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I INTRODUCTION

There has been little work done to automatically discrim-

inate between water regions and shadow regions on a SAR radar

image inan automated procedure. With the increasing need for

analyzing large volumes of radar data by computer, however,

this becomes an important recognition task.

In areas of high relief, an airborne SAR radar image cre-

ates many radar shadow regions which may be confused with the

water regions, since both water and shadow regions appear

dark and with subtle differences in tone and texture. This

problem could be resolved by an additional flight line having

an opposite look direction. The original shadowed regions in

the new flight line would disappear, and the water regions

would still remain dark. However, this solution is often

impractical.

In this report we describe a scene analysis system which

can discriminate between water and shadows by using contex- L

tual information. See Figure 1. The technique is based on

understanding the radar reflectivity which is related to the

size, shape and surface material of the terrain illuminated

by the radar wave. First, the statistical textural feature

extraction algorithm is used to extract significant.features

from the gray-tone co-occurence matrices for discriminating

4. water regions and shadow regions on the radar imagery. A

I INTRODUCTION 1
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Maximum Likelihood Decision rule, which incorporates both

tonal and textural features into the labeling process, and

an adaptive probabilistic relaxation algorithm, which incor-

porates the contextual information into the labeling process,

are then applied to obtain the initial labeling and to im-

prove the labeling accuracy. Second, according to our prior -

knowledge of the water regions and shadow regions on SAR im-

agery, a relational model is constructed and several struc-

tural contextual features are measured to create the symbolic

description. Then a spatial reasoning process using a set

of structural decision rules is invoked. Finally, a new

interpretated symbolic image is generated in which the spec-

ified objects (shadows and water) are clearly identified.

Before doing that, some preprocessing such as requantization

and texture preserving noise removal may be applied to en-

hance the useful features.

A set of SAR images collected over Huntsville, Alabama on

17 June, 1977 and another set collected over tne Elizabeth

City area on 10 October, 1980 have been processed using this

system. The experiments performed show that the two level

combination discriminating algori-thm can provide significant

capability for discriminating the water regions from the

shadow regions. Because of the use of contextual information,

the probabilistic labeling relaxation improved the labeling

result on the pixel level, and the spatial reasoning method-

reduced ambiguities on the region level From the final re- .

I INTRODUCTION 2 U.



suits of three test images, we can see that most of water

regions and shadow regions are-identified correctly. We will

discuss these results in detail in Chapter. VI.

I INTRODUCTION 3r



INPUT IMAGE

PREPROCESS ING

USING A CONTEXTUAL DEPENDENT MAT FILTER
FOR TEXTURE PRESERVING NOISE REMOVAL

FEATURE EXTRACTION

USING STATISTICAL GCMT MEASURING
BASED ON TEXTURE AND GRAY TONE INFORMATION

-----------------------------------------------------------------

LOW LEVEL LABELING

USING ADAPTIVE PROBABILISTIC RELAXATION
BASED ON PIXEL LEVEL CONTEXTUAL INFORMATION r

SYMBOLIC DESCRIPTION

DEPTH FIRST REGION ATTRIBUTES MEASURING
BASED ON REGION LEVEL CONTEXTUAL INFORMATION

OBJECT INTERPRETATION

USING SPATIAL REASONING
BASED ON A RELATIONAL MODEL AND A STRUCTURE
DECISION RULE

OUTPUT RESULT

Fiqure 1. Block diagram of the system.
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II CHARACTERISTICS OF SHADOW AND WATER REGIONS ON SAR IMAGES

Most of the practical knowledge of radar interpretation

has been derived from studies of radar images including the

comparison and correlation with ground truth information and

aerial photography.

The differences of tones and textures between water and

shadow regions on SAR imagery are depend on the different

ground situations. However, these differences are subtle.

In flat terrain area, low returns are received from sur-

faces atcting as specular reflectors having surface roughness

much less than the wavelength of the radar( less than X/10).

Examples are: water, pavements and dry lakebeds. Therefore,

the gray tone values of water region on radar imagery are

relatively low and appear prety dark. When the wind is still

and water is flat, quiet-water surfaces are near perfact

specular reflectors. In this case, the return signal will be

almost zero. As a result, the gray tone in these rgions is

completely black. It is just like that in ideal shadow re-

gions on SAR imagery.

Textures of water regions on SAR imagery usually are cre-

ated by following two factors.

In the open water areas which are either standing or

flowing water bodies without vegetation covering them, the

.. .',

II Characteristics of Shadow and Water regions on SAR
images."



surf ace agitated by wind backscatters a strong radar return -

which can be called the "sea return" [11. The tonal and tex-

tural differences of the open water area on the SAR imagery

may indicate some surface wave action. Here the gray tones

corresponding to the wavey water surface form the texture of

the water region.

Also, there is the case of the floating and standing veg-

etation which may cover or partially cover the surface of

water bodies. This makes the situation more complex, since

signals returned from this vegetation'may be quite varied.

This creates another kind of texture in water regions. It

has been observed that the darker the return on the imagery,

the greater the amount of open water relative to the vege-

tation [2].

On the other hand, the tones and textures in shadow re-

gions on SAR imagery are caused by following factors. When

a bright return occurs from hill slopes or high objects fac-

ing the radar look direction, a shadowed region on the far

sides of the crests follows, since there is no signal re-

turned from the occluded part of the terrain. Unlike shadows

in aerial photography which are weakly illuminated by energy

scattered by atmosphere, the radar shadow is completely black

and sharply defined. If there is no noise, then an ideal

shadow region on SAR imagery should not have any texture.

Another case, however, should be considered. If the aircraft

II Characteristics of Shadow and Water regions on SAR
images 6
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reaches a position such that the farther side of slope of the

mountain is no longer behind the crests, instead of the

totally black shadow, a very weak signal from the slope faced

away from radar will return. The corresponding parts in the

radar image appear relatively dark; we also can view them as

shadows. It should be noted that an intermediate case may

occur between the above two situations so that the shadow

appears partially black and partially relatively dark. This

causes variable texture patterns so that it is difficult to

separate it from that of water regions.

Moreover, shadows can also occur on the water surface

when the waves are significantly high. While the tops of the

crests facing the radar look direction yield the strongest

signal return, the absence of signals is from the far slopes

of waves. However, these shadow regions are small and are ~f

within the water area. We consider the waves as the parts of a

water body, so they should be eliminated or merged into the

water regions.

Besides the above tonal and textural information, there

% are several structural features which are very helpful for

discriminating between water and shadows on SAR imagery. ThebA

first thing is a complex signal return case known as the

"cardinal effect". This is a result caused by a corner re-

flector formed by the combinations. of two flat surfaces atel

right angle to one another. These adjacent smooth surfaces 'S

11 Characteristics of Shadow and Water regions on SAP.
images 7
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cause a double reflection that yields very bright "speckles"

or lines on the SAR imagery.

Another useful structural feature exists on water body

boundaries on SAR imagery, known as the "Far shore brighten-

ing effect". This is caused by the smooth water area with a

higher beach which is facing the radar look direction. Since

this feature usually covers only small areas of the scene,

they often appear as bright lines on SAR imagery. For this

case, the dark area comes first, following a bright linear

feature which is nearly normal to the radar look direction.

Because the oblique illumination of SAR produces strong

returns from the sides of ridges and peaks facing the radar

antenna, this makes the boundary appear very bright between

shadow and shadow making objects where the near range area

of the boundary is not flat. In most cases, these bright

linear features are oriented normal or nearly normal to the

radar look direction. That is, the bright linear feature

comes first, and the dark region follows along the radar look

direction. This situation is just the opposite to that of a

water body boundary.

Another property of shadows in SAR image is that the radar

illumination becomes more oblique in the far range direction

and shadows are proportionally longer. This is different from

the constant elevation angle of solar illumination in an ae-

rial photograph. However, the shadow length along the radar

II Characteristics of Shadow and Water regions on SAR
images. 8
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look direction is limited to a certain value for a given im-

age, since the height of shadow-making objects is relatively

small compared to the flying height of the airplane.

From the above analysis, we can see that there are some

tonal and textural features which are useful for discrimi-

nating water and shadows on radar imagery. In some cases,

however, these may not be enough. There are also several

structural contextual dependency features. This structural

information can be also incorporated into an automated radar

image processing scheme. The remainder of the report dis-

cusses these issues.

'.S.

II Characteristics of Shadow and Water regions on SAR
images 9
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III TEXTURE PRESERVING AND NOISE REMOVAL

Because both water regions and shadow regions in radar

images are not rich in texture, the noise will tend to mask

whatever texture there is-and make the recognition task more

difficult., Noise in radar imagery can come from two sources.-

one is radar coherent speckle noise[ 3 1,the other is

quantization noise. We need to remove this noise while pre-

serving the weak texture and other subtle detail information.

This kind of noise removal is different from the kind which

also smooths the weak texture in the filtering process.

Unfortunately, most filtering techniques tend to wash out 5

the weak textures that we want to use. For example, the SFILT

which we developed before Is based on Lee's refined local

statistics method which removes the noise along edges ac-

cording to eight different kinds of edges. It was pointed out

that this method created artifacts, because it used the di-

rectional masks in the filtering process (4]. Our experiments-

confirm that it preserved the sharp edges well, but it washed

out detailed texture information. In f act, the SFILT only

used a weighted average method in which the weights were de-

termined by one directional gradient. The multi-threshold

adaptive MTA filtering which is described in this section

uses different filtering methods according to the local ac-

tivity that is measured by a generalized gradient function.

III Texture preserving and noise removal 10 (.



There is a compromise between noise removal and texture -

preservation. Usually a filter which has powerful noise

cleaning capability may remove or spatially distort edge, __

.4
line and texture information. In contrast, a filter which

preserves subtle detail will tend to have low noise cleaning

capability. Spatial filters attempt to balance the informa-

tion preserving requirement with the noise cleaning require-

ment. However, the balance is often done in a one-dimensional

way. For example, a mean filter is good only for an image

which consists of large homogeneous regions, while a median

filter is only good for an image rich in sharp edges and some

impulse noise. Some other weighted averaging filters may be

g ood for a case between the above two extreme situations.

are problem oriented. A real world image consists of many

regions in which local activity varies from region to region.

It is difficult for a filter optimized for one kind of con-

dition to work well in another. Based on this consideration,

it is appropriate to design a method in which several simple

filters can be combined to form a more efficient and more

flexible context dependent filter. Thus the advantages of

each can be-preserved, and their drawbacks can be avoided to

get an optimal effect. L

In this section, we describe a gradient oriented multi-

threshold adaptive filtering technique for the purpose of

cleaning noise and preserving texture. The regions of an im-

age differ in their local texture and their contrast. There-

III Texture preserving and noise removal11-.
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fore, they need different filtering algorithms to balance the

noise removal against the texture preservation. The filter-

ing that we discuss is region dependent. It uses a general-

ized gradient function which reflects the local contextual

information as a cue to determine the nature of the filtering

for each local neighborhood.

The algorithm is as follows:

(1) First, a generalized gradient function for every pixel

is computed.

Let be the pixel gray tone value to be filtered and

G be the c -responding local generalized gradient functionij

within a N x N window. In order to avoid the effects of random

noise in computing G i, we use the local gray tone submean

instead of individual pixel value. If it is assumed that

the size of any noise random cluster is three or fewer

pixels, then the above consideration is sufficient.

Let Zsr be a set of neighbors of pixel(i,j) having gray

tone intensity Z The gray tone submeans are given by r

f g
SI Zr (4.1)

j s3q r~p

where

Sg i - [ (N-1) / 2 -2 (k-l) ]

f = i - [ d-2(k-i) "

p j - ((N-i) / 2 -2 (d-1) -

q j -j d - 2( I - 1) "

III Texture preserving and noise removal 12
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and where k,d = 1, 2, .... ( N - 1 )I 2.

Then for the four directions, the local gradients G 's are

~ * M1) -( 431 e ,1433)- (,.2

0G ( M11 12 M13) - (M31 M32 + M3 3 ) I (4.2)

G( M1 + M 2  M M2M - ( M32 M3 M23) I (4.3)

*.. -. -. ..

( M12 M13 3 - ( M3 1  M32 r21) (4.5)

and the final gradient is proportional to the sum of

the directional gradients

3 1-**
G.. -CI Gnl/4  (4.6)

n=O 8 '. .-..

where C is the scaling factor.

The resulting Gij is a good measure of the local texture.

contrast.

(2). A set of thresholds can then be applied to Gij to

detect local conditions such as noedge, weak edges or ramp

III Texture preserving and noise removal 13



edges and sharp edges, respectively. The choice of these

p.-...

Nexamining the generalized gradient image histogram. These

thresholds give the processor a flexible choice for different

image types and different processing purposes [see Fig. 31.

Li

61
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A thresholding operation is used to determine a set of

zero-one weights according to the value of G such that the

filtering will be adapted to different strategies Fm,

m=1,2,..., k which are the different replacement rules for

the central pixel in the N x N window.

Strategy Fm is chosen if

T < T
rn-1 i j i

L
In our experimelts, the set of weights are chosen such

that the filtered pixel value Wij is given by

A11  if G < T1

ij ij 1  ij T2  (4.7)

E.j if( Gij> T3 ) AND (max G/4 = GO

N s s
OR if ( T2 < 0 .< T.)

M.. if( G.. > T3 ) AND (max GNv/4 GO )
1J 1 ) N s s

where A.. is the output of a 5 by S averaging filter and

S.. is the output of a 7 by 7 sigma filter[41 and E. is the

output of the eight edge direction weighted filter[S] and Mi

is the output of a 3 by 3 Median filter[6].

As a result, the averaging filter is only applied to very

homogenous regions; this avoids bluring the weak texture.

The median filter is only applied to those regions which have

sharp edges; this avoids eliminating the lines, small objects

III Texture preserving and noise removal 16
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and avoids creating artifacts in other regions. The sigma

filter is only applied to those regions where the weak tex-

ture preserving is more important than perfect noise clean-

ing. Thus, a balanced texture preserving and noise removal

effect can be simultaneously achieved.

L .

L..:.

[::::::

-I -

L .r %
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IV STATISTICAL LABELING AND ADAPTIVE RELAXATION

In this chapter we describe a statistical labeling algo-

rithm to discriminate the shadow regions from the water re-

gions on radar imagery in the pixel level.

At the low level, we first have to extract the statistical

parameters. It is well knowr that texture is an important

feature to characterize and discriminate regions. The two

major texture analysis approaches 'are the statistical and

structural ones. Since the texture on the radar image does

not contain any very regular "texture units" and their spa-

tial arrangements are random, the statistical approach to

extract these natural texture features would be the most ap-

* propriate way.

A variety of texture analysis methods have been developed.

They can be found in [12 ,13]. One of the most widely used

method is the gray-tone co-occurrence matrices ( GTCM ) pro-

posed by Haralick et al. [ 7 ]. Because human beings are

sensitive to second-order statistics [ 14 ] and the GTCM

method is based on the estimation of such second-order sta-

tistics, it is reported that the GTCM method is more powerful

than the other methods [ 15 ]. The GTCM method can be briefly

summarized as follows:

Let f(x,y) be a rectangular digital picture and let N be

the number of gray levels in f. The GTCM is a square matrix

IV Statistical Labeling and Adaptive Relaxation 18
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M of dimension N x N. The (i, j)th entry in M, denoted by-Mi

is a function of the image gray tone values and a displace-

ment vector d = (dl, d2). The entries M. are the unnormal-

ized counts of how many times two neighboring resolution

cells which are spatially separated by d occur on the image,

one with gray tone i and the other with gray tone j. That is

M ij =#{1(ml,n1 ),(m2 1n2 )) f(ml,nl)=i,

f(m2 n2 )=j, II(m 2 ,n 2 )-(ml,nl)Il=d 1 (5.8)21 2 2-2

where # denotes the number of elements in the set.

Haralick has proposed a variety of measures that can be

used to extract useful texture information from the GTCM.

Here, we choose two texture features. One is the entropy Fe.

the other is inverse difference moment F. They are defined

by

E= IZ MZ Mlog( Mlj  (5.9) '"'

i --------------- M (5.10)
1 j 1 + li - jl ij

The average entropy has a higher value than other texture

features for an image with the same gray tone levels [ 7 1. -

Since this measure is largest for equal M and smallest when

they are unequal, the entropy measure is useful to enhance

IV Statistical Labeling and Adaptive Relaxation 19



bright linear features and weak texture values. The useful-

ness of the inverse difference moment texture feature for

classifying radar image segments was demonstrated by

Shanmugan et al [8]. The histogram of these two texture

features in a sampling area show that they exhibit a Guassian

distribution shape. In one-dimensional feature space, how-

ever, the distributions of the samples of water and shadow

clearly overlap. This indicates that a single parameter may

not sufficiently characterize the texture. Therefore, we use

the gray tone value, the entropy value and the inverse dif-

ference moment value as three measurements to form a three

dimensonal measurement vector X. .-.

By examining the histogram of the sample of the above

three measurements, these data appear to have a Gaussian

distribution. Thus, the Gaussian Maximum Likelihood decision

rule can be used for the initial labeling process. It assigns

measurement vector X to class , if and only if

P ( X i W ) r ) = MAX P ( X w) P ( W) (5.11) L

where •

-"1 1 I-

P(X IWr ) =-EXP(- -.. (X-) r I (X-- )]r2 r r r

1/2( 2v ) N12 1 Z 1/2

is the class-conditional density function,
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r = E X r is the class conditional mean vector

which is estimated from training samples for class w

r r r
Ir= E X u X r) (X U r)T l')

is the class conditional covariance matrix which is estimated .--

from training samples for class w r and

P (r " = prior probability for class wr" If this isr -r*

unknown, we can assume that all prior probabilities are

equal.

In order to improve the labeling performance, a contextual

classifier using a non-degradation adaptive relaxation algo-

rithm can be applied to the radar image. Probabilistic re-

laxation labeling algorithms, which reduce ambiguity and

noise and select the best label among several possible

choices, have been an attractive practice in many types of

image data processing [ 16-18 and 10 1.

However, unlike simple object labeling such as in the

tetrahedral block world where there exists a small number of

legal labelings, pixel labeling in radar image data classi-

fication has enormous ambiguity and the contextual informa-

tion is generally not known. Furthermore, in pixel labeling

the probabilistic relaxation procedure generally shows a de-

gradation after several iterations. In some situations the

results after many iterations can be worse than the initial

labeling. Since the number of iterations for minimum error

IV Statistical Labeling and Adaptive Relaxation 21

"r. W .



S..

....

is unknown in advance, there is a potential problem for the

use of probabilistic relaxation [ 19 ]. This is an especially

serious problem in the case that the ground truth data are

difficult or impossible to get.

There are two ways to solve this problem. One is to try

to extract most of the context in the data in the first few

iterations so that the initial labeling information is used

in a sufficient and correct manner. The other is to try to

take the local pixel label depedencies into the relaxation

labeling process, so that the process from one region into

another cannot get out of hand. Kalayeh and Landgrebe [201

suggested one adaptive labeling method using the weighted sum

neighbor function to attempt to solve this problem. Instead

of that, we describe a method for our system using a non-

weighted product neighbor function in which the compatibility

coefficients are dynamic. Consequently, it results in a fast

convergence speed and a better accuracy in the relaxation

process. We initially classify the pixels probabilistically ".

on the basis of certain specific features and then iter-

atively adjust the class probabilities based on its neigh-

boring probabilities and the compatibility of the context.

The procedur,,s are as follows.

First, we compute the initial probabilistic labeling which

is given by the normalized likelihood

.P ( q dk: kGi(l)) = P( wrl X
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P (X p (.2- -------------- (5.12) "

Z P X W ) P (W)
p p

p

In the above formula, we use the notation P(gild

keZi(1)) to denote the initial labeling probability which is

the probability that unit i takes the label gi given the

first level context, where qi corresponding to class wr can

be each class from the set 9 = (&I, w21 .. win, and dk is

the measurement made of unit i and Z = 1 indicates that

pixel i is the entry unit in the first level context for unit

i [9]. The relaxation begins with P(qildk: k6Zi (1)). For

the sake of simplifying notation, we will denote it by

P(qi' 1).

From a Bayesian point of view, let us consider the prob-

abilistic relaxation algorithm [91
IT.-.

P qi, t ) Q ( qi, t
P ' , t = -------------------------

IP(qit) Q ( q, t)

where P(qi,t) is the conditional probability that unit i

takes label q. given the t th level context, and Q'(qi,t) is

t the t -th estimate of the neighborhood function which indicates

the degree of neighbor support for that conditional proba-

bility.
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There are different possible combinations for the support

Q(q.,t) which the neighbors give the current unit. Typically

o,.

we have

1) the weighted sum of their supports

E t d: kez.(t))J. . (5.14)

jQN(i) q

2) or the product of their supports

TI z P(qj d k kZ.i(t))Jj .(q.'q.)
j"N(i) q,(1

where N(i) is the set of neighbors for unit i, and D. is

I)

the total influence that a particular neighbor j can have on

unit i, and d. is the measurement made of unit i, Zi(t) is
1

the set of units in the tt level context for unit i, and _

J (q. q.) are the compatibility coefficients which represent

the compatibility between the unit ± with the label qiand

its neighbor with the label j

The compatibility coefficient J 1 (qilq) is the key term

that decides the extent of support in neighbor functionQ

(qi~t). In the relaxation process, the context at each it-

eration grows by an entire neighborhood width surrounding the

previous level context. The initial measurement made of unit

i is its immediate context. The neighborhood context for unit

i is the measurement di plus all the measurements of units

in the neighborhood of unit i. The next larger context for.-
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unit i is the measurement d. plus all the measurements of

units in the neighborhood of unit i plus all the measurements

of units in the neighborhood of the neighbors of unit i.

Based on above theory, we have two considerations for de-

termining the compatibility coefficients J. *j(q iJq i). One is

that the contextual information should be extracted only inl

the fewest number of iterations, so J(i )should be

based on the largest reasonable context for unit i. The other

is that we should insure no degradation in whole process, so

the compatibilty coefficients should be variable and data

dependent rather than a constant over the whole data set.

The problem is that the neghboring patterns of every pixel

actually are unknown to us. The initial probabilistic label-

ing process only provides an estimate of the identities of

neighboring unknown patterns. This estimate which is based

on the feature measurements also has some uncertainties. This

is why the initial labeling result has a number of errors and

ambiguity. If we compute the compatibility coefficients just

using the single pixel estimate in the nearest neighbor sys-

tem, the initial labeling error will be incorporated into the

compatibility coefficients. This will cause degradation in

relaxation process. One way to solve this problem is to use

a local average estimate instead of a single pixel estimate

so that we can reduce the risk of using the incorrect con--

textual information. In order to do so, we make two assump-

tions. First, we assume that the majority of the initial
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estimates in a chosen window are correct. Second, we assume

that there exist some correlations between the neighbors. V

These assumptions are true in most cases.

Therefore we compute the adaptive compatibility function

3. (qilqj) in the following way. By Bayes formula

P qi qj)
J. .j(q.iq.) =-----------------

P) 1i PJjCi

P (qj)

Using the local average estimate, we choose:

P (q) ---------------- E P (q Id~ k6Z (1)) (5.17)

IN (1)1 aeN (j)

where j 6 NI(i) and N1 (i) is the nearest neighbors of unit

i , and N (j) is the set of neighbors surrounding the neighbor

set N,(i) for unit i.

For the same reason we choose

P =-------------------I P (qb" dk: kgZb(l')) (5.18)

IN 2( i )1 beN 2(1)
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where N4(i is a set of neighbors of unit i, however,

N (i) is the second order neighbor set and Ni(i) is the

nearest neighbor set. Since we have expanded the unit i to

all its neighbors b in order to estimate P(qi), so should we

also consider all b's neighbors N(b) when we estimate

P(q i q.). By approximating the conditional probability we

choose

J1 = N(b)j c6N(b) d: Z()) 5.)1

where N(b) is a set of neighbors of neighbor N(i for unit

The relationship between these neighbor sets are shown in

Figure 3.
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figure 3. Relationship of the neighbor sets.
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The weighted sum neighbor function which Kalayeh and

Landgrebe use does not reach the optimum result. Because in

adaptive relaxation, we already use the local average, it is

unnecessary to set the weights to adjust compatibility again.

Furthermore, the situations in remote sensing data are com-

plicated. There is no guarantee that setting the weights can

achieve all.desired effects simultaneously. In fact, we can

not take care of the variety of different cases by using a

single set of weights in the whole updating process. Thus,

the weights may introduce a bias effect in this adaptive re-

laxation. As an attempt to improve it, we use the non-

weighted product neighbor function in which the compatibility

coefficeints are adaptive and dynamic. That is

Q (qit) = 1 P(qjdk: k6 Z (t)) Jij(t). (5.20)

jeN(i) qj

where Ji (t) is the compatibility coefficient Ji (qiqj) af-
ij ii

ter t iterations. It is computed according to the updated qi

and qj. Because there is no degradation in adaptive relaxa-

tion, -after the end of the iterations, we obtain more context

information. Then we can compute the new compatibility coef-

ficients which reflect the new accurate relationship between

the pixels to be updated further and its neighbors. Thus, the

compatibility coefficients are further adapted to a new *.

level. This technique speeds up the convergence process. In
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order to compare our method with that of Kalayeh and

Landgrebe, we run both methods on the same data and find that

our method has a better accuracy in fewer iteration6.

Using the above technique, we compute the compatibility

coefficients Ji (t) for every pixel in the remote sensing

data. The immediate context, the neighborhood context and

the next larger context are measured once and combined into

Ji (t). As a result, J. (t) slowly varies from pixel to pixel

and from iteration to iteration. Then a non-weighted product

neighbor function Q(qi,t) is computed. Finally, we assign the

pixel to that class which has the highest probability after

relaxation.

.
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V USING A RELATIONAL MODEL TO REDUCE AMBIGUITIES --

Relational models are commonly used in scene analysis

system. One important use of relational models in scene

analysis is to help identify an unknown object that has been

extracted from a scene. A structural description of an un-

known object can be constructed and compared with known

structural descriptions to determine how similar they are.

The organization of relational models for scene analysis can

be found in [21 1

Since some objects in a scene, such as water regions and

shadow regions in SAR image, are very difficult to distin-

guish between one another completely, and since the pictorial

similarity is not always a reliable criterion for segmenting

a scene into regions that completely correspond to the object

classes, the low level labeling results provided by the sta-

tistical contextual classification may be incorrect. Obvi-

ously, only those labels that can be derived from an

arrangement of real objects in the scene are valid. Proper-

ties of objects and relations between them imply correspond-

ing properties and relations of the SAR image regions that

result from these objects. These projected properties and

relations contain the possible labeling. of regions with ob-

ject identification. So the goal that we try to achieve here
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is to just use high level contextual information to verify

the objects and reduce the ambiguities.

pThere is a way to use the context provided by the more

easily recognized objects to determine other objects. More

generally, we can use the spatial or contextual relationships

between structural features or primitives provided by the

statistical classification to match against the relational

model based on our prior knowledge.

According to our analysis in Chapter 11, a relational

graph model for discriminating water and shadows can be gen-

erated see Fig.41. This model is represented by an abstract

relational structure in which the nodes represent regions

labeled with their property values and the arcs represent the

relationships among regions. Usually, such model is often

very difficult to formulate, since the constraints on allow-

able property values and relationships are hard to define.

However, the results that we have from our low level classi-

fication provided better labeling accuracy than a simple

segmentation did. Therefore the relational graph model that

we need is much simpler than the usual one. From Chapter II,

it is obvious that afl shadow regions on the radar image re-

sult from three-dimensional objects on the terrain surface.

These objects are called shadow-making objects, and the cor-

responding regions are 'called. shadow-making regions. Note

which is in shadow on the image. However, it causes an adja-

9..
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cent object to be in shadow. We extract the shadow and

shadow-making region pair in two steps. First, we extract

the regions which are adjacent. in radar look direction to

dark regions. Second, we select the regions which have a

long common boundary with a neighboring dark region in the

direction away from the radar antenna. If the. adjacent

shadow-making objects are not flat, then the extraction of

shadow-making regions becomes simply the extraction of bright

linear features.

% 4.
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where +RD: radar look direction.
-RD: opposite to +.RD.
Lcs: length of shadow region along +.RD.
BLF: bright linear features.L

>: spatial relation.
ADJ: adjacent.

Figure 4. Relational graph model: for water, shadow
and others.

According to the relational model, a set of decision rules

are determined as follows:
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Assign a region to shadow, if the region is in either of

the following two cases:

1) A region which is assigned to shadow by the low

level labeling is surrounded by other non-water regions.

2) A region which is assigned to shadow by the low

level labeling is adjacent to bright linear

features in the radar look direction.

Assign a region to water, if it is in one of the following

cases:

1) A region is assigned to water by the low

level labeling is adjacent to bright linear

features in the radar look direction.

2) A region which is assigned to water by the

level labeling is surrounded by other non-shadow re-

gions.

3) A region which is assigned to water by the low

level labeling has a length longer than the specified

limitation of shadow length along the radar look di-

rection.

4) A region which is assigned to water by the low

level labeling has some vegetation on it.

Assign a region to be a false shadow region and merge it

to its surround, if the region is in one of the following

three cases:

1) A region which is assigned to shadow by the low

level labeling is surrounded by a water region.
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2) A region which is assigned to shadow by the low

level labeling has a length longer than the specified

limitation of shadow length along the radar look di-

rection.

3) A region which is assigned to shadow by the low

level labeling is between a water region and some other

non-shadow region.

Assign a region to be a false water region and merge it

to its surround, if the region which is assigned to a water

region by the low level labeling is surrounded by a shadow

region.

For the above relational model, the shapes of water re-

gions and shadow regions are arbitrary, so the classical re-

gion attributes to represent an object such as medial axis

etc. are not helpful in this situation. Also, the represen-

tation of regions by circumscribing boxes is not suitable for

our case, because sometimes a spurious adjacent or surround

relation will hold between boxes of two regions, while in L
fact it is not true of the regions themselves. We choose

several structural measurements for the regions. They are: .

the size of the region; the relative position of different

adjacent regions along the radar look direction; the maximum
length of the region along radar look direction, the region

state (interior to the image or touching the boundary of the

image) and the number of its boundary pixels. The algo-

rithm for measuring these spatial relations is as follows.
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First, the region indexes of the symbolic image obtained

from low-level processing are redefined. Each region is

identified by a unique region identifier. However, in the

three digit index, the first digit represents the original

low level labeling. For example, the water region index

starts from 100 and the shadow region index starts from 200

etc.. Thus, we still can recognize the initial assigned label

from the new sequential index.

Second, it uses a linear geometric transformation to ro-

tate the symbolic image to a possition such that the hori-

zontal scanning line is parallel to the radar look direction.

'Third, it scans the symbolic image line by line in the

radar look direction. If the scanning line meets a new re-

gion label, the scanning process will be interrupted and a

tracing process which traces the region's external boundary

will start. We describe a one-pass, depth first boundary %

tracing procedure using a left first, clockwise directed four

connected neighborhood search technique for tracing a region

boundary:

1) Record the coordinates of the starting point of the

region, keeping the region always on the right side of the

tracing direction and trace the boundary in a clockwise di-

rection.

2) for each successor, detect the next tracing direction

by searching the same label from the four connected neighbors

in the order starting from the left side of previous moving
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direction, then the front, the right, and finally the back

[Figure 51,

3) Record the left side adjacent region label and its

staring position and end position in the tracing process.

4) Count the number of pixels of the region boundary in

the tracing process.

5) Mark the region state. Mark 0 indicates that the region

is completely within the image. Mark 1 indicates the region

touches the image boundary.

6) If next point-starting point, then stop tracing, go to

step 7, else go to step 2.

7) Continue the scanning process from the break point.

Compute the maximum region length along radar look direction

and the region size,

8) Check every label that the scanning line met with by

means of a hash table. If the region has been traced, go to

step 7, else go to step 1, until the last line.

° .%
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3 2

3 2

Previous moving direction.

S Current position

~ Neighbors to search

Yiqure 5. Direction and order of searching: previous
moving direction (1) left to right, (2) top
to bottom, (3) bottom to top, (4) right to
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The high level image analysis techniques require rapid - -

access to region information and to the relations between

regions. For every region, therefore, the region attributes

and the relations of adjacent regions (between or surround)

are stored in a big list. And a hash function is used for fast

searching and accessing to this structural information. After

that, a property file which contains a list of property val-

ues for the above measurements can be created. Then the spa-

tial reasoning process simply becomes a table-look up

procedure according to the structural decision rule described

previously.

To simplify the algorithm further, it is necessary to

eliminate many small regions conposed of a few pixels. This

is reasonable, because our low level classification based on

texture features is a local, not pointwise, phenomenon. It

cannot be computed reliably for small regions or boundary

cases. As a result, ambiguities may occur in a small size

of object and the boundary region.-
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VI. EXPERIMENTAL RESULTS

A set of SAR images was tested using the system described

in this paper. These images were collected over Huntsville,

Alabama on 17 June, 1977 and collected over Elizabeth City

area on 10 October, 1980. Because the initial data have a

very wide gray* tone range, we quantized the data into 64 or

128 gray tone levels for convenience of processing.

EXPERIMENT 1

In this experiment, a set of basic investigations are

carried out on the radar image data. We examine the .- -.

histograms of the radar images in the different cases. In

the original image, the gray tone values spread from 0 to

65535, but most of them are within the interval between 1400

to 4000. After requantization, the histogram shows that the

gray tone values are distributed from 0 to 63 with a mean 21.6

and variance 328. From both histograms, we see that their

distribution shapes are like [ see Figure 8 and Figure 9].

Comparing the histogram of the sampled water region with that .

of the sampled shadow region (Figure 10 and Figure 111, we

can see that the gray tone values in both regions are very

low and they clearly overlap from 0 to 16. However, the mean

and variance of the sampled water region are lower than those

of the sampled shadow region. By examining the histogram of
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texture entropy values [.igure 12], we see that it has a

bimodal shape distribution. The left mode may be the values

of possible water and shadow regions and the right mode may

be that of others. To see the difference of entropy value in

water region and shadow region, we examined the entropy val-

ues in both regions [Figure 13, 14]. The result is that they

overlap each other in an interval between 44 to 75. It is

different from the gray tone histograms in that the entropy

distribution of the shadow region shifted a little right to

that of the water region. Meanwhile, the mean and variance

of entropy of shadow region are also greater than that of

water region.

Almost the same situation occurs in the histogram of in-

verse different moment texture values [ Figure 15 to 17]. It

is noted that the histogram of inverse different moment in

the sampled shadow region is distributed widely from 44 to

186. This means that it overlaps with that of other land re-

gions also. More comparisons were made by examining the

histograms of texture values of the filtered SAR images 1.77

[Figure 18 to Figure 231. The results show that the differ-

ences of mean and variance of texture values between the wa-

ter and shadow regions in the filtered image are greater than

that of those regions in the image before filtering.

From above examinations, we conclude the following prop-

erties: 1) t-he requantized image almost keeps the same dis-

tribution shape with that of initial image; 2) the histogram
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of the sampled water region clearly overlaps that of .the

sampled shadow region in any one-dimensional feature space (

either the.gray tone, entropy and inverse difference moment

); 3) the histograms of three features in the filtered image

are really different from the original image, although this

effect can not be seen in the corresponding gray tone images;

4) most of histograms exhibit a Gaussian like shape.

All of these provide useful information for our recogni-

tion task. For example, point 2) indicates that a single pa-

rameter may not sufficiently discriminate the water region b

from the shadow region in a radar image. This is further

confirmed by the following experiment in which the algorithm

proposed by Davis et all 14 ] is used. We extract the in-

teresting regions by 1), computing texture cooccurence gray

tone levels, 2), averaging the results, and 3), thresholding.

The results show that this procedure can not discriminate the

shadow from the water. These two categories are mixed [ see

Figure 24 to 27 ].

Also, the bright linear features present in the radar im-

age are examined. We use the GTCM to segment the image into

three categories. The first category consists of possible

water or shadow regions. The second category consists of

bright features. The third category is everything else. The ,

GTCM preserves the bright lines and provides a structural

feature for the relationship between these lines and the

possible water or shadow regions Fig.28 to Fig.30 -
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EXPERIMENT 2

To show the effects of using the Multi-Threshold Adaptive

filtering, several SAR images were processed and compared. -

The corresponding generalized gradient image t Fig.32 I shows

the different local activities. The black color indicates the

lowest local activity so that the moving average filtering -

was applied. The white indicates the highest local activity

so that the Median filtering was applied. The blue and the

red indicate cases between above two situations so that the

Sigma filtering and weighted edge filtering were applied,

respectively. Thus, different filtering strategies wete ap-

plied to the regions according to the generalized gradient

image. It seems that there is no obvious change between the

original image ( Fig.8 I and the filtered image ( Fig.31 ].

Almost every thin line, fine feature and basic texture in the

image are preserved. However, there are significsnt changes

that we can see from the textural image. It is clear that the ""

entropy and the inverse difference moment computed from the

filtered image are different from that of the original one

(Fig.3S to Fig.38 ] These changes are due to the removal

of the noise. The interesting thing is that these changes

can be controlled by setting different thresholds. Fig.34 .

shows the results from another set of threshold values. The

generalized gradient image here is changed and it turns out .•
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that more details and weak texture would be preserved in this

case.

To see how the MTA filter improve the low-level labeling

result more obviously, we added Gaussian normal noise N(0,ol)

with different a values to the SAR images. Then the same

statistical classifer as we described in Chapter IV were ap-

plied to the noisy image, the filtered image and the original

image, respectivelly. The relative classification accuracy

is measured by comparing them with that of original image

classification (see Table 1 to Tabel 3 ]. It can be seen from

these results (Figure 39 to 411 that the labeling accuracy

of the image filtered by MTA filtering is much better than

that of the noisy one. Before filtering, almost all the wa- - -

ter regions in the noisy image were mislabeled as shadow re-

gions and some shadow regions were mislabeled as others [see

Figure 40). However, for the filtered image, the labeling

result was as good as the that of original one [see Figure

41]. The tables show that the relative accuracy can be im-

proved from 61.9 percent to 92.2 percent (with noise a=

10),even from 65.5 percent to 96.5 percent (with noise o=5).
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Table 1. Contingency tables for classification results
of noisy image and MAT filtered image
(column = assigned class, row = true class,
WR = water, SD = shadow, OT = others ).

Scale factor for the number of pixels = 100.
Noise o=10 for the noisy image.

Table 1 (a) Result for noisy image

class WR SD OT total Acc(%)

WR 7 0 1 8 0.7
SD 857 121 57 1035 73.3
OT 41 44 1494 1579 96.3

* &b.
total 905 165 1552 2622 61.9

Table 1 (b) Result of MTA filtered image

class WR SD OT total Acc(%)
or

WR 831 25 1 857 91.8
SD 63 130 95 288 78.7
OT 11 10 1456 1477 93.8

total 905 165 1552 2622 92.2

* overall classification accuracy: ratio of the number
correctly classified pixels to the number of total
classified pixels.

. ',.' r s l s4
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Table 2. Contingency tables for classification results
of noisy image and MTA filtered image
(column = assigned class, row = true class,
WR = water, SD = shadow, OT = others).
Scale factor for the number of pixels = 100.
Noise a=5 for noisy image.
*: Overall classification accuracy.

Table 2 (a) Result of noisy image

class WR SD OT total Acc(%)

WR 64 0 2 66 7.1
SD 827 142 40 1009 86.1
OT 13 23 1511 1547 97.3

total 904 165 1553 2622 65.5

Table 2 (b) Result of MTA filtered image

class WR SD OT total Acc(%)

F- ->

WR 875 19 1 895 96.7
SD 27 132 30 189 80.0
OT 3 14 1521 1538 99.9

total 905 165 1522 2622 96.4

-- :°
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Table 3. Contingency tables for classification result
of noisy image and MTA filtered image

column = assigned class,.row = true class,
WR =water, SD = shadow, OT = others).
scale factor for number of pixels = 100.
*Overall calassification accuracy.

Noise a= 3 for noisy image.

Table 3 (a) Result of noisy image

class WR SD OT total Acc(%

WR 681 2 3 686 75.2
SD 220 146 32 398 88.5
OT 4 17 1517 1538 99.7

total 905 165 1552 2622 89.4

Table 3 (b) Result of MTA filtered image

class WR SD OT total Acc()

WR 890 17 2 909 98.5
SD 13 133 22 168 60.6
OT 1 15 1528 1544 98.5

total 4J04 165 1552 2621 97.4
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EXPERIMENT 3

The low level statistical labeling algorithm is examined

in this experiment. Two radar images which definitely contain

water regions and shadow regions are chosen as the test data.

In the first image [ Fig.6 , he shadows are created by high

reliefs (some of them are the intermediate case described in

Chapter II ). In the second image [ Fig. 48 1, the shadows

are made by the high flat objects. The Gaussian Maximum

Liklihood Classifier is applied to these two images. The

feature space for classification consists of gray tone value

and texture values. Then the 3-dimensional mean vector and 3

by 3 covariance matrix are estimated from the training sample

set [ Fig.42 and Fig.52 I for the water region and the shadow

region and others, respectively.

The texture features, both entropy and inverse difference

moment, are extracted from the GTCM which are computed for

different window sizes and different distances. The exper-

iments show that the window size and the distance of GTCM

have significant influence on the accuracy of classification. -

An unsuitable window size and distance may cause an incorrect

texture feature extraction. As a result, ambiguities on

boundary and mislabeling of the small regions will occur in

the result.
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It can be seen in classified images that there are some

land regions which contain the water regions [ Fig.43 and

Fig.55 ]. This is a low probability event and probably re-

presents a classification error. Also there are some shadow

regions along the boundary of the water body [Fig.43]. This

probably represents a classification error too. For the

first image, the GTCM with a window size 12 by 12 and a dis-

tance 6 [ Fig.46 I produces the better result. For the second

image, the classified image using a window size of 16 by 16 r
and a distance 8 has less ambiguities I Fig.S7 1.

To improve the overall classification accuracy, the adap-

tive relaxation using contextual imformation is applied to

the images of Figure 6 and Figure 48. The initial statis-

tical labeling is determined by the normalized maximum like-

lihood estimate. The immediate context, the neighborhood

context and the next larger context in the initial labeling

are measured once and combined into the compatibility func-

tion. Comparing Fig.43 with Fig.44, Fig.57 with Fig.58 and

Fig 59, the effect of reducing the ambiguity in the shadow

regions is obvious. However, we can not expect this method

to change the classified result too much, since the initial

labeling error can influence the degree of the improvement.

Further improvement can be obtained from the use of spatial

relations between the structural features. By human inter-

pretation, however, we can confirm that most classified re-

gions, either water or shadow, in Fig.44 and Fig.59 are
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correct. In other words, the low level classified results

provide enough information for further structural recognition

at high level..

To examine the performance of adaptive relaxation

quantitatively, a set of LANDSAT MSS data collected from the

Roanoke area in 1979 were tested. The initial labeling prob-

abilities for 3 classes of urban or built-up land, agriculture

and forest were estimated by the normalized maximum likeli-

hood method. The initial non-context labeling results

Figure 61 ] were obtained by using Maximum Likelihood Deci-

sion rule. The black region is urban or built-up land, the

white region is the agricultural land, and gray region is

forest land. The corresponding mean and covariante matrix

are shown in table 4. As ground truth in this experiment, we

use the results of a hand segmentation obtained on basis of

the spectral information from the corresponding aerial pho-

tographs [Figure 62). The adaptive relaxation algorithm with

dynamic compatibility coefficients Ji (t) were applied to a

block of 150 x 150 pixels. The initial error of this block

is 32.8 percent. Within three iterations, this error reduced

to 25.2 percent. This experiment clearly shows that there

is no degradation and most improvements of labeling accuracy

are obtained in less than 5 iterations and then stabilized.
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TABLE 4 The Mean and Cova-riance

Category 1 1116 pixels

Mean Covariance Matrix

23.507 8.1442 6.3528 1.7889 -0.93896

27.972 12.66S 2.8140 -2.2597

43.950 18.394 20.999

41.680 31.051

Category 2 234 pixels

Mean Covariance Matrix

20.265 4.0409 S.6659 2.1560 0.19782

25.051 18.117 -0.05833 -7.2051

47.637 25.223 28.146

48.415 40.114

Category 3 533 pixels

Mean Covariance Matrix

5.448 7.2605 12.586 18.150 20.816

19.229 29.182 39.309 46.316

29.553 59.118 66.850

30.298 80.026

.. Cateorym l 2 re3ultsxeS2
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EXPERIMENT 4

',* • ° . -

To examine the performance of the structural recognition

algorithm described in Chapter V, two symbolic images [Figure

44 and Figure 591 obtained from the low level labeling of SAR

test image 1 and test image 4 were tested. After eliminating

small regions and redefining the region index, the results

are shown in Figure 65 and Figure 66. The radar look direc- -

tion for both images is approximately from North to South

Top to Bottom), so we rotated the images 90 degrees before

measuring their region attributes and relations. Using the

depth first tracing strategy described in chapter V, the

structural contextual features were measured and the corre-

sponding property lists were created [see Table 5 and Table

61.

• .=. .% .,

...
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Table 5. The region attributes and relations list for
Figure 65. ( RI = the surrounding region if R2=0.
R2= the second adjacent region that is not in
the same class as R.)

4
Region Region Max. Adjacent State Region Boundary
number index length R 1 R2 mark size length

1 100 416 201 0 1 7849499 3153
2 101 11 209 0 0 351 51 I
3 102 25 210 0 1 2592 88
4 103 65 233 0 1 85277 424
5 104 11 234 0 0 336 52
6 105 15 235 0 0 1113 67
7 200 20 300 0 1 3515 106
8 201 23 100 300 1 13587 1387
9 202 12 100 0 1 684 79

10 203 15 100 0 1 1928 115
11 204 36 302 100 1 46843 3663
12 205 16 300 0 0 1476 60
13 206 12 100 0 0 472 51
14 207 18 100 0 0 1156 94
15 208 9 302 0 0 459 55
16 209 32 302 0 0 12285 378
17 210 22 302 102 0 3629 297
18 211 11 100 0 0 494 41
19 212 14 302 0 0 742 63
20 213 9 100 0 0 344 37
21 214 20 302 0 0 3387 120
22 215 18 100 0 0 5184 370
23 216 13 100 0 0 1680 165
24 217 12 302 0 0 520 61
25 218 18 302 0 0 2378 125
26 219 16 302 0 0 848 84
27 220 17 302 0 0 1670 83

p*.. r S

•. , ..- ,
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Table 5 The region attributes and relations list for
Figure 65. ( continued)

Region Region Max. Adjacent State Region boundary
number index length R 1 R2 mark size length -. *.T-

28 221 10 302 0 0 606 68
' 29 222 11 100 0 0 475 56

30 223 8 302 0 0 384 51
31 224 44 302 0 1 12302 291
32 225 20 100 0 0 1686 110
33 226 19 302 0 0 1501 105
34 227 12 302 0 0 476 53
35 228 13 100 0 0 1717 175
36 229 21 302 0 0 2013 100
37 230 24 302 0 1 2339 67 .
38 231 9 100 0 0 371 47
39 232 20 302 0 0 1293 92
40 233 29 302 103 1 5713 494
41 234 23 302 0 0 6147 194
42 235 20 302 0 0 3343 137 J'
43 236 9 302 210 1 329 33
44 300 169 200 0 1 805522 968
45 301 13 201 0 1 736 61
46 302 512 204 0 1 12408839 3917
47 303 13 201 0 0 764 47
48 304 19 207 0 0 1911 60
49 305 27 215 0 0 5104 114
50 306 10 216 0 0 2368 133
51 307 47 215 0 0 15413 237 . -'"-.
52 308 11 204 0 0 668 51
53 309 30 225 0 0 5590 80
54 310 10 228 0 0 2552 140 ,

a.,i. r o.
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Table 6. The region arttributes and relations list for
Figure 66. ( Ri = the surounding region if R2=0.
R2 the second adjacent region that is not in
the same class as Ri.)

Reg. Reg.. Max. Adjacent State Req. Boundary
number index length Ri R2 mark size length
--------------------------------------------------------------------

1 100 319 300 204 1 9473378 2318
2 101 21 300 215 1 1156 105
3 200 21 300 100 0 6321 439
4 201 27 100* 300 0 10056 S43
5 202 18 300 0 0 1002 97
6 203 15 300 0 0 731 51
7 204 35 100 300 1 28028 927
8 205 24 300 0 0 2053 177
9 206 23 300 0 0 5229 229

10 207 14 300 0 0 902 100
11 208 24 300 0 0 12269 341
12 209 16 300 0 0 707 58
13 210 22 300 0 1 7097 376
14 211 34 300 0 0 24349 640
15 212 21 300 0 0 4591 203
16 213 31 300 0 0 27296 439
17 214 17 300 0 0 848 66
18 215 32 101 300 1 26779 406 .'

19 216 22 300 0 0 3786 91
20 217 16 300 1 2184 83
21 300 448 200 100 1 16166526 2953
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For image 1, there are 54 regions. According to the low

level labeling, 6 regions were assigned as water regions, 37

regions were assigned as shadow regions and 11 regions are

assigned as others. For image 2, there are 21 regions. In

the low level labeling, two regions were assigned as water

regions, 18 as shadows and one as others. From Table 5, we

can see that there are several closed water regions (e.g.

region 2, 5, 6) with small size are surrounded by shadows

and some closed shadow regions (e.g. region 13, 14, 18, 20)

are surrounded by water regions and some shadow regions (e.g.

11, 17, 40) with a longer maximum region length in radar look

direction are between the water region and others. (A similar

case can be found in region 7 and 18 in Table 6.Y

By the structural decision rules described in Chapter V,
which is based on the real world model described in chapter

II, all these regions that we mentioned above are misclassi-

fied and should be dorrected. Those regions with region state

mark 1 are treated as partial regions. We are not sure

whether they are surrounded by other regions or not. So we

leave them alone. Finally, a new labeled image was generated

according to the results of the spatial reasoning using the

property lists. The results are shown in Figure 67 and Fig-

ure 68. Compared to the results of low level classification, ..'."

the new results are more accurate. In a final experiment,

the mean and covariance estimated from test image 4 [Figure

521 was used to classify another image f Figure 69] collected

VI.Experimental results 57
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in the same period and over the same area. The two texture

features and the gray tone feature are used as before. Using

the same statistical classifier, we got the low level label-

ing result which is shown in Figure 70. For the high level,

the recognition results are shown in Figure 71 and Figure 72

and the corresponding property list is shown in Table 7. The

results indicate that the high level recognition using the

relational model can reduce the ambiguity so significantly

that it allows the low level recognition procedure to be more

flexible. It provides a way in which we may use a limited

number of training samples in one image to recognize objects

in a set of radar images collected in the same condition. ' -

VI.Exerimntalresuts 5
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Table 7. The region attributes and relation list -

for figure 71. ( R1 = the surounding region
if R2=0. R2= the second adjacent region that
is not in the same class as RI.)

Region Region Max. Adjacent state Region Boundary
number' index length RI R2 mark size length

1 100 66 200 0 1 29282 241
2 101 21 303 203 1 1652 100
3 102 306 201 0 1 3938268 2095
4 103 21 300 227 1 1916 167
5 200 24 300 100 1 7359 221
6 201 75 300 102 1 201797 5866
7 202 32 303 0 1 11302 291
a 203 21 303 101 1 3089 181
9 204 18 302 0 0 1572 115

10 205 19 300 0 0 1157 132
11 206 25 303 0 0 3408 239
12 207 16 303 0 0 2429 175
13 208 22 300 0 1 5803 377
14 209 16 300 0 0 1536 214
is 210 18 303 0 0 2495 180
16 211 25 303 0 0 4546 142
17 212 26 300 0 0 2637 165
18 213 26 300 0 1 8456 287
19 214 25 300 0 0 15246 298
20 215 17 303 0 0 1593 73
21 216 25 303 0 0 3293 139
22 217 28 303 0 0 15058 186
23 218 25 303 0 0 5555 183
24 219 19 303 0 0 2813 232
25 220 27 303 0 1 4162 137
26 221 28 300 0 1 12511 171
27 222 15 303 0 0 3672 176
28 223 34 303 0 1 9155 185
29 224 29 303 0 0 14118 224
30 225 26 300 0 0 3526 110
31 226 19 303 0 0 3522 175
32 227 12 103 300 0 2323 266
33 300 373 200 103 0 6148748 3331
34 301 13 201 0 1 992 102
35 302 34 201 0 1 17413 215
36 303 36 201 101 1 9679777 3863

". .
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Figure 6. Test image 1: The large black region is water
and the several small black regions separated
in the land are shadow regions.

A-A
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Figure 7. 64 level quantization of image 1
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F.. igure 23. Histogram of inverse difference .:
momnent(f3): from sampled water area of MTA "'

-" filtered image 1.
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Figure 24. Test image 2: large water body and
small shadows on land.
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Figure 25. GTC!4 texture image for image 2.
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Figure 27. Segmentation of image 2 (b): using another
net of thresholding values.
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Figure 31. Filtered result of image 1: Filtered by the
multi-threshold adaptive filtering.
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Figure 33. Filtered result by different
thresholds: Filter- MTA.
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Figure 34. Generalized gradient image (2): Black-for
average filter, blu.e- for sigma filter, red-for weighted edge filter, white- for medianfilter.-
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Figure 35. Inverse difference moment image (1): f rom
test image 1,window size= 7 x 7, distanca=
2.
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Figure 37. Entropy image of image 1: Window size=n 7 x
7, distance= 2.
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Figure 41. Labeling result (12): from the correspond-
ing MTA filtered image. Blue: shadows.
Black: water. White: others. ~* -'

'-'a.'

a- ~J..-. *J.

a-
-C p

p ~ -

VI. Ixperimental results 95

L

- *
~*. * %~



"--"- .. , % . -. -. -.-. -. -' - -. .'r w rw- , i - ' - '.'lV i "V ' "a

Figure 
42. 

Training 
sample 

set for image 
1: Brown.- 

.

water, 
green 

- others,Yellow 

- shadow 
.

' -

. - p -

' . % ' --

[;.4 

...

ItI

.-. 

.. 

.
. .

.. 

. .

, 

r s 
l 

, .9-

wF-



4'.

N.

Figure 43. Labeling result for image 1 (a): With tex-
ture computed using window size 7 x 7, dis-
tance 1, key: black-water, blue- shadow and
white-others,the classifier is a Gaussian
Maximu- Likelihood classifier.
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I' Water
-------------------- +--------------------------------------------------------------

I 1 I 2 I 3
4----------.-----------------+--------------------------

Mean I 3.422 I 77.72 I 130.3
----------------- --------------------------

Covariance I 130.3
I 3.916 0.8443
-0.3811 8.0005 5.837

----------------------------------------------------------------------------------
I Shadow
I----+----------------+--------------------------
I 1 I 2 I 3

4.-------------------------- ---------------------------
Mean I 7.536 I 125.5 I 169.3

-------------- m---------------------------

Covariances I 13.36
22.66 20.49

I 273.6 217.9 178.9
------------------------------------- ------------------ --------------------------

Others

12 3

Mean 35.56 I 150.6 I 204.4
I------------+--------------------------- ------- F

Covariances I 109.7
I15.82 18.63

I 248.2 208.7 186.8
------------------------------------------------- ----------------------------

1: gray tone
2: entropy
3: inverse different moment

Fiqure 45. The moan and covariances for figure 46: es- t
timat. from sampling set in fig 42.
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Figure 47. Labeling result for image 1 (c): Texture
computed using a 20 x 20 window , Distance
4, and a Gaussian Maximum likelihoodr
classifier.
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Figure 49. Quantized image 4: quantization level
128.
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Figure 50. Entropy of image 4: texture computed using -

a 16x16 window and distance 8.ei
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Figure 51. Inverse different moment of image 4: tex-
ture computed using a 16x16 window and dis-
tance 8.
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figure 52. Training sampling sot for image 4: Green-
others, Brown -water, Yellow -shadow.
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Figure S3. Labeling result for image 4 (a): texture
computed using a S x 5 window and distance
2, labeled by Gausian Maximum Likelihood
classifier, black- water, blue-shadow,
white- others.
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Figure 54. Labeling result for image 4 (b): textureFP
computed using a 12 x 12 window and distance
6, labeled by Gaussian ML classifier. Black-
water, blue-shadow, white-others.
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Figure 55. Labeling result for image 4 (c): texture
computed using a l~xlO window and ditance 4,
labeled. by Gaussian ML classifier, black-
water, blue-shadow, whitei-other.
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IWater
------ ----------------------- --------------------------

Il I 2 I 3
Mean I16.41 I 56.83 I 93.47

*-------------------------------------
Covariances I116.5

I139.0 226.5
I338.6 557.5 946.6

------ ---------------------------------------------------

IShadow
----------------------------------
I1 I 2 I3

---------------------- --.------------------------

jMean I 25.59 1 118.6 1 172.4
------------------------------- - -,

Covariances I47.40
I90.54 108.1
I770.4 939.6 1161.

------ ---------------------------------------------------

IOthers
--------------------------------------- &

1 i 2 I 3
4-------------------------- ---------------eeeeee

Mean I75.67 I 117.9 I 173.8
--------------------------------------

Covariances I130.9

636.2 684.7 758.4

1: gray tone
2: entropy L
3: inverse difference moment

figure 56. The mean and covariances for fig. 57: esti-
mate from sampling met in figure 52.
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Figure 57. Labeling result for image 4 (d): texture
computed using a 16x16 window and distance
8, labeled by Gaussian M4L classifier, black- I
water, blue-shadow, white-other.
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Figure 58. Relaxation result for fig. 57 (a): 1 iter-
ation using adaptive relaxation, black-
water, blue-shadow, white- other.
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Figure 59. Relaxation result for fig. 57 (1b): S iter-
ations using adaptive relaxation, black-
water, blue-shadow, white -others.
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Figure 61. Initial labeling result: by non-context Ia-
beling using Maximum Liklihood decisionK
rule. Image size: 150 x 150.
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Figure 62. Ground truth map.: Image size: 150 x 150.
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NUMBER OF ITERATIONS
A: USING PRODUCT NEIGHBOR FUNCTION IN WHICH ..

THE COMPATIBILITY COEFFICEINTS ARE DYNAMIC.

B: USING WEIGHTED SUM NEIGHBOR FUNCTION.

Figure 63. Comparison of error reduction.
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Figure 64. Labeling result: fourth iteration using
product neighbor function and dynamic compat-
ibility coefficient. Image size: 150 x 150.
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Fiqure 65. New indexing symbolic image 1.: Region
numberU54, categorie.: water, shadow and
others.
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rigure 67. Spatial reasoning result 1.: Black: water,
Blue: shadow, White: others.
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Figure 68. Spatial reasonizig result 2.: Black: water,
Blue: shadow, White: others.
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Fig re 69. Tetio n t image : Coll cte in it e: S1e xoSdi-

quantization level: 128.__
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Figure 71. New indexing symbolic image 3: Region
numberws36, categories: water, shadow and oth-
ers.
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figure 72. Spatial reasoning result 3: Black: water,
Blue: shadow, White: others.

VI .Zperimontal results 126



- - - '"-,----.----- C. ".,".*" "w --.rr c ."g,J"-. -' i" . ..-.-.
-"

-.-- "-- "-' -. - " - -"- -~ . ."..." - * . . .""- . . - . "--.- ]

aI
/]

VII.CONCLUSIONS

We presented a scene analysis system for identifying the

shadows and water on SAR image in this report. All exper-

iments done have shown that this system is practical for our A

purpose. From the final results, we can see that most shadow

regions and watbr regions were identified correctly.

This system was designed so that it used the contextual

information sufficiently, wherever in the preprocessing , in .

the pixel level labeling or in the region level reasoning.

In this way, it overcame the specific identification diffi-

culty that the objects to be discriminated were only with i.-. .

subtle differences in tone and texture.

In the preprocessing, we described a region-dependent

Multi-Threshold Adaptive filtering technique for texture pre-

serving noise removal. It used a generalized gradient func-

tion whichreflected the local contextual information as a cue

to determine the nature of filtering for each local neigh-

borhood. As a result, a balanced texture preserving and

noise removal effect was simultaneously achieved.

In the low-level labeling, we discussed a probabilistic

relaxation algorithm in which the adaptive compatibility

coefficients were computed by local average estimate and were

dynamic in the whole updating process. It extracted most

contextual information in pixel level just in the fewest

VII .Conclusions 127A.%
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number of iterations. Results show that it successfuly re-

duced the labeling error in less than 5 iterations and then

stabilized. There was no degradation in the entire re-

laxation process.

In the high-level spatial reasoning, the relational graph

model based on our prior knowledge of water and shadow re-

gions on SAR imagery was constructed. The corresponding

structural decision rules were derived from the relational

model. To measure the contextual information in the region-

level, we described a one-pass, depth first boundary tracing

procedure using a left first, clockwise directed four neigh-

borhood search technique. Using this method, a property file

which contained a list of region attributes and region re-

lations was created. Then a spatial reasoning procedure was

performed according to the set of structural decision rules.

It reduced the errors and ambiguities resulted from low-level

labeling significantly. The most false shadow regions and

water regions were identified and corrected.
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