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Department of Electrical Engineering
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Princeton, New Jersey 08544

ABSTRACT
A generalized signal-to-noise ratio for detectors is defined and its relationship to quality of o
detection is snvestigated. Specific atlenlion ts given to log-likelihood ratio detectors. The o

question is discussed as to whether a Central Limit Theorem approximation for the output
of the detector gives results which are close to those of the actual detector and is sllustrated
with examples.

I. INTRODUCTION

In this paper we will be looking at the discrete time problem of detection of a con-
stant signal in the presence of independent, identically distributed noise; that is,

Under H: X; = N; 1 =12,..,n

—'L;J

and
Under K: X; = N; +s8 § =12,..n

where X; is the observation, V; is the noise and s is a positive constant. The only limita- f_“-,_'.:
tions that we will place on the possible noise distributions will be that they are symmetric, =
bounded, unimodal and have zero means.

If the detector is linear, we can define a signal-to-noise ratio (SNR)} in terms of ¢, n,
2

and the noise variance ¢°. In this case the SNR is clearly a useful quantity: for a constant N
false alarm probability the probability of detection is a monotonic function of the SNR. If iy
the detector is nonlinear, not only is the relationship between SNR and detector perfor- Ly
mance less clear but it is no longer immediately apparent what definition of SNR would #on
be useful. o=

A generalized SNR has been proposed and it has been shown to be maximized when .
the nonlinearity is a monotonic function of the likelihood ratio{1,2]. This is an encourag-
ing result since any monotonic function of the likelihood ratio is also the Neyman-Pearson g
optimal detector. Following some unpublished work of Poor, Chiang and Wise(3], we
show later that, if the sample size is very large, this SNR functions much as does the con-
ventional SNR for the linear detector. In fact, it can be shown that, asymptotically, the o
relationship between SNR and the probability of detection is once again monotonic.

As with any asymptotic result there arises here the basic problem of determining

whether the Central Limit Theorem holds and the more obscure question of deciding how :Zi;j
many samples are needed before the implications of the theorem merge with reality. Obvi- w
ously, the theorem is useless as a practical tool if it is necessary to collect an infinite o
number of samples before it can be invoked and as a result it is desirable to know just G
how much is enough. In what follows we show that, under some mild restrictions, the out- e
put of a log-likelihood ratio detector obeys the Central Limit Theorem and we look at ~
some examples in order to illustrate the rate of convergence. o
= The paper is composed of three parts and an appendix containing proofs. In Part ] o
Vo we define and discuss some relevant properties of the generalized SNR and the log- —
e .":
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likelihood ratio. In Part il we investigate the relationship between SNR and traditional
measures ¢i dctector performance. In Part 1l we look at some numerical examples con-
cerning the convergence of the log-likelihood ratio to a Gaussian random variable. Part
IV contains conclusions and a discussion of topics for further study.

I. PRELIMINARY PROPERTIES

The log-likelihood ratio. It is well known|4] that the likelihood ratio
Ik (X)
LX) = ——— ,
X= 7 ®
maximizes the probability of detection 8 for a given false alarm rate a. Here fx and fy
are the densities of the observation vector X under the hypotheses K and H respectively.

If we are attempting to detect a shift to the right by a constant vector s and f is the
density of the noise we have

_ {1 (X-s)
=T
It is also well known that any monotonically increasing function of the likelihood ratio will
have the same receiver operating characteristic (ROC, that is, 8 vs. a) as that given by
the likelihood ratio. The logarithm is, of course, one such monotonically increasing func-
tion. For the case of i.i.d. noise we have

n 1\'; -8
Lm:E%m¢'

By using log L rather than L we not only simplify our computation by converting the
product to a sum

1(X) = logL (X) = i)bg%}:) '

but for large enough n we can approximate the test statistic /(X) by using the Central
Limit Theorem and thereby further simplify the problem.

In this paper we will discuss the log-likelihood ratio for unimodal, bounded, sym-
metric densities having zero means. We now list some properties which are relevant to this
discussion:

1) The log-likelilhood ratio is odd symmetric about s/2 [that s,
Hz)=log[f (z-8)/f (z)) = -l(s-2)).

2)  Ey I(X)=-Eg I(X) where the subscripts indicate expectation under the given
hypotheses.

3) vary [(X) = varg (X))
4)  Under certain mild restrictions, the variance of the test statistic /(X) is finite.

Proofs:

— f(z) _ /(z)
1) l(a-—z)—logf(a_z)—logf(z_a)
2)  Ey I(X)= fIX) (X)dX=-[l(s-X)f (X)X = - [I(Y)] (Y-0)dY = -Ex I(X)
3) Ey I3X)= fl'z(X)f (X)dX = flg(a—X)[ (X)dX = flz(Y)f (Y-0)dY = Ex I1(X)
4) proven in the Appendix.

Generalized signal-to-noise ratio (SNR). The motivation for defining a SNR for
detectors is the same as that for doing so with any device; we want to know how strongly
the output is affected by the signal and by the noise. For the linear detector the two
effects are completely separable and the resulting SNR is only a function of the input SNR

and the gain of the processor. For example, if the noise is Gaussian with zero mean and
variance o, then

= ~I(z) by the symmetry of f .
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3= & [®(a)+
g

where ¢ is the standard normal cumulative distribution function. Since the ¢ function
Is monotonic in its argument it is clear that for fixed a, A is a monotonic function of
vns'a . However, for nonlinear detectors we no longer have this separation property
and the intuition which lends itself to the linear case is no longer evident. What is clear is
that if we are to use the SNR as a measurement of detector performance then we want a
higher SNR detector to have a higher probability of detection at a given false alarm rate
than a detector with a lower SNR.

The following definition has been suggested!1] for a generalized SNR for detectors:
Ex ¢(X)-Ey 9(X)

(vary g(X)V*
where ¢ is the processing non-linearity. The numerator represents the shift in the mean
between the two hypotheses while the denominator represents the noise power at the out-
! put under the hypothesis H (we have shown earlier that the output variance is equal
I ' under both hypotheses for the log-likelihood detector). The definition has an intuitive feel
to it and while it is not always monotonic in g for a fixed a we will show that, for a large
enough sample size, it will be. Hence, asymptotically, this SNR is equivalent to the
Neyman-Pearson criterion for quality of detection.

Some properties of the SNR[3].
1) SNR(k samples ) = Vk X SNR (1 sample ).
2) SNR is unaffected by gain or shift. That is,
SNR [ag{(X) + b] = SNR [g (X)] a >0.

SNR [ (X)) =

3) For the log-likelikood ratio:
0, 1{X)
SNR [I(X)]) = ——ﬁ—[ var (X7

II. SNR AND THE CENTRAL LIMIT THEOREM FOR LOG-LIKELIHOOD RATIOS

H: %= n, H
K: %,z n +s <
X IR 1 B
1 | ) >

Fig. 1
ig v

S|

ST *

The detector of Fig. (1) is in the form of a sum and hence if log (f (X;-2)/f (X;) can e ‘;_.q

be shown to have finite variance we can use the Central Limit Theorem to determine the NERCSE

asymptotic properties of {(X). In this section we investigate the relationship between e ,]

- SNR and detector performance for sample sizes which are large enough so that the Cen- I 1
’ tral Limit Theorem can be invoked. ":‘"‘.‘:
In (3] it is shown that if the two hypotheses are equally likely and a = 1-8 then, -j':-:'.\:a

asymptotically, the probability of error is monotonically decreasing in SNR. We generalize :-'_:f-:'{:_

°s
LAY,

this statement with the following theorem.

TS
“ - 'y .

Theorem 1: Given a false alarm rate, a, a symmetric, bounded unimodal density, [ ,
and a detector structure as shown in Fig. 1. Suppose we are comparing any detector g for YRR
which vary g(X) > vary g (X) with the linear detector, g(X) = X, and suppose the sample NN

size is large enough that the Central Limit Theorem can be invoked. Then a sufficient
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" condition for higher probability of detection of a positive constant in notse with density f

1s kigher signal-to-notse ratio. If vary g{\') = vary g(X') then the condition is also neccs-
sary. Furthermore, if we are comparing two iog-likelthood detectors and the Central Limit
P Theorem can be invoked then higher SNR 15 a necessary and sufficient condition for higher
) probability of detection.

Proof (see Appendix A)

In {3] it is shown that for Py = Px and a = 1-8 the magnitude of the difference in
the probability of error of the actual detector and the CLT approximation to it is O (n~'/3)
and that the relative error can actually grow exponentially in n. Here PyandP, are the
prior probabilities under the two hypotheses. This is a somewhat discouraging result and
elucidates the need for care when invoking limit theorems in finite sample problems. In
Part 11l we will look at some graphical comparisons between the operating characteristics
for some detectors and their CLT approximations.

The Central Limit Theorem and the log-likelihood ratio. We now must
determine whether the log-likelithood ratio obeys the CLT so that we can apply the above
theorem. We will show that for symmetric, unimodal and bounded densities having zero
mean, if ’lim g ' (z) < oo, then the log-likelihood ratio has finite variance and the CLT

holds. More formally we have the [ollowing theorem:

)

T

Theorem 2: :v'::t",.';;j
q

Suppose X has the density f (z), where [ 1s symmetric, unimodal, bounded and has zero b
mean. Then the variance of the log-likelihood ratio g(z) = log |f (z-8)/f (2)] is finite if
lim ¢ ' (2) < oo . Furthermore, if X has density h where kh s also symmetric, unimodal,

bounded ant{ has zero mean then g(z) has finite variance if there ezists Y such that A
Riy) < ke @, kpkp >0 forall y>Y.

Proof (see Appendix B)

IOI. NUMERICAL RESULTS

Rate of convergence to CLT. In order to study the rate of convergence to the
results predicted by the CLT we have computed the ROC curves for the actual detector
and for a CLT approximation of its output for a variety of cases. In all cases the detector
was optimal for the noise input density, that is, g(z) = log [f (z-2)/f (z)] where [ is the
density of the noise. The densities used were three members of the Johnson System fam-
ily[5] and Laplace, or double exponential noise. Some of our results are shown in Figs. 2-8.

Figs. 2 and 3 show the actual detector ROC and the CLT approximation to it for
Johnson Noise with parameter §=3 for two and four samples respectively. There is a
marked improvement in the quality of the approximation with the increase in the number
of samples. Figs. 4 and 5 show the same quantities except § was changed to 10. Again
there is improvement although it is not as dramatic. It should be noted that in the limit,
as §—oo, the distribution becomes normal. Hence we would expect the CLT approximation
to improve as § is increased. Fig. 6 shows the ROC and its approximation for 5§=50. It is
obvious that the approximation in this case is very good.

In [8] a functional expression is given for the distribution of the output of the log-
likelihood detector for Laplace Noise. From this expression we have calculated the ROC
curves for this detector and the CLT approximation to it. The results are shown in Figs.
7 and 8 for five and ten samples, respectively. Here again we see improvement with an
increase in the number of samples although it is not as large as in Figs. 1 and 2. This
might be due to the fact that the log-likelihood ratio for Laplace noise places a finite mass
at v2s /o which causes the output distribution to be discontinuous.

-4
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IV. CONCLUSIONS AND TOPICS FOR FURTHER STUDY

Conclusions. [t is clear that in the limit SNR and the Neyman-Pearson criterion
for detector performance are equivalent. The question of whether SNR is an appropriate
measure for finite sample size detection is much murkier. As was mentioned, an upper
bound on the magnitude of the error in predicting the probability of error is derived in [3};
however, as was demonstrated by the numerical examples, good results can be obtained in
certain cases when the CLT is used, even in the case of very small sample size. From this
we conclude that care should be taken when using SNR as a measure of detector perfor-
mance because the accuracy of the resulting predictions is application dependent.

Topics for further study. In (6], Czarnecki designed a simple piece-wise linear
processor for small-signal detection by maximizing the efficacy over a class of such proces-
sors. Owing to the similar functional forms of efficacy and SNR an analogous design might
be produced by maximizing the SNR over some class of simple detectors.

Another course of action which might yield interesting results is attempting to find
an error bound for CLT approximation for a given class of densities processed by a given
class of detectors. Both the Johnson System{5| and the Generalized Gaussian[9] families
would lend themselves to this endeavor.

APPENDIX A

Proof of Theorem 1: Given two detectors, ¢, and g,. Let
my = [g:(X)f 1(X)dX i =172 J=HK,
o= [{9:(X) - my]*f (X)dX

where fy(z)= f(z)and fx(z)= f (z-#). Since we assume the CLT holds, the density,
under the hypothesis J, of the test statistic,

) = 3 (%)

is normal with mean nm,; and variance no,;;2 . We then have:

(z-nm )

1 < 280y
a; wors {c z |

and
(z-nm 3?2
o ——2mw )
1 2n0y 2 nmy — &
. = e dz == q>
ﬂ' ;27!‘{ { \_/n Oix
where once again @ is the standard normal cumulative function.
Equating the expressions for a, and a; and solving for ¢, yields:

] (A.1)

O2y
to={(t{-nmy)—— + nmoy
O1H
Substituting for ¢, in the expression for 8, yields:
02y
nmog - (t; ~ nmy)—— - nmoy
By — & o\N
? Vn o5k

We now turn our attention to the case where g, is the linear detector; that is,
9.(X) = X. We then have:

(A.2)

O2H
- my =8, my =0, oy =0 =0y ¢2=‘|T+'"n2n,
1

.....................
.....
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Then 8:> 4, if and only if
924
amoy — & i Moy ns -t
1 3 -1 .
(A.3)
92K g,
After rearranging we have:
SNR, — oKk T MoH o Mok ~ Mo S 8 ty (oo - o2y)
- 924 - T2k o n 0102k

where the second term on the right side is non-negative. Hence the condition
SNR; > = (A4)
41

is sufficient for 8, > 3, . If o, = o,y then Eq. (A.3) reduces to

Mog — M

K T TH SNR, > 2 ,

O2H 4

and the condition in Eq. (A.4) is also necessary.

For the log likelihood ratio we have oy = 0. From Egs. (A.1) and (A.2) we have
B, > B, if and only if

(t O2H
nMoy — - nm, - nmgy
2 3 Hyg H amix -t
O2K 574
After some rearrangement we have
Mog — Moy %on ty |1 Oay
T T s g e
02K 014 02K n oy O\H 02K

Under the equality constraint on the variances this reduces to

m -m m -m
SNR, — 2 o MK 14 — SNR, .

g2 g,

APPENDIX B

Proof of Theorem 2: We are interested in showing that the following two integrals

converge
E ¢*= [¢¥X)f (X)dX (B.1)
Eg= [¢(X)f (X)X (B.2)
If |g(z)] = |log|f (z-8)/f (2)]| is bounded (< M) then we have
= [¢%f S Mf =M?
and

=fof SM[f =M.
Hence for bounded g we have bounded variance.

We now look at the case where ¢ is not bounded. In order to show that the
integrals in Egs. (B.1) and (B.2) converge we want to bound g and f with known func-
tions for which convergence can be demonstrated. Since the problem is entirely symmetric

—6-
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we will concern ourselves only with integration from ++ to infinity. For a Gaussian den-

-

sity with variance o*

I8 82

anO(I) = ;2‘ - 'é?

and for a double exponential density f (z) = 4¢™)?/ with variance ¢ = %—
V2= if z<0
(2
6}
JLep, = -{—:(21 —8) if 0<z<s
Vi if z28
pu Z
Hence for any unbounded log-likelihood ratio with Jim ¢ ' (z) < co and for all z > P
2 —00C
we can say
gLGP,2(z) S g(.’t) S an,x(z) ’ (83)

where o, ,0, and P are positive constants. That is, ¢ is bounded above by a straight line
with positive slope and below by a positive constant. We then have

2
< X _ 2 )
g(z) < i (B.4)
and
o(r) > L2 (B.5)
Ty
for all z > P . From Eq. (B.5) we have
s Yau
I -8 L2
1@
or
J(z)<e ™ f(z-8). (B.6)
We then have
V2
f(8)< e [(0)
-_\/.2.0_ —2\/’3-
J(20)Se P f(s)Se * [£(0)
—\/'.;n —t\/§|

f(ke)<e ™ flk-1)s]<e % f(0)

where due to the previously mentioned constraints on f we know it has a finite maximum
at z =0 . We now define the step function [, as follows

(& -1)VZe
fz)=¢ 7 1(0) (k-1)s < z < ke k=123,
/ 1(0) =f (0) .
This function dominates f . We now go one step further and define f, as
N2,y
[Az)=¢ (0 z20.

This expression can be written as

Ty wr—y
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[olr)=cye z r>0. (B.7)

where ¢; and ¢, are positive constants. It is this fun-tion, which dominates both f, and
[ . that we use to prove the integrals in Egs. (B.1) and (B.2) converge.

Sice both f and ¢ are continuous theg’ attain a maximum in any closed and

bounded set!7\. Hence both [¢%z)f (r)dr and fg(z)f (z)dr are finite. From Eq. (B.3) it

2

z
1s clear that if we can show var 9car, and E gg.,, are finite then the proof is complete.
1 1

This is implied by showing that fzf j(z)dz and [z°f ,(z)dr converge. But
P P

"
- ¢ -
fc,zc Py = L ‘2P(P + L)< oo
P €2 C2
and
o
- ) -
fei22¢ % dz = —L¢ c"’P(P2+£+—'—) < oo
P (] Co ()

and the theorem is proved.
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