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time series of (event/no event) and (detection/no detection) are compared by
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skills have high probabilities of detection and low probabilities of false alarms.
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geometry and the data analysis algorithm.
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EXECUTIVE SUMMARY

This bhasic principles study of the lLow-Level Wind Shear Alert System
(LLWAS) investigates the effectivenass of the current system dand the
possibility of improving the system by some combination of modifying the
network geometry and incorporating a new detection algorithm. CQuantitative
comparisons of the various proposed systems are obtained by simulation
testing. Based on these tests, it is clear that substantial improvements
in the LLWAS are possible. Since this is a scientific study, it does not
confront such issues as the relative cost effectiveness of the various
proposed improvements or their specific benefits in an operational aviation
system. Thus, our recommendations are confined to feasibility and to
scientific comparisons of merit. However, we helieve that these principles
could be used as a guide for management decisions involving operational
usefulness and cost effectiveness.

The algorithimns that are tested fall into three broad classes:

1. Algorithms that measure the difference between the wind field that
is currently observed at each station and the wind field that is expected
at that station, bhased on some estimate of the average behavior on the
entire network, e.g., the runniny average of the ohserved values at the
centerfield station or the mean wind field over the entire network.

2. Algorithms that measure the difference between the wind field
that is currently observed at each station and the wind field that is
expected at that station, based on a modelling of the wind field on the
network, e.g., ithe least squares linear regression estimated wind field.

3. Algorithms that use numerical differentiation to estimate the
wind field convergence and hence can identify the nature of the wind shear
event.

The goal of our testing is to measure the effectiveness of each system
for detecting wind shear events that occur in a disc of radius 5 km
(approximately 3 miles). We test geometries that have 6, 7, 11, 13, and 19
stations and are uniformly positioned in this disc. Except for the uniform
placement of the stations, the 6-station geometry with the centerfield
algorithm is an idealized replication of the currently used LLWAS, The
other geometries are studied to see how much improvement can be achieved by
increasing the number of stations in the disc. Since we are always trying
to protect the same 5-km disk, the station density increases as the number
of stations increases. Therefore, our conclusions about the number of
stations are really conclusions about station density, and the actual
numbers of stations that would be needed to protect a different region
would depend on the area of the region. Also, it is possible that a
greater density might be beneficial or even necessary if some other goal
were being addressed, e.g., estimation of the intensity of the wind shear
event in the runway corridor,
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The simulation-testing procedure used in this study is based on a R
statistical evaluation of the ahility of each combination of geometry and RN
algorithm to detect reliably wind shear events, In particular, a system STl
that issues false alarms is penalized in our scoring procedure. Qur
principal measure of effectiveness is the Total Skill Score (TSS), an
advanced statistical verification measure that has heen used in the
evaluation of numerous forecasting methods. In addition, we compute the
Probability of Detection (POD, the probability that a wind shear event will
be detected by a station that is in the proximity of the wind shear event);
the Eligible Probability of Detection (EL.POD, the probability that a wind
shear event will be detected by a station that is in the proximity of the
wind shear event); the False Alarm Ratio (FAR, the probability that a wind
shear alarm is false); and the Eligible False Alarm Ratio (EL.FAR, the
probahility that an alarm will be issued by a station that is not in the
proximity of the wind shear event). Other statistical measures were
considered; we have chosen to use the ones that provide the most useful
information about our problem.

The actual testing involves using a realistic mathematical wind field
model to simulate a six-hour development of wind shear events. The nature
and frequency of the events are similar to patterns that have been observed
at Stapleton during an active afternoon (JAWS-1982 and CLAWS-1984). As the
simulated wind field evolves with time, the measurements that would have
been observed by LLWAS stations are recorded and analyzed according to the
principles of each of the proposed algorithms. Two time-series are
generated: (1) the series of wind shear events, and (2) the series of
alarms that are jissued by the application of each of the algorithms.
Comparison of these time-series yields the statistical measures. Each
system is tuned so that it operates with optimal skill, i.e., maximum TSS,
and the other parameters (P0D, FAR, EL.POD, EL.FAR) are recorded as they
result from this mode of operation.

The testing that we have conducted shows that LLWAS can definitely be
improved, especially in its ability to detect microbursts. A new detection
algorithm should be adopted and denser station deployment is very
beneficial. The following table illustrates the nature of the relative
comparisons for the regular geometries that we have tested. The methods
considered here are:

OLDCF  Essentially the existing LLWAS (Centerfield algorithm)

NEWCF  An upgrade of the existing LLWAS (Centerfield algorithm)

NLR Modeling method (Network Linear Regression)

TEDC Wind field convergence and wind shear identification
algorithm.

Spacing is a scale factor that relates to station density (3.00 corresponds
to the density of the current LLWAS; 2,25 corresponds to the spacing that
we found to perform well).
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METHOD STATIONS SPAC ING 1SS POD FAR FL..PCD ELLFAR
OLDCF f 3.00 21 .79 .45 .14 .68
NEWCF 6 2.25 .46 .h3 .23 .32 .32
NLR h 2.75 .58 12 .17 .60 .35
TENC 6 2.25 T2 J2 .19 .50 .25
. NEWCF 13 2.725 .h5 .80 17 .67 .27
i NLR 13 2.25 a7 .94 .16 .80 W22
l TEDC 13 2.75 T2 .82 .11 T2 .19
NEWCF 19 2.25 .70 .78 .10 A7 .28
NLR 19 2.25 .30 .94 .14 .89 .22 -]
TEDC 19 ?2.25 .81 .91 .16 .84 .22 :
9
Inspection of these results indicates that the greater the number of IO
I stations, the better the detection skills. FEssentially all other methods - ’

offer a substantial improv:ment over the nld centerfield (OLDCF) method.
One should ncte that when there is a sizable difference hetween the POD and :
the EL.POD, or the FAR and the EL. AR, 7t implies that the system is ]
correctly detecting a wind shear event in the region, but that it is I
frequently unable to correctly identify the location of the event, If ATC
) were to use the alarm at a station to divert traffic to another runway, a
large EL.FAR is an indication that they might divert the traffic from a
place where there is no wind shear to a place where there is a wind shear
event in progress. The study closes with nine recommendations for
improving the present LLWAS and thirteen recommendations for further study.
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I. Introduction

Low-altitude wind shear, or the rate of change of wind velocity
hetween two spatial points, has heen of interest to meteorologists for

many

years. In the c¢lassical Thunderstorm Project, Byers and Braham (1949) ST

identified thunderstorm outflows and downdrafts; we now would classify the "

smaller scale downdrafts as microbursts. et
In the eariy 1970's the Federal Aviation Administration (FAA) became s f’

interested in low-altitude wind shears and their impact on aviation o

safety. At that time, the primary wind shear danger to aircraft was

believed to be the gust front. Based on this belief, a Low-Level Wind

Shear Alert System (LLWAS) was designed (Goff, 1980). This system consists L

of a minicomputer and a small anemometer network located near the airport

(i.e., a centerfield and five outlying sensors typically about two miies q
from centerfield). The computer polls these stations frequently and
performs an analysis that is intended to determine automatically when there
is a wind shear event {i.a., gust front) in the airport vicinity. When a
wind shear detection is made, the computer issues an alarm in the control
tower, and this result is relayed to pilots by Air Traffic Control (ATC).

In 1977, this system was installed at six airports: Atlanta, Denver,
Houston, New York, Oklahoma City, and Tampa. By 1983, the system was in
operation at 59 airports, and an additional 51 airports are scheduled for
installation by early 1986, Thus, LLWAS is the present operational
standard for the detection of low-altitude wind shear in the vicinity of an
airport.

As early as 1976 some evidence had heen presented that small-scale
downbursts were related to aircraft accidents (Fujita, 1976; Fujita and
Byers, 1977; Fujita and Caracena, 1977). The first detailed investigation
nf these ideas was undertaken in the Joint Airport Weather Studies (JAWS)
Project, in the summer of 1982 in Denver, Colorado. The ohservation,
recording, and analysis of the LLWAS during the JAWS Project allowed
researchers to evaluate the performance of LLWAS and to compare it with
other meteorological instruments for the measurement of low-altitude wind
fields. These comparisons (Bedard et al., 1984) confirmed the suspicion
that LLWAS is prone to issue numerous false alarms and to miss a number of
wind shear events. A second major aviation wind shear hazard, the
microburst, was shown by JAWS to be miuch more prevalent at Denver,
Colorado, than had been anticipated, and this wind shear event was
primary consideration during the design of LLWAS,

not a

Lastly, most recently the National Research Council (1983) recognized
the problems and limitations of the present LLWAS and has recommended that
". . . every effort should be made to assess and improve its performance."
[t is in response to the above problems that the FAA commissioned this
study.
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- Il. Gnals and Scope of the Study

This study was undertaken to determine if it is possible to change the
LLWAS design so that it will have an improved performance for the detection

:_ nf both gust fronts and microbursts, while reducing the incidence of false
E alarms. The study will focus on two major objectives:
QE 1. Develop a theoretical basis and a methodology for the detection

and identification of microbursts and gust fronts by a
meso-network of anemometers, and

2. Provide the FAA with recommendations for better ground-based
anemometer wind shear detection systems based on quantitative
evaluations of the effectiveness of alternative systems.

Given the ahove two ohjectives we propose that the following five
tasks be undertaken:

1. Develop a realistic two-dimensional (u,v) mathematical dynamic
wind shear event model which contains both microbursts and gust
fronts interacting within an ambient wind field,

2. Develop a number of new algorithms for detecting both gust front
and microburst wind shear events,

3. Design scoring and verification procedures for giving a
guantitative evaluation of the effectiveness of the various
algorithms and geometries that are to be studied,

- 4, Incorporate the mathematical wind shear model, the detection

- algorithms, and the scoring and verification procedures into a
computer simulation and testing software package to assess which
wind shear detection systems appear to have the best wind shear
detection capabilities,

5. Evaluate, through computer simulation, the effects of algorithms
and mesonet designs (including the number of sampling stations) on
the relative performances of these wind shear detection systems.

The scope of the study was limited to the following principal items:

1. The protection of a disc of radius 5 km which contains the airport
runways,

2. A hypothetical number of anemometer stations ranging from 6 to 19,

3, The utilization of a two-dimensional wind shear event model which
has some allowance for temporal changes,
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4. A preselected group of detection algorithms (including the current
LLWAS algorithm),

5. Scorina and verification procedures that allow some flexibility in
determining a detection or "limit" and which uses hoth traditional
and statistical methods for assessing performance, and

6. Six hours of wind shear simulation time for each combination nof
algorithm and mesonet design.

[[1. Detection and Identification Algorithms

There are two primary parts to the aperation of a low-altitude wind
shear detectinn system: (1) the sampling of the wind field, and (2) the
interpretation of the collected data. The data interpretation is performed
by a computer program that is the realization of a number of detection
algorithms. The algorithms in this study can be placed into two
subclasses: (1) those that detect anomalous wind field behavior and
(2) those that estimate wind field divergence. The former group assumes
that a wind shear event is an anomaly above some background value, whereas
the latter group relies on some meteorological understanding of wind shears
in that a strong positive divergence is evidence of the presence of a
microburst, and a strong convergence (negative divergence) is evidence of
the presence of a gust front. Therefore, this second group of algorithms
gives an identification of the wind shear event in addition to its

detection.

It also should be noted that algorithms that rely on single-station
detection, as opposed to multiple-station detection, are more prone to
issuing false alarms due to local wind phenomena or measurement noise.

Thus we are faced with the paradox that warnings based on single-station
algorithms could include many false alarms, but for relatively large grid
scales these algorithms may be the only ones that are likely to issue
timely alarms. Furthermore, a single-station altarm is an indication that a
dangerous event may have initiated hut provides no identification of the

type of event.
A. Wind Field Anomalies as a Detection Device

A wind field anomaly at a station is defined as the difference between
the measured wind velocity vector and the velocity vector that is expected
at that station:

measured velocity - expected velocity = wind field anomaly

The designation that a station anomaly is substantial (and thus indicative
of a wind shear event) is based on the estimated anomaly being larger than
some predetermined threshold value. (Note that there could be a different
threshold value for each different algorithm and network geometry.)
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Although we have found no theoretical hasis for the choice of threshold e
values for the anomaly algnrithms, the threshnld values have bheen deter- SRS
mined heuristically so that each algorithm has the best performance (i.e., e
the highest chance of detection without an exorbitant number of false :
alarms). The different anomaly detection algorithms presented in this
study are hased on different schemes for determining the expected or back-
ground value that is {c be used at a given station. There are nine anomaly
detection algorithms that have been tested in this study, and they can be
briefly identified by their expected value characteristics (a mathematical
description of each of these methods is presented in Appendix B).

1. (OLDCF) 01d centerfield average value (current LLWAS). The
expected value used for each system is the running average value
of the centerfield station and is compared to each of the five
"outlying" stations by computing a vector difference. Typically,
the outlying stations are abcut 3-5 km from centerfield and the
threshold is 15 knots (7.5 m/s). Lol

N
.

(NEWCF )} New centerfield average value. Fach outlying station is

compared with the centerfield running average as in OLDCF. In

addition, the current centerfield reading is compared with the e
centerfield running average, so that it also is possible to make a i"*‘
wind shear detection at centerfield. e

3. (RFCF) Recursive filter centerfield average value. This approach el
is the same as the NEWCF with the exception that the “running N
average value at centerfield" is replaced by another averaged N
value hased on a recursive filter. This latter approach is based v
on digital filtering, and both approaches are described in detail R
in Section V.

4, (NMN) Network mean wind field. The expected value used for each
station is computed as follows: RS

i) The time averaged wind field is computed for each station,
ii) These station data are trimmed by (possibly) deleting
stations with extremely large and small wind speeds (see
page 6), e
iii) The mean of the remaining average values is used as the o
expected value. ;

5. (NMD) Network median wind field. The expected value used for each
station is computed as follows:

i) The time averaged wind field is computed for each station,
ii) The median of the averaged values is used as the expected
value,

Recall that the median of an ordered list of values is the middle
value. In this case, the median {u,v) is taken to be the vector
with median u-value and median v-value,
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6. (LMN) Local mean wind field., The expected value used for each L
station is the (spatial) mean of the (time) averaged wind field G
for the proximate stations (see page 6),

7. (LMD) Local median wind field. The expected value used for each
5 station is the median of the (time) averaged wind field for the
& proximate stations.

8. (NLR) Network linear regression model wind field. The expected
value used for each station is the bivariate linear regression
wind field value using the (time) averaged values for each KRS
station. This method is based on a first order least squares fit
to the averaged and possibly trimmed station data. <

9, (LVD) Local vector difference from proximate stations. This
method is based on the computation of the extreme vector
difference for each station, rather than on the computation of an
expected value. The procedure is the following:

i) Find the time averaged value for each station that is )

proximate to the given station (see page 6), o

ii) Compute the vector difference between the current wind field i'-

value at the given station and each of these time averaged -

values, S

iii) Define the anomaly to be the maximum observed vector o
difference.

The first five algorithms are similar in that they attempt to obtain a
single wind field value that is used as the expected value for the wind oA
field on the entire network. The last four algorithms are similar in that S
they seek to model locally the gross variation in the wind field over the ;
network,

Sty
The algorithms that use a single background or expected value for all ljtj:
stations have a possibilty of issuing false alarms due to natural variation =
in the wind field over the network, especially if the network covers a AN
sizable region. On the other hand, the methods that attempt to model the -3
gross wind field variation may succeed in modelling the wind field so well ~
- that wind shear events are incorporated into the expected value and there- OORY
fore fail to be detected. In particular, the local vector difference (LVD) o
method seeks the most extreme wind field variation; hence it is most likely
to be fooled by subscale events and measurement noise. The quantitative o
scoring of the effectiveness of these algorithms will provide a way to N
determine which of these potential problems is most severe, and whether any R
of these algorithms can give satisfactory performance.

1. Smoothing of Raw Data

The original LLWAS operates with a six- to ten-second station polling
period. Observations of the wind field by anemometers for such short time
periods are likely to contain fairly significant measurement noise. Also




there is the problem that a wind shear signal can be a spike on the network
and adversely affect the quality of the wind field modelling. Two data
smoothing techniques have been introduced to protect the algorithm
performance from being adversely affected by these problems.

The first is to use time-series averaging of the station data to
reduce the high frequency component of the wind field variation at each
station hefore the network or expected wind field models are constructed.
Therefore, we test for anomalies between the current wind field observation
at each station and the expected wind field hased on the time-averaged wind
at each station in the network over a time period that is significantly
longer than the polling period (i.e., typically two minutes).

Two averaging methods have been studied: the running average method
that is used in the current LLWAS and a comparable recursive filter
technique. The details of these time-series analyses are provided in
Section V.,

The second technique is to trim the network data set. Stations that
show extreme wind field averaged values are dropped from the data set used
in the construction of the expected network wind field. (Note that this is
the same as giving these extreme values a weight of zero.) However, these
values are not dropped from the set of observations that are compared with
the expected wind field for the purpose of detecting anomalies. To avoid
introducing a bias to the data, the standard practice (e.g., Mosteller and
Tukey, 1977) is to drop an equal number of high and low values. In the
present case, the measurements consist of vector data (i.e., wind field
speed and direction) and so there is some question as to what "high" and
“Tow" values imply. Our trimming strategy is based on high and low wind
speed, and we will trim either 0 or 1 from each end of the ranked average
values, i.e., drop 0 or 2 station's values.

2. Proximate Stations

The local methods LMN, LMD, and LVD all depend on the comparison of
values from stations that are near a given station. For this purpose, we
define the stations that are proximate to a given station to be the set of
all stations that lie within a specified radius of a given station
including itself. This radius of proximity is usually selected so that a
given station, which is interior to the network, will have about six to
seven proximate stations.

3. Pair Detection

Each of the above eight algorithms can be extended to a two- or pair-
station algorithm, which issues an alarm only if two proximate stations
simultaneously detect the wind shear event, The simultaneous detection of
a wind shear event by two nearhy stations will significantly reduce the
possibility of false alarms. However, if the station spacing is relatively
large, then there is a possibilty of an increase in missed detections. The
best performance of these two proximate-station algorithms occurs when a
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somewhat lower detection threshold is used than for the single-station
detection algorithm.

B. Wind Field Divergence as a Detection and ldentification Device

As indicated earlier, gust fronts and microbursts are the wind shear
hazards that are the focus of this study. A gust front can be character-
ized by a moving strip along which there is an intense inflow, and a
microburst can be characterized by a small region from which there is an
intense outflow, According to the Divergence Theorem (e.g., Courant and
Hilhert, 1962), the net mass flux along the boundary of a region is equal
to the product of the area of the region and the average wind field
divergence in the region. With the usual sign conventions, positive ,
divergence is associated with outflow and negative divergence (convergence) Rt
is associated with inflow. Hence, a strong divergence exists at the center
of a microburst and strong convergence (negative divergence) exists along
the leading edge nf a gust front and at the cuter boundary of a microburst.

It is well known that wind field divergence can be estimated from wind RN
field derivatives. Furthermore, a simple cross-product formula can be used “ e
to estimate wind field derivatives (see Appendix A). By the Divergence Do
Theorem, this estimate is equivalent to estimating the strength of the net ET-
outfliow along the boundary of the region. This method has heen chosen as
the basis for the detection and identification algorithms.

For gust fronts, wind speed shifts can be greater than 10 m/s over a
distance of approximately .4 km. The numerical derivative estimate agross
this distance yields an estimated divergence on the order of -.025 S™° (the
units of divergence). To observe this magnitude of convergence would
require station spacing of .4 km or less. A station spacing of 1 km would
yield an estimate of -,010 s-! and a station spacing of 2 km would yield an

WM

v

estimate of -.005 S~", (Figure III-1). Similar calculations for micro- St
bursts, using a minimum value of 10 m/§ wind velocity reversal over 1 km, e
leads to a threshold value of +.010 S='. Because of the rapid decrease of !i::]
wind field intensity outside of the divergence region of the microburst, DO

sparse station spacing can be expected to decrease detection capabilities.

The simplest estimation technique that could be employed is to compute ..
the one-dimensional numerical derivative along the line-of-sight between e
two stations. For this, the wind field velocity vector at each station is t' ;'
projected onto the line-of-sight of the stations, and the difference e
quotient of these projected vectors is computed (Figure I111-2). This R
estimate is called line divergence,

1f there is divergence along the line-of-sight, then this calculation
will yield an accurate estimate of its intensity. If the maximum
divergence is along a Tine that is skewed to the line-of-sight, then this
calculation will underestimate the intensity of the event. Since it is
anly effective in cases where the stations are properly positioned with
regard to the event, this method of detection does not lead to a viable

Toet T . . .t - - b . DR, . - . . B - . . -
------- b - -, DA - - . - P > - - - L PR P L P . - ° - e - - - - -
b N PR N AL R I . L el N e e e T e T . :.-\ - e “ T LS

T
- * e . - -
BV CPLILYC AEAE AE




Serale e

WIND SPEED

WIND SPEED

10

10

Actual Sheer Gradient

\\
~N
\\
/Estimated .
¢ Sheer Gradient
N
F—0.4 km
0.6 km

Station Positions

&~ Actual Sheer Gradient

S~ Estimated
S~ Sheer Gradient

Figure [11-1. Underestimation of wind shear intensity due to station

—0.4 km '
.2 km '

Station Positions

spacing.




LADEREEA gl ot 3 I SL R il

EM. g

’

Y v v -
T v

e X N N N W W W N W™ 3™ W~ R b B But At S 4

NERCS suraie 4 T TN rT——

Measured
windfield

\, Line-of-sight

Measured Station 2

windfield

Station |

Line divergence. The divergence is estimated by the vector
difference of the projections onto the line-of-sight.

Figure [1I-2,



ER S A RA AL Il Ag bl o CRSFS DAL AR in 0 Su N ot Din Sal A S Me it A e s e et et B e s s e g

7 .

10

algorithm by itself. A further Jdifficulty with this method is that it may
be sensitive to measurement error at one of the stations, and could be
prone to issuing false alarms, This also is a possibility when this method
is included as part of another algorithm,

COREET L LN LT,

A second estimation technique is based on a triangulation of the
network geometry and an estimation of the net wind field flux across the
boundary of each triangle in the network, As previously discussed, this
value can be efficiently computed by a vector cross-product formula, and
is called triangle divergence (Figure I[II-3), It is the basis for the
first divergence algorithm.

&,

-

C L

The triangle divergence method is not as sensitive to the orientation
of the event as line divergence, but there still are difficulties. If the
event is contained in the triangle and its scale is small compared with the

I triangle scale, then the method will underestimate the intensity of the

. event. Also, the location of the event is important, because an event that
is partially outside a triangle does not have as severe a net flux at the
boundary as an event that is centered within the triangle (Figure III-4),

A second divergence algorithm is based on the combination of the two

k methods described above with the additional observation that an event
partially outside of a triangle (where triangle divergence will produce an
underestimation of divergence) must overlap at least one edge of the
triangle. This algorithm consists of computing the triangle divergence and
the line divergences along each of the three edges and comparing the

a maximum of these four estimates to a threshold value, The increased

. sensitivity of this algorithm could lead both to better detection and to

' more false alarms.

g In summary, two algorithms are used to estimate wind field divergence:
1. Triangle divergence-convergence (TDC)

The station network is triangulated and the triangle divergence is
computed for each triangle. The triangles, rather than stations, are
designated as divergent or convergent,

- 2. Triangle and edge divergence (TEDC)

The station network is triangulated and the triangle divergence is
computed in each triangle. Then the line divergence is computed for
each of the three edges of the triangle. The divergence value of the
triangle is the maximum of these four estimates and the convergence
value is the maximum negative value, Again, the triangles are
designated as divergent or convergent based on the sign of the
triangle divergence.

The divergence pattern of the triangular regions should allow one to
distinguish the microburst from the gust front wind shear event.
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Figure 11I-3. Triangle divergence as a measure of net flux at the
boundary.
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IV. Mathematical Wind Field Model

For the mathematical wind field model, we wanted to produce a
two-dimensional mndel {i.e,, u and v components) which would satis/y the
mass continuity condition, Furthermore, we desired not only to simulate
rather .losely the real microburst and gust front events but to allow for
an amhient wind field, a "spurious" or single station anomaly event, and
measurement noise. Hence, the mathematical wind field model consists of
the following components: (1, an amhient wind field, (2) a wind shear
event, (3) the spurious event, and (4) measurement noise. The model wind
field is the vector sum of these four component parts.

The ambient wind field satisfies a linear vector field model (i.e., a
bivariate regression mode)) that 13 similar to events observed in the
CLAWS' LLWAS data and the JAWS PAM® data. The wind shear event is
initiated randomly in time and geographic location, and is either a
simulated microburst, gqust front, spurious event, or null (no) event.
Lastly, random noise is imposed on each station value and is parameterized T
to be similar to noise observed in recorded LLWAS data. S

After studying several segments of the CLAWS LLWAS data, it has been RO
determined that tne 10-second data of the current LLWAS have a noise
structure that appears to be normally distributed about their mean value.
The direction error does not seem to vary with speed for speeds greater
than 5 kts and has a standard deviation of approximately 6.5°. When inean
speed is below 5 kts (2.5 m/s), the direction error is enormous. This is
similar to the range in which the National Weather Service reports winds as
"Vight and variable.” The speed error increases linearly with wind speed
above 5 kts, and the data indicate a standard deviation of approximately
0,14 times the mean wind speed. These values have heen used for the noise DA
model. e

» , X

Specifically, the Cartesian ambient and wind shear event wind fields
are combined and converted to polar form, and then the noise is selected
from the appropriate normal family (for direction, o = 6.5°; for speed,

g = 0.14 U)-

The choice of a linear vector field model for the ambient wind field
allows us the flexihility of starting with a translating wind, a regional
convergence or divergence, or perhaps a drainage flow for the background
prevailing wind field. The mathematical form of such a wind field at
positiocn (x,y) is

ulx,y) = ugr u 0 x = xg) +u (Cy -yg) s

vy = vgt v (- xg) # v (y - yg) s

IFhssify, Locate and Avoid Wind Shear experiment conducted at Stapleton
Alrporl NDenver, CO, July 2 - August 15, 1984,
‘Portable Automated Mesonet operated by the Field Observing Facility, NCAR.
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whera Uy uy, Voo Vy dennte partial derivatives of u and v,

Realistic linear wind fields have been developed hy the analysis of
the JAWS PAM daota and the CLAWS LLWAS data. The superposition of a wind
shear eveat and typical wind field "noise" on this amhient behavior
provides a realistic test for the various detection and identification
algorithms,

The spurious event is an attempt to simulate small-scale wind events

such as dust devils, wake vortices, etc., which occasionally cause a
station to exhibit anomalous behavior. For the purpose of this study,
these local events are not considered to be hazardous to aircraft, although
wake vortices can affect aircraft., Typically, such events affect only one T
station for a brief time interval., These events are modelled to occur B
infrequently, to have speed magnitude of 7.5 m/s, to have a random Coe e
direction, and to persist for 30 seconds. Any detection of the spurious . -
eveat is viewed as a false alarm, ]

A simple gust front model has been selected in which the front is a ';f; R
straight line that moves across the region with a front speed of about s

10 m/s. This wind field has constant direction, wind speed of zero ahead voa e
of the front, wind speed of 10 m/s at distances of .4 km or more behind the l, . j;
front, and wind speed that increases linearly from 0O to 10 m/s in the .4 km RS
hand along the front (Figure IV-1). The constant wind direction may he RS

slightly skewed from the direction of frontal propagation, and the angle of
the skew is randomly selected from a small interval centered about zero.
This event will persist until it crosses the entire region, at which time
it will have added a constant vector value to the ambient wind field., This
additive constant is then allowed to decay uniformly to zero over a .-
fifteen-minute period. Note that a microburst may be initiated during this _25,;4
transition or decay period. .

-y
P P
AT NI

The most complicated event is the microburst, A radially symmetric
outfiow from a central position has been selected (Figure IV-2). In order
to scale the radial outflow properly, it is necessary to impose mass
continuity on the modelled wind field., The effect of this requirement is
detailed in Appendix C. Relying upon a statistical analysis of the JAWS
microburst data (Wilson et al., 1983) we have selected the following
parameters to describe the modelled microburst (Figure IV-2):

1. Time for increase to maximum intensity = 6.3 min,

2. Initial radius of the divergence region = 0.9 km,

3. Final radius of the divergence region = 1,6 km,

4, Height of the outflow = .3 km,

5. Initial maximum horizontal velocity = 5,7 m/s
(one side), and

6. Final maximum velocity (one side) = 11.8 m/s.
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Figure IV-1. Gust front model.
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[t is assumed that the radius of the diverdence region expands linearly and
that the maximum horizontal velocity also increases linearly nver this time e
period. The model algorithm computes the strength of the horizontal —

outflow and the outer radius of the convergence region as a consequence of
the choice of parameters. At the end of the 6.3-minute period, the event
decays into the ambient wind field by allowing the maximum horizontal
velocity to decay to zero over an additional 10-minute period. During this
time the radius of the divergence continues to expand linearly., Thus, the
total life of the modeled microbursts is 16.3 minutes, although it
typically is not hazardous for this full time period. Sample microburst
and gust front events as seen by a reqular grid network are shown in
Figures IV-3 and IV-4,

For some of our evaluations we designated stations as eligible or ST
ineligible to observe the wind shear event. A station is defined as oo
e|191b|e 1f it is contained in the shear region at any sampling (polling)
time, If it is not in the shear region, it is defined as ine]igible. For
the gust front, the shear region is the .4-km hand along which the wind
speed is increasing from 0 to 10 m/s incremented by the 1-km band on either KR
side of this shear (Figure IV-1). For the microburst, the shear region is PRSI
the disc about the center that contains the full divergence region and the St
portion of the convergence region in which the microburst wind speed is
greater than 5 m/s (Figure IV-2). The radius of this disc is the
eligibility radius.

In a testing of the algorithms, the initiation times and locations of
the wind shear events are selected randomly in the geographic region that
is to be detected. Gust fronts are constrained to start at the boundary
and move across the region; the centers of the microbursts remain
stationary, but the radii of the divergence regions increase with time, as
is described above. Figure IV-5 shows (A) a list of the events and their
initiation times and (B) the geographic dispercion of the wind shear events
in a hypothetical protected rectangular region, near Stapleton. This is
the result of the six-hour simulation that is used in Appendix F.
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Figure IV-3. A sample microburst in an ambient wind field, generated by
the mathematical wind shear model on a 19-station network.
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Figure IV-4, A sample gust front and microburst in an ambient wind field, E
generated by the mathematical wind shear model on a :
19-station network. A



LABEL EVENT INITIATION TIME

MB 1 Microburst 1.800 R

Spurious Event 12.000 e en
Spurious Event 13.000 P
GF 1 Gust Front 17.000 A
MB 2 Microburst 18,800 AN
MR 3 Microburst 41,000 N
GF 2 Gust Front 53.600 oLl
MB 4 Microburst 61.400 .
Spurious Event 72.000 Yere
Spurious Event 78.000 RSO
Spurious Event 80.600 T
Spurious Event 87.400 aad
MB S Microburst 88.800 e
Spurious Event 104.600 Pela
Spurious Event 114,600
MB 6 Microburst 118,200
GF 3 Gust Front 127.600
Spurious Event 140.800 L
MB 7 Microburst 141.800 A
Spurious Event 149,800 (
Spurious Event 156.600
Spurious Event 157.400
Spurious Event 159.600
Spurious Event 161,800
Spurious Event 163.400
Spurious Event ' 169.600
MB 8 Microburst 170.600
Spurious Event 179.600
MB 9 Microburst 195,200
Spurious Event 203,600
Spurious Event 205,600
Spurious Event 206.400
Spurious Event 208.400
Spurious Event 211,200
Spurious Event 216.600
GF 4 Gust Front 224,000
MB 10 Microburst 228.400
Spurious Event 240.600
Spurious Event 257.800 o
Spurious Event 272.400 RN
M8 11 Microburst 282.000 O
Spurious Event 303.800 e
GF 5 Gust Front 306.000 S
MR 12 Microburst 313.200 -
Spurious Event 332,200 S
MB 13 Microburst 333.000 BN
MB 14 Microburst 357.400 e
. ,\:::
Y
Figure IV-5,A., List of events generated by the wind field model in a ™
six-hour simutation, .
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V. Wind Field Filtering or Smoothing

As mentioned earlier, LLWAS typically operates with a six- to
. ten-second station polling perind, which introduces a significant
measurement noise in the wind field ohservations. [n the current LLWAS, a
two-minute running average is computed at centerfield and used as the
S hackground or expected value that is compared with the most current value
- from each of the five outlying stations,

Time-series averaging of a station's data, of which the running
average is one example, is a way to reduce the high frequency component of
the wind field variation at each station before the network wind field
models are constructed. This smoothing operation is assumed to give a
hetter estimate of the true background wind field. Therefore, we test for
anomalies between the current wind field observation at each station and an .
expected wind that is based on spatial averaging of the time-averaged wind
measurements at each station in the network over an arbitrary time period
(e.q., LLWAS is typically two minutes).

Two averaging methods have been studied: the running average method
used in the current LLWAS and a comparable recursive filter method., Viewed
as a digital filter, the running average has several weaknesses. Although
it is intended to be a low-pass filter, the running average actually allows
many of the higher frequency components of the signal to leak through with
reasonahle power (Hanning, 1977, page 34). In addition, when there is a
= linear shift in the intensity of the wind field, the two-minute running
- average has a time lag of one minute in that the averaged wind speed

,,.,_,..,.,,...,..
R e
DR RS
Y ,.,.4‘-‘,' ;'! N N L4 . .
R GRS

matches the actual wind speed one minute previous to the current time. The L.osd
K comparahle time lag for the recursive filter (a = .6) is about 15 seconds. RS
- :-_'.. .'.:.
- The digital filter that we have applied in this study is a single pole sjyjyg
- recursive filter of the form AR

Yo=(1-a)Y_y + aX, (1)

where the sequences Xk and Yk are the sequences of measured data and

filtered data, respectively, and a is a weighting factor that is selected
between 0 and 1. This compares with the running average of size n, which
is defined by

s .1 e )

: TeE e DAt e Ky (2) i

' oA
- 1 1

* ka1t u % Xen hex

RS

- A

. To successively compute the first formula, the last Y-value and the current j}{Q

X X-value are stored, while to successively compute the second formula, the r':\*\

" last n X-values must be stored. The two methods require comparable oy

computational work, and for a 10-second polling rate, the running average
has n = 12, and the comparable recursive filter has a = .6.
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For the anomaly methods in this report, three smoothiny approaches are
used to generate the background or expected value:

1. Recursive filter of wind field speed and direction with a = .6,

2. Recursive filter of wind field components E-W (i.e., u) and N-$
(i.e., v) with a = .6, and

3. A running average with a period of two minutes.

Differences due to the smoothing method were very small compared with the
differences based on choice of algorithm and station spacing.

The divergence methods require a different approach. First, there is o
no comparison of individual station values with an expected model, and E
hence it is not necessary to use the severe smoothing that is used for the o
anomaly methods. Second, the divergence methods involve the numerical o lalay
estimation of wind field derivatives, and these computations are sensitive . -
to measurement noise. Thus, in the divergence studies smoothing was e
obtained by using a = .85 in the recursive filter.

To test the sensitivity of the selection of a = .85, several
simulations were performed with the only variation being the selection of
the filter constant "a.” Results varied little with changes in this
parameter. For example, the following values were obtained for 1; st?t1ons
with 2.25 km spacing, TDC and TEDC methods, threshold = 4.00 (10~ ) and
a=.70, .75, ..., 1.00 (Table V-1). We observe a mild improvoment for
modest smoothing over not smoothing at all (a = 1.00).

Table V-1. Sensitivity study of the recursive filter for 13 stations,
scale 2.25, threshold 6.00 and "a" varying from .70 to 1.00.

a

Scoring Jo .75 .80 .85 .90 .95  1.00
Method

(TDC)
TSS .67 .67 .67 .67 .66 .66 .66
POD .78 .78 .18 .18 .8 .8 .79
FAR JA3 0 13 4 4 15 .16 .16
EL.POD Jroo.1 . J1
EL.FAR A7 17 a7 a8 19 .19 .19

(TEDC)
TSS .68 .68 .68 .68 .67 .66 .66
POD J9 79 19,79 .79 .79 .79
FAR A3 .13 .14 14 15 .16 .16
EL.POD IS RS SURNS § S 2 F I 72
EL.FAR A7 a8 18 .19 .19 .20 .20

lsee Section VII for definitions.
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VI. Network Geometry

l Given an area that is to be monitored for severe wind shear events by
a network of anemometers, the question hecomes what sampling points or

station network geometry is desired. There are three principle factors

that greatly influence the detection effectiveness of a network: (1) the

number of stations, (2) the spacing hetween nearby stations, and (3) the

deyree of irregularity of the station spacing. With regard to the last

. factor, we have followed the mathematical coverage theory (Ripley, 1981)
and attempted to utilize a regular grid network (i.e., proximate stations
have equal distance from each other). We typically achieve this result by
placing the stations at the vertices of a tessellation of a planar region
by equilateral triangles. Most of this study deals with the effectiveness

. of various detection and identification algorithms in the presence of a

I regular station geometry or at least a nearly regular station geometry.

1. Network Geometry

Networks with 6, 7, 11, 13, and 19 stations have been considered
(Figure VI-1), Each of these networks has a station at its center that is
used for the centerfield station in the centerfield aigorithms. The
regular 7-station network has its outer stations at the vertices of a
hexagon and, with the center station, produces a triangulation by
equilateral triangles. However, the regular 6-station network has its
outer stations at the vertices of a pentagon and triangulation results in
) isosceles triangles (not equilateral) since the edges that lie on the
. boundary of the region are somewhat longer than the interior edges due to

the larger angle (72 degrees) at the center station.

Y

The regular 1ll-station and the 13-station geometries are constructed
by using two concentric pentagonal and hexagonal station patterns,
X respectively. The regular 19-station network is based on two concentric
' hexagonal rings and a complete triangulation by equilateral triangles.

. Because there is a large gap between the number of stations in the
Ny true regular geometries (i.e., 7 and 19), it was decided to include the
intermediate, almost regular, 13-station geometry. This geometry has
equilateral triangles except for the thin triangles (slivers) along the

) houndary. The 6-station network is studied because it is most

" representative of the network that is used in the current LLWAS. Lastly
- the ll-station geometry is an idealized version of the network that has
heen deployed at New Orleans and will be deployed at Denver in the summer
of 1985,

1 2. Scaling

In order to test the effect of station spacing, a scaling parameter
has been introduced, 1If the center station is assumed to have coordinates
(0,0), then each station is moved radially outwards when its position
coordinates are multiplied by a factor larger than 1 (e.g., Figure VI-2),
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SIX STATION NETWORK SEVEN STATION NETWORK

ELEVEN STATION NETWORK THIRTEEN STATION NETWORK

NINETEEN STATION NETWORK

Figure VI-1. Regular station network geometries.
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The original 11-, 13-, and 19-station networks were constructed with a 1-km
distance hetween the proximate stations. When it was discovered that
comparable detections could be achieved with a more widely spaced network
(and hence monitor a larger region), it was decided to utilize scale ...
factors of 1.5, 2.25, and 3.0 for these cases. .

For the smaller numbers of stations (6 and 7), the station spacing is ﬁ;u .
taken so that the outer boundaries of the networks have the same positions ?a:}:
as the outer boundary of the 11-, 13-, and 19-station networks, respec- v
tively. Scale factors of 1.5 and 2.25 are used in this case, since system .
performance is uniformly poor for scale factors of 3 or larger. Figures S
VI-2, -3, -4 show the scales and the resuitant regular station geometry for
the 6, 7, 11, 13, and 19 station networks monitoring a 5-km radius disc.

3. Irregular Spacing QO

When an irregularly spaced geometry is used, numerical instability may
be introduced into the performance of the detection algorithms by strongly
skewed triangles or "slivers." This instability is most noticeable for the
divergence algorithms. This problem is illustrated by the effects of the T
slivers in the ll-station and the 13-station networks. For each of these AN
networks, the divergence algorithms were run with and without the boundary N oL

sliver triangles. Again, a 5-km radius disc was "protected", as in the
other testing. The results of these tests are shown in Table VI-1,

Table VI-1. Example of the numerical instability produced by "sliver"
I triangles.
(SCALE = 2.25)
NO. METHOD  THRES'  sLIv  TsS®  pop®  FAR®  EL.POD  EL.FAR

| 13 TDC 4.00 YES 712 81 .11 .71 .17
13 TOC 3.00 NO .69 .81 .14 .69 .20
13 TENC 4.00 YES .73 .82 .11 J1 .18
13 TEDC 3.00 NO .73 .87 .15 .74 .22
11 e 5.00 YES .55 .69 .18 .58 .20
11 T0C 3.00 NO .55 72 .20 .61 .22
11 TEDC 5.00 YES .56 .70 .18 .59 .21
11 TEDC 3.00 NO .60 7 .20 .67 .23

Lunits of 10735~}
“see Section VII for definitions

S
r__‘.r_..

Note that the 13-station network typically has a degraded performance ::i:ﬁ

when the slivers are removed, hut that the system can be somewhat improved DA
using a slightly lower threshold. This suggests that the outer triangles I{‘
o
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SEVEN STATION SIX STATION
SCALE |.5 (Station Radius = 3)

SCALE 2.0 (Station Radius = 4)

) Figure VI-2, The station network geometries for 6 and 7 stations, two
l scales, within a 5-km radius disc.
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THIRTEEN STATION ELEVEN STATION
SCALE 1.5 (Station Radius = 2.6)

Figure VI-3, The station network geometries for 11 and 13 stations,
three scales, within a 5-km disc.
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NINETEEN STATION
SCALE 1.5 (Station Radius = 3.0)

o o N e e o awoam ae L e en a0 o

SCALE 2.25 (Station Radius = 4.5)

SCALE 3.0 (Station Radius = 6.0)

Figure VI-4, The station network geometries for 19 stations, three
accompanying scales, within a 5-km radius disc.




30

(slivers) are providing a useful detection service, bhut that the numerical
= algorithm has become somewhat noisy and that to compensate it is necessary
to raise the threshold, Of course, taking the higher threshold does
degrade the sensitivity of the algorithm on the interior triangles.

The effects that are noted above seem more pronounced for the
l11-station network. Examination of the geometries shows that the slivers
> are considerably thinner in this case and the system performance appears tn
reflect the effect of these slivers. Now there is a bigger difference in
the optimal thresholds. The TDC algorithm without slivers gives a slightly
inferior performance, presumably because of missed or delayed detections at
the boundary of the region. When the edge divergence is added, the system
appears to perform equally well with or without slivers. It is important
to note a substantially lower threshold is used without slivers (i.e., 7.00
versus 4,00).

For an irregular geometry, the divergence algorithm can be sensitive
to very thin triangles. One solution is to set the threshold higher when
there are very thin triangles, realizing this will degrade the algorithm's

) performance in the region where the geometry is more regular. Another
1 solution is to set the threshold separately for each triangle, depending on
its degree of thinness. These results indicate that additional under-
standing of the sliver problem is important in the implementation of these
methods for irregular grids.

VII. Evaluation and Test Procedures

Given the known mathematical wind field model (Section IV), the
network geometry (Section VI), and the numerous detection algorithms
(Section III), we now need an evaluation and testing procedure to properly
compare the performance of each wind shear detection algorithm. In the
terminology of forecasting research, we need a testing and verification
system. The verification technique used in this study is based on the 2x2
contingency table, and thus it requires the dichotomization of both the
time series of wind shear events and the time series of algorithm
detections. A more detailed discussion of the verification techniques can
be found in Appendix D.

A. Dichotomization of Wind Shear Events

We assume that the simulation time period (i.e., total run time) is
known and is partitioned into polling intervals of 12 seconds duration.
This is the basic unit of the wind shear event time series as generated by
the mathematical wind field model. Thus, for each polling interval and a
given station there is (1) or is not (0) a wind shear event at that
station. Now the dichotomized or binary simulated wind shear data series
can thus be summarized by a finite sequence such as
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This approach can be extended to a network of stations by simply
coding "1" or "0," depending on whether there is a wind shear event
anywhere on the network during the polling interval.

B. Dichotomization of the Algorithm Output

Each detection algorithm, whether the anomaly or diverygence type,
produces output for each station in the form of a computed real number that
is converted to a second binary sequence when a predetermined threshold
value is chosen. If the algorithm's station value is less than the
threshold, then the detection algorithm is credited with no detection of a
wind shear event (i.e., "0") at that station; and if it is equal to or
greater, it is credited with a detection of a wind shear event (i.e., "1")
at the given station.

Of course this dichotomization can he extended to polling intervals
and the entire station network. In short, if a polling interval has an
network station at or above its threshold value, then the algorithm wi
claim a detection for the entire network.

The conversion of continuous information (i.e., algorithm output) to
binary information (i.e., "0" or "1") is necessarily somewhat arbitrary
since very small changes in the wind field may push the output of the
analysis past the threshold value if the computed value is close to the
threshold. Lowering the threshold will increase the number of both valid
and invalid alarms and raising the threshold will decrease them. The
choice of the detection threshold for each algorithm is a critical factor
in the performance of the algorithm,

In our simulation study, we have attempted to "fine tune" the
threshold value for each of the algorithms by adjusting the threshold to
maximize the TSS. This is the same as maximizing the slope between the
observed wind shear events and the detected wind shear events in a 2x2
table. Thus each of the algorithms is tested at its own predetermined
threshold that provides the "best skill" for detection and nondetection in
the given situation. In an operational setting, the criteria for the
choice of the threshold value may differ from the one used in this
simulation study in order to accommodate operational conditions.

The above algorithm dichotomization has allowed any network station to
enter into the detection of a wind shear event. Thus, the actual wind
shear event could be on one side of the network and a station on the other
side of the network could accidentally produce a value above its threshold
value and the algorithm would claim a wind shear detection. To handle this
probiem we have employed the eligible-ineligible classification of stations
in the anomaly and the divergence detection methods. Recall that stations
are defined as eligible or ineligible to detect the wind shear event
(Section IV), depending on whether or not they are in the shear region of
the wind field.
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For the divergent methods it is necessary to define when a triangle is
eligible or ineligible. We have adopted the rule that if at least one
vertex station of a triangle is eligible, then the entire triangle is
considered to be an eligible triangle, If none of the stations is
eligible, then the triangle is considered ineligible. Of course one could
require more than one vertex station to be eligible to classify as an
eligible triangle, hut we have found this restriction to be of little use
in this study.

C. Contingency Tahle and Scoring

Having dichotomized the two variables (i.e., wind shear event and
algorithm detection event) on the same wind shear simulation and polling
interval, we now can cross-classify each polling interval by employing the
traditional 2x2 contingency table commonly used in statistics (e.qg.,
Snedecor and Cochran, 1967). There are four possible joint events in the
2x2 table: (1) there is a wind shear event and it is detected {(i.e., a
correct detection, CD); (2) there is a wind shear event and it is not
detected (i.e., a missed detection, MD); {3) there is no wind shear event
and there is a claimed detection (i.e., incorrect detection ID); and (4)
there is no wind shear event and no claimed detection {(i.e., correct
nondetection CND). Table VII-1 presents the general form of the 2x2
contingency table for this situation. The four interior cells record the
number of joint events and the margins of the table record the row and
column totals. As an example, n is the numher of CDs in the total number
of trials ("T) and nep + Ny cD

is the total number of claimed detections.

Table VII-1. The general form of the 2x2 table for the wind shear
verification problem.

Wind Shear Event

Shear No Shear

Detection Detect nCD
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Event No Detect ) NCND _"wp® "cnp
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In the simulations, each trial (i.e., polling interval) is scored as
obtaining one of the four joint events. However, this is an unrestricted
method of scoring in that a wind shear event anywhere in the network and o
any station's claimed detection in the same polling interval will produce a S
successful result (CD).

e D. Fvaluation Measures _Et%

- Using a separate contingency tahle for each algorithm, one can perform }gg
quantitative evaluations and comparisons of the various algorithms, The

- principal quantitative measures that were selected for the comparative Fess

- evaluations of the wind shear detection algorithms are:

1. The Probability of Detection (POD)
POD=ncp/ (neptnup)»
which simply is the probability of correctly detecting the wind ‘o
shear events (i.e., 0<POD<1).

2. The False Alarm Ratio (FAR)

FAR=n1p/nep*nyp)s iR
which is the probability of a detection being false (i.e., =

R FAREAREES Jous

0<FAR<1). sz’

3. The Critical Success Index (CSI)
CSI=ncp/ (np-ncyp)

which is a conditional measure of prediction skill (i.e,, ;j;f
0<CSi<1). .

4. The True Skill Score (TSS) a

15$=0(ncp- nenp)=(mup- Mpp) 1/ Dngp* myp) - (np* neyp)d o

which is a measure of prediction skill beyond that due to simple :_CF

guessing or chance (i.e., -1<TSS<+1), [_‘w

Two other measures which are derived from the above measures will be jﬁil

used in evaluating the comparative testing of the algorithms. They are AN
eligible POND (EL.POD) and eligible FAR (EL.FAR). The former simply is the N
POD restricted only to the eligible stations rather than the entire S
network. The latter is the analogue for the ineligible stations in that an { _

ineligible station has claimed a detection when it should not do so.

E. Inferences from Forecast Verification Scores

The standard forecast verification measures (e.g., POD, FAR, CSI, Y
etc.) simply are indices and as such only are population Summary measures. L’
Thus, if detection rule D; gives a POD of .75 for the population P of wind S
shear events and another rule D, gives a POD of .65 for the same r
population, then we report that D; is a better detection rule than D, ‘
conditional on P. The question of how would D, and D, behave on a
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different population of wind shear events appears not to be formally

addressed in the forecast verification literature. Perhaps P is naively e
presumed to be large and variable enough to serve for all other possible =
P's. T

. An elementary statistical method for answering the above "strength of
- results" question is to randomly generate k independent subsets of wind

~ shear avents of size n and use the binomial probability statement for
> assessing the probability that D; is better than D, in all possible future :
subsets of size n. Thus, for example, if D; has a higher POD than D, in e
all five randomly generated subsets, then on the hasis of POD the D, rule R
is better than D; with only a 0.03 probability that this result is due to

chance (i.e., luck). This process is a special case of what has bhecome

known as "cross-validation" (e.g., Mosteller and Tukey, 1977). We will use RO
this approach to inference in this study. b

TSS differs from the previous measures in that it has a statistical
basis and hence is theoretically amenahle to statistical inference based on
a single random sample. However, in practice some of the assumptions that
. underlie the inference procedure (e.g., normality, constant variance, etc.) o
19 may not be met, and thus caution generally is needed in interpreting these
. results. Again the cross-validation method is applicable and will be used. 55:-

% VIII. Results of the Comparative Testing Ij;;

A number of simulation trials were conducted for the eleven detection P

algorithms under various parameter combinations to explore the study's L

. multidimensional parameter space. The principle dimensions of this space e
. were (1) number of stations in the detection network; (2) the relative ?iﬁ
y frequencies of the microbursts, gust fronts, and spurious events; (3) the L
" number of stations trimmed (Section III.A.1) from the ranked station wind biﬁ
‘ speed values; (4) the scale or spacing of the regular grid; (5) the radius L

of the protected disc; (6) the minimum number of simultaneously detecting e

statinns required to produce an alarm; and (7) the minimum detection wind e

shear value or threshold needed to produce an alarm, o

After some initial experiments, we decided that a fixed area should be
used for all simulation trials. We selected a 5-km radius disc hecause it . Ei::
most closely represented the area of protection needed at a typical
airport. We also established that a trim of 1 (one station from each end
of the ranked station wind data) or 0 was most appropriate for our
problem, The trim of 1 was used with the 19-, 13-, and ll-station networks
and 0 with the 7- and 6-station networks.
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» The relative frequencies of microbursts, gust fronts, and spurious

events were set to give ample numbers of events and also realistic numbers :xﬁz
of events during the active period of the day, as seen at Stapleton during {2*‘

l'

a very active day (CLAWS 1984). In particular, this requires a six-hour
N simulation and produces an event on the network about 50 percent of the
> time.
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As mentioned earlier, the simulation results suggest that only the
1.5 and the 2.25 scales are effective. Larger scales (e.g., 3.0)
degraded the performance measures too much and were omitted after some
preliminary simulation experiments.

We determined from initial simulation results that single-station
detection produces a better skill performance than requiring simultaneous
detection by two proximate stations. Thus, all results presented in this
chapter are based on single-station detection. For comparison, Appendix
E presents some results for the at least "two proximate station"
detection rule.

We have selected four algorithms for comparison and discussion in
this section. They are (1) new centerfield (NEWCF), (2) local median
(LMD), (3) network wide linear regression (NLR), and (4) the triangle and
edge divergence (TEDC). The first algorithm (NEWCF) is presented as an
improved LLWAS standard, and the last three typically have better
performance over all parameter situations, The comparative results for
all eleven algorithms are given in Appendix E.

In addition, we have created a stylized version of the original
LLWAS system (OLDCF). This system has five outlying stations and a
centerfield station at a spacing of 3 km, threshold of 7.5 m/s, a 2-min
moving average of centerfield values, and does not issue an alarm at the
centerfield station.

A single-simulation trial for a given algorithm proceeds as follows:
(1) generating a synthetic ambient wind field with embedded microburst,
gust front, and spurious events using the mathematical model; (2)
sampling the wind field during one polling interval (e.g., 12 secs) at
the selected station positions; (3) applying the algorithm to each
station to see if a wind shear detection is claimed; and (4) recording
the joint detection-wind shear event that occurs in a 2x2 contingency
table, This procedure then is repeated for a large number of polling
intervals or trials (e.g., 1800) to form one simulation experiment. The
resulting contingency tahble for the experiment is evaluated by the
methods previously described in Section VIL.D.

The following verification scores initially are viewed as population
results. Thus, an algorithm with a higher score is presumed to be better
than one with a lower score. In Section VIII.C we revisit this question
from a sample viewpoint.

A. Results for Scale 1.5

Table VIII-1 presents the comparative performance simulation results
for the four above-mentioned algorithms, for five network geometries and
a scale of 1.5 km. Also included for comparison are the results for the
current 6-station (OLDCF) LLWAS network. Appendix E presents the results
for all eleven algorithms. It should be noted that with this scale, the
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Table VIII-1. Algorithm performance results for the 19-, 13-, 1l-, 7- and
6-station networks, scale=1.50-km simulations.

Network Algorithm TSS €SI POD  FAR  EL.POD EL.FAR
' A, 19 Stations
- 1. NEWCF .67 70 .81 .15 .81 .30
: 2. LMD .71 .73 .83 .14 .81 .18
- 3, NLR 72 .75 .86 .15 .85 .20
4. TEDC .68 g1 .82 .16 .74 .22
B. 13 Stations
1. NEWCF .63 .67 .79 .18 .76 .29
2. LMD .67 .70 .80 .15 .75 .20 RS
3, NLR J1 .73 .84 .15 .78 .29 RS
4. TEDC .65 .68 g7 .14 .70 .18 ¢ . .94
C. 11 Stations -
1. NEWCF .60 .65 .78 .20 .68 .28 -
2. LMD .64 .68 .81 .18 .68 .22 R
! 3. NLR .63 .67 .77 .17 .65 .24 ot
4, TEDC 49 .85 64 .21 .56 .18 L 1
(.58)' (.60) (.73) (.22) (.63) (.21) e
D. 7 Stations
1. NEWCF .60 .63 .71 .14 .64 .24
2. LMD .66 .70 .83 .18 .72 .18
", 3. NLR .67 71 .84 .18 .70 .30
: 4. TEDC .62 .66 7 17 .70 17
- E. 6 Stations
o’ 1. NEWCF .53 .61 .77 .25 .57 .30
2. LMD .56 .63 .76 .22 .61 .20
3, NLR .55 .63 .78 .24 .59 .32
i 4. TEDC .57 .62 .74 .20 .62 .21

F. 01d Centerfield, six stations, 3.0 km spacing, threshold 7.5
1. OLDCF .21 .48 .79 .45 .19 .68

1The TEDC performance results when the five “"sliver" triangles are removed.
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network does not cover the full 5-km protection disc (cf. Figures VI-2, -3,
-4), and we shall see that overall, this performance is somewhat inferior
to the performance with scale = 2,25,

. 1. 19-Station Network

~ Panel A of Tahle VIII-1 presents the comparative results for the

- 19-station network. One quickly notes that the NEWCF (i.e., the OLNCF
with a number of improvements) has the poorest overall performance.
NLR has the hest performance and LMD is close behind, followed by
TEDC. Note that EL.POD, with one exception, is very similar to POD, oy v
and that EL.FAR compared to FAR accentuates the comparative L
difference. B

2. 13-Station Network
Panel B of Tahle VIII-1 presents the 13-station network comparative
results., Again, NEWCF typically exhibits the worst performance and NLR
the best. However, the rather large EL.FAR for NLR is bothersome.
Again EL.POD presents a similar performance picture to that of POD, and
with the exception of NLR, the EL.FAR presents a similar comparative e
picture. R

3. 11-Station Network

Panel C of Table VIII-1 presents the comparative results for the
11-station network. Now, TEDC typically is the poorest performer
(e.g., TSS is .49) and NEWCF is the second poorest. This is a major
change in the relative performance for TED(C, and upon looking closely

- at the 1l-station geometry (Figure VI-3) one notes that it has five A
exterior triangles which are rather small (i.e., slivers); we suspect b,
: this creates problems with the divergence calculations. Al
x St
" [f these five triangles are removed, the TEDC performance values AYA
. improve and are given in the parentheses (e.g., TSS = .54). However, <o
o TEDC remains the worst performer in all but the EL.FAR category. Sl

< T

. Comparing the performance results between the three networks (i.e.,

. 19, 13, and 11), we note that for the four unconditional performance

y measures, the decrease in performance is virtually linear (in the
median) with decreasing size of network. However, this is not true for o
the two conditional performance measures (i.e., EL.POD and EL.FAR). a0

4, 7-Station Network R

Panel D of Table VIII-1 presents the comparative results for the AT
7station network. TEDC continues its relatively poor performance in
that it is only bhest in the EL.FAR category. However, NEWCF
typically continues to be the poorest performer, and the NLR and LMD
now appear to be the hetter algorithms. However, the NLR has, as we
have seen elsewhere, the highest eligihle EL.FAR (i.e., .30).
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5. 6-Station Network

; Panels £ and I of Tahle VIII-1 present the comparative results for
l the h-station network. Now TENC's performance is improved since it
leads in performance in three categories (i.e., TSS, FAR, and EL.POD).
LMD and NLR appear to he the hetter performers with the exception of
the relatively large EL.FAR (i.e., .32) for NLR. However, compared to
- the larger sized networks, the performance of the 6-station network is
i rather poor.

For comparison's sake, the OLDCF values are present in Panel F, and
they are greatly inferior to the values from the other four
algorithms. There appears to be considerable opportunity for
improvement,

. B. The 2.25 Scale

The 2.25 km scale is our larger scale in the simulations. In general,
the comparative results are similar to those in the 1.50 scale but the
differences in performance are somewhat more pronounced. The complete
E result tables can be found in Appendix E.

- 1. 19-Station Network

3 Panel A of Table VIII-2 presents the simulation performance
results for the 19-station network under the 2,.25-km spacing. Again,
as in the 1.5-km scale case, the NEWCF algorithm has the poorest
performance. Now, NLR and TEDC are rather similar in their
performances (e.g., .80 and .81 for TSS, respectively). Furthermore,
their performance is distinctly separated from the NEWCF performance.

2. 13-Station Network

Panel B of Tahle VIII-2 presents the relevant comparative
performance results. Again NEWCF is the worst performer, Now NLR
appears to he the best, and LMD and TENC appear to be rather similar in
performance, Note that NLR has a decidedly better performance than LMD
(e.g., TSS = .77 vs, .69).

3. 11-Station Network

Panel C of Table VIII-2 presents the comparative simulation results
for this network. Now the TEDC algorithm has dramatically changed in
its performance and is the worst. However, if the "sliver" triangles
again are removed (see 1l-station network, scale=1.50, for more
details), the results improve slightly (i.e., values in parentheses).
NLR generally is the best performer and LMD is the second best.

4, 7-Station Network

Panel D of Table VIII-2 presents the comparative simulation results
for this network., Again, the NEWCF algorithm typically is the worst
performer and the NLR again is the best. However, compared to the
larger size networks (i.e., 19, 13, and 11), this network's typical
performance is uniformly inferior.

et BN
I- T
e

.‘.'; ’. .4: . c

tc?z
i

by
PR A

v

o

3
R AN
)

s f-k

. » '
S

ST L ey
. ‘I r
.




39 L

Table VIII-2. Algorithm performance results for the 19-, 13-, 11-, 7- and
6-station network, scale=2.25-km simulations.

Network Algorithm TSS CSI POD  FAR  EL.POD EL.FAR ” .6
A, 19 Stations
1. NEWCF .70 JJ1 .78 .10 77 .28
2. LMD .76 .78 .88 .13 .87 .19
3. NLR .80 .81 .94 .14 .89 .22
4, TEDC .81 .82 .91 .16 .84 .21
B. 13 Stations
1. NEWCF .65 .69 .80 17 .67 .27
2. LMD .69 72 .84 .16 .75 .21 RN
3. NLR 77 .79 .94 .16 .80 22 NSO
4, TEDC J2 74 82 L1 72 .19 b ..
C. 11 Stations
1. NEWCF .59 .66 .81 .22 .69 .33
2. LMD .65 .69 .82 .18 74 .26 PR
3. NLR .67 .72 .88 .20 .64 .20 A
4. TEDC .55 .60 .71 .20 .60 .22 E_ o
(.59)! (.65) (.78) (.21) (.67) (.21) e
D, 7 Stations
1. NEWCF .52 .56 .62 .15 .38 .32
2. LMD .54 .61 .75 .23 .56 .26
3. NR .63 .69 .84 .21 .69 .33
4. TEDC .58 .65 .81 .24 .63 .28
E. 6 Stations
1. NEWCF .46 .53 .63 .23 .32 .32
2. LMD .44 .55 .70 .28 .40 .19
3. NLR .58 .62 .72 .17 .60 .35
4, TEDC .58 .62 .72 .19 .50 .25

F. 01d Centerfield, six stations, 3.0 km spacing, threshold 7.5
1. OLDCF .21 .48 .79 .45 .19 .68

‘The TENC performance results when the "sliver" triangles are removed.
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5. 6-Station Network

Panels £ and F of Table VIII-2 present these comparative simulation
results. Again, the NEWCF perforimance is worst and the NLR and TEIC
are the best. OLLCF performance values are presented in Panel F, and
we see that its results are still greatly inferior to the other four
algorithms,

C. Cross-Validation

To indicate the "strength" of the ahove simulation results from a
sample theory viewpoint, Table VIII-3 presents the cross-validation output
for the 13-station network with scaling of 2.25 km, Whether one prefers
TSS, POD, EL.POD, etc., it is quickly seen that the relative ranking of
algorithms from sample to sample is virtually unchanged. It also is
interesting to note how little the values change from sample to sample for
most detection methods (e.g., the POD values for NLR are .94, .89, .92,
.92, and .88).

Thus, for the 13-station network, the network linear regression (NLR)
typically is the best, and the triangle convergence-divergence with edge
effects (TEDC) appears to be second best. The local median and local mean
are in the middle (i.e., LMN and LMD), and the new centerfield method
(NEWCF/RA) is one of the worst. (Remember that the performance of OLDCF is
never better than the NEWCF and typically is far worse.) Excluding the
EL.FAR, the vector differenrce method is uniformly worst. Thus, these
cross-validation results are strongly in support of the results presented
in Table VIII-2,

D. The 01d Centerfield Case

Table VIII-4 presents some simulation results for the old centerfield
(OLDCF) idealized situation. Recall that this is our attempt at simulating
the original LLWAS system currently utilized at most of the nation's
airports.

For the currently employed threshold of 7.5 m/s, the relative
performance of OLDCF is very poor (e.g., TSS = .21, FAR = .45, EL.POD =
.09, EL.FAR = ,67, etc.). This performance is unchanged as seen in the
five cross-validation runs, FEven if one is allowed to "fine-tune” the
threshold value in order to maximize the TSS (i.e., 10.0 m/s), the results
still are very poor. This "tuning" generally appears to trade POD for FAR,

Comparing the original OLDCF cross-validation results with the
"fine-tuned" results for a scale of 2.25, one readily can see the potential
improvements that are available in a revised LLWAS.
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Table VIII-3. Cross-validation of detection methods for the 13-station,
scale 2.25 km network using five randomly selected wind

sequences.
SAMPLE NUMBER 1 2 3 4 5
A, TSS/CSI
NEWCFD/RA (NEWCF ) .65/.69  .66/.69  .67/.69  .66/.70  .67/.69
CF/OTHER (RFCF) .68/.71  .68/.72  .70/.72  .69/.71  .69/.72
MEAN (NMN) .55/.69  .65/.68  .66/.70  .66/.70  .66/.69
MEDIAN (MMD) .66/.70  .65/.69  .67/.70  .66./70  .66/.70
L.MEAN (LMN) 707,74 .70/.78  .70/.74  71/.74  .71/.74
L.MEDIAN (LMD) 697,72 .70/.73  .70/.73  .70/.73  .70/.73
LN.REG. (NLR) J7/.79 .76/.78  .75/.78  .76/.78  .77/.78
VECT.DIFF, (LVD) .42/.48  .43/.50  .51/.56  .51/.56  .50/.56
TRIANGLES (TDC) J2/.74 747076 .70/.72 .72/.74 .74/.75
TRIANGLE/ENGE (TEDC)  .73/.74  .75/.76  .70/.72  .72/.74  .74/.75
B. POD/FAR
}
NEWCF /RA 80/.17  .80/.16  .74/.08  .80/.16  .77/.13
CF /OTHER .83/.16  .82/.16  .79/.11  .79/.12  .79/.12
MEAN J79/.16  .79/.16  .81/.16  .81/.17  .80/.16
MEDTAN 817,17 .81/.17  .81/.17  .81/.17  .83/.18
L .MEAN .88/.18  .87/.17  .88/.18  .89/.18  .88/.18
L.MEDTAN .84/,16  .83/.14  .88/.19  .89/.19  .88/.19 e
LN.REG. .94/.16  .89/.17  .92/.17  .92/.16  .88/.12 o
VECT.DIFF, .54/.20  .57/.21  .65/.19  .65/.19  .64/.19 s
TRIANGLES .81/.11  .83/.10  .80/.13  .82/.12  .83/.11 R
TRIANGLE /EDGE .82/.11  .84/.10  .81/.13  .82/.12  .83/.11 -
C. EL.POD/EL.FAR T
NEWCF /RA .60/.31  .59/,31  ,54/.27  .60/.3%  .56/.30 7
CF /OTHER .61/.33  .60/.33  .56/.30  .55/.31  .57/.31 L
MEAN .59/.23  .58/.24  .60/.26  .59/.27  .59/.27 S
MEDTAN .61/.25  .61/.25  .60/.27  .61/.27  .60/.29 E;ﬁﬁ
L. MEAN .68/.30  .68/.30  .69/.31  .69/.32  .69/.32 -
L.MEDIAN -63/.24  .65/.24  .69/.31  .70/.31  .70/.32 =
LN.REG. 74731 72/.25  .78/.32 .72/.29  .70/.23 o
VECT.DIFF, 317,19 .30/.22  .36/.22  .36/.22  .36/.23 :
! TRIANGLES JUY7 0 .70/.19  .66/.22  .69/.22  .69/.21 [
TEDC TRIANGLE/EDGE J1/.18 71/.19  .67/.23  .69/.22  .70/.21 B
“ C‘: A
D. NUMBER OF WIND SHEAR EVENTS S5
; MB/GF /SP 12/5/26  13/5/21  12/5/21  12/5/26  12/5/27
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Table VIII-4. O01d centerfield algorithm cross-validation performance
. results for the stations=6, scale=3,00, threshold=7.5
. situation compared to an optimum threshold=10.0 situation.

Threshold 1SS CSI POD FAR EL.POD EL.FAR

(1) 7.5 .21 .48 .79 .45 .19 .68

(2) 7.5 .21 .48 .79 .45 .19 .66

(3) 7.5 .23 .49 .80 .44 .21 .67

l (4) 7.5 .23 .49 .80 .44 .20 .67
(5) 7.5 .23 .49 .81 .44 .20 .67

10.0 .42 .46 .50 .15 .15 .26

E. Fine-Tuning the Threshold

As we have indicated elsewhere, the threshold value of each algorithm
- has been fine-tuned to give the best performance (i.e., maximize the TSS)
L for each of the given networks and station spacings. Thus, with the
exception of OLDCF (7.5 m/s), we have tried to allow each algorithm to be
compared under its best performance conditions. (Remember if TSS = 1.0,
then all wind shear events are correctly predicted and hence no false
alarms or missed detections occur.)

' To see how :he performance measures (e.g., POD, FAR, CSI, etc.) respond

: to changes in the threshold values, Table VIII-5 presents the performance
values versus threshold values for the TEDC algorithm under a 13-station
network and scale of 2.25. Figure VIII-1 presents a graph of these values.

. Table VIII-5. Threshold values versus performance values for the TEDC -
algorithm on the 13-station network with scale of 2.25 km. 1
Threshold Values S
S
s Performance .oeTeT.
) Index 1.0 2.0 3.0 4.0 5.0 6.0 7.0 g
TSS .00 .42 .70 .72 .66 .53 .38 S
POD 1.00 .97 .91 .82 .71 .55 .39 RS
FAR .52 .38 .20 .11 .07 .03 .02 T
" csI .48 .61 .74 .74 .68 .54 .39 O
¥ EL.POD .86 .84 .79 72 .61 .49 .37
- EL.FAR .98 .60 .31 .19 .12 .05 .01
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We quickly note that with a very low threshold (e.g., 1.0) POD and
EL.POD are high (i.e., virtually every difference initiates an alarm), as
are FAR and EL.FAR, 1In short, we are overpredicting wind shear events. As
we increase the threshold, the TSS and CSI scores increase and the POD,
EL.POD, FAR, and EL.FAR decrease. At a threshold value of 4.0 we have the
maximum TSS and have substantially reduced the FAR and EL.FAR. At the same

time we have not reduced the P0OD and EL.POD that much (e.g., .86 to .71 for
EL.POD).

However, if we continue to increase the threshold value, we will lose
much more in POD (e.q., .82 to .38) and gain little in FAR (e.g., .11 to
.02). Thus, the selection of the maximization threshold not only attempts
to maximize TSS and CSI, hut it essentially maximizes the difference
between POD and FAR. It is this latter difference that is easily tracked
in Figure VIII-1 across changing threshold values.

F. Selection of Network Size

Many factors enter into the selection of the size of the ground-based
sampling network including costs, access, performance, etc. To aid this
process we have constructed some charts based on Table VIII-2, Figures
VIII-2 to -6 present the performance scores as a function of sampling
network size for the above four algorithms and the OLDCF algorithm. The
latter is only given for the 6-station situations, but should be used as a
hbase-line for the other four algorithms.

We can quickly see that the 6-station network is inadequate in all
algorithms, The improvements in scores typically are substantial as the
network size increases from the initial 6, and thus are best at 19
stations. For NEWCF and NLR the typical improvement from 13 to 19 stations
is less than for LMD and TEDC.
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IX. Recommendations for LLWAS Improvements

Having presented and discussed the results of our simulated wind
shear comparative experiments in the previous sections, we believe a

§ numher of changes are needed in the present LLWAS. Hence, we offer the
~ following recommendations for improving the present LLWAS.
!.\

< 1. We recommend that the centerfield anomaly algorithms currently

used in the LLWAS be replaced.

Justification:

a. It is well known in statistical theory and practice (e.q.,
Snedecor and Cochran, 1967) that pooling of relevant time and
spatial data generally gives a better measure of location or
background than using a single sampling point, Furthermore, the
omission of the current (single-polling) value of the center-
field station as a detector of a wind shear event is ignoring
pertinent information.

b. In comparing the results of Section VIII, we found that the
centerfield type algorithms (i.e., OLDCF and NEWCF) typically
produced the poorest performance of all of the investigated
algorithms. For all numbers of stations that were considered
(6, 7, 11, 13, 19), NEWCF has a TSS that is on the order of .10
less than NLR, a POD that is 10 to 15 percent less than NLR with
comparable or worse false alarm values (Table VIII-2),

c. The change of the algorithm is an improvement that can be
made with small cost compared with the introduction of
additional stations, and our testing shows that, even with an
existing 6-station geometry, there is a substantial benefit over
the original centerfield algorithms (Table VIII-2 and Table
X1TF-1).

N
.

We recommend that a uniform spacing of 2 to 2.5 km be utilized
in the detection network.

Justification:

a. The scale of the microburst event is such that a spacing
greater than 2.5 km would allow a microburst to impact and "walk
through" the network without detection.

4 b. The simulation results typically show a substantial loss of
' performance when the spacing becomes greater than 2.5 km, The
change in algorithm performance between 1.5- and 2.5~km spacing
is much less severe.

: 3. We recommend that the replacement wind shear algorithm be
~ selected from one of the following candidates:
- a. First preference is the trimmed network-wide linear
= regression anomaly (NLR);
- b. Second preference is the triangle and edge divergence-
Yy convergence method (TEDC);
3 c. Third preference is the local median anomaly method (LMD).
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Justification:

For scale = 2.25 and every network, NLR consistently has the

best performance (cf. Table VIII-2). TEDC is usually second
best and LMD is always second or third. For example, with 13
?tat;ons, the TSS values are .77 (NLR), .72 (TEDC), and .69
LMD).

We recommend that the wind shear alarm continue to be hased on
the "at least one station" rule, rather than on requiring
simultaneous detection at multiple stations.

Justification:

a. Although the FAR measure typically was improved when one
used “at least two stations,” (Appendix E), the POD generally
was substantially decreased, particularly for the more plausible
networks (e.g., 13 stations) and the likely spacing (e.g.,
2.25).

h. If one is restricted to a relatively small number of
stations in the network (e.g., 7), then the detection
performance of the "at least two stations" method is greatly
inferior.

We recommend that the wind shear threshold for each selected
airport network be "fine tuned" by simulation testing to
maximize the TSS.

Justification:

The simulation results indicate a strong dependence on the
threshold value. Choosing a threshold either too high or low
greatly degrades the performance (e.g., the relation between
prediction and observation).

We recommend that a station density and uniformity similar to
that of the 19-station geometry with scale = 2.25 be used to
sample wind shear events, and the stations be uniformly spread
throughout the the area of protection.

Justification:

a. The simulation results for our parameter values indicate
that the 19-station network has the best performance. As an
example, TSS becomes maximum at about .80 for TEDC and NLR, The
corresponding POD's are .91 and .94 and the EL.FAR's are at a
minimum (e.g., .21 for TEDC and .23 for NLR).

b. The 13-station network has a somewhat weaker performance,
but still gives very good results. For example, looking at TSS,
NLR now has .77 versus .80 and TEDC has .72 versus .81.

¢c. In every case, hetter results are obtained if the number of
stations is increased (i.e., density is increased). The
evaluations that we have produced (Figures VIII-2 to -6) could
be used as a basis for cost effectiveness and aviation community
needs studies, which are beyond the scope of this report.
Without such detailed analysis, it is clear from these figures
that increasing the number of stations from 6 to 7, from 7 to
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11, and from 11 to 13 gives substantial improvement for each
increase, and this is an indication that using 13 or more
station< will be justified by subsequent analysis.

d. When the protection region is modified in shape or size, the
actual numher of stations that are needed will vary. Irregular
geometries will also affect this choice. An example of these
effects is given in Appendix F.

We recommend that the wind shear detection system attempt to
distinguish between gqust front and microburst events; in this
situation our preference is in favor of the TEDC method.

Justification:

a. MWe believe that qust fronts and microbursts provide
different types of aviation hazards. With training and
education regarding the meteorological events and their effects
on the performance of their aircraft, pilots will be able to use
the knowledge of the nature of the wind shear event as they make
flight decisions.

h. At this stage in our research, only the TDC and TEDC
algorithms are able to provide a useful distinction between the
two types of wind events, and TEDC provides the best
performance.

We recommend that the FAA use the results of this study and the
accompanying computerized simulation-testing program, to guide
them both in the modifications of the existing LLWAS systems and
in the design of new systems.

Justification:

a. The computerized simulation-testing program model provides a
useful formal structure in which one can give an a priori
evaluation of the theoretical performance of alternative station
networks and algorithms.

b. The computerized wind shear model can be expanded to capture
vertical motions and thus provide further insight into wind
shear events,

We recommend that a new computing system be installed at all
LLWAS operations in order to provide sufficient computing
capacity for retrieving and processing data from the recommended
larger network of stations (e.g., 13) and the proposed new
algorithms (e.g., NLR or TEDC).

Justification:

In order to implement the above recommendations on network size
and algorithms, and based on our knowledge of the LLWAS computer
at Stapleton, it is our opinion that new computing capability is
required.

..........................
......

........
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X. Recnmmendations for Further Studies

Having completed this initial study on the theory and methodology of
low-altitude wind shear detection, we find that a number of further studies
need to be considered. We believe that this study only has "skimmed-the-
cream" in this interesting detection and classification prohlem. Hence, we
hriefly list some of the problems that we believe merit future attention.

1. Are some algorithms better on gust fronts and others on
microbursts? How sensitive are the comparative results to the
type of wind shear?

2. We wonder how sensitive the comparative results are to the
frequencies of gust front and microburst events.

3. How sensitive are the comparative results to different speeds of
the wind shear events?

4, How sensitive are the comparative results to irregular geometries?

5. Determine what general modifications in the algorithms are needed
to accommodate "missing data."

6. Investigate the benefits to be derived from using conditional
station thresholds.

7. Investigate the possibility of obtaining information about the ;;:;5
location of a wind shear event from the algorithm output. 4

8. Modify the present wind shear detection model so that one can RS
evaluate the performance of protecting more general geographic R Ny
shapes and grids. )

N

9. Design a procedure for evaluating a detection system (i.e., 4 \’*
algorithm and geometry) for "Timeliness of First Detection" of a s
microburst, S

10. Investigate the possibility of using different threshoids in the
triangle-divergence algorithms to compensate for the effects of
"sliver" triangles when using an irregular network geometry.

11. Explore alternative visual displays for presenting the type and
location of wind shear events in the ATC tower.

12. What effect does the sheltering of some stations have on the
performance of the various algorithms?

13. Ascertain the value to ATC and pilots of the ability to
distinguish between the types of wind shear events.

It is our belief that the pursuit of these recommendations will have
an important impact on future aviation safety.
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XIl. Appendices
Appendix A, The Estimate of the Wind Field Divergence

1f (u,v) dascribes a wind field in Cartesian coordinates, then the
divergence of this wind field is defined as

div (x,y) = uy (x,¥) + vy (x,y) (1)

l where the subscript designates partial differentiation with respect to the
. subscripted variable. The Divergence Theorem states that the total change
of mass in a region (integral of div (x,y)) is equal to the net mass flux
at the boundary of the region {cf. Courant and Hilhert, 1962). In
- particular, if there is a microburst whose center is interior to a
¥ triangle, then there will be a net outflow at the boundary and hence the
I 2-dimensional wind field (u,v) will appear to be losing mass in that
triangle. We can detect the presence of a microburst by using the wind
field that is measured at the vertices to estimate whether there is a net
loss of mass. This can be done either directly by linear interpolation of
the wind field along each side of the triangle and direct estimation of the
net outflow along that side, or indirectly by estimating div (x,y) at the
barycenter of the triangle and using this as an estimate for average
divergence on the triangle. These two different approaches to estimating
the net mass flux at the boundary give identical results and estimating div
(x,y) is significantly simpler numerically.

o To compute div (x,y), it is only necessary to estimate the two

I numerical derivatives. For this we use the following method for estimating
the derivatives of a function f that is defined on a triangle T and whose
values are known at the vertices (x(i),y(i)), i = 0,1,2 of the triangle.

- Lemma. Let z = f(x,y) be a continuously differential function that is
. defined on the triangle T and suppose that the values z(i) = f(x(i),y(i))
are known. Define the vectors

V() = ( x(3),Y(i),z(i) ) - ( x(0),y(0),2(0) ) (2)

for i = 1,2. Then there is a constant A such that the following vector
cross product formula holds

P T TR, S ]

V(1) x V(2) = A * (fy, fy, -1 ) (3)

by

Proof. The function F(x,y,z) = f(x,y) - z has the property that the graph

N z = f(x,y) is described by the relation F(x,y,z) = 0. The points

» [(x(i),y(i)], i = 0,1,2 1ie on this graph and the vector cross product

- V(1) x V(2) is normal to the triangle that they determine and therefore

N approximates a normal vector to the graph. On the other hand, the normal

S to the graph is given precisely by the gradient of F, which is

A

:i.; gl’ad F = ( fxs f ’ '1) (4)

f Therefore, these vectors are equal up to a scalar multiple A, cf. equations
g (3) and (4).

:
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Appendix B.  The Mathematical Descriptions of the Expected Values for the
Anomaly Netection Algorithms.

Fach of the anomaly detection methods is based on the difference of
the ohserved wind field value at a station from the wind field value that
is eaxpected at that station, The different methnds are based on different
schemes for using the mesonet data to predict the wind field value that is
expected, To eliminate the variation that occurs in data that are measured
at very short time intervals, time-averaged data are always used to compute
the expected wind field value. The time averaging is described in Section
V.

Five methods use the mesonet data to predict a single vector value,
which is used as the expected value at every station in the mesonet, Three b
methods use the centerfield value (there are three centerfield methods), - o
the network mean value, and the network median value. Three other methods . ’
huild a model far the wind field on the network and use this model to : ]
predict the expected value for each station. These expected values will
usually vary from station tn station. These methods use the local mean
value, the local median value, and a bivariate linear model (regression)
for the wind field. This appendix contains mathematical descriptions of
the methods that are used to compute these expected values.

Two centerfield methods (OLDCF and NEWCF) use the two-minute running
average value from the measurements at a centrally located station as the
value that is expected at every station in the network. OLDCF is the
method that was used in the original LLWAS design and is in operation at
most LLWAS installations. The third centerfield method (RFCF) uses the
value that is computed from the measurements at this central station by use
of the recursive filter averaging that is described in Section V.

The network mean (NMN) wind field is computed by taking the network
average of the time-averaged wind fields from all of the stations. The
network averaqing of a wind field could be interpreted to mean that the
wind field Cartesian coordinates (u,v) are averaged separately or that the
wind field polar coordinates (speed and direction) are averaged
separately. Because of the ambiguity caused by the folding of the
directinn angle, it is not possible to unambiguously define the average
direction over the network, unless the variation over the network is small,
and so we compute the network mean by averaging the Cartesian coordinates.

When dealing with data that have occasional spikes, it has been found
that the sample mean can be a somewhat misleading estimate of the expected
value. Statisticians have developed two techniques for dealing with this
problem, One is to use the median instead of the sample mean as described
in the next paragraph. The other technique is based on trimming the data.
For scalar data, the idea is simply to drop an equal number of highest
values and of lowest values from the data set before computing the average
value. This will prevent a spike in the data from creating a rapid
movement of the estimated mean value. For vector data, it is not
immediately clear what is meant by a high or a low value. Since we are
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concerned with wind shears, we decided that the spikes will usually be
indicated hy spikes in the wind speed, and so our trimming strategy is to
trim the station values that correspond to the highest and lowest wind
speeds. When there are few stations (i.e., 6 or 7), we discovered that
trimming had little effect, and so no trimming is employed. For 11-19
stations the method has the best performance when two stations are trimmed
{one high and one low). This is the trimming strategy that is used for NMN
throughout this report,

The network median (NMD) wind field is computed by taking the median
of the time-averaged wind fields at each of the stations. For scalar data,
the median value is the middle value of the data values when they are
arranged in increasing order (or the average of the two middle values when
there is an even number of data points). For vector data, there is again e
the question of whether to use the Cartesian coordinates or the polar Ll
coordinates of the wind field, and again, because of the directional I |
ambiquity, only the median of the Cartesian coordinates is unambiguous. SR
There is also a problem of ranking the vector data so that the middle value L
can be determined. We have done this by computing the medians of the S
scalars u and v separately. An alternative would be to rank the stations PRI
according to wind speed (as in trimming) and to use the (u,v) value of the
middle station. We have found that this latter approach has slightly
poorer skill than the method we have chosen.

The local mean (LMN) and the ‘local median (LMD) are computed for a
given station by considering only the stations that are proximate to that
station. For this, a radius of influence is prescribed, and the proximate
stations are defined to be those whose distance from the given station is
less than the radius of influence. In particular, each station is
proximate to itself. In practice, the radius of influence is chosen so
that most stations have 6 or 7 proximate stations. Once the proximate
stations have been determined, the mean or median of the time-averaged wind
field values for this set of stations is computed and used as the expected
value at the given station. Notice that this procedure provides a modeling

.l
Sl A
.':L"

of the wind field that is in the spirit of objective anaiysis. P:Q-*:
.;._.:_:.:_“
The network linear regression (NLR) is another method that provides a ﬁ:}y}:
modeling of the wind field over the network. In this case, the model is i”icj”
chosen to have the form tiiag
u(x,y) = a + bx +cy e

vix,y) =d + ex + fy

and the coeficients a, h, ¢, d, e, and f are determined by the solution of
the linear least squares problem. Once the model has been determined, the
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expected value at each station is computed by evaluating the model e
equations at the coordinates (x,y) >f the station. This method is a N
theoretical extension of the idea of the network mean, and has a similar \fC*'j
sensitivity to spikes in the data. Therefore, a trimming strategy seems to tﬁ:éﬁ
be advisable. Experience shows that the same trimming strategy that is R
used for NMN also gives the best performance for the NLR, t:::;
IR
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Appendix C. The Mathematical Microburst Model

i This is a simplified mathematical model of a microburst that satisfies —

the mass continuity condition. This model is chosen for the test model for C,
the LLWAS study hecause it is believed that this kind of model will exhibit N
realistic radial outflow at ground level. Comparisons with the JAWS data
are favorable.

2T Ty
L

O

Qur simplification is to assume that the microburst is radially :
symmetric about its center, Mathematically, this means that the mass o]
continuity conditinn can be described by ordinary differential equations
. instead of hy partial differential equations. Because of this, it is
; possihle to determine a closed form for the equations that describe the S
wind velocities in this microburst model, ~

e

v -

Figure XIIC-1. illustrates the geometry chosen in a radial slice from PSS
the center of the microburst., The four different regions are determined by R
the nature of the forcing (boundary condition) imposed at the top of the
model. This forcing is indicated by arrows in the figure and is decribed
explicitly later in the text. Regions I and Il are the divergence region
and regions III and IV are the convergence region. The wind velocity is 0
in the static region.

The model is assumed to be radially symmetric about the orgin. The
wind field velocity has a radially horizontal component, V(R,Z)}, and a
vertical component, W(R,Z). Mass continuity is required in each thin
cylindrical shell of height H and radius R about the orgin,

At the top of the cylinder (the upper boundary), it is assumed that
the wind field direction is negatively vertical in region 1, becomes
parallel by a sine-cosine transformation across region II, continues the
sine-cosine tranformation to positively vertical across region III, and is
vertical in region IV, The wind speed at the top of the cylinder is
constant in regions I and Il and tends linearly to zero over regions III
and IV. We specify the vertical velocity by the following formulas:

VERTICAL WIND SPEED
(Z/H) w  S(R) 0 <R <RI
W(R,2Z) = {
(Z/H) w  S(R) (R-R2) / (R1-R2)
Rl < R < R2

where w 1is a constant representing the maximum vertical wind speed at the
center of the microburst. We require that the horizontal velocity has the
form:
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HORTZONTAL WIND SPEED

(Z/M) w  C(R) + v A(R) ( -Z/H)EXP(1l + E)

0 <R <RI
Vv (R,2 ) =
(Z/H) w C(R) (R-R2) / (R1-R2) +
v A(R) (1-Z/H)EXP(1+ E) Rl <R < R2
where
-1 0 <R<RL -D
S(R) = SINL ( R-R1)m / 2D ] R1-D < R < R1+D
+1 R1+D < R < R2
0 0 <R <Rl -D
C(R) = COS [ ( R-R1) = /.20 ] R1-D < R < R1+D
0 R14D < R < R2
INPUT PARAMETERS:
R1 Radius of the divergence region
D Radius of the transition region
H Height of the model region
W wind speed at Z = H, R = 0
v wind speed at Z = 0, R = Rl
QUTPUTS:
A(R) Scalar function describing the relative strength of the
outflow at the surface
R2 Radius of the outer boundary
E Exponent of the scaling factor for the horizontal wind speed

as a function of Z

The continuity requirement forces a horizontal distribution of the horizon-
tal wind velocity that is described by the scaler function A(R) [i.e.,
V(R,0) = vA/R], and a vertical distribution of the horizontal wind velocity
that is described by the value G, which is the measure of the net outward
flux of the horizontal wind field that is described by the exponent E.

THEORETICAL DERIVATION

It is assumed that the model satisfies continuity in each cylindrical
shell of height H, inner radius R, and thickness dR. Computing the inte-
grals for the total mass flux on each face of the cylindrical shell,
requiring that the total mass flux be zero on the surface of the cylindri-
cal shell, and taking the limit as dR tends to zero, we obtain differential
equations for A(R) (separately defined in each of the four regions):

REGION 1 (0<R<RlL-D).,

d 21 W
w LR AR) )= < R
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there G is the integral of (1-Z/H)EXP(1.+E) from 0 to H., This differential
equation is integrable and we compute

1 W R2
RAR) = = - —

which satisfies the required initial condition A(0) = 0. Evaluating this
function at ( R1-D ), we obtain the initial value for solving the
differential equation in region II.

REGION II ( Rl -D<R<RL ).

qd
a/ LR AR) ] =

- M LW (1o T ) R S(R) ]

This differential equation is integrable and we have the initial condition

for A(R1-D) from region I; we compute

2D

L

1w (R1-D)2
Z

ROAR) = ¢ -3) R C(R)

+(

- (520 s+ )
REGION III ( Rl <R <Rl + D),

d
LR AR T

1
- = _‘;. {R S{R) (R-R2)/ (RI-R2)

+ (H/2) ag_[R C(R) (R-R2)/ (RI-R2 ) ]}

This differential equation is integrable and we have the initial condition
A(R1) from region Il [from the definition of A(R), we know that A(R1l) = 1];
we compute

R A(R) = R -
RULIEE S L ZD) [ Rl (R1-R2) - R (R-R2) C(R)]

+ ( _2?1_0 2 (2R-R2) S(R) -2 ( 2—,,9 P -c(r)) |

which satisfies the required initial condition A(Rl) =1 at Rl,
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%
The parameter R2 is defined to be the value of R at which A(R2) = 0. ;j:ﬁ
It is not necessary that R2 > Rl + D as is indicated in Figure XIIC-1; ggZS
however, this is true in all examples, in which we have computed R2, In -
our formulation, R2 is computed by applying a root finder to A(R). It is -
necessary to have an a priori estimate of the magnitude of R2, so that we e
can determine which formula for A(R) (region IIl or region IV) is to be AN
used in the minimization. e
t":"":
Let B(R,X) be the function that uses the formula for A(R) (region III) A
when X is substituted for R2. Then A(R) = B(R,R2). Let T(R) = B(R,R). The o
following Lemma shows that T(R1+D) can be used to test the relative sizes o
of R2 and R1+D.

o Lemma, If R < R2, then T(R) > A(R); if R > R2, then T(R) < A(R). 1In e
o particular, if T(R1+D) > 0, then R2 > R1+D, and if T(R1+D) < 0, then R2 < T
R1+D, s

fﬁ Proof. For fixed R, B(R,X) is an decreasing function of X, since »
L increasing X increases the strength of the vertical outflow at the top of A
b the cylinder, and consequently decreases the required strength of the Ry
y outflow at the side with radius R+dR. Therefore, T(R) > A(R) for R < R2 ot
and T(R) < A(R) for R > R2. In particular, Sé;;

T(RI4D ) < A( R1#D) < 0 for R2 < R1+D o

and N

T( R14+D ) > A( R14D ) > 0 for R2 > R1+D. e

Bl

This implies the statement of the temma. bos

REGION IV ( Rl + D <R <R2 ) . S

. .-.:.\

d 1 W R -R2 N

- [ROAR) T = = R ] e

Since this differential equation is integrable, we compute 5:&;

) 2

[

R A(R) = (R1+D) A(RL+D) - L. W R (2 R-3 R2) Fo

% v b (RI=R?)

1w (R1+D)2 [2 (R1+D)-3 R2]
G v 5 (RT-RZ) : ;

‘P ‘-‘
.

.
L.
N .
A o
PR 1
0.41- -

Ry
.

L+
?.

which satisfies the required initial condition at R1+D.
A Simplification.

1. There is a recurring factor F =2D /n .
- 2. 1In the formula for A(R) in Region II, the value of the bracket at R =
~ Rl is

(R1-D)2

B= 0Dy (F-B) RL-F (HF)
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This value is used to determine the value of G by the relationship

_ 1 W
l=gwar « B

and hence,

1 w
G=—r —~ B

But the formula for A(R) uses the factor .{é. -%;. repeatedly, and we see
this factor is equal to R1/B. The importance of this observation is that
it both simplifies the computation of A(R) and shows that A(R) is
independent of the wind speed ratio. Since A(R) does not depend on the
ratio w/v , neither does the the outer radius R2, and so we can determine
a reasonahle model for the surface winds for use in the LLWAS analysis
without needing to understand the intricacies of the vertical wind
intensity and its relation to the maximum observed horizontal intensity.
Also, we have simplified the formulas for A(R), which provides for more
efficient computation.

REGION I ( 0 < R <Rl - D),

R1 R

AR) = % —

REGION 11 ( Rl -D<R<RL).

2
ARy = AL LRIDDY (f o )

+ (H-F) F  (S(R)+1.) ]

R C(R)

REGION IIT ( Rl <R <Rl +D ).,
AR) = L - Bl (LR ) [ (i) R C(R) - RL ]

REGION IV ( R1 + D <R <R2) .

2
R14D A(R1+D) - Rgé Rsf§§1§§§)R2)

Rl (R1+D)2 [2 (R1+D)-3 R2)
B B (RI-RZ)
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Appendix D: Discussion of Some Forecast Verification Methods

1. Background

Given the computerized mathematical wind shear model and the eleven
alternative algorithms, one needs an evaluation system to properly compare the
performance of each detection algorithm. In the terminology of forecasting
research, we need a verification plan.

We will adopt an elementary approach to scoring the detection of wind
shear events by an algorithm. We will assume that the relevant time period of
observation is known (e.g., 6 hours) and can be partitioned into equal
intervals of length t* (e.qg., 12 seconds). We will further assume that at
most one wind shear event (e.g., microburst) can occur within any given
interval. Thus, the observed “data sequence" will look as follows:

.....Lg*]o|1|0|o|0]1|1l1|o|.....

t

More succinctly, the sequence has the form

(¢ »+ «b0,0,1,0,0,0,1,1,1,0, . . ..),

"

where: 0 = no wind shear event occurred (WS') in the given time interval,

1

a wind shear event occurred (WS) in the given time interval.
Lastly, we will assume that the detection algorithm's output similarly
can be quantified to indicate the presumed presence (1) or absence (0) of a
wind shear event, Hence, its data sequence also can be summarized as,
(e « oo 0, 0,1, 0,0,1,0,0,1,0, . .. .),

where: 0 = no predicted wind shear event (PWS') in the given time interval,
1 = a predicted wind shear event (PWS) in the given time interval.

Because the two data sequences both are dichotomized on the same wind
shear event set, we can construct the traditional 2 x 2 contingency table .
commonly used in statistics. Table XII.D.1 gives the general form of this
table with the cross-tabulation of all of the n observations by the two
factors or variables. **
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Table XII.D.1 The Traditional 2 x 2 Contingency Table for Cross-Classified

Events ("i' is the total count of the occurrence of the
particular”joint wind shear event).

Observed Windshear Event

WS Ws'
Predicted PWS N1 P n.
Windshear PWS no1 Noy n,.

Event

Totals na n, n

Now, we desire a summary measure which will indicate how well our
detection (i.e., forecast) algorithm performs. We would like the summary
measure to have the following desirable properties:

d.
bn
C.
dt

e.

f.

Be easy to understand in the particular context,

Have a convenient fixed range of values,

Use all of the available information,

Be able to provide a measure of the degree of association between the
two factors,

Be able to provide a measure of the variability of the degree of
association, and

Generally be able to distinguish signal from noise (e.g., assess the
probability that association exists).

We will examine some standard forecasting verification measures to see
how well they fulfill these desired properties.

2. Some Standard Forecasting Verification Measures

The following three well-known forecast verification measures are
applicable to our situation.

al

The Probability of Detection (POD)

PAD = nyy/(npy + npp) = nyy/ny (1)

This is a conditional column measure of "success" with range [0,1].
However, it only conditions on the first column of the Contingency Table
and thus omits information (e.g., information present in the second
column). Correspondingly, one could use the second column and define the
probability of false detection (POFD) as nyp/n ;.

bl

The False Alarm Ratio (FAR)

FAR = n12/(nl1l1 + n12) = n12/ni. (2)
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This is a conditional row measure of "failure" with range [0,1]. One can

provide similar information in terms of 1 -~ FAR (i.e., the correct alarm LT,
ratin, CAR). However, FAR and CAR only condition on the first row, and hence R
they also omit information. DRSS
c. The Critical Success Index (CSI) N ;;J

CSL = nyy/{ngy *+ myp * ngp) = npy/n = nyp) (3) e

This measure also is a conditional measure of success (i.e.,
conditioning on three of the four possible cells or joint events) with
range [0,1]. Hence, it also omits information, and furthermore it does
not have the same direct interpretation as the two previous ones,

The CSI appears to have been first defined and utilized by Gilbert
(1884). Furthermore, he also presented the other two standard measures
(i.e., POD and FAR) as well,

A1l three of these standard verification measures or indices fail to
satisfy at least the last four desired properties, and the CSI does not
appear to satisfy any of the six properties. Hence we need to
investigate other measures of verification in hopes of satisfying more of
the desired properties.

3. Some Alternative Statistical Measures

In an attempt at satisfying the above six desired properties for a
verification measure, we will examine some association measures that have a
statistical basis.
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a. The Observed-Expected Statistic (OE)

One of the oldest classical measures of evidence of association
in the 2 x 2 contingency table is the observed-expected statistic
(OE) and its' resulting Chi-Square test (sometimes termed the
"Goodness-of -Fit" test). The test focuses on the question of whether
the two population factors used to cross-classify the sample :
observations are statistically independent. The test is based on the
general idea that each cell count (n .} can be part1t1oned into two
terms: (1) a count due to an underlang mode] ), and (2) a count
due to residual effects (913) Hence,

Nij = Mij * &;- (4)
As an example, Table XII.D.2 presents a hypothetical 2 x 2
contingency table for a sample of 100 wind shear observations cross-
classified by observed wind shear and predicted wind shear.
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N Table XI11.D.2 Wind Shear (Observations Cross-classified by Observed and
I Predicted Wind Shear

Observed Windshear

A

oM oM*
Predicted PM | 10 10 20 RPN
!indshear M’ | 20 60 80 5;fﬂf“
30 | 70 | 100 o

In this presumed randomly selected sample of size 100 from some
underlying population there are 30 observed microbursts (M) and 70 non-
“ microbursts (M'). Correspondingly, there are 20 predicted microbrust (PM) and
L 80 predicted non-microburst (PM') forecasts. The general problem is to
: partition the four nij's into model and residual effects on the basis of some
i acceptable theory.

Given the assumption of statistical independence between the two cross-

classification factors (i.e., observed and predicted microbursts), the e
partitioning model is relatively easy. We simply estimate the total expected L
counts (E;:) in each of the four cells on the basis of the model of PO
Fl statistical independence between the the two factors, and these Ej:'s are L
r} equated to the corresponding Mij's- The calculations proceed as }31]ows: SR

. i. Under the statistical independence model,
P. (PM and M jointly occurring) = Pr(PM) * Pr(M)

ii. We will estimate the unconditional or "marginal" probabilities )
(e.g., Pr (M)) by using frequency data from the margins of the 2 x 2 bt

table. As an example, :i}};;

Pr (PM and M) = Pr(PM) * Pr(M) = (ny /n_)(n y/n_) e

Aty

iii. Finally, the expected count in a cell is simply the sample size (n ) E’ i

times the joint probability, °* AN

: 5‘:.’-,‘::-

Eyp = (g /n ) y/n D0 ) = {ny Yn y)/n (5) S%igﬁ

The resulting expected values for our example of Table XII.D.2 are: N

Ell = b, E12 = 14, E21 = 24, and E22 = 56. V

One can then calculate the difference between the ny; and Ej; (i.e., the Sxiu;ﬁ
residual effect, eij) for each cell and construct the Ot gtatist1£, t;:‘¢

2 2 , &
0t = .)‘. b (n'l,] - El‘]) /E1J . (6)
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Under the two assumptions of random selection of the n observations and
variable marginal totals {e.qg., ni.'s), the OF statisti¢ has an approximate
Chi-S5quare(y) distribution with one degree of freedom. Thus, we can
calculate the statistical siynificance of the OFE statistic and thereby assess
the probability that the two classification factors of Table XII.D.2 are
unrelated (i.e., statistically independent). One also can perform an “"exact
test" of the counts in Table XII.D.2 based on the hypergeometric
distribution. For further details the reader should see Brownlee (1965) or
Afifi and Azen (1979).

[t should be noted that for the 2 x 2 table, Eq. (6) can be re-written as

(N1 X Npy = nyp x nyy)?

O = I (7)

Furthermgre, it has been recognized that the approximation of the OE statistic
to the y° distribution is improved if the so-called "Yates Continuity
Correction Factor" is applied to the numerator of Eq. (7). The corrected OE
statistic is:

(In“ X Nyg = Noy X n12| - n../2)2

OE. = . 8
¢ = T (g )7n.. (8)
It also is suggested that the Ej; sgould be about 5 or larger to have a
satisfactory approximation to thg x< distribution. Lo
'::_':\'.:-_ ’
The QE statistic in this current form does not satisfy many of the PR
desired properties of Section 1. As an example, it does not provide any L
useful information on the degree or magnitude of association between the two A

factors. However this can be rectified if one transforms the uncorrected OE s
statistic to the directly related Pearson's Phi (¢) statistic,

5 = (0E/n..)1/2 . (9)

The 4 statistic is interpreted as a measure of association between the
two factors and a value close to "0" suggests little association while one
near "1" suggests strong positive or negative association. Furthermore, the
significance test of the null hypothesis, E(¢) = 0, is the same as the OE test
for statistical independence.

Returning to our windshear example of Table XII.D.2 we can calculate the
¢ value for this situation. Using Eq. (6) we get:

2 2 2 2

(10 -6)" . (10 - 14)° . (20 - 24)° . (60 - 56)

OF ==+ * 21—t 5
a9, 9, e

=F*14'AﬂL+%

= (4°16) (_]L+.1_.+.I_.+L)
6 14 24 56

L T e T Y e R e Y A R N A L
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= 64(.2978) = 19.05
Then using Eq. (9), the association between the two factors is

= (0E/n..)1/2 = (19.05/100)1/2 = (.1905)1/2 = .44 .

Thus the evidence in the table suggests a .44 association, and the Chi-Square

.- test of whether this value is "significantly" different from zero is affirmed

ii at the .N01 level of significance (i.e., Pr.(x2 > 10.8) = .001 and hence a
smaller than .1% chance of getting a value as large or larger than .44 when in
fact the association is zero in the underlying population).

However, the 4 statistic does not satisfy a number of the previously
listed desired properties (e.g., easy to understand).

b. Other Measures

There are a number of other statistical measures that are used to assess
association in contingency tables, but none of them appear to fully satisfy
the previous list of desired properties. They include Yule's Q, Yule's Y, a
number of Goodman and Kruskal A statistics, Somer's D, etc. For further
details on these and other measures the reader is invited to see Afifi and
Azen (1979).

4. The True Skill Score (TSS)

The general goal here is to allow all four joint event cells in the 2 x 2
tahble to contribute to our verification measure (as did the ¢) and achieve all
of the previously listed six desired properties. Furthermore, the measure
should remove the chance results and only focus on the remaining skill
component.

We initially proceed as in the OE statistic and estimate from the margins
of the 2 x 2 table the expected count in each cell due to the model of

statistical independence (i.e., chance). Then, using Eq. (4), we can form the
matrix of residual effects, or skill counts (SC), for our Table XII.D.2

example as
s€ = L-Z -4:1 ,

where: scjy) = ey =10 - 6 = 4, etc.

Note that the matrix SC is a symmetric matrix.

Next we can sum the skill counts for the correct decisions, those.on
the major diagonal (i.e., calculate the trace of SC), and get +8. This
js a measure of true forecast skill, but neediess to say one that is not

. _— e e e e e T e N el
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edsy to understand. Thus we need a baseline or standard which can be
compared with our observed (+8) result.

A simple approach to constructing this standard is to calculate the
maximum possible trace ygiven the observed marginals., The maximum
pnssible trace occurs only for the perfect forecast situation, and thus
this new measure will be termed the True Skill Score (TSS) and defined
as:

_ Observed Skill Count Trace
" Perfect Ski11 Count Trace °

In our example, the perfect skill count situation occurs when the
2 x 2 table of observed and predicted counts is as follows:

TSS

(10)

Table XI1.D.3 The 2 x 2 contingency table for the perfect forecast of
windshear events for the example of Table XII.D.2. The
expected counts due to the independence model are given in
parentheses.

Observed

M M

30 0. 30
Predicted M (9) (21)

Ml 0(21) 70(49) 70

30 70 100

The perfect skill (PS) count matrix for this perfect forecasting
situation is:

_ 121 -21
SCpg = ljm 21
where: psyy = 30 - 9 = 21, etc, Again the matrix is symmetrical,
Hence the perfect skill trace is 42, and thus
=8
TSS = v .19 .

In general, using the notation of Table XII.D.1, TSS can be rewritten as

(nyy = Eqp) + (nyy - Eyy)
TSS

T T - Elps * (M2 - Egdlpg

a
&
s .
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RN
I
(nyp+ny) -0y xn y/n )+ (n) xn o/ )] (1) S
_ e SO AR 11 '
(n, +n,) -[n{/n )+ (ng/n )] T
(n 7 ¢+ n,;{ -{(n, "xn"} +n, ‘x n°%)/n REEOK
ORI Sh o
Jpon further algebra, this becomesl, )
- (ny)nyy) = (nyy)(ny)) y g?f
- 7 () ’ (12) e
where the range is (-1 < TSS < +1), and TSS = 0 under the statistical P

independence model (i.e., zero correlation between the observed and predicted
factors). This form of TSS well illustrates that the cell counts from all

four cells enter the calculations (i.e., the cross-product of "successes," n
N,,, Minus the cross-product of "failures," n 2 n21). It also is interesting .
to note that the denominator is the cross-proéuct of the two observed event L

column totals. S
N

Furthermore, it should be noted that if shear events are coded "1" and e
non-shear events coded "0", then TSS also can be shown to be the slope of the e
least-squares fitted linear line segment between the observed and predicted Cen
shear events. Thus, perfect prediction skill gives a slope of +1, no e
prediction skill a slope of 0, and perfect incorrect prediction skill a slope L .
of -1. S

Lastly, Eq. (12) can be further simplified to give:
TSS = ("11/".1) - (n12/n.2) . (13)

This form is simply the conditional probability of detection (POD) minus the
conditional probability of false detection (POFD). In short, the PUD is
adjusted by the POFD to produce the true skill score (TSS).

Given that TSS is the slope coefficient (b) between the quantified
observed and predicted events, the variance of TSS can be estimated as
follows:

1n review of the forecasting verification literature indicates that
Eq. (12), or its counter-part, has appeared before. It was first proposed by
Pierce (1884) in verification of Finley's tornado data, later by Clayton L
(1938), and still later by Hanssen and Kuipers (1965). With this repeated oL
exposure it is surprising that the measure has not become more widely used.
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? l‘(‘ Sb - bSSxy pl )
S Spe CHTM x  (x) )
>:(xi - x)
) (npy + ny)(nyy +nyy) 7

= - b . 14
n-2 {ny +ny){ny +ny,) (14)

Thus, under the assumption of random selection of wind shear events we can
compare two values of TSS for statistical significance. However, in practice
some of the assumptions that underly this inference procedure (e.g.,
normality, constant variance, etc.) may not be met, and hence we prefer to
“cross-validate” (e.g., Mosteller and Tukey, 197/) the TSS scores when
possible.

In summary, TSS does address each of the six desired properties presented
in Section 1. It is easy to understand, particularly in the form of Eq. (13).
It has a convenient fixed range of possible values (-1 < TSS < +1) with zero
as the no skill value. Furthermore, it uses the skill data from alil four
cells and thus is an unconditional measure of skill, and TSS is a measure of
association in the given context (i.e., if desired, one can transform TSS into
the Pearson Product Moment Correlation Coefficient). Finally, the variance of
TSS is known, Eq. {(14), and thus under particular assumptions one can test for
“statistically” significant differences between alternative values of TSS.
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Appendix E. Comparative Verification Results foar all Algorithms

This section contains a tahulation of the comparative testing
verification results for all eleven algorithms on regularly spaced networks
of 6, 7, 11, 13, and 19 stations. The measures used are the TSS, POD, FAR,
€SI, EL.POD, and FEL.FAR. The detection threshold that provides optimum
performance in each case also is displayed,

Three different time series averaging methods were tested for each of
the anomaly algorithms, and it was found that this variation had a minor
impact on the results. These methods are:

1. Recursive filter of the wind field speed and direction with a
weighting factor of .6 (comparable to a 2-minute running average) and with
wind field values set equal to zero when the wind speed was smaller than
2 m/s.

2. Recursive filter of the wind field (u,v) components with a
weighting factor of .6 and with wind field values set equal to zero when
the windspeed was smaller than 2 m/s.

3. Two-minute running average (existing LLWAS strategy).

The “smooth type" (1, 2, or 3) indicates which type of time series
averaging produced the best results.

The threshold was selected to produce the highest true skill score
(TSS). For all methods, low threshnlds produce a high POD and a high FAR
and both of these values decline as the threshold is increased. For good
methods, the FAR declines more quickly than the POD does, and so there is a
threshold interval in which there is a relatively high POD and low FAR. It
is in this region that the TSS has its maximum value.

The detection methods are described in Section III and are identified
in the following tables as:

Anomaly detection methods:

OLDCF 01d Centerfield (Running Average)
NEWCF New Centerfield (Running Average)
RFCF New Centerfield (Recursive Filter)
NMN Network Mean

NMD Network Median

LMN Local Mean

LMD Local Median

NLR Network Linear Regression

LVD Local Vector Difference

e
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Wind shear identification methods:
™e Triangle Divergence/Convergence
TEDC Triangle Edge Divergence/Convergence

For the larger networks (11, 13, or 19 stations), station trimming was used
for the computatinn of the network mean, network median, and network linear
regression.

For the divergence/convergence methods, it is necessary to select both
a convergence threshold and a divergence threshold. It generally appears
that the best strategy is for them to have equal magnitudes (they have
opposite signs),




———

Table XII E-1. Simulation testing for 19-station network, scale = 1.50.

I) ANOMALIES, 1 STATION
ANOM. TYPE  SMOOTH  THRESH.  TSS POD FAR cSI ELIG. ELIG.
TYPE : POD FAR
NEWCF 3 7.00 n.66 0.82 0,17 0,70 0,78 .29
RFCF 1 7.50 0.8 0.80 0.14 0.70  0.75 .26
NMN 2 7.00 0.68 0.80 0.14 0,71  0.75 18
NMD 3 7.50 0.68  0.77  0.11 0.70  0.73 .16
LMN 2 5.00 0.63 0.79 0.18 0.67 0.71 .18
LMD 3 5.50 0.68  0.81 0.15 0.71 0.75 .15
NLR 3 5.00 0.68 0.84  0.17  0.71 0.78 .22
Lvn 3 14.00 0.46 0.66 0,25 0.5 0,52 .19
b [1) ANOMALIES, 2 STATIONS
ANOM. TYPE  SMOOTH  THRESH.  TSS POD FAR CcSI ELIG.  ELIG.
TYPE POD FAR
NEWCF 3 7.00 0.9 0.63 0.06 0.60  0.57 .14
RFCF 2 7.00 0.59 0.63 0,06 0,61 0,58 .16
NMN 3 /.0 0.54 0.5  0.03  0.55  0.50 .04
NMD 3 7.00 0.8 0.0 0.03 0.59  0.54 .05
LMN 3 5.00 0.52 0.54 0.05 0.53  0.46 .03
LMD 3 5.00 0.5 0.60 0,04 0,58 0,52 .03
NLR 3 3.50 0.71 0.83 0.14 0.73  0.69 .20
LVD 2 8.00 0.60 0.65 0.08 0.61 0.57 .17
[1I) DIVERGENCE
" METHOD THRESH.,  TSS POD FAR cSI ELIG. ELIG.
> POD FAR
- e 5.00 0.66 0.80 0.15 0.70  0.72 .22
5.00 0.68 0.82 0.16 0,71 0.74 .22

: TEDC

Wpr——
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Table XII E-4,

Simulation testing for 13-station network, scale

o e
L N

ANOMALIES, 1 STATION
ANOM, THRESH, TSS POD FAR CSI ELIG.
POD FAR
NEWCF 3.50 0.64 0.77 0.15 0.67 0.67 .27
RFCF 8.00 0.65 0.84 0.20 0.70 0.72 .35
NMN 7.50 0.65 0.82 0.19 0.69 0.73 .26
NMD 7.50 0.66 0.84 0.19 0.70 0.74 .27
LMN 5.50 0.68 0.88 0.20 0.72 0.80 .28
LMD 6.00 0.67 0.83 0.17 0.71 0.75 .21
NLR 5.00 0.74 0.89 0.16 0.76 0.80 .22
LVD 15.00 0.37 0.61 0.30 0.49 0.40 .24
ANOMALLTES, 2 STATIONS
ANOM. THRESH, TSS POD FAR CSI ELIG.
POD FAR
NEWCF 3 5.50 0.52 0.66 0.19 0.58 0.50 .25
RFCF 2 5.50 0.55 0.73 0.21 0.61 0.51 .30
NMN 3 5.00 0.55 0.69 0.18 0.60 0.50 .20
NMD 1 5.50 0.54 0.63 0.14 0.57 0.47 .14
LMN 3 4,50 0.57 0.63 0.09 0.59 0.48 .09
LMD 3 5.00 0.48 0.52 0.08 0.49 0.42 .05
NLR 3 3.50 0.65 0.76 0.14 0.68 0.58 .17
LVD 2 8.00 0.52 0.59 0.12 0.55 0.46 .22
DIVERGENCE
METHOD THRESH. 1SS POD FAR CSI ELIG.
FAR
TDC 4.00 0.71 0.81 0.11 0.73 .19
TEDC 4.00 0.72 0.82 0.11 0.74 .19
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? Table XII E-5. Simulation testing for 1ll-station network, scale = 1,50,
S I) ANOMALIES, 1 STATION
S
5 ANOM, TYPE SMOOTH  THRESH, TSS PON FAR csl ELIG, ELIG,
TYPE POD FAR
[
NEWCF 3 6.00 0.58 0.75 0.20 0.63 0.68 .28 Rl
RFCF 1 6.00 0.58 0.76 0.21 0.63 0.63 .31 S
NMN 2 6.00 0.59 0.72 0.17 0.63 0.65 .18 Te
NMD 1 6.00 0.60 0.75 0.18 0.64 0.67 .21 R
LMN 3 4.50 0.57 0.80 0.23 0.64 0.68 .29 AN
LMD 3 5.00 0.61 0.77 0.19 0.65 0.68 .22 L
NLR 3 4.50 0.59 0.75 0.19 0.64 0.65 .24 .
LVD 3 14.00 0.44 0.58 0.21 0.50 0.41 .17

I1)  ANOMALIES, 2 STATIONS

ANOM, TYPE SMOOTH  THRESH, TSS POD FAR CSI ELIG. ELIG.

TYPE POD FAR
NEWCF 3 5.00 0.50 0.56 0.10 0.53 0.48 .13
RECF 2 5.00 0.50 0.59 0.14 0.54 0.48 .17
NMN 3 4.50 0.52 0.57 0.08 0.54 0.49 .08
NMD 3 5.00 0.50 0.54 0.07 0.52 0.47 .05
LMN 3 4,00 0.51 0.56 0.09 0.53 0.46 .07
LMD 3 4.00 0.54 0.59 0.08 0.56 0.48 .07
NLR 1 3.00 0.52 0.62 0.14 0.56 0.46 .14
LvD 3 7.00 0.49 0.52 0.07 0.50 0.44 .14

ITI)  DIVERGENCE

METHOD THRESH,  TSS POD FAR csI ELIG.  FLIG. ARG

POD FAR RS

RS

™C 7.00 0.49 0.64 0.21 0,55  0.56 .18 L
TEDC 7.00 0.49 0,64  0.21  0.55  0.56 .18
TOC/NO SLIVERS 4.00 0.52 0.70 0.20 0,58  0.59 .20
TEDC/NO SLIVERS 4.00 0.54 0.73 0.22 0.60 0.63 .21

...................................................
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Table XII E-6. Simulation testing for ll-station network, scale = 2,25,

I)  ANOMALIES, 1 STATION

ANOM, TYPE  SMOOTH THRESH.  TSS POD FAR CSI ELIG. ELIG.

TYPE POD FAR
NEWCF K 700 0.60 0.78 0.20  0.65  0.69 33
RFCF 1 7.00 0.61  0.80 0.21 0.66  0.70 .35
; NMN 3 6.50 0.59 0.80 0.22  0.65  0.69 .28
: NMN 2 7.00 0.58 0,77 0.22  0.64  0.68 .26
v LMN 1 5.50 0.62 0.81 0.21  0.67  0.70 .25
LMD 3 5.50 0.63 0.83 0.21 0.68 0.74 .26
NLR 1 5.00 0.62 0.75 0.17 0.66  0.64 .20
LVD 3 14,00 0.39 0.62 0.29 0.50  0.43 .25

I1)  ANOMALIES, 2 STATIONS

ANOM. TYPE SMOOTH THRESH. TSS POD FAR CSI ELIG. ELIG.

TYPE POD FAR
NEWCF 3 5.00 0.51 0.63 0.18 0.56 0.46 .22
RFCF 2 5.00 0.53 0.67 0.18 0.58 0.46 .26
NMN 1 5.00 0.53 0.59 0.10 0.55 0.45 .11
NMD 3 6.00 0.48 0.51 0.07 0.49 0.40 .06
& LMN 3 5.00 0.47 0.50 0.07 0.48 0.40 .05
- LMD 3 5.00 0.49 0.53 0.07 0.51 0.42 .04
NLR 3 4.00 0.54 0.59 0.09 0.56 0.44 .09
LVD 1 7.00 0.61 0.69 0.12 0.63 0.50 .30
. [IT)  DIVERGENCE
METHOD THRESH. TSS POD FAR €SI ELIG, ELIG.
PGD FAR
TBC 5.00 0.54 0.70 0.20 0.60 0.59 .22
X TELC 5,00 0.55 0.71 0.20 0.60 0.60 .22
- TDC/NO SLIVERS 3.00 0.55 0.73 0.21 0.61 0.61 .21
TEDC/NO SLIVERS 3.00 0.59 0.78 0.21 0.65 0.67 21




Table XII E-7.

ANOMALIES,

1 STATION

82

Simulation testing for 7-station network, scale = 1.50.

ANOM,

POD

FAR

ELIG,

©
[=}
o

NEWCF
RFCF

NMN
NMD
LMN
LMD
NLR
LvD

ANOMALIES,

— N N WW N W
LWL
SOOI OOO
SO0 OCDOoOOoOO
QOO OoOCO
. L]

DDA N
SWPROAN W

2 STATIONS

e o o o o

COOOoOoOoOCOoO
L]
NN NNN~

WNOMNOTOO W

QOOOOoCOoO0O0o
® o o o s ¢ o
b et b ot ok et b it
DN RO~

COOOOoO0OCO
DA
X~NDOLOIRO~NO

COoOO0QCOoOOoOOO

. L[] L] -
NSNNNHAODO
WONPONO &

ANOM.

POD

FAR

ELIG.

POD

NEWCF
RFCF

NMN
NMD
LMN
LMD
NLR
LVD

DIVERGENCE

Wwr=rNoNN -~ W
Nwwwogmaoom
L] . - L) . . .
CONOODOO
COQCOOOOoOCO
COOOOOOOo
. L] L] L] [ ] . L]
[SANCARS A= B - - I N
VO MNWH O,

0.55
0.60
0.47
0.49
0.77
0.57
0.72
0.76

0.16
0.17
0.06
0.11
0.18
0.11
0.16
0.11

CODODODO0OOC0
. - . L] L) L] L] L]
SN HEOO,
QWP O

0.26
0.25
0.31
0.29
0.46
0.36
0.42
0.48

METHOD

POD

ELIG.

TDC
TEDC

0.65
0.70
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Table XII E-8. Simulation testing for 7-station network, scale = 2,72%,

[)  ANOMALIES, 1 STATION

y ANOM, TYPE SMOOTH  THRESH. TSS POD FAR €SI ELIG, ELIG,

. TYPE PGD FAR
NEWCF 3 8.00 .54 .71 0.21 0.60 0.38 .32
RFCF 1 8.00 0.54 0.73 0.22 0.61 0.40 .34
NMN 2 7.00 0.45 0.66 0.26 0.54 0.46 .30
NMD 3 7.50 0.45 0.64 0.24 0.53 0.46 .26
LMN 1 5.00 0.54 0.75 .24 0.61 0.59 .33 Ll
LMD 1 5.50 0.54 0.73 0.22 0.61 0.56 .26 :—"L;
NLR 2 3.50 0.59 0.78 0.21 .65 0.69 .33 RN
LvD 3 9.50 0.61 N.74 0.16 0.65 0.61 .38 L

[1) ANOMALIES, 2 STATIONS

ANOM, TYPE SMOOTH  THRESH. 7SS POD FAR CSI ELIG, ELIG.

TYPE POD FAR
NEWCF 3 6.00 0.40 0.51 0.19 0.45 0.05 .22 P
RFCF 1 6.00 0.41 0.55 0.22 0.48 0.05% .26 ‘- !
NMN 2 5.50 0.32 0.40 0.18 0.37 0.07 .14 e
NMD 2 5.50 0.33 0.46 0.24 0.40 0.06 .18 e
LMN 1 3.50 0.50 0.65 0.20 0.56 0.13 .25
LMD 3 4.00 0.34 0.44 0.20 0.39 0.10 .14
NLR 3 3.00 0.47 0.62 0.71 0.53 0.14 .22
LVD 3 9.00 0.60 0.66 0.08 0.62 0.13 .26

I11)  DIVERGENCE

: METHOD THRESH. 1SS POD  FAR  CSI  FELIG.  ELIG. B
: POD FAR i
: TDC 1.50 0.5 0.72 0.21  0.60  0.54 .23 tfifii
: TEDC 1.50 0.58  0.81 0.24  0.65  0.63 .28 el
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Table XIT 1-10. Simulation testing for 6-station network, scale = 2.25.
) ANOMALIFS, 1 STATION v
ANOM. TYPE  SMOOTH  THRESH. 1SS  POD  FAR  CSI  ELIG. ELIG. i
TYPE POD FAR O
o
i
OLDGF 3 7.50 0.46  0.63  0.23  0.53  0.19 .33 i
NEWCF 3 7.50 0.46  0.63  0.23  0.53 0.19 .33 e
RF(F 2 7.50 0.48  0.66 0.22  0.55 0.20 .34 e
NMN 3 6.50 0.36  0.59 0.30 0.47 0.26 .31 s
NMD 3 6.50 0.36  0.64 0.32 0.49 0.28 .36 e
LMN 2 5.00 0.46  0.65 0.24 0.5  0.36 .30 L
LMD 3 5.00 0.44 0.70 0.28  0.55  0.37 .33 :
NLR 2 3.00 0.58 0.72  0.17 0.62  0.47 .30 :
LVD 3 9.00 0.53 0.68 0.19 0.59 0.37 .38
1)  ANOMALIES, 2 STATIONS -
ANOM. TYPE  SMOOTH THRESH. 1SS  POD  FAR  CSI  ELIG.  ELIG. -
TYPE POD FAR s
OLDCF 3 7.50 0.24  0.26 0.08 0.25 0.00 .12 N
MEWCF 3 6.00 0.32  0.40  0.19  0.37  0.00 .22 el
RFCF 2 6.00 0.35 0.46 0.20  0.41  0.00 .24 R
NMN 3 6.00 0.18 0.21 0.13 0.20 0.00 .07 7
NMD 3 6.00 0.18 0.24 0.21  0.23  0.00 .10 i
LMN 1 4.00 0.41 ©0.47 0.13 0.4 0.02 .14 S
LMD 3 4.00 0.30  0.37 0.18  0.34  0.02 13 -
NLR 3 2.50 0.53  0.68 0.20 0.58  0.03 .29 o
LVD 3 7.50 0.54 0.68 0.18 0.59 0.02 .34 O
e
2
111)  DIVERGENCE -
METHOD THRESH. 7SS  POD  FAR €SI ELIG.  ELIG. S
POD FAR T
TOC 1.50 0.56  0.65 0.14  0.59  0.43 .19 [
TEDC 1.50 0.57 0.72  0.19 0.62 0.50 .25 o
L Y
s;',-‘
ni
o
=
o

T
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fabte XIT E-1l. Srmulation testing for o-sLalion network, scale - 3,00, 10
represents the existing LLWAS with opLimal threshold (7.5 w/s or 15 knots), I

.\'\J
1) ANOMALIFS, 1 STATLON T
N
——- e e a x % o = m e - 4 e - . e i e - . . - . . . . . .b\..
ANOM,  TYD| SMOOII THRESH, 1SS POD I AR 651 fLG, TR ;252;
TYbt POb I AR f—
—— e—— ’#_-1\-:-
OLOCK 3 7.50 0.21 .81 0.44 0,49  0.19 .68 Al
NP W ! 4. h{) .43 0./ .21 .50 0.14 Ry ’
R 7 9. 51) 0.44 0.59 0,27 0.51 0.14 L33 ..
NMN ? 9.00 0.31 0.42 0.23 0.37 0.16 D2 Lo
NMD 3 8.50 0.32 0.56 0.32 0.44 0.19 .36 -
LMN 3 6.00 0.34 0.60 0.32 0.47 0.29 .37 -
I MD 3 .50 0.31 0.51 0.79 0.42 0.25 .28 e
NI R ? 3.50 0.46 0.58 0.19 0.51 0.40 24
K1) 3 11.50 0.43 0.5% 0.21 0.50 0.34 .33

I1)  ANOMALTES, 2 STATIONS

ANOM, TYPE SMOOTH  THRESH. TSS POD FAR CSI ELIG, ELIG.

TYPE POD FAR

NEWCF 3 7.00 0.38  0.,51 0,22 0.44  0.03 .25 RN
RFCF 2 6.50 0.41  0.63 0.28 0.51 0.02 .35 et
NMN 2 6.00 0.24  0.41  0.31  0.35  0.03 .21 NS
NMD ? 6.00 0.24  0.52  0.37 0,40  0.03 .31 el
LMN 1 4.00 0.39  0.58 0.26 0.48  0.05 .27 Fatls
LMD ] 4.00 0.35 0,52  0.27 0.44  0.04 .23 oA
NLR 1 2.50 0.39  0.55  0.24  0.47  0.06 .25 P
LVD 3 9.50 n.47 0,59 0.18 0,62 0.06 .30 R
> o
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5 Table XII E-12. Simulation testing for 6-station network, scale = 3,00. OLDCF L
- represents the existing LLWAS with optimal threshold (9.5 m/s or 19 knots). o
S
b
N 1)  ANOMALIES, 1 STATION e
: T
-i.,‘{"~‘
ANOM, TYPE SMOOTH  THRESH. TSS POD FAR CS1 ELIG, ELIG. G '.'_*::
TYPE POD FAR ; !
OLDCF 3 9.50 0.43  0.57 0.21  0.50  0.14 .31 S
NEWCF 3 9.50 0.43 0.57 0.21 0.50 0.14 3l ARAN
RFCF 2 9.50 0.44 0.59 0.27 .51 .14 .43
NMN 2 9.00 N, 3 n.47 0,4 0.7 014 L
NMD | 3,50 0,37 0.9 0,32 0.44 TN L0 :
LMN 3 6.00 .34 .60 .32 0.4/ .29 .3/ i__'.
LMD 3 6.50 0.31  0.51  0.729  0.42  0.25 .28 e
NLR 2 3.50 0.46 0.58 0.19 0.51 0.40 .24
LVD 3 11.50 0.43 0.58 0.21 0.50 0.34 .33
[1)  ANOMALIES, 2 STATIONS
ANOM, TYPE SMOOTH THRESH., TSS POD FAR Csl ELIG. ELIG.
TYPE POD FAR
0LDCF 3 7.00 0.37 0.50 0.22 0.44 0.02 .25
NEWCF 3 7.00 0.38 0.51 0,22 0.44 0.03 .25
RFCF 4 6.50 0.41 .63 .28 0.51 Nn.02 .35
NMN 2 6.00 0.24 0.41 0.31 0.35 0.03 .71
: NMD) 2 6,00 0.24 0.5? 0.37 0.40 0.03 Y
» LMN 1 4.00 0.39 0,51 0,76 0.4 .04 21 o
: LMD 1 4.00 0.3 oy 020 044 004 .23 3y
y NIR 1 750 0,39 0,%  0.24  0.47  0.06 .25 N
LVD) 3 9.50 0.47 0.59 0.18 0.52 0.06 .30 \t_:‘:.
. AN
hY

aVola'e # 0 *
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Appendix F.  Study of an Irregular Grid Problem: An Expanded LLWAS at
Stapleton,

To determine the degree tn which these ideas can be applied to the
design of an actual airport LLWAS, and to hegin to understand the impact
that an irregular geometry has on the efficiency of the algorithms, we have
applied the methods of this report to the problem of designing the expanded
LLWAS at Stapleton International Airport in Denver. The current Stapleton
i.1LWAS nas six stations, CF, SW, SE, NW, NE, and N (Figure XIIF-1)., CF
appears to he somewhat sheltered by the new fire station. The plan is to
add five more stations, for a total of eleven, and to move CF to a more
favorable site. For economic reasons, it has heen decided to make every
effort to avoid moving the other five stations,

[n designing the tests for determining the best geometry and
algorithm, the first problem is to determine the geographic region that is
tn be protected. In the main report, protecting a disc of radius 5 km is
taken as the goal for the regular geometry simulation testing. For
Stapleton, protecting such a disc would barely protect the ends of the
runways and would protect large regions in which it is not expected that
there woild be low altitude air traffic. Therefore, it was decided that a
hetter plan would be to protect a rectangle that provides a 1-km buffer
about the runways. This rectangle does not provide protection of the full
areas of vulnerability, which extend for up to two miles beyond the ends of
the runways, but does give full coverage of the airport itself and a lesser
huffer beyond the airport. A significant henefit is that this region can
he protected with almost all of the LLWAS sites being located on either
airport or Rocky Mountain Arsenal property, so that extensive real estate
negotiations are not required. It is also unlikely that it would be
possible to protect a significantly larger region adequately without using
more stations. Therefore the gnal for the Stapleton LLWAS design is to
protect a rectangle which is centered at the geographic center of the
triangle that is defined by the runway extremities and whose sides have
lengths 8.4 km (N-S) and 5.1 km (E-W) (cf. Figure XIIF-1), Aside from this
modification, the simulation testing procedure is identical to the one that
was used previously.

In addition to evaluating the relative performances of the various
algorithms, we want to understand the influence of changing the geometry.
In particular, it is important to see how sensitive the performance is to
modest alterations of the station positions. 1In a real application, such
as the design of the Stapleton LLWAS, various practical constraints are
placed on the selection of station sites. If the performance of some
algorithms is extremely sensitive to site selection, then those algorithms
will be more difficult to implement, The study of locating the new
stations at Stapleton helps us to gain an understanding of the sensitivity
of tne various algorithms in this practical setting.

Figure XIIF-2 shows the locations of all of the possible sites that
were considered for this study. The numbering has been selected so that
the sites that were selected for actual installation are numbered as they
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will be designated for operations ({0] to [10]). These sites are
designated hy a small square on the figure. The sites of the original
LLWAS are designated by *,

The ll-station network that was first suggested is shown in Figure
X[IF-3A. This geometry was chosen in a round-table discussion hetween
representatives of the FAA and NCAR. Based on the requirement that the
existing outlying stations should not he moved, positions for the new
stations were determined so that the station spacing would be reasonably
uniform. Station [12] was discussed as a geometrically satisfactory
alternate site for centerfield.

A site survey revealed the partial sheltering of the old centerfield
{11], a tree problem at site (7], and potential sheltering and other
difficulties due to construction near [15] and [16]. The site survey also
showed that [12] is sheltered from the south by a large bluff. Site [6] is
the relocation for the old centerfield station that was selected at the
time of the site survey. Alternate sites that were tested: [6] or [12] for
site [11], [13] or [14] for site [7], [9] for [15], and [10] for [16]. The
only old site that is not part of the new system (F) is the old centerfield
site [11].

Figures XIIF-2B and -2C show the geometries that are obtained when the
alternate locations for [7] were tested. Neither of these performed as
well as Geometry A (Tables XIIF-1 and XIIF-2). It was decided to try to
use site [7] and to construct a fairly high tower (70'). Figures XIIF-3D
and -3t are obtained from Figures XIIF-3A and -3B by moving the old
centerfield site [11] to the north ([12]). When the second site survey
showed that [12]1, [15], and [16] are also unsuitable, the new lncations
[6], [9], and [10] were selected. This geometry is shown in Figure
X1IF-3F, The difference between Geometries F(1) and F(2) is the
designation of the centerfield station for the centerfield algorithm; for
F(1), station [0] is used, and for F(2), station [6] is used. For
comparison, we also tested a regular 10-station geometry (Figure XIIF-3G)
and the original 6-station LLWAS (Figure XIIF-1 and Geometry 0). In all,
nine geometries are tested:

0. The existing 6-station network.

A. The 1ll-station network that was selected by the
committee without site inspections,

B. Geometry A with the south station moved up to the
edge of the airport property.

C. Geometry A with the south station moved an additional
kilometer to the south.

D. Geometry A with centerfield moved to the north,

E. Geometry B with centerfield moved to the north,
F(1).The ll-station network that will be installed with
the most central station used as centerfield.
F(2).The 1l-station network that will be installed with

the centerfield station chosen to he nearest the
terminal.
G. A uniform 10-station network.
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N The following tables give the results of the verification testing for
- the new centerfield algorithm (NEWCF) and the network linear reygression
algorithm (NLR). Recall that the TSS is a measure of the true skili of the
network for detecting wind shear events, the CSI is the traditional
meteorologist's measure of detection (prediction) skill, POD is the
probability that a detection is made by some station in the network when
there is an event somewhere on the network, and FAR is the probability that
S an issued alarm is false, i.e., a detection is made hy some station, but
there is no wind shear event on the network. For determining if the
- stations in the wind shear region are the ones that are issuing the alarms,
- we have also introduced the EL.POD, the probability that a station that is
in the wind shear region will make a detection, and the EL.FAR, the
probahility that a station that is not in the wind shear region will make a
{false) detection. As before, each of the algorithms is evaluated with its
threshold selected to give the optimal TSS performance, i.e., detection by ;
the network has the highest skill. AN

Table XIIF-1. Comparison of the anomaly algorithms for various network
geometries,

NEW CENTERFIELD ALGORITHM (USING OPTIMAL THRESHOLD)
GEOMETRY  THRESHOLD  TSS CSI POD FAR EL.POD EL.FAR

0 6.00 60 .64 .72 15 47 .24 L
' A 7.00 68 .71 .81 .15 71 .33 R
: B 6.00 .66 .69 .85 .21 .76 .39 a

c 7.00 67 .70 .80 .15 .69 .33

D 7.00 69 .71 .81 15 .73 .32

E 6.00 .68 .72 .87 .20 .7 .39

F(1) 8.00 66 .68 .75 .12 .66 .28

F(2) 6.00 .62 .68 .85 .24 .77 .35

G 8.00 .63 .66 .75 .12 .58 .28

LINEAR REGRESSION ALGORITHM (BEST ANOMALY ALGORITHM)
GEQMETRY  THRESHOLD  TSS CSI POD FAR EL.POD EL.FAR

0 3.00 63 .68 .81 .20 .50 .39 !%;:;
A 5.00 J4 .75 .85 L1478 22 o
B 5.00 Jl .75 .83 .14 75,20
c 5.00 J3 .75 .85 14 76,22
D 5.00 J4 .76 .86 .13 78,20
E 5.00 J3 .75 .85 .14 77 .20
F 5.00 J3 .75 .85 .14 78 21
G 5.00 69 .72 .83 .16 .68 .23

0
e
- L)
ﬁfv

A
e e T Tt R T & T T S L T T N O T O Y
S T R I R R 3 S N T e T R T e S o S B T o v v G G S (AT AR R O




N R W o ey rC—r—

100

Tahle XI1IF-2. A comparison of the identification algorithms for various
network geometries,

TRIANGLE DIVERGENCE METHOD
GEOMETRY  THRESHOLD  TSS ¢St P00 FAR EL.POD EL,FAR

A 3.50 J1 .73 .83 14 .81 .08
B 3.50 71 .73 .85 16 .82 .13
c 3.50 g1 .73 .82 .14 .81 .08
n 3.50 71 73 .83 .14 .82 .08
E 3.50 .70 .73 .82 14 .80 .08
F 3.50 .70 .73 .82 .15 .80 .09 e
G 3.00 .70 .13 .84 .16 .83 .10 Cooe
(3.50

) .69 .71 .79 .12 .78 .06 Lo

TRIANGLE AND EDGE DIVERGENCE METHOD

GEOMETRY  THRESHOLD  TSS ¢St POD FAR EL.POD EL.FAR

50 .74 .76 .87 14 .85 .09 S
50 .70 .73 .86 A7 .83 .14 R
50 J4 .75 .86 14 .84 .09 NN
50 72 .74 .85 15 .84 .09
50 .71 .73 .83 15 .82 .09
50 .72 .74 .85 .16 .83 .09
aa .72 .74 .86 A5 .84 .10
50 .70 .73 .81 A1 .80 .06

T MO Mo >

! These suboptimal results are provided for comparison.

From these results, we see that Geometries A and D have the best
performance for both the NEWCF and the NLR algorithms, but that the
advantage over the other geometries is slight. In particular, Geometry F,
the one under construction at Stapleton, tests very well. For NEWCF, F(1)
is quite a bit better than F(2), and so we recommend relocating the
centerfield station to the position nearest to the geometric center of the '
runways, site [0]. It is interesting to note that the old LLWAS 6-station
geometry with the NLR algorithm has a performance that is nearly as good as
the 1l1-station geometries with the NEWCF algorithm. This suggests that an .
upgrade of the computer and the algorithm at the existing LLWAS
installations at other airports may provide the quickest way to get a
substantial LLWAS improvement. Of course, the ll-station geometry and the
NLR algorithm give an additional improvement over all the 6-station
geometry.,

When we consider the question of how well the position of the wind
shear danger is located by the LLWAS, we find that the results are less
satisfactory, NEWCF is seen to issue an alarm at a station that is not
near the wind shear over 30 percent of the time. These alarms could be
interpreted by pilots as false alarms, since they might not be aware that
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; there is a wind shear somewhere else on the network. NLR issues detections _;_,

' that are not near the wind shear ahout 20 percent of the time. While this S
is much better than 30 percent, it is still rather high when we speculate t

that it could he the hasis for ATC advising an aircraft to leave an area
where there is possibly no wind shear and to enter an area where there is a
wind shear.

PR A R AL NN

Our testing shows that the TNC and TEDC algorithms have skill levels
that are nearly comparable to the NLR algorithm. When we compare POD with t
FL.POD and FAR with EL.FAR, we ohserve that, unlike the anomaly algorithms, f;i?
there is very little difference when the eligibility restriction is L
imposed, indicating that TEDC is more reliable for prediction of the
location of the wind shear. Also, the detection ability is virtually S
unaffected by the minor changes in the geometries (A-F). Ll

Geometry G is a uniform 10-station network that was tested to
determine the amount of degradation that occurs due to the irregular
geometry. Its performance is slightly inferior to the ll-station networks
when an identification algorithm (TEDC) is used. This suggests that the
TEDC algorithm is not too severely penalized by grid irregularity, except
that one additional station is needed to get comparable results. Our ;"
initial study of the sliver problems indicates that this difficulty may be RO
dealt with by refinements of this method.

In conclusion, the geometry (F) that has been chosen for installation s
at Stapleton is expected to give a vastly improved wind shear detection Vel

system, even with the new centerfield algorithm (NLR). The TEDC algorithm i
provides an improvement in locating the wind shear and is able to identify SN
the nature of the event., The new LLWAS computer that is being installed at s
Stapleton seems to have ample capacity to handle the additional computing RS
requirements for these new algorithms. }}:E
ot
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