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THERMAL EXPANSION OF ELASTIC-PLASTIC

COMPOSITE MATERIALS

by

George J. Dvorak
Department of Civil Engineering
Rensselaer Polytechnic Institute

Troy, NY 12180

Abstract

Exact relationships are derived between instantaneous overall

thermal stress or strain vectors and instantaneous overall mechanical

stiffness or compliance, for two binary composite systems in which one

of the phases may deform plastically. Also, the local instantaneous

thermal strain and stress concentration factors are related 
in an exact j d

way to the corresponding mechanical concentration factors.. The results

depend on instantaneous thermoelastic constants and volume fractions of

the phases. They are found for fibrous composites with two distinct

elastically isotropic or transversely isotropic phases, and for any

binary composite with elastically isotropic phases. The results indicate

that in the plastic range the thermal and mechanical loading effects are

coupled even if the phase properties do not depend on changes in temper-

ature. The derivation is based on a novel decomposition procedure which

indicates that spatially 6niform elastic strain fields can be created in

certain heterogeneous media by superposition of uniform phase eigen-

strains with local strains caused by piecewise uniform stress fields

which are in equilibrium with prescribed surface tractions. The method

4s extended t. Jiscretized microstructures, and also to analysis of

moisture absorption and phase transformation effects on overall response ."

and on local fields in the two composite materials.
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1. INTRODUCTION

The response of elastic composite materials to spatially uniform

changes in temperature is well understood. An essential contribution to

the solution of this problem was made by LEVIN (1967), who found that . 4

macroscopic thermal expansion coefficients of a composite medium,

consisting of two distinct isotropic phases of arbitrary shape, depend

in a unique way on overall elastic modull of the aggregate and on

thermoelastic constants of the phases. Thus, If the elastic moduli are

known, the thermal expansion coefficients can be calculated. This line

of inquiry was extended by SHAPERY (1968), who derived bounds on thermal

expansion coefficients of multi-phase composites with isotropic phases,

while ROSEN and HASHIN (1970) applied LEVIN'S approach to binary

composites consisting of anisotropic phases, and they also found bounds

on overall thermal expansion coefficients of multiphase materials.

BUDIANSKY (1970) gave self-consistent estimates of several thermal and

thermoelastic properties of multiphase isotropic mixtures. Among the

more recent contributions to the subject are the papers by LAWS (1973)

and CRAFT CHRISTENSEN (1980).

The response of elastic-plastic composite materials to uniform

thermal changes has been explored only to a limited extent. This is a

more difficult problem because at least one of the phases is inelastic,

and the deformation of the phases and of the composite is affected both

by the overall thermal change and by the current macroscopic mechanical

loading. In the plastic state the thermal and mechanical loading A

effects are coupled, even if the mechanical properties of the phases do

not depend on temperature. The problem is, of course, nonlinear and

. .... . . .,...-,. .o
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must be solved in an incremental way. Therefore, the connection between

the two effects must be examined within a combined load increment. A

representative volume element of the composite is first subjected to a

certain uni form initial macroscopic stress or strain and to a uni form

thermal change; then, both the stress or strain and the temperature

experience a small simultaneous change to another uniform state. Over-

all instantaneous stiffness and compliance, and thermal stress and

strain vectors are sought.

Earlier solutions of problems of this kind have been limited to

simple loading situations in fibrous composites, such as pure thermal

change (DE SILVA and CHADWICK 1969) or thermal change combined with '

axisymmetric mechanical loads (DVORAK and RAO 1976). More recently

(DVORAK 1983) it was shown that the total overall strain increment

°.

caused in a prestressed fibrous composite by a small uniform thermal -

change can be related in an exact way to thermoelastic constants of the

phases and to instantaneous overall compliance. No restrictions need to

be imposed on the type of prestress or on the matrix constitutive law

except for plastic incompressibility, but the fiber must be isotropic or

transversely isotropic and remain elastic. This result has been applied

in analysis of a composite cylinder element (DVORAK and WUNG 1984)

subjected to axisymmetric mechanical loading, uniform thermal changes,

and variations in matrix yield stress.

The present paper develops the connections between overall instan- k,22

taneous mechanical and thermal properties in a more general way. First,

it is shown that the overall thermal stress and strain vectors for an .-

elastic fibrous composite with transversely isotropic phases can be

obtained through superposition of certain uniform fields in the phases, "T9'-

10

and ariaionsin mtrixyiel strss. - -
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and local fields caused by a uniform overall stress or strain. A

similar result is derived for any composite consisting of two isotropic

phases. These results are then utilized to find instantaneous thermo-

plastic properties and local fields of these composite systems for

simultaneous mechanical and thermal load increments. Extensions of the

results to discretized microstructures, and to additional load effects,

such as phase transformations and moisture absorption are discussed as

well.

1, ' t- ~~codes
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2. ELASTIC FIBROUS COMPOSITE

A binary composite material consists of a matrix reinforced by

aligned and bonded cylindrical fibers. Both phases are assumed to be

homogeneous and transversely isotropic about the fiber direction x3. In

the transverse x1x2-plane, the cross sections and distribution of the

phases can be arbitrary providing that the composite is statistically

homogeneous, transversely isotropic, and free of voids.

A representative volume element V of the composite is selected and

subjected to a certain loading or deformation history which is imposed

through application of uniform overall stresses To or strains To to the

surface S of volume V. Also, a certain uniform thermal change has been

applied such that the current temperature in V is constant and equal to

0o . At this particular point of the loading sequence simultaneous

increments of d and de, or d -and de, are applied to V.

The response of the composite to these load increments is described

by constitutive equations:

dr= MdT+ mde , d = LdF- zd, ()

where M,L are (6x6) overall stiffness and compliance matrices, and m,t

are (6x) overall thermal strain and stress vectors*.

While M and L are known, we wish to determine the vectors m and 1.

To this end it is necessary to specify the constitutive equations for

field averages of the phases: .;

*We use the customary notation (HILL 1963, LAWS 1973) where, except as

noted, (6x6) matrices are denoted by lightface uppercase Latin letters,
and (6x) vectors by boldface lowercase Latin or Greek letters. Top
bars denote overall volume averages. ,..

.. . ;-.-.......- ..-... ... .......... ..... ..
• • "~~~~~~~~. . . . . . . o.. . .. . . ....• o ". " . ....". .o° .. ,• " . "
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der Mr dur + mr d6, dar Lr dcr - .rdO (r : f,m) (2)

which are analogous to (1); f,m indicate the "fiber" and "matrix"

phases. In elastic composites, these phases are interchangeable and f,m

are used merely for convenience of notation.

Since both the composite and each of the phases are transversely

isotropic about x3 , it is possible to write a subset of (1) and (2)

which relates the first two stress and strain invariants. With top bars

and subscripts r,f,m omitted in (1) and (2) one obtains (DVORAK and

BAHEI-EL-DIN 1979):

1 nrdal

{do + de (3)
de k do :...

2 21

do [k Z. de kaII 1dO (4)," -"

Ida 1{ 8L
do X n de ea+n
2 L2•

where k,t,n are Hill's (1964) elastic moduli, E= n - t2/k, a 2aT,

B = al, and aT and aL are linear coefficients of thermal expansion in

the transverse plane and longitudinal direction, respectively. The

strain and stress invariants are defined as:

de de + de de de (5)
1 11 22 2 33 (5)

do1 - (dall + da22 ) do2  do33  (6)

M

With appropriate values of elastic moduli and coefficients Q,B,

equations (3) to (6) can be applied either to the composite medium or to

o . .'. ... .... ... .. . .. .,.,.. .,. , ... .. . . . . ,L, , 'p. ...
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each of the two phases.

As long as M,L do not depend on de, m on dW, and t on d-, the ..-

thermal and mechanical contributions to dE and dF in (1) can be found

separately and superimposed. By assumption M and L are known, hence the

first terms on right-hand side in (1) are evaluated without difficulty

for any given da or . To find m and.1, and the second terms in (1),

we utilize the decomposition procedure of DVORAK (1983).

In the first step of the procedure the fiber and matrix phases are

separated and surface tractions which preserve the current local
o o

stresses or and strains Cr are applied to each phase r = f,m. Alterna-
o

tively, surface displacements corresponding to er may be prescribed to
0

preserve are In addition, a uniform thermal change de Is applied to

both phases. The local strains caused by d8 would make the phases in-

compatible if the composite was to be reassembled. Therefore, uniform

tractions d'r, dar of as yet unknown magnitude are applied to th" phases
1 2

simultaneously with de. (The top hats indicate auxilliary uniform

fields used in the decomposition and reassembly of the composite.) This

leads to the following uniform strain increments in the separated

phases:

de =(n do tdo )/k E + d8
1 f 1 f 2 f f f

de (-I do -k do )/k E + B de
2 f 1 f 2 ff f

( m -d)/k E + de

de2  (n do I - do 2 )  f f ?

d c (4 do - k do /k E + B d
2 m 1 m 2 m m -

jr~ _.!
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In the second step of the procedure, the tractions 1 and dr must
1 2

be adjusted to assure compatibility of the phases and equilibrium of

these tractions at phase interfaces and on the surface S of the represen-

tative volume V. Compatibility and equilibrium require that

m f m
dc =ci , dc : i (8)
1 1 2 2

do = I : dST (9)

c da + c do = dSA (10)
f 2 m 2

where dST and dSA are surface tractions which need to be added at S to

preserve overall equilibrium of V while do and d2 are applied to the
1 2

phases. The magnitudes of phase volume fractions c + c = 1 need also
f m

be known at this point.

All strain and stress increments in (7) are uniform, hence equa-

tions (8) to (10) are exact for any transverse plane geometry. These

relations suggest that spatially uniform strain fields can be created in

certain heterogeneous media by superposition of uniform eigenstrains

arde, 1rd in the phases, with local strains caused by piecewise uniform

stress fields which are in equilibrium with surface tractions dSA, dST.

Internal equilibrium and compatibility of the phases in V depend
'r -r ^r ^r L

only on the eight unknown strains and stresses dE , i2, do1, dc 2' and
not on dSA, dST. Therefore, (7), (8) and (91) represent a system of

seven equations for the eight unknwons. To find a solution, it is

necessary to introduce an additional constraint.

* - **°**.," .° °•
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A particular choice which will be useful in the sequel is:

2 1

where p $0 is a constant.

Now, dST and dSA follow from (7), after a substitution of (9) and

(10), and from (8):

a 1 dS T a 2dS A+ a 3de =0 (12)

bdS +b dS +b d6 0 (13)
1 T 2 A 3

where:

nf nm rCM if Im
al k~ + P +

a 2  7f ,ff a3 af am -

b2 - E!f , b 3  O f + S

and:

dST= STde , dSA - sA de (14)

ST -(a~b3 - a3b2)/(alb2 - a2b1) (15)

SA= (a3b1 - alb 3)/(alb2 - a2b1) (16)

At this point we change from the invariants (5), (6) to the (6x1)

stress and strain vectors and write

Sam
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f 1~ d f ;f (17)
del d 22 de de 91 E 3  d d 2  2 d

de-~ de, ~ =E de (18)h d

F rom (7), with (8) to (10), (15), and (16):

g, L (nf -y Xf)/(kf Ef)] ST + 1 a

92 f (-Xf +y kf)/(kf Ef)] ST Of

(19)

l . (nm tm)/(km Em)] ST + 1 m

h2 (tZ + Pkm)/(km Em)] ST S

where

y = pCmS)(C (20)

and, according to (8):

91 h h(21)

Analogous results for stresses are:

do do do ST d6
11 22 1

-f -f(22)

da =do Y ST d6
33 2

do 11 do, 22 do, ST do

(23)
-m -m

Ldo a do P STd8
33 2
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In the final step of the decomposition procedure, the composite is

reassembled and the surface tractions dST, dSA removed. Of course, the

local strains and stresses (17) to (23) already assure that the phases

are compatible and in internal equilibrium, in fact they are equal to

local fields caused in the composite by simultaneous application of de,

dSA and dST. They must be now added to local fields caused in the

composite by surface tractions -dST, -dSA.

The final results assume a concise form with the definitions

h = [h l h h2 0 0 O]T

. E IsT ST sA 0 0 0)T (24)

y [ I1 I y 0 0 O)T

. [1 1 p 0 0 O]T

where C ]T denotes a transpose and the coefficients appear in (11),

(15), (16), and (19) to (21).

Therefore, for d 0, de 0 in (ii):

d m de (25)

m- h - Msa (26)

where m is the overall thermal strain vector and M is the known overall

compli ance.

Also, suppose that the local stresses in the phases are written in

terms of concentration factors:

dor 2 Br do br do , (r u f,m) (27)

.. . . . . . . . .

.. .... . . . .. . . . .. . . . . . ... . .-.. , . '-,.'-"- <

..... .. ,..-. .' . . .- - - - - . - . ... . ...
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and that Bin, Bf are known.

With regard to (22) and (23) one obtains:

bf =Sr Y - f sa

(28)
bm =ST P - m Sa

Similar results can be found for a fully constrained composite

subjected to a uniform thermal change. Recall that the strains (17) and

(18) are actually equal to overall strains under do, dSA, dST. This

follows immediately from (8) and (21). These overall strains must be

removed, and the local fields adjusted accordingly. ~

Therefore, for de = 0, do 0 in (12):

=a -Z do

(29)

z -sa + L h

where I is the overall thermal stress vector, and L is the known overall

sti ffness.

Also, if the local strains are written in terms of concentration

factors:

der Ar de ar do (r =f,m) (30)

and if Am, Af are known, one obtains with the help of (11) to (21):

af (Af 1) h , am (Am I) h (31)

To facilitate applications we note that



dS -.. "

12

m Car T a aL 0 0 O]T (32)

where aT, aL are linear coefficients of thermal expansion in the trans-

verse plane, and in longitudinal direction.

For any binary fibrous composite with known phase preperties and

phase volume fractions, the effect of thermal change is reduced to

equivalent mechanical loads and to certain uniform fields in the phases.

Thus m and I are found in terms of M and L, and ar, br in terms of Ar,

Br. All these relations are exact. While the constant P is a free

parameter, none of the results actually depend on p. For each p one

obtains by superposition a solution to the same boundary value problem.

According to the uniqueness theorem in the theory of elasticity, all I
such solutions must coincide. This can be verified by numerical

cal cul ati ons.

• I .

gy:''i
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3. TWO ISOTROPIC ELASTIC PHASES

Suppose that a composite aggregate consists of two perfectly bonded

elastic phases, which are distinct but isotropic. The microstructural

geometry can be arbitrary, providing that the composite is statistically

homogeneous and free of voids. The composite itself need not be

isotropic, it can be reinforced by aligned, braided, or otherwise

distributed continuous fibers, short fibers, particles of any shape,

and by combinations of such reinforcements.

Assume that the overall constitutive relations are again given by

(1) and that the overall compliance M and stiffness L are known. Also,

let local fields be described by (27) and (30), and assume that Ar, Br

are known. As in the previous section we utilize the subscripts f,m to

identify the two phases, even though we no longer require that either

phase be of cylindrical shape. Local phase properties need be known

only in terms of bulk moduli Kf, Km, and linear thermal expansion co-

efficients af, am.

We again pose the problem described in the previous section: The

composite has been loaded by a certain uniform overall stress a , or

strain c , and uniform temperature 80 .  Simultaneous increments da and

de, or c. and de are applied. The response of the aggregate is sought

in terms of the overall thermal strain and stress vectors m and 1, and
" "i

phase concentration factors ar, br, (r - f,m).

As in Section 2, the phases are first separated, and loaded by ds

and by certain unknown tractions dur. The nonvanishing stress and

strain Increments are

•". .. .... .... ... . .. . ..... .---.- ".---.".'..-'''....---"...-.'-',...'.. .-- ' -", '-',-"-
.,. -. .- .. • . 5 - . .- . - . , . - '- . - ,-,•. .-- -. .. . , • . , ,. - • - , ' ' ,_, , . _ ,' _ ' ', ' '_.
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f f f

do =da =do dSf
11 22 33

" m 'm f....,
do do do dSm

11 22 33 

_

(33)

- f -f -f
dE = d -d = dSf/(3Kf) + af d"

11 22 33

MLSm "m m

de = de = de dSm/(3Km) + am de
11 22 33

To assure equilibrium and compatibility:

f m
dSf = dSm = dS, deij eij ,  (34)

and

dS s do , s = - 3(af -am)/(l/Kf - I/Kin) (35) ,.

The composite is now loaded by three equal overall normal stresses

dS, and by do. Local strain and stress fields follow from (33) and

(34).

Finally, the composite is reassembled and surface tractions dS are

removed.

Let

q - S/(3Kf) + af - s/(3Km) + am

q q [1 1 00 O)T (36)

s s [1 1 0 0 O]T

In analogy with (25) to (30); one obtains
D'':

*I ** * .. ** . . * * '~.- . .f
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For dU = 0, d0 0, in (1)

de m do (37)

m =q -Ms

dO r br do (r =f,m)

bf (I -Bf) S , bm =(I -Bin) s (38)

For dF =0, deo 0 in (1):

S S (39)

z. =-s + Lq .-

de r ar de (r =f,m)

af =(Af - I) q , am2  (Am -I) q (40)

If the composite is macroscopically anisotropic, then M and L can

depend on up to 21 elastic constants and

m = [azl a2 a3 a4 a5a6] (41)

where aj to 06 are overall linear thermal expansion coefficients, de-

fined by (11) at do=0. For a fibrous composite which is transversely

isotropic one recovers (32). For an isotropic composite all a in (32)

become equal to
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0=C' + (cf-cLM) L1
-(42)

where K is the overall bulk mod ul us.
.4

This last equation was derived in a different way by LEVIN (1967).

L~ ,

N:

. . -V

- .* . -_______



.............. P• Y°% 4 .

17

4. ELASTIC-PLASTIC COMPOSITES

(i) Fibrous- composites

Consider again the fibrous composite system of Section 2. Suppose

that the matrix phase is elastic within a certain stress region, but

becomes elastic-plastic when a given yield condition has been satisfied.

The fiber remains elastic until failure. This suggests a metal matrix,

which is usually elastically isotropic. Thus the matrix elastic moduli

in (3) and (4) become related as follows:

24ii

Zm =km mm, nm =km +mm, Em nm - ~m/km

(43)

njm 2(1--.,j) 2M.o " om
kmEmkmEmEm

where Em, vm are the isotropic constants, and am is the linear thermal % .

expansion coefficient of the matrix.

In the plastic range the matrix response is assumed to be the

piecewise linear and given by (2), but Mm and Lm, mm and im are now

instantaneous compliance and stiffness matrices, and thermal vectors, at

a particular point of a loading path. We assume that Mm and Lm are

symmetric, satisfy the requirement of plastic incompressibility of the

matrix, and do not depend on de; mm and xm do not depend on de, but may

be functions of ,. ... N

Furthermore, we assume that the response of the composite to any

purely mechanical loading by uniform 6 or by di is also piecewise linear

and described by (1). Suppose that instantaneous overall properties M

2.'
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and L in (1), as well as instantaneous phase concentration factors Ar, Br

in (27) can be evaluated for any given mechanical loading step. The in-

stantaneous thermal properties m, z, and concentration factors ar and br

are to be determined.

Therefore, we again pose the problem stated in Section 2: A repre-

sentative volume V of the composite has been subjected to a certain

loading or deformation history such that the current overall stresses and

strains in V are uniform and have magnitudes a and C . Also, the cur-

rent temperature in V is constant and equal to Bo. At this particular

point of the loading sequence we apply simultaneous increments of dG and

db, or d and d6 in V, and wish to evaluate instantaneous values of M, L,

m, Z, and of the concentration factors Ar, Br, ar, br during the loading

step.

This problem is solved by the decomposition procedure of Section 2.

Initially, the composite is subjected to the prescribed thermal change

ds and to simultaneously applied surface tractions dST and dSA given by

(14) to (16). These thermal and mechanical loads create local strain

increments dm in (18) and stress increments dam in (23). In general,

these strain increments may be inelastic. However, since the matrix is

plastically incompressible, it is possible to assure that these incre-

ments correspond to purely elastic deformation in both phases under do,

dSA and dST. This is obviously the case when one chooses p = 1 in (11), '-

so that the stress and strain increments in the matrix are isotropic.
..- p.

The tractions dSA and dST must now be removed. This may lead to

plastic straining in the matrix, which corresponds to or is caused by

de. Also, if an overall stress increment cW is applied simultaneously
.-.. - .

... .. . . . . . . . . . . . . .

- .2~ - -. -. -. -. - -.. ---. ,
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with de, then dSA, dST, and da must be added and applied together.

The final results for a plastically deforming composite can now be

written on the basis of (24) to (31). With p = 1 in (11) to (23), we

retain the definitions (24) of vectors h, sa and y and of their

components but replace that of a with

1 1 1 0 o]T. (44)

For loading by dW and de, the overall strain increment d- is:

d=c h dO + M(da - sa de). (45)

A comparison with (1i) again yields the form (26)

m h - Msa (46)

We note that for p = 1 and an isotropic matrix one obtains from

(19) and (43) the following expression for h in (24):

h h 1 (47)

where

h h = h2 = ST/( 3Km) + i,-

and ST is given by (15).

Therefore, the first term in (45) is an overall isotropic strain

increment, and, according to (18), it is equal to the matrix strain in-

crement. The loading vector do - sa de represents total mechanical load

that must be applied to the composite to reflect the effect of simultan-

eous application of da and de. M is the instantaneous overall

compliance corresponding to this loading vector.

The stresses caused in the phases by simultaneous application of dC h° -",- '
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and do are:

daf= sT y do + Bf(d" - sa do)

(48)

dam sT 1 do + Bm(da - sa de)

where Bf, Sm are the instantaneous stress concentration factors for the

overall mechanical load increment da- sa do. If these increments are

described by (27), then the instantaneous thermal stress concentration

factors become:

bf ST y - Bf sa

(49)

bm = ST 1 - 8m Sa

Equations (45) to (49) convert in an exact way the thermomechanical

problem into a mechanical loading problem along the incremental path

da - sa de.

Next, consider loading by d- and do. The composite is first sub-

jected to loading by do, dSA, and dST, which causes isotropic strains

h do in both the composite and matrix. Since the overall strain Incre-

ment is now prescribed, the h do and any additional overall strains must

be equal to d-. Hence, the overall stress increment is:

d sa do + L(dc" - h de) (50)
s. " .s,,

A comparison with (12) again yields (29):

Sa + L h . (51)

* ri
AL
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While sa is not isotropic, together with do it causes an isotropic stress

increment ST 1 dO in the matrix. This is found from (23) at p 1. Ac-.

cordingly, plastic loading of the composite is caused only by the second

term in (50). The overall mechanical strain is equal to dE - h do. L

is the instantaneous overall stiffness corresponding to this strain

increment.

The strain increments in the phases are:

dcf = h do + Af(dE - hde)

(52)

dcm = h do + Am(dtT- hdO)

where Af, Am are instantaneous strain concentration factors for overall

strain cF - hdo. If (30) is used, then the instantaneous thermal strain

concentration factors are:

af (Af I) h

(53)

am (Am I) h

Inasmuch as the instantaneous M and L may have as many as 21 inde-

pendent coefficients, the vectors m in (46) and i in (51) may have 6 in-

dependent coefficients. For example, m assumes the form (41), with ai

(I = 1 to 6) representing instantaneous thermal expansion coefficients [

of the composite.

As in the previous case, (50) to (52) convert in an exact way the

thermomechanical problem into a mechanical deformation problem along the

path d - hde. It is seen that in both cases the thermal and mechanical

effects are coupled, even though phase mechanical properties do not

S. ... . . .. . ... ,.
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depend directly on temperature.

(ii) Two-phase composites

Finally, we consider the two-phase composite with isotropic phases .*.,.

of arbitrary geometry, Section 3. The reinforcement phase (f) is as-

sumed to remain elastic, while the matrix phase (m) may become elastic-

plastic when a given yield condition has been satisfied. In the plastic

region, the matrix constitutive relation is described by (2), with Mm

and Lm replaced by instantaneous compliance and stiffness. Again, Mm

and Lm are assumed to be piecewise linear, symmetric, and satisfy the

requirement of plastic incompressibility of the matrix. Also, we assume

that overall instantaneous properties M and L of the composite, as well

as the instantaneous concentration factors Ar, Br can be evaluated for

any purely mechanical overall stress or strain increment in the elastic

and plastic range.

To find instantaneous thermal properties m, 9, and the concentra-

tion factors ar, br, we again consider a representative volume V of the ri.
composite which has been loaded to current uniform overall stress a'

-O
strain c , and temperature oo . The volume V is now subjected to addi-

tional increments of d and do, or dE- and do. As in Section 3, we apply

overall increments of temperature do and of isotropic stress dS, with dS

given by (35). Resulting phase stresses and strains follow from (33),

they are isotropic and by assumption cannot cause plastic deformation in

the matrix. The surface tractions or strains must now be adjusted to

satisfy the prescribed do or d" at the boundary S of V.

For the case of do and do applied simultaneously one obtains the

overall composite strain increment

.- '. -1- . .,. . ' '- .. - . - . . . .. . . . . . .. ... .. .. ...
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d-" q dO + M(d7'- s dO) (54) .

where q and s are given by (35) and (36), and M is the overall instan-

taneous compliance for the mechanical stress increment d. - s do. -.

A comparison with ( 1 1) again yields the form (37)

m = q -Ms (55)

The stresses caused in the phases are:

daf s do + Bf(da - s de)

(56)
dam s do + Bm(d-. s do)

where Bf, 3m are instantaneous stress concentration factors for the

overall mechanical load increment dW"- s do. From (27) and (56), the

instantaneous thermal stress concentration factors are:

bf (I -f)S , (I - Bm)s (57)

For the case of d9 and dc applied together, one obtains the overall

stress increment

dT = s dO + L(dF - q do) (58)

and

= -s + Lq (59)

where L is the instantaneous composite stiffness for the overall strain

increment d. - q do, and q is given by (36). The phase strain increments,

in this case are ,:

* .l~

d _ L" = " .. . . .. . . . . . . . . . . . . . . . . . . . . . . ..* ". . . . . . . . . .
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dcf q do Af(de - q do)

(60)

dem= q do Am(de - q do)

and the instantaneous concentration factors:

af (Af- I)q am = (Am -I)q (61)

where Af, Am are instantaneous strain concentration factors for an over-

all mechanical strain increment equal to F - q do.

Equations (54), or (58), again convert in an exact way the thermo-

mechanical loading problem into a mechanical one along a loading path

do"- s do, or a strain path de" q do, respectively. As in the case of

a fibrous composite, the thermal and mechanical loading effects are -.-

coupled in the instantaneous M, L, and Ar, Br.

" - ,
"-.

,.-. .,..* -
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5. DISCRET[ZATION OF THE PHASES

Results of the previous sections depend on the availability of

overall instantaneous mechanical stiffnesses, compliances, and phase

concentration factors in each loading step. These quantities need to be

evaluated for a certain model geometry of the composite material. An

important consideration in the choice of a material model is the fact

that the thermal loading paths dW - sa do in (45) and do - s do in (54),

as well as the thermal strain paths dF - h do in (50) and £ - q do in

(58), may have a significant isotropic component. That is easily seen

from the definitions (24), (36) and (47) of s a , s, h and q. It follows I

that the material model chosen for analysis of the mechanical response

must give reasonably accurate predictions when the composite is loaded

by isotropic overall stresses or strains. This restriction may exclude -

certain models which are primarily useful in predicting the behavior of

a fibrous lamina under in-plane loads, such as the VFD model (DVORAK and

BAHEI-EL-DIN 1982).

Another important consideration in the choice of a material model .-. '

is the fact that when the matrix phase becomes plastic, the local pro-

perties (2) are stress-dependent, and therefore, Lm and M. are no longer

spatially uniform. Even if (2) are regarded as relations for averages

in the phases, the phase properties need to be determined for the actual '--:

local fields or their approximations. This excludes application of

certain averaging techniques, such as the self-consistent method, which

assume that phase fields are uniform.

These considerations suggest that the chosen composite model should

be based on a specific representative geometry of the microstructure,

.4. ,
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which allows for discretization of each phase into a number of sub-

elements with locally uniform fields. An example of such an approach

was outlined by DVORAK and TEPLY (1985). In general, if the represen-

tative volume of the composite and the phase geometry in this volume are

specified, then each phase can be subdivided into a certain number of

finite elements, and the overall properties L, M, local properties in

the plastically deforming subelements, as well as the concentration

factors for each subelement can be calculated for any load or strain

increment.

Suppose that the subelement stresses, strains, as well as the

stiffnesses and compliances of plastically deformed subelements have

been found for a certain increment do or d applied to the representa-

tive volume at do = 0. Let subscripts i, and j, denote subelements in

the matrix, and fiber, respectively. If the partial contributions of

ea .h row of da or de- are identified, one can write the uniform subele-

ment fields in the form

doim = Bim do- dojf = Bjf do

(62)

dcim 2 Aimd3 dl.jf = Ajf de

where the A, B are instantaneous subelement concentration factors.

One can also write the following relations between the overall

averages and the uniform local fields in the subelements of the repesen-

tative volume:

do = S cI dom + E cj dojf

(63)

d E ci deim + E cj dcjf

. .. ' .. . . .." . .. . . . . .*- . '. . . .
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where ci, Cj are subelement volume fractions such that ---

r i cz M z Cj = Cf , Cf + cni (64)

Using (62) and (63) one can obtain the average phase concentration

factors

.1 .

Am=-' c Aim Bm L Cj Sim
Cm ci(65)

1 1.

Af L cj Ajf Bf L r~ Cj Bjf

From the local instantaneous Lim, Mim in the plastically deforming

subelements, known Lm, Lf, Mf in the elastic subelements, and (62)

to (65), one can find the overall instantaneous properties as:

L = -c Lim Aim + Z Cj Lf Ajf (66)

(66) "--

M E Cij Mini Bim +4£ Cj Mf Bjf

The local thermal strain vectors mm and mf remain constant in each sub-

element, at least for a given dO, and equal to those of the elastic

phase. These thermal stress vectors are:

S..

Lim L i Amm f Lf mf (67) :,.

representative volume. The results follow from those presented in

Section 4.

In the fibrous composite one obtains: For dpas* 0, de * 0, the

overall strain increment de, and overall m, follow from (45) and (46),

with M taken from (66). The local subelement stresses and thermal

i";" eement at last fr a gven d, andequalto...se.ofthe.easti...'-.
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stress concentration factors are, in analogy with (48) and (49):

G ~f = Sr y do + Bjf(da - Sa do)

dG1m =Sr 1 do Bim(d0-o sa do)

(68)

bjf ST~ Y -Bjf sa

bim ST Y -Bim Sa

For dF* 0 do *0, the overall stress increment dF and overall it,

follow from (50), (51) and (66), and the local fields and thermal strain

concentration factors are as in (52), (53):

C ~f =h do + Ajf(d - h do)

d~im =h do +i Aim(de h de)
* S S S(69)

ajf =(Ajf 1 ) h

aim u(Aim- 1) h

These results can be utilized to find average instantaneous thermal

* strain concentration factors in the phases as:

8f L E 1afP cj bj fcf Cfj
(10)9-

a rm Ci aim b -r L Ci bim
CM ' m
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6. RELATED APPLICATIONS

In addition to mechanical and thermal loading, the composite may

also undergo a phase transformation such that one or both phases, if

free, experience a volume change over an increment of temperature de:

T
dVr/V = dkk 3 wr de (r = f,m) (71)

Furthermore, composites with polymer matrices may absorb moisture. This

causes swelling of the unconstrained matrix material. If the moisture

concentration is uniform, then

H
dEkk = 3 Ym dc (72)

where ym is the linear swelling coefficient and c is moisture concen-

tration. If the matrix remains elastic in dilatation, and inviscid,

then the above theory may be applied with the following adjustments.

Suppose that de and dc are applied simultaneously and that a free

phase r undergoes total volume change

r T H
dEkk = (dkk + &kk + dckl (73).

If this superposition holds in a piecewise linear manner, then one L--.

can write in phase r for each loading step

r r r
idkk = 3(0r + En 4r + ;n Yr) dB (74)

where, in a particular loading step n:

r = T r e H
n &(dkk/dckk)r ' n (dckk/ dk) 

are known distribution coefficients. Hence,

• ,"" ",".'':.,- ,.• " ','. , , ,'.."/'Z:.,..".-"_.',",'-- , " " " '," "".-',; ." ";:';i,"' ;
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r r r
Lkk z 3 (1 + Fn + 4n) 'r de. (75)

This suggests that for each loading step n one can evaluate a

certain multiplier of 3de that can be substituted for the instantaneous

linear thermal expansion coefficient of phase r in (2). Indeed, even in

the case of thermal loading alone it may be appropriate to change ar

with temperature, and that is obviously possible in the present theory.

.).>

b J
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7. DISCUSSION

Although the results are valid only for the two binary systems,

they apply to most composite materials of practical interest. For the

composite systems in question, the elastic values of m and v. found from 1

(26) and (29) are identical with those that can be calculated from LEVIN

(1967) formulae, or equation (2.20) in ROSEN and HASHIN (1970) and

equation (33) in LAWS (1973). However, the methods used in deriving .

these respective equations, and their internal structure, are entirely

different. The decomposition used herein makes it possible to find

overall thermomechanical response of the composite in the plastic range

in terms of instantaneous overall mechanical properties and thermo-

elastic constants of the phases. Also, average instantaneous phase

stresses and strains are found in terms of mechanical concentration

factors. All these relations are exact. They make it possible to con-

vert any available facility for analysis of isothermal elastic-plastic

behavior of the two composite systems to one which can analyze the

effect of both mechanical loads and uniform changes in temperature, as

well as other transformation strains in the phases.

It has not escaped our attention that equations similar to (7) to .

(10) can be written for three phase fibrous composites. The resulting

system has at most one solution, and if it exists it leads to evaluation

of overall thermal vectors and local thermal concentration factors for

the elastic three phase materials which are analogous to those derived .:

in Section 2. However, no additional constraints are allowed in this

case hence (11) cannot be introduced, and, therefore, it is not possible

to analyse elastic-plastic deformation of the three phase aggregate by the
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method of Section 4(i).
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