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FINITE LENGTH DISCRETE MATCHED FILTERS 

Andrew B. Martinez John B. Thomas 
Department of Electrical Engineering Department of Electrical Engineering 

Tulane University Princeton University 
New Orleans, Louisiana   70118 Princeton, New Jersey    08540 

Abstract 

The Matched Filter (MF) is well known to be the linear detector that has the max- 

imum output Signal-to-Noise Ratio (SNR). The problem of finding the minimum filter 

length in discrete time to achieve a certain level of performance is considered when there 

is some freedom in choosing a signal shape. Upper and lower bounds on the SNR are 

given in terms of the eigenvalues of the noise covariance matrix. Since these bounds are 

rather difficult to compute, looser, but easier to compute, bounds are given. Several 

examples are presented which illustrate the exact and approximate bounds. 

I. Introduction 

The design and implementation of the Matched Filter (MF) has received consider- 

able attention [4-8]. As a detector it has the advantage of linearity, and since it is based 

only on easily estimated second-order noise statistics, the MF is simple to optimize. The 

performance criterion, the Signal-to-Noise Ratio (SNR), is tractable, and intuitively 

appeaUng. 

For a fixed signal in discrete time, Levinson [8] has presented a simple and efficient 

algorithm to solve the MF equation. Since the MF impulse response and the SNR are 

computed iteratively, the algorithm can be terminated when a filter with desired perfor- 

mance is found. Unfortunately, when there is some freedom in choosing a signal, the 

choice of signal plays an important part in optimizing the detector. Because the optimal 

signal of length M is a truncated version of the optimal length M+1 signal under only 

very special conditions, the Levinson algorithm must be repeated TV times, and thus may 



lose its computational advantage. In this paper, easily computed bounds on the perfor- 

mance of the MF as a function of length are found. Then, before any attempt is made 

to solve the MF equation, an estimate of the filter length can be found from these 

bounds. 

n. Detection Problem 

The detection problem considered in this paper is one of finding a linear detector 

that discriminates between an hypothesis HQ and an alternative Hi. The decision is 

based on a discrete length N observation vector x composed under HQ of noise n with 

density /   and under H^ of a known signal s in noise: 

HQ-. X ^ n 

Hi: X = n + s 

The detector consists of a real scalar test statistic r(x), a functional of the observation 

X, which is compared to a scalar threshold to decide for HQ or Hi. 

The criterion of detector optimality used in this paper is a SNR measure often 

called the deflection: 

where EQ and Ei are the expectation under HQ and Hi, and Varg is the variance under 

Ho. 

It is well known that the log likelihood ratio detector for Gaussian noise is linear; 

that is, the matched filter. Since the detector power is a monotone increasing function 

of the SNR of T, the SNR is frequently used as a measure of detector performance. The 

SNR, outside of its intuitive appeal, is often justified by making a Gaussian assumption 

about n or applying the central limit theorem to T. 

Using the MF as a detector for non-Gaussian noise is more difficult to justify.   In 



general, the likelihood ratio detector maximizes the SNR [ij, and by a simple calculus of 

variations argument, maximizing the SNR (as defined above) with no restriction on the 

linearity of the detector can be shown to yield a Unear function of the likelihood ratio. 

The MF is the linear filter which maximizes output SNR, but the likelihood ratio is gen- 

erally nonlinear. Therefore in making a restriction of linearity on T, it is tacitly 

assumed that the noise is Gaussian or nearly Gaussian in the sense that the MF per- 

forms reasonably well and that any loss of optimality is compensated for by the simpli- 

city and linearity of the MF. 

Under the assumption of linearity, the test statistic T(x) is equal to the output at 

time A^ of a linear filter with impulse response h. As a convenience, the pseudo-signal is 

defined to be a length N vector with elements «,• = A^+i.,-, the filter impulse response in 

reverse order.   The output SNR of the linear detector is found from Eq. (1) to be 

SNR. ^   <",|->^   <X 
<uIRu> 

where < > is standard inner product notation, R is the noise covariance matrix, and \ 

is the maximum value of SNR for the optimal pseudo-signal.   Cross-multiplication yields 

L (u) = <u I s>2 - X <u I Ru> < 0 

This can be maximized in the usual way by setting its gradient equal to zero: 

Vi (u) = 2<u I s>s - 2XRu = 0 

On rearranging and noting that X/<u | s> is a constant and can be set equal to unity 

without loss of generality, the result is the well known MF equation: 

s = (X/<u I s>)Ru = Ru (2) 

The solution of Eq. (2) is the pseudo signal of the MF: 

u = R-'s 

with output SNR given by 

SNR„ = <u I s> = <s I R-is> 
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In discrete time and with a fixed signal, the MF matrix equation can be solved quite 

efficiently using the Levinson algorithm. In continuous time, the classical method of 

solution is to use spectral factorization to solve the equation on an infinite interval; this 

(possibly) non-causal solution is then projected onto a causal space [3]. In discrete time, 

there is a parallel spectral approach using the eigenvectors and values of R. 

ni. Signal Selection and Bounds on the SNR 

It is well known that the MF is the linear filter with the maximum SNR, for a 

given signal in noise. In addition for non-white noise, the SNR, of the MF can be max- 

imized by proper choice of signal shape. Because of this, for signals of constant energy, 

the SNR, of the MF has a range of possible values. 

Since the NxN covariance matrix R is positive definite and Hermitian, it has posi- 

tive, real eigenvalues: 

0 < Xi < X2 <   • • •   < X^ 

and a corresponding set of orthonormal eigenvectors: 

ei, 62, ..., ejv 

The matrix R can be diagonalized: 

R=EAE-i 

where E is the eigenvector matrix: 

E = [ei, 62, ..., ejv] 

and A is a matrix of eigenvalues: 

^1 0 

0      x^, 
A = 

Likewise R"' has the diagonal form: 

R-' = EA'E-i 

where A"' has as its diagonal elements the eigenvalues of R"^: 
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i- > J- >   . . .   > ^ 
A] X2 X^ 

Thus the MF equation has the solution: 

u = EA-^E-^s (3) 

The signal s can be expanded in terms of the eigenvectors: 

s = Ec ' (4) 

where c is the coordinate of s under the basis formed by the orthonormal eigenvectors of 

R.   From Eqs. (3) and (4) the pseudo-signal is 

u = EA-ic (5) 

The SNR, of the MF becomes 

SNR„ =c^A-ic 

If the signal is chosen to be in the eigenspace of the »th eigenvector (s = jfce,), then the 

MF is a simple correlator (u = s) and 

SNR,, = k /\i 

The Rayleigh quotient theorem [2] states that 

1       <,     <3 I R-'3>     ^   J_ 
^w   ~       11 s 11 ^      ~  Xi 

where the upper and lower bounds are achieved for a signals in the eigenspace of B^ and 

e^ respectively.  Thus the SNR of the MF is bounded: 

iMii < SNR.  <-IMii (6) 
AJV Xi ^    ' 

The best choice of signal is cj, the eigenvector of R with the smallest eigenvalue. This is 

equivalent to putting the signal in that part of the spectrum of R where the noise has 

the smallest magnitude. 

Grettenberg [7] has <-aken the logical step of using M eigenvectors as an M charac- 

ter alphabet of signals. By choosing the eigenvectors of R corresponding to the smallest 

M  eigenvalues, not only is the set orthogonal, but it achieves the greatest minimum 



SNR<, of any such M character set. This also has an advantage of simplicity, since, 

when the signal is chosen to be an eigenvector of R, from Eq. (9) the pseudo-signal 

equals the signal, and the MF reduces to a simple correlator. 

A minimax strategy is used by Turin [5] to find the worst-case noise, and the 

corresponding best signals in continuous time. He shows that the best signal spectrum 

should consist of the noise spectral components with the smallest magnitude. As a 

consequence, the worst spectra and the best signal both have flat spectra. 

IV. Levinson Algorithm and Optimal Signal Selection 

For the Levinson algorithm to produce the s-optimal MF on each iteration, the 

length N optimal eigenvector e'^' has to be a truncated version of the length N+1 

eigenvector e'-'^"'"''. 

AN + l) ^ 

Let R(^+^) be the {N+l)x{N+l) covariance matrix with elements r | ,_y,, then 

where x(^+^) is the eigenvector corresponding to the eigenvector ef^+'l   Noting that the 

N xN minor of the covariance matrix i?(^+i) is i?'^': 

R(JV + l)g(iV+l) ^ X^N + l)^{N+l) ^ R(^)   r(^) 
(r(^))re(JV) +  «N + l 

where 

r(^)=[r^   r^_i   •••   r^]^ 

For e(^' to be a truncated version of e(^+'', then for all N > 1: 

Solving this equation iteratively yields permissible autocovariance sequences.   Let r^, 

be the first nonzerc term in the covariance sequence after TQ.   Then every pth term with 



index less than L   is nonzero, and the rest are zero.   All nonzero terms have the same 

magnitude with alternating or constant sign.   The covariance sequences have the form: 

'"•■"+* ^ ^ 0 * = 1, 2, ..., p-1     or     z> +k  >L 

where i >Q, 0 < k < p-1, p  > 0, and L  > 0.   As a special case, if L -fO or p ^oo the 

result is white noise, r,- = 0 for all «' > 1. 

This places a severe restriction on the noise autocovariance sequence, and places 

corresponding limits on the utility of the Levinson algorithm for this particular problem. 

V. Approximate Bounds on SNR 

It is impractical to find a suitable filter length N from the bounds in Eq. (6) since 

they require knowledge of the eigenvalues of each MxM minor of R. Looser but easier 

to compute bounds can be found. 

The equivalent rectangular time duration AT of the noise autocovariance is intro- 

duced as a rough measure of correlation [3]: 

AT =   E 
a^ 

The largest eigenvalue of R, denoted by X;^/, is well known to be the smallest norm of R, 

thus using another norm: 

>^JV  <   I I R I i oo = maxX;r,7  < T^AT 

This yields the looser bound: 

'■     ;• 

An upper bound can be found.   The condition number AT of a matrix is defined as: 

K = KJKi, = 11 R-'l I   MRU 
then from Eq. (6) 



"max SNR  <   \\s\\^K/\ 

The trace of R equals the sum of its eigenvalues: 

tr{R) = Na^= ^l^' 
1=1 

therefore 

and so 

^ "     < SNR. <    " ^ "   ^ 

Since the input SNR is given by 

(7) 

II s II 2 
SNR,- =   " ^ " 

the improvement in SNR of the MF is given by 

TV SNR„ 
AT^^NR--^^-^^^ (8) 

VI. Examples 

As a first example, consider white noise with an N XN covariance matrix R = a^l. 

The covariance matrix has an A''th order eigenvalue a^ making the upper and lower 

bounds in Eq. (6) equal, and the choice of signal arbitrary. Other considerations, such as 

a ceiling on transmitted signal strength, may still make the spreading of signal energy in 

time desirable. 

For iV ^ 3, the autocorrelation sequence is given by 

For R to be positive definite, the values that r^ and rj can take are restricted: 

I ri I   < 1        and        rj < y/{F^+l)/2 

This region of the riXr^ plane is shown in Figs. 1 and 2. 

The difference in dB between the upper and lower SNR bounds in Eq. (6) is plotted 
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as contours in Fig. 1.   Even for a filter this short, the signal selection is shown to be 

quite important. 

In Fig. 2, the SNR of the MF for an alternating signal («,- = (-1)'') is shown in dB 

over the lower bound. The alternating signal was chosen as a suboptimal approximation 

to the optimal signal because of its simplicity, and similarity in shape to the optimal sig- 

nal for ri > 0. It is readily seen to be nearly optimal in this case. Because of the sym- 

metry of this problem, a constant signal («,• = l), chosen as a suboptimal signal for 

r,-  < 0 has performance contours which are the mirror image of those in Fig. 2. 

Four noise autocorrelation functions were chosen as representative ~ the exponen- 

tial: 

r,- = exp(-0.2   | «' | ) 

the triangular: 

ri- h- 
'■•• = 10 

/lO       I / I   < 10 
h' I   > 10 

the Gaussian: 

and the hyperbolic secant: 

r,- = exp{-Tv{i /lOf) 

r,- ^ sech(7ri/lO) 

The exponential is the simplest member of the Markov class; the triangular function has 

finite support; the Gaussian correlation function has infinite support, yet has tails which 

fall off" faster than  the exponential, and the hyperbolic secant has a nearly Gaussian 

shape at the origin, but exponential tails. 

The upper and lower bounds on the SNRji^^ from Eq. (6) are plotted in dB versus 

filter length N in Figs. 3-6. Here signal selection is extremely important for all N > 2 

and increasingly so for increasing TV. Even for the length 5 filter, the difi"erence between 

the best and worse-case SNRji^;.   is at least 15dB for all four cases.   At iV = 20,  the 
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difference is at least 19dB. 

The parameters of these four correlation functions were chosen so that each has an 

equivalent rectangular time duration of AT « 10. Thus the approximate lower bound 

(Eq. 8) for each function is 

N/10 < SNRMF 

The approximate and exact lower bounds for each correlation function is shown is Figs. 

7-10. 

Vn. Conclusions 

The bounds on SNU^F in Eq. (6) show the selection of the signal to be important 

for optimal performance of the MF. The selection of a suboptimal signal, if made intelli- 

gently, can produce nearly optimal results, and certainly the importance of signal shape 

should not be overlooked. 

The approximate lower bound of Eq. (8) gives a simple although conservative esti- 

mate of worse case MF performance. An estimate of filter length can be made with only 

knowledge of the equivalent rectangular time duration AT. 
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Figure 1 - Contours of SNR,^ upper bound 
MF 

for N = 3 in r  x r  plane. 
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Figure 2 - Contours of SNR,^ for alternating 
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signal in r  x r  plane. 
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Figure 3 - Upper and lower bounds on SNR   for exponential correlation. 
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Figure 4 - Upper and lower bounds on SNR  for triangular correlation. 
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Figure 5 - Upper and lower bounds on SNR   for Gaussian correlation. 
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Figure 7 - Approximate and exact lower bound 
for exponential correlation. 
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Figure 8 - Approximate and exact lower bound 
for triangular correlation. 
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Figure 9 - Approximate and exact lower bound 
for Gaussian correlation. 
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Figure 10 - Approximate and exact lower bound 
for hyperbolic secant correlation. 
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