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2 extraction algorithm is used to extract significant features

{ from the gray-tone co-occurence matrices for discriminating

2 water regions and shadow regions on the radar imagery. A

.
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I INTRODUCTION

There has been little work done to automatically discrim-
inate between water regions and shadow regions on a SAR radar
image in an automated procedure. With the increasing need for
analyzing large volumes of radar data by computer, however,
this becomes an important recognition task.

In areas of high relief, an airborne SAR radar image cre-
ates many radar shadow regions which may be confused with the
water regions, since both water and shadow regions appear
dark and with subtle differences in tone and texture. This
problem could be resolved by an additional flight line having
an opposite look direction. The original shadowed regions in
the new flight line would disappear, and the water regions
would still remain dark. However, this solution is often
impractical.

In this report we describe a scene analysis system which
¢an discriminate between water and shadows by using contex-
tual information. See Figure 1. The technique is based on
understanding the radar reflectivity which is related to the
size, shape and surface material of the terrain illuminated

by the radar wave. First, the statistical textural feature
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Maximpm Likelihood Decision rule, which incorporates both
tonal and textural features into the labeling procéss, and
an adaptive probabilistic relaxation algorithm, which incor-
porates the contextual information into the labeling process,
are then applied to obtain the initial labeling and to im-
prove the labeling accuracy. Second, according to our prior
knowledge of the water regions and shadow regions on SAR im-
agery, a relational model is constructed and several struc-
tural contextual features are measured to create the symbolic
description. Then a spatial reasoning process using a set
of structural decisicn rules is invoked. Finally, a new
interpretated symbolic image is generated in which the spec-
ified objects (shadows and water) are clearly identified.
Before doing that, some preprocessing such as requantization
and texture preserving noise removal may be applied to en-
hance the useful features.

A set of SAR images collected over Buntsville, Alabama on
17 June, 1977 and another set collected ovér tne Elizabeth
City area on 10 October, 1980 have been processed using this
system. The experiments performed show that the two level
combination discriminating algo}ichm can provide significant
capability for discriminating the water regions £from the
shadow regions. Because of the use of contextual information,

the probabilistic labeling relaxation improved the labeling

result on the pixel level, and the spatial reasoning method

reduced ambiguities on the region level . From the final re-

I INTRODUCTION 2
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sults of three test images, we can see that most of water
‘regions and shadow regions are -identified correctly. We will

discuss these results in detail in Chapter- VI.

I INTRODUCTION 3
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PREPROCESSING

USING A CONTEXTUAL DEPENDENT MAT FILTER
FOR TEXTURE PRESERVING NCISE REMOVAL

FEATURE EXTRACTION

USING STATISTICAL GCMT MEASURING e
BASED ON TEXTURE AND GRAY TONE INFORMATION OGN

) TTTmmmTossommsesmeseoosooscossoooooooooo-oo-- b
LOW LEVEL LABELING
USING ADAPTIVE PROBABILISTIC RELAXATION RS
| BASED ON PIXEL LEVEL CONTEXTUAL INFORMATION P

SYMBOLIC DESCRIPTION

| DEPTH FIRST REGION ATTRIBUTES MEASURING
' BASED ON REGION LEVEL CONTEXTUAL INFORMATION

‘ OBJECT INTERPRETATION
' USING SPATIAL REASONING

BASED ON A RELATIONAL MODEL AND A STRUCTURE
DECISION RULE

QUTPUT RESULT

Figure 1. Block diagram of the system.

i I INTRODUCTION 4
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n 11 CHARACTERISTICS OF SHADOW AND WATER REGIONS ON SAR IMAGES

v v

MO
(AN

Most of the practical knowledge of radar interpretation

S, v,
"-

has been derived from studies of radar images including the
comparison and correlation with ground truth information and
aerial photography.

The differences of tones and textures between water and

shadow regions on SAR imagery are depend on the different
ground situations. However, these differences are subtle.

In flat terrain area, low returns are received from sur-
faces atcting as specular reflectors having surface roughness
much less than the wavelength of the radar( less than 1/10).
Examples are: water, pavements and dry lakebeds. Therefore,
the gray tone values of water region on radar imagery are
relatively low and appear prety dark. When the wind is still
and water is flat, quiet-water surfaces are near perfact
specular reflectors. In this case, the return signal will be
almost zero. As a result, the gray tone in these rgions is
completely black. It is just like that in ideal shadow re-
gions on SAR imagery.

Textures of water regions on SAR imagery usually are cre-
ated by following two factors.

In the open water areas which are either standing or

flowing water bodies without vegetation covering them, the

I1 Characteristics of Shadow and Water regions on SAR
images




royovyw L Sl Sah Sl At afcihhe o g e g -
Al Sl Sl P S le S

surface agitated by wind backscatters a strong radar return

which can be called the "sea return" [1]. The tonal and tex-

tural differences of the open water area on the SAR imagery

PR AR

may indicate some surface wave action. Here the gray tones
corresponding to the wavey water surface form the texture of
‘ the water region. ' .
Also, there is the case of the floating and standing veg-

etation which may cover or partially cover the surface of

i‘ water bodies. This makes the situation more complex, since

signals returned from this vegetation ‘may be quite varied.

This creates another kind of texture in water regions. It

has been observed that the darker the return on the imagery, _ RN

the greater the amount of open water relative to the vege- \

tation {2]. \
On the other hand, the tones and textures in shadow re- ;.'::.\

gions on SAR imagery are caused by following factors. When kt'

a bright return occurs from hill slopes or high objects fac-

ing the radar look direction, a shadowed region on the far DR
.

sides of the crests follows, since there is no signal re-

turned from the occluded part of the terrain. Unlike shadows
in aerial photography which are weakly illuminated by energy ; t“:
scattered by atmosphere, the radar shadow is completely black : L':EF
and sharply defined. If there is no noise, then an ideal E;.;n
shadow region on SAR imagery should not have any texture. th:;':~

Another case, however, should be considered. If the aircraft

Il Characteristics of Shadow and Water regions on SAR f."‘:
images 6
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reaches a position such that the farther side of slope of the

mountain is no longer behind the crests, instead of the I:;:'."

totally black shadow, a very weak signal from the slope faced

away from radar will return. The corresponding parts in the

radar image appear relatively dark; we also can view them as

shadows. It should be noted that an intermediate case may e

occur between the above two situations so that the shadow

appears partially black and partially relatively dark. This

5 causes variable texture patterns so that it is difficult to -’-“-
: separate it from that of water regions.

Moreover, shadows can also occur on the water surface

when the waves are significantly high. While the tops of the .,4:4.

g koo
.. crests facing the radar look direction yield the strongest Ry
- signal return, the absence of signals is from the far slopes ::':.E:'{:
- ey

N

of waves. However, these shadow regions are small and are
within the water area. We consider the waves as the parts cfa
water body, so they should be eliminated or merged into the

water regions.

Besides the above tonal and textural information, there

are several structural features which are very helpful for
1: ' discriminating between water and shadows on SAR imagery. The ,:A
: first thing is a complex signal return case known as the [5':':
"cardinal effect". This is a result caused by a corner re- "“\'
‘ flector formed by the combinations of twe flat surfac;s at &5;‘:
right angle to one another. These adjacent smooth surfaces ‘._::.-_:_
o
Q 1I Characteristics of Shadow and Water regions on SAR ‘_,._:

images 7




cause a double reflection that yields very bright "speckles"
or lines on the SAR imagery. '

Another useful structural feature exists on water body
boundaries on SAR imagery, known as thé "Far shore brighten-
ing effect". This is caused by the smooth water area with a
higher beach which is facing the radar look direction. Since
this feature usually covers only small areas of the scene,
they often appear as bright lines on SAR imagery. For this
case, the dark area comes first, following a bright linear
feature which is nearly normal to the radar look direction.

Because the ocblique illumination of SAR produces strong
returns from the sides of ridges and peaks facing the radar
antenna, this makes the boundary appear very bright between
shadow and shadow making objects where the near range area
of the boundary is not flat. In most cases, these bright
linear features are oriented normal or nearly normal to the
radar look direction. That is, the bright linear feature
comes first, and the dark region follows aionq the radar look
direction. This situation is just the opposite to that of a
water body boundary.

Another property of shadows in SAR image is that the radar
illumination becomes more ocblique in the far range direction
and shadows are proportionally longer. This is different from
the constant elevation angle of solar illumination in an ae-

rial photograph. However, the shadow length along the radar

II Characteristics of Shadow and Water regions on SAR
images. 8
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3 look direction is limited to a certain value for a given im- -
{ - age, since the height of shadow-making objects is relatively 3
f small compared to the flying height of the airplane. ?
i From the above analysis, we can see that there are some i;
tonal and textural features which are useful for discrimi- ;
nating water and shadows on radar imagerj. In some cases, i“
however, these may not be enough. There are also several 5:
structural contextual dependency features. This structural fﬁ;a
information can be also incorporated into an automated radar S
image processing scheme. The remainder of the report dis-
cusses these issues.
S
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III TEXTURE PRESERVING AND NOISE REMOVAL

[y
[y

o
Goatitalate
a -t
" b » .“'0_.I‘..

Because both water regions and shadow regions in radar

images are not rich in texture, the noise will tend to mask

whatever texture there is and n;ake the recognition task more
difficult. Noise in radar imagery can come from two sources.
One is radar coherent speckle noise[ 3 ], the other is
gquantization noise. We need to remove this noise while pre- :—‘"
§ serving the weak texture and other subtle detail information. .
This kRind of noise removal is different from the kind which
also smooths the weak texture in the filtering process. L
;:'.: Unfortunately, mo‘st filtering techniques tend to wash out :.»:
:E:I the weak textures that we want to use. For example, the SFILT ."';':
‘:: which we developed before is based on Lee's refined local :r-v
statistics method which removes the noise along edges ac- ﬁ
cording to eight different kinds of edges. It was pointed out ,
that this method created artifacts, because it used the di- Fﬁ
rectional masks in the filtering process [4]. Our experiments .F?
confirm that it preserved the sharp edges well, but it washed “:
, out detailed texture information. In fact, the SFILT only LE_‘
y used a weighted average method in which the weights were de- ::::‘_\'::
termined by one directional gradient. The multi- threshold ‘:’:::
adaptive MIA filtering which is described in this section P
- uses different filtering methods according to the local ac- s
§ tivity that is measured b_y a generalized gradient function. \

"_ III Texture preserving and noise removal 10 [;_




W W TP Oy LA A Sk SRS And Al g

~ There is a compromise between noise removal and texture

i preservation. Usually a filter which has powerful noise

. cleaning capability may remove or spatially distort edge,
line and texture information. In contrast, a filter which
preserves subtle detail will tend to have low noise cleaning
capability. Spatial filters attempt to balance the informa-

tion preserving reguirement with the noise cleaning regquire-

ment. However, the balance is often done in a one-dimensiocnal x
way. For example, a mean filter is good only for an image ;
3 which consists of large homogeneous regions, while a median :{-: '!

filter is only good for an image rich in sharp edges and some

impulse noise. Some other weighted averaging filters may be

good for a case between the above two extreme situations.

are problem oriented. A real world image consists of many

o

. regions in which local activity varies from region to region.
It is difficult for a filter optimized for one kind of con-
dition to work well in another. Based on this consideration,
o it is appropriate to design a method in which several simple
filters can be combined to form a more efficient and more
flexible context dependent filter. Thus the advantages of
each can be -preserved, and their drawbacks can be avoided to
;' . get an optimal effect.

In this section, we describe a gradient oriented multi-~

Zj-: threshold adaptive filtering technique for the purpose of

L 3

= Cleaning noise and preserving texture. The regions of an im~ ~ \.1
age differ in their local texture and their contrast. There- ._:.

: R

- I1I Texture preserving and noise removal 11 .r':':';‘
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fore, they need different filtering algorithms to balance the
noise removal against the texture preservation. The filter-
ing that we discuss is region dependent. It uses a general-
ized gradient function which reflects the local contextual
information aé a cue to determine the nature of the filtering
for each local neighborhood.

The algorithm is as follows:

(1) First, a generalized gradient function for every pixel

is computed.

Let 2i be the pixel gray tone value to be filtered and

b
Gij be the ¢ ~responding local generalized gradient function
within a N x N window. In order to avoid the effects of random
noise in computing Gij' we use the local gray tone submean

Mkd instead of individual pixel value. If it is assumed that

the size of any noise random cluster is three or fewer

pixels, then the above consideration is sufficient.
Let zsr be a set of neighbors of pixel(i,j) having gray

tone intensity zij. The gray tone submeans are given by

g=1i [ (N=1) 2 = 2 (k-1) )

£f=1i ( d-2(k-1) ]

( (N-1) s 2 -2 (d-1) ]
lada-2(k-1)]

P=]

g =]

II1 Texture preserving and noise removal 12
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and where k,d =1, 2, ..., ( N=-1)/ 2.

Then for the four directions, the local gradients Gs's are (3

o'- -

= O Myg * Mgy v Myg) = (( Mgy ¢ Mo+ Maq) | (4.2)
©/4_ -

Gs I ( Mygr Myp® Myy) = ( Mgo+ Myqe Mog) | (4.3)

GV/%= | ( M.+ Mo+ M, ) = ( M+ Moo+ M) | (4.4)
. 11% M21* M3, 13* Ma3* M3 .

{ 3v/4_
¢ F D( Myps Myg+ Moq) = (( Myy* Moo+ Moy) | (4.5)

and the final gradient is proportional to the sum of

the directional gradients

3
G..=ct cov/4

1] t . (4.6)

where C is the scaling factor.
The rdsultinq Gij is a good measure of the local texture

contrast.

ij
detect local conditions such as noedge, weak edges or ramp

(2). A set of thresholds can then'be applied to G to

III Texture preserving and noise removal 13
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edges and sharp edges, respectively. The choice of these

-
‘l .

thresholds may be determined from statistical aﬁalysis or by

examining the generalized gradient image histogram. These

' N
e .l

thresholds give the processor a flexible choice for different

image types and different processing purposes [see Fig. 3].
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A thresholding operation is used to determine a set of
zero-one weights according to the value of Gij such that the
filtering will be adapted to different strategies Em'
m=1,2,..., k which are the different replacement rules for
the central pixel in the N x N window.

Strateqgy Fm is chosen if

In our experimeqts, the set of weights are chosen such

that the filtered pixel value wi. is given by

j
J A 1£ G < Ty
Wi5 = Si3 £ Ty <6< Ty (4.7)
E. . if( G,.> T.) AND (max G"/%= g0 )
1] 1] 3 N s s
OR if (T, <  Gy< Ty)
M, . 1€( G, > T,) AND (max N/ ¢ &0
\ J J N s s
where Aij is the output of a 5 by 5 averaging filter and

Sij is the output of a 7 by 7 sigma filter{4] and Eij is the

output of the eight edge direction weighted filter(S] apd MiJ
is the cutput of a 3 by 3 Median filter(6].

As a result, the averaging filter is only applied to very
homogenous regions; this avoids bluring the weak texture.

The median filter is only applied to those regions which have

sharp edges; this avoids eliminating the lines, small objects

III Texture preserving and noise removal 16
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and avoids creating artifacts in other regions. The sigma

filter is only applied to those regions where the weak tex-
ture preserving is more important than perfect noise clean-
ing. Thus, a balanced texture preserving and noise removal

effect can be simultaneocusly achieved.

III Texture preserving and noise removal 17




IV STATISTIC-L LABELING AND ADAPTIVE RELAXATION

In this chapter we describe a statistical labeling algo-

rithm to discriminate the shadow regions from the water re-
) gions on radar imagery in the pixel level. ‘ L.
At the low level, we first have to extract the statistical
parameters. It is well known that texture is an important
feature to characterize and discriminate regions. The two
major texture analysis approaches ‘are the statistical and
structural ones. Since the texture on the radar image does

not contain any very regular "texture units" and their spa-

tial arrangements are random, the statistical approach to
extract these natural texture features would be the most ap-
propriate way.

A variety of texture analysis methods have been developed.
They can be found in {12 ,13]. One of the most widely used

method is the gray-tone co-occurrence matrices ( GTCM ) pro-

posed by Haralick et al. [ 7 }. Because human beings are

sensitive to second-order statistics [ 14 ] and the GICM
‘method is based on the estimation of such second-order sta- .
T tistics, it is reported that the GICM method is more powerful . Egii
: than the other methods [ 15 |. The GTCM method can be briefly Qﬁi:f
summarized as follows: §§E§

Let f(x,y) be a rectangqular digital picture and let N be

the number of gray levels in f. The GTCM is a square matrix

E IV Statistical Labeling and Adaptive Relaxation 18
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. M of dimension N x N. The (i, j)th entry in M, denoted by Mij' 3:::-‘.::::
" is a function of the image gray tone values and a displace- _'.j:(ij-::’,:
[ i . l".‘P"\:
i ment vector d = (dl, d2). The entries Mij are the unnormal- NG
. ized counts of how many times two neighboring resolution T
: cells which are spatially separated by d occur on the image,
. one with éray tone i and the other with gray tone j. That is ,;"_;-:
Mi] =#(((m11n1)0 (mztnz)) | f(m11n1)=11 ‘.
f(m2ln2)=jl ll(mzlnz)-(mllnl)||=d ) (5-8) E‘. .l';n

where # denotes the number of elements in the set.
Haralick has proposed a variety of measures that can be "._f‘-;{:;f'.

used to extract useful texture information from the GICM.

Here, we choose two texture features. One is the entropy Fe’ .r
A

the other is inverse difference moment E‘i. They are defined :‘-'“'.{':-;
r —.

by S

(5.9)

Fi= I [ mmemeemm-ememo- My (5.10)

The average entropy has a higher value than other texture
features for an image with the same gray tone levels [ 7 ].
Since this measure is largest for equal Mij and smallest when

they are unequal, the entropy measure is useful to enhance

IV Statistical Labeling and Adaptive Relaxation 19
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bright linear features and weak texture values. The useful-
ness of the inverse difference moment texture feature for
classifying radar image segments was demonstrated by
Shanmugan et al (8]. The histoqfam of these two texture
features in a sampling area show that they exhibit a Guassian
distribution shape. In one-dimensional feature space, how-
ever, the distributions of the samples of water and shadow

clearly overlap. This indicates that a single parameter may

- not sufficiently characterize the texture. Therefore, we use

the gray tone value, the entropy value and the inverse dif-
ference moment value as three measurements to form a three
dimensonal measurement vector X.

By examining the histogram of the sample of the above
three measurements, these data appear to have a Gaussian
distribution. Thus, the Gaussian Maximum Likelihood decision
rule can be used for ﬁhe initial labeling process. It assigns
measurement vector X to class w_, if and only if

T

P(X ] w_ )P (w

¢ ) =MAX P (X | w_. ) P ( up Y (5.11)

r o P
where T
! 1 T, -1
BIX luy) =mommomeeeos EXB(- <o (ou)TrTH ko))

(Zn)N/zlill/z

is the class-conditional density function,

IV Statistical Lakeling and Adaptive Relaxation 20
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K, = E [ X | .. ] is the class conditional mean vector

which is estimated from training samples for class ..

= _u T
I=E L (X =) (X=-u)T ]

is the class conditional covariance matrix which is estimated
from training samples for class (I and

P ( w_ ) = prior probability for class W If this is

r
unknown, we can assume that all prior probabilities are
equal.

In order to improve the labeling performance, a contextual
classifier using a non-degradation adaptive relaxation algo-
rithm can be applied to the radar image. Probabilistic re-
laxation labeling algorithms, which reduce ambiguity and
noise and select the best label among several possible
choices, have been an attractive practice in many types of
image data processing { 16-18 and 10 ].

However, unlike simple object labeling such as in the
tetrahedral block world where there exists a small number of
legal labelings, pixel labeling in radar image data classi-
fication has enormous ambiguity and the contextual informa-
tion is generally not known. Furthermore, in pixel labeling
the probabilistic relaxation procedure generally shows a de-
gradation after several iterations. In some situations the
results after many iterations can be worse than the initial

labeling. Since the number of iterations for minimum error

IV Statistical Labeling and Adaptive Relaxation 21
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is unknown in advance, there is a potential problem for the
use of probabilistic relaxation { 19 ]. This is an especially
serious problem in the case that the ground truth data are
difficult or imsossible to get.

There are two ways to solve this problem. One is to try
to extract most of the coﬁtext in the data in the first few
iterations so that the initial labeling information is used
in a sufficient and correct manner. The other is to try to
take the local pixel label depedencies into the relaxation
labeling process, so that the process from one region into
another cannot get out of hand. Kalayeh and Landgrebe [20]
suggested one adaptive labeling method using the weighted sum
neighbor function to attempt to solve this problem. Instead
of that, we describe a method for our system using a non-
weighted product neighbor function in which the compatibility
coefficients are dynamic. Consequently, it resuylts in a fast
convergence speed and a better accuracy in the relaxation
process. We initially classify the pixels probabilistically
on the basis of certain specific features and then iter-
atively adjust the class probabilities based on its neigh-
boring probabilities and the compatibility of the context.
The procedur~s are as follows.

First, we compute the initial probabilistic labeling which
is given by the normalized likelihood

P (gl d: k€Z,(1)) = P( w | X))
IV Statistical Labeling and Adaptive Relaxation 22
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P (X | ur) P (ur)
L oP(X) ...p§ P Iu;)

P

(5.12)

In the above formula, we use the notation P(qildk:
kezi(l)) to denote the initial labeling probability which is
the probability that unit i takes the label q, given the
first level context, where q; corresponding to class w, can
be each class from the set 2 = (u,, Wo, auns w.}, and d, is
the measurement made of unit i and zi= { 1} indicates that
pixel i is the entry unit in the first level context for unit
i [9]. The relaxation begins with P(qildk: szi (1)). For
the sake of simplifying notation, we will denote it by
Plag,1).

From a Bayesian point of view, let Qs consider the prob-

abilistic relaxation algorithm [9]

P(q.t) Q(gqy t)

P('qq , £ +1)= comemccmcconencancncceen
I P(qy. t) Q(q. t)
9y

(5.13)

where P(qi,t) is the conditional probability that unit i

takes label qi given the tth

th

level context, and Q(qi,t) is
the t estimate of the neighborhood function which indicates
the degree of neighbor support for that conditional proba-

bilicy.
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. There are different possible combinations for the support
:ZE: Q(q,.t) which the neighbors give the current unit. Typically

W we have . PR

1) the weighted sum of their supports

. = . . : k€Z.(t))J.. .1 q.

Qgy.t)=t Dy I P(ayl dy §(8))J54(q;1qy) (5.14) R

jeN(1i) qy -

2) or the product of their supports

a | 4. K€Z (t))J | -

.,e)= I , ) : .(t . . . 'q. . )

Q(q; t). . L P(qJ k _ J( )) J.J(ql qJ) (5.1 -

JEeN(1) q -

where N(i) is the set of neighbors for unit i, and. Dj is .__

the total influence that a particular neighbor j é:an have on

unit i, and di is the measurement made of unit i, zi(t) is e

th

the set of units in the ¢ level context for unit i, and

Jij(qi;qj) are the compatibility coefficients which represent Ve
the compatibility between the unit i with the label q and
its neighbor with the label qj. !:

The compatibility coefficient Jij(qilqj) is the key term ) ‘—"

that decides the extent of supporﬁ in neighbor function Q

(qi,t). In the relaxation process, the context at each it- y
: eration grows by an entire neighborhood width surrounding the . \:f
previous level context. The initial measurement made of unit E"
iis its immediate context. The neighborhood context for unit :‘.‘-:
) i is the measurement di plus all the measurements of units .;\_-

in the neighborhood of unit i. The next larger context for AN

IV Stacistical Labeling and Adaptive Relaxation - 24 F
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unit i is the measurement di plus all the measurements of

units in the neighborhood of unit i plus all the measurements
of units in the neighborhood of the neighbors of unit i. RRY

Based on above theory, we have two considerations for de-~ ‘
termining the compatibility coefficients Jij(qilqj). One is
that the contextual information shauld be extracted only in
the fewest number of iteraticns, so Jij(qilqj) should be
based on the largest reasonable context for unit i. The other

is that we should insure no degradation in whole process, so

the compatibilty coefficients should be variable and data :{?J
dependent rather than a constant over the whole data set. E? N
The problem is that the neghboring patterns of every pixel ;f;ﬂ

actually are unknown to us. The initial probabilistic label- el
ing process only provides an estimate of the identities of

neighboring unknown patterns. This estimate which is based

on the feature measurements also has some uncertainties. This
is why the initial labeling result has a number of errors and
ambiguity. If we compute the compatibility cocefficients just
using the single pixel estimate in the nearest neighbor sys-
tem, the initial labeling error will be incorporated into the

compatibility cocefficients. This will cause degradation in

relaxation process. One way to solve this problem is to use

a local average estimate instead of a single pixel estimate

so that we can reduce the risk of using the incorrect con- rﬁfj
textual information. In order to do so, we make two assump- ;:;
tions. First, we assume that the majority of the initial Eﬁﬁ
w5
NG
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estimates in a chosen window are correct. Second, we assume
that there exist some correlations between the neighbors.
These assumptions are true in most cases.

Therefore we compute the adaptive compatibility function

Jij (qitqj) in the following way. By Bayes formula

P (. q)
Jij(qilqj) = eemeesccceccens= -

P(qj)

P (a5 P (aqyl q)

= e (5.16)
P ( qj)
Using the local average estimate, we choose:
1
P (qj) = ecece- .= )3 P (qaldk: keza(l)) (5.17)
IN ()| a€N (j)

where j € Nl(i) and Nl(i) is the nearest neighbors of unit
i, and N (j) is the set of neighbors surrounding the neighbor
set N, (i) for unit i. ~ -

For the same reason we choose

P (qy) = ~=wecmsnee- © 1 P (qyidy: k€Z (1)) (5.18)
INJ( 1)1 beN, (1)
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where Nz(i) is a set of neighbors of unit i, however,
Nz(i) is the second order neighbor set and Nl(i) is the
nearest neighbor set. Since we have expanded the unit i to
all its neighbors b in order to estimate P(qi), so should we
also consider all b's neighbors N(b) when we estimate
P(qjlqi). By approximating the conditional probability we

choose

P (Q.lqQ.) = ==c-===ce=- L P(q_ld,: k€2 _(1)) (5.19)
3 IN(b) | cEN(b) c %k <

where N(b) is a set of neighbors of neighbor Nz(i) for unit
i.
The relationship between these neighbor sets are shown in

Figure 3.
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Figure 3.

1. THE 7x7 WINDOW AND THE
NEAREST NEIGHBORS N1(1).
i IS THE PIXEL TO BE UPDATED
AND 1=JS.

( B2 )
{ B1 )

2. THE SECOND ORDER NEIGHBORS
N2(i). 1 IS THE PIXEL TO BE
UPDATED AND 1i=B9.

3. THE NEIGHBORS N(Jk) OF THE
NEIGHBOR N1(i) FOR ESTIMATE Jk,
WHERE k=1,2,3,4,5,

4. THE NEIGHBORS N(Bm) QF THE
NEIGHBORS N2(4i) AND m=1,2,...9

Relationship of the neighbor sets.
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The weighted sum neighbor function which Kalayeh and
Landgrebe use does not reach the optimum result. Because in
adaptive relaxation, we already use the local average, it is
unnecessary to set the weights to adjust compatibility again.
Furthermore, the situations in remote sensing data are com-
plicated. There is no guarantee that setting the weights can
achieve all desired effects simultaneously. In fact, we can
not take care of the variety of different cases by using a
single set of weights in the whole updating process. Thus,
the weights may introduce a bias effect in this adaptive re-
laxation. As an attempt to improve it, we use the non-
weighted product neighbor function in which the compatibility
coefficeints are adaptive and dynamic. That is

Q (qi,t) = n b2 P(qjldk: kGZj(t)) Jij(t). (5.20)
JeN(1) qj
where Jij(t) is the compatibility coefficient Jij(qilqj) af-
ter t iterations. It is computed according to the updated q;
and qj. Because there is no degradation in adaptive relaxa-
tion, -after the end of the iterations, we obtain more context
information. Then we can compute the new compatibility coef-
ficients which reflect the new accurate relationship between
the pikels to be updated further and its neighbors. Thus, the
compatibility coefficients are further adapted to a new

level. This technique speeds up the convergence process. In
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order to compare our method with that of Kalayeh and

Landgrebe, we run both methods on the same data and find that
our method has a better accuracy in fewer iterations.

Using the above technique, we compute the compatibility
coefficients Jij(t) for every pixel in the remote sensing
data. The immediate context, the neighborhood context and
the next larger context are measured once and combined into
Jij(t). As a result, Jij(t) slowly varies from pixel to pixel
and from iteration to iteration. Then a non-weighted product
neighbor function Q(qi,t) is computed. Finally, we assign the

pixel to that class which has the highest probability after

------

relaxation.
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V_USING A RELATIONAL MODEL TO REDUCE AMBIGUITIES

Relational models are commonly used in scene analysis
system. One important use of relational models in scene
analysis is to help identify an unknown object that has been
extracted from a scene. A structural description of an un-
known object can be constructed and compared with known
structural descriptions to determine how similar they are.
The organization of relational models for scene analysis can
be found in [ 21 ].

Since some objects in a scene, such as water regions and
shadow regions in SAR image, are very difficult to distin-
guish between one another completely, and since the pictorial
similarity is not always a reliable criterion for segmenting
a scene intc regions that completely correspond to the object
Classes, the low level labeling results provided by the sta-
tistical contextual classification may be incorrect. Obvi-
ously, only those labels that can be derived from an
arrangement of real objects in the scene are valid. Proper-
ties of objects and relations between them imply correspond-
ing properties and relations of the SAR image regions that
result from these objects. These projectad properties and
relations contain the possible labelings of regions with ob-

ject identification. So the goal that we try to achieve here

V Using a relational model to reduce ambiguities 31
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is to just use high level contextual information tc verify
the objects and reduce the ambiguities.

There is a way to use the context provided by the more
easily recognized objects to determine other objects. More
generally, we can use the spatial or contextual relationships
between structural features or primitives provided by the
statistical classification to match against the relational
model based on our prior knowledge.

According  to our analysis in Chapter II, a relational
graph model for discriminating water and shadows can be gen-
erated [ see Fig.4]. This model is represented by an abstract
relational structure in which the nodes represent regions
labeled with their property values and the arcs represent the
relationships among regions. Usually, such model is often
very difficult to formulate, since the constraints on allow-
able property values and relationships are hard to define.
However, the results that we have from our low level classi-
fication provided better labeling accuracy than a simple
segmentation did. Therefore the relational graph model that
we need is much simpler than the usual one. From Chapter II,
it is obvious that all .shadow regions on the radar image re-
sult from three-dimensional objects on the terrain surface.
These objects are called shadow-making objects, and the cor-
responding regions are called  shadow-making regioﬁs. Note
that a shadow-making object is not necessarily an object

which is in shadow on the image. However, it causes an adja-

V Using a relational model to reduce ambiguities 32
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a cent object to be in shadow. We extract the shadow and
shadow-making region pair in two steps. First, we extract

the regions which are adjacent. in radar look direction to

b R I TR

dark regions. Second, we select the regions which have a L,
long common boundary with a neighboring dark region in the :
direction away from the radar antenna. If the. adjacent
.I shadow-making objects are not flat, then the extraction of s
shadow~making regions becomes simply the extraction of bright

linear features.
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where +RD: radar look direction.
-RD: opposite to +RD.
Les: length of shadow region along +RD.
BLF: bright linear features.
-===>: spatial relation.
ADJ: adjacent.

Figure 4. Relational graph model: for water, shadow
and others.

Accordinq to the relational model, a set of decision rules

are determined as follows:
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Assign a region to shadow, if the region is in either of A
the following two cases:

1) A region which is assigned to shadow by the low

level iabeling is surrounded by other non-water regions.
2) A region which is assigned to shadow by the low

level labeling is adjacent to bright linear

features in the radar look direction.

Assign a region to water, if it is in one of the following

cases:

1) A region is assigned to water by the low
level labeling is adjacent to bright linear 5,§ﬁ

features in the radar look direction.

2) A region which is assigned to water by the b
level labeling is surrounded by other non-shadow re-
dgions.

3) A region which is assigned to water by the low

level labeling has a length longer than the specified (Eﬁﬁ
limitation of shadow length along the radar look di- ﬁ&;j

b

rection. . .

4) A region which is assigned to water by the low
+ level labeling has some vegetation on it.
Assign a region to be a false shadow region and merge it Lﬁﬂ
to its surround, if the region is in one of the following 3
three cases: \1~'
~
1) A region which is assigned to shadow by the low L

. level labeling is surrounded by a water region. sz{

V Using a relational model to reduce ambiguities 3s ?L
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} 2) A region which is assigned to shadow by the low Eé%?
;5 level labeling has a length longer than the specified E&;
» limitation of shadow length along the radar look di- &gi
rection. o

- 3) A region which is assigned to shadow by the low
' level labeling is between a water region and some other . b
non-shadow region. -ff
Assign a region to be a false water region and merge it :;
;‘ to its surround, if the region which is assigned to a water ;32
B region by the low level labeling is surrounded by a shadow %&;
region. :;&5
For the above relational model, the shapes of water re- Si:

{: gions and shadow regions are arbitrary, so the classical re-
gion attributes to represent an object such as medial axis
etc. are not helpful in this situation. Also, the represen-
tation of regions by circumscribing boxes is not suitable for
our case, because sometimes a spurious adjacent or surround

- relation will hold between boxes of two regions, while in

fact it is not true of the regions themselves. We choose tf;
several structural measurements for the regions. They are: %i}
the size of the region; the relative position of different :;;
adjacent regions along the radar look direction; the maximum "
length of the region along radar look direction, the region :ig
ﬁ state (interior to the image or touching the boundary of the :;?
: image) and the number of its boundary pixels. The algo- ;QE
3 rithm for measuring these spatial relations is as follows. E;S
i ﬂ(%
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First, the region indexes of the symbolic image obtained
from low-level processing are redefined. Each region is
identified by a unique region identifier. However, in the
three diqit‘index, the first digit represents the original
low level labeling. For example, the water region index
starts from 100 and the shadow region index starts from 200
etc.. Thus, we still can recognize the initial assigned label
from the new seguential index.

Second, it uses a linear geometric transformation to ro-
tate the symbolic image to a possition such that the hori-
zontal scanning line is parallel to the radar look direction.

Third, it scans the symbolic image line by line in the
radar look direction. If the scanning line meets a new re-
gion label, the scanning process will be interrupted and a
tracing process which traces the region's external boundary
will start. We describe a one-pass, depth first boundary
tracing procedure using a left first, clockwise directed four
connected neighborhcod search technique for tracing a region
boundary:

1) Record the coordinates of the starting point of the
region, keeping the region always on the right side of the
tracing direction and trace the boundary in a clockwise di-

rection.

2) For each successor, detect the next tracing direction -

by searching the same label from the four connected neighbors

in the order starting from the left side of previous moving

V Using a relational model to reduce ambiguities 37
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direction, then the front, the right, and finally the back
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3) Record the left side adjacent region label and its
- staring position and end position in the tracing process.

4) Count the number of pixels of the region boundary in
the tracing process. L
- 5) Mark the region state. Mark O indicates that the region
g is completely within the image. Mark 1 indicates the region
N touches the image boundary. ;@4
- | 6) If next point=starting point, then stop tracing, go to
step 7, else go to step 2.

7) Continue the scanning process from the break point. ;;i
Compute the maximum region length along radar look direction Ffi
and the region size,

8) Check every label that the scanning line met with by

means of a hash table. If the region has been traced, go to

step 7, else go to step 1, until the last line.
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=$ Previous moving direction.

Current position

N Neighbors to search !

Figure 5. Direction and order of searching: previous D
moving direction (1) left to right, (2) top A
to bottom, (3) bottom to top, (4) right to
left. .;'-
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The high level image analysis techniques require rapid
access to region information and to the relations between
regions. For every region, therefore, the region attributes
and the relations of adjacent regions (between or surround)
are stored in a big list. And a hash function is used for fast
searching and accessing to this structural information. After
that, a property file which contains a list of property val-
ues for the above measurements can be created. Then the spa-
tial reasoning process simply becomes a table-look up
procedure according to the structural decision rule described
previously.

To simplify the algorithm further, it is necessary to
eliminate many small regions conposed of a few pixels. This
is reasonable, because our low level classification based on
texture features is a local, not pointwise, phenomenon. It
cannot be computed reliably for small regions or boundary
cases. As a result, ambiguities may occur in a small size

of object and the boundary region.-’
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VI.EXPERIMENTAL RESULTS

A set of SAR images was tested using the system described

in this paper. These images were collected over Huntsville,

Alabama on 17 June, 1977 and collected over Elizabeth City

area on 10 October, 1980. Because the initial data have a

very wide gray tone range, we gquantized the data into 64 or

128 gray tone levels for convenience of processing.

EXPERIMENT 1

In this experiment, a set of basic investigations are

carried out on the radar image data. We examine the

histograms of the radar images in the different cases. In

the original image, the gray tone values spread from 0 to

65535, but most of them are within the interval between 1400

to 4000. After requantization, the histogram shows that the

gray tone values are distributed from O to 63 with a mean 21.6

and variance 328. From both histograms, we see that their

distribution shapes are like [ see Figure 8 and Figqure 9].

Comparing the histogram of the sampled water region with that

. of the sampled shadgw region [Figure 10 and Figure 1ll1l], we

can see that the gray tone values in both regions are very

low and they clearly overlap from O to 16. However, the mean

and variance of the sampled water region are lower than those

of the sampled shadow region. By examining the histogram of

Vi.Experimental results




texture erntropy values [TFigure 12], we see that it has a
bimodal shape distribution. The left mode may be the values
of possible water and shadow regions and the right mode may
be that of others. To see the difference of entropy value in
water region and shadow region, we examined the entropy val-
ues in both regions [Figure 13, 14]. The result is that they
overlap each other in an interval between 44 to 75. It is
different from the gray tone histograms in that the entropy
distribution of the shadow region shifted a little right to
that of th? water region. Meanwhile, the mean and variance
of entropy of shadow region are also greater than that of
water region.

Almost the same situation occurs in the histogram of in-
verse different moment texture values [ Figure 15 to 17]}. It
is noted that the histogram of inverse different moment in
the sampled shadow region is distributed widely from 44 to
186. This means that it overlaps with tﬂat of other land re-
gions also. More comparisons were made by examining the
histograms of texture values of the filtered SAR images
[Figure 18 to Figure 23]. The results show that the differ-
ences of mean and variance of texture values between the wa-
ter and shadow regions in the filtered image are greater than
that of those regions in the image before filteriné.

From above examinations, we conclude the following prop-
erties: 1) the requantized image almost keeps the same dis-

tribution shape with that of initial image; 2) the histogram
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of the sampled water region clearly overlaps that of -the
sampled shadow region in any one-dimensional feature space (
either the.gray tone, entropy and inverse difference moment
); 3) the histograms of three features in the filtered image
are really different from the original image, although this
effect can not be seen in the corresponding gray tone images;
4) most of histograms exhibit a Gaussian like shape.

All of these provide useful information for our recogni-
tion task. For example, point 2) indicates that a single pa-
rameter may not sufficiently discriminate the water region
from the shadow region in a radar image. This is further
confirmed by the following experiment in which the algorithm
proposed by Davis et al[ 14 ] is used. We extract the in-
teresting regions by 1), computing texture cooccurence gray
tone levels, 2), averaging the results, and 3), thresholding.
The results show that this procedure can not discriminate the
shadow from the water. These two categories are mixed [ see
Figure 24 to 27 ].

Also, the bright linear features present in the radar im-
age are examined. We use the GTCM to éegment the image into
three categories. The first category consists of possible
water or shadow regions. The second category consists of
bright features. The third category is everything else. The
GICM preserves the bright lines and provides a structural
feature for the relationship between these lines and the

possible water or shadow regions [ Fig.28 to Fig.30 |

V1.Experimental results
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EXPERIMENT 2

To show the effects of using the Multi-Threshold Adaptive

filtering, several SAR images were processed and compared.

The corresponding generalized gradient image [ Fig.32 ] shows
the different local activities. The black color indicates the ‘ -
lowest local activity so that .the moving average filtering

was applied. The white indicates the highest local activity

so that the Median filtering was applied. The .blue and the t‘-'
red indicate cases between above two situations so that the l,:-_E':'F_
Sigma filtering and weighted edge filtering were applied,
-, respectively. Thus, different filtering strategies were ap-
plied to the regions according to the generalized gradient
image. It seems that there is no obvious change between the
original image { Fig.8 ] and the filtered image [ Fig.31 ].
Almost every thin line, finé feature and basic texture in the
image are preserved. However, there are significsnt changes
that we can see from the textural image. It is clear that the
entropy and the inverse difference moment computed from the

filtered image are different from that of the original one

(Fig.35 to Fig.38 ]. These changes are due to the removal
of the noise. The interesting thing is that these changes
can be controlled by setting different thresholds. Fig.34
shows the results from another set of threshold values. The

generalized gradient image here is changed and it turns out

V1.Experimental results 44
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that more details and weak texture would be preserved in this

case.
To see how the MTA filter improve the low-level labeling
result more obviously, we added Gaussian normal noise N(0,c?)
with different ¢ values to the SAR images. Then the same
statistical classifer as we described in Chapter IV were ap-
plied to the neisy image, the filtered image and the original
image, respectivelly. The relative classification accuracy
is measured by comparing them with that of original image
¢ | classification [see Table 1 to Tabel 3 |. It can be seen from
these results (Figure 39 to 4l1] that the labeling accuracy
of the image filtered by MTA filtering is.much better than
l that of the noisy one. Before filtering, almpst all ‘the wa-
ter regions in the noisy image were mislabeled as shadow re-
gions and some shadow regions were mislabeled as others [see
Figure 40]. However, for the filtered image, the labeling
result was as good aé the that of original one [see Figure
41]. The tables show that the relative accuracy can be im-
proved from 61.9 percent to 92.2 percent (with noise o=

10),even from 65.5 percent to 96.5 percent (with noise o0=5).

LI ot i B I ST T
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Table 1.

Contingency tables for classification results EAEN
of noisy image and MAT filtered image RS
(column = assigned class, row = true class,
WR = water, SD = shadow, OT = others ).
~ Scale factor for the number of pixels =
| Noise ¢=10 for the noisy image.

100. s

Table 1 (a) Result for noisy image

* overall classification accuracy:

, class WR sD oT total Acc (%)
. WR 7 0 1 8 0.7 "
L SD 857 121 57 1035 73.3 .
oT 41 44 1494 1579 96.3 E
*Sh -
total 905 165 1552 2622 61.9 ) .
l Table 1 (b) Result of MTA filtered image R
zo TTTTTTTTTTTTTTTmTTTmm e
- class WR SD oT total Acc(%)
WR 831 25 1 857 91.8
sD 63 130 9s 288 78.7
oT 11 10 1456 1477 93.8
total 905 165 1552 2622

ratio of the number

¥ correctly classified pixels to the number of total

- classified pixels. R
. o l‘.\‘
- Al
.- SN
AT
O IARRS
DS
A P
. .
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Table 2. Contingency tables for classification results
of noisy image and MTA filtered image
(column = assigned class, row = true class,
WR = water, SD = shadow, OT = others).
Scale factor for the number of pixels = 100.
Noise ¢=5 for noisy image.
*: Overall classification accuracy.

rTyYYry

Table 2 (a) Result of noisy image

- - G L . L D D D e D D W L R D D D T D N G = D WP W D L D A D P WD WD YD D D R WD W W W e -

SD 827 142 40 1009  86.1
OT 13 23 1511 1547  97.3

total 904 165 1583 2622 65.5

27,
i N
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Contingency tables for classification result
of noisy image and MTA filtered image

( column = assigned class, row = true class,
WR = water, SD = shadow, OT = others).

scale factor for number of pixels = 100.

*: Overall calassification accuracy.

Noise o= 3 for noisy image.

Table 3 (a) Result of noisy image

Table 3 (b) Result of MTA filtered image
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EXPERIMENT 3
The lbw level statistical labeling algorithm is examined

in this'experiment. Two radar images which definitely contain

water regions and shadow regions are chosen as the test data. .
In the first image [ Fig.6 ], the shadows are created by high : |

reliefs (some of them are the intermediate case described in

Chapter II ). 1In the second image [ Fig.48 ], the shadows iﬂ%%
\ are made by the high flat objects. The Gaussian Maximum f“‘J

Liklihood Classifier is applied to these two images. The
feature space for classification consists of gray tone value
and texture values. Then the 3-dimensional mean vector and 3
by 3 covariance matrix are estimated from the training sample

set [ Fig.42 and Fig.52 ] for the water region and the shadow

region and others, respectively.

The texture features, both entropy and inverse difference
momeng, are extracted from the GTICM which are computed for
different window sizes and different distances. The exper-
iments show that the window size and the distance of GTCM
have significant influence on the accuracy of classification.
An unsuitable window size and distance may cause an incorrect

- ' texture feature extraction. As a result, ambiguities on
3 boundary and mislabeling of the small regions will occur in

the result.

(NN
a_s .’
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It can be seen in classified images that there are some 5153
? land regions which contain the water regions [ Fig.43 and %éﬁé
Fig.55 ]. This is a low probability event and probably re- ?&ﬁﬁ
presents a classification error. Also there are some shadow 'Tﬁi
regions along the boundary of the water body [Fig.43]. This
probably represents a classification error too. For the il

first image, the GTCM wiﬁh a window size 12 by 12 and a dis-
tance 6 [ Fig.46 ] produces the better result. For the second
image, the classified image using a window size of 16 by 16

and a distance 8 has less ambiguities [ Fig.S57 1.

To improve the overall classification accuracy, the adap-

a tive relaxation using contextual imformation is applied to

-

A
.

the images of Figure 6 and Figﬁre 48. The initial statis-

r v r
02l

AN

tical labeling is determined by the normalized maximum like-

I3
X

v -
i, l.

[s
v

lihood estimate. The immediate context, the neighborhood i;ﬁ'
context and the next larger context in the initial labeling
are measured once and combined into the compatibility func-

tion. Comparing Fig.43 with Fig.44, Fig.57 with Fig.58 and

- Fig 59, the effect of reducing the ambiquity in the shadow o
- e
- regions is obvious. However, we can not expect this method {&tﬁ
» ‘--;“‘

]

to change the classified result too much, since the initial ﬁﬁi

)
0
;e
‘v 'r
)

labeling error can influence the degree of the improvement.

v
AR

Further improvement can be cbtained from the use of spatial

.
".‘v'. v{‘\ .
“ '~‘

relations between the structural features. By human inter-
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pretation, however, we can confirm that most classified re-

o

gions, either water or shadow, in Fig.44 and Fig.59 are

o,
L

-
o

-
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correct. In other.words, the low level classified results
provide enough information for further structural recognition
at high level.

To examine the performance of adaptive relaxation
quantitatively, a set of LANDSAT MSS data collected from the
Roancke area in 1979 were tested. The initial labeling prob-
abilities for 3 classes of urban or built-up land, agriculture
and forest were estimated by the normalized maximum likeli-
hood method. The initial non-context labeling results [
Figure 61 ] were obtained by using Maximum Likelihood Deci-
sion rule. The black region is urban or built-up land, the
white region is the agricultural land, 3nd gray region is
forest land. The corresponding mean and covariancte matrix
are shown in table 4. As ground truth in this experiment, we
use the results of a hand segmentation obtained on basis of
the spectral information from the corresponding aerial pho-
tographs [Figure 62&. The adaptive relaxation algorithm with
dynamic compatibility cocefficients Jij(t) were applied to a
block of 150 x 150 pixels. The initial error of this block
is 32.8 percent. Within three iterations, this error reduced
to 25.2 percent. This experiment clearly shows that there
is no degradation and most improvements of labeling accuracy

are obtained in less than 5 iﬁerations and then stabilized.
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TABLE 4 The Mean and Covariance

X Category 1 1116 pixels
Mean . Covariance Matrix R
23.507 8.1442 6.3528 1.7889 -0.93896 &fﬁf
& 27.972 12.665 2.8140 -2.2597 :ii;
43.950 18.394  20.999 - ?:q}
41.680 31.051 o
Category 2 234 pixels
Mean Covariance Matrix
20.265 " 4.0409 5.6659 2.1560 0.19782
. 25.051 18.117 -0.05833 -7.2051
- 47.637 25.223 28.146
- 48.415 40.114
. Category 3 533 pixels
? Mean Covariance Matrix
15.448 7.260S 12.586 18.150 20.816
19.229 29.182 39.309 46.316 “
29.553 59.118 66.850
30.298 ' 80.026
. B¢
:-
: ST
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EXPERIMENT 4

N To examine the performance of the structural recognition

algorithm described in Chapter V, two symbolic images [Figure
44 and Figure 59] obtained from the low level labeling of SAR
test image 1 and test image 4 were tested. After eliminating
small regions and redefining the region index, the results :

are shown in Figure 65 and Figure 66. The radar look direc-

tion for both images is approximately from North to South ( '
Top to Bottom), so we rotated the images 90 degrees before
measuring their region attributes and relations. Using the
depth first tracing strategy described in chapter V, the
structural contextual features were measured and the corre-
sponding property lists were created [see Table S5 and Table
6].
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Table 5. The region attributes and relations list for ‘ ?ut!

Figure 65. ( Rl = the surrounding region if R2=0. S

R2 = the second adjacent region that is not in S

the same class as Rl.)

K

Region Region Max. Adjacent State Region Boundary R,

number index length R1 R2 mark size length SN
1 100 416 201 o 1 7849499 3153
2 101 11 209 0 0 351 51
3 102 25 210 0 1 2592 88
4 103 65 233 o] 1 85277 424
S 104 11 234 0 o] 336 52
6 105 15 235 0 0 1113 67
7 200 20 300 0 1 351s 106
8 201 23 100 300 1 13587 1387
9 202 12 100 0 1 684 79
10 203 18 100 o 1 1928 11s
11 204 36 302 100 1 46843 3663

12 205 16 300 0 (o] 1476 60 AR

13 206 12 100 0 0 472 S1 ozl

14 207 18 100 o 0 1156 94 I,

15 208 9 302 0 o] 459 55 R

16 209 32 302 o] o] 12285 378 S

17 210 22 302 102 0 3629 297 LI

18 211 11 100 0 o] 494 41 SETR

19 212 14 302 0 0 742 63 e

20 213 9 100 O 0 344 37 -

21 214 20 302 0 o] 3387 120 f&ﬁ:

22 215 18 100 o] o} 5184 370 AN

23 216 13 100 0 o] 1680 165 RO

24 217 12 302 0 0 520 61 el

25 218 18 302 0 o] 2378 125 L

26 219 16 302 o] 0 848 84 ; i

27 220 17 302 0] 0 1670 83 ce

3
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Table S The region attributes and relations list for
Figure 65. ( continued)

Region.Region Max. Adjacent State Region boundary
number index length R1 R2 mark size length

28 221 10 302 0 0 606 68
29 222 11 100 o] 0 475 56
30 223 8 302 0 0 384 51
31 224 44 302 0 1 12302 291
32 225 20 100 o] 0 1686 110
a3 226 19 302 0 o] 1501 10S
32 227 12 302 0 o 476 53
35 228 13 100 0 0 1717 17S
36 229 21 302 0 0 2013 100
37 230 24 302 o) 1 2339 67
38 231 9 100 0 o] 371 47
39 232 20 302 0 o) 1293 92
40 233 29 302 103 1 5713 494
41 234 23 302 0 0 6147 194
42 - 235 20 302 0 0 3343 137
43 236 9 302 210 1 329 33
44 300 169 200 0 1 805522 968
45 301 13 201 0 1 736 61
46 302 512 204 0 1 12408839 3917
47 303 13 201 0 0 764 47
48 304 19 207 o] 0 1911 60
49 305 27 215 o] o - 5104 114
50 306 10 216 0 o) 2368 133
51 307 47 215 0 o] 15413 237
52 308 11 204 o 0 668 S1
53 309 30 225 0 o] 5590 80
54 310 10 228 0 0 2552 140

V1.Experimental results 58



AW

W

, ".4" ..‘.‘ o ':’

Table 6. The region arttributes and relations list for

. Figure 66. ( Rl = the surounding region if R2=0.
e R2 = the second sdjacent region that is not in

' the same class as Rl.)

f:fj Reg. Reg.  Max. Adjacent State Reg. Boundary
: number index length R1 R2 mark size length
' 1 100 319 300 204 1 9473378 2318 -
2 101 21 300 215 1 1156 105 S
o 3 200 21 300 100 0 6321 439 R
4 201 27 100" 300 0 10056 543 R
o 5 202 18 300 0 0 1002 97
s 6 203 15 300 0 0 731 51 R,
h 7 204 3s 100 300 1 28028 927 ol
8 205 . 24 300 0 0 - 2053 177 A
L 9 206 23 300 0 0 5229 229 R
b 10 207 14 300 0 0 902 100 _
[~ 11 208 24 300 0 0 12269 341 RSN
e 12 209 16 300 O 0 707 58 O
13 210 22 300 0 1 7097 376 s
14 211 34 300 0 0 24349 640 N
15 212 21 300 0 0 4591 203 NN
- 16 213 31 300 0 0 27296 439 e
17 214 17 300 o 0 848 66 NI
18 215 32 101 300 1 26779 406 A
19 216 22 300 o] 0 3786 91
o 20 217 16 300 1 2184 83 O
< 21 300 448 200 100 1 16166526 2953 R
frl
T
Wit
RN
Ay
|
hE S
A SN
- 5'\?.\:"
._: &‘w «
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R g
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For image 1, there are 54 regions. According to the low
level labeling, 6 regions were assigned as water regions, 37
regions were assigned as shadow regions and 11 regions are
assigned as others. For image 2, there are 21 regions. In
the low level labeling, two regions were assigned as water
regions, 18 as shadows and one as others. From Table 5, we
can see that there are several closed water regions (e.q.
region 2, S, 6) with small size are surrounded by shadows
and some closed shadow regions (e.g. region 13, 14, 18, 20)
are surrounded by water regions and some shadow regions (e.g.
11, 17, 40) with a longer maximum region length in radar look
direction are between the water region and others. (A similar
case can be found in region 7 and 18 in Table 6.}

By the structural decision rules described in Chapter V,
which is based on the real world model described in chapter
II, all these regions that we mentioned above are misclassi-
fied and should b.e ¢orrected. Those regions with region state
mark 1 are treated as partial regions. We are not sure
whether they are surrounded by other regions or not. So we
leave them alone. Finally, a new labeled image was generated
according to the results of the spatial reasoning using the
property lists. The results are shown in Figure 67 and Fig-
ure 68. Compared to the resﬁlts of low level classification,
the new results are more accurate. In a final experiment,
the mean and covariance estimated from test image 4 (Figure

S2] was used to classify another image [ Figure 69] collected
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in the same period and over the same area. The two texture

features and the gray tone feature are used as before. Using

i the Qame statistical classifier, we got the low level label-.
ing result which is spown in Figure 70. For the high level,
the recognition results are shown in Figure 71 and Figure 72

i and the corresponding property list is shown in Table 7. The R
results indicate that the high level recognition using the

relational model can reduce the ambiguity so significantly

that it allows the low level recognition procedure to be more

N

‘ flexible. It provides a way in which we may use a limited
number of training samples in one image to recognize objects

i in a set of radar images collected in the same condition.
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Table 7.

for figure 71.

Region Region Max.

LAl L LN R
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The region attributes and relation list

{ Rl = the surounding region
if R2=0. R2= the second adjacent region that
is not in the same class as Rl.)

Region Boundary
length

size

29282
1652

3938268

1916
7359

201797

11302
3089
1572
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Figure 9. Histogram of quantized image 1:
quantization level = 64.
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Figure 10. Histogram of sampled water area: from quan-
tized image 1.
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Figure 11. Histogam of sampled shadow area: from quan-
tized image 1.
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Figure 12. Histogram of texture entropy (q): from the
: quantized image 1.
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Figure 13. Histogram of texture entropy (s): from sam-
pPled shadow area of quantized image 1.
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Figure 17. Histogram of inverse different moment
(s): from sampled shadow area of qQquantized
image 1
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shadow regions

on land are misclassified as water regions.

Segmentation of image 2 (a)

Figure 26.
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4, and a Gaussian Maximum likelihood
classifier.

VI.Experimental results 101

- . A . N * S - " e
- T . . - I ~ - e TP SRR O g ST
o T e . B - RN - . I RN oL N
Aty a AP WP i - 3 i PPl W P AAT W sl A PRI, WY i i dnsilied




-water,

Large black area

small black regions on land- shadows.

Test image 4.:

Figure 48.
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Figure 49. Quantized image 4: quantization level =
N 128.
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N Figure 56. The mean and covariances for fig. 57: esti-
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Figure 57. Labeling result for image 4 (d): texture
computed using a 16x16 window and distance
8, labeled by Gaussian ML classifier, black-
water, blue-shadow, white-other.
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Figure 58. Relaxation result for fig. 57 (a): 1 iter-
ation using adaptive relaxation, black-
water, blue-shadow, white- other.
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Figure 59. Relaxation result for fig. 57 (b):

5 iter-

ations using adaptive relaxation, black-
water, blue-shadow, white - others.
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Figure 60. Labeling result for image 4 (e): texture

g computed using a 20 x20 window and distance

) 10, labeled by Gaussian Maximum likelihood

E classifier, black- water, blue-shadow,

" white-other.
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Figure 61. 1Initial labeling fesult: by non-context la-
beling using Maximum Liklihood decision

rule. Image size: 150 x 150.
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Figure 64. Labeling result: fourth iteration using
product neighbor function and dynamic compat-
ibility coefficient. Image size: 150 x 150.
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Figure 67. Spatial reasoning result 1l.: Black: water,
Blue: shadow, White: others.
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Figure 68. Spatial reasoning result 2.: Black: water,
Blue: shadow, White: others. e
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Figure 69. Test image S5: Collected in the same condi-
tion as test image 4. Image size: 512 x 512,
quantization level: 128.
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number=36, categories: water,shadow and oth-
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Figure 72. Spatial reasoning result 3:
Blue: shadow, White: others.
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VII.CONCLUSIONS

We presented a scene analysis system for identifying the
shadows and water on SAR image in this report. All exper-

iments done have shown that this system is practical for our

purpose. From the final results, we can see that most shadow
regions and water regions were identified correctly.
This system was designed so that it used the contextual
information sufficiently, wherever in the preprocessing , in L "3

the pixel level labeling or in the region level reasoning.

In this way, it overcame the specific identification diffi- -
culty that the objects to be discriminated were only with oo

subtle differences in tone and texture.

In the preprocessing, we described a region .-dependent ‘“:
Multi-Threshold Adaptive filtering technique for texture pre- [-
serving noise ‘removal. It used a generalized gradient func-
tion whichreflected the local contextual information as a cue
to determine the nature of filtering for each local neigh- L—»

borhood. As a result, a balanced texture preserving and
noise removal effect was simultaneously achieved. X

In the low-level labeling, we discussed a probabilistic

relaxation algorithm in which the adaptive compatibility \(_‘;

coefficients were computed by local average estimate and were .,

dynamic in the whole updating process. It extracted most

contextual information in pixel level just in the fewest \
VII.Conclusions - 127 :a
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number of iterations. Results show that it successfuly re-
duced the labeling error in less than 5 iterations and then
stabilized. There was no degradation in the entire re-
laxation process.

In the high-level spatial reasoning, the relational graph
model based on our prior knowledge of water and shadow re-
gions on SAR imagery was constructed. The corresponding
structural decision rules were derived from the relational
modél. To measure the contextual information in the region-
level, we described a one-pass, depth first boundary tracing
procedure using a left first, clockwise directed four neigh-
borhood search technique. Using this method, a property file
which contained a list of region attributes and region re-
lations was created. Then a spatial reasoning procedure was
performed according to the set of structural decision rules.
It reduced the errors and ambiguities resulted from low-level
labeling significantly. The most false shadow regions and

water regions were identified and corrected.
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