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INTRODUCTION

Without exception, spectroscopic methods of chemical analysis exhibit re-

. duced performance in multicomponent analysis because of interference by over-

lapping component signals. One of the solutions to this problem that chemists

in several subdisciplines are currently exploring is the simultaneous evaluation

of several sample properties. ' This approach produces a multidimensional data

set that is more charasteristic of the sample than the one dimensional data sets

generated by evaluating the sample properties separately. Developments in

microprocessor controlled instrumentation and multidimensional detectors have

reduced the time and effort required to acquire multidimensional data and in-

creased the practicality of multiparametric analysis. However, in order for

multiparametric analyses to approach the efficiency of single parameter measure-

ments, data analysis methods capable of efficiently generating and accurately

interpreting the results are needed. Multiparametric data analysis is usually

composed of three phases: 1)rank analysis which is the determination of the

number of sample components, 2)qualitative analysis and 3)quantitative analysis.

Moreover, multiparametric techniques often provide superfluous information.

Therefore, optimum data reduction methods are needed to extract the salient

features of the data for component analysis.

This article reviews data analysis and reduction methods as applied to
0I

multidimensional luminescence measurements(MLMs). This format precludes an

exhaustive review of the algorithms developed for multiparametric data analysis,

but it is our hope that the methods presented here will provide a survey of the

kinds of analyses available for all types of multidimensional data. Luminescence

(fluorescence and phosphorescence) measurements, in particular, are suited to

this kind of analysis because all luminescence measurements are inherently

multiparametric. For example, the intensity of fluorescence (If) generated by
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mization methods, which is illustrated by qualitative analysis of multicomponent

excitation-emission matrices using the simplex algorithm.

LINEAR METHODS

The utility of acquiring luminescence data in multidimensional format was

first recognized by Weber.' In his work, the intensity of luminescence was ac-

quired as a function of multiple excitation and emission wavelengths. This format

is now called the excitation-emission matrix (EEM). There are three fundamental

properties of luminescence that make this kind of analysis possible: 1)the emis-

sion profile of a pure sample is independent of the excitation wavelength, 2)the

excitation profile of a pure sample is independent of the monitored emission

wavelength and 3)at low absorbances, the intensity of luminescence is directly

proportional to the absorbance of of the sample. As a result of properties I and

2 the rows of an EEM of a pure sample are multiples of the emission spectrum

and the columns are multiples of the excitation spectrum. Therefore, a one

component EEM can be expressed by the product of two vectors representing the

excitation and emission spectra of the sample.

M = xy (1)

where a is a concentration dependent scalar. Matrices, such as this, with in-

dependent variables plotted on both axes are called bilinear. An example of a

non-bilinear matrix is one whose rows are the absorbance spectra of a set of

solutions with randomly varying relative concentrations of a set of components.

The rows would be linear combinations of the absorbance spectra, the columns

would have no physical significance. Figure 1 which shows isometric and contour

plots of perylene, illustrates these properties.

As a result of the third property and Beer's law, the EEM of an n component

mixture is the sum of the EEMs of the pure components, provided that there are

K. 2. Z.L
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no synergistic effects such as energy transfer. Therefore, the rows of the

multicomponent EEM are linear combinations of the emission spectra of the com-

ponents. -""

x = clX1  c2x2  ( CnXn (2)

Likewise, the columns of a multicomponent EEM are linear combinations of the

component excitation spectra.

y C1Y1  c2 Y2  ... CnYn.3

The matrix M is represented by

n

M = iXiYi (4)
i=1 .-

in vector notation where the subscript i denotes each luminescing component.

The EEM can be represented more succinctly in matrix notation:

M = XY (5)

where X is a matrix whose columns are the excitation spectra of the components '

and Y is a matrix whose rows are the emission spectra of the components. This

kind of linear relationship also applies to other luminescence parameters because

they are regulated by Beer's law due to their relationship to the luminescence

intensity. For this reason, linear methods are also suitable for other forms of

matrix-formatted luminescence data.
SI

One of the simplest approaches to the analysis of matrix formatted

luminescence data is to use approximations to decompose the matrix into row and

column factors.' Knorr and Harris 7 have applied this method to the fluorescence

decay-emission matrix. Independent first order decay is assumed for each com-

ponent in the sample. A trial time matrix whose rows were generated by con-

voluting the decay curves corresponding to estimated lifetimes with the instrument

response function is formed. Then, the trial time matrix, T, is used to generate L:~~ii



the corresponding spectral matrix. The psuedo-inverse of T', which is given

by (TTT) , is used to extract the spectral vectors from the data matrix when

they are not orthogonal to the decay curves on the columns of T. So the spectral

matrix is given by

A' = LT'T( TTT) -  (6)

The model matrix L' is generated by multiplying A' and T'. The elements of

T' are adjusted until the squared error between L and L' is minimized.

Matrix decomposition is useful whenever it is possible to make reasonable

estimates of one of the experiment parameters. However, if nothing is known

about the sample response to changes in either of the experiment parameters,

factor analysis based algorithms are more appropriate. Factor Analysis (FA), "'"'

extracts the smallest set of independent vectors which account for the variance

in the data matrix. "= These independent vectors are called the singular vectors

of M or the eigenvectors of the covariance or second moment matrices of M. The

MLM can also be expressed as the product of the row and column singular vectors:

n
M a iu Vi (7).

iI 1

where i again denotes the luminescing components. In matrix notation, M can

also be expressed as the product of the orthogonal matrices U and V whose rows

and columns, respectively, are the singular vectors of M.

M =UEV (8)

The diagonal elements of the matrix Z are the singular values of M, whose ...

magnitudes reflect the significance of the corresponding singular vector to the

total variance of the data matrix. When M is ideal, the rank of the matrix is the

minimum number of luminescent components contributing to the data. When M is

an experimental matrix with random errors superimposed upon the data, the rank

. ,
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of the matrix is the number of observations made along the shorter axis. In this

case, the number of luminescing components in the data is obscurred. Several

rank analysis methods have been developed to determine the number of compo-

nents in experimental matrices. The performance of rank analysis procedures

on MLMs has been compared in a recent paper by Rossi and Warner" which re-

ported the development of a frequency domain rank analysis method. When the

number of luminescing components is correctly determined, the product of the

singular vector matrices provides a least squares approximation to the data."

The presence of random noise in the data is a serious consideration in data

analysis. As in the case of rank analysis, the presence of random noise reduces

the performance of most data analysis methods. Often it is possible to avoid this

problem by using more concentrated samples, signal averaging or a combination

of both of these methods. The performance of some data analysis methods can

also be improved by the use of time1 " or frequency" domain digital filtering

methods which have been designed to reduce noise by mathematiLdlly discrimi-

nating between noise and spectral information.

When M is an EEM, U and V are excitation and emission singular vector

matrices, respectively. The singular vectors and spectra span the same vector

space and, are therefore linear combinations of each other. There must be, then,

a matrix K whose elements are the coefficients used to express the spectra in

terms of the singular vectors.

X = UK (9)

Since M is the product of U and V, changes in U require complementary changes

in V. Therefore,

Y = K'V. (10)

The goal of FA spectral resolution algorithms is to determine tha values of K

and K - that transform U and V to X and Y.

................................................
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In 1977, Warner et al. reported the development of a FA based algorithm

for the resolution of binary EEMs. '
"  This algorithm is an extension of Self

Modeling Curve Resolution 5 to bilinear non-negative matrices. The singular

vectors will generally be forced to contain negative elements in order to achieve

orthogonality. The values of the elements of K and K -1 are found by solving

the expressions for the transformed vectors under the. condition that they are

non-negative, as are true excitation and emission spectra. The expressions for . -

the non-negativity constraints are given by

UK >0 (11)

and

K_1 V _ 0 (12) -

in matrix format. Solving these equations for the elements of K generates the

following ranges for the elements of K:

min v(1) > k12  max -u(2). (13)

v(2).>0 v(2). u(1)i>0 u(1) i  -..- .

and

min v (2). k max -u(l) i . (14)

v(1)>O v(1). u(2)i>O u(2).

For simplicity, the values of k11 and k are considered to be unity. The ranges

for k and k2 1 converge when the compounds, whose spectra are represented

by the variables in the numerators, are sole absorbers or emitters at the wave-

lengths represented by i and j. This convergence produces unambiguously cor-

rect transformations. Figure 2 is an isometric plot of an EEM of an

anthracene/perylene mixture and the singular vectors and spectra resolved from

it. The spectra are completely resolved because the spectra of both components

are sole contributors to the matrix at charasteristic excitation and emission

wavelengths.

. . . . . . . .. . ........ . . . . . . . . . . . . . . . . . . .. . . ..
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Since 1977, two other FA based spectral resolution algorithms have been

developed for MLM. One is suitable for resolving binary matrices that are not

bilinear or not subject to non-negativity constraints along one axis. The other

is capable of resolving the spectra of components from non-bilinear data matrices

of higher order mixtures. 17

Factor Analysis algorithms have not yet been developed which can resolve

spectra from data matrices when none of the components is a sole emitter or

absorber. Moreover, in most cases, the analyst does have some prior knowledge

of the sample components. In instances where the objective is quantitative rather

than qualitative analysis, Linear Least Squares Analysis is appropriate. .

A mixture matrix whose components are known but have unspecified con-

centrations can be represented as

n

M c.M. (15)

i=1

where M. is the standard matrix of the ith component and c. is the ratio of the

sample concentration to the standard concentration of the ith component. The

best least squares approximation of M has a minimum squared error, where the

error matrix E is given by

n

E = M - c.M. (16)

and the weighted sum of the squared elements of E is a minimum given by

St,(e = -tkl(mkl - c(i)m(i)kl) ma  (17)

kI kI i

where e is the element on the kth row and Ith column of the error matrix,

mkl is the kith element of the observed data matrix, m(i)kl is the kith element

........-....



of the ith standard matrix, c(i) is the concentration of the ith standard matrix,

and the tkl are the weighting factors for the elements of E. The weighting factors

reflect the dependence of the variance in each matrix element on the magnitude

of the signal. For photon limited noise, the inverse of the signal is a suitable

weight. Differentiating equation 17 with respect to concentration defines the least

squares condition:

S[ tklm(i)klm(j)kl]c(j) tklm(i)kl mkl. (18)

j ki kI

If the terms in equation 18 are grouped by subscripts,

the expression can be represented in matrix format:

Wc = p. (19)

where W is the n by n matrix whose elements represent the terms given by

[ k t klm(J) kl ] c is a vector whose elements are the c(j) and p is a vector

whose elements are given by Zk)tklm(i)klmkl. The values of the c(j) can be found

from this equation using the inverse of W:

c - p. (20)

The variances associated with the c(j) are given by

tot = Omix {c(j)} ostd{c(j)}

t i{ w m(r) kl]omkl) [eklW ( wm(r))C(j)2 } (21)

kl r j r

where a is the estimated variance of the data matrix and a[m(i)] is the
(m kl) l

estimated variance of the ith standard matrix. Table 1 shows the results of the

quantitative analysis of a nine component mixture of polynuclear aromatics using

least squares analysis.

Other quantitative analysis methods have been developed for MLMs. Ratio

deconvolution is an algebraic method which uses the average ratios of the un-

known and standard matrices to separate multicomponent EEMs into their compo-

...................................................... **-,



Table 1. Quantitative Analysis of a Nine-Comnponent Mixture*

component relative least squares
concentration concentration

naphthalene 1.485 1.465

carbazole 0.939 0.944

fluorene 1.180 1.176- -

phenanthrene 1.376 1.383

anthracene 1.311 1.309

pyrene 0.678 0.678

0chrysene 1.406 1.407

perylene 0.899 0.900

fluoranthene 0.568 0.568

*Copied from reference 28.



nent matrices.1S' a Rank annihilation is a factor analysis based method which

verifies the presence of a component by the loss of a principle component when

a suitable amount of the compound is subtracted from the data matrix. Rank

annihilation procedures have been developed for two dimensional 2"' 2 and three

dimensional 2 3 systems using calculations in reduced space to reduce the number

of computations performed. 2
1
.

FOURIER METHODS

Many of the linear methods are data reduction methods that exploit the ad-

ditional information in a multidimensional data set to extract the more familiar one

dimensional spectra. However, in order to take full advantage of multidimensional

data, data analysis methods that actually analyze the data in both dimensions are

needed. Ratio deconvolution is an example of a linear time domain method that

uses the entire matrix for analysis. The fact that frequency domain methods have

a limited ability to separate spectral contributions from noise, gives them a par-

ticular suitability for this kind of analysis. To date, the frequency domain

methods that have been developed for MLMs have been developed for the EEM.

Correlation analysis in the frequency domain has been chosen for analysis of EEMs

because of its relative insensitivity to phase differences and background fluctu-

ations between data matrices. Moreover, the maximum values in frequency domain

auto-correlation functions are weighted in favor of signal as opposed to random

noise because of the predominance of low frequency components in spectral in-

formation. 2" Correlation analysis or spectral matching methods compare the data
0J

matrix to a library of standard matrices. The identity of the sample is postulated

based on the degree of similarity to those standards.

.......................................................................



A global perspective of the data is provided by viewing the data as an image

or two dimensional function rather than a vector product. Therefore, it's more

convenient to describe the data matrix M as

M = f(x,y). (22)

where x and y are variables representing the excitation and emission wave-

lengths. In the time domain, the correlation of the data matrix and the library

standards is given by

f(x,y) o g(x,y) I / f(,,)g(x"a,y+13)dad (23)

where a and 5 are shift parameters and o denotes convolution. This function -'

is much easier to evaluate in the frequency domain where

f(x,y) o g(x,y) F(u,v)G*(u,v). (24)

The symbol " -*" represents a Fourier transform pair and * denotes the complex

conjugate. The capitalized functions are the frequency domain counterparts of

the data and standard matrices. The relationship between the time and frequency '

domain functions is given by

F(u,v) = f Jf(x,y)exp[-2li(xu+yv)]dxdy (25)

where x and y are time domain coordinates and u and v are frequency domain

coordinates.

Rossi and Warner have developed a novel pattern recognition algorithm for

the EEM which evaluates the spectral match in the frequency domain."2 Since

any auto-correlation function, i.e. the correlation of any two identical functions,

is even, real and positive, the sum of the imaginary coefficients and negative

real coefficients of the correlation of a match should be zero. They also report

9 9 * * . .9 . . . . . . . . . . .



the use of a third frequency domain evaluation parameter, which is not related

to correlation analysis, the intervector distance. The intervector distance, D,

is given by

D = (R(ij)-R'(i,j)) 2(lMiDj-l'(ij))2 ] (26)ii -!i

where R(ij) and I(i,j) are the real and imaginary coefficients of the transformed

data matrix and R'(i,j) and I'(ij) are the real and imaginary coefficients of the

library standard. When two data matrices match, D should equal zero. Table 2

and Figure 3 show the match parameters and fluorescence emission and excitation

spectra of three anthracene derivatives, respectively. This example shows that

correlation analysis is able to differentiate compounds with very similar spectra. -"

Correlation analysis has also been used for quantitative analysis of

EEMs. 2 7  The concentration of a sample, relative to that of the standard, is given

by

=s 0 f(0,0)/s 0 s(0,0) (27)

where s o f(O,0) is the maximum intensity of the correlation of the unknown and

- the standard and s o s(0,0) is the auto correlation of the standard. For multi-

component EEMs

f(x,y)= , fi(xy) (28)

and

= f 0 s(ai, a )/S 0 s(i1i (29)

. where f a fi(ai,l i is the intensity of the correlation of the unknown and the

standard at the coordinates where the maximum intensity of the auto-correlation

. of the ith component occurs and s o s'(=i i is the maximum intensity of the %

correlation of the standard with a standard of the ith component matrix. Table



3 shows the known and calculated concentrations of 9,10 dimethyl anthracene in

a series of solutions of polynuclear aromatic hydrocarbons.

OPTIMIZATION METHODS
--. .,

In many applications, optimization methods are used to direct the execution 4

of other algorithms. This is also the case in the application of optimization

procedures to MLM analysis. As mentioned in the section on linear methods, rank

annihilation procedures quantify sample components by determining the concen-

tration of the component needed to reduce the rank of the matrix by subtraction

of that component. An alternative procedure for this method is to use the simplex

algorithm, a linear programming technique, to minimize the singular value asso-

ciated with the analyte rather than least squares. 2 The quantitation of an r

component EEM can be expressed as the maximization of r where

r

r = a(i)c(i) (30)

where a(i) is given by

a(i) = M(i)kl (31)
kI

subject to the constraints that -',"

eki Z> 0 (32)

and

ci) - 0 (33)

where mk is the kith element of the data matrix, m(i)kl is the kith element of

the ith standard matrix and c(i) is the concentration of the ith component in the I v.'.

data matrix. The values of mkl and m(i)kl are fixed, so the algorithm adjusts

the values of the c(i) until the constraints in equations 32 and 33 are met. Table

• .. . .-. ,,
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Table III. Quantitative Analysis of 9,10-dimethyl anthracene solutions* 4

known correlation caic. %error
cone. intensity cone.

Standard #/1 9.94x10-6 165520-

Standard #2 1.99x106  35432

Standard #3 9.94x108 1893

Standard #4 5.96xl108 1229

Unknown #1 l.78xl0o 282799 1.70xl0 4.51

Unknown #2 1.78xl06 31622 1.78xl0 .23

*Unknown #3 1.78xl0O 3361 1.77xl0 .56

-8-8
Unknown #4 l.78x108 376 l.82xl0 4.00

N.
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4 compares the results of a the simplex directed quantitation of the nine compo-

nent mixture of polynuclear aromatic hydrocarbons that was also evaluated by

j least squares and reported in Table 3.

CONCLUSIONS4

Algorithms for all phases of multidimensional luminescence data analysis,

(rank, qualitative and quantitative analysis) have been described. Data reduction

methods which compress multidimensional data sets int:o more manageable formats

were also discussed. This survey showed that linear algebra, Fourier transform

and optimization techniques have been applied to the analysis of multidimensional

luminescence data. The frequency of their use indicates that linear time domain

* methods are still preferred, but the other me~hods are beginning to receive in-

* creased attention. This is particularly true with frequency domain methods which

have seen the largest increase in use in recent studies. Another area of special

interest 're the factor analysis spectral resolution algorithms which can resolve

sample component spectra without prior knowledge of the component identities.A

However, these methods have limited utility because of the requirement that all

resolved components be sole absorbers or emitters in some segment of the wave-

length region scanned. Optimization methods have been least developed to date,

but their number should increase as research in digital data analysis continues.

As would be expected, quantitative analysis methods are better developed than

qualitative analysis methods since they usually require that the number and

* identity of the analyte(s) be known. Developments in qualitative analysis methods

should increase as demand for new quantitative analysis methods decreases due

to the availability of efficient algorithms.

This review of data analysis for multidimensional luminescence was presented

not only because its development parallels that of other multiparametric data an-

,.,..•
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Table IV. Quantitative Analysis of a Nine-Component Mlixture*

component relative simplex
concentration concentration

naphthalene 1.485 1.493

carbazole 0.939 0.951

fluorene 1.180 1.194

phenanthrene 1.376 1.356

anthracene 1.311 1.303

pyrene 0.678 0.693

chrysene 1.406 1.396

perylene 0.899 0.886

fluoranthene 0.568 0.566

Floi

*Copied from reference 28.
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alyses, but also to promote interest and continued research in the multidimensional

approach. Many of these methods are directly applicable to other kinds of

multiparametric data. It is certain that as these methods are more widely used

and become more familiar, the range and difficulty of problems to be addressed

will continue increase.
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FIGURE CAPTIONS

Figure 1. a) Isometric and b) contour plots of the EEM of 1.lxlO 6 M perylene.

Figure 2. a) Isometric plot of the EEM of 7.5x10"6M anthracene and 5.5x1O- 7 M

perylene. b) The singular vectors and spectra resolved from this matrix.

Figure 3. a) Emission spectra of 2-t-butylanthracene, 2-methylanthracene, and

2-ethylanthracene acquired with excitation at 361 nm. b) Excitation spectra of

these compounds acquirea with emission at 407 nm,
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a sample is a function of the emitted light wavelength as well as the exciting

(absorbed) light wavelength. The luminescence properties commonly used for

chemical analysis are excitation wavelength, X emission wavelength, X em'

luminescence lifetime, -r and luminescence polarization, often denoted by the

anisotropy, rl• In addition to these commonly used parameters, luminescence has

been used to detect chromatographic separations3 , denoted by the retention time,

tr, circular dichroism bands', denoted by the luminescence ellipticity, OI, and

the luminescence phase angle", denoted by o.

A multidimensional luminescence measurement can be generated by evaluating

the intensity of luminescence (II representing If or Ip) with respect to two or

more of these parameters. In practice, most MLMs are produced by varying two

parameters so that the resulting graphical representations can be displayed in a

three dimersional format. The luminescence data matrices that have been reported

are the excitation-emission matrix 6 where 1 = f(Xex X e), the fluorescence

ellipticity matrix' where If = f(6fem), the fluorescence decay - emission

matrix 7 where If = f(-f Xem) , the fluorescence decay - excitation matrix' where

If = f(cf,Xex ) , and the retention time - emission matrix 3 where If = f(tr X em)

One notable exception to this convention is the acquisition of synchronously

scanned luminescence as a function of the phase angle.' In this measurement,

If is a function of X ex' Xem' and 0 but the graphical representation of the data

is three dimensional.

The data analysis methods developed for MLM will be presented in three

groups. The first group consists of Linear Methods. The techniques in this

class use linear algebraic methods to perform rank, qualitative and quantitative

analysis. The second group is comprised of Fourier methods, specifically cor- .*.

relation analysis, to characterize and quantify sample components. The last group

~~~~. ........ ............. . ... --.. .:::--"



and luminescence spectroscopy, development of novel analytical instrumentation

and the reduction and interpretation of multicomponent chemical data.
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