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. 1. Introduction

Certain applications require synchronized clocks at the proocsors in a distributed sys-
tem. For example, the accuracy of performance statistics computed in temrm of elapsed time

berween events at different sites depends on how ckwly the clocks at partipating sites are
synchronized. Also, timeouts and other tine-based synchronization schemes (such as the

state-machine apprmach [Lamport 84D often involve delays that am proportional to how
closely the docks at particpating sites are synchronizd.

Even if we could start all procssor docks at the sam time, they probably would not L 4
remain synchronized for long. Crystal docks found in today's proessors run at rates that
differ by as much as 10-6 seconds per scond from real t and thus can drift apart by 1
second every 10 days; docks based on power-ine frequency can drift considerably more than
this-when used as a time hase, the power grid in the Northeastern United States typically

drifts 4 to 6 seconds from real time ver the course of an evening [Mills 85]. Keeping clocks ,

in a distributed system synchronized without appealing to a single, cntralized, time s- rvi.
requires that dock values be exchanged and adjusted periodically. If failures can result in

faulty proc sors exhibitng arbitrary behavior, then the protocol has the additional burde of'-

tolerating erroneous and inconsistent clock values.

This, paper survy fault-tolerant protocols for synchronizing clocks in a distributed Sys-

tern where faulty procesors an exhibit arbitrary behavior. We show how existing clock syn- '. *-

chUroaion protocols can be viewed as, rfinements of a single clock synchronizationi Pam-
digm. That paradigm is described in section 2. In section 3, we disss properties of conver
gencc functions, the central component of a clock synchronization protocol Techniques for
reading docks across a con mtr-communications network are described in section 4. Section"
5 discusses how agreement protocols an improve the performan e of a convergence function.
Some conclusions and related work appear in section 6. An appendix derives bounds en the

resynchrnization interval. I

2. Clock Synch ." "-on

The clock at a corre procssor p can be viewed as impkmemring in hardwae a mono-

tonically incrasing, continuous functo c that maps a real time to a clock time c,(t) that,

for some positive constants p and p, utisales
"-.-.

trictly speaking, c,, is nat aminom bm= it advam in de cim Ho e, if thme =b. ha.--.
frewey enough, it is uumi ble for a ;P, -m running a a pracnr p to idenify two su ive rel timr t
and t' whee e,(:)mcQ). Tdmtre, we can z c, ma eig :'-''m.a•
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Initial Value: 0 < c;(0) 2 (2.1)

Qwm Correc Rate: 1i-p : 1+P for t1<t,. (2.2)

t2-t

Condition (2.1) asserts that c. is initially set to some value within & of the real time; (2.2)

assrts , tat the dro rate of is within p of 1 clock-second per real-time second.

We make no assumptions about the behavior of docks at faulty pfocssora-t even .

that they can be modeled by functions. A clock on a faulty processor need not inraase as
real time passes and might give inaccurate or conflicting information when it is read.

A clock synchronization protocl iplements a virawl clock at each proc=so p. Vir-
tual cocks at any O.eL pocesors p and q satisfy

Synchronization: k q(t)-p(t) : 5 for all t, (2.3)

Rate: 1-A s t5 1+A for:t<t2, (2.4)

for given constants 8 and gi.

If a reliable time soure is available, then dock synchroniation is simpe The reliable
time source periodically broadcasts the onrec tune and, upon receipt of such a broadcast,
each proor adjusts its virtual clock acordingly. Provided the broadcast arrives at each
processor at about the same time, all processomrs will adjust their docks so that (2.3) is satis-
fied. Provided the broadcast is done frequently enough, proossor clocks will not drift too far
apart in the interval between broadcasts, so (2.3) will be maintained. Provided that no pro-
cessor has to adjust its dlock by too much upon recipt of a broadcst, the adjustment can be
spread over the interval that follows and (2.4) will be maintained. We have only to imple-

ment the reliable time soure-

The reliable time source serves two functions in the dock synchroniation rotool out.

lined above.

RTS1: It periodically generates an event that causes every proamr to resyn..ronize

its clock at about the sam time.

RTM: It provides every proceao with a time value that ca be used in adjusting that
pmmesor's local dock. If each processor adjusts its clock based on the value it
recives at the time that value is reocivd, then (2.3) will hold.

Note that while one might desire that a reliable time sowe aways be able to provide the
rcrM time, RTMi and RT merely requir that the cor, time be made available

L-
L(" ~-2-. ,.,
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soure in not likely to be fault tolerant. Fortunately, a distributed reliable time source that

sarisi RTSI and RTS2 and is fault-tolerant can be cnstructed when approximattly syn-

chronized clocks ae available. RTSI is achieved by baving each processor attempt resyn-
chronization when virtual clocks in the system reach a crtain value. RT2 is achieved by
having each processor independently read al the other clocks in the system and compute
some type of fault-tolerant average of the values gathered.

Adjusting a virtual clock p can be viewed as simply starting another virtual clck that

runs concurrenly with the old one. Thus, after the i adjustment, p starts a new virtual

clock "P'. Define FIX; to be the adjustment to cp, processor p's (hardware) clock, that result&

in That is, .

6'(0- c'(1) + FXr.

We refer to ,4 as a Apemcripad viuawd crock to distinguish it from ep.

We can now describe the clock synchronization protool outlined above for a prcessor p
in a distributed system consisting of N proccuos,

I := 1; FJXp':- 0; .
do forever

,aat Next Synchronization;..."

Assume real time is now T;
vzx CF( : UVI(t), '1(t), ... I40)) - cp(tT);
1 :, i+1.

CF, called a convergence finction, implements the fault-tolerant average used to satisfy
RTS2. In particular, CF(4.pQT), e'(tr), ... , 4ktT)) provides the value of the emable time -

source at real time Ir.

Three important things about this protocol remain unspeified. First, theme is the iple.
mentation of "await Next Synchronization". An obvious approach uses :

do eg,(tT)*NeztSy,,h - skp od

where NexSynch is a previously agreed on time. When virtual clocks at oorre proessom

are synchronized to within 6, this schmse ensures that all processors rsync for the '' .
time within I of each other. Another implementation of "await Next Synchronization" is for

a processor to broadast a msage when (aow)=NeItych and resyncbronim when

enough such messages have been received. The details of this scheme, which is based on a
simple form of agrment, are ven in stion 5.

.3-
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The second item that remains unspecified in our protocol is the convergence function

CF. Properties and examples of convergence functions are the subject of sections 3 and 5.

The final item to be spe=ied in our protocol is how on processor reads the virtual cocks at

other procemm Two techniques for this are discussed in section 4.

Different choices for the thre unspecified items in the paradigm result in different clock

synchronization protocols. The choices covered in sections 3, 4, and 5 permit all the pub-

lished clock synchronization protocols we know of that do not make use of an external time

source to be viewed in terms of our paradigm. Thus, the paradigm is quite general and pro-
vides a vehicle with which the clock synchronization literature can be surveyed.

3. Convergence Functions

In its most general form, a convergence function CF for use in a system of N processor

is a function of N +I arguments. The first argument is for the value owned by the processor

invoking CF; each of the following N arguments is for a value from each of the N processors

in the system. This meas that when a processor p evaluates CF, the same value will appear

in two argument posimons--he first and the p+ 1'.

For a function CF to be a convergence function, it must exhibit certain properties. First,
because the relative distribution of the virtual dock valucs-..nd not their magnitudes-

should matter when they are combined to implement a reliable time source, CF should satisfy

Translation Invariance: CF(xp+v, xj+v, ... , X~V+v) = CF(xp, xj, xv)+v.

Next, we require that when CF is evaluated by two different processors using smiar"

values for N-k corresponding arguments, it produces values that are closer together than its

arguments. Mor specifically, for CF to be a convergence function there must exist a con-
stant k called the fauft-toerwwe degree and a function w called the precision. The fault-

tolerance degree specifics the number of faulty argument values that can b, tolerated by CF;

the precision specifies how close together values can be brought using CF. This is formalized

by the

Precison Enhancement Property: If there exist values 8, e, and indices a,, a..,
such that x-a,, yq--y,, and

(a) (max i, J: S,J2N-k: x. - a) <  .

(b) (max d, J: 1:S,J<N-*: IYD-, . .
(c) (VI: 1SISN-k: .,-yajl<e) -

then ICF(xp, x,..., .,) - CF(yq, Yl,..., YN)') w i(8, e).

Conditions (a) and (b) define 8 to be the width of the interval containing Correct values; when

using CF to implement a reliable time source, these conditions are satisfied if orrect vztual - "

-4- i ,.



clocks ame synchronized to within 8 when read by p and q. Condition (c) stipulates that
comesponding (correct) arguments to CF am at most e apart; for a reliable time source, this
condition is sati if two values obtained by reading the same virtual clock v (real) m dse--

apart do not d by mome than v+e as a result of drift. The Precision Enhancement Pro-
perty stares that in order for CF to be a convergence function, two evaluations with argu-
ment satisfying (a)-(c) must produce values that are dne-at mot r(b, e) apart-ev.en
though the values used for k of the arguments (prsmably, from faulty processors) diffe

arbitrarily. Thus, provided ir(b, e) < 8, CF implemnts a time soure that furnishm different
proceSO&S with time values that ame closer than the least synchronized corr=c virtual clocks.

T1 final property of a convergence function CF requires that CF(, , z .... , x.) is nor

too far from any of its arguments that ae withi & of N-k-1 others.

Accuroay7 Preservation Property: For values xj, x,, ... ,j, and 8, and indices a,
a y_ such that (max 4 J: 1:SJN-k: r a 8,

(max 1, J: 1SQ:5N-k: a- CF(x.,, xj, z..,V): (B)

Funcon a is called the acmuacy of CF. When CF is used as a reliable time source, provided

M(B)::s , esenizing a clock when corre clock are no more than S apart leaves the
new clock within of all core clocks.

Examples o( Convergmce Functions

Examples of functions that satisfy the three properties of convergence functions include:V
Egocentric Average: CFEA(x, xl,..., x y) is the average of all arguments X, through xy

that ame no more than & from xp.
The dee k of fault toke for CF ischaracteri=d by 3k + 1 N. Prenision 'I "is

bounded by ir(b, e)- +e wher f is the number of argumn that differ In the two

function evaluations; in the worst ame, this is slightly less than 1+v.. Accuracy is
bounded by a(b)-483.

Fast Convergence Algorithm: CFCA(ZJ,, a1...., x) is the average of all arguments X,

through xAJ that ame within 8 of N-k other arguments.[
The deg k of fault oemnc for CFCA ischaracteried by 3k+1N. Predisi nTr is

bournded by rrb N) where f is the number of arguments that differ in the two

function evaluations; in the w case, this is 2&3+t. The acacy is bounded by
a(b)-4&'.

Fault-tolrau t Midpoit CFd(z,, 1.-.. , ) is the midpint of arguments x, through .-- '

xz after the k highest and k lowest values have been dis.arded.

A...



T degree k of fault tolerac for CF is chaceriw by 3k+ =N. Precsion is

bounded by ir(a, e)=, 2+e; accuracy by a(b)8."

Fault-tolerant Average: CFAI(xp, xj,..., x jJ) is the average of arguments x, through %'

after the k highest and k lowest values have ben discarded.
The degre k of fault tolerance for CFA is characerized by 3k + 1 = N. Precison ir is

bounded by i(b, e)= f-- +q ewhere f is the number of arguments that differ in the two
bo~med y ~ N-2k

function evaluations; in the worst case, this is slightly less than 1+ e. Accuracy is
bounded by a,(b)-8.

CFE was first proposed and ana'yized in [Lamport & MIlliar-Smith 851 in connection with a

lock synchronization algorithm. CFFCA is discussed in [Mahaney & Schneider 85], who ware

the first to view convergene functions (ther, called inexact agreement protocols) in terms of
accuracy and precsion. CF, vd and CFA r are gven in [Dolc et al 831; CFA is thebsis for

the clock synchronization protocol of [Lundulius & Lynch 841.

4. Reading Clocks from Afar

Proeessors have acss to clock to-no real time. This mwanm that in order for a pro-

cessor p to read virtual docks 41, ... ,V at the same real time, p must read all N clocks

simultaneoz y. This is impossible because a proessor can do only one thing at a time.
Moreover, message passing is the only way a processor can obtain a clock value from another
in a distributed system. Message delivery times am typically non-trivial and unpredictable-
Thus, it is impossible for a single processor in a distributed syste to compute
CF(e(rT), 6'(t), 4VTr))- cp(r) as required by the resynchrnization protocol outlined

in section 2.

A technique originally proposed in [Lamport & Mlliar-Snith 851 allms one procemor to
compute an approximation for a virtual clock at another. Each procaor p maintains a col-
lection of tables -Ir .. N] containing values that transform cp(t) into an appro.m faor r

6,(t). Procsor p approximates (t), by cp(t)+-rj,[qj.

To constuct rp, p periodically communictes with the other procssors in the system.

Suppose the minimumn delay incurred in sending a mmege betwn any pair of correc pro-
s is r,,. and r,,, is the maximum delay incurred. Thus, ,,-F, is the uncertanty

in delivery time for a mesage. A processor p can compute r-'[q] by executing

send "1 clock time?" to q;
receve C fom q dmOmat Afte 2I,.+; ;-.
if timed-out then C :" m;,/,[q] :- cP(,..)-r,-c ...

wherei is the maximum length (f time (according to p's dock) it an take q to pro the

-" ~~-6. --'-



request made by p and t,, is the real time at which the statement assigning to r[q] is exe-

cuted.

Define the clock reading error Xp(q) to be the error in p's approximation of q's i' vir..

tual clock, and let A be the maximum clock reading error. That is,p ~Q) -c,(t)-r,[q]j :S )Xp(q) :s A.

In order to compute a bound A on Xtp(q), first not that p's approximation of q's clock drifts

from q's clock by at most 24 clock seconds per real second. Initially, r,[q] is in error by at

most F,,,-F,,I, since only r,, of the message delay incurred by q's response to p's request

for the time is accounted for in the calculation of r.[q]. Thus, at time t, X;p(q) satisZ
XP(q) :5 r,,.- r,,.+ 2o(t-Lread,(q)) :5 A

where Lread4(q) is the real time that p last cxecuted an assignment to rI[q] in the diock read-

ing protocol above. Although X4,(q) is a function of t, an upper bound on t-Lread,(q) is

usually known, and therefore A is a constant.

Xp(q) can be kept small by recomputing r,,[ql frequently. thereby keeping : -Lreadp(q)
y7=U1 In practice, it suffices to obtain clock values from all procssBors just bemfore computing

FIx,- , because this munmu= the clock reading error just before the cock values am acru-

ally needed. However, for reasonable intervals t-Lreadp(q), 24( -LreAd(q))<", -

so minimizing the uncertainty in the network delay is the key to reducng Xp(q).

A variation on this schere [Lundulius & Lynch 841 reduces the number of messages by
half but can increase the cock reading error. Instead of requcsting the tim , each prossor q

periodically broadcasts its virtual clock value (including the superscript). Upon receipt of

such a message, the recetver p updates T'[q]. The reduction in number of messages sent is

due to lack of explicit request messages--th passage of time, rather than a request mesnage,

causes transmission of a dock value. However, in a paint-to-point network, ock reading L

errors can increase when this variation is used. This increase is because a prossor p does

not necessarily know what communications line it should monitor for the next clock message.
Polling the communictions lines mreas the uncertainty in message delivery delay since it is
possible for a message to remain queued at the receiver for the polling cycle time. Most local
area networks, however, have a single connection between the processor and the network and

threfore do not have this problem.

5. Improved Convergpuc by Exploiting the Network

An agreement protocol allows coe procsors in a distributed system to agree on an r
action to be taken or on a set of values. Use of an agreem t protocol to disseminate a signal

that CRus procsors to LesynchroiM clocks can emsue property RT7l of a mliable time

surce. Use of an agreement protocol to diseminate each prooefor's clock can enhance the

-7.
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precsion of a convergence finction, hence help with RTS2, by ensuring that corresponding

argument positions ae equal in two evaluations of CF performed by different processors.

Agreement protocols are generally intended for use with values, not functions like

clocks. The general structure of such a protocol is for a processor to send a copy of every

value it receives to every other processor. After several rounds of this repeated message

exchange, each processor selects one from among the set of values it has received. The an-
te for selection depend on the agreement protocol-ue of median or mode is not unusual
The relaying of messages through different paths, although seemingly ine.fcient, is a neces-
sary and important part of most agreement protocols because it prevents corect processors
from being confounded by inconsistent values sent by faulty processors.

It is not difficult to modify an agree nt protocol intended for disseminating values to
permit prcessors to agre on docks: clock differences, which are relatively static, areMd
exchanged. A superscripted virtual clock c is stared as a triple (prc, 1, offset) which specifies

a clock with offset offset from the virtual dock with superscript I at processor proc. (Note,

proc need not be the same as x.) Thus, 60 (t) is approximated by p as ~Q+rpproc] ~offset.

Processor p can send e' to another processor q by executing

send (proc, 1, offset) to q (5.1)

and q can receive ' by executing

rsfle (proc, epoch, offset). (5.2)

Subsquently, q approximates c' by computing e'(t) +r'[proc]#offset.

%cause el ] is an approximation of , an error is introduced when a clock is

passed from one processor to another in this manner. Consequently, different copies of a
clock received by a single procsor might not be identical. Agreement protocols that test for
equality of values must therefore be modified to handle docks passed around the system in

this fashion. The modification involves considering two values equal if they are a-proxi-

mately equal. Two values are approximately equal if they are within Xvproc)+) q(proc)
where p first converted c to a triple and q reconstructs 6'. Values ar therefore approm-

mately equal if they are within 2A. (Recall, A is the maximum value of X,(b) for any rpr-

cessors a and b.)

5.1. Crusader's Agreement

Cruader'x Agreement [IDcev 821 allows a designated procssom , called the trasmit-er, to Ile_

disseminate a value in such a way that:

CRUl: All correct processors that do not "know" that the transmitr is faulty agree on

the samre value.

-



CRU2: If the transmi er is correct, then all cmrect procssors agree on its value.

Thus, Crusader's Agreement potentially partitions procssors int- classes those that are

faulty, those that ae correct and "know" that the transmitter is faulty, and those that ame

orrect and have agreed among themselves on a value from the o= sent by the tmansmitter.

Cnmder's Agreemnt is siple and inepenv ment a itbued system whee
fewer than 1/3 of the prow ame faulty and reliable commurucatiens is pesibl.2 The fol-

lowing 2-round protocol for Crusader's Agreement allows clock values to be disseminated.

(1) The transmitter sends its clock to all other processors using (5.1).

(2) Each prosor uses (5.1) to send the clock it has received using (5.2) from the
transmitter to all prosmsr (induding itself).

(3) Each processor sifts through the clocks it received in step (2) to identify a set of at

r most M suspicious processrs that, if faulty, could accunt for differences among the -

values. If, after ignoring values received from suspicious processors, the differences

in the values that remain are within 2A, then agree on the clock received in step (2);

otherwise, decide that the transmitter is faulty.

The Crusader's Convergence Algorithm CFCA of [MAhancy & Schneider 85) is the

result of employing Crusader's Agreement to dseminate values before applying CFFCA.

CFcc4 has half the precision of CFFA (i.e. convergence is twice as good) and the same accu-

racy and degree of fault tolerancc. It is interesting to note that when CFFc is iterated

twice-which requires the sanr two rounds of message exchange as CFcc-tbhe worst ease

precision is 4&9, clearly inferior to the 8/3 precision achieved when Lhe two rounds of mes-

sage exchange is used for a Cnsader's Agreement. Employing Crusader's Agreement before
CFE, CF. z and CFAg also results in prneion improvements for those oonvergence func-

tions.

5.2. Byzantine Agreement

Byzantine Agreement [Lamport et al. 821 is stronger than Crusaders Ageement-all

correct processors agree on a value whether or not the transmitter is faulty-

BYZI: All carre processors agree on the ame value.

BYZ2: If the tansmiter is corr then all corr processors agree on its value.

The literature contns numerous protoaiLs for establishing Byzantine Agreement. An early

survey of the area appears in [F'sher 831 and a tutoral in [Schneider 85]. One protoco espe-

dally suited for use in local area networks is descibed in [Babaoglu & Drummond 85]. See

2A cmaumo fue cm aiway be viewd = a faflue af other the seain~ c ro~eving pronr.
Azsmnnln reiable mmsige delivery here is w euy ertm y cetiemcam.

.9.
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[Lamport & Nfilliar-Smith 84] for an example of one of the classic protocols in action.

For use in a convergence function, we can ignore details of implementing a Byzantine
Agreement Protocol--4it suffices to know what it achieves. Wben a Byzantine Agreement is

used to disseminate docks, it ensures that all correct processors agree within 2A on an
approximation for the clock at each procesor. Correct processors evaluating a convergence

function will then differ by at most 2A in values in corresponding argument positions. efic
CF, to be a function that returns its g 4 largeat argument. If k<g<N-k and we employ a

Byzantine Agreement protocol that can tolerate k failures to disseminate the arguments used
in CFg, then we obtain a convergence function for dock synchronization:

(1) Each procesor employs the Byzantine Agreement protocol to disseminate its dock.

(2) Each processor then uses CFg to choose as its new clock the g'h fastest dock.

To see why this works, note that provided there are k or fewer failures, the Byzantine
Agreement will ensure that each procsor p obtains a vector v.[1] through v,[N] of the

clocks at other procesrs. Due to BYZ2, if q is correct then vY(q](t) must be within 2A of

£q(t). Without loss of generality, assume that v,[1](t)>v[2]0)> " >vp[2N]Q). Acrding

to BYZ1, Ivpg(t)-vqfgJ1)_a2A for all correct prcesors p and q. ThIus, by selecti g the

8' largest dock, we are guaranteed that the dock slected by each processor reads within
e= 2 of the dock selected by every other. This means that the precision of the algorithm is
ir (, ) = 2A-tbe precsion for the convergence function is independent of 8! To bound the
accuracy, note that because k<g<N-k, the g"' largest dock lies between correct clocks. If ,-

corect docks are within 8, then the new dock is no mor than 8 away from a correct dock,
so we conclude that the accuracy of the algorithm is a(b)= 1.

Clock synchronization algorithms based on Byzantine Agreement are described in [Lam-
port & Nfilliar-Smith 841 and analyzed in (Lamport & Milliar-Smith 851.

5.3. An Optimization

The convergence function in the preceding section involves Byzantine Agreements for
values that are not needed: all the clocks are disseminated, but only the largest g+ 1 are used.
(Only the g+1" largest dock is used for resynchronization, but to determine which clock is

the g+41' largest, the g largest clocks ar eeded.) Snce Byzantine Agreement protocols
can be costly-in both time and number of menages exchanged--avaiding unnecessary
Byzantine Agreements is prudent. We therefore propose a somewhat weaker form of agree-

ment to take the place of the Byzantine Agreements used above and use it only for those

docks that are actually needed. .7-

A Fireworks Agreement allow a collection of processom each with a value v to accept

messages with that value at about the same time-
-I10.
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FW: All corre, processors acpt a message with value v within 8 real seconds of

each other.

The thing being agreed on in a Fireworks Agreement is the real time that a value is accpted;

not the value itself. The name Fueworks Agreement is in analogy with a public fireworks

display-all prtcipants agree on when the display is over. In a fireworks dis-ay, 0 is non-
zero if observers are diffen=t distances from the pyrotechnics; in a distributed system, 1 will

be related to the variance in message-delivery times.

In describing a protocol to implement Fireworks Agreement, we assume that it is possi-

ble for a correct processor to

Al: authentcate the origin of every message it receives and

A2: to determine whether a message it receives was modified by processors that

relay the message.

These assumptions are satisfied if digital signatures are employed by the sender of a message

or if there is a direct link between every pair or processors and the simulated authenticaion

technique of [Srikanth & Toueg 841 is used to transmit messages. In either case, faulty pro-

cesso are unable to masquerade as coneet processors by sending messages and are unable to
modify messages sent originally by correc processors before retansmitting them.

The following protocol implements a Fireworks Agreement with r, -r .F. for use in

clock synchronization in a system containing virtual clocks satisfying (2.3). 3 The agreement is

for a message with value T+a, which will be the value virtual docks have when the protocol

terminates and is started by a processor when its clock reaches T, the a priori designated time
for the next dock synchronization.

(1) When (T)=T, a processor p broadcasts (T +a, p) to all other procesors.

(2) Upon receiving (T+a, q) directly from a processor q, a processo. p relays (T+a, q)
to all processor&.

(3) Upon receiving values (T+a, p1), ..., (T +a, pk. 1 ) where pip/ for iOtj: If the last

message received, (T-a,pk _), was received directly from Pk-li then delay rFn
and accp T~a. If the last message received, (T+a, p*,), was not received

directly from k., then accept T +a immediately.

Assumptions Al and A2 make it impossible for faulty procsors to fool correct processors

that are trying to determine the o4 of a message or whether the message was relayed as

required by steps (2) and (3) of the protocoL Steps (1) and (2) of the protocol together

ensure that a value received by any crret processor is received by every correct processor.

'Rcn, r.,. is the -mm wse delivey do amd r. the m. iaag delva d=

J 4
" -11-
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Step (3) ensures that a value is accepted by all processors within real seconds of each other.
Moreover, because ther are at most k faulty processors, step (3) ensures that a value is

accepted only after that value has been received from same correct processor.

When Fireworks Agreement is used in constructing a convergence function CF to imple-

ment a reliable time source, the value of CF is the time the T+a message is accepted. Let t,

be the real tme the message is accepted by processor p and let tq be the real time the message

is accepted by procesor q. Due to FW, evaluations of the convergence function at correct

processors p and q can differ by at most r -,, . Thus, setting -(tp)=T+a and

-- (tq)='Ta satisfis the Precision Enhancement Property, with 'r(B, e)=(1+6)0. Accu-

racy c of the Accuracy Preservation Property is given by a(8)=( 2I)(I+)-a because

in the worst ecase seconds can elapse between when the first correct processor reaches T and

broadcasts its message and when the k + Lt processor broadcasts its mes.rage, followed by an
additional 2",, seconds for the protocol to complete.

Cock synchronization algorithms based on Fireworks Agreement ae interesting because

a procesor cannot evaluate CF without causing every other correct processor to resynchron-

ize its clock. Thus, the convergence function provides an implementation of both RTSI and

RTS2; the other convergence functions discussed in this paper provide an implementation of
only RTS2.

The first dock synchronization protocol to be based on Fireworks Agreement is dis-

cussed in [Halpern et ad. 84). A more recent algorithm [Srikanth & Toueg 85] implements
virtual clo-.ks with rates much closer to the rate of the hardware clocks on which they ae

based.

6. Discussion and Conclusions

We have discussed clock synchronization protocols that can be viewed as refinements of
a single paradigm. The paradigm is based on postulating a reliable time source that periodi-

cally issues messages to cause processors to synchronze their clocks. The reliable time source
is implemented by evaluating a convergence function on the values of procssor clocks. Thus,
if proccsor docks run dose together but far from real time, docks implemented by an algo-

rithm based on this paradigm will remain synchronud with each other but will diverge from

the real time.

In order to construct a clock synchronizatm algorithm that keeps docks close to real

tme, the reliable time source must remain close to real time. Various international standards
organizations maintain highly accurate synchrnized docks. In the United States, WWV

radio broadcasts at 60 K-h provide a time signal accurate to a few milliseconds, as does the
GEOS satellite. (WWV broadcasts at 5, 10, and 15 MHz an aurate to only 100 mil-
lisonds, due to uncertainty in propagation delays.) Empkyg radio receivers o in=:.-

-12-



such correct real tins into a distributed system is one way to provide the needed source of :

time. Algorithms for clock synchronizznion when an external source of amn is available ame
described in (Marzulo & Owicki 831, [Marzullo 84], and (Lampart 85].

The fact that so many clock synchronization algorithms can be viewed in tem of a sin-
gle pradigm cam as a bit of a surprise Previously, clock synchronization algorithms were
viewed in terms of three classes those based on convergenc, those based on agremnt, and

those in the style of [Halpern et al. 84]. It was pleasing to discover that all the publishe
algorithms can, in fact, be viewed in terms of a single paradigmi based on convergence func-

tions. In addition, viewing algorithms as refinements of a single paradigmi allows their perfor-

manc to be compared. Performianc of a clock synchronization algorithm based on conver-
gence functions is characterized by ir, a, and the cost of computing the underlying corrver-
gence function. Thus, by defining the notion of a convergence function and giving a frame-
work in which its performance can be quantified, we have made it possible to compare exist-
ing algorithm as well as given insight into the construction of new algorithms.

Diwsimn with Ckalp Babaogtu, Steve Mahmny, Leslie Lm~vzt, and San Toueg have bem hdpfuL In
a&itaon, I am pratefu to Gzalp Babaoaju. IDmd Cies and Jacob Akflwitz for ut cmmntla an early
vesion of this paper. The clagrun in the appentiz was promply and atprtly prepw by Lan Dyess. The
notia of accuray and prectun were developed jontly with Steve Mahamey i a conulting arems with
AT&T Bell Laboariesm.
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AppendLmt Resynchlronlzation Interval

The maximum interval that can elapse before starting a new virtual clock depends on the
maximum rate at which virtual dlocks drift apart, how dlosely virtual docks are synchronized, .-

and the precision and accuracy of the convergenc function being used. In this appendix, we
give the precise relationship between these paranters.

Notice that in the dlock synchronization protocol of section 2, .6 is cornputed using

virua clcki, , or llprocessors q. Thus, we require

Conurrnt loks roprty "must have been started at every prcso p if 1w

ben started at any procesor q.

Lct RC,, be the minimum dlock tinme that can elapse between successive dock resynchroniza-

dions by any processor. If virtual dlocks ame synchronized to within 8, then, provided

9<,R~w,,(7.1)

the Concurrent Clocks Property will hold.
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From the Concrrent Cocks Property, we conclude that the n-inber of virtual clocks
ththave bestrdbyeach prcso a ifra otb tanyreltn .Ths4

allows synchronization requirement on virtual clocks (2.3) to be reformulated in terms of
superscnpttd virtual clocks. Let t~be the real time that superscripted virtual clock e's

smtredby processor p. Then we have, ..

ft()-()IsA for rMax(, t)~ < m (4, ')(7.2)

.for max(,- : t < (7-3)

Ft Rm be the maimum real tire that can elapse before clock vesynchronization is

necssary to preserve (7.2) and (73). Consider a procsor p with a virtual clock imple-

mented by t'that is running (slow) at I-A clock seconds per second and a procssor q

with a virtual clock mplenkted by that is running (fast) at 1 + clock secnmds per

second. (See Figure 1.) Now, suppose p is the last procesor to start its iLh clock, q is the

first, and that at real tme ?, when p starts ,

Due to the definition air R, p will Start 16,at Meal tim ~ R and q willstr

at real tint

<+ (7-4)

because d i

'P P')+8'+Q'1 .- t')(1+A)

Ifat tim 00rre virtual clocks (with superscript i) ame in a 8''wide interval, then d

due to the Accuracy Preseration Property, starting . 1 results in a virtual dock that can be
as much as a(b'+A) from any cre virtual clock with superscript I, becuse we (pessim-

istieally) assume that q approwxates all locks high by maximum clock reading error A. In

the worst came, 4- will continue to run as fast as possible, so by ?P' 1 it could be as much asr

and~~heefm tho sat reaequwhn psus c,.

away from Tt (7.3 we must

have

s 8. (7-5)

And, to satisfy rquirm nt (7.2), we must have

bj,2R : . (7.6)

.1,- K
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The first cam we consider is where proamors resynchrmize ther clocks when the previ-

ous supercripted virtual dock raches sm given value. The worst case is when l, once

started, continues to run as fast as pomible, in which case 4

i-i(-) = CFq5Q 4 ) . (t+)(1)t, k"j+),(N)) + ()

By definition,
) CF&56p,(4 4'), -)+X,(1), .. ". '

Thus, we have
I;- fCF& (4-', #) . (i~*)+)q(N)) + ( - )( 5) )

-CF(6pi(4".I), (j +,) ., "+ S)

due to translation invaian Since the clock reading error for cee processors is bounded

by A, the value of each argumnt (in the. seond evaluation of CF) tQ(')+ (a) for any

corect processr a satisfes the following inequality:
"s " )# QQ-1 )- (a) a

Thus, the diff=e between an arg=mnt in the second evaluatim of CF and the

Ncorresponding argumient 1- (10 in the first evaluation of CF is

bOunded by 20(4'-*'1)+A. Provided CF has sufficient fault tolerance degr to cope with
faulty Prom ors, we can use the Presi Enhan nt Proprty of CF with 84 due to - -.

(7.5) and E=2 4l"-t' 1)+A to conclude that

:s 14(, 20(?p*'-?,+')+A). --

The second case we consider is where all prOocm re nchr"nz their docks within B

real seconds and all start thi new cocks at a given value T+a. This cam comres=ds to the

use of a F'reworks Agrmetnnt and is much smpler than the previous one. By defmiti ,

Ig l fAl - Because q can rum as long as seconds before the new dock at p c;, r

is staried, e4?(4 ) can be as large as r+a+(1+O)p. Thus, we have 8,'+S(1+0). because

both -6p and '+1 start with value T+a.

Putting tis all together, the interval R in real scods be clock sYions
must stisfy R:SR, wbe, R.. st (7-5) and (7.6). Sino virtual docks do not eccas

sarly rum at 1 dock sewnd per semnd, the riynchroimm in=val RI in dock scds

'Ra1I, x,(v) is the am amwaed with pro q the dck at v.
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used byevery processor must satisfy RI(+)R~.so that tefsstposordoes not
exceed the R,, bouind. Combining this with the lower bound for -j gien by (7. 1), we get . "

Virtual Clock Rates ...

Simply setting a clock ahead or back in order to maintain synchronization with other

docks can cause problems. In real-time process-control applications, tasks are broken into

small computations and scheduled based on clock readings to ensure that real-time deadlines

can be met. If a clock synchronization protocol suddenly sets a clock forward, the processor

might not be able to handle all the tasks that have become due. In other applications, clock
times are used to infer possible causality between events. For example, creation times for
file are usually taken to define the order in which the files were created. Suddenly setting a

clock back can destroy the consistency of time with potential causality. Finally, when clocks
are used to obtain performance measurements, a sudden shift in the clock value can introduce

errors by the amount of the shif.

For these easons, a clock syncronmiation protocol must satisfy a rate restriction like

(2.4), which prevents the value of the clock from changing by too large an amount over too
short an interval. One way to satisfy (2.4) is to include as part of a time value the superscript
of the virtual clock that furnished that value and choose I such that p<5. Acrding to

(2.2), clocks at correct processors run at a rate between 1-p and 1+p. Thus, clock values
with the same superscript can be compared and manipulated because they were obtained from
a set of clocks satisfying (2.4). Clock values with different superscripts, however, do not
have this property. These values are incomparable because of the discontinuity when a new
virtual clock is started. This is an obvious limitation of the scheme, since time values that are
far apart are likely to have came from virtual clocks with different superscripts.

A second way to satisfy (2.4) is by evenly spreading any change between FDlr - 1 and

FD' over the entire 0* epoch. Instead of making an instantaneous shift in the value of ,.-

when e is started, the clock drift rate is modified to compensart for the change. Accrding

to (7.7), an epoch last at most RI clock seconds. Thus, we implement by inrmnting

e', by tck' whenever c. is incre..n..

(FJXp -Frp1
ae~1+ R

The drift of 0, due to this cmestion con be computed as follows. Accrding to the

Accracy Preservation Property, a clock value can be shifted by at most a(&) when it is
opded prom lie within an interval of width 8. s (_3)

les- 011-. '- -... .
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ensures that any two cm= cldocks ame within ~,we conclude that a carect clock at procssor

p an be shifted by at not a(i), and therefore

o< I "k; I S

According to (2.2), the rate of a cmcz processor (hardwar) clock is between i-p and 1 +p.

Adding the compnsati due to e, fnd that the rate of m aiust be i ween

p-E band 1 +p+ + Thus, ifgisatisfies1-p- pR1+ j•

RI -+

-

... -.. *-...

- -~ . -- ..-.. . -.---- ~..-,- - -
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then (2.4... hold
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