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ABSTRACT
Formal characterizations for safety properties and liveness propertics are given in P
terms of the structure of the Buchi automaton that specifies the property. The char- SRR
acterizations permit a property to be decomposed into a safety property and a liveness gt
property whose conjunction is the original. The characterizations also give insight koo d
into techniques required to prove safety and liveness properties.
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1. Introduction T T
Informally, a safefy property stipulates that some “bad thing” does not happen during el
execution of a program and a liveness property stipulates that some “good thing” does bappen o
(cventually) [Lamport 77]. “Distinguishing between safety and liveness properties has merit R
because proving that a program satisfies a safety property invalves an invariance argument Lo
(Lamport & Schneider 84] while proving that a program satisfies a liveness property invaives -
a well-foundedness argument {(Manna & Pnuaeli-84]> Taus, knowing whether a property is
safety ar liveness suffices for deciding on a technique to prove that the property halds. -~ < / -
The relationship between safety properties and invariance arguments and between live- SN
ness properties and well-foundedness arguments has—until now—not been formalized or
proved. Rather, it was supported by practical experience in reasoning about concurrent and
distributed programs in light of the informal definitions of safety and liveness given above. o
This paper substantiates that experience by formalizing safety and liveness in a way that per- ) |
mits the relationship between safety and invariance and between liveness and well-
foundedness to be demonstrated. In so doing, we give new formal characterizations of safety
and liveness and show that they satisfy the formal definitions in [Alpern & Schneider 85a]; .
we also give 2 new constructve proof that every property can be expressed as the conjunction T
of a safety and a liveness property. NN
We proceed as follows. In section 2, an automata-theoretic approach for specifying pro- :‘
perties is described.  Section 3 contains our new characterizations of safety and liveness. Sec- il
tion 4 shows that every property can be expressed as the conjunction of a safety property and 7
a liveness property. The relationship between safety and liveness and various proof tech- ST
niques is discussed in section 5. Secton 6 discusses related work.
2. Histories and Properties -4
An execution of a program can be viewed as an infinite sequence o of program states o
T =355 .-
which we call a Aistory. State s, is an initial state of the program, and each following sate V ' .-!

results from executing a single atomic action in the preceding state. For a terminating execu-
tion, an infinite sequence is obtained by repeating the final state. This corresponds to the
view that a terminating execution is the same as a non-terminating execution in which after

some finite time—once the program has terminated—the state remains Sxed. '4

A property is a set of infinite sequences of program states. For an infinite sequence o,
we write om=P to denote that o is in property P. A program sarigfles a property P if for each .'::;.::::3
of its histories A, hpP. I
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A property is usually specified by a characteristic predicate on sequences rather than by
coumeration. Formulas of temporal logic can be interpreted as predicates on infinite
sequences of states, and various formulations of temporal logic have been used for specifying
properties [Lamport 83] [Lichtenstein et al. 85] [Manna & Poueli 81] [Wolper 83]. However,
for our purposes, it will be convenient to specify properties using Buchi automata—iinite-state
} automata that accept infinite sequences [Eilenberg 74]. Mechanical procedures exist to
{ translate any temporal formula into a corresponding Buchi automata [Alpern 86] [Walper 84],
5 so using Buchi automata does not consdtute a restriction. In fact, Buchi automata are more
‘ expressive than most emporal logic based specification langnages—there exist properties that
can be specified using Buchi automata but cannot be specified in (most) temporal logics
[Wolper 83].

A Buchi automaton accepts those sequences of program states that are in the property it
specifies. Figure 2.1 is an example of a Buchi automaton m, that accepts (i) all infinite
sequences in which the first state satisfies a predicate -Pre and (ii) all infinite sequences in
which the first state sadisfies Pre, a possibly empty sequence of states follows in which each
satisfies -Done, and each state in the remaining infinite suffix satsfies Done A Posy. Thus,
m,. specifies Total Correctness with precondition Pre, postcondition Post, where Done holds if

and only if the program has terminated.

| w.--rv
e ) "
A g

-~Done Done A Post

Figure 2.1. m,

Buchi automaton m,. contains four automarton states labeled qq, 91, 9, and ¢3. The starr staze
is denoted by an are with no origin and infinite-accepring states by concentric dcrcles. An
infinite sequence is accepted by a Buchi automaton if and only if it causes the recognizer to
be infinitely often in some infinite-accepting staic. In m,., gq is the start state, and both g-
and q, are infinite-accepting states.

Arcs between automaton states are labeled by program state predicates called transition
predicates. These define transitions between automaton states based on the next symbal read

.................
...................
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from the input. For exampie, the arc labeled -Pre from g, to ¢; in m,, means that whenever
m,. is in gy and the next symbal read is a program state satisfying -Pre, thea a transition to
q, is made. If the next symbol read by a Buchi automaton satisfies no transition predicate on
an arc emanating from the current automaton statz, the input is rejected; in this case, we say
the transition is undefined for that symbol. This is used in m, to ensure that an infinite
sequence that starts with a state satisfying Pre ends in an infinite sequence of states that ecach
satisfy Done A Post—once m,. enters gi, cvery subsequent program state read must sadsfy
Done A Post or an undefined transiion occurs.

When there is more than one start state or there is more than one transition possitie
from some automaton state for some input symbal, the automaton is ron-deterministic; other-
wise it is deterministic. Thus, m,. is deterministic because it has a single start state and dis-
joint transition predicates label the arcs that emanate from each automaton state.

Formally, a Buchi automaton m for a property of a program « is a five-tuple
(Sv Q; QO! Q["fi a)v Wm

S is the set of program states of w,

Q is the set of automaton states of m,

Q,CQ is the set of start states of m,

Qi< Q is the set of infinite-accepting states of m,

3e(QxS) - 29 is the transition function of m.
Transition predicates are derived from 3 as foilows. T, the transition predicate associated
with the arc from automaton state ¢, to q;, is the predicate that hoids for all program states ¢
such that g; €8(g;,s). Thus, T); is false if no symbol can cause a transition from ¢; to q;.

In order to formalize when m accepts a sequence, some definitions are required. For
any sequence O = 554 ... ,

U[I] = 5

of..i] = g5 .5

Q[i..] = ’l‘rl‘l"'

lo| = the length of o (w if o is infinite).
Transition function 3 can be extended to handle finite sequences of program states in the
usual way:

. {g} if |o|=0

3 (q, 0) = PRI 0 ), 8 « 1 :

{9'1 4" ¢3(q, a[0]) A ¢" €3°(q", of1..])} if O<|oi<w

A run of m for an infinite sequence o is a sequence of automaton states that m could be in
while reading o. Thus, for p tw be a nm for o, p{0)¢Q; and
(Vi: 0<i<|o|: pi] ¢ 8(p{i—1},0{i—1])). LetT (o) be the set of runs of m on o. (It is a set
because m might be non-deterministic.) Define /NF (o) to be the set of autormaton states

....................................................................
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'_ that appear infinitely often in any element of I' (o). Then, o is accepted by m if and only if
INF (@)~ Qs 2D

Any set of finite sequences that can be recognized by a non-deterministic, finite-state

] automaton can be recognized by some dewerministic, finite-state automaton [Hoperoft & Ull-

man 79]. Unfortunately, Buchi automata do not enjoy this equivalence—th€re are sets of
infinite sequences that can be recognized by non-deterministic Buchi automara but by no
deterministic one [Eilenberg 74). However, for our purposes it suffices to restrict attention to RN

& properties specified by deterministic Buchi automata because [Alpern & Schneider 85b] proves S

U the following for a program  that satisfies a property ND specified by a non-deterministc pe ﬂ
Buchi automaton myp: if « has a finite state space then there exists a property D such that L
DCND, D is specified by a deterministic Buchi automaton mp, and « satisfies D. f:_i;f- ,

L] Examples of Properties - é

A Buchi automaton m,, that specifies Parriai Correcrness is shown in Figure 2.2. As in
m,. (Figure 2.1), Pre is a transition predicate that holds for states satisfying the given precon-

£

. dition, Done holds for states in which the program has terminated, and Posr holds for states J
i satisfying the given postcondition. Thus, m, accepts all sequences in which the first state . Y
satisfies —Pre, as well as all sequences in which the first state satisfies Pre and cvery subse- T
quent state satisfies Done = Post. T
. o 9
K N
>
..
A Buchi automaton m,,,,, for Mumal Exciusion of *wo processes is given in Figure 2.3.
. We assume transition predicate CS, (CS,) holds for any state in which process ¢ (¥) is exe-
= cuting in its critical section.
.

....................................................
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Figure 2.3. Mye

Starvation Freedom for a mutual exclusion protocol is specified by m,,,, of Figure 2.4.
A process ¢ becomes enabled when its state satisfies the predicate Requesty, which character-
izes the state of ¢ whenever it attempts to enter its critical section, and ¢ makes progress
when its state satisfies the predicate Served,, which holds whenever ¢ enters its crideal sec-
tdon. Notice that m ., explaits the fact that in a mutual exclusion protocol ¢ will make but a
singie request for each entry into the critical section.

sm‘db

Figure 2.4. m,,.,

3. Recognizers for Safety and Liveness

Just as properties can be viewed in terms of proscribed “bad things” and prescribed
“pood things”, so can Buchi sutomata. When a “bad thing” (“good thing™™) of the property
occurs, we wouid expect a “bad thing” (“good thing”) to bappen in the recognizer for that
property. The “bad thing” for a Buchi automaton is making an undefined transition because
if such a “bad thing” happens (in every mmn) while reading an input, the Buchi .utomaton
will not accept that input. The “good thing” for a Buchi automaton is entering an infinite-
accepting state, because we require this “good thing” to happen infinitely often for an input
to be acceped. Having isolated these “bad things” and “good things”, it is possibie 0 give
an automata-theoretic characterization of safety and liveness.

Recognizing Safety
Define a safety recognizer to be a deterministic Buchi automaton in which
SR: Every cycie contains an infinite-accepting state.
In a safety recognizer, “good things” are inevitable, uniess they become imposible due 10 an

.
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undefined transition, which is a “bad thing”. Both m,. (Figure 2.2) and m,,,,, of (Figure
2.3) are examples of safety recognizers.

There is a natural correspondence between safety recognizers and safety properties. To
prove this, we require the fallowing formal definition of a safety property [Alpern &
Schneider 85a]. Consider a property P that stipulates that some “bad thing” d6es not happen.
If a “bad thing” happens in an infinite sequence o, then it must do so after some finite prefix
and must be irremediable. Thus, if okP, there is some prefix of o (that includes the “bad
thing™) for which no extension to an infinite sequence will satisfy P. Taking the contraposi-
tive of this, we get a formal definition of a safety property P:

Safety: (Wo: 0¢5“: omP o (Vi: 0si: (38: B<S“ of..]]mP))), 3.1)

where § is the set of program states, S° the set of finite sequences of states, 5* the set of
infinite sequences of states, and juxtaposition is used to denote catenation of sequences.

Now we can prove that safety recogunizers and safety properties specified by deterministe
Buchi automata are equivalent.

Theorem 1: Safety recognizers specify only safety properties.
Proof. Assume mgy, is a3 safety recognizer for a property Saqfe. We must show that Safe
satisfies (3.1).

Let o be an infinite sequence not accepted by msg,. Thus, ojkSqfe, and according to
(3.1) we must show

Bi: 0si: (VB: B <5“: of..i|BkSafe)). (3.2)
Since o is not accepted by mg.,, because mgz, is a safety recognizer it must attempt an unde-
fined transition upon reading some finite prefix of..]]. Consequently mg,, rejects any
sequence beginning with o{../], and

(¥B: B <S5 of.i|BkSafe)).

Showing that (3.2) = ojSafe is trivial, so Safe satisfies (3.1) and we conclude that Sqfe
is a safety property. Q

Theorem 2: Any safety property specified by a determinisde Buchi automaton can be
specified by a safety recognizer.
Proof. Let P be a safety property specified by a deterministic Buchi automaton mp with ini-
tal state q;. Construct mgy(py With transition function 3.y from mp as fallows.
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(1) Delete all states from which no infinite-accepting state is reachable.

(2) Make all remaining states infinite-accepting.
The resulting automaton satisfies SR, so it is a safety recognizer. Let Safe(P) be the propcrty
spdﬁed by Hl_gd,(p).

Notice that PCSafe(P). This is because the states deleted in step (1) of the construction
of Mgy py cannot be reached in an accepting run of mp and step (2) in the constructon can-
not cause a sequence accepted by mp to be rejected by mggp.

It remains to show that Safe(P)CP. Suppose oi=Safe(P); we must show o=P2. For any
arbitrary {, let ¢ = 35z.p)(90, of.-{]). By construction of mga,p), there must exist a sequence
of program states By and an infinite-accepting state g of mp such that 3¢z,p(q, Bo) = 91
We can now construct a series of finite sequences B, B, ..., where each §; causes mp 0
enter an infinite-accepting state when started in the infinite-accepting state that it is left in by
B,-;- This is possible due to step (1) in the construction of msg,p), Which ensures that an
infinite-accepting s@ate is reachable from every automaton state. Define 8 = Bof8;.... Clearly,
of..i]g=P because of..i]B causes mp to enter an infinite-accepting state infinitely often. Since
P is a safety property, we conclude of=P due to (3.1). ©

Recognizing Liveness

Define a liveness recognizer to be a deterministic Buchi automaton in which

LR1: All states have transiticns defined for every program state.

LR2: There is a path from every automaton state to an infinite-accepting state.
LR1 ensures that “bad things” are not possibie for a liveness recognizer; LR2 ensures that a
“good thing” is always possible. Buchi automaton m,, of Figure 2.4 is an example of a
liveness recognizer.

There is a natural correspondence between liveness recognizers and liveuess properties.
To prove this, we require the following formal definition of liveness properaes [Alpern &
Schneider 85a). The thing to observe about a liveness property is that no partial exccudon is
irremediable ince if some partial execution were irremediable, then it would be a “bad
thing””. We take this to be the defining characteristic of liveness. Thus, P is a liveness pro-
perty if and only if

Liveness: (Va: a¢5%: (3B: B ¢S afP)) 33)

Now we can prove that liveness recognizers and liveness properties specified by deter-
ministic Buchi automata are equivalent.
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Theorem 3: Liveness recognizers specify only liveness properties.
Proof. Assume my;, is a liveness recognizer for a property Live. We must show that Live -
satisfies (3.3). -
Let o be a finite sequence. To show that (3.3) holds, we must show that there is an T e
‘ infinite sequence B such that ofmLive. Due to LR1, m;;, cannot attempt an undefined tran-
sition upon reading . Thus, o leaves my;, in some automaton state q. Due to LR2, there is
R a path of automaton states from ¢ (o0 some infinite-accepting state ¢°. Let 84 be a finite input
‘ﬂ that takes m;;, from ¢ 0 ¢'. Again, by LR2, there must be a path from g’ to an infinite- q
[ accepting state ¢’ Let B, be a finite input that takes m, ., from ¢’ to ¢'’. This argument :
can be repeated, resulting in an infinite sequence 8 = B¢8,.... Moreover, off causes m;,,
to be in some infinite-accepting state infinitely often. Thus, of is accepted by my,,, and so
° ofLive and (3.3) holds. O o .
Theorem 4: Any liveness property specified by a deterministic Buchi automaton can be :
specified by a liveness recognizer. -
Proof. Let P be a liveness property specified by a deterministic Buchi automaton m, with e
transition function 3, and initial state go. Construct my,.p, With tramition function 8,
from mp as follows. o
(1) Delete states from which no infinite-accepting state is reachable. } ’
(2) Add a new infinite-accepting state g, that has a transition to itse!f on all input sym- s
bols. '
(3) For every state ¢ that has an undefined transition on any input cymbal s, add a S
transition from ¢ to q, under s. «
The resulting automaton sadsfies LR1 and LR2, nence it is a liveness recognizer. Let Live(P)
be the property specified by Mpiep)- e
Notice that PCLive(P). This is because the states deleted in step (1) of the construction .
of mp,,,py cannot be reached in an accepting run of mp acd steps (2) and (3) in the construc- RGN
tion cannot cause a sequence accepted by mp o be rejected by My p. ._::fj:':f
It remains to show that Live(P)CP. Suppose owLive(P) and, by way of contradiction, "‘
okP. Since okP, we conclude that q, appears infinitely often in the run of mypy on o. “;

Let i be the smallest integer such that 3;,.p)(¢¢, o[--i]) = ¢,- Since afkP, due to the con-
struction of My py, 3p(qq, o{..i]) is undefined or there is no path in mp from 3p(qq, of..i])
to an infinite-accepting state. In either case, mp will reject infinite sequence of{..i]B for any RN
B ¢5“. Thus, P does not satisfy (3.3). This contradicts the assumption that 7 is a liveness .
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property. O -

4. Partitioning into Safety and Liveness

Given a deterministic Buchi automaton, it is aot difficult to construct a safety recognizer
and a liveness recognizer that specify properties whose intersection is the original property.
This shows that every property that is specified by a deterministic Buchi automaton is
equivalent to the conjunction of a safety property and a liveness property that can each be
specified by deterministic Buchi automata.

Theorem $§: Given a property P specified by a deterministic Buchi automaton mp, there
are properties P . p) and P . p: With recognizers mg .p) and my ;. p, such that

(1) msqepy is a safety recognizer,
(i) mr;epy is a liveness recognizer, and
(iii) P = Safe(P)rLive(P).

Proof. Construct safety recognizer mgq,py as in the proof of Theorem 2. Construct liveness
TeCOgNiZET mMy;py a8 in the proof of Theorem 4. It remains to show that
P = Safe(P)rLive(P).

Suppose an infinite sequence o is accepted by mp. To show that PCSafe(P)rLive(P),
we must show that o is accepted by both mg sy and my,qpy. Step (2) in the construction of
M py and steps (2) and (3) in the construction of my;,.py Cannot cause a sequence accepted
by mp to be rejected by cither recognizer. The states deleted in step (1) of both constructions
cannot be reached in an accepting run of mp. So, deleting them will not cause 2 sequence
accepted by mp to be rejected by either mopy OF myypy. Thus, both mgg, py and my,,p)

L._ accept @.

f -
i Now suppose an infinite sequence o is not accepted by mp. We must show that either

\ Mz p) OF Mg py TEECES 0. Since mp rejects o, either (i) it makes an undefined transition

[ on o, or (i) mp does not enter an infinite-accepting state after some finite prefix of o. In '_
lr. @se (i), Msyypy does not accept 0. In ase (i), on reading o, mp loops in non-infinite- i

accepting states.  Either all of these non-infinite-accepting states were deleted from mg, p) in
step (1) of its construction, in which case o will be rejected by mgp), or cise they were not
deieted in either mg,(py OF My (py (sinee step (1) is the same for both) and therefore my;,, p)

will reect . Q e
The comstruction of Theorem S is now illustrated for m,. of Figure 2.1 which specifies
Total Correctness. The safety recognizer is:
9. 3

......................................................

T N S G I St e N STV

T T T T T v - B S L LN .
- C UL PPV DI AN W SR AR WAL R R SE WS B S S AT WL T BT i DU PR L P L P Ji VL B oL S T S




M ARG sadh dnbopad Wn b Snd il e & A d S f eaf And- Sl ¢

C At S a2 St Gl BB i e P S e g

Pl SR avun aak e es e
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“ frue
Msafeitc)

The liveness recognizer is:

Pre ADone A -~Pog

Done A -Post Done v -Post

~Done

Pre A~Done

Done ~ Post

Pre ADone A Post

MLiversc)

N However, My v, can be simplified by combining the three infinite-acoepting states, resuiting
;:: in the equivalent liveness recognizer:
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-Pre v Done i

M iverrc) Simplified

5. Proof Obligations for Safety and Liveness

One can think of a deterministic Buchi automaton m that specifies a property P as
simulating—in an abstract way—any program T that satisfies P. This forms the basis for an L
o approach to program verification described in [Alpern & Schneider 85b]. In that approach, a L
program T is specified in terms of '

® its set of atomic actions A, and :

®  a predicate /it that describes its possible initial states. : -
To prove that every history of « is in P, i.e. w satisfies P, a set of assertons, called
correspondence invariants, and a set of variant functions are constructed and shown to satsfy
certain proof obligations. There is one correspondence invariant C; for each automaton state

R
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q; and ope variant function v, for cach reject knot x, where a reject knot is a maximal .
strongly connected subset of automaton states in m contzining no infinite-accepting states.
The first two proof obligations ensure that C; holds on a program state s if there exists a o
& history of 7 containing s and m enters g; upon reading s. S
. .
{ Correspondence Basis: (Vj: (Init, A Tg;) = C)). (5.1) ~e
F Correspondence Induction: Forall a: a€¢A:
E Foralli: ¢,¢Q: S
Cla{ A~ @Ty=C (-2) L
2 €} a { a @ =C) a;
The next two obligations ensure that m never attempts an undefined transition when reading ‘\
a history of . RS
Transition Basis: /nit, > v T v
"7 g ¥ (53) A
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Transition Induction: Forall a: a €A:
For all i: q; € Q: (5.4)
{Cla{ v Ty
jiqeQ

The final two obligations ensure that m does not loop forever in non-infinite accepting states
when reading a history of . o
Knot Exit: For each reject knot x: (Vi: g;¢x: (v, (¢))=0) = -C) (5.5)

Knot Varlance: For cach reject knot «x:
Foralla: a€¢A: :
Forall q; ¢ x: (5.6)
{Cin0<v, (9)=V}a {j'qA( ((Tija €)= v, (q))<V)}
‘9 <

Soundness and relative completeness of the appreach is proved in [Alpern & Schneider 85b).

Returning to safety recognizers, obscrve that due to SR a safety recogrizer has no reject
knots. Thus, (5.5) and (5.6) are trivially satisfied by a safety recognizer. This means that
proving that a program satisfies a safety property never requires a variant function (or well-
foundedness argument). The remaining proof obligations for a safety recognizer constitute an
invariance argument. We, therefore, conclude that safety properties are proved using only
invariance arguments.

Returning to liveness recognizers, observe that, due to LR1, undefined transitions are
not possible, so (5.3) and (5.4) are trivially satisfied when trying to prove that a program «
satisfies a property specified by a liveness recognizer. A liveness recognizer can have reject
knots, so (5.5) and (5.6) must be proved—a variant function of well-foundedness argument is
therefore required in proving a liveness property. In additfon, an invariance argument is
required because (S.1) and (5.2) must be satisfied.
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6. Related Work

The first formal definidon of safety was given in {Lamport 85]. While that definition
correctly captures the intuition for an important class of safety properdes—those invariant
under stuttering—it is inadequate for safety properties that are not invariant under stuttering.
The formal definition of safety used in this paper, which was first proposed in [Alpern &
Schneider 85a], is independent of stuttering; in [Alpern et al. 85] it is shown equivalent to
Lamport’s for properties that are invariant under stuttering. The definition of liveness used in
this paper also appeared in [Alpern & Schneider 85a]. In addition, in {Alpern & Schneider
85a], we proved that every property can be expressed as the conjunction of a safety property
and a liveness property. That proaf is based on a topology in which safety properties
correspond to the closed sets and liveness propertics to the dense sets. The automata-
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theoretic proof of this paper more closely parallels the informal definitions of safety and live-
ness in terms of “bad things” and “good things™.

In [Sistla 85], an attempt is made to give syntactic characterizations for safety and live-
ness propertics that are expressed in temporal logic. Deductive systzms are given for safety
and liveness formulas in a temporal logic with “cventually”, but without “next”, or “undl”.
However, deductive systems for full (propositionai) temporal logic are jiven for a subset of
the safety properties, called strong safety propertics, and for a subset of the liveness proper-
ties, called absolute liveness properties. Finally, [Sistia 85] proves that the states of a Buchi
automaton for a safety property can be parttioned into “good” and “bad” states, where
“bad” states are never entered in an accepting run. This result is equivalent 0 Theorem 2 of
the current paper.

Another syntactic characterization of safety and liveness properties appears in [Lichten-
stein et al. 85]. The definition of safety given there coincides with ours; the definition of live-
ness classifies some properties as liveness that our definition does not. We do not dlassify
p unsil ¢ as liveness because the occurrence of -p before ¢ constitutes a “bad thing” and
therefore p wnsil ¢ has clements of safety; [Lichtenstein et al. 85] consider it liveness. The
definitions in [Lichtenstein et al. 85] are based on existing temporal logic inference rules
(proof obligations) whereas our definitions are independent of proaf techniques. This makes
our results about the relationship between types of properties and proof techniques all the
more interesting. Also, in contrast to the definitions in [Lichtenstein et al. 85}, our character-
izations of safety and liveness are independent of the notation used to express the properties
and apply to a larger class of propertes.
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