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Abstract

Four time domain filtering methods are applied to simulited and exper-

imental two dimensional fluorescence data in order to evaluate their per-

formance. The methods that were evaluated are 1) moving average, 2)

Savitsky-Golay polynomial smoothing, 3) Chebyshev filtering, and 4) Bicubic

spline filtering. The methods are compared using mean square error analysis

and the difference in the amplitudes of the filtered noisy and ideal data.

The two dimensional version of the Savitzky-Golay filtering and the spline

method produced the best overall results.

$ Index headings Time domain data filtering; Image analysis; Digital image

processing; Two dimensional data analysis; Two dimensional fluorescence.
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INTRODUCTION

The widespread use of microprocessors in analytical chemistry has

greatly increased the capabilities for processing data in the

laboratory.' Even the simplest set of data will require some processing

since data will contain random errors, i.e. noise, that are superimposed

'~ ~ upon and indistinguishable from the signal. Of fundamental importance to

the experimenter is the reduction of this noise without unduly degrading

the signal information. A large variety of mathematical methods, i.e.

digital filters, have been developed to computationally reduce the noise

* in experimental data. Such filtering techniques are particularly amenable

to spectral data such as fluorescence and absorbance. This is true because

fluorescence and absorbance spectra are generally broad band (low fre-

quency) while the random noise content of the data is usually sharp (high

frequency).2  Thus some of the high frequency distortion in a data set can

be removed while minimizing the effects on the low frequency information

using digital filters.

Data filtering can be performed in the object domain or in the fre-

quency domain. In the object domain, which is also known as the spatial

or time domain, the object and the filter are described in x-y coordinates

or as dynamic functions varying in time,t. In the frequency domain, the

object and filter are represented by Fourier series of time frequencies.

Fourier transform filtering (FTF) and it's time domain filtering (TDF)

counterpart will yield mathematically identical results, because of the

mathematical equivalence between the frequency domain and object domain

representation of the data and the filter function. 2'2



As new analytical instruments and techniques emerge producing data

with increased dimensionality, there exists a corresponding need for eval-

uating two dimensional filtering techniques. In this paper, four types of

time domain filtering techniques are applied and compared for two dimen-

sional fluorescence data. Frequency domain filtering is one of the oldest

techniques and is still very popular. Since the development of the fast

Fourier transform algorithms,2 FTF has been considered more convenient,

because it generally requires fewer mathematical operations. However, time

domain filtering techniques have improved significantly in recent years and

0 - are now widely used in one and two dimensional signal processing. In many

cases, time domain smoothing may require fewer mathematical operations than

frequency domain filtering depending on the size of the digital image and

on the nature of the filter. Moreover, finding the optimal filter, in the

case of FTF, by a trial-and-error method usually requires more efforts,

than in TDF.4 The reason for this is that FTF consists of three steps

(performing the Fourier transform, multiplying by a filter function, then

inverse transformation of the data), while in TDF the filter is directly

applied to the data.

The FTF of two dimensional fluorescence data obtained by the

videofluorometer(VF) has been used in our laboratory for several years.'

We developed the TDF methods as alternative filtering techniques which can

be especially useful in cases when the optimum FTF is unknown. The purpose

of the present study is to demonstrate the usefulness of time domain fil-

% tering in enhancing the information presented in two dimensional

fluorescence data while providing a comparison of the different TDF methods.



This comparison can help in the selection of the optimal filtering method

with regard to the special needs of the experimenter.

In the first section, a brief description of the methods (neighborhood

averaging, polynomial convolution, Chebyshev, spline smoothing) is given.

The next two sections of the report present the simulated and real data sets

and the established criteria used in the comparison of the methods. The

last section provides a comparison and discussion of the results.

DESCRIPTION OF SMOOTHING ALGORITHMS

Given an NxN digital image f(x,y), our goal is to generate a smoothed

image g(xy). A digital filter can be considered as convoluting (*) the

raw data with some filter function h(x,y).1  For discrete functions

g(x,y) = h*f =1 h j f(x-iy-j),
i=lj=l

where the filter size is (2M1+l)x(2M 2+1).

Least squares is the most common criterion for finding the proper

filter function. The criterion may be defined as follows: a filter

function h(x,y) is selected such that the sum of the squares of the dif-

ferences between the smoothed data, g(x,y) and the experimental data, f(x,y)

is a minimum over the interval being considered.

At this point, it is useful to define the four time domain smoothing

methods studied in this paper. We assume that the data are equally spaced,

which is the case for the fluorescence data presented in this manuscript.

(i) Moving (neighborhood) average method (MA)

One of the simplest filters is the moving average (MA). In this pro-

cedure, the filtered image at every point (x,y) is obtained by averaging



the intensity values of the data points representing the function f(x,y)

in a predefined neighborhood (so called mask). The mask could be for ex-

ample the (2M+l)x(2M+l) nearest neighbor points around a center point (xy)

displaced in both the x and y directions. Then one can assign to the central

point (x,y) the average value of the intensities for the maskpoints (by

simply adding the intensity at each of these points and then dividing by

the number of points). The filter mask is then shifted one row or column

to a new point (x,y) and applied to the next (2M+l)x(2M+l) nearest neighbor

data points. Proceeding in this manner, the data in the first and last M

rows and columns remains unfiltered since filtering these extreme rows and

columns would require the mask to extend outside the region of the data.

The moving average filter is equivalent to the convolution of the data set

with a two dimensional function of constant value 1. Geometrically, it is

the same as using a planar surface as a smoothing function.

(ii) Polynomial convolution method (PC)

A more accurate smoothing surface can be estimated by least square

fitting of a two dimensional polynomial of order n to the (2M+l)x(2M+l) mask

points. Using the value of the least squares polynomial over the mask

around the (x,y) point, we assign the weighted average value to the (x,y)

point. The method is then applied in a manner similar to the HA. This is

the two dimensional version of the one dimensional Savitzky-Golay convo-

lution method, ', The values of the integer coefficients necessary for

using the PC method are given in reference 6.

(iii) Chebyshev method (CHEB)

This algorithm uses a small filter mask that is passed repeatedly over

the image. The image is multiplied by successive filter coefficients,



high2,... after each pass and added together to obtain the filtered image.

The hi parameters are the one-dimensional filter coefficients with the same

frequency-response characteristics as those of the desired two-dimensional

filter (in our case, low pass filter coefficients) One set of the coeffi-

cients is given in Table I. The filtering scheme uses the recursion re-

lation between the Chebyshev polynomials.7 More detailed information on

Chebyshev methods and programs for obtaining the filter coefficients are

available in references.3

(iv) Spline method (SP)

A bivariate spline function, s(x,y) is fitted to the measured data set

by the method of least squares. $ A bivariate spline function is a piecewise

two variable polynomial satisfying continuity conditions regarding the

function and its derivatives. The definition of the bivariate spline and

the fundamentals of the method are given in Table II. The number and the

position of the knots of the smoothing spline are determined automatically

by an iteration procedure. In general, s(x,y) is given by different

polynomials in adjoining intervals. In addition to the datapoints and the

degree of the spline, a smoothing parameter has to be given to control the

* tradeoff between closeness of fit and smoothness of fit (Table II).

The Savitzky-Golay convolution and the spline method may seem to be

identical since both use least squares fitted polynomials. However, the

two methods are very different. The SP method fits splines (more general

functions than polynomials) to a set of automatically determined (x,y)

points (as in Table II) while the PC method fits a polynomial to the raw

data pu.its in a mask.



Table I. The coefficients for the Chebyshev method

the coefficients of F low pass filter coefficients (Wiener filter)

for 3x3 mask: the hi parameter values:

1 2 1 h1= 0.454, h2= 0.307,
2 -4 2 h3= 0.027, h4=-0.116 ,

1 2 1 h5=-0.074, h6= 0.059.

I



Table II. The mathematical definition of the bivariate spline function

Let D=[a,b] x [c,d] be a rectangular domain. Consider the strictly in-

creasing sequences of real numbers

a = r() < r(l) < ... < r(g+l) = b; c = p(O) < p(l) < ... < p(h+l) = d.

Then the function s(x,y) is called a spline of degree k in x and 1 in y,

with knots r(i), i=1,2,...,g in the x-direction and p(j), j=1,2,... ,h in

the y direction, if

(i) On any subrectangle D(i,j)=[r(i),r(i+l)] x [p(j),p(j+l)], i=0,1,...,g;

Sj=0,1,... ,h, s(x,y) is a given polynomial of degree k in x and 1 in y;

(ii) All partial derivatives i+j s(x,y)/xi yJ for O<k<k-l and O<j<l-l

are continuous in D.



The algorithms were programmed in Fortran and an IBM 3030 was used for

the computations. The experimental data was collected from the VF by a

Hewlett Packard 9845B minicomputer and transferred to the mainframe using

terminal emulation software.

TEST DATA

In order to compare the performance of the various filters we tested

them on simulated and experimental two-dimensional data.

(i) Data Type I: simulated data with known signal/noise (S/N) ratios

Since the typical fluorescence matrix often can be approximated as a

0 combination of Gaussian peaks in both the x and y directions l ", we simulate

the ideal data with known signal/noise ratios as surfaces, z(x,y), produced

from two or four Gaussian peaks with a noise function added at each data

point. The noise function, generated from a random variable, RND, is:

RNDx(sqrt(z)+c). The random variable RND, is equally distributed on the

interval (-1,1) and sqrt(z) denotes the square root of the noiseless

function, c is a constant approximating the mean value of the background

noise. The term RNDxsqrt(z) approximates the photon statistical noise

present in the data. Figure la shows an ideal dataset, while in Figure lb

the corresponding noisy surface is presented. A 64x64 digital image size

was used since that matrix size (or smaller) is conveniently used in

fluorescence studies.'

(ii) Data Type II: experimental data acquired by the VF

Since the FTF of two dimensional fluorescence data has been used in

our laboratory for several years,' it seemed natural to demonstrate the

usefulness of the TDF techniques on similar types of experimental data.

The VF collects data in matrix format. The elements of the matrix represent

. . .. . % . .. % - % ,. ". % % % -- L* %. . ' .--. ' -. % .--.-- % ". ~ . . . ". ".. . . "

11.' .



the fluorescence intensity of the sample at a unique excitation and emission

wavelength pair. This data is referred to as an excitation-emission matrix

(EEM). The VF and its operating parameters have been documented

elsewhere."1  Figure 2a shows the EEM of rubrene and Figure 3a is the EEM

of anthracene. Both samples were obtained from Aldrich Chemical Co. at 98+%

purity and used without further purification. Glass-distilled cyclohexane

(Burdick and Jackson) was used as the solvent.

COMPARISON CRITERIA

Two quantitative measures of the suitability of a filter have been used

6 for comparison of the different smoothing algorithms. Our first criterion

for effective data smoothing is a minimal mean square error (MSE) between

the filtered data and the desired result (ideal data in the case of the

simulated data sets). The smaller the MSE, the better the filter. In ad-

dition to using MSE, we compare the absolute differences of the ideal and

smoothed noisy functions at the peak maxima to estimate the influence of

the smoothing operation on the amplitude of the signal.

The mean square error between the filtered data, g(x,y), and the ideal

data, z(x,y), is defined as

nr nr
MSE = i/nrxnr(sqrt( Z [z(x,y)-g(x,y)]21) (1)

x=ly=l

where nrxnr is the number of filtered data points (for the PC and MA al-

gorithms, nr-N-M; otherwise nr=N). Before computing the MSE and the abso-

lute differences at the maximum peak value we normalize the ideal and the

smoothed noisy simulated data(Type I). For the experimental data (Type II),

[. a smoothed matrix may be compared to a relatively noise-free matrix of the

|6°



same component. 4 Let us assume that g(x,y) is the filtered version of the

EEM, f(x,y). We then define z(x,y) to be the ideal result of the filtering

operation performed on f(x,y). When we are smoothing f(x,y), z(x,y) may

be approximated by acquiring the matrix of a more concentrated sample that

has been subjected to signal averaging of replicate matrices, z'(x,y).

Since z(x,y) and f(x,y) must have the same overall intensity for comparison,

it will be necessary to scale down z'(x,y) using Equation 2:

z(x,y) = z'(x,y)Xfmax(x,y)/z'max(x,y) (2)

where z' max(X,y) is the maximum of the "ideal" data matrix and f max(x,y)

0 is the corresponding point in the filtered data matrix.

By substitution of Equation 2 into Equation 1, we obtain the final

usable form of the MSE for our real data set, i.e.:

nr nr

MSE=l/N 2_Z {g(xy) - [z'(x,y) x fmax(x,y)/z max(x,y)]11

x=ly=l

This MSE is not necessarily the minimum MSE of the two data sets. The

calculations required to generate the minimum MSE are more complicated than

the ones presented here, and since our purpose is to compare the methods,

the values generated using this method will suffice. In a practical sense,

z(x,y) is the best (most noise free, best resolved, etc.) version of f(x,y)

which we can conveniently obtain using the VF. However, since this data is

obtained with a real instrument, it is not a true z(x,y).

The second measure of filter performance is the difference in the ab-

solute maxima of the filtered and ideal data set. Of course, this value

is only available for synthetic data. However, the experimenter will be

abl- to approximate this value for familiar data sets. These values have



been included in Table III which also lists the mean square errors for the

simulated data set shown in Figure 1.

RESULTS AND DISCUSSION

The results of applying the four TDF methods to the simulated data are

presented in Figures 1c, d, e, f and Table III. The results of the filtering

of the experimental data are illustrated in Figures 2c, d, e, f and Table

IV for rubrene and Figures 3c, d, e, f and Table V for anthracene. The

comparison of their effectiveness is based on the value of the MSE and the

absolute difference between the maximum value of the ideal and smoothed

* noisy data. The values of the MSE in Table IV indicate that all four methods

can be succesfully used for filtering. However, the MA method will often

oversmooth the data, resulting in an unacceptable loss in the maximum peak

value. The PC and SPLINE methods with properly chosen parameters produce

a well smoothed image and a good approximation of the maximum values of the

peak of the ideal data. The CHEB filtering preserves the maximum value of

the peak better than the MA, but not as well as the PC and SPLINE methods.

The selection of the proper parameters for the different methods was

based on both theoretical considerations and the performance of the method

in practice. For the MA and PC methods, the mask size can be regarded as

a parameter. In evaluating each method for the best parameter values, we

found the following information. For our data sets, the desired smoothing

was obtained using 5x5 and 7x7 masks. These two methods are identical for

the Ux3 masks'. The high resolution can be lost in the case of PC filters

if masks greater than 7x7 are used. This is probably because the bandwidth

of our data is usually less than 7 points. The MSE is monotonically de-

creasing for PC as the mask size is increased. However, for the MA the use

.. .
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Table III. The mean square errors and the absolute difference in

maxima for the simulated data

METHOD MSE DIFF. IN MAX.

MA 5x5 3.5 11.0

MA 7x7 11.0 22.0

PC 5x5 3.3 1.0

PC 7x7 15.0 3.0

* CHEB 4.4 7.0

SP (S=70000) 2.5 2.0
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Table IV. The mean square errors for Rubrene

METHOD MSE

MA 5x5 14.0

MA 7x7 30.0

PC 5x5 2.2

PC 7x7 3.5

CHEB 4.8

SPLINE (S=8500) 2.3
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Table V. The mean square errors for anthracene

METHOD MSE

MA 5x5 6.5

MA 7x7 8.4

PC 5x5 4.1

PC 7x7 4.8

CHEB 2.4

SPLINE (S=8000) 3.5

-,i4l
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of a larger mask size resulted in an increased MSE. As we discussed in

the description of the methods, when a mask's size is (2M+l)x(2M+l), the

data in the first and last M rows and columns remains unfiltered. This may

also affect the choice of the mask size. For our 64x64 fluorescence data,

the 5x5 and 7x7 masks provide the desired smoothing. In the case of the

PC method, higher order surfaces usually filter with less degradation in

resolution. However, in all cases considered the second and third order

surfaces give relatively good results.

Several sets of low pass filter coefficients have been tested for the

CHEB method. Table I provides those values of the coefficients for which

the filtering has been satisfactory. A large number of CHEB filter coef-

ficients can be generated corresponding to the special requirements of the

user by the algorithms in the references.3'a

In the case of the SPLINE method, we found that the bicubic splines

produce a good fit to the data. The value of the parameter controlling the

filtering was, as expected around the NxNxV2,9 where N is the size of the

image in one direction and V is the statistical error of the data. If the

control parameter S is too small, then the spline approximation picks up

too much noise (under-smoothing); if it is too large, the filtered image

is too smooth and the signal can be lost (over-smoothing). For the simu-

lated data the estimation of the control smoothing parameter was relatively

easy, because the value of the statistical error in the data was accurately

known. If nothing is known about the statistical errors in the raw data,

then S has to be determined by trial and error. We think that a further

ddevelopment of the method could include an automatic determination of the
smoothing parameter while maintaining the possibility of selection. In our

-



- laboratory, we found that the PC and SPLINE methods give the best fit, i.ea.

.~ for these two methods the MSE between the ideal and smoothed noisy data were

the smallest and the maximum value of the "ideal" data was well approxi-

mated.

Since in many cases the speed of computation can be important we in-

* clude Table VI containing the number of multiplications for the different

filtering methods. On most minicomputers, multiplication is much slower

than addition, therefore the number of multiplication steps may be used to

estimate the speed of the computation. However, it is difficult to make

unqualified statements about the computing time required for different

filtering methods, because of variations in processor speed and other

hardware features of different computers. But in most cases, for example,

the TDF filtering is faster than the other algorithms up to mask sizes of

about llxll. This relatively large TDF filter is adequate for many appli-

cations. For larger filter sizes, the Fourier transform method using the

fast Fourier transform is probably preferable.

CONCLUS ION

This study has demonstrated the usefulness of the time domain filtering

techniques for enhancing the information of two dimensional fluorescence

data. We have found that the TDF methods are easily implemented and work

satisfactorily in most applications of interest on fluorescence data. The

PC and SPLINE methods produced the overall best results based on the cri-

teria for "best-fit" established in this manuscript. However, the SPLINE

'F method needs an input parameter which has to be found by trial and error

and in actual applications may require additional efforts.



Table VI. The number of multiplications for the different filtering

methods for NxN images (N=64)

Time domain filtering Fourier filtering

Cony. NxNx(2xM+l)x(2xM+l)

M=2: 102400

M=3: 200700

Sym. cony. 0.6xNxNx(M+l)x(M+l) NxNx(4xlog2N+l)

M=2: 22100 102400

M=-3: 39300

CHEB NxNx(4xM+l)

M=l: 24600

* the numbers in brackets show the actual number of multiplications for

our case (rounded)



Future studies will concentrate on the use of high pass and band pass

filtering of fluorescence data using TDF methods and on the further inves-

tigation and development of TDF techniques. For example, we have assumed

identical resolution in the x and y dimensions of our data. Since this is

not always the case, it would be useful to examine the effects of none-

quivalent resolution on the performance of time domain smoothing methods.

We also hope to develop an algorithm which will evaluate the spline

smoothing control parameter which will make the method much more practical.
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FIGURE CAPTIONS

Figure 1. Filtering of the simulated data

(a) noiseless data; (b) noisy data; (c) moving average 7x7 mask;

(d) polynomial convolution 5x5 mask; (e) Chebyshev method;

(f) spline method (S=70000)

Figure 2. Filtering of rubrene

(a) 1.3xl06 M rubrene; (b) 6.7x10 "1 M rubrene;

(c) moving average 5x5 mask; (d) polynomial convolution 5x5 mask

(e) Chebyshev method; (f) spline method (S=8500)

Figure 3. Filtering of anthracene

(a) 7.0xlO- s M anthracene; (b) 1.4xlO" M anthracene;

(c) moving average 5x5 mask; (c) polynomial convolution 5x5 mask

(e) Chebyshev method; (f) spline method (S=8000)
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