
R-Rl" 79 SAFETY NITNOUT STUTTERING(U) CORNELL UNIV ITNRCA MY 1/
DEPT OF COMPUDTER SCIENCE S ALPERN ET AL. OCT 65
CU-CSD-TR-83-708 MSSSI4-86-K-U92

UNCLSSIFIED
FIG 9/2 NLEhhhhhhr

.0

2.2.

ow-

-I-

1111_!-2.5 jlj1.4

MIR(COPy RESOLUTION IST CHART

%rtV

-,........

..

U:nclassified ~/2

REPORT DOCUMENTATION PAGE
'a REPORT SEC- 7v CLASSiF CAT ON 'b RES-RlC- VE MARK.NGS

Unclassified____________________________
a SEC-.R.T" CASSF CA7,ON ALT-ORiTy 3 DiS-,RIBU7:ON aVAILAB.LI'7Y OF REPORT

'b DEC.ASSF CA7 ON DOWVNGRADiNG SC-IEDULE niie

.2 "ERPORMNG ORGANIZATION REPORT NUMBER(S) S5OITRN ORGANIZATION REPORT NuMBER(S) -

L Co rnell Universitv TR 85-708

4X iVE OF PERFORMING ORGANiZA'!ON 160 O;CE SYMBOL 7a NAME OF MONITORING ORGANIZA7 0ON
(If applicable)

Cornell1 Universitv Office of Naval Research

~ADDRESS City State, and ZIP Code) 7b ADDRESS City, State and ZIP Code)

W D ept. of Computer Science 800 North Quincv Street
Con I I1 University,

Arlington, VA 22217-5000
L thai a, NY 14853 _________________________________

,jAME OF z. NO NC SPONSORING I8b OFr'CE SYMBOL 9 POC.REVEN7 NSTPUMENT DENTiF CAT'ON %N..BER
I)RGAN ZA- ON (if applicable)

Offic.e of Naval Research jN01-6K09
d DDRESS (City, State, and ZIP Code) '0 SOURCE OF :,jNDiNG NUMBERS

800 North oluincv Street ~RGRA RJC S OKJ

.\rlincton, VA 22217-5000 ELEMENT NO NO NO ACCESSION NO

- (include Security Classification)

Safety without Stuttering

'2 DEPSONAL Au-HOR(S)

Bowen Alpern, Alan J. Demers, Fred B. Schneider

' 3a ''vPE OF REPORT 1i3b TIME COVERED 14 DATE OF REPORT Year, Month, Day) 15 PAGE COUNT
interim ':ROM To October 18

'1 S JPPLEMENT7ARY NOTATION

7 COSATI CODES B8 SUBECT TERMS (Continue on reverse if necessary and identify by block number)r

;-ELD GROUP SuB6CROuP
safety, invariance under Stuttering, temporal logic,

concurrent program's, program properties

19 ABSTRACT (Continue on reverse of necessary and identify by block number)

\new formalization of safety properties is given. Tile formalization agrees with the
informal definition - that a'safety property stipulates that some2 (bad thingt'doesn't
happen during execution - for properties that are not invariant under stuttering, as

well as for properties that are..

ELECTE

FECOPY FB718

00 CLASFI472 7 06 ~
2DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CA7CATION

~UNCLASSIFIED/UNLIMITED 0 SAME AS RPT D TIC USERS
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL

rFred B. Schneider 607-255-9221

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All oth~er editions are obsolete

Safety without Stuttering*

Bowen Alpern
Alan J. Demers-

Fred B. Schneider

TR 85-708
October 1985

Department of Computer Science
Cornell University
Ithara, NY 14853f

* ~hi,. ~r u)~ td nPa,'. il% 1S .n)(I\'.-.2l2'2-4 ,itid I ". I 'll. I)11- I
* ~k. tdi IRu -.catCn.

a rcn idle - >xcro\ i)aio ,\It,) IRu (-eici (t~uru R2 i; Ili "'a. 11 . \11.(\

Safety without Stutzering

Bowen Alpern
Alan J. Demirs

Fred B. Schneider

Deprment of Computer Sciee
Cornell University

Ithaes, New York 14853

Octte~br 22, 1985

ABTACr
A new formalization of safety properties is given. Ilhe formalization agree with the
informal ckeflnition-that a safety property stipulates that some "bad thing" doesn't
happen during execution-for properties that are not invariant under stuttering, as
well as for properties that are.

..-. .,~

7%s work is uzpirted, in part, by NSF Gran D(3t-832074 and a F=n frcn the Offi ct Naval
* Ramd!

1. Introduction

Informally, a safety property stipulates that somne "bad thing" doesn't happen during

execuion [L.amport 77]. Examples of safety properties include mutual exclusion, deadlock
freedom, and partial correctness. In nuiia ercijion, the proscibed "bad thing" is two

procesaes executing in critial sections at the same time. In deadlock freedom, it is deadlock.

In paniai correctness, it is terminating in a state not satisfying the postcondition when execu- -4

tion is started in a state that sati-fi the precondition.

A formal definition of safety is given in [Lampart 85]. While that definition correctly
captures the intuition for an important class of properties-those invariant under stuttering-

it is inadequate for safety properties that are not invariant under stuttering. This note gives a

formal definition of safety that is independent of stuttering.

Section 2 of the paper reviews some notation for describing properties. Section 3 gives

our new formalization of safety and relates it to the one in [Lamport 85]. Finally, section 4

puts our work into perspective.

2. Properties

An execution of a concurrent program can be described by an infinite sequencr of states
I

ar = 3031...

which we call a hitoory. Each state after s0 results from executing a single atomic action in

the preecding state. For a terminating program execution, an infinite sequenc is obtained by

repeating the final state. This corresponds to the view that a terminating execution is the

saie as a non-terminating execution in which after some finite time (once the program has

terminated) the state remains fixed.

A property is a set of histories. We write af-P to denote that history cr is a mmber of

property P. A property is Usually dkfined by a characteristic predicate on histories rather

than by enumerating the histories themselves, Temporal logic provides a suitable formalism

for this purpos [Lamport 83].

The following notation is used in the remainder of the paper. 5 is the set of states, 5.

the set of finite sequences of states, and Sd the set of historics For a history a 0-,

define
*- ,"'""

* a~d..---cr[i..] m sisi It... "":'"

. .-.. .. - -

• . ,h * * . -.. . * . - _ ... *- - . -.-.., " .-

* N -- - . . --- ,

We use superscipts to denote ,-petitiOn. Thus, for a in S, a" is the finite sequen e obtained

by repeating a n times and a" is the history obtained by repeating a ind-finitely. We use

- juxtaposition to denote catenation of state sequenea

* 3. Formalizing Safety

If a "bad thing" happens in a history, then it must do so in some finite prefix of that his-

tory. Based on this, Lamport (Lamport 85] formalized a safety Property as any property P

satisfying

SPL(P): (V' C ESw: O-P * (YI: 0< : 5 [a:[l]"=-))

Thus, a safety property P is satisfied by a history a if and only if every prefix of cr--extended

to an infinite sequenec by repeating its last state-also satisfies P. Extension of a finite

sequene (a[..1]) to an infinite one is necessary because only a history can satisfy a property;
repetition of the last step is one of a number of ways to perform this extension.

For some properties, extending a finite squce by repeating the final state cause prob-
1cns Consider property CP stipulating that a variable clock is increased for every instruction

executed. Using the temporal logic notation "0" for the "next-time" operator, this is given

* by
CP: (clock =N)- ,* (cock>N).

Intuitively, CP is a safety property: the "bad thing" is clock not increasing in two successive

states. However, CP does not satisfy the formal definition of safety given above.

* SPL(CP) =falte because for no history ar-even if ar -CP--will the value of clock change after

the ia state in c[..]c[i]"..

This difficulty arisecs only for properties that ame not invariant under stuttering. A pro-

perty is invaiant under sawermg if and only if whenever a history satUfi the property, the

history with every state repeated zero or more times also sati the pro erty, and vice

versa. Mor formally, any property P satidsfying

is invariant under stuttering. Properties that ame invariant under stuttering am well suited for
hierarchical specification and verification [Lamport 831. By permitting states to be repeated,
lmeaningful statements can be made about the system at various levels of abstraction. For
example, execution of a higher-level operation that is implemented by a squene of lower-

level operations can be viewed as a sequence of repeated, identical, higher-level states where

there is one state for every lower-level instruction executed but the last, which produces a

new higher-level state.

We now gmv a formalization of safety that agrees with SPL for properties invariant

under stuttering and that agrees with the informal definition of safety for properties (ike CP)

-2-
-. "..---,

-. .. ._ ,_- ._, ._ - . :-.. .,.._., . ,,. ._ .. . _.. _.., .. , 4 , •...j. , - .'

.- I. ,

that are not. If a safety iroperty P does not hold for a history e, then sme "bad thing"

must have happened during a. This "bad thing" must be irremediable, besaue a safety pro-

perty requires that the "bad thing" never happen. Thus, if -, (ai-P), there is som prefix of

a (that includes the "bad thing") for which no extension to a history will satisfy P. Taking

the contraposinve of this, P is a safety property if it satisfies
SPADS(P): 0 f or: a (S': O-.P 4, (Vi: O:: (30]: 0 S") a[..,I] P-P)).

SP~As differs from SPL in the way prefixes ar extended to form histories. SPADS permits
extension using any history 0, while SPL requires extensionf by replicating the last state of the K..
prefix. Note that SPA(CP) = true, so CP is a safety property according to this formaliza-

tion.

Ile relationship between SPL and SPAos is given in the following two theorems. The

first theorem states that safety properties under SPL ame also safety properties under SPD.

Theorem: For any property P, SPL(P) ,e SPADs(P).

Proof: Assuming SPL(P), we must show o*-P o(V 1: 0:51: (3 0: a u..1J Pi'-P)).

(Vi: o<,: (s=: (S: a..J] 0.P))
(V 1f: 0:5 1: (3: [0 E,.S : a[..I]a[i] -P)) SPL(P), sinc [..11] -P'.-.

(Vi: 0sI: a[..J'[i]'j.P) by Predicae Lgic
4* a -P by SPL(P).

The second theorem states that every safety propety according to SPAM that is invariant

under stuttering is also a safety property according to SP..

Theorem: For any property P, (SPADs(P)^SAR(P)) .tp SPL(P).

Proof: Assuming SPADs(P) and STR(P), we must show-

(2) li: 0:1: 0[..I][i]j, -0 -P

First, we prove (1):

K el-P
((: 0SI: (3 : PE-s: a[..i] I..P)) bySPADS(P)

(Vt: 0 s: (3o: Ms" (s: o- (..# ,)..+P) ,))) ..P
u'(VI: 0-: (Vn: Osa: (3p: O (a,[..a , .I-P))) by PredicteLogic
,, (Vt: 0si: (V: 0"-1: (30: p s': ([..IJ(,i]'..+nJP-e)))

sine [..jair- (a(.Ja(ir)[..I+x
.(V I: st<: (Vj: Isj: (3.: . =S" [..llP by Pt(), zte.Looc

S(Vt: Ol: : : O] ,J: (30: P:'S(-).)
sincj<1 no (a(._Ijo(iJ")[..JJue[..Jj and accrding to (ae..JI

* (VtI: Oti: 4v110a -P) Sm-.SP-(P).

'->

Next, we prove (2):
(Vi: 0 51: cr[-.J4 [il re) -,

S(YI: Oi: (31: ($": a(.J]O -P)) use O=r[l] '

* e-P by SPADs(P).

4. Dicassion

It has been argued that properties invariant under stuttering are the only os of real
interest in program verification [Lamport 931. We agree. This, however, is a mligios issue.
A formalization of safety should serve many faiths. This note presents a definitin of safety a
that can be applied to any property.

Acknowieftmants

.uggesti-,i by D. Cries led to improvemnts in the clarity of the proofs. i g,

Lamport 771 Lamrport, L Proving the correcss of muiprcess progams. MEE Truacnxau an S fqw"
Engiwermg SE-3,2 (March 1977), 124-143. ..

Ramport 831 Lamport, L What good is tanpora logic? lfoimnat= ProreuinS 83, R.A Mason, ed.,
(1983), North Holland, Amstadam.

Lamport 51 Lamprt,L Logical Fourdatioo. In Dim-ibumd Sysw-m.--Meda and Tooiifor Spec-- , A1CDA
Lactur Notes in Ccnputer Sciee, Vol 190. M. PaW and I. Seger, dL. (1985), Spinger-

Verlag, New York. -_•_

Acei],o I o

BY"- --.- --

Di~4tri' ' . -.r!|

Avalabili.tr
I14,t Special.-4- .-. .DjAt Iv indo

-4-

9 4

I-

FILMED

DTI

