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SIGNAL DETECTION AND NORMALIZATION 

IN UNDERWATER NOISES MODELED AS A GAUSSIAN-GAUSSIAN MIXTURE 

Michel BOUVET* and   Stuart C. SCHWARTZ 

Department of Electrical Engineering 
Princeton University 

PRINCETON, NJ 08544 

ABSTRACT 

Knowledge of the noise probability density function (PDF) is central in signal 

detection problems, not only for optimum receiver structures but also for processing pro- 

cedures such as power normalization. Unfortunately, the statistical knowledge must be 

acquired since the classical assumption of a Gaussian noise PDF is often not valid in 

underwater acoustics. In this report, we study statistical modeling by a Gaussian- 

Gaussian mixture for three different underwater noise samples. We show that one of 

them can adequately be described by a Gaussian-Gaussian mixture, one is very close to a 

Gaussian model and is described by a mixture with a very small perturbating term, 

whereas the third one seems closer to the Middleton class A model but is non-stationary. 

* On leave from Groupe d'Etude et de Recherche en Detection Sous-Marine, Le Brusc, 
83140 SIX-FOURS LES PLAGES (FRANCE). 

Key-words:  non-Gaussian  detection,  adaptive  normalization,  noise  model, underwater 
noises. 



- 2 - 

The first noise is studied with emphasis on the normalization needed in the receiver in 

order to achieve a constant false alarm probability and also on the optimal receiver 

structure for the detection of a deterministic signal. It is shown that the classical noise 

power estimate, calculating the norm L of the observation vector, is a good approxima- 

tion to the square of the maximum likelihood estimator of the noise amplitude for the 

Gaussian-Gaussian mixture. The notion of noise alone reference is investigated and the 

performances of normalized test-functions using different power estimates are studied. 

Finally, a comparison is made between the adaptive mixture hkelihood ratio and the 

robust matched filter and soft-limiter. The principal result is that the use of the receiver 

associated with the mixture model leads to improvements with respect to these two clas- 

sical receivers, this improvement being measured in terms of receiver operating charac- 

teristics (ROC) curves. 

At low false alarm rates (10~^) and SNR levels around -5 dB, this improvement can be 

especially significant; one situation shows an improvement in detection probability from 

0.4 to 0.6, a 50 % increase. 
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1. INTRODUCTION 

The Bayesian theory of detection of a known deterministic signal in additive noise 

is based on the knowledge of the noise probability density function (PDF) [1,2]. The 

normalized noise PDF is important for the receiver structure and the amplitude of the 

noise (scale) allows power normalization [3]. Unfortunately, the classical assumption of a 

Gaussian PDF is often not valid in real-world problems such as those encountered in 

sonar applications [4,5,6]. A variety of other PDFs have been proposed to fit real data. 

Among these models, two in particular appear to describe underwater acoustical noises: 

the Middleton class-A model and the Gaussian-Gaussian mixture [4,7,8]. The Middleton 

model is physically motivated but has the disadvantage of having a PDF represented by 

an infinite expansion of Gaussian PDFs. However, Vastola has shown that for many 

interesting cases, only the first two terms of this expansion are sufficient from a detec- 

tion point of view [9], in which case we can work with a Gaussian-Gaussian mixture 

model. This report is "engineering oriented", and can be viewed as a preliminary inves- 

tigation of the possible improvement of the likelihood receiver when the noise is modeled 

by a Gaussian-Gaussian mixture instead of a Gaussian PDF. 

In particular, we study three different underwater acoustic noises. We show that 

one, mostly generated by biological phenomenon, appears to be non-stationary, whereas 

one can be considered as almost Gaussian. The last noise is studied with emphasis on 

the normalization needed in the receiver in order to achieve a constant false alarm pro- 

bability. It is shown that the classical noise power estimate, calculating the norm L ^ of 

the observation vector, is a good approximation of the square of the maximum likelihood 

estimator of the noise amplitude for a Gaussian-Gaussian mixture, under the assumption 

that the perturbating noise of the mixture is a small one. 



Then, the notion of noise alone reference (NAR) is investigated. Basically, the esti- 

mate of the noise power must not be influenced by the possible presence of a signal. We 

compare, on the basis of receiver operating characteristics (ROC) curves, four normalized 

test-functions whose structure is either a matched filter, equivalent to the likelihood 

ratio for the Gaussian assumption, or the likelihood ratio associated with the mixture 

model. Each one is constructed using a particular noise amphtude estimate. This esti- 

mate could be a NAR or not, and is calculated under an assumption of a Gausian or a 

Gaussian-Gaussian mixture PDF. Finally, a comparison is made between the adaptive 

mixture likelihood ratio receiver and the robust matched filter and soft-limiter. 

2.  THE DATA 

2.1.   Data Collection 

The data studied here are typical underwater acoustic noises. They have been 

recorded with a single omnidirectional hydrophone. Three sets have been processed. The 

first one, called MS in the sequel, has been generated mostly by merchant ships and has 

been recorded in the Indian Ocean. The second one, called SS, is principally due to bio- 

logical phenomenon, mostly snapping shrimp. This set has been recorded in an area 

around Hawaii, in shallow water. The third one, called BG, is an ambient background 

noise, mostly wind generated and perhaps containing distant shipping and biological 

noises, without a principal noise source. This noise has also been collected in the Indian 

Ocean and has been previously studied in another context [10). The MS and BG data 

have been sampled at a rate 1250 Hz, i.e. 0.8 ms separates two samples, whereas the SS 

data has been sampled at 40 kHz. 
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2.2.   Preliminary Study ^ 

Before doing a more detailed statistical investigation of these noises, the study of 

some very rough statistics can be helpful. 1000 samples of the data have been used. 

The noises have been normalized to second-order, i.e., their empirical global means and 

variances on the whole window are respectively 0 and 1. Figures 2.1 to 2.9 show the 

data and their local means and variances for the MS, SS, BG noises, respectively. The 

means and the variances have been calculated based on 20 samples, using a sliding win- 

dow. 

MS noise and BG noise seem to be stationary in appearance. Their variances vary 

rougthly between 0.5 and 2.5. SS noise exhibits either in its appearance or in the com- 

putation of its variance some non-stationarities, located around the samples 200, 390, 

570 and 960, for this set. Its variance varies between 0.2 and 11.0. The scales for the 

representations of the observation (Fig. 2.4) and the variance (Fig. 2.6) are different for 

this noise than those for the other ones. Hence, this last noise seems to have impulsive 

components. Its variance (power) is neither quasi-stationary, as assumed in [3], nor 

impulsive, following [5] where the noise power was constrained to take only two values. 

The presence of these impulsive components or bursts has already been found in another 

kind of noise, generated by ice-cracking phenomenon under the Arctic [11]. 

3.  NOISE PDF MODELS 

Mixture noise models have been developed in order to generalize the form of the 

noise PDF to better fit the data. These models correspond to a noise PDF that is a sum 

of elementary PDFs, usually the sum of only two, the most important being Gaussian. 

Recent studies of these models have shown they described quite accurately real data, 

especially in underwater acoustics [4,6,9]. In all this work, the noises will be assumed 

white. The PDFs are then univariate. 
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3.1. Middleton Model 

The Middleton class-A noise model can be represented by an infinite series of Gaus- 

sian density-like terms, 

00 

p{x)=   2   K„ 9{x;a^), (3.1) 
m=0 

where g {x ;(T) is a Gaussian PDF with variance cr^ [7,8]. The coefficients K^ are related 

to the overlap index A by the following relation, 

K^=e-^ ^. (3.2) 
TO ! 

The variances (T„ are related to A and to another parameter T, the Gaussian factor, by 

^^ = TTr" • ^^-^^ 

This model is a physically motivated one, modeling an impulsive interference noise, i.e., 

a Gaussian noise with an additive impulsive noise component. The model appears to fit 

quite well a variety of noise situations. The class-A model assumes that the noise band- 

with is less than that of the receiver (^' [6]. In addition, it is difficult to compute with, 

due to the infinite series (3.1). 

3.2. Mixture Gaussian-Gaussian PDF 

The noise has, in this case, a PDF composed of the sum of two individual Gaussian 

PDFs, 

p (x ) = (1-e)^ {x ;(Ti) + eg {x ;CT2) . (3.4) 

The philosophy of this PDF is to fit noise that can be considered as nearly Gaussian. 

(1) Another noise model, class B, is suitable for the broadband case [7]. 
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The proximity to the Gaussian PDF is due to the term (l-e)g [x ;(ri) , where e and 1-a^ 

are assumed to be small. In addition, the departure from the Gaussian assumption is 

modeled by the term eg [x ■,a<^ , where (TJ > 1 > cr^ . In particular, this component can 

take into account a small amount of kurtosis and tails longer than that for the indivi- 

dual Gaussian density in order to model impulsive components [4]. It can also model a 

PDF with a kurtosis smaller than for the Gaussian PDF [12]. 

Two other models with a Gaussian-Gaussian mixture have been used. The 

first model is a "Gaussian-Gaussian switched burst noise", where the PDF is represented 

as in (3.4) but where e is considered as a Bernouilli random variable, taking the value 0 

or 1 [5,14]. This second model is complicated to deal with because it needs an estima- 

tion of the switched time-instants for the construction of the ideal or "clairvoyant" 

receiver. 

The second one is the spherically invariant noise [13]. The univariate PDF of the obser- 

vation is taken as 

p{x)= a  g[x;\) , (3.5) 

where o is a random process taking positive values. This second model seems more 

interesting and we are going to study in section 5 a closely related model, where the 

noise power will be considered as an unknown parameter. But, instead of using a Gaus- 

sian PDF as in (3.5), we will use a Gaussian-Gaussian mixture. 

3.3.   Middleton Model and Gaussian-Gaussian Mixture 

The studies on the Middleton model have shown that, for real-world problems, the 

parameter A is often small, say between 0.001 and 0.3 [9]. Then, the first few 

coefl"icients K^ are rapidly decreasing, e.g., /Cg = 0016 for A = 0.2. In particular, 

Vastola has shown that the truncation of the expansion (3.1), representing the class-A 
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model, to the first two terms, m = 0 and m = \, often has little effect on the locally- 

optimal non-linearity of the receiver associated with this noise. This truncation leads to 

a Gaussian-Gaussian mixture, 

q{x) = ae-^  g{x-^) + aA   e-^  g{x;llj^), (3.6) 

A    e^ where a is a parameter assuring that g (x) is a PDF, a ^ 
\+A 

Comparing (3.6) with the expression (3.4) of a Gaussian-Gaussian mixture, the two fol- 

lowing relations must hold, 

A  = ^ , (3.7) 

— if a^ <l .     . (3.8) 
^1^ 

Since 

the interpretation of a Gaussian-Gaussian mixture as the truncation of a Middleton 

class-A model can be made only if the following relation holds between the parameters of 

the mixture, 

2       1 - € - CTi^ + 2a^e 
(T2 = — . (3.10) 

4.  STATISTICAL CHARACTERIZATION OF THE NOISES 

4.1.   Description 

For each noise, a global observation window, 4000 samples, was divided into two 

smaller windows of 2000 samples each. The first one represents the beginir.g of the 



recording and the second one, the end. For each of these three windows (4000, 2000 and 

2000 samples), we computed some empirical statistical measures and some parameters 

associated with the two previously described mixture models. These statistical measures 

are the mean, the variance, the skewness and the kurtosis. As stated previously, the 

noises were normalized, zero-mean and unit-variance, in the global window. 

The parameters of the class-A model were computed using a method of moments 

(MOM) introduced by Powell and Wilson [15]. The parameters of the Gaussian- 

Gaussian mixture were computed using two different methods. The first one is a method 

of moments (MOM), or more precisely an approximation of this method which is easier 

to implement. This method can be found in Appendix A. The second one is a least- 

square method which deals with the Moment Generating Function (MGF) [16] and is 

described in Appendix B. 

4.2.   Results 

As all the noises have been normalized, it is clear that they are zero-mean and 

unit-variance on the whole observation window. In the following discussion, we refer to 

Tables I-III. 

*       Merchant Ships 

The statistical parameters are almost the same in the three windows, indicating that this 

noise can be considered as stationary. The skewness is small but the kurtosis, around 

2.2, is quite different than that associated with the Gaussian PDF, i.e., 3. This can be 

explained by the fact that this noise is generated by radiated lines coming from ships 

and that the kurtosis of a spectral line is 1.5 [12]. The computation for a Middleton 

model fails. The results for the Gaussian-Gaussian mixture parameters are close to what 

is expected, i.e., a small e , ai not far from 1 and a^ > 1.  This is true for both methods. 
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Based on this preliminary study with simple statistics, it appears that the MS noise can 

be adequately described by a Gaussian-Gaussian mixture model. 

* Snapping Shrimp 

This noise is highly non-stationary as the values of the statistical parameters on the 

three columns are different, in particular the variance and the kurtosis. This fact has 

already been noted in subsection 2.2, and on Figure II. We remark as in [11], that 

apparently a small amount of contamination [outliers] can give a great variation in the 

statistical characteristics. We also note that a larger kurtosis is due either to tails bigger 

than normal or to a highly peaked PDF. 

In Table II, we note that the fitting procedure by the MOM for the Gaussian-Gaussian 

mixture fails, but not the procedure for the Middleton model. The values given by the 

Wilson method are close to values of similar noise samples studied [3,6,7,15]. The MGF 

method leads to reasonable parameters. 

It seems reasonable to say that the principal characteristic of the SS noise is its non sta- 

tionarity. 

* Background noise 

The same conclusions as in the MS case can be made, i.e., stationarity and statistical 

values close to Gaussian. The principal difference is that the kurtosis is closer to the 

Gaussian value of 3 and the skewness is a bit more significant. A look at the parameters 

for the Gaussian-Gaussian model shows that this noise seems to be very close to Gaus- 

sian, even closer than the MS noise. 

Hence, the BG noise is well described by a Gaussian-Gaussian mixture, very close to a 

Gaussian PDF. 
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*       Comments 

The failure in the Middleton class-A fitting for the MS and BG noises can be due either 

to an inappropriate model or to a bad computational method, as mentioned by Wilson 

[15]. However, the parameters obtained for the Gaussian-Gaussian model are consistent 

with expected values. 

4.3.   Quantiles 

For each noise, we have computed the quantiles with respect to the Gaussian PDF 

and to the Gaussian-Gaussian mixture. They are represented on Figures 4.1-4.3, each one 

corresponding to 4000 samples. 

Figure 4.1 corresponds to the MS noise. Figure 4.2 to the SS noise and Figure 4.3 to 

the BG noise. The part (a) of each Figure represents the quantiles of the empirical distri- 

bution function with respect to the Gaussian PDF. The part (b) corresponds to the 

quantiles with respect to the Gaussian-Gaussian mixture. In this last case, the parame- 

ters were computed following the MGF method using the whole window (4000 samples). 

The curves seem to be symmetric, except for the SS noise, which indicates odd 

moments (skewness) greater than normal for this last noise. A problem with the tails 

can be seen from the somewhat random nature of the curves at the ends, which may be 

due to the errors in the generation of the Gaussian-Gaussian mixture samples using an 

IMSL subroutine. 

Figure 4.1 shows that the MS noise appears to be adequately described by a Gaussian- 

Gaussian mixture, the curve in Figure 4.1(b) being more linear than 4.1(a), excepts for 

the tails. The tails of Figure 4.2 indicates the curious aspect of the SS noise, presenting 

in both curves a linear central part but irregular tails. The BG noise appears very regu- 

lar. Both curves of Figure 4.3 are linear with almost no problems at the tails for Figure 
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4.3(a). In fact, the Gaussian-Gaussian mixture estimate for this case is very close to a 

Gaussian PDF, c.f. Table III. 

4.4.   Conclusion 

We have studied three underwater noises in this section. One (SS) is non- 

stationary, apparently because of the presence of impulses. One (BG) appears to be 

close to Gaussian. Finally, one (MS) seems to be well described by a Gaussian-Gaussian 

mixture model. 

We now study this last noise in the sequel, emphasizing the receiver structure and the 

normalization necessary to detect a signal in this noise environment. 

5.  NORMALIZATION FOR THE MIXTURE CASES 

For the detection of a signal, say s, in noise, when the noise amplitude is unknown 

or time-varying, which is often the case, a power normalization is usually incorporated 

into the receiver in order to regulate the false alarm probability. The noise model can be 

seen as x = a y, where x is the observed noise, y is a random vector representing the 

standardized noise (zero-mean and unit-variance), and a is a scale-factor, a positive unk- 

nown parameter, possibly time-varying, representing the noise amplitude. 

With such a model, it is possible to shown that every statistic of the form S{— x) 
a 

has a PDF independent of a . Hence, a receiver using such a statistic can be normal- 

ized ^ ' [3]. The normalization is done by including in the receiver structure a term 

which divides the observation by the noise amplitude estimate.   More precisely, if r(x) 

is the optimal test-function associated with a noise of unit-variance, r(-- x) will be the 

(2) In fact, the normalization is exact only if a is known without error, which is usually not the 
case. In general, the receiver has only a quasi-normalized adaptive version, because the parameter 
a must be estimated from the observation {adaptive) and is then known with error [quasi- 
normalized). 
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optimal test-function associated with a noise with the same distribution but with ampli- 

tude -or scale factor- a (or power a^). 

In the sequel, we study the different possible noise amplitude maximum likelihood 

estimates, calculated either under HQ or under i/j. In the latter case, the estimate has 

the NAR property [17]. 

5.1. Principle 

The PDF of the noise is no longer F(x), standardized (unit-variance), but Q (x), 

defined by 

g(x) = J^p(lx), (5.1) 
a a 

where a  is the noise amplitude.   In this expression, x is the current observation vector, 

usually of length equal to that of the signal we want to detect, say n .   P[—x) can be 
a 

X,- 
expressed as a product of univariate densities p (—) where z,-  is the i-th component of 

a 

the vector x, assuming that the noise is white and homogeneous. 

(5.1) assumes, of course, that the noise PDF is stationary, or at least quasi- 

stationary, i.e., can be considered as stationary on the length of x. This corresponds to 

a slowly fluctuating noise. Since the SS noise seems to vary in an impulsive manner, this 

noise will not be studied in terms of normalization. 

5.2. Maximum Likelihood Estimates Under HQ 

To estimate the noise amplitude, one can use the maximum likelihood approach [3]. 

Under HQ, the maximum likelihood estimate of a is obtained by solving the following 

equation, 

x' vx/i'(—x)/ 
1 <io 

P(J-x) 
QQ 
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The  Gaussian-Gaussian  mixture  PDF  leads  to  an   implicit  maximum  likelihood 

amplitude estimate of ao^- 

(1-e) h   e  

'Om = - E -:- <^\ <^i 

1=1 (l-e)Sf(x,7ao„;cri) + ^g{xi j a^^^a^ 
(5.3) 

For e and 1 - o-j small, we can make the following approximation to solve for Og^ expli- 

citly: 

"Om    — 
1 1 

" <^i  ,=1 
2  x,^+-L  Y,  X, 

1=1 
(J-1) ;?i(.^^) + e ^2(^^) 

^1 «0m «0m 
(5.4) 

where 

^i(-^) t 
5 ( ;<^i) 

flOm 

'Om 

and 

^2(-^) 

(l-e)ff (—!—;cri) + eg (—^;<T2) 

5(—-^;<^2) 

(5.5) 

(1-e)^ (^^i'^i) + ey {-^^;<^2) 
X,- 

«0m 

(5.6) 

Hence, an approximation of ao,„^ can be found by replacing ao^^ on the right hand of 

1       " 
(5.3) by      y\ Xi^   .   This is the method used in the simulations presented here ^^\ 

The maximum likelihood estimate calculated under i/g for a Gaussian PDF is 

«0^ff 
1     i 

— X     X 
n 

(5.7) 

the standard power estimate. 

(3) This approach can also be used to compute flgm recursively. 
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Figure 5.1 represents the maximum likelihood power estimate flom^ > given by the 

approximation of (5.3), and a^^, given by (5.7) for the MS noise. These estimates have 

been computed on windows of length 100 samples. This length represents 80 ms which 

is the duration of a classical active sonar signal. We observe that the difference between 

the two curves is negligible. We think that the reason for this is that this noise, 

although not Gaussian, is not far from Gaussian. Hence, the use of ag^ instead of ag^ 

leads to essentially the same result and is easier to implement. 

5.3.   Detection and N A R Estimate 

The previous estimates were calculated under HQ, i.e., the assumption that the 

observations were composed only of noise. In a typical detection problem, a signal can 

be present in this observation and its presence must not affect the amplitude estimate in 

order to avoid a normalization of the signal by itself [18]. The amplitude estimate must 

be a Noise Alone Reference [17], i.e., be insensitive to the possible presence (or absence) 

of a signal. 

It is possible to obtain the maximum likelihood estimate of the noise amplitude under 

the hypothesis Hy [3], by solving the following implicit equation, 

x' Vx/P(—(x-8))y 

" F(-^(x-8)) 

In the Gaussian case, this leads to the NAR estimate, 

2   _   1 
"        n 

x' X - i^  I  . (5.9) 
s   s 

In the mixture case, the previous implicit equation is not easily solvable. Consequently, 

we use an approximation which consists of replacing x by its projection onto the sub- 
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space of the observation space orthogonal to the signal s to be detected [19].   This is 

accomplished by using 

s' X 
y = X ■—s , (5.10) 

s   s 

instead of x. We have used this approach to get a NAR amplitude estimate, say a^^ , 

for the mixture case, replacing x,- by y^ in (5.3)-(5.6). 

5.4.   Test-Functions and ROC Curves 

We will use two types of receiver structures. The first one corresponds to the white 

Gaussian noise assumption and is the matched filter in white noise, s' x. The second 

one corresponds to a processor associated with the mixture assumption and will be 

denoted by L^ (x), 

T    t^^ -  A   ^^~'^^ ^''' "''' ''^^^ + ^^ ('^' ~^' '^2) ,,,,, ^m\^) ~  11    7Z Z—f T- -f r  . (5-11) 
,•=1        (l-e)g (i,-;<Ti) + ey (x,-;CT2) 

As previously noted, instead of using x in these two structures, we have to use — x 
a 

as the input to the receiver. Of course, a is not known exactly and will be replaced by 

an estimate. We can use the estimate calculated under either HQ or H^, and correspond- 

ing to either a Gaussian or a mixture assumption. These four estimates are OQ , a^ for 

the Gaussian case, and a^^, a^^ for the mixture case. The subscript 1 corresponds to 

the NAR estimate.   The test-functions are 

ijW=-^, (5.12) 
a Off 

r,(x)=lliL, (5.13) 
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r„(x) = L„(^L_). (5.15) 
a Im 

In these expressions, we have been consistent by using the same assumption for the 

receiver and the normalization structures, Gaussian with Gaussian, mixture with mix- 

ture. 

Using a standard Monte-Carlo method, ROC curves have been computed for these 

test-functions using the MS noise. The results are indicated in Figures 5.2 and 5.3. 

These figures represent the probability of detection with respect to the probability of 

false alarm for the four previous test-functions. 

Each "number" in these curves corresponds to a point associated with one threshold, say 

t, for the corresponding receiver, in the sense that if the output is greater than t, the 

hypothesis H^, signal present, is chosen, whereas if it is smaller than t, we decide HQ, 

noise only. 100,000 observations vectors have been used for each curve, in order to get 

the probabilities of false alarm and detection. 

The signal have been taken either constant, Figure 5.2, or pseudo-random (white noise 

sequence). Figure 5.3. In both cases, the signal-to-noise ratio was 0 dB at the receiver 

input. The probability of false alarm is represented through its logarithm in basis 10. 

The curve noted "1" corresponds to the receiver tg{.), (5.12), the one noted "2" 

corresponds to the receiver T^ (.), (5.13), and so on, "3" for t„{.), (5.14), and "4" for 

r„(.), (5.15). 

We note that we obtain the same kind of qualitative results while using the BN 

noise instead of the MS noise. The differences between the two types of receiver is 

smaller than for the MS noise. This is due to the fact that the BN noise, as previously 

observed, is closer to a Gaussian noise than the MS noise. 

In a previous study  [3], it was shown analytically that since tg{.) and  Tg{.) are 
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monotonically related, they have the same ROC curves, but not the same deflection cri- 

terion. Here, we empirically verify this observation for the ROC curves. The test- 

function t^ (.), (5.14), gives the best results in both cases. This would seem to indicate 

that the Gaussian-Gaussian mixture model is closer to the real underlying density than 

the Gaussian PDF. This is true even with a very simple parameter estimation pro- 

cedure; in effect, the parameters of the mixture model, e, a^, and c^, have been computed 

on the whole window (4000 samples). Small variations can occur from a small window 

(20 samples) to another and we have computed an estimate based on a global model, not 

necessarily consistent with each local window. Even with this approximation, made in 

order to simplify the processing and to test the performance of a static (not adaptative) 

mixture model, the results are quite good. 

The test-function !'„(.), (5.15), leads to results very close to those of t^{.). As in 

the Gaussian case, there is no difference between these two test-functions in the constant 

signal case, Figure 5.2. The very small difTerence between the two curves corresponding 

to the mixture receiver and observed for the pseudo-random signal case. Figure 5.3, can 

be explained by the sensitivity to poor estimates and/or effects of approximations in the 

computation of the NAR reference. We have also made an approximation in order to 

compute the amplitude estimates associated with the mixture. If a NAR estimate is 

desired, the one based on the Gaussian assumption may be more tolerant to errors and 

less sensitive to approximations and deviations from the true density than the one based 

on the mixture assumption. 

6.  COMPARISON OF ADAPTIVE/ROBUST RECEIVERS 

In this section we are going to compare three receivers, without any different nor- 

malization; the previous section has shown that the type of normalization used (under 

HQ or H^) has no importance on the performance in term of ROC curves.   Assuming the 
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noise white and stationary, we are going to study the adaptive receiver corresponding to 

the likelihood ratio for the Gaussian-Gaussian mixture and two robust receivers, matched 

filter and soft-limiter. The matched filter is robust with respect to the relative efi'iciency 

[9,20]. The soft-limiter is robust with respect to the ROC curves [21]. For the purpose 

of comparison, the non-linearities of these three different receivers are represented on 

Figure 6.1. We have used the optimal receiver (5.11) associated with the mixture, and 

not the locally-optimal one for the simulations. 

ROC curves have been computed for different values of the parameters. They are 

represented on Figures 6.2 to 6.13. Each curves corresponds to the three receivers previ- 

ously mentioned, "1" being associated to the matched filter, "3" to the mixture likeli- 

hood ratio, "5" to the soft-limiter. 100,000 samples of the MS noise have been used for 

SNR of 0, -5 and -10 dB, (10,000 samples only for -15 dB). Three different threshold 

values (A;) for the soft-limiter have been used, 1.4, 2.0 and 2.5. The noise variance was 1. 

The following preliminary conclusions can be made. First, the mixture receiver 

always '^' performs better than the matched filter which, in turns, is better than the 

soft-limiter. At 0 dB, from Figures 6.2, 6.6 and 6.10, the matched filter is seen to have 

almost the same performance as the mixture receiver until a PFA of 10^. This can be 

explained by the fact that, for this high SNR situation, we are in a linear area of the 

mixture non-linearity, i.e., we are operating in the second linear region for these high 

inputs, c.f. Figure 6.1. For a SNR of -5 dB, from Figures 6.3, 6.7 and 6.11, we are in the 

area where this mixture input-output relationship is highly non-linear. Consequently, 

the degradation between this receiver and the matched filter is more pronounced. At -10 

dB, from Figures 6.4, 6.8 and 6.12, the difference decreases because we are around the 

(4) except for low probabilities of false alarm,  10 ^, 10 ^, at -15 dB, but the difference is very 
small. 
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origin where the mixture non-linearity becomes more linear for small SNR. At -15 dB, 

from Figures 6.5, 6.9 and 6.13, we see that the three receivers have almost the same per- 

formance. 

The soft-limiter with the smallest threshold at 1.4, Figures 6.2 to 6.5, has bad per- 

formance, even at high SNR where the limitation cuts out most of the signal. The 

differences between the mixture receiver and the matched filter is usually bigger than 

the difference between the matched filter and the soft-limiter. This is in particular true 

for k = 2.0 and 2.5, where the soft-limiter is very close to the matched filter. 

These results can be explained by the facts that the MS noise is closer to a 

Gaussian-Gaussian mixture than to a Gaussian PDF, as seen in the previous section, and 

that it has no impulsive components. Consequently, the soft-limiter cuts the signal and 

not the noise, especially at high SNR. At low SNR, the total observation has, in general, 

small amplitudes such that we are in the area around zero. This is the area where the 

three non-linearities are almost the same, c.f. Figure 6.1. Hence, the three receivers per- 

form nearly the same at low SNR. 

7.   CONCLUSION 

Three underwater acoustical noises samples have been studied with emphasis on 

noise PDF modeling. The SS noise, generated mostly by biological phenomenon, appears 

to be non-stationary. The BG noise is very close to Gaussian. The MS noise seems to be 

adequately described by a Gaussian-Gaussian mixture. This last noise has also been stu- 

died in a detection framework with a normalization of the receiver necessary to obtain a 

constant false alarm rate. 

The noise power maximum Hkelihood estimates under HQ or H^ assuming a Gaus- 

sian PDF give very similar results.   If a signal is to be detected in a noise close to the 
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mixture model, the use of a receiver associated with the Gaussian-Gaussian assumption 

(receiver structure and normalization) appears to have better performance in terms of 

ROC curves than those corresponding to a Gaussian model. This is an indication of a 

better fitting of the mixture model to the data. In both cases, the use of the NAR noise 

power estimate leads to the same performance as the use of a standard one, calculated 

under HQ. 

Finally, the Gaussian-Gaussian mixture likelihood ratio receiver, considered as an 

adaptive receiver, has been shown to have better performance than two robust receivers, 

the matched filter and the soft-limiter. 
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APPENDIX   A 

Assume a PDF modeled by (3.4), with zero-mean and unit-variance. A method of 

moment estimation permits quite easily the calculation of the three relevant parameters. 

Since the variance is one, and denoting by 64 and eg the fourth and sixth moments of 

the observation, we have 

(l-€) a^ + ta^ = l , (A.l) 

(l_e) ^ 4 ^ e (72^ =-ii , (A.2) 

(l_e) a^ + e CT| = -!l . (A.3) 

Assuming e«l, and e^<Z, we can get these parameters in a straighforward manner: 

2 ~    AT (A.4) 

15(1-7^) 
al^\—^==-\\ ■ • (A.5) 

%/¥ (^-v^l (A.6) 
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APPENDIX   B 

The idea of the Moment Generating Function method is to minimize the mean 

square error in the estimate of the generating function, E { e^^ } : 

e\0,l)=  S    \G{ej)-F{'i,ej)\\ (B.l) 
j=l 

where 

G{0) = -j;i:  e'-' (B.2) 

is the empirical generating function, a:,-   being the i-th sample of the observation com- 

posed of N samples; 

e = lh,h, ■■■,0k f ' (B.3) 

is a vector of k values; 

7 = /e, ^1, <72/ (B.4) 

is the vector of the Gaussian-Gaussian mixture parameters; 

F[^,e) = {l-e)e^ '    +ee2 ' (B.5) 

is the generating function associated with the mixture model. 

In the simulation presented in this paper, we have used TV = 4000 for the whole 

window (or 2000 for the smaller ones), A; = 3, 5 =/O.l, 0.4, 0.8 / , and a gradient 

method for the minimization of the square error, initialized with the results of the MOM 

method for the mixture. 

This method has been chosen because of its good results as described in a previous 

paper [16], and as discussed by others in comments following that paper. 
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