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Mixed-Order Finite Elements for the Solution
of Three-Dimensional Electromagnetic Fields

Z.J. Cendes, D. Hudak, D. Sun

Electrical & Computer Engineering

Carnegie-Mellon University 4

Pittsburgh, PA 15213

Abstract

A new method for modeling electromagnetic waves by the fimite element method is presented. The

method is based on a numerical formulation in which different orders of polynomials are used to .

approximate the three different components of either the electric or the magnetic field vectors. It

provides a reliable procedure for the finite element solution of three-dimensional electromagnetic field

problems. Heretofore, such solutions were plagued by the presence of spurious modes. The new method

is applied to the analysis of fields in resonant electromagnetic cavities.

Introduction

The finite element method is often advanced as a useful numerical procedure for modeling high-

frequency electromagnetic wave phenomena. Applied at an early date to solve homogeneous waveguide

problems,1 the method proved to be extremely accurate and reliable for these problems. However, when

the method was applied to the study of inhomogeneous waveguides and to the solution of three-

dimensional resonant cavity and scattering problems, difficulties in the form of uspurious" modes were

encountered. Spurious modes are non-physical solutions of the electromagnetic field equations that are -

computed simultaneously with the correct physical solutions.

Since the presence of spurious modes in a numerical solution can destroy the validity of the solution,

much effort has been directed at reducing or eliminating the unwanted modes. The first approach,

2originally suggested by Konrad , is to enforce the electromagnetic field boundary conditions exactly on ---

the finite element approximation space. This procedure has been used by Mabaya, Lagasse and

Va.denbulke3 in the E1 - H formulation and by Davies, Fernandez and Philippon 4 and by Rahman and

Davies in the 3-component H formulation, all three papers report only limited success in eliminating

spurious modes by this technique. Recently, Koshiba, Hayata, and Suzukio have shown that rigorous

- enforcement of boundary conditions does indeed eliminate spurious modes above the air line (i.e. the

line 6/ko = 1 in a #/k 0 versus k^ plot) but does not work in general below the air line.

- The second approach to eliminating spurious modes is to modify the variational principle used to ._-

- approximate the fields. Working independently, Winkler and Davies7 and Hra, Wada, Fukasawa and -; .

- Kikuchi have recognized that the spurious modes do not satisfy the zero divergence condition on the - -

-. 1
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electric or magnetic field. Both references suggest adding a penalty term proportional to the norm of the

divergence of the field to the governing variational principle. Unfortunately, this procedure does not

eliminate the spurious modes completely. However, as demonstrated in reference 8, the spurious modes

are not stable with respect to the amount of penalty, and can be distinguished from correct solutions by

plotting the finite element eigenvalue spectra with respect to the penalty parameter. Of course, this

procedure is highly inefficient and cumbersome: each new field problem must be solved repeatedly and all

of the eigenvalues plotted in order to identify the correct ones.

A different but related procedure to reduce the number of spurious modes was proposed recently by

Konrad. References 7 and 8 are based on minimizing a functional derived from the vector wave equation

with the addition of a zero-divergence penalty term. Konrad suggests using the vector Helmholtz

equation instead and finds that ... a great number, though not all of the spurious solutions are indeed

eliminated." This result is not surprising since the variational expressions derived for the vector
Helmholtz equation and for the vector wave equation with the addition of a unit penalty term are

identical in the case of homogeneous media.

The third approach to eliminating spurious modes in finite element solutions is to restrict the finite

element approximation functions to lie in a reduced function space. In this view, spurious modes are the

result of using improper functions in the variational procedure. To ensure that only correct solutions are

generated, one must employ only admissible functions in the finite element approximation. This is the

approach taken in this report.

The use of a restricted function space to eliminate spurious modes in finite element analysis was first

suggested by Hano. 10 Hano showed that, in two dimensional problems, spurious modes are completely -_

eliminated by using combination constant-linear finite element approximation functions. These functions . .

have two interesting properties: (1) their divergence is identically zero, and (2) they are discontinuous at

element boundaries.
' a

In this report, we derive a set of restricted finite element basis functions for the solution of three

dimensional electromagnetic field problems and show that only correct, physical solutions are obtained

with the new functions. As in the case in reference 10, the functions reported here employ different orders

of polynomial approximation in different directions in each element. However, in our case, the

approximation functions are continuous across element boundaries and are not restricted to be non-

divergent.
,'2* i

at 2

• ".-'. ". '.." " _". . ' -'.-' -'. '.-.-' -" . '.' .'' ---. ' ' .''''. '." .''-'. '.' . . '- -'. 2,' ",' . '- .'. #,' '-' ' . - -. ' '.'.• *.- ." .
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Formulation of the EM Field Equations

Electromagnetic wave propagation is governed by the vector wave equations

V x- V x E =ek 2E (1)

-V X H=pk 2 H (2)

where p,. and t are the relative permeability and relative permittivity of the material, respectively, and

k 2  0w2p(0 . At the interface between two dielectrics, the tangential components of the electric and

magnetic fields must be continuous

1 X (E 1) - E(2)) -0 (3)aI
13 X( ) - H(2)) - 0 (4)

while the normal components are discontinuous as follows

i n3 (e1E(1 )- c:E (2 )) = 0 (5)

1. • ("l I) -- p 2H(2)) = 0 (6)

In these equations, superscripts (1) and (2) refer to media I and media 2, respectively.

In the remainder of this report, we shall use the electric field E as the unknown. Obviously, a similar

treatment holds for H. In terms of E, equation (4) becomes

3 x (. V x E ( ) - V X E(2)) . 0 (7)
We must therefore solve equation (1) subject t the interface conditions (3), (5) and (7). .

Konrad' has shown that the Euler equation of the functional

r2 -- IV x l ,koIE lI2)d1) ,_._

is equation (1) and that the corresponding natural boundary equation (7) is the natural boundary

condition for this functional. One may therefore approximate the electric field E by expanding E in

terms of basis functions, apply the essential boundary conditions (3) and (5) explicitly, and minimize F to

obtain E. .

While the solution process described above has been widely reported in the literature2 ' 7 ' 1 s, as noted
in the introduction, there are serious problems. To eliminate these problems, we need to define the

approximation functions for E more carefully.

I.. ,,.,.

* .. . . . . . . .-.-**.*- -*.~..*.\,..-.*.*.
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A Basis for Curl

To solve for E via equation (8), we must find a legitimate approximation for the curl operator. The

operator curl has a domain, a nullspace and a range; it is not enough - as had been done in the past - to

approximate only the domain.

The nullspace of an operator is defined to be the set of functions that produce zero when the operator

acts on it

MA) - {x: Ax = 0 for all ) ()
It is well known that the nullspace of the curl operator is provided by the gradient operator

N(curl) = V 4 (10)

where 0 is an arbitrary scalar.

Let us approximate 0 by finite basis functions a (z,y,z) over a rectangular parallelepiped. These basis

functions are defined in Appendix A and result in the expression
4b(z,y,z) = (m'n'u,p) (II) :-.

The polynomial (m'nP)(ZIYZ) is m'th order in the x-direction, n'th order in y, and p'th order in z. Since

the derivative of an n'th order polynomial is (n-1)'st order, it follows that the nullvectors of the curl

operator must have the form
E(x,y,z) = (i- 1.'P)E"

E((m,n- "'1 E (12)
E,(x,y,z) =

We may write this in the compact form
E =-E (13)

where

VmlSP) 0 0

S 0 ,- 0 (14)

E %

.' E (15)

• .- .i~..Li-.,
a°o " .
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The curl of E is evaluated as

0 -a/a z 8 /&ly E~

V xE= al/z 0 -aax E (6

-al/ y a119x 0E

Substituting (13) into (16) gives

VxE 8 CE (17)

where4

0

0 -D D

-D D 0

where the matrices D. are called differentiation matrices and are defined in Appendix 2.

We note that the factorization in equation (17) is not possible if the same order of polynomial is used to

approximate E, in all three directions.

The basis functions in equations (11), (13), and (17) provide a consistent representation of the nulispace,

domain, and range of the curl operator, respectively. The dimension of the nulispace is equal to the

number of parameters in #; this is
Dim(Mcurl)) = (m+IXn4-1)(p4-1) (19) __-

The dimensions of the domain and range spaces are equal to the number of independent basis functions in

y and ~;these are

Dim (D(cur)) -3mnp +2mn+ 2mp + 2np +m + n+p (0

Dim (RMcurt)) - 3mnp + vip + mp +mn (21)

The rank of the matrix C is equal to the dimension of the domain space minus the dimension of the .

nullsp*ac*

Rank(C) =2mnp + mn + mp + vip -1(22)
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Computing, the Matrix Elements

Substituting equations (13) and (17) into equation (8) and minimizing with respect to the coefficients E

results in the matrix equation

CTKC E= k'M E (3

wher K nd Marethe matrices

K f 6T6 dfl(24)

M = ~ ydf2 (25)

To evaluate the matrix elements in K and M, it is sufficient to evaluate the integral

G(~~ Ja Yjr&t)a(r,*.t)dO (26)

Substituting equation (A13) into (26) gives

(I IL (1LL)(&t(,) (g it X) (9 ar(C) (9 artfX)dOd~dX) (27)

Introducing Kroneckers identities (iii) and (v) converte this into
G = (1L~LL)7(r) ®7(s( P7) (8

where

p() = ~iT~ () ~(29)

Thus, only the one dimensional T matrix is required to evaluate G. Numerical values of the first two T

matrics are

21 (30)

21

4 2 -1

-1 2 4

To evaluate the finite element coefficient matrix for one element, one therefore needs to form the

matrices K and M using equations (28) and (29), evaluate C by using the values in Appendix B, and pre-

'-F- .... * * * ~ "--F . -
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and post-multiply K by CT and C, respectively. The contribution from each element is combined with

the other elements in the grid to form a large, sparse matrix eigenvalu, problem. This eigenvalue problem

is solved by using established techniques for the eigenvalues k0
2 ad eigenvectors E.

Computational Results

A computer program has been developed based on the above formulation to solve for the

electromagnetic fields in resonant cavities. The program allows finite elements of mixed orders to be

assembled and solved for complex three-dimensional geometries. A significant component of this work

was the development of a sparse matrix eigenvalue solution package based on the Lanczos algorithm.

Some of the computational results obtained from the program are presented in Tables 1-12. In these

tables, the approximate eigenvalues obtained by the finite element method for rectangular parallelpiped

cavities are presented along with the exact analytical values.

To begin, Tables 1 and 2 present the eigenvalue spectrum for the Otraditionalm finite element solution

of the vector wave equation in which each component of the electric field is approximated in all

directions by a linear polynomial (8-node elements). Spurious nodes are evident in the spectrum, both

below the dominant physical node and above it. It is obviously very difficult to distinguish good solutions

from bad solutions with this approach.

Now consider the case of constant-bilinear elements (m - n = p - 1: 4 node elements). The

eigenvalue spectrums for two different cavities obtained by using these elements are presented in Tables 3

and 4. Notice that in this case a one-to-one correspondence exists between the approximate eigenvalues

and the exact ones, with the dominant eigenvalue being approximated reasonably well. Although some

fairly large errors are obtained with the high-order nodes in Tables 3 and 4, these errors are a result of

the small number of elements used in this problem. It is significant that each mode in these solutions can

be identified; greater accuracy in the oigenvalues can be obtained when more elements are employed.

For constant-bilinear elements the dimension of the nullspace is N = 2 x 2 x 2 - 8. Corresponding to

this nullity, eight sero eigenvalues are found in Tables 3 and 4. Zero eigenvalues have been computed in

this work to confirm theoretical predictions; in practice, one may save computer time by computing the

positive eigenvalues only.

Solutions obtained by using linear-biquadratic elements (m = n - p = 2; 18 node elements) are [
presented in Tables 5 and 6. These solutions are seen to be much more precise than the constant bilinear

element solutions. The reason for the increased accuracy is twofold: (1) Higher-order polynomials are

more accurate than low-order polynomials, and (2) linear-biquadratic elements are continuous across .'.4"

element boundaries while the constant-bilinear elements are not. A vector plot of the field at a height z

° V

S. -. .

. . . . . . . . .... ..



I 0.35 above the bottom of the cavity is shown in Figure 1. In the case of linear-biquadratic elements,

the nullity of the curl operator is N = 3 x 3 x 3 - 27. This is equal to the number of zero eigenvalues

computed for the problems in Tables 5 and 5.

cavity~~~~~~- of "imin ,'"r3,/ ahih

/ ,

.o b

of~~~° , -'.,,aov"te a

Finally, weFrepor som co plttot otaed cti apeldyfor the domina emen mehdtatevco

Helmholts equation. The vector Helaholt equation is separable in a rectangular coordinate system into

• .-."
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three uncoupled one-dimensional Helmholtz equations. Not surprizingly, the eigenvalues of this one-

dimensional equation are correctly computed as shown in Tables 7 and 8. However, if one employs the

constant-bilinear 4-node element in this approximation then an incomplete solution is produced. As

shown in Tables 9-11, the eigenvalues are correct, but only the zero-mode eigenvalues appear. Thus,

solutions obtained by using constant-bilinear elements in the Helmholtz equation do not allow the

discortinuities at the element edges observed in the solution of the vector wave equations.

When linear-biquadratic elements are used in the vector Helmholtz equation, solutions in the form

reported in Table 12 are observed. In this case, all eigenvalues of the cavity are approximated, but the

sero-mode eigenvalues where the solution is a constant in one direction are computed far more accurately

than the non zero-mode eigenvalues.

As a final confirmation of the correctness of the procedure reported here, observe from Tables 4 and 7

that the solution of the vector wave equation with constant-bilinear elements and of the vector Helmholtz

equation with trilinear elements are identical in all modes to six significant figures. It appears that these

two ways of solving rectangular cavity problems are numerically identical. As pointed out earlier, -

however, the advantage of solving the vector wave equation is that it generalizes to modeling non-

rectangular cavaties and to cavities involving dielectric boundaries.

Conclusions

Three-dimensional electromagnetic field problems may be solved by using n,'xed order finite elements to

approximate the vector field. In this approach a consistent numerical approximation is made for the

domain, range, and null spaces of the curl operator. Such a consistent approximation in the solution of

the vector wave equation eliminates the problem of spurious nodes that had plagued previous solution

procedures.
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APPENDIX- A

Rectangular Basis Functions

To see how approximation functions are formed for bricks, first consider the two-dimensional case

shown in Figure 1. In this figure, an arbitrary rectangular reference element is mapped into the unit

* square by the transformation
f' (z - ZR)/L, (Al)

C= (y- )/L (A2) .

(1,0)(0,0) __

(0,1) (1,1)

~jLY Y
L." . .(XR9,YR) ...

x

Figure 2s Bilinear mapping of an arbitrary
rectangle to the reference rectangle

Two-dimensional basis functions may be obtained from one-dimensional functions by using the

Kronecker matrix product.

Definition: .

If A is an nxm matrix and B is a pxq matrix, then the Kronecker matrix product of A and B is denoted

by A B and is the npxmq matrix

A®B- ,11B a1 B . . . IMB

(A)

Sa B . . . a

Kronecker matrix products satisfy the following useful identities14

ii-.

- -?. -
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(i) A g (B+C)=A 0 B+A O C

(ii) aA ® &8B=aj6(A 0 B)

(iii) AB & CD=(A & C)(B D)

(iv) (A & B )-=A- 'W1 B-.

(v) (A B)T--AT B

In general, one-dimensional n'th order interpolation polynomials are defined as

L n+II+ (n) i
() = J ( (A4)

where the i are the interpolation nodes. Using the Kronecker matrix product, two-dimensional

interpolation polynomials are given by

. - a.()) 0 (m)( ) (A5)

For example, the second-order interpolation polynomial a (2,2)(,) is the nine element row vector

(A6)

* The locations of the interpolation nodes of the polynomials (2,2)are indicated in Figure 2. During

computation, the nodes are stored most conveniently by columns; in this case, the axes f and are

oriented as shown in Figure 3.

Now consider approximating an arbitrary function (,) in terms of the finite element approximation

functions. We may write this as
)= m)(da(-)( ) (A7)

where 0 is an m by n matrix of values at the interpolation nodes. Equation (A7) is converted into the

standard matrix form

054 = a'00. (AS)

by defining a vector operation called vec in the following manner:

A2
0

VecA = (A9)

An

* where A. is the i'th column of the matrix A. The operator vec and the Kronecker product are related by

* the identity

e € ABC = (CT® A) veB (AO)

V-

* " [
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Figure 3: The relative locations of the interpolation nodes

corresponding to the polynomial a(2,2)(f).

* .... fC

o .

-t o

*: ..-'... -CC (D (
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The vec of a scalar is simply itself; therefore, taking vec of both sides of equation (AS) yields

O,(M) = (a-,,)1w "(1 ,.-:-.

(Al1)

where

--vcC4 (A12)

Three-dimensional finite elements are generated by an analogous procedure to that used in two-

dimensions. Approximation functions for brick-shaped elements are given by the equation 4
-,-,.) -(-)( ® -(m)(C) ® ,)(')()) .-::

(A13)

where (c,,X) are homogeneous coordinates in the brick. Figure 4 presents the node numbering scheme for

the second order ease. 4 4

* . . -
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APPENDIX- B

Differential Matrices

One-dimensional differentiation matrices are defined by the equation

ad ((BI)

where D(" ) is the n by n+I differentiation matrix. The polynomials ("-)(t) in equation (BI) are of 4

one order less than that of a(R)(t) because the derivative of an n'th order polynomial is (n-1)'st order.

Evaluating both sides of equation (BI) at the (n-l)'st order interpolation nodes a.(n-1),i 11,...,
provides the elements of the differentiation matrix as '-

D~" 1~ -da(")(s)

D..(") =D.!)= ' -:
$i -( 1.

Performing the indicated operations with the equispaced node interpolation polynomials gives the

numerical values

D ( )  
- [-1. 1]-" '

(B3)

L'. -4. 3.1
h,.. -

*D~ 3  05.5 9. -4.5 1.

.125 -3.375 3.375 -.125

-. 4.5 .9. -5.5 " ' '

Note that the matrix D has the following anti-symmetry property

D.(a -D(") (B4), . fi -i+,, -j+2

To extend the above result to two-dimensiou, we need to evaluate

= -)w# W (")( ... :.

(B5)

Thus we find that

.rr

. C ' -I.

J.Z

%. .. . . . . . . . . . .2. . .. .... . -
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(B6)

where

PDr D(-)®I (B7)
Similar results bold for derivatives in the f-direction and for three-dimensional elements.
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CURL-CURL-trilinear functions (8-node elements)

Lx=Ly=Lz~pi/3. (pi-3. 1415926535)
number of nodes in x-direction = 12

y-direction =12
z-direction =12

hx=hy=hz~pi/9.

approx-eigenvalue modes actual-eigenvalue

1.96968 --------
9.08752 ---- ----
9.08752
9.08752
19.69684 (0',,) 18.00000
19.69684 .

19.69684 (1,0,1)
19. 69684
19.69684 (1',,)
19. 69684
28.25468 --------
28.25468
28. 25468
28.56042 --------

28. 56042
49.24210 --------
59.09051 (0,1,2) 45.00000
59.09051
59.09051 (0,2,1)

j 59.09051
59.09051 (1,0,2)
59. 09051
59.09051 (2,0,1)
59. 09051

59.09051 (2,1,0)
59.09051
60.83625 --------
60.83625
60.83625
67.95409 --------
67.95409
67.95409
83.71156 --------
83. 71156
83. 71156
98.48419 (0,2,2) 72.00000
98.48419
98.48419 (2,0,2)

* 98.48419
98.48419 (2,2,0)
98.48419

Table 1. Eigenvalues of the vector wave equation (curl-curl operator) in a rectangular

*cavity obtained by using trilinear approximation functions. Note that many of the

approximate eigenvalues computed do not correspond to any actual physical mode.
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* CURL-CURL-trilinear functions (8-node elements)

*Lx=Lz=pi/3. ,Ly=pi/4. (pi=3.1415926535)
number of nodes in x-direction = 12

y-direction = 12

z-direction = 12
hxflzzpi/9. ,hy=pi/12.

*approx-eigenvalue modes actual-eigenvalue

2.37084 --------

9.83625 --------
11.72376 --------
11.72376
19.69684 (1,011) 18.00000
19.69684
27.35672 (0111) 25.00000
27. 35672
27.35672 (1110)
27. 35672
30.68483 --------
34.39606 --------
34.39606
35.81914 --------
36.22030 --------
58.39643 --------
59.09051 (1,0,2) 45.00000
59.09051
59.09051 (280,1)
59.09051
66.12458 --------
66.12458
66.75040 (0,1,2) 52.00000
66. 75040
66.75040 (2,1,0)a 66.75040
75.34928 --------
75. 34928
91.37144 ---------

97.38992 (0,2,1) 73.00000
97.38992
?7.38992 (1,2,0)
97. 38992
98.38694 --------
98.48419 (2,0,2) 72.00000
98.48419

Table 2. Similar results to Table 1 but with a different cavity shape.
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CURL-CURL--bilinear elements(4-node elements)

LX=Lz=pi/3. , Ly=pi/4. (pi=3.1415926535)
number of nodes in x-direction = 13.

y-direction = 11
z-direction = 11

hx=hz=pi/9. , hy=pi/12.

approx-eigenvalue modes actual-eigenvalue

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

19.69684 (1,0,1) 18.00000
27.35672 (0,I,1) 25.00000
27.35672 (1,1,0)
37.20514 (1,1,1) 34.00000
37.20514
59.09052 (1,0,2) 45.00000
59.09052 (2,0,1)
66.75040 (0,1,2) 52.00000
66.75040 (0,2,1)
76.59882 (1,1,2) 61.00000
76.59882
76.59882 (2,1,1)
76. 59882
97.38992 (0,2,1) 73.00000
97.38992 (1,2,0)
98.48419 (2,0,2) 72.00000

107.23834 (1,2,1) 82.00000
107.23834
115.99249 (2,1,2) 88.00000
115.99249

Table 3. The eigenvalues of the vector wave equation obtained by using constant-
bilinear approximation functions. The zero modes may be ignored. Notice that all
actual physical, eigenvalues are correctly approximated by this procedure although
errors in the values are large for the higher-order modes.
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CURL-CURL-bilinear functions (4-node elements)

Lx=LYLz=pi/3. (pi=3.1415926535)
number of nodes in x-direction = 11

y-direction = 11
z-direction = 11

hxhY~hzpi/9.

approx-eigenvalue modes actual-eigenvalue

0.00000
0.00000
0.00000

0.00000I
0.00000
0.o000
0.00000

19.69684 (0111) 18.00000
19.69684 (1,0,1)
19.69684 (1,1,0)
29.54526 (1111) 27.00000
29.54526 j
59.09052 (0,1,2) 45.00000
59.09052 (0.2,1)
59.09052 (1,0,2)
59.09052 (2,0,1)
59.09052 (1,-2,0)(59.09052 (20 110)
68.93893 (1,1,2) 54.00000
68.93893 -

68.93893 (.1,2,1)
68.93893
68.93893 (2111)
68.93893
98.48419 (0.2.2) 72.00000
98.48419 (2.0,2)
98.48419 (2,2,0)
108.33261 (1,2,2) 81.00000
108.33261
108.33261 (2,1,2)
108.33261
108.33261 (2,2,1)
108.33261

Table 4. Similar results to Table 1 but with a different cavity shape. I
% ..k

%
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CURL-CURL-linear-biquadratic (18-node elements)

Lx=Ly=Lz=pi/3. (pi=3.1415926535)
number of nodes in x-direction = 18

y-direction = 18 -
hxhyhzpi/9.

approx-eigenvalue modes actual-eigenvalue

0.00000 ---- I----
0.00000

0.00000
0.00000
0.00000

0.00000
0. 00000
0.00000
0.00000

0. 00000
0. 00000
0. 00000
0. 00000
0. 00000
0.00000
0.00000
08.0286001,)00000
18.028601,01

* 18~.0080010.0
27.028200100 7000

45.027000)05000

54.06912 (1,1,2) 14.00000

54.06912 (1,2,1)

54.72872 (21,1) 2.00
27.72879
457.5071 (0,1,2) 72.00000

75.5071 (2,0,2)

73.8071 (12.0)

547879

78.67638 --------

78.676 . .. . . .. . . .. . ..38.*-
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CURL-CURL-linear-biquadratic(18-node elements)

Lx=pi/2. , Ly=pi/3. , LZ=pi/4. (pi=3.1415926535)
number of nodes in x-direction = 18

y-direction = 18
z-direction = 18

hx=pi/6. , hy=pi/9. , hz=pi/16.

approx-eigenvalue modes actual-elgenvalue

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0. 00000
0. 00000
0. 00000
0. 00000
0. 00000
0.00000
0. 00000
0.00000
0. 00000
0. 00000
0. 00000
0. 00000
0. 00000
0.00000
0.00000
0. 00000
0.00000

0.00000 A
0.00000
13.02056 (0111) 13.00000
20.03163 (1,0,1) 20.00000
25.03953 (011) 25.00000
25.36470 (2,1,0)
29.02859 (1111) 29.00000
29.03043
32.37577 (2,0,1) 32.00000
40.00222
40.79489 (1,2,0) 40.00000
41.36763 (2111) 41.00000 ":-'-'
45.48986 (3,1,0) 45.00000
52.50093 (0,2,1) 52.00000
52.81386 (2,2,0)
53.13903 (3,0,1)

55.97965--------
56.78009 (1,2,1) 56.00000
61.47941 (3,1,1) 61.00000
61.49460 ---.- -----

62.74550---- ----
68.25079 (2,2,1) 68.00000
69.40821 (1,0,2)
73.26419 (3,2,0) 72.00000

40.00222 -- .'-'-.
- - .-..
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LAPLACIAN-trilinear functions (8-node elements)

Lx=Ly=Lz=pi/3. (pi=3.1415926535)
number of nodes in x-direction = 4

y-direction = 4
z-direction = 4

hxhyhzpi/9.

*approx-eigenvalue modes actual-eigenvalue

(19.69684,0.0000000) 2 (011,1) (18.00000,0.0000000)
*(29.54527,0.0000000) 3 (1',,) (27.00000,0.0000000)
*(59.09052,0.0000000) 5 (011,2) (45.0000,0.0000000)

(59.09051,0.0000000) (0,2,1)
(68.93894,0.0000000) 6 (1.1,2) (54.00000,.0000000o)
(68.93893,0.0000000) (1,2,1)
(68.93893,0.0000000) (2,1,1)
(98.48419,0.0000000) 8 (0,2,2) (72.00000,0.0000000)
(108.3326,0.0000000) 9 (1,2,2) (8i-00000,o.0000000)
(108.3326,0.0000000) (2,1,2)
(108-3326,0-0000000) (2,2,1)

Table 7. Eigenvalues of the vector Helmholtz equation (Laplacian operator)
obtained by using trilinear approximation functions. Note that all actual
physical eigenvalues are correctly approximated by this procedure.
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LAPLACIAN-trilinear functions (8-node elements)

Lx=Lz=pi/3. , Ly=pi/4. (pi=3.l4l5926535)
number of nodes in x-direction = 4

y-direction = 4
z-direction = 4

* hx=hz=pi/9. , hypi/12.

*approx-eigenvalue modes actual-eigenvalue

(27.35672,0.0000000) (011,1) (25.00000,0.0000000)
(37.20514,0.0000000) (1',,) (34.00000,0.0000000)
(66.75041,0.0000000) (0,1,2) (52.00000,0.0000000)
(76.59882,0.0000000) (1, 1,2) (61.00000,0.0000000)
(76.59882,0.0000000) (2,1,1)
(97.38994,0.0000000) (0,2,1) (73.00000,0.0000000)
(107.2384,0.0000000) (1,2,1) (82.00000,0.0000000)
(115.9925,0.0000000) (2,1,2) (88.00000,0.0000000)
(125.8409,0.0000000) (0,1,3) (97.00000,0.0000000)
(136.7836,0.0000000) (0,2,2) (l00.000010.0000000)

*(146.6320,0.0000000) (2,2,1) (109.0000,0.0000000)
*(146.6320,0.0000000) (1,2,2)

Table 8. Similar results to Table 7 but with a different cavity shape.

PIZ

P2
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LAPLACIAN-bilinear functions(4-node elements)

Lx=Ly=Lz=pi/3. (pi=3.1415926535)
number of nodes in x-direction =4

y-direction = 4
z-direction =3

hxhyhzpi/9.

approx-eigenvalue modes actual-eigenvalue

(19.69684,0.0000000) (0',,) (18.00000,0.0000000)
(19.69684,0.0000000)
(19.69684,0.0000000)

*(59.09051,0.0000000) (0,1,2) (45.00000,0.0000000)
* (59.09051,0.0000000)

(59.09051,0.0000000)
(59.09051,0.0000000) (0,2,1) (45.00000,0.0000000)
(59.09051,0.0000000)
(59. 09051.,0. 0000000)
(98.48419,0.0000000) (0,2,2) (72.00000,0.0000000)
(98.48419,0.0000000)
(98.48419,0.0000000)

Table 9. Eigenvalues of the vector Helmholtz equation obtained by using constant-
bilinear approximation functions. Notice that only the 0-mode elgenvalues are
produced.
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LAPLACIAN-bilinear functions(4-node elements)

LX=Lz=pi/3. , Ly=pi/4. (pi=3.l4l5926535)
number of nodes in X-direction = 4

y-directjion = 4
z-direction = 3 

:--:

* I~hx=hz=pig ,yi/12.

approx-eigenvalue modes actual-eigenvalue

(27.35672,0.0000000) (0,1,1) (25.00000,0.0000000)
(27.35672,0.0000000)
(27. 35672,.0. 0000000)
(66.75039,0.0000000) (0,1,2) (52.00000,0.0000000)
(66. 75039, 0. 0000000)
(66.75039, 0. 0000000)
(97.38992,0.0000000) (0,2,1) (73.00000,0.0000000)
(97-38992 ,0. 0000000)

* (97.38992,0.0000000)
(136. 7836,0.0000000) (0,2,2) (100.0000,0.0000000)
(136.7836,0.0000000)

* (136.7836,0.0000000)

Q Table 10. Similar results to Table 9 but with a different cavity shape. --
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LAPLACIAN-bilinear functions(4-node elements)

Lx=Lz=piI3. ,Lypi/4. (pi=3.1415926535)

number of nodes in X-direction = 5
y-directioi = 7

Z-directiol = 6

hX=hz=pi/15. , hy~pi/24.

approx-eigenvalue modes actual-eigeflvalue

(25.66859,0.0000000) (0',,) (25.00000,0.0000000)4

(25.66859,0.0000000)

(25.66859,0.0000000)
(25.66859,0.0000000)

(57.30186,0.0000000) (0,1,2) (52.00000,0.0000000)

(57.30186,0.0000000)
(57.30186,0.0000000)

(57.30186,0.0000000)

(79.33304,0.0000000) (0,2,1) (73.00000,0.0000000)

(79.33304,0.0000000)

(79.33304,0.0000000) 
r

(79.33304,0.0000000)

*(110.9663,0.0000000) (0,2,2) (100.0000,0.0000000)

(110.9663,0.0000000)
(110.9663,0.0000000)
(110.9663,0.0000000)
(110 .9663 ,0. 0000000)

*Table 11. Similar results to Table 10 but with a finer discretization.

'4%.Op
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LAPLACIAN-linear-biquadratic functions (18-node elements)

Lx=Ly=Lz=pi/3. (pi=3.1415926535)
number of nodes in x-direction = 4

y-direction = 7
z-direction = 7

hx=hy=hz=pi/9.

approx-eigenvalue modes actual-eigenvalue

18.02849 (0,1,1) 18.00000
27.87692 (1,1,1) 27.00000
45.80283 (0,1.2) 45.00000
45.80284 (0,2,1)
55.65121 (1,1,2) 54.00000
55.65127 (1,2,1)
67.27062 -- ? --

73.57719 (0,2,2) 72.00000
83.42559 (1,2,2) 81.00000
91.08446 (0,3,1) 90.00000
91.08447 (0,1,3)
95.04494 ?-7-

95.04499 -- ? --

Table 12. Elgenvalues of the vector Helmholtz equation obtained by using linear-

biquadratic approximation functions. In this case, all eigenvalues are approxi-

mated, but the 0-mode eigenvalues are far more accurate than the non 0-mode
eigenvalues.

'%

. % %° . " ._ .
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LAPLACIAN-linear-niquad-atic (18-node elements)

LX=pi/2. , Ly=pi/3. , LZ=pi/4. (pi=3.14l5926535)
number of nodes in x-direction = 4

y-direction = 4 7
z-direction = 0

hX=pi/6. , hy=pi/9. ,hZpi/12.

approx-eigenvalue modes actual-eigenvalue
25.03956 (0',,) 25.00000

*29.41665 (1111) 29.00000
46.92494 (2,1,1) 41.00000
52.81389 (0,2,1) 52.00000

57.19098 (1,2,1) 56.0000068.81034 (0.1,2) 68.0000074.41617 (1,1,2) 72.00000
*74.69928 (3,1,1) 61.00000

78.79325 '2,2,1) 68.00000
96.30156 (2,1,2) 84.00000
96.58467 (3,2,1) 88.00000
98.09551 (0,3,1) 97.00000
102.1905 (0,2,2) 100.0000

Table 13. Similar results to Table 12 but with a different cavity shape.

or 
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