
-0 -f164 820 VERIFYING TEMPORAL PROPERTIES WITHOUT USING TEMPORAL vs1
LOGIC(U) CORNELL UNIV ITHACA MY DEPT OF COMPUTER
SCIENCE 8 RLPERN ET AL. DEC 05 CU-CSD-TR-8$-723

UNCLASSIFIED N"14-86-K-92 F/O 9/2 NL

-Em/mmmmmEmmImEEEElEI
I.".IIIIIIIIII
lllliMMMMM

J..4

I

II1[I ,,--'' ~m iII"ll,

L--.111111

Lor

'I%2

tf

ll

'. . ~MICROCOPY RESOLUTION TEST CHART"'.,

a'4.'' aay.1Q

b',,

;i-

• " " .-. . .-,-. • .. .", .,-- ,,---., ,,-.-..- ,., -..-.... r..."..... ,.... . -,.

* L-Unclassified (II
-- AD-A 164 820)N PAGE

a REPORT SECR 'v CIASSF CA .. ' vAE MAR< NGS
Unclassified

'a SECLRiTy CQASS F CAT.ON A1L,'CR1rY 3 DIS-PBIT ON AVAILABILITY OF REPOR-

'b DEC.ASSFCAT ON , DOWNGRADING SCm'EDULE Unlimited

I PERFORMING ORGANIZA71ON REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT %UMBERfS)

Cornell Uiersvt R8-2

6a NAME OF PERFORMING ORGANIZAT ON 6o 0;;,CE- SYMBOL 7a NAME OF MONITORING ORGANiZA' ON
(If 3pplicable)

Cornell University IOffice of Naval Research

6c A'DDRESS Cty State, and ZIP Code) 7 b ADDRESS City, State anal ZIP Code)
*Dept. of Computer Science 800 North Quincy Street

Co~rnell University Arlington, VA .22217-5000
Ithaca, NY 14853

ia %AME OF NDNG SPONSORING 8~b 01 cCE SYMBOL 9 PROC,,REMENT NSTRUME.NT DENT F CATON N ,MBER
(DRGANIZA'ON (if applicable) N01-6K09

office of Naval Research N01-6K09

3c AIDDRESS (City, State, and ZIP Code) '0 SOURCE OF -UNDiNG NUMBERS

800 North Ouincv Street PROGRAM PROJECT -AKWORK UNiT

Arlington, VA 22"217-5000 ;:.EMENT NO0 NO NO ACCESSION NO

(include Security Classification)

Vrifving Temporal Properties without using Temporal Logic

Bowen Alpern, Fred B. Schneider

:a -PE~F E~OT 13b IMECOVRED14 DATE OF REPORT Ya. Month, Day) 15 PAOE COUNT
;ROM -oDecember 1% 9 41

-;.'.E'EARv NOTA'ON

DSA- CODES 81 SUB,ECT TERMS (Continue on reverse if necessary and identify by block number)
- iOLP S B GROUP concurrent programs, temporal logic, program verification,

- property recognizers, Buchi automata

.4~A Continue on reverse it necessary and identify by block number)
.\ mv ippoach for proving temporal properties of concurrent progrm is presented. The

doies not use temporal logic. To show that a program satisfies a given temporal

r p~rth ~e propertv is first decomposed into proof obligations. These obligations

r, ['ien diis&haruod by devising suitable invariant assertions and variant functions for
:,r cram lTh approach is quite general - it handles a superset of the properties

It ')e1 expressed in linear-time temporal logic.

~DlN

FEB 27 1985

3 ON AVAILABIL ''v OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION B- -

J .(,AY F EDIUN. MVED C3 SAME AS RPT DTIC USERS
RAED ESPONSIBLE NOiVIDUAL 22b,1,EP4QI, 4Ide 4rea Code) 22c OFFICE SYMBOL

DD FORM 1473. 34 MAR 83 APR edition may be used until exhausted SCRT LSIIAINO HSPG
All other editions are obsolete

86 2P.--

Verifying Temporal Properties
without using Temporal Logic*

Bowen Alpern
Fred B. Schneider

TR 85-723
December 1985

Department of Computer Science
Cornell University
Ithaca, NY 14853

Tv ~ -. r7'7 7

* Avar b'

Dist ',~

This work is suoporrea in par. nv \ SF (-'rant t)CR-8320274 jfld a Trant from the (At'ice ,

Naivat Researen

%F

Verifying Temporal Properties4
without using

Temporal Logic*

Bowen Alpr
Fied B. Schnider

Dcpr== of Campue S~e
Cw=U University

Ithaca, New Yorkc 1453

Dcb 2:3, 198

ABSTRAcr

A new appruach for proving temporal propuesc of conaffrcnt progra= is presented.
I'm approach does net in tcuiporal logic- To show that a program satisfim a given
temporal p.ropMty , the property is first dearpmd ino proof obligation&. TMoe ob-
ligations are then discharged by devising sumtble invariant assertions and variant
functions for the program Tbe approach is quite genera-it handle a raperse of £-~

the properties that can be expressed in Uznar-dtim poral logic.

7..-

[' - - -. -- - "-- " . - .- - - -. i -. -.. - -- - - v , - . '- w -- w V "l'l -w I. .' W: .. , -I

:%
- *..S ." .

iT;.best A'aidab e COPY.

1. Intrmductbm

Ezpmrm= has, shown that whle it may be pasble to understand a sequtial program
by considering some subset d its executions, this is impossible for nanurent programs. Gm-
sequently, ovr tbe past 15 yean, there has been increasig inre in ways to deduce propr.
ties of program behaviwr fom tbe program =t itself. The program text obviously cotaims
all the information to decide what xecinons are possiblek-Mreaver, while the
number of possible =xcutiom Ls ikely to be intractably large, only a single program text need
be analyizL

An execution of a program can be viewed as a potenitilly infinite equence of states .
aled a hisory. In a history, the first state is an iniial stare dt the program and each follow-
ing stare results from executng a single atomic action in the preculng state. In a concn=t
or distributed program, a histmy is the sequene at staes that results from interleaving the
atomic actions of the proes as they c uA

A property defnes a set of wAp= of states; a program watles a pr=ty if each of
its hstoris is in the set defned by t3h pq=ry. A property an be spe led as a pmdicate
on sequces. This allows the ene dt the propety to be made expiit.

Som examples, of proertes frequently arisig in pMatma faLlow.

* ParrWa Con'ecmw incude all xquens= of program stares such that, if the first
state in the wepew satisfies some given preondcliton and the wqunce is finite,
then in the final state the program omr denotes the end of the program and w=
given postconditon is satisfied.

* Toal Correcrnw, which is sronger than Partal Correcmes, include all wsq-.'.
such that if the fir state in the sequene satisfle some gi pr.nditon, then the
mquene is finite and the value of the prV ner" in the final state denotes the
end at the program as well as satisfymg given post ndiion. , .

* Muawa EzchuLon includes all weqi , in which the rn k no state where the program
counters for two or mom prooesses denote conmoi points nsde cnticaI sections.

a Deadlock Freedom includes all seu== in which ere is no sae where both (1)

some prE has no caabled atomi actions and (ii) no subsequent execion by any

otr Fp s Can alter tha.

SFrs-cmw Firt-serve include all seqe s in which proceses that request serice
in am order are not serviced in another order.

" Suwvaulon Freedom includes all sequccs in which a prm-=ss with an atomic action
that is enabled fequently enough will make proe evenually.

" . -I- *--:. - .

Formulas of temporal logi ca be iterpreted as predicates on sequien of states, and

variou formula=n of temporal logic have been used for specifying properties of interest to
designers of conurTent program CLamport 83a] [LAmport 83b] PMa]a & Pnueli 81a]
[Wolper 83]. While ther is not g agrcnt on the details of such a specfcaton-
language, there is ageement that tmporal logic provides a good bass for such a language
and it, or something close to it, is suficiendy expressive.

Temporal logic has also been used in proving properties at conctent programs fPn x
77] [Manna & Pn=Uc 8ib] PManna & Pnueli 84] [Owicki & Lamport 82]. H=r, a program is -

regarded as defing a collecton of temporal logic axioms. Tne programmr proves a pro-
perry af interest by using these axioms along with prom -independent axioms and inferenc
rules of temporal logic [Manna & Pnueli 83]. Various pckagings of the approach avoid the

necessity of maing temporal inferene by restricting the class of properties that can be
proved. Examples include Hre's logic for Partal Correctness of sequntal programs
[Hoare 69] and its extension to concurrent programs [Owicrki & Ones 761, GBL (Generalized

Hbare Logic) for proving safety propertes of coacurrent programs [Lamport 80] [Lamport
Schneider 84], and proof lartics for proving lvens properties [Owicki & Lamport 82].

This paper introduce a new approach for proving propertes of (canrent) programs.
The approach can handle a broad class of properties, including any property that can be
expressed in temporal logic. Using our approach, to prove that a program Satsfes So

given property, frwwiwae obUgadro and vwance obllgadoix am constructed. Invarianc -

obligations are discharged by finding certain brnaiou ameris nu and showing that they are

preserved by execution; vanriance obligations are discharged by finding vant m.mcr6onr and

showing that they decre se following crzin events. Hoare's parda correctoess logic is used
to show that the invariant assertions are prerved by execuion and that the variant functions

are decreased by execution.

2. Specifying Properie

Our approach is based on speifying properties by using property recoguzers, which are
srnilar to Buchi automata (Ellenberg 74]. We ame not advocang property recognizers as the
beasi for a specifimtori language, but we have found them to be a convenet starting point
for ow veriflesat30 method. Mlechanimil procedures exis to translate any temporal logic for-
miula into a corresponding property recognizer [Alpern 86] [Wole 84], so starting with pro-
perty recognizers does not constitute a restriction. In fact, property recognizcrs are more

expessvethan most temiporal logic-based specliflesdo languages-there exis properties that
can he specifed using pr oper ty recognizers but cannot he specified in (most) temporal logics

[Wolper 83].

A property ecogmi accpt thce sequences of program states that are in the .roperty
it specfes. Properties can ontain infinite sequenc as well as finite oes, so a prope y

rengnizzr must be able to acpt both kinds of squepes. Rall that a finite state.

automaton accepts a finite seqene if and only if it halts in an accpting state after reading

the final symbol [Hoproft & UlUman 79]. A Buwhi momatm is a finite-state automaton with

an accptane- cierion that allow it to acpt infinite sequn --it accepts an infinite

sequence if and only if it ePterm an accepting state infinitely often while treing that seqsence

[Fenhberg 74]. A propeny recognwzer is an automaton that behaves like a standard finite-

state automaton for finite input sequenes and like a Buchi automaton for infinite input

sequences.

An example of a property ecognizr, m..*, is given in Figure 2.1. It defln the set of

sequenes oosisting of a (possibly empty) prefix of states in which each state sasf predi-

cate -P, immediately followed by eithe C) an infinite sequne of states in which P holds for -

each state, or (ii) a finite sequen e of states in which P holds on all except the last state.

Property recog r,, m contains three momato state labl , q0, qj, and q2. The

start m is denoted by an arc with no origin, b#bzfte-wceptng ates by onentric circles,

and fl .-accrpng swas by bullets (o). An infinite sequenc is accepted by a poperty
eonly if it causes the recgir to be infitely often in some infinite-acpng

state. A finite sequence is accped by the Propety rMogni= only if it aMs the reog-

izer to halt (at the end of its input) in sa finite-ampting stae. In m.W, q0 is the start

state, q, is an infnte-awpting state, and q. is a flnite-acc-pting state.

Arcs betwean atmaon states ame arld by progmia state predicates ailed wrarm-on

predicates. Tbese def nsitiom betwe n automaton states based on the next symbol read

frthe input. For example, the arc 1abele P from qO to q, in m. means that whenever

MC is in q0 and the nmx symbol read is a program starte satisfying P, then a transition to "

q, is made. If the next symbol read by a property remgi= sati-i no transition predicate

an an arc emanating from the c=rrt automaton state, the input is rejcte; in this case, we

say the transition is undefined for that symbaL This is used in m to entse that every

Figure 2.1. ,.--

-3-...-;

finite sequence it acpts ends with a single program satisfying -P; no further tansitions are
paisble from q2 because them are no arc emanating from it. J

When the is more than me start state or mor than cue ransion is pomsible from
some automaton state for some input symbol, the property reognizr is non-deumic; oth-

erwise it is detuministi. Thus, m., is determinist beause it has a single start state and

disont ansaton predcates label the arc that cmanate from each automaton state.
Formally, a property recognize M for a propMey of a program w is a sextuple

(,Q, Q0, Qv, 8), where

S is t set f a states of ir,
(2 is the t tmto sats of m,
SOQ is the set of rora states of ar,
QWQ is the set of infiite-acng states of M,
Qfl Q is the set of finite-accpting states of ,,, and
a (X S) -212is th ranriton facon of m.

* Transition predicates ame derived from 8 as follows. Ti the transition predicate assocated
with the arc from automaton state q, to qj, is the predicate that holds for all program States J

such that qj E 8(q,). Thus, Ty is fa e if no symbol can ause a =nsidon from q, to q1.

In order to formalize when in acpts a sequene, sm definitos are required. For

any sequc= =-fos...,

o'[.l] M ,io,.... .. "

Transition function 5 ca be extended to handle finite seque -nces of prga sta:-..-,

A ru of m for an inut cr is a se.quence of automaton states that ,m could be in whil reading--
cr. Thus, for p to be a run for (,, p{01 (Q20, and (V I: 0<1< } 1: p[l] E 8(p{(-],c,[I- D). Let /..

,(a) be the set of runs of on a. (It is a set because ,, might be non-deterministic.)

A fnite w a is acpted by i n d only if & *(q,)r,.*Q . For an infinite

s[up=nw a, define INF,(a) to be the set of automaton states that appear Unfinitely aften in

any element af r,,,(). Thn, a is by n if and only ifNF,,,()rQo¢*0.

Any set of finite seqen that can be recognicd by a non-derminisic finitc-state
automaton can be recognized by some detcrministic finite-state automaton .Hopcroft & UU-
rmn 791. Unfortumately, Buchi automata, Ience propety recognizcrs, do not enjoy this
equivalene-there ame sets of infinte sequen= that can be recognized by non-deterministcJ

......................
-~ .- '. * .- * ., _'-. ' .*_', -.' ,"-' *- "• *,- '%- -' . %'' , _, . 'L' . . J--,A A . - .', % ''_ '. ,• ."- . . .- J

---- "r. v.--..----.,-.--- .--- ---.. -
.----

prperty re ignzrs but by no deterministi on [EPenbeq 74]. This will ulti ately require
that we use diffent chniq s for thse roperdes sp=fied by non-deterinis= property

reogmzrsfrom those spedfied by deterministic: one.

Examples of Property Recognize._

A property reogizer n, for Partial Correc s is shown in Figure 2.2 and one for
Total Comcmness, mt, is shown in Figure 2.3. In dm, Pre is a transition prediate that
holds for states satisfying th given pteam tion, Done holds for states in which th program I
comtwr denotes the end of the program, and Pou holds for states satifying the given

pos ntam ion.

Done Post

"4

Figure 2-2--m.,

II

Figure 2-3. m",

• .' -.-

-,O m=__ .,

-. P'e re , O ^Po. ,.

~ .~::-~:.-~ : - >- %. o

A property recognizer for .Mutual Eclusion of two processes, m,,, is given in Figure
2.4. Tbere, transition predimte Cj (Cj) holds for any state in which process, (,) is ex--

II
Figur 2.4. m,,

Starvation Freedom for a mutual exclusion protooal is specified by m. of Figure 2.5. A

prxcss (0 becomes enabld when its state satisfies the predicate Reqwmjr, which characteriz s

the state of whenever it attempts to enter its critel section, and makes progress when its

state satife the predicate Servedt, which holds whenever 4 enters its C'itiel section.
Nodce that m,., exploits the fact that in a mutual exclusion protooi (0 will make but a sin-

gle request for each entry into the critical section.

-,Aeqe&,b-Servedb

Served.

Figure 2.5. m,,"

3. Specfying Progm

A program ir ansists af a predicate Init, characteri2ing its initial states and a aollection

* of atomic actions A, Presumably, Mit, asts that
* the program couter for each pox in ir denotes the first statement of that pro-

:ess, and

0 other program variables have appropriate values accortIng to any ini.alition in

their declarations.

Knowing the atomic actions of a concrrent program is neamary in order to understand

its execution, since they defln the grain of interleaving of proess. The atomic actions in a
process define its conrol poiv-h set of values that can be stored in the program oumter
for that pro s. We can denten the control pmnts of a program by naming them within

- -

braces in the program text; this results in a control-point amnwgaron. For example, program
11Qo of Figure 3.1 consists of two seqpxndal processes, *and C, each with a single atomic
action and two control points. Tlz atomic action in ptos is caled a, anid the control
points n 6 a e Iabeled 1and2.

Every sequentda pro-ss ff has a program counter pe, We can use this variable in
describing states of th program, For example, pcb=1ApC= 3 defs th state of Wo at its

start and pc,=2^Ap pc 4 at its finish- Tbe program counter of a sequntial procss differs

from o cer program variables in that usually only a sngle pros may update it and dirct

assgnments to it are not p rmitted. Each atomic act on, however, changes the value of the
program Counter. For example, atomic action in iro changes pcd (from I to 2) as well as
incrementng z. Th assignnmen to pc, by a, though not eplicit, can be deducd from the

* position of a, in the program text

By definition, atomic actions are executed indivisibly and to completion, so an atomic

action cannot be started unles it will terminate. We therefore asum an atomic action is
delayed unil the stare is om that will permit its emmination. Usng angle bracket& to denote
an atomic action, cL of iTo is

(if Pc,=I - pe, z: 2, z+1 B). (3.1)

Hie , we use the muiple assignment statnt of [Odes 81] and the If of [Diat 76]. Th e

semanu,-, of If require that

Ir0: cobegi

a,: X z= +1
{2:}

/X+
*: {3:} ''--

,: z '= %x ", l-
{4:} --

cowid

Figure 3.1. Simple Program

-7-

.........'....- .o.' "._.. ".,".",_"=- " -. , ''" . -""""" . ,"- ,","., , . , '."-' "•. ,".' -' '.", ".".

if BO -SOO ... a Bn - Sn fi

abort if executed in a state where none of the guards 80, ... , Bn holds. Thus, (3.1) is

delayed until the program counter for proem 4 is 1, and then (without interruption) atomi-
cally updates the program counter and incremezts x. An atomic action might be delayed for
reasons other than the program counter value. A P operation in proem r on a general scma-

phore ere,

... {a:} P(ser) {b:} ...

defis an atomic action 1:

(if pcaASer>O - PC,, Ser:= b, ter- I fl) (3.2)

An atomic action is enabled in any state where its execution would not be delayed. Let

Enabled (a) be the set of states in which a is enabled. In Figure 3.1,

Enabled(ct. - pc=l

and in (3.2),
Enabled(p) - pc=a A ter>O.

We can use Enabled to characterize states in which a program ir is blocked and can make no

further progress because ther are and will be no enabled atomic actions:

Blocked, - A Enabled (a)
aL: a(A

The effects of an atomic action can be defined as a relaton between the program state

before and after it is executed. This relation can be described by a triple {P} a {Q}, which is
valid if executing a in a state satisfying P either does not terminate or terminates is a state
satisfying Q. P is called the precondition and Q the potcondi ton.

Programming logics to prove validity of a triple inrvolving a sequential program ir are
well known [oare 69]. One is summarized in Figure 3.2. If the semanrua of an atomic

action a is described as a sequential program, then such a logic and the following inferenee

rule can be used to infer tiples giving the semantics of a.
{PI s {QI:::

(Rule: #t4T~T

For example, returning to ir0 of Figure 3.1, we can establish the validity of

{xO} 0 1 {z= } as follows:

{•=0} pc,, x :- 2, z+1 {x-1} (Assignment Axiom)

{X=O A pc,,=1} pC,, z = 2, z+1 {xz1} (Rule ofConsequence)

; .. - - - . 2--e # ¢ .2,2."."... '._.'... "_ " v - _ .. ¢ , -. ...

Skip Axiom: {P} Skip {P}

Assignnxent Axiom- {P-,} i : i {P}

{P A B0S1 {Qj, fP {ABn} SM{Q}

ifRl:{P} If30 -SOOJ a Bn - SA ft{Q

do Rule: {P A BO S {Pj, s, { A} Sn-"P-
{P} do BO - SO a ... 0 ln-Snod {PA-Bo A ... A -,,

Rule Of Consequence P .P'1 {PI } Q'V1 Q

Conjucion Rule: {} S {Q}, {P'} s {Q'}
{P P}S {Q AQ'}

Figu 3.2. Partial C==c~== Logic

{xO1 If pc,=1 -pc, x : 2, z +1 f {x 1} (IfRule)

S{xO} (Ifpc 1 - p, := 2,= {=} (() :){: Rule)

{x0} i {x-} (defnon of "

This type of reasoning, which we employ ftequently in the sequel, is faciitatrd by tbe follow-

ing derived rule of inferenc.

Atomic Acton Rule: p fPa -S {Q}

4. Verication of Deterministic Properties

Te basis for our approch to verifying that a program i satis s a prop= ty P is the

observation that if a propet'Ay I-gnizer = for P acaep every history of ir, tbn -r saisBcs

P. In this sem:on, we onsider verifcaton at propmie that are s fed by deteministu
property recognizers; in section 8, we corudder non-deterministic property rCC~gniZMrs Sound-
new and complcen=zs proofs are given in the Appendix.

Lt i be a deterministic property grenizer for property P. One can think of m as

similating-in an abstact way--any program that sasfe- i P. Ths, to show that a program

fr satise m, we demonstrate such a carrespo demz betweenm and ir. We do this by defin-

ing a respondence invariant C, for each automaton sate q,. A correspondence *mvaraw C.

.9-

L .- -. -* * -.* * *

r;-- -' 7
- -.

. ,- . . -- - i r? - - .- r . T v -. - -. .- v- -. -- --- ,- -- . F -"r j " . -- - . r " , w
I V

for an automaton st q i a predcat such that C holds on a program stt s if and onlyif
ther exists a history of Tr ctamining a program state s and n enters qj upon reading s.
Thus, if i is ever in automaton itai qg, the last program state it read must satisfy C. Con-

straints satisfied by correapudtnce invariants are defined inductively, as follows.

For the base ase, initiay, i is in state q and n is in a state charactrized by it.,'

Suppose that upon reading so, the first program state of some history of ir, i enters automa-

ton state qj. Thus, so satisf it. and Top. the transition predicate labcling the edge that

connects qo and qj. Tberefore, Cj must satisfy (Init A TOj) =z Cj; for any automaton state qj

entered upon reading the first symbol of any history of ir, we require

(vj: (t.,. A Toj) = Cj). (4.1)

Next we must prove the induction step. Assume that if m enters automaton state q, -.

upon reading program state sk in a history crf w and O'sk<K, then sk satisfs C,. Consider

the aw when m, reads 3r. Suppose m, is in state qi and that upon reading program state s.r, a

transition is made to automaton state qj. By the induction hypothes s r _ sa-ISfi C, and s.r

satisfi transition predicate Ti1. The approprate correspondence invariant C, will hold pro-

vided {C,}a {Tj =. Cj is valid for any a, an atomic action of rr. (If a is not enabled in s-I

then the triple is trivially valid.) Generalizing to handle any atomic action and any automa-

ton state that m might be in when s- is read, we require:

Forall i: a, E A
For all I- q, Q : ..

{C,}' { A (Tl= 9} (4.2)
]: q, Q Q.

Thus, any collection of predicates satisfying (4.1) and (4.2) ar correspondence invariants for

n and ir.

In order to establish that - satisfies P, we must show that every history of yr is accepted

by in. There ar exactly tbm ways that in might fail to accept a history cr of ir:

(1) ,, attempts an undefined transition when reading c,.

(2) If a is finite, m halts in a non-finite-accepting state.

(3) If a is infinite, mnever enters an inflnite-apting state after some finite prefix of c. ,. '.:-.

Thus, in order to prove that every history of ir satisfies P, it suffices to show that (1)-(3) are

impossible-

Two obligation ensure that (1) is impossible. First, we must show that a can make
some transition from its start state upon reading the first program state in a history: --

-4

.................... *.... -j ..

J: OJ (4.3)

Secnd, we must show that m sam always make a transition upon reading subsequent states in
a history. If m is in state qi then t program state just read by n sati-i a correspondence
invariant Ci. To avoid an undefined transition, any atomic acion m that is then executed

must transform the program state so that a of the transition predicates Tq emanating from
qi holds. This is guaranteed by

For all a: a E A
For all i: qi E Q: (4-4)

We can exploit the fact that ,n is determnistic to combine and simplify the obligations
derived so far. In a deterministic property recognizer, the transition predicates on arc
emanating from any automaton state am disjoint. Thus,

(V i,J,k: qC, q, qk Q A J k: (Ty A T)=faIe). (4-5)

Using (4.5), we combine (4.1) and (4.3), to obtain

Simulation Bash. [iw. = (Ind(Toj A C1)), (4.6)

and combine (4.2) and (4.4), to obtain

Simulation Induction: For all a: a E
For all 1: qi EQ (4.7)

{CJ} V((T,, A Cj)}. (

To ensure that it is impossible for m to halt in a on-finirc- aazpting star--(2) above-

the correspondence invariant for any non-finite-acwpng state must hold only for program .-.

states in which subsequent execution by rr is iit table. Since Ci holds of the last program

state read by m, and Blocked., holds for all progam states ofi r in which subsequent e ecu-
tion is not possible, we require

Fite Acceptance: (Vi: qiEQ-Q/% Ci =- -Biocked.). (4.8)

Fmally, we ensure that (3) is Lmpossibl_ A set Q' of automaton stares is rongly con-
nected if and only if therm is a vqtece of transitions frtm any el tmzs of Q' to any other

* without involving an automaton stare outside of Q'. A reject knot it is a mxia strongly
cneedsubset of Q containing no infinit-accepting states. It may, however, contain -..

finite-acaptg states. In order to show that (3) is impossible, we must prove that no run for
an infinite history of tr is restricted to automaton states in Q-Q We do this by construct-
ing a varn fiincron v, for each rejct knot i.

¢-11

A variant function v,.(q,) = 0 is a function from automton and program states to some

well-founded set.1 For simplicity, assuam that this well-founded set is the Natural Numbers
* We require that whenever Y,,(qr)=O for any automata state q and program state f, either q
*is notin cor ele qis a fnie-acpting state andis the aststate inthe history.

Knot Exrit: (Y 1: q, E x: (v,(q)=O) =* 5iocked,v-,Cj) (4.9)

This means that if v((q) -0, either the history is finite and will be accepted by in or an
infinite-accepting state has just been entered since the property recognizer is no longer in K.

Finally, to ensure that the variant function does reach 0, we require that it is deceased by
* every atomic action in ir that might be executed.

Knot Variance: For all a: Ea i
For all qj E K-:4.0

{C A(< ~q)V1I { A ((TijA Cj) .v(qj)<V)} 4.0

Note that requiring that v,(q) be decreased by execution of any eligble atomic action
does niot preclude proving properties under various fairness assumptions. To prove that a pro.
perty P holds assuming some fairness pr opertLy F holds, a pr oper ty recognizer for F =: P is
constructed and prodf obligations are extracted from it. Standard techniques exit to con-

* struct a property recognizer for F =.P from proper ty recagnizers for F and P (Eilenberg 741.

11he five proof obligations-Siulation Basis (4.6), Flimulation Induction (4.7), F'inite
Acceptance (4.8), Knot Exit (4.9), and Knot Variance (4.10)-ar of three basic forms.
Simulation Basis (4.6), Finite Accptance (4.8), and Knot Exit (4.9) involve proving that
predicate logic formulas are valid. Simulation Induction (4.7) involves proving invariance of
some assertions Knot Variance (4.10) involve proving that certain events cause variant
functions to be decreased. Of course, the intellectual challenge in proving that a program
satisfie a property lies not in checking the proof obligations, but in devising the contspon-
dence invariants and variant functions. The proof obligations, however, do give insight into
form the correspondence invariants and variant function might take. In prticular, the proof
obligations defin a collection of equations who=e unknowns are the correspondence invariants
and variant functions. Solving the equations-admirtedly a, difflilt task-would provide the
desired correspondence invariants and variant functions.

* 5S. A DetaMWe Example

To illustrate ot= verification method, we prove that if program w0 of Figure 3.1 is

started in a state where x'=0 then it will terminate with x' 2. This is an instance of Total
Correctness.

ITflM state arTMt is aft left iinlit.

I.

For ir(, we have

Rmbt - c1 A C'

Blocked.. W pca,2 A pc*-4

and A.,,- {a1 , }, where

CL (lpcb=1 - pc,: 2, z+ fl)

CL-1 (if pc,3 - pc, := 4, z+1 fl).

A propmry rtgpizer m, for Total CoTte appears in Figu 2.3. For predicates

Pre, Po, and Done wechoo

Pre W x=O

Post = 2

Done - pc,2 A pc,-4

Thus, m4, accpts every seque of states such that if x 0 holds for the firs state, then the
sequenc is finite and the final state is one in which x-2 and both (0 and * have terminated.

We first define correspondenme invariants for each of the four automton states of M-4""

CO " fa"-

C1 1 pc*=l ((pc*3=.Xz-0)A(pc 4=-x-1)) A

pcb-2 =. ((pc,-3=Xi - 1) Apc** 4)) A
pc,=3 ((pC - -xO)A(pc2-2x1)) A
pC*=4 =>((pCb= 1 =:-- I) ̂pCb*2))...:,

C 2 -- 7I=.

C3 m pcb=2 A pc,4 A X=2

To satisfy Simulation Basis (4.6), we mtshow that

mit,, =, ((faa A CO) ,(Pre A -DOne AC (-"Pr AC V(PreADOne APOAC3)

is valid. Substituting, we get

(pc,-1 A pc, 3)
=D (faiuav(zOC - ^2^p-4^-2)),.

which is valid.

To satisfy Smulation Inducton (4.7), we must show for each a i Alm that the following

triples ame vaid.h

-1.3- i~

{C0} a {(TJA0^Q) V (TOACD V (TQAC) V (T03 AC 3)} (5.1)

{C 1} {(T 1 oAC,J) V (T 11AC) V (TI.AC.) V (T3AC 3)} (5.2)

{C1J CL {(T:o^Co) V (T:lACD V (TAC,) V (T3AC 3)} (5.3)

{C 3) a {(T 30 AC0) v (T 31 AC.) V (T3AC) v (T 33 AC 3)1 (5.4)

Since the tiples for a2 are symmetric with those for a, we prove only the forme.-.

Triple (5.1) is valid bemuse Co =fa.e and {aLml} c {R} is valid for any R.

Substiruting for the transition predicates in (5.2) and simplifying yields

{C1} nL {(-,DOneACDV(DOneAPO&AC 3)}. (5.5)

From definition (3.1) of a, and the Atomic Action Rule, to prove the validity of (5.5), it sd-
fices to demonstrate the validity of

{C-A PC 1} pC,, x : 2, x+1 {(-.DonReAC)V(Done APO&tAC 3)}.

Expnding and substituting, this is

{(pcU=3= X=O) A (pc,=4=-z=1) A pcb=}
pcb , x := 2, x+1
{(-(pc,=2 A pc,=4)ACD v (pc-2 A pc,=4 A x=2)}

and follows from the Assignment Axiom and Rule of Conseque c"

Triple (5.3) sipifics to {tm} al {tu} bexmuse C, =mT- tre and is valid.

Triple (5.4) simplifies to {C} a, (faise} because T3o, T31, T32, and T33 are all fals--

those transitions arm not possible in mn,. From definition of cL (3.1) and the Atomic Action

Rule, to prove (5.4) it suffi to show validity of

{C3 p PC=1} pcb, x :- 2, x+1 {faL/}.

Since (C3 ApcC=1) faLw, this reduces to {false} pce, x 2, x+1 {faLe} which is valid.

To satisfy Finite Acceptance (4.8), since Qj,= {q2, q3} we must prove that

(C0 =D, Biocked.) A (CI :. Blockd.,).

Substitutng and simpliying, we get

(fais =, (-3 ked.,)) A (Cl (pc6*2 v p**4)),
which is valid.

The final two oblipnons cocern reject knots. Them is a sngle reject knot i = {q1} in

- Dfine"

. %. . .

•,.q (2-pc) + (4-pc,-.

Knot Exit (4.9) requires that

This is valid becaue

(V.(ql-O) = (pc4-2 A pc,= 4)
= Blocke, . ..

To satisfy Knot Varianc (4.10), we must establish the validity of 2 riples

{ClA0<V,(q)=V} C {(-DonAC)=,,k(qj<V} (5.6) ,

{CIA0<V,(qV Q, {(-,DoeAC)zvk(q)<V} (5.7)

We give details only for te first; the second is smilar. Using definition (3.1) of al, the

Atomic Action Rule, and the Rule of Consequctitz, to prove (5.6) it suffices to prove

{Cj A O<Y,,(q)-V A pc6- 11 } pc, X :- 2, x+1 {v,(q)<V}.

This is valid bemuse changing pc, from 1 to 2 deceases v,.

6. Property Outlines

A propeM owudia provides a compact repreentation of the correspo denc invarants

and the Simulaton Induction (4.7) obligations for a given property recognizer and program.

Property outlies play much the sam role in our approach to verifition as proof outines do

for verifying Partial Correcmess using Haare's rdal corecmes logic--dey make it easy to

do verification informally and make it easy to present a proof. In fact, prod outines and

property outines are losely related, as we show in secton 6.4.

6.1. Proof Outlines

A proof outine for a concurrent program ir is the um of wr annotated with an a.un..on

PP~ at each control point cp. Each amsrtioti is a first-arder predcazte logic formula involving

the program variables and program counters of w.2 A proof oudine is vaWd provided:

Proof Outline Validity- Executing any enabled atomic actio in a state where the asser-
tions associated with the control points denoted by program counters hold produces a
state in which the assertons, assocated writh the control points denoted by program

counters still hold.

Proving validity of a proof oudim for a cncmrent program can be redued to proving " .

nThe ca"= pe,-cp is oten Idt tnpLt ond ctred fr= P in a p oli for proms ..

-.:.-.:.

the validity of a cllecton of tripde [Owicki & GCies 76]. 3 Tis is done as follows, where -,

pre(a) is the assertion imnwdnitely precding a in the prod outine and pos,(a) is the asse-
don immediately following it. ":,.

Sequential Correctnee For each atomic action a in the proo outline, prove

{pre(a)} C& {pos(d)}

Interference Freedom: For each atomic action a in the proof cutline and every assertion

R in a proes different from the one contining t, prove:

(pre(L) A R} C {}.

6.2. Property Outlines

A property outline for property recognizer m and program is obtained by adding infor. :..
mation about correspondence invariants to a control-point annotation for it. For each central ...

point ep, we specfy for every automaton state q of n what must hold when the program

counter denotes cp if the pjroperty recognizer i in a state q. T1his is doam by placing a pro-
perry assertion at each control pant in a control-point annotatm for it.

A property aswrrlon has the form

P: q0-P 0 I q- ... -,

where J; is a label, q0, qj, ... , q. are the automaton states of m, and P 0, PI, "P a first-.

order predicate logic formulas involving the program variables of ir (possibly including pro-

gram counters). P hold& in an automaton state q, and program stare r if f saies Pi. A

prOperty outline for it and m is valid provided:

Property Outline Validity: Executng any enabled atomic acaon in an automaton state q
and program state r where the property assertions associated with the control points

denoted by program counters hold produces a program state r' that causes the property
recognizer to make a transition to an automaton stare q' in which the property assertions

asocaed with the control points denoted by program counters still hold.

Figure6.1 is a valid property outlim for , (Total Czrrecmm) and 1r0 (of Figure 3.1). k'

We can exploit the similarity in the definition of validity for proo outlines and for pro-

perty outlines in developing a procedure to prove validity if a property outline. De a pro-
pe' 'tripl

{: q0-P 0 I q... Iaq,-,} = (d: q0-Qo I... Iq-, (6.1)

3If , at w,n ',e *!" or'" of CSP sp e thmn m pr , thm a third obliptim vriously
caed .'arnm r €ranm mm aLw be sansied. Our resul for p ary =Um can also be m=aed"

ang the .

::: ::: :.: : : .:: : ::. :. : : :. ..: ... :.. .: : :. . :. :.. .:. .., .:..., - :::::::.

- .r~*- --. -w -w ~ -~W---lV-.- -"- rrf

i:o: cobe& I
+1 {1: q0-faia qI- (pck3- 3x= 0)Apc,4 x1

q2- w I q3-faL}
a,: z :- x+1

{2: qo-faLe I qj (pc,=l3=X=-1)Apc,,*41
q2 - tre q 3-pcb2ApcU'4Ax= 2}

en{3 qO-faLs ql-!Cm'1-X=O)A(pc =2=:.x)
q2 - mw~ q3-faLsa}

-: +1
{qO-faLsa 1qj-(PC* 1=-X-=1)Apc,6* 2 I.

q2-WNEz tru q3 -pcbZAPC*4Azu2}

Figure 6.1. Examp Proper Outline

to be valid if execution of a in an automaton state qj and program state satisfying P, either

does not terminate or termites in a progam state s such that (i) s causes the pro.

teanizr to make a transition to automaton state qj and (ii) s satisfaes Qj. Note tht (6.1)

nnot be a prt correctness logic triple bemsuse it cmtains prope assertions in its pre.

and postondition. Ho er, the interpretaion of (6.1) is quite similar to the interpretation

of a partial correcess logic tripl. In fact, if we can show how to establish the validity of a

prioerty triple like (6.1) and o like

{,P#AR M , (6.2)

where , andg am property assertions, then we have solved the problem of establishing the '-

validity of a properry outline. This is bemue we can then use SlUctial Crmecness and

Intcrferno Freedom to redue the problem to showing that & anflen of prpety tripl.

are valid. The sodne of this appmoch for estblishing Propty outline Validity is based

on the sam argument as for prof outline validity.

Based on the interpretation of p.operty aetioms, note that:.

((q0-P 0 I.-. I q,-P,) A (q0-Ro I -I ,)
M (qO-POARO I.. R-.^R) (6.3)

-17-... -* * -.

Thus, it suffices to be able to prove the validity of proper ty triples like (6. 1) since using (6.3),

those lik (6.2) can always be transformed to be like (6. 1). We therefore tu~rn to the problem

* of proving validity of property triples.

To prove the validity of (6.1), it suffices to prove the following partial correctness logic

triples.

{P C9 {(T*O0AQ)V ... V(To. AQ) (6.6)

{P1} a {(T. 0AQ)V...V(T*,AQ,.)} (6.5)

1-n first, (6.4), establishe that execution of a in a state satisfying P0 either does not ter-

inate or terminaties in a state satisfying TOj A jfor soeJ. From this, we conclude that

execution of cL in a state satisfying Pn with in in automaton state qO either does not temte

or terminates, in a state s' satisfying T01 A Qjand m n ake a transition to automaton state q
*upon reading this (next) symbol in the history being generated by ir. Thus, holds for the

case that mn is started in qO. Repeating this argument for the remaining triples, we find that

no matter what automaton state mn is in when a is executed, d will hold if cL terminates.

Taus, (6-4)-(6-6) together imply that executing a in a state satisfying P either does not ter-

*mnae ortermnaes in astate satisfyingd, hence {1;1aL{j}.

We illustrate this approach far proving validity of a property outline, on the one in Fig-

ure 6.1. Theme are two Sequential Correctness obligations:

{1} al {2) (6.7)

13} a, {4} (6.8)

And, there are four Interference Freedom obligations:

{I A 31 a1l {31 (6.9)

{I A 41 a~ I(41 (6.10)

{3 Al 1) , (.1

{3 A 2) a, {2) (6.12)

The dtails for only one of the= property triples will be given; the remaining ones ar left to

the energetic reader. Property triple (6.7) is:

.

T] fxs, 64) e~alsh tat€:ent f n stt arsf g 0 ~th desn ..0-

r. -

{1: qo-faae q- (Pc,=3.x'."O)A(pc*-4mxzl) I
q2- t.,c I q3-fal..

£1: X :z+1.'
{2: qo-fal I qj- (pc=3=,z="'i)Apc,*4 -

q2 - tre I q 3 - pc2A pC4 =4 Az= 2},

moing this into partial wcre s logic ipes we get:.
tfa"i e}

{(Pre A Done A
(6.13){(PPC, ,, - o t ^(c 3 X 1=) A^P C* 4) v P- ,re)

v (Pre ADone APOSIApc2ApC =4Ax= 2)}

{(pc, =3 =I x 0) (pc, 4 =z= 1)}
OL1 (6.14)
{(-, Done A (p =3 X= 1) A pc, 4) v (Done A Pot A pC= 2Apc= 4 Ax= 2)}

{true} CL {true} (6.15)

{faLe} al {faL} (6.16)

Triples (6.13) and (6.16) follow trivially because the preondition of each is fale; (6.14) fol-

lows from the Assigmnt Axiom; and (6.15) follows eause the pwtcondition is mm.

6.3. Proof Obigtions and Property Outlines

The proof obligations of section 4 arm based on using comespo dene invariants that link

program states and property recognm states. Therefore, to show that ir satiss ,n using a

property outline P0 for m and 17, we must be able to extract from Pb the atrresponden.-

invariant for each automaton state of ix. Doing this wms out to be trivial, due to the way

proerty assertions ae defined. Each property assertion in a property outline contains a pie=.

of every corespom dea invariant. Thes pices are labeled by the automaton state to which

they comespond (by the "q -") and axe exactly the par of the correspondem invariant that

must hold whenever a program counter denotes the control point to which the property asscr-

don is attached.

Given a program ir consisting f a set of proesses PROC.., let :Pb be the st of control

points in proces . for PROC.,. Suppme the property assertion attached to ontrol point

cp in a valid p j outline for i and is of the fom (qo-P' q-P?' I... I q"P).

en, choose. .

c - A A (Pcp-, (61 7) ,
b1PROC. cCP?

_ (

as the coespo dene invariant for automaton state q1. This cheitm liminates the aed to

denonU-teai Smulation Inducton (4.T-this obligation is summie by having established.-

validity af the p.opry outline, as we now show.

-19-
......... '.......

* ... j . • o

Consider an atomic action from a proces 46,

Cc (if pcbt-, iPCb ~~ cp' 5

where F is a ve-nor of the program variables changed by executing a and 7 is a vector of
expressions whosC values are assigned to thoe varables. Simulation Induction (4.7) requires

that we prove, for each automaton state qj,

{C,} L ((TiOACO)v... v(T ,AC,)}

According to the Atomic Action Rule and Rule of Consequencc, this is implied by

{C1Apc =cp} , pc, : , cp' {pc=cp' A ((TioACO)V...V(TmAC,,))}. (6.18)

The precondiion and poswondirion of (6.18) can be simplified bemuse

(Ci Apc =CP) = (Ci' " Apc - ^AP), where

c i h W A A (PC, Pp,
4pPROC. ~CP,

so we have
{P7 A C A pC } --

.I pc=: p' (6.19)
{PC4.=C7' A ((TioAP? ACO') V...V(Ti,, AP AC;))}. 4

Therefore, due to the Conjun cton Rule and the fat that transition prediaes are disjoint, it
suffies to prove

{P PA'pccp} 1, pcb := e, cp' {pC=Cp' A ((TOAP?)V...V(T,^P?))}, and (6.20)

Notice, (6.20) is exactly what was proved in the Sequntial Correctness step of establish-
ing validity of Pb. Now we prove (6.21). Using the Conjunction Rule and the definiton of d
Cj, it suffices to prove:

For all 4: * *EPROC.,
For all c cE CPb:

{PAP' pc*=cp} 1, pc, : ,Cp' {pc6=Cp' A ((TIoAPCo)v...v(TLP)} P..

And, these triples are exactly what was proved in the Interference Freedom step of establish-

ing validity of PO.

Trus, given a valid property outline for m and Tr, in order to prove that ir satisfs m, "

e rct the COreIodence invariants from the propirty outline and prove Simulation Basis

(4.6), Finite Acceptance (4.8), Knot Exit (4.9), and Knot Variane (4. 10)--Simulation Iduc-

tion (4.7) follows im-,-fiately from validity of the property outli..

.......- 3 3 . --"- .. '.'.- . - 1-'- -. ."-" -i- '- ."-"-.-i-.-.-.'-.,".i.-, ., -." : " .':.'.'-. -. ,'--::--" -. : N " " ,-" -F --

6.4. Proof OutUlnis Revis"ted

Proof outlines for partial awremness logic can be formulated as property outlines. Let

PO- be a valid pro outline for a concaeit program ir where assertio P7 is associated

with each control point cp in ir. A valid property outlie PO,, that embodies the informa.

ton in POd is on in which each contol point cp has associated with it a property assertion

qo-P'. POb, is for nm, (given in Figure 6.2) and iT.

Figure 6.2. m,,..'

Validity of PbO follows from the prtial crrectness logic triples for Sequential Correctness

and Interfere Freedom used to establish validity of P0.d

7. MutWai Ezcluston Example

Solving the mutual exclusion problem involves devising protocols to ensure that two or

mom processes do not execute in critcai seclions at the -m time. A good solution to the

mutual exclusion protocol must not only satisfy this Mutual Exclusion property, but should

ensure that a pr attempting to enter a critical section eventually does so, assuming no
procs remains forever in its critica section-Strvadon Freedom We might also require

that a protocol satisfy Furst-come First-served, which asserts that requests to enter a m '

section are not served out-of-ordr.

In this section, we prove that a program crio based on the two-process mutual exclusion

protocol in [Peterson 81] sati-,, Mutual Exclusion, Stavation Freedom, and First-win.

First-served. Te interested reader might wish to compare our proofs with the operational

proofs for Mutual Exclusion and Starvation Freedom in [Peterson 811 and the temporal logic
proofs for those properties in [Pnueli 86] and for First-come First-served in [Pnueli & Manna

83].

A comn l-point annotation for the program s given in Figure 7.1. Assume that initially >.

aciveb = acrtve,, faie, sin e neither 0 nor * is initially execumting in its ariil section, and

that tum is intialized to 0 or* . Thus, .-

Initan " pcb=l A pc,--8 A -ac'veb A -,adve, A (A&Mn- v IUn=*)

BLocked. - aCdV*E A at2CVe* A M*- A pAWR**.

-21-

cri-s: cbegin'-i:
4{1:1 do tru {2:1

non criti-cal section; : -
{3:1

acdveb true;
{4:1

*: {1: do5:}

(if - acive, v tlu-- skipfl);
{6:}
critical sectio;

{7:1
aclive6 - false

od
/I "

*: {8:} do true {9:}
non citil section;
{1O:}
active, := true;
{11:}:

{1.:}- .
(lf-,activ tum s-dp fl);"...
{13 :} :-

critica section;
{14:}
active, : false

od

7.1."Mu i Figure 7.1. Peterson's Protocol

7. 1. Mutual Excluson € "-

A propet outine for promss (0 of criLr and property recognizer m (se Figure 2.4)

appears in in Figure 7.2; th proper ty outline for * is symnmem. The only non-trivial part of

showing that Figure 7.2 is a valid property outline is showing Interferenc Freedom-in par-

tailar, showing that execution of canot invalidate the prer sst at Control point

.

*:{1: qO-htduejnn~dIscin

do tru -{2: q0'-true

{3: q0-tmue}
acveb :- .rue'

{4- qO-acdvem)
Aim

(if --acdve, v aan W l
{6: q•-aCdVe. A (A&MI:O V v PC"-11)o

critia section;
{: qo-t--el
active6 : fa; e

od

Figure 7.2. Mutual EXdusion Propert Outline

6, since this LS the only property asserticn in~ tbat Mnnon variables altered by executon of

r. Execution of acdve, tnru by * (at ctrca paint 10) ma-k pc l = , and execu-on

of turn (0 by (at corol point 11) mas nun 0 tru. Thus, th property assertion is

not interfered with.

* To prove that ir sadsMe the property accpted by m,=,, we must first fleCtb and

Cs, in terms of the program state-

C6 6=5pcb:!7

-s' 13Spc --14

Next, we must prove Simulaton Basis (4.6), Smulaton Induction (4.7), Finite Acceptane

S(4.8), Knot Exit (4.9 and Knot Variance (4.10). We cn use (6.17) to extract from th pro.

prry outline a co rrespondenc ivar=t for autoS to state q ud

.23-

S I

Co - (pcb=4=.acVe)v A (pc=5=aedveb) A ,
(pcb=6 =-(atVeb A V -a eU v pct=le))) A -A
(pc, ==. active,) A (pc, - 2 =2 acve,) A

(p, = 1 (a ,ve A (Au'= v -ace v pc,4)))

* 4

Simulation Basis requires that we prove
A,,tj = - (C, A C.,) A Co) (7.1)

Substitnting and simplifying, we find that (7.1) is valid. Simulation Induction (4.7) follows
because the property outline of Figure 7.2 is a valid. Finite Accpanc, Knot Elit, and Knot I 4

Variance are vacuously satisfied bemuse the single autornaton state of m, is both a finite.

acpting and infinite-accepting stare.

7.2. Starvation Freedom

In Peterso's MUtual CXClusion Protocol, poces make a request to enter its citical
section by reaching control point 5; its request is serviced when it reaches control point 6.

Thus, to Use property recognizer m, (Figure 2.5) to show Starvation Freedom for e, .

choose transition predicates: ,.

Reques -= pc,=5

Served4 = pc,6. '

A valid Jproprty oudine for the protocol and m,., is given in Figure 7.3. Proving Sequential " '

Correctess and Interference Freedom is simple and is omitted here.

We extrac:t correspondence invariants from the PropCrty outline using (6.17):

CO - (Pcb*5=.(n=,+ V A=*)) A (pcb=4=.acdveb) A (pcb=5f.false)

C - (pc,*5 .false) A (pc =5=.(acdVb A(t =, (0u-.=))) V A

(pcgu, =. (pc,5 A n-,,) A (pc, =pcb5)

To prove Simulation Basis (4.6) we show that

Init, =, (-RequesAtCo) v (ReqWes,AC.

is valid. This simplifies to

pc,=1 A e,' A -4CdVe-, A A (tVm=+ v m=*)

. (pc6*5^Co) V (pC,=5-ACi.

which is valid. .."-""

Next, we prove Finite Aceptance (4.8). There is only one non-finite-acpting state in

M,,,,, qj. Thus, Finite Acceptance (4.8) requires that we show that

C, Bl-8ockdft
S-A

-24-
•~~ ~ ~ ~ 02 -. "% "o-o ° ,% % . °. . . " % ° , .L . . . - . ,. . , -. _ , .

crits: cobegla
-0- {I: q 0-(atm-- v tum'iI, I q1'-fabze}

do true -{2: q0oQw'ua.* v m7m-*) Iqj-faise}
non cridca sct~kn;
{3: ql-ai. r~ 1 -faisc}
actdve,b trhue-,

{4* qo-aCxiVe4A~aiUM= V MM=*) Iql--falSe}

{5: qo-faLM I q 1 - aCdVebA (fluw 0V M
(If-i acdfre* v am -~sip 5)
{6: qo-(Aanh-4 v tuam*) I ql-faLre}
crdfM secdon;
{7: qo-(Awn-* v au7=*) Iql-fase}
activeb faLse

ad

{8: q0 '-tRWe q 1 -PC(6S A W1'

do true 1 9: qo-mw I ql-pcb 5 A M

non crid scdan;
{10: q0-mae I ql-pc*=S A UM-*

aciive, M" hu

{11: q0-gyue I -c6- A &U7I*}

{2 q0-tuue Iq1-pc~bS1
(If -acsfreb v am *sklpf)
{13: q0'-mmu I ql-PC,6- A IUnv=*}

{14: qo-true I qlfpCb=5 A WlU7*}

aciive1 , false
od

coud

igu 7.3. Sarvaton Freed=m Pfoperry Outline

is valid. It is.

-25-

* .--.. "

T'nm is one cjc knot r = {q 1} in m,. Cnoom the following as a variant funcion vK

for the knot.

(o, if pc5*-

"K(q)- 1, fpc=5^Apc,=12A unM.

t2+((11-pc*,) moad 6), if pcb5AAun-5

To satisfy Knot Exit (4.9), we must prove

(YK(qi=O) = (Bocked,,I-vCD.

This follows because v,(q=O=. pc* 5 and pcb*5 .- C.

To satisfy Knot Varian (4.10), we must show that for every atomic action :

{Cj A 0<V(qD=Vl L {((SerdA^C)=M. (qD<} (7.2)

Since vK(q)=l='(pc,=5^pc,=12^A=+), and (pc,=5ACD=acr1ve,, it suffices to

prove

{actiVe, A pc,=5 A pc,=12 A -nr=} Q {(-ServedACJ=.vK(qJ<} (7.3)

for each atomic action o. Only the atomic actions at control points 5 and 12 are poentially
enabled in the prmondition of (7.3), and from aCa/veA-A=& , we Conclude that the one at

12 is not enabled Since -Served is false after the atomic action at control point 5 is ee-.
cuted, the posteondition of (7.3) is tue and the triple is valid.

Next, we show that (7.2) is valid if v (q =2. From v J(q=2, we infer pc,=5 A = -

and sine 2+((11-11) mod 6 = 2, pc, = 11. Thus, if suffi to show that

{pc,=5 A t = A pc,=ll} ct {(-,$erved,^C j YK (q)<2} (7.4)

is valid. Only the atomic action at control points 5 and 11 are enabled in the precondition of
(7.4), so they are the only ones for which (7.4) is not trivially valid. Executing the atomic
action at control point 5 makes pc,= 6 , hence the postcondition of (7.4) is tre and the triple

valid; executing the atomic action at control point 11 makes pc=.12An-M=-, which

decreases V(qD to 1.

Finally, we &how that (7.2) is valid if vK(q)>2. If vY(qj)>2 then the atomic action at L

control point 5, as well as an action at 9, 10, or 12-14 must be enabled As already argued,
executing the atomic action at 5 decreases vK(q) to 0. Executing an atomic action at 9, 10, '

12, 14 also decreases v,(q), since by reaching the next control point, the value of
2+((1l-pc,) mod 6) is decreased. Execution starting from 13 causes the value of
2 ((11-pc,) mod 6) to be decreased provided control point 14 is reached. Thus, our proof

of Starvation Freedom is co.c only if , is guaranted to exit its critical ction after enter-

ing it.

L.

-1 77 7, -1 O W: We w z

7.3. First-come First-served

A property recognizer for First-come Frst-served for criu is given in Figure 7.4. Transi-

dton predicates Reqiestb and Servedb ame as defined above for Starvation Freedom; the

remaining two transition predicates used in mM are

Reqast, - pc, 12

Served, - pc¢, 13'

A property outline for crkt and mM appears in Figure 7.5. Showing that the Property Out-

is valid is straightforward; we do not give the details here. Informally, the correspon-
dence invariants characterize states as follows.

C0: either does not have a pending request or has a prior request pending.

C 1: 0 has a pending request and * does not.

CI: both 0 and* have pending req and the one from was prior to the one from

Simulation Basis (4.6) follows trivially. T remaining obligatons-Finite Acceptance
(4.8), Knot Exit (4.9), and Knot Variance (4 .10)--ar vacuously true because every automa-

ton state in mfM is both finite-aOptXg and inftitc-accpting. Thus, the proof is completed.

8. Non-determinisc Propety Re.izer.

The proof obligations of section 4 concern propertes specfied by deterministic property

recognizers. We now address the problem of proving that every history of a program ir is -
aceptcd by some given non-dCtrminisn prpety Mr gir X". Two appraches ame dis-
cussed. In the first, proof obligations are extracted directly frm rn . In the secod, a
deterministic property recognizer mD is constructed that accpu every history of -i acepted
by mo, but not necessarily every sequnce of states accpted by m. The, proof obliga-
dons are extracted from MD. The relat e completeness result of the Appendix establihbes

,,Request, -&me4 A--Re'qst,- -erVe4 A-%SerA

Figure 7.4. m'tf-

-27-

criu: cobegin
40: {1: q0-ti'4a ql-foaIia qz-falu}

do true { 2: q0-mnwe I q1-faise q,-failze
non critia section;
{3: qO-mw~ I q1-false Iq2'-fabre}
acrive,b :- true;

(4: q0O-aciiveb ql-fadse I q2-fase}

{5: qO-,Reqe"AIUrn=*Aacdiveb I -ReeWIAac1iveb

(if -, aclve, v m Wt74 d.kp fi

6. ({6: qO-te I q1-fabse Iq2--faise}
critia sction;
{7: q0-rue I ql-fabse Iq:-faise}
acdive,b :faise

od

4:{8: qO-Reqiwesv acriveb q q1-Requesa , acdiveb q2-false}

do true - 9: qo-,Reab~ = acidve.6 q I-Request,6 acdive~, q2'-false}
non citical section;
{10: qo-Requestb, => acidveb, q1j-Re-qus aciiveb, q:-false}

aclive IL :- tme;6
{11: qo-,Request acyive* qj-Reqme&ub acdveb q,-falsej

(12: qo-,Re-qmet&, (A& *~A acdve 6)I
q -faIxe I q

(if- adveb v Aunq,-Ikp fl
{13: qo-Requestb w atyeb I q I-Request. =5 acrveb Iq2-fase}
critial ftcflon;
(14: qO-Re-quesd, actve6 ql-Requ",b=iacdveb q:-falsm}
activeL, false

od
cosd

Figure 7.5. Fv- First-served Property Oudine

. L

that the second appr-,= always works, provided the program has a finite state space; how-
ever, the first apprrucii :s often simpler and mome convenient.

* 83.1. Extractfng Proof Obligationz

The proof obligation of sectio 4 ame based on two assumptions that hold for deter-
*ministic property recogizrs

(1) Te is a single start state.

(2) Dispoit transition predicates label arcs emanating from each automaton state.

These assumptions, need niot hold for non-deterministic property reccognizers. However, given
a non-deterministicF Lpopety recgnizer that doe= not satisfy assumption (1), it is easy to con-
struct one that does. Thus, in adapting the prood obligations developed in section 4 for use
with propertie specified by non-deterministic property recognrizers, we ned only be con-

* 4zmrned with assumption (2). ~

Assumption (2) is used in section 4 to combine the constraints on correspondenice invari-
* ants with the proof obligations that prevent undefined transitions. In particular, (4.1) is

merged with (4.3) to form Simulation Basis (4.6), and (4.2) is merged with (4.4) to form
Simulation fiduction (4.7). Since this meging is not possibe when transition predicates ame
not dispont, the reasoning of section 4 dictates that for a given program ir and non-

- deterministic property recognize i", showing (4.1), (4.2), (4.3), (4.4), Finite Acceptance

* (4.8), Knot Exit (4.9), and Knot Variance (4.10), ensures, that every history of ir is accepted

by MSD~

Unfortunately, these proof obligations may be too strung-oot all program that satsfy
rnvyp will satisfy (4.1), (4.2), (4-3), (4.4), (4.8), (4.9), and (4.10) becuse these obligations

*ensure that for any history of the program, every ruznofmn., is accpting. Recall, a property
0 recognizer accepts an infinite wxquece provided a single rum is accpting. With a determinis-

tic property recognizer, each input results in only a single rum, so ensuring that every run is
* accepting is equvalent to ensuring that the single rum is. With a non-deterministic property

* recognizer, there may be multiple runs. Thus, for non-deterministic property ecgnizers, the
proof obligations ame more restrictive than necessary.

8.2. Rafinng Non-deterministic Recognzer.

Non-determstic property recognizers can specify properties that cannot be specile by
* deterministic on=s fEllenberg 741. However, each program wr (with a finite state space) that

satisfEs a property P~v, accpted by a non-deteriistic property recognizer rn,,7 , must alsio

satisfy a property PD, where PDCPyV and P0 is specifed by a deterministic property recog-

-29-

I-I

n .MD1Iu, to prove that ir sai a propety ND specfid by m.D, it suffices to Can-

struct MD and prove that ir sarM it. We Call MD a dewninis eLneme Of MVD . --.

The construction of MD involves repeatedly modifying m.D, using the techniques

described below, so that it becomes progressively more deterministic. Cearly, valid modifica-

mons must never cause the resulting property recognizer to acpt sequences not accepted by
th original one; they on, however, cause fewer sequences to be accepted. Satisfying the

procf obligations for the deterministic refinement ensures that all histories of the program are

accepted by the original propeny recognizer ,n..

Modifications for obtaining a deterministic reinement fall into two classes those that

result in an automaton that accepts the same sequences as the original; and those that result

in an automaton that accepts fewer sequences than the original The second class of modiE-
cations is needed because some non-deterministic property recognizers do not have determinis-

tic equivalents.

By removing transitions from my., the resulting property recognizer is more determinis-

tic and can accept no sequence that would not have been accepted by mvD. Thus, this form

of modification is one way towards constructing a deterministic efinement.

Pruning: liete transitions in the property recognizer.

Frequently, Pruning is performed by strengthening transition predicates based on knowledge

of the program state. This form of Pruning is illustrated in Figure 8.1.

tue P -P ?

Before After
e ~Figure 8.1. Pruning :

Here, transitions from q0 to itself under program states that satisfy P have been pruned.

A eond modification that makes a prop recgnize more determ=i is to COM-

bine automaton states.

Combining: Combine states if it does not permit additional sequences to be accepted.

When combining two states q' and q", all transitions into q' and q" terminate at a new state

*The proof af thn appee in the Appeadz pa a he msie-,enms resL.

...-. ,,.. .. .-.,--.:, .-. ..7....................,,-..,-.-...-... : :..

q. If a non-determinitic choice selbted htween q and q' in the original proprry recognizer,
then that choice is no longer non-dterministc in the resulting one. Two states q' and q"
cn be combined prvcde:"

Combini Congruent States. If two states q' and q" ame congnt then they on be
cowmbined and the resultant property recognizer will accpt the gar set of seqn~s.
Two states q' and q" are con grue if and only if

C1: neirthe or both are finite-a ieptng,

C2: neither or both are infinite-acpng,

0: if there is a transiton from q' to q under program state r th=n ther also is a -a.nsi-

ton from q" to some state congruent to q under program stare s.

An example of this is illustrated in Figure 8.2. Tbere, q2 and q3 are cmbined.

qO X q" q

YY
Y 'Y

After

Before

Figure 8.2. Combining

Whens Cl or C2 of Combining Congont States dam not hold, it is sometimes possible 7
to promote a non-accptng state to being an accepting state without changing the set of

Sequences accepted by th Property L ogn=.

FInlte-accepdn Promoton. A non-finite-accpng state q can be promoted to being
finite-aempng if for every run that ends in q there is another run on the ume input that
ends in a finite-acpting stare.

Infinite-a pting Promotion. A non-infinite-acepng stae q cm be promoted to being
infiite-acpng if for every run that contains q infinitely-often them is a run (perhaps
the sam one) on the same input that contains some infinire-aaczping stare infinitely

-31.
. -i-.'.-'.-.;'.i.% ;- 2"-''.' -'i.-"." ..:-." ."- ..";- ;.. ,-.--..........-.............. -..........--....-.......-......-... ii

I

of-. 1
Fnm.lly, an automaton state may serve many roles. By splitting such a state into several

copics, we can separte these roles and then use Prunng to remove transiinns or Combining
to combine som of the copes with other automaton states. -,

Splitting: Repicre an automaton sta e and all 'ansitons into and out of it.

Splitting does net change the set of seqene accepted by a propety recognize, but it does
put the -engnizer into a form where P uning and/or Combining cn b used to move towards

a denrm=stic -=neMCML Splittng is Mustraed in Figure 8-3.

It i not always neoessary to cans== the acuial deterministic reineen of a given
non-determ'.nstic property r..gnizer. Father, it suffis to use Pruning, Combining, and

Splitting to obtain a ncn-<ererMuinMstc ptrerty regni~r for a property that is also ac~cpted
by so de mni property recognizer. We can then apply one of the known (automadc)

,rocedures to produ&- a deterziniste Fprey recognizer that is equivalent to the given

no-dterministic one [Landwet'r 69].

-

x Y Z

a -

After

Figure 8.3. Splitting

5&hMen &Lia imkat if them w~ da~u proper !wc~e fhe rv= no*.a~

am= The an a, P ,=mni, and Sp" , e ,d = ,, ., e,:

-.. .. -- : - - - - - - - - -

9. Disc.ion

We have shown how to decompose a property into proof obligations. Since popert.e

and proof obligations can be formalized using temporal logic, our approach describes how to

break up the task of showing that a program sadsfie one temporal formula-the property-

into showing that the program sats a number of simpler temporal formulas-he proof

obligations. Simulation Basis (4.6), Finite Acceptanc (4.8), and Knot Exit (4.9) are tem-

poral formulas because they are predicate logic formulas. Th remaining two proof obliga-

uons, Simulation Induction (4.7) and Knot Variance (4.10), can be formulated in temporl

logic, as

Temporal Simulation Induction: For all i: q E Q:E
S(C , O(. V (T A Cj))), (9.1)

Temporal Knot Varance: For all reject knots K and all qj E i:
O((CA0<Yv,(q)=V) =- C(. A ((TiACj)=.vY(q)<V))) (9.2)

where 0 denotes the temporal operator "henceforth" and C denotes "next".

Other investigations into decomposing temporal properties include [Barringer et aL 84],

[Grth 84], [Jones 8], [Misra etaL 82], [Nguyen et al 85] and [Stark 84]. Most of that
work is concerned with decomposing various classes of global temporal properries of a system

into local properties of the system components, resulting in so-called compositional proof sys-

rems. The work in [Gerth 84] is most similar to ours in that the primitive formulas into

which temporal properties are decomposed resemble tples. That work, however, is con-

cerned only with finite sequences (both as properties and programs) and therefore does not

address the problem we are most concerned with.

We chose to eXPs the proo obligations as triples rather than as temporal logic formu-

las because our experience is that peplie have less trouble understanding and manipulating
triples. Moreover, the relation between triples and the program text is always dear-when a

proof obligation formulated as a riple cannot be proved, there is little question where in the

program to start looking. This is not the mse for formulas of temporal logic, because they do

not explicitly mention the program. Finally, we hope to integrate our approach with methods

to develop a program and its proof of correctness hand-in-hand, as discussed in [Dijkstra 76]
[Grics 81]. These methods am formulated in terms of triples, so it made sense for us to

remain in that fmnEwork.

Considering our proof obligations from a temporal viewpomnt does offer som= insights.

Temporal Knot Variance (9.2) requires that execution of every atomic action cause the value

of a variant function to dec:rease, thereby ensuring progress is made towards accepting the

history. Without making assmpto about fairness, this is the only way to ensure that all

infinite histones leave a reject knot because an atomic action that does not decrease any

-33-

variant function can be repeated indefinitely, resulting in a history that is not accepted by the
PIOpel recognize. Thus, while we would be happy to establish

^(CA<jj)V .0 ((Tij^Cj):-Vj(qj)<V))),(93 iJ: (K 93
(where denotes eventually), without making fairness assumptions, we are forced to demon-

state

O((Cf^0<vK(qi)=V) C(A ((TijACj)= vK(qj)<V))). (9-4)
J: q, *

However, if we can make assumptions about fairness, then we need not prove (9.4), in order
to establish (9-3). Instead, it suffices to prove that certain heipW procses that do decrease
the variant function are eventually executed and that executing other processes does not
increase the variant function. This method is formalized as temporal logic inference rules in
[Mana & Pnueli 84]--c rule for each type of fairness (e.g. weak fairness, strong
fairnss)-and can be adapted to our approach by replacing Knot Variance (4.10) with the
hypotheses of the appropriate inference rule. Tbese hypothesis axe easily formulated as pr-di-
cate logic formulas and triples. This, then, provides a second way in our approach to prove a
property P under a fairness assumption F. Tbe first (section 4), was to construct the property

recognizer for F =. P and show that the proof obligations it defines are satisfied; the second, is
to construct a property recognizer for P and extract proof obligations from it, except with the
Knot Variance ,4.10) obligation replaced by the hypotheses from the appropriate temporal

logic inference rule.

One difference between our approach and most temporal logic verification methods is

the treatment of terminating executions. We handle terminating executions by explicitly deal-
ing with finite sequences of program states; it is inconvenient to deal with finit sequences
using temporal logics that include a "next"' operator, so finite sequences axe usually extended
to be infinite sequences. Unfortunately, this extension can cause problems beuse the infin-
ite sequence might not satisfy a property that the original (finite) one did. For example, a
common way to extd a finite sequence to an infinite one is by replicating the last state. A
property like "the value of the program counter changes between two successive states",

though true of a finite sequence, does not hold for an infinite sequence obtained by replicating
the last state of a finit sequence Other ways to extend finit sequenea have -siilar prob.

Another, related, approach to verifying that a program satifies a property is model
checking [Carke et. al 831 [En.erson & Lei 851 [ichtenstein & Pneli 851, where a program

is viewed as specifying a Kripte strucra K, K, is a model for P if and only if r satis,-
P. Thus, to determine if iT satisfe P it suffices to check whether K, is a model for P, and

this amounts to checking each state in the state space to sewe which sub-formulas of P hold in

IA
,,,:_-...• . . ."- - _ . ". .. I

I

that state. Deermining whether if K is a model for P requires time linear in both the length - -

of P and tia of the program state spa .

Rec=ntly, [Vardi & Wolper 85] obsaved that K., can be viewed as a Buchi automata-

that acpts exactly the historim of ir. From this automaton and one that remgnizs .1
sequcnces satisfying -P, a Buchi automaton m.,,.p can be constructed that aepts all his-
tores of ir not satisfying P. The decision procedure for the emptyness problem for mp can

then be used to determine if it satisfs P; the decision procedure is expontial in the length

of P and linear in the size of the program state space

The drawback to bath these ethods is that they require time linear in the size of the

state space. (Te fact that the second method is exponential in the length of P is inconse-
quential due to the relative size of the program stare space.) They am practcal only for

those applications where the program stare space is of a manageable sie. In our approach,
rat than chc every state in the state space, the state space is partitioed~ into equivalence

;2 defined by the correspondence invarint&. Te nmber-a of orrspo dence invariants is
exponential in the length of P, since ther is one for each state in np; the number of proof

obligations is linr in the size of the program Thus, with our mthod, the number of proof
obligations incurred for a determinstic property is exponential in the length of P and linear in
the size of the program. Since the size of the program is likely to be substantially smaller

than the size of the state space, our approach is rather attractive. 7 Even for non-deterministic
properties, the number of proo obligations incurred with our approach is bounded by the size

of the state space (sce Appendix). Thus, our approach is comparable to the model cb.-king

approaches for this e.

Of course, verification is only necessary if synthems is not possible. Techniques to syn-

theaize the synchronization portion of a finite-state concurrent program from a propositional•

temporal logic specification are given in [Clarke & Emerson 81] and [Manna & Wolper 84].

flh latter technique is most closely related to the work of this paper, since it is based on
linear time temporal logic. In it, a model graph for a property P is cansmcted and then con-

verted into a program. This model graph is just a property rCognizrr. Restriction to propo-

sitional specifications is not a problem for synchronizers, but is not sufficent for spefyig

many propertie of programs; e.g. the relation between the program's input and output.

6Rcal. But automata aespecal cae of aoper y ruopm

'We assume that the cost af cdcng the valicity of a Hoae tiple is consa This is reaable fo pur'
poses of cmnm became in t modt e chesig approad the ability to dde the validity of an implicaono i
constat follows fro the s= to prop uc mml pral lol.

.35-

4

10. Conclusions

A new approach to proving temporal propernes of concurrent programs was described.
The approach is based on spfying propertes using automata, called property recognizers.
Property recognizers are quite expessive--ny iUnear-t temporal logic formula can be for- --

mulated as a prope ty recognizer. Proof obligation for a property are extracted directly from 4

the recognizer for that property. he proof obligations are pr dimte logic formulas and ti-
p~es. Thus, temral inference is not essary for proving temporal properties. In facr, the
same techniques that work for proving total correctness of sequendal programs Fr~are 691
[Dir 761 can be used for proving arbitrary temporal propertes of concurrent ones. Wb.
proving total correctness of a loop in a sequental program, a loop invariant and variant func-
tion must be devised and checked. When = method is used to prove that some arbitrary
temporal propet holds for a concurrent program, correspondne invariants and variant
functions must be devised and checked.

Our approach was illustrated on some standard exampes: incrementing x by 2 in rallel
[Owicki & Gries 76] and Mutual Exclusion, Starvation Freedom, and First-come, Fin, t-served
for Peterson's soluton to the critical section problem [Peterson 81]. Property oudin wes e .
proposed as a succinct way to represent a program and its correspondence invariants for a
given property rcognizer.

AckmowI~gszents
D. Gres, L LAwot, and P. P-an , gan ma helpful c u an an earlier draft of this papas.

Rdu
[Alpe n Alpn, B Ccmin8strn proof obligaao. Ph.D. Thes Desi. met of Cu= Sm=, Crxneaf

Unvesity. In prepw a io.
[13arnnger t al. 841 Barringer, K, k Kiper, and A. PMuel. Now you may cao teaporl lopc specka-

acn. Proc. SieemehAjvi Sympansm 77eor, af CaWnna, Washinn D.C., AFp] 1984, 51- -

63.
[Cark&E Emc=o 8 Carke, EM, and EA mers Desig mmdsynthe of sy zation skelem

using hing time tral Io. Logic Y- Progrm (D. Kcen e), Lonre Notes in Computer
Siewe Val. 131, Spring Velag, Berlin, 1981, 52-71.

[Carke et. W. 831 Carke, FLA, SA. Emerson, and A- P. %stl& Aaijamveeio firtitstaeca.
cn e systs uing te:pai logic sp&atic= A pracal appro nd Proceeings af dO 1O(h AC
S)mnpoaun an Prnwples if Pro grmmwng Langugs, Austin, January 1983, 117-126.

[D ra 761 Djikmsoa, &W. A DLwim c'Progrm wWn. Prence al, Englewood Ciffi, V, 197&.
[Elenbei 741 Elenbeg, S. Auawa. Lamguaes ad Machins. Vol A. Academic Press, New Yok, 1974.

0. 'Emer ,I La 851 Enmrson, E.A., and CL La. Modalities fmo chng Bkranig ame strikes back.

.. .-- *... - . • .t . .. , .. - *.-'. -.. . .- ., . -.-. :. -:....... 1<*--A1 -.. ,.. . . .-.. *.

Prceedings af dw 121h ACV Sympomnz an Pncries of Programming Lamguages, New Orlsm, Janu-
ary 1985, pp. 84-96.

[Geth 841 Gath, R. Tranition loin- Proc. Sireenth AnmuM Symposiuze an 77wory ef Campunng, Washingto,
D.C., Aprl 1984, 39-50.

[Gries 81] Griet, D. 77w Sci Progrmng. .ge-Vetiag, NY, 1981.

[Homre 69] H-oare, CA.R. An amac basis for coute prom g. Caimiw ACV 12, 10 (at. 1969) -
576.5M0

[Ho~oft & Ulman 79] Hccoft, I.F. an D. fL ma. Inc-Odmna, to Awaimawa T7 wary, Languages and Ca-
puian. Addson-Weaey Publishing Canty, 1979.

[Ir- 85] I--, C. Speifkati and design of (parallel) propan. biformadm, Proessing '3, (REF.A.
Mason, ed.) N ortaland Publisig Ctnnpany, Amstardain, 1983, 321-332.

RLaprt 801 Latart L The rkare logo of conret propam. Acr htormadca 14, 1 (1980) pp. = -37.
[Lpt 93a] Luanttt , L What good is tmrtal low. I Wa.manm Procetsing '83, (PE.A. Maso, ed)

Ncrth-Holand Publishing Canm y, Amstetan , 1983, 657-66L
RLapot 83b] Lmpot, L Spfyinzg Cocrrn program moodles. ACM TOPL4 6, 2 (Aprl 1983), 190-=
[lampt & Scmed 84] Laprt, L and F. Schneade. The '-oae Lo' of CSP, and All That. ACM

Tronw~onas an Pnogniiuning LAitguages and Syjrsew 6, 2 (Aprl 1984), 231 -29&.
[andwebr 69] Landweb, L. Desio problm for w-uumata MaaL Syssm 77wory 3, (1969), 376-384.

RLj:bheta & Phueli 85 dhnstain 0. and A. P wli. Qaki that fite state coammu t rpa
samfy thte U speaatiou. Proceedings 41 d 121k ACM Sympazuen an Principles 4 Pograumm.-
Languages, New Orleam, Jammry 1995, 97-107.

[Manna Pmeli 81a) Ma, 7.- and A. PmdiL Verifu of conurtpropgr The tm al fr-.
work. 77w Corrervme Probltm us Ca,,uwr Science (R.& Boyer and 1 Mooe, e&.), anerntiooa.
Lare Seria in Cmputr Scienc, Aadea Pres, 7 198, 141-1-4.

[Mama &Pnue81b] Manna, Z. and A. Pnuch. Verficaton of cwra pro Tempral proof pr--
ples. Logic df Progrmu (D. K,,n ed.), Lawe Notes in C w Sci , Vol. 131, Springer-
Vertag, Berlin, 1981, 200-2.S.

[Manna &Ponuh 83] Mamm, Z, and A. Pnuel. How to cook a t al proof sysrtm fo your pet language.
Pre. f tiy Savmpam an Princiles Programmung Languages, AO4, Austin, lan. 1983.

[Manna Pomui 84] Mann, 7- and A. P=ouL Adequate proof prinples for inviae and liveness prvfp-ues
of cncTret pa p Scinc 4f Capumt Pro grmuw 4 (1984), 257-289. ".N

[Mana & Wolper 841 Mana, Z and P. Wolper. Symbems of amc a ing proaes fr te al loc
spamficaticnm. ACV Transnou an Progrmmng Languages an Sysumn 6, 1 (Jan. 1984), 68-93.

[Wwsa et al. MI Mlfsra, I., K.M. Qiandy, and T. Smt. Proving safety and liveess of Comardweautng
processes with eswnples. Proc. ACM ZGACT- GOPS Srnpaaim an Proiqpes af DLiwubed Canpet-
in, Ottawa, Canada, August 199, 157-164.

[Nguyen et al. 8 Nguye, V., D. Gries, S. Owick A model ad empral proof syst, for owtrl of
processes. Proceedings af dw 12A ACM Symprsum an Prwq4es a/ Progruming Languages, New
Orl ,]an. 195, 121-131.

[Owicl & Gnes 76] Owiwd, S.S. and 1D. Gnes. An amcnmatc prd tmque for parallel prom L Acia
W¢iv¢imadca 6, (1976), 319-340.

(0wwc , & L prt 81 Owidd, S& and L Law't. Proving livea poM esof oc urren opam.
ACM Tramacow an Prograwung Laguages and Syssem 4, 3 (Jly 1982), 455496.

[Petesm 81] Pet'srom, aL Myths about the mutual cwlusian probl,. !Wtarmaam Pocessing Lnel7 12, 3
(June 1981), 11.5-116. --

[Pvue~i 771 Pouch, A. The tempral logc of propl . Proc of Urn 1h Syvnpauaa a, n eFouanos q' Can. .

pwUM SciMe, rEM, PrfcM i R.L, Nov. 1977, 4&57.

rPoueli W Pmouci, A. In wanrti,' from global to motilar t= a resonng about progams. In Cwm'.
rmWn, i, Cacrem',y, L re Not in Computr Smie Sprusge-Verlag, Berlin, 1896, To app.

[Pmxi & Mama 83] Poci, A. and 7 Mais. Proving r properes" The tetoal way. Pro 1o..

-37- . .

CoiLquim as Aw.AIz. Lwguqpt and Program"n. Leoru Notes i Cut Scie Vol. 154,
SrhW Verlag, Berlin, 1983, 490510.

[Stark 84] Stark, E.W. Fo~miml s of a theory of sefcaticz fr dsributed systms. Ph.D. Th7eis, M.LT.
Lab -ry fo Cmuj Si~m- M CSTR.342, August 1984.

[Vard & Wolper 851 Vard, MAY. ad P. Wolper. Applicati of t l logic: An autaata-thecreu pe.sp-
tive. In ppta .

[Wolper 83] Wolper, P. Tca. 1oral ,oi,,, be mre ,zp-essive. I'a-,aw,, and Conrov, 56, 1-2 (1983), 72.99.

[Wolpe 84] Wolpe, P. The tableau nethod fo tapaal log An overview. thqshd manusrpt.

Appendix: Soundness and Relative Completeness

The soundness and relative completness of our appromch is shown below. We first

show that the proof obligations of section 4 for deterministic proper ty recognizers are sound.
We then show that they a- complete relative to predicate logic and Hmm's partial corrct-
neSS logic. Since prtial correctness logic is known to be complete relative to predicte logic,
our proof obligations are complete relative to predice logic. Next, we show that the proof
obligations of section 8 for non-deteministic property recognizers a- also sound, and finally
that they are complete relative to our approach for detmnistic properte

Det ti Propety Recognizers

Soundness Theorem: If for a program ir and deterministic propmty rpg-r"m for

property P thee ar corespdence invariant& and variant functions such that Simulation
Basis (4.6), Simulation Induction (4.7), Finite Acptnc (4.8), Knot Exit (4.9), and

Knot Variance (4.10) axe valid, then -i sats P.

Proof. Assume that the proo obligations am valid for some correspondence invarants and

variant functions and that a is a history of Tr. We must show that a satis.-- P.

By induction on n,

* (qo, a'[.nD ='q - C(o[4D

due to Simulation Basis (4.6) and Simulation Induction (4.7). A simila inductive argument

shows that mp cannot attempt an undefined transition when reading a[n].

We now show that if cr is finite then it is accepted by -p. Without loss of generality, let

r[n] be the final state of cr. We must show S'(q0, cr(--rD EQ,, Due to Finite Acceptance

(4.8), if 8"(q0 , or(..nD is a non-finite-acpting state, then ir cannot be blocked in r[n] and

this contradicts the assumption that a[n] is the final state of cr. Thus, we Conclude that

8'(q0 , r(--nD is a finite-accepting state, and, by definition, mp accepts o, hence ar sarisi P.

Finally, we show that if a' is infinite then it is acped by mp. By Knot Exit (4.9) and

Knot Variance (4.10), if mp cntmrs a reject knot K upon reading er(n], then it must exit K

before reading the ,s+v-(B(qo, (..aD, c'(nDA" symbol of cr. By the definition of a rejec

knot, mp eannot reenter i after exiting it without first entering an infinite-atring state. L

7-.. .-. (.

k Since that ut finitely many reject knots and a is infinite, mp must enter an infinite.

accpting state infinitely often. Thus, by definition, mp will acpt a, hence ca satisfi P. a

Relative Completeness Theorem: If a program ir satisf a property P that is acepted
by a deterministic propery egnir mp, then ther exist cotresp:odence invaiants and

variant functions, for which Simulation Basis (4.6), Simulation Induction (4.7), Finite
Acceptance (4.8), Knot Exit (4.9), and Knot Variance (4.10) are valid.

Proof. Auume ifp accpts every history of ir. We must show that (4.6) -(4. 10) for rr and

mare valid.

Chose correspondence invariants and variant functions as follows. Let H, be the set of

histories of ir. First, for each automaton state qj, define

C,(s) W (3o, n: a EH,. O'-n: s=o(n] A 5*(q 0, c['(-nD=q) •

Thus, C,(s) holds for a prgram state s if and only if them is history of .1 in whichs
caused ip to mae a transition to qj. Next, for each reject knot x and each qj E x, define

0,if BlocWe11 (j) v -Ci(.s)

1+max(0 , R: a E H, 0sn: s'Vn] A 8'(qo, a[..nlD=q,
v 3(q, s) - V:.

A -,8kwkd,(c(n+vD A (71: 0 8Jsv: a4 (qo, a..-n+JD E r))

if- Blocked..(s) A Ci(s)

Thus, V,,(qi, j) is the maximum numnber of atomic actions Ir can execute when in state fr and
mp is in qj before mp will haIt or leave K.

It remains is to prove that (4.6)-(4.10) arc valid with thee correspondence invariants
and variant functions. We consider each prod obligation in turn.

0£

Simulation Basis (4.6). Since rr satisfies P, every initial state of i" must satisfy soe
transiton predicate TO. By construction, this initial state will also satisfy C,. Thus, (4.6) is

valid.

Simulation Induction (4.7). Consider any program history ca and suppose
8'(q0 , a[..nD = qi for soe x,. By construction, C,(,r[nD. Consider an atomic action a from

A. that terminates in a state j' when started in state a(n]. Ceariy, a .' is the prefix of some:
history a' of i. Since mp accepts every history of w, mp must acept a', so theme must exist

an automaton state such that a'In+1 satises Ty. By consruction, C1(a'ln+lD. So, we

have shown K}J a {V (Tj A Cj) is valid for any atomic action that terminates when started .

in a state satisfying Cg. Since (C Q {Tij A Cj is valid for any atomic action a that does not

terminate when started in a state satisfying C, we have shown that (4.7) is valid.

-39--

S*.. --* -. '-7,': .-- ". ". " ""'--""..,......-. .. ,-., ..-,-.-.-.-...,.-..".,Z

Ftnite Acceptance (4.3). Consider any prgram state o[n] in some history G' of 1r. Sup-

pose 8"(qo, cr(..n]) = qj. Thus, by construction Cj(a[n]). If q Q-Q, then o(n] also sats-

fles - Blocked,. Otherwise, c4n] would have to be the final state of a, which would cause

mP to reject a, contradicting the assumption that every history of ir is accepted by mp. Thus,

Ci =- - Blocked., is valid, so (4.8) is valid.

Knot Exit (4.9). The proo that (4.9) is valid is trivial, by construction of v.

Knot Variance (4.10). If a does not terminate when started in a state satisfying some

corespondence invarant Ci for an automaton state qi E i, then
SC q)=V ,{ A ((T JACj)=,,(q)<V)}

J: q, (K(J<)

is tvialy valid.

Suppose a does terminate and terminates in state s' whn started in statr s. Thus, there

must exist a history a, and an integer n, such that a1 [nJ = . and 8*(q 0, r[..nJ) = qi. There

also must exist a history a, and an integer n, such that r-[nj = s', 5'(q0 , a:[..J) = qj,

(J: O-.s]:v,(q, s'): 8'(qO, J'-[..n +J] E i), and -Blocked,(a-[v,(q, s')D. Let
a = (r,[O..n Jcr2,[n..J. Since a terminates in s" when started in state s, a is a history of ir.
By the construction of v,, we conclude v, (q1, s')+1.v, (qj, s). So, (10.1) is valid. a

Non-deterministic Property Recognizers

The Soundness Theorem for non-deterministic property recognizers shows that construct-

ing a deterministic refinement suffices for proving the non-deterministic Propety of intemst-

The Soundness Theorem for deterministic propety recognizers, then allows us to conclude

that satisfying the proo obligations extracted from this deterministic refinement are suffi-

cent. Completeness for non-deterministic property recognizers involves showing that if a pro-

gram r satisfie a property specified by a non-deterministic property r-gnizer m., then it

is always possible to construct a deterministic refinemnt of mn by using Combining, Prun-

ing, and Splitting.

Soundnem Theorem: If a non-deterministic prop=ty recognizr m,% for a property ND

can be refined to a deterministic property recgnuzr mD for a property D by using Prun-

ing, Splitting, or Combining, then if program ir satisfie D, it will also satisfy ND.

Proof. Suppose m0 can be obtained from m.D using a single refinement step. If Splitting is

used, then mD and m" acep exactly the same sequnce& If Combining is used, then by the

definition of Combining mD and m.D acp eactly the same seqences. F'nally, if Pruning

is used, then ,, acpts every sequcnce accepted by ,in because Pruning can only reut in a

refinment that rejects mome sequnces than the original Thus, if ir satisfies propery D, it

must also satisfy ND. The them= then follows by induction of the number of refinement

,. . - ? " "''''"" '''- ?" "'' "" "..............................'......-.-'""...".....'

steps needed to obtain ,nD from mV. 13

Relative Completeu,., Theorem: If progria ir has a finite state space and satsfe soae
pop=rty ND that is accepted by a non-determinisc property recognizer ,nv, then there
exists a determinisnc refinement mo of myD that 11 satisies-

Proof. First, we construct a dterministc property recognizer m. that accepts H,, the his-
tories of w. Define , to be (S,, S,(stan}, {zar}, S,, Bkoked,, , where S., i the set
of program states of -. and

.(.sxan, .) =j iff s sati-e Int,, and

,(s, s') = s iff there is an atomic action of ir enabled in r that terminates in s'.

Clearly, ,. accpts exactly the histories of ir.

We can use n., to refinm nm = (S,, Q, Q0, QL Q:., 8M). Let mv,. be the prope ty

recognizer (S., Qx(S,'A.uarr}), QoX{rzn}, QUxS,, Qfx,BlCed, 8.vx,), where

(q', /) 8.vDx1 .((q, j), s') iffq' E8 .VD(q, s) and 8&(, ')ms.

Note that m., can be obtained by Splittng each state of x.v, into one copy for each state

of ,. and hen using Pruning.

m.VD, accpts exactly those seqencs that are historai of ir (hence, accepted by .,)
and accepted by ".yD. Since ir sadsfe ND, every history of ir is accepted by m.n. Thus,
rnv , , recogizes the sare set of sequences as n, We can now use Combining to obtain

in, from m.vxr,-- states of the sam second component are combined together. Since m,
is determimsnc and acpts every history of w, we have shown how to obtain a deterministic
refinement for inlD. '

4 .

'.,..,,

e , .. • P .P "P " t %,, 41.

V. ~'.' -'

0

*7

0

S

A

FILMED
e

0
S

,.~.

>

7

