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THE ATCHAFALAYA RIVER DELTA

ANALYTICAL ANALYSIS OF THE DEVELOPMENT OF

THE ATCHAFALAYA RIVER DELTA

PART I: INTRODUCTION

Objectives

1. The objective of this research is to quantify the dynamic

interaction of the resources of the Atchafalaya River, namely, the

sediments forming the delta and the riverflow thiat carries the

sediment. Our study is focused on fresh water discharging into a

quiescent bay and its dynamic response to the forcing function. Our

results are developed for short-term predictions of the delta growth

in early stages.

l 2. The specific objectives of this research are:

a. To apply the theory of turbulent jets in predicting the

short-term process of delta growth at the river mouth.

b. To formulate the problem of river outlet freshwater
discharge into a quiescent bay as a two-dimensional

plane jet.

C. To develop an analytical approach that quantifies the
areal and mass extent of delta growth as influenced by
the river discharge.

d. To test the adequacy of the analytical technique based
on presently mapped bathymetry and to verify the result

with the independently measured bathmetry changes in the
* .bay.

f. To perform a sensitivity analysis on various hydro-
" - dynamic parameters, and to assess the relative

importance of river stage and discharge, channel con-

figuration, and bottom resistance as they relate to the
river outlet sediment deposition.

Background of Deltaic Processes

* 3. Coleman and Wright (1975) discussed the various aspects of

interacting coastal processes and their effects on delta formation.

8
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The most important factors are climate, water and sediment discharge,

vegetation and soil, geometry of river mouth, winds and nearshore cur-

rents, wave power and tidal regime, and bathymetry of the receiving bay.

Figure 1 shows the major components of a river basin, bay, and delta

system (Coleman and Wright 1975).

4. The river mouth is the point at which the fresh water leaves

the confined channel and spreads and mixes with ambient bay water,

causing a decrease in flow velocity and total momentum, and conse-

quently, the deposition of sediment. The river discharge depends on

the climatic and hydrologic regime within the drainage basin. The

pattern of delta growth depends upon the rate of sediment supply by

the river discharge and reworking of sediment by wave and current

forces in the receiving bay.

5. The pattern of sediment deposition depends upon the proper-

ties of the sediment and the relative roles of three primary forces

(Coleman 1976):

a. The inertial force of river effluent and associated
turbulent diffusion.

b. The frictional force between the river effluent
and the bed immediately seaward of the mouth.

c. The buoyant force resulting from density differences
between river effluent and ambient fluids.

6. Extensive observations and representative data collected at

the mouth of the Mississippi River by Wright and Coleman (1974) have

' indicated that the relative roles of these forces vary in space and

time, causing corresponding changes in the modes and patterns of

sediment transport and deposition. Figure 2 illustrates the river

mouth mechanisms and the resulting effluent plume and subaqueous bar

(Coleman 1976). Conditions for the four cases illustrated and their

results are as follows:

a. Inertial forces dominant. When riverflow velocities
are high, depths immediately seaward of the mouth are

4o.. large, density differences are negligible, inertial

forces are dominant, and the river effluent spreads and
diffuses as a turbulent jet. Narrow and linear sand-
bars are formed (Figure 2a).

44 9
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(Coleman and Wright 1975)

10

% , .1 _ " " '-"



INERTIAL FACTORS DOMINANT FRICTIONAL FACTORS DOMINANT

TOPSE, FORSET. OTTOMET BIURCAING HANEL
BUOAN FACOR DOIATB-YA NRTA ATR

-- .1 BA-
40'

B *4 iia ~ CREST

DOMINANTT©PLUME

Figue 2. Rive mouh mehanims (ole aR 96



b. Frictional forces dominant. When riverflow velocities
are high, but the depths seaward of the mouth are
shallow, turbulent flux penetrates to the entire water
column and bottom friction plays a major role in causing
the river effluent to be decelerated and expanded as a
fan shape plume. Bifurcating sandbars are established
(Figure 2b).

c. Buoyant forces dominant. When the density of ambient
bay water is much higher than the density of river
effluent, then strong vertical density gradient exists
at the river mouth and buoyancy becomes of paramount
importance in spreading both the river effluent and sand
bars radially away from the mouth (Figure 2c).

d. Interaction of forces. Various combinations of these
three forces exist in modern deltas. Interactions
between buoyant and inertial forces are common in many
modern rivers (Figure 2d).

Approach in Analyzing the Atchafalaya River Delta

7. The environmental settings of a river, bay, and delta system

provide some idealization to analyze the influencing factors. In our

study, four main features are apparent:

a. The large input of fresh water and sediments from the
Lower Atchafalaya River is undoubtedly the dominant

forcing function in shaping the Atchafalaya River
Delta.

b. The Atchafalaya Delta is building into a shallow bay, in

contrast to the continential shelf location of the
Mississippi Modern Balize Delta (modern birdfoot delta).

c. The Atchafalaya Bay domain is constrained within an area7 of 233 square miles* (33 miles wide, and 8 miles long).
The average depth in the bay is about 5 ft, and the
water volume is about 3.25 x 1010 ft3 (McAnally and
Heltzel 1978).

d. The average salinity of the waters in Atchafalaya Bay is
0.37 ppt (US Fisheries and Wildlife Service 1976).

8. From above information, we infer that the main forces that

affect the behavior of Atchafalaya River discharge and subsequent

*A table of factors for converting non-Sl units of measurement to
SI (metric) units is presented on page 7.

12
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delta formation in the bay are primarily inertial force and bottom

friction. Therefore our analytical approach, based upon the turbu-

lent plane jet theory, to quantify the delta development in early

stages is logical. Our scheme for characterization of fresh river

water discharging into a quiescent bay is defined in Figure 3.

Atchtafalaya GulfRiver 4'x2

outlet

ta1 FLOW SOUNDARY: SemI-Inflnite
f~ 21----. ------- --- X1

IbI TOTAL WATER DEPTH U STILL WATER DEPTH

Ic RIVER OUTLET: Rectangular Channel

Figure 3. Schematization of fresh river water discharging
into a quiescent bay
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PART II: LITERATURE REVIEW OF TURBULENT JETS

Review of General Basics of Turbulent Jets

9. Fresh water discharging from a river into coastal waters

forms a turbulent jet. River discharge at the mouth transports

sediments into the bay. Mass transport of these materials determines

the ultimate distribution of sediments and the bathymetric changes

near river mouths. Essential features of river effluents have been

summarized briefly in Part I and have been documented thoroughly

by Coleman (1976).

10. There are many articles and technical papers on turbulent

* jets. The literature reviewed in this chapter is limited primarily to

surface jets and plumes with bottom friction and lateral entrainment.

Types of turbulent jets

11. A general view of the basics of turbulent jets is given by

Pai (1954), Townsend (1956), and Schlichting (1968). Much more

detailed analysis is presented in the classical work of Abramovich

(1964) and in the relatively recent book by Rajaratnam (1976).

12. Turbulent jets are a special category of turbulent shear

flows. Depending on their dominant driving force, they are distin-

guished as momentum jets or as plumes. For the former momentum is the

predominant factor, while for the latter buoyancy is the governing

force. Jets are also classified according to their geometrical shape

as plane or axisymmetrical.

13. There is usually not a distinct separation line between the

two categories; a jet is then of the mixed-type. In this case, at the

area close to the outlet the jet is influenced by the initial momentum
of the fluid and is treated as a momentum jet, while at some distance

from the outlet the buoyant effects become more important so that the

jet is treated like a plume.

Surface heated jets

14. Considerable research in dealing with surface heated jets

has been done. Hayashi and Shuto (1967) were among the first who

14
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presented an approximate theory for the solution of thermal jets

discharged horizontally at the water surface. Many assumptions were

incorporated in the analysis. Their solution is valid where the

4 Richardson's number is close to unity.

15. Another model for surface thermal jets was developed by

Hoopes, Zeller, and Rohlich (1967), in which the wind shear stresses

on the jet surface and the entrainment due to the wind were in-

cluded. Their model is two-dimensional with constant jet depth and

no vertical entrainment. They assumed that the jet spreads linearly;

buoyant effects and current drag forces are neglected.

16. Motz and Benedict (1970) studied the problem of heated

surface jet discharges into rivers. Their model is also two-dimen-

sional with constant jet thickness, but considers both vertical

entrainment and drag forces. Although buoyancy was assumed to induce

vertical entrainment, it was neglected with respect to jet spreading.

17. In the study of the discharge of heated water into deep

receiving waters, Koh and Fan (1970) were first to introduce inter-

facial shear stress in the formulation of turbulent jet problems.

Internal hydraulic jump due to the transition of the supercritical

issuing jet in the near-field zone into a subcritical flow in the

far-field zone was discussed in their study.

18. Shirazi and Davis (1974) have developed a model for buoyant

surface jets, which in essence is similar to the one given by

Stolzenbach and Harleman (1971), but differs in the fact that they

used Gaussian similarity profiles. Shirazi and Davis estimated the

coefficients of entrainment, turbulent exchange, drag,and shear

through calibration of field and experimental data. This approach

seems less desirable since many errors might be lumped into the

coefficients (Jirka, Abraham, and Harleman 1975).

Ebb tidal jets

19. Tidal inlets act as an interface between estuarine and

coastal waters. Tidal currents near inlets and estuary mouths play

important roles in transporting pollutants and sediments. Patterns of

tidal flow change with time during a tidal period. During ebb, the

15



flow on the ocean side separates from boundaries, as opposed to the

nonseparated flow during flood (Ozsoy 1977). Therefore a turbulent

*jet is often formed during ebb flows.

20. An attempt was made by French (1960) to model the ocean

flow patterns during a tidal period. In his study, constant depth and

negligible bottom friction were assumed. The results thus obtained

did not simulate the actual conditions. In reality, the bottom slope

and bottom friction may become important, especially during ebbing

tide when a jet flow is found.

21. Ozsoy (1977) incorporated variable bottom topography, bed

resistance, and lateral entrainment into the jet flow phenomenon.

He described simulated turbulent jet characteristics extensively.

* His results of the flow patterns at the vicinity of tidal inlets have

been compared with a small physical model and good agreement was

found.

22. Sill, Fisher, and Whiteside (1981) investigated deposition

in an inlet where the hydrodynamics were simulated by a one-

dimensional jet, considering only ebbing tide. Their conclusions

''. were that the dimensions of the equilibrium horseshoe-shaped shoal

were proportional to the inlet velocity and that the two-dimensional

theoretical isopachs do not adequately predict the shape of the shoal.

Freshwater effluent plumes

23. Bates (1953) suggested that at most natural river mouths

freshwater effluent diffusion can be based upon the theory of turbu-

lent jets. A jet boundary occurs near the river mouth as fresh water

discharges into a quiescent bay. Due to the discontinuity in the

velocity of flow, a zone of turbulent mixing is established.

24. Wright and Coleman (1971) suggested that freshwater flow

from a river mouth, its deceleration, and consequent sediment deposi-

tion reflect varying conditions of outflow inertia and associated

turbulence, bottom fricition, buoyancy induced by density differences,

and the winds, tides, and currents of the receiving basin.

25. Based on extensive observations and representative field

data, Wright and Coleman (1971) found that the jet expansion rate in

16



deep receiving water can be expressed by an explicit function of the

density ratio between river water and seawater and the densimetric

Froude number. They concluded that the flow deceleration is due

mainly to vertical rather than lateral mixing.

26. A further investigation of river effluent dynamics for the

Mississippi River was conducted by Wright and Coleman in 1974. In

their study, they divided the mouth of the river into four semi-

discrete regions with specific morphologic and sedimentary character-

istics. The relative contributions of outflow inertia, buoyancy,

bottom friction,and marine hydrodynamics to the evolution of the delta

of a stratified river were documented.

27. A dual treatment of the effluent plume, both theoretical

and experimental, was presented by Bowman and Iverson (1978). They

concluded that the plume is independent of the bathymetry of the

region and its driving mechanism is the horizontal pressure gradient

due to the sloping interface between the plume and the ambient water.

Also, they differentiate plumes from saline wedges on the basis that

the former tends to entrain and mix downward, while the saline wedge

tends to entrain and mix upward.

Review of Previous Efforts in Analyzing Turbulent Jets

28. The governing equations of fluid hydrodynamics and substance

conservation constitute the basis for the mathematical model for

turbulent jets. The formulation is a system of partial differential

equations of three to five equations, that is, one for fluid mass

continuity; one to three, depending on the nature of the problem, for

the momentum components; and one for the conservation of the substance

under consideration.

29. Because of the nonlinear nature of the mathematical problem

formulated, no analytical solution for the complete system has yet

been found. The approximate solution to this mathematical model can

be found by means of a numerical technique (finite difference and

finite element numerical methods) using a digital computer. However,

17
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by making certain simplifying assumptions the system of partial

differential equations can be reduced into a system of ordinary

differential equations which can then be solved analytically or

numerically. This kind of approach is called "integral methods." In

essence, the integral equations of mass, momentum,and energy are

utilized.

Assumption of self-similarity

30. To obtain a closed-form solution of a set of ordinary

differential equations, the self-similarity of velocity profiles along

the longitudinal distance is assumed. The similarity hypothesis has a

firm basis for the classical turbulent jets as demonstrated by theory

(Abramovich 1964; Schlichting 1968).

31. Various functional forms of velocity profiles and sediment

concentration, such as Gaussian probability distribution (Shirazi and

Davis 1974), have been developed based on different sets of hypotheses.

Experimentally, the similarity is well established for the case of

free jets. However, in cases of attached jets with interface friction,

the similarity is under question. Another approach is the split of

the spatial solution field into a near-field model (close to the

outlet) and a far-field model (far from the outlet).

32. Recent experiments by Safaie (1979) suggest that the simi-

larity function depends not only on the width of the outlet but also

on the bed slope and the aspect ratio (the ratio of the width and

depth of an outlet). Such a dependence should be expected, but could

increase the complexity of the problem for reaching an analytical

solution.

Assumption of entrainment velocity

33. A positive step toward the mathematical modeling of turbu-

lent jets is found in the pioneering work of Ellison and Turner

(1959) in which they assumed that the entrainment is proportional to

the velocity multiplied by an empirical entrainment parameter which is

a function of the Richardson number. Their work was justified by

their laboratory experiments for surface jets and inclined plumes.

18
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34. Hirst (1971) introduced an entrainment function which was

related to the buoyancy and the jet orientation. His analysis was

based on the integral forms of the conservation of mass, energy, and

two-component momentum equations. Gaussian similarity profiles were

used. The results of his predictions compared with experimental data

were proven to coincide satisfactorily. The receiving water was taken

as quiescent and stratified.

35. A further analysis of the entrainment mechanism was con-

ducted by Price (1979). Using the experimental data of Kato and

Phillips (1969) and of Kantha, Phillips, and Azad (1979) for stratified

and nonstratified receiving water, Price computed the entrainment

function from the mean buoyancy and momentum equations. In the

momentum equation, a sidewall friction term was included in order to

incorporate the effects of the experimental tank walls. This investi-

gation covered a wide range of Richardson's numbers.

Presence of crosscurrents

36. Keffer and Baines (1963) experimentally investigated the

case of an axisymmetrical turbulent jet subjected to a crosswind.

Their results concluded that the position of the jet in space can be

described by a single function of the entrainment parameter and the4.

momentum of both the jet and the wind. They also showed that the

similarity assumption is still valid for the case of a crosswind.

37. A comprehensive turbulent jet integral model was developed

by Stolzenbach and Harleman (1971). The model considered the cases of

both nonbuoyant and buoyant jets as well as buoyant jets in cross-

flows. The main characteristic of their analysis was the separation

of the jet hydrodynamic field into four separate regions depending on

k ,the shear pattern of the flow. Thus for the near-field zone, the

governing equations were written for each individual region separately

and were then linked together through transfer equations. For the far-

field zone,there was only one region. By scale analysis the original

system was reduced into a simpler one, which was then transformed into

an ordinary differential system by utilizing the similarity profiles

1.9



in a polynomial form. The final system was solved numerically by a

fourth-order Runge-Kutta integration algorithm.

38. Jirka, Adams, and Stolzenbach (1981) gave a general presenta-

tion of the buoyant surface jets theory. Based on dimensional analysis

and some physical arguments, they defined the flow using a set of in-

dependent variables, including the kinematic buoyant flux, the volume

flux, and a characteristic source length. Their analysis covers the

near field of buoyant jets for deep or shallow receiving waters. The

case of crossflow was included also.

39. The diffusion of axisymmetric jets into inflowing streams

was recently investigated by Rajaratnam and Stalker (1982). In their

experiment, the velocity of the jet ranged from 2 to 30 times the

* stream current; experimental results showed the similarity of the

velocity profiles except within the boundary layer portion. The

various jet characteristics were correlated to the excess momentum
thickness.

Closed-form analytical solutions

40. Hayashi and Shuto (1967) were the first to present an

4" analytical solution for the surface heated discharge problem. In

their formulation, the following assumptions were used:

a. In the momemtum equation the horizontal diffusion terms
balanced the pressure gradient.

, b. Similarity existed for the velocity profiles in hori-
zontal and vertical planes.

c. The entrainment rate was proportional to a charac-
teristic velocity.

d. The turbulent diffusion coefficients were constant.

Furthermore, they neglected the advective terms, the vertical veloc-

ities, and the shearing forces at the surface and the bottom. A closed

form solution was obtained for the velocities by a biharmonic stream

function equation where the entrainment was taken as zero. Their

solution holds true where the Richardson number is close to unity.

41. An analysis of the surface heated jets at small Richardson's

numbers has been done by Engelund and Pederson (1973). Their main

%i assumptions were:
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a. Similarity profiles for velocities and densities.

b. Linear density variation along the depth.

- c. Hydrostatic pressure.

d. Shear stresses existing only in the horizontal planes.

By considering that the longitudinal momentum dominates the pressure

forces, they derived a system of ordinary equations from which a

closed-form solution was obtained.

42. In 1976 Engelund improved this earlier model. Based on

their original system of equations, he gave a second order closed-form

solution for the near field and moderate Richardson's numbers, using a

perturbation technique. His solution is the only analytical one which

does not give similar profiles.

* •43. Abraham (1976) presented an analytical form of the axisym-

metric momentum jets and plumes in stagnant and flowing receiving

waters. He described the limits of the jet diffusion theory based on

the similarity assumption and the entrainment concept. A compre-

hensive study was done by Policastro and Dunn (1976) on the integral

models of surface thermal plumes. Their investigation is thorough and

outlines the advantages and disadvantages of the various models.

44. A model for nonbuoyant jets in shallow receiving waters for

the case of sediment transport was developed by Ozsoy (1977). He

integrated the shallow-water wave equations along the jet width,

V including the lateral entrainment and bottom friction. Using the

* similarity functions for near- and far-field zones as given by

Stolzenbach and Harleman (1971), Ozsoy obtained analytical solutions

to the jet equations.

45. The articles discussed briefly in this chapter suffice only

for a general review of turbulent jets. It is not an exhaustive list.

Our attempt is to cover the evolving theory of turbulent jets and the

developing stage of analysis in jet phenomenon.

•. ,46. Our main task is to formulate the freshwater discharge into

a quiescent bay as a two-dimensional plane jet, to derive an

analytical solution for the governing equations of fluid dynamics and

21
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mass transport, and to predict the areal and mass extent of delta

growth in early stages.

.
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PART III: DEVELOPMENT OF THE ATCHAFALAYA RIVER DELTA

General Description

47. The development of the river delta in Atchafalaya Bay since

1950 has provided the opportunity to document the evolution of two new

Mississippi delta lobes, the Lower Atchafalaya River Delta and the Wax

Lake Delta. Numerous descriptive studies (Garrett, Hawxhurst, and Miller

1969; Shlemon 1972; Cratsley 1975; Roberts, Adams, and Cunningham 1980;

Adams and Baumann 1980; Van Heerden 1980; and Van Heerden, Wells, and

Roberts 1981) have been conducted in the bay, which form the basic

foundation for this research.

48. Delta development is primarily the product of an interplay

between river sediment input and reworking by physical processes in

the receiving basin (Wright and Coleman 1974). However, the

Atchafalaya Delta is fundamentally different from the Mississippi

Balize Delta (modern bird-foot delta). The Atchafalaya Delta is

building into a nonstratified shallow bay protected by a series of

discontinuous oyster shell reefs, as shown in Figure 4 (Shlemon

1972). This reef chain, known as the Point Au Fer Reef, forms the

Atchafalaya Delta's seaward margin, in contrast to the continental

shelf location of the Mississippi modern bird-foot delta (Van Heerden

1980). The Point Au Fer Reef, including its submarine extension, was

about 10 miles long before it died out in the late 1960's, due to the

increasing influx of fresh water and sediment into Atchafalaya Bay

(Shlemon 1972).

49. Cratsley (1975) showed that the quantity and size distribu-

tion of sediment available to the Atchafalaya Delta are directly

related to the modern history of the Atchafalaya Basin and River. The

Atchafalaya system is presently river-dominated; average salinity of

the waters in Atchafalaya Bay is 0.37 ppt (US Fisheries and Wildlife

Services 1976). Salt-wedge intrusion does not appear to signifi-

cantly affect the system.
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50. This study, as outlined in PART I, is focused on use of a

freshwater discharge into a quiescent bay for the prediction of the

extent of area and mass of delta growth in early stages. The evolu-

tionary history of the Atchafalaya Delta, gathered from literature,

serves as the basis of our evaluation of the phenomena to be analyzed.

The pertinent information on river discharge, sediment characteristics,

and bay bathymetry are reviewed and arranged in chronological order in

the following sections.

Historical Development

Prior to 1950's

51. The Atchafalaya River system flowed through a broad basin

characterized by extensive freshwater swamps and numerous small lakes.

.4 Prior to the early 1950's, most of the sediments were trapped in the

catchment basin before they reached Atchafalaya Bay. The bottom con-

figuration of the bay virtually remained unchanged. The bay depth was

maintained at a constant depth of 6 ft (Shlemon 1972). Very little

sediment was deposited in the bay. Prodelta clays and silty clays

were accreted on the continental shelf off the Atchafalaya Bay

(Cratsley 1975).

1952 to 1962

52. From 1952 to 1962, as the diversion of Mississippi River

flow through the Atchafalaya River system increased steadily and as

the catchment basins were filled, accelerated sedimentation in

Atchafalaya Bay marked the beginning of a subaqueous delta (Cratsley

1975). As displayed in Figure 5, Grand Lake and Six Mile Lake, which

had been natural settling basins for coarse-grained sediments (silt

and sand), were rapidly filled by deltaic deposits. These catchment

basins are now directly routing sediment through the natural Lower

N. Atchafalaya River Outlet and the man-made Wax Lake Outlet.

53. Shlemon (1972) indicated that about 47 square miles of

the bay bottom had been covered by at least a 1-ft thickness of

sediment by 1962; over 6 ft of fill occurred just south of Shell
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Island, as shown in Figure 6 and Table 1. In Figure 6, the delta

front environment in the Wax Lake Outlet mouth area is much less

extensive than that of the Lower Atchafalaya River mouth area, re-

flecting the relative discharges from the two outlets during the

period of 1952 to 1962 (Cratsley 1975).

1965 to 1967

54. In the late 1960's, the increasing discharge of the

Atchafalaya River and the increasing rate of suspended sediment

transport were responsible for the formation of the distributary bars

at the mouths of the Wax Lake Outlet and the Lower Atchafalaya River

(Cratsley 1975). The average monthly discharge at the latitude of

the outlets during the period 1965-1967 and the corresponding sus-

pended load transported through the outlets were summarized by Garrett,

Hawxhurst, and Miller (1969), and Cratsley (1975) as reproduced in

Figure 7. The combined average annual freshwater flow through the

outlets was about 165,000 cfs. High riverflows occurred from

January through June, reaching a maximum of 325,000 cfs in May and a

minimum of 73,000 cfs in September. The textural composition of the

suspended load was 25 percent sand and 75 percent silt and clay

(Garrett, Hawxhurst, and Miller 1969).

1967 to 1972

55. The period 1967 to 1972 was characterized by the expansion

of the delta front environment throughout Atchafalaya Bay, the estab-

lishment of distributary mouth bars in the bay, and the rapid prograda-

tion of the distal bar (Cratsley 1975). Very definite subaerial

delta lobes appeared in 1972. These initial subaerial exposures were
.4- shoals, composed largely of sediment, extending from the Atchafalaya

River Outlet to Point Au Fer Shell Reef.

* 56. The rapid expansion of the delta front environment in the

Wax Lake Outlet channel mouth area is shown in Figure 8, the 1972

bathymetric map prepared by the US Army Engineer District, New Orleans

(Adams and Baumann 1980). A more detailed evaluation of the prograda-

* tion of the delta front environment was made by Cratsley (1975) by

27
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Figure 7. Average monthly flow and suspended sediments transported
through the outlets during the period 1965-1967

(Cratsley 1975)
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measuring the changes in bottom topography along the six profile lines

as delineated in Figure 9 and plotted in Figure 10.

57. The annual flow in the Atchafalaya River at Simmesport,

Louisiana (near the diversion point in the upper basin), from 1967 to

1972, was 208,000 cfs, and the average annual peak flow was 303,000

cfs (Adams and Baumann 1980). Adams and Baumann (1980) indicated

that the increase in discharge during the period of 1967 to 1972

occurred predominantly during traditionally low flow months; the peak

discharges during the spring months were not great enough to increase

sediment load entering the bay. The average annual sediment load

delivered to Atchafalaya Bay was about 63 x 106 tons for the period

1965-1971 (USACOE 1974).

1973 to 1975

58. The 1973-1975 years were abnormally high-water years

compared with the past 20 years of flow records at Simmesport,

Louisiana, as displayed in Figure 11 (Van Heerden 1980). During

1973-1975, flows averaged 315,000 cfs at Simmesport; peak flows of

over 700,000 cfs occurred in April 1973 and over 600,000 cfs in April

1975.

59. Similar high-flow averages and peak flow were recorded at

Morgan City, on the Lower Atchafalaya River, during 1973-1975. Both

the discharge and suspended load at Morgan City are displayed in

Figure 12 (Roberts, Adams, and Cunningham 1980). Peak flows at Morgan

City of over 600,000 cfs occurred in May 1973, and the normal 300,000-

cfs peak flows were exceeded during 8 months of 1973-1975.

60. Accompanying these abnormally high discharges were un-

usually high concentrations of sediment carried as suspended load

-\" (25 percent sand, 75 percent silt and clay). The annual suspended

sediment load reaching Atchafalaya Bay during the three high-water

years was about 123 x 106 tons. The sediment budget and size

characteristics during the periods of 1965-1971 and 1973-1975 are

listed in Table 2 (Roberts, Adams, and Cunningham 1980).

k'
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1976 to 1978

61. Although the years 1976 through 1978 were considered as

normal flood years (Figure 11), the previous three abnormally high-

water years had played an important role in the rapid development of

the subaerial delta phase. During 1976-1978, the distributary mouth

bar extended seaward and evolved into a complex branching network

characteristic of deltas where river mouths are frictionally dominated

and are gradually building into low-energy, shallow-water environments

(Wright and Coleman 1974).

. - 62. Bathymetric data taken in 1977 by USACOE and adjusted to

the 1975 msl datum (Adams and Baumman 1980) indicated that an esti-

mated 6.55 square miles of new land has developed above msl (Figure 13).

Above the -1 ft datum, which represents the mean low tide level, a

calculated 15.8 square miles of new subaerial land with an approximate

width of 6.8 miles had been added to Atchafalaya Bay over the period
1967-1977 (Roberts, Adams, and Cunningham 1980).

1979

63. Another major flood occurred in 1979. A peak flow of over

500,000 cfs was recorded in April 1979 (Figure 11). Roberts, Adams,
and Cunningham (1980) concluded that suspended sediment transport

during floods was responsible for the abrupt increases in subaerial

delta growth.

64. Through using satellite imagery, color infrared photog-

raphy, and digital current meter data, Wells and Kemp (1981) provided

estimates on the suspended sediment concentrations within Atchafalaya

Bay. These average about 300 mg/l and range from 250 to 400 mg/l.

Long-Term Future Projection

1970 to 2020

65. Shlemon (1972), using sediment load measurements obtained

in the outlets, outlined the probable future configuration of the

.* Atchafalaya Delta by the year 2020 (Figure 14). An average growth

rate was inferred and is plotted in Figure 15. A straight line

projection of bay filling until the year 2020 will yield an estimated

Ko: 36
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Figure 14. Anticipated configuration of the Atchafalaya Delta shoreline
by the year 2020 (Shiemon 1972)
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filling rate of about 7 square miles per year, covering an area of 350

square miles. Assuming that the peak of subaerial growth will be

reached by 1990, a conservative growth rate will be 5.5 square miles

per year, with resultant production of nearly 290 square miles of new

land by the year 2020.

66. Roberts, Adams, and Cunningham (1980) pointed out that unless

an abnormal number of peak floods such as those of the 1973-1975 period

occur during the next two decades, Atchafalaya Bay probably will not be

filled until after the turn of the century. They further estimated

that the sand-dominated phase of the delta will probably cover an area

of over 50 square miles before shifting its locus of deposition to the

shelf seaward of the Point Au Fer Shell Reef.

67. Van Heerden, Wells, and Roberts (1981) projected that the

Atchafalaya Delta should prograde more rapidly, form thin sand bodies,

and eventually cover a wider area, much like the Lafourche, St. Bernard,

4! and Teche delta lobes.

1977 to 2027

68. A statistical approach to predict the future growth of the

Atchafalaya River delta, based on historical deposition trends in

Atchafalaya Bay, has been presented by Letter (1982). He developed a

regression model that correlates deposition rates with river dis-

charge, sediment yield, water depth, and the delta mass centroid.

Using the 1977 bathymetry as an initial condition, the model is

applied to a 50-year hydrograph at 10-year increments of prediction.

The results of the regression model showed that within 50 years the

delta will evolve gulfward of Eugene Island, the gulfward limit of the

bay.

69. Figure 16 shows the predicted condition of the Atchafalaya

Bay in the year 2027. The total volume of the deposited sediments is

estimated at 58 billion ft3, and the delta mass volume, based on -3 ft

NGVD (National Geodetic Vertical Datum), is about 17.6 billion ft3

(Letter 1982).
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1980 to 2030

70. Long-term predictions based on the morphologic development

of the Atchafalaya River delta and generic analysis of existing deltas

have been completed recently by Wells, Chinburg, and Coleman (1984).

Utilizing maps, charts, aerial photographs, and LANDSAT imagery, they

have examined 10 similar deltas and subdeltas worldwide, and have

projected the rate of growth and configuration of subaerial land in

Atchafalaya Bay to the year 2030.

71. The requirements for similar deltas that closely resemble

the Lower Atchafalaya River delta were defined by Wells, Chinburg, and

Coleman (1984) in their generic analysis. The requirements were low

wave energy, low tidal energy, a shallow receiving basin, and high

* suspended sediment load. The results from their study indicate that

the subaerial land area in Atchafalaya Bay by the year 2030 will range

from 150 km2 (59 square miles) to 337 km2 (132 square miles), with

208 km2 (81 square miles) representing the expected land area in 50

years under average flood conditions.

72. Approximately 14 x 106 m3 (495 x 106 ft3) of sediment per

year is retained in Atchafalaya Bay (Wells, Chinburg, and Coleman

1984). Growth prediction curves for subaerial land in the bay were

constructed by Wells, Chinburg, and Coleman (1984), as shown in

Figure 17. Figure 18 shows the configuration of land in the bay in

the year 2030 based on the range of predicted rates of growth.

73. Table 3 summarizes the development of the Atchafalaya River

delta in chronological order as gathered from various literature.
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PART IV: GOVERNING EQUATIONS OF TURBULENT PLANE JETS
IN SHALLOW RECEIVING WATERS

General Description of River-Bay Systems

74. River mouths, with their unique features, are very complex

physical systems. Because they provide a natural link between inland and

sea, most of the world's civilizations and metropolitan cities have been

developed close to these areas. Therefore conflicting interests re-

garding ecologic, economic, recreational, and transportation issues are

closely interrelated with these coastal domains, creating a challenge

where both human and natural forces are involved.

75. The main factors affecting the processes of river mouth delta
9 formation are river-bay hydrodynamics, geomorphology, climate, and human

activities (Coleman 1976). Due to the practical importance of river

delta development, many scientific efforts have been placed on the

investigation of basic laws and principles that govern the behavior and

response of fresh, sediment-laden river water as it issues into the

receiving salt waters of the sea.

76. The overall river-bay system is a time-dependent, three-

dimensionsal phenomenon, influenced by a vast number of different

deterministic and stochastic parameters. To develop a general mathe-

matical model would be a formidable task; thus based on field and

laboratory observations of similar phenomena, certain asswnhptions are

made and predominant parameters with deterministic characteristics are

used to reduce the problem considerably and to make it suitable for

theoretical formulation and analytical approach.

Formulation of River Discharge into a Bay

77. Physically, a river-bay system can be regarded as a plane

water jet issuing into a large receiving body of water. Mathematically,

the jet hydrodynamics of a river-bay system can be expressed by a system

.4
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of time-dependent, nonuniform, incompressible, free-surface, three-

dimensional turbulent flow equations (Schlichting 1968). In general,

this is a nonlinear, hyperbolic-type partial differential system of four

equations, one for mass continuity and three for momentum balance. The

independent variables are the three Cartesian axes (Xl, x2, x3 ) and the

time (t), as shown in Figure 3, while the dependent variables are the

three velocity components parallel to the three axes and the water

elevation (q). In many practical cases this system can be reduced into a

two- or one-dimensional model and still be able to describe the physical

phenomena adequately.

78. The general form of the equation of continuity, or conserva-

tion of mass, for an incompressible flow (Schlichting 1968) is written

as

au.
S- 0 i = 1, 2, 3 (1)

ax.

where u. = the velocity components, and x. = the Cartesian coordinates.1 1

79. The equations of momentum are derived from the Navier-Stokes

equation (Schlitching 1968) and are expressed as

Du. 1 ap 1 3Tiki -- ++ b .
+Dt p ax p axk + k = 1, 2, 3 (2)

where the symbol D/Dt denotes the total derivative, that is, the equiva-

lence of an operator,

D 3 a a a
- + u I - U2  + u 3  (3)

Dt at 1x ax2  3 ax 3

p = the density, p = the pressure, Tk = the stress components, and b. =

the body forces.
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Shallow-Water Hydrodynamic Equations

80. The general system can be reduced into a simpler form for the

case of shallow waters as pertaining to the Atchafalaya River-Bay system.

The basic assumption is the hydrostatic pressure distribution, and by

neglecting the vertical stress components and the vertical acceleration,

the x3 momentum balance in Equation 2 reduces to

1 ap
0 p x3 g (4)

or

p = Pg(Q - x3) + p0  (5)

where r = free surface elevation from the reference datum and p0 =

atmospheric pressure. The reference dat.um coincides with the mean sea

level (Figure 3).

Equation of continuity

81. The free surface can be expressed as x3 = n(xl, x2, t).

Differentiating this with respect to time yields

u = -+ u +u - (6)
at ax1  2 x2

Similarly, if x3 = -h(xl, x2) is the distance from the reference datum to

the bottom, then

8h 8hu3 = I - u 2 -4(7)
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Integration of Equation 1 with respect to the x3-axis gives

of ri wth

au

f(-11, dx3  + - dx3 + u3(x 2 ) - u3(x -h) = 0ax I  f ax 2 3 x2, I' x2 --h h (8)

Utilizing Leibnitz's rule of integration (Wylie 1951) together with

Equations 6 and 7, Equation 8 yields

L'r)

udx3 + a dx 3+0(9

0a 1 af 2 3 at(9

-h -h

Furthermore, due to the shallowness of the bay waters, the velocities are

assumed to be uniform along the depth. Then Equation 9 can be written

as

a... (h + n)u1  3(h + O)u 2  3rj
u + -u= 0 (10)

ax1  ax 2  at

Equation 10 is the final form of the continuity equation in a two-

dimensional, time-dependent shallow-water horizontal domain.

Equation of momentum

82. After introducing the shallow-water approximation and

expanding the total derivative, Equation 2 becomes
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au a(uiu k )  1 ap 1 aT
--- + - ik+b

at axk p ax. p axk 1 (1)

i 1, 2

k= 1, 2, 3

-: -, Let the time average of the velocity components be represented by

u. U (X1 , x2, t) + uI(x, x2, t) (12)

• where u. = mean velocities and u = perturbation velocities with zero

mean value. Also let the only mass force be the Coriolis force. Thus,

for the northern hemisphere,

b1 = 2 Q sin u2  (13a)

b2 = -2 Q sin u1  (13b)

where Q = angular velocity of the earth, and € = geographical latitude of

the river mouth of the site. The shearing forces can be approximated as

aT i a /(au.1 (14)
- I

ax k ax k axk

li =k -- /

where p = molecular viscosity.

83. Substituting Equation 12 for the perturbated velocities,

Equations 13a and 13b for the Coriolis forces, and Equation 14 for
a/ the approximated shearing forces into Equation 11 and time-averaging

it, one arrives at
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au1  (U) (U U 3)

+ + + 2 Q sin4 u2

at ax1  ax2  ax3

1~ 23

1 p + 2 1  2 )

P ax1  P 2 x2

11j~ K i+ 12 1 ) (15a)

--1  u2  3  3

and

O0 3u 2  (u I  uu2 uu 3 _a + + + + 2 Q sin4 u

a t ax1  ax2  ax3
m,~

1 a p + 0 3 2 2  2a 2  i 2 + 2
0 8XI  O D~l2 +X2

P3x 1 aa 2 22 ax2u2

(a ax 2  ax 3 )

84. The last two terms of Equation 15a and 15b can be grouped

together as total stress terms designated by the eddy viscosity stresses

in both horizontal and vertical components. Equations 15a and 15b

become

aa u1  a(UlUl) a(UlU2) a(UlU3)
__ + + + 13 2 sinO u2

at ax1  3x2  ax3

2 3~\a

1 p u U 2uS- + x2  
+  (16a)

Pa~ h 32 + ax2
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and

ou 2  a(u2u1) a(u2u2) a(u2u3) +2Qsn
au + + + + 2 Q sino u

at x1  ax2  3x3

1/2 22 & 2u2

- +~ ( 2  + au2)
S - k(ax2  + ax22/ h(1b
P ax2  ax3  (16b)

where 8h = horizontal eddy viscosity coefficient, and & = vertical eddy

viscosity coefficient. The bars (-) were dropped for convenience.

85. Neglecting the vertical velocity component (u3 ), substituting

the pressure p from Equation 5, integrating Equation 16 from bottom

to surface along the x3 -axis, dividing by h + n, and assuming vertically

averaged velocities, Equations 16a and 16b become

au1  a(Ul U I (UIu 2 )- + + - 2 Q sino u2

at ax1  ax2

Su (~ I  (2u 2 ui) a
g~ ~ ++u

ax h al 3x 3r ax 3h)

9' (17a)

and

au2  auu) auu)
+ + + 2 Q sino u

at ax1  ax2  1

(___ 2 &Va\, 3*~~u -+-- Bx 
2 

+ 
2 a

23u2 1 ax22i n ax ri C h)
ax U 3a3

(17b)

d where uI and u2 now stand for the average velocities over the depth in

the horizontal domain.
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86. The last term in Equations 17a and 17b is the expression

for the tangential stresses at the surface (x3 = n) and at the bottom (x3

= -h). Experimental studies in a one-dimensional rivertlow resulted in

an empirical formula for the bottom stresses (ib )

2

Tb = Pg (18)
Cz

where C = Chezy's coefficient of friction and u = the mean cross-z
sectional velocity. The value of Cz depends on various geometrical and

flow parameters. It is suggested that this coefficient be evaluated

through calibration from actual field data. Experience shows that the

coefficient C usually varies between 45 m/sec and 70 m /sec.
z

87. Similarly, the air-sea interaction stresses (s ) can be

approximated by a formula like that of Equation 18 and can be written

as

Ts = pa¥ w (19)
-I

where p = density of the air, ' = constant coefficient and w = wind

velocity at some reference height from the water surface. Experimentally

it has been found that y2 is a function of the wave form, with a value

close to 0.0026. Further remarks on the bottom and surface shear

stresses can be found in Dronkers (1964) and Nihoul (1975).

88. Neglecting the effects of shear and turbulent mixing, and with

the introduction of surface stress (Equation 19) and bottom stress

(Equation 18), Equations 17a and 17b can be written as
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auu1  B(Ulu 1) a(u1u2)

at + axI  + ax 2  -2 Q sino u2

SI (U2 + u2 2)+ Pa 2 w1 (wl
2 + w2

-g C 211z2(h + ) ph +

(20a), and

3u 2  a(u2u1 ) 3(u2u2)
- + + + 2 Q sin u1
at ax 1  8x2

U. 2 u(u I + u2
2) Pa 2 w2 (wl

2 + w2

=-g -g 2 +-
ax 2  C (h +) p h + n

-z.(20b)

where wI = the wind velocity component along the x1-axis, and w2 = the

wind velocity component along the x2-axis. Equations 20a and 20b are

the momentum balance equations for a two-dimensional shallow-water wave

hydrodynamic model.

89. For the completeness of the mathematical model, the proper

conditions must be defined at the spatial domain boundary, and the

conditions at the initiation time of the phenomenon must also be

provided.

General Description of River-Delta Interaction

90. River delta development is primarily the interaction of river

sediment input and the physical processes of the receiving basin

(Coleman 1976). The large input of fresh water that carries sediments

from the Lower Atchafalaya River is the dominant force in shaping the

Atchafalaya River delta.

91. The nature of the sediments plays an important role in the

river delta system. The presence of cohesive or noncohesive sediments,

and the critical shear stress for erosion, deposition, suspension,or
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consolidation are controlling features in delta formation. Cohesive

sediments are more complicated to deal with, since they are controlled

not only by the hydrodynamic forces but also by the electrochemical

forces (Krone 1978).

Sediment Transport and Delta Formation

92. Freshwater effluent from river mouths carries sediments in

suspension. The diffusion of these materials and mixing with the ambient

bay water determine their ultimate distribution. Based on the hydro-

dynamic aspects presented in previous sections, the study of turbulent

jet diffusion processes in shallow water is formulated in the following

sections.

Shallow-water mass transport system

93. When the distribution of a physical property or substance

(sediment, salinity, temperature, or chemical wastes) that is carried by

the jet needs to be studied, an additional equation is then utilized.

%-% This is the convection-diffusion equation with proper source or sink

terms. The equation accounts for the mass conservation and is a partial

differential equation of the parabolic type, having as a dependent

variable the concentration of the substance under consideration.

Equation of mass conservation

94. In general, the conservation of mass of a substance is ex-

pressEd by the convective-diffusion equation (Ariathurai, MacArthur,

and Krone 1977) in the form

ac a(u~c _ 0 a

- + - +S i=l12 (21)

at ax. ax. i

where c = substance concentration, D.i the molecular diffusion coeffi-

cient, and S = the proper source and/or sink term.

95. Assuming again a time mean and a perturbated value for the

velocities and concentrations, that is, u. = u. + u!, and c = c + c'w41 i1 '
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'1

substituting these terms into Equation 21, and time-averaging it one

arrives at

ac ac a(ulc') 8 /8
+ u + - D.-- + S (22)

a t a x . a x . a x . J i' x )

The deviation term can be approximated as

3(u!c') 3/'az
-- -(23)

8x. ax. ax .ox1

where &. = the eddy diffusion coefficient.

96. Combining the expressions for molecular and eddy diffusion,

and incorporating their coefficients into a single term (E, Equation

22 becomes

'Nac ac a 3 c-+ u. - , E. + S (24)
at ax. 8x. a 111 

I

where the bars have been dropped for simplicity. Equation 24 is the

general equation of the conservation of a substance; when it refers to

conservation of sediments, the term S stands for the processes of

erosion and/or deposition.
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PART V: ANALYTICAL TECHNIQUES AND NUMERICAL SOLUTIONS

Simplifying Assumptions Applying to the
Atchafalaya River-Bay System

97. The system of Equations 10, 20, and 24 derived in PART IV

is a complicated system of partial dirferential equations that can be

solved by means of a numerical technique through a digital computer.

Analytical solutions can be achieved only in the case where the general

equations are simplified considerably under certain assumptions. These

assumptions can be derived from the specific features of each river-bay

system and the characteristic properties of the jet itself. However,

misuse of the simplifications may lead to erroneous solutions of little

practical value. Thus an extended and detailed knowledge of the physical

system under consideration is required so that the limitations of the

validity of the solution can be well understood.

98. Regarding the Atchafalaya River-Bay system, on a first

approximation basis, the following assumptions were used:

a. Shallow receiving waters and velocities are uniform over
depth, where friction is a predominant factor.

b. Well-mixed conditions with no density stratification.

c. Negligible density difference between issuing and
receiving waters, that is, a nonbuoyant jet.

d. Very small wave height, n, in comparison to the depth,
h, so that n - 0.

e. Negligible Coriolis forces and wind stress effects.

f. Bell-shaped similarity profiles for the velocities
and sediment concentration profiles.

e. Entrainment only through the lateral boundaries of
the jet.

Entrainment Function and Similarity Profiles

99. The quantitative expression of the entrainment processes was

a positive step toward the solution of the turbulent jet problem.
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Experimentally,. Ellison and Turner (1959) found that the entrainment, E,

can be defined as a function of gross properties of the jet,

E = eu c(x1) (25)

where u = the axial longitudinal velocity and e = a numerical coeffi-

cient.

100. Another property of the jets that simplifies matters and

helps the solution is similarity. According to this property, the

velocity profile remains similar to itself along the various cross

sections of the jet. For cases where bottom friction is important, the

I' similarity assumptions must be used with reservation. Since the exact

similarity form is not known, there are a variety of similarity function

* Q one can choone from. These can be either of pure exponential form (Fox

* 1970) or of pure polynomial form (Stolzenbach and Harleman 1971).

101. For this study the similarity expression, G(s), was chose to

lie between the two aforementioned cases (see Figure 19), that is,

G(s) = (1 - s2) exp (-s2) (26)

where s = a nondimensional parameter.

102. The similarity assumption can also be extended to the sedi-

ment concentration profiles. Following the suggestion of Stolzenbach and

Harleman (1971), this similarity function, R(s), can be taken as

K

R(s) = G(s)k = (1 - s2 )exp (- s ) (27)

Nondimensional Form of the Governing Equations

103. Under all the simplifications and assumptions previously

mentioned, the governing equations can be drastically reduced into

simpler forms. Assuming, furthermore, that the latera velocity, u2, is

much smaller than the longitudinal, ul, and also that the velocities are

57



PLOT OF SIMILARITY FUNCTIONS
G(S)=( I -S*2)*EXP( -S*02)

R(S)=SQRT(. -S*02)6EXP(-O5S*2)
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Figure 19. Different types of similarity functions
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vanishing at the side boundaries of the jet, the equations can be treated

as follows.

Continuity equation

104. Under steady-state conditions Equation 10 can be written as

3(hu1 ) 8(hu2)
1  =0 (28)

where h is an one dimensional function of the x1 coordinate.

105. Integrating Equation 28 along the width of the jet yields

b(x)1

d

dx h(x Ul(xlx 2 )dx2  = 2Eh(x) (29)

1I
L -b(xl)

where b(xl) = half width of the jet. A detailed description of the

variables involved is given in Figure 20.

106. According to the similarity assumption, the velocity is given

as

uI(XX 2) = Uc (x )G(s) (30)

where s 2
b(Xl)

107. Substitution of the velocity Equation 30 and the entrain-

ment Equation 25 into Equation 29 gives

d h(xl)u (Xl)b(x ) f (I- s2) exp (s2)ds = 2eh(Xl)Uc(xl)

-I (31)
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Using the Gaussian quadrature eight-point numerical integration (see

Appendix A), the evaluation of the integral was found to be

+2

f (1-s 2) exp (-s 2 ) ds = 1.115 (32)

-

Thus Equation 31 can be written as

d (33)d_ (hUcb) = Ahuc (3
dx I c c

where A = 1.794e. For convenience and generalization the variables are

normalized as

x b h u
r = -; B = ; H = ; U = u (34)0' b0' h0 ' 0

40

where subscript 0 denotes the value of the variables at the outlet (x1

= 0). It can be easily shown that

d_ (HUB) = AHU(5
* dr

b*I, with H = B = U = 1 at r = 0. (36)

Equation 35 is the nondimensional continuity equation that constitutes

part of our mathematical model.

61

%



Momentum equation

108. Under the same assumptions used for the continuity equation,

for steady-state conditions the expression for the momentum balance along

the x1-axis, Equation 20a can be written as

d [ b(x1 ) 2 1 b (x2) 2dx-- hx1 , f Ul (Xl'x 2)d2 = -f r "Ul2(xl,x2dx 2

[-bx I)J -b(x1 ) (37)

where f = g/C z2 = Darcy-Weisbach's friction coefficient. Utilizing

Equation 30, Equation 37 transforms into

d [h(xl)u2 (x)b(xI) ( - s2)2 exp (-2s 2) dsdx I  I (X11l

L -1

+1

-fu 2 (x 1 ) f (1 -s 2 ) 2 exp (-2s2 ds (38)

-1

or

d (huc2b) = -fu 2b (39)
dxI  C c

Introducing one additional normalized variable for the friction (F) as

F = f h (40)
0

and referring to the normalized variables of Equation 34, Equation 39

becomes

d (HU2B) 2FU2B (41)

Ul. dr
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subjected to the same boundary conditions given by Equation 36.

Equation 41 is the nondimensional momentum equation which, along with

Equation 35, constitutes the hydrodynamic part of our mathematical

model.

Mass conservation equation

109. Following the same previous assumptions and neglecting the

diffusion terms as being small in comparison to the advective terms,

integrating Equation 24 vertically over depth first and then along the

width of the jet results in

b 1b (

S - ulcdx2 J 2Ehca I w0 c dx 2  (42)
LbA-b cr/

where c = sediment concentration, c = sediment concentration in the

receiving waters, wO = settling velocity of the sediment particles, and

u = critical velocity under which deposition occurs. The right-handcr

side of Equation 42 represents the integrated value of S in Equation 24.

More specifically, the first term refers to the sediment gains due

to lateral entrainment, while the second term is the sediment losses due

to deposition. In this model, no erosion processes are taken into

account. The expression for the deposition function was first introduced

by Krone (1962).

110. According to the similarity assumption, the sediment con-

centration profiles are expressed as

C(Xlx 2) = c c(x )R(s) (43)

where cc = the center-line sediment concentration. R(s) is given by

Equation 27. Considering the receiving waters as sediment-free (c =
a

0) and the setting velocity as constant (wO = constant), and substituting

Equation 43 for the concentration in Equation 42, one arrives at

d r \ u 2bc
ci-[hu bc () wcI(1)J +wO c 2c 5 (44)

cr
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j++
where l(M) f ( - s2) m exp (-ms 2 ) ds (45)

+1

,.+, Utilizing the Gaussian quadrature numerical integration of Appendix A,

~the values of the integrals, l(m), are found to be

r c

I, ;Q U = 94 ; W- 1.397

1(m ) = r ( u 0  (45)

t liin th G Easin quadatre n c yiteg

C' ,.S U2Br. W= (6

' 
ch

.V.

an ubtttigtemit Equation 44 canbewritesa

[ ,2U d2 B31 I

-[I at r 0760 (4)

Etion os givn b Equation 34,

cc ( UB) r 2+ _ bwI -HB r (8

2
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Equation 48 is the nondimensional form of the sediment conservation

equation which along with the hydrodynamic equations completes our

mathematical model.

Analytical Solutions

112. Equations 35, 36, 41, 48, and 49 formulate the mathe-

matical model of a plane, sediment-laden jet issuing into a shallow

quiescent bay. In the following, solutions will be given for the cases

of constant depth (H = 1) and of linearly varying depth (H = 1 + arbo/h.,

a = slope). The solution will be given in terms of the following

dependent variables: velocity ul(X 1 ,x2), width b(xl), and sediment

concentration c(xlx 2 ).

Solution for constant depth (H =1)

113. For constant depth, H = 1, Equations 35 and 41 become

-' dar(UB) = AU (50)

and

L (U2 B) = -FU2 B (51)
dr

From Equation 51 it is easily derived that

U2 B = exp (-Fr) (52)

Combining Equations 52 and 50 thus eliminating the variable B, we

have

r + FU = -A exp (Fr) U
dr
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Equation 53 is a Bernoulli-type ordinary differential equation.

Following the typical solution procedure of Appendix B, and utilizing the

boundary conditions (Equation 36), the nondimensional center-line jet

velocity is given as

AU - exp (Fr) + 1 + exp (2Fr)J (54)

Then the solution for the nondimensionalized jet width, B, can be

obtained directly from Equations 52 and 54 as

B +(1 + A) exp (Fr) (55)
F \ F,

In dimensional form the jet velocity, u (r,s), and the jet width, b(r),

can be written as

u (r,s) uo(I - s2 ) exp (-s2 )[- LA exp (Fr)

+ 1 + A exp (2Fr) (56)

and

b(r) = b 0 [- A + I + exp (Fr) (57)

.

114. For constant depth the mass conservation relation, Equation

48, is also reduced to

i "dC -1 12 +U2 WB I, d(UB)_
" - 3W IdB dr (58)

C II dr

or

dC I W I WU d(UB)

--- - dr + - dr- (59)
c ~ u u2 UB,'.,-:C Ii U Ii U 2U

I.I cr
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By direct integration it results in

r r
12 f 1 13 W f

in C--- W - dr + 2 Udr - £n (UB)

1 0 U 1 cr 0 (60)

or

C exp - dr + - Udr - An (UB (61)

1 0 1 cr 0

The integrals within the exponential cannot be evaluated analytically.

Thus, for the application of Equation 61, a numerical integration

* technique is required.

115. An essential simplification in the solution can be achieved

by making an additional assumption of no entrainment conditions (A = 0)

in Equation 54. Then the integrals can be easily evaluated as

fl dr= exp (Fr) dr = i exp (Fr) (62)

and

f.,dr = exp (-Fr) dr = exp (-Fr) (63)

Therefore Equation 60 can be rewritten as

12 W 13 W
In C - exp (Fr) 2 exp (-Fr) + Y (64)

1 I U -'F
I F 1 cr

Since An(UB) - 2n[exp(-Fr)exp(Fr)] - £n(1) 0, from the boundary con-

dition, Equation 49, the constant of integration, Y, is found to be

67

Clo



12 W 13 W
I F +~ F (65)
1I F I I FUcr2

Thus, finally, the solution for the normalized center-line sediment

concentration reads

I2W 1 3eW 1
C = exp [ F [ - exp (Fr) I + [1 - exp (-Fr)] (66)

I cr

V

where 12/1, = 1.472 and 13/I1 = 0.801. In terms of the independent

variables, r and s, the sediment concentration within the jet is given as

c(r,s) : c0(I - s2) exp (ls2) exp {2 W [1 - exp (Fr)]

13 W 1

+ [1 - exp (-Fr) 1 (67)
I FU

Solution for linearly varying depth (H = I + arbo/ho)

116. For linearly varying depth Equations 35 and 41 are

written as

d(UB) b0
H d- + a h0UB AHU (68)

and

d(U 2B) /b O

H - : a0 + F )UB (69)idr
2

Solving Equation 69 for U B gives

2 -(+13)
U2B H (70)
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where D = f/a. The combination of Equations 70 and 68 yields

d ID 1 ] DoH(1+D)u-1' i"

~Hr H-IDu "  + ao h H (71)

dr

d(HU) + __ 1)H-(Hu) = _AO-I(HU)3 (72)
dr h0

Equation 72 is also a Bernoulli-type ordinary differential equation

with respect to the monomial HU. Thus, along with the boundary condi-

tions of Equation 36, the solution for HU (Appendix B) is

HU = (2A) _ _Drh 0 (H2-D -1) + ' (73)
Uabo 2 ( - A

Consequently, the normalized center-line velocity is

-%-D h 0 1 ( 2 -D -)+(4
U = (2A) H - 0 2 -D H -1) + (74)

The normalized jet width can now be derived from Equations 74 and 70

as

h0 1 1
_ ~-1 ___I 2-D_ 1

B=2AD " [ - (H -1)A+ (75)Lb 0 2 -D

Following all these, the velocity and the width of the jet in terms of

the variables r and s are given as

ul(rs) = UO(2A) Lb 2 - D (H2 D -1)

S22 exp -s2  (76)
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and

b(r) b 2AH- l[h 0 1 (H 2-D -1) + (77)b~)=0 a-bo0 2 - D T-

117. For linearly varying depth, the sediment conservation

relation, Equation 48, after direct integration, reads

r r

ln C W - dr + U 2 -dr - n (HUB) (78)
11 H II  Ucr f H

0 0

or

1 2 113 W f
C =exp - W f dr + 2  - dr -n(UB) (79)

1 0 HU 11Ucr 0H

Again, the integrals within the exponential must be evaluated numeri-

cally. In terms of the variables r and s, the sediment concentration is

written as

c(r,s) = coC( - s2) exp - s2) (80)

where C is given by.Equation 79.

Approximation of Sediment Deposition in a Bay

118. The sediments carried by the river waters are the main

miterial for the river delta development. The form of the delta,

however, depends on other parameters such as the climate, the hydro-

dynamic field, the area topography, and the sediment characteristics
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themselves. Neglecting erosion and side entrainment of the sediment,

under steady-state conditions, material deposition is linear in time and

can be computed as

t 1 U2/ u12c

cd(rs) = dt = Ur2_- (81)
fwci uc)d u~(i

where cd = deposited sediment and t = time. The values for the velocity,

Ul, and the concentration, c, are taken respectively from Equations
56 and 67 or 76 and 80.

119. In the case that the variable c is given in units of mass per

* volume, the deposited sediment, cd, is computed in mass per unit area.

-Therefore, assuming no consolidation processes, the thickness of the

deposited sediment layer, d, can be directly computed from Equation 81

as

d d (82)

where ps = density of the sediment.

120. For the numerical simulation of river delta evolution, the

overall phenomenon is taken as steady for certain time intervals. Then,

due to the variation in the bottom topography from deposited sediment

buildup, proper adjustments must be made to various parameters and the

solution repeated under the new conditions. In such a manner the mathe-

matical model, although being of a steady-state nature itself, predicts

the delta development over time.
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PART VI: PREDICTION OF THE ATCHAFALAYA RIVER DELTA GROWTH

- I

Basic Data for Analytical Prediction

121. The Atchafalaya River-Bay area is a complicated dynamic

physical system. For the purpose of this study, the values of various

factors controlling this system must be known. The most essential of

these factors are the geometry and topography of the area; the water

discharge, and sediment load of the river; and, to a lesser degree, the

I~.

- .~ hydrology and climate of the surrounding environment. Field data per-

taining to our analytical analysis of delta development were gathered

from various sources and are outlined in the following sections.

* Physical dimensions of river outlets

122. Two river outlets, the Lower Atchafalaya River Outlet and

Wax Lake Outlet, are forming in Atchafalaya Bay. Each outlet has its

own characteristics and these consequently influence the form of the

developing delta.

fatr123. Using data from a 1974-76 hydrographic analysis by the

Waterways Experiment Station (1981), the cross section of the Lower
Atchafalaya River, at river mile 135.8 from Simesport, La., is plotted

in Figure 21a. The river outlet is approximately 3,000 ft wide and

reaches a depth of 35 ft. From the same data source, the cross

A section of Wax Lake Outlet, at river mile 122.3 from Sirnmesport, is

plotted in Figure 21b; the outlet is about 1,000 ft wide and reaches a

depth if 56 ft.

124. The Atchafalaya River Outlet is under continuous dredging

so that a navigation channel can be maintained throughout the bay.

This navigation channel is developing as the future main course of the

river through the emerging delta.

Initial bathymetry conditions of the receiving bay

125. Bathmetric maps of the Atchafalaya Bay for the years 1972

and 1977 (Adams and Baumann 1980) give a clear picture of bay

bathymetry (Figures 8 and 13). With a depth ranging from 4 to 8 ft

(1.2 to 2.4 in), the bay can be classified as shallow and well-mixed,
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thus bottom friction may play a predominant role. Other indications

from these bathymetric maps are that the newly deposited sediment is

close to the river mouth, and that the bathymetry of the remaining bay

is less affected.

River discharge and suspended sediment load

126. The water discharge of the Atchafalaya River at Simmesport

(Figure 11) and at the Lower Atchafalaya River Outlet (Figure 12) is

varied. It ranges from 80,000 cfs to 600,000 cfs (2,000 cms to

17,000 cms).

127. The current velocity at the river mouth ranges from 3 fps

(1 mps) to 0.2 fps on a diurnal basis due to the tidal action (Figure

22). However, the current always has a southwest direction at the

*Lower Atchafalaya River Outlet (WES Preliminary Field Data Report

1982).

128. The character of the sediments entering the bay via riverine

flows is controlled by the sedimentation processes within the river-bay

system. According to Roberts, Adams, and Cunningham (1980), the sediment

load is composed mainly of silt and clay (> 75 percent) and a small part

of sand (< 25 percent) (Table 2). Thus our study can be simplified by

dealing with the fine sediment materials which are transported in sus-

pension only. Whether to treat the sediment as cohesive or noncohesive

is a difficult question. Since much of the subaerial sediment is sandy,

it is reasonable to use a single equation to predict sedimentation

processes without considering various particle sizes.

129. Letter (1982), based on observations of the sediment con-

centrations in Simmesport, derived a regression equation relating

water and sediment discharge obtaining

: _ 1.444

Qs = 0.0728 Qw (83)

where Qs is the suspended sediment load in 1000 tons (2000 lb) per

day and Qw is the water discharge in 1000 cfs. The value of the

exponent is close to unity, permitting the assumption of a linear

ININ relationship between water and sediment discharge.
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130. As shown in Figure 12, the variations of water and sedi-

ment discharge at the Lower Atchafalaya River Outlet follow the same

pattern through time. Thus, for all practical purposes, the mean

sediment concentration can be reasonably assessed. A mean water

discharge of 300,000 cfs (8,500 cms) and a mean suspended sediment

load of 200,000 metric tons per day are shown by Figure 12 for the

period 1973-75. From these values, an average sediment concentration

of 0.27 kg/m 3 (270 ppm) is derived.

131. For a water discharge of 300,000 cfs, Equation 83 gives

a mean sediment concentration of 275,000 tons/day (0.34 kg/m3 ), which

is close to the value of 0.27 kg/m 3. In the following computations,

the mean sediment concentration (C0 ), varying from 100 ppm to 600

* ppm, is taken into consideration for our study.

Sediment settling velocity and deposition

132. The sediment deposition rate, which depends on the shear

stress of the flow (Krone 1962), is assumed to be proportional to the

velocity of the sediment particles. In general, this velocity depends

on the shape, size, and weight of the particle, as well as on hydro-

dynamic conditions. To define the settling velocity of cohesive

sediments in a real situation is a difficult task, because these

particles have the tendency to adhere to each other and form large

aggregated floes. Laboratory measurements made by the Waterways

Experiment Station on Atchafalaya River sediments (Figure 23) have

shown a settling velocity from 0.01 mm/sec to < 1.0 mm/sec (WES

Preliminary Field Data Report 1982).

133. The freshly deposited sediments are initially in a very

loose state. However, as new sediment layers are superimposed, the

low density large aggregates are crushed down to smaller floes, and

denser and stronger bed layers are formed. As a result of this

consolidation effect, the bulk density of the bed (ps) may be of high

value (Krone 1978). Wells and Roberts (1980) used a density of 375

kg/m 3 to estimate the sediment transported in the Atchafalaya mud

stream. In our analysis, a value of ps equal to 400 kg/m 3 is used.
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134. The active development of the river deltas in Atchafalaya

Bay indicates that the deposition rate in the area is much faster than

Xi the rate of erosion. Normally, the combined effect of both deposition

and erosion should be considered. In our analytical model it is

assumed that the sediment is subjected only to transportation and

deposition, and that each particle that hits the bottom adheres to it.

Supressing the resuspension effects is acceptable, since the sediment

deposition is estimated based on average values of the water discharge

and the sediment concentration.

Bottom resistance and lateral entrainment

135. The predominance of silt, clay, and fine sand in the

bottom materials of the bay causes the bed surface to be smooth, with

* relatively small friction resistance. In the absence of field data,

the Darcy-Weisbach coefficient of friction (f) is assumed to vary

from 0.001 to 0.006 in this study. It is further assumed that the

*friction coefficient is time-independent.

136. The riverine waters entering Atchafalaya Bay are well

mixed with the receiving waters. Because of the shallowness of the

bay, there is no density stratification, and the only entrainment of

the receiving bay waters to the sediment-laden river waters is through

the sides of the jet. The lateral entrainment coefficient (e) has

- ~' proven to be a function of Richardson's number (Ellison and Turner

1959). Engelund (1976) used a value of 0.075 in the case of a very

small Richardson number. In our analysis, a range of e varying from

0.0375 to 0.300 is considered.

Procedures for Closed-Form Analytical Solutions

Idealization of the Atchafalaya River-Bay sj:tem

137. The physical features of the Atchafalaya River-Bay system

are approximated by simple geometry for the domain of the closed-form

analytical solution. Using the data of the previous section, the

nominal values of dependent variables (h, b, u, and c) can be deduced

for our study.
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138. The cross sections of the Lower Atchafalaya River and Wax

Lake Outlet (Figures 21a and 21b) are found to be equal to 66,000 
ft2

2 2 2
(6,200 m ) and 29,000 ft (2,700 m ), respectively. Considering a

mean annual water discharge of 300,000 cfs (8,500 cms) at Simmesport

and the 70-30 percentage split of discharge (Letter 1982), the flows

in the Lower Atchafalaya River Outlet and the Wax Lake Outlet are

210,000 cfs and 90,000 cfs, respectively. Both flows exhibit a

velocity of 3.10 cfs (- 1 mps)(WES 1981).

139. Basically, the river mouth is the point at which fresh

water leaves the confined channel and mixes with ambient water. In

the Atchafalaya River-Bay system, the river outlet discharges a part

of its flow into the bay through a navigation channel. The bottom of

the navigation channel is much deeper than the bottom of the ambient

bay. In this study, those flow and sediment discharges through the

navigation channel are assumed not to have significant influence on

jet characteristics, and are assumed to deliver directly to the Gulf

of Mexico.

140. The Atchafalaya Bay is relatively flat, with a uniform

depth of 6.0 ft (-2 m) (Figure 13). This depth, measured below mean

sea level, is referenced to the bathymetry conditions of the year 1977

(Adams and Baumann 1980). In a shallow bay, the formation of delta

lobes depends on the bathymetry of the receiving bay rather than the

geometry of the river itself (Wells, Chinburg, and Coleman 1984). This

fact leads us to assume that the river outlet can be approximated by a

rectangular cross section. Using the bathymetry map of Adams and Baumann

(1980), the inferred width is about 4,000 ft (1,200 m) for the Lower

Atchafalaya River Outlet, and about 3,300 ft (1,000 m) for the Wax

Lake Cutlet. The nominal water depth at both outlets, h0 = 6.5 ft

(2 m), is used in this study.

Values of various parameters used in the analytical study

141. As previously mentioned, the rate of sediment deposition
depends on the shear stress of the flow (Krone 1962). In this study,

a linear relationship between the shear stress and mean square

velocity is assumed (Equation 81). The center-line velocity at the
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river outlet is used as a critical velocity (u = u ) under which

deposition occurs. Equation 81 implies that at the middle point of

the river outlet no deposition occurs. Table 4 summarizes the range

of the values for various parameters to be used in our analytical

study.

Computer graphics and numerical
integration used for analytical solutions

142. The SAS/GRAPH (1981), a computer graphic system, is used

to display the values of dependent variables (u, b, c, d) for various

cases. The GPLOT PROCEDURE graphs one variable against another,

producing a two-dimensional plane. The G3D PROCEDURE plots the value

of three variables and produces a three-dimensional surface. The

variables to be plotted are specified in a PLOT statement. Both the

GPLOT and G3D PROCEDURES can automatically scale the axes, or the user

can specify the scale. Use of computer graphics provides flexibility

in displaying information meaningfully. Examples for use of computer

graphic programs are listed in Appendix C.

143. A numerical integration technique is needed for t'ie compu-

tation of integrals, fO I dr and fO U dr, appearing in Equation 79.

The orthogonal collocation method is used for numerical integration

(Villadsen and Michelson 1978). The method consists of expanding the

normalized center-line velocity U, a dependent variable, in terms of a
th

n order Jacobi polynomial. The n roots of this orthogonal poly-

nomial are chosen as the n collocation points (Kuu and Polack 1982).

The integration of the profile of the dependent variable is approxi-

mated by the Radau quadrature formula (Villadsen and Michelsen 1978).

The Radau quadrature weights at the n collocation points (the

abscissas) are determined (see Appendix D). The integral is approxi-

mated by the summation of the product of the weight and the value of

the function at the collocation points. Quadrature integration is

explained in detail in Appendix D.
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Base Results of Analytical Solutions

144. This section presents a basic computation using nominal

values of variables to obtain the closed-form analytical solution.

This base result will serve as a guideline for the comparison of the

results of various cases and for the sensitivity analysis of various

parameters.

145. The following nominal values are used in the basic computa-

tions to obtain the base results:

bO  = 500 m w0  = 0.05 mm/sec

ho = 2.0 m a = 0.0001

u0  = 1.0 mps f = 0.001

u = 1.0 mps e = 0.075
cr 3
co  = 300 ppm Ps = 400 kg/m

The dimensionless variables are defined as

r x /b U =u /u1 0 cr cr 0
s =x 2 /b C =c/C0

B = b/b 0  F = fb0 /h0

H = h/h0  W b0w0/h0u0

U = u/u 0  D f/a

and the values of the integrals are

11 = 0.946

1 2 = 1. 397

I = 0.760
3

Results of constant depth
without entrainment (Case 1: E = 0, H = 1)

146. The normalized (dimensionless) jet center-line velocity (U)

and jet width (B) are obtained by substituting A =0 into Equations

81
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54 and 55. The center-line concentration (C) is given in Equation

66. The equations for each of these variables are

U = exp (-Fr) (84)

B = exp (Fr) (85)

C = exp [I - exp (Fr)] + - - - [1 - exp (- Fr)J

I 1  F 11  F U cr 2(86)

147. The dimensional form of jet velocity (u), jet width (b),

and center-line concentration (c) are derived straightforwardly as:

u(r, s) = u G(s) = u0 G(s)U

2 2
= u0 (1 - s )exp (-s )U (87)

b(r) = boB (88)

c(r, s) = c R(s) = c0R(s)C

C ~2 , 2
c0(- ) exp (--s )C (89)

The deposited sediment (cd) and its thickness (d) are computed from

Equations 81 and 82, respectively:

cd(r, s) = 0oC(I - u2/ucr2)t (90)

d(r, s) - Cd/Ps (91)

*:.- The results of the calculations of u, c, and d are displayed three-

dimensionally in Figures 24, 25, and 26, respectively (and Plate 1),

with the aid of computer graphics (see Appendix C). Each of the

variables is plotted versus the normalized longitudinal (r) and

lateral (s) coordinates.
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PLOT OF JET VELOCITY U1
IN M/SEC

CASE 1: E = 0 AND H = I
BASE RESULTS

ul
,74

4 1.00

0.67

1.00

0.33 
-i

0.333

AS

0.00

.33

Figure 24. Case 1: Base results for jet velocity u
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PLOT OF SEDIMENT CONCENTRATION C1
IN PPM

CASE 1:E =0 AND H =1

BASE RESULTS

C1

300

200

1 .00

100

R 66

Figure 25. Case 1: Base results for sediment concentration c
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PLOT OF SEDIMENT THICKNESS
IN CM

CASE1: E= 0 AND H =
BASE RESULTS

THICK

186.50

4 124.34

1 .00

62.17

p0.3

0.00

R 6.67 0

Figure 26. Case- 1: Base results for sediment thickness d
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Results of linearly varying depth
without entrainment (Case 2: E =0, H #1)

148. For linearly varying depth (H = 1 + arbo/ho) and no

entrainment (A = 0), the nondimensional continuity equation, Equation
" 35, becomes

L (UB) = 0 (92)

dr

Using the boundary conditions stated in Equation 36, Equation 92

implies that

HUB = constant = 1 (93)

or

UB = 1  
(94)

Similarly, the nondimensional momentum equation, Equation 41, can

be written as

b0

H d (U2B) + (a - + F)U2B =0 (95)
dr h0

Solving for U 2B, we obtain

U2 B = H-(1 + D) (96)

Combining Equations 94 and 96, we get

U = H -D (97)

B = H-1 + D (98)

and finally

86



HUB = (H) (H-D ) (H- 1 + D) = 1 (99)

149. The nondimensional form of sediment conservation is given

by Equation 48. Substituting Equations 97, 98, and 99 into

Equation 48, we obtain

dC WD I 2 H-1+D + 1-3-1(100)

WD 2 -H dH (100)
C F' 1 1 Ur

Icr

or

3 -exp - W HJ2 H-D  + Y  (101)
FU cr

where w
Y = -( + - (102)

F II 1 1 c

or

C = exp 1 (1 - HD ) + 12 0 H- D  (103)

F I1 F U
1 crJ

150. The dimensional form of jet velocity (u), width (b),

concentration (c), the deposited sediment (cd), and the sediment

thickness (d) for Case 2 are computed using exactly the same procedure

as Case I with Equations 87, 88, 89, 90, and 91. The three-

dimensional graphs for u, c, and d for this case are plotted in

Plate 2.

Results of constant depth

with entrainment (Case 3: E t 0, H = 1)

151. As shown in PART V and presented again in this section,

Equations 54, 55, and 61 are the expressions for the normalized

center-line velocity (U), jet width (B), and center-line concentration

(C), respectively:
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U + A A -
U = exp (Fr) + (1 + L-) exp (2Fr) (104)

B= - -A+ ( + A exp (Fr) (105)

and

12 r 113W r

C = exp W--- W -dr + 2 Udr - £n(UB) (106)

1  0 1 cr 0

* 152. The integrals appearing in Equation 106 have to be eval-

uated numerically. In this case, the lower end point (U = 1 at r = 0)

of both integrals is known, thus the Radau quadrature formula

(Appendix D) is used.

153. Again, the dimensional form of jet velocity (u), width

(b), concentration (c), the deposited sediment (Cd) and its thickness

t.A (d) are computed straightforwardly by using Equations 87, 88,

89, 90, and 91, respectively. Plate 3 contains the plots for

u, c, and d.

Results of linearly varying depth
with entrainment (Case 4: E 4 0, H # 1)

154. The general solution of linearly varying depth with

entrainment for the normalized center-line velocity (U), jet width (B),

and center-line concentration (C) are given in Equations 74, 75,

and 79 in PART V:

,U (2A)- H-D [h O  I (H2 -D -1) (107)
B 2-D 2AI~0

B 2-2AHD- (H2 -D'I) + 1 (108)
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and

C = exp [2 W r Idr + - dr - kn(HUB) (109)II f HU I1 U 2 H

1cr 0

155. Again, the lowest limit (H = 1, U = 1, at r = 0) of both

integrals appearing in Equation 109 is known, and the Radau inte-

gration technique (Appendix D) is used. Similarly, the dimensional

form of jet velocity (u), jet width (b), concentration (c), the

deposited sediment (cd), and the sediment thickness (d) are computed

by using Equations 87, 88, 89, 90, and 91, respectively. The three-

dimensional graphs of u, c, and d are displayed in Figures 27, 28,

and 29, respectively (and Plate 4).

Prediction of Delta Front Advancement

156. The rate of delta growth depends on the amount of sediment

supplied by the riverine waters and reworking by current forces in the

receiving bay (Coleman and Wright 1975). The areal and mass extent

of deltaic evolution is governed by the relative roles of inertial and

frictional forces. Thus sediment deposition patterns are determined

by various physical parameters that are formulated in the analytical

solutions for the four different cases.

Sediment deposition patterns under quasi-steady state

157. In this study, a quasi-steady state for sediment deposi-

tion is assumed (Engelund 1976). The deposited sediment and its

thickness are computed as a linear function with time (Equation 90).

The deposition patterns of Case 4 for the time interval of 1.5 years,

1.0 year, and 0.5 year are given in Plate 5. From these figures, it

is shown that the deposited sediment forms a saddle-shaped bottom.

The rapid accumulation of suspended sediment near the river outlet and

the abrupt decline of sediment deposition away from the outlet are

observed. As the central portion of the sediment accumulates, it
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PLOT OF JET VELOCITY U1
: IN M/SEC

CASE 4: E ?* 0 AND LINEAR H
BASE RESULTS

1 .oUl

1.00

0.67

00.00

, 20.0 -0.3
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Figure 27. Case 4: Base results for jet velocity u
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PLOT OF SEDIMENT CONCENTRATION C1
: IN PPM

CASE 4: E b; 0 AND LINEAR HBASE RESULTS

C1

300
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1.00
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Figure 28. Case 4: Base results for sediment concentration c
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PLOT OF SEDIMENT THICKNESS
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CASE 4: E ¥ 0 AND lINEAR H

THICK
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Figure 29. Case 4: Base results for sediment thickness d
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causes the river mouth channel to separate into arms known as bifur-

cating channels (Coleman 1976).

158. Therefore, until subaerial land has emerged, it can be

inferred that the riverine input has limited influence within a

certain longitudinal distance; and that as the deposition process is

completed in this level of development the river mouth advances to

the end of the subaerial land and begins the process of bifurcation.

'- Conceptualization of delta-channel development

159. The geometry of river-mouth sandbars is determined by

riverine flow conditions. When river outflow velocities are high and

water depths seaward of the mouth are shallow, the rapid rate of

$1 effluent expansion provides, initially, a broad radial sandbar and

later on develops a distributary network. Coleman (1976) documented

three major types of existing delta channel patterns (Figure 30). In

an environment having a high subsidence rate, low wave and tide

energy, low offshore slope, and a fine grain sediment load, the

development of bifurcating channels is typical. Deltas developing

this distributary pattern are characterized by a large number of river

mouths (Figure 30).

160. Channel bifurcations and crevasse discharges have

influenced the shape of subaerial land in Atchafalaya Bay. Adams and

Baumann (1980) identified five levels of bifurcation that have been

taking place in the Lower Atchafalaya River delta (Figure 31). The

branching channels discharge water and suspended sediments that form

subdeltas along the distributary channels. The shoaling at the

branching river mouth is repeated and new bifurcations develop at the

new channel outlets to form a complex branching pattern (Adams ar.

Baumann 1980).

Stepwise procedure for delta growth prediction

161. A stepwise procedure, formulated to estimate the areal and

volume extent of the delta in both space and time, is the means by

which deita growth is predicted. The space steps are selected at the

beginning of the computation and guided by the dimensional plot of

sediment deposition. The time-steps are not known a priori, but
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depend upon the analytical solutions themselves and are obtained by

the numerical procedure (Appendix E).

162. In order to simulate the process of bifurcation, it is

assumed that at each level of bifurcation the branching channels

achieve a stage of development similar to their parent .channel, and

that the subdelta is produced by turbulent jets with the same riverine

flow conditions. An idealized bifurcation scheme is displayed in

Figure 32.

163. In this study, our predictions are based on mean sea

level, which is used as the determining elevation for subaerial land.

Plate 6 is a two-dimensional plot of sediment thickness for Case 4.

The total sediment volume is computed by analytical integration. The

* Otime required to fill the known volume of sediment to an average

thickness h is obtained by the method of Bisection Search (Scheid

1968). The numerical procedures are explained in detail in Appendix E.

Prediction for the Lower Atchafalaya River Outlet delta

164. River delta development depends on the quantity of

sediment that is delivered to and retained in the receiving bay. In

Atchafalaya Bay, much of the flow through both the Lower Atchafalaya

River Outlet and Wax Lake Outlet enters the Gulf of Mexico via the

navigation channels. Adams and Baumann (1980) estimated that 40

to 50 percent of the total volume of suspended sediment delivered

to the bay through the river outlets will be retained in Atchafalaya

Bay and the rest will be dispersed in peripheral marshes and offshore

regions.

165. For predictive purposes, it is assumed that the volume of

sediment is proportional to the volume of discharge. Based upon the

70-30 percentage split of discharge for the two outlets (Letter

1982), the Lower Atchafalaya River delta is expected to grow to a much

greater extent than the Wax Lake Outlet delta.

166. The Lower Atchafalaya River delta can be divided into an

eastern and a western component (Adams and Baumann 1980), areas that

__ are associated with East Pass and West Pass (Figure 31). Van Heerden

(1980) conducted an extensive field study in the eastern half of the
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Lower Atchafalaya River delta from 1973 to 1979. The total area of

the eastern half of the subdeltas was 4.56 mi2 (11.67 km2 ) with an

average growth rate of 0.76 mi 2/year (2 km 2/year).

167. In contrast, subdelta development on the western side is

more complex. Adams and Baumann (1980) indicated that if it were not

for the navigation channel, God's Pass and Log Island Pass (Figure

31), which developed from second-order bifurcation, along with East

Pass would represent the three major river outlets.

168. To simulate the growth of river deltas in this physical

domain, a stepwise procedure described in the previous section is used

and the simulation is done as follows:

a. In the first order bifurcation, the total river discharge
and suspended sediments are divided into three equal

0O' amounts representing the three major outlets.

b. A space step is selected at the onset of computation; the
subdelta area (jet length and width) at each outlet is

X.- calculated.

c. The time-step is searched by the numerical procedure
(Appendix E).

The numerical procedure is repeated in the same manner for the se-

quential order of bifurcation processes. The results of each computa-

tion are summarized in Table 5. The average growth rate is about 5

km 2/year.

Prediction for the Wax Lake Outlet delta

169. The bifurcation process is not as evident on the Wax Lake

Outlet delta. Most of the delta development has occurred west of the

main channel (Adams and Baumann 1980). A few branching channels have

developed on the western side of the outlet and subdeltas have formed

along the subchannels.

170. Wells, Chinburg, and Coleman (1984) reported that during the

1980-81 flood year, the Wax Lake Outlet delta represented 17 percent of

total subaerial land in Atchafalaya Bay, and approximately 10 percent of

the total if averaged over a 6-year period from 1975 to 1981 covering an
2 2

area of 2 km to 3 km2 . The average growth rate ranged from 0.3 to 0.5

Skm2 /year.
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171. To simulate the natural bifurcation pattern in the absence

of field observation is a difficult task. Thus the same branching
i. scheme presented earlier is used for modeling the growth of the Wax

A Lake Outlet delta. The stepwise numerical procedure is again used to

estimate the growth of delta lobes. The results are listed in Table 6.

The average growth rate is about 2.6 km 2/year.

Estimation of Atchafalaya River delta growth

172. Aerial photographs (Wells, Chinburg, and Coleman 1984) and

photomosaics (Adams and Baumann 1980) show that the Atchafalaya River

deltas have grown by developing parabolic lobes of fine-grain sediments

that radiate from the network of branching channels. These delta lobes

are evolved from shallow sandbars that rose above mean sea level and

* emerged as subaerial land.

173. Adams and Baumann (1980) indicated that in Atchafalaya Bay

the central area between two deltas is apparently broad and deep

enough to transport the riverflow it receives without forming a

discrete channel. This fact suggests that in our study, the analyt-

ical results derived from numerical procedures for the Lower

Atchafalaya River Outlet and the Wax Lake Outlet separately can be

combined linearly to represent the total delta growth in the bay.

This is similar to Letter's (1982) approach, in which the bay area was

roughly divided into two areas, one for each of the two outlets.

Figure 33 shows an estimation of the total subaerial land in

4Atchafalaya Bay derived from our analytical approach. Figure 34

presents the prediction of volume extent of Atchafalaya River delta

growth.

99

4'i
,4 . . . . . . . . . . . . . . - . . - . . . , - , , . . . . . .. . . . . . .



CUMLATIVE AREA (10 9 FT2 )

-44-

a)

co,

oww

v-4,

r '4 0

-4

co
.44

~E-4 0

0i w .,-I

-

fu

-,4 1

to

en C4

100



~CUMULATIVE VOLUME (10 9 FT3

'4..'

4're.

'..UnU AL.V VUUE(0 PT

mco

I I 34n NJ

n, 0

E!4

0

"-i '4

.

-HcoC4 w:

b 9

101~



PART VII: SENSITIVITY ANALYSIS AND RESULTS

Sensitivity Analysis of Various Parameters

174. The analytical solutions of jet characteristics derived in

PART V are based on the theory of turbulent plane jet under a number

of assumptions. The numerical approaches to predict the delta growth

presented in PART VI depend upon a number of estimated parameters. It

is thus essential to study the importance of various physical param-

eters in the problem formulation and to show the balance between the

numerical procedures and the physical environment.

175. The sensitivity analysis is used to aid in the under-

standing of the dynamics of river-delta interaction; to identify the

relative importance of various variables in deltaic processes; and to

test the effects of the distributary network on the outcome of pre-

dictions. The sensitivity tests to be conducted are:

a. River outlet conditions (ho, bo, uo).

b. Sediment concentration and settling velocity (co, w0 ).

c. Bay bottom slope, friction, and lateral entrainment
(a, f, e).

176. The sensitivity analysis is performed in two phases. First,

each parameter is analyzed independently by holding other variables

constant, under the same conditions as in the base results. Second,

several parameters are examined conjunctively to show their interrelated

effects.

River outlet conditions (h., b u

177. In this study, the water depth of the receiving bay is taken

as the same as the water depth at the river outlet. To examine the

. influence of the outlet depth (h0 ) on the growth of delta, three

different water depths of 1.5 m, 1.0 m, and 0.5 m for Case 4 (linear

depth with entrainment, E $ 0 and H t 1) are considered. That is, in the

sensitivity test, only the outlet water depth (h0 ) in Case 4 is changed

from 2.0 m to 1.5 m, 1.0 m, and 0.5 m, while all other variables remain

constant. The suspended sediment distributions are given in Plate 7 as
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three-dimensional plots. The results demonstrate that at shallower water

depths, delta buildup is sharper in shape and is limited to a much

smaller area close to the river outlet.

178. The remaining outlet conditions are studied by observing

simulated jet behavior under the influence of width of the outlet (b0 )

and outlet velocity (u0 ). A sensitivity test is made for the half-width

at values of 250 m, 500 m, 750 m, and 1000 m while other variables in Case

4 remain constant. The results of the effects on jet width, jet

velocity, and sediment concentration are plotted in Plate 8. It is
concluded that the larger the river outlet, the faster the jet spreads

laterally and the faster the current velocity and sediment concentration

diminish longitudinally. Also, from Plate 9 it is shown that as the

* outlet velocity (u0 ) exceeds 0.5 m/sec, the sediment concentration (c) is

not substantially influenced by higher values of u0 (u0 = 1.0, 1.5

m/sec).
Sediment concentration and settling velocity (c, w)

179. A continous point source of sediment issuing from the river

outlet is assumed in this study. The supply of sediment to Atchafalaya

Bay has been changing both in volume and character over the past decade.

In a regressional analysis, Letter (1982), based on the 50-year extrap-

olation hydrograph at Simmesport, computed the maximum and minimum

sediment yield (113 and 38 million tons/year) corresponding to the

maximum and minimum discharges (310,000 and 139,000 cfs) and obtained

maximum and minimum sediment concentrations of 365 ppm and 275 ppm.

180. A sensitivity test is conducted for the mean concentration

(c0 ) (co = 100, 200, 300, 400, and 600 ppm) in Case 4. The three-

dimensional plots of sediment distributions are given in Plate 10. The

deposited sediments become thicker as the sediment concentrations are

increased; however, delta growth in all instances is restricted to the

proximity area of the outlet.

181. The settling velocity of suspended sediment (w0 ) is in part a

function of particle size (Figure 23); the situation is further compli-

* cated by the aggregation of the suspended cohesive materials (Van Heerden,

Wells, and Roberts 1981). The influence of the settling velocity is
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investigated for wO = 0.01, 0.05, 0.1, 0.5, and 1.0 mm/sec. The results

for the dimensional center-line concentration are given in Plate 11. The

dependence of w0 on c is shown. The sediment deposition pattern for sct-

tling velocities of 0.01, 0.1, and 1.0 mm/sec are presented in Plate 12.

It demonstrates that smaller settling velocities result in more uniform

deposition patterns, and that larger settling velocities produce patterns

sharper in shape and limited to a smaller area close to the river

outlet.

Bay bottom slope, frictionand lateral entrainment (a, f, e)

182. In Atchafalaya Bay, Adams and Baumann (1980) estimated that

the bay has a slight slope of 0.00015, approximately 0.8 ft per mile. In

this study, a sensitivity test is made using slope values of 0.00001,

• 0.00005, 0.0001, 0.0002, and 0.001 with other parameters in Case 4

remaining constant. The results of the effects on jet width, jet

velocity, and sediment concentration are shown in Plate 13. The plots

demonstrate that the influence of the bottom slope is minor except for a

value of 0.001.

183. The dimensional jet width (B), the center-line velocity (U),

and sediment concentration (C) are displayed in Plate 14 for Case 1 (E=O,

H=1), Case 2 (E=0, Hl), Case 3 (EtO, H=1), and Case 4 (Et0, HtI). It is

seen that increasing the bottom slope causes a narrower and elongated

riverine jet (Case 1 vs Case 2; Case 3 vs Case 4), and that the effect

-" of bottom slope counteracts the effect of the lateral entrainment (Case I

vs Case 4). The velocity, however, does not exhibit any significant

variation among the cases. The sediment concentration is affected both

by the bottom slope and the lateral entrainment.

184. The analytical solutions of jet width, center-line velocity,

and sediment concentration all show a strong dependence un the bottom

I friction (f). In fact, the jet width grows and jet velocity decays

exponentially along the longitudinal distance. The values of the Darcy-

Weisbach's coefficient are taken as 0.001, 0.002, 0.003, 0.004, and 0.006

in the sensitivity test while all other parameters remain the same as in

4 Case 4. The plots of jet width, center-line velocity, and concentration

-., are shown in Plate 15. It is inferred from these figures that the bottom
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friction plays an important role in the jet dynamics. When the friction

is larger, the jet expands laterally much faster as it faces the bottom

resistance and loses its momentum much more quickly. It also indicates a

rapid decrease in the sediment concentration with increasing values for

the bottom friction.

185. Ozsoy (1977) stressed the importance of the effects of lateral

entrainment on tidal inlet characteristics. To study the effects of

entrainment on the characteristics of the river delta, four values of the

entrainment coefficient e = 0.0375, 0.075, 0.150, and 0.300 are examined.

Results are shown in Plate 16 for jet width, center-line velocity, and

concentration, respectively. It is seen that for a river-delta system

the entrainment mechanism also plays a role.

The Relative Role of Physical Parameters

186. The sensitivity analyses conducted in previous sections shed
some light on the relative importance of various parameters in the study

of river-delta interaction. Their orders of apparent importance are

listed below:

a. The bottom friction (f) influences jet flow to the
greatest extent. The jet loses its momentum due to
high friction, and expands its width at a faster
rate than in the case of low friction.

b. The settling velocity (w ) affects the transport of
suspended sediment to a large extent. With higher
settling velocity, the center-line sediment concentration
drops more rapidly and the delta lobe is smaller and
closer to the river outlet.

c. The width of the outlet (b ), as considered in
simulating the process of granching channels, has
significant influence on the shape of subaerial land.
The wider the outlet, the more rapidly current velocity
diminishes with increasing longitudinal distance, which
natural cause of delta buildup.

d. The lateral entrainment (e) affects the jet charac-
teristics. Jet width increases with increasing
entrainment. Consequently, the jet velocity and
sediment concentration decrease as the jet width
expands.
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e. The influence of the outlet depth (ho ) on jet
characteristics can be examined by u~ilizing the

/ aspect ratio (Jirka 1981), defined as the ratio
depth to width, "h0/b 0 ". Higher values of this ratio,
increasing h0 or decreasing bo, result in a much

dnarrower and more elongated delta form.

f. Increasing the center-line velocity (u ) and the sediment
concentration (co) will develop delta lobes with thicker
and more elongated shapes.

Growth Curves of Subaerial Land in Atchafalaya Bay

187. In this study, the values used in the base runs are mean

values of various physical parameters taken from the available literature

(PARTS II and VI). These quantities may vary throughout the period of

predicted growth depending on the nature of the system under considera-

tion. To circumvent this situation, the most sensitive parameters are

used to simulate the greatest and least potential growth of subaerial

land.

Simulated growth of Atchafalaya River deltas

188. The physical quantities that are of major importance to the

Atchafalaya River-Bay system are the coefficient of bottom friction (f),

the settling velocity of sediment particles (wo) , and the sediment

concentration (co). Since high friction causes the jet to spread

laterally, high settling velocity results in smaller delta lobes, and low

sediment concentration develops a thinner subdelta, the environment for

least growth can be simulated by increasing f and w0 and decreasing the

c value. In contrast, the high growth environment can be best simulated

by low f, low w0, and high co values.

189. The following environments are simulated for the growth of

subaerial land in Atchafalaya Bay:

a. Base results

f = 0.001

w0 = 0.05 mm/sec

co = 300 ppm
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b. Slow growth

f = 0.004

w= 0.1 mm/sec

co = 200 ppm

c. Fast growth

f = 0.001

w= 0.03 mm/sec

=o400 ppm

The results of the simulated growth patterns are summarized in Tables 7,

8, 9, and 10 and plotted in Plate 17.

Comparison with other predictions

190. The growth of the Atchafalaya River deltas has been predicted

by various investigators. Shlemon (1972), based on sediment measurements

made in the outlets, predicted a growth rate of 5.5 to 7.5 mi 2/year (14
2 2to 18 km /year), with the delta covering an area of 290 to 350 mi (750
2

to 900 km ) by the year 2020. His prediction was referred to a -3 ft
mean low gulf contour.

191. Adams and Baumann (1980), following the same empirical

approach as Shlemon, estimated that the Atchafalaya Bay will be filled to

an average depth of 2 ft below mean sea level in a time period of approx-

imately 40 years.

192. Wells, Chinburg, and Coleman (1984), based on the generic

analysis of existing deltas, projected that by the year 2030 a new sub-
2 -

aerial land mass will be created in the bay ranging from 59 to 132 mi

(150 to 337 km 2 ) with 81 mi2 (208 km 2) representing the expected land in

50 years under average flood conditions. They estimated a growth rate of
2 2

1.6 mi /year (4.0 km /year); their study was referred to the mean sea level.

193. Letter (1982) developed a regressional model and predicted I
that within 50 years (by the year 2027) the delta will evolve gulfward of

Eugene Island. The total volume of the deposited sediment is estimated

at 58 billion ft3; and the delta mass volume (based on the -3 ft NGVD) is

about 17.6 billion ft3.

194. The total subaerial land development predicted analytically

in this study is displayed in Figure 35 together with the prediction

107

4~ -w
'A.



400 - Shlemon (1972)
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Figure 35. Prediction of subaerial land in Atchafalaya Bay

curves developed by Shlemon (1972) and Wells, Chinburg, and Coleman (1984).

A contour-type map for approximate delta front advancement is depicted in

Figure 36. Our prediction, based on analytical results, shows an average

growth rate of 7.6 km 2/yr, ranging from 6.0 to 10.0 km 2/yr as simulated

for the slow growth and fast growth environments, respectively. On a

volume basis, the average volume of sediment deposition is predicted at

16 x 106 m 3/yr, with a range of 12 x 106 m 3/yr to 23 x 106 m 3/yr.
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PART VIII: SUMMARY, LIMITATIONS, AND CONCLUSIONS

Summary

195. An analysis has been made to aid in understanding the various

phenomena associated with turbulent plane jets issuing from river outlets

and discharging into a quiescent receiving bay. An integrated form of

the hydrodynamic equations of flow continuity and momentum balance,

coupled with the mass transport equation, has been formulated into a

two-dimensional spatial and quasi-steady temporal domain.
p.. !  196. A similarity function in the form of exponential and poly-

nomial expressions was chosen for the velocity and sediment concentration

*profiles. The lateral entrainment is expressed as a function of the jet

center-line velocity. A closed-form analytical solution is obtained in

terms of the normalized dependent variables of the jet width, the center-

line jet velocity, and the center-line sediment concentration. The

solutions for cases of constant depth and of linearly varying depth, both

with and without entrainment, are presented.

197. From these normalized solutions, the thickness of deposited

sediment is calculated under quasi-steady state conditions. The Statis-

tical Analysis System of computer graphics (SAS/GRAPH 1981) is used to

display the three-dimensional sediment deposition patterns. These

.f. "sediment patterns, together with a stepwise numerical procedure simu-

lating the process of branching channels, are then used to estimate the

areal extent and the volume of deposition for the Atchafalaya deltas

under a variety of conditions. Sensitivity analyses are performed to

assess the relative importance of various parameters in the river-delta

system.

Limitations

198. There are certain limitations inherent in the application of

the analytical model:
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a. The governing equations for flow and mass transport are
developed for a shallow-water environment in the absence
of tidal and wave currents. Therefore the simplified
equations for turbulent jets will not be representative
of a regime subjected to tidal and wave action.

b. The similarity profiles for the velocity and sediment
concentration must be used in order to obtain a set of
closed-form analytical solutions.

. The deposition function used for sediment dispersion and
settling in shallow water does not take the erosion
process into consideration. The analytical approach
is not capable of addressing the problem of the
resuspension of sediment in the bay and the reworking
of delta deposits by physical processes offshore.

d. In studying the river delta development, the sediment
deposition is assumed to be quasi-steady state; the
thickness of the deposited sediment layer is assumed to
vary linearly with time.

e. The bifurcation processes are simulated in the form of
turbulent jets at the new channel outlets; at each level
of bifurcation, an equal amount of flow and sediments is
assumed to be distributed to the branching channels.

f. The values of various parameters are based on time-
averaged quantities. The analysis is projected to yield
a gross estimate of areal and volume extent of the
Atchafalaya River delta.

. The analytical results are generated from local data
within the bay. Predicting the delta development beyuLl
the bay will be less accurate, since the governing
equations of turbulent plane jets derived for shallow
receiving waters will not be applicable to the deeper
water offshore.

Conclusions

199. The primary sources of energy for the development of the

Atchafalaya River's deltas in the bay are the natural resources of the

river, that is, the suspended sediments that form the delta and the river

discharge that carries the sediment load. The river-delta interaction is

a complicated phenomenon. The analytical work reported herein is a

simplified representation of complexity in predicting the evolution of
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the Atchafalaya River delta. It covers the essential features of natural

processes leading to the growth of the delta.

200. The following conclusions are drawn from this study:

a. The depth of the river outlet and the bottom friction in
the bay play an important role in determining the
spreading of river effluents.

b. The process of channel bifurcation has significant
influence in the shape and the area of subaerial land.

c. The settling velocity of sediment particles has the most
impact on the volume of delta lobes.

d. The center-line velocity and sediment concentration
control both the area extent and volume deposition
of river deltas.

e. The lateral entrainment also plays a role in the
* development of river deltas in the shallow and wide

A Atchafalaya Bay.

V.f. The predictions of the future growth of the Atchafalaya
River deltas in this study are:

(1) The Lower Atchafalaya River Outlet Delta will
grow approximately 5.0 km2/yr; the Wax Lake Outlet
Delta will grow at a rate of 2.6 kmz/year.

(2) The total growth of subaerial land of the
Atchafalaya River deltas is expected to be
7.6 km2/year.

~.It will take about 50 years for the Atchafalaya River
deltas to reach the Point Au Fer Shell Reef.

h. The results of delta growth predicted in this analyt-
ical study are commensurate with the predictions made
by others.
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APPENDIX A: GAUSSIAN QUADRATURE NUMERICAL INTEGRATION

1. To evaluate the integral of a function, f(x), over a finite

interval (-1,1), Gaussian quadrature numerical integration (Beyer 1978)*

is used. The Gaussian quadrature formula has the form

1A' I
f(x)dx = I [Hif(xi)] (Al)
f i=i

I

where H. are the weights; the abscissas, xi, occur in pairs symmetrically

placed with respect to the origin.

2. For an eight-point numerical integration (n 8), the values

for x. and H. are given as follows:

x. H.

± 0.9602899 0.1012285
+ 0.7966665 0.2223810

± 0.5255324 0.3137066
± 0.1834346 0.3626838

3. A simple FORTRAN coding for the Gaussian quadrature formula is

listed in Table Al. The values of the following integrals, cited in PART

V, are found:

1 2 2
(I s ) exp (-s ) ds = 1.1147022

1 3

f( - S2 ) xp (- 2s) ds = 0.9494728

-1

(1 s2 exp -s ) ds = 1.3974447

-1

s955

-1 - exp (- s2 ) ds = 0.7597358

*References cited in the appendices are included with those for the main

body of the report, starting on page 113.

Al



Table Al

Computer Source Program of Gaussian Quadrature

Eight-Point Numerical Integration

GAUSSIAN QUADRATURE EIGHT POINT NUMERICAL INTEGRATION
REFERENCE: BEYER, W.H., 1978. "HANDBOOK( OF MATHEMATICAL

SCIENCE", 5TH EDITION, CRC PRESS.

GAUSSIAN QUADRATURE FORMULA:

WHERE X = ABSCISSAS AND H = WEIGHTS

DIMENSION X(8) ,H(8),X1(8),H 1(8)
DATA F1,F2,F3,F4/I.O/
REALw8 X1/O.9602899,0.7966665,0.5255324,0. 1834346,
-0. 1834346,-0.5255342,-0.796,6665,-0.9602899/,
H1/O.1012285,0.2223810,0.3137066,0.3626838,
0.3626838,0.3137066,0.2223810..1012285/
DO 9 I=1,8

X(I)=X1 (I)
9 H(I)=H1(I)

WRITE(6, 1)
1 FORMAT(5X,'THE FOLLOWING INTEGRALS ARE COMPUTED:')
DO 11 I=1,8

11 F1=F1+H(I)0( 1.-X(I)*wX(I) )mEXP(-XCI)*X(I))
WRITE(6, 10)F1
DO 12 I=1,8

12 F2=F24-H(I)m(1 .-X(I)mX(I))wm1.5*EXP(-1 .5w*XCI)wX(I))
WRITE(6,20)F2
DO 13 I=1,8

13 F3=F3+H(I)E(1.--X(I)mX(I))mO.5*EXP(-.5X(I)OX(I))
WRITE(6,30)F3

. -~ DO 14 I=1,8
14 F4=F4+H(I)*( 1.-X(I)EX(I) )w2.5*EXP(-2.5*'X(I)OX(I);

0 WRITE(6,40)F4
STOP

10 FORMAT(I0X,'I(1) =',F10.7)
20 FORMAT(1OX,,'I(3/2) =',F10.7)
30 FORMAT(1OX,,'I(1/2) =',F1O.7)
40 FORMAT(1OX,'I(5/2) =',F1O.7)

END

THE FOLLOWING INTEGRALS ARE COMPUTED:
1(1) =1.1147020

1(3/2) =0.9494730
1(1/2) = 1.3974440
1(5/2) = 0.7597359

A2
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APPENDIX B: SOLUTION FOR BERNOULLI-TYPE EQUATIONS

1. This appendix shows the procedure for reducing a Bernoulli-type

equation into a linear first-order differential equation. Bernoulli-type

equations have the form

4y + p(x)y = q(x)yn  (BI)
dx

This basic equation is modified by setting

Z = y (B2a)

which transforms into the equation

y z (B2b)

The first term of Equation BI can then be expressed as

n

4y 4y dz 1 1-n dz
dx dz dx 1-n dx (B3)

Substituting Equations B2a and B3 into Equation B1 and simplifying,

we have
N'.

dz + (1 - n)p(x)z = (1 - n)q(x) (B4a)

or

dz
dx + P(x)z = Q(x) (B4b)
dx

"I B1
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2. Equation B4b is the general form of a linear first-order

differential equation. By the method of integrating factors (Wylie

1951), the general solution of Equation B4b is

Z =ltJ Q(x)dx + C1 (B5)

*where

p = integrating factor

= expfP (x)dx (B6)

and

C = constant of integration

3. Finally, using the relationship of Equation B2b, the standard

solution for the Bernoulli-type equation is obtained:

1-n
y= Z

y = [exp fP(x)dx]l [ exp (x)dx Q(x)dx C1 1 1-n (B7)

where
,P(x) = 0 - nlp(x) (Ba)

Q(x) = (I - n)q(x) (B8b)

The Solution of Equation 53 in PART V

In PART V, Equation 53 is a Bernoulli-type ordinary differential

equation:

dU + FU = - A exp (Fr) U3  (B9)
dr

0 .

• . . . 4 -" . . , . , 4 A -. . " **' % *



The solution of the above equation can be obtained by equating

y = U :

X r,,'

n= 3

P(x) = (I - n)p(x) = -2F (BlOa)

Q(x) = (1 -.n)q(x) = 2A exp (Fr) (Blob)

and computing the integrating factor

p = exp P(x)dx (B1la)

= exp f -2Fdr (BlIb)

= exp (-2Fr) (Bllc)

Thus

U - exp (2Fr) I- -j exp (-Fr) + CII-k (B12)

Utilizing the initial condition

Ur0 2A + C (B13)

we obtain

C-I+ 2A (B14)
F F

Finally, the solution of the Bernoulli equation is L'.

2A 2A}-
U = {exp (2Fr)[--- exp (-Fr) + 1 + (BI5)

or

I.N
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= Aexp(Fr) + (1 + A) exp (2Fr)1 B16

* This is the jet velocity in nondimensional form for the case of constant

depth. It is cited as Equation 54 in PART V.

The Solution of Equation 72 in PART V

Equation 72, appearing in PART V, is also a Bernoulli-type

ordinary differential equation:

d(HU) + abO(D - I)II1 (HU = -AJD1(Hw) 3  (B17)
dr h 0

The solution is obtained as in the previous example, using I

y = KU

n =3

b 0
P(x) =(1 - n)p(x) = -2ai---(D -1)H 

(Bl~a)

Q(x) =(I - n)q(x) = 2AH 1  (Bl8b)

The integrating factor is computed as

P= exp JP(x)dx (B19a)

=exp 2a- 1)H1dr (B19b)

B4



Note that

H + 1 +

and

Thus

p = exp f 2(D - I) -2 (D-1) (B20)

and

KU [ 2(D-1) 2A 0  2-D + C)1-1B21
2 D ab 0

Utilizing the initial conditions

H rI = 2 Dab0  +C (B22)

the constant of integration is found to be

C = 12A h 0  (B23)
2 -D ab 0

The final solution of this Bernoulli equation is

2(D-1) 2A h 0 -A ho
HU = H~' -- b H2  +1 - 2 2AD a0 )j (B24)

or

HU = (2) HID[- 1 (H2-D - 1) + j (B25)ab 02 - D( 2A~

The above equation appears as Equation 73 in PART V.

B5
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AAPPENDIX C: COMPUTER GRAPHICS

1. Behavior of variables used in the system of equations employed

to describe, sedimentation patterns in Atchafalaya Bay is illustrated in

the report by the use of Statistical Analysis System plotting subroutines

(SAS/GRAPH 1981). Two-dimensional plots are used to display changes in

jet center-line values of selected variables as distance from the outlet

increases; three-dimensional plots are used to depict values of the

variables over the entire jet.

2. The GPLOT procedure, a subprogram of SAS/GRAPH, was used to

produce the majority of the two-dimensional plots. Variables, entered as

x and y coordinate pairs, are plotted exactly; the plotting routine in-

cludes an interpolation feature (SPLINE) that produces a smooth curve fit

to the data values.

3. A second SAS/GRAPH subprogram, the G3D procedure, plots the

values of three variables and generates a three-dimensional surface. The

4 three variables used to illustrate deposition patterns are jet velocity,

sediment concentration, and sediment thickness. Each of these variables

is plotted versus normalized longitudinal (r) and lateral (s) coordinates

by the program, which again interpolates to produce a smooth surface fit

-\V to the input data.

Computer Program C1

4. This computer program contains plotting instructions for the

generation of a two-dimensional center-line sediment thickness profile

using the GPLOT procedure. The data used to create the plot were taken

from the Case 4 conditions for delta development (E J 0 and linear H),

after two years of deposit, with varying sediment concentrations. Pre-

dicted sediment thickness at forty equidistant locations along the center

line of the jet was entered with corresponding longitudinal distance

from the outlet; data points are indicated on the plot by designated

symbols representing different sediment concentrations. The resulting

plot is shown in Figure Cl.

Cl
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COMPUTER PROGRAM Cl

//STEP1 EXEC SAS
//SYSIN DD

DATA ONE;
uo=l; UO=0.05E-3; F=0.001; B0=500;
H0=2.0; A=0.0001; A11=0.948; A121--.397; A13=0.76;
TIME=2.0E3G5.w86400.; DSO0.4;
ARRAY ROOT (I) ROOTI - ROOTlI;
ARRAY WT (1) WTI - WTl1;

ROOTJ =0. 00533697; R00T2=0.04735263; ROOT3=O. 12782106;
R00T4=0.23991861; R00T5=0.37413950; R00T6=0.51910186;
R00T7=0.66251286; R00T8=0.79221088; R00T9=0.897 19596;
ROOTIOO0.96855602; ROOTi 1=1.00000000;
WTI0. 29169804; WT2=0. 28548098; WT3=0.27317938;
WT4=0. 25505539; WT5=0.23149529; WT6=0.20300115;
WT7=0.17018012; WT8=0.13373121; WT9=0.09442893;
WTIO=0.05309150; WT11=0.00865801;

UCR = UO;
D = F/A;

* W = B~wWO/IJO/H0;
D = F/A; E=0.075;
AA =1.794mE;
ARRAY CO(I) C01 -. CO5;
C01=100.; C02=200.; C03=300.; C04=400.; C05=600.;
ARRAY CA(I) CAI - CA5;
ARRAY CDCI) CDI - CD5;
ARRAY UDCI) UDI - liD5;
ARRAY H (I) HI - Hil;
ARRAY CFU (I) CFUI - CFUII;
ARRAY U (I) li - Ulli;
ARRAY SA (I) SAl - SAIl;
ARRAY SB (I) SBI - SBII;

DO R = 0.0 TO 20.0 BY 0.50;
HH = 1. + AwB0/HO~uR;

CF = HO/A/B0/C2.-D)'w(HHu.(2.-D) -1.) + 0.5/AA;

BB = 2.mAAmHHww(D-1) a CF;
___DO OVER ROOT; H = 1. + AmBO/HOmRSSQRT(ROOT); END;

DO OVER H; CFU= HO/A/BO/C2.-D)m(Hm(2.-D) 1 .) + 0.5/AA; END;
DO I =1 TO 11;

U =l./SQRT( 2.mAA) / Ho*D/SQRTCCFU);
END;

01= -A12wW/AII*R/2.;
WIT G2= AI3wW/AI1/1.0/l.0wR/2.;

DO I1=I TO 11;
.1> SA = WT/H/U

SB = WTwU/H
END;

SUM1 = SUM(OF SAl - SAil);
40 SUM2 = SUM(OF SB? - SB??);'

C 2



COMPUTER PROGRAM Cl (CONTINUED)

C = EX?( G1*SUMI + G2wSUM2 - LOG(HHOUUNBS) )
- DO I 1 TO 5;

CA = CO 0 C;
UD=UO*UU;
CD = WOmlOO.mCAm1 .OE-6w( 1. - UDmUD/UCR/UCR)wTIME;

END;
TA = CDI/DS;
TS = CD2/DS;
TC = CD3/DS;
TD = CD4/DS;
TE = CD5/DS;

* OUTPUT;END;
PROC GPLOT; PLOT TAwR TBmR TCsR TDOR TEOR/OVERLAY;
SYMBOLI I=SPLINE V=DIAMOND;
SYMBOL2 I=SPLINE V=TRIANGLE;

*SYMBOL3 I=SPLINE V=STAR;
SYMBOL4 I=SPLINE V=PLUS;
SYMBOLS I=SPLINE V=HASH;
TITLE I
TITLE2
TITLE3 F=TRIPLEX H=2 CENTERLINE SEDIMENT THICKNESS PROFILE;
TITLE4 F=TRIPLEX .H1 IN CM, TWO YEARS DEPOSIT;
TITLES .F=TRIPLEX .H=l CASE 4: E N 0 AND LINEAR H;
TITLE6 F=TRIPLEX H1l C0=100: DIAMOND, C0=200: TRIANGLE;

NTITLE7 F=TRIPLEX H1l C0=300: STAR, C0=400: PLUS, C0=600: HASH;

C3



CENTER-LINE SEDIMENT THICKNESS PROFILE
IN CM, TWO YEARS DEPOSIT

CASE 4: E 4 0 AND LINEAR H
C0=100: DAMOND, C0=200: TRIANGLE

CO=300: STAR, CO=400: PLUS, C0=600: HASH
TA

300-

2751
250-

225-

200-

* 175-

150-

100-

75-

25f/ x

0 2 6 8 10 1 ~ 2

Figure Cl. Plot of center-line sediment thickness profile
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Computer Program C2

5. Computer program C2 contains plotting instructions for genera-

tion of a three-dimensional representation of sediment thickness using

the G3D procedure; the resulting plot is shown in Figure C2. The sedi-

ment deposition pattern shown was predicted by the closed-form analytical

solutions of the two-dimensional system of equations describing sediment-

ation for Case 4 (E # 0 and linear H) after two years of deposit. These

equations are used by the G3D subroutine to produce 1651 data points for

generation of the final three-dimensional plot.

lV
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COMPUTER PROGRAM C2

'S. //STEP1 EXEC SAS
//SYSIN DD
DATA ONE;
U0=1; WO=0.05E-3; F=0.001; B0=500; C0=300.;
H0=2.0;'=.0001; A11=0.948; A12=1.397; AI3=0.76;
TIME=2.om365.*864OO.; DSO0.4;
ARRAY ROOT (I) ROOTi - ROOT1l;
ARRAY WT (I) WT1 - WT11;

ROOT10. 00533697; ROOT2=0.04735263; R00T3=0.12782106;
ROOT4=0.23991861; R00TS=0.37413950; R00T6=0.51910186;

S R00T7=0.66251286; R00T=0 .79221088; R00T9=0.89719596;
ROOT1O=0.96855602; ROOTI 1=1.00000000;
WT1O0.29169804; WT2=0.28548098; WT3=0.27317938;

UCR-UO; 0539 WT5=0.23 149529; WT6=0.20300 115;

WT1OO0.05309150; WT11O0.00865801;

D =F/A; E=0.075;
AA = 1.794mE;
ARRAY H (I) HI - H11;
ARRAY CFU (I) CFU1 - CFU11;
ARRAY U (I) Ul - Ull;
ARRAY SA (I) SAl - SAil;
ARRAY SB (I) SB1 - SB11;

DO R = 0.0 TO 20.0 BY 0.50;
DO S = -1 TO 1 BY 0.05;

HH = 1. + AmBO/HOmR;
CF = HO/A/BO/(2.-D)mCHHomC2.-D) -1.) + 0.5/AA;IIUU = l./SQRT(2.mAA) /HHwwD / SQRT(CF);
BB = 2.mAAmHH**CD-i) a CF;
DO OVER ROOT; H = 1. + AmB0/H~mRmSQRT(R0OT); END;
DO OVER H; CFU= HO/A/BO/(2.-D)m(Hwm(2.-D) - 1.) + O.5/AA; END;

DOI =1TOi11;
U =1./SQRT( 2.mAA) / Ho*D/SQRT(CFU);

END;
01= -A12oW/AIImR/2.;
G2= A13*W/AII/i.0/l.OmR/2.;

DO I = I TO 11;
SA = WT/H/U
SB = WTwU/H

END;
SUMI = SUM(OF SAI - SAIl);
SUM2 = SUM(OF SB1 - SB11);
C =EXP( GlsSUMi + G2mSUM2 - LOG(HHmUU*BB) )
Cl =COeSQRT(1.-S.S)/EXP(SoS/2.)NC;

CCl=(i. - S*S)/EXP(SmS);
UDI=UOmCCI*UU;
CD = W~mJOO.wCiml'.OE-6w(l. - UDIeUDI/UCR/UCR)*TIME;
THICK = CD/DS;
OUTPUT ;END ;END;

C6



COMPUTER PROGRAM C2 (CONTINUED)

TITLEI
TITLE2*1
TITLE3
TITLE4
TITLE5
TITLEG F=TRIPLEX H=2 PLOT OF SEDIMENT THICKNESS;

*TITLE7 F=TRIPLEX .H1l IN CM;
TITLE8 F=TRIPLEX H1l CASE 4: E =0 AND LINEAR H;
TITLE9 F=TRIPLEX .H1 BASE RESULTS, 2.0 YEARS DEPOSIT;
PROC G3D;
PLOT R*S=THICK;

'I
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PLOT OF SEDIMENT THICKNESS
: IN CM

CASE 4: E 0 AND LINEAR H

THICK

148.56

9

1.1.00

.49.52 
.

[. .: 0.33

99.04

20.0 -0.33

R 6.6700

0..00
I<.

Figure C2. Plot of sediment thickness for Case 4
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APPENDIX D: QUADRATURE INTEGRATION

1. Orthogonal collocation is an efficient method for solving

differential equations (Villadsen and Michelson 1978). Based on this

method, the profile of a dependent variable can be expressed in terms of

the families of orthogonal polynomials and their derivatives at colloca-

tion points. In addition to its efficiency for solving differential

equations the integration of the profile of dependent variables can be

closely approximated by a quadrature formula which gives a semianalytical

solution of integration.

Orthogonal Polynomial

2. The orthogonal polynomial may be of Jacobi, Legendre, or

Chebycheff type of which the Jacobi polynomial is found to be the most

efficient (Villadsen and Michelson 1978). The important features of

orthogonal polynomials are illustrated in this appendix. The Jacobi

family possesses the following orthogonal relationship:

1 (a, ) {0, i j
f W(u) e. Cfp (u) P. a (u) du =(DO)

0

where W(u) is the weight function for a Jacobi polynomial with the fol-

lowing expression:

W(u) = ( -U) u (D2)

in which a and are constants greater that -I. The polynomial P.(u) is

automatically fixed when the weight function is given. P(' ) (u) and

* p.~U P. (u) are the Jacobi polynomial with degree i and j respectively.

3. A Jacobi polynomial of degree n can be expressed by the

following equation:

v%
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P (u) = I (- 1 )f - a. u. (D3)

i=O 1 1

where the coefficient a. can be expressed by the following recurrence

formula: 1

-,.'.,n- + 1 n + i + a +,-a.= - i 1 nic (D4)
1 = i + 0 r i-1

with a = 1, and i = 1,2 ...... , n.

For n = 3 and a=0=0, Equation D3 immediately gives

P 3 20 u 30 u + 12 u - I (D5)

4. For convience of computer computation, Equations D3 and D4
may also be expressed by. the following equations:

p~a,__ = [u g (ncpjP - h (n,a,p) P (D6)
.-,n - nn' ]n-l n Pn-2

and
, 1+ a-(Wgl=  I gn = g[l-) ] (D7)

a+P+2 2 (2n+a+p-1)2 - 1

for n>1

hi = 0 (D8)

h 2= (a+l) (0+1) (D9)
(U+0+2) (a+0+3)

h = (n-i) (n+a-l) (n+P-1) (n+a+p-l) for n>2 (DI0)n (2n+a+p-1) (2n+a+P-2)2 (2n+a+0-3)

D2
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The recurrent evaluation of P(a,) (u) starts with n=l, P (u)
(al) n

arbitrarily, and P (u)=1.

Quadrature Integration Formulae

5. In orthogonal collocation the integration can be conveniently and

accurately performed by a numerical quadrature formula. Two types of

quadrature formulas are described briefly in the following.

Gauss-Jacobi quadrature

6. The Gauss-Jacobi quadrature can integrate any polynomial Y(x)

up to 2n-1 degree by the following equation:

1 n
(1 - x)a x Y(x) dx = 1 W. Y(x.) (DI1)

i=1 1

The integration can be obtained closely by summing the product of quadra-

ture weight W.i and the function value Y(xi) evaluated at the collocation
point x. In Equation DII the value of W. can be calculated by the

1 1.

following equation:

(2n + a + + 1) c
W. ( n (D12)x. (1 - x) (PO) (x) )2

where

Cp 2  x) Cl - X)a x dx (D13)

Radau quadrature formula

7. In Equation D1I the end points Y(O) and Y(l) are not required to

be known. If either one of the end points is given, the quadrature

integration can be obtained more accurately by using the Radau formula.p(a+l, )

In this case the interior quadrature points should be chosen as P
if Yx=I isgivn, r pa, +l) .

if Y(x) is given, or P , if Y(x=0) is given. The Radau formula

D3
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can integrate a polynomial of degree up to 2n exactly by the following

equation:

1 n
(1 - x)G x Y(x) = W 1 Y(1) + I W. Y.

i=l 1 1

(D14)
n

= Wn+ Y(O) + I W. Y.n i=I  3. 1

The Radau quadrature weights in Equation D14 are calculated by the

following equations:

Including x n+=l, but not xo=0:

* (2n + a + P + 2) C(a l 'p) I, i~n+ln. a (D15)

2x. (n+ (Xi  1/(a+l), i=n+l
i (1) 2

Including xo=O, but not Xn+= 11:

(2n + a + 0 + 1) Ca + 1/(+I), i=O (D16)

- (p(() )2
x d (P n+1 (xd ) 1 1, iO

Computer Programs Dl and D2

8. This computer program is for computing the roots of the Jacobi

polynomial, the derivatives of each polynomial evaluated at the colloca-

tion points, and the quadrature weights. The program consists of two

subroutines: Subroutines JCOBI computes the zeros of p(aP) and the
i*o.' n

first derivatives of the Jacobi polynomial; Subroutine RADAU determines

the integration weights at collocation points.

9. The roots of the Jacobi polynomial and Radau quadrature weights

for selected collocation points are listed in Table DI. An example of
32

calculating the integration f x dx, using the roots and weights found

from computer program D1, is illustrated in computer program D2.

" .D4
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COMPUTER PROGRAM DI

C-ato THIS PROGRAM IS USED TO COMPUTE THE ROOTS AND
C QUADRATURE WEIGHTS OF JACOBI POLYNOMIALS
Comm DIFI, DIF2, AND DIF3 ARE THE 1ST, 2ND, AND 3RD
C DERIVATIVES OF JACOBI POLYNOMIALS AT COLLOCATION
C POINTS, RESPECTIVELY
Colll ROOT(I) ARE ROOTS OF JACOBI POLYNOMIALS
Comm WT(I) ARE QUADRATURE WEIGHTS
Comal N IS NUMBER OF COLOCATION POINTS
CO-lm ALPHA AND BETA ARE THE TWO PARAMETERS OF
C JACOBI POLYNOMIAL
C

IMPLICIT REALY8(A-H, O-Z)
DIMENSION DIFI(11),DIF2(11),DIF3(11),ROOT(11),WT(11)

C
1 FORMAT(215)
3 FORMAT(IHI,' GEOMETRY: O=PLANAR, I=CYLINDER,2=SPHERE',

& //,' NUMBER OF COLLOCATION POINTS =',I5,/,' GEOMETRY
& FACTOR =',I5,///, I COLLOCATION POINTS IN Xmm2 :',/)

6 FORMAT(/,3(D16.8))
* 200 READ(5,i,END=l00) N,IS

C
C N IS NUMBER OF COLLOCATION POINTS
C FOR PLANE SHEET IS=0, FOR CYLINDER IS=I, FOR SPHERE IS=2
C

S = IS
WRITE (6,3) N, IS
ALPHA = 1.0
BETA = (S-1)/2

C
CALL JCOBI (11,N,OI,ALPHA,BETADIFI,DIF2,DIF3,ROOT)
NT=N+ I
WRITE (6.6) (ROOT(I),I = 1,NT)

C
C ..... FIND QUADRATURE WEIGHTS

CALL RADAU (II,N,0,1,1,0.DO,BETA,ROOT,DIFI,WT)
C ..... TO COMPUTE TRUE QUADRATURE WEIGHTS FOR SLAB GEOMETRY
C ..... THE WEIGHTS WT(I) OBTAINED FROM SUBROUTINE RADAU NEED
C ..... TO MULTIPLY BY "2.0"
C

DO 90 1 = 1, NT
90 WT(I) = WT(I)m2.0

WRITE(6,55)
55 FORMAT(/,3X,' THE QUADRATURE WEIGHTS WT(I)',/)

WRITE(6,6) (WT(I), I=I,NT)
C

GO TO 200
100 STOP I

END

q
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COMPUTER PROGRAM Dl (CONTINUED)

CImmuIHmmmmmuS mumEmm~mEmmmmuImmummmmmmumm..mmauuumE

SUBROUTINE JCOBI(ND,N,NO,NIAL,BE,FA,FB,FC,ROOT)
C ..... SUBROUTINE JCOBI IS USED TO COMPUTE THE ROOTS OF
C JACOBI POLYNOMIALS
C..... ND IS DIMENSION OF VECTORS, N IS THE DEGREE OF
C JACOBI POLYNOMIAL, NO DECIDES WHETHER X=O IS INCLUDES
C AS AN INTERPOLATION POINT. NO MUST BE SEI EQUAL TO
C I (INCLUDING X=O) OR 0 (EXCLUDING THIS POINT)
C ..... NI IS THE SAME AS FOR NO, BUT FOR THE POINT X=1
C ..... FAFBFC ARE IST, 2ND, AND 3RD DERIVATIVES OF

a, C JACOBI POLYNOMIAL AT THE NODES
C ..... AL=ALPHA, BE=BETA, ROOT=ZEROS OF JACOBI POLYNOMIAL
C

IMPLICIT REALm8(A-H,O-Z)
DIMENSION FA(ND),FB(ND),FC(ND),ROOT(ND)

C
C ..... THE FIRST STEP IS TO CALCULATE GN & HN
C ..... HERE FA(I)=GN, FB(I)=HN
C

AB=AL+BE
AD=BE-AL

...... AP=BEWAL
Y.', C

C ..... INITIAL VALUE.
C ..... FA( ) IS Gi, FB(1) IS H(1)
C

FA(I)=(AD/(AB+2.)+1.)/2.
FB(1)=O.
IF (N .LT. 2) GO TO 15

C

C ..... THEN CONPUTE FA(2), FB(2), FA(3), FB(3),.... ETC.
C ..... FA(I)=GN, FB(I)=HN

DO 10 I = 2,N
ZI =I - 1
Z = AB + 2.oZl

C
C.... FA(I) IS GN, FB(I) IS HN
C

FA(I)=(ABmAD/Z/(Z+2.)+.)/2.
IF(I .NE. 2) GO TO 11
FB(I)=(AB + AP + Zl)/Z/Z/(Z+I.)
GO TO 10

11 Z=ZmZ11 Y=ZIm( AB + ZI)

Y=Y*(AP+Y)
FB(I)=Y/Z/(Z-1.)

10 CONTINUE
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COMPUTER PROGRAM Dl (CONTINUED)

C
C ..... THE SECOND STEP
C ..... ROOT DETERMINATION BY NEWTON METRHOD WITH SUPPRESION
C..... OF PREVIOUSLY DETERMINED ROOTS
C
15 X=O.

DO 20 I=I,N
25 XD=O.

XN=I.
XDI=O.
XNI=O.
DO 30 J=I,N

C
C ..... FA(J)=GN, FB(J)=HN
C ..... XP IS JACOBI POLYNOMIAL, AND XPI IS THE FIRST
C DERIVATIVE OF JACOBI POLYNOMIAL
C

XP=(FA(J)-X)mXN-FB(J)mXD
XPI=(FA(J)-X)mXNI-FB(J)*XDI-XN
XD=XN
XDI=XNI

C
C ..... XN AND XNI ACCUMULATE THE FOREGOING RESULTS

XN=XP
30 XNI=XPI

ZC=1.
Z=XN/XNI
IF(I .EQ. I ) GO TO 21
DO 22 J = 2, I

C
C ..... EXCLUDE PREVIOUS DETERMINED ROOT: ROOT(J-1)
C
22 ZC=ZC-Z/(X-ROOT(J-1))

C
21 Z=Z/ZC

C
C ..... FIND NEW X
C

X=X-Z
IF ( DABS(Z) .GT. I.D-09 ) GO TO 25
ROOT(I)=X

C
C ..... NEW STARTING POINT FOR NEXT ROOT
C

X=X + .0001
20 CONTINUE

C
C ..... ADD EVENTUAL INTERPOLATION POINTS AT X=O OR X=I
C

D7
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COMPUTER PROGRAM D1 (CONTINUED)

NT=N+NO+N1
IF(NO .EQ. 0) GO TO 35
DO 31 I=I,N
J=N+ I-I

31 ROOT(J+I)=ROOT(J)
ROOT(1)=O.

35 IF(NI .EQ. 1) ROOT(NT) = 1.
C
C ..... NOW EVALUATE DERIVATIVES OF POLYNOMIAL
C .... FA, FB, FC ARE IST, 2ND, AND 3RD DERIVATIVES
C

DO 40 I=I,NT
X=ROOT(I)
FA(I)=l.
FB(I)=O.
FC(I)=O.
DO 40 J=1,NT
IF (J .EQ. I) GO TO 40
Y=X - ROOT(J)
FC(I) = FC(I) m Y + 3. a FB(I)
FB(I) = Y m FB(I) + 2. a FA(I)
FA(I) = Y w FA(I)

40 CONTINUE
RETURN
END
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COMPUTER PROGRAM DI (CONTINUED)

SUBROUTINE RADAU(NDN,NO,NI,ID,AL,BEROD,FA,V)
C
C ..... SURROUTINE RADAU IS USED TO EVALUATE RADAU OR LOBATTO
C QU DRATURE WEIGHTS OF JACOBI POLYNOMIAL
C ..... FA(I) COME FROM JCOBI, V(I) ARE QUADRATURE WEIGHTS

C ..... ND, N, AND NO ARE THE SAME AS FOR SUBROUTINE JCOBI
C ......ID=1 GIVES RADAU QUADRATURE WITH X=
C..... ID=2 GIVES RADAU QUADRATURE WITH X=O
C ..... ID=3 GIVES LOBATTO QUADRATURE WITH BOTH POINTS
C

IMPLICIT REALw8(A-H,O-Z)
DIMENSION ROD(ND),FA(ND),V(ND)
S=O.
NT=N+NO+NI
DO 40 I=1,NT
X=ROD(I)
IF (ID-2) 10,20,30

C
C ID = 1 GIVES RADAU QUADRATURE WITH X = 1
C ID = 2 GIVES RADAU QUDRATURE WITH X = 0
C ID=3 GIVES LOBATTO QUADRATURE WITH BOTH ENDPOINTS
10 AX=X

IF (NO) 11,11,40
11 AX=1./AX

GO TO 40
20 AX=I.-X

IF (NI) 21,21,40
21 AX=I./AX

GO TO 40
30 AX=I.
40 V(I)=AX/FA(I)m2

IF (ID-2) 41,42,41
41 V(NT)=V(NT)/(I.+AL)
42 IF (ID-2) 43,44,44
44 V(I)=V(1)/(.+BE)
43 DO 50 I=I,NT

C
C ..... S=V(1) + V(2) +. .......
C
50 S=S+V(I)

DO 60 I=I,NT
C
C V(I) ARE NORMALIZED SO THAT THE SUM OF V(I) EQUALS TO ONE
Cmaw NOTE THE QUADRATURE WEIGHTS COMPUTED FROM RADAU ARE NOT
C TRUE WEIGHTS
C
60 V(I)=V(I)/S

RETURN
END
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COMPUTER PROGRAM D2

C a
C CALCPLATING THE INTEGRATION OF X BY USING RADAU
C QUADItATURE
C
C INTEGRATION INTERVAL: FROM 0 TO 3
C

IMPLICIT REALw8(A-H,O-Z)
DIMENSION ROOT(11),WT(11),XX(11)
DATA ROOT/0.00533697, 0.04735263, 0.12782106,

& 0.23991861, 0.37413950, 0.51910186,
& 0.66251286, 0.79221088, 0.89719596,
& 0.96855602, 1.00000000/
DATA WT/0.29169804, 0.28548098, 0.27317938,

& 0.25505539, 0.23149529, 0.20300115,
& 0.17018012, 0.13373121, 0.09442893,
& 0.05309150, 0.00865801/

C
* SUM = 0.DO
-X = 3.DO

C
DO 10 I = 1, 11
XX(I) = X a DSORT(ROOT(I))

10 CONTINUE
C

DO 20 1 = 1, 11
SUM = SUM + WT(I) w XX(I) * XX(I)

20 CONTINUE

C
SUM = 3./2.m SUM

C
WRITE(6,1) SUM

I FORMAT(/15X,' 1XDX = ', F10.6)
STOP
END

wwww- SOLUTION: X DX = 9.000000 wwwwwwwo

V •

dDIO
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Table Di. The Roots and Quadrature Weights of
Jacobi Polynomial for 10-points Collocation

Geometry: Slab

Collocation Points in u:

0.00533697 0.04735263 0.12782106
40.23991861 0.37413950 0.51910186

* 40.66251286 0.79221088 0.89719596

*0.96855602 1.00000000

Quadrature Weights:

0.29169804 0.28548098 0.27317938
0.25505539 0.23149529 0.20300115
0. 17018012 0. 13373121 0.09442893
0.05309150 0.00865801
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APPENDIX E: INTEGRATION OF SEDIMENT VOLUME

I. In this study, Simpson's rule is used for the calculation of

the sediment volume deposited. Detailed formulation is discussed by

Scheid (1968). Computation procedure and computer programs are briefly

described in the following.

2. The volume integration of a two-variable sediment thickness

* function f(x,y) can be expressed as

I Rb0 fb(x) f(xy)dydx b dx (El)
0 0

where Rb0 is the dimensional sediment length in the x-direction, expressed

as the xl-direction; and b(x) is the width of sediment in the y-direction,

expressed as the x2-direction.

By setting Y 0 
= " 0

and y. - yj- 1 = h1 (x) = b(x)

n

where h1 is the discrete distance in y-direction and n is the number of

discretizations,

Wb x)
G(x) = f(x,y)dy

°0

b(x) I f(Xg + 4f(x,Y) + 2f(x,Y + (E2)

+ 4f(x,y n 1 + f(x,yn)J

Again, setting x0  0

and x. h -Rb0
1 _ 2 m

El

ao

;. , ' . '¢'. o;- , {' :'.2 r2', :,.;:,'%-.-' ,' :,:, .. ,. : "N' " -';. A, J',5 ",' -'" -'. .- . ':;', ;** " -.. ,'...4%, .,v, *-',.','"



where h is the discrete distance in x-direction and m is the number of2
discretizations,

(Rb0 G~~x h Ix) + '."'' + G + (E3)

0
+ 4G(x) + G(x)

Therefore

rRb 0 fb(x) h2  h (x)
j ~J f(x,y)dydx = 3 1 [f(xOYO ) + 4f(x 0 ,y 1 ) +

2f(x0,y 2 ) + ... + f(x ,yn)]

2h 1(x 2)
1+ -3 [f(x 1 ,0 ) + 4f(x 1 y 1 ) + 2f~x ,y2) + ... + f(x2,Yn)]

+ 3h (x) f( py) + 4f(x y 1 + 2f(x ,Y2 ) + .... + f(x,Yn)]

(E4)

The integration of the foregoing equation is illustrated in Figure El.

The numbers in Figure El represent the coefficients of f(x,,y in

V Equation E4.

Computer Program El

4 3. This program is for plotting a two-dimensional sediment thick-

ness for a given set of parameters. Using the equations derived in PART

* V, the SAS/GRAPH is executed for displaying the plot. The longitudinal

E2
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COMPUTER PROGRAM El

DATA ONE;
U0=1.0; WO=O.05E-3;F=0.OO1; B0=500.; C0=300.; E=0.075;
HO=2.0;iAIl=O.948; A12=1.397; A13=0.76;
TIME=2. m365. m86400.; DSO0.4;

ROOTl0. 00533697; ROOT2=O. 04735263; R00T3=0.12782106;

R00T4=0.23991861; R00T5=0.37413950; R00T6=0.51910186;

R0OT1O=0.968556O2; ROOTI 1=1.00000000;
WT1O .29169804; WT2=0.28548098; WT3=0.27317938;
WT4=0.25505539; WT5=0. 23149529; WT6=0. 20300115;
WT7=0. 17018012; WT8=0.13373121; WT9=0.09442893;
WT1OO0.05309150; WTJ1O0.00865801;
A=0.0001;

Si= 0.0; S2=0.2; S3=0.4; S4=0.5; S5=0.6; S6=0.8;
UCR = UO;
W = B~wWO/U0/HO;
AA =1.794aE;
FF =FwB0/H0;
D =F/A;

DO R = 0.0 TO 20.0 BY 1.0;
H = 1. + AmBO/H~wR;
CF =HO/A/BO/(2.-D)mC Hom(2.-D) - 1.) +0.5/AA;

U = ./SQRT(2.wAA) / HwmD / SQRTCCF);
B= 2.wAAwHww(D-1) a CF; k

HUI = 1. + AwBO/HOwRwSQRT(ROOTI);
HU2 = 1. + AmBO/HOmRmSQRT(ROOT2);
HU3 = 1. + AmB0/H0MRmSQRT(ROOT3);
HU4 = 1. + AmB0/H0WRmSQRT(ROOT4);
HU5 = 1. + AmB0/H0NRNSQRTCROOT5);
HU6 = 1. + AmBO/HOmRRSQRT(ROOT6);
HU7 = 1. + AmBO/HONRmSQRTCROOT7);
HU8 = 1. + AmBO/HOERwSQRT(ROOT8);
HU9 = 1. + AmB0/H0mRmSQRT(ROOT9);
HUIO = 1. + AwB0/H0wRwSQRT(ROOTI0);
HUIl = 1. + AmB0/H0NRNSQRT(ROOT11);
CFUI = HO/A/BO/C2.-D)w( HUlmm(2.-D) - 1.) + 0.5/AA;
CFU2 = HO/A/BO/(2.-D)N( HU2mm(2.-D) -1.) + 0.5/AA;
CFU3 = HO/A/BO/(2.-D)m( HU3mm(2.-D) - 1.) + 0.5/AA;
CFU4 = HO/A/BO/(2.-D)m( HU4oxi(2.-D) - 1.) + O.5/AA;
CFU5 = HO/A/BO/C2.-D)m( HU5omC2.-D) - 1.) + 0.5/AA;
CFU6 = HO/A/B0/C2.-D)m( HU6mmC2.-D) - 1.) + 0.5/AA;
CFU7 = HO/A/B0/C2.-D)m( HU7wmu2.-D) -1.) + 0.S/AA;
CFU8 = HO/A/BO/C2.-D)m( HU8mmC2.-D) - 1.) + 0.5/AA;
CFhIQ = HOA/BOlA/(2.-fl'w( HU~wm(.-D - 1.)+0./A

CFUIO =HO/A/BO/(2.-D)*C HU10ww(2.-D) - 1.) + 0.5/AA;
CFU1I HO/A/BO/(2.-D)m( HUlIm'C2.-D) - 1.) + 0.5/AA;
UU1=1./SQRTC 2.wAA) / HUlm*D/SQRTCCFUI);
UU2=1./SQRT( 2.wAA) / HU2mmD/SQRTCCFU2);
UU3=1./SQRT( 2.wAA) / HU3wwD/SQRT(CFU3);
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p. COMPUTER PROGRAM El (CONTINUED)

UU4=1./SQRT( 2.mAA) / HU4w*D/SQRTCCFU4);
UU5=1.f./SQRT( 2.NAA) / HUSmu'D/SQRTCCFU5);
UU6=1./SQRT( 2.NAA) / HU~m*D/SQRT(CFU6);
UU=./QT 2.wAA) /HU7wmD/SQRT(CFU7); a

V'J8=1./SQRT( 2.NAA) / HU8moD/SQRT(CFU8);
UU9=1./SQRT( 2.*AA) / HU9'u'D/SQRT(CFU9);
UUIO=i./SQRT( 2.wAA) / HU1OmmD/SQRT(CFUIO);
UUII./SQRTC 2.mAA) / HUllmwD/SQRT(CFUII);

G2= AI3*W/AII/UCR/UCRxR/2.;
SUMI = WTI/HUI/UUI + WT2/HU2/UU2 + WT3/HU3/JU3

+ WT4/HU4/UU4 + WrT5/HU5/UU5 + WT6/HUE,/UU6
+ WT7/HU"7/UU7 + WT8/HU8/UU8 + WT9/HU9/UU9
+ WTIO/HU1O/UUIO + WT1l/HU11/UJ11;

SUM2 = WTI*UUI/HU1 + WT2oUU2/HU2 + WT3*UU3/HU3
+ WT4wUU4/HU4 + WT5wUU5/HU5 + WT6N.UU6/HU6
+ WT7*UU7/HU7 + WT8wUU8/HU8 + WT9wUU9/HU9
+ WTJ~wUUIO/HUIO + WTIUU1 1/HUll;

C = EXPC GlaSUI1 + G2wSUM2 - LOG(HuUwB) )
CAI = COoSRT(1.-S.Sl)/EXP(SlwSI/2.)wC;
CA2 = COmSQRT( 1.-S2wS2)/EXP(S2'S2/2. )C;
CA3 = CO*SQRT( I.-S3wS3)/EXP(S3*S3/2. )mC;
CA4 = COmSQRTC1.-S4wS4)/EXP(S4mS4/2.)UC;

aCA5 = CO*SQRTC 1.-S5mS5)/EXP(S53S5/2. )iC;
CA6 = COwSQRT(l1.-S6mS6)/EXPCS6wS6/2. )mC;
CCAl=(l. - S1'uSl)/EXP(S1OSI);

4,CCA2C1I. - S2wS2)/EXP(S2mS2);
CCA3=CI. - S3mS3)/EXP(S3wS3);
CCA4C1I. - S4uS4)/EXP(S4wS4);
CCA5C1I. - S5NfS5)/EXPCS5iUS5);
CCA6=(l. - S6wS6)/EXP(S6mS6);
UA1=UOwCCAlDU;
UA2=UOmCCA2*U;
UA3=UOoCCA3mU;
UA4=UOwCCA4wU;
UA5=UOu'CCA5oU;
UA6=UCoCCA60U;
CDI = WOwIOO.wCA~w1.OE-6w(I. - UAlmtJAl/UCR/UCR)mTIME;
CD2 = WOml0O.oCA2wJ.OE-6m(l. - UA2oUA2/UCR/UCR)mTIME;
CD3 = IOwIOO.*CA3m1 .OE-6w( 1. - UA3mUA3/UCR/UCR)wTIME;
CD4I = WO1I00.wCA4wI.OE-6w( 1. - UA4oUA4/UCR'UCR)wTIIE;
CD5 = WOwIOO.wCA5wI.OE-6mC1. - UA5mUA5/UCR/UCR)wTIME;
Ci)6 =WOwl01O.wCA6sl1.OE-6rn( . - UA6rnUA6/UCR/UCR)rnTIME;
THI = CD1/DS;
TH3 = CD3/DS;
TH2 CD2/DS;
TH4 = CD4/DS;
TH5 = CD5/DS;

TH6 =CD6/DS; f
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COMPUTER PROGRAM El (CONTINUED)

OUTPUT; END;,
TITLEI .F=TRIPLEX H=2 PLOT OF SEDIMENT THICKNESS;
TITLE2 .-TRIPLEX H1l :IN CM, TWO YEARS OF DEPOSITION;
TITLE3 .F=TRIPLEX H1l CASE 4: B0=500., UO=1.O, WO=O.05;
TITLE4 .F=TRIPLEX H1l H0=2.O, F=0.001;
TITLE5 F=TRIPLEX .H1l S 0.0: DIAMOND, S = 0.2: STAR;
TITLE6 F=TRIPLEX H1l S = 0.4: PLUS, S = 0.5: SQUARE;
TITLE7 F=TRIPLEX .H1 S = 0.6: TRIANGLE, S = 0.8: HASH;
PROC GPLOT;

*-PLOT THIOR TH20R TH3ER TH4wR TH5*R TH6wR /OVERLAY;
SYMBOL 1 I=SPLINE V=DIAMOND;
SYMBOL2 I=SPLINE V=STAR;
SYMBOL3 I=SPLINE V=PLUS;
SYMBOL4 I=SPLINE V=SQUARE;
SYMBOL5 I=SPLINE V=TRIANGLE;
SYMBOL6 I=SPLINE V=HASH;
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distance RV is taken corresponding to the maximum sediment extent from
the plot (for the sake of computation, RV is used as corresponding to

0.5 cm sediment thickness).

4. For Case 4, linearly varying depth with entrainment, the

following fteminal values are given:

b0 = 500 m w0 = 0.05 mm/sec

u0 = 1.0 m/sec h0 = 2.0 m

f = 0.001 a = 0.0001

c 0  300 ppm e = 0.075

Ps = 400 kg/M
3

The roots and quadrature weights of collocation for integration, taken

from Appendix D as inputs, are shown in Table El.

.-; 5. The resulting plot of sediment thickness of this example is

V.-. shown in Figure E2; the longitudinal distance RV is 19.7. The plots for

other bifurcation levels can be generated in a like manner by supplying

the appropriate values for bO.

Computer Program E2

6. Using the longitudinal distance RV from the plot of Computer

Program El and other given parameters as inputs, this FORTRAN computer

program evaluates total volume of sediments VOL by Simpson's rule for the

integration. The variable names in the computer program, written as

similarly as possible to the expressions shown in PART V, are not ex-

plained in detail here.

7. For Case 4, the RV's and bo's are given as following:

RV = 19.7, 51.9, 130.0, 229.0, and 387.5

b = 500., 166.7, 55.6, 27.8, and 13.9

Ni The calculated volume of sediments are shown in Table E2.
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PLOT OF SEDIMENT THICKNESS
:JN CM, TWO YEARS OF DEPOSITION

CASE 4: 130=500., U0=1.0. WO=0.05,110=2.0. F=0.001
S = 0.0: DIAMOND, S = 0.2: STAR, S =0.4: PLUS
S = 0.5: SQUARE, S=0.6: TRIANGLE, S =0.8: HASH

150

140

130

* 120

110

100

70

60

50

I C

Figure E2. Plot of sediment thickness for various lateral distances
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COMPUTER PROGRAM E2
C
C EVALUATE TOTAL SEDIMENT FOR GIVEN BO
C CASE 4, REAL DIMENSION

C IiitLICIT REAL08(A-H, O-Z)

C
DATA DS/O. 4D0/, UO/1 . ODO/,HO/2.ODO/,C0/300 .DO/

C
TIME = 2.0

100 READ(5,51,END=999) RV, BO

51 FORMAT(2F10.4)
C

CALL INTEG(RVBOTIMEVOL)
C
C

WRITE(6.1) RVBOIIVOL
1 FORMAT(1H1,///' RV =',FIO.4,/, BO =',F9.4,' (M)*,/,
& 'VOLUME OF SEDIMENT VOL (Mom3) =',D16.6)

C
GO TO 100

0 999 STOP
' -, END

SUBROUTINE INTEG(ROBOTIME.VOL)
IMPLICIT REALwS(A-H, 0-Z)
DIMENSION Hi (11) THICK( 11 *11) ,A( 1) ,B( 11) ,C( 11)

C
*C Y IS X2 COORDINATE, X IS X1 COORDINATE

C
RBO = R~wBO

C
E = 0.075
F = 0.001
HO = 2.0
AA = 1.794mE
FF = FwBO/H0
SA = .1D-3
D =F/SA
M1=5
N=5

DO 20 J =13 11
X1 = (J- 1)/10. uRBO
H2 = RBO /M1/2.

C
C Bl=SoBO 1I), NOTE : S=1.0
C FIND JET WIDTH AT VARIOUS Xl
C

R =X1/B0
HH =1. + SAwBO/H0wR
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COMPUTER PROGRAM E2 (CONTINUED)

CF = HO/SA/BO/(2.-D) w (HHwm(2.-D)-l.) + 0.5/AA
BI = BO m 2. w AA w HHwu(D-1.) a CF
HI(J) = BI /N /2.

C
DO 10 I = 1, 11
X2 = (I - 1)/10. w BI

.. I C

C CONPUTE SEDIMENT THICKNESS AT (XI,X2)
C

CALL BED(BO,TIMEXl,X2,B1,THK)
THICK(I,J) = THK

10 CONTINUE
20 CONTINUE

C
C THUS ALL VALUES OF THICK(IJ) HAVE BEEN OBTAINED
C
C START CALCULATING SEDIMENT VOLUME
C
C FIND END POINT ON THE R COORDINATE FOR SIMPSON'S
C RULE

DO 30 1 = 1, 11
30 A(I) = THICK(II)

H = H1(I)
CALL SIMPS(N,H,A,SUM)
SUMTI = H2/3. w SUM

C
DO 40 1 = 1, 11

40 B(I) = THICK(I,11)
H = HI(11)
CALL SIMPS(NH,B,SUM)
SUMT2 = H2/3. w SUM

C
C COMPUTE ALL VALUES BETWEEN TWO END POINTS
C

SUMT3 = 0.0
* IFLAG 1

DO 50 J = 2, 10
H = HI(J)
DO 60 I = 1, 11
C(I) = THICK(I,J)

C
60 CONTINUE

CALL SIMPS(N,H,C,SUM)
IF(IFLAG .EQ. 1) GO TO 111
IF(IFLAG .EQ. 2) GO TO 222

111 SUM = H2/3. w4. w SUM
SUMT3 = SUMT3 + SUM
IFLAG = 2
GO TO 50
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COMPUTER PROGRAM E2 (CONTINUED)

222 SUM = H2/'3. w 2. 0 SUM
SUMT3 =SUMT3 + SUM
IFLAG=

C50 CONTINUE

SUMTT = SUMT1 + SUMT2 + SUIIT3
C
C VOL IS VOLUME OF SEDIMENT IN (Mwm3)
C

VOL = SUMTT
RETURN
END

SUBROUTINE SIMPS(NH1 ,FUNC,SUMM)
IMPLICIT REALw8(A-H, O-Z)
DIMENSION FUNC(11)

C
C USE SIMPSON'S RULE FOR INTEGRATION
C SUMEND IS SUM OF ALL FUNCCI) FOR EVEN I

*C SUMMID IS SUM OF ALL FUNCCI) FOR ODD I
C HI IS STEP SIZE
C FUNC IS INTEGRAND
C
C INITIALIZE-PARAMETERS
C

SUMEND = 0.0
SUMMID = 0.0

C
C EVALUATE SUMEND AND SUMMID
C

DO IK= , N
KI = 2wK - 1
K2 = 2wK
SUMEND = SUMEND + FUNC(K1)

I SUMMID, = SUMMID + FUNC(K2)
IT = 2wN + I
SUMM = (2.O-(SUMEND-FUNC(1)) + 4.OwSUMMID +FUNC(1)
&+ FUNC(IT)) w HI/3.0

RETURN

ENDI
SUBROUTINE BED(BO,TIME,X1 ,X2,BX1 ITHICK)
IMPLICIT REALm8(A-H, O-Z)
DIMENSION ROOT(11),WT(I1)

C
DATA HO/2.ODO/,A/O.OOOJDO/,AII/0.948D0/,AI2/1 .397D0/,

& AI3/0.76D0/, DS/O.4D0/, E/O.075D0/, UO/1 .0DO/,

& F/0.OOIDO/, WO/0.05D-3/,CO/300.DO/, UCR/1 .ODO/I
C

DATA ROOT /0.005337D0, O.047353D0. O.127821D0,

Ell



COMPUTER PROGRAM E2 (CONTINUED)

& 0.239919D0, 0.374139D0, O.519102D0,
& O.662513D0, O.792211D0, O.897196D0,
& O.968556D08 1.OOOOOODO/

DATA WT / O.291698D0, 0.285481D0, O.273180D01  (
& O.255056D0, 0.231495D0, O.203001D0,

& O.170180D0, O.133731D0, O.094429D0,
& O.053091DO, O.008658D0
CUCR = UCR/UO
Wr = BO.WO/U0/HO
D =F/A
AA = 1.794wE
FF = FwBO/H0

C
R = X/BO

2 S = X2/BXI

C HH ='. + AmBO/HO'uRI
* G1 = -A12uW/AI~mR/2.

G2 = A13mW/AII/CUCR/CUCRmR/2.
C

AGI = HO/A/BO/(2.-D) a (HHww(2.-D)-l.) + .5/AA
C

U = I./DSQRT(2.mAA)/ HHu'mD /DSQRTCAGI.)
C

B = 2.mAAmHHw*(D-1) w AGI
C

SUMI = 0.0
SUM2 = 0.0

C
DO 10 I = 1, 11
HU = 1. + AwBO/H~wRwDSQRT(ROOT(I))
CFU = HO/A/BO/(2.-D) m (HUmm(2.-D)-1.) + O.5/AA
UU = I./DSQRT(2.mAA)/ HUwwD /DSQRT(CFU)
SUMI = SUMI + WTCI)/HU/UU
SUM2 = SUM2 + WT(I)/HUnUU

10 CONTINUE
C

C =DEXP( GlaSUMI + G2wSUM2 - DLOG(HHnUmB))
V Cl =C~wDSQRT(l1.-SwS)/DEXP(SmS/2. )wC

CCI (I. - SwS)/DEXP(SoS)
Ul =UOmCClwU

C
C THICK IS THICKNESS OF SEDIMENT IN METER

THICK =WOwClwl.OD-6wc1.-UlmUl/UCR/UCR)
& *TItIEm365m86400./DS
RETURN
END

E12
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COMPUTER PROGRAM E2 (CONCLUDED)

//GO.SYSIN DD
19.7 500.0
51.9 166.7
130.0 55.6
229.0 27.8
387.5 13.9

//
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Computer Program E3

8. Using 50 percent of the total volume of sediments calculated

from Computer Program E2 and other given parameters as inputs, this com-

puter program searches for the longitudinal distance RA of the deposited

sediments by the bisection method.

9. For Case 4, after two years of deposition, the total sediments

volume VOL is 59.58 x 106 m3 for the Ist generation. The normalized

longitudinal distance RA, for a given volume of total sediments, is found

to be 9.36 after 11 iterations. A sample output of this case is shown in

Table E3.

Computer Program E4

10. This computer program is used for searching the time-step

required to fill the known volume (which is 50 percent of the total vol-
'V ume) of sediments to an average thickness. Using the longitudinal dis-

tance RV of the total volume (calculated from Computer Program E2) and

RA of the 50 percent total volume (calculated from Computer Program E3)

as inputs, the time-step is obtained by the method of bisection method.

Also the dimensional distance of x (length), x2 (width), total area AREA,

and total volume VOL of the deposited sediments are calculated.

11. For Case 4, first generation,

RV = 19.7

I RA = 9.36

A listing of output for this case is shown in Table E4.

E14
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COMPUTER PROGRAM E3

C SEARCH FOR R OF DEPOSITION CORRESPONDING TO 50%
C OF TOTAL VOLUME
C
C CASE 4, REAL DIMENSION
C
C USING BISECTION METHOD FOR SEARCH
C

IMPLICIT REALm8(A-H, O-Z)
C

DATA DS/O.4DO/, UO/1.ODO/, HO/2.ODO/, CO/300.DO/
C
C XN AND XP ARE THE SEARCH RANGE OF R
C VOLt IS THE TOTAL VOLUME
C RV IS LONGITUDINAL DISTANCE OF TOTAL VOLUME
C
100 READ(5,51,END=999) XN, XP, BO, RV, VOLl
51 FORMAT(4FI0.4,D20.4)

C
WRITE(6,31) BO, RV, VOLI

31 FORMAT(//,' BO = ',FIO.4,' (M)'/,' RV =',FIO.4,/,
& INITIAL VOLUME VOLI = ',D16.6,' (ME03)')

C
ITER = 0

12 XM = (XN + XP)/2.
ITER = ITER + 1
IF( DABS(XP-XN) .LT. 0.01 ) GO TO 10

C
C DIF IF THE DIFERENCE BETWEEN EXPECTED AND
C COMPUTED VOLUMES
C

TIME = 2.0
VOL2 = VOLI w 0.5
R = XM
CALL INTEG(BOR,TIME,VOL)

C
DIF = VOL - VOL2

'p C
WRITE(6.1) ITER, DIF, VOL, XM

1 FORMAT(/,' NO. OF ITERATION =',15,/,
&' ERROR OF VOLUME (Mom3) =',D16.6,/,
&' VOLUME OF SEDIMENT (Maw3) =',D16.6,/,
&' RA =',F12.4,/)

IF(DIF) 11, 101 13
11 XN = XM

GO TO 12
13 XP = XM

GO TO 12
10 WRITE(6,21) XM
21 FORMAT(/,' ammom RA = F12.5,/)

El5
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COMPUTER PROGRAM E3 (CONTINUED)

GO TO 100

999 STOP
END

SUBROUTINE INTEG (BO, R.TIMEVOL)
IMPLICIT REALm8(A-H, O-Z)
DIMENSION Hi(11),THICK(11,11),A(11),B(11),C(11)

C
C Y IS X2 COORDINATE, X IS Xl COORDINATE
C

RBO = ROmBO
C

E = 0.075
F = 0.001
HO = 2.0
AA = 1.794mE
FF = FmBO/HO
SA = O.ID-3
D = F/SA
M=5
N =5

C
DO 20 J 1, 11
XI = (J- 1)/10. w RBO
H2 = RBO /M/2.

C
C BI=SwB(XI), NOTE : S=1.0
C FIND JET WIDTH AT VARIOUS Xl
C

R = XI/BO
HH = 1. + SAmBO/HOwR
CF = HO/SA/BO/(2.-D)N(HHww(2.-D)-I.) + 0.5/AA
BI = BOw2.mAAmHHow(D-1.)wCF
HI(J) = BI /N /2.

C
DO 10 1 = 1, 11
X2 = (I - 1)/10. w BI

C
C CONPUTE SEDIMENT THICKNESS AT (X1,X2)
C

CALL BED(BO,TIME,XIX2,BI,THK)
THICK(IJ) = THK

10 CONTINUE
20 CONTINUE

C
C THUS ALL VALUES OF THICK(I,J) HAVE BEEN OBTAINED
C
C START CALCULATING TOTAL VOLUME
C
C FIND END POINT ON THE R COORDINATE FOR SIMPSON'S
C RULE

E 16
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COMPUTER PROGRAM E3 (CONTINUED)

30 A(I) = THICK(I1)

H = HI(1)
CALL SIMPS(N,H,A,SUM)
SUMTI = H2/3. w SUM

I C
DO 40 I = 1, 11

40 B(I) = THICK(I,11)
H = HI(i )
CALL SIMPS(N,H,BSUM)
SUMT2 = H2/3. a SUM

C
C COMPUTE ALL VALUES BETWEEN TWO END POINTS
C

SUMT3 = 0.0
IFLAG = I
DO 50 J = 2, 10
H = H](J)

p.DO 60 1 = 1, 11

C(I) = THICK(I,J)
C

60 CONTINUE
CALL SIMPS(N,H,C,SUM)
IF(IFLAG .EQ. 1) GO TO 111
IF(IFLAG .EQ. 2) GO TO 222

111 SUM = H2/3. w4. w SUM
SUMT3 = SUMT3 + SUM
IFLAG = 2
GO TO 50

222 SUM = H2/3. a 2. a SUM
SUMT3 = SUMT3 + SUM
IFLAG = 1

50 CONTINUE
*C

SUMTT = SUMTI + SUMT2 + SUMT3

C VOL IS VOLUME OF SEDIMENT IN (Mmw3)
VOL = SUMTT

RETURN
END

C"

SUBROUTINE SIMPS(N,HI,FUNC,SUMM)
IMPLICIT REALw8(A-H, O-Z)
DIMENSION FUNC(]i)

C
C USE SIMPSON'S RULE FOR INTEGRATION
C SUMEND IS SUM OF ALL FUNC(I) FOR EVEN I
C SUMMID IS SUM OF ALL FUNC(I) FOR ODD I
C HI IS STEP SIZE
C FUNC IS INTEGRAND

E17
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COMPUTER PROGRAM E3 (CONTINUED)

C INITIALIZE PARAMETERS

SUMEND = 0.0
SUMMID = 0.0

C
C EVALUATE SUMEND AND SUMMID
C

DO 1 K = 1, N
* K= 2mK- I

K2 = 2K
SUMEND = SUMEND + FUNC(Kl)

1 SUMMID = FcUMMID + FUNC(K2)
IT= 2wN+ I

SUMM =(2.OmCSUMEND-FUNC(T)) + 4.OwSUMMID +FUNC(1)

& + FUNC(IT)) wH1/3.0
RETURN

CND

SUBROUTINE BED(BO,TIME,XI,X2,BX1,THICK)
IMPLICIT REALm8CA-H, O-Z)
DIMENSION ROOTC11),WTC11)

C
DATA HO/2.ODO/,A/0.00O1DO/,AI1/O.948D0/,AI2/1.397D0/,

& A13/0.76D0/, DS/O.4D0/, E/O.075D0/, UO/I.ODO/,
& F/0.OO1DO/, WO/O.05D-3/.CO/300.DO/, UCR/1.ODO/

C
DATA ROOT /O.005337D0, O.047353D0, 0. 127821D0,

& O.239S19D0, 0.374139D0, 0.519102D0,
& 0.662513D0, 0.792211D0. 0.897196D0,
& 0.968556D0, 1.OOOOOODO/

C
DATA WT / .291698D0, 0.285481D0, O.273180D0,

& 0.255056D0, O.231495D0, O.203001D0,
& O.170180D0, O.133731D0, O.094429D0,
a O.053091D0, O.008658D0

* *CUCR =UCR/UO

W = B0*WO/UOIHO
D = F/A
AA = 1.794wE
FF = FwBO/HO

C
R = Xl/B0
S = X2/BXI

* HH =1. + AwBO/H~mR
* C

G1= -AI2mW/AI~wR/2.
G2 =AI3mW/AII./UCR/UCRaR/2.

C
AG1 HO/A/BO/(2.-D)wCHHw(2.-D)-l.) + .5/AA

El 8
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COMPUTER PROGRAM E3 (CONCLUDED)
C

U= 1 ./DSQRT(2.wAA)/HHNwED/DSQR'?,(AGI)
C

B = 2.*AA*HH**(D-1)*AGI
C

SUMi = 0.0
SUM2 = 0.0

C
DO 10 I 1, 11
HU = 1. + A*BO/HO*R*DSQRT(ROOT(I))
CFU = H0/A/B0/(2.-D)*(HUw#(2.-D)-1.) + O.5/AA
UU 1 I./DSQRT(2.*AA)/HUo*D/DSQRT(CFU)
SUMI = SUMI + WT(I)/HU/UU
SUM2 =SUM? '- WT(I)/HUOUU

1O CONTINUE
C

C =DEXP(GI*SUM1 + G2wSUM2 - DLOG(HH*U*B))
C1 C0*DSQRT1I.-S#S)/DEXP(S*S/2.)*C
CCI (I. - S*S)/DEXP(S*S)
UJ Uo*CC1*U

C
C THICK IS THICKNESS OF SEDIMENT IN METERS
C

THICK = WO*C1*1.OD-6*(1.-Ul*Ul/UCR/UCR)
a *TIME#365.#86400./DS
RETURN
END

C-----------------------------------
//GO.SYSIN DD

5.0 10.0 500.0 19.7 O.5958D08
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COMPUTER PROGRAM E4

C SEARCH FOR TIME OF DEPOSITION FOR GIVEN RV (OF VOLUME)
C AND RA (OF AREA), AND AVERAGE THICKNESS OF DEPOSITION
C CASE 4. REAL DIMENSION
C
C USING El-SECTIONAL METHOD FOR SEARCH
C

IMPLICIT REALw8(A-H, O-Z)
C
C XN AND XP ARE THE SEARCH RANGE OF SEDIMENTATION TIME
C RV IS R FOR VOLUME, RA IS R FOR AREA
C
100 READ(5,51,END=999)RV,RAXN.XP,BO
51 FORMAT(5FI0.2)

C
WrRITE(6,31) BO, RV, RA

31 FORMAT(IHI,///,' BO = 0,F10.4,' (M)',/,
I RV = 9,FI0.4,/,o RA = ,F10.4)

C
ITER =0

12 XM = (XN + XP)/2.
*ITER =ITER+ I

- .: IF( DABS(XP-XN) .LT. O..OlDO ) GO TO 10
C

*C DIF IF THE DIFERENCE BETWEEN EXPECTED AND
C COMPUTED AVERAGE SEDIMENT THICKNESS
C

TIME =XM
CALL INTEG(BO,RV,TIME,VOL)

C
C UNIT OF AREA = Mww2
C

CALL INTEG2(BO,RA.AREAIX2)
A =O.1D-3
HO =2.ODO
DIF VOL/AREA -(HO+ 0.5 A wRA aBO)

C
WRITE(6,1) ITER, DIF, VOL, AREA, XM

1 FORMAT(/,' NO. OF ITERATION =',15./,
&' ERROR OF BED THICKNESS (M) ='.D16.6,/,
&' VOLUME OF SEDIMENT (Mmm3) =',Dl6.6,/,
&' AREA OF SEDIMENT (Mwm2) =',Dl6.6,/,
&* TIME (YEARS) =*,F12.4)
IF(DIF) 11, 10, 13

11 XN =XM
GO TO 12

13 XP =XM
GO TO 12

10 XI RAwBO
WRITE(6,21) X1. X2, BO, XM

E20



COMPUTER PROGRAM E4 (CONTINUED)
21 FORMAT(/,' X1 = ,FJO.4., X2 = ',F1O.4,/,

& r BO = ',F1O.4,/,
& wmmoim TIME (YEARS) =', F12.5)
GO TO 100

999 STOP
END

SUBROUTINE INTEG(BO.RO.TIMEVOL)
IMPLICIT REALw8CA-H, O-Z)
DIMENSION Hi Ci) ,THICK(I11 11) ,A( 11) ,B( 11) ,C( 11)

C
C Y IS X2 COORDINATE, X IS X1 COORDINATE
C

RBO ROwBO
C

E =0.075
F = 0.001

2 HO =2.0
AA = 1.794mE
FF = FwBO/H0
SA = O.1D-3
D=F/SA
M 5
N=5

'4 C
DO 20 J 1 , 11
Xl = (J 1)/10. w RBO
H2 = RBO /M/2.

C
C B1=SmB(X1), NOTE :S=1.0
C FIND JET WIDTH AT VARIOUS Xl
C

R =X1/BO
HH =1. + SAwBO/H~wR
CF =HO/SA/BO/(2.-Dun(HHm(2.-D)-l.)+0.5/AA
B1=BOw2.mAAwHHm D-i. )mCF
HJ(J) = Bl /N /2.

C
DO 10 I1 1, 11
X2 = I-1)/10. *Bi

C
C CONPUTE SEDIMENT THICKNESS AT (Xl ,X2)

CALL BEDCBO.TIME,Xl,X2JIB1,THK)
THICKCI.J) = THK

10 CONTINUE
20 CONTINUE

C
C THUS ALL VALUES OF THICKCI.J) HAVE BEEN OBTAINEDI

C START CALCULATING TOTAL VOLUME

E21]



c COMPUTER.PROGRAM E4 (CONTINUED)
C FN N ON NTERCODNT O IPO'
C RULDENPONONTERCODNTFOSISN'
C RL

DO 30 I = 1, 11
30 A(I) = THICIC(I,1)

H = HIl)
CALL SIMPS(N,HA,SUM)
SUMT1 = H2/3. w SUM

C
DO 40 I = 1, 11

40 B(I) = THICK(I,1'1)
H = H(1)
CALL SIMPS(N,HIIB,SUM)
SUMT2 = H2/3. m SUM

C
C COMPUTE ALL VALUES BETWEEN TWO END POINTS
C

SUMT3 = 0.0
IFLAG =I

* DO 50 J = 2, 10
H = HI(J)
DO 60 I = 1, 11
C(I) = THICK(I,J)

60 CONTINUE
CALL SIMPS(N,H,C,SUM)
IF(IFLAG .EQ. 1) GO TO 111
IF(IFLAG .EQ. 2) GO TO 222

Ill SUM = H2/3. w4. w SUM
SUM.T3 = SUMT3 + SUM
IFLAG = 2
GO TO 50

222 SUM = H2/3. a 2. w SUM
SUMT3 = SUMT3 + SUM
IFLAG = 1

50 CONTINUE
C

SUMTT = SUNTI + SUMT2 + SUMT3
C
C VOL IS VOLUME OF SEDIMENT IN U1.m3)
C

VOL = SUMTT
RETURN
END

SUBROUTINE INTEG2(CBO. ROAE, X2)
IMPLICIT REALw8(A-H, O-Z)I C A = O.ID-3
F = O.001D0
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COMPUTER POGRAM E4 (CONTINUED)

D =F/A
S = 1.0
E,=0.075
F =0.001
HO =2.0
AA 1 .794wE
FF =FwBO/HO

C
C UNIT OF AREA = Mww2
C

CKI = H~wm2/(2.w(AwB0)wm2m(2.-D))
CK2 = HO/(DoAwBO) a (0.5/AA - Ho/(AmBO)/(2.-D))
HH = 1. + A a BO/HO w RO
CF = HO/A/BO/(2.-D) w (HH wo (2.-D) - 1.) + O.5/AA
X2 = BO m 2.m AA a HHow(D-1.) o CF
AREA = (2.wAAwB~ww2) im (CKI*(1. + AmBO/HOwRO)ww2
&+ CK2 a (I. + AmBO/HOmRO)mmD - CK1 - CK2)

RETURN
END

0 C
SUBROUTINE SIMPS(N,1 H1 ,FUNC,SUMM)
IMPLICIT REAL08CA-H, O-Z)
DIMENSION FUNC(11)

C
C USE SIMPSON'S RULE FOR INTEGRATION
C SUMEND IS SUM OF ALL FUNC(I) FOR EVEN I
C SUMMID IS SUM OF ALL FUNC(I) FOR ODD I

'S.C Hi IS STEP SIZE
C FUNC IS INTEGRAND
C
C INITIALIZE PARAMETERS
C

SUMEND = 0.0
SUMMID = 0.0

C
C EVALUATE SUMEND AND SUMMID
C

DO I1K = 1, N

K2 = 2wK

SUMEND = SUMEND + FUNC(K1)
1 SUMMID = SUMMID + FUNC(K2)

IT = 2wN + I
SUMM = (2.0*(SUMEND-FUNCC 1)) +4.OwSUMMID +FUNC( I)
&+ FUNC(IT)) w H1/3.0

RETURN
ENDI

E23
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COMPUTER PROGRAM E4 (CONTINUED)
SUBROUTINE BED(BO,TIME.X1 ,X2,BXI.THICK)
IMPLICIT REALw8(A-H, O-Z)
DIMENSION ROOT(11).WT(11)

C
DATA HO/2.ODO/.A/O.OOO1DO/.AII/O.948D0/.AI2/1 .397D0/.

& A13/0.76D0/, DS/O.4D0/, E/O.075D0/. UO/1.ODO/.
& F/O.OO1DO/, WrO/05D3/,C/300.DO/. UCR/1.ODO/

C
DATA ROOT /0 .005337D0, 0. 047353D0. 0. 12782 JDO,

& 0.239919D0, 0.374139D0. 0.519102D0,
& O.662513D0. O.792211D0. O.897196D0,
& 0.968556D0. 1.OOOOOODO/

C
DATA WT / O.291698D0, 0.285481D0, O.273180D0,

& O.255056D0, 0.231495D0, O.203001D0.
& O.170180D0. O.133731D0, O.094429D0.
& 0.053091D0. 0.008658D0
CUCR = UCR/UO
W = B~wWO/UO/H0
D = F/A

* AA = 1.794wE
FF = FwBO/HO

R = Xl/B0
S = X2/BX1
HH = 1. + AwBO/H~wR

C
GJ= -A12w'W/AI~wR/2.
G2= AI3mW/AII1/CUCR/CUCRwR/2.

C
AG? = HO/A/BO/(2.-D)w(HHww(2.-D)-l.) + .5/AA

C
U = 1./DSQRTC2.wAA)/HHUED/DSQRTCAGI)

C
B= 2.wAAwHHww(D-1)wAG1

C
SUml = 0.0
SUM2 = 0.0

C
DO 10 I 1, 11
HU = 1. + AwBO/H~mRwDSQRT(ROOT(I))
CFU = HO/A/BO/(2.-D)w(HUww(2.-D)-1.) + 0.5/AA
UU = 1 ./DSQRT(2.uAA)/HUmED/DSQRT(CFU)
SUMI = SUMi + WT(I)/HU/UU
SUM2 = SUM2 + WT(I)/HU*UU

10 CONTINUE
C

C =DEXP( GlwSUMI + G2wSUM2 - DLOG(HHmUwB))
Cl =C~mDSQRT(1.-SwS)/DEXP(SwS/2.)wC
CCI =(I. - SuS)/DEXP(SwS)
UI UONCCINU
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COMPUTER PROGRAM E4 (CONCLUDED)
C
C THICK IS THICKNESS OF SEDIMENT IN METERS
C

THICK WOwClw1.OD-6m(I.-UI/UCR/UCR)
a *TIMEw365.w86400./DS
RETURN
END

C-

//GO.SYSIN DD
19.7 9.36 0.0 8.0 500.0

//
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