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Mixed-Order Finite Elements for the Solution
of Three-Dimensional Electromagnetic Fields

Z.J. Cendes, D. Hudak, D. Sun

Electrical & Computer Engineering

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

A new method for modeling electromagnetic waves by the finite element method is presented. The )
method is based on a numerical formulation in which different orders of polynomials are used to . )
approximate the three different components of either the electric or the magnetic field vectors. It !
provides a reliable procedure for the finite element solution of three-dimensional electromagnetic field
problems. Heretofore, such solutions were plagued by the presence of spurious modes. The new method

is applied to the analysis of fields in resonant electromagnetic cavities. . ‘

Introduction

The finite element method is often advanced as a useful numerical procedure for modeling high-
frequency electromagnetic wave phenomena. Applied at an early date to solve homogeneous waveguide
problems,! the method proved to be extremely accurate and reliable for these problems. However, when

the method was appiicd to the study of inhomogeneous waveguides and to the solution of three

dimensional resonant cavity and scattering problems, difficulties in the form of "spurious® modes were x
encountered. Spurious modes are non-physical solutions of the electromagnetic field equations that are -

computed simultaneously with the correct physical solutions.

Since the presence of spurious modes in a numerical solution can destroy the validity of the solution,

much effort has been directed at reducing or eliminating the unwanted modes. The first approach,

originally suggested by Konrad?, is to enforce the electromagnetic field boundary conditions exactly on
the finite element approximation space. This procedure has been used by Mabaya, Lagasse and
Vardenbulke® in the E - Hl formulation and by Davies, Fernandez and Philippon‘ and by Rahman and
. Davies® in the 3-component H formulation; all three papers report only limited success in eliminating
spurious modes by this technique. Recently, Koshiba, Hayata, and Suzuki® have shown that rigorous
enforcement of boundary conditions does indeed eliminate spurious modes above the “air line® (i.e. the

line 8/ k,=1lina B/k, versus k_ plot) but does not work in general below the air line.

The second approach to eliminating spurious modes is to modify the variational principle used to
approximate the fields. Working independently, Winkler and Davies’ and Hara, Wada, Fukasawa and

Kikuchi® have recognized that the spurious modes do not satisfy the szero divergence condition on the

.
4
i L4 .
N |
- - DI K S e e R T e T T e T T T T e e T R o e W n e m s
A S R T .3 - el ) > RIS o) "-')“'\:‘-‘.1;-‘.-'.-'.9'-.r")\ .-.r).r .A:.H}-P".a‘_'




AR S Jd Bad B A S -0 A vt and aval ane Al —san-oser as- T T T ————— RO WA e i Ao i v bt 8 - B b e M Jh et 200

electric or magnetic field. Both references suggest adding a penalty term proportional to the norm of the

divergence of the field to the governing variational principle. Unfortunately, this procedure does not

eliminate the spurious modes completely. However, as demonstrated in reference 8, the spurious modes

.. are not stable with respect to the amount of penalty, and can be distinguished from correct solutions by
_:j; plotting the finite element eigenvalue spectra with respect to the penalty parameter. Of course, this
:::‘ procedure is highly inefficient and cumbersome: each new field problem must be solved repeatedly and all
=

of the eigenvalues plotted in order to identify the correct ones.

A different but related procedure to reduce the number of spurious modes was proposed recently by
Konrad.? References 7 and 8 are based on minimizing a functional derived from the vector wave equation
with the addition of a sero-divergence penalty term. Konrad suggests using the vector Helmholtz
equation instead and finds that ®... a great number, though not all of the spurious solutions are indeed
eliminated.®* This result is not surprising since the variational expressions derived for the vector

Helmholtz equation and for the vector wave equation with the addition of a unit penalty term are

identical in the case of homogeneous media.

The third approach to eliminating spurious modes in finite element solutions is to restrict the finite
= element approximation functions to lie in a reduced function space. In this view, spurious modes are the
- result of using improper functions in the variational procedure. To ensure that only correct solutions are

generated, one must employ only wd.misaible functions in the finite element approximation. This is the

approach taken in this report.

The use of a restricted function space to eliminate spurious modes in finite element analysis was first
suggested by Hano.!” Hano showed that, in two dimensional problems, spurious modes are completely
eliminated by using combination constant-linear finite element approximation functions. These functions
have two interesting properties: (1) their divergence is identically sero, and (2) they are discontinuous at

element boundaries.

In this report, we derive a set of restricted finite element basis functions for the solution of three
dimensional electromagnetic field problems and show that only correct, physical solutions are obtained
with the new functions. As in the case in reference 10, the functions reported here employ different orders
of polynomial approximation in different directions in each element. However, in our case, the
& approximation functions are continuous across element boundaries and are not restricted to be non-

k. divergent.

RIS
IO R =



DACATMRNT I ¢t R

TeTaT T .

Y

Formulation of the EM Field Equations

Electromagnetic wave propagation is governed by the vector wave equations

1
VX —V XE = ¢k’E (1)
“' r o
1 2
VX -V XH=pk‘H (2)
€ ro
where B, and ¢, are the relative permeability and relative permittivity of the material, respectively, and
kf = wzpoeo. At the interface between two dielectrics, the tangential components of the electric and
magnetic fields must be continuous
1 2 =
1, x (EM - E®) = o 3)
1, x @Y - HY) < 0 (4)
while the normal components are discontinuous as follows
1, ¢ (EN — E®) = o (5)
1, ¢ (uAY - pH®) = 0 (6)

In these equations, superscripts (1) and (2) refer to media 1 and media 2, respectively.

In the remainder of this report, we shall use the electric field E as the unknown. Obviously, a similar

treatment holds for H. In terms of E, equation (4) becomes
1 1
1L, X (— 9V xEV - —v x E¥ =0 ™
" u

1 2
We must therefore solve equation (1) subject to the interface conditions (3), (5) and (7).

Konrad® has shown that the Euler equation of the functional

1 1
F= / G 1V X E? - ¢k }E[)dn (8)
is equation (1) and that the corresponding natural boundary equation (7) is the natural boundary
condition for this functional. One may therefore approximate the electric field E by expanding E in
terms of basis functions, apply the essential boundary conditions (3) and (5) explicitly, and minimize F to
obtain E.

While the solution process described above has been widely reported in the liternturez"""lo'“, as noted

in the introduction, there are serious problems. To eliminate these problems, we need to define the

approximation functions for E more carefully.
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N A Basis for Curl
To solve for E via equation (8), we must find a legitimate approximation for the curl operator. The
' operator curl has a domain, a nullspace and a range; it is not enough — as had been done in the past — to

approximate only the domain.

The pullspace of an operator is defined to be the set of functions that produce zero when the operator

B PRI AR

acts on it

NA) = {. Az = 0 Jor all z} (9)
It is well known that the nullspace of the curl operator is provided by the gradient operator

Nieurl) = V ¢ (10)

where ¢ is an arbitrary scalar.

Let us approximate ¢ by finite basis functions &'(z,y,z) over a rectangular parallelepiped. These basis

functions are defined in Appendix A and result in the expression

.(mmnp)
. bays) = @ (zuo)g (1)

" (m,n.p)

l{ The polynomial &@ (z,y,2) is m’th order in the x-direction, n’th order in y, and p’th order in . Since S
the derivative of an n’th order polynomial is (n-1)’st order, it follows that the nullvectors of the curl .
operator must have the form _ ‘

(m=1np) ._

'l E’z(:r,y,z) = a Qz ’

("I,'l-l,p) r j
Ef(zy2) = & E (12)
y =y
E(zyz) = amVg,

. We may write this in the compact form ol

. E = 4E (13) S
where

= _(m=1np) —

o 0 0 f

' ( )

mn—1, I el
y= 1o a ! (14)
| map-1) ;
0 0 a ! HRNANI

i _ _ ;kj."-.‘

o - - :{\‘_\

: | E, R

5 | SR

: E=- |E (15) :.:::"g
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5
The curl of E is evaluated as
0 -8/ 9/dy E, |
V X E = 3/9z 0 -3/9 x Ey ‘ (16)
-3/3y 8/dx 0 E,
Substituting (13) into (16) gives -
VxE = SCE (17)
where . _
\! a'(m,n—l,p—l) 0 0 :
i
ﬂ = o a‘("'—l-"»P‘l) 0 5
i 0 glm-in-1e) | (18)
— |
r— D
| 0 -D, D’
C = D 0 -D
E z
-D D 0

where the matrices Di are called differentiation matrices and are defined in Appendix 2.

We note that the factorization in equation (17) is not poesible if the same order of polynomial is used to

approximate Ei in all three directions.

The basis functions in equations (11), (13), and (17) provide a consistent representation of the nullspace,
domain, and range of the curl operator, respectively. The dimension of the nulispace is equal to the

number of parameters in ¢ ; this is
Dim(Mecurl)) = (m+1)n+1)(p+1) (19)
The dimensions of the domain and range spaces are equal to the number of independent basis functions in

~ and B; these are

20
Dim (Dicurl)) = 3mnp + 2mn + 2mp + 2np + m + n + p (20)

Dim (R{curl)) = 3mnp + np + mp +mn (21)
The rank of the matrix C is equal to the dimension of the domain space minus the dimension of the

nullspace
Rank(C) = 2mnp + mn + mp + np — 1 (22)
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Computing the Matrix Elements

Substituting equations (13) and (17) into equation (8) and minimizing with respect to the coefficients E
results in the matrix equation

C'™KCE = kM E (23)

~

where K and M are the matrices

1
K — / “—rﬁrﬁ dn (24)

M = / ¢y a2 (25)

To evaluate the matrix elements in K and M, it is sufficient to evaluate the integral

G(""‘) — /aﬂr,a,t)aa(r,a,t)m (26)

Substituting equation (A13) into (26) gives

G = (1/LLL) / @ @F(OH TN (37(6) @ F(§) @ F'(M))dsdédN) (27)
Introducing Kroneckers identities (iii) and (v) converts this into
G = (/LLLTQTIQTY (28)
where
10 — [ag a0 (29)
Thus, only the one dimensional T matrix is required to evaluate G. Numerical values of the first two T
matrics are - _
o 1 (30)
™ — 1
8
1 2
,—‘4 2 -1 |
7 _ 1
T % | 2 182 (31)
-1 2 4

To evaluate the finite element coefficient matrix for one element, one therefore needs to form the

matrices K and M using equations (28) and (29), evaluate C by using the values in Appendix B, and pre-
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and post-multiply K by CT and C, respectively. The contribution from each element is combined with
the other elements in the grid to form a large, sparse matrix eigenvalu' problem. This eigenvalue problem

is solved by using established techniques for the eigenvalues k02 aud eigenvectors E.
Computational Results ' ’
A computer program has been developed based on the above formulation to solve for the .:_:_{.','-'

electromagnetic fields in resonant cavities. The program allows finite elements of mixed orders to be

assembled and solved for complex three-dimensional geometries. A significant component of this work

was the development of a sparse matrix eigenvalue solution package based on the Lanczos algorithm.

Some of the computational results obtained from the program are presented in Tables 1-12. In these
tables, the approximate eigenvalues obtained by the finite element method for rectangular parallelpiped

cavities are presented along with the exact analytical values.

To begin, Tables 1 and 2 present the eigenvalue spectrum for the "traditional® finite element solution
of the vector wave equation in which each component of the electric field is approximated tn all
directions by a linear polynomial (8-node elements). Spurious nodes are evident in the spectrum, both
below the dominant physical node and above it. It is obviously very difficult to distinguish good solutions

from bad solutions with this approach.

Now consider the case of constant-bilinear elements (m = n = p = 1: 4 node elements). The
eigenvalue spectrums for two different cavities obtained by using these elements are presented in Tables 3
and 4. Notice that in this case a one-to-one correspondence exists between the approximate eigenvalues
and the exact ones, with the dominant eigenvalue being approximated reasonably well. Although some
fairly large errors are obtained with the high-order nodes in Tables 3 and 4, these errors are a result of
the small number of elements used in this problem. It is significant that each mode in these solutions can

be identified; greater accuracy in the eigenvalues can be obtained when more elements are employed.

For constant-bilinear elements the dimension of the nullspace is N = 2 x 2 x 2 = 8. Corresponding to
this nullity, eight sero eigenvalues are found in Tables 3 and 4. Zero eigenvalues have been computed in
this work to confirm theoretical predictions; in practice, one may save computer time by computing the

positive eigenvalues only.

Solutions obtained by using linear-biquadratic elements (m = n = p = 2; 18 node elements) are
presented in Tables 5 and 6. These solutions are seen to be much more precise than the constant bilinear
element solutions. The reason for the increased accuracy is twofold: (1) Higher-order polynomials are
more accurate than low-order polynomials, and (2) linear-biquadratic elements are continuous across

| element boundaries while the constant-bilinear elements are not. A vector plot of the field at a height =

L. - R A AN
Al e alt R AT/, B S S T S A ol - .




 pigtulutaare e et gat i ade ek M S 4 0 A A e LAl Al S S 0 B & e ey T _—— el Akl wnth aad ani s d Gk ad Ak i eldheae Aol Sed il A 8 fod* §
~ - NN . . . B . . il SRS

= (.35 above the bottom of the cavity is shown in Figure 1. In the case of linear-biquadratic elements,
the nullity of the curl operator is N = 3 x 3 x 3 = 27. This is equal to the number of sero eigenvalues
computed for the problems in Tables 5 and 8.
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Finally, we report some computations obtained by applying the finite element method to the vector ;
Helmholts equation. The vector Helmbolts equation is separable in a rectangular coordinate system into f_‘.-;f.- -
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three uncoupled one-dimensional Helmholtz equations. Not surprizingly, the eigenvalues of this one-
dimensional equation are correctly computed as shown in Tables 7 and 8. However, if one employs the
constant-bilinear 4-node element in this approximation then an incomplete solution is produced. As
shown in Tables 9-11, the eigenvalues are correct, but only the zero-mode eigenvalues appear. Thus,
solutions obtained by using constant-bilinear elements in the Helmholtz equation do not allow the

discortinuities at the element edges observed in the solution of the vector wave equations.

When linear-biquadratic elements are used in the vector Helmholtz equation, solutions in the form
reported in Table 12 are observed. In this case, all eigenvalues of the cavity are approximated, but the
sero-mode eigenvalues where the solution is a constant in one direction are computed far more accurately

than the non zero-mode eigenvalues.

As a final confirmation of the correctness of the procedure reported here, observe from Tables 4 and 7
that the solution of the vector wave equation with constant-bilinear elements and of the vector Helmholtz
equation with trilinear elements are identical in all modes to six significant figures. It appears that these
two ways of solving rectangular cavity problems are numerically identical. As pointed out earlier,
however, the advantage of solving the vector wave equation is that it generalizes to modeling non-

rectangular cavaties and to cavities involving dielectric boundaries.

Conclusions

Three-dimensional electromagpetic field problems may be solved by using m'xed order finite elements to
approximate the vector field. In this approach a consistent numerical approximation is made for the
domain, range, and null spaces of the curl operator. Such a consistent approximation in the solution of

the vector wave equation eliminates the problem of spurious nodes that had plagued previous solution

procedures.
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APPENDIX - A
Rectangular Basis Functions

To see how approximation functions are formed for bricks, first consider the two-dimensional case
shown in Figure 1. In this figure, an arbitrary rectangular reference element is mapped into the unit
square by the transformation

¢ = (z ~ ’R)/L,

€ = (v - vp)/L, (A2)

(A1)

(1,0)
(0,0)

YT ’ >
(0,1) (1,1)
Lx
—>

> v
3

Figure 2: Bilinear mapping of an arbitrary
rectangle to the reference rectangle

Two-dimensional basis functions may be obtained from one-dimensional functions by using the

Kronecker matrix product.

Definition:
If A is an nxm matrix and B is a pxq matrix, then the Kronecker matrix product of A and B is denoted

by AQ@ B and is the npxmq matrix
AQ® B= a,B a,B e e,.B
(43)

a, a'zB ... a'mB

Kronecker matrix products satis{ly the following useful identities!!
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¥ B
: () AQ(B+C)=A@B+AQC S
: i
N (i) aA® AB=af(A® B) e

L T T T AT S A

(i) AB®CD=(A®C)YBQD)
(i) (A®B)'=A"'®B™!

(v) (A®BT=ATRH

In general, one-dimensional n'th order interpolation polynomials are defined as

) L (o)
a(g) = 'E ﬁ (A4)

where the g, are the interpolation nodes. Using the Kronecker matrix product, two-dimensional
interpolation polynomials are given by

#r e = #)@a™e (49)

For example, the second-order interpolation polynomial 3'(2'2)(5,6) is the nine element row vector
200 = [0y, (8) @ (ay(8) ay(s)ay(8) ayle)a() "
A6
ayS)o(6) ayfdagl€) aylay(€) aydays) agday(e)

The locations of the interpolation nodes of the polynomials a®?

are indicated in Figure 2. During
computation, the nodes are stored most conveniently by columns; in this case, the axes ¢ and & are

oriented as shown in Figure 3.

Now consider approximating an arbitrary function ¢(¢,£) in terms of the finite element approximation
functions. We may write this as
(s6) = d9eae) (A7)
where @ is an m by n matrix of values at the interpolation nodes. Equation (A7) is converted into the
standard matrix form
#(c.§) = a(sé)e, (48)
by defining a vector operation called vec in the following manner:
-
[,
A,
®

VecA = (A9)

>0 0

where A is the i’th column of the matrix A. The operator vec and the Kronecker product are related by
the identity

vec ABC = (CT ® A) vecB (A10)
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; : Figure 8: The relative locations of the interpolation nodes
corresponding to the polynomial a(z'z)(g,f).
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The vec of a scalar is simply itself; therefore, taking vec of both sides of equation (A8) yields
#(s6) = @) @F™E) ¢
(A11)

where
¢ = vecd (A12)

Three-dimensional finite elements are generated by an analogous procedure to that used in two-

dimensions. Approximation functions for brick-shaped elements are given by the equation
gnmp) = &9 @& @«
(A13)
where (¢,£,\) are homogeneous coordinates in the brick. Figure 4 presents the node numbering scheme for

the second order case.
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APPENDIX - B
Differential Matrices

One-dimensional differentiation matrices are defined by the equation
da™g)

— ~n=1)apin)
% a\" A D

(B1)

where D{®) is the n by n+1 differentiation matrix. The polynomials &’ ("_1)(3') in equation (B1) are of
one order less than that of 5‘(")(;) because the derivative of an n'th order polynomial is (n-1)’st order.
Evaluating both sides of equation (Bl) at the (n-1)’st order interpolation nodes a'.("'l),n' = 1,..n
provides the elements of the differentiation matrix as
d a")g)
de I - .i("—l)

D.™ =p ™ —
3] 3]

Performing the indicated operations with the equispaced node interpolation polynomials gives the

numerical values

pM — 1.4
_ (B3)
p® = -3 4. 1:!
1. -4, 3.
D® = 055 9. 45 1.
125 -3.375 3.375 -.125
-1. 4.5 -9. -5.5
Note that the matrix D has the following anti-symmetry property
D.','(') = —DSn"—)i+l.u-j+2 (B4)
To extend the above result to two-dimensions, we need to evaluate
r] F:]
— &(mn) = — glm) ~{n)
5 3"60 = 5 @Y
= a* oM @ate
o (8)
= @™ Y@M eD™®n

Thus we find that

F:
~(m,n) - (m-Ln
38 s = D,
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(B8)

where
D, = ™M1 (B7)

Similar results hold for derivatives in the £-direction and for three-dimensional elements.
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CURL-CURL~-trilinear functions(8~node elements)

Lx=Ly=Lz=pi/3. (p1=3.1415926535)
number of nodes in x-direction = 12
" y-direction = 12
" z-direction = 1
hx=hy=hz=pi/9.

approx-eigenvalue modes

1.96968 20 meeeem= e
9.08752 2 mmmemme= mmeeee——
9.08752
9.08752
19.69684 (0,1,1) 18.00000
19.69684
19.69684 (1,0,1)
19.69684
19.69684 (1,1,0)
19.69684
28.25468 20 meeme——= emeceee-
28.25468
28.25468
28.56042 200 mwemmme= m—ee—eea
28.56042
49.24210 2 =mmmme= mmem—e—-
59.09051 (0,1,2) 45.00000
£9.09051
59.09051 (0,2,1)
59.09051
59.09051 (1,0,2)
59.09051
59.09051 (2,0,1)
59.09051
59.09051 (1,2,0)
59.09051
59.09051 (2,1,0)
59.09051
60.83625 2002 m—ememem eeme—e—-
60.83625
60.83625
67.95409 9 ===00 mem—emme emee———-
67.95409
67.95409
83.71156 2= mememee ecceeeeo
83.71156
83.71156
98.48419 (0,2.2) 72.00000
98.48419
98.48419 (2,0,2)
98.48419
98.48419 (2,2,0)
98.48419

L S B2 T st BB S Jelh S Jid S g

LN it g, Bas e agh dus By ana |

Table 1. Eigenvalues of the vector wave equation (curl-curl operator) in a rectangular
cavity obtained by using trilinear approximation functions. Note that many of the
approximate eigenvalues computed do not correspond to any actual physical mode.
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CURL-CURL~trilinear functions(8-node elements)

Lx=Lz=pi/3. , Ly=pi/4. (pi=3.1415926535)
number of nodes in x-direction 12

" y-direction 12

" z-direction = 12
hx=hz=pi/9. , hy=pi/l12.

approx-eigenvalue modes actual-eigenvalue

2.37084 © mmmmmme e
9.83625 00 emeemee e
11.72376 0 meeemee mmeeeeee
11.72376

19.69684 (1,0,1) 18.00000
19.69684

27.35672 (0,1,1) 25.00000
27.35672

27.35672 (1,1,0)

27.35672

30.68483 20000 emmemee mmmcmmee
34.39606 200 eee——em emem———-
34.39606

35.81914 = eeem—mee e
36.22030 200000 eemmmem mmmceeee
58.39643 2 —mmemee mmeeceea
59.08051 (1,0,2) 45.00000
59.09051

59.09051 (2,0,1)

£9.09051

66.12458 =0 o meeecem  mcmce——
66.12458
66.75040 (0,1,2) 52.00000
66.75040
66.75040 (2,1,0)

66.75040

75.34928 20000 eemeeee ;ecemeea
75.34928
91.37144 . emmmmee mmeemmae
97.38992 (0,2,1) 73.00000
97.38992

37.38992 (1,2,0)
97.38992

98.38694 === eecmmee eeemea
98.48419 (2,0,2) 72.00000
98.48419

Table 2. Similar results to Table 1 but with a different cavity shape.
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CURL-CURL-bilinear elements(4-node elements)

Lx=Lz=pi/3. , Ly=pi/4.

number of nodes in x-direction =
" y-direction =
" z-direction =

hx=hz=pi/9. , hy=pi/l12.
approx-eigenvalue

0.00000
0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

19.69684

27.35672

27.35672

37.20514

37.20514

59.09052

59.09052

66.75040

66.75040

: 76.59882
(\ : 76.59882
| 76.59882
76.59882

97.38992

97.38992

98.48419

107.23834

107.23834

115.99249

115.99249

(pi=3.1415926535)

modes

(x,0,1)
(0,1,1)
(1,1,0)
(1,1,1)

(1'012)
(2,0,1)
(0,1,2)
(0,2,1)
(1,1,2)

(2,1,1)
(0,2,1)
(1,2,0)
(2'0'2)
(1,2,1)

(2,1,2)

11
11
11

actual-eigenvalue

18.00000
25.00000

34.00000
45.00000
52.00000

61.00000

73.00000

72.00000
82.00000

88.00000

Table 3. The eigenvalues of the vector wave equation obtained by using constant-

bilinear approximation functions.

The zero modes may be ignored. Notice that all

actual physical, eigenvalues are correctly approximated by this procedure although
errors in the values are large for the higher-order modes.
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CURL~CURL-bilinear functions(4-node elements) ot
Lx=Ly=Lz=pi/3. (pi=3.1415926535) e
number of nodes in x-direction = 11 o
h y—direction = 11
" Z-direction = 11
hx=hy=hz=pi/9.
approx-eigenvalue modes actual-eigenvalue
J 0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.000C2
0.00000
19.69684 (0,1,1) 18.00000
19.69684 (1,0,1)
19.69684 (1,1,0)
29.54526 (1,1,1) 27.00000
29.54526
59.09052 (0,1,2) 45.00000
59.09052 (0,2,1)
59.09052 (1,0,2)
59.09052 (2,0,1)
) 59.09052 (1,2,0)
( 59.09052 (2,1,0)
’ 68.93893 (1,1,2) 54 .00000
68.93893
68.93893 (1,2,1)
68.93893
68.93893 (2,1,1)
68.93893
98.48419 (0,2,2) 72.00000
98.48419 (2,0,2)
98.48419 (2,2,0)
108.33261 (1,2,2) 81.00000
108.33261
108.33261 (2,1,2)
108.33261 ‘ R
108.33261 (2,2,1) RN
108.33261 Ll
Table 4. Similar results to Table 1 but with a different cavity shape. ":_....._,
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CURL-CURL-linear-biquadratic(18-node elements)

Lx=Ly=Lz=pi/3. (pi=3.1415926535)
number of nodes in x-direction = 18
" y-direction = 18
" z-direction = 18

hx=hy=hz=pi/9.
approx-eigenvalue modes actual-eigenvalue

0.00000 = mmmmmem e
0.00000

0.00000

0.00000

0.00002

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

18.02846 (0,1,1) 18.00000
18.02846 (1,0,1)

18.02846 (1,1,0)

27.02822 (1,1,1) 27.00000
27.02822

45.80279 (0,1,2) 45.00000
45.80279 (0,2,1)
45.80279 (1,0,2)
45.80279 (2,0,1)
45.80279 (1,2,0)
45.80279 (2,1,0)

54.06912 (1,1,2) 54.00000
54.06912

54.06912 (1,2,1)

54.78579

54.78579 (2,1,1)

54.78579

73.57712 (0,2,2) 72.00000
73.57712 (2,0,2)

73.57712 (2,2,0)

78.67638 20 e——eee- c——————
78.67638
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CURL-CURL-linear-biquadratic(18~-node elements)
Lx=pi/2. , Ly=pi/3. , Lz=pi/4. (Pi=3.1415926535) SRR
number of nodes in x-direction 18 .,;=:3
" y-direction 18 DL

hd z-direction 18
hx=pi/6. , hy=pi/9. , hz=pi/l6.

approx-eigenvalue modes actual-eigenvalue

0.00000 = @ =emmeee cemcceee
0.00000

0.0000C

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000 .
0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

13.02056 (0,1,1) 13.00000
20.03163 (1,0,1) 20.00000
25.03953 ) (0,1,1) 25.00000
25.36470 (2,1,0) '
29.02859 (1,1,1) 29.00000 &vqu
29.03043

32.37577 (2,0,1) 32.00000
40.00222 2= o =emcmme ameeeeee .
40.79489 (1,2,0) 40.00000 -@ﬁhj
41.36763 (2,1,1) 41.00000 . -
45.48986 (3,1,0) 45.00000

52.50093 (0,2,1) 52.00000

52.81386 (2,2,0) y
53.13903 (3,0,1)

55.97965 == =memee cceemmaa

56.78009 (1,2,1) 56.00000

61.47941 (3,1,1) 61.00000 by
17 Lo R e T ———— RN
62.74550 === =meeeee cemeeaao RN
68.25079 (2,2,1) 68.00000 Y
69.40821 (1,0,2) niae
73.26419 (3,2,0) 72.00000
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LAPLACIAN-trilinear functions(8-node elements)

Lx=Ly=Lz=pi/3. (pi=3.1415926535)

number of nodes in x-direction = 4

" y-direction = 4

" z-direction = 4 - .
hx=hy=hz=pi/S. .
approx-eigenvalue modes actual-eigenvalue NG
(19.69684,0.0000000) 2 (0,1,1) (18.00000,0.0000000) AN
(29.54527,0.0000000) 3 (1,1,1) (27.00000,0.0000000) T
(59.09052,0.0000000) 5 (0,1,2) (45.00000,0.0000000) el
(59.09051,0.0000000) (0,2,1) Rt
(68.93894,0.0000000) 6 (1,1,2) (54.00000,0.0000000) IS
(68.93893,0.0000000) (1,2,1) A
(68.93893,0.0000000) (2,1,1) e

(98.48419,0.0000000) 8 (0,2,2) (72.00000,0.0000000)
(108.3326,0.0000000) 9 (1,2,2) (81.00000,0.0000000)
(108.3326,0.0000000) (2,1,2)
(108.3326,0.0000000) (2,2.,1)

Table 7. Eigenvalues of the vector Helmholtz equation (Laplacian operator)
obtained by using trilinear approximation functions. Note that all actual
physical eigenvalues are correctly approximated by this procedure.
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LAPLACIAN-trilinear functions(e—node elements)

Lx=Lz=pi/3. , Ly=pi/4. (pi=3.1415926535) RN

. number of nodes in X-direction = 4 CUe,
¢ " y-direction = 4 .
" z-direction = 4 N

hx=hz=pi/9. , hy=pi/l2.

approx-eigenvalue modes actual-eigenvalue
(27.35672,0.0000000) (0,1,1) (25.00000,0.0000000) ’ .
(37.20514,0.0000000) (1,1,1) (34.00000,0.0000000)
(66.75041,0.0000000) (0,1,2) (52.00000,0.0000000)
(76.59882,0.0000000) (1,1,2) (61.00000,0.0000000)
(76.59882,0.0000000) (2,1,1) e
N (97.38994,0.0000000) (0,2,1) (73.00000,0.0000000) sl
(107.2384,0.0000000) (1,2,1) (82.00000,0.0000000)
(115.9925,0.0000000) (2,1,2) (88.00000,0.0000000)
(125.8409,0.0000000) (0,1,3) (97.00000,0.0000000)
(136.7836,0.0000000) (0,2,2) (100.0000,0.0000000)
T (146.6320,0.0000000) (2,2,1) (109.0000,0.0000000) o
;;; (146.6320,0.0000000) (1,2,2) o
S Table 8. Similar results to Table 7 but with a different cavity shape.
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LAPLACIAN-bilinear functions(4-node elements)

Lx=Ly=Lz=pi/3. (pi=3.1415926535)

number of nodes in x-direction = 4

n y-direction = 4

" z-direction = 3 e
hx=hy=hz=pi/9. .
approx-eigenvalue modes actual-eigenvalue fiﬁ
(19.69684,0.0000000) (0,1,1) (18.00000,0.0000000) lti:
(19.69684,0.0000000) .
(19.69684,0.0000000) Tl
(59.09051,0.0000000) (0,1,2) (45.00000,0.0000000) R
(59.09051,0.0000000) e
(59.08051,0.0000000) SRR
(59.09051,0.0000000) (0,2,1) {45.00000,0.0000000) e
(59.09051,0.0000000) ..
(59.09051,0.0000000) o
(98.48419,0.0000000) (0,2,2) (72.00000,0.0000000) .
(98.48419,0.0000000) .
(98.48419,0.0000000) o

Table 9. Eigenvalues of the vector Helmholtz equation obtained by using constant-
bilinear approximation functions. Notice that only the 0-mode eigenvalues are
produced.
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LAPLACIAN-Dbilinear functions(4-node elements)

Lx=Lz=pi/3. , Ly=pi/4. (pi=3.1415926535)

number of nodes in x-direction = 4
" y-direction = 4
" z-direction = 3 Ny
hx=hz=pi/9. , hy=pi/12. NN
-‘.n.‘.\
approx-eigenvalue modes actual-eigenvalue _':.}-::
RG]
(27.35672,0.0000000) (0,1,1) (25.00000,0.0000000) .
(27.35672,0.0000000) RN
(27.35672,0.0000000) S
(66.75039,0.0000000) (0,1,2) (52.00000,0.0000000) L
(66.75039,0.0000000) R
(66.75039,0.0000000) PN
(97.38992,0.0000000) (0,2,1) (73.00000,0.0000000)
(97.38992,0.0000000)
(97.38992,0.0000000)
(136.7836,0.0000000) (0,2,2) (100.0000,0.0000000)
(136.7836,0.0000000) ST
(136.7836,0.0000000) T

( Table 10. Similar results to Table 9 but with a different cavity shape.
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LAPLACIAN-bilinear functions(4-node elements)

Lx=Lz=pi/3. , Ly=pi/4. (pi=3.1415926535)
number of nodes in x-direction 5

" y-direction 7

" z-direction 6
hx=hz=pi/15. , hy=pi/24.

approx-eigenvalue modes actual-eigenvalue

(25.66859,0.0000000) (0,1,1) (25.00000,0.0000000)
(25.66859,0.0000000)

(25.66859,0.0000000)

(25.66853,0.0000000)

(25.66852,0.0000000)

(57.30186,0.0000000) (0,1,2) (52.00000,0.0000000) S
(57.30186,0.0000000) "‘“]
(57.30186,0.0000000) AT
(57.30186,0.0000000) T
(57.30186,0.0000000)

(79.33304,0.0000000) (0,2,1) (73.00000,0.0000000)
(79.33304,0.0000000)

(79.33304,0.0000000)

(79.33304,0.0000000)

(79.33304,0.0000000)

(110.9663,0.0000000) (0,2,2) (100.0000,0.0000000) S
(110.9663,0.0000000) A
(110.9663,0.0000000) . Ry
(110.9663,0.0000000) g
(110.9663,0.0000000) B

Table 11. Similar results to Table 10 but with a finer discretization.
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LAPLACIAN-linear-biquadratic functions(18-node elements)

Lx=Ly=Lz=pi/3.

hx=hy=hz=pi/9.

approx-eigenvalue

18.02849
27.87692
45.80283
45.80284
55.65121
£5.65127
67.27062
73.57719
83.42559
91.08446
91.08447
95.04494
95.04499

eigenvalues.

- \}.‘ KRR

=3 S AL LN
LR WLV Tl S Wl T PR Tl S R AN S i W)

(pi=3.1415926535)
number of nodes in x-direction
y-direction
z-direction

modes

{(0,1,1)
(1,1,1)
(0,1,2)
(0,2,1)
(1,1,2)
(1,2,1)
[ ’) .
(0,2,2)
(1,2,2)
(0'311)
(0,1,3)

—_ 7 -

— 7 .-

Table 12. Eigenvalues of the vector Helmholtz equation obtained by using linear-
biquadratic approximation functions.
mated, but the O-mode eigenvalues are far more accurate than the non O-mode

SRR A
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actual-eigenvalue

18.00000
27.00000
45.00000

54.00000
72.00000

81.00000 SRR
90.00000 L

In this case, all eigenvalues are approxi-
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LAPLACIAN-linear-biquadratic(18-node elements)

Lx=pi/2. , Ly=pi/3. , Lz=pi/4. (pi=3.1415926535)
number of nodes in x-direction = 4
" y-direction = & 7
" z-direction = 47
hx=pi/6. , hy=pi/9. , hz=pi/12.
approx-eigenvalue modes actual-eigenvalue
25.03956 (0,1,1) 25.00000
29.41665 (1,1,1) 29.00000
46.92494 (2,1,1) 41..00000
52.81389 (0,2,1) 52.00000
57.19098 (1,2,1) 56.00000
68.81034 (0,1,2) 68.00000
74.41617 (1,1,2) 72.00000
74.69928 (3,1,1) 61.00000
78.79325 (2,2,1) 68.00000
96.30156 (2,1,2) 84.00000
96.58467 (3,2,1) 88.00000
98.09551 (0.3,1) 97.00000
102.1905 (0,2,2) 100.0000

Table 13.
R R T e S

o e Te e
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Similar results to Table 12 but with a different cavity shape.
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