AD-AL64 819 A PARADIGN FOR ﬁ%lmbsogmcx SYNCHRONIZATIONCU) /1

LL UNIV IT| PT OF COMPUTER SCIENCE
F B SCHNEIDER FEB 86 CU-CSD-TR-86-735 uuou-oc-x-mz
UNCLASSIFIED

F—-——r‘ Ty v—,v_m‘ P— T T T T rrryrrrre———— . - T eLrow

- -

— T - !
E MR | LA »
- et

LA A r.‘g“.'v' (A,
L e LT,

e - ‘
}’,—'.'. »
L A T

o

L | j ;f
R Y f

: (ES
= gac b
TR -

I=

s >

llee -

N

=y

|

—

MICROCGEY RESOLUTION TEST (HARS

i atd

e R
Y

0
- 4
o
Vet
§ .
{

.......................

S A A S hulbifedri Al Al Bl sen san owme o P T Py o " oy —— - ———————
1
L' -
'.:\I'}V‘]'])Ej - - -
:. STV LLASSECAT ON o
. _—
. AD-A164 819 'on race
N '@ FEPORT 3EZC_R TV CLASSF L. o tzs LT wE NMARK NGS
| Tnelassitied
; 13 SECLRTY JLASSRCATON ALTRIR T I 2STRBLTCN AvAaiABL TY DF JERCART .
- I JEC_ASSFCATGON DOWNGCRAD NG C~ED0 LS . L
- nlimited
1 BCRAECRVING JRCANMNIZATON RERPORT NI MBER!S) 3 VIONITOR NG JRCANIZAT.ON REPORT N _MBE2S,
Cornell TREA-735
Ba NAVIE DF SIRESRAVNING JRGANIZAT ON Ao 3FFCE 37V8BO. Ta NAVE OF VICNITCRNG TRGANIZATON -
4 tif applicable)
Coraell niversitcy Dffice of Naval Research
t ~C 2ODRESS Gty State ind JIP Coage) o ADDRESS City State ing JIP Coage)
} Dent. U Computer Scilence 300 North vuines Street
q veorneil Universicoy Arlington, VA 22217-3000
F SLhaca, N Yol Ie)
. 33 NAVE 2F 5 ND NG IRONSCR NG 3b 2FFCDZ 3 NVBOL 3 PROCRENENT NSTRUNMENT DN~ = CATON N UAN82R
b SRGANZATON Jf appiicabie)
3 . : . .
s Office of Naval Rescarch NOOO14-86-K-0092
{ 3¢ ADD3E33(City. State and ZIP Code) ‘9 JOURCE OF S NDING “iUMIBERS
r Viviy : - SROGRAM PROGECT TAS« WNORK N T
N) o R J
® 800 North Quiney ’t“f’ fEMENT N0 | wo N0 ACCESSION N0 .
i Arlington, VA 22217-5000 .
L — - I
; .z ‘Inciuge Security Classitication) ! . -
. B i L
A Paradicom tor Reliable Clock Svnchronization. : RS
i e
2 GEASTNAL AL THOR(S) i i -
Fred B. Schneider B
‘13 T¥OE DF QLPORT 13b TIME COVERED '3 DATE OF REPORT Year Month Day) |'S 2aGE COuUNT
interinm R0M e Februarv 1986 19 .
6 SLPPLIVENTARY NOTATON E o
N CDSAT CODES ‘8 SUBLECT TERMS Continue on reverse f necessary and :dentify by block number) }
=20 ZROLP 5.8 GRCLP ‘

Bvzantine Aureement, Distributed Svstems, Fault-tolerance .

'3 ABSTRACT Continue on reverse f necessary and :dentify by block number)

Fuistine fault-tolerant c¢loek svnchronization protocols are shown to result from refin- <
ine a single clock svonchronization paradigm. In that paradigm, a reliable time source -
periodically issues messages that cause processors to resvnchronize their clocks. The
reliable time source is approximated by reading all clocks in the svstem and using a
converzence tunction to compute o tfault-tolerant average of the values read. The
performance ot g clock svnchrenization algorithm based on the paradigm can be quantified
in terms of the two parameters that characterize the behavior of the convergence function
used: accurace. and precision.

BTIC FILE COPY

\R» FER2 7 1985

B et
2 DSTRBUTON AVAILABILTY OF ABSTRACT 2' ABSTRACT SECLRITY CLASSIFICATION -~
E _NCLASSIFIEDUNL MITED [SAME A aPT O orc Lseas
22a NAME OF RESPON3IBLE NDiviDUAL 22b TELEPHONE (Include Area Code) [22¢ OF=CE SYMBOL
tred B. Schneider 607-255-9221
DD FORM 1473, 3a maR 83 APR ead/tiOn may be used unt! exhausted SECURITY CLASSIFICATION OF "MIS PAGE

All other editions are obso'ete

R P L M e o~
S

.
s
.
.

- S . - M = (S
PP PR P O L O RN T, i L‘__’\-_ t‘L WA Q."A i

A Paradigm for Reliable Clock
Synchronization*
Fred B. Schneider

TR 86-735
February 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

DTIC

ELECTE

B

b3

This work is supported. in part, bv NSF Grant DCR-8320274 and Office of Naval Research
contract NO0014-36-K-0092

[nvited paper Proc_Advanced Seminar on Real-Time Local Area Networks, Bandol France.
\oril 1986

FEB27 186 ;

»
1]
.
A
ot
Ay
PR

R
F
o

X
'.1 v
AR R RN B

AR UENEN

A Paradigm for Reliable Clock Synchronization*

Fred B. Schneider

mprmnto{CompumSacna:
Ithaca, New York 14853

February 13, 1986

ABSTRACT
Existing fault-tolerant clock synchronization protocols are shown to result from refin-
ing a single clock synchronization paradigm. In that paradigm, a reliable time source
pcnodxnﬂymummngathatammntomyndnummthnrdocn The
reliable time source is approximated by reading all clocks in the system and using a
convergence function to compute a fault-tolerant average of the values read. The

i ‘\11 1‘\ 5':?1,/
-

. fvailablid ity (¢ f‘\‘=.3
i - ; s
Ave 1.‘ ot Jor

Llat 3 Spocial

NUO014-86-K-0092

B A RN R ARG R R RA RS Sl Bl Fot Dl St wammwv«_‘-'vv‘:.‘:_v‘, [f v, S—

N
-l

oe
o~
N
JJ [%

—
!
LARP | .
P [t R IACIRCIAC
(S P

ety

. AN SR
P, s vy

v’ LTt T

e

¥ - 3

l.' -~ A SN
. ' D A

& MRanle s A"y s Y

’
e

ALK

el

o2
J

)
’

(s
7

4"211‘/'&

8 5T, Bty
’,

L"'{'

")

-
>
-
<
.
0
-
S .
-~
C v
)

TN T TR e TR TN T T L T A TR WL MY Y W W, W VW R T e e radiun et el R P el e e I R Rt T e Bt B TR L SR —

] {

1. Introduction
Certain applications require synchronized clocks at the processors in a distributed sys-
- tem. For example, the accuracy of performance statistics computed in terms of elapsed time e
. berween events at different sites depends on how closely the clocks at participating sites are Gy
synchronized. Also, timeouts and other time-based synchronization schemes (such as the
state-machine approach [Lamport 84]) often involve delays that are proportional to how
closely the clocks at participating sites are synchronized. R
Even if we could start all processor clocks at the same time, they probably would not '-'
remain synchronized for long. Crystal clocks found in today’s processors run at rates that R
differ by as much as 10~ seconds per second from real time and thus can drift apart by 1
second every 10 days; clocks based on power-line frequency can drift considerably more than

this—when used as a time base, the power grid in the Northeastern United States typically
drifts 4 to 6 seoonds from real time over the course of an cvening [Mills 85]. Keeping clocks ‘\l
in a distributed system synchronized without appealing to a single, centralized, time service Ej-f'-}-';'.f

requires that clock values be exchanged and adjusted periodically. If failures can result in
faulty processors exhibiting arbitrary behavior, then the protocol has the additional burder of A
tolerating erroneous and inconsistent clock values. N

This paper surveys fauit-tolerant protocols for synchronizing clocks in a distributed sys-
tem where faulty processors can exhibit arbitrary behavior. We show how existing clock syn-
chronization protocols can be viewed as refinements of a single clock synchronization para-
digm. That paradigm is described in section 2. In section 3, we discuss properties of conver- f“*
gence functions, the central component of a clock synchronization protocol. Techniques for

reading clocks across a computer-communications network are described in section 4. Section s
5 discusses how agrecment protocols can improve the performance of a convergence function. S
Some conclusions and related work appear in section 6. An appendix derives bounds cn the . -
resynchronization interval .

2. Clock Synchronization -

The clock at a correct processor p can be viewed as implementing in hardware a mono- \
tonically increasing, continucus’ function ¢, that maps a real time ¢ to a clock time c,(/) that,
for some positive constants . and p, satisfies:

1
4

T,

v r,
4
[¥ PP

D
v,

e T

Ey
o5
Pd

(ol
S

L4

ot SO
s n’ ,'v"‘r Wi hH b]
O Tt e T e

k)

2,

"C

» o
v
e B
. .
)
’

IStrictly speaking, c, is not continuous becsuse it advances in discrete ticis. However, if these ticks happen A
enough, it is impossible for a program running an & processar p o identify two successive real tmes ¢ IPAENEN
and (' where c,(t)=c,(i'). Therefare, we can treat ¢, 2 being continuowm. K

.......
..................................

ha R Al S i P S it St b A i et canel talen ROMACAR R 2nbie A0 Ahe e ARCEN A Mt SELAI At tugnn ateav 0 e A die poa A v g w Ata b ol e dend ad 0 g 2

: Inittal Value: 0 = c,(0) < @.1) "

- c,(t2)=c,(t N

. Correct Rate: 1-p < (:) ; ®) < 1l+p fory<t,. (2.2) =
2=h

Condition (2.1) asserts that ¢, is initially set to some value within i of the real time; (2.2)
asserts that the drift rate of c, is within p of 1 clock-second per real-time second.

We make no assumptions about the behavior of clocks at faulty processors—not even -
that they can be modeled by functions. A clock on a faulty processor need not increase as R
real time passes and might give inaccurate or conflicting information when it is read. e

A dlock synchronization protocol implements a virtual clock ¢, at each processor p. Vir- '
tual clocks at any correct processors p and g satisfy IR

v

Synchronization: |6,(r)~¢,(t)| = 8§ foralls, (2.3) RN

é,(t2)—é,(t R

Rate: 1-p = (;)_‘ (1) < 1+p for<sy, (2.4) LS

2=h .

" for given constants § and . :Z:: 0
NI

If a reliable time source is available, then clock synchronization is simple. The reliable t::t-:lj-
time source periodically broadcasts the correct tdme and, upon receipt of such a broadcast, E‘;',a';

each processor adjusts its virtual clock accordingly. Provided the broadcast arrives at ecach
processor at about the same time, all processors will adjust their clocks so that (2.3) is sats-
fied. Provided the broadcast is done frequently enough, processor clocks will not drift too far
apart in the interval between broadcasts, so (2.3) will be maintained. Provided tkat no pro-

cessor has to adjust its clock by too much upon receipt of a broadcast, the adjustment can be L
spread aver the interval that follows and (2.4) will be maintained. We have only to imple- Rt

ment the reliable time source.
The reliable time source serves two functions in the clock synchronization protocol out-
lined above. | L._

RTS1: It periodically generates an event that causes every proccssor to resynchronize
its clock at about the same time.

RTS2: It provides every processor with a time value that can be used in adjusting that SR
processar’s local clock. If each processor adjusts its clock based on the value it
receives at the time that value is received, thea (2.3) will hold.

Note ‘hat while one might desire that a reliable time source aiways be able to provide the
correct time, RTS1 and RTS2 merely require that the correct time be made available

......

TR T TYe T

periodically.

Although it is easy to satisfy RTS1 and RTS2 using a single clock, the resulting time
source in not likely to be fault tolerant. Fortunately, a distributed reliable time source that
satisfies RTS1 and RTS2 and is fauit-tolerant can be constructed when approximately syn-
chronized clocks are available. RTS1 is achieved by Laving each processor attempt resyn-
chronization when virtual clocks in the system reach a certain value. RTS2 is achieved by
having each processor independently read all the other clocks in the system and compute
some type of fault-tolerant average of the values gathered.

Adjusting a virtual clock ¢, can be viewed as simply starting another virtual clock that
runs concurrently with the old one. Thus, after the i* adjustment, p starts a new virtual
clock éf. Define FIX, to be the adjustment to c,, processor p’s (hardware) clock, that results
in é. Thatis,

&) = c,() + FIX;.

We refer to &) as a superscripted virtual clock to distinguish it from ¢,.

We can now describe the clock synchronization protocol outlined above for a processor p
in a distributed system consisting of N processors.
i=1; FIX,:=0;
do forever
await Next Synchronization;
Assume real time is now r;
FIX,™! == CF (&), €1(tr), -) = €, (tr);
= i+1
CF, called a convergence function, implements the fault-tolerant average used to satisfy
RTS2. In particular, CF(é;(tr), & (t7)s .-s é{t7)) provides the value of the reliable time
source at real ime f7.
Three important things about this protocol remain unspecified. First, there is the imple-
mentation of “await Next Synchronization”. An obvious approach uses &;:
do G (tr)#NextSynch - skip od

where NextSynch is a previously agreed on time. When virtual clocks at correct processors
are synchronized to within §, this scheme ensures that all processors resynchronize for the it
time within § of each other. Another implementation of “await Next Synchronization” is for
a processor to broadcast a message when &) (now)=NexiSynch and resynchronize when
enough such messages have been received. The details of this scheme, which is based on a
simple form of agreement, are given in section S.

...............................
..................................
KRR - e L U -, PR PR R S S S A S S MG,

N - CY SR P P L T e S S N T TR S AN TR T ST

R T W W T T e r—m— A e s B e mce 4 g S i S e e T e o

The second item that remains unspecified in our protocol is the convergence function
CF. Properties and examples of convergence functions are the subject of sections 3 and S.
‘ The final item to be specified in our protocol is how one processor reads the virtual clocks at
I other processors. Two techniques for this are discussed in section 4.

Different choices for the three unspecified items in the paradigm result in different clock
synchronization protocols. The choices covered in sections 3, 4, and 5 permit all the pub-
lished clock synchronization protocols we know of that do not make use of an external time

i source to be viewed in terms of our paradigm. Thus, the paradigm is quite general and pro-
vides a vehicle with which the clock synchronization literature can be surveyed.

3. Convergence Functions

In its most general form, a convergence function CF for use in a system of N processors
\ is a function of N+ 1 arguments. The first argument is for the value owned by the processor
invoking CF; each of the following N arguments is for a value from each of the N processors
in the system. This means that when a processor p evaluates CF, the same value will appear
in two argument positions—the first and the p+17.
i For a function CF to be a convergence function, it must exhibit certain properties. First,
because the relative distribution of the virtual clock values—and not their magnitudes—
should matter when they are combined to implement a reliable time source, CF should satisfy

Translation Invariance: CF(x,+v, x;+v, ..., Iy+v) = CF(x,, 1y, ..., Zy)+v.

Next, we require that when CF is evaluated by two different processors using similar

values for N—k corresponding arguments, it produces values that are closer together than its

_‘ arguments. More specifically, for CF to be a convergence function there must exist a con-

- stant k& called the fauir-tolerance degree and a function w called the precision. The fault-

tolerance degree specifies the number of faulty argument values that can be tolerated by CF;

the precision specifies how close together values can be brought using CF. This is formalized

by the

Precision Enhancement Property: If there exist values 3, ¢, and indices ay, ..., ay_;

such that £, =x,, y,= Ya, and

(a) (max i, j: 1si,j<N-—k: lta, -x,’Dsa
(b) (max i, j: 1si,jsN—*k: Iyar—ya’[)58
() (Vi: IsisN~k: |z, =y,|=s¢)
then lCF(xp' Xy ooy x.V) - CF()’q, b 4 JELL yN)l = “‘(B' !)'

Conditions (a) and (b) define 3 to be the width of the interval containing correct values; when
using CF to implement a reliable time source, these conditions are satisfied if correct virtual

i
' .
. RN . .
s e N
3 M
ot .
o e a sl PRI

—y— w w——
. R Mt A it R e g g g W gy g g W WO U ey "

clocks are synchronized to within 3 when read by p and q. Condition (c) stipulates that
corresponding (correct) arguments to CF are at most e apart; for a reliable time source, this
condition is satisfied if two values obtained by reading the same virtual clock v (real) seconds
apart do not differ by more than v+e as a result of drift. The Precision Enhancement Pro-
perty states that in order for CF to be a convergence function, two evaluations with argu-
ments satisfying (a)—(c) must produce values that are close—at most w(3, €) apart—even
though the values used for k& of the arguments (presumably, from faulty processors) differ
arbitrarily. Thus, provided n(3, €¢) <3, CF implements a time source that furnishes different
| processors with time values that are closer than the least synchronized correct virtual clocks.

The final property of a convergence function CF requires that CF(x,, 1y, ..., zy) i not
100 far from any of its arguments that are within 3 of N—k—1 others.

. Accuracy Preservation Property: For valves x, r,, ... 2y, and 8, and indices a;, ...,
! ay—; such that (max i, j: 1si,/sN-k: lxa, - x,,}l)sa,
(max i, j: 1S4, jsN—k: [z, = CF (X X1 -os o)) s a@®).
~ Function a is called the accuracy of CF. When CF is used as a reliable time source, provided
I a(3) < 8, resynchronizing a clock when correct clocks are no more than 3 apart leaves the
new clock within § of all correct clocks.
Examples of Convergence Functions
Examples of functions that satisfy the three properties of convergence functions include:
Egocentric Average: CFg,(x,,) ..., xy) is the average of all arguments x, through xy
that are no more than § from x,.
The degree k of fauit tolerance for CFg, is characterized by 3k+1 = N. Precision « is
' bmmdedby«(a.e)--?%ﬂwhmmmemberofugumuma:diﬂamm:m
function evaluations; in the worst case, this is slightly less than 1+e. Accuracy is
bounded by a(3)=43/3.
Fast Convergence Algorithm: CFrcy(xp, £y ..., Zy) is the average of all arguments x,
4 through xy that are within 3 of N—k other arguments.

The degree k of fault tolerance for CFrc, is characterized by 3k+1=N. Precision « is
bounded by (3, e)--Z%+e where f is the number of arguments that differ in the two
function evaluations; in the worst case, this is 28/3+e. The accuracy is bounded by
a(3)=43/3.

Fault-tolerant Midpoint: CFyyy(x,, 1., Zy) is the midpaint of arguments x; through
zy after the k highest and k lowest values have been discarded.

The degree k of fauit tolerance for CFg, is characterized by 3k+1=N. Precision is
bounded by 7(3, ¢)=38/2+¢; accuracy by a(3)=38.
Fault-tolerant Average: CF,(x,, 1, ..., xy) is the average of arguments x; through ry
after the k& highest and &k lowest values have been discarded.

The degree k of fault tolerance for CF,,, is characterized by 3k+1=N. Precision 7 is

bounded by w(3, ¢)=;%+e where fis the number of arguments that differ in the two

function evaluatdons; in the worst case, this is slightly less than 1+e. Accuracy is
bounded by a(3)=3.
CFg, was first proposed and ana'yized in [Lamport & Milliar-Smith 85] in connection with a
clock synchronization algorithm. CFg, is discussed in [Mahaney & Schneider 85], who were
the first to view convergence functions (there, called inexact agreement protocols) in terms of
accuracy and precision. CF)gy, and CF,,, are given in [Dolev et al. 83]; CF,,,, is the basis for
the clock synchronization protocol of [Lundulius & Lynch 84).

4. Reading Clocks from Afar

Processors have access to clock time—not real time. This means that in order for 2 pro-
cessor p to read virtual clocks ¢, ..., éy at the same real time, p must read all N clocks
simultaneously. This is impossible because a processor can do only one thing at a time.
Moreover, message passing is the only way a processor can obtain a clock value from another
in a distributed system. Message delivery times are typically non-trivial and unpredictable.
Thus, it is impossible for a single processor in a distributed systco to compute
CF(E5(¢1), é1(t7)s -y E4dtr)) = c,(tr) as required by the resynchronization protocol outlined
in section 2.

A technique originally proposed in [Lamport & Milliar-Smith 85] allows one processor to
compute an approximation for a virtual clock at another. Each processor p maintains a cal-
lection of tables 7,{1..N] containing values that transform c,(f) into an approximation for
é4(¢). Processor p approximates (1), by c,(1)+ig].

To comstruet 1, p periodically communicates with the other processors in the system.
Suppose the minimum delay incurred in sending a message between any pair of correct pro-
cescors is Iy, and T, is the maximum delay incurred. Thus, I, T, is the uncertainty
in delivery time for a message. A processor p can compute T,[g] by executing

send “i” clock time?” to g;
receive C from g timeout after 2I' . +x;
If imed-cut then C := =;

7p[a] := Cp(tam) ~Tmin~C

where x is the maximum length of time (according to p’s clock) it can take ¢ to process the

......................

T T T T e N T e o e W W i W W W~

IS)
e
- - d

'_'., .‘. e e
‘y -.. NN .

R " o
. L e
AN i, ca !
\LL;'L_A....L.:.- N

.
ot

v’

B R R A e R R e e et e e el TN

R MR AASCA oS 1+ RS B AN

- -

request made by p and f,, is the real time at which the statement assigning to t5[q] is exe-
cuted.

Define the ciock reading error \,(q) to be the error in p’s approximation of ¢'s i* vir-
tual clock, and let A be the maximum clock reading error. That is,

Iéz‘y(‘) - Cp(‘)“"f:[?]l = xp(Q) s A
In order to compute a bound A on A,(q), first note that p’s approximation of ¢’s clock drifts
from g's clock by at most 2§ clock seconds per real second. Iniﬁaﬂy,v}[q]isincrmrbyat
most [~ s since only [, of the message delay incurred by ¢'s response to p’s request .
for the time is accounted for in the calculation of T;,[q]. Thus, at time ¢, A,(q) satisSes
M (@) S Topgy = Tpuin+ 20(t—Lready(q)) = A

where Lread,(g) is the real time that p last cxecuted an assignment to 7,[q] in the clock read- .
ing protocol above. Although \,(q) is a function of ¢, an upper bound on (—Lread,(q) is i
usually known, and therefore A is a constant. '

Ap(q) can be kept small by recomputing v,[q] frequently, thereby keeping r—Lread,(q)
small. In practice, it suffices to obtain clock values from all processors just before computing S
FIX!™!, because this minimizes the clock reading error just before the clock values are actu- b
ally needed. However, for reasonable intervals ¢~ Lread,(q), 26(t—Lread, ()<< mgs = T pun .
so minimizing the uncertainty in the network delay is the key to reducing A,(q).

A variation on this scheme [Lundulius & Lynch 84] reduces the number of messages by
half but can increase the clock reading error. Instead of requcsting the time, each processor ¢
periodically broadcasts its virtual clock value (including the superscript). Upon receipt of
such a message, the receiver p updates tj[g]. The reduction in number of messages sent is
due to lack of explicit request messages—the passage of time, rather than a request message,
causes transmission of a clock value. However, in a point-to-paint network, clock reading van
errors can increase when this variation is used. This increase is because a processor p does : "
not necessarily know what communications line it should monitor for the next clock message.
Polling the communications lines increases the uncertainty in message delivery delay sinee it is o i
possible for a message to remain queued at the receiver for the polling cycle time. Most local e
area nerworks, however, have a single connection between the processor and the network and
therefore do not have this problem.

| ol TR
Al e

5. Improved Convergence by Exploiting the Network

An agreement protocol allows correct processors in a distributed system to agree on an
action to be taken or on a set of values. Use of an agreement protocal to disseminate a signal
that causes processors to resynchronize clocks can ensure property RTS1 of a reliable time
source. Use of an agreement protocol to disseminate each processor’s clock can enhance the

- YR Ty D AR AR o o od T AP

precision of a convergence function, hence heip with RTS2, by ensuring that corresponding
argument positions are equal in two evaluations of CF performed by different processors.

Agreement protocols are generally intended for use with values, not functions like
clocks. The general structure of such a protocal is for a proczssor to send a copy of every
value it reccives to every other processor. After several rounds of this repeated message
exchange, each processor selects one from among the set of values it has received. The cri-
teria for selection depend on the agreement protocol—use of median or mode is not unusual.
The relaying of messages through different paths, although seemingly ineffident, is a neces-
sary and important part of most agreement protocols because it prevents correct processors
from being confounded by inconsistent values sent by faulty processors.

It is not difficult to modify an agreement protocol intended for disseminating values to
permit processors to agree on clocks: clock diffzrences, which are relatvely static, are
exchanged. A superscripted virtual clock ¢ is stored as a triple (proc, i, offser) which specifies
a clock with offset offser from the virtual clock with superseript / at processor proc. (Note,
proc need not be the same as x.) Thus, ¢i(r) is appraximated by p as é5(r) +1,[proc]+offser.
Processor p can send ¢! to another processor ¢ by executing

send (proc, i, offset) to q S0

and ¢ can receive & by executing
receive (proc, epoch, offses). (5.2)

Subsequently, ¢ approximates é; by computing ¢4 (r)+7[proc]+ offser.

Recause ¢} +v4[proc] is an approximation of ¢, an error is introduced when a clock is
passed from one processor to another in this manner. Consequently, different copies of a
clock received by a single processor might not be identical. Agreement protocols that test for
equality of values must therefore be modified to handle clocks passed around the system in
this fashion. The modification involves considering two values equal if they are azproxi-
mately equal. Two values are approximately equal if they are within X,(proc)+A (proc)
where p first converted ¢! to a triple and ¢ reconstructs ¢!. Values are therefore appraxi-
mately equal if they are within 2A. (Recall, A is the maximum value of A,(d) for any pro-
cessors g and b.)

5.1. Crusader’s Agreement

Crusader s Agreemens [Dolev 82] allows a designated processor, cailed the trarsmister, to
dissemninate a value in such a way that:

CRUI1: All correct processors that do not “know” that the Tansmitter is faulty agree on
the same value.

8-

............................

..........
......

T T T T e T T T T N N T Y e Y W Y W W W T T Y Y W N W W Wy T T T TV Ty

el
—_——

I I e I i ak A e B d o e e i T T U

CRU2: If the transmitter is correct, then all correct processors agree on its value.
Thus, Crusader's Agreement potentially partitions processors into three classes: those that are
faulty, those that are correct and “know’”’ that the transmitter is faulty, and those that are -
correct and have agreed among themselves on a value from the ones sent by the transmitter. .-
Crusader’s Agreement is simple and inexpensive to implement in a distributed system where ’
fewer than 1/3 of the processors are fauity and reliable communicaticns is pessible.> The fol-
lowing 2-round protocal for Crusader’s Agreement allows clock values to be disseminated.

(1) The transmitter sends its clock to all other processors using (5.1).

(2) Each processor uses (5.1) to send the clock it has received using (5.2) from the

transmitter to all processors (including itself).

(3) Each processor sifts through the clocks it received in step (2) to identify a set of at _

most m suspicious processors that, if faulty, could account for differences ameng the D
values. If, after ignoring values received from suspicious processors, the differences o
in the values that remain are within 2A, ther agree on the clock received in step (2);
otherwise, decide that the transmitter is faulty.

The Crusader’s Convergence Algorithm CFo-4 of [Mahaney & Schneider 85] is the
result of employing Crusader's Agreement to disseminate values before applying CFrc,.
CF ¢4 has half the precision of CFrc, (i.e. convergence is twice as good) and the same accu-
racy and degree of fault tolerance. It is interesting to note that when CFre, is iterated
twice—which requires the same two rounds of message exchange as C7--,—the worst case
precision is 48/9, clearly inferior to the 8/3 precision achieved when he two rounds of mes-
sage exchange is used for a Crusader’s Agreement. Employing Crusader’s Agreement before
CFr4, CFyyy and CF,,, also resuits in precision improvements for those convergence func- o
tons. o

5.2. Byzantine Agreement

Byzantine Agreement [Lamport er al. 82] is stronger than Crusader’s Agreement—alil
cotTect processors agree on a value whether or not the transmitter is faulty:

BYZ1: All correct processors agree on the same value. ~
BYZ2: If the transmitter is correct then all correct processors agree on its value. »*'_‘-ST

The literature contains numerous protocols for establishing Byzantine Agreement. An carly
survey of the area appears in (Fisher 83] and a tutorial in [Schneider 85]. One protocal espe-
dally suited for use in local area networks is described in [Babaoglu & Drummond 35]. See

ey
e

IA cammumcations failure can always be viewed as & failure of either the sending or receiving processar.
Assuming reliable message delivery here is merely an expository convemence.

g
.

..
......................................

..................................
...........................

R A I Ratie Yk Sl S et A At Bl g A aul SRl aNL A S adh il Sl adar od Al ana Anss e Seie Sete Semomee s e o gy TS T —

[Lamport & Milliar-Smith 84] for an example of one of the classic protocals in action.

For use in a convergence function, we can ignore details of implementing a Byzantine
Agreement Protocol—it suffices to know what it achicves. When a Byzantine Agreement is
used to disseminate clocks, it ensures that all correct processors agree within 2A on an
appraximation for the clock at each processor. Correct processors evaluating a convergence
function will then differ by at most 2A in values in corresponding argument positions. Defince
CF, to be a function that returns its g largest argument. If k<g<N—k and we employ a
Byzantine Agreement protocol that can tolerate k failures to dissemninate the arguments used
in CF,, then we obtain a convergence function for clock synchronization:

(1) Each processor employs the Byzantine Agreement protocol to disseminate its clock.
(2) Each processor then uses CF, to choose as its new clock the g™ fastest clock.

To see why this works, note that provided there are k or fewer failures, the Byzantine
Agreement will ensure that each processor p obtains a vector v,[1] through v,[N] of the
clocks at other processors. Due to BYZ2, if g is correct then v,[g](s) must be within 2A of
Cq(s)- Without loss of generality, assume that v,[1)(1)>v,[2](¢)> - - - >v,[N](f). According
o BYZ1, |v,[g](t)~v,[g])()|=2A for all correct processors p and g. Thus, by selecting the
g™ largest clock, we are guaranteed that the clock selected by each processor reads within
e=2A of the clock selected by every other. This means that the precision of the algorithm is
(5, ¢)=2A—the precision for the convergence function is independent of 3! To bound the
accuracy, note that because k<g<N-—k, the g™ largest clock lies between correct clocks. If
correct clocks are within 3, then the new clock is no more than 3 away from a correct clock,
so we conclude that the accuracy of the algorithm is a(3)=1.

Clock synchronization algorithms based on Byzantine Agreement are described in [Lam-
port & Milliar-Smith 84] and analyzed in [(Lamport & Milliar-Smith 85].

§.3. An Optimization

The convergence function in the preceding section involves Byzantine Agreements for
values that are not necded: all the clocks are disseminated, but only the largest g+ 1 are used.
(Only the g+ 1" largest clock is used for resynchronization, but to determine which clock is
the g+17 largest, the g largest clocks are nceded.) Since Byzantine Agreement protocols
can be costly—in both time and number of messages exchanged—avaiding unnecessary
Byzantine Agrecments is prudent. We therefore propose a somewhat weaker form of agree-
ment to take the place of the Byzantine Agreements used above and use it only for those
clocks that are actually needed.

A Fireworks Agreement allows a collection of processors each with a value v to accept
messages with that value at about the same time:

............
...........................

'
)

cox et T o
PR ' . PR
ctealal o LA LT T

*
SRt T -
PR PR
MR R .
L4

-

‘

.

1
i
.

B R R Ak el oh AR RS S oivd She oie e oani e g " v - "y L P Py ey " -
R T 5 f b o A v v RBal Aok 4 h s dng ana Ao 2 L Aua 2n ana A A dud tan vad and
r N R . B N A \d e

FW: All correct processors accept a message with value v within 8 real seconds of
each other.
The thing being agreed on in a Fireworks Agreement is the real time that a value is accepted;
not the value irself. The name Fireworks Agreement is in analogy with a public fireworks
display—all participants agree on when the display is over. In a fireworks display, 8 is non-
zero if observers are different distances from the pyrotechnics; in a distributed system, 8 will
be related to the variance in message-delivery times.

In describing a protocol to implement Fireworks Agreement, we assume that it is possi-
} ble for a correct processor to

! Al: authenticate the origin of every message it receives and

A2: to determine whether a message it reccives was modified by processors that :
relay the message. o
These assumptions are satisfied if digital signatures are employed by the sender of a message
or if there is a direct link between every pair or processors and the simulated authentication
technique of [Srikanth & Toueg 84] is used to transmit messages. In either case, fauity pro-
cessors are unable to masquerade as correct processors by sending messages and are unable to
modify messages sent originally by correct processors before retransmitting them.

The following protocol implements a Fireworks Agreement with =T, ~T ., for use in v
clock synchronization in a system containing virtual clocks satisfying (2-3).> The agreement is T
for a message with value T+a, which will be the value virtual ciocks have when the protocol T
terminates and is started by a processor when its clock reaches T, the a priori designated time :
for the next clock synchronizaton.

(1) When é5(r)=T, a processor p broadeasts (T +a, p) to all other processors.

(2) Upon receiving (T +a, q) directly from a processor ¢, a processor p relays (T +a, q) s
to all processors. e
(3) Upon receiving values (T +a, py), ..., (T+a, py-,) where p;#p, for i*j: If the last
message received, (T+a, p;-,), was received directly from p, .|, then delay [,
and accept T+a. If the last message received, (T +a, p;.), was not received
directly from p;.,, then accept T +a immediately.
Assumptions Al and A2 make it impossible for faulty processors to fool correct processors
that are trying to determine the origin of a message or whether the message was relayed as S
required by steps (2) and (3) of the protocol. Steps (1) and (2) of the protocol together
ensure that a value received by any correct processor is received by every correct processor.

‘Rexall, T, is the minimum message delivery time and [og the maximum message delivery time.

. . . R S - LN <
I T O - Pl (A ettt et . . . e s - .
o B N P S SR SRR I, Ly . S T T

N T W W rya———— - . P

Step (3) ensures that a value is accepted by all processors within B real seconds of each other.
Moreover, because there are at most k& faulty processors, step (3) ensures that a value is
accepted only after that value has been received from some correct processor.

When Fireworks Agreement is used in constructing a convergence function CF to imple-
ment a reliable time source, the value of CF is the time the T+a message is accepted. Let 1,
be the real time the message is accepted by processor p and let ¢, be the real time the message
% is accepted by processor g. Due to FW, evaluations of the convergence function at correct

processors p and ¢ can differ by at most B=Tpy— [y, Thus, setting &~ '(s,)=T+a and
¢4”}(s,)=T+a satisfies the Precision Enhancement Property, with w(3, €)=(1+4)8. Accu-
{ racy a of the Accuracy Preservation Property is given by a(3)=(3+2I,,;.)(1+4)—a because
! in the worst case § seconds can elapse between when the first correct processor reaches T and
broadcasts its message and when the k+ 15t processor broadcasts its mescage, followed by an
addidonal 2T .., seconds for the protocnl to complete.

Clock synchronization algorithms based on Fireworks Agreemrent are interesting because
a processor cannot evaluate CF without causing every other correct processor to resynchron-
ize its clock. Thus, the convergence function provides an implementation of both RTS1 and
RTS2; the other convergence functions discussed in this paper provide an implemcntation of
only RT32.

The first clock synchronization protocol to be based on Fireworks Agreement is dis- .
cussed in [Halpern er al. 84]. A more recent algorithm [Srikanth & Toueg 85] implements SR
virtual clo~ks with rates much closer to the rate of the hardware clocks on which they are e

6. Discussion and Conclusions

We have discussed clock synchronization protocols that can be viewed as refinements of
a single paradigm. The paradigm is based on postulating a reliable time source that periodi-
cally issues messages to cause processors to synchronize their clocks. The reliable time source
is implemented by evaluating a convergence function on the values of processor clocks. Thus,
if processor clocks run close together but far from real time, clocks implemented by an algo- .
rithm based on this paradigm will remain synchronized with each other but will diverge from '
the real time.

y.rv-—

" e
.

“n

In order to construct a clock synchronization algorithm that keeps clocks close to real
time, the reliable ime source must remain close to real time. Various international standards
- organizations maintain highly accurats synchronized clocks. In the United States, WWV
radio broadeasts at 60 KHz provide a time signal accurate to a few milliseconds, as does the Ll
GEOS satellite. (WWV broadcasts at §, 10, and 1S MHz are accurate to only 100 mil-
liseconds, due to uncertainty in propagation delays.) Employing radio receivers o inject

LI
LRy
et

U Rl P
PR A R

B0 SERASSEE BN

such correct real times into a distributed system is one way to provide the needed source of
time. Algorithms for clock synchronization when an external source of time is available are
described in [Marzullo & Owicki 83], [Marzullo 84], and [Lamport 85].

The fact that so many clock synchronization algorithms can be viewed in terms of 2 sin-
gle paradigm came as a bit of a surprise. Previously, clock synchronization algorithms were
viewed in terms of three classes: those based on convergence, those based on agreement, and
those in the style of [Halpern er ai. 84]. It was pleasing to discover that all the published
algorithms can, in fact, be vicwed in terms of a single paradigm based on convergence func-
tions. In addition, viewing algorithms as refinements of a single paradigm allows their perfor-
mance to be compared. Performance of a clock synchronization algorithm based on conver-
gence functions is characterized by w, a, and the cost of computing the underlying conver-
gence function. Thus, by defining the notion of a convergence function and giving a frame-
work in which its performance can be quantified, we have made it possible to compare exist-
ing algorithms as well as given insight into the construction of new algorithms.

Acknowiedgments

Discussions with Ozalp Babaogiu, Steve Mahaney, Leslie Lampart, and Sem Toueg have been helpful. In
addition, I am grateful 10 Qzalp Babaogiu, David Gries and Jacob Aizikowitz for useful comments an an early
versicn of tns paper. The diagram in the sppendix was promptly and expertly prepared by Loni Dyess. The
notions of accuracy and precision were developed jointly with Steve Mahaney under a consulting agreement with
AT&T Bell Labarataries.

References

[Babanglu & Drummond 85] Babaogiu, O. and R. Drummond. Streets of Byzantium: Netwark architectures for
fast reliable broadcasts. /EEE Trans. on Software Engineering SE-11, 6 (June 1985), 546-554.

{Dolev 2] Dolev, D. The Byzantine Generals strike agsin. Jownal of Algoridems 3 (1982), 14-30.

(Dalev er ai. 83] Dolev, D., N.A. Lynch, SS Pinter, EW. Stark, and W.E. Waihl. Reaching spproximate
agreement in the presence of faults. Proc. Third Symposium on Reiiability in Distribied Software and
Database Sysiems, Oct. 1983, [EEE Compuuter Society, 145-154.

[Fisher 83] Fischer, M. The consensus probiem in unreliable distributed systems (a brief survey). Proc. [nerna-
nonai Corference on F oundations of Campusation Theory, Bargholm, Sweden, August 1983,

[Halpern er al. 84] Halpern, J., B. Smans, R. Strong, and D. Dolev. Fauit-tolerant clock synchronization
Proc. of the Third ACM SIGACT-SIGOPS Symposien on Principies of Distribused Campusting, Vancouver,
Canada, August 1984, 89-102

[Lamport 84] Lamport, L. Using tme instead of timeowt for fauit-tolerance in distributed systems. ACM
TOPLAS 6, 2 (April 1984), 254-280.

(Lamport 85] Lamport, L. Notes on a time service. Preliminary Report, DECSRC, Palo Alto, CA, Nov. 198S.

[Lamport & Milliar-Smith 84] Lamport, L and PM. Milliar-Smith. Byzantine clock synchronization. Proc. of
the Third ACM SIGACT-SIGOPS Symposiwn on Principies of Distribnued Campusing, Vancouver, Canada,
August 1984, 68-74,

AR A A A e AR I S S e Tk At Ret b At Sl Ban et Il B e i e e T o e e e e D — v -

I

4
|

“

N

, 'l " ,.' " -."4 "l‘l.' -
SN I »,
Ap Yy [

l' ,
. .,
. ..l t,

R e A A S At A% SRcain Ste Al et A StV 6w die Ae Aia Aun SN AT 5'e gi Bha e B0 SE S AR L M B SR A R LT SRR

(Lampart & Mil%ar-Smith 85] Lampart, L. and P.M. Milliar-Smiith. Synchromizing clacks in the presence of
faults. J. ACM 32, 1 (Jan. 198S5), 52-78.

[Lampoart ef ai. 2] Lampaort, L., R. Shostak, and M. Pease. The byzantine generals problem. ACM TOPLAS 4,
3 (July 1982), 332-401.

[Lundelius & Lynch 84] Limdelius, J. and N. Lynch. A new fault-toleram algonithm far clock synchronization.
Proc. of the Third ACM SIGACT-SIGOPS Sympasiam on Principles of Dioribused Camputing, Vancouver,
Canada, August 1984, 75-88.

[Mahaney & Schmeider 85) Mahaney, SR and F.B Schneider. Inexact agreement: Accuracy, precision, and
graceful degracation. Prac. of e Foath ACM SIGACT-SIGOPS Sympasisn on Principles of Distribuied
Campunng, Minaki, Ontano, Canada, August 1985, 237-249.

[Marzullo & Owicki 83] Marzullo, K. and SS Owicki. Maintaining the time in a distributed system. Proc. of
the Second ACM SIGACT-SIGOPS Sympaosuen on Principies of Disoribued Camputing, Mantreal, Quebec,
Canads, August 1983, 295-3QS.

(Marzullo 84] Marzullo, K. Maintaiming the time in & distributed system. An example of a loosely-coupled dis-
mbuted service. PhD. Thesis, Deparunent of Electrical Engineering, Stanford University.

(Mills 8] Mills, D.L. Experunents in netwark clack synchronization. ARPANet RFC9S7, Sept 198S.

[Schneider 85] Schmeider, F.B. Paradigms for distoibuted programs. In Distribated Sysems. Methods and Tools
for Specificaion, M. Psul and HJ. Segert, eds. Lecture Notes in Commaner Science, Vol. 190,
Springer-Veriag, Berlin, 1985, 432-443.

[Srikanth & Toueg 84] Srikamth, T.K. and S Toueg. Smulating authenticated broadcasts to derive simple
fault-tolerant algarittms. Techmical Repart TR 84-623, Department of Computer Science, Carnell
University, [thaca, New York, July 1984.

[Srikanth & Toueg 85] Sriksnth, T.K. and S Toueg. Opumal clock synchronizatian. Proc. of the Faoth ACH
SIGACT-SIGOPS Sympasium on Principies of Distributed Camputing, Minaki, Qntario, Canada, August
198s, 71-86.

Appendix: Resynchronization Interval

The maximum interval that can elapse before starting a new virtual clock depends on the
maximum rate at which virtual clocks drift apart, how closely virtual clocks are synchronized,
and the precision and accuracy of the convergence function being used. In this appendix, we
give the precise relationship between these parameters.

Notia:thatinthedocksynchmnimdanpmwmlofsecticnz,é;‘liscompuwdming
virtual clocks ¢, for all processors q. Thus, we require

Concurrent Clocks Property: ¢, must have been started at every processor p if ¢;”! has

been started at any processor ¢.
Let RC ,;, be the minimum clock time that can elapse between successive clock resynchroniza-
tions by any processor. If virtual clocks are synchronized to within §, then, provided

§<RC s (7.1)

the Concurrent Clocks Property will bold.

- LA " .
R T e

AN

.) " .
A - . - - - -
b A L A LR WAL T W AT U PR

MRS AP SOt i et bt i R U s St e e A B A S A R e e A s AT T ek Tl R e el R LR

From the Concurren: Clocks Property, we conclude that the number of virtual clocks
that have been started by each processor can differ at most by 1 at any real time ¢. This
allows synchronization requirement on virtual clocks (2.3) to be reformulated in terms of
superscripted virtual clocks. Let #, be the real time that superscripted virtual clock &, is
started by processor p. Then we have,

lei@) =il = & for max(s, 1) < ¢ < max(s, ™}, ™) (7.2)

i =cinl s § for max(dl, by s <4 73

Let R, be the maximum real time that can elapse before clock resynchronization is
necessary to preserve (7.2) and (7.3). Consider a processor p with a virtual clock imple-
mcmcdbyé}g'1 that is running (slow) at 1—p clock seconds per second and a processor ¢
with a virtual clock implemented by ¢47! that is rumming (fast) at 1+§ clock seconds per
second. (See Figure 1.) Now, suppose p is the last processor to start its i clock, g is the
first, and thatatrmltimetf,, when p starts &/,

Abr-esp) = o

Due to the definition of Ry, p will start &, at real time 1" 't +R,, and ¢ will start &5~}
at real time

i (l_ﬁ)km-al

ol 5y bimaTTp 4

! p 1+ 7.9
because

G +8+ (1" =) (1+8) S &+ R)

= BEBLHEI-DA+E) S &)+ Rual1-9)

If at time ¢;*! correct virtual clocks (with superscript i) are in a 8! wide interval, then
due to the Accuracy Preservation Property, starting &;"! resuits in a virtual clock that can be
as much as a(3;”!+A) from any correct virtual clock with superscript i, because we (pessim-
istcally) assume that q approximates all clocks high by maximum clock reading error A. In
the worst case, é;~ ! will continue to run as fast as possible, so by #,"! it could be as much as
a8, 1+ A)+25(6 " —1"") away from &. Therefore, to satisfy requiremest (7.3), we must
have

a@ 1 +A)+23(-4 < & (7.5
And, to satisfy requirement (7.2), we must have
3 +2%R s = §. (7.6)
-18-
e e e e e e s T

-. | ndn AR]
. .

- T
.

o C——— — TTTYY v v Faaid
. LTy e . “ A

o
b
)

:
.
v
l’".
»

b
4
b

v

g
"""'
PN LI

At .
S, o

""" TETN RNV N TN W N VR Wl s s mmnre— A P e ey

Figure 1. Clock Resynchronizaticn Scenario

All that remains is to determine 3) and 3;"'. Since at real time £, the i virrual clocks
at correct processors are 3, apart, by !, they can be as much as 2(r;"!-¢)+3, apart.
Substituting for «;”! based on (7.4), we gat

| 1-p)R o~
-1 - (max E
= 2"{ 1+ J“""

Finally, 8, is defined inductively as fallows. For the first epoch, which starts at real
time 0 and implements virtual clocks superscripted by 1, we have 3,<u, due to initial vaive
condition (2.1) and the definition of FIX_ in the protocal of section 2. For the i+17 epoch,
we have 3, !=|6" (") =¢)"1(;"1)|. We now consider two cases, depending on how RTS1
is achieved.

......................

LM W 8 S B e SR e b s aal

The first case we consider is where processors resynchronize their clocks when the previ-
ous superscripted virtual clock reaches some given value. The worst case is when ¢&;”*, once
Lo started, continues to run as fast as possible, in which case?

I ETMETY) = CFEE™ S A, ey ELETH+AM) + @761 45).
By definition,
EWETY = CFEE™N, élg Y +A(1), .y e 5 +0,(N)
‘ Thus, we have
8,71 = [CFE™hs €1 N+A D), oo C‘ir(t“l)ﬂq(ﬂ)) + (6" -7 H(A+6)
= CF(ELE™, ¢) +25(), vy S5 H+2, (M)

y = |CFE (™ D)+ =7 (A +8) 1" N+ M)+ (™ 1= H(A+8), -l
2 LY AS R WO R (A AR e ED)
= CF& (™1, 616" +A5(1), ooy St ™D +2, N

- due to translation invariance. Since the clock reading error for correct processors is bounded
i by A, the value of each argument (in the second cvaluation of CF) ¢ (:“1)+x,(a) for any RS

correct processor a satisfies the following inequality: T

A B A A (O B A (A B WO B A (AL I (AT AS (R RN

- Thus,thcdiffcmbctwecnmargumtinthewndevdmﬁonofCFmdthc
R corresponding argument &5(th 1)+ A ()+ (6"~ i "1)(1+p) in the first evaluation of CF is
| bounded by 23(f, ! - rf;l)+A Provided CF has sufficient fault tolerance degree to cope with
faulty processors, we can use the Precision Enhancement Property of CF with 3=§ due to
(7.5) and e=25(s," '~ 4" 1) +A to conclude that

37 s v, 25" -4 H+A).

B e,
e ,".v I
A s s 4

b S

The second case we consider is where all processors resynchronize their clocks within 8

real seconds and all start their new clocks at a given value T+a. This case corresponds to the

use of a Fireworks Agreement and is much simpier than the previous one. By definition,

S |‘1-r‘ !|=8. Because q can nm &;"! as long as B seconds before the new clock at p &;°!

N is started, ¢4"(¢"!) can be as large as T+a+(1+§)B. Thus, we bave 3,"'=<(1+4)B because
both ¢4*! and é;"! start with value T+a.

5 Putting this all together, the interval R in real seconds between clock resynchronizatons

. must satisfy R<R,. ., where R, satisfies (7.5) and (7.6). Since virtual clocks do not neces-
sarily run at 1 clock second per second, the resynchronization interval R/ in clock seconds
*Recall, A,(v) is the error asaociated with processar ¢ reading the clock at processor v.

X

- -17-

..
...

IR A L A

——— R ———— adi A A it S e o Aain i At s it et et daui ha s o B o/ i * ol St ot At it i i St s S

used by every processor must satisfy RI/(1+§)=R,.. so that the fastest processor dces not
exceed the R, bound. Combining this with the lower bound for ./ given by (7.1), we get

M_ .k a.7

§ <
(1+p) e

Virtual Clock Rates

Simply setting a clock ahead or back in order to maintain synchronization with other
clocks can cause problems. In real-time process-control applications, tasks are broken into
smzll computations and scheduled based on clock readings to ensure that real-time deadlines
can be met. If a clock synchronization protocol suddenly sets a clock forward, the processor
might not be able to handle all the tasks that have become due. In other applications, clock
times are used to infer possible causality between events. For example, creation times for
files are usually taken to define the order in which the files were created. Suddenly setting a
clock back can destroy the consistency of time with potential causality. Finally, whea clocks
are used to obtain performance measurements, a sudden shift in the clock value can introduce
errors by the amount of the shift.

For these reasons, a clock synchronization protocol must satisfy a rate restriction like
(2.4), which prevents the value of the clock from changing by too large an amount over too
short an interval. One way to satisfy (2.4) is to include as part of a time value the superscript
of the virtual clock that furnished that value and choose § such that p<sj. According to
(2.2), clocks at correct processors run at a rate between 1-p and 1+p. Thus, clock values
with the same superscript can be compared and manipulated because they were obtained from
a set of clocks satisfying (2.4). Clock values with different superscripts, however, do not
have this property. These values are incomparable because of the discontinuity when a new
virtual clock is started. This is an obvious limitation of the scheme, since time values that are
far apart are likely to have come from virtual clocks with different superseripts.

A second way to satisfy (2.4) is by evenly spreading any change between FIX,™! and
FIX; aver the entire i epoch. Instead of making an instantaneous shift in the value of &,
when ¢, is started, the clock drift rate is modified to compensat= for the change. According
to (7.7), an epoch lasts at most R/ clock seconds. Thus, we impiement ¢j by incrementing
éi™! by ick,, whenever c, is incremented.

(Fxi -Fx'™h
14—l

tick, = R

The drift of ¢, due to this compensation can be computed as follows. According to the
Accuracy Preservation Property, a clock value can be shifted by at most a(8) when it is
resynchronized provided correct processors lie within an interval of width 3. Since (2.3)

.............

cmumr.hatanytwocormctdocksamwithinﬁ,weconcludcthatamﬂectdockatpmmwr
p can be shifted by at most a($), and therefore

0 < |cki| s%%)-

Amnrdingm(Z.Z),thcmmdamneapm(hardwam)dockisbctwecn 1-p and 1+p.
Adding the compensation due to rickj, we find that the rate of ¢, must be Lerween

l—p—ﬂx-?- and 1+p+3}u§l. Thus, if p satisfies
o _a a(f) X
lpSIp”51+p+m51+p

then (2.4) will hold.

RS At ed S et S Tt Anfia A S e Ana i A s 2oA Al Thd
ol Bl BaliaA . ~ . A A j~ T TR SR IWENY W LY gwy WY Ry WL T =, TETI YT 2T

—_—— .

1
|
B
S
R

fm—w anmm mwmowTm mET O e W TR ”""rv'wwmlw't".'i'“‘,‘*w‘"WW":'Z“‘.""."E":-"f."'.“'."‘*‘f‘_','z__'"ﬁ'ﬁ'ﬂ“l

r
Al

. . . - - . L e e e e

~ END

o~
S . A
a0 e e e o

