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ABSTRACT
Formal charaiceritiosm for safery propertis and livenei propries are given in
terms of the structure of the Buchi automaton that speci-as the property. The char.
acteriztions permit a Propelty to be decmpoed into a safety property and a livenc ,
property whow conjuncton is the original. The cha ermatiors also give isight
into techniques required to prove safety and Uvenm properde
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1. Introduction

Informally, a sjlery property stipulates that som "bad thing" does not happen during
* execution of a program and a livenew property stipulates that some "good thing" does happen

• (eventually) [Lamport 77. -Distinguishing between safety and livenes properties has mert
because proving that a program sats a safety property involves an invartmce argument 4

[.amport & Schneider 841 while proving that a program satisfies a liveness propety involves
a well-foundedness argument (Manna & Pnueli-84P Taus, knowing whether a property is
safety or liveness suffices for decding on a technique to prove that the property hods. -

The relationship between safety properties and invarianee arguments and between live-
ess propertics and well-foundedness arguments has-until now-not been formalized or

proved. Rather, it was supported by practical experience in reasoning about ooncurrent and

distbuted programs in light of the informal def.n s of safety and liveness given above.
This paper substantiates that expeene by formalizing safety and liveness in a way that per.

mits the relationship between safety and invariance and between liveriess and well-
foundedess, to be demonstrated. In so doing, we give new formal characterzations of safety
and lveness and show that they satisfy the formal defntions in [Alpern & Schneider 85a];

we also give a new onstructive proof that every property can be expressed as the conjumton
of a safety and a liveness property.

We pr as follows. In section 2, an automata-theoretic approach for specifymg pro-

pernes is described. Section 3 cantaims or new characterizations of safety and livenes See-
ton 4 shows that every propety cn be xpresd as tb Cinjunctin Of a Safety Operty and
a liveness property. The relationship between safety and livens and various proof tech-
riques is discussed in section 5. Section 6 discusses related work.

2. Histories and Properties

An execution of a program an be viewed as an infinite sequenee a of program states

or= 10J5I...

* which we cal a hiory. Stare so is an initil sate of he program, and each foowing state

results from executing a single atomic action in the preceding stare. For a terminating eecu-
tion, an infinite sequene is obtained by repeating the final state. This corresponds to the
view that a terminatg execution is the same as a non-tminating execution in which after .

some finite rm--once the program has terminated-the state remuins fixed.

A property is a set of infinite seqences of program states. For an infinite w-p; -:,

we write ao-P to denote that cr is in property P. A program mazrfles a property P if for each

of its histories h, hOP.
A

% .. . . .... .. ~-.,---., - .--..- -.--- -- ---. . ...-
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A property is usually specified by a characterisic: predicate cn seqene raC!U= than by
enu2mmtdo. Formulas of temporal logic can be intierpreted as predcs on infinite

sequences of states, and various formulations of tcmparal logic have ben used for specfying

proertes Lamport 83] Lichtensxein et al 85] (Manna & Pm=Ue 81] [Wolper 83]. However,

for our purposes, it wll be onvenient to specify properties using Buchi automim-finite-state
automata that accpt infinite sequeces (Elenberg 74]. Mchanical procedures exist to

trnslate any temporal formula into a wrtrespo di g Buchi automata [Alpem 86] [Wolper 841,
so using Buchi automata de not constitute a restriction. In fact, Buchi automata are more

can be specified using Buchi automata but cannot be specified in (most) te-mporal loge
[Wolper 83].

A Buchi automaton accpts those wquenes of program states that are in the property it

* specifics. Figure 2.1 is an example of a Buchi automaton ng, that accpts (i) all infinite L

* sequeces in which the first state satisfie a aredieste -Pre and (Ui) all infinite sequences in
* ~which the first state satisfie Pre, a possibly empty sequence of states follows in which each

satisfie -Done, and each state in the remaining infinte suffix satisfie DOte A Par. Thus,

MIT specfie Total Correcmeis with preondition Pre, paswndition Post, whber Done holds if
and only if the program has teminated.

-Done Done A Post

-Pre Pre A Done A Post

SFigre 2. 1. .

* Buchi automaton ac contains four wmxmaron states Iab.icd qO, qj, q:, and q3. The stwr state

* is denoted by an are with no origin and vInie-accepting states by concentric circles. An
infinite sequence Ls accepted by a Buch~i automaton if and only if it cats the recognizer to

*beinfinitely often in some inite-accepting stac..I nm, qOis the start state, and both q-
and q3 axe infinte-atcepang states.4

Arcs between automaton states ame labeled by program state predicates ealled itra~uton

Predicates. These defin transitions between automaton states based on the next symbol read

.° " .- ]
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from the input. For example, the arc labeled -Pre from q0 to q2 in n mn that whenever

mi is in q0 and the next symbol read is a program state satisfying -,Pre, then a transition to

qZ is made. If he next symbol read by a Bucbi automaton sadti no transition predicate on

an arc emanating from the current automaton stare, the input is rejected; in this case, we say

the transition is undeflmd for that symboL This is used in m,, to ensure. that an inflire
sequen,, that starts with a state satisfying Pre ends in an infinite sequenc of states that each
satisfy Done A Pos-on.2 nk, enters q3, eve'ry subseque:nt program state read must satisfy

Done A PoS or an undefined transition occurs.

When there is more than one start state or tb is more than on transition possible
from so=e automaton stare for some input symbol, the automaton is non-derermi.'ric; other-

wise it is dewrminivic. Thus, at, is detrministic because it has a single start state and dis-

joint transition predicates label the arca that emanate from each automaton state.

Formally, a Buchi automaton n for a proprty of a program w is a five-tuple

(5, Q, Q0, Q..1, 6), where

S is the set of program states of vr,
Q is the set of automaton states of m,
QOCQ is the set of start states of m,
Q,,VCQ is the set of infinite.accptng states of m,
8E (Q X S) - 2 is theuiuasio fiuwcion of n.

Transition predicates are derived from S as follows. Tq, the transition predicate assoaated

with the arc from automaton stae q, to qj, is the predicate that holds for all program stares s

such that qj 8 8(q 1 1). Thlus, Tij is faise if no symbol can cause a transition from q, to qj.

In order to formaliz when m acpts a sequene, some definitis are quired For
any seqienc a = sor.,.

o(.a] - sa(..!'] = sos ... s S-i. .
(-M..] -

Ir I = the length of a (w if a is infinite).

Transition function 5 can be extended to handle finite sequences of program states in the

usual way-

{q} if IotO0
= { q"q " 8(q, o(OD A q' E (q*, ([(..} if O<Iai<,-

A run of m for an infinite sequence a is a sequece of automaton states that t omld be in

while reading c. Thus, for p to be a run for a, p(O] Q0, and

(VI: O<i<Ial: p(a EIE(pI-1],o(-1D). Let r,(a) be the set of rnm of M on a. (It is a set

bemuse m might be non-deterministic.) Defrme !NF,,(r) to be the set of automaton states"

": , - _ _ _, . -; ., '- .- - .- : i- - --- .. . ; .- - -, i , - -.... ,..i. - -- .L. i " 'i"' "" ' - " ' : '-' -. '



that appear infinitely often in any element of rm,(). Tben, a is accpted by M if and only if

INF,()"Q *, *.

Any set of finite sequenes that can be regnized by a non-deterministic, finite-state %

automaton can be reognized by some deterministic, finite-state automaton [Hopeoft & Ull-
man 79]. Unfortunately, Buchi automata do not enjoy this equivalencD---rae are sets of
i.nfiit seq-,n= s that can be reognized by non-&terminisdc Buchi automata but by no
deterministc one [Eilenberg 741. However, for our purposes it suffice to restict attention to
propert ie specfid by deterministc Buchi automata bemuse [Alpern & Schneider &Sb] proves
Lk following for a program ir that satsfies a propeny ND specifed by a non-deterministic

Buchi automaton in.,v: if ir has a finite state space then there exists a propeny D such that
DCND, D is specified by a deterministic Buchi automaton mD, and ir satisfies D.

Examples of Properties

A Buchi automaton n$, that specifies PawaI Correcmes is shown in Figure 2.2. As in
nm (Figure 2.1), Pre is a transiion predicte that holds for states satisfying the given preom-
didton, Done holds for states in which the program has terminated, and Post holds for states
satifig the given postcanacrioa. Thin, ngpc acsall &Usquences in which the Ent state,

satisfi -Pre, as well as all sequencs in which the first state saris Pre and every subse. .-
qunit state sarise Done = Poit.

Done DoPoss

:T

Figure 2.2. n:..

A Buchi automaton m... for MuAial Ezachson of wo proceses is given in Figure 2.3.
We assume tranitian predicate CSb (CS) hol,'s, for any state in which process ( L i ee ''

cuting in its critical section.

W.......



-(CS A CS.)

Figure -. - ,a.

h Starvaticn Freedom for a mutual excluion protocol is specified by m, of Figure 2.4.

A process4 becomes enabled when its state satisfies the predimte Reaueab, which character-

ires the state f 4 whenever it attemrpt to enter its critical seiou, and 10 makes progress q
when its state satisfies the predicate Sr ed,, which holds whenever . enters its citial sec-
ton. Notice that m explirts the faac that in a mutual xcusion protocol will make but a

single request for each entry into the crit:ial secton.

-.,ReqwMt, -erved .

Served6

Figure 7-4. mm,

" 3. Recognizers for Safety and Uvens

Just as properties can be viewed in tnm of pru ibed "bad things" and prescribed
"Food things", so can Buchi automata. When a "bad thing" ("good thing") of the property
occurs, we would expect a "bad thing" ("goCd thing") to hapn in the recgmr for that
propeny. The "bad thing" for a Buchi automaton is making an undefined trarmon bemus

Sif such a "bad thing" happens (in every run) while reading an input, the Buchi utomawn
will not acpt that input. The "good thung" for a Buchi automaton Ls ente.ng an infinite-
acptng stare, beause we require this "good thing" to happen infintely often for an input
to be accepted. Having isolated thee "bad things" and "good things", it is pomble o give

* an automata-theoretic ca of safety and livene=

. Reco Ing Safety

Define a /rely recognizr to be a determinst Buhi automaton in which

S• Every cyde commins an infime-acazpng state.

In a safery recogaie, "good things" arm inevitable, umns they becme imprsubl due to an

-5-
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undefined transition, which is a "bad thing". Both m, (Figure 2.2) and M,,,, of (Figure
2.3) ar e ampls of safety recognzers.

There is a natural correspondence between safety recognizers and safety properties. To
prove this, we require the following formal definition of a safety property [Alpern &
Schneider 85aj. Consider a property P that stipulates that some "bad thing" a not happen.
If a "bad thing" happe in an infinite sequence r, then it must do so after so=e finite prefix
and must be irremediable. Tms, if ay-P, them is some prefix of a (that includes the "bad
thing") for which no extension to an infinite sequience will satisfy P. Taking the Contraposi-
tivc of thms, we get a formal definition of a safety property P:

Safety- (V cr cr E5: 5 r'- P o (VI: 0-i: (3 : 8 d$S: r[.I. -P))), (3.1)

where S is the set of program states, S" the set of finite sequences of states, S"a the set of

infinite sequences of states, and juaposition is used to denote catenadion of sequences.

Now we can prove that safety reognizen and safety properte specified by deterministic
Buchi automata are equivalent. "

Theorem 1: Safety recagnizera specify only safety propwe " .

Proof. Assume msi, is a safety recognizer for a property Safe. We must show that Safe

satisfi (3.1).

Let r be an inflnite sequence not accpted by .,54. Thus, a'K,,e, and according to
(3.1) we must show

(3i: 0si: (Y8: 8 ES": a[..8Safe)). (3.2)

Since r is not accepted by s4,, because mso is a safety recognizer it must attempt an unde-
fined transition upon reading some finite prefix [a.Cznseqisently ms,,, rejects any
seqience beginning with r..l,, and

('W'8: 8 ES"' "r(..i]OSafe)).

Showing that (3.2) aor'Safe is trivial, so Safe satisf (3.1) and we conclude that Safe
is a safety property. .

Theorem 2: Any safety property specified by a deterministic Buchi automaton cn b.e

spedbed by a safety recognizer.

Proof. Let P be a safety property specified by a detertministic Buchi automaton mp with mi-
tial state q0- Construct MS4,p) with transition function , from mP as follows. -:



-. '- - . v. .- , - - v,--1 . - - r~v-r . r r - -. .--r - v- . .. - . . . - T

(1) Delete all states from which no inflnite-acpting stare is reachable.

' (2) Make all remaining stares infiniteapting.

The resulting automaton sat idies SR, so it is a safety recognizr. Let Safe(P) be the propeMty

seiid by ms(p)-

Notice that PgSafe(P). This is bemuse the states deleted in step (1) of the consu-ucuon
of m54 (p) cannot be meached in an aci-pung run of mp and step (2) in the anstruction can-

not mause a sequece accepted by mp to be reeted by S

It remains to show that Sfe(P).P. Suppose O-Saf(P); we must show a-P. For any

arbitrary 1, let q = 5s#,p)(qo, [-4 - By construction of ms hpe, te must exist a sequence

of program states 10 and an inflnie-acpting star e q Of Mp such that a3_,Wp(q, 1) - q1.

We can now construct a series of finite seqxences 1, 02, ..., where each cauacs n p to

entr an infinite.accepting state when started in the inf ite-a pting state that it is left in by

This is possible due to step (1) in the constuction of which ensures at an

infini e-ac-pting stare is reachable from every automaton state. Define 1 = I 0 C ariy,
a[..]pi..P because cr(..i]P causes mp to enter an infinite-apting stare infinitely often. Sinc

P is a safety pr upry, we conclude i -P due to (3.1). a

Recognizing LIvenes.

Deflne a livenw recognizer to be a deterministic Buchi automaton in which

LR1: All stares have r-ansitions defined for every program stare.

LR2: Them is a path from every automaton stare to an infinit-accpt ing state.

LR1 ensures that "bad things" are not possible for a liveness regnizr, LR2 ensures that a
"good thing" is always possible. Buchi automaton m, at Figure 2.4 is an example of a*I
liveness recognizer.

The is a 3ntra correspondence between liveness recognizers and liveies properes.

To prove this, we re4ire the following formal definion of liveness propcroes (Alern &

Schneider 85a]. The thing to observe about a livenes propery is that no partal ex:um is
irremediable inc if some partial execution were irrmdiable, then it would be a "bad

thing". We take this to be the defining characteristic of liveness. Thus, P is a liveess pro-

pety if and only if

ULveu.: (Va: a ES': (30: OES": aO-P)) (3-3)

Now we can prove that liven=ss recognizers and liveness propertme specfied by deter-

ministic Buchi automata ar equivalnt. " -"

.7-
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Theorem 3: Uvness recognizers specify only liveness properties.

Proof. Assume m,,, is a liveness reegniJrz for a property Live. We must show that Live

satis (3.3).

Let cr be a finite seqicnc. To show that (3.3) holds, we must show that there is an 4

infinite setqune B such that oB-Live. Due to LR1, mL, annot attempt an undefined tran-

sition upon reading cr. Thus, a leaves mf, in some automaton state q. Due to LR2, there is

a path of automaton ;tates from q to some infinite-acepting state q'. Let Og be a finite input

that takes m,, from q to q'. Again, by LR2, thee must be a path from q' to an infinite.

accepting state q". Let 0, be a finite input that takes from q' to q". This argument

can be repeated, resulting in an infinite sequence 0 " 81.... Moreover, Oa muses mL,.

to be in some infinie-acc-pting state infinitely often. Thus, o'r is accpted by M,, and so

oB-Live and (3.3) holds.

Theorem 4: Any Uveness pnoer specified by a determutic Buchi automaton can be

specified by a liveness recognizer.

Proof. Let P be a liveness property specified by a deterministic Buchi automaton mp with

transition function bp and initial state qo. Construct mup) with transiton funcnon 8L, p)

from mp as follows.

(1) Deiete states from which no infiniteaccpng state is reachable

(2) Add a new inflnite-aciptng state q, that has a transition to itself on all input sym-

bols.

(3) For every state q that has an undefined transition on any input symbol s, add a

transition from q to q, under s.

The resulting automaton satisfi, LR1 and .LR, hence it is a liveness recognizer. Let Live(P)

be the pr perry specified by m. .-

Notice that PgLive(P). This is beause the states deleted in step (1) of the construction

of r,pe cannot be reached in an acpting run of mp and steps (2) and (3) in the onstruc-

on cannot cuse a sequenc acepted by mp to be reectd by m.-

It remains to show that Live(P)CP. Suppose aj-Llve(P) and, by way of contradiction,

a$,P. Since a$,P, we conclude that , appe a rs infinitely often in the run of mUep on a.

Let i be the smallest integer such that Bu,,cp)(qo, a[.- D q,. Since crP, due to the con-

struction of u,,,,,, bp(q0, a(--D is undefined or them is no path in mp from 8p(q 0 , cr.- D
to an inflnite-accepting state. In either case, mp will reject infinite seqienc r(..i1B for any

5 f V. Thus, P does not satisfy (3.3). This contradicts the assumption that P is a liveness

....................... .-.



property.

4. Partitioning into Safety and Uveness

Given a deterministic Buchi automaton, it is not diffcut to COnstruct a safety recognizer
and a Uvenss recognzr that specify properties whose intersecion is the orina prpery.
This hows that every property that is specified by a deterministic Buchi automaton is
equivalent to the onjunction of a safety property and a ive.ess property that can each be
specified by deterministic Buchi automata.

Theorem 5: Given a property P specified by a deterministic Buchi automaton mp, there

a properties Ps4pP)a with recog msf,,) and m,2p) such that

(i) "se(p) is a safety recgnizer,
* (ii) mp is a liveness recognizer, and

(iii) P = Sfe(P)r'Lve(P).

Proof. Construct safety recognizer m Sp,) as in the prod of Thorem 2. Construct liveness

recognizer muWp) as in the proo of Theorem 4. It remains to show that

P Safe (P)rLive(P).

Suppose an infinite sequence a is accepted by mp. To show that PCSafe(P)rLive(P),
* we must show that a is accepted by both msf,p) and mu,* . Step (2) in the construction of

ms4L, ) and steps (2) and (3) in the constructon of muip) cannot use a wquece accepted

by rn, to be rejected by either recognizer. Tibc states deleted in step (1) of both constructions
cannot be reached in an accpting run of mp. So, deletng them wi.U not cause a se-quence

accepted by mp to be rejected by either msfip) or MfLiP). Thus, both ms,#,p) and mup)

* accept cr.

Now suppose an infinite sequence a is not accepted by nip. We must show that either
"safjp)or "ijveyf) rejects a. Since mp rejects a, either (i) it makes an undefined transition
on (r, or (ii) imp does not enter an infini -accepning state after some finite pref of a. In

cnywec (i), ntsafp) does not accpt c'. In se(ii), on reading a', mp loops in non-infinite-
accepting states. Either all of these non-nMfnitC-aaCpting stares were deleted from mnip in

step (1) of its constructon, in which me c will be rejected by =W,(p), or eLse they were not
deleted in either m ,ep) or mu,,pe (since step (1) is the same for both) and themfore mUp).
will reject'. r

The constructon of Theorem 5 is now illustrated for mt of Figure 2.1 which specifie s
Total Cbrrectness. The safery recognizer is:

.9-
.. . . . . . . .
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5. Proof Obligations for Safety and Llvenesa

One can think of a deterministic Buchi automaton . that specifes a Jpropery P as
simuatng-in an abstract way--any program ir that satise P. This forms th basis for an

approach to program verification described in [Alpern & Schneider 85b]. In that approach, a

program ir is specified in terms of

* its set of atomic actions A., and

0 a predcate Init, that describes its possible initial states.

To prove that every history of 'ir is in P, i.c. ir satisfie P, a set of asserions, called
correspondence invariants, and a set of variant functions are constructed and shown to satisfy

zrtain proof obligations. Theme is one crrespondence invariant Ci for each automaton state

qj and on variant function v, for each reject knot K, where a rejcz knot is a maximal

strongly connected subset of automaton states in m containing no infnite-accpting states.

Th first two proof obligations ensure that Ci holds on a program state s if there exists a

history of ir containings and m enters qj upon reading s.

Correspondence Basis: (Vj: (mnit, A Tej) =- C 1). (5.1) -

Correspondence Induction: For all a: a E A,
For all : q, f Q:

{Cj , { A (Ty' :, C1) (5.2)
j:l q, Q

The next two obligations ensure that m never attempts an undefied transition when reading

a histoy of ir.

Transition BasWs bnt v T01  (5.3)
j: q, (Q e-. (.

.. . ............. .



Transition Induction: For all a: a E A,:
For all -: qi Q: (5.4)

{IaJ: q, a~
I.' ~ *.m ' ,ot. ,-.'.

The final two obligations ensure that n does not loop forever in n.eing states
when reading a history of -r.

Knot Exit: For each reject knot i: (Y h q : (v,,(qi)=O) = -jC ) (5.5)

Knot Varimnce: For each reject knot i:
For all a: aEA..

For all q1 E : (5.6)
(CAO< (q)V} = v { A ((T"j^cj) = ,,j)<v)}

J:q, ( "'

Soundness and relative completeness of the appr-ach is proved in [Alpern & Schneider 85b].

Returning to safety recognizers, observe that due to S a safety rmcgrizr has no recct

knots. Thus, (5.5) and (5.6) are trivially satisfied by a safety recognizer. This means that

proving that a program satisfies a safety property never requires a variant function (or well-

foundedness argument). The remaining proof obligations for a safety recognizer constitute an

invariance argument. We, therefore, conclude that safety propertes am proved using only

- invariance arguments.

Returning to liveness recogizers, observe that, due to LRI, undefined transitions am"
not possible, so (5.3) and (5.4) am trivially satisfied when trying to prove that a program ir

*. satisfies a property specified by a liveness recognizer. A liven recognizer can have reject
* knots, so (5.5) and (5.6) must be pravd--a variant function of well-foundedness argument is

* therefore required in proving a liveness property. In addition, an invariance argument is
required because (5.1) and (5.2) must be satified.

6. Related Work

The first formal definition of safety was given in (Lamport U51. While that defInitio
correctly captures the intuition for an important class of safety propertes-those invariant
under stuttering-it is inadequate for safety properties that am not invariant under stuttmring.

* The formal derfinito of safety used in this paper, wich was first proposed in (Alpern &
Schneider 85a], is independent of stuttering; in [Alpern et aL 85] it is shown equivalent to

Lamport's for propertes that are invariant under sruttering. The definition of liveness used in
this paper also appeared in [Alpern & Schneider 85a]. In addition, in [Aipern & Schneider

• 85a], we proved that every property can be expressed as the conjunction of a safety Property

* and a liveness property. That proof is based on a topology in which safety properties
corespo d to the closed sets and iveness proprtes to the dense sets. The automata-
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theoretic proof of this paper more closely parallels the informal definitions of safety and live-
ness in terms of "bad things" and "good things".*

In [Sistla 85], an attempt is made to give syntactic charcrizations for safety and live-
ness properties that am expmsd in temporal logic. Deductive systems are given for safety
and liveness formulas in a temporal logic with "eventually", but without "next", or "until".
However, deductive systems for full (propositional) temporal logic are jiven for a subset of
the safety properties, aled strong safety properris, and for a subset of the livene= proMe-
ties, called absolute liveness propertie Fally, [Sistla 85] proves that the states of a Buchi
automaton for a safety propety cam be parnioned into "good" and "bad" states, where
"bad" states are never entered in an aepting run. This rsult is equivalent to Tlheo 2 of
the current paper.

Another syntactic characterizton of safety and liveness propertics appears in [Lichten-
stein et al. 85]. The definition of safety given them coincides with ours; the definition of live-
ness Clasifes some properti as liveness that our definition does not. We do not classify
p umil q as liven= because the ocaxrren-- of -p before q constitutes a "bad thing" and
therefore p WIui q has elements of safety; [Lichtenstein et &L 85] consider it liveness. Tie
definitions in (Lichtensrten et al. 851 arc based on existing temporal lgc inference rules
(proo obligations) whereas our definitions are independent of proof techniques. This ma
or" results about the relationship between types of properties and proof techniques all the
more interesting. Also, in contrast to the definitions in [Lirtenstein ct al. 85], our character-
izations of safety and liveness arm independent of the notatm used to express the
and apply to a larger class of propertieII -, :
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