AD-R164 795 SAFETY NITHOUT STUTTERII@(U) CORNELL W!V I'l'lmﬁ Ny
DEPT OF COMPUTER SCIENCE 8 ALPERN ET AL. OCT
CU-CSD-TR-83-708 NO9O14-86-K-0092

UNCLASSIFIED F/G 9/2 NL

=

= 2e Jh2s
[}93 m igg |
ok 122

_

L & e

s :

o

I

22 Jlis pue 7

i

-

MICKOCOPY RESOLUTION TEST CHART N
S e C e eee e v

O

o

rvl-
'

»

A AR A S Ch i A C i dh e & A B G i i i e e e s s Sal s L Sae 4 Al BB AR e tu s sameod o ame hae s - sdea~ - J Ny wne—
. - - A S N T T S s oy .

“nclassified @
SECLRITY CLASSF CATION OF "=1§ PACE

REPORT DOCUMENTATION PAGE

‘a REPORT SEC_R 7Y (LASSIF CAT ON ‘b RESTRICT VE VIARK.NGS
Unclassified
2a SECLRITY CLASSIFCATION ALT=ORITY 3 DISTRIBUTION AVAILABILITY OF REPORT
25 DECLASSFCATON DOWNGRADING SCHEDULE
Cnlimited
1 PERFORMING ORGANIZATION REPQORT NUMBER(S) S VIONITORING ORCANIZATION REPORT NUMBER!S)
O Cornell Universicy TR 85-708
NAME OF P23FORMING ORGANIZAT:ON 6b QOFFICE SYMBOL 7a NAME OF VIONTORING ORGANIZATION
(If applicable)
Cornell University Office of Naval Research
q--\DDRESS City. State, and ZIP Code) 75 ADDRESS ([City, State. and ZIP Code)
Dept. of Computer Science .
- ('\Sncll L'n;xSrsLit\ © 800 North Quincv Street
AL 2 e S g N
.. oo Arlington VA 22217-5000
Ithaca, NY 148533 ‘ 8 >
NAME OF = NDING SPONSORING 8b OFFCE SYMBOL 9 PROCUREMENT NSTRUMENT DENTIFICATION NUMBER
l DRGANIZAT ON (If apphcable) 0
o - NO0014-86-K-0092
Office ot Naval Research
< \DDRESS (City, State, and ZIP Code) "0 _SOURCE OF SNDING NUMBERS
800 North Quincyv Street PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217-35000 ELEMENT NO NO NO ACCESSION NO

Tz (Include Security Classification)

Safetyv without Stuttering

*2 PERSONAL AUTHOR(S)
Bowen Alpern, Alan J. Demers, Fred B. Schneider

‘la TYPE OF REPORT 13b TiME COVERED 14 DATE OF REPORT g’ear, Month, Day) [1S PA%E COUNT
interim EROM 1O October 198

‘6 SUPPLEMENTARY NOTATION

7 COSATI CODES '8 SUBLECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GRQUP

safety, invariance under stuttering, temporal logic,
concurrent program's, program properties

‘9 ABSTRACT (Continue on reverse :f necessary and identify by block number)

A new formalization of safety properties is given. The formaliza]tion agrees with the
informal definition - that a safetv property stipulates that some’*"bad thing'™ doesn't
happen during execution - for properties that are not invariant under stuttering, as

well as for properties that are.) ., T4,y T C
v e DT

ELECTE
O FILE COPY » FEBZ”"GD
B
U

Qe 92 27 80

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
K uncrassirieounumiTes O same as ReT CJoTIC USERS
22a NAME OF RESPONSIBLE ‘NDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL
Fred B. Schneider 607-255-9221
DD FORM 1473, 3a MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

- . . B . . DR A T L . . VT e T e T L e - o T T . . ~'-'.."
i LB JPRL IR P WL Sy ey ey S PSS NL T SRl Ty TPl U N R DU TP S A DA T, Y vy

e
.

.
.

',‘ AR AN

B olutt it B i w A s St it et Jhtee B et S LA FOe AT St S S Jani i et S i St St Jut it S S e it gt Jaui e gt gttt Sut e e e it St e i ngan

Safety without Stuttering=

Bowen Alpern .
Alan J. Demers’ ‘
Fred B. Schneider

TR 85-708
October 1985

Department of Computer Science
Cornell University
[thaca, NY 14853

e

Fhis worn ox =upported. i paet by NSE G DOIRS20274 and woorant rom toes O e
Naval Researen.

Current address Xerox Palo Nitg Research Conter: 5530 Covore Hidl Road. Pt Mo, O
Y4304

Ll A et AL M e e S R S LA T T T T T S W L WU Ivyvrreywy

Safety without Stuttering'.l

Bowen Alpern f
Alan J. Demers G

Department of Computer Science R
Cornell University FIS
Ithaca, New York 14853 i ..

A AR

October 22, 1985

e

ABSTRACT
4 A pew formalization of safety properties is given. The formalization agrees with the
. informal definition—that a safety property stipulates that some “bad thing” doesn’t
happen during execution—{for properties that are not invariant under stuttering, as
well as for properties that are.

“This work is supported, in pert, by NSF Gramt DCR-8320274 and a grant fram the Office of Naval
Research. R

DA Sl A A A - A S A - A il Al Ak Al ol

- .}_4

T
1. Introduction e
. Informally, a safety property stipulates that some “bad thing” doesn’t bappen during \'
- exccution [Lamport 77]. Exampies of safety properties include mutual exclusion, deadlock ERUN
\ freedom, and partial correctness. In musual exclusion, the proscribed “bad thing” is two ,‘:::E::;:
- processes executing in critical sections at the same time. In deadlock freedom, it is deadlock. o
In partial correcmess, it is terminating in a state not satisfying the postcondition when execu- s ‘

tion is started in a state that satisfies the precondition.

A formal definition of safety is given in [Lamport 85]. While that definition correctly :
captures the intuition for an important class of propertics—those invariant under stuttering— SR
it is inadequate for safety properties that are not invariant under stuttering. This note gives a ..
formal definition of safety that is independent of stuttering. -

Section 2 of the paper reviews some notation for describing properties. Section 3 gives
our new formalization of safety and relates it to the one in [Lamport 85]. Finally, section 4 P
puts our work into perspective. "o .
2. Properties

An execution of a concurrent program can be described by an infinite sequence of states OGN

o = 398 ... 0 _'!
which we call a history. Each state after s, results from executing a single atomic action in o
the preceding state. For a terminating program execution, an infinite sequence is obtained by N ._-_'.',:j
repeating the final state. This corresponds to the view that a terminating execution is the 'r"-""'.'
same as a non-terminating execution in which after some finite time (once the program has R
terminated) the state remains fixed.

A property is a set of histories. We write o=P to denote that history o is a member of
property P. A property is usually defined by a characteristic predicate on histories rather i L
than by enumerating the histories themselves. Temporal logic provides a suitable formalism ’
for this purpose [Lamport 83].

g The following notation is used in the remainder of the paper. S is the sct of states, S°
the set of finite sequences of states, and S“ the set of histories. For a history o = 434, ..., E- .
define R
U[l] = 5
G[.J] = $58) ...
'..\: C[L.] - g8 .- ':::'::
: S
[Y ;~‘:~
-— [

We use superscripts to denote repetition. Thus, for a in §°, a” is the finite sequence obtained
by repeating a n times and a“ is the history obtained by repeating a indefinitely. We use
juxtaposition to denote catenation of state sequences.

3. Formalizing Safety

If a “bad thing” happens in a history, then it must do so in some finite prefix of that his-
tory. Based on this, Lamport [Lamport 85] formalized a safety property as any property P
satisfying

SP,(P): (Vo: oS oRP o (Vi: 0si: cf..i]ofi]=P))
Thus, a safety property P is satisfied by a history o if and only if every prefix of o—extended
to an infinite sequence by repeating its last state—also satisfies P. Extension of a finite
sequence (of..i]) to an infinite one is necessary because only a history can satisfy a property;
repetition of the last step is one of a number of ways to perform this extension.

For some properties, extending a finite sequence by repeating the final state causes prob-
lems. Consider property CP stipulating that a variable clock is increased for every instruction
executed. Using the temporal logic notation “Q” for the “next-time” operator, this is given
by

CP: (clock=N) = O(clock>N).
Intuitively, CP is a safety property: the “bad thing” is clock not increasing in two successive
states. However, CP does not satisfy the formal definition of safety given above.
SP,(CP)=falise because for no history o—even if ol=CP—will the value of clock change after
the i* state in of../]afi]“.

This difficulty arises only for propertics that are not invariant under stuttering. A pro-
perty is invariant under stuttering if and only if whenever a history satisfies the property, the
history with every state repeated zero or more times also satisfies the property, and vice
versa. More formally, any property P satisfying

STR(P): (Vf: feN=N: apP o o[y O oliyf()*]. . mP)

is invariant under stuttering. Properties that are invariant under stuttering are well suited for
hierarchical specification and verification [Lamport 83]. By permitting states to be repeated,
meaningful statements can be made about the system at various levels of abstraction. For
example, execution of a higher-level operation that is implemented by a sequence of lower-
level operations can be viewed as a sequence of repeated, identical, higher-level states where
there is one state for every lower-level instruction executed but the last, which produces a
new higher-level state.

We now give a formalization of safety that agrees with SP; for properties invariant
under stuttering and that agrees with the informal definition of safety for properties (like CP)

'''''

that are not. If a safety property P does not hold for a history o, then some “bad thing”
must have happened during o. This “bad thing” must be irremediable, because a safety pro-
perty requires that the “bad thing” ncver happen. Thus, if - (oj=P), there is some prefix of
o (that includes the “bad thing”) for which no extension to a history will satisfy P. Taking
the contrapositive of this, P is a safety property if it satisfies

SP,ps(P): (Vo: 0€5% omP o (Vi: 0<i: @B: B <5§“: o[..]]BF=P))).

SP,ps differs from SP; in the way prefixes are extended to form histories. SP,pg permits
extension using any history B, while SP; requires extension by replicating the last state of the
prefix. Note that SP,ns(CP) = true, so CP is a safety property according to this formaliza-
ton.

The relationship between SP; and SP,ps is given in the following two theorems. The
first theorem states that safety properties under SP; are also safety properties under SP ,ps.

Theorem: For any property P, SP;(P) = SP,ps(P).
Proof: Assuming SP;(P), we must show okP o (Vi: 0<i: @B: B ¢5“: of..i]]BeP)).

(Vi: 0si: (3B: BeS“: of..i]B=P))

(Vi: Osi: (3B: BeS“: of..l]ofi]*=P)) SP,(P), since of..i]] B=P
(Vi: 0si: of..l)o[i]=P) by Predicate Logic

ok=P by SP,(P).

st 8¢

o]

The second theorem states that every safety property according to SP,pns that is invariant
under stuttering is also a safety property according to SP; .

Theorem: For any property P, (SP,ps(P)ASTR(P)) = SP,(P).
Proof: Assuming SP,ns(P) and STR(P), we must show:

(1) omP = (Vi: 0si: of..i}ofi]»=P)
(2) (Vi: 0si: of..i]o[i]*m=P) = oRP

First, we prove (1):

o=P
(*) o (Vi: 0s<i: (38: BeS“: of..]]Be=P)) by SP,ps(P)
o (Vi: 0si: 3B: BeS*: (Vn: Osna: of..l)o(i]"BeP))) by STR(P)
=(Vi: 0si: (Vn: Osn: (3B: B €S of..i]a(i]*BkP))) by Predicate Logic
o (Vi: 0<i: (Va: O<a: 3B: B S (of..i)ofi]“)[..i+n] BRP)))
since of..i]o{i)* = (of..i)a[i]*)|..i+n]
o (Vi: 0si: (V): isj: 3B: BeS*: (of..l)e{i]“)../18m=P))) by Predicate Logic
o (Vi: 0si: (Vj: 0sj: 3B: B S (of..1)e(i]9)]../]] B=P)))
since j<i ® (of..l)a{i]*)[..f/]=o(../] and according to (°*), of../]Bk=P
o (Vi: 0si: of..l]ofi]"=P) since SP,p5(P).

RE . WEAPLTRPEL DI
.-’." ' Vo

CARTE R £ DORCL L AL _ Ardr Al RSN) DAY S 90 N
..‘)

Next, we prove (2):

(Vi: 0si: of..l)ofi]=P)
= (Vi: 0si: (3B: BeS“: of..]]B=P)) use B=ofi]®
& oRP by SP,ps(P).

4. Discussion

It has been argued that properties invariant under stuttering are the only ones of real
interest in program verification [Lamport 83]. We agree. This, however, is a religious issue.
A formalization of safety should serve many faiths. This note presents a definition of safety
that can be applied to any property.

Acknowledgments
Suggestions by D. Gries led to improvements in the clarity of the proofs.

References

[Lamport 77] Lamport, L. Proving the correctness of multiprocess programs. [EEE Transactions on Software
Engineering SE-3,2 (March 1977), 124-143.

[Lamport 83] Lamport, L. What good is temparal logic? Irformanon Pracessing 83, RE A Mason, ed.,
(1983), North Holland, Amsterdam.

[Lamport 85) Lamport, L. Logical Foundation. In Distributed Systems—Methads and Tools for Specification,
Lecture Notes in Computer Science, Vol 190. M. Paul and HI. Siegert, eds. (198S), Springer-
Verlag, New York

Accession For

CONTIS CTaal |74

DT1Z TaM 0
P Urannounced £
b Justifiaa oo
S ——
| BY. - e e —_—
D{Htri‘.uticx*/ _

Avatllability Cad-3

t

!

]

i

| Ave

' iAvall and/ar
i

1

|

piat | Special

N IR T N T e T T T T A N T T T T R T T T T NI R e e e Mmooy

T
- A

.
.
.ok vt e Ty R
T WA

B I R R A A A Rl Ad Tl TodF ad "aie Ste ol i Sind e ——ryY

P Y et almiatat e

e et T R

=
)

o ¢ ——— —— - an s s T e
e
-
R T T LA A AN
P P B

w0 e e

. o W -
TN TN T R T N B TS T

e P ALY

