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ABSTRACT SR
A new approach for proving temporal properties of concurrent programs is preseated. "‘c‘-‘.
The approach does not use temporal logic. To show that a program satisfies a given ey
temporal property, the property is first decomposed into proof obligations. These cb- IR
ligadons are then discharged by devising suitable invariant assertions and variant A,
functions for the program. The approach is quite general—it handles a superset of PRGN
the properties that can be expressed in linear-time temporal logic. .
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1. Introduction ”—"7
Experience has shown that while it may be possibie to understand a sequential program '
by considering some subset of its executions, this is impossible for concurrent programs. Con-
sequently, over the past 15 years, there has been increasing interest in ways to deduce proper-
tes of program behavior from the program text itseif. The program text obviously contains 4
all the information needed to decide what executions are possible. Moreover, while the
number of possible executions is likely to be intractably large, only a single program text need
be analyized.

An execution of a program can be viewed as a potentially infinite sequence of states S
called a history. In a history, the first state is an initial state of the program and each follow-
ing state resuits from executing a single atomic action in the preceding state. In a concurrent
or distributed program, a history is the sequence of states that resuits from interleaving the
atomic actions of the processes as they execute.

A property defines a set of sequences of states; a program sasigles a property if each of
its histories is in the set defined by the property. A property can be specified as a predicate
on scquences. This allows the essence of the property to be made explict.

Some exampies of properties frequently arising in practice foilow.

®  Partial Correctness includes all sequences of program states such that, if the first

state in the sequence satisfies some given precondition and the sequence is finite,
then in the final state the program counter denotes the end of the program and some
given postcondition is satisfied.

®  Totai Correctness, which is stronger than Partial Correctness, includes all sequences

,".."- .' ._'l.. ..' oo e '." ." -.' ..‘ . e
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such that if the first state in the sequence satisfies some given precondition, then the =
sequence is finite and the value of the program counter in the final state denotes the R
end of the program as well as satisfying some given postcondition. . —!J
®  Mumal Exciusion includes all sequences in which there it no state where the program :'_{.'i
counters for two or more processes denote control points inside critical sections.
e  Deadlock Freedom includes all sequences in which there is 0o state where both (i) R
some process has no caabled atomic actions and (ii) no subsequent execution by any " T
other process can alter that, L
®  Firstcome Firs-served includes all sequences in which processes that request service
in one order are not serviced in another order. "“"‘;
®  Siarvation Freedom includes all sequences in which a process with an atomic action ;Z?-j'.::j'.z
that is enabled frequently enough will make progress eventually. _‘*"‘
!}:‘.'
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Formulas of temporal logic can be interpreted as predicates on sequences of states, and
various formulatons of temporal logic have been used for specifying properties of interest to
designers of concurrent programs [Lamport 83a] [Lamport 85b] [Manna & Poueli 81a]
[Walper 83]. While there is not general agreement on the details of such a specification
language, there is agreement that temparal logic provides a good basis for such a language
and it, or something close to it, is sufficiently expressive.

Temporal logic has also been used in proving propertes of concurrent programs [Poueli ‘
77] [Manna & Pnueli 81b] [Manna & Prueli 84] [Owicki & Lamport 82]. Here, a program is -d
regarded as defining a collection of temporal logic axioms. The programmer proves a pro- ]
perty of interest by using these axioms along with program-independent axioms and inference
rules of temporal logic [Manna & Prueli 83]). Various packagings of the approach aveid the
necessity of making temporal inferences by restricting the class of properties that can be
proved. Examples include Hoare’s logic for Partal Correctness of sequential programs
[Hoare 69] and its extension to concurrent programs [Owicki & Gries 76], GHL (Generalized
Hoare Logic) for proving safety properties of concurrent programs [Lamport 80] [Lamport &
Schneider 84], and proof lattices for proving liveness properties [Owicki & Lamport 82].

This paper introduces a new approach for proving properties of (concurrent) programs.
The approach can handle a broad class of properties, including any property that can be
expressed in temporal logic. Using our approach, to prove that a program satisfies some
given property, invariance obligations and variance obligations are constructed. [nvariance :
obligations are discharged by finding certain invarians assertions and showing that they are el
preserved by execution; variance cbligations are discharged by finding variant funcrions and o
showing that they decrease following certain events. Hoare’s partial correctness logic is used
to show that the invariant assertions are preserved by execution and that the variant functions
are decreased by execution.

2. Specifying Properties

Our approach is based on specifying properties by using property recognizers, which are ;:-.-';I:%
similar to Buchi automata [Eilenberg 74). We are not advocating property recognizers as the o
basis for a specification language, but we have found them to be a convenient starting point
for our verification method. Mechanical procedures exist to transiate any temporal logic for-
mula into a corresponding property recognizer [Alpern 86] (Walper 84), so starting with pro-
perty recognizers does not constitute a restriction. In fact, property recognizers are more
expressive than maost temporal logic-based specification languages—there exist properties that
can be specified using property recognizers but cannot be specified in (most) temporal logics
[Walper 83].
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A property recognizer accepts those sequences of program states that are in the property
it specifies. Properties can contain infinite sequences as well as finite ones, so a property
recognizer must be able to accept both kinds of sequences. Recall that a finite state-
automaton accepts a finite sequence if and only if it halts in an accepting state after reading
the final symbol [Hopcroft & Ullman 79). A Buchi automaton is a finite-state automaton with
an acceptance criterion that allows it to accept infinite sequences—it accepts an infinite
sequence if and only if it enters an accepting state infinitely often while reading that sequence
[Eilenberg 74). A property recognizer is an automaton that behaves like a standard finite-
state automaton for finite input sequences and like a Buchi automaton for infinite input
sequences.

An exampie of a property reCOgNIzETr, Mooy, i8 given in Figure 2.1. It defines the set of
sequences consisting of a (possibly empty) prefix of states in which each state satisfies predi-
ate -P, immediately followed by either (i) an infinite sequence of states in which P holds for
cach state, or (ii) a finite sequence of states in which P bolds on all except the last state.

Property recognizer m oy conmins three automaton siates labeled, qq, ¢y, and ;. The
stars state is denoted by an arc with no origin, infinite-accepting gates by conceatric dircles,
and finite-accepting siates by bullets (). An infinite sequence is accepted by a property
recognizer only if it causes the recognizer to be infinitely often in some infinite-accepting
state. A finite sequence is accepted by the property recognizer only if it causes the recog-
nizer to halt (at the end of its input) in some finite-accepting state. In m ey, g is the start
state, 9, is an infinite-accepting state, and g, is a finite-accepting state.

Arcs between automaton states are labeled by program state predicates aalled fransition
predicates. These define transitions between automaton states based on the next symbal read
from the input. For example, the arc labeled P from qq t0 q; in M, means that whenever
mwisinqoandthcnm:ymbolmdisapmgmmstamuﬁsfying?,mcnammiﬁmto
q, is made. If the next symbol read by a property recognizer satisfies no transition predicate
on an arc cmanating from the current automaton state, the input is rejected; in this case, we
say the transition is undefined for that symbol. This is used in M,y t0 casure that every
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finite sequence it accepts ends with a single program satisfying -2; no further transitions are
possible from ¢, because there are no arcs emanating from it

When there is more than one start state or more than one transition is possible from
some automaton state for some input symbal, the property recognizer is ron-deterministic; oth-
erwise it is deterministic. Thus, My is deterministic because it has a single start s@ate and
disjoint transition predicates label the arcs that emanate from each automaton state.

Formally, a property recognizer m for a property of a program w is a sextuple
(Sv Qs QO’ qu’s Qﬁ;u 8): where

S is the set of program states of T,

Q is the set of automaton states of m,

Q0,5 Q is the set of start states of m,

Q<0 is the set of infinite-accepting states of m,

Qﬁ,,;Qisthcsctofﬁnitc-aaxpting states of m, and

3¢(QxS) - 29 is the transition function of m.
Transition predicates are derived from 3 as follows. T;;, the transition predicate assocated
with the arc from automaton state g; to g, is the predicate that holds for all program states s
such that g, €8(g;,s). Thus, T}, is false if no symbol can cause a transition from ¢, 0 q;.

In order to formalize when m accepts a sequence, some definitions are required. For
any sequence @ = £33 ... ,

ofi] = g

of..i] = s9y...9

0[‘..] | Syey-e-

lo{ = the length of ¢ (@ if o is infinite).

Transition function 3 can be extended to handie finite sequences of program states:

3" _ [lat dle|=0
@) = (@'l " €3(q, alO]) ~ ¢’ €3°(4", o{1..]D} £ O<ol<w

A run of m for an input o is a sequence of automaton states that m could be in while reading
o. Thus, for p to be a rum for @, p{0] € Q, and (Vi: 0<i<|o|: p(i] ¢ 3(p(i—1],a{i—1])). Let
[ (o) be the set of runs of m on 0. (It is a set because m might be non-deterministic.)

A finite sequence o is accepted by m if and only if 3°(¢q, 0)"Qp,#<. For an infinite
sequence @, define /NF (o) to be the set of automaton states that appear infinitely often in
any element of [, (¢). Then, o is accepted by m if and only if INF ,(0)"Q e # .

Any set of finite sequences that can be recognized by a non-deterministic finite-state
automaton can be recognized by some deterministic finite-state automaton [Hoperoft & Ull-
man 79]. Unfornmately, Buchi automata, hence property recognizers, do not enjoy this
equivalence—there are sets of infinite sequences that can be recognized by non-deterministic
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i . property recognizers but by no deterministic one [Eilenberg 74]. This will

that we use different techniques for those properties specified by non-deterministic property

recognizers from those specified by deterministic ones.

Examples of Property Recognizers

A property recognizer m.,. for Partial Correctness is shown in Figure 2.2 and one for

Total Correctness, m.., is shown in Figure 2.3. In them, Pre is a transition predicate that

holds for states sadsfying the given precondition, Done holds for states in which the program

i counter denotes the end of the program, and Pog holds for states satisfying the given

postconditon.

- ‘ Done = Post

Pre » (Done = Post) @

Figure 2.3. m,,
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A property recognizer for Mutual Exclusion of two processes, m ..., is given in Figure
2.4. There, transition predicate Cs, (Cs,) bolds for any state in which process ¢ () is exe-
cuting in its critical section.

Figure 2.4. mp, .

Starvation Freedom for a mutual exclusion protocal is specified by m,, of Figure 2.5. A
process ¢ becomes enabled when its state satisfies the predicate Request,, which characterizes
the sate of ¢ whenever it attempts to enter its critical section, and makes progress when its
state satisfies the predicate Served,, which holds whenever & enters its citical section.
Notice that m,,, explaits the fact that in a mutual exclusion protocol ¢ will make but a sin-
gle request for each entry into the critical section.

Smedd,

Figure 2.5. m,,

3. Specifying Programs
A program w consists of 2 predicate /ait., characterizing its initial states and a collecion
of atomic actions A.. Presumably, /nir, asserts that
e the program counter for ecach process in w denotes the first statement of that pro-
cess, and

e  other program variables have appropriate values according to any inidalization in
their declarations.

Knowing the atomic actions of a concurrent program is necessary in order to understand
its execution, since they define the grain of interleaving of processes. The atomic actions in a
process define its comsrol pointy—the set of values that can be stored in the program counter
for that process. We can denote the control paints of a program by naming them within
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: braces in the program text; this results in a consroi-point annotarion. For example, program
- mwy of Figure 3.1 consists of two sequential processes, ¢ and ¥, each with a single atomic
action and two contral points. The atomic action in process ¢ is called a,; and the control
‘ points in ¢ are labeled 1 and 2.
. Every sequential process  has a program counter pc,. We can use this variable in
~ describing states of the program. For example, pcy=14pc,=3 defines the state of m, at ins o

start and pc,=2Apc,=4 at its finish. The program counter of a sequential process differs
from other program variables in that usually oniy a single process may update it and direct
E assignments to it are not permitted. Each atomic action, however, changes the value of the
program counter. For example, atomic action a, in 7, changes pc, (from 1 to 2) as well as
incrementing x. The assignment to pcy, by «;, though not explicit, can be deduced from the

position of a; in the program text.

d By definition, atomic actions are executed indivisibly and to completion, so an atomic .
action cannot be started unless it will terminate. We therefore assume an atomic action is
delayed until the state is one that will permit its termination. Using angle brackets to denote -]
an atomic action, a; of mg is _.‘::._'

& (fpcy=1 = peg, x =2, 1+1 ﬂ). 3.1 . ‘

Here, we use the muitiple assignment statement of [Gries 81] and the If of [Dijkstra 76]. The
semantics of If require that

7o: cobegin
é: {1}

P L
LI T I 4 . .
RV P o .
A L K .
P . .
AN e e e
PRE T RIS KR )
y e AJJJL‘AA A .

» @y =+l e
{23 - A

" _

b: {33 R

as: x:=x+1

' {4:}
» :
coend
R Figure 3.1. Simple Program
]
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itB0-50(] ... 1Bn-Sn1l
abort if executed in a state where none of the guards B0, ..., Bn holds. Thus, (3.1) is
delayed undl the program counter for process ¢ is 1, and then (without interruption) atomi-
cally updates the program counter and increments x. An atomic action might be delayed for
reasons other than the program counter value. A P operation in process 7 on a general sema-
phore sem,

... {@az} P(sem) {b:} ...

defines an atomic action 8:
(lfpc,,=a rsem>0 - pc., sem := b, sem—~1 ﬂ) (3.2)

An atomic action i3 enabled in any state where its execution would not be delayed. Let
Enabled(a) be the set of states in which a is enabled. In Figure 3.1,

Enabled(a;) = pcy=1
and in (3.2),

Enabled(B) = pc,=a A sem>0.
We can use Enabled to characterize states in which a program w is dlocted and can make no
further progress because there are and will be no enabled atomic actions:

Blocked, = A -Enabled(a)

azach

The effects of an atomic action a can be defined as a relation between the program state
before and after it is executed. This relation can be described by a rriple (P} a {Q}, which is
valid if executing a in a state satisfying P either does not terminate or terminates is a state
satisfying Q. P is called the precondirion and Q the postcondition.

Programming logics to prove validity of a triple involving a sequential program « are
well known [Hoare 69]. One is summarized in Figure 3.2. If the semantics of an atomic
acton a is described as a sequential program, then such a logic and the following inference
rule can be used to infer triples giving the semantics of a.

P} S {Q
{P}(s) {@}

( ) Rule:

For example, returning to 7y of Figure 3.1, we can establish the validity of
{x=0} a, {x=1} as follows:

{x=0} pcy, x :=2,x+1 {x=1} (Assignment Axiom)

{x=0 A pcy=1} pcy, x:= 2, 2+1 {x=1} (Rule of Consequence)

.......
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Skip Axiom: {P} skip {P}
Assignment Axiom: {P3 T :=  {P}

{PABO}S1{Q}, --- {PABn}Sn{Q}
{P} #80-50( ...(}Bn-Snfl {Q}

. {PABQ} S1{P}, --:- {PABn}Sn{P)}
" (P} d0BO-SO0 [} ... [Brn-Snod {PA-B80 A ... » -8n}

P=>pP', {P}S5{Q}, Q'=Q

if Rule:

do Rule

Rule of Consequence:

?rs {0
o {P}S{Q}, (P10
Conjunction Rule: == o 5 (G0}

Figure 3.2. Partial Correctness Logic

{x=0} Wpcy=1 = pcy, x:=2,x+1 A1 {x=1} (if Rule)
{x=0} (i!pc¢=1 - pcy, x:=2,x+1 ﬂ) {x=1} () Rule)
{x=0} a; {x=1} (definition of a,)
This type of reasoning, which we employ frequently in the sequel, is fadlitated by the follow-
ing derived rule of inference.
{PAB}S {Q}
{P}(ir8 -5 1) {Q}

Atomic Action Rule:

4. Verification of Deterministic Properties

The basis for our approach to verifying that a program  satisfies a property P is the
observation that if a property recognizer m for P accepts cvery history of «, then w sadsfies
P. In this section, we consider verificadon of properties that are specified by deterministc
property recognizers; in section 8, we consider non-deterministic property recognizers. Sound-
ness and completeness proofs are given in the Appendix.

Let m be a deterministic property recognizer for property P. One can think of m as
simulating—in an abstract way—any program that satisfies 7. Thus, to show that a program
m satisfies m, we demonstrate such a correspondence between m and w. We do this by defin-
ing a correspondence invariant C; for each automaton state q;. A correspondence invarians C,
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for an automaton state ¢; is a predicate such that C; holds on a program state s if and only if

there exists a history of w ccataining a program state ¢ and m enters g; upon reading s.

Thus, if m is ever in automaicn sQic ¢;, the last program state it read must satisfy C;. Con-

straints satisfied by correspondence invariants are defined inductvely, as follows. -
For the base case, initially, m is in state g5 and « is in a state characterized by /nir_.

Suppose that upon reading s, the first program state of some history of «, m eaters automa-

ton state ¢;. Thus, sy satisfies /nit, and T, the transition predicate labeling the edge that

connects gq and ;. Therefore, C; must sadsfy (/nif, A Ty;) = C;; for any automaton state g,

entered upon reading the first symbol of any Listory of w, we require
(Vj: (Unit, A To)) = C)). (4.1)

B GARMANAE OO~ AR DARCES
-~

Next we must prove the induction step. Assume that if m enters automaton state ¢
upon reading program state s, in a history cf ® and 0s&k<X, then s, satisfies C;. Consider
the case whea m reads sx. Suppose m is in state g; and that upon reading program state sy, a
transition is made to automaton state q;. By the induction hypothesis s¢_, satisfies C, and s¢ o
h satisfies transition predicate T;;. The appropriate correspondence invariant C; will hoid pro- R

vided {C;} a {T;;= C}} is valid for any a, an atomic action of 7. (Uf a is not enabled in s¢_,

then the triple is trivially valid.) Generalizing to handle any atomic action and any automa-
ton state that m might be in when sg is read, we require:

¥
i Forall a: a¢f,: S
" Forall i: ¢,¢Q: .
- C}l a A (Ty=>C (4.2) R
. { I} {j:q,‘Q( ] j)}
‘.— Thus, any collection of predicates satisfying (4.1) and (4.2) are correspondence invariants for - .
p . .-

m and .

In order to establish that w sadsfies P, we must show that every history of « is accepted
by m. There are exactly three ways that m might fail to accept a history o of «:

(1) m attempts an undefined transition when reading a. | .
(2) I« o is finite, m halts in a non-finite-accepting state. o
(3) I o is infinite, m never enters an infinite-accepting state after some finite prefix of o.

Thus, in order to prove that cvery history of w sadsfies P, it suffices to show that (1)~(3) are
impossible.

Two aobligadons ensure that (1) is impcssible. First, we must show that m can make

some transition from its start state upon reading the first program state in a history: N
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Init, = j:q\;thol “43)

Second, we must show that m can always make a transition upon reading subsequent states in
a history. If m is in state ¢; then the program state just read by m satisfies a correspondence
invariant C;. To avoid an undefined transition, any atomic action a that is then executed
must transform the program state so that one of the transition predicates 7T, emanating from
g; holds. This is guaranteed by
Foralla: a¢A
Foralli: q;¢Q: (4.4)
{Cla{ v Ty}
JiqQ

We can explait the fact that m is deterministic to combine and simplify the obligations
derived so far. In a deterministic property recognizer, the transidon predicates on arcs
emanating from any automaton state are disjoint. Thus,

Vi, j,k: q 9, 9 € Q A jEk: (TyyAaTy)=faise). 4.5)
Using (4.5), we combine (4.1) and (4.3), to obtain
Simulation Basis: /nir, = (j:q\;‘Q(TOI A C))s (4.6)

and combine (4.2) and (4.4), to obtain
Simulation Induction: Foralla: ac¢A:
Forall i: ¢;¢Q:" 4.7
C; T, ~C)}.
{Cla {j:q:( Q( y A Ch

To ensure that it is impossible for m to halt in a son-finite-accepting state~—(2) above—
the correspondence invariant for any non-finite-accepting state must hald only for program
states in which subsequent execution by w is inevitable. Since C; holds of the last program
state read by m, and Blocked ., holds for all program states of « in which subsequent execu-
don is not possible, we require

Finite Acceptance: (Vi: ¢;€Q—Q4a: C; = ~Blocked.). (4.8)

Finaily, we easure that (3) is impossibie. A set Q’ of automaton states is strongly con-
nected if and only if there is a sequence of transitions from any clement of Q' w any other
without invalving an automaton state outside of Q’. A reject knor x is a maximal scrongly
connected subset of Q containing no infinite-accepting states. It may, however, contain
finite-acoepting states. In order to show that (3) is impossible, we must prove that no run for
an infinite history of w is restricted to automaton states in Q- Q. We do this by construct-
ing a varians function v, for each reject knot x.
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A variant function v, (q,5)=0 is a function from automaton and program states to some

well-founded set.! For simplicity, assume that this well-founded set is the Natural Numbers.
We require that whenever v, (¢.5)=0 for any automata state g and program state s, either ¢
is not in x or else ¢ is a finite-accepting state and s is the last state in the history.

Knot Edt: (Vi: q;€¢x: (v (q))=0) = Blocked_ v-C)) 4.9)

This means that if v (q) =0, either the history is finite and will be accepted by m or an
infinite-accepting state has just been entered since the property recognizer is no longer in .
Finally, to ensure that the variant function does reach 0, we require that it is decreased by
every atomic action in « that might be executed:

Knot Variance: Foralla: a<A:

For all q; €K (4.10)
{Cir0<v (9)=V}a {j_q’\( ((TyaC) = v (9))<V)}
-q [ 4

Note that requiring that v, (g) be decreased by execution of any eligible atomic action
does not preclude proving properties under various fairness assumptions. To prove that a pro-
perty P holds assuming some fairness property F holds, a property recognizer for F= P is
constructed and proof obligations are extracted from it. Standard techniques exist to con-
struct a property recognizer for F = P from property recognizers for F and P [Eilenberg 74].

The five proof obligatons—Simulation Basis (4.6), Simulation Induction (4.7), Finite
Acceprance (4.8), Koot Exit (4.9), and Knot Variance (4.10)—are of three basic forms.
Simulation Basis (4.6), Finite Acceptance (4.8), and Knot Exit (4.9) involve proving that
predicate logic formulas are valid. Simulation Induction (4.7) invalves proving invariance of
some assertions. Knot Variance (4.10) invalves proving that certain events cause variant
functions to be decreased. Of course, the intellectual challenge in proving that a program
satisfies a property lies not in checking the proof obligations, but in devising the correspon-
dence invariants and variant functions. The proof obligations, however, do give insight into
forms the correspondence invariants and variant function might take. In particular, the proof
obligations define a collection of equations whose unknowns are the correspondence invariants
and variant functions. Sclving the equations—admittedly a difficult task—wouid provide the
desired correspondence invariants and variant functons.

5. A Detailed Exampie

To illustrate our verifiation method, we prove that if program w, of Figure 3.1 is
started in a state where x=0 then it will terminate with x=2. This is an instance of Toral
Correctness.

“The program state srgument is often left implicit.

v
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For g, we have .-— -
Init, = pcy=1 A pcy=3 =

Blocked, = pcy=2 A pcy=4

and A, = {a;, a3}, where
a; = (fpcy=1 - pcg, x :=2,x+11)
as = (ifpc,=3 - pcy, x:=4,x+11).

A property recognizer m,. for Total Correctness appears in Figure 2.3. For predicates -

Pre, Post, and Done we choose:
Pre = =0 j‘_::-'
Post m x=2 \
Done = pcy=2 A pc,=4 r«

Thus, m,. accepts every sequence of states such that if x=0 halds for the first state, then the
sequence is finite and the final state is one in which x=2 and both ¢ and ¥ have terminated.

We first define correspondence invariants for each of the four automaton saates of m,. '-.
CQ = fal.se T
C, = pcy=1 = ((pcy,=3=>x=0Alpc,=4=>1x=1)) ~

pcp=2 = ((pcy=3>x=1)Apc,#4)) A e
pc,=3 > ((pce=1>x=0)A(pcy=2>1x=1)) A K_V_

pcy=4 = ((pcy=1=x=1)Apcy#2)) ;':':jlx\
3 C, = irue
# C; ™ pcy=2 A pcy,=4 A x=2 é"'“::
E To satisfy Sirmulation Basis (4.6), we must show that L
g Init, = ((faiserCo)v(Prer-DonerCy)v(~PrenCyr)v(PresDonerPosaCs)

is valid. Substituting, we get -

(pcg=1 A pcy=3) R
= (falsev(x=0A~(pcy=2rpc,=4)AC )V (x#0)v(x=0apcy=2Apcy=4Ax=2)), o
e

which is valid. OO

To satisty Simulation Induction (4.7), we must show for cach a ¢ A, that the following T
‘.-\-l
triples are valid: C?-Z:::
N
.':‘.:t\:
?.. -\“1
N
- - - J
3 ne
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{Cat a {(TpaCQ) v TnAaCY v TeaC) v (T3~ Cy)} (.1) I
(€1} a {TipaCs) v (TuaCy) v (TaaCD) v (T3aCy) 5-2)
(€3} @ {(TpACy) v (TyACY v (T2aCa) v (Ts3ACs)} (5.3) RN
(€3 @ ((T:ACQ) v (TuaC) v TaC) v (TaCa) (5.4) -
Since the triples for a, are symmetric with those for a,, we prove only the former.
Triple (5.1) is valid because C, = faise and {faise} a {R} is valid for any R. -
Substtuting for the transition predicates in (5.2) and simplifying yields
{C,} a; {(~DonerC,)v(DonerPostaC3)}. (55
From definition (3.1) of a; and the Atomic Action Rule, to prove the validity of (5.5), it suf- -
fices to demonstrate the validity of L e
{Ciapcy=1} pcy, x:=2,x+1 {(-~DonerC ) v (Done rPostAC,)}. N
Expanding and substituting, this is E.}‘
{(pey=3=>1x=0) A (pcy=4=>1=1) A pc,=1} .
pCes X =2, x+1
{(-(pce=2 A pcy=4)AC)) v (pcy=2 A pc,=4 A x=2)} T
and follows from the Assignment Axiom and Rule of Consequence. i
Triple (5.3) simplifies to {rue} a, {frue} because C; = T-; = frue and is valid. f
Triple (5.4) simplifies to {C3} a; {false} because T, Tsy, Tso, and Tsg are all false—

those transitions are not possible in m,.. From definition of @, (3.1) and the Atomic Acton
Rule, to prove (5.4) it suffices to show validity of

{C3apey=1} pcy, x:= 2, x+1 {faise}.
Since (CyApcy=1) = false, this reduces to {faise} pcy, x := 2, x+1 {false} which is valid.

To sadsfy Finite Acceptance (4.8), since Qg,= {92, 93} We must prove that
(Co = ~Blocked,) A (Cy = -Blocked.,).

Substituting and simplifying, we get
(faise = (-~Blocked,)) ~ (Cy = (pcy#2 v pc,#4)),

which is valid.
The final two obligations concern reject knots. There is a single reject knot k = {q,} in

......

..........
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v(q) = 2—pcy) + (4—pcy)- _.d.'
Koot Exit (4.9) requires that B

(vi(g)=0) = Blocked, v-C;.
This is valid becamse S
(v (gD=0) = (pcy=2 A pcy=4) o ‘
agw%.

To satisfy Knot Variance (4.10), we must establish the validity of 2 triples:

_ {CA0<v, (9)=V} a; {(~DonerC)= vi(q)<V} (5.6) e

. {C1a0<v (q)=V} a5 {(~Done AC )= vi (g )<V} 5.7 ’

3 We give detils only for the first; the second is similar. Using definition (3.1) of a,, the
Atomic Action Rule, and the Rule of Comsequence, to prove (5.6) it suffices to prove A

{C, A 0<v,(qU=V A pcy=1} pcg, x:= 2, x+1 {v, (q)<V}
This is valid because changing pc,, from 1 to 2 decreases v,.

6. Property Outlines

A property outline provides a compact representation of the correspondence invariants
and the Simulation Induction (4.7) obligations for a given property recognizer and program.
Property outlines play much the same role in our approach to verification as proof outlines do
for verifying Partial Correctness using Hoare’s partial correctness logio—they make it easy to
do verification informally and make it easy to preseat a proof. In fact, proaf outlines and
property outlines are closely related, as we show in section 6.4.

6.1. Proof Outlines s
A proof ousline for a concurrent program 1 is the text of = annotated with an asservion
P? at each contral point cp. Each assertion is a first-order predicate logic formula invalving
the program variables and program counters of .2 A proof outline is valid provided:
Proof Outline Validity: Executing any c¢nabled atomic action in a state where the asser- L.

tions associated with the control points denoted by program counters hold produces a S
state in which the assertions associated with the control paints denoted by program ::::::-'E::f
counters stll hald. ;:.;::.:
Proving validity of a proof outline for a concurrent program can be reduced to proving f"‘;

REACA

The conjumet pey=cp is aften left implicit and amitted from P in a proaf outline for process ¢.
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the validity of a collection of triples [Owicki & Gries 76].> This is done as follows, where \‘:
pre(a) is the assertion immediately preceding a in the proof outline and post(a) is the asser- ?:j.{:lj:::
tion immediately fallowing it. »;:j:;.;:;.f:
Sl

Sequential Correctess: For cach atomic action a in the proof outline, prove -
{pre(a)} a {post(a)}. : ?
Interference Freedom: For cach atomic action a in the proof cutline and every assertion
R in a process different from the one containing a, prove:
{pre(a) A R} a {R}.

a a4 a

6.2. Property Outlines

A property outline for property recognizer m and program v is obtained by adding infor-
mation about correspondence invariants to a control-point annotation for . For each control
point ¢p, we specify for every automaton state ¢ of m what must hold when the program
counter denotes cp if the property recognizer is in a state 9. This is done by placing a pro-
perty assertion at each contral point in a control-point annotation for .

~|‘"._",.". o
, .

:
1
=
A
=N
Y
j

A property assertion has the form

};: q0~PO | 41~P1 l e an~Pm
where P is a label, 905 91s ---» 9 are the automaton states of m, and P, P, ..., P, are first-
order predicate logic formulas involving the program variables of  (possibly including pro-
gram counters). P hoids in an automaton state q; and program state s if s satisfies P;. A
property outline for  and m is valid provided:

Property Outline Validity: Executing any enabled atomic action in an automaton state ¢

and program state s where the property assertions associated with the control points

denoted by program counters hold produces a program state s’ that causes the property
recognizer to make a transition to an automaton state ¢’ in which the property assertions
associated with the control points denoted by program counters stll hold.

Figure 6.1 is a valid property outline for m,. (Total Correctness) and w; (of Figure 3.1).

We can explait the similarity in the definition of validity for proof outlines and for pro-
perty outlines in developing a procedure to prove validity of a property outline. Define a pro-
perty iriple

{P: qo~Pol|...|9a~Pps} a {Q: 9o~Qo| ... | ¢a~Qa}s (6.1)

3 an atamic action like “!" or “7" of CSP spams more than cne process, then a third obligation, variously
called sangaction ot cooperanon must also be satisfied Our results {or property outlines can also be generalized
alang these lines.




Slaty

7 cobegin
'l &: {1: q¢~ false | 91~ (pcy=3 = x=0)A (pcy=4 > x=1) |
: qz~ true | 93~ false}
) a;: r:=x+1
{2: qo~faise | g1~ (pcy=3=x=1)Apcy#4 |
g~ true | g3~ pcy=2apc,=4rx=2}

n
‘ $: {3: go~faise | g~ (pcy=1=1=0)A(pcy=2=>zx=1) |
gy~ true | 93~ faise}
as: x=x+1
{4: go~false | g1~ (pco=1=x=1)Apcy#2 |
g2~ true | g3~ pcy=2apc,=4ax=2}

! coend
i Figure 6.1. Example Property Outline
i to be valid if execution of a in an automaton state ¢; and program state satisfying P; cither
does not terminate or terminates in a program state s such that (i) s causes the property
y recognizer 1o make a transition to automaton state ¢; and (ii) ¢ satisfies Q. Note that (6.1) By
) cannot be a partial correctness logic triple because it contains property assertions in its pre- fann
'_' and postcondition. However, the interpretation of (6.1) is quite similar to the interpretation EUNE
4 of a partial correctness logic triple. In fact, if we can show how to establish the validity of a a4
property triple like (6.1) and one like ]
(BAR} a (), (6.2) ]
. where P and R are property assertions, then we have solved the problem of establishing the 'Ej;l s
| validity of a property outline. This is because we can then use Sequential Correctness and S
: Interference Freedom to reduce the problem to showing that a collection of property tripies
: are valid. The soundness of this approach for establishing property outline validity is based
5 on the same argument as for proaf cutline validity.
d

Based on the interpretation of property assertions, note that:

((@o~Pg | - | qa~=Pn) A (@o~Rg | ... | ga=Ry))
= (90~P0AR0 I con | Qn-'Pu"Rn)

..................
--------



At adinhi i innsiihe A A% A A Gt Tnb Aol Sl St Ba 0 og S ool

Thus, it suffices to be able to prove the validity of property tripies like (6.1) since using (6.3),
those like (6.2) can always be transformed to be like (6.1). We therefore turn to the problem
of proving validity of property triples.

To prove the validity of (6.1), it suffices to prove the following partial correctaess logic
iples.

{Pgt a {(TowAQo)V..v(ToarQa)} (6.4)

P} a {(TrQo)v . v(T142Qn)} (6.5)

P} @ ((TporQQ)V v (Trnn Qo)) (6.6)

The first, (6.4), establishes that execution of a in a state sadsfying P, either does not ter-
minate or terminates in a state satisfying T, A Q), for some j. From this, we conciude that
execution of a in a state satisfying P with m in automaton state g, either does not terminate
or terminates in a state s’ satisfying Ty, AQ; and m makes a transition to automaton state g;
upon reading this (next) symbol in the history being generated by . Thus, @ haids for the
case that m is started in ¢;. Repeating this argument for the remaining triples, we find that
0o matter what automaton state m is in when a is executed, Q will hold if a terminates.
Thus, (6.4)—(6.6) together imply that executing a in a statc satisfying £ cither does not ter-
minate or terminates in a state satisfying 0, hence (P} a {Q).

We illustrate this approach for proving validity of a property outline, on the one in Fig-
ure 6.1. There are two Sequential Correctness obligations:

{1} a; {2} (6.7)

{3} a2 {4} (6.8)
And, there are four Interference Freedom obligations:

{1 A3}a, {3} (6.9)

{1 A 4}a, {4} (6.10)

(3 A 1} a, {1} (6.11)

(3 A 2} a, {2} (6.12)

The demils for only one of these property tripies will be given; the remaining ones are left to
the energetic reader. Property triple (6.7) is:




{1: go~faise | 9;~ {pcy=3=>x=0)A(pc,=4>x=1) |
gy~ true | 93~ false}

a;: x:=x+1

{2: qo~false | g\~ (pcy=3=x=1)apc,#4 |
gy~ true | g3~ pcy=2Apc,=4ax=2}

Decomposing this into partial correctness logic triples we get
{faise}

@
{(Pre A~ Done A (pc,=3 = x=1)Apc,#4)v (- Pre) (6.13)

v (Pre ADone A Post Apcy=2Apc,=4Ax=2)}

{(pey=3=x=0)A(pc =4 =>x=1)}
a (6.14)
{(~Done A (pcy,=3 = x=1) apc,#4) v (Done A Post Apc y =2 Apc, =4 Ax=2)}

(iruc} @y {true} (6.15) 1
Yaise} @y {false} (6.16) .
Triples (6.13) and (6.16) follow trivially because the precondition of each is faise; (6.14) fol- "
lows from the Assignment Axiom; and (6.15) follows because the postcondition is frue. - .’ i

6.3. Proof Obligations and Property Outlines

The proof obligations of section 4 are based on using correspondence invariants that link
program states and property recognizer states. Therefore, to show that w satisfies m using a

I
e

pmpcnycutﬁnc?bformmdw,wmmtbcahlemmfmmfomemnupmdmc t':f-_:'_fj-j’
invariant for each automaton state of m. Doing this turns out to be trivial, due to the way R
property assertions are defined. Each property assertion in a property outline contains a picce ;I:jl;'-z'.:‘
of every correspondence invariant. These pieces are labeled by the automaton state to which o
they correspond (by the “g ~") and are exactly the part of the correspondence invariant that T
must hold whenever a program counter denotes the control paint to which the property asser- SRR
tion is attached. Sy

Given a program  consisting of a set of processes PROC.,, let TP, be the set of contral
paints in process ¢ for ¢ ¢ PROC.,, . Suppose the property assertion attached to control paint
cp in a valid property outline for «w and m is of the form (qo~P% | 91~PF | ... | ga~P7)-

Then, choose ;Z:,'Zi:f
- P v..‘- -
C! = o P; oc, @ ‘AC?.(PC o™ Ccp= xq’) (6. 17) :hf

as the correspondence invariant for automaton state g;. This choice eliminates the nced w0 N
demonstrate Simulation Inducdon (4.7)—this obligation is subsumed by having esmablished G
validity of the property outline, as we now show. NI

B S
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Consider an atcmic action from a process ¢,
a: (fpey=cp = I,pcy:=¢,cp’ 1 )
) where x is a vector of the program variables changed by executing a and ¢ is a vector of el
| expressions whose values are assigned to those variables. Simulation Induction (4.7) requires .
that we prove, for each automaton state g, ,
{Ci} a {{TigrCo)v...v(TnaCp)}
E According to the Atomic Action Rule and Rule of Consequence, this is implied by
{Cinpeo=cp} X, pey := €, cp" {peg=cp’ A (TigrAC)V .-V (TinaCa))}- (6.18)
The precondidon and postcondiion of (6.18) c@an be simplified because
(Cirpee=cp) = (C7®rpcy=cp APT), where .
e, Gt m a n e -

Y<PROC, cp<CP,
yed

s0 we have R
g {PPAC®Apcy=cp} : -
N I, pcy =2, cp’ (6.19)
i (peo=cp’ A (TionPTACTE)Y .oV (Tinn PP ACT ).

Therefore, due to the Conjunction Rule and the fact that transition predicates are disjoint, it

suffices to prove

K {PPApcy=cp} I, pce:=¢, " {pcy=cp’ A (ToAPTF )V ...v(TinrAPT )}, and (6.20)
(PPACT®Apey=cp} X, pey = &, cp’ {peo=cp’ A(TpACGT ) V...V (TinaCyh )} (6.21)

Notice, (6.20) is exactly what was proved in the Sequential Correctness step of establish-
{ ing validity of PC. Now we prove (6.21). Using the Conjunction Rule and the definition of

C,”®, it suffices to prove:

For all y: ¥#d A ¥ <PROC,
Foralle: c€CP:

f {PPAPApcy=cp} I, pcy:=& cp" {pcy=cp’ A (TioAPG)V...v(TxraPY)}
And, these triples are exactly what was proved in the Interference Freedom step of establish-
ing validity of PO.

Thus, given a valid property outline for m and w, in order to prove that w satisfies m,
extract the correspondence invariants from the property outline and prove Simulaton Basis f—
(4.6), Finite Acceptance (4.8), Knot Exit (4.9), and Koot Variance (4.10)—Simulation Induc- S
tion (4.7) follows immediately from validity of the property outline. E:E_’.}_:I:-




6.4. Proof Outiincs Revisited

Procof outlines for partial correctness logic can be formulated as property outlines. Let
Popdbcavalidpmcfoutﬁmforacnnamtpmgmmcwhcmamﬁcan’isuwdawd

i with each control paint cp in . Avalidpmp:rtyoutlinc?bmthatcmbodimthcinforma-
l tion in PO,y is one in which each control paint cp has associated with it a property assertion

BN
L] -

qo~P?. POy is for my,, (given in Figure 6.2) and .

-
: i
]

Figure 6.2. m., L

;
Vaﬁdityd?bmfoﬂm&umtbepudﬂwmlogicuipbfm&qmndﬂ&m .-
and Interference Freedom used to establish validity of PO,;.
j 7. Mutual Exclusion Example £
Solving the mutual exclusion problem involves devising protocals to ensure that two or
more processes do not execute in crifical sections at the same time. A good solution to the g
mutual exclusion protocol must not only satisfy this Mutual Exclusion property, but should

] ensure that a process attempting to enter a critical section eventually does so, assuming no
process remains forever in its critical section—Starvation Freedom. We might also require
that a protocol sadsfy Firstcome First-served, which asserts that requests to enter a citical
section are not served out-of-order.

' In this section, we prove that a program crits based on the two-process mutual exclusion

protocol in [Peterson 81) satsfies Mutual Exclusion, Starvaton Freedom, and First-come ~
First-served. The interested reader might wish to compare our proofs with the operational =
_ proofs for Mutual Exclusion and Starvation Freedom in [Peterson 81] and the temporal logic <"
. proofs for those properties in [Paueli 86] and for First-come First-served in [Poueli & Manna &
| 83). AN
A contral-paint annotation for the program is given in Figure 7.1. Assume that initially S
| active , = active,, = false, since neither & nor ¥ is initially executing in its critical section, and oo
- ' that aurn is initialized to ¢ or . Thus, :-
. Initg,, = pce=1 A pc,=8 A -activey, A ~active, » (um=d v arn=1) W
. Blocked.,,, = activey A active, A um#d A um#y.
!
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crits: cobegin

o: {1} do frue - {2:}
non critical section;
{3:}
active , := irue;
4}
urn 1= ;
{5:}
(if ~active,, v urn=¢ - skipfl);
{6} .
critical section; S
{73 Lo

active , := faise

S . 1

s , Ll

"' [ l.l" ]

. St ,.' r'.'.,- P
. . 4 I .
LAY ; .

od
/I
b: {8} do frue - {93}
non critical section;
{10}
active, = irue;
{113}
turn := ¢;
{123}
(if ~acrive, v turn=4 - skipfl);
{13
critical secton;
{14:}
active, = faise

., .
..,'.l.'. ".'l~
R DRI

coend

Figure 7.1. Peterson’s Protocol

7.1. Mutual Excinsion

A property outline for process ¢ of crits and property recOgnizer m,u,,, (see Figure 2.4)
appears in in Figure 7.2; the property outline for ¢ is symmetric. The only non-trivial part of
showing that Figure 7.2 is a valid property outline is showing Interference Freedom—in par-
ticular, showing that execution of ¢ cannot invaiidate the property assertion at control point
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é: {1: gg~true} o
do true - {2: qo—true} oY

non critical section;
{3: qo~1true}
active y = (Tue;
{4: go~acttve } _
wm = R
{5: qo—active,}
(if - activey, v mum=¢ - skipfl );
{6: go~activey, A (turn=¢ v -active, v pey=11)}
critical section;
{7: qo~true}
active , == false

TR T T

-

Figure 7.2. Mutual Exclusion Property Qutline
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6, simzthisisnbccdypmpcnyamrdmin¢thatmmdomvuiabludtcmdbymdmof
¥. Execution of active,, := frue by ¥ (at contral paint 10) makes pe, =11 true, and execution
of wurn := ¢ by ¥ (at control point 11) makes wm = ¢ true. Thus, the property assertion is
not interfered with.
Topmvethatﬂsadsﬁnthcpmpcﬂymmdbymma,wemmtﬁmdcﬁmc%md __,‘_
Cs, in terms of the program state:

Csy = 6Spcys7?

Cs, = 13spc,=s14 ,~
Next, we must prove Simulation Basis (4.6), Simulaton Induction (4.7), Finite Acceptance N
(4.8), Knot Exit (4.9), and Knot Variance (4.10). We can use (6.17) to extract from the pro-
perty outline a correspondence invariant for automaton s@te 4¢: e
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Co = (pcy=4= active;) A (pcy=5= activey) A . 1

(pcy=6= (acttvey A (um=¢ v -activey v pc,=11))) A SN

(pey=11= activey) A (pc,=12= active,) A f:ffji'_f.:

(pcy =13 = (activey, A (um=v¥ v -activey v pcy=4))) Lok

B

LR

Simulation Basis requires that we prove

Init gy = (= (Csy A Csy) A Co) (7.1) .

Subsdtuting and simplifying, we find that (7.1) is valid. Simulaton Inducdon (4.7) follows L ~

because the property outline of Figure 7.2 is a valid. Finite Acceptanee, Knot Exit, and Knot vt
Variance are vacuously satisfied because the single automaton state of m,,,,. is both a finite- S

accepting and infinite-accepting state. o
7.2. Starvation Freedom s,

In Peterson’s mutual exclusion protocol, process ¢ makes a request to enter its critical
section by reaching control point S; its request is serviced when it reaches control paoint 6.
Thus, to use property recognizer mg,. (Figure 2.5) to show Starvation Freedom for ¢, we
choose transition predicates: ,_"’j’fi

Requesty = pcy=S5 RN

Servedy, = pc,=6
A valid property outline for the protocol and m,,,,, is given in Figure 7.3. Proving Sequential
Correctness and Interference Freedom is simple and is omitted here.

We extract correspondence invariants from the property outline using (6.17):

Co = (pcy#S5S= (un=¢ v mm=vy)) A (pcy=4= activey) A (pcy,=5= false)

C, = (pcy#5=>false) A (pcy=5= (active A (turn=d¢ v mum=4y))) A : .0'.
(pc‘h$12= (pC¢=5 A m=$)) A (‘,cw=12:pc°=s) - ..

To prove Simulation Basis (4.6) we show that
Init o;;, = (- RequestynCgy) v (RequestyACy)
is valid. This simplifies to
pcy=1 A pcy,=8 A -activey, A -active, A (umn=¢ v urn=vy)
= (pcy#5ACg) v (pey=54C))

wkhich is valid.

Next, we prove Finite Acceptance (4.8). There is only one non-finite-accepting state in
Myams q1- Thus, Finite Acceptance (4.8) requires that we show that
Cl > HB‘OCk‘dm




crits: cobegin

: /

coend

is valid. It is.

.........

o: {1: qo~(um=0¢ v um=v) | 9,~failse}
do true -{2: g~(um=¢ v mn=¥) | q,~false}

non critical section;

{3: go~(um=¢ v mm=4v) | 9,~faise}

activey = (rue;

{4: qo~acttve A (urn=d v wm=v¥) | g,~faise}
urn 2= ;

{S: go~faise | g ~active,n (urn=0 v wrn=v)}
(if -~ active, v urn=¢ - skipfl );

{6: qo~(aun=¢ v mm=y¥) | q,~false}

critical section;

(7: qo~(um=0& v awn=4y) | q,~false}

active y := false

¥: {8: go~true | g;~pcy=5 A mum=1y}
do true - {9: qg~irue | g ~pcy=5 » mn=vy}

non critical section;

{10: go~true | g;~pcy=5 A mm=v}
active, = (rue;

{11: qo~true | q;~pcy=5 A wm=v}
turn := ¢;

{12: go~true | q;~pey=5}

(if ~activey v urn=vy - skipfl );
{13: go~true | g;~pcy=5 A mm=v}
critical section;

{14: go~1true | g1~pcy=5 A mm=v}
active, := false

Figure 7.3. Starvation Freedom Property Outline
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There is one reject knot k = {¢,} in Mmyz,. Choose the following as a variant function v,
for the knot.
0, if pcy#5
v(q) = {1, f pcy=5rpcy,=12Aum=¢
2+((11-pcy) mod 6), if pcy=5rmm=4y

To sadsfy Knot Exit (4.9), we must prove
(vi(g0=0) = (Blockedy,v-C).
This follows because v, (¢9,)=0=pc,#5 and pcy#5=> ~C).
To satisfy Knot Variance (4.10), we must show that for every atomic action a:

{C1 A 0<v (q)=V} a {(~ServedyAC) = v (q)<V} (7.2)
Sinee v, (9)=1=> (pcy=5Apc,=12Aaum=49), and (pcy,=5+C,)= active,, it suffices to
prove

{activey A pcy=5 A pcy,=12 A murn=0¢} a {(~Served AC)=v (q)<1} 73)

for each atomic action «. Only the atomic actions at control points § and 12 are potentially
enabled in the precondition of (7.3), and from acrive A urn=¢, we conclude that the one at
12 is not enabled. Since - Served is faise after the atomic action at control paint § is exe-
cuted, the postcondition of (7.3) is rue and the triple is valid.

Next, we show that (7.2) is valid if v (q,)=2. From v (¢9,)=2, we infer pc,=5raum=1
and since 2+((11-11) mod 6 = 2, pc,=11. Thus, if suffices to show that

{pce=5 A urm=¥ A pc,=11} a {(-~ServedyrC)=v (9)<2} (7.4)

is valid. Only the atomic action at control points S and 11 are enabled in the precondition of
(7.4), so they are the only ones for which (7.4) is not trivially valid. Executing the atomic
action at control point 5 makes pc, =6, hence the postcondition of (7.4) is sue and the triple
valid; executing the atomic action at control point 11 makes pcy=12Amum=¢, which
decreases v (g,) to 1.

Finally, we show that (7.2) is valid if v, (¢9))>2. If v (¢,)>2 then the atomic action at
control point 5, as well as an action at 9, 10, or 12— 14 must be enabled. As already argued,
executing the atomic action at 5 decreases v,(¢,) to 0. Executing an atomic action at 9, 10,
12, 14 aiso decreases v (g1), since by reaching the next control point, the value of
2+{((11-pec,) mod 6) is decreased. Execution starting from 13 causes the value of
2+((11-pc,) mod 6) to be decreased provided contral paint 14 is reached. Thus, our proof
of Starvation Freedom is correct only if ¥ is guaranteed to exit its critical section after enter-
ing it.
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7.3. First-come First-served s
s A property recognizer for First-come First-served for crits is given in Figure 7.4. Transi-
tj: tion predicates Request, and Served, are as defined above for Starvation Freedom; the
; remaining two transition predicates used in m., are:
Request, = pc,=12 ¢
T" Served, = pc,=13 s
A property outline for crits and m,, appears in Figure 7.5. Showing that the Property Out- S
line is valid is straightforward; we do not give the details here. Informally, the correspon- ol
dence invariants characterize states as follows. b
Co: cither ¢ does not bave a pending request or ¥ has a prior request pending. '

C,: ¢ has a pending request and  does not.
Ca:

()

both ¢ and ¥ have pending requests and the one from ¢ was prior to the one from L.
$.
- Simulation Basis (4.6) follows trivially. The remaining obligations—Finite Acceptance T
h (4.8), Knot Exit (4.9), and Knot Variance (4.10)—are vacuously true because every automa- DA
ton state in me, is both finite-accepting and infinite-accepting. Thus, the proaof is completed. ' -
3 8. Non-deterministic Property Recognizers e o
. The proof obligations of section 4 concern properties specified by deterministic property ‘
¢ recognizers. We now address the problem of proving that every history of a program « is b
accepted by some given non-deterministic property recognizer myp. Two approaches are dis- :IE: l:j;
cussed. In the first, proof obligations are extracted directly from mwp. In the second, a N
|- deterministic property recognizer mp is constructed that accepts every history of 7 accepted L'_-T:;:I
? by mxp, but not pecessarily every sequence of states accepted by myp. Then, proof obliga- s
’ tions are extracted from mp. The relative compieteness result of the Appendix establishes -

~Requesty vRequess, ~Servedy A=Request,

Requesty A~Request, —Servedy ARequest,

Figure 7.4. msp s
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&: {1: qo~true | q~faise | 9o~ faise}

do true - {2: gg~true | q,~false | q,~false} S
non critical section; e
{3: qo~rtrue | q,~false | q;~false} S
active y := irue; : o

{4: qo~active, | q1~faise | g2~ faise} .
urn 1= ¥; R
{S: qo~Request,Amrn=1ractivey | q;~— Request Aactive, | ’
q1~Request A turn = A active }
. (if ~active, v mum=¢ -~ skipfl );
F,! {6: qo~true | q,~faise | q;~faise} .
3 critical section; RO
;- {7: qo~true | q,~false | q9;~faise} e
m¢¢ = fal.re
od
¥4
¥: {8: qo~Requesty = active, | g, ~Request, = active | q;~false} S

do frue - {9: go~Requesty= activey | qi~Requesty = active, | qo~false} -
non critical section;
{10: go~Requesty = activey | g, ~Requesty, = active, | g1~false}
active, := (rue; o
{11: go~Request, = active,, | g ~Requesty, = active,, | q2~faise} 3

urn = ;
{12: go~Requesty = (urn=+ ractive,) |
ar~Jalse | 41~active o rarn =) S
(If ~activey, v un=y - skipfl }; o
{13: qo~Requesty = activey | g, ~Request, = active, | q;~faise} o
critical section; '
{14: go~Requesty = acttve | q,~Request, = active,, | g1~ false}
active,, = faise

coend

Figure 7.5. First-come First-served Property Outline
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.............................................




..........

that the second appriaca always works, provided the program has a finite state space; how- o
N ever, the first approaci s often simpler and more convenient. .

8.1. Extracting Proof Obligations
The proof cbligations of section 4 are based on two assumprions that hold for deter- R
ministic property recognizers:
(1) There is a single start state,
(2) Disjoint transition predicates label ares emanating from each automaton state.

These assumptions need not hold for non-deterministic property recognizers. However, given o
a non-deterministic property recognizer that does not satisfy assumption (1), it is easy to con-
struct one that does. Thus, in adapting the proof obligations developed in section 4 for use
with properties specified by non-deterministic property recognizers, we need only be con- S
° cerned with assumption (2). S
Assumption (2) is used in section 4 to combine the constraints on correspondence invari- '
ants with the proof obligations that prevent undefined transitions. In particular, (4.1) is
merged with (4.3) to form Simuladon Basis (4.6), and (4.2) is merged with (4.4) to form
4 Simulation Induction (4.7). Since this merging is not possible when zansition predicates are o
- not disjoint, the reasoning of section 4 dictates that for a given program « and non- -
deterministic property recognizer myp, showing (4.1), (4.2), (4.3), (4.4), Finite Acceptance
(4.8), Knot Exit (4.9), and Knot Variance (4.10), ensures that every history of  is accepted .
by myp. .o |
Unfortunately, these proof obligations may be too strong—not all programs that satsfy -
myp will satisfy (4.1), (4.2), (4.3), (4.4), (4.8), (4.9), and (4.10) because these obligations
2 ensure that for any history of the program, every run of myp is accepting. Recall, a property
e recognizer accepts an infinite sequence provided a single run is accepting. With a determinis- LA
tic property recognizer, each input resuits in only a single run, so ensuring that every rum is
accepting is equivalent to ensuring that the single run is. With a non-deterministic property
recognizer, there may be multdple runs. Thus, for non-deterministic property recognizers, the T
proof obligations are more restrictive than necessary. 2 "y

8.2. Refining Non-deterministic Recognizers

Non-deterministic property recognizers can specify properties that cannot be specified by R
deterministic ones [Eilenberg 74]. However, cach program w (with a finite state space) that _s":"
satisfies a property P.p, accepted by a non-deterministic property recognizer map, must also 2
satisfy a property Pp, where PpCPyp and Pp is specified by a deterministic property recog-




nizer mp.* Thus, to prove that w satisfies a prope-ty ND specified by myp, it suffices to con-
struct mp, and prove that « satisfies it. We call mp a deterministic refinemens of myp.

The construction of mp involves repeatedly modifying myp, using the techniques
described below, so that it becomes progressively more deterministic. Clearly, valid modifica-
dons must never cause the resuiting property recognizer to accept sequences not accepted by
the original one; they can, however, cause fewer sequences to be accepted. Satisfying the
procf obligations for the deterministic refinement ensures that all histories of the program are
accepted by the original property recognizer map.

Modifications for obtaining a deterministic refinement fall into two classes: those that
result in an automaton that accepts the same sequences as the original; and those that resuit
in an automaton that accepts fewer sequences than the original. The second class of modifi-
cations is needed because some non-deterministic property recognizers do not have determinis-
dc equivalents.

By removing transitions from map, the resuiting property recognizer is more determinis-
de and can accept no sequence that would not have been accepted by myp. Thus, this form
of modification is one way towards constructing a deterministic refinement.

Pruning: Delete transitions in the property recognizer.

Frequently, Pruning is performed by strengthening transition predicates based on knowiedge
of the program state. This form of Pruning is illustrated in Figure 8.1.

Figure 8.1. Pruning

Here, transitions from q to itself under program states that satisfy 2 have been pruned.

A second modification that makes a property recognizer more deterministic is to com-
bine automaton states.
Combining: Combine states if it does not permit additional sequences to be accepted.

When combining two states 9’ and ¢’’, all transitions into ¢’ and ¢'’ terminate at a new state

*The proof of this appears in the Appendix as part af the completeness result.
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‘l g. If a non-deterministic chaice selected between ¢ and ¢’ in the original property recognizer,
' then that chaoice is no longer non-deterministic in the resulting one. Two states ¢’ and ¢’
can be combined provided:
_ Combining Congruent States. If two states 9’ and ¢’ are congruent then they can be
. combined and the resultant property recognizer will accept the same set of sequences.

Two states ¢’ and ¢’’ are congruent if and only if
Cl: peither or both are finite-accepting,
C2: neither or both are infinite-accepting,

C3: if there is a transition from ¢’ to ¢ under program state s then there also is a transi-
ton from ¢’’ to some state congruent to ¢ under program state s.

An example of this is illustrated in Figure 8.2. There, ¢4 and ¢ are combined.

. .o S NN

. . ) '-. v'

. R .
i X ' o N
R B . C

Al maon o a al e e

. Y
B
, After
‘i' Before
’ Figure 8.2. Combining
Whena C1 or Q2 of Combining Congruent States does not hald, it is sometimes possibie

to promote a non-accepting state to being an accepting state without changing the set of
» .
B scqtznmacmpmdbythcpmpcnyremgmmr..
Flnite-accepting Promotion. A non-finite-accepting state ¢ can be promoted to being
. finite-accepting if for every run that ends in g there is another run on the same input that
. ends in a finite-accepting state.
-’ : Infinite-accepting Promotion. A non-infinite-accepting state ¢ can be promoted to being
o infinite-accepting if for every run that contains ¢ infinitely-often there is a run (perhaps
bt the same one) on the same input that contains some infinite-accepting state infinitely
4

-31~
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: Finally, an automaton state may serve many roles. By splitting such a state into several
. copics, we can separate these roles and then use Pruning to remove transitions or Combining
I to combine some of the copies with other automaton states.

Splitting: Replicate an automaton state and all cransitions into and out of it

Splirting does not change the set of sequences aceepted by a property recognizer, but it does

SO A

put the recognizer into a form where Pruning and/or Combining can be used o move towards
i a deterministc refinement. Splitting is illustrated in Figure 8.3. }
It is not aiways necessary to conmstruct the actual deterministic refinement of a given :
aon-dezerministde property recognizer. Rather, it suffices to use Pruning, Combining, and .
Splirting to obtain a ncn-deterministic property recognizer for a property that is also aceepted ; j
) by some deterministic property recognizer. We can then apply one of the known (automadc) " g

rrocedures to produce” a deterministic property recognizer that is equivalent to the given N
aon-deterministic one (Landweber 69]. T

)

i

o Figure 8.3. Splitting

‘d

- Such procedires also indicate if there is 00 determinmistic property recognizer far the given non-deterrimsnc
l one. Then additicnai Prumng, Comibing, and Splitting mmust be done. ol
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9. Discussion

We have shown how to decompose a property into proof obligations. Since properties
and proof obligations can be formalized using temporal logic, our approach describes how to

break up the task of showing that a program satisfies one temporal formula—the property— e
into showing that the program satisfies a number of simpler temporal formulas—the proof BPCNGA
obligadons. Simuladon Basis (4.6), Finite Acceptance (4.8), and Knot Exit (4.9) are tem- T ’

poral formulas because they are predicate logic formulas. The remaining two proof obliga-
tions, Simulation Inducton (4.7) and Knot Variance (4.10), can be formulated in ‘emporal

O

logic, as
Temporal Simulation Induction: For all i ¢, ¢ Q:
0, = O( v Q(r,., A CM (9.1) o
jgye -
Temporal Knot Variance: For all reject knots x and all g, ¢ x: S
D(Cin0<v(a)=V) = O( ~ (TyC)=vla)<VI) 9.2) q
“qy <

where ] denotes the temporal operator “henceforth” and O denotes “next”.

Other investigadons into decomposing temporal properties include [Barringer et al. 84], 1
[Gerth 84], [Jones 83], [Misra et al. 82}, [Nguyen et al. 85] and [Stark 84]. Most of that LY
work is concerned with decomposing various classes of global temporal properties of a system 9
into local properties of the system components, resulting in so-cailed compositional proof sys- ]
tems. The work in [Gerth 84] is most similar to curs in that the primitive formulas into
which temporal properties are decomposed resemble triples. That work, however, is con- . 1_:1.-4
cerned only with finite sequences (both as properties and programs) and therefore does not . A
address the problem we are most concerned with. j

We chose to express the proof obligations as tripies rather than as temporal logic formu-
las because our experience is that people have less trouble understanding and manipulating
triples. Moreover, the relation between triples and the program text is always clear—when a
proof obligation formuiated as a tripie cannot be proved, there is little questdon where in the
program to start looking. This is not the case for formulas of temporal logic, because they do
not explicitly menton the program. Finally, we hope to integrate our approach with methods R
to develop a program and its proaf of correctness hand-in-hand, as discussed in [Dijkstra 76] o d
(Gries 81]. These methods are formuiated in terms of triples, so it made sense for us to
remain in that framework.

Considering our proof obligations from a temporal viewpaint does offer some insights.

P
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Temporal Knot Variance (9.2) requires that execution of every atomic action cause the vaive - 'g
of a variant function to decrease, thereby ensuring progress is made towards accepting the S
history. Without making assumptions about fairness, this is the only way to ensure that all }

infinite histories leave a reject knot because an atomic action that does not decrease any f'._»
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variant function can be repeated indefinitely, resulting in & history that is not accepted by the
property recognizer. Thus, while we would be happy to estatlish

QCiA0<v, (g)=V) = o(j:;m((rij"cj)a v (3)<V))), (9.3)

(where § denotes eventually), without making fairness assumptions, we are foreed 0 demon-
strate

0((C A 0<v (g)=V) = O(j:é‘“((rlj"cj)zVx(41)<v)))' (9.4)

However, if we can make assumptions about fairness, then we need not prove (9.4), in order
to establish (9.3). Instead, it suffices to prove that certain heipful processes that do decrease
the variant function are eventually executed and that executing other processes does not
increase the variant function. This method is formalized as temporal logic inference rules in
[Manna & Pnueli 84}—one rule for ecach type of fairness (e.g. weak fairness, strong
fairness)}—and can be adapted to our approach by replacing Koot Variance (4.10) with the
hypotheses of the appropriate inference rule. These hypothesis are casily formulated as predi-
cate logic formulas and triples. This, then, provides a second way in our approach to prove a
property P under a fairness assumnption F. The first (section 4), was to construct the property
recognizer for F = P and show that the proaf obligations it defines are satisfied; the second, is
1o construct a property recognizer for P and extract proof cbligations from it, except with the
Knot Variance (4.10) obligation replaced by the hypotheses from the appropriate temporal
logic inference rule.

One difference between our approach and most temporal logic verification methods is
the treatment of terminating executions. We handle terminating executions by explicitly deal-
ing with finite sequences of program states; it is inconvenient to deal with finite sequences
using temporal logics that include a “next” operator, so finite sequences are usually extended
to be infinite sequences. Unfortunately, this extension can cause problems because the infin-
ite sequence might not satisfy a property that the original (finite) one did. For example, a
common way to extend a finite sequence to an infinite one is by replicating the last state. A
property like “the value of the program counter changes between two successive states”,
though frue of a finite sequence, does not hold for an infinite sequence obtained by replicating
the last state of a finite sequence. Other ways to extend finite sequences have similar prob-
lems.

Anocther, related, approach to verifying that a program satisfies a property is modei
checking [Clarke et. al. 83] [Emerson & Lei 85] [Lichtenstein & Poueli 85], where a program
7 is viewed as specifying a Kripke structure K. K, is a model for P if and only if = satisfies
P. Thus, to determine if v satisfies P it suffices to check whether K. is a model for P, and
this amounts to checking each state in the state space to see which sub-formulas of P hold in
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| that state. Determining whether if K, is a model for P requires time linear in both the length o
' of P and the size of the program state space. L

Recently, [Vardi & Walper 85] observed that K., can be viewed as a Buchi automata®
- that accepts exactly the histories of 7. From this automaton and one that recognizes B
| sequences satisfying - P, a Buchi automaton m.,,_, can be constructed that accepts all his- ‘
tories of  not satisfying P. The decision procedure for the emptyness problem for m., _» can
then be used to determine if w satisfies P; the decision procedure is exponential in the leagth

of P and linear in the size of the program state space.

' The drawback to both these methods is that they require time linear in the size of the
state space. (The fact that the second method is exponental in the length of P is inconse-
quential due to the relative size of the program state space.) They are practcal only for
those applications where the program state space is of a manageable size. In our approach,
rather than check every state in the state space, the state space is partiioned into equivaleace
classes defined by the correspondence invariants. The number of correspondence invariants is
exponential in the length of P, since there is one for cach state in mp; the number of proof
obligations is linear in the size of the program. Thus, with ocur method, the number of proof
obligations incurred for a deterministic property is exponental in the length of P and linear in
the size of the program. Since the size of the program is likely to be substantially smaller ]
than the size of the state space, our approach is rather attractive.” Even for non-deterministic RO
: properties, the mumber of proof obligations ineurred with cur approach is bounded by the size o
i of the state space (see Appendix). Thus, our approach is comparable to the model checking NS
approaches for this case. - ﬁ
Of course, verification is only necessary if synthesis is not possible. Techniques to syn- B
thesize the synchronization portion of a finite-state concurrent program from a propositional -
; temporal logic specifiation are given in [Clarke & Emerson 81] and [Manna & Wolper 84]. <
The latter technique is most closely related to the work of this paper, since it is based on ' q
linear dme temporal logic. In it, a mode! graph for a property P is constructed and then con-
verted into a program. This model graph is just a property recognizer. Restriction to propo-
siional specificadons is not a problem for synchronizers, but is not suffident for specifying

many properties of programs; ¢.g. the relation between the program’s input and output.

*Recall, Buchi sutomata are special cases of property recognizers.

*We assume that the cost of deciding the validity of a Hoare Tiple is constant.  This is reascmable far pur-
poses of comparison because in the model chexking approach the ability 10 decide the validity of an implicaton in
constant ime follows from the restriction 10 propositicaal temporal logic.
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10. Conclusions

A new approach to proviag temporal properties of concurrent programs was described.
The approach is based on specifying properties using automata, called property recognizers.
Property recognizers are quite expressive—any linear-ime temporal logic formula can be for-
mulated as a property recognizer. Proof obligation for a property are extracted directly from
the recognizer for that property. The proof obligaticns are predicate logic formulas and mi-
ples. Thus, temporal inference is not necessary for proving temporal propertes. In fact, the
same techniques that work for proving total correctness of sequential programs [Hoare 69]
(Dijkstra 76} can be used for proving arbitrary temporal properties of concurrent ones. When
proving total correctness of a loop in 2 sequential program, a loop invariant and variant func-
ton must be devised and checked. When our method is used to prove that some arbitrary
temporal property holds for a concurrent program, correspondence invariants and variant
functions must be devised and checked.

Our approach was illustrated on some standard exampies: incrementing x by 2 in parallel
(Owicki & Gries 76] and Mutual Exclusion, Starvation Freedom, and First-come, First-served
for Peterson’s solution to the critical section problem [Peterson 81). Property outlines were
proposed as a succinct way to represent a program and its correspondence invariants for a
given property recognizer.
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Appendix: Soundness and Relative Completeness

The soundness and relative completeness of our approach is shown below. We first
show that the proof obligations of section 4 for deterministic property recognizers are sound.
We then show that they are complete relative to predicate logic and Hoare’s partial correct-
ness logic. Since partial correcmess logic is known to be complete relative to predicate logic,
our proof obligations are complete relative to predicate logic. Next, we show that the proof
obligations of section 8 for non-deterministic property recognizers are also sound, and finally
that they are complete relative to our approach for deterministic properties.

Deterministic Property Recognizers

Soundness Theorem: If for a program = and deterministic property recognizer mp for
property P there are correspondence invariants and variant functions such that Simulation
Basis (4.6), Simulation Induction (4.7), Finite Acceptance (4.8), Knot Exit (4.9), and
Knot Variance (4.10) are valid, then « satisfies P.
Proof. Assume that the proof obligations are valid for some correspondence invariants and
variant functions and that o is a history of w. We must show that o satisfies P.

By induction on n,
(90, o[--n])=q; = Ci(o{n])
due to Simulation Basis (4.6) and Simulation Induction (4.7). A similar inductive argument
shows that mp cannot attempt an undefined transition when reading o{r].

We now show that if o is finite then it is accepted by mp. Without loss of generality, let
o{n] be the final state of o. We must show 3°(qq, o{..]) € Q4,- Due to Finite Acceprance
(4.8), if 3*(qq, of..a]) is a non-finite-accepting state, then v cannot be blocked in o{n] and
this contradicts the assumption that ofn] is the final state of 0. Thus, we conclude that
8°(qq, of..n]) is a finite-accepting state, and, by definition, mp accepts o, hence o satisfies P.

Finaily, we show that if o is infinite then it is accepted by mp. By Knot Exit (4.9) and
Knot Variance (4.10), if mp cnters a reject knot x upon reading o{n], then it must exit x
before reading the n+v,(3°(g, o{..n]), a{a])* symbol of ¢. By the definition of a reject
knot, mp cannot reenter x after exiting it without first entering an infinite-accepting state.
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Since there are finitely many reject knots and o is infinite, mp must enter an infinite-
accepting state infinitely often. Thus, by definition, mp will accept o, hence o sadsfies P. C
Relative Completeness Theorem: If a program + satisfies a property P that is accepted
by a deterministic property recognizer mp, then there exist correspondence invariants and
variant functions, for which Simulation Basis (4.6), Simuladon Inducdon (4.7), Finite
Acceptance (4.8), Knot Exit (4.9), and Knot Variance (4.10) are valid.
Proof. Assume mp accepts every history of v. We must show that (4.6)-(4.10) for « and
mp are valid.
Chose correspondence invariants and variant functions as follows. Let H., be the set of
histories of w. First, for each automaton state q;, define
Ci(s) = @o,n: cc¢H,, 0sa: s=ofn] A 8°(qq, of..n])=q)).
Thus, C;(s) holds for a program state s if and only if there is some history of = in which s
caused mp to make a transition to ¢;. Next, for cach reject knot x and cach g, ¢ x, define

0, it Blocked_(s) v ~Ci(s)
1+max@@o, n: ¢ €¢H, 0sa: s=o{n] A 3°(qq, of..a))=¢

V9 9) = 1\ Blocked (afn+v]) A (Vi 0sjsv: 8°(g0, of..n+J]) €x))
if -~ Blocked_(s) A C(s)

\
Thus, v, (q;, 5) is the maximum gumber of atomic actions 7 can execute when in state s and

mp is in g; before mp will halt or leave x.

It remains is to prove that (4.6)—(4.10) are valid with these correspondence invariants
and variant functions. We consider each proof obligation in turn.

Simulation Basis (4.6). Since w satisfies P, every initial state of 7w must satisfy some
transition predicate Ty,. By construction, this initial state will also satisfy C;. Thus, (4.6) is
valid.

Simuiation Indoction (4.7). Consider any program history o and suppose
3°(qq, @{..n]) = ¢; for some n. By constructon, C,(o{n]). Consider an atomic action a from
A, that terminates in a state s° when started in state o{r]. Clearly, o5’ is the prefix of some
history ¢’ of 7. Since mp accepts every history of 7, mp must accept o', so there must exist
an automaton state g; such that ¢’[n+1] satisfies T;;. By construction, C;(¢’[n+1]). So, we
have shown (C;} a {Mv‘ Q(T,,AC,)} is valid for any atomic action that terminates when started

!

in a state satisfying C,. Since {C} a {T;;aC}} is valid for any atomic action a that does not
terminate when started in a state sadsfying C;, we have shown that (4.7) is valid.
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Finite Acceptance (4.3). Consider any program state o{r] in some history ¢ of w. Sup-
pose 8°(qg, o(..n]) = g;. Thus, by construction C;(ofn]). If q;¢Q—Qp,, then ofn] also sads-
fies - Blocked. Otherwise, o{n] would have to be the final state of o, which would cause o
mp 10 reject o, contradicting the assumption that every history of # is accepted by mp. Thus, S
C; = - Blocked , is valid, so (4.8) is valid.

Knot Exit (4.9). The proof that (4.9) is valid is trivial, by construction of v, .

Knot Variance (4.10). If a does not terminate when started in a state sadsfying some
correspondence invariant C; for an automaton state q; ¢ x, then

{Cirvi(g)=V}a {j.:( ((TyAaCp)=vlg))<V)} (10.1)
‘q <
is trivially valid.

Suppose a does terminate and terminates in state 5 when started in state s. Thus, there
must exist a history ¢, and an integer n, such that o;[n,] = 5 and 8°(qy, o,[..n,]) = ¢;. There
also must exist a history o, and an integer n; such that o.fr,] = ', 3%(qq, 0[..n2]) = g,
(Vj: 0S/svgp o) 8°(@g oal-na+jl€x),  and - Blocked (oxfv a) O Let
o = 0,{0..n,Jo;{n,..]. Since a terminates in s’ when started in state s, o is a history of =.
By the construction of v,, we conclude v,(g;, s')+1=v,(g;, 5). So, (10.1) is valid. O

Non-deterministic Property Recognizers

The Soundness Theorem for non-deterministic property recognizers shows that construct- >
ing a deterministic refinement suffices for proving the non-de:erministic property of interest. '_'_._‘:.‘
The Soundness Theorem for deterministic property recognizers, then allows us to conclude :‘»-Z:j;i

that satisfying the proof obligations extracted from this deterministic refinement are suffi-

dent. Completeness for non-deterministic property recognizers invalves showing that if a pro- -
gram T satisfies a property specified by a non-deterministic property recognizer myp, then it >
is always possible to construct a deterministic refinement of myp by using Combining, Prun-

ing, and Splitting.

Soundness Theorem: If a non-deterministic property recognizer map for a property ND R
can be refined to a deterministic property recognizer mp for a property D by using Prun-
ing, Splitting, or Combining, then if program =« sadsfies D, it will also sadsfy ND.

Proof. Suppose mp can be obtained from map using a single refinement step. If Splitting is
used, then mp and myp accept exactly the same sequences. If Combining is used, then by the s
definition of Combining mp and myp accept exactly the same sequences. Finaily, if Pruning ;-'_:;51'
is used, then myp accepts every sequence accepted by mp because Pruning can only result in a
refinement that rejects more sequences than the original. Thus, if w satsfies property D, it
must also satisfy ND. The theorem then follows by induction of the number of refinement

v
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steps needed to obtain mp from myp. O

Relative Completeness Theorem: If program = has a finite state space and satsfies some
property ND that is accepted by a non-deterministic property recognizer m\p, then there
exists a deterministic refinement mp of myp that « satisfies, e
Proof. First, we construct a deterministic property recognizer m_, that accepts A, the his-
tories of w. Define m., to be (S, S, {sart}, {start}, S, Blocked ., 3._), where S, is the set
of program states of 7 and
3_(sars, 5) =5 iff 5 satisfies /niz_, and
3_(s, ') =4 iff there is an atomic action of v enabled in s that terminates in s'.
Clearly, m_, accepts exactly the histories of .

We can use m,, to refine myp = (S5, @, Qo, Qis Qs 3ap). Lt mypx, be the property RRERE
recognizer (S.,, QX (S, Asntart}), QoX{ntart}, QiyXS ., Qus X Blocked.,, Sxpx ), Where i
(@, 7) €dxpx=({g, 5), ¥) iff ¢’ €8xp(g, ) and 3_(s, ¢’)=1s". R

Note that myp x, can be obtained by Splitting each state of myp, into one copy for each state e
of m_ and then using Pruning.

myp x » accepts exactly those sequences that are histories of « (hence, accepted by m.)
and accepted by myp. Since w satisfies ND, every history of « is accepted by map. Thus,
myp x » TeCOgnizes the same set of sequences as m,. We can now use Combining to obtain
m, from mypx,—all states of the same second component are combined together. Since m_,
is deterministic and accepts every history of , we have shown how to obtain a deterministic
refinement for map. O
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