEC)
MS ..'E

LANGUAGE ANALYSIS GENERATION
PROCESSI)G (SA) (RG)

MS(ALP) L

IS AL ',IS. SA.

21

TABLEDECO - .. *'- .G E'lE RAT 13,: POS IT IOI."-:"
(LTG) (SD)

"S. AL. I :S. AL. 2 ..

SOURCE DATA :""

INSTRUMENTATION Cg0L LE CT I ON ,-- ,
(S I) (D C) !, .

MS.AL.2.1 .',S..4L.2.2

Figure 3.MSAT CSCI Architecture

21

V- - .T -V

F--
LL0

u-iI

F-- L/

F-

LLJi

<- W
CD~~I LA UJV

-: o (M
F- 0nLl

wL

L/) 0L

*= LU -. 1

Lki < :
If, 1- L-) 0I)

5/i LU) 0)

LLJL < :) c

I-J =i 0 i cm 5
<LU Li L

LL-- <
L. LUJ F- LUj

-C 000

a--

LU 0

LUI
Li.. LU J

CA O) vi
F- C) iLA

22

- "---"- '.

f. Reports. Reports output by the RG function.

g. Target Software System (TSS) Source. The original (raw) source
code file which will be transformed into the MSAT standard input format. The
source code may be composed of HOL with embedded ASM, embedded VHOL, or both. --

h. Source (Language) Description. The language grammars (i.e.,
modified Backus-Naur Form (BNF) for HOL and ASM). -.-'*r

i. Software Attributes. Those attributes of the software which are
extracted by the ALP (e.g., number of lines of code (LOC) per unit, control
structure, etc.).

j. User Input Parameters. The data and control information which
will be input by the user through the MSAT user interface.

k. User Standards. Standards (criteria values) input by the user
to be used for standards compliance, e.g., SUT-specific standards. A user
might also specify a specific set of predefined standards which will be
retained for reference in the MSAT data base: MIL-STD-SDS, MIL-STD-167gA,
etc.

2.4.1.1 MSAT Executive Control

The MEC function is the user's interface to the MSAT system. Inputs are
via a forms/menu facility provided by the INGRES DBMS. MEC performs the ""
following major functions:

o User interface through forms/menus with input validation/recovery
and on-line assistance.

o Data base management: initializatior. data entry, and language/
standards library maintenance.

o Initiation and control of the ALP, SA, and RG interactively or
as batch processes.

2.4.1.2 Automated Language Processing

The ALP performs furctions related to automated language processing of
TSS source code. The ALP includes language table generaticn (LTG) and source
decomposition (SD) functions. (SD consists of source instrumentation (SI) and
data collection (DC) functions.) These generate source language descriptions
and extract the TSS information (TSSI) from MSAT standard input files (MSIFs)
for storage in the MSAT data base (MSDB).

2.4.1.2.1 Language Table Generation

The LTG is an independent process which creates the MSAT language-proces-
sing capability for each target programming language. The LTG requires
language descriptions to generate the language-specific tables which are used

-' by the SD function to drive an LR(1) parser to recognize specific constructs
when that language is scanned. N/V

23
. .-..1
?. .>:

"v ",- - , ,, % l .-.. "- -,-r---------r. - 'r~'',
" -

-- " -' '" . . .-

2.4.1.2.2 Source Instrumentation

The SI process performs an initial scan of the TSS source code to insert
(where possible) instrumentation lines which identify items such as the
beginning and ending of units, beginning and ending of internal procedures,
and language context switches. SI consists of a number of instrumenters for
converting raw source code to an MSIF, adding instrumentation lines, and
preprocessing source code for the subsequent parser processing. Instrumenters
are tailored to a specific language or class of languages.

2.4.1.2.3 Data Collection

The DC process consists of a scan of the MSIF to parse source code in
individual units and collect the data items required for the SA and/or RG
functions. These collected items are placed in the MSDB for further process-
ing or reporting. The user may specify that the entire MSIF or a selected
subset of the units be parsed for data collection.

2.4.1.3 Static Analysis

The SA component of MSAT uses the TSSI collected by the ALP and supple-
mented by manually entered data in the MSDB to perform various static
analyses. Results are returned to the MSDB for reporting by RG.

2.4.1.4 Report Generation

The RG function retrieves TSSI from the MSDB at the specified
hierarchical level (er cluster of units), calculates any metrics dependent on
the qrouping, and generates reports (files or hard copy).

2.4.1.5 MSAT Data Base

The MSDB provides storage and retrieval of information related to the
target software source and MSAT system. Four major categories of information
are defined: MSDB information, source language descriptions, software stan-

dards (criteria), arid TSSI. -

The major data base files, corresponding to the four major categories of
information, are depicted in figure 5. The purpose of each file (implemented
as a set of INGRES tables) is described below:

a. MSDB Information. The MSDB information contains MSAT system
information and information on the location of other data. Access to all
information in the data base (both INGRES tables and VAX files) is initiated
through reference to these tables.

b. Source Language Description. The source language description
consists of a library of grammar rules, syntax tables, and source preproces-
sors.

c. Software Standards. The software standards information is
capable of containing a library of default standards (e.g., 1679A, SDS) and
user-defined criteria.

24

SOURCE SOFTWARE TARGET
LANGUAGE ISTANDARDS SOFTWARE

DESCRIPTION I SYSTEM
I INFORMATION .

* LANGUAGE DESCRIPTIONS * DEFAULT STANDARDS (SDS) . SYSTEM-LEVEL
*SYNTAX TABLES * USER CRITERIA * CSCI-LEVEL

* UNIT-LEVEL

Figure 5. MSAT Logical Data Base Files

25 .
~ .^.-,. 6

d. TSSI. The TSSI data consists of information at the system,
CSCI, and unit levels for the TSS. The TSSI contains information from the
implementation (code) phase of the software, although the flexibility existsp for future inclusion of information from the design and test phases.
Standards and environment data (e.g., external reference definitions) are

*capable of being specified at the CSCI level. Figure 6 shows the logical
organization of data within the TSSI.

'a 2.4.2 Detailed Design Aspects

The following paragraphs expand on the overview above to provide some
additional detail of the MSAT design. Again, the reader is referred to MSAT
documentation for a comprehensive understanding since only the salient

* features are described herein.

2.4.2.1 MSAT Executive Control

MEC is the first component executed upon initiation of the MSAT system.
Six functional operations are entered through the top-level menu:

a. TSS: - ivokes the TSSI menu/form to allow:

* rtial MSDB initialization for a TSS.
* 7SCI data entry.
* rC:C language descriptions.
e TSS standards specification.

b. Lactnuie Installation - Invokes the LTG menu/form to allow the L

icreation of, or- dB insertation of, new source loIguage description tables.

c. Process MSIF (TSS Source Code) - Invokes the SD menu/form to
allow:

* Automated MSIF instrumentation.

Sadrsa *e# Data collection.

* M'SIF editing.

d. SA - Invokes the SA menu/form to allow the user to specify SA
functions for a T or groups of units (clusters).,.

e. RG - Invokes the RG menu/form to allow a user to specify various
reports for a TSS or groups of units (clusters).

f. Manual Query/Entry - Invokes the Manual Query/Data Entry menu/
form to allow more flexible queries or specific manual data entry by a user.

Forms/ enus are provided within these major functional categories to
obtain additioral levels of detailed data and control information.

The various processes within MSAT may be initiated in an interactive or
batch mode. In the interactive mode, the user waits for the requested action
(menu selection) tc omplete, and the results are displayed on the terminal.1.."
and written in a user log file. In the batch mode, the requested action or
group of actions is submitted as a batch process to the VAX/VMS system and all

26

e raa.SBintaiainfo S.L.

TSSI 4
(SYSTEM-LEVEL)

DESIGN / \ TEST

IMPLEMENTATION _t/ INFORr.ATIONI !-.-'
INFORMATION INFORMATION

FROM I FROM
DESIGN PHASE TEST PHASE

S TSSI(CSCI-LEVEL)

TSS

TE'!PORARY
SA/RG
FILES

TSS I
(UNIT-LEVEL)

PICAPABILITY

Figure 6. MSAT Target Software System Information

2.-.-.

ANNOTATED .,-.;.

27RC

output is directed to the standard output device and the user log f'!e. When
a user specifies a menu selection (e.g., the default SA functions) in the
batch mode, appropriate commands are written in an MSAT batch command file.
Each requested batch action is placed in this file in the order requested.
This batch command file is normally submitted when the user "exits" MSAT (or
optionally by another menu command).

•*.p. "U'..

A trace mode, available in a brief, verbose, and test form, provides the
capability to generate additional deta.ils about the execution of the various
processes within MSAT (i.e., LTG, SI, DC, SA, and RG). Use of the trace mode
assists in the following types of activities:

e Verifying the correct placement of instrumentation lines within
the MSIF (DC).

e "Debucaing" new language tables (LTG).
e Determining the source of error in inaccurate report data (RG).

MSAT will accommodate three types of users: normal users who would run
MSAT to process TSS source code and produce reports, advanced users who would
add language and standards capability, and super users for data base adminis-
trator functiors. All levels of users are assisted in performing their
activity by help reru options.

2.4.2.2 Automated Language Processing

The ALP provides the capability to automatically scan the MSIF, identify-
ing and collecting the data elements required to perform the various SA
functions and to cenerate the required reports. -he ALP is made uc of two
major CSC divisions: LTG and SD. LTG generates the language-specific tabl.,required for the SE to identify and collect the necessary data from the MSIF.

The SD scans the MSIF, instrumenting the TSS source and/or collecting the
data elements required for the various SA functions. The SD is logically
broken into the following subfunctions: SI and DC. The L: function uses the
language parsing tables (which are produced by the LTG and installed in the
MSDB) to drive the LR(1) parser to recognize language-specific constructs.
The SI attempts to partially instrument and otherwise prepare the MSIF for
processing by DC. The DC gathers data on each of the TSS units passed to the
SD, and stores the data collected in the data base.

The ALP functions, LTG and SD (SI and DC), are described ir the following

paragraphs.

2.4.2.2.1 Language Table Generation

The purpose of the LTG function is to generate a set of tables used for
recognizing and processing source code of a given language. These tables must
exist before any source code of the language can be processed by other MSAT
functions. ,

The LTG generates parse, semantic, and token tables for a given source
language from input descriptions of the language (augmented BNF) and its
terminal symbols (regular expressions). Together, these tables allow the
recognition of language constructs and the collection of construct-specific
data. In this way, automatic processing of the source code occurs according
to the user-specified language definition.

28

~.-. -°

The LTG function requires a working knowledge of compiler tool usage,
namely the LR(1) parse table generator and a scanner generator. These tools
require the usual inputs of an augmented BNF grammar and regular expression
file, respectively. Semantic action routines are specified in the augmented
BNF by mnemonics.

There are two major algorithms within the LTG function: the LR(1) parser
generator algorithm and the token table generator algorithm.

The LR(1) parser generator, a tool called LR, was originally developed by

the Lawrence Livermore Laboratories [11]. LR is one of the existing tools
(the INGRES DBMS being arother) used to reduce the risk and lower the develop-
ment effort of MSAT. (LR is listed in the Federal Software Exchange Catalog
[] .) The algcrithir, as implemented in. MSAT, is based on an article appearing
in Acta Informatica [12]. This algorithm creates LR(1) parse tables from an
irput BNF grarmar cescription of a target software language.

The first step in the algorithm is to read the BNF grammar, find all
productions, termrl and ronterminal symbols, and detect any syntactic errors
ir. the BNF grart., -:atements. The next step is to find the goal symbol of
the grarrrrar. Ther symbol is the nonterminal symbol which all statements
evertually redur> and is assumed to be the first nonterminal symbol in the
BNF. The grawro, .Ftols are then sorted so that all terminals precede
nontermirals arc t, sublists are alphabetized. Two verification checks are
performed: chec'it,: to see that all symbols are connected to the goal symbol,
and checking to '-. that no nonterminals are defined entirely in terms of
themselves. Fir!, y, configuration sets are built to represent each of the
states of the pa'r. The tables are then outpi to a file for eventual
stcrage in the -

The LP p-rqram and BNF grammar were augmentec to allow specification of
Jemantic action re((r,es to be activated during "C. Semantic actior tables
are produced wrich list the routines to be executed when a particular language
construct is recocrized.

The token table gererator (scanner generator) algorithm follows the
outline provided in Principles of Compiler Design, by A. V. Aho, and J. D. ,.--
Lllran [13]. The basic algorithm parses each regular expression and creates a
nondeterministic finite automaton (NFA) to represent it. This NFA becomes
part of a larger N'FA for all the regular expressions in the file. Once the
NFA is complete, it is converted and minimized to a deterministic finite -
automaton (DFA'. The final states of the DFA are matched up with the terminal
symbol numrbers generated by the LR algorithm. Any action routines to be
performed at token recognition are entered into tables, and the token tables
are complete and ready for storage in the MSDB during language installation
processing.

2.4.2.2.2 Source T,'trumentatior

The SI formats, preprocesses, and partially instruments the MSIF to
identify and flag items such as the following:

* Unit start and end.
* Internal procedures start and end.
a Changes from cre language to another (context switches).

29

Formatting consists primarily of converting tab characters to spaces and -. -
indenting the source code to aid in readability of the modified MSIF.
Preprocessing is required to eliminate ambiguities in the target software
language which would prevent proper functioning of the parser. Preprocessing
may also be used to simplify the BNF description of a language by ignoring or
simplifying constructs not analyzed by MSAT (e.g., FORTRAN format specifica-
tions). Instrumentation is an attempt to reduce the manual effort required to
identify certain structures in the TSS.

Automatically generated instrumentation may not be completely accurate.
The degree of accuracy in the SI is always dependent upon the TSS source code
(i.e., coding standards and consistency of coding techniques), the particular
language being scanned, and the degree to which that language can be described
in the BNF.

2.4.2.2.3 Data Collection

The DC extrects information on the TSS from an instrumented MSIF. DC
processing includes extracting a unit from the MSIF, obtaining the appropriate
syntax and semantic action tables from the MSDB, and using the LR(1) parsing
technique to identify (perform lexical analysis and parse) language constructs
and collect data for storage in the MSDB.

Semantic action routines defined in the BNF for a language are used to
affect the manner in which a given construct is treated (e.g., STOP may be
counted as a potential singularity, a conditional return may be treated both
as a conditioral statement for control complexity and as an exit point). The
processing cf a LOC by the DC is indicated by flas prefixed to each LOC in
the annotated source files for each unit. Annotation shows nesting level, .-. -
language type, statement type, executable/nonexecutable flags, and other itemrs
of interest.

2.4.2.3 Static Analysis

The SA functions use the data collected by the SD (TSSI) to calculate and
store various software quality metric primitives on a unit-by-unit basis.
These may then be combined by the user and/or RG function for the different
reports required.

The IOC of M.SAT provides static analysis functionality in the following
areas:

a. Complexity measurement. Initially, the calculation of McCabe's
Cyclomatic Complexity.

b. Structure chart preparation. The intermediate processing
required prior to structure chart RG. -1

c. Error checking. The identification of the following types of
errors:

* Unresolved external references. M

* Units present in the TSS source code but not referenced.
e Units which call a top-level unit.

30

ZELL

d. Interface analysis. Initially, the determination of the number
of formal parameters passed by a calling unit which deviate from those
expected by the called unit or routine.

e. Standards compliance. The comparison of the metrics of each
unit in a TSS (or the TSS cluster metrics) to that system's designated
standards criteria.

f. Change analysis. The comparison of one version of a TSS to
another version of that same TSS in the following ways:

@ Metric compare.
e Structure compare.

g. Statistical profiling (analysis). Data collection and analysis
is performed by DC and RG using features of the DBMS (i.e., no SA "statistical
analysis" function will be implemented).

2.4.2.4 Report Gercration

RG functions produce reports based on the information in the MSDB. RG
components usually, but not necessarily, correspond to a related SA component
(i.e., the same set of information may be displayed in different form by more
than one RG function). Reports produced for the MSAT lOC include the follow-
ing:

a. SoLJ Ce listing/table of contents (TOC). A source listing
containing page/lire sequence nurbering, which is -eferenced by the TOC. The
TOC is an alphabetized unit list with a unit description (when available) and
a reference to the Unit's lcocation in the source listing.

b. Software quality metric reports:

,I) Details. One page per unit. r
2) Unit summary. List of all units and their metric values

in a columnar format.

(3) Summary. For specified cluster (e.g., TSS, CSC, group of
units, etc.). -"

c. Structure chart. A hierarchical control structure chart showing
the nestinq level of calls.

d. Error report. A summary of the errors found at a given cluster
level.

e. Interflice analysis report. A summary of the deviations noted in
the number of paraneters passed between units for a given cluster level.

f. Standards ccmpliance reports:

(1) Standards exception. A list of units and inetrics for ,..
those units which were non-compliant (when compared to TSS-specific criteria).

31

ILI

(2) Unit summary compliance. The number and percentage of
units which complied for each criterion for that TSS.

(3) System compliance. System- or CSCI-level metrics compared
to applicable TSS-specific criteria.

g. Change analysis reports. An analysis of the changes from one
version of a TSS to another, to include detailed unit, unit summary, and
system change reports for metric and structure data.

2.4.2.5 MSAT Data Base

The purpose of the MSDB is to provide an information storage and
retrieval capability for the MSAT system. The MSDB utilizes the INGRES DBMS
and the VAX/VMS file management system to accomplish the storage and retrieval
of all TSS-related information. INGRES, a relational DBMS from Relational
Technology, Inc., is being used to incorporate the advantages of the
relational data irodel into the overall design of MSAT. The use of INGRES
provides the flexibility required to facilitate future enhancements, menus and
forms generation, report writer capabilities for the creation of user-friendly
interfaces and TSS-specific report generation, and a comprehensive query
language for aiding the analyst in extracting metrics for software
assessments. The VAX/VMS file management system is used to maintain those
files which do not lend themselves to storage by the DBMS due to their content
and usage.

2.5 MSAT Operational Aspects

The following paragraphs provide additional detail on the types of users
and their functions which MSAT supports. A synopsis of the operating proce-
dures follows to clarify the operational aspects of the functional components
described above.

2.5.1 Personnel Requirements

MSAT supports three types of users. This serves to minimize specializa-
tion requirements for the average user while providing a degree of security
and data base integrity by limiting access to critical functions. The user
categories and typical functions are as follows:

a. Normal user. The normal user is expected to be familiar with
logging on and off the VAX/VMS operating system, to have a basic understanding
of the VAX/VMS file system and editing functions, and to understand how MSAT
output is utilized to evaluate a TSS. This user will typically perform the
following types of activities:

e Manually enter TSS-specific information on CSCIs, languages,
and standards.

s Instrument TSS source manually and/or via the SI function.
e Invoke the DC function to perform automatic data collection.
* Invoke SA functions.
* Request reports in various formats.

32

'<J1~ . rr - . ,.

b. Advanced user. The advanced user is expected to have experience
in the use of compiler-generator tools, such as parser generators and scanner
generators, and to have experience in the specification of a language grammar
and semantic actions (augmented BNF grammar). This requires familiarity with
the specific source language(s) of a TSS. In addition, the creation of an
instrumenter requires familiarity with VAX/VMS FORTRAN. The advanced user
will perform all normal user functions, as well as the following:

I Create language-specific instrumenters.
* Create BNF and Regular Expression files for use in the LTG

function.
9 Add language tables to the MSDB.
9 Generate tailored reports via the INGRES Report Writer

(requires INGRES and MSDB knowledge.)
* Install new standard documents and their associated

criterion.

c. Super user. The MSAT super user is an individual with MSAT
"system" privileges. This person must be familiar with the normal and
advanced activities, as well as have a complete understanding of the INGRES
DBMS and MSAT use of INGRES capabilities. This person is expected to be an
MSDB administrator with the capability to grant user privileges and manually
manipulate data base tables. The super user might also be an MSAT maintenance
programmer, with the privileges required to change the MSDB structure and/or
MSAT software. Super users typically perform the following types of
activities:

& Archive a TSS to tape and delete it from the MSDB.
e Modify the default SA and RG functions in the menu system.
* Delete language tables currently available in the MSDB.
* Aid users with problems running NSAT.

2.5.2 MSAT Operational Procedures

The purpose of MSAT is to automate the collection of various software
design and quality characteristics to support the software assessment of a
specific TSS. This includes the automatic extraction of data elements, line/
statement counts, and statistics from source code files, the application of
various SA functions (e.g., complexity calculations) to the extracted data and
counts, and, ultimately, the generation of detailed and summarized reports
containing the extracted data and the results of the SA functions. The
following paragraphs describe the individual steps involved in the use of
MSAT:

a. Convert Source to VAX/VMS Standard Format. The analyst's first
step is the conversion of the delivered TSS source to the required input
format--an MSIF. An MSIF is a VAX/VMS file which contains ANSI standard ASCII
characters, and VAX/VMS end-of-line characters.

b. Initialize MSDB for a New TSS. Prior to processing a new TSS,
the analyst must perform a one-time initialization function so that MSAT may
create TSS-specific data tables and directories, and update the MSAT informa- L
tion tables. At this point, the analyst may enter TSS-specific software
development standards, as well as other TSS and CSCI identification informa-
tion and language specifications. The MSAT menu/forms interface guides a user
through the TSS initialization process.

33

c. Build New Language-Specific Instrumenter. If MSAT does not
possess an automated instrumenter for the desired implementation language, the
analyst may either write an instrumenter for that language or choose to
manually insert the required MSAT Instrument Lines (MIL). The process of
writing an instrumenter is facilitated by some standard shell routines
provided by MSAT. After testing the new instrumenter, the analyst uses a
menu-driven installation process to make the MSAT system aware of the new
instrumenters.

d. Run SI to Automatically Instrument the MSIF. After the analyst
has placed the TSS source in the MSIF format and initialized the MSDB for the
new TSS, the SI function is executed. This consists of a scanning process
which attempts to automatically insert MILs in the MSIF. The capabilities of
the instrumenter are language-dependent, but generally this includes marking
the start and end of units, the start and end of internal procedures, and
language context switches (changes from one language to another within the
MSIF).

e. Customize MSIF Instrumentation. After running the instrumenter,
the analyst may need to customize the instrumented MSIF by insertina
additional instrumentation lines or modifying the SI-inserted MILs to reflect
the desired handl'ig of certain source constructs, both intramodule and system
level. Other lines may be manually inserted at this time to identify, for
example, the begin and end of prologues and/or indicate how particular TSS
LOCs should be interpreted (counted) during the execution of the DC function.

f. Manually Instrument the MSIF. Manual insertion of the MILs (via
a VAX/VMS editor) is an option available for source languages which have no
MSAT instrumenter, or for which writing an instrumenter is less efficient than
manual methods. Prior to running DC, the user must have the MSIF in a fully
instrumented version, with all required and optioral MILs.

g. Create New Language "Parsing" Tables. If MSAT does not possess
the semantic, parse, and token tables required to process the TSS implementa-
tion language, the analyst must generate new language-description tables for
this language. (This effort is simplified and automated by the LTG function;
however, the creation of the augmented BNF file and the regular expression
file are non-trivial tasks and are not expected of the normal MSAT user.,
Once the language table files have been created, the analyst must install this
new set of language tables in the MSDB. An MSAT menu aids the user in the
installation of new language table files in the MSDB, thus providing the user
(and all subsecuent users) with the capability to process source code in that
language.

h. Run DC to Perform Data Collection. The DC function scans the
instrumented MSIF, and collects software metric data on a unit-by-unit basis.
An annotated source file is created at this time for each unit and saved
within the MSAT/TSS directories for later report generation. (Any instrumen-
tation anomalies are brought to the attention of the user during the collec-
tion process. An analyst may then perform another iteration of the customize-
MSIF-and-run-DC to collect the data as desired for the subsequent SA and RG
functions.)

34
.. ,..,"

i. Run SA Functions. After the collection pass has been success-
fully completed, the analyst requests the particular SA functions required for
the associated reports. The most commonly desired SA functions are available
as a default set to simplify this task. -

j. Generate Reports. After the SA functions have executed, any of
a variety of reports may be generated. If a non-standard report format or
query against the TSS data in the MSDB is desired, the analyst may use the
manual data base entry menus and/or the INGRES Report Writer to create a __

report tailored to the specific situation.

2.6 Future Development

The IOG of MSAT was designed to provide the essential functions required
of a static analysis tool in the given environment. An integral part of the
design included provisions for P31, graphically portrayed in figure 7. Some
P31 tasks have already been identified while others will require further
methodological investigation.

2.6.1 Candidate Tasks for MSAT P31

The tasks described below represent additions to the IOC of MSAT and are
achievable with current technology as demonstrated by existing tools.
Although future functionality will be dependent upon prioritization by TECOM
I/FGAs, other users, and feedback from application of MSAT, some recommended
additions to the cu)-rent capabilities are possible based on present knowledge.
A partial list of candidate tasks for future enhancement of MSAT follows:

a. Creation of a language library for a robust language description
of each major language category likely to be encountered. Subsequent
additions to the library would consequently be subsets or mrinor variations
(dialects) of existing descriptions, resulting in considerable savings for
implementation of new languages.

b. Augmentation of automatic SI. Automatic prologue, entry point,
etc. instrumentation would increase efficiency over manual methods.

c. Prologue processor capability (collecting and reporting statis-
tics on items within target software prologues). Manual assessment is rarely
performed because of cost. Approximately 30 to 1 increase in efficiency may
be expected by automating.

d. Optimization of SI/DC processing. The goal would be to reduceV
wall clock processing time to effect a similar savings in analyst "idle" time.
One area offerina considerable savings is reducing the number of passes and

copies of the MSIF.
scene e. Software metric enhancement. Addition of Halstead's software
sinemeasures (e.g., program length) and software modification assessment

metrics would provide more accurate and efficient software quality parameters.
These parameters would enhance the objectivity and consistency of softwareMA
assessment.

35_ _ __ _ _ __ _ _

CL

< LU

ro%

% 0
cu

L2

36~

* ., ... -

f. Assembly language construct processing. Because assembly
language typically comprises 40 percent of software tested at USAEPG, greater
efficiency in testing would result from enchancing assembly language
processing capability (e.g., macro/conditional assembly language, equates/
include files, entry point/ internal routine definitions, and indirect addres-
sing/interrupt service routine handling.)

g. Source compatibility preprocessor. Creation of a library or
tool bench of reusable software would aid in converting foreign (non-VAX) file
formats to an MSAT/VAX-compatible form. Examples are: ROLM to VAX tape
conversion, intelligent/table-driven editor, symbol definition/substitutior
(for include/copy or conditional code processing), etc.

h. Software performance/reliability capability. This would result
in expanding the static software parameters in the MSAT data base to include
dynamic performance parameters. Initially, this would include reliability
information (software Test Incident Reports) to satisfy the requirements for
performing the standard software maturity subtests.

i. Sizing/timing information. The MSAT data base could be expanded
to include sizing and timing information. Sizing information, in conjunction
with software reliability information, is required to address reliability per
DOD-STD-1679A. Timing information can provide valuable information for
examining critical functions in time-sensitive applications.

j. Text compression. The most significant amount cf textual
information used b,/ MSAT resides in the TSS source code (MSIF) and annotated
source files. Text compression techniques used t; some document processing
systems provide a method to reduce the storage requirements of the annotated . -
source contained in the MSDB.

2.6.2 Software Test Methodology

It is well known that the software testing arena suffers from a lack of
quantitative, generally accepted test methods and criteria. The current
methodology is sufficiently mature to provide some results for evaluation, but
is largely inadequate from a theoretical viewpoint. A major deficiency is the
absence of systematic methods for identifying critical furctions and level of
test (thoroughness), not presently addressed quantitatively by test and
evaluation guidance [14]. 1.11

Since the software testing discipline lacks maturity, a characteristic
shared by software development in general, continual monitoring of advances in
the technology is required. As new techniques are developed to a stage of
practical applicability, they should be incorporated into tools such as MSAT.
Significant technological progress should be accompanied by reevaluation and
revision of the software test methodology to maintain currency of the test and
evaluation process.

37
4-

APPENDIX A

METHODOLOGY INVESTIGATION PROPOSAL

C..

PIG.
of.*.*'*0

li, s

d 39

I E

June 1984

METHODOLOGY INVESTIGATION PROPOSAL

1. TITLE. Multilingual Static Analysis Tool. r.

2. CATEGORY. VISTA, DC31, SMI/Software, Interoperability.

3. INSTALLATION. U.S. Army Electronic Proving Ground, Fort Huachuca, Arizona
85613. 4
4. PRINCIPLES INVESTIGATOR. Mr. Richard G. Jacques, Software and Automation
Branch, STEEP-MT-D.C, AUTOVON 879-1957.

5. STATEMENT OF THE PROBLEM. The techniques and measures of performance
(MOPs) to aid an aralyst in assessing the quality features of a software
system under test (SUT) have evolved to the point of practical application. .
TECOM has such an application tool, the Program Flow Analyzer (PFA). The
application, however, has to evolve in the same manner that software and C31
technology are evcling to produce a design that requires less resources to
tailor to differett host processors/languages expected to be tested by TECOM,
and be user-friendly in identifying and providing the desired reports to the
analyst.

6. BACKGROUND. The PFA was conceived under TECOM Project No. 7-CO-RD7-EPI- -.
001, Position Location Reporting System (PLRS) Software Test Methodology. An .-
A-level specification was developed which provided the requirements for a PFA.
The PFA design, coding, testing, and documentatie was performed under TECOM
Project No. 7-CO-RDO-EPI-004. The DEC-10 system and SNOBOL type derivative
language was used as the implementing host proces~or and language. The PFA
concept and utility was validated on the PLRS an(Tactical Computer System
(TCS) [T 'I software evaluations. The time required to generate the proces-
sor/language-specific (front end) portion is estimated to take from two to six
man-months of effort, based on complexity of the software SUT. The PFA
methodology plus elements of a new concept to shorten the front end
development time were applied to the USAEPG's Integrated Inertial Navigation
System (IINS) prcgram and to the SGT. York Fire Control Computer (FCC) program -:
in support of USAAPG's overall software assessment effort. The new concept
shortens the development time of the front end. In addition, the PFA has
evolved to more than a flow analysis tool; it is a static software analysis
tool. The software and C31 technology evolution, life cycle software support
ceter's (LCSSCs), and pre-planned product improvement (p31) processes require
a software test tool that is tailored to the Developer-Tester community.
Hence the rew name and acronym, Multilingual Static Analysis Tool (MSAT).

7. GOAL. Develop a software analysis tool with initial implementation on the
VAX 11-/78C using the concepts proven by the PFA. Sub-goals of this inves-
tigation are:

a. Develop SPSAT which will greatly reduce the time and effort to create
the processor and language-specific front end.

b. Develop a user-friendly, interactive, man-machine interface to theMSAT report writers which will assist the software analyst in obtaining the

desired output reports.

PREVIOUS PA'GE

41 ~ ~
- .,

c. Incorporate new metrics as identified by the PFA methodology into
MSAT.

d. Validate and configuration manage the MSAT to the development and

test community.

8. DESCRIPTION OF INVESTIGATION

a. The U.S. Army Electronic Proving Ground will take the concepts,
results, and experience from TECOM Project No. 7-CO-RDO-EPI-004, Program Flow
Analyzer, and design, implement, test, and document a computer program to
assist a software analyst in assessing the quality features of the software
system under test.

b. USAEPG will:

(1) Coordinate with other I/FOAs as to their unique requirements
for a software analysis tool (MSAT).

(2) Coordinate with other I/FOAs on the design of MSAT by having
the I/FOAs actively participate in quarterly program reviews which will be
held in conjunction with the TECOM Software Technical Committee (TSOTEC)
meetings.

(3) Provide technical and program management directions for MSAT
development to best meet the needs of USAEPG and other I/FOAs in satisfying
test project workloads for software quality assessments.

(4) Design, code, test, and document MSAT.

(5) Train appropriate personnel (EPG, other I/FOA, and other
personnel) in the use of MSAT.

(6) Sustain, maintain, and perform configuration management of
MSAT.

c. Investigation Schedule.

Milestone/Phase Schedule
FY 84 7QtrsT FY 85 (Qtrs)
1 2 3 4 1 2 3 4

MSAT Requirements Definition (SRR) X

Preliminary Design Review X..

Critical Design Review X

MSAT Coding X X X X
Initial Support to Projects X

MSAT Documentation X X X X X X
Software Requirements Specification X X
8-5 or Equivalent X X XC-5 or Equivalent X X X

Maintenance X X
User's Manual X X

42

'S.. -"0

Milestone/Phase Schedule
FY 84 (Qtrs) FY 85 (Qtrs.
1 2 3 4 1 2 3 4 ' -ZConfiguration Management/P 31 X

Training X

Project Final Report X

d. This investigation will result in a more capable, more efficient,
user-friendly, and transportable software analysis tool.

e. Environmental Impact Statement. The execution of this task will not
have an adverse impact on the quality of the environment.

f. Health Hazard Statement. No health hazards are anticipated.

9. JUSTIFICATION

a. Mission and Impact Statements.

(1) Association with mission. The USAEPG/TECOM mission includes
the responsibility to conduct software testing of systems containing embedded
computer resources. Software testing includes the assessment of the quality
of the software for post-deployment supportability. MSAT is a tool usable by
the analyst to meet this test requirement. The proportion of systems being
developed which contain embedded computer resources is growing. Current
estimates are that USAEPG will have test responsibility for over 120 of the
166 systems containing embedded resources that are under development withinDARCOM, with others being tested by other TECOM I/FOAs.

(2) Present Capability, Limitations, Improvement, and Impact on
Test if not approved. The PFA is a general purpose software analysis tool.
USAEPG project officers have identified the need to develop as many as 12
different language/processor front ends. USAEPG has used the results from
application of the PFA methodology (USAEPG support to USAAPG for the SGT YORK
FCC software assessment) and realizes the value of such a tool. USAAPG has
informed USAEPG of the desire to use PFA on the other SGT YORK processors and
several training simulator devices (exact number of front ends is unknown,
however, each system usually has two front ends, one for the HOL, and one for
the assembly routines). The personnel and the time required to understand PFA
to generate the necessary front ends are not available; a faster means to
generate the front ends and more user-friendly report writers must be created
in order to adequately support the test workload, hence the need to develop
MSAT.

b. Dollar Savings. Manpower savings using MSAT is estimated on the
average ratio of 30:1. Some of the reports provided by MSAT would not
normally be attempted manually because of the sheer volume and inherent
mistakes which are often made.

43

v%. ..- - %.

-.-..

c. Workload. The following Army Battlefield Automated Systems are
examples of systems under development which are programmed for testing by
TECOM during the timeframe shown.

System Test Schedule (FY)
85 86 87 88 89 90

JTIDS X X
MCS X X X x
RPV X X X X
PLRS X X
DTSS X X X
SHORAD C2 X X X
JINTACCS X X X X
Improved GUARDRAIL V X
REGENCY NET X
PJH X X X X
GPS X X X X
ASAS X X X X
FIREFINDEP X X X X
HAWK PHASE ITI X
SHORAD C2 X X
AN/TSQ-73 Softwa, tenchwork X X X X X
PATRIOT Growth Projraw X X X X X

d. Recommended TRMS Priority. Refer to the workload paragraph (lOc) and
the ODCSOPS priorit." 'isting. This project supports the DOD STARS initiative,
and CAVAS Letter, Elevelopment Testing of C31, datec, I August 1983.

e. Associatior with Requirements Documents. The requirement for this
methodology is not cerived from the requirements documents associated with
specific material developments. The requirement i. identified, however, by:

(1) Firdings of the Army Science Board.
(2) DOD STARS program.
(3) ABIC, AC2MP, JINTACCS.

to develop automated software tools to facilitate the fielding of software in
embedded computer systems.

f. Others. None.

10. RESOUPCES.

a. Firancial.

(1) Funding Breakdown.

44

": ' ',.... '. ...'.., '.". '.< ,. ". -'-,''-. i .':"-- - " " " " " " . " ''" ' " -"."" --

Dollars (Thousands)
FY 84 FY 85

In-House Out-of-House In-House Out-of-House
Personnel Compensation 8 6
Travel 1.5 1.5
Contractual Support 100.0 219.0

Academia ..
Materials & Supplies 0.5 0.5

ADP 2.0 __-__

Subtotals 10.0 100.0 10.0 219.0

FY Totals 110.0 229.0

(2) Explanation of Cost Categories.

(a) Personnel Compensation. Pay of in-house personnel
assiored to the investigation.

(b) Travel. Task coordination and technical liaison with
support contractor.

(c) Contractual Support. A major portion of the investigation
will be accomplished by tasking the USAEPG Software/Interoperability Support
Contractor.

(d) Materials and Supplies. Routine support materials.
(e) ADP. ADP utilization for the generation of software.

b. Anticipated Delays. None.

c. Oblication Plan (FY 84).

FY QTR 1 2 3 4 Total
Obligation Rate ($K) 105.0 5.0 110.0 "--

d. In-House Personnel.

(1)
FY 85 ,

Manhours
Number Required Available

Elect Engr, GS-0855 1 300 300
Comp Sci, GS-0334 1 100 100

(2) Resolution of Non-Available Personnel. Required in-house
personnel are expected to be available.

11. INVESTIGATION SCHEDULE (FY 84).

0 N D J F M A M J J A S
In-House - - - 1 . 2
Contract - -

Symbols: - - - Active investigation work (all categories).
. . . Contract monitoring (in-house only).

1 Interim report to HQ TECOM.
2 Interim report to HQ TECOM.

45

12. ASSOCIATION WITH TOP PROGRAM. TOP 1-1-056, Software Testing, will need
to be revised as a result of this investigation.

FOR THE COMMANDER:

(signed)

MELVIN FOWLER
LTC, SigC
Director of Materiel Test

446

•-3.

. 1."

"- - i. -
i[-"1 '

.-- "

46°°

~A *~.3* JV~ ~ * °o* *." ~"'.

APPENDIX B

REFERENCES

47L

REFERENCES :..'-'

1. Methodology Investigation Final Report Program Flow Analyzer, dated
January 1984. TECOM Project No. 7-CO-RDO-EP1-004. U.S. Army Electronic
Proving Ground, Fort Huachuca, Arizona 85613.

2. Methodology Investigation Final Report PLRS Software Test Methodology,

dated 4 April 1980. TECOM Project No. 7-CO-RD7-EPI-004. U.S. Army
Electronic Proving Ground, Fort Huachuca, Arizona 85613.

3. Methodology Investigation Final Report Program Flow Analyzer, dated 30
October 1982. TECOM Project No. 7-CO-RDO-EP1-004. U.S. Army Electronic
Proving Ground, Fort Huachuca, Arizona 85613.

4. Letter Report, Program Flow Analyzer (PFA) for Air Defense Weapon
Computer Processors, TECOM Project No. 7-CO-RD3-EPI-005, STEEP-MT-DA,
19 October 1983.

5. Federal Software Exchange Catalog, PB85-904001, National Technical
Information Service (NTIS), General Services Administration (GSA), 1985.

6. "Software Deve'cprrent Tools", NBS Special Publication 500-88, National
Bureau of Standards (NBS), 1982.

7. Software Engineering Automated Tools Index, Software Research Associates,
San Francisco, California, December 1982.

8. OSD/DDT&E Software Test and Evaluation Project (STEP) Final Report,
Volume 2, Software Test and Evaluation: State-of-the-Art, OSD/DDT&E,
Washington, D.C., Georgia Institute of Technclogy, Atlanta, Georgia, June
1983.

9. Automation of Quality Measurement, Final Technical Peport,
RADC-TR-82-247, Rome Air Development Center, Griffiss AFB, NY, U.S. Army
Computer Systems Command, Georgia Institute of Technology, Atlanta,
Georgia, General Electric Company, September 1982.

10. A Taxonomy of Tool Features for the Ada Programming Support Environment
(APSE), NBSIR 62-2625, National Bureau of Standards, Washington, D.C.,
February 1983.

11. "LR-Automatic Parser Generator and LR(1) Parser," Wetherell, Charles and
Shannon, Alfred, IEEE Transactions on Software Engineering, Vol. SE-7,
No. 3, May 1981.

12. "A Pratical General Method for Constructing LR(k) Parsers," Pager, David,
Acta Informatica, Vol. 7, 1977.

13. Principles of Compiler Design, Aho, A.V. and Ullman, J.D., ,j
:.'. ~Addison-Wesl e , 1977. ,

14. Policy Recommerdations for Software Test and Evaluation: System Level
Test Issues, DeMillo, P.A., et al, Software Test and Evaluation Project
(STEP) Georgia Institute of Technology.

4 PREVOU2 0A*9

49 -:1 V 8N

,_ .1 '; " :'" z""/ ' " '/ " - N " ""'' ' ""' 'IIT" """ ' "¢': w ":.- ".". ", -'' -"'. ' -q 1"7.

*~1- .-O P1 .7 *--I-w-.

*%

I.. -.. •

APPENDIX C

ACRONYMS AND ABBREVIATIONS

15 BLAN

51

... . ..

_j- -W- mW I

ACRONYMS AND ABBREVIATIONS

ABIC Army Battlefield Interface Concept

AC2MP Army Command and Control Master Plan

ADP Automatic Data Processing

Al Artificial Intelligence

ALP Automated Language Processing

ALS Ada Language System

AMC U.S. Army Material Command

AMT Automated Measurement Tool

APSE Ada Programming Support Environment

ASAS All Source Analysis System

ASCII American Standard Code for Information Interchange

ASM Assembly

ATLAS Abbreviated Test language for All Systems

BNF Backus-Naur Form.k
C3T Command, Control, Communications, and Intelligence

CDR Critical Design Review

COBOL Common Business Oriented Language

Comp Computer

CONOPS Concept of Operation

CPC.......... Computer Program Component

CSC Computer Software Component

CSCI Computer Software Configuration Item

DACS Data and Analysis Center for Software

DARCOM....... U.S. Army Materiel Development and Readiness Command (now AMC)

DBDD Data Base Design Document

DBMS Data Base Management System

DC Data Collection

DC3 1 Distributed C31

DDT&E Director Defense Test and Evaluation

DEC Digital Equipment Corporation

dept Department
DFA Deterministic Finite Automaton

DIVAD Division Air Defense

DoD Department of Defense
DT Developmental Test

DTIC Defense Technical Information Center IS..,N
o

53

*~~~~ r-7-~.. .. .

DTSS Digital Topographic Support System

Elect Electronic

Engr Engineer

EPG (see USAEPG)

EQUEL INGRES Embedded Query Language

FCC Fire Control Computer (Sqt. York DIVAD)

Fortran Formula Translation

FQT Formal Qualification Test

FY Fiscal Year

GPS (see NAVSTAR GPS)

GSA General Services Administration

HOL High-Order Language

HQ Headquarters

IEEE Institute of Electrical ard Electronics Engineers, Inc.

I/FOA Itallation/Field Operating Activity

IINS Integrated Inertial Navigation System

INGRES Irteractive Graphics and Retrieval System

I/O Input/Output

IOC initial Operational Capability

JINTACCS Joint Interoperability of Tactical Command and Control Systems

JTIDS Joint Tactical Information Distribution System

LCSEC Life Cycle Software Engineering Center

LCSSC Life Cycle Software Support Center (now LCSEC)

LISP List Programming Language

LOC Line of Code

LR Left-to-Right (Parser)

LR(1) Left-to-Right With (One) Lookahead

LTC Lieutenant Colonel

LTG Language Table Generation

MCS Maneuver Control System

MEC MSAT Executive Control

MIL MSAT Instrument Line

MOP Measures of Performance

MSAT Multilingual Static Analysis Tool

MSDB MSAT Data Base

MSIF MSAT Standard Input File

NAVSTAR GPS... Global Positioning System

54

........

I..1

NBS National Bureau of Standards

NFA.......... Nondeterministic Finite Automaton

NTIS National Technical Information Service W

ODCSOPS Office of the Deputy Chief of Staff, Operations

OSD Office of the Secretary of Defense
P31 Pre-Planned Product Improvement

PDR Preliminary Design Review

PFA Program Flow Analyzer

PJH PLRS/JTIDS Hybrid

PLRS Position Location Reporting System

PROLOG Frogramming in Logic

QTR Quarter

RADC Rome Air Development Center

RG Report Generation

RPV Remotely Piloted Vehicle

Rqmts Requirements

SA Static Analysis

Sci Scientist

SD Source Decomposition

SDF Software Development Folder

SDP Software Development Plar

SDS Software Development Standard

SHORAD C2 Short-Range Air Defense, Command and Control

SI Source Instrumentation

SMI Soldier Machine Interface

SNOBOL....... String-Oriented Symbolic Language

SPM Software Programmer's Manual

SRR Software Requirements Review

SRS.......... Software Requirements Specification

SSS System Segment Specification

STARS Software Technology for Adaptable Reliable Systems

STEP Software Test and Evaluation Program

STLDD Software Top-Level Design Document

STP........... Software Test Plan

SUM Software User's Manual

SUT System Under Test

TCS.......... Tactical Computer System

55

.;£-.. ..- -..-.-; ; ".-,- .,-.- -.. -, .-.-.-. .,- . - -. - .-;, .-, , . ,', ', '. ','; ,- -,, ,, \.,,..- ,.., .. .

Ut

TECOM U.S. Army Test and Evaluation Command

TLCSC Top-Level CSC

TOC.......... Table of Contents

TOP Test Operations Procedure

TRMS Test Resource Management System

TSOTEC TECOM Software Technical Committee
TSS Target Software System

* 4

TSSI TSS Information .--

USAAPG U.S. Army Aberdeen Proving Ground

USAEPG U.S. Army Electronic Proving Ground

VAX Virtual Address Extension .

VHOL.......... Very High Order Language

VISTA Very Intelligent Surveillance and Target Acquisition System

VMS Variable Message System

-, -vie,

5. A .

56 %%

%r.F

APPENDIX 0

SOFTWARE HIERARCHY DEFINITIONSj

57E

1.0 Scope. The following paragraphs, and figure 8, identify and define the " -'

terms which shall be used to describe the MSAT software hierarchy, as well as
the software hierarchies of the SUTs which are processed by MSAT.

Software System .. ' " -

A combination of associated CSCIs and computer data required to enable

the computer hardware to perform computational or control functions.

Computer Software Configuration Item

An aggregate of computer software which satisfies an end use function and
is designated for configuration management.

Computer Software Component
A functional or logically distinct subset of a CSCI, consisting of one or

more units or CSCs.

Unit (Module)

The lowest >E2 logical entity specified in the detailed design which
completely descrU'bs a non-divisible function in sufficient detail to allow
implementing cod& -c be produced and tested independently of other units.
Units may consist of one or more routines.

Routine

A set of instructions and/or statements that exist as an identifiable

entity and carry out some well defined operation or set of operations. A
routine is usually the smallest compilable element of a software system. The
terminology for this, and lower levels, of the software hierarchy varies with
the particular language. Terms which may be synonymous are procedure, subrou-
tine, function, subprogram, package, etc.

Block

A sequence of statements that are well defined for block-structured
languages but are less appropriate for other languages. Other entities which
may appear at this level of the hierarchy, but are language-dependent, are:
internal procedure, loop and case constructs, etc.

Segment

A logical segment (or decision-to-decision path) is the set of statements
in a program which are executed as the result of the evaluation of some
predicate (conditional) within the program. The segment should be thought of
as including the -,:,nsing of the outcome of a conditional operation and the
subsequent statemnrt execution up to and including the computation of the next
predicate value, but not including its evaluation.

15 BLANKW

59

7 7' %
. .,, _ .,.,_ ,L- i,', ' ... % ,,;,,.,.,:,. .i i,,. ,: .. , -. . , ,.., ... ,. .,,k. _ .M:.

-. - . . - - -

-~-

(~~)

I U
CA 9 I

I- -I
-. I-I

0~'

I..
EU

C-) 3
LI
C-)

0
LI.,

~

a,
L

.- b -
La

'.4-.

V. '

LaJ

I-.

CA 60

- . -. - .- - -

V

" IP ' . -W q' ,"
=

' V " - . -w - + -7
,

7 - . 7-" W. W. W. W. - W . -

Statement

An instruction or set of lexical elements delineated by the syntax of a

particular language. Executable statements cause some action to be performed.

Line of Code

A string of characters contained in one logical record of the program
source. Usually, one LOC contains ore statement. The concept of "LOC" is
used to identify lines which contain multiple statements and to supplement
statement level metrics where a statement may be composed of multiple lines of

code.

61-

&. ..

- ~°- °"

p APPENDIX E

MSAT GLOSSARY

I S 1
63I

1. 9 ZP 17~ , F* -- - r *. ". ,_-7

1.0 Scope. The following terms are identified and defined as they are used
throughout the MSAT software development process. Some of the terms are
included to standardize their usage with respect to the software attributes
collected, metrics generated, and static analysis functions performed by MSAT.

Annotated Source File

An annotated source file is created for each unit found in the MSIF. The
annotated source file contains line numbers and various flags which are
indicative of the way each particular source line was interpreted by the
parser.

Auditing

Conducting examination to determine whether or not predefined rules have

been followed.

Augmented BNF Grammer File

Contains the source language descriptions required by the LTG for the
generation of a parser that will recognize the language. This BNF grammar is
augmented by statements that indicate what semantic action(s) are to be taken L
in the event a given construct within the language is recognized. The BNF
grammar is the input to the LR(1) parse table generator.

Block

A sequence of statements acting or regarded as a single entity.

Cluster

Any TSS-defined (e.g., CSCI) or user-defined (e.g., a list of certain
units) logical grouping of units for the purposes of report generation or
manual data base retrieval.

Cohesion

A measure of the strength of association of the elements within a module.

Comment

A lexical element used to annotate a program. Comments usually have no
affect upon proper execution of the software. "Comment" usually refers to a
non-blank LOC which contains a comment statement or a portion thereof.

Comparison

Determining and assessing similarities between two or more items. In
particular, performing change analysis on two versions of the same computer
program to identify changes in the source code, documentation, or hierarchical . ;
structure.

PREVOUS PAGE

65

I

Completeness Checking

Assessing whether or not an entity has all its parts present and if those
parts are fully developed. A tool that examines the source code for missing
parameter values has this feature.

Complexity Measurement

A method of determining how compjlicated an entity is (e.g., model ...
system) by evaluating some number of associated characteristics. 4

Computer Software Component

A functional or logically distinct subset of a CSCI, consisting of one or
more units or CSCs.

Computer Software Configuration Item

An aggregate of computer software which satisfies an end use function and , "
is designated frc ccnfiguration management.

Consistency cking A

The deterrination of whether or not an entity is internally consistent in
the sense that ': contains uniform notation and terminology, or is consistent
with its specification. For example, checking for consistent usage of vari-
able names or ccr,;stency between design specifications and code.

Construct -.

A statement or set of related statements, e.g., the five structured
programming control structures: SEQUENCE, IF-THEN-ELSE, CASE, DO-WHILE,
DO-UNTIL.

Coupling

A measure of the interdependence of modules in a design structure; the
type of data and control shared between two modules.

Cross-Reference

Referencing entities to other entities by logical means. In particular, -

a cross-reference could illustrate all the variables and routines referenced
by a unit.

Data Flow Aralysis

A graphical analysis of the sequential patterns of definitions and
references of data. '. ,

Decision-to-Decision Path

See segment.

66el.1 .-. ~ ~ __,__,

"4 "'"'"""''.'='""" ."4. . _______,___"__"__"__'___"______,.._.__.__________,___._.,. _______r___,___._"__'______,, __"_,._l, __,_.__., __,,._,_____", _ -. %,

Decision Node

A node in a directed flow graph which corresponds to a decision statement
within the source code.

Default Standards

Predefined standards (e.g., MIL-STD-1679A) which may be used for
determining compliance with the standard in lieu of or in addition to user-
defined standards.

Directed Graph

A directed graph (digraph) consists of a set of nodes which are intercon-
nected with oriented arcs. A program digraph normally has only one entry and
one exit node.m

Entity

Anything that can be named in a program. A hierarchy of entities and
constituent elements may be defined.

Error Checking~

The determination of discrepancies, their importance, and/or their cause,
e.g., identification of possible program errors, such as misspelled variable

* names, arrays out of bounds, and modifications of a loop index.

Executable Statement

A statement which causes some action to be performed, as opposed to a
* declaration which defines an entity.

Expandability

Those attributes of software that provide for increased data storage or
computational functional capability.

External Reference

A list of references supplied by the user which are external to the
target software source, which would otherwise be identified by MSAT as unde-
fined references (e.g., operating system library routines).

Fan-In__

The fan-in of a module is the number of distinct modules that call this
module (e.g., the number of modules that are immediately superordinate to this
module).

Fan-Out

The fan-out of a module is the number of distinct modules that are called

by this module (e.g., the number of immediately subordinate modules).

67 1

- - - - . -....

Hierarchical Structure Design

A design method in which interactions between modules are restricted to
flow of control between a predecessor module and its immediate successor p
modules.

Hierarchy Level (or Cluster)

The grouping of units or a hierarchy level (System, CSCI, etc.) desired
for a specific request. .

Identifier

One of the basic lexical elements of a language. An identifier may be
used as the name of an entity or as a reserved word.

Instrumented MSAT Standard Input Files

The modified MSIF contains updated (or new) instrumentation from the SI
process or manual insertion.

Interface Aralysis

The checking of the interfaces between program elements for consistency
and adherence to -redefined rules and/or axioms. In particular, checking
parameter usage (type, number) in calling and called routines. Determining
the various degrees of module coupling might also be included in interface
analysis.

Input/Output Specification Analysis

The analysis of the input and output specifications in a program usually
for the generation of test data.

Language Dialect i
The particular dialect of a language version (e.g., Singer-Kearfott

FORTRAN).

Level (Detail, Summary)

The level, as used here, refers to the level of report which is desired
in a particular user request (e.g., detailed or summarized unit level software
quality metrics).

Library

A collection of routines (or data) which are frequently used (e.g., I/O,
SINE) and are externally referenced or included in the software being devel-
oped.

Line of Code

A string of characters contained in one logical record of the program
source. Usually, one LOC contains one statement.

68

V" -.-.-

.Log File

A history of the actions performed (summary statistics) and error
messages generated during the execution of a given function or set of 4

functions.

LR

LR is a pair of programs--an automatic parser generator and an LR(1) .N
parser. LR uses a powerful algorithm to generate a space efficient parser for ,
any LR(1) (left to right with (1) lookahead) grammar. The parser generator
reads a context-free grammar in a modified BNF format and produces tables
which describe an LR(1) parsing automaton. The parser is a set of subroutines
that interpret thE tables to parse an input stream of tokens supplied by a
(locally written) lexical analyzer.

Manual Data Entry

Data which must be entered manually into the data base; for example, data
which cannot be collected automatically, or data collected which must be
supplemented or rcdified prior to analysis.

Menu Options

Menu selections which occur during the MEC interaction with a user. The
user selects an avai1able option and the MSAT MEC acts upon this selection.

Meta-Language

A meta-lencuage is a set of symbols and words used to describe another
language (in which these symbols do not appear). The most common application
is in the definition of programming languages (e.g.. BNF grammars).

Metrics

Software metrics produced by the SA function; includes summaries
statistics, counts, etc.

Module

An independently compilable software component. The term "module" is
frequently used in industry to be synonymous with "unit" as defined herein.

MSAT Data Ease

Includes VAX,'VMS files and INGRES data tables. The MSDB contains TSSI, A

including software attributes and anrotated source.

MSAT Standard Trput File

MSAT expects a standard format for its input files, the "MSIF" in this
document implies any user specified input file containing TSS source in the
MSAT format. This file may contain one or more units of TSS source code.

69

-. -.

Parse Tables

These tables are used with a parser and lexicai analyzer to recognize the
source code input to MSAT. The tables give the parser the "knowledge" to
recognize a production within the grammar or determine that another symbol is
required before such a recognition can occur.

Path Segment

See segment.

Process

The transformation of input data flow(s) into output data flow(s).

Routine

A set of instructions and/or statements that exist as an identifiable
entity and carry out some well defined operation or set of operations. A
routine is usually the smallest compilable element of a software system. The
terminology for this, and lower levels, of the software hierarchy varies with
the particular language. Terms which may be synonymous are: procedure,
subroutine, function, subprogram, package, etc.

Scanning

Examination of an entity sequentially to identify key areas or structure.
For example, examining source code and extracting Jey information for generat-
ing documentation or source analysis.

Segment

A logical path segment (or Decision-to-Decision Path) is the set of
statements in a module which are executed as the result of the evaluation of
some predicate (conditional) within the program.

Software Quality

The composite of attributes, including performance, which describe the
degree of excellence of the software; features and characteristics of a
software product or a related service to satisfy a given need.

Software System Independence

Those attributes of the software that determine its dependency on the
software environment (operating systems, utilities, I/0 routines, etc.).

Source (Language) Description "' v-
The language grammars and prologue format descriptions, (e.g., modified

BNF for HOL and ASM).

70 .

-J

Statement :' :

An instruction or set of lexical elements delineated by the syntax of a

particular language.

Static Analysis

Examining the source code statically (not under execution conditions) and
performing syntax analysis, structure checks, module interface checks, event
sequence and analysis, and other similar functions.

Statistical Analysis

Performing statistical data collection and analysis on software source
code.

Structure Checking

Detecting s tructural flaws within a program (e.g., improper loop
nestings, unreferenced labels, unreachable statements, and statements with no
successors).

Subroutine.

An independently compilable sequence of statements that performs a
specific function (usually used to mean "external" routines or routines
belonging to a library; see also routine).

System

A combination of associated computer programs and computer data required
to enable the coirputer hardware to perform computational or control functions.

Token Tables

The token tables contain information used to detect all the terminal
symbols of the language, that is, those which cannot be further reduced. Such
symbols are keywords, numerals, operators, and identifiers. These tables
allow the lexical analyzer to recognize the terminal symbols of the language
and pass this information to the parser.

Trace File

A trace file is produced whenever a user requests either the brief,
verbose, or test trace mode. This file contains detailed information tracing
the activities of the major MSAT CSCs. It is used primarily for detecting
BNF/language table problems, inaccurate or missing instrumentation in an MSIF,
and aiding in MSAT development and/or enhancement.

TSS Hierarchy Terminology

The software hierarchy terminology used by a specific TSS for report
eneit (The default is DOD-STD-SDS terminology: system, CSCI, CSC, and

71

TSS Source

The original (raw) software source code file which will be transformed
into the MSAT standard input format. The source code may be composed of HOL
with embedded ASM, embedded VHOL, both, or may consist of a single language.

Type Analysis . :

The evaluation of whether or not the domain of values attributed to an _

entity are properly and consistently defined.

Unit

The lowest level logical entity specified in the detailed design which
completely describes a non-divisible function in sufficient detail to allow
implementing code to be produced and tested independently of other units. (A
unit may be made up of several routines.) -,

Units Analysis

The determination of whether or not the units or physical dimensions
attributed to an ertity are properly defined and consistently used ensuring
variables used in computations have proper units (e.g., hertz cycles/
second).

Unreachability

A statement (or segment) is unreachable if there is no logically obtain-
able set of input data which can cause the statement (or segment) to be
traversed.

User Input Parameters

The data and control information which will be input by the user through
the MSAT user interface.

User Standards

Standards (criteria values) input by the user to be used for standard's
compliance, e.g., TSS-specific standards. A user might also specify a
specific set of predefined standards which will be retained for reference in
the MAST data base: MIL-STD-SDS, MIL-STD-1679A, etc.

72

a,'

'" .,'.,;''. '. % "" •" ' . , ' ""L''-' .'J: ''' - - ' .'2 ''. T -. L :
"

SOFTWARE STANDARDS FOMPRISO

2p90.)4

73

4) C ~l 0 cu

0 - u %
V-')

0 CDI V) =3 +
4- C) V) . V4) *

-) 04 .C % - S- (1) (L

cm u. (U EL~ o - -- LO 10 -0

co (-4J0 Lfl) 4-

4- 0 a) eo C, Cc)
in *,-L- ()) (D CD 4- 4E 4-)

4) (10L -x >~ ro- *J (o

4)-V LO Q'4 *

Ic 0.-0 4)) - -0 --

4-) LO LO
Q)- .- U 4

00 c0.4 a) V

4) L

>U CU4

0 4-4-)-
0; U -)~ 4- -o 0

C- 4)* U 4) S-.
a) to0 0L (C 04 %r x +

* C) 0Vn LA cu .

40 C) -C) 4-)-LC LAULAUa
-4l CD -4 4J - - a)>
I co wC~ a)C a)W~ 4e 4-) v .4

= r- U4) EO. d) 4- 4-
ON. (>C) 0ULC) CAWL (U0(U 0

) a C DQ C.4= c
a) .0 'IDmf_> 0 MU M*-Cf

V 04) 0.
413C~.- >). -) 4- S

U~~- #A * - AS..4-

4)0 *L 4) 4. tmC a

4/ a~ 4n) 0. = >- (U cuC -L4-C)
N. 0L)))4)L 54-) L 0. r0f *j =) *

'.1 S0-- 5.... .-- r- #A4)S.

c Iu im -4- 4)4 (0 4)- r- v 0S L
0N J CC~ 4) r_ L. -4- 404 (D--4

aca V0~r 4)4)- cc4- 4)4 LI4)0.0 4
(U*dc ~ ~ 4UU

V) I C-L(-Zn' ~0O ~ -) -U

.~JU U4)* .44 4)) C -V -> 4-(U' 75

cu

0.) a (1

r_ 4-)

4-) 14-*-

ra) S- S u S

4-) G-@ > 4) C
-0 L)L V) a) Q.\-C 0-
CL- 0a r" 4) to 4-) '0 C0- (
0 E Q) to0 0 4- 41-

CL -) to V~-+) 0 cm0 cu- C))
0 '.J0-- to.O -\ an S..- 4,

*. r. -(= r_~ toInV.- U a C
n 0 0- 0.-~ 4. Zc0 E a) e. 4-) "
cm. u.C' to 4-) C') 0 = ~ u

-) = a)" V)' n- - to 0 S E
I -C C) 0 4) -)- ea -S0)a

I- S 4- "4- -) Q t.r S- C O) @0 0 4-) \.a
O) *- CMJ a -b +) OZ = U - S- to
ca C O)\ S- a- m anC r -4E
CD 0 (a r V 0 04-- to. -n 0.- - - .0)J-~ -

cmU) (I. \/I -D V~Wx) V) 0u a w~.o o0. 3-
u -o

u Q)

'-U -44-
0 --0 C C '

h--4 -) 0- a)' c
I. CO . 4-) u eo

LO LC) L.C)j 0) ca.-
4- - LO() WE

V) u L) * 0
I00C) cu) a) >U rr a)u Z

i= F E E o7-- . E
* C\Jra t t 0)Lf to - U) t

M-' 00V zV

.0 %-a I.

cu 0 4 cuo
0 u %~

0U 0 4-- C> Vd)
a)- ..; 4. a)- *0 0 0U 0

0)* -- 0~' mE 4- 0 4- E -
4- 0- E0 c) 40 (a E)

W --)4--) *- 00 Q . r_ 0 L
W~)-- O)-C * .. u 2-- L) UL

+a E~ C 0 E~2 u -Qm)
>1 = r_ - ca. (.9- 2-V r .0*

'.0 4-; mO 0. Q)- -. . 4-)I QJVto>1E I)
-' O. 41~ .) >E F .- .- a) 10S- L to. 4-..-

I O C t4- S-- S- a-O) 0 S- 0
Omf-_ *C> EuC0 rm 0 M Q o - ac . M c X

0l.00 a S- r_ Q) .- ') V)CDD 4J 4-)IO CA
LeU-We)a 0' to -- -0s L.. *. w - 0 to a* M .

a ~ 4- S..- r- .- U 4c -a- zE uqv = 0. CL.

X-)cz 0) L0L-4 D Q r 0(.0 U 'D a)) 4- >m X- IC) u

Z~c/)L U4-) 4-)EO-- a.U040 C /')*

r-~~. a _ .. u c

S A S. a) a x
-.5- V A.1 . 0 0 0

w)W 0.X1W)V
2C~

V) . (.)0 /)/

76

(A 0

0 3

4- 0.Q 0

C)
LI, 3>) CMi
C0 *.- -

I CU .C

U-) VL -

0~ u' 0I. Q. r
Cl) 4-

- :N

V)0)

E E -0 0

0 0)

I-4-4-

LO a V)

10 0) 0) LOu*~
0 4-Ej0

tn 0C (U r_

0030

O 0.-
V) 4 0 0

-r %4N

V) (U

E-*-

Sr3-'E -6

* *a

LO ko.,&

1-77

- .APPENDIX-G

DISTRIBUTION

Is 8L..4t,.

79V

DISTRIBUTION LIST

Number

Addressee of Copies.

Commander
U.S. Army Test and Evaluation Command
ATTN: AMSTE-TC-M 3, --

AMSTE-TO 2

AMSTE-EV-S 1 -AMSTE-TE 6'">>

Defense Technical Information Center
ATTN: OTIC-DOR 2
Cameron Station
Alexandria, VA 22314-5000

Commander
U.S. Army Aberdeer Proving Ground
ATTN: STEAP-MT- 2
Aberdeen Proving Ground, MD 21005-5000

Commander
U.S. Army Yuma Proving Ground
ATTN: STEYP-MSA 2
Yuma, AZ 85634-5000
Commander ' :
U.S. Army Jefferson Proving Ground

ATTN: STEJP-TD-E ;"-

Madison, IN 47250-5000

Commander
U.S. Army Dugway Proving Ground
ATTN: STEDP-PO-P 1
Dugway, UT 84022-5000

Commander
U.S. Army Cold Regions Test Center
ATTN: STECR-TM
APO Seattle, W,!A 98733-5000

Commander
U.S. Army Electronic Proving Ground
ATTN: STEEP-TM-AC 4
Fort Huachuca, AZ 85613-7110

Commander
U.S. Army Tropic Test Center
ATTN: STETC-TD-AB 1
APO Miami, FL 34004-5000

SPfVIOUs pPA7 E

81 A MNK

Number
Addressee of copies

Commander
U.S. Army White Sands Missile Range
ATTN: STEWS-TE-PY 4

STE WS-TE-0 1
STEWS-TE-M 1
STEWS-TE-A 1

White Sands Missile Range, NM 88002-5000 -

82.

(BLANK PAGE) -

83L

ILloALzM

(BLANK PAGE)

84

11

FILME

