Vv)ﬂt-luG‘ 877 EXECUTING TRACE SPECIFICATIONS USING PROLOGCU> NAVAL /1
REEE RCH LAB WASHINGTON DC J D MCLEAN ET AL. 21 JAN 86
" UNCLRSSIFIED F/G 9/2

END

Fiuen

ome

NN B AN Mgy

oFatetelatal 4
n\\.\,-\-.l—.‘o.'i.l-.lur Kr.'l.ll-ltn

W
|

Y

»
-y
»
p
i-
X R
b .
b | i o~ of E
:) {) 0 i
S 2l = < ¥
3 == 1t — C#
N 8.; o8 o = = w ¢
a = & 2 m z:
s = - ~t z Z
b FERE '3 . g’
2AD30405.3 - 3¢
— o -
E—— N
o ot
s -_—) z
— — o S 3
. S
— [
——] P _— Q
_ e == =

T T e T T Y Wy Y W W O e W ¥ W Y>> T~ T— W =y -

k- - @ o

NRL Report 8940

™~
r~ | o
00 !
g Executing Trace Specifications Using Prolog ;
- S
< JOHN D. McCLEAN, DAVID M. WEISS, AND CARL E. LANDWEHR = ‘
| Computer Science and Systems Branch

Q Information Technology Division

(

¥
January 21, 1986 _
T
47 F1L.LECTE L
‘"{“% MAR4 1386 . \!
B e
T
)-
a.
(o) (
Ll -
e -
| . -
NAVAL RESEARCH LABORATORY IR
E_'?. Washington, D.C. e
—_ c. !
oty :

Approved for public release; distribution unlimited.

W2
? 2 N3 g Fe
L3

R T S s ~ —
T A e S M o " Y »

DRI B Sl i S S ek Ak S et b 4t et el e o e]

ADA JEVE))

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ta REPORT SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS
UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution unlimited.

20 DECLASSIFICATION / DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

NRL Report 8940 o

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7Ja NAME OF MONITORING ORGANIZATION
(if appticable)
Naval Research Laboratory 7593
6¢ ADDRESS {Gfy. State, and 2IP Code) 7b. ADDRESS (City, State, and ZIP Code) cw el
Washington, DC 20375-5000 : N
8a NAME OF FUNDING / SPONSQRING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER . -‘: N
ORGANIZATION (1f applicable) R
Office of Naval Research L
8c ADORESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO
Arlington, VA 22217 61153N 75-2063-0-5 RR0140942] DN480-540

11 TITLE (include Security Classification)

Fxecuting Trace Specitications Using Prolog

12 PERSONAL AUTHOR(S)
McLean, John D.. Weiss, David M., and Landwehr, Carl k.

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
Interim rROM [/84 o 6/85 1986 January 21 14

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROYP SUB-GROUP Automatic implementation Rapid prototyping
Formal specification Prolog Logic programming

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Trace specifications have some desirable properties that most specifications lack: they are abstract, so
they need not impose unnecessary constraints on the implementor; and they are formal, so they can be under-
stood unambiguously and can be rigorously tested for consistency, totalness, and correctness of implementation.
Nevertheless, understanding trace specifications and translating them to computer programs are significant
tasks. This report documents experiments in translating trace specifications to Proiog so that they can be exe-
cuted directly. The selection of Prolog over other possible languages is discussed, and several example specifi-
cations and their translations are presented. Some generally useful Prolog predicates are gleaned from these
examples. and difficulties encountered in performing the translations are described. On the way, an
implementation-free semantics for a subset of Prolog is given. The__r\eport concludes with a discussion of possi-

bilities for mechanically translating trace specifications to Prolog. ﬁg/u .o I . .
. (u"r‘.c- . ,{g—yu ‘D'w;‘}_a.,,‘,,\ ? , .
P i
Vi C’ ;
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
[UNCLASSIFIED/UNUMITED (X SAME AS RPT CJoTic USERs UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22c. OFFICE SYMBOL
John D. McLean (202) 767-3852
DO FORM 1473, 84 MAR 83 APR ed:tion may be used until exhausted SECURITY CLASSIEICATION OF THIS PAGE

All other editions are obsolete.
i

fvd e N
2 B %
AP

24

NSO ACNE)
LABICIE M IR

PRSI I AN S

. MAR4 1986 | pTie T 2
* Uriarot. 7 2 il
(2 Y PO .
B - -
.
Y Mian . [—
a t}; ¥ - RIREARS
. ‘ Qe
‘ \ 1y 8% . RS _‘4 Gt
N | " |
b 4K !
V. ! t
"-. ! Y
&
P~
",
IA'_
s
e
iii
B
i
-
»
O ER IR T IPa AL AR T P L L TPt P TR 0 AT AU Sl R bt B I N A T Sef g It S bty
ST R N T Ty I L T e s D I I S S e
,)q. . \ % SANELHD ot R, # it L A R Sk by

CONTENTS

INTRODUCTION
TRACE SPECIFICATIONS

STRUCTURE OF A SYSTEM FOR EXECUTING TRACE SPECIFICATIONS

PROLOG

PROLOG IMPLEMENTATIONS OF TRACE SPECIFICATIONS
CONCLUSIONS

REFERENCES

DTIC

ELECTE

L?,“"

N

...

E‘TJTIS el

e

SRR TS P S IRy
A .J.’f“,* FoR!

e S A e e e g o 2 o e — w—r
. AR A ek o Ty DA Sau i boan ot et A s e — -
™ ; Aalile A S A O

EXECUTING TRACE SPECIFICATIONS USING PROLOG

INTRODUCTION

The trace method of software specification [1) has a formal foundation that supports unambiguous
specifications susceptible to rigorous proof techniques. The method is also abstract and produces
specifications that neither make unwanted design decisions nor force the programmer to glean essential
program features from a mass of extraneous clutter. Its formal foundation renders traces superior to
English-like specifications, and its abstractness renders them superior to procedural specification
languages.

. A disadvantage to formal, abstract specifications has been their opacity to programmers who use
3 procedural languages. To aid the programmer, we think software tools are needed to support program
b~ development. An important tool is a rapid prototyping system that enables programmers to check what
:'.; is required by a given specification and users to check that what is specified is what they really want.
h This report describes the approach we are taking to build a system that translates trace specifications

; into programs. First, we provide an introduction to trace specifications. Next, we describe a general
. structure for a system for executing such specifications and discuss several alternative approaches for
g building such a structure. We then give reasons for using Prolog and present some example trace
specifications with their translations into Prolog. Finally, we develop an implementation-free semantics
for a subset of Prolog that helps us address the possibility of mechanically translating trace specifica-
tions into Prolog.

TRACE SPECIFICATIONS

2

A trace specification for a module consists of two parts: (1) a syntax section that gives the pro-
cedure names and types the module comprises, and (2) a semantics section that gives the behavior that TR ¥
the module’s procedures must exhibit. Procedure behavior is given by listing assertions that describe PEALY
the behavior of sequences of procedure calls, written call;,call,, known as traces. The assertions
are based on first-order logic, supplemented by the predicate L that, when applied to flegal traces
(traces that do not cause an error), is true, and the function V that when applied to a legal trace ending
e in a function call, gives a return value for that trace. The null trace is always legal. Two traces S and

: R are equivalent, written S = R, when they are indistinguishable as far as L and V are concerned with
respect to future program behavior. More formally, S = R if and only if for any trace
3 T.L(S.T) iff L(R.T) and for nonnull T, ¥(S.T) = V(R.T), if defined.

1,3, b4, 0 b

N As an example, consider the following specification for a stack of integers:

STACK SPECIFICATION

Syntax:
PUSH: integer 85X
POP: S ~$
TOP: --> integer NN
- DEPTH: --> integer

Manuscript approved August 16, 1985.

e MCLEAN, WEISS, AND LANDWEHR

Semantics:
(1) L(T) — L(T.PUSH(n))
() T.DEPTH=T
(3) T.PUSH(n).TOP = T.PUSH(n)

N (4) T.PUSH (n).POP = T
X (5) L(T) — V(T.PUSH(n).TOP) = n
: (6) V(DEPTH) = 0

(7) L(T) — V(T.PUSH(n).DEPTH) = 1 + V(T.DEPTH)

The syntax section says that the stack module consists of the procedures PUSH, POP, TOP, and
DEPTH. PUSH takes an integer as a parameter, and TOP and DEPTH return integers. The first asser-
tion of the semantics section says that if a trace is legal, then one can legally append a call to PUSH to
the trace, i.e., one can legally push any integer. Assertions (2) to (4) say that certain procedure calls
_ do not alter future program behavior with respect to a trace. In particular, assertion (4) says that a

T
R

PUSH immediately followed by a POP has no effect on the state of the module. The fifth assertion,
when accompanied with previous assertions, says that TOP returns the last item pushed on the stack
that has not been popped. Assertions (6) to (7) say that DEPTH returns the depth of the stack. The
reader interested in a more detailed exposition of traces and their formal foundation is directed to Ref.

(1.

We can derive the legality and value of a specific trace, say PUSH(5).TOP, from the specification
as follows:

(i) L(PUSH(5)) Iby assertion 1 and the legality of the null tracel

(ii) PUSH(5).TOP = PUSH (5) Iby assertion 3]

(iii) L(PUSH(5).TOP) lfrom lines (i) and (ii) and definition of equivalence]
(iv) V(PUSH(5).TOP) = 5 [by assertion 5 and legality of the null tracel

A AR
ek P
> £

g A

')
l'l

STRUCTURE OF A SYSTEM FOR EXECUTING TRACE SPECIFICATIONS K ':-:'}:
B ACY

RO A

Our goal is to develop a system that will accept a trace specification and a specific trace (or traces) :.:_:.\:::__

T as input. As output, it will provide L(T) and V(T) as defined by the specification. Graphically it N ‘_'.: ¢

might look like this:

. 4
" X
.
.
LT
i

. map spec to execute spec
N t
. t'race' | executable target on ar'get L(T),V(T)
" specification form language machine
{Phase 1) (Phase II)
specific
trace T

The choice of the target language is significant. If a conventional, procedural language (e.g., For-
tran, Pascal) were chosen, the Phase 1 task would require translating the nonprocedural trace specifica-
tion into a procedural form—a substantial undertaking not certain of success. If, on the other hand, a
target language can be chosen in which the expression of a trace specification is relatively straightfor-
ward, but which still admits of execution in Phase II, the Phase I task is greatly reduced. Languages
such as Prolog, LISP, SNOBOL, and their relatives, and the input languages for YACC and the Boyer-
Moore Theorem Prover fall in this category. In this section we consider briefly the effect of choosing
each of these alternatives, and explain why we have proceeded with initial experiments in Prolog.

.‘- BN S _.l-‘-u»‘-.-‘
YA “-, -k_‘_.‘h. A

L WA ."la [

IR

T
rd

»

¥ N

I,

K3

o e 4
Y R

N

NRL REPORT 8940

Approaches considered include:

YACC. YACC is a Unix-based compiler-compiler [2] that accepts grammar rules in BNF and
semantic actions in C as input, and generates a compiler for the specified language (also in C) as out-
put. An approach that uses YACC would call for construction of a YACC program that could accept a
trace specification and generate a compiler for that specification. The compiler would execute in Phase
Il to parse incoming traces and provide values of L and V as output. A YACC program to translate
traces into Prolog has been written. Some difficulties were encountered in constructing a grammar for
input to YACC that would guarantee recognition and reduction of traces, but investigation of this alter-
native is continuing.

Boyer-Moore Theorem Prover. This is probably the most capable automated theorem prover
currently available [3). If trace specifications could be translated into axioms for the theorem prover,
the prover could be used to check the value and legality of a given trace. The Phase I tool would have
to handle the translation of trace specification into the proper input notation for the theorem prover.
Discussions with Moore about the learning time needed to become facile in the use of the prover
(approximately six months for a logician) led us to discard this approach.

LISP. Trace specifications could be translated into LISP [4] by Phase 1 and then executed in
Phase II. Although pure LISP can be considered a nonprocedural language, it is well known that pro-
gramming in pure LISP is impractical. Consequently, this approach would be likely to encounter the
same kinds of difficulties as translating trace specifications into a procedural language. However, we are
investigating this approach.

Prolog. In this case, trace specifications must be translated into Prolog [5) notation by Phase I and
then executed in Phase II. The syntax of Prolog is well-suited for this purpose, and Prolog includes a
theorem prover that can be used both to "execute" the specifications and to attempt to prove theorems
about them. Prolog is the target language in our chosen approach; more details are provided in the
next section. A drawback is that, despite its nonprocedural look, Prolog behavior does depend on the
order in which facts are presented (because of its use of a depth-first search).

Prolog Variants. Several variants of Prolog exist that may be as well-suited as Prolog for express-
ing trace specifications and that may solve the problems caused by the sensitivity of Prolog to fact-
ordering. Two examples are LOGLISP [6] and TABLOG [7]. We have yet to evaluate either of these
fully.

SNOBOL or Icon. Icon [8] is a string processing language descended from SNOBOL [9]. An
approach based on either SNOBOL or Icon might resemble that based on YACC: an Icon program
would be used to translate a trace specification into an Icon program; this latter program would then be
executed with specific traces as input. An Icon program to translate traces into Prolog was written;
translation of trace specifications into Icon has not been attempted as yet.

PROLOG

Prolog is a programming language based on Horn clauses [10]. A Horn clause is a formula of
first-order logic that is of the form (1) P(¢,t,,...,1,) where P is an n-place predicate and each ¢ is a
term, of the form (2) -P(t,t,...,t,) where P and each are as above, or of the form (3)
C V =~P(1,t,,...,t,) where C is a Horn clause and P and each f are as above. Terms can either be
constants, variables, or functions of other terms. All variables are assumed to be universally quanti-
fied. A Prolog program is a set of clauses where each clause is of the first or the third form. Clauses
of the first form are called facts and written as they are in first-order logic with the understanding that

4 s S

Nt

MCLEAN, WEISS, AND LANDWEHR

predicate letters, constants, and function symbols begin with small letters, and variables begin with cap-
itals. Clauses of the third form are called rules and written as F;:— F,,...,F, where F| is the single
nonnegated disjunct of the clause. F) is called the head of the rule, and F, ... ,F, is the tail. A clause
that is either a fact or a rule is called a program clause.

The translation from trace specifications to Prolog appears to be simple enough that we may be
able to use YACC to generate a Phase | program that accepts trace specification language as input and
generates a Prolog program as output for execution by the Prolog interpreter in Phase I, as shown
below.

trace g;:'ca:fed Prolog Prolog
. | — . interpreter |[——a L(T),V(T)
specification compiler (Phase 1)
(Phase 1)

specific
trace T

The stack specification translates simply into the Prolog program shown below. In Prolog, traces
are considered as lists and written in reverse notation. Hence, PUSH (n). TOP becomes [top,push(n)).
The empty sequence of procedure calls is denoted by ,[]. The legality predicate is written leg, and
equiv and val denote = , and the relational form of V | respectively. Line numbers are included for
future reference.

STACK PROGRAM
1) leg(D.

(2) leg(Ipush (S)ITD :- leg (T).

(3) equiv([depth[T],T).

(4) equiv([top,push(S)[T],[push(S)ITI).

(5) equiv(fpop,push(S)[T1,T).

(6) val(itop,push(S)|T1,S) :- leg (T).

(7) val(ldepthl),0).

(8) val(idepth,push(S)ITLV) :- val(ldepthlTI,R), V is R + 1, leg(T).

(9) 1eg(T) :- equiv(T,S), leg(S).

(10) val(ITIS1,V) :- equiv(S,R), val(ITR],V).

(11) equiv(X,Y) :- equiv(A,B), append(R,A,X), append(R,B,Y).
(12) equiv(S,T) :- equiv(T,S).

(13) equiv(S,T) :- equiv(S,A), equiv(A,T).

(14) equiv(S,S).

(15) append(l I,L,L).
(16) append([X]L1],L2,IX]L3]) :- append(L1,L2,L3).

Clauses (2) to (8) are Prolog translations of semantic assertions (1) to (7) of the trace specification.
The remaining clauses are common to all programs produced by our system. Clause (1) and clauses
(9) to (14) are translations of assertions from the trace deductive system as described in Ref. [1].

4
’,
L]

-
D4
-,
‘.
»’

&
AR

» - d
DSOS
.

£)

N
e
r""'
'

LONTALS
ARG ‘-'

o
(]
v
.
>

.
s v
R
o

0

N

I;.I\

v Ea Ml At Ao B o |

NRL REPORT 8940

Clauses (15) to (16) define the append predicate used to manipulate the list representations of traces.
The reason for the particular order of clauses is discussed in the next section.

To illustrate the nonvariance of the common clauses, we include a translation of a queue specifi-
cation.

QUEUE SPECIFICATION

Syntax:

ADD: integer
REMOVE:

Front: --> integer

Semantics:

(1) L(T) — L(T.ADD(n))

(2) ADD(n).REMOVE = [|

(3) T.ADD(™).FRONT = T.ADD(n)

(4) T.ADD(n).ADD(m).REMOVE = T.ADD(n).REMOVE.ADD(m)
(5) V(ADD(n).FRONT) = n

(6) L(T) — V(T.ADD(n).ADD(m).FRONT) = V(T.ADD(n).FRONT)

QUEUE PROGRAM
(1) leg(l D).

(2) leg(ladd(S)IT1) :- leg (T).

(3) equiv(lremove, add(S)I], [1).

(4) equiv({front, add(S)[T],(add (S)[TD).
(5)equiv{(Iremove,add (S),add (R)[T],{add (S) ,remove,add (R)|T]).

(6) val(lfront,add (S)I,S).

(7) val(ifront,add(S),add (R)[T1,X) :- val(ifront,add (R)[T],X), leg(T).

(8) leg(T) :- equiv(T,S), leg(S).

(9) val(ITSL,V) :- equiv(S,R), val(ITR],V)

(10) equiv(X,Y) :- equiv(A,B), append(R,A,X), append(R,B,Y).
(11) equiv(S,T) :-(T,S).

(12) equiv(S,T) :- equiv(S,A), equiv(A,T).

(13) equiv(S,S).

(14) append({ 1,L,L).

(15) append (IXFL1],L2.IX[L3) :- append(L1,L2,L3). R
Given such a program, Prolog tries to satisfy assertions when prompted. If the assertion contains EEERARA
no variables and can be derived from the program, yes is returned. If the assertion contains variables RSO
and there are constants that when substituted for the variables of the assertion make the assertion S
derivable, these constants are returned. Otherwise, Prolog will return no or attempt an infinitc search !
for a derivation. When it does one rather than the other is examined in the next section. ot N
V‘\'-J._.\
Queries submitted to the stack program are illustrated in the following script of a Prolog session. AR
Characters typed by the user are shown in boldface. The version of Prolog used is C-Prolog on a VAX '-3'{), ::s-
operating under the BSD 4.2 Unix operating system. The stack program is contained in a file named L‘ N
stack. ‘
LSRN,
.::-.'\."\
N.\\ ". ~
N
5 Ao 2
e
e L L L AR L I :: -‘-":\ e N (,':}"::f;ﬁ:‘f-::ﬁ:jf
-l-“-'-;'-'\‘.".“- = A 5'-\\ 'i‘ ' ‘ . a . h n : '-. .. ». .~' "~.4 .1 y‘ :’ ‘- < ¥

i

I b T

b N P

OO AT e A AT L

a8

> T
s

C A 2l AR MEl chS Lvk AL SEE sk el SV ML SEEL SN S ANS AR

MCLEAN, WEISS, AND LANDWEHR

PROLOG SESSION WITH STACK

CProlog version 1.2a, NRL-CSS
}2- [stack].
stack consulted 1304 bytes 0.333333 sec.

yes
| 2-leg (Ipush(5)1).

yes
| 2-equiv (Itop,push (5)],[push (5)1,lpush(5)]).

yes
| 2-leg(ltop,push (5)D.

yes
| - val(ltop,push(5)],5).

yes
| 2- val(ltop,push (51,X).

X=35
yes
| 2- halt.

[Prolog execution halted]
PROLOG IMPLEMENTATIONS OF TRACE SPECIFICATIONS

In our discussion of Prolog so far, we have glossed over several issues that are relevant to regard-
ing Prolog programs as implementations of trace specifications. First, we have not said what trace
assertions can be cast as Prolog program clauses. Second, we have not said when a clause is derivable
from a Prolog program. We address these issues in this section.

It is weil known that any formula of first-order logic (and hence, any trace assertion) is equivalent
to a formula (Q1) ... (Qn)F, called its prenex disjunctive form, where each (Qi) is a quantifier and F is
a disjunction of either atomic formulae or their negations. Such a formula is, in fact, a Prolog program
clause if (1) no (Qi) is an existential quantifier, and (2) F contains at least one nonnegated disjunct
and at most one negated disjunct. Condition (1) is not problematic since a formula containing an
existential quantifier is cosatisfiable with a formula, called a Skolem formula, that contains only univer-
sal quantifiers with some additional function symbols [11]. Hence, eliminating existential quantifiers
from a prenex formula does not alter what we can derive from that formula. Condition (2), however,
presents more serious troubles. A formula whose prenex disjunctive form contains too few nonnegated
disjuncts or too many negated disjuncts can be converted to a program clause by using the Prolog predi-
cate not which has the property that not(F) is Prolog-derivable if and only if an attempt to derive F in
Prolog leads to a return of nmo. Hence, we can write ~G(¢t) as not (G(¢)) and F(¢) V G(t) as
F(t):—not(H(1)) if we can define a predicate H such that G (t) is Prolog-derivable if and only if H(¢)
is refutable. However, converting a prenex formula to a program clause in this way often results in a

NRL REPORT 8940

loss of derivational power. To understand this limitation on using not we must consider what it means
for something to be Prolog-derivable, i.e., we must give a semantics for Prolog.!

Call S a substitution if it is an assignment of constants to variables. We denote the result of apply-
ing S to a formula T by 7/S. Given a predicate F and a constant ¢, F(c) is refutable by a Prolog pro-
gram P if (1) there are no occurrences of F(c) or F(X) in P for any variable X, (2) any rule of the
form F(c):=T,,,T, in P is such that each fact in the set (T\/S, ...,T,/S} is refutable by P for any
assignment S, and (3) any rule of the form F(X):—T,,....T, in P is such that each fact in the set
{T\/S,...,T,/S) is refutable by P for any assignment S that assigns cto X. We say that
F(c) is derivable from P if (1) there appears in P a program statement of the form

F(c),
F(X),

F(c¢):=T,....T, where each fact in the set {T\/S,...,T,/S} is derivable from P for some
assignment S, or

F(X):—T,....,T, where each fact in the set {T}/S,...,T,/S} is derivable from P for some
assignment S that assigns ¢ to X;

and (2) F(c) is refutable by that part of P that precedes that fact cited in (1). Given a query of the
form F(c). Prolog will answer yes if F(c) is derivable from P, will answer no if F(c) is refutable by
P. and will fail to answer otherwise.?

From this discussion we can see that although any trace specification may have a sound Prolog
implementation, i.e., an implementation that does not return incorrect answers Lo queries, not every
sound implementation of a specification is complete. Many implementations may not return an answer
to a query even though there is an answer that can be logically derived from the specification.

One source of incompleteness is obviously the use of not since we may not be able to refute the
assertion being negated; however, this is not the only source. An examination of our initial stack pro-
gram shows that claims of the form equiv(tracel,trace2) are not refutable. This is because of the pres-
ence of axioms (11) to (14) whose heads will always be satisfied by the query. Since axiom (9) for
legality and axiom (10) for values appeal to the notion of equivalence, legality assertions and value
assertions are also not refutable.

On a more positive note, incomplete programs can often be made complete. For example, we can
solve the problem with our stack program by dropping the troublesome axioms and adjusting the rest of
the program to compensate. Note that axioms (12) to (14) serve only to ensure that equivalence is an
equivalence relation. This is necessary to be able to determine correctly whether two traces are
equivalent simpliciter, but it is not necessary for determining legality or values. For example, we can
derive leg([depth,depth,push(1)]) from leg(lpush(1)]) by using (3) to derive equiv (ldepth,depth
push(1)),ldepth,push(1)]) and equiv (Idepth,push(1) |,Ipush(1)}]) without having to appeal to the fact

1. We ignore the Prolog predicate cur [S] since although it is used to improve efficiency of Prolog derivations, it does not
increase the set of derivable facts. The following discussion can be extended to include cur by considering the order of facts
within a rule’s tail as well as the order of clauses within a program.

2. The response to a query of the form F(X) can be determined by cunsidering queries of the form F(c) where c is a member of
the Herbrand Universe {10f of P.

B MCLEAN, WEISS, AND LANDWEHR

that equiv ([depth,depth,push(1)],[push(1)]). Hence, we can drop axioms (12) to (14) without affect-
ing the program's behavior with respect to legality or values. Axiom (11) serves a different purpose. It
I allows us to look for equivalent traces within traces and replace them. However, we can eliminate this
axiom by redefining equivalence in our specification. Hence, consider the following stack specification:

STACK SPECIFICATION

: Syntax:
v PUSH: integer
i POP:

TOP:--> integer

DEPTH:--> integer

Semantics:
B (1) L(T) — L(T. PUSH(n))
I (2) T.DEPTH.S=T.S
(3) T.PUSH(n).TOP.S = T.PUSH(n).S

(4) T.PUSH(n).POP.S = T.S

() L(T) — V(T.PUSH(n).TOP) = n

(6) V(IDEPTH) = 0

(7 L(T) — V(T.PUSH(n).DEPTH) = 1 + V(T.DEPTH)

K

; We have modified axioms (2) to (4) to make explicit the fact that equivalent traces can be substi-
tuted within a trace. From the viewpoint of logical derivation this modification changes nothing, but
from the view cof Prolog, it enables us to drop a troublesome axiom from our program. Hence, we
have the following implementation:

' STACK PROGRAM

(1) leg (I 1).

: (2) leg(lpush (S)[TD :- leg(T).
' (3) val(ltop,push(S)TL,S) :- leg(T).
(4) val(ldepth],0).
(5) val(ldepth,push(S)[T1,V) :- val(ldepth{TL,R), V is R + 1, leg(T).
(6) equiv(A,B) :- append(ldepth],L1,T), append (H,T,A), append (H,L1,B).
(7) equiv(A,B) :- append(ltop,push(N)|,L1,T), append(H,T,A),
append (lpush(N)],L1,L2), append(H,L2,B).

» (8) equiv(A,B) :- append([pop,push(S)],L1,T), append (H,T,A), append(H,L1,B).
(9) leg(T) :. equiv(T,S),leg(S).
(10) val([TISI,V) :- equiv(S,R), val(ITRI],V).

(11) append({],L,L).
(12) append (IX[L1],L2,[X[L3)) :- append(L1,L2,L3).

-,y

This implementation derives all the legality and value assertions that the other derives, but it also
refutes assertions involving false legality and value claims. It is inferior to the first implementation in
that we can no longer derive equiv(a,b) from equiv(a,c) and equiv(c,b), but equivalence is important
primarily in the role it plays in specifying legality and values. Further, we can define a notion of transi-
tive equivalence if we like by adding the following axioms:

Y1 T NCRERERE A

d adadie ¢l s aw 4 - - —re M Sy " y
FEITIEVEN 1 A RN Rl Al B) A e Al int Al bl et Bt 4 oy A A AV Sl fah Al At Al el g or MRS A e ad het as ad ad R g a.a 0t g et

NRL REPORT 8940

(13) tequiv(A,A).
(14) tequiv(A,B) :- equiv(A,B).
(15) tequiv (A,B) :- tequiv(A,C), tequiv(C,B).

Summarizing, our semantics has enabled us to determine that a program is incomplete and isolate
the cause of the incompleteness. By rewriting the program, we have rendered it complete, but at the
cost of not being able to derive any equivalence assertions that depend on the iransitive closure of
equivalence. This does not bother us since we are rarely interested in equivalence assertions per se, but
only in so far as they contribute to the derivation of legality and value assertions.

CONCLUSIONS

We conclude that Prolog warrants further research as a target language for a trace implementation
system. It is possible to translate a trace specification into a sound Prolog implementation although
care must be taken in formulating the specification if we are to avoid incomplete programs. Further,
translation can probably be done mechanically although it is not clear that there is a mechanical pro-
cedure that will always yield a complete program. Nevertheless, we have been able to isolate a major
cause of incompleteness in translated programs and have shown a method for writing specifications that
eliminates this cause. Work must proceed to see how far this method can be generalized. We are
interested in whether all specifications can be formulated to yield complete programs and if not,
whether we can describe those that cannot be so formulated.

In the meantime we are also working on other approaches. We have had some success with LISP.
It is possible that the two approaches may complement each other even if neither is completely success-
ful. In this case, a combination of Prolog and LISP, such as is found in LOGLISP, could prove an ideal
language.

REFERENCES

1. J. McLean, "A Formal Method for the Abstract Specification of Software," J. ACM 31(3), 600-627
(1984).

| SERALLAY Siamad
P M . .

2. S Johnson, "YACC — Yet Another Compiler-Compiler,” in UNIX Programmer’'s Manual, 4.2
Berkeley Software Distribution (University of California, Berkeley, August 1983).

3. R.S. Boyer and S. Moore, 4 Computational Logic (Academic Press, New York, 1979).

4. J. Allen, Anatomy of LISP (McGraw-Hill, New York, 1978).

YY‘y-
W

W.E. Clocksin and C.S. Mellish, Programming in Prolog (Springer-Verlag, New York, 1981).

6. J.A. Robinson and E.E. Sibert, "LOGLISP: An Alternative to Prolog," in Ma-hine Intelligence 10,
J.E. Hayes, D. Michie, and Y-H. Pao, eds. (Ellis Horwood, London, 1982), p. 399.

7. Y. Malachi, Z. Manna, and R. Waldinger, "TABLOG — The Deduction Tableau Programming
Language,” Report STAN-CS-1012, Stanford Computer Science Technical ().

8. R.E. Griswold and M.T. Griswold, The lcon Programming Language (Prentice-Hall, Englewood
Cliffs, N.J. 1983).

9. R.E. Griswold, J.F. Poage, and [.P. Polonsky, The SNOBOL 4 Programming Language, 2nd ed.
(Prentice-Hall, Englewood Cliffs, N.J. 1971).

- B
D PN S SR R S TPt P S P i e P L
O P I T R S - - T I

. . (SR A SR S STl
e AN RN R TR -
. PSRRI, DRI Y S I IPEINY T PR DR AT S W SR TG D TR T W Sl N

.
MCLEAN, WEISS, AND LANDWEHR .t--f.. ‘.'-'
10. J.W. Lloyd, Foundations of Logic Programming, (Springer-Verlag, New York, 1984). '._f;ﬁ oo ":

11. R.E. Grandy, Advanced Logic for Applications (Reidel, Boston, 1977).

10

" ’.-__-e,‘-a;‘,.-‘ ARSI
o ‘- ORI E AR
‘7" L4 b M J ¢ r - " .

app—

ad TN YA e &
s "'u":th‘-:'\-‘~‘-\x PN

SRR CURN A
AL T A
e s i

