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THE ATCHAFALAYA RIVER DELTA
ANALYTICAL ANALYSIS OF THE DEVELOPMENT OF
THE ATCHAFALAYA RIVER DELTA

PART I: INTRODUCTION

Objectives

1. The objective of this research is to quantify the dynamic

interaction of the resources of the Atchafalaya River, namely, the

sediments forming the delta and the riverflow that carries the

sediment.

quiescent bay

Our study is focused on fresh water discharging into a

and its dynamic response to the forcing function. Our

(; results are developed for short-term predictions of the delta growth
{: in early stages.
.$: 2. The specific objectives of this research are:

a. To apply the theory of turbulent jets in predicting the
short-term process of delta growth at the river mouth.

b. To formulate the problem of river outlet freshwater
discharge into a quiescent bay as a two-dimensional
plane jet.

c. To develop an analytical approach that quantifies the
areal and mass extent of delta growth as influenced by
the river discharge.

d. To test the adequacy of the analytical technique based
on presently mapped bathymetry and to verify the result
with the independently measured bathmetry changes in the
bay.

f. To perform a sensitivity analysis on various hydro-
dynamic parameters, and to assess the relative
importance of river stage and discharge, channel con-
figuration, and bottom resistance as they relate to the
river outlet sediment deposition.

Background of Deltaic Processes
- 3. Coleman and Wright (1975) discussed the various aspects of
'¥$¥ interacting coastal processes and their effects on delta formation.
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The most important factors are climate, water and sediment discharge,
vegetation and soil, geometry of river mouth, winds and nearshore cur-
rents, wave power and tidal regime, and bathymetry of the receiving bay.
Figure 1 shows the major components of a river basin, bay, and delta
system (Coleman and Wright 1975).

4. The river mouth is the point at which the fresh water leaves
the confined channel and spreads and mixes with ambient bay water,
causing a decrease in flow velocity and total momentum, and conse-
quently, the deposition of sediment. The river discharge depends on
The

pattern of delta growth depends upon the rate of sediment supply by

the climatic and hydrologic regime within the drainage basin.

the river discharge and reworking of sediment by wave and current
forces in the receiving bay.

5. The pattern of sediment deposition depends upon the proper-
ties of the sediment and the relative roles of three primary forces
1976):

a. The inertial force of river effluent and associated
turbulent diffusion.

{Coleman

b. The frictional force between the river effluent
and the bed immediately seaward of the mouth.

c. The buoyant force resulting from density differences
between river effluent and ambient fluids.

6. Extensive observations and representative data collected at
the mouth of the Mississippi River by Wright and Coleman (1974) have
indicated that the relative roles of these forces vary in space and
time, causing corresponding changes in the modes and patterns of
sediment transport and deposition. Figure 2 illustrates the river
mouth mechanisms and the resulting effluent plume and subaqueous bar
1976).

results are as follows:

(Coleman Conditions for the four cases illustrated and their

a. Inertial forces dominant. When riverflow velocities
are high, depths immediately seaward of the mouth are
large, density differences are negligible, inertial
forces are dominant, and the river effluent spreads and
diffuses as a turbulent jet. Narrow and linear sand-
bars are formed (Figure 2a).
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Figure 1. Major process controls on a river system
(Coleman and Wright 1975)
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Frictional forces dominant. When riverflow velocities
are high, but the depths seaward of the mouth are
shallow, turbulent flux penetrates to the entire water
column and bottom friction plays a major role in causing
the river effluent to be decelerated and expanded as a
fan shape plume. Bifurcating sandbars are established
(Figure 2b).

Buovant forces dominant. When the density of ambient
bay water is much higher than the density of river
effluent, then strong vertical density gradient exists
at the river mouth and buoyancy becomes of paramount
importance in spreading both the river effluent and sand
bars radially away from the mouth (Figure 2c).

Interaction of forces. Various combinations of these
three forces exist in modern deltas. Interactions
between buoyant and inertial forces are common in many
modern rivers (Figure 2d).

Approach in Analyzing the Atchafalaya River Delta

7. The environmental settings of a river, bay, and delta system

provide some idealization to analyze the influencing factors. In our

study, four main features are apparent:

a.

jor

Kg]

The large input of fresh water and sediments from the
Lower Atchafalaya River is undoubtedly the dominant
forcing function in shaping the Atchafalaya River
Delta.

The Atchafalaya Delta is building into a shallow bay, in
contrast to the continential shelf location of the
Mississippi Modern Balize Delta (modern birdfoot delta).

The Atchafalaya Bay domain is constrained within an area
of 233 square miles* (33 miles wide, and 8 miles long).
The average depth in the bay is about 5 ft, and the
water volume is about 3.25 x 1010 ft3 (McAnally and
Heltzel 1978).

The average salinity of the waters in Atchafalaya Bay is
0.37 ppt (US Fisheries and Wildlife Service 1976).

8. From above information, we infer that the main forces that

affect the behavior of Atchafalaya River discharge and subsequent

*A table of factors for converting non-SI units of measurement to
SL (metric) units is presented on page 7.
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PART II: LITERATURE REVIEW OF TURBULENT JETS

Review of General Basics of Turbulent Jets

9. Fresh water discharging from a river into coastal waters
forms a turbulent jet. River discharge at the mouth transports
sediments into the bay. Mass transport of these materials determines
the ultimate distribution of sediments and the bathymetric changes
near river mouths. Essential features of river effluents have been
summarized briefly in Part I and have been documented thoroughly
by Coleman (1976).

10. There are many articles and technical papers on turbulent
jets. The literature reviewed in this chapter is limited primarily to
surface jets and plumes with bottom friction and lateral entrainment.

Types of turbulent jets

11. A general view of the basics of turbulent jets is given by
Pai (1954), Townsend (1956), and Schlichting (1968). Much more
detailed analysis is presented in the classical work of Abramovich
(1964) and in the relatively recent book by Rajaratnam (1976).

12. Turbulent jets are a special category of turbulent shear
flows. Depending on their dominant driving force, they are distin-
guished as momentum jets or as plumes. For the former momentum is the
predominant factor, while for the latter buoyancy is the governing
force. Jets are also classified according to their geometrical shape
as plane or axisymmetrical.

13. There is usually not a distinct separation line between the
two categories; a jet is then of the mixed-type. In this case, at the
area close to the outlet the jet is influenced by the initial momentum
of the fluid and is treated as a momentum jet, while at some distance
from the outlet the buoyant effects become more important so that the
jet is treated like a plume.

Surface heated jets

14. Considerable research in dealing with surface heated jets

has been done. Hayashi and Shuto (1967) were among the first who

14
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presented an approximate theory for the solution of thermal jets
discharged horizontally at the water surface. Many assumptions were
incorporated in the analysis. Their solution is valid where the
Richardson's number is close to unity.

15. Another model for surface thermal jets was developed by
Hoopes, Zeller, and Rohlich (1967), in which the wind shear stresses
on the jet surface and the entrainment due to the wind were in-
cluded. Their model is two-dimensional with constant jet depth and
no vertical entrainment. They assumed that the jet spreads linearly;
buoyant effects and current drag forces are neglected.

16. Motz and Benedict (1970) studied the problem of heated
surface jet discharges into rivers. Their model is also two-dimen-
sional with constant jet thickness, but considers both vertical
entrainment and drag forces. Although buoyancy was assumed to induce
vertical entrainment, it was neglected with respect to jet spreading.

17. In the study of the discharge of heated water into deep
receiving waters, Koh and Fan (1970) were first to introduce inter-
facial shear stress in the formulation of turbulent jet problems.
Internal hydraulic jump due to the transition of the supercritical
issuing jet in the near-field zone into a subcritical flow in the
far-field zone was discussed in their study.

18. Shirazi and Davis (1974) have developed a model for buoyant
surface jets, which in essence is similar to the one given by
Stolzenbach and Harleman (1971), but differs in the fact that they
used Gaussian similarity profiles. Shirazi and Davis estimated the
coefficients of entrainment, turbulent exchange, drag,and shear
through calibration of field and experimental data. This approach
seems less desirable since many errors might be lumped into the
coefficients (Jirka, Abraham, and Harleman 1975).

Ebb tidal jets

19. Tidal inlets act as an interface between estuarine and
coastal waters. Tidal currents near inlets and estuary mouths play
important roles in transporting pollutants and sediments. Patterns of

tidal flow change with time during a tidal period. During ebb, the
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flow on the ocean side separates from boundaries, as opposed to the
nonseparated flow during flood (Ozsoy 1977). Therefore a turbulent
jet is often formed during ebb flows.

20. An attempt was made by French (1960) to model the ocean
flow patterns during a tidal period. In his study, constant depth and
negligible bottom friction were assumed. The results thus obtained
did not simulate the actual conditions. In reality, the bottom slope
and bottom friction may become important, especially during ebbing
tide when a jet flow is found.

21. Ozsoy (1977) incorporated variable bottom topography, bed
resistance, and lateral entrainment into the jet flow phenomenon.

He described simulated turbulent jet characteristics extensively.

His results of the flow patterns at the vicinity of tidal inlets have
been compared with a small physical model and good agreement was
found.

22. Sill, Fisher, and Whiteside (1981) investigated deposition
in an inlet where the hydrodynamics were simulated by a one-
dimensional jet, considering only ebbing tide. Their conclusions
were that the dimensions of the equilibrium horseshoe-~shaped shoal
were proportional to the inlet velocity and that the two-dimensional
theoretical isopachs do not adequately predict the shape of the shoal.

Freshwater effluent plumes

23. Bates (1953) suggested that at most natural river mouths
freshwater effluent diffusion can be based upon the theory of turbu-
lent jets. A jet boundary occurs near the river mouth as fresh water
discharges into a quiescent bay. Due to the discontinuity in the
velocity of flow, a zone of turbulent mixing is established.

24. Wright and Coleman (1971) suggested that freshwater flow
from a river mouth, its deceleration, and consequent sediment deposi-
tion reflect varying conditions of outflow inertia and associated
turbulence, bottom fricition, buoyancy induced by density differences,
and the winds, tides, and currents of the receiving basin.

25. Based on extensive observations and representative field

data, Wright and Coleman (1971) found that the jet expansion rate in
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deep receiving water can be expressed by an explicit function of the
density ratio between river water and seawater and the densimetric
Froude number. They concluded that the flow deceleration is due
mainly to vertical rather than lateral mixing.

26. A further investigation of river effluent dynamics for the
Mississippi River was conducted by Wright and Coleman in 1974. 1In
their study, they divided the mouth of the river into four semi-
discrete regions with specific morphologic and sedimentary character-
istics. The relative contributions of outflow inertia, buoyancy,
bottom friction,and marine hydrodynamics to the evolution of the delta
of a stratified river were documented.

27. A dual treatment of the effluent plume, both theoretical
and experimental, was presented by Bowman and Iverson (1978). They
concluded that the plume is independent of the bathymetry of the
region and its driving mechanism is the horizontal pressure gradient
due to the sloping interface between the plume and the ambient water.
Also, they differentiate plumes from saline wedges on the basis that
the former tends to entrain and mix downward, while the saline wedge

tends to entrain and mix upward.

Review of Previous Efforts in Analyzing Turbulent Jets

28. The governing equations of fluid hydrodynamics and substance
conservation constitute the basis for the mathematical model for
turbulent jets. The formulation is a system of partial differential
equations of three to five equations, that is, one for fluid mass
continuity; one to three, depending on the nature of the problem, for
the momentum components; and one for the conservation of the substance
under consideration.

29. Because of the nonlinear nature of the mathematical problem
formulated, no analytical solution for the complete system has yet
been found. The approximate solution to this mathematical model can
be found by means of a numerical technique (finite difference and

finite element numerical methods) using a digital computer. However,
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by making certain simplifying assumptions the system of partial
differential equations can be reduced into a system of ordinary
differential equations which can then be solved analytically or
numerically. This kind of approach is called "integral methods.," In
essence, the integral equations of mass, momentum,and energy are
utilized.

Assumption of self-similarity

30. To obtain a closed-form solution of a set of ordinary
differential equations, the self-similarity of velocity profiles along
the longitudinal distance is assumed. The similarity hypothesis has a
firm basis for the classical turbulent jets as demonstrated by theory
(Abramovich 1964; Schlichting 1968).

31. Various functional forms of velocity profiles and sediment
concentration, such as Gaussian probability distribution (Shirazi and
Davis 1974), have been developed based on different sets of hypotheses.
Experimentally, the similarity is well established for the case of
free jets. However, in cases of attached jets with interface friction,
the similarity is under question. Another approach is the split of
the spatial solution field into a near-field model (close to the
outlet) and a far-field model (far from the outlet).

32. Recent experiments by Safaie (1979) suggest that the simi-
larity function depends not only on the width of the outlet but also
on the bed slope and the aspect ratio (the ratio of the width and
depth of an outlet). Such a dependence should be expected, but could
increase the complexity of the problem for reaching an analytical
solution.

Assumption of entrainment velocity

33. A positive step toward the mathematical modeling of turbu-
lent jets is found in the pioneering work of Ellison and Turner
(1959) in which they assumed that the entrainment is proportional to
the velocity multiplied by an empirical entrainment parameter which is
a function of the Richardson number. Their work was justified by

their laboratory experiments for surface jets and inclined plumes.
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34. Hirst (1971) introduced an entrainment function which was
related to the buoyancy and the jet orientation. His analysis was
based on the integral forms of the conservation of mass, energy, and
two-component momentum equations. Gaussian similarity profiles were
used. The results of his predictions compared with experimental data
were proven to coincide satisfactorily. The receiving water was taken
as quiescent and stratified.

35. A further analysis of the entrainment mechanism was con-
ducted by Price (1979). Using the experimental data of Kato and
Phillips (1969) and of Kantha, Phillips, and Azad (1979) for stratified
and nonstratified receiving water, Price computed the entrainment
function from the mean buoyancy and momentum equations. In the
momentum equation, a sidewall friction term was included in order to
incorporate the effects of the experimental tank walls. This investi-
gation covered a wide range of Richardson's numbers.

Presence of crosscurrents

36. Keffer and Baines (1963) experimentally investigated the
case of an axisymmetrical turbulent jet subjected to a crosswind.
Their results concluded that the position of the jet in space can be
described by a single function of the entrainment parameter and the
momentum of both the jet and the wind. They also showed that the
similarity assumption is still valid for the case of a crosswind.

37. A comprehensive turbulent jet integral model was developed
by Stolzenbach and Harleman (1971). The model considered the cases of
both nonbuoyant and buoyant jets as well as buoyant jets in cross-
flows. The main characteristic of their analysis was the separation
of the jet hydrodynamic field into four separate regions depending on
the shear pattern of the flow. Thus for the near-field zone, the
governing equations were written for each individual region separately
and were then linked together through transfer equations. For the far-
field zone,there was only one region. By scale analysis the original
system was reduced into a simpler one, which was then transformed into

an ordinary differential system by utilizing the similarity profiles
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in a polynomial form. The final system was solved numerically by a
fourth-order Runge-Kutta integration algorithm.

38, Jirka, Adams, and Stolzenbach (1981) gave a general presenta-
tion of the buoyant surface jets theory. Based on dimensional analysis
and some physical arguments, they defined the flow using a set of in-
dependent variables, including the kinematic buoyant flux, the volume
flux, and a characteristic source length. Their analysis covers the
near field of buoyant jets for deep or shallow receiving waters. The
case of crossflow was included also.

39. The diffusion of axisymmetric jets into inflowing streams
was recently investigated by Rajaratnam and Stalker (1982). In their
experiment, the velocity of the jet ranged from 2 to 30 times the
stream current; experimental results showed the similarity of the
velocity profiles except within the boundary layer portion. The
various jet characteristics were correlated to the excess momentum
thickness.

Closed-form analytical solutions

40. Hayashi and Shuto (1967) were the first to present an
analytical solution for the surface heated discharge problem. In
their formulation, the following assumptions were used:

a. In the momemtum equation the horizontal diffusion terms
balanced the pressure gradient.

b. Similarity existed for the velocity profiles in hori-
zontal and vertical planes.

¢. The entrainment rate was proportional to a charac-
teristic velocity.

d. The turbulent diffusion coefficients were constant.
Furthermore, they neglected the advective terms, the vertical veloc-
ities, and the shearing forces at the surface and the bottom. A closed
form solution was obtained for the velocities by a biharmonic stream
function equation where the entrainment was taken as zero. Their
solution holds true where the Richardson number is close to unity.

41. An analysis of the surface heated jets at small Richardson's
numbers has been done by Engelund and Pederson (1973). Their main

assumptions were:
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a. Similarity profiles for velocities and densities.

b. Linear density variation along the depth.

c. Hydrostatic pressure.

d. Shear stresses existing only in the horizontal planes.

By considering that the longitudinal momentum dominates the pressure
forces, they derived a system of ordinary equations from which a
closed-form solution was obtained.

42. 1In 1976 Engelund improved this earlier model. Based on
their original system of equations, he gave a second order closed-form
solution for the near field and moderate Richardson's numbers, using a
perturbation technique. His solution is the only analytical one which
does not give similar profiles.

43. Abraham (1976) presented an analytical form of the axisym-
metric momentum jets and plumes in stagnant and flowing receiving
waters. He described the limits of the jet diffusion theory based on
the similarity assumption and the entrainment concept. A compre-
hensive study was done by Policastro and Dunn (1976) on the integral
models of surface thermal plumes. Their investigation is thorough and
outlines the advantages and disadvantages of the various models.

44. A model for nonbuoyant jets in shallow receiving waters for
the case of sediment transport was developed by Ozsoy (1977). He
integrated the shallow-water wave equations along the jet width,
including the lateral entrainment and bottom friction. Using the
similarity functions for near- and far-field zones as given by
Stolzenbach and Harleman (1971), Ozsoy obtained analytical solutions
to the jet equations.

45. The articles discussed briefly in this chapter suffice only
for a general review of turbulent jets. It is not an exhaustive list.
Our attempt is to cover the evolving theory of turbulent jets and the
developing stage of analysis in jet phenomenon.

46. Our main task is to formulate the freshwater discharge into
a quiescent bay as a two-dimensional plane jet, to derive an

analytical solution for the governing equations of fluid dynamics and
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mass transport, and to predict the areal and mass extent of delta

growth in early stages.
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PART III: DEVELOPMENT OF THE ATCHAFALAYA RIVER DELTA

General Description 3

\ 47. The development of the river delta in Atchafalaya Bay since
. 1950 has provided the opportunity to document the evolution of two new

Y
[ Mississippi delta lobes, the Lower Atchafalaya River Delta and the Wax

D PN |

Lake Delta. Numerous descriptive studies (Garrett, Hawxhurst, and Miller

1969; Shlemon 1972; Cratsley 1975; Roberts, Adams, and Cunningham 1980;

;5 Adams and Baumann 1980; Van Heerden 1980; and Van Heerden, Wells, and 3
|~ Roberts 1981) have been conducted in the bay, which form the basic .
] ]
g{ foundation for this research. K
" 48. Delta development is primarily the product of an interplay "
o between river sediment input and reworking by physical processes in :{
'f the receiving basin (Wright and Coleman 1974). However, the r
: Atchafalaya Delta is fundamentally different from the Mississippi Ry
Balize Delta (modern bird-foot delta). The Atchafalaya Delta is "
fr building into a nonstratified shallow bay protected by a series of ::
%g discontinuous oyster shell reefs, as shown in Figure 4 (Shlemon EE
;: 1972). This reef chain, known as the Point Au Fer Reef, forms the N
E Atchafalaya Delta's seaward margin, in contrast to the continental .
i shelf location of the Mississippi modern bird-foot delta (Van Heerden :
; 1980). The Point Au Fer Reef, including its submarine extension, was ;'
o about 10 miles long before it died out in the late 1960's, due to the ﬁ
‘ increasing influx of fresh water and sediment into Atchafalaya Bay
o (Shlemon 1972).
.3 49. Cratsley (1975) showed that the quantity and size distribu- :5
4 tion of sediment available to the Atchafalaya Delta are directly
; related to the modern history of the Atchafalaya Basin and River. The ;;
r'e Atchafalaya system is presently river-dominated; average salinity of ‘E
‘: the waters in Atchafalaya Bay is 0.37 ppt (US Fisheries and Wildlife g
:I Services 1976). Salt-wedge intrusion does not appear to signifi- S
; cantly affect the system. B
,- ‘:-
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50. This study, as outlined in PART I, is focused on use of a
freshwater discharge into a quiescent bay for the prediction of the
extent of area and mass of delta growth in early stages. The evolu-
tionary history of the Atchafalaya Delta, gathered from literature,
serves as the basis of our evaluation of the phenomena to be analyzed.
The pertinent information on river discharge, sediment characteristics,
and bay bathymetry are reviewed and arranged in chronological order in

the following sections.

Historical Development

Prior to 1950's

51. The Atchafalaya River system flowed through a broad basin
characterized by extensive freshwater swamps and numerous small lakes.
Prior to the early 1950's, most of the sediments were trapped in the
catchment basin before they reached Atchafalaya Bay. The bottom con-
figuration of the bay virtually remained unchanged. The bay depth was
maintained at a constant depth of 6 ft (Shlemon 1972). Very little
sediment was deposited in the bay. Prodelta clays and silty clays
were accreted on the continental shelf off the Atchafalaya Bay
(Cratsley 1975).

1952 to 1962

52. From 1952 to 1962, as the diversion of Mississippi River
flow through the Atchafalaya River system increased steadily and as
the catchment basins were filled, accelerated sedimentation in
Atchafalaya Bay marked the beginning of a subaqueous delta (Cratsley
1975). As displayed in Figure 5, Grand Lake and Six Mile Lake, which
had been natural settling basins for coarse-grained sediments (silt
and sand), were rapidly filled by deltaic deposits. These catchment
basins are now directly routing sediment through the natural Lower
Atchafalaya River Outlet and the man-made Wax Lake Outlet.

53. Shlemon (1972) indicated that about 47 square miles of
the bay bottom had been covered by at least a 1-ft thickness of

sediment by 1962; over 6 ft of fill occurred just south of Shell
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Island, as shown in Figure 6 and Table 1. In Figure 6, the delta
front environment in the Wax Lake Outlet mouth area is much less
extensive than that of the Lower Atchafalaya River mouth area, re-
flecting the relative discharges from the two outlets during the
period of 1952 t¢ 1962 (Cratsley 1975).
1965 to 1967

54. In the late 1960's, the increasing discharge of the
Atchafalaya River and the increasing rate of suspended sediment
transport were responsible for the formation of the distributary bars
at the mouths of the Wax Lake Outlet and the Lower Atchafalaya River
(Cratsley 1975). The average monthly discharge at the latitude of
the outlets during the period 1965-1967 and the corresponding sus-
pended load transported through the outlets were summarized by Garrett,
Hawxhurst, and Miller (1969), and Cratsley (1975) as reproduced in
Figure 7. The combined average annual freshwater flow through the
outlets was about 165,000 cfs. High riverflows occurred from
January through June, reaching a maximum of 325,000 cfs in May and a
minimum of 73,000 cfs in September. The textural composition of the
suspended load was 25 percent sand and 75 percent silt and clay
(Garrett, Hawxhurst, and Miller 1969).
1967 to 1972

55. The period 1967 to 1972 was characterized by the expansion
of the delta front environment throughout Atchafalaya Bay, the estab-
lishment of distributary mouth bars in the bay, and the rapid prograda-
tion of the distal bar (Cratsley 1975). Very definite subaerial
delta lobes appeared in 1972. These initial subaerial exposures were
shoals, composed largely of sediment, extending from the Atchafalaya
River Outlet to Point Au Fer Shell Reef.

56. The rapid expansion of the delta front environment in the
Wax Lake Outlet channel mouth area is shown in Figure 8, the 1972
bathymetric map prepared by the US Army Engineer District, New Orleans
(Adams and Baumann 1980). A more detailed evaluation of the prograda-

tion of the delta front environment was made by Cratsley (1975) by
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measuring the changes in bottom topography along the six profile lines
as delineated in Figure 9 and plotted in Figure 10.

57. The annual flow in the Atchafalaya River at Simmesport,
Louisiana (near the diversion point in the upper basin), from 1967 to
1972, was 208,000 cfs, and the average annual peak flow was 303,000
cfs (Adams and Baumann 1980). Adams and Baumann (1980) indicated
that the increase in discharge during the period of 1967 to 1972
occurred predominantly during traditionally low flow months; the peak
discharges during the spring months were not great enough to increase
sediment load entering the bay. The average annual sediment load
delivered to Atchafalaya Bay was about 63 x 10 tons for the period
1965-1971 (USACOE 1974).

1973 to 1975

58. The 1973-1975 years were abnormally high-water years
compared with the past 20 years of flow records at Simmesport,
Louisiana, as displayed in Figure 11 (Van Heerden 1980). During
1973-1975, flows averaged 315,000 cfs at Simmesport; peak flows of
over 700,000 cfs occurred in April 1973 and over 600,000 cfs in April
1975. .

59. Similar high-flow averages and peak flow were recorded at
Morgan City, on the Lower Atchafalaya River, during 1973-1975. Both
the discharge and suspended load at Morgan City are displayed in
Figure 12 (Roberts, Adams, and Cunningham 1980). Peak flows at Morgan
City of over 600,000 cfs occurred in May 1973, and the normal 300,000~
cfs peak flows were exceeded during 8 months of 1973-1975.

60. Accompanying these abnormally high discharges were un-
usually high concentrations of sediment carried as suspended load
(25 percent sand, 75 percent silt and clay). The annual suspended
sediment load reaching Atchafalaya Bay during the three high-water
years was about 123 x 10® tons. The sediment budget and size
characteristics during the periods of 1965-1971 and 1973-1975 are
listed in Table 2 (Roberts, Adams, and Cunningham 1980).
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1976 to 1978

61. Although the years 1976 through 1978 were considered as
normal flood years (Figure 11), the previous three abnormally high-
water years had played an important role in the rapid development of
the subaerial delta phase. During 1976-1978, the distributary mouth
bar extended seaward and evolved into a complex branching network
characteristic of deltas where river mouths are frictionally dominated
and are gradually building into low-energy, shallow-water environments
(Wright and Coleman 1974).

62. Bathymetric data taken in 1977 by USACOE and adjusted to
the 1975 msl datum (Adams and Baumman 1980) indicated that an esti-
mated 6.55 square miles of new land has developed above msl (Figure 13).
Above the -1 ft datum, which represents the mean low tide level, a
calculated 15.8 square miles of new subaerial land with an approximate
width of 6.8 miles had been added to Atchafalaya Bay over the period
1967-1977 (Roberts, Adams, and Cunningham 1980).

1979

63. Another major flood occurred in 1979. A peak flow of over
500,000 cfs was recorded in April 1979 (Figure 11). Roberts, Adams,
and Cunningham (1980) concluded that suspended sediment transport
during floods was responsible for the abrupt increases in subaerial
delta growth.

64. Through using satellite imagery, color infrared photog-
raphy, and digital current meter data, Wells and Kemp (1981) provided
estimates on the suspended sediment concentrations within Atchafalaya

Bay. These average about 300 mg/l and range from 250 to 400 mg/l.

Long-Term Future Projection

1970 to 2020

65. Shlemon (1972), using sediment load measurements obtained
in the outlets, outlined the probable future configuration of the
Atchafalaya Delta by the year 2020 (Figure 14). An average growth
rate was inferred and is plotted in Figure 15. A straight line

projection of bay filling until the year 2020 will yield an estimated
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filling rate of about 7 square miles per year, covering an area of 350
square miles. Assuming that the peak of subaerial growth will be
reached by 1990, a conservative growth rate will be 5.5 square miles
per year, with resultant production of nearly 290 square miles of new
land by the year 2020.

66. Roberts, Adams, and Cunningham (1980) pointed out that unless
an abnormal number of peak floods such as those of the 1973-1975 period
occur during the next two decades, Atchafalaya Bay probably will not be
filled until after the turn of the century. They further estimated
that the sand-dominated phase of the delta will probably cover an area
of over 50 square miles before shifting its locus of deposition to the
shelf seaward of the Point Au Fer Shell Reef.

67. Van Heerden, Wells, and Roberts (1981) projected that the
Atchafalaya Delta should prograde more rapidly, form thin sand bodies,
and eventually cover a wider area, much like the Lafourche, St. Bernard,
and Teche delta lobes.

1977 to 2027

68. A statistical approach to predict the future growth of the
Atchafalaya River delta, based on historical deposition trends in
Atchafalaya Bay, has been presented by Letter (1982). He developed a
regression model that correlates deposition rates with river dis-
charge, sediment yield, water depth, and the delta mass centroid.
Using the 1977 bathymetry as an initial condition, the model is
applied to a 50-year hydrograph at 10-year increments of prediction.
The results of the regression model showed that within 50 years the
delta will evolve gulfward of Eugene Island, the gulfward limit of the
bay.

69. Figure 16 shows the predicted condition of the Atchafalaya

Bay in the year 2027. The total volume of the deposited sediments is

estimated at 58 billion ft3, and the delta mass volume, based on -3 ft
NGVD (National Geodetic Vertical Datum), is about 17.6 billion ft?3
(Letter 1982).
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1980 to 2030

70. Long-term predictions based on the morphologic development
of the Atchafalaya River delta and generic analysis of existing deltas
have been completed recently by Wells, Chinburg, and Coleman (1984).
Utilizing maps, charts, aerial photographs, and LANDSAT imagery, they
have examined 10 similar deltas and subdeltas worldwide, and have
projected the rate of growth and configuration of subaerial land in
Atchafalaya Bay to the year 2030.

71. The requirements for similar deltas that closely resemble
the Lower Atchafalaya River delta were defined by Wells, Chinburg, and
Coleman (1984) in their generic analysis. The requirements were low
wave energy, low tidal energy, a shallow receiving basin, and high
suspended sediment load. The results from their study indicate that
the subaerial land area in Atchafalaya Bay by the year 2030 will range
from 150 km? (59 square miles) to 337 km? (132 square miles), with
208 km? (81 square miles) representing the expected land area in 50
years under average flood conditions.

72. Approximately 14 x 10® m3 (495 x 108 ft3) of sediment per
year is retained in Atchafalaya Bay (Wells, Chinburg, and Coleman
1984). Growth prediction curves for subaerial land in the bay were
constructed by Wells, Chinburg, and Coleman (1984), as shown in
Figure 17. Figure 18 shows the configuration of land in the bay in
the year 2030 based on the range of predicted rates of growth.

73. Table 3 summarizes the development of the Atchafalaya River

delta in chronological order as gathered from various literature.

42




L IR Rl A e B it ald

T TP T TN T T T TR W TR BT W TS s s

IR WXTUNT

0€0Z7 1ea 3yl uy Aeg efeyejeydly ut puey [eTI3eqNS 8urioTpaad saaand yaimoln /1 AIn3Ty

010Q
0soT oroT 0£0Z ozoT otoZ 0002 0661 0861 T/l
r B AR S LN T Y T -1 | 1 Y T r d O
0L 09 o.n or ot oz a -

| 31004 pejrelorg {oz

]

! {or

|

_ 0861 Y {09 o

| 001D peAIesqo 108

_ woly peutuisjeq

_ 100t W

_ o
: -

_ ) ozt §
4

M _ T ort

_ 1091

|

" 0861 u! 108t

.: WL [ L)/ 0.0 se.0nbs SO0 { ooz
) wWouy peuliiieieQq

adl *14 1

o P ] e 7o S SN Y LTy N, > w ISP o = Py e} & % ., ok AN
T - ey OO NGO, osper - Al ] Y R
AN X X X o ..!- '.-'- o .A.y-p,-‘-w.i» KA A A o = J!trl\ - A“(. .Q-. n,u"nl.l . »l.f. wh 3 o IR




R

-------

5

'

Tt
At
st

>

v

{5
ANy

«-
AR }'(

2™ LE£€ PUB ‘807 ‘QGI 3O seaie Teloj Surunsse
0€0Z aea4 2yl ut Aeg efeTejeyoiy ut PUBT TBTi9eqns jo uojjean3Tjuo) -g aan3d14

A48 %

M 420 fuaane A i o

" vr3 g

i

!

.

=4 Kok
Pl el
nf\li

18 72€ - OMNOS pwssind I r.ﬂnn
X

€% 001 - ONNOE WM 773 SN

oye

'('.* 'l
"

Y 05 - !g.-ic.z ~

1338 VIIHS B

INNIEONS L4ud- 204 [5)

TS TR T g ro L g Ty

............




PART IV: GOVERNING EQUATIONS OF TURBULENT PLANE JETS
IN SHALLOW RECEIVING WATERS

General Description of River-Bay Systems

74. River mouths, with their unique features, are very complex
physical systems. Because they provide a natural link between inland and
sea, most of the world's civilizations and metropolitan cities have been
developed close to these areas. Therefore conflicting interests re-
garding ecologic, economic, recreational, and transportation issues are
closely interrelated with these coastal domains, creating a challenge
where both human and natural forces are involved.

75. The main factors affecting the processes of river mouth delta
formation are river-bay hydrodynamics, geomorphology, climate, and human
activities (Coleman 1976). Due to the practical importaace of river
delta development, many scientific efforts have been placed on the

investigation of basic laws and principles that govern the behavior and

response of fresh, sediment-laden river water as it issues into the
receiving salt waters of the sea.
76. The overall river-bay system is a time-dependent, three- i
dimensionsal phenomenon, influenced by a vast number of different
deterministic and stochastic parameters. To develop a general mathe-
matical model would be a formidable task; thus based on field and
laboratory observations of similar phenomena, certain assumptions are
made and predominant parameters with deterministic characteristics are
used to reduce the problem considerably and to make it suitable for

theoretical formulation and analytical approach.

Formulation of River Discharge into a Bay

77. Physically, a river-bay system can be regarded as a plane
water jet issuing into a large receiving body of water. Mathematically,

the jet hydrodynamics of a river-bay system can be expressed by a system
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" of time-dependent, nonuniform, incompressible, free-surface, three-
fﬁ‘\ dimensional turbulent flow equations (Schlichting 1968). In general,
%’3? this is a nonlinear, hyperbolic-type partial differential system of four
gf i equations, one for mass continuity and three for momentum balance. The
l'l,~."
) independent variables are the three Cartesian axes (xl, x2, x3) and the
s"
B time (t), as shown in Figure 3, while the dependent variables are the
; ¥ three velocity components parallel to the three axes and the water
A
e elevation (n). In many practical cases this system can be reduced into a
‘1.. ,
two- or one-dimensional model and still be able to describe the physical
ﬁg& phenomena adequately.
:'{2 78. The general form of the equation of continuity, or conserva-
LY
B tion of mass, for an incompressible flow (Schlichting 1968) is written
';' as
e
4 du
SN — =0 i=1, 2,3 (1)
1% ’ ’
2 ox,
Bl b
:"f ¥,
a‘ﬁﬂ where u, = the velocity components, and X, = the Cartesian coordinates.
"
%* 2 79. The equations of momentum are derived from the Navier-Stokes
Pa
l;‘y equation (Schlitching 1968) and are expressed as
B
.‘,. “
c:. - D——Lli = - —1- 3_p + }- arik +b
P Dt p 3x, P 3x, 1 k=1,2,3 (2)
‘_ 1
B
,;5 where the symbol D/Dt denotes the total derivative, that is, the equiva-
n%eY
Lo lence of an operator,
el
I
O
N D d 3 3
r _— = — + u —_— + u —_— + u _—
Dt 9t 1 9x 2 ox 3 9x (3)
£ 1 2 3
S0t
e %
o
5? p = the density, p = the pressure, tik = the stress components, and bi =
‘:‘f the body forces.
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‘
: Shallow-Water Hydrodynamic Equations
3
"y 80. The general system can be reduced into a simpler form for the
1
# case of shallow waters as pertaining to the Atchafalaya River-Bay system.
h
: The basic assumption is the hydrostatic pressure distribution, and by
: neglecting the vertical stress components and the vertical acceleration,
: the X, momentum balance in Equation 2 reduces to
i}
L)
4 1 9p
0=-- — - g (4)
, p 8x3
)
'
" or
'
H
[
] P =pg(n - x3) + p, (5)
[
4
;4 where N = free surface elevation from the reference datum and Py =
; atmospheric pressure. The reference datum coincides with the mean sea
1 level (Figure 3).
P Equation of continuity
1 81. The free surface can be expressed as X3 = n(xl, Xys t).
"
% Differentiating this with respect to time yields
!
. an an an
¢ u; = —t u —+ u, —— (6)
: ot axl 3x2
[)
)
! Similarly, if Xy = -h(xl, x2) is the distance from the reference datum to
£
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the bottom, then

Wo=.y O _ n
3 1 — 2 — (7N
Ix Ix
1 2
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Integration of Equation 1 with respect to the x_-axis gives

3

n n

Bul 8u2
—_— dx3 + ‘[ e dx3 + u3(x1, Xy n) - u3(x1, Xy -h) = 0
axl 8x2

~h -h (8)

Utilizing Leibnitz's rule of integration (Wylie 1951) together with
Equations 6 and 7, Equation 8 yields

0 o 9 _
u1 dx3 + ——t/- u2 dx3 + — =0 (9)

Furthermore, due to the shallowness of the bay waters, the velocities are
assumed to be uniform along the depth. Then Equation 9 can be written

as

o(h + r])u1 a(h + r])u2 an
+ + — =0 (10)

3x1 8x2 ot

Equation 10 is the final form of the continuity equation in a two-
dimensional, time-dependent shallow-water horizontal domain.

Equation of momentum

82. After introducing the shallow-water approximation and

expanding the total derivative, Equation 2 becomes
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du. 3(uiuk) _

at Ix p axi p 3x t an

k=1, 2, 3

Let the time average of the velocity components be represented by

u, = ui(xl, Xy t) + ui(xl, X, t) (12)

where ﬁi = mean velocities and ui = perturbation velocities with zero
mean value. Also let the only mass force be the Coriolis force. Thus,

for the northern hemisphere,

o
"

1 2 Q sing u, (13a) !

o
H

9 -2 Q sing u, (13b)

where Q = angular velocity of the earth, and ¢ = geographical latitude of

a2

the river mouth of the site. The shearing forces can be approximated as

o
1.;‘.1;‘

9Tk 9 u, (14)

=y — _

axk 8xk 8xk

where p = molecular viscosity.
83. Substituting Equation 12 for the perturbated velocities,
Equations 13a and 13b for the Coriolis forces, and Equation 14 for

the approximated shearing forces into Equation 11 and time -averaging

it, one arrives at

o

v,-"
»
[ ]

L

Y
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du 9(u,u,) 3(u,u (u,u,)
1 + 171 + 12 + 9" 13 2 Q sing i,
ot 3x1 axz 8x3
1 9p u /9%, 9% 323
_ 1 1 1
= . - —+ - 3 + 5 + 3
o) axl P axl 8x2 8x3
8u1u1 . aulu2 aulu3 (15a)
- +
8x1 axz 3x3 |
and
Su 9(u.u,) d(u.u,) (u.u,) _
2 + 271 + 272 + 9273 +2Q sing 0,
at 3x1 8x2 8x3
1 9p WER 9%a. 9%
=« - — 4+ - 2 + 2+ 22
2 2
o] axl o] 3x1 sz 8x3
i B S o
8u2u1 . 8u2u2 8u2u3 (15b)
- +
Bxl 8x2 8x3

84. The last two terms of Equation 15a and 15b can be grouped
together as total stress terms designated by the eddy viscosity stresses

in both horizontal and vertical components. Equations 15a and 15b

become
du d(u.u 9(u.u 9(u,u,)
- 1, 17 1727 1937 5 0 sing a
:: ot axl 8x2 3x3
-
e 1 9p a%u 3%y a%u
Ly 1 1 1
: ST 2 " 2] * & 2 (162)
h_Jea 4!
:3:: p 9x axl sz 8x3
e
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and
du 9(u,u 9(u,u d(u,u
2, 2l 220, 23, 2 Q sing uy
ot 8x1 3x2 8x3
1 3p 82u azu azu
_ 2 2 2
ST T TRl Y2t
o} 3x2 ax1 8x2 3x3 (16b)
where eh = horizontal eddy viscosity coefficient, and Ev = vertical eddy

viscosity coefficient. The bars (-) were dropped fur convenience.

85. Neglecting the vertical velocity component (u3), substituting
the pressure p from Equation 5, integrating Equation 16 from bottom
to surface along the x3-axis, dividing by h + n, and assuming vertically

averaged velocities, Equations l16a and 16b become

du 9(u.u,) A(u,u,)
L ) D)
at axl 3x2
an 3%y 3%y e /du 3u
=ce— *el—3 * —3] v (st el
ox ox 3x N \9%3N X3
1 1 2
(17a)
and
du d(u,u,) d(u,u,)
2 + 21 + 22 + 2 Q sing u,
ot axl 8x2
2 2
:-gﬂ]_ + £ 3u2+au2 +._€_\_’. 8.2 -a_uz,l
o b\, 2 o 2 wn \8x 'n T &%, -h
2 1 2
(17b)

where u, and u, now stand for the average velocities over the depth in

the horizontal domain.
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86. The last term in Equations 17a and 17b is the expression
for the tangential stresses at the surface (x3 = n) and at the bottom (x3
= =-h). Experimental studies in a one-dimensional rivertlow resulted in

an empirical formula for the bottom stresses (tb)

‘C?

c (18)

where Cz Chezy's coefficient of friction and u = the mean cross-

sectional velocity. The value of Cz depends on various geometrical and

flow parameters. It is suggested that this coefficient be evaluated

AR [ Juses &

through calibration from actual field data. Experience shows that the
\E coefficient Cz usually varies between 45 ma/sec and 70 m%/sec.
‘2; 87. Similarly, the air-sea interaction stresses (ts) can be
i}i approximated by a formula like that of Equation 18 and can be written

as

T.= p yzwz (19)

where pa = density of the air, y = constant coefficient and w = wind
velocity at some reference height from the water surface. Experimentaily
it has been found that y2 is a function of the wave form, with a value
close to 0.0026. Further remarks on the bottom and surface shear
stresses can be found in Dronkers (1964) and Nihoul (1975).

88. Neglecting the effects of shear and turbulent mixing, and with
the introduction of surface stress (Equation 19) and bottom stress

(Equation 18), Equations 17a and 17b can be written as
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?El 3(u1u1 3(u1u2
5t + 9x + 9x - 2Q sing u,
1 2
2 2.% 2 2.%
_ an u (™ )t e W (T W)
T8 T 8&87C2 T
1 z°(h + n) p h +n
(20a)
and
du 9(u,u,) 3(u,u,)
2 + 21 + 2 2 + 2 Q sing u,
ot 3xl ax2
2 2.% 2 2.%
_ an uy(uy” +uy) T p Wyl T
=~ 8§ — -8 2 +t—y
ax2 Cz(h+n) p h +n
(20b)
where v, = the wind velocity component along the xl-axis, and w, = the
wind velocity component along the xz-axis. Equations 20a and 20b are

the momentum balance equations for a two-dimensional shallow-water wave
hydrodynamic model.

89. For the completeness of the mathematical model, the proper
conditions must be defined at the spatial domain boundary, and the
conditions at the initiation time of the phenomenon must also be

provided.

General Description of River-Delta Interaction

90. River delta development is primarily the interaction of river
sediment input and the physical processes of the receiving basin
(Coleman 1976). The large input of fresh water that carries sediments
from the Lower Atchafalaya River is the dominant force in shaping the
Atchafalaya River delta.

91. The nature of the sediments plays an important role in the

river delta system. The presence of cohesive or noncohesive sediments,

and the critical shear stress for erosion, deposition, suspension,or
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consolidation are controlling features in delta formation. Cohesive
sediments are more complicated to deal with, since they are controlled
not only by the hydrodynamic forces but also by the electrochemical
forces (Krone 1978).

Sediment Transport and Delta Formation

92. Freshwater effluent from river mouths carries sediments in
suspension. The diffusion of these materials and mixing with the ambient
bay water determine their ultimate distribution. Based on the hydro-
dynamic aspects presented in previous sections, the study of turbulent
jet diffusion processes in shallow water is formulated in the following
sections.

Shallow-water mass transport system

93. When the distribution of a physical property or substance

(sediment, salinity, temperature, or chemical wastes) that is carried by

the jet needs to be studied, an additional equation is then utilized.
This is the convection-diffusion equation with proper source or sink
terms. The equation accounts for the mass conservation and is a partial
differential equation of the parabolic type, having as a dependent
variable the concentration of the substance under consideration.

Equation of mass conservation

94. 1In general, the conservation of mass of a substance is ex-
pressed by the convective-diffusion equation (Ariathurai, MacArthur,

and Krone 1977) in the form

dc B(uic) d dc
_— —— = — Di — 1 +S i=1,2 (21)
at ox. ox, ox.

i i i

where c¢ = substance concentration, Di = the molecular diffusion coeffi-
cient, and S = the proper source and/or sink term.

95. Assuming again a time mean and a perturbated value for the

velocities and concentrations, that is, u, = u + ui, and ¢ = c + ¢’
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substituting these terms into Equation 21, and time-averaging it one

arrives at

ac _ 3c (u'c 2] dc
— +u, —+—— = D.— | +5 (22)

ot Loox, ox. ox. Lox.
i i i i

The deviation term can be approximated as

3(aje") 3 / ¢
_ g, — (23)
9x. 9x. \ 9x.

1 1

1

where €, = the eddy diffusion coefficient.

96. Combining the expressions for molecular and eddy diffusion,
and incorporating their coefficients into a single term (Ei)’ Equation

22 becomes

adc dc 3 oc
— + u. ——= —— |E. — + S (24)
ot ' ax, ax. \ ' ax.

i i i

where the bars have been dropped for simplicity. Equation 24 is the
general equation of the conservation of a substance; when it refers to

conservation of sediments, the term S stands for the processes of

erosion and/or deposition.
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PART V: ANALYTICAL TECHNIQUES AND NUMERICAL SOLUTIONS

S

Simplifying Assumptions Applying to the
Atchafalaya River-Bay System

X

o o

.
R

97. The system of Equations 10, 20, and 24 derived in PART IV
is a complicated system of partial diiferential equations that can be
solved by means of a numerical technique through a digital computer.

Analytical solutions can be achieved only in the case where the general

I = N

equations are simplified considerably under certain assumptions. These
assumptions can be derived from the specific features of each river-bay
system and the characteristic properties of the jet itself. However,
misuse of the simplifications may lead to erroneous solutions of little
practical value. Thus an extended and detailed knowledge of the physical
system under consideration is required so that the limitations of the
validity of the solution can be well understood.

98. Regarding the Atchafalaya River-Bay system, on a first
approximation basis, the following assumptions were used:

a. Shallow receiving waters and velocities are uniform over
depth, where friction is a predominant factor.

b. Well-mixed conditions with no density stratification.

c. Negligible density difference between issuing and
receiving waters, that is, a nonbuoyant jet.

d. Very small wave height, n, in comparison to the depth,
h, so that n ~ O.

e. Negligible Coriolis forces and wind stress effects.

f. Bell-shaped similarity profiles for the velocities
and sediment concentration profiles.

e. Entrainment only through the lateral boundaries of

the jet.

Entrainment Function and Similarity Profiles

99. The quantitative expression of the entrainment processes was

a positive step toward the solution of the turbulent jet problem.
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_f.':e Experimentally, Ellison and Turner (1959) found that the entrainment, E,
% can be defined as a function of gross properties of the jet,
\"!
a
2,
,;: E = euc(xl) (25)
3‘3‘
' .\ where u, = the axial longitudinal velocity and e = a numerical coeffi-
A
~ cient.
;':’. 100. Another property of the jets that simplifies matters and
:ﬂ helps the solution is similarity. According to this property, the
velocity profile remains similar to itself along the various cross
"
: sections of the jet. For cases where bottom friction is important, the
':}: similarity assumptions must be used with reservation. Since the exact
".~"~f similarity form is not known, there are a variety of similarity function
Ko
® one can choose from. These can be either of pure exponential form (Fox
e
-, 1970) or of pure polynomial form (Stolzenbach and Harleman 1971).
‘;:' 101. For this study the similarity expression, G(s), was chose to
‘:rs lie between the two aforementioned cases (see Figure 19), that is,
e _ 2 2
3 G(s) = (1 - s%) exp (-s7) (26)
y'l )
P
::';‘ where s = a nondimensional parameter.
EXS)
:')' 102. The similarity assumption can also be extended to the sedi-
o ment concentration profiles. Following the suggestion of Stolzenbach and
Iy
';: Harleman (1971), this similarity function, R(s), can be taken as
N
'J a 2 % 2
(™ R(s) = G(s)* = (1 - s7)%exp (-%s) (27)
T
:t; Nondimensional Form of the Governing Equations
B \‘
o
103. Under all the simplifications and assumptions previously
,‘.*: mentioned, the governing equations can be drastically reduced into
.\1;‘ simpler forms. Assuming, furthermore, that the later.l velocity, Uy, is
4
WOl much smaller than the longitudinal, u, and also that the velocities are
"y \
Yz
B!
» ‘
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vanishing at the side boundaries of the jet, the equations can be treated

as follows.

Continuity equation

104. Under steady-state conditions Equation 10 can be written as

8(hu1) a(huz)

=0 (28)

3x1 8x2

where h is an one dimensional function of the x1 coordinate.

105. Integrating Equation 28 along the width of the jet yields

b(xl)
d
—_ h(xl)/ ul(xl,xz)dx2 = 2Eh(x1) (29)
dx1
-b(xl)

wvhere b(xl) = half width of the jet. A detailed description of the

variables involved is given in Figure 20.

106. According to the similarity assumption, the velocity is given

as
u, (x,,%,) = u_(x,)6(s) (30)
X
where s = b(il)

107. Substitution of the velocity Equation 30 and the entrain-

ment Equation 25 into Equation 29 gives

+1
4 |h(x)u (x.)b(x.) (1 - s%) exp (-s)ds| = 2eh(x.)u (x.)
dx1 177¢*71 1 1" ¢ ™1
-1 (31)
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Two-dimensional plane nonbuoyant jet

Figure 20.

ENTRAINMENT

LATERAL

.l'. .t’p 60

Sy ol
’
K
"; ¥ ¥ e WA O\ -\”‘-.E'- - ".i-"’ \& “x LN POy AN A .1'*‘$'1' n eV PR A TS e R T I
) Y > R VAL S KSR EER LY AT T e ]
; ‘. s AR B T s et R i s s S e I s T s S e o
N [ Y o o e B i » . " oo




WS W T OV VT YR Y RO TS T Y VI T T T -Yrrv-uW“Iv'““'v“‘vﬂ"ﬂ"'"ﬂtw

Using the Gaussian quadrature eight-point numerical integration (see

Appendix A), the evaluation of the integral was found to be

'
R

e
s

e “".q'

Py
s

+1
- [ (1-52) exp (-s2) ds = 1.115 (32)
-1

g Thus Equation 31 can be written as

2

x0T,
pet b A 28
[« 9

—— (hucb) = AhuC (33)

-
3

where A = 1.794e. For convenience and generalization the variables are

normalized as

S,
AR o

(34)

T XX X XX 3
LA

o

where subscript O denotes the value of the variables at the outlet (x1

= 0). It can be easily shown that

"ty Ay

..n:;

1A

oM

( 4 (quB) = amu (35)

29 r

Ir'

132

3 with H = B = U = 1 at r = 0. (36) i
% s
.

{
4
4
q
q
q
|
)
1
q
‘
1
[
b
1

<

Equation 35 is the nondimensional continuity equation that constitutes

part of our mathematical model.
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Momentum equation

108. Under the same assumptions used for the continuity equation,
for steady-state conditions the expression for the momentum balance along

the xl-axis, Equation 20a can be written as

b(x.) b(x,)
d 1 2 _ 1 2
Hl- h(xl)f uy (xl,xz)dx2 = -ff uy (xl,xz)dx2
-b(xl) -b(xl) 37

where f = g/Cz2 = Darcy-Weisbach's friction coefficient. Utilizing

Equation 30, Equation 37 transforms into

+1
g;; h(xl)ucz(xl)b(xl) J[ (1 - s2)2 exp (-252) ds
-1
+1
= -fucz(xl) Jr (1 -s2)% exp (-252) ds (38)
-1
or
d 20 _ .2
H;; (hu "b) = -fu b (39)

Introducing one additional normalized variable for the friction (F) as

Sl

(40)

and referring to the normalized variables of Equation 34, Equation 39

becomes

& (u’s) = -ru’s (41)
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subjected to the same boundary conditions given by Equation 36.
Equation 41 is the nondimensional momentum equation which, along with
Equation 35, constitutes the hydrodynamic part of our mathematical
model.

Mass conservation equation

109. Following the same previous assumptions and neglecting the
diffusion terms as being small in comparison to the advective terms,
integrating Equation 24 vertically over depth first and then along the
width of the jet results in

b b . 2
d_ h u.cdx = 2Ehc - w.cll - 1 dx (42)
dx 1 2 a ] 21772

uCl’.‘
-b -b

where ¢ = sediment concentration, c, T sediment concentration in the
receiving waters, Vo = settling velocity of the sediment particles, and
u = critical velocity under which deposition occurs. The right-hand
side of Equation 42 represents the integrated value of S in Equation 24.
More specifically, the first term refers to the sediment gains due
to lateral entrainment, while the second term is the sediment losses due
to deposition. In this model, no erosion processes are taken into
account. The expression for the deposition function was first introduced
by Krone (1962).

110. According to the similarity assumption, the sediment con-

centration profiles are expressed as

C(xl,xz) = cc(xl)R(S) (43)

where C. = the center-line sediment concentration. R(s) is given by
Equation 27. Considering the receiving waters as sediment-free (ca =
0) and the setting velocity as constant (wo = constant), and substituting

Equation 43 for the concentration in Equation 42, one arrives at

2
u_bc

d 3 1 c C 5
—_— = . _ + R =
dxl[hucbccl<2>] wobch(Z) o 2 I(z) (44)

cr
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+1

where I(m) = [ (1 - SZ)m exp (-msz) ds (45)

-1

Utilizing the Gaussian quadrature numerical integration of Appendix A,

the values of the integrals, I(m), are found to be

~ f5Y _
I, = 1(2) = 0.760 (45a)

111. Introducing the normalized.form of new variables in addition

to those given by Equation 34,

c= -S. vy .;_SE.wzoo (46)

and substituting them into Equation 44 yields

UZB

W — c 67

U
cr

d = -
GplIHUBC] = -LWBC + I,

Equation 47 can be written as

sl 1'.1":“1 - x
A 2 e N i

dc I 1 I2 4] I1 d
WB - — —(HUB)|dr (48)

3
L ] C I1 I3 Ucr 13 dr

I
|

E
I

€. c=1 at r =0 (49)
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Equation 48 is the nondimensional form of the sediment conservation
equation which along with the hydrodynamic equations completes our

mathematical model.

Analytical Solutions

112. Equations 35, 36, 41, 48, and 49 formulate the mathe-
matical model of a plane, sediment-laden jet issuing into a shallow
quiescent bay. In the following, solutions will be given for the cases
of constant depth (H = 1) and of linearly varying depth (H =1 + arbo/ho,
a = slope). The solution will be given in terms of the following
dependent variables: velocity ul(xl’XZ)’ width b(xl), and sediment
concentration c(xl,xz).

Solution for constant depth (H = 1)

113. For constant depth, H = 1, Equations 35 and 41 become

d -

(B = AU (50)
and

4 (u?B) = -ru’B (51)

dr

From Equation 51 it is easily derived that

u%B = exp (-Fr) (52)

Combining Equations 52 and 50 thus eliminating the variable B, we

have

g% + FU = -A exp (Fr) U

(53)
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Equation 53 is a Bernoulli-type ordinary differential equation.
Following the typical solution procedure of Appendix B, and utilizing the
boundary conditions (Equation 36), the nondimensional center-line jet

velocity is given as

U= [- %é exp (Fr) + (1 + %A) exp (ZFr)]_li (54)

Then the solution for the nondimensionalized jet width, B, can be

obtained directly from Equations 52 and 54 as

B = - %ﬁ + (l + %é ) exp (Fr) (55)

In dimensional form the jet velocity, ul(r,s), and the jet width, b(r),
can be written as
u,(r,s) = u,(1 - 52) exp (-sz)[- 24 exp (Fr)
1 0 F
1
-3
+ (1 + %é) exp (2Fr)] (56)

and

b(r) = b0 - %é + (1 + %A) exp (Fr)] (57)

1, 4

114. For constant depth the mass comservation relation, Equation

° l: y .l.':l'

48, is also reduced to

dC 13 -1 12 U2 I1 d(UB)
— = —=(UB) - — + 3 WB - — dr (58)
C Il 13 Ucr 13 dr

or
dC 12 W 13 wuU d(UB)
— = -« = —-dr + — — dr - ~UB (59)
C I.U 1. U

1 1 cr
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By direct integration it results in

r r
I, [ 1 I3 W [
InC=- =W -dr + = —— Udr - 2n (UB)
U 1.y 2
1 0 1 "cr 0 (60)
or
r
12 1 3
C=exp|~-—W —dr + — —2 Udr - 4n (UB) (61)
I U I
1 0 cr 0

The integrals within the exponential cannot be evaluated analytically.
Thus, for the application of Equation 61, a numerical integration
technique is required.

115. An essential simplification in the solution can be achieved
by making an additional assumption of no entrainment conditions (A = 0)

in Equation 54. Then the integrals can be easily evaluated as

[%dr [ exp (Fr) dr %exp (Fr) (62)

and

[Udr fexp (-Fr) dr

Therefore Equation 60 can be rewritten as

-% exp (-Fr) (63)

I, W I, W
InC=- — —exp (Fr) - -—= 5 €Xp (-Fr) +Y (64)

i
I1 F I1 Ucr F !

|
Since £n(UB) = fn{exp(-Fr)exp(Fr)] = 2n(1) = 0, from the boundary con- ‘
|

dition, Equation 49, the constant of integration, Y, is found to be
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y =-2- + 2 5 (65)
I. F I. FU
1 cr

Thus, finally, the solution for the normalized center-line sediment

concentration reads

12 w 13 W 1
C = exp {—~[1 ~-exp (Fr) ] + — — —3 [1 - exp (-Fr)] (66)

I1 F Il F Ucr

where 12/11 = 1.472 and I3/I1 = 0.801. In terms of the independent

variables, r and s, the sediment concentration within the jet is given as

I, W
c(r’s) = Co(l - sz)% exp (-%sz) exp{fg f [1 - exp (Fr)] :
1 |
I W1 |
rt - (1 - exp (-Fr) ] }(67)
ILLFU
cr

Solution for linearly varying depth (H =1 + agyolgoz
116. For linearly varying depth Equations 35 and 41 are

written as

d(UB) b0
H + a —UB = AHU (68)
dr h0
and
d(UZB) b0 2
H =-[a— +F|U°B (69) a
dr h0

Solving Equation 69 for U2B gives

u?p = g~ (1*D) (70)
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where D = f/a. The combination of Equations 70 and 68 yields

d b
Hee [H—(1+D)U-1] + 20 g (14D) -1 AHU (71)
r ho
or
b
D 4 220 - DElaw = - ow)? (72)
r ho

Equation 72 is also a Bernoulli-type ordinary differential equation
with respect to the monomial HU. Thus, along with the boundary condi-
tions of Equation 36, the solution for HU (Appendix B) is

117
h 1
= (ZA)-aél'll-D a3b. 2 - D (H 2 D -1) + 5 (73)

0

Consequently, the normalized center-line velocity is

Sy h 1 2D 177
= (24) w70 @ Vg (74)

The normalized jet width can now be derived from Equations 74 and 70

as

-1) + T (75)

Following all these, the velocity and the width of the jet in terms of

the variables r and s are given as
-
1 1
2 -D
+—
—5 7 -1)

u,(r,s) = ug(28) %D —gg

(1 - sz) exp ( —92) (76)

69
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s

i

and

1 1
. 2-D
3 b(r) = b2a® | 2 =" -1+ 5 (77)

W 117. For linearly varying depth, the sediment conservation

M relation, Equation 48, after direct integration, reads

I2 1 3 U
B 1nC=--—Wf—dr+————zf—dr-ln(HUB)US)
H

or

b r
U
N C = exp - = W — dr + = —__E — dr - Zn(HUB) | (79)
b I U H
. 0

) Again, the integrals within the exponential must be evaluated numeri-

R cally. In terms of the variables r and s, the sediment concentration is

) written as

1
c(r,s) = coC(l - 52)1 exp (- % s2> (80)
where C is given by .Equation 79.

Approximation of Sediment Deposition in a Bay

118. The sediments carried by the river waters are the main
material for the river delta development. The form of the delta,
however, depends on other parameters such as the climate, the hydro-

dynamic field, the area topography, and the sediment characteristics
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themselves. Neglecting erosion and side entrainment of the sediment,

o~
v

under steady-state conditions, material deposition is linear in time and

can be computed as

N e e

5y _ RS
o
—
N
[~
N

u 1
cd(r,s) = fwoc 1 - 3 dat = WoC 1 - 2 t (81)

S

Pp-L ST

-
ool

where €y = deposited sediment and t = time. The values for the velocity,

-_':, u, and the concentration, c, are taken respectively from Equations
.'{3 56 and 67 or 76 and 80.
N oW
"\: 119. In the case that the variable c is given in units of mass per
® volume, the deposited sediment, Cqs is computed in mass per unit area.
DI
S Therefore, assuming no consolidation processes, the thickness of the
=y
L deposited sediment layer, d, can be directly computed from Equation 81
L
'“, as
W [

d
::% d = — (82)
wh pS
o
B2
Y where Py = density of the sediment.
:’ 120. For the numerical simulation of river delta evolution, the
"
:';‘ overall phenomenon is taken as steady for certain time intervals. Then,
B [
;' g due to the variation in the bottom topography from deposited sediment

buildup, proper adjustments must be made to various parameters and the

q solution repeated under the new conditions. In such a manner the mathe-
(W

; : matical model, although being of a steady-state nature itself, predicts
N

“'. the delta development over time.
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PART VI: PREDICTION OF THE ATCHAFALAYA RIVER DELTA GROWTH

Basic Data for Analytical Prediction

121. The Atchafalaya River-Bay area is a complicated dynamic
physical system. For the purpose of this study, the values of various
factors controlling this system must be known. The most essential of
these factors are the geometry and topography of the area; the water
discharge, and sediment load of the river; and, to a lesser degree, the
hydrology and climate of the surrounding environment. Field data per-
taining to our analytical analysis of delta development were gathered
from various sources and are outlined in the following sections.

Physical dimensions of river outlets

122. Two river outlets, the Lower Atchafalaya River Outlet and
Wax Lake Outlet, are forming in Atchafalaya Bay. Each outlet has its
own characteristics and these consequently influence the form of the
developing delta.

123. Using data from a 1974-76 hydrographic analysis by the
Waterways Experiment Station (1981), the cross section of the Lower
Atchafalaya River, at river mile 135.8 from Simmesport, La., is plotted
in Figure 21a. The river outlet is approximately 3,000 ft wide and
reaches a depth of 35 ft. From the same data source, the cross
section of Wax Lake Outlet, at river mile 122.3 from Simmesport, is
plotted in Figure 21b; the outlet is about 1,000 ft wide and reaches a
depth of 56 ft.

124. The Atchafalaya River Outlet is under continuous dredging
so that a navigation channel can be maintained throughout the bay.
This navigation channel is developing as the future main course of the
river through the emerging delta.

Initial bathymetry conditions of the receiving bay

125. Bathmetric maps of the Atchafalaya Bay for the years 1972
and 1977 (Adams and Baumann 1980) give a clear picture of bay
bathymetry (Figures 8 and 13). With a depth ranging from 4 to 8 ft
(1.2 to 2.4 m), the bay can be classified as shallow and well-mixed,

72
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&
R
thus bottom friction may play a predominant role. Other indications
Qf‘; from these bathymetric maps are that the newly deposited sediment is
: % close to the river mouth, and that the bathymetry of the remaining bay
:eﬁ; is less affected.
! ]‘ River discharge and suspended sediment load
:g;k 126. The water discharge of the Atchafalaya River at Simmesport
§'$: (Figure 11) and at the Lower Atchafalaya River Outlet (Figure 12) is
%ﬁn? varied. It ranges from 80,000 cfs to 600,000 cfs (2,000 cms to
17,000 cms).
:;‘ 127. The current velocity at the river mouth ranges from 3 fps
si‘ (1 mps) to 0.2 fps on a diurnal basis due to the tidal action (Figure
15@. 22). However, the current always has a southwest direction at the
® Lower Atchafalaya River Outlet (WES Preliminary Field Data Report
R 1982).
ib{w 128, The character of the sediments entering the bay via riverine
Eﬁ,# flows is controlled by the sedimentation processes within the river-bay
system. According to Roberts, Adams, and Cunningham (1980), the sediment
g;%? load is composed mainly of silt and clay (> 75 percent) and a small part
:5&: of sand (< 25 percent) (Table 2). Thus our study can be simplified by
.3“: dealing with the fine sediment materials which are transported in sus-
) pension only. Whether to treat the sediment as cohesive or noncohesive
fﬁﬁ’ is a difficult question. Since much of the subaerial sediment is sandy,
f.jj it is reasonable to use a single equation to predict sedimentation
kgf processes without considering various particle sizes.
2 129. Letter (1982), based on observations of the sediment con-
fé.‘ centrations in Simmesport, derived a regression equation relating
;:Y; water and sediment discharge obtaining
B Lok
—r Q = 0.0728 Q (83)

-
-
-

5X
"~
Pate

where Qs is the suspended sediment load in 1000 tons (2000 1b) per
day and Qw is the water discharge in 1000 cfs. The value of the

e
‘,/
ot it

exponent is close to unity, permitting the assumption of a linear

relationship between water and sediment discharge.
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130. As shown in Figure 12, the variations of water and sedi-
ment discharge at the Lower Atchafalaya River Outlet follow the same
pattern through time. Thus, for all practical purposes, the mean
sediment concentration can be reasonably assessed. A mean water
discharge of 300,000 cfs (8,500 cms) and a mean suspended sediment
load of 200,000 metric tons per day are shown by Figure 12 for the
period 1973-75. From these values, an average sediment concentration
of 0.27 kg/m3 (270 ppm) is derived.

131. For a water discharge of 300,000 cfs, Equation 83 gives
a mean sediment concentration of 275,000 tons/day (0.34 kg/m3), which
is close to the value of 0.27 kg/mS. In the following computations,
the mean sediment concentration (co), varying from 100 ppm to 600
ppm, is taken into consideration for our study.

Sediment settling velocity and deposition

132. The sediment deposition rate, which depends on the shear
stress of the flow (Krone 1962), is assumed to be proportional to the
velocity of the sediment particles. In general, this velocity depends
on the shape, size, and weight of the particle, as well as on hydro-
dynamic conditions. To define the settling velocity of cohesive
sediments in a real situation is a difficult task, because these
particles have the tendency to adhere to each other and form large
aggregated flocs. Laboratory measurements made by the Waterways
Experiment Station on Atchafalaya River sediments (Figure 23) have
shown a settling velocity from 0.0l mm/sec to < 1.0 mm/sec (WES
Preliminary Field Data Report 1982).

133. The freshly deposited sediments are initially in a very
loose state. However, as new sediment layers are superimposed, the
low density large aggregates are crushed down to smaller flocs, and
denser and stronger bed layers are formed. As a result of this
consolidation effect, the bulk density of the bed (ps) may be of high
value (Krone 1978). Wells and Roberts (1980) used a density of 375
kg/m3 to estimate the sediment transported in the Atchafalaya mud

stream. In our analysis, a value of pS equal to 400 kg/m3 is used.
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134. The active development of the river deltas in Atchafalaya
Bay indicates that the deposition rate in the area is much faster than
the rate of erosion. Normally, the combined effect of both deposition
and erosion should be considered. In our analytical model it is
assumed that the sediment is subjected only to transportation and
deposition, and that each particle that hits the bottom adheres to it.
Supressing the resuspension effects is acceptable, since the sediment
deposition is estimated based on average values of the water discharge
and the sediment concentration.

Bottom resistance and lateral entrainment

135. The predominance of silt, clay, and fine sand in the
bottom materials of the bay causes the bed surface to be smooth, with
relatively small friction resistance. In the absence of field data,
the Darcy-Weisbach coefficient of friction (f) is assumed to vary
from 0.001 to 0.006 in this study. It is further assumed that the
friction coefficient is time-independent.

136. The riverine waters entering Atchafalaya Bay are well
mixed with the receiving waters. Because of the shallowness of the
bay, there is no density stratification, and the only entrainment of
the receiving bay waters to the sediment-laden river waters is through
the sides of the jet. The lateral entrainment coefficient (e) has
proven to be a function of Richardson's number (Ellison and Turner
1959). Engelund (1976) used a value of 0.075 in the case of a very
small Richardson number. In our analysis, a range of e varying from

0.0375 to 0.300 is considered.

Procedures for Closed-Form Analytical Solutions

Idealization of the Atchafalaya River-Bay system

137. The physical features of the Atchafalaya River-Bay system
are approximated by simple geometry for the domain of the closed-form
analytical solution. Using the data of the previous section, the
nominal values of dependent variables (h, b, u, and c) can be deduced

for our study.
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138. The cross sections of the Lower Atchafalaya River and Wax
Lake Qutlet (Figures 21a and 21b) are found to be equal to 66,000 ft2
(6,200 m2) and 29,000 ft2 (2,700 mz), respectively. Considering a

- AR T TN &L RS T e

mean annual water discharge of 300,000 cfs (8,500 cms) at Simmesport
and the 70-30 percentage split of discharge (Letter 1982), the flows
in the Lower Atchafalaya River Outlet and the Wax Lake Outlet are
210,000 cfs and 90,000 cfs, respectively. Both flows exhibit a
velocity of 3.10 cfs (~ 1 mps)(WES 1981).

139. Basically, the river mouth is the point at which fresh
water leaves the confined channel and mixes with ambient water. In
the Atchafalaya River-Bay system, the river outlet discharges a part
of its flow into the bay through a navigation channel. The bottom of
the navigation chamnel is much deeper than the bottom of the ambient
bay. In this study, those flow and sediment discharges through the
navigation channel are assumed not to have significant influence on
jet characteristics, and are assumed to deliver directly to the Gulf
of Mexico.

140. The Atchafalaya Bay is relatively flat, with a uniform
depth of 6.0 ft (~2 m) (Figure 13). This depth, measured below mean
sea level, is referenced to the bathymetry conditions of the year 1977
(Adams and Baumann 1980). In a shallow bay, the formation of delta
lobes depends on the bathymetry of the receiving bay rather than the
geometry of the river itself (Wells, Chinburg, and Coleman 1984). This
fact leads us to assume that the river outlet can be approximated by a
rectangular cross section. Using the bathymetry map of Adams and Baumann
(1980), the inferred width is about 4,000 ft (1,200 m) for the Lower
Atchafalaya River Outlet, and about 3,300 ft (1,000 m) for the Wax
Lake Cutlet. The nominal water depth at both outlets, h0 = 6.5 ft

L"," . ..‘. [

(2 m), is used in this study.

Values of various parameters used in the analytical study ;E
141. As previously mentioned, the rate of sediment deposition :(3
4
.
depends on the shear stress of the flow (Krone 1962). 1In this study, )
. . . tel

a linear relationship between the shear stress and mean square
~
velocity is assumed (Equation 81). The center-line velocity at the iﬁ
N
RS
S
79 .x:
g

- -,._,,,,.._. .
......

Y &E;J‘ rm iMﬁAr . .&dx);:;ﬁ:& " '-4' :-:.‘.' 4‘.




.

NG P10

Sed

» ./_\:"

'

W,

ﬁ?
¢
o

s
L
1
s
L
!
)
s
1
|
4
IA T E I s’

river outlet is used as a critical velocity (ucr = uo) under which
deposition occurs. Equation 81 implies that at the middle point of
the river outlet no deposition occurs. Table 4 summarizes the range
of the values for various parameters to be used in our analytical

study.

Computer graphics and numerical
integration used for analytical solutions

142. The SAS/GRAPH (1981), a computer graphic system, is used

to display the values of dependent variables (u, b, ¢, d) for various
cases. The GPLOT PROCEDURE graphs one variable against another,
producing a two-dimensional plane. The G3D PROCEDURE plots the value
of three variables and produces a three-dimensional surface. The
variables to be plotted are specified in a PLOT statement. Both the
GPLOT and G3D PROCEDURES can automatically scale the axes, or the user
can specify the scale. Use of computer graphics provides flexibility
in displaying information meaningfully. Examples for use of computer
graphic programs are listed in Appendix C.

143. A numerical integration technique is needed for te compu-
5 ﬁ% dr and fg g dr, appearing in Equation 79.
The orthogonal collocation method is used for numerical integration

tation of integrals, [

(Villadsen and Michelson 1978). The method consists of expanding the
normalized center-line velocity U, a dependent variable, in terms of a
nth order Jacobi polynomial. The n roots of this orthogonal poly-
nomial are chosen as the n collocation points (Kuu and Polack 1982).
The integration of the profile of the dependent variable is approxi-
mated by the Radau quadrature formula (Villadsen and Michelsen 1978).
The Radau quadrature weights at the n collocation points (the
abscissas) are determined (see Appendix D). The integral is approxi-
mated by the summation of the product of the weight and the value of
the function at the collocation points. Quadrature integration is

explained in detail in Appendix D.
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Base Results of Analytical Solutions

144. This section presents a basic computation using nominal
values of variables to obtain the closed-form analytical solution.
This base result will serve as a guideline for the comparison of the
results of various cases and for the sensitivity analysis of various
parameters.

145. The following nominal values are used in the basic computa-

tions to obtain the base results:

bO =500 m wo 0.05 mm/sec :
hy =2.0m a = 0.0001 h
uy = 1.0 mps f = 0.001
u ., = 1.0 mps e =0.075 5 ]
¢y = 300 ppm Py = 400 kg/m E
The dimensionless variables are defined as !
r
o
- - E
= xl/bO Ucr - ucr/UO :
= x2/b C = cc/c0
= b/b0 F = fbo/h0
= h/h0 W = bowo/hou0
U = uc/u0 D = f/a

and the values of the integrals are

l A vt o w B B S

o I, =0.948

-

+ I, =1.397
I, =0.760

Results of constant depth ,
without entrainment (Case 1: E =0, H = 1)

146. The normalized (dimensionless) jet center-line velocity (1])

and jet width (B) are obtained by substituting A = O into Equations

81
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54 and 55. The center-line concentration (C) is given in Equation

66. The equations for each of these variables are

U = exp (-Fr) (84)
B = exp (Fr) (85)
12 W 13 W 1

C=exp/! =— - [1 - exp (Fr)] + — - —3 [1 - exp (- Fr)]
I, F I, FU_ (86)

147. The dimensional form of jet velocity (u), jet width (b),

and center-line concentration (c) are derived straightforwardly as:

u(r, s) = ch(s) = uOG(s)U
= uo(l - sz)exp (-s2)U (87)
b(r) = bOB (88)
c(r, s) = ccR(s) = cOR(s)C

co(l - 52)% exp (-532)C (89)

The deposited sediment (cd) and its thickness (d) are computed from
Equations 81 and 82, respectively:
_ 2, 2
cd(r, s) = w0c<1 u /uCr )t (90)

d(r, s) = cd/pS 91)

The results of the calculations of u, c, and d are displayed three-
dimensionally in Figures 24, 25, and 26, respectively (and Plate 1),
with the aid of computer graphics (see Appendix C). Each of the
variables is plotted versus the normalized longitudinal (r) and

lateral (s) coordinates.
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Results of linearly varying depth
fﬁ without entrainment (Case 2: E =0, H # 1)
3y,
:5 148. For linearly varying depth (H = 1 + arb /h ) and no
iy entrainment (A = 0), the nondimensional continuity equation, Equation
)
. 35, becomes
s
)
4
!
) 4 (uuB) =0 (92)
..: dr
&
hell Using the boundary conditions stated in Equation 36, Equation 92

implies that

4 HUB = constant = 1 (93)
:&' or
V -
o UB = K! (94)
e
¥
W
e Similarly, the nondimensional momentum equation, Equation 41, can
s be written as
1
fj d 2 bo 2
H— (U°B) + (a — + F)U'B =0 (95)
:) dr h0
e
ci# . 2 .
) Solving for U"B, we obtain
3
e
L+
( vl =5 (1 D) (96)
[~
:;: Combining Equations 94 and 96, we get
L
‘E-,. u=HD (97)
‘
'
0oy
l“
'@ and finally
-
23
86
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A
HB = () @D @'t P =1 (99)
Vet
.
:4‘ 149. The nondimensional form of sediment conservation is given
:% by Equation 48. Substituting Equations 97, 98, and 99 into
Pt
e Equation 48, we obtain
Y
o ¢ W/ I, a0 I3 1 p
D —=—|(--“~H + = —H dH (100)
\
;t‘:gé c F Il Il cr
v or
h w /I I 1
W -
O C=exp|-— 2. 32 — H D) +Y (101)
) F \I I, U
,o..,: 1 1 cr
Jhﬂ where
|
R W/, 1 1
{ y=-[24+23 — (102)
55 FAL I U
r,'
(s or
" 1, W I,Ww 1 )
g c=exp|2-0-1)+32-—a-1D (103)
a I, F I. FU
N 1 1 cr
}1‘ 150. The dimensional form of jet velocity (u), width (b),
fj concentration (c), the deposited sediment (cd), and the sediment
N thickness (d) for Case 2 are computed using exactly the same procedure
\'a~

-~

|
e

as Case 1 with Equations 87, 88, 89, 90, and 91. The three-

dimensional graphs for u, ¢, and d for this case are plotted in
Plate 2.

[ e
o

-~

Results of constant depth
with entrainment (Case 3: E # 0, H = 1)
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151. As shown in PART V and presented again in this section,

Equations 54, 55, and 61 are the expressions for the normalized

-
.

oy
‘rx"'r‘r'r'Y )
a'a

center-line velocity (U), jet width (B), and center-line concentration

2 8 a

(C), respectively:
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[- %ﬂ exp (Fr) + (1 + %é) exp (2Fr):|-2 (104)

[>)
|

= - £2 4 (1 + %~) exp (Fr) (105)
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“Taby’
RIS NS

¥ J

and

i

&
3

o
-

-

I, -1 I, W %
C=exp|-— W/—-dr+——— /Udr-kn(UB) (106)

2
I1 0 u I1 Ucr 0

ot 2

X,
I
AL

152. The integrals appearing in Equation 106 have to be eval-

= LY
-’ »
- |

-

uated numerically. In this case, the lower end point (U =1 at r = 0)
of both integrals is known, thus the Radau quadrature formula
(Appendix D) is used.

153. Again, the dimensional form of jet velocity (u), width
(b), concentration (c), the deposited sediment (cd) and its thickness

(d) are computed straightforwardly by using Equations 87, 88,

89, 90, and 91, respectively. Plate 3 contains the plots for

-
.

FZAOR.

ooy

u, ¢, and d.

Results of linearly varying depth
with entrainment (Case 4: E # 0, H # 1)

e

202

»
-
2]

154. The general solution of linearly varying depth with

t

entrainment for the normalized center-line velocity (U), jet width (B),

X

.

and center-line concentration (C) are given in Equations 74, 75,

and 79 in PART V:

ay
l \)
x

T e o g e
-

’ h 1
X % -DF 0 - 2-D ., _
i I P = O (107)

vy

>

[
|

faos he 1
2824 1
p-1 | Mo 2-D
24K >, 75 @ P-1) + o (108)

=
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and

16 I, 1 I, W - u

) C=exp|-—W — dr + — — )/’ — dr - 2n(HUB) (109)
i Il 0 HU Il Ucr H

L

kf 155. Again, the lowest limit (H =1, U=1, at r = 0) of both
g integrals appearing in Equation 109 is known, and the Radau inte-

oy gration technique (Appendix D) is used. Similarly, the dimensional

W

" form of jet velocity (u), jet width (b), concentration (c), the
e deposited sediment (cd), and the sediment thickness (d) are computed
%% by using Equations 87, 88, 89, 90, and 91, respectively. The three-
5} dimensional graphs of u, ¢, and d are displayed in Figures 27, 28,

"t: and 29, respectively (and Plate 4).

@

o

Qﬁ Prediction of Delta Front Advancement

i

5

156. The rate of delta growth depends on the amount of sediment

Y supplied by the riverine waters and reworking by current forces in the
"

<E receiving bay (Coleman and Wright 1975). The areal and mass extent

is of deltaic evolution is governed by the relative roles of inertial and
?f frictional forces. Thus sediment deposition patterns are determined
i by various physical parameters that are formulated in the analytical

L 7,

:_’ solutions for the four different cases.

:3 Sediment deposition patterns under quasi-steady state

¥

ﬂ: 157. In this study, a quasi-steady state for sediment deposi-

. tion is assumed (Engelund 1976). The deposited sediment and its

%

;: thickness are computed as a linear function with time (Equation 90).
:‘ The deposition patterns of Case 4 for the time interval of 1.5 years,
3 1.0 year, and 0.5 year are given in Plate 5. From these figures, it
E’ is shown that the deposited sediment forms a saddle-shaped bottom.

?“ The rapid accumulation of suspended sediment near the river outlet and
3 the abrupt decline of sediment deposition away from the outlet are

7: observed. As the central portion of the sediment accumulates, it
L
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causes the river mouth channel to separate into arms known as bifur-
cating channels (Coleman 1976).

158. Therefore, until subaerial land has emerged, it can be
inferred that the riverine input has limited influence within a
certain longitudinal distance; and that as the deposition process is
completed in this level of development the river mouth advances to
the end of the subaerial land and begins the process of bifurcation.

Conceptualization of delta-channel development

159. The geometry of river-mouth sandbars is determined by
riverine flow conditions. When river outflow velocities are high and
water depths seaward of the mouth are shallow, the rapid rate of
effluent expansion provides, initially, a broad radial sandbar and
later on develops a distributary network. Coleman (1976) documented
three major types of existing delta channel patterns (Figure 30). 1In
an environment having a high subsidence rate, low wave and tide
energy, low offshore slope, and a fine grain sediment load, the
development of bifurcating channels is typical. Deltas developing
this distributary pattern are characterized by a large number of river
mouths (Figure 30).

160. Channel bifurcations and crevasse discharges have
influenced the shape of subaerial land in Atchafalaya Bay. Adams and
Baumann (1980) identified five levels of bifurcation that have been
taking place in the Lower Atchafalaya River delta (Figure 31). The
branching channels discharge water and suspended sediments that form
subdeltas along the distributary channels. The shoaling at the
branching river mouth is repeated and new bifurcations develop at the
new channel outlets to form a complex branching pattern (Adams ar.
Baumann 1980).

Stepwise procedure for delta growth prediction

161. A stepwise procedure, formulated to estimate the areal and
volume extent of the delta in both space and time, is the means by
which deita growth is predicted. The space steps are selected at the
beginning of the computation and guided by the dimensional plot of

sediment deposition. The time-steps are not known a priori, but
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depend upon the analytical solutions themselves and are obtained by
the numerical procedure (Appendix E).

162. In order to simulate the process of bifurcation, it is
assumed that at each level of bifurcation the branching channels
achieve a stage of development similar to their parent channel, and
that the subdelta is produced by turbulent jets with the same riverine
flow conditions. An idealized bifurcation scheme is displayed in
Figure 32.

163. In this study, our predictions are based on mean sea
level, which is used as the determining elevation for subaerial land.
Plate 6 is a two-dimensional plot of sediment thickness for Case 4.
The total sediment volume is computed by analytical integration. The
time required to fill the known volume of sediment to an average
thickness h is obtained by the method of Bisection Search (Scheid
1968). The numerical procedures are explained in detail in Appendix E.

Prediction for the Lower Atchafalaya River Outlet delta

164. River delta development depends on the quantity of
sediment that is delivered to and retained in the receiving bay. In
Atchafalaya Bay, much of the flow through both the Lower Atchafalaya
River Outlet and Wax Lake Outlet enters the Gulf of Mexico via the
navigation channels. Adams and Baumann (1980) estimated that 40
to 50 percent of the total volume of suspended sediment delivered
to the bay through the river outlets will be retained in Atchafalaya
Bay and the rest will be dispersed in peripheral marshes and offshore
regions.

165. For predictive purposes, it is assumed that the volume of

sediment is proportional to the volume of discharge. Based upon the

A 70-30 percentage split of discharge for the two outlets (Letter
o 1982), the Lower Atchafalaya River delta is expected to grow to a much
§§? greater extent than the Wax Lake Outlet delta.
;;: 166. The Lower Atchafalaya River delta can be divided into an
iy

eastern and a western component (Adams and Baumann 1980), areas that

are associated with East Pass and West Pass (Figure 31). Van Heerden

1“
b& (1980) conducted an extensive field study in the eastern half of the

-b& $r¢ X *m}.‘i'f BRI ,\i&‘x\'ﬁi



%
KL, M ]
& ':‘:{ll:lmﬂ A
a '“‘
(.
o h
a: ,
S&;l ”jh’l'
& 'lia'y"' A}
RrN | AV Ve
,!,: // (/7 "
F e
T -“\ A ! ©
s ” - \\ N -?-:to
iy ™
S
3 il z .
| fﬂ’.". ° b
l"llll “U,I & |
. IF'II ll'{'f. k i |
2 V'%-J g :
ST ; ;
L b *
2 i"*'”ulJ il
K I KR -
. .Jn.t:,.!:.t:: ; : |
‘ 11 !Hu:'.”n 1 $> P, o :
,l' ‘- 0 !
) | y Pg - \ ‘; b
! 1';?1"" ;/:(',’_yr'g"‘""’ ~ o
, NNt Ny, Y .
~ bl f] uuihﬁlli{' | i v L
5 " || \rﬁ |1J||F|q|'1;|l:hqmuiH'J"I
L ! il
7| d!‘llﬂﬂ e I

e w_ R > e _a_ma




D e

S AT

- -
}IHA

Lower Atchafalaya River delta from 1973 to 1979. The total area of
the eastern half of the subdeltas was 4.56 mi2 (11.67 km2) with an
average growth rate of 0.76 miz/year (2 kmz/year).

167. In contrast, subdelta development on the western side is
more complex. Adams and Baumann (1980) indicated that if it were not
for the navigation channel, God's Pass and Log Island Pass (Figure
31), which developed from second-order bifurcation, along with East
Pass would represent the three major river outlets.

168. To simulate the growth of river deltas in this physical
domain, a stepwise procedure described in the previous section is used
and the simulation is done as follows:

a. In the first order bifurcation, the total river discharge
and suspended sediments are divided into three equal
amounts representing the three major outlets.

|

A space step is selected at the onset of computation; the
subdelta area (jet length and width) at each outlet is
calculated.

c. The time-step is searched by the numerical procedure
(Appendix E).

The numerical procedure is repeated in the same manner for the se-
quential order of bifurcation processes. The results of each computa-
tion are summarized in Table 5. The average growth rate is about 5
km2/year.

Prediction for the Wax Lake Outlet delta

169. The bifurcation process is not as evident on the Wax Lake
Outlet delta. Most of the delta development has occurred west of the
main channel (Adams and Baumann 1980). A few branching channels have
developed on the western side of the outlet and subdeltas have formed
along the subchannels.

170. Wells, Chinburg, and Coleman (1984) reported that during the
1980-81 flood year, the Wax Lake Outlet delta represented 17 percent of
total subaerial land in Atchafalaya Bay, and approximately 10 percent of
the total if averaged over a 6-year period from 1975 to 1981 covering an

area of 2 km2 to 3 km2. The average growth rate ranged from 0.3 to 0.5
2
km” /year.
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- 171. To simulate the natural bifurcation pattern in the absence
;Qf; of field observation is a difficult task. Thus the same branching

g .: scheme presented earlier is used for modeling the growth of the Wax
¥é§% Lake Outlet delta. The stepwise numerical procedure is again used to
Y estimate the growth of delta lobes. The results are listed in Table 6.
§{Q The average growth rate is about 2.6 kmz/year.

}$§ Estimation of Atchafalaya River delta growth

E. 172, Aerial photographs (Wells, Chinburg, and Coleman 1984) and

photomosaics (Adams and Baumann 1980) show that the Atchafalaya River

srﬁ deltas have grown by developing parabolic lobes of fine-grain sediments
f J that radiate from the network of branching channels. These delta lobes
;5 y are evolved from shallow sandbars that rose above mean sea level and

2; emerged as subaerial land.

ﬁ;ﬁ 173. Adams and Baumann (1980) indicated that in Atchafalaya Bay
;a“‘ the central area between two deltas is apparently broad and deep

ﬁi; enough to transport the riverflow it receives without forming a
-‘hk discrete channel. This fact suggests that in our study, the analyt-
K0 ical results derived from numerical procedures for the Lower

f N Atchafalaya River Outlet and the Wax Lake Outlet separately can be

t 3 combined linearly to represent the total delta growth in the bay.

:) This is similar to Letter's (1982) approach, in which the bay area was
%‘3 roughly divided into two areas, ope for each of the two outlets.

? - Figure 33 shows an estimation of the total subaerial land in

Ehz Atchafalaya Bay derived from our analytical approach. Figure 34

- presents the prediction of volume extent of Atchafalaya River delta

}‘ﬁ growth.
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PART VII: SENSITIVITY ANALYSIS AND RESULTS

Sensitivity Analysis of Various Parameters

174. The analytical solutions of jet characteristics derived in
PART V are based on the theory of turbulent plane jet under a number
of assumptions. The numerical approaches to predict the delta growth
presented in PART VI depend upon a number of estimated parameters. It
is thus essential to study the importance of various physical param-
eters in the problem formulation and to show the balance between the
numerical procedures and the physical environment.

175. The sensitivity analysis is used to aid in the under-
standing of the dynamics of river-delta interaction; to identify the
relative importance of various variables in deltaic processes; and to
test the effects of the distributary network on the outcome of pre-

dictions. The sensitivity tests to be conducted are:

a. River outlet conditions (ho, bO’ uo).
b. Sediment concentration and settling velocity (co, wo).
c. Bay bottom slope, friction, and lateral entrainment

(a, £, e).

176. The sensitivity analysis is performed in two phases. First,
each parameter is analyzed independently by holding other variables
constant, under the same conditions as in the base results. Second,
several parameters are examined conjunctively to show their interrelated
effects.

River outlet conditions (h b., u.)

—0—0>—0~
177. In this study, the water depth of the receiving bay is taken

as the same as the water depth at the river outlet. To examine the
influence of the outlet depth (ho) on the growth of delta, three
different water depths of 1.5 m, 1.0 m, and 0.5 m for Case 4 (linear
depth with entrainment, E # 0 and H # 1) are considered. That is, in the
sensitivity test, only the outlet water depth (ho) in Case 4 is changed
from 2.0 m to 1.5 m, 1.0 m, and 0.5 m, while all other variables remain

constant. The suspended sediment distributions are given in Plate 7 as




three-dimensional plots. The results demonstrate that at shallower water

depths, delta buildup is sharper in shape and is limited to a much
smaller area close to the river outlet.

178. The remaining outlet conditions are studied by observing
simulated jet behavior under the influence of width of the outlet (bo)
and outlet velocity (uo). A sensitivity test is made for the half-width
at values of 250 m, 500 m, 750 m, and 1000 m while other variables in Case
4 remain constant. The results of the effects on jet width, jet
velocity, and sediment concentration are plotted in Plate 8. It is
concluded that the larger the river outlet, the faster the jet spreads
laterally and the faster the current velocity and sediment concentration
diminish longitudinally. Also, from Plate 9 it is shown that as the
outlet velocity (uo) exceeds 0.5 m/sec, the sediment concentration (c) is

not substantially influenced by higher values of u =1.0, 1.5

o (¥
m/sec).

Sediment concentration and settling velocity (c:2 w:)

179. A continous point source of sediment issuing from the river
outlet is assumed in this study. The supply of sediment to Atchafalaya
Bay has been changing both in volume and character over the past decade.
In a regressional analysis, Letter (1982), based on the 50-year extrap-
olation hydrograph at Simmesport, computed the maximum and minimum
sediment yield (113 and 38 million tons/year) corresponding to the
maximum and minimum discharges (310,000 and 139,000 cfs) and obtained
maximum and minimum sediment concentrations of 365 ppm and 275 ppm.

180. A sensitivity test is conducted for the mean concentration
(co) (cO = 100, 200, 300, 400, and 600 ppm) in Case 4. The three-
dimensional plots of sediment Qistributions are given in Plate 10. The
deposited sediments become thicker as the sediment concentrations are
increased; however, delta growth in all instances is restricted to the
proximity area of the outlet.

181. The settling velocity of suspended sediment (wo) is in part a
function of particle size (Figure 23); the situation is further compli-
cated by the aggregation of the suspended cohesive materials (Van Heerden,

Wells, and Roberts 1981). The influence of the settling velocity is
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investigated for w, = 0.01, 0.05, 0.1, 0.5, and 1,0 mm/sec. The results

0
for the dimensional center-line concentration are given in Plate 1ll1. The
dependence of Wy on ¢ is shown. The sediment deposition pattern for sct-
tling velocities of 0.0l, 0.1, and 1.0 mm/sec are presented in Plate 12.
It demonstrates that smaller settling velocities result in more uniform
deposition patterns, and that larger settling velocities produce patterns
sharper in shape and limited to a smaller area close to the river

outlet.

Bay bottom slope, friction,and lateral entrainment (a, f, e)

182. In Atchafalaya Bay, Adams and Baumann (1980) estimated that
the bay has a slight slope of 0.00015, approximately 0.8 ft per mile. In
this study, a sensitivity test is made using slope values of C.00001,
0.€0005, 0.0001, 0.0002, and 0.001 with other parameters in Case 4
remaining constant. The results of the effects on jet width, jet
velocity, and sediment concentration are shown in Plate 13. The plots
demonstrate that the influence of the bottom slope is minor except for a
value of 0.001.

183. The dimensional jet width (B), the center-line velocity (U),
and sediment concentration (C) are displayed in Plate 14 for Case 1 (E=0.
H=1), Case 2 (E=0, H#1), Case 3 (E#0, H=1), and Case 4 (E#0, H#1). It is
seen that increasing the bottom slope causes a narrower and elongated
riverine jet (Case 1 vs Case 2; Case 3 vs Case 4), and that the effect
of bottom slope counteracts the effect of the lateral entrainment (Case 1
vs Case 4). The velocity, however, does not exhibit any significant
variation among the cases. The sediment concentration is affected both
by the bottom slope and the lateral entrainment.

184. The analytical solutions of jet width, center-line velocity,
and sediment concentration all show a strong dependence c¢n the bottom
friction (f). In fact, the jet width grows and jet velocity decays
exponentially along the longitudinal distance. The values of the Darcy-
Weisbach's coefficient are taken as 0.001, 0.002, 0.003, 0.004, and 0.006
in the sensitivity test while all other parameters remain the same as in
Case 4. The plots of jet width, center-line velocity, and concentration

are shown in Plate 15. It is inferred from these figures that the bottom
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friction plays an important role in the jet dynamics. When the friction
is larger, the jet expands laterally much faster as it faces the bottom
resistance and loses its momentum much more quickly. It also indicates a
rapid decrease in the sediment concentration with increasing values for
the bottom friction.

185. Ozsoy (1977) stressed the importance of the effects of lateral
entrainment on tidal inlet characteristics. To study the effects of
entrainment on the characteristics of the river delta, four values of the
entrainment coefficient e = 0.0375, 0.075, 0.150, and 0.300 are examined.
Results are shown in Plate 16 for jet width, center-line velocity, and
concentraticn, respectively. It is seen that for a river-delta system

the entrainment mechanism also plays a role.

The Relative Role of Physical Parameters

186. The sensitivity analyses conducted in previous sections shed
some light on the relative importance of various parameters in the study
of river-delta interaction. Their orders of apparent importance are
listed below:

a. The bottom friction (f) influences jet flow to the
greatest extent. The jet loses its momentum due to
high friction, and expands its width at a faster
rate than in the case of low friction.

=2

The settling velocity (w,) affects the transport of
suspended sediment to a Qarge extent. With higher
settling velocity, the center-line sediment concentration
drops more rapidly and the delta lobe is smaller and
closer to the river outlet.

The width of the outlet (b,), as considered in
simulating the process of granching channels, has
significant influence on the shape of subaerial land.
The wider the outlet, the more rapidly current velocity
diminishes with increasing longitudinal distance, which
results in much faster lateral spreading of the jet, a
natural cause of delta buildup.

"

N,
g

="

The lateral entrainment (e) affects the jet charac-
teristics. Jet width increases with increasing
entrainment. Consequently, the jet velocity and
sediment concentration decrease as the jet width
expands.

1.t 1

v s
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e. The influence of the outlet depth (h ) on jet
characteristics can be examined by ugilizing the e
aspect ratio (Jirka 1981), defined as the ratio -
depth to width, "h_ /b.". Higher values of this ratio, 3i
increasing h, or decreasing b,, result in a much o
narrower and more elongated delta form. , I3
f. Increasing the center-line velocity (u,) and the sediment &
concentration (c.) will develop delta lobes with thicker b
and more elongated shapes. S
¥
Growth Curves of Subaerial Land in Atchafalaya Bay ﬁ
187. In this study, the values used in the base runs are mean ﬁ

values of various physical parameters taken from the available literature

- -,

(PARTS II and VI). These quantities may vary throughout the period of

predicted growth depending on the nature of the system under considera-

tion. To circumvent this situation, the most sensitive parameters are

used to simulate the greatest and least potential growth of subaerial
land.
Simulated growth of Atchafalaya River deltas

188. The physical quantities that are of major importance to the
Atchafalaya River-Bay system are the coefficient of bottom friction (f),
the settling velocity of sediment particles (wo), and the sediment
concentration (co). Since high friction causes the jet to spread
laterally, high settling velocity results in smaller delta lobes, and low
sediment concentration develops a thinner subdelta, the environment for
least growth can be simulated by increasing f and Yo and decreasing the
o value. In contrast, the high growth environment can be best simulated
by low f, low Vor and high o values.

189. The following environments are simulated for the growth of
subaerial land in Atchafalaya Bay:

a. Base results

f = 0.001
Vo = 0.05 mm/sec
c, = 300 ppm
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b. Slow growth
= 0.004
Wy = 0.1 mm/sec
¢y T 200 ppm
c. Fast growth
f = 0.001
wo = 0.03 mm/sec
S = 400 ppm

The results of the simulated growth patterns are summarized in Tables 7,
8, 9, and 10 and plotted in Plate 17.

Comparison with other predictions

190. The growth of the Atchafalaya River deltas has been predicted
by various investigators. Shlemon (1972), based on sediment measurements
made in the outlets, predicted a growth rate of 5.5 to 7.5 miz/year (14
to 18 kmz/year), with the delta covering an area of 290 to 350 mi2 (750
to 900 km2) by the year 2020. His prediction was referred to a -3 ft
mean low gulf contour.

191. Adams and Baumann (1980), following the same empirical
approach as Shlemon, estimated that the Atchafalaya Bay will be filled to
an average depth of 2 ft below mean sea level in a time period of approx-
imately 40 years.

192, Wells, Chinburg, and Coleman (1984), based on the generic
analysis of existing deltas, projected that by the year 2030 a new sub-
aerial land mass will be created in the bay ranging from 59 to 132 m12
(150 to 337 ka) with 81 mi2 (208 kmz) representing the expected land in

50 years under average flood conditions. They estimated a growth rate of

1.6 miz/year (4.0 kmz/year); their study was referred to the mean sea level.

193. Letter (1982) developed a regressional model and predicted
that within 50 years (by the year 2027) the delta will evolve gulfward of
Eugene Island. The total volume of the deposited sediment is estimated

at 58 billion fta; and the delta mass volume (based on the -3 ft NGVD) is

about 17.6 billion fto.

194. The total subaerial land development predicted analytically
in this study is displayed in Figure 35 together with the prediction
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Figure 35. Prediction of subaerial land in Atchafalaya Bay

curves developed by Shlemon (1972) and Wells, Chinburg, and Coleman (1984).
A contour-type map for approximate delta front advancement is depicted in
Figure 36. Our prediction, based on analytical results, shows an average
growth rate of 7.6 km2/yr, ranging from 6.0 to 10.0 km2/yr as simulated
for the slow growth and fast growth environments, respectively. On a
volume basis, the average volume of sediment deposition is predicted at

16 x 106 m3/yr, with a range of 12 x lO6 m3/yr to 23 x 106 m3/yr.
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Figure 36. Predicted Atchafalaya Bay subaerial delta configuration
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PART VIII: SUMMARY, LIMITATIONS, AND CONCLUSIONS

Summary

195. An analysis has been made to aid in understanding the various
phenomena associated with turbulent plane jets issuing from river outlets
and discharging into a quiescent receiving bay. An integrated form of
the hydrodynamic equations of flow continuity and momentum balance,
coupled with the mass transport equation, has been formulated into a
two-dimensional spatial and quasi-steady temporal domain.

196. A similarity function in the form of exponential and poly-
nomial expressions was chosen for the velocity and sediment concentration
profiles. The lateral entrainment is expressed as a function of the jet
center-line velocity. A closed~form analytical solution is obtained in
terms of the normalized dependent variables of the jet width, the center-
line jet velocity, and the center-line sediment concentration. The
solutions for cases of constant depth and of linearly varying depth, both
with and without entrainment, are presented.

197. From these normalized solutions, the thickness of deposited
sediment is calculated under quasi-steady state conditions. The Statis-
tical Analysis System of computer graphics (SAS/GRAPH 1981) is used to
display the three-dimensional sediment deposition patterns. These
sediment patterns, together with a stepwise numerical procedure simu-
lating the process of branching channels, are then used to estimate the
areal extent and the volume of deposition for the Atchafalaya deltas
under a variety of conditions. Sensitivity analyses are performed to
assess the relative importance of various parameters in the river-delta

system.
Limitations

198. There are certain limitations inherent in the application of

the analytical model:
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The governing equations for flow and mass transport are
developed for a shallow-water environment in the absence
of tidal and wave currents. Therefore the simplified
equations for turbulent jets will not be representative
of a regime subjected to tidal and wave action.

i

b. The similarity profiles for the velocity and sediment
concentration must be used in order to obtain a set of
closed-form analytical solutions.

Xg]

The deposition function used for sediment dispersion and
settling in shallow water does not take the erosion
process into consideration. The analytical approach

is not capable of addressing the problem of the
resuspension of sediment in the bay and the reworking

of delta deposits by physical processes offshore.

{9

In studying the river delta development, the sediment
deposition is assumed to be quasi-steady state; the
thickness of the deposited sediment layer is assumed to
vary linearly with time.

The bifurcation processes are simulated in the form of
turbulent jets at the new channel outlets; at each level
of bifurcation, an equal amount of flow and sediments is
assumed to be distributed to the branching channels.

tm

(L)

The values of various parameters are based on time-
averaged quantities. The analysis is projected to yield
a gross estimate of areal and volume extent of the
Atchafalaya River delta.

g- The analytical results are generated from local data
within the bay. Predicting the delta development beyurd
the bay will be less accurate, since the governing
equations of turbulent plane jets derived for shallow
receiving waters will not be applicable to the deeper
water offshore.

Conclusions

199. The primary sources of energy for the development of the
Atchafalaya River's deltas in the bay are the natural resources of the
river, that is, the suspended sediments that form the delta and the river
discharge that carries the sediment load. The river-delta interaction is

a complicated phenomenon. The analytical work reported herein is a

simplified representation of complexity in predicting the evolution of
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the Atchafalaya River delta. It covers the essential features of natural
processes leading to the growth of the delta.
200. The following conclusions are drawn from this study:

a. The depth of the river outlet and the bottom friction in 1
the bay play an important role in determining the
spreading of river effluents.

b. The process of channel bifurcation has sigaificant :
influence in the shape and the area of subaerial land.

c. The settling velocity of sediment particles has the most
impact on the volume of delta lobes.

d. The center-line velocity and sediment concentration
control both the area extent and volume deposition
of river deltas.

e. The lateral entrainment also plays a role in the
development of river deltas in the shallow and wide
Atchafalaya Bay.

f. The predictions of the future growth of the Atchafalaya

River deltas in this study are:

(1) The Lower Atchafalaya River Outlet Delta will
grow approximately 5.0 km2?/yr; the Wax Lake Outlet
Delta will grow at a rate of 2.6 km?/year.

(2) The total growth of subaerial land of the
Atchafalaya River deltas is expected to be
7.6 km?/year.

g- It will take about 50 years for the Atchafalaya River
deltas to reach the Point Au Fer Shell Reef.

1=

The results of delta growth predicted in this analyt-
ical study are commensurate with the predictions made
by others.
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-*ﬁ APPENDIX A: GAUSSIAN QUADRATURE NUMERICAL INTEGRATION

:fj 1. To evaluate the integral of a function, f(x), over a finite

Nt

'fli interval (-1,1), Gaussian quadrature npumerical integration (Beyer 1978)%
<.

- is used. The Gaussian quadrature formula has the form

]
'} 1
128 n
o -
N ff(x)dx -.E.[Hif(xi)] (A1)
o i=i
D -1
— where Hi are the weights; the abscissas, X,, occur in pairs symmetrically
..:I
on placed with respect to the origin.
.Qﬂ' 2. For an eight-point numerical integration (n = 8), the values
D
e for x. and H. are given as follows:
® 1 1
o X, H.
o i i
’ + 0.9602899 0.1012285
! * 0.7966665 0.2223810
Wy * 0.5255324 0.3137066
+ 0.1834346 0.3626838
~",
:{‘ 3. A simple FORTRAN coding for the Gaussian quadrature formula is

]
-

oz a

listed in Table Al. The values of the following integrals, cited in PART

Pl
b
AU

V, are found:

O3

o 1 2 2

oy (1 - s%) exp (-s7) ds = 1.1147022
o -1
-._"n\

) ! 2 3 32

‘[ (1 - s7) exp (- s ) ds = 0.9494728

1 !
‘:"' 1

.t 1

3 (1 - s2)% exp (- 357) ds = 1.3974447 |
) A ‘
o . 5 |
fjn: j.(l - 52)2 exp (- %sz) ds = 0.7597358 :
) -1 !
b 1
X *References cited in the appendices are included with those for the main ‘
yé body of the report, starting on page 113.
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Table Al

Computer Source Program of Gaussian Quadrature

Eight- Point Numerical Integration

) GAUSSIAN QUADRATURE EIGHT POINT NUMERICAL INTEGRATION
REFERENCE: BEYER, W.H., 1978. "HANDBOOK OF MATHEMATICAL

SCIENCE', STH EDITION, CRC PRESS.

R GAUSSIAN QUADRATURE FORMULA:

WHERE X = ABSCISSAS AND H = WEIGHTS

11

12

13

P
A
: .
P s

L AP

PR

14

3

l“ ,l {I "l

SN

10
20
30
40

[

e

[
ot

1

DIMENSION X(8),H(8),X1(8),H1(8)
DATA F1,F2,F3,F4/4%0.0/
REAL*8 X1,/0.9602899,0.7966665,0.5255324,0. 1834346,
-0.1834346,-0.5255342,-0.7966665,-0.9602895/,
H1,0.1012285,0.2223810,0.3137066,0.3626838,
0.3626838,0.3137066,0.2223810,0. 1012285/
DO 9 I=1,8
X(I)=X1(I)
HC(I)=H1(I)
WRITE(6,1)
FORMAT (S5X, ' THE FOLLOWING INTEGRALS ARE COMPUTED: ')
DO 11 I=1,8
FI=FI1+H(I)*(1.-X(I)*X(I))*EXP (=X (I)*X(I))
WRITE(6, 10)F1
DO 12 I=1,8
F2=F2+H(I)*(1.-X(I)*X(I))%x1 SkEXP(—1.5%X(I)*X(I))
WRITE(6,20)F2
DO 13 I=1,8
F3=F3+H(I)*(1.~X(I)*X(I))%x0.S*EXP(~0.5xX(I)*X(I))
WRITE(6,30)F3
DO 14 I=1,8 .
F4=F4+H(I)* (1. ~X(I)*X(I))%**2 SxEXP(-2.5*X (1) *X(I))
WRITE(6,40)F4
STOP
FORMAT (10X, "I(1)
FORMAT (10X, 'I(3/2)
FORMAT (10X, 'I(1/2)
FORMAT (10X, 'I1(5/2)
END

,F10.7)
,F10.7)
,F10.7)
,F10.7)

THE FOLLOWING INTEGRALS ARE COMPUTED:

1.1147020
0.9494730
1.3974440
0.7597359

Icn

I1(3/72)
IC1/2)
I1(5/2)

A2
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APPENDIX B: SOLUTION FOR BERNOULLI-TYPE EQUATIONS

1. This appendix shows the procedure for reducing a Bernoulli-type

R . . . .
equation into a linear first-order differential equation.

equations have the form
Y+ py = ay"
dx

This basic equation is modified by setting
zZ =y

which transforms into the equation

The first term of Equation Bl can then be expressed as

n

1-n dz

=1, dz
l1-n dx

Bernoulli-type

(B1)

(B2a)

(B2b)

(B3)

Substituting Equations B2a and B3 into Equation Bl and simplifying,

we have

dz _

ot a- n)p(x)z = (1 - n)q(x)
or

dz

ax P(x)z = Q(x)

(B&a)

(B4b)

x
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gl
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3"' 2. Equation B4b is the general form of a linear first-order
'u . differential equation. By the method of integrating factors (Wylie
y x: 1951), the general solution of Equation B4b is
A
z = %[IHQ(X)dx + Cj (BS)
o)
AN
-‘ where
5:5 ‘ b = integrating factor
R/
it = exp[P(x)dx (B6)
s
A and
",.1)\
p \
S C = constant of integration
i
‘.‘W
L]
3. Finally, using the relationship of Equation B2b, the standard

solution for the Bernoulli-type equation is obtained:

1 |
1-n
y=2
b o1
' -1 1-

"‘& y = {[expr(x)dx] [ eprP(x)dx Q(x)dx + c]} ™ (B7)
» where
;:{‘.-
1 P(x) = (1 - n)p(x) (B8a)
2%
Lo Q(x) = (1 - n)a(x) (B8b)
i ’)\'9,)

% The Solution of Equation 53 in PART V
et
-.'.:-;

::: In PART V, Equation 53 is a Bernoulli-type ordinary differential

N

p equation:
r:"."

-:' :—g + FU = - A exp (Fr) U3 (B9)
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The solution of the above equation can be obtained by equating

y=U

X=r

n=3

P(x) = (1 - n)p(x) = -2F

Q(x) = (1 - n)q(x) = 2A exp (Fr)

and computing the integrating factor

exp[ P(x)dx

exp =2Fdr

T
] #

"

exp (-2Fr)

Thus

[o=}
it

exp (-Fr) + (:]}-!2

] 5

fexp (2Fr) .-
Utilizing the initial condition
Ul =1 =-= +C

r=0 F

we obtain

Finally, the solution of the Bernoulli equation is
U = {exp (2Fr)[-g% exp (-Fr) + 1 + Z%]}'¥

or

B3

'-\ ‘\ '%.-‘h'-

u.t“

‘_,.
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. .

(B10a)
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v
ST

(B10b) g

(3 4¥:

Sy

(Bl1a)

-

»

(B11b) N

(B1lc) :

(B12) .

(B13) .

(B14) .

(B15)
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U= [-BeprEn + ¢ 28) exp (2Fr)] "% (B16)

This is the jet velocity in nondimensional form for the case of constant

depth. It is cited as Equation 54 in PART V.

The Solution of Equation 72 in PART V

Equation 72, appearing in PART V, is also a Bernoulli-type

ordinary differential equation:

b

M) 4 200 - pEt W) = - Tlaw)’ (B17)
r ho

The solution is obtained as in the previous example, using

y = HU
X =t
n=3
_ b -1
P(x) = (1 - n)p(x) = -Za-h—-(D - 1DH (B18a)
0
Qx) = (1 - n)q(x) = 288! (B18b)

The integrating factor is computed as

-
1

exp fP(x)dx (B19a)

. bo -1
exp f—ZaE—(D - DH “dr (B19b)
0

v
3 B4
o
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Note that

b
H o= 1 + ar
0
and
bo
di = a—dr
h
0
Thus
g o= epr/.-Z(D - l)g% = H-Z(D-l) (B20)
and
h - -l
o= ODGHA D g2, o) (821)
- D abO

Utilizing the initial conditionms

Milpzg = 1 = 7-Daby " € (B22)

cC = 1 - 9 (B23)

The final solution of this Bernoulli equation is

h h
. (42(D-1),_2A "0 .2-D _ 240 . ,-%
HU = [H G=% ab 1 + 1 7-D ;EE)] (B24)
or
41-D % 1 2-D 1 -4
HU = (28) [555 7 p -1+ 4l (B25)

The above equation appears as Equation 73 in PART V.
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e APPENDIX C: COMPUTER GRAPHICS

)0

G?: 1. Behavior of variables used in the system of equations employed
:‘ to describeufedimentation patterns in Atchafalaya Bay is illustrated in
:Sf the report by the use of Statistical Analysis System plotting subroutines
:% (SAS/GRAPH 1981). Two-dimensional plots are used to display changes in
ﬁs jet center-line values of selected variables as distance from the outlet
;g; increases; three-dimensional plots are used to depict values of the

55 variables over the entire jet.

) 2. The GPLOT procedure, a subprogram of SAS/GRAPH, was used to

ﬁ; produce the majority of the two-dimensional plots. Variables, entered as
&3 x and y coordinate pairs, are plotted exactly; the plotting routine in-
&ﬁ‘ cludes an interpolation feature (SPLINE) that produces a smooth curve fit
‘ to the data values.

N 3. A second SAS/GRAPH subprogram, the G3D procedure, plots the

S: values of three variables and generates a three-dimensional surface. The
E d three variables used to illustrate deposition patterns are jet velocity,
K sediment concentration, énd sediment thickness. Each of these variables
.ﬁ is plotted versus normalized longitudinal (r) and lateral (s) coordinates
;a by the program, which again interpolates to produce a smooth surface fit
iH to the input data.

)

::?3 Computer Program Cl

N

5& 4. This computer program contains plotting instructions for the

generation of a two-dimensional center-line sediment thickness profile

IH};

using the GPLOT procedure. The data used to create the plot were taken

Py

ix

from the Case 4 conditions for delta development (E # 0 and linear H),

.

after two years of deposit, with varying sediment concentrations. Pre-

dicted sediment thickness at forty equidistant locations along the center

line of the jet was entered with corresponding longitudinal distance

s

-
- e
-
- -

from the outlet; data points are indicated on the plot by designated

symbols representing different sediment concentrations. The resulting

T2

plot 1is shown in Figure Cl.
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COMPUTER PROGRAM Ci

77STEP1 EXEC SAS
//SYSIN DD =
DATA ONE:
Uo=1; WO0=0.0SE-3; F=0.001; B0O=500;
H0=2.0; A=0.0001; AI1=0.948; Al2=1.397; AI3=0.76;
TIME=2.0%365.%86400.; DS=0.4;
ARRAY ROOT (I) ROOT?1 -~ ROOTI!1;
ARRAY WT (I) WTt1 - WTt11;
ROOT1=0.00533697; ROOT2=0.04735263; RO0T3=0.12782106;
ROQOT4=0,23991861; ROOTS=0.37413950; RO0T6=0.51910186;
ROOT7=0.66251286; ROQT8=0.79221088; RO0T9=0.89719596;
ROOT10=0.96855602; ROOT!11=1.00000000;
WT1=0.29169804; WT2=0.28548098; WT3=0.27317938;
WT4=0.25505539; WTS5=0.23149529; WT6=0.20300115;
WT7=0.17018012; WT8=0.13373121; WT9=0.09442893;
WT10=0.05309150; WT11=0.00865801;
UCR = UO;
D F/A;
W BO=WO/UO/HO;
D F/A; E=0.075S;
AA = 1.794xE;
ARRAY CO(I) CO1 - CO5;
COt1=100.; C02=200.; CO03=300.; C04=400.; C05=600.
ARRAY CA(I) CA1 - CAS;
ARRAY CD(I) CDt - CDS;
ARRAY UD(I) UD1 - UDS;
ARRAY H (I) H! - Ht1;
ARRAY CFU (I) CFU!1 - CFU1t;
ARRAY U (I) Ul - U11;
ARRAY SA (I) SA1 - SAlt;
ARRAY SB (I) SB! - SBi11;
DOR=0.0 TO 20.0 BY 0.50;

HH = 1. + A=BO/HO=R;
CF = HO/A/BO/(2.-D)*(HH»x(2.-D) - 1.) + 0.5/7AA;
UU = 1./SQRT(2.%AA) /HH»»D / SQRT(CF);
BB = 2.»«AAxHH»»(D-1) = CF;
DO OVER ROOT; H = 1. + AwBO/HO»R»SQRT(ROOT); END;
DO OVER H; CFU= HO/A/BO/(2.-D)w(H»x%x(2.-D) - 1.) + 0.57AA; END;
DO I =1TO 11;
U =1./SQRT( 2.%AA) / H=»D/SQRT(CFU);
END;
Gl= -AIZ2«W/Al1#R/2.;
G2= AI3=W/AI1/1.0/1.0xR/2.;
DO I =1 TO 11;
SA = WT/H/U
SB = WT»U/H ;
END;
SUM1 = SUM(QF SA1 - SAl11);
SUM2 = SUM(OF sBt -~ SBit) ¢
c2
S T T 1 g
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{w COMPUTER PROGRAM C1 (CONTINUED)
:‘.@_

..
Sl
;l
AgY C = EXP( G1%xSUM1 + G2%SUM2 - LOG(HH=UUxBB) );
g; DO I =1 TO S;

Wt CA = CO = C;
) UD=UO=UU;
! CD = WO®100.%CAx1.0E~6%(1. — UD*xUD/UCR/UCR)*TIME;
&h; END;
Ny TA = CD1/DS;
p T8 = CD2/DS;
o TC = CD3/DS;

TD = CD4/DS;

KA TE = CDS/DS;
N OUTPUT;:END;
A% PROC GPLOT; PLOT TA*R TBxR TC*R TD»R TExR/OVERLAY;
e SYMBOL1 I=SPLINE V=DIAMOND;
WY SYMBOLZ2 I=SPLINE V=TRIANGLE;

[ SYMBOL3 I=SPLINE V=STAR;

o SYMBOL4 I=SPLINE V=PLUS;

3 SYMBOLS I=SPLINE V=HASH;
L2 TITLE! ;
4 TITLE2 ;
R TITLE3 .F=TRIPLEX .H=2 CENTERLINE SEDIMENT THICKNESS PROFILE;
_ TITLE4 .F=TRIPLEX .H=1 IN CM, TWO YEARS DEPOSIT;
W TITLES .F=TRIPLEX .H=1 CASE 4: E X O AND LINEAR H;
e TITLE6 .F=TRIPLEX .H=1 CO=100: DIAMOND, CO=200: TRIANGLE;
&1 TITLE7 .F=TRIPLEX .H=1 CO0=300: STAR, C0=400: PLUS, CO0=600: HASH;
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CENTER-LINE SEDIMENT THICKNESS PROFILE

; ) IN CM, TWO YEARS DEPOSIT

il CASE 4: E ¥ 0 AND LINEAR H

: C0=100: DIAMOND, C0=200: TRIANGLE
ol C0=300: STAR, C0=400: PLUS, C0=600: HASH
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Figure Cl. Plot of center-line sediment thickness profile
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Il
E Computer Program C2

5. Computer program C2 contains plotting instructions for genera-
tion of a three-dimensional representation of sediment thickness using
the G3D procedure; the resulting plot is shown in Figure C2. The sedi-
ment deposition pattern shown was predicted by the closed-form analytical
solutions of the two~-dimensional system of equations describing sediment-
ation for Case 4 (E # 0 and linear H) after two years of deposit. These
equations are used by the G3D subroutine to produce 1651 data points for

generation of the final three-dimensional plot.
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COMPUTER PROGRAM C2

//STEP1 EXEC SAS
7//SYSIN DD =

DATA ONE;

Uo=1; W0=0.05E-3; F=0.001; B0O=500; C0=300.;

HO0=2.0; A=0.0001; AI1=0.948; AIZ2=1.397; AI3=0.,76;

TIME=2.0x365.%86400.; DS=0.4;

ARRAY ROOT (I) ROOT! — ROOT11;

ARRAY WT (I) WT1 - WT11;
ROOT1=0.00533697; ROOT2=0.04735263; ROOT3=0.12782106;
ROOT4=0.23991861; ROOT5=0.37413950; ROOT6=0.51910186;
ROOT7=0.66251286; ROOT8=0.79221088; RO0T9=0.89719596;
ROOT10=0.96855602; ROOT!11=1.00000000;
WT1=0.29169804; WT2=0.28548098; WT3=0.27317938;
WT4=0,25505539; WTS5=0.23149529; WT6=0.20300115;
WT7=0.17018012; WT8=0.13373121; WT9=0.09442893;
WT10=0.05309150; WT11=0.00865801;

UCR = UO;

D = F/A;

W = BO=WO/UQ/HO;
D = F/A; E=0.075;

AA = 1.794xE;
ARRAY H (I) H! - H11;
ARRAY CFU (I> CFU! - CFU11;
ARRAY U (I) Ul = Utlt;
ARRAY SA (I) SAl - SAl1;
ARRAY SB (I) SB1 - SBl11;
DO R = 0.0 TO 20.0 BY 0.50;

DO S = -1 TO t BY 0.05;

HH = 1. + A»BO/HOx=R;

CF = HO/A/BO/(2.-D)»(HH=x(2.-D) - 1.) + 0.5/AA;

UU = 1./SQRT(2.=AA) /HH==»D ,/ SQRT(CF);

BB = 2.=AAxHH»=(D-1) = CF;

DO OVER ROOT; H = 1. + A=BO/HO=R»SQORT(ROOT); END;

DO OVER H; CFU= HO/A/BO/(2.-D)=(H=x=(2.~-D) ~ 1.) + 0.5/AA; END;
DO I =1 TO 11;

U =1./SQRT( 2.=AA) / H==D/SQRT(CFU);
END;

Gl= —-AI2=*W/AI1=R/2.;
G2= AI3=W/AI1/1.0/1.0%R/2.;

DOI =1 TO 11;
SA = WT/H/U ;
SB = WT=U/H ;

END;

SUM1 = SUM(OF SAt1 - SAl11);

SUM2 = SUM(OF SB1 - SBtt1);

C = EXP( G1=SUM! + G2»SUM2 - LOG(HH=UU=BB) );

Clt = CO=SQORT(1.,-SwS)/EXP(SxS/2,.)=C;

CCi=(1. - SaS)/EXP(S»S);

UD1=U0=CC1»UU;

CD = WO=100.=Cim| 0E-6%(1, - UDI!=UDI/UCR/UCR)*TIME;
THICK = CD/DS;

OUTPUT:END;;END;
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COMPUTER PROGRAM C2 (CONTINUED)

TITLE!
TITLEZ2"
TITLES3
TITLES
TITLES

“s o we wb we

TITLE6 .F=TRIPLEX .H=2 PLOT OF SEDIMENT THICKNESS:;
TITLE7 .F=TRIPLEX .H=1 : IN CM;
TITLES .F=TRIPLEX .H=1 CASE 4: E = 0 AND LINEAR H;
TITLES .F=TRIPLEX .H=1 BASE RESULTS, 2.0 YEARS DEPOSIT:
PROC G3D; '
PLOT R*S=THICK;
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PLOT OF SEDIMENT THICKNESS
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Figure C2.
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CASE 4: E ¥ 0 AND LINEAR H

Plot of sediment thickness for Case 4
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‘Sé APPENDIX D: QUADRATURE INTEGRATION ‘
T
l;ﬁ 1. Orthogonal collocation is an efficient method for solving
>t differential equations (Villadsen and Michelson 1978). Based on this
::E method, the profile of a dependent variable can be expressed in terms of
e the families of orthogonal polynomials and their derivatives at colloca-
is tion points. In addition to its efficiency for solving differential
f{: equations the integration of the profile of dependent variables can be !
ﬁﬁ closely approximated by a quadrature formula which gives a semianalytical :
"~ solution of integration.
o
Aﬁ: Orthogonal Polynomial ;
. :
° 2. The orthogonal polynomial may be of Jacobi, Legendre, or L
5 Chebycheff type of which the Jacobi polynomial is found to be the most
;kg efficient (Villadsen and Michelson 1978). The important features of
‘ga orthogonal polynomials are illustrated in this appendix. The Jacobi ]
e family possesses the following orthogonal relationship: 1
o . .
L: [1 w(u) Pi("’B) (w) PJ.(“’B)(U) du ={O’ 1 ’ J (D1)
D 0 Cip 1=

19

fi where W(u) is the weight function for a Jacobi polynomial with the fol-
éﬁ lowing expression:

Z:_f-

. Weu) = (1 - w* o (02)
™

Es in which o and B are constants greater that -1. The polynomial Pj(u) is
;E automatically fixed when the weight function is given. PE“’B) (u) and
l! PEG’B) (u) are the Jacobi polynomial with degree i and j respectively.

3. A Jacobi polynomial of degree n can be expressed by the

following equation:
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(' n .
;:$ P(U’B) w=5 D" a u, (D3)
, i1
) i=0
2%
N
’EI: where the coefficient a, can be expressed by the following recurrence
Y formula:
i)
)
..-".'
o _n=-i+1 n+i+a+p
o 4 = i i+ B Ti-1 (D4)
<
with a, = 1, and 1 = 1,2,..... , I
223 For n = 3 and a=p=0, Equation D3 immediately gives
b PO =203 -30u?+12u-1 (DS)
o
f(} 4. For convience of computer computation, Equations D3 and D4
jfﬁ may also be expressed by the following equations:
w:
gt a o
Ay P = (- g (0,0, 18P b (el B, (D6)
W
L\
' A) and
:) p+1 1 2_g?
S g = » 8y =3 [1- =t 07
ey a+p+2 (2nta+p-1)° -
A
}Q for n>1
(k
‘ h, =0 (D8)
oy
*:\:_‘ h = (a+1) (B+1) (D9)
s:%\ 2 2
ANy (a+f+2)™ (a+B+3)
i
L
*i: hn _ _(n-1) (n+a-1) (n+B-1% (n+a+Bf-1) . for n>2 (D10)
NN (2n+a+B-1) (2n+a+B-2)° (2n+a+p-3)
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) The recurrent evaluation of P(G’B) (u) starts with n=1, P

2, arbitrarily, and PSU»B) (u)=1. A

y Quadrature Tntegration Formulae 4

' S. In orthogonal collocation the integration can be conveniently and
accurately performed by a numerical quadrature formula. Two types of
quadrature formulas are described briefly in the following.

Gauss-Jacobi quadrature

6. The Gauss-Jacobi quadrature can integrate any polynomial Y(x)

up to 2n-1 degree by the following equation:

-

o \
i #
:;. 1 o B n ¢
L [ (1 - x) x" Y(x) dx = 2 W, Y(x.) (D11) ;
it P | i ‘
{ 0 i=1 :
@
<. R\
ij The integration can be obtained closely by summing the product of quadra- .
;E: ture weight Wi and the function value Y(xi) evaluated at the collocation ﬂ
24 point X, . In Equation D11 the value of Wi can be calculated by the X
. following equation: y
N -
. "
,J.;: (2n +a + B +1) Cr(la’B) 5
K W; = m 2 (D12) ]
o x, 1-x) (77 (x))
;d where ﬁ
-}‘lf 1 w)
2 1
, cl®) - { P2 () (1 - 0% «P dx (D13) D
A\ 4 \
u 4
- Radau quadrature formula ..
. 7. 1In Equation D1l the end points Y(0O) and Y(l) are not required to N

2
e
»

be known. If either one of the end points is given, the quadrature

"
-, integration can be obtained more accurately by using the Radau formula.
= . . . . atl .
o In this case the interior quadrature points should be chosen as P( ’B), .
.~ . . . o,pt+1 . . . :
L if Y(x=1) is given, or P( B ), if Y(x=0) is given. The Radau formula .
™ z
q
N )
) y
0 g\
\ :
) D3 -
an X
q
. ;
. v‘: . .‘.‘ : (\I . “;:, v ‘a . 'I..-_..."-‘- » _-\'- --:_- R '.\".“ - .l'_‘.\ . ~'.-"q.. "". : : ‘-_ .\._ LR R S I - EE R -_A:\ -“- -‘_ e e e ~\-. . :_\ -~ R
i vy S e e b N CRENAR »




can integrate a polynomial of degree up to 2n exactly by the following

equation:
1 a B n
g’ (1 - x) x" Y(x) = Wn+1 Y(1) + izl Wi Yi
(D14)
n
= Wn+1 Y(0) +.Z Wi Yi
1=1
The Radau quadrature weights in Equation D14 are calculated by the
following equations:
Including xn+1=1, but not x0=O:
(ct+1,8) .
+ B+ ’ 1
v = (2n + « B 2) Cn , i#n+l (D15)
i 1 2 .
ok el ) 1/(a*1), i=ot]
Including xo=0, but not xn+1=1:
(a,p+1) _
v oo (2n +a+ B +1) Cn 1/(p+1), i=0 (D16)
. 1 .
Eoa-x) @) ap)H? 1, i%0

Computer Programs D1 and D2

8. This computer program is for computing the roots of the Jacobi
polynomial, the derivatives of each polynomial evaluated at the colloca-
tion points, and the quadrature weights. The program consists of two
subroutines: Subroutines JCOBI computes the zeros of Pé“,ﬁ) and the
first derivatives of the Jacobi polynomial; Subroutine RADAU determines
the integration weights at collocation points.

9. The roots of the Jacobi polynomial and Radau quadrature weights
for selected collocation points are listed in Table D1. An example of

calculating the integration 0f3 x2 dx, using the roots and weights found

from computer program D1, is illustrated in computer program D2.




COMPUTER PROGRAM DI

C=m»m»x THIS PROGRAM IS USED TO COMPUTE THE ROOTS AND

Cc QUADRATURE WEIGHTS OF JACOBI POLYNOMIALS

Cxxwxx DIF1, DIF2, AND DIF3 ARE THE 1ST, 2ND, AND 3RD
Cc DERIVATIVES OF JACOBI POLYNOMIALS AT COLLOCATION
C POINTS, RESPECTIVELY

Cxxwx ROOT(I) ARE ROOTS OF JACOBI POLYNOMIALS
Cexxm WT(I) ARE QUADRATURE WEIGHTS

Cx=xxx N IS NUMBER OF COLOCATICN POINTS

Cx»»»x ALPHA AND BETA ARE THE TWO PARAMETERS OF
C JACOBI POLYNOMIAL

IMPLICIT REAL=8(A-H, 0-Z)
DIMENSION DIF1(11),DIF2C11),DIF3(11),RO0TC11),WTC11)

1 FORMAT(2IS)
3 FORMAT(1H1," GEOMETRY: O=PLANAR, 1=CYLINDER,2=SPHERE’,
& //,' NUMBER OF COLLOCATION POINTS =',15,/,' GEOMETRY
& FACTOR =',15,/7/, ' COLLOCATION POINTS IN X=xx2 :' . /)
6 FORMAT(/,3(D16.8))
200 READ(5,1,END=100) N,1IS

c
Cc N IS NUMBER OF COLLOCATION POINTS
c FOR PLANE SHEET 1IS=0, FOR CYLINDER IS=1, FOR SPHERE 1IS=2
c
S = IS
WRITE (6,3) N, IS
ALPHA = 1.0
BETA = (S-1)/2
c
CALL JCOBI (11,N,O0,t,ALPHA,BETA,DIF1,DIF2,DIF3,RO0T)
NT = N + 1
WRITE (6,6) (ROOT(I),I = t,NT)
c
C.....FIND QUADRATURE WEIGHTS
CALL RADAU (11,N,0,!,1,0.D0,BETA,ROOT,DIFI1,WT)
C.....TO COMPUTE TRUE QUADRATURE WEIGHTS FOR SLAB GEOMETRY
Coevn THE WEIGHTS WT(I) OBTAINED FROM SUBROUTINE RADAU NEED
Ceeen TO MULTIPLY BY *"2.0"
Cc
DO 90 I = 1, NT

90 WT(I) = WT(I)»2.0
WRITE(6,55)

55 FORMAT(/,3X,' THE QUADRATURE WEIGHTS WT(I)',/)
WRITE(6,6) (WT(I), I=1,NT)

GO TO 200
100 STOP
END
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COMPUTER PROGRAM D1 (CONTINUED)

20200206 000000300020 0003060000 0003060 00000 0000 00 06 0 0000000 00 00000 0000 0
SUBROUTINE JCOBI(ND,N,NO,N1,AL,BE,FA,FB,FC,RO0T)
C.....SUBROUTINE JCOBI IS USED TO COMPUTE THE ROOTS OF

Cc JACOBI POLYNOMIALS

C.....ND IS DIMENSION OF VECTORS, N IS THE DEGREE OF

Cc JACOBI POLYNOMIAL, NO DECIDES WHETHER X=0 IS INCLUDES
C AS AN INTERPOLATION POINT. NO MUST BE SET EQUAL TO

C 1 (INCLUDING X=0) OR O (EXCLUDING THIS POINT)
C.....N1 IS THE SAME AS FOR NO, BUT FOR THE POINT X=1
C.....FA,FB,FC ARE 1ST, 2ND, AND 3RD DERIVATIVES OF

Cc JACOBI POLYNOMIAL AT THE NODES

C.....AL=ALPHA, BE=BETA, ROOT=ZEROS OF JACOBI POLYNOMIAL

c

IMPLICIT REAL»8(A-H,0-2)
DIMENSION FA(ND) ,FB(ND),FC(ND),ROOT(ND)

o
C.....THE FIRST STEP IS TO CALCULATE GN & HN
C.....HERE FA(I)=GN, FB(I)=HN
c
AB=AL+BE
AD=BE-AL
AP=BExAL
Cc
C.....INITIAL VALUE
C.....FAC1) IS G1, FB(1) IS H(1)
c
FA(1)=(AD/(AB+2.)+1.)/2.
FB(1)=0.
IF (N .LT. 2> GO TO 1S
c
C.....THEN CONPUTE FA(2), FB(2), FA(3), FB(3),.... ETC.
C.....FA(I)=GN, FB(I)=HN
po 10 1 = 2,N
Z1 =I - 1
Z = AB + 2.»2Z1
c
C.... FA(I) IS GN, FB(I) IS HN
C

FA(I)=(AB*AD/Z/(Z2+2.)+1.)/2.
IF(I .NE. 2) GO TO 11
FB(I)=(AB + AP + Z1)/Z/2/(2+1.)
GO TO 10
11 Z=Zx2Z
Y=Z1=( AB + 21)
Y=Y*(AP+Y)
FB(I)=Y/2/(Z2~1.)
10 CONTINUE
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Y COMPUTER PROGRAM D1 (CONTINUED) ;
‘o] 1
B : r
‘At C e s o 0 THE SECOND STEP

C.....ROOT DETERMINATION BY NEWTON METRHOD WITH SUPPRESION

o C.....OF PREVIOUSLY DETERMINED ROOTS !
™) Cc \
S 15  x=0. i
e DO 20 I=1,N |
l 25  XD=0.

. XN=1. "
W XD1=0. V
W XN1=0, b
f* DO 30 J=1,N v
F: o :
M Covenn FA(J)=GN, FB(J)=HN '

Coven. XP IS JACOBI POLYNOMIAL, AND XP1 IS THE FIRST

1 C DERIVATIVE OF JACOBI POLYNOMIAL

H C ,
s$ XP=(FA(J)-X)*XN-FB(J)*XD %
X XP1=(FA(J)~X)»XN1~-FB(J)*XD1-XN K
W XD=XN )
[} XD1=XN1 ,
A ¢ 1
L C.....XN AND XN1 ACCUMULATE THE FOREGOING RESULTS y
N c .
rY XN=XP

' 30 XNI=XP1

ZC=1.

5 Z=XN/XN1 b
¥ IF(I .EQ. 1t ) GO TO 21 ;
& DO 22J =2, 1 ,
l C ;
o C. .EXCLUDE PREVIOUS DETERMINED ROOT: ROOT(J-1) d
A c :
k3 22 ZC=ZC-Z/(X-ROOT(J-1)) J
X C h
i 21 Z=Zs/ZC J
X C t
" C.....FIND NEW X

( o

W X=X-2 -
5 IF ( DABS(Z) .GT. 1.D-09 ) GO TO 25 X
¢ ROOT(I)=X :
‘,’ C [N
h C.....NEW STARTING POINT FOR NEXT ROOT 4
= C

. X=X + .0001 T
-$ 20  CONTINUE -
e C g
ﬁ. C.....ADD EVENTUAL INTERPOLATION POINTS AT X=0 OR X=1 3
' C 4
&6 .
\l‘ k.
I% :
i D7 .
" ;
1,::. 1.
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3ﬁ$ COMPUTER PROGRAM D1 (CONTINUED) f
"‘1‘3.'.:
2
o NT=N+NO+N1
‘ﬁ{ IF(NO .EQ. 0) GO TO 35
e DO 31 I=1,N
’i:",:,_ J=N+1-1
N 31  ROOT(J+1)=RO0OT(J)
i ROOT(1)=0.
'f 35 IF(N! .EQ. 1) ROOT(NT) = 1.
b, C.....NOW EVALUATE DERIVATIVES OF POLYNOMIAL
et C.... FA, FB, FC ARE 1ST, 2ND, AND 3RD DERIVATIVES
C
e DO 40 I=1,NT
Nt X=ROOT (I)
v FA(I)=1,
Wu FB(I)=0.
B FC(I)=0.
° DO 40 J=1,NT
! IF (J .EQ. I) GO TO 40
KA Y=X - ROOT(J)
159 FC(I) = FC(I) = Y + 3. = FB(I;
. FB(I) = Y » FB(I) + 2. = FA(I)
L] FA(I) = Y » FA(D)
) 40  CONTINUE
- RETURN
D
b e
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COMPUTER PROGRAM D1 (CONTINUED)

(C 0 00300308300 300 300 306 306 206 6 0 06 J0E N6 0 06006 006 I00 006 000 06 0600 O0E UK ., . 3 06 30E 006 300 06 00N N0 0 NC 0 206 30C 000 00F D0 00F J0F 206 0 0 0¢ ¢

SUBROUTINE RADAU(ND,N,NO,Nt,ID,AL,BE,ROD,FA,V)

c
C.....SUBROUTINE RADAU IS USED TO EVALUATE RADAU OR LOBATTO
Cc QUADRATURE WEIGHTS OF JACOBI POLYNOMIAL
C.....FA(I) COME FROM JCOBI, V(I) ARE QUADRATURE WEIGHTS
C.....ND, N, AND NO ARE THE SAME AS FOR SUBROUTINE JCOBI
C.....ID=1 GIVES RADAU QUADRATURE WITH X=1
C.... ID=2 GIVES RADAU QUADRATURE WITH X=0
C.....ID=3 GIVES LOBATTO QUADRATURE WITH BOTH POINTS
C

IMPLICIT REAL=8(A-H,0-2)

DIMENSION ROD(ND) ,FA(ND),V(ND)

S=0,.

NT=N+NO+N1

DO 40 I=1,NT

X=ROD(I)

IF (ID-2> 10,20,30
c
c ID = 1 GIVES RADAU QUADRATURE WITH X = 1
c ID = 2 GIVES RADAU QUDRATURE WITH X = 0
C ID=3 GIVES LOBATTO QUADRATURE WITH BOTH ENDPOINTS

10 AX=X
IF (NO) 11,11,40
11 AX=1./AX
GO TO 40
20  AX=1.-X
IF (N1) 21,21,40
21 AX=1./AX
GO TO 40
30  AX=1.
40  V(I)=AX/FA(I)%»2
IF (ID-2) 41,42,41
41  V(NT)=V(NT)/(1.+AL)
42 IF (ID-2) 43,44,44
44  V(1)=V(1)/(1.+BE)
43 DO SO I=1,NT
C
CoveedS=V(I) + V(2) + vuuunn.
C
50  S=S+V(I)
DO 60 I=1,NT
c .
C V(I) ARE NORMALIZED SO THAT THE SUM OF V(I) EQUALS TO ONE
C*xx NOTE THE QUADRATURE WEIGHTS COMPUTED FROM RADAU ARE NOT
C TRUE WEIGHTS
C
60 V(I)=V(I)/S
RETURN
END
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‘$5 COMPUTER PROGRAM D2
:;;;*: Cc
¢& C CALCULATING THE INTEGRATION OF X  BY USING RADAU
[, C QUADRATURE
i c
*ﬁ‘ C INTEGRATION INTERVAL: FROM 0 TO 3
Nl c
}»‘5“: IMPLICIT REAL®8(A-H,0-2)
ﬁ. DIMENSION ROOT(11),WTC11),XXC11)
DATA ROOT.0.00533697, 0.04735263, 0.12782106,
3 & 0.23991861, 0.37413950, 0.51910186,
o & 0.66251286, 0.79221088, 0.89719596,
& 0.96855602, 1.00000000/
o DATA WT/0.29169804, 0.28548098, 0.27317938,
& & 0.25505539, 0.23149529, 0.20300115,
'h& & 0.17018012, 0.13373121, 0.09442893,
B & 0.05309150, 0.00865801/
:’:'s C
° SUM = 0.DO
’-j X = 3- Do
\ “":“ C
Cus DO 10 I =1, i1
4 XX(I) = X » DSQRT(ROOT(I))
N 10 CONTINUE
C
N DO 20 I =1, 11
N SUM = SUM + WT(I) = XX(I) » XX(I)
r it 20 CONTINUE
V4o C
" SUM = 3./2.= SUM
9 c
o WRITE(6,1) SUM
Sy ! FORMAT(/15X, "’ ['X'DX = ', F10.6)
o STOP
) END
e
3
3 mwwun  SOLUTION: J X!DX = 9.000000 mmmmmmax
fat W [
i
wr
.
i ;.3
\.')_'\
's.'w
oY
;'\A_‘
R
N D10
‘
.,
R

&

-

BN AN N T A A
4{-\:-, ’ o 1 \\__. *:\_{-\~

'l‘....‘ i..“'\‘ 2N al!.w \ )

N Y R Pe 3 S AL X I o ot S AT T [ I R U
¥y ‘Cﬂr ': R i) 'r\. G AN, """h“h"*"‘,"w

. 3 # .:
$ ’\ '-.l 24¢ ;‘ W \ ‘q,,(! 3t ?l\a?l .ﬂ'v‘\"}?\‘ .|'Q¢I AV !\‘- Uy, .!" ATV * N T P i!g I" l|




R AL AR A g g e R

TR o T YT T T T T RNy Ty T vroT YUY Y

Table Dfi. The Roots and Quadrature Weights of
Jacobi Polynomial for 10-points Collocation

Geometry: Slab

Collocation Points in u:

D11

0.00533697 0.04735263 0.12782106
0.23991861 0.37413950 0.51910186
0.66251286 0.79221088 0.89719596
0.96855602 1.00000000
Quadrature Weights:
0.29169804 0.28548098 0.27317938
0.25505539 0.23149529 0.20300115
0.17018012 0.13373121 0.09442893
0.05309150 0.00865801
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APPENDIX E: INTEGRATION OF SEDIMENT VOLUME

1. 1In this study, Simpson's rule is used for the calculation of |

- e
AL

the sediment volume deposited. Detailed formulation is discussed by

T
. a

Scheid (1968). Computation procedure and computer programs are briefly

g
=

;(;’

g

described in the following.

P
)
&

2. The volume integration of a two-variable sediment thickness

e

- o s -y
\, « .
A el

function f(x,y) can be expressed as

~

Rb, b(x) b,
.4 { f f(x,y)dydx = G(x)dx (E1)
s'*s | o

0
; :

~,

C where Rbo is the dimensional sediment length in the x-direction, expressed
[] as the xl-direction; and b(x) is the width of sediment in the y-direction,
f%ﬂ expressed as the x,-direction.

R
N
D, By setting Yo = 0
b(x)

KX and . =Y. = h,(x) =
X Vi " ¥y.1 = by ) -

3

X
- LMS’

where h1 is the discrete distance in y-direction and n is the number of

N\ iy

discretizations,

/

i

1.0
Wy
:.: 3 b(X)
83 6x) = [ £ydy
b ’
(N
e . b(x)
%:} = =3 { f(x,yo) + 4f(x,y1) + 2f(x,y2) + ..., (E2)
i
L
i
s +4f(x,y ) + £(x,y )]
-
o Again, setting x, =0
i;- 0
I Rb
e, 0
» and X, - X, =h, = —
o> i i-1 2 m
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where hz is the discrete distance in x-direction and m is the number of

g
|

discretizations,

Rbo h2
| G(x)dx = 3 [G(xo) + 4G(xl) + ZG(xz) + ..., (E3)
+ QG(xm_l) + G(x )]

Therefore

Rb. ,b(x) h, h_(x,)
‘[ °'[' £(x,y)dydx 53 1 0 [£(xg,7g) + 4£(xg,y,) +

0 0 3
2f(xo,y2) + ...+ f(xo,yn)]
4h1(x1)
oy [Ex,yg) + AE(x,y ) + 2f(xp,y,) + ool + £(xg,y )]
2h1(x2)
+ 3 [f(xz,yo) + Af(xz,yl) + 2f(x2,y2) + ..., + f(xz,yn)]
o i i
hl(xm)
+ 3 [f(xm’yO) + Af(meYI) + 2f(xm’y2) + e t f(xm’yn)]

(E4)
The integration of the foregoing equation is illustrated in Figure E1.
The numbers in Figure E1 represent the coefficients of f(xi,yj) in

Equation E4.

Computer Program El

3. This program is for plotting a two-dimensional sediment thick-
ness for a given set of parameters. Using the equations derived in PART

V, the SAS/GRAPH is executed for displaying the plot. The longitudinal

E2
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Figure E1. Integration coefficients of Simpson's rule
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COMPUTER PROGRAM E|
[]
_ DATA ONE;
; UO=1.0; W0=0.0SE-3;F=0.001; B0O=S00.; C0=300.; E=0.075; w
1 HO=2.0; 'AI1=0.948; AI2=1.397; AI3=0.76; -
! TIME=2.%365.%86400.; DS=0.4; =3
: ROOT1=0.00533697; ROOT2=0.04735263; ROOT3=0.12782106; x
. ROOT4=0.23991861; ROOTS5=0.37413950; ROOT6=0.51910186; -
ROOT7=0.66251286; ROOT8=0.79221088; ROOT9=0.89719596;
3 ROOT10=3.96855602; ROOT11=1.00000000;
j WT1=0.29169804; WT2=0.28548098; WT3=0.27317938;
) WT4=0.25505539; WTS5=0.23149529; WT6=0.20300115;
» WT7=0.17018012; WT8=0.13373121; WT9=0.09442893;
- WT10=0.05309150; WT11=0.00865801;
| A=0.0001;
X St = 0.0; $2=0.2; S3=0.4; S4=0.5; S5=0.6; S6=0.8;
. UCR = UO;
3 W = BO=WO/UO/HO;
' AA = 1.794xE;
u FF = F»BO/HO;
. D = F/A;
i DOR = 0.0 TO 20.0 BY 1.0;
- H = 1. + ABO/HOxR;
3 CF = HO/A/BO/(2.-D)=( H=x(2.-D) = 1.) + 0.S5/AA;
’ U = 1./SQRT(2.%AA) / HxxD / SQRT(CF);
‘ B= 2.mAAm=Hxx(D-1) = CF;
. HU! = 1. + ABO/HO®R®SQRT(ROOT1);
i HUZ = 1. + A=BO/HO®R*xSQRT(ROOT2) ;
R HU3 = 1. + AxBO/HO®R®SQRT(ROOT3);
iy HU4 = 1. + A=BO/HO®R*SQRT(ROOT4);
N HUS = 1. + AxBO/HO®R*SQRT(ROOTS);
A HU6 = 1. + A=BO/HO®R®SQRT(ROOT6);
HU7 = 1. + AxBO/HO®R®SQRT(ROOT7);
N HU8 = 1. + AxBO/HO®R®SQRT(ROOTS);
k. HU9 = 1. + AsBO/HO®R=SQORT(ROOT9):
A HU10 = 1. + A»BO/HO®R=»SQRT(ROOT10);
A HU11 = 1. + AsBO/HO®R®»SQRT(ROOT11);
- CFU1 = HO/A/BO/(2.-D)w( HUI*®(2.~D) - 1.) + 0.S5/AA;
CFU2 = HO/A/BO/(2.-D)=( HUZ2#®(2.-D) -~ 1.) + O.5/AA;
. CFU3 = HO/A/BO/(2.-D)=( HU3w®(2.-D) - 1.) + 0.S/AA;
% CFU4 = HO/A/BO/(2.-D)®( HU4wn(2.-D) =~ 1.) + 0.S5/AA;
o CFUS = HO/A/BO/(2.-D)=( HUS«m®(2.~D) - 1,) + 0.5/AA;
N CFU6 = HO/A/BO/(2.-D)»( HU6xx(2.-D) - 1.) + 0.S5/AA;
. CFU7 = HO/A/BO/(2.-D)=( HU7%%(2.-D) - 1.) + 0.S/AA;
by CFU8 = HO/A/BO/(2.-D)»( HUS®®(2.-D) - 1.) + 0.S5/AA;
b CFU9 = HO/A/BO/(2.-D)=( HU9x=(2.~D) —~ 1.) + 0.S/AA;
e CFU1I0 = HO/A/BO/(2.-D)=( HU1O#®(2.-D) - 1.) + 0.S/AA;
' CFUI! = HO/A/BO/(2.-D)=( HUl1#%(2.-D) — 1.) + 0.S/AA;
.E UU1=1./SQRT( 2.%AA) / HU!1»«D/SQRT(CFU1);
§ UU2=1.,/SORT( 2.=AA) / HU2««D/SQRT(CFU2);

UU3=1.,./SQRT( 2.»AA) / HU3=xD/SQRT(CFU3);
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COMPUTER PROGRAM Et! (CONTINUED)

UU4=1./SQRT( 2.%AA) 7/ HU4=»D/SQRT(CFU4);
UuS=1,/SQRT( 2.%AA) 7/ HUS»=*D/SQRT(CFUS);
UU6=1./SQRT( 2.=AA) / HU6xxD/SQRT(CFU6) ;
UU7=1./SQRT( 2.=AA) / HU7xxD/SQRT(CFU7);
UyU8=1./SQRT( 2.=AA) / HU8==D/SQRT(CFU8) ;
UU9=1./SORT( 2.=AA) / HU9»=D/SQRT(CFU9);

Uu10=1./S0ORT( 2.=AA) / HU10==xD/SQRT(CFUI10);
UU11=1./SQRT( 2.=AA) / HU11=xD/SQRT(CFU11);
Gl= —-AI2*W/AI1»R/2.;

G2= AI3»W/AI1/UCR/UCR=R/2.;

SUM!1 = WTI1/HC1/U0Ut + WT2/HU2/002 + WT3/HU3,/UU3
WT4/HU4,/U0U4 + WTS/HUS/UUS + WT6/HU6,/UU6
WT7/HU7,0U07 + WT8/HU8-/UU8 + WT9/HU9/UU9
WT10/HU10/0U010 + WT11/7HU11/0011;
WT1=UUI/HU1 + WT2=UU2/7HUZ + WT3=UU3/HU3
WT4=UU4/HU4 + WTS=UUS/HUS + WT6*UU6/HUSE
WT7=UU7/HU7 + WT8xUU8/HU8 + WT9=UUS/HU9
WT10*UU10/HU10 + WT11=UU11/HU11;

C = EXP( G1=SUM1 + G2xSUM2 - LOG(H=UxB) );

SuM2

+ 4+ 0+ ++

CAl = CO*SQRT(1.-S1xS1)/EXP(S1%S51/2.)x=C;
CA2 = COxSQRT(1.-S2nxS2)/EXP(S2%x52/2.)%C;
CA3 = CO»SQRT(1.-S3%S3)/EXP(S3%53/2.)=*C;
CA4 = CO=SQRT(1.-S4%S4)/EXP(S54%S54/2.)=C;
CAS = CO=SQRT(1.-S5%S5)/EXP(S5xS5/2.)%C;
CA6 = COxSQRT(1.-S6%S6)/EXP(S&EnSE/2.)%C3
CCA1=(1., — S1=*S1)/EXP(SixS1);
CCA2=(1., — S2%S2)/EXP(S2%xS2);
CCA3=(1, - S3%S3)/EXP(S3%xS3);
CCA4=(1., — S4xS4)/EXP(S54x%54);
CCAS=(1, — SSxS5)/EXP(S5xS5);
CCA6=(1. — S6%S6)/EXP(S56%56);

UA1=UO=CCA1=U;
UA2=UOxCCAZ2*U;
UA3=UO=CCA3»U;
UA4=U0xCCA4x=U;
UAS=UO=CCAS=U;
UA6=UC=CCA6*U;

CD1 = WOw100.%CAl1m1.0E-6%x(1. — UA1%UA1/UCR/UCR)*TIME;

CD2 = WOx100.=CA2x1.0E-6%(1. — UA2%UA2/UCR/UCR)*TIME;

CD3 = WOw100.=CA3%1.0E-6x(1. — UA3=UA3/UCR/UCR)=TIME; :
CD4 = WO=100.%CA4x}.0E-6%(1. — UA4mUA4/UCR/UCR)*TIME; .
CDS = WOw100.%CAS=).0E-6%(1. — UAS»UAS/UCR/UCR)=TIME; 3
CD6 = WO™100.%CA6%1.0E~6%(1. — UA6%UA6/UCR/UCR)*TIME;

TH1 = CD1/DS; ;1
TH2 = CD2/DS; by
TH3 = CD3/DS; 4
TH4 = CD4/DS; 2
THS = CD5/DS: A
TH6 = CD6./DS;

TR

E5
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%Z COMPUTER PROGRAM E1 (CONTINUED)
> E
‘ OUTPUT; END;
A TITLE! .F=TRIPLEX .H=2 PLOT OF SEDIMENT THICKNESS;
i TITLE2 .R=TRIPLEX .H=1 :IN CM, TWO YEARS OF DEPOSITION;
N TITLE3 .F=TRIPLEX .H=1 CASE 4: B0=500., U0O=1.0, W0=0.05;
%Y TITLE4 .F=TRIPLEX .H=1 H0=2.0, F=0.001; |
hor TITLES .F=TRIPLEX .H=1 S = 0.0: DIAMOND, S = 0.2: STAR;
) TITLE6 .F=TRIPLEX .H=1 S = 0.4: PLUS, S = 0.5: SQUARE;
WS TITLE7 .F=TRIPLEX .H=1 S = 0.6: TRIANGLE, S = 0.8: HASH;
5 PROC GPLOT;
" PLOT THI»R TH2«R TH3xR TH4%R THS*R TH6=R / OVERLAY;
) SYMBOL1 I=SPLINE V=DIAMOND;
NS SYMBOL2 I=SPLINE V=STAR;
SYMBOL3 I=SPLINE V=PLUS;
O, SYMBOL4 I=SPLINE V=SQUARE;
o SYMBOLS I=SPLINE V=TRIANGLE;
i SYMBOL6 I=SPLINE V=HASH;
0
Lty
®
=7
by
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distance RV is taken corresponding to the maximum sediment extent from
the plot (for the sake of computation, RV is used as corresponding to
0.5 em sediment thickness).

4. For Case 4, linearly varying depth with entrainment, the

following imeminal values are given:

bo =500 m W = 0.05 mm/sec
ug = 1.0 m/sec ho =2.0m
f = 0.001 a = 0.0001
€y = 300 ppm e = 0.075
pg = 400 kg/m3

The roots and quadrature weights of collocation for integration, taken
from Appendix D as inputs, are shown in Table El.

5. The resulting plot of sediment thickness of this example is
shown in Figure E2; the longitudinal distance RV is 19.7. The plots for
other bifurcation levels can be generated in a like manner by supplying

the appropriate values for bO'

Computer Program E2

6. Using the longitudinal distance RV from the plot of Computer
Program E1 and other given parameters as inputs, this FORTRAN computer
program evaluates total volume of sediments VOL by Simpson's rule for the
integration. The variable names in the computer program, written as
similarly as possible to the expressions shown in PART V, are not ex-
plained in detail here.

7. For Case 4, the RV's and bo's are given as following:

RV

19.7, 51.9, 130.0, 229.0, and 387.5

b

500., 166.7, 55.6, 27.8, and 13.9

The calculated volume of sediments are shown in Table E2.
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COMPUTER PROGRAM E2

EVALUATE TOTAL SEDIMENT FOR GIVEN BO
CASE 4, REAL DIMENSION

IMPLICIT REAL®8(A-H, O-Z)

DATA DS/0.4DO/, UO/1.00DO/,HO/2.0D0O/,C0/300.D0/

O 0O nNnOoan

TIME = 2.0
100 READ(5,51,END=999) RV, BO
51 FORMAT(2F10.4)

a

CALL INTEG(RV,BO,TIME,VOL)

an

WRITE(6,1) RV,BO,VOL

1 FORMAT(tH!,///' RV =',F10.4,/,' BO =',F%9.4," (M)',/

& ' VOLUME OF SEDIMENT VOL (M==3) =',D16.6)
GO TO 100

SUBROUTINE INTEG(RO,BO,TIME,VOL)

IMPLICIT REAL»8(A~-H, 0-2)

DIMENSION Hl(ll),THICK(ll,lI),A(ll).B(lI),C(Il)
Y IS X2 COORDINATE, X IS X1 COORDINATE

RBO = RO=BO

0O 0onn

E
F
HO
AA
FF
SA
D
M
N

0.075

0.001
2.0
1.794x»E
F=BO/HO
0.1D-3

F/SA

5

S

hon

nuwun

DO 20 J =1, 11

X1 = (J - 1)/10. = RBO

H2 = RBO /M/2.

B1=S=xB(X1), NOTE : S=1.0
FIND JET WIDTH AT VARIOUS X1

nnNOOn

R = X1/BQ
HH = 1. + SA~BO/HO=R

E9
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ﬁ% COMPUTER PROGRAM E2 (CONTINUED)
' ’v'ﬁ"ﬂ
fi"
e CF = HO/SA/B0/(2.-D) = (HH*x(2.-D)-1.) + 0.5/AA
Bl = BO = 2. =~ AA » HHw»w(D-1.,) = CF
H1¢J) = B1 /N /2.
C ‘
po 10 I =1, 11
X2 = (I - 1)/10. = B1
Cc
C CONPUTE SEDIMENT THICKNESS AT (X1,X2)
C

CALL BED(BO,TIME,X1,X2,B1,THK)
THICK(I,J) = THK

10 CONTINUE

20 CONTINUE

c
c THUS ALL VALUES OF THICK(I,J) HAVE BEEN OBTAINED
o
C START CALCULATING SEDIMENT VOLUME
C
C FIND END POINT ON THE R COORDINATE FOR SIMPSON'S
c RULE
o
DO 30 I =1, 11
30 A(I) = THICK(I,!)
H = Hi(D
CALL SIMPS(N,H,A,SUM)
SUMT! = H2/3. » SUM
o
DO 40 I =1, 11
40 B(I) = THICK(I,11)
= HIC11)
CALL SIMPS(N,H,B,SUM)
SUMT2 = H2/3. = SUM
C
o COMPUTE ALL VALUES BETWEEN TWO END POINTS
C
SUMT3 = 0.0
s IFLAG = |
=} DO S0 J = 2, 10
}‘s H = H1(D)
5 DO60 I =1, 11

C(I) = THICK(I,J)

. X, r
- f‘;’
N

60 CONTINUE

CALL SIMPS(N,H,C,SUM)
IF(IFLAG .EQ. 1) GO TO 111
IF(IFLAG .EQ. 2) GO TO 222
SUM = H2/3. =4, = SUM
SUMT3 = SUMT3 + SUM

IFLAG = 2

GO TO SO

e R e S A R
P AR SN R SRR



T .COMPUTER PROGRAM E2 (CONTINUED.

222 SUM = H2/3. = 2. = SUM
I SUMT3 = SUMT3 + SUM
(0% IFLAG = 1
W 50 CGNTINUE

SUMTT = SUMT1 + SUMT2 + SUMT3

VOL IS VOLUME OF SEDIMENT IN (Mwx»x3)

oNnoO 0

f& VOL = SUMTT

0
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|
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\
|
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|
|
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[
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SUBROUTINE SIMPS(N,H1,FUNC,SUMM)
IMPLICIT REAL=8(A-H, 0-2)
! DIMENSION FUNC(11)

USE SIMPSON’'S RULE FOR INTEGRATION
SUMEND IS SUM OF ALL FUNC(I) FOR EVEN I
SUMMID IS SUM OF ALL FUNC(I) FOR ODD I
H1 IS STEP SIZE

FUNC IS INTEGRAND

INITIALIZE PARAMETERS

onnoOoNnNOOn

SUMEND
SUMMID

0.0
000

nu

EVALUATE SUMEND AND SUMMID

Oonn

. DO 1 K= 1, N
- K1 = 2=K - 1
K2 = 2=K
SUMEND = SUMEND + FUNC(K1)
1 SUMMID = SUMMID + FUNC(K2)
IT = 2=N + 1 .
SUMM = (2.0 (SUMEND-FUNC(1)) + 4.0=SUMMID + FUNC(1)
& + FUNC(IT)) = H1/3.0
RETURN
END

— . S S S T e S TS SR M SN dm TH S S T S G S ——— A - A T S S S — —————— R o ot S i S T T . . S o S e s S
3 P R S - 2 - -

SUBROUTINE BED(BO,TIME,X!1,X2,BX1,THICK)
IMPLICIT REAL=8(A-H, 0-2)
DIMENSION ROOT(11),WTC(11)

.
Py

- e -

pEnd TN

3‘
J
d

12RO
(@]

- e
S
(@)

DATA HO/2.0DO/,A/0.0001DO/,AI1/0.948D0/,A12/1.397D0/,
& AI3/0.76D0O/, DS/0.4DO/, E/0.075DO/, UO/1.0DO/,
& Fs0.001D0O/, WO-/0.05D-3/,C0,300.D0/, UCR/1.0DO/

DATA ROOT ~0.00S5337D0, 0.047353D0, 0.127821DO0,
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.0
A COMPUTER PROGRAM E2 (CONTINUED)
K
' & 0.239919D0, 0.374139D0, 0.519102D0,
@ & 0.662513D0, 0.792211D0, 0.897196D0,
§, & 0.968556D0, 1.000000D0 /
) C )
L DATA WT / 0.291698D0, 0.285481D0, 0.273180DO, 5
% & 0.255056D0, 0.231495D0, 0.203001DO,
- & 0.170180D0, 0.133731D0, 0.094429D0,
’ & 0.053091D0, 0.008658D0 /
;ﬂ CUCR = UCR/UO
o W = BO=WO/UO/HO g
2 D = F/A
! AA = 1.794xE
FF = FxBO/HO
i c
W R = X1/BO
! S = X2/BX1
. HH ="1. + A»BO/HO=»R
#n c
o Gl = -AI2=W/AI1=R/2,
v G2 = AI3xW/AI1/CUCR/CUCR=*R/2.
[} C ‘
o AG1 = HO/A/B0/(2.-D) m» (HH»=x(2.-D)-1.) + 0.S/AA ;
X c .
A U = 1./DSQRT(2.=AA)/ HH«=D /DSQRT(AG!) i
C :
N B = 2,»AAxHHu=(D-1) = AGI
o c
o SUM1 = 0.0 ]
Y SUM2 = 0.0
" c .
_ DO 10 I =1, 11
s HU = 1. + A=BO/HO*R*DSQRT(ROOT(I)) ¥
W CFU = HO/A/B0O/(2.-D) = (HU==(2.-D)-1.) + 0.5/AA ,
B UU = 1./DSQRT(2.%AA)/ HU==D /DSQRT(CFU)
i SUMI = SUM1 + WT(I)/HU/UU )
i : SUM2 = SUM2 + WT(I)/HU=UU '
10  CONTINUE !
y C .
s C = DEXP( G1=SUMI + G2»xSUM2 - DLOG(HH=UxB)) R
W C1 = COxDSQRT(1.-S=S)/DEXP(S»S/2.)xC .
M CCl1 = (1., — S=3)/DEXP(SxS) A
We Ul = UO=CCiwU :
c ;
( o THICK IS THICKNESS OF SEDIMENT IN METER :
D c .
% THICK = WO=C1m1.0D-6m(1.-U1=U1/UCR/UCR) :
3 & *TIME%365%86400./DS
RETURN ‘
END '
)'
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COMPUTER PROGRAM EZ (CONCLUDED) :

/7GO.SYSIN DD = q

19.7 500.0 \
51.9 166.7
130.0 55.6
229.0 27.8
387.5 13.9

s/ b
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;EE?:‘ Computer Program E3

it

{‘; 8. Using 50 percent of the total volume of sediments calculated

4 54 from Computer Program E2 and other given parameters as inputs, this com-

2‘;i puter program searches for the longitudinal distance RA of the deposited

) sediments by the bisection method.

fcx: 9. For Case 4, after two years of deposition, the total sediments

’;fg volume VOL is 59,58 x 106 m3 for the lst generation. The normalized

:;L: longitudinal distance RA, for a given volume of total sediments, is found
to be 9.36 after 11 iterations. A sample output of this case is shown in

f, Table E3.

&t ? Computer Program E4

®

Jﬁlg 10. This computer program is used for searching the time-step

$$H required to fill the known volume (which is 50 percent of the total vol-

ume) of sediments to an average thickness. Using the longitudinal dis-

tance RV of the total volume (calculated from Computer Program E2) and

sgé- RA of the 50 percent total volume (calculated from Computer Program E3)
3?0_ as inputs, the time-step is obtained by the method of bisection method.
l.l

b

Also the dimensional distance of x1 (length), X, (width), total area AREA,

L X

and total volume VOL of the deposited sediments are calculated.

520

11. For Case 4, first generation,

R/
.'f}... RV = 19.7

- RA = 9.36

IS0
ﬂi?' A listing of output for this case is shown in Table E4.
“n

El4
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COMPUTER PROGRAM E3

! c SEARCH FOR R OF DEPOSITION CORRESPONDING TO S0%
QL C OF TOTAL VOLUME
C
L: (o CASE 4, REAL DIMENSION
b C
75y c USING BISECTION METHOD FOR SEARCH
359 c
o IMPLICIT REAL=8(A-H, 0-2)
E c
;3 DATA DS/0.4D0/, UO/1.0D0/, HO/2.0DO/, C0O/300.DO/
e C
BYs c XN AND XP ARE THE SEARCH RANGE OF R
R, C VOL1 IS THE TOTAL VOLUME
g C RV IS LONGITUDINAL DISTANCE OF TOTAL VOLUME
e C
. 100 READ(5,51,END=999) XN, XP, BO, RV, VOLI1
KT, S1 FORMAT(4F10.4,D20.4)
56 C
?%‘ WRITE(6,31) BO, RV, VOLI1
.3 31 FORMAT(//,°' BO = ',F10.4,' ((M)'/,' RV =',F10.4,/,
3 & * INITIAL VOLUME VOL1 = *,D16.6,’ (Mxx3)')
C
»'; ITER = O
(11 12 XM = (XN + XP)/2.
Lo ITER = ITER + 1
S IF( DABS(XP-XN) .LT. 0.01 ) GO TO 10
C
. o DIF IF THE DIFERENCE BETWEEN EXPECTED AND
o o COMPUTED VOLUMES
125 Cc
e TIME = 2.0
(s VOLZ = VOLt! = 0.5
AN R = XM
| CALL INTEG(BO,R,TIME,VOL)
- C
5 DIF = VOL - VOL2
o C
"y WRITE(6,1) ITER, DIF, VOL, XM
iy 1 FORMAT(/,' NO. OF ITERATION =',IS,/,
aa &' ERROR OF VOLUME (M=»3) =‘,D16.6,/,
= &' VOLUME OF SEDIMENT (M»x3) =',D16.6,/,
by & RA =',F12.4,/)
o\ IF(DIF) 11, 10, 13
Y 11 XN = XM
2 GO TO 12
- 13 XP = XM j
.t GO TO 12 )
Wy 10 WRITE(6,21) XM .
e 21 FORMAT(/,'  wwmamm RA =', F12.5,/) .
’G .
¥y 1
i
R -

. ELS
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abdy COMPUTER PROGRAM E3 (CONTINUED)
ey
3;§ GO TO 100
Ao 999 STOP
D END
sy SUBROUTINE INTEG(BO,RO,TIME,VOL)
) IMPLICIT REAL®8(A-H, 0-2)
oo DIMENSION H1(11),THICKC11,11),AC11),B(11),CC11)
K C
QL C Y IS X2 COORDINATE, X IS X1 COORDINATE
1
vt c
1 RBO = ROxBO
AR C
e E = 0.075
e F = 0.001
& HO = 2.0
- AA = 1.794xE
Q FF = F=BO/HO
‘A SA = 0.1D-3
@; D = F/SA
W M =65
\J
K N=5
ol C
e DO 20 J =1, 11
SRy X1 = (J - 1)/10. = RBO
3o H2 = RBO /M/2.
S C
W3 C B1=S«B(X1), NOTE : S=1.0
- C FIND JET WIDTH AT VARIOUS X1
\":w C
Lo R = X1/BO
e HH = 1. + SA=BO/HO=R
e CF = HO/SA/B0/(2.-D)x(HH»»x(2.-D)-1.) + 0.5/AA
% Bl = BOx2.wAAwHH»x (D-1,)*CF
2 H1(J) = B1 /N /2.
S C
:.r::. Do 10 I =1, 11
SR X2 = (I - 1)/10. = B1
o c
f%@ C CONPUTE SEDIMENT THICKNESS AT (X1,X2)
C
ﬁﬁ% CALL BED(BO,TIME,X!,X2,B1,THK)
gq THICK(I,J) = THK
S 10 CONTINUE
A 20 CONTINUE
Nl o
L C THUS ALL VALUES OF THICK(I,J) HAVE BEEN OBTAINED
“.,x R C
Qg( C START CALCULATING TOTAL VOLUME
A':.L! \ C
3 C FIND END POINT ON THE R COORDINATE FOR SIMPSON'S
N c RULE
L
AR
3
ool F16
R
X ""\.'ﬂ(
PO A
®g
A
e
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104 COMPUTER PROGRAM E3 (CONTINUED)
o5
% c
o DO 30 I =1, 11
. 30 A(I) = THICK(I,1)
vad H = HiC1)
N CALL SIMPS(N,H,A,SUM)
31 SUMT1 = H2/3. » SUM
c
W DO 40 I =1, 11
e 40 B(I) = THICK(I,11)
A H=Hici)
oy CALL SIMPS(N,H,B,SUM)
o3 SUMT2 = H2/3. = SUM
T o
' o COMPUTE ALL VALUES BETWEEN TWO END POINTS
c
. SUMT3 = 0.0
-~ IFLAG = 1
" DO 50 J = 2, 10
e H = Hi(D
" DO 60 I =1, 11
C(I) = THICK(I,J)
c
-, 60 CONTINUE
s CALL SIMPS(N,H,C,SUM)
%4 IF(IFLAG .EQ. 1) GO TO 111
-¢ IF(IFLAG .EQ. 2) GO TO 222
“ 111 SUM = H2/3. =4. = SUM
o SUMT3 = SUMT3 + SUM
b IFLAG = 2
i GO TO S0
o 222 SUM = H2/3. = 2. = SUM
)
)

SUMT3 = SUMT3 + SUM
- IFLAG = 1
S0 CONTINUE

g o

_ SUMTT = SUMT1 + SUMT2 + SUMT3

g c VOL IS VOLUME OF SEDIMENT IN (M»x3)

e VOL = SUMTT

¥ RETURN 4
X END e
. c================================================:=======

B

{- SUBROUTINE SIMPS(N,H1,FUNC,SUMM)
2 IMPLICIT REAL=8(A-H, 0-2)
DIMENSION FUNC(11)

BN AR M e

3
c

3 o USE SIMPSON'S RULE FOR INTEGRATION
. o SUMEND IS SUM OF ALL FUNC(I) FOR EVEN I iy
N o SUMMID IS SUM OF ALL FUNC(I) FOR ODD I 5
o c H1 IS STEP SIZE 4
n C FUNC IS INTEGRAND :
[)
\ "
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COMPUTER PROGRAM E3 (CONTINUED)

INITIALIZE PARAMETERS

0-0
0.0

SUMEND
SUMMID

EVALUATE SUMEND AND SUMMID

Do 1 K=1, N
Ki = 2»K - 1
K2 = 2=K

SUMEND = SUMEND + FUNC(K1)

SUMMID = SUMMID + FUNC(K2)

IT = 2=%N + 1

SUMM = (2.0=(SUMEND-FUNC(1)) + 4.0xSUMMID + FUNC(1)
& + FUNCC(IT)) = H1/3.0

RETURN

END

L
)

. .
L0 S

5)\' s

f’.ﬂlégéégsll

AR b
i

SUBROUTINE BED(BO,TIME,X1,X2,BX1,THICK)
IMPLICIT REAL%8(A-H, 0-2)
DIMENSION ROOT(11),WTC11)

DATA HO/2.0D0O/,A/0.0001D0O/,AI1/0.948D0/,AI2/1.397D0/,
& AI3,/0.76D0s, DS/0.4DO/, E/0.075D0O/, UO/1.0DO/,
& F/0.001D0/, WO-0.05D-3/,C0/300.D0/, UCR/1.0DO/

DATA ROOT ~/0.005337D0, 0.047353D0, 0.127821DO0,
& 0.239619D0, 0.374139D0, 0.519102D0C,
& 0.662513D0, 0.792211DC, 0.897196D0,
& 0.968556D0, 1.000000D0 /

DATA WT ~/ 0.291698D0, 0.285481DC, 0.273180D0O,
& 0.255056D0, 0.231495D0, 0.203001D0C,
& 0.170180D0, 0.133731D0, 0.094429D0,
& 0.053091D0, 0.008658DC
UCR = UCR/UO

= BO»WO/UO/HO

= F/A
A = 1,794xE
F = F»«BO/HO

N TMP@»oEx0N

= X1/B0O
= X2/BX1
HH = 1. + A=BO/HO=R

Gl= —-Al2=W/AI1»R/2.
G2 = AI3=W/AI1UCR/UCR=R/2.

AG1 = HO/A/BO/(2.-D)»(HHx=(2.-D)~1.) + 0.S7AA
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§§;~ COMPUTER PROGRAM E3 (CONCLUDED)
¥, C
_ U= 1./DSQRT(2.%AA)/HH**D/DSQOR" (AG1)
.-:'4"‘ c
P B = 2.»AAxHH»*x*(D-1)x*AG]
.h‘.‘ C
&33 SUM1 = 0.0
i SUM2 = 0.0
) C
s DO 10 I = 1, 11
HU = 1. + AxBO/HOxR*DSORT(ROOT(I))

3§‘ CFU = HO/A/BO/(2.-D)»(HUxx(2.-D)-1.) + 0.S5/AA
) UU = 1./DSORT(2.x*AA)/HUxxD/DSQRT (CFU)
o SUMI = SUMI + WT(I)/HU/UU
i SUM2 = SUMT + WT(I)~/HUxUU

ot 10  CONTINUE
3 ::‘\n C
R C = DEXP(G1*3UM! + G2%SUMZ - DLOG(HH*U%*B))
.#?~ Cl1 = CO*DSQRT(1.-SxS)/DEXP(S%S/2.)*C
Koy CCl = (1. — 5xS)/DEXP(S*S)

® Ul = UO*CC1x%U
re? C

_J C THICK IS THICKNESS OF SEDIMENT IN METERS
N .“G Cc
;iﬂ THICK = WOxC1%1.0D-6x(1.-U1%U1/UCR/UCR)
N & *TIME*365. x86400. /DS
o RETURN

3 END
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2&‘ COMPUTER PROGRAM E4
L )
s o SEARCH FOR TIME OF DEPOSITION FOR GIVEN RV (OF VOLUME)
: o AND RA- (OF AREA), AND AVERAGE THICKNESS OF DEPOSITION
. o CASE 4, REAL DIMENSION
O C
A, ' "
oD c USING BI-SECTIONAL METHOD FOR SEARCH
e IMPLICIT REAL®8(A-H, 0-2)
) c
o c XN AND XP ARE THE SEARCH RANGE OF SEDIMENTATION TIME
i c RV IS R FOR VOLUME, RA IS R FOR AREA
e c
Qﬁ‘ 100 READ(S,51,END=999)RV,RA,XN,XP,B0
Tt S1 FORMAT(SF10.2)
o
o WRITE(6,31) BO, RV, RA
gﬁﬁ 31 FORMAT(1H1,///,' BO = °,F10.4," (M)’,/,
ﬁﬁ, & * RV = ',F10.4,/,' RA = ' ,F10.4)
AN C
iﬁ@ ITER = O
& 12 XM = (XN + XP)/2.
st ITER = ITER + 1
é:r IF( DABS(XP-XN) .LT. 0.01DO ) GO TO 10
28 C
R, c DIF IF THE DIFERENCE BETWEEN EXPECTED AND
é{“ o COMPUTED AVERAGE SEDIMENT THICKNESS
c
) TIME = XM
Ty CALL INTEG(BO,RV,TIME,VOL)
e C
ﬁﬁh o UNIT OF AREA = Mmx2
tz::|:§ C
D CALL INTEG2(BO,RA,AREA,X2)
,:'.;,:;l A= 0.1D-3
] HO = 2.0D0
$§§ DIF = VOL/AREA — (HO + 0.5 » A * RA = BO)
¥ c
ﬁﬁb WRITE(6,1) ITER, DIF, VOL, AREA, XM
e 1 FORMAT(/,' NO. OF ITERATION =',IS,/,
oy &' ERROR OF BED THICKNESS (M) =',D16.6,/,
N &' VOLUME OF SEDIMENT (M=»3) =',D16.6,/,
5] L
(317 &' AREA OF SEDIMENT (M#x2) =',D16.6,/,
; ol & TIME (YEARS) =',F12.4)
e IF(DIF) 11, 10, 13
— 11 XN = XM
¥ GO TO 12
oAt 13 XP = XM
B GO TO 12
N 10 X1 = RA=BO
XN WRITE(6,21) X1, X2, BO, XM
i ¥
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COMPUTER PROGRAM E4 (CONTINUED)

=7

21 FORMAT(/,' Xt = ',F10.4,/,’ X2 = ',F10.4,/,
& * BO = ',F10.4,/,
o & ' wxwaww TIME (YEARS) =', F12.5)
Tg GO TO 100
B 999 STOP
o, END
;’: C==s===s==s=s oSS oSS ooS S SE S SSSSS S ssS=E === ss===s
» SUBROUTINE INTEG(BO,RO,TIME,VOL)
o IMPLICIT REAL®8(A-H, 0-Z)
g; DIMENSION H1(11),THICK(11,11),AC11),BC11),CC11)
l" C
iﬁ c Y IS X2 COORDINATE, X IS X1 COORDINATE
e C
RBO = RO=BO
oy c
b E = 0.075
A F = 0.001
d HO = 2.0
o AA = 1.794x=E
FF = F=BO/HO
i SA = 0.1D-3
o D=F/SA
& M=5
& N=©5
}.\ C
DO 20 J = 1, 11

3 X1 = (J - 1)/10. = RBO
g. HZ = RBO /M/2.

; C

: c B1=S*B(X1), NOTE : S=1.0
L c FIND JET WIDTH AT VARIOUS X1
. C
! R = X1/B0
I HH = 1. + SA=BO/HO=R
] CF = HO/SA/B0/(2.-D) s (HHx*(2.-D)-1.)+0.5/AA
E B1=BO*2.xAAxHH**(D-1,)*CF
i H1(J) = Bl /N /2.
C

DO 10 I =1, 11 ~

b X2 = (I - 1)/10. = BI
g c
3 C CONPUTE SEDIMENT THICKNESS AT (X1,X2)
n CALL BED(BO,TIME,X1!,X2,B1,THK)
. THICK(I,J) = THK
W 10 CONTINUE
" 20 CONTINUE
1) '
x' c
.ﬁ C THUS ALL VALUES OF THICK(I,J) HAVE BEEN OBTAINED
" c
{ c START CALCULATING TOTAL VOLUME
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COMPUTER PROGRAM E4 (CONTINUED)

FIND END POINT ON THE R COORDINATE FOR SIMPSON'S
RULE

DO 30 I =1, 1

A(I) = THICK(I,1)

H = H1(1)

CALL SIMPS(N,H,A,SUM)
SUMT!1 = H2/3. = SUM

DO 40 I =1, 11

B(I) = THICK(I,11)

H = Hit(t)

CALL SIMPS(N,H,B,SUM)
SUMT2 = H2/3. = SUM

COMPUTE ALL VALUES BETWEEN TWO END POINTS

SUMT3 = 0.0

IFLAG = 1

DO S0 J = 2, 10

H = H1(J)

DO60 I =1, 11

C(I) = THICK(I,J)

CONTINUE

CALL SIMPS(N,H,C,SUM)
IF(IFLAG .EQ. 1) GO TO 111
IF(IFLAG .EQ. 2) GO TO 222
SUM = H2/3. =4. = SUM
SUMT3 = SUMT3 + SUM

IFLAG = 2

GO TO 50

SUM = H2/3. = 2. = SUM
SUMT3 = SUMT3 + SUM

IFLAG = 1

CONTINUE

SUMTT = SUMT! + SUMTZ2 + SUMT3
VOL IS VOLUME OF SEDIMENT IN (Mw=x3)

VOL = SUMTT
RETURN

D s A . P > PP " — — — — A ———— —— T S Y S T —— —— — T G T T T T S S NN GED Sew SR W S SR T o
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SUBROUTINE INTEG2(BO,RO,AREA,X2)
IMPLICIT REAL=8(A-H, 0-2)

A
F

0.1D-3
0.001DO
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COMPUTER PROGRAM E4 (CONTINUED)

- e s
ey :

F/A

1.0
0.075 y
0.001 ]
2.0 '
1.794%E

F=BO/HO

Tmwno
nunnan

et e e
' 3
= =
o

>
>
o

UNIT OF AREA = M»n2

bl
nnn

HOx»x2/(2.% (AxBO)=xx2%(2.-D))

CK2 HO/(D=xAxBO) * (0.5/AA - HO/(A=B0)/(2.-D))
HH = 1. + A »~ BO/HO = RO

CF = HO/A/B0/(2.-D) = (HH =» (2,-D) - 1.) + 0.S/AA :
X2 = BO = 2.% AA = HHww(D-1.) = CF

AREA = (2.wAA=BO=x2) = (CKi=(1. + A!BO/HOlRO)I!Z
& + CK2 = (1. + AxBO/HO»RO)»»xD - CK1 - CK2)
RETURN P
END

CK1
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-
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SUBROUTINE SIMPS(N,H1,FUNC,SUMM)
K& IMPLICIT REAL=8(A-H, 0-2) .
e DIMENSION FUNCC11) y

v ¢ _«

USE SIMPSON'S RULE FOR INTEGRATION

SUMEND IS SUM OF ALL FUNC(I) FOR EVEN I !
SUMMID IS SUM OF ALL FUNC(I) FOR ODD I 4
H1 IS STEP SIZE 1
FUNC IS INTEGRAND .

INITIALIZE PARAMETERS

%
eNelslisialaleslals!

0.0
0.0

ﬂ' SUMEND
N SUMMID

EVALUATE SUMEND AND SUMMID

nnNon
W e ot

o DO1K=1, N
. K1 = 2=K - 1 .
- K2 = 2xK

b SUMEND = SUMEND + FUNC(K1)

- 1 SUMMID = SUMMID + FUNC(K2) :
: IT = 2sN + 1

. SUMM = (2.0=(SUMEND-FUNC(1)) + 4.0%SUMMID + FUNC(1)
) & + FUNC(IT)) = H1/3.0

X RETURN

: END
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& AI3/0.76D0/, DSr/0.4D0/, E/0.075D0/, UO/1.0DO/,
&

COMPUTER PROGRAM E4 (CONTINUED)
SUBROUTINE BED(BO,TIME,X1,X2,BX1,THICK)
IMPLICIT REAL=8(A-H, 0-2)

DIMENSION ROOT(11),WT(11)

DATA HO/2.0D0/,A/0.0001D0/,AI1/0.948D0/,A12/1.397D0/,
Fs0.001D0O/, WO,/0.0SD-3/,C0/300.D0/, UCR/1.0DO/

DATA ROOT ~/0.005337D0, 0.047353D0, 0.127821DO0,
0.239919D0, 0.374139D0, 0.519102DO,
0.662513D0, 0.792211DC, 0.897196DO0,
0.968556D0, 1.000000D0 /

DATA WT 7/ 0.291698D0, 0.285481D0, 0.273180DO0,
0.255056D0, 0.231495D0, 0.203001DO,
0.170180D0, 0.133731D0, 0.094429D0,
0.053091D0, 0.008658D0 /

CUCR = UCR/UO

= BO=WO/UO/HO

F/A

A = 1.794x»E

F = F=BO/HO

= X1/BO
S = X2/BX1
HH = 1. + A=BO/HOxR

Gl= —-AIZ2xW/AI1»R/2.
G2= AI3»W/AI1/CUCR/CUCR»R/2.

AG! = HO/A/BO/(2.-D)=(HH»»(2.-D)-1.) + 0.5/AA
U = 1./DSQORT(2.=AA)/7HH»»D/DSQRT (AG1)
B= 2.=AAsHH»= (D-1)=AG1

0.0
0.0

SUM1
SUM2

DO 10 I =1, 11

HU = 1. + AxBO/HO=»R=DSQRT(ROOT(I))

CFU = HO/A/BO/(2.-D)»(HU=»(2.-D)~-1.) + 0.5/AA
UU = 1./DSQRT(2.=AA)/HU»=D/DSQRT (CFU)

SUM! = SUM!1 + WT(I)/HU/UU

SUM2 = SUM2 + WT(I)/HU=UU

CONTINUE

C = DEXP( G1»SUM1 + G2»SUM2 - DLOG(HH=U=B))
C! = CO=DSQRT(1.-S»S)/DEXP(S%5/2.)=C

CC1 = (1, — SwS)/DEXP(S5x%S)

Ul = UO=CCiwU

E24




COMPUTER PROGRAM E4 (CONCLUDED)

THICK WOxC1x1,0D-6*(t.~-U1-UCR/UCR)
& *TIME*365.%86400./DS

e RETURN

] END

1 ik, c THICK IS THICKNESS OF SEDIMENT IN METERS
D
L}

K //GO.SYSIN DD
N 19.7 9.36 0.0 8.0 500.0
i s/
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