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1. Introduction e
. Informally, a safety property stipulates that some “bad thing” doesn’t bappen during \'
- exccution [Lamport 77]. Exampies of safety properties include mutual exclusion, deadlock ERUN
\ freedom, and partial correctness. In musual exclusion, the proscribed “bad thing” is two ,‘:::E::;:
- processes executing in critical sections at the same time. In deadlock freedom, it is deadlock. o
In partial correcmess, it is terminating in a state not satisfying the postcondition when execu- s ‘

tion is started in a state that satisfies the precondition.

A formal definition of safety is given in [Lamport 85]. While that definition correctly :
captures the intuition for an important class of propertics—those invariant under stuttering— SR
it is inadequate for safety properties that are not invariant under stuttering. This note gives a ..
formal definition of safety that is independent of stuttering. -

Section 2 of the paper reviews some notation for describing properties. Section 3 gives
our new formalization of safety and relates it to the one in [Lamport 85]. Finally, section 4 P
puts our work into perspective. "o .
2. Properties

An execution of a concurrent program can be described by an infinite sequence of states OGN

o = 398 ... 0 _'!
which we call a history. Each state after s, results from executing a single atomic action in o
the preceding state. For a terminating program execution, an infinite sequence is obtained by N ._-_'.',:j
repeating the final state. This corresponds to the view that a terminating execution is the 'r"-""'.'
same as a non-terminating execution in which after some finite time (once the program has R
terminated) the state remains fixed.

A property is a set of histories. We write o=P to denote that history o is a member of
property P. A property is usually defined by a characteristic predicate on histories rather i L
than by enumerating the histories themselves. Temporal logic provides a suitable formalism ’
for this purpose [Lamport 83].

g The following notation is used in the remainder of the paper. S is the sct of states, S°
the set of finite sequences of states, and S“ the set of histories. For a history o = 434, ..., E- .
define R
U[l] = 5
G[.J] = $58) ...
'..\: C[L.] - g8 .- ':::'::
: S
[ Y ;~‘:~
-— [




We use superscripts to denote repetition. Thus, for a in §°, a” is the finite sequence obtained
by repeating a n times and a“ is the history obtained by repeating a indefinitely. We use
juxtaposition to denote catenation of state sequences.

3. Formalizing Safety

If a “bad thing” happens in a history, then it must do so in some finite prefix of that his-
tory. Based on this, Lamport [Lamport 85] formalized a safety property as any property P
satisfying

SP,(P): (Vo: oS oRP o (Vi: 0si: cf..i]ofi]=P))
Thus, a safety property P is satisfied by a history o if and only if every prefix of o—extended
to an infinite sequence by repeating its last state—also satisfies P. Extension of a finite
sequence (of..i]) to an infinite one is necessary because only a history can satisfy a property;
repetition of the last step is one of a number of ways to perform this extension.

For some properties, extending a finite sequence by repeating the final state causes prob-
lems. Consider property CP stipulating that a variable clock is increased for every instruction
executed. Using the temporal logic notation “Q” for the “next-time” operator, this is given
by

CP: (clock=N) = O(clock>N).
Intuitively, CP is a safety property: the “bad thing” is clock not increasing in two successive
states. However, CP does not satisfy the formal definition of safety given above.
SP,(CP)=falise because for no history o—even if ol=CP—will the value of clock change after
the i* state in of../]afi]“.

This difficulty arises only for propertics that are not invariant under stuttering. A pro-
perty is invariant under stuttering if and only if whenever a history satisfies the property, the
history with every state repeated zero or more times also satisfies the property, and vice
versa. More formally, any property P satisfying

STR(P): (Vf: feN=N: apP o o[y O oliyf()*]. . mP)

is invariant under stuttering. Properties that are invariant under stuttering are well suited for
hierarchical specification and verification [Lamport 83]. By permitting states to be repeated,
meaningful statements can be made about the system at various levels of abstraction. For
example, execution of a higher-level operation that is implemented by a sequence of lower-
level operations can be viewed as a sequence of repeated, identical, higher-level states where
there is one state for every lower-level instruction executed but the last, which produces a
new higher-level state.

We now give a formalization of safety that agrees with SP; for properties invariant
under stuttering and that agrees with the informal definition of safety for properties (like CP)

'''''



that are not. If a safety property P does not hold for a history o, then some “bad thing”
must have happened during o. This “bad thing” must be irremediable, because a safety pro-
perty requires that the “bad thing” ncver happen. Thus, if - (oj=P), there is some prefix of
o (that includes the “bad thing”) for which no extension to a history will satisfy P. Taking
the contrapositive of this, P is a safety property if it satisfies

SP,ps(P): (Vo: 0€5% omP o (Vi: 0<i: @B: B <5§“: o[..]]BF=P))).

SP,ps differs from SP; in the way prefixes are extended to form histories. SP,pg permits
extension using any history B, while SP; requires extension by replicating the last state of the
prefix. Note that SP,ns(CP) = true, so CP is a safety property according to this formaliza-
ton.

The relationship between SP; and SP,ps is given in the following two theorems. The
first theorem states that safety properties under SP; are also safety properties under SP ,ps.

Theorem: For any property P, SP;(P) = SP,ps(P).
Proof: Assuming SP;(P), we must show okP o (Vi: 0<i: @B: B ¢5“: of..i]]BeP)).

(Vi: 0si: (3B: BeS“: of..i]B=P))

(Vi: Osi: (3B: BeS“: of..l]ofi]*=P)) SP,(P), since of..i]] B=P
(Vi: 0si: of..l)o[i]=P) by Predicate Logic

ok=P by SP,(P).

st 8¢

o]

The second theorem states that every safety property according to SP,pns that is invariant
under stuttering is also a safety property according to SP; .

Theorem: For any property P, (SP,ps(P)ASTR(P)) = SP,(P).
Proof: Assuming SP,ns(P) and STR(P), we must show:

(1) omP = (Vi: 0si: of..i}ofi]»=P)
(2) (Vi: 0si: of..i]o[i]*m=P) = oRP

First, we prove (1):

o=P
(*) o (Vi: 0s<i: (38: BeS“: of..]]Be=P)) by SP,ps(P)
o (Vi: 0si: 3B: BeS*: (Vn: Osna: of..l)o(i]"BeP))) by STR(P)
=(Vi: 0si: (Vn: Osn: (3B: B €S of..i]a(i]*BkP))) by Predicate Logic
o (Vi: 0<i: (Va: O<a: 3B: B S (of..i)ofi]“)[..i+n] BRP)))
since of..i]o{i)* = (of..i)a[i]*)|..i+n]
o (Vi: 0si: (V): isj: 3B: BeS*: (of..l)e{i]“)../18m=P))) by Predicate Logic
o (Vi: 0si: (Vj: 0sj: 3B: B S (of..1)e(i]9)]../]] B=P)))
since j<i ® (of..l)a{i]*)[..f/]=o(../] and according to (°*), of../]Bk=P
o (Vi: 0si: of..l]ofi]"=P) since SP,p5(P).
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Next, we prove (2):

(Vi: 0si: of..l)ofi]=P)
= (Vi: 0si: (3B: BeS“: of..]]B=P)) use B=ofi]®
& oRP by SP,ps(P).

4. Discussion

It has been argued that properties invariant under stuttering are the only ones of real
interest in program verification [Lamport 83]. We agree. This, however, is a religious issue.
A formalization of safety should serve many faiths. This note presents a definition of safety
that can be applied to any property.
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