
D-ft64 ?56 THE DESIGN ND NALYSIS OF A ETORK INTERFCE FOR THE V2~NULT I-LINGUAL DATABASE SYSTEN(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA C R NORTHERLY DEC 85

UNCLSSIFIED F/O 9/2 IL

1. 1 " 111.

1j.6

1.2

•1
A

IIII~" 12812

SIll'-.- __

.

"-

-:MICROCOPY RESOLUTION TEST CHART I'

,I:! :*

.. - %-.*-%.* -- -, *...- % ,y. . ,

O. 4

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
ELECTE

FEB 2 8 M96 j-
- .D.-I

MULTI-LINGUAL DATABASE SYSTEM

by

Clemon R. Wortherly

December 1985

*Thesis Advisor: D. K. Hsiao

Approved for public release; distribution is unlimited

... *J ~.-. w - . -- S.-

. t-

THE ESIG AN ANAYSI OF "4"" --- -

SECURITY CLASSIFICATION OF THIS PAGE f. - p- ('

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/IAVAILABILITY OF REPORT
Approved for public release;2b. DECLASSIFICATON/DOWNGRADING SCHEDULE Apprved for puliireease;
distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) ,....v .

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION _- _5 (f applicable) . -
Naval Postgraduate School 5 Naval Postgraduate School

6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City State, and ZIP Code)

Monterey, CA 93943-5100 Monterey, CA 93943-5100

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIF:CATION NUMBER 0
ORGANIZATION (If applicable)

8c. ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11 TITLE (Include Security Classification)
THE DESIGN AND ANALYSIS OF A NETWORK INTERFACE FOR THE MULTI-LINGUAL
DATABASE SYSTEM (UNCLASSIFIED)

12 PERSONAL AUTHOR(S)
Clemon R. Wortherl _'_-:-'_"
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) IS PAGE COUNT P
Master's Thesis FROM _ TO 19 December 198S 127
6 SUPPLEMENTARY NOTATION

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
ELD GROUP SUB-GROUP Multi-lingual Database System (MLDS) , Multi-

backend Database System (MBDS), Attribute-based
Data Model, Attribute-based Data jnan t- (Cont)

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)
Traditionally, the design and implementation of a conventional database
system begins with the choice of a data model followed by the specification-
of a model-based data language. Thus, the database system is restricted to
a single data model and a specific data language. An alternative to this "."-
.aditional approach to database-system development is the multi-lingual
(atabase system (MLDS). This alternative approach affords the user the
ability to access and manage a large collection of databases, via several
data models and their corresponding data languages, without the aforemen-
tioned restriction.
In this thesis, we present a methodology for supporting network (CODASYL)
d-.tabase management on the MLDS. Specifically, we design an interface
which translates CODASYL-DML statements into ABDL requests. We describe
the data structures, the control mechanisms, and the functions/procedures
necessary to implement such a system ,-
,0 OSTRIgUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

1uNCLASSIFIED/UNLIMITED 0 SAME AS RPT. -3 DTIC USERS Unclassified
22a 'JAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Prof. David K. Hsiao 408-646-2253 z S2H9-MEMO

DO FORM 1473, 84 MAR 3 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

.-- .-'-

SICUPrVv CLASUIICATIO% Of THIeS P~kog (11 aft9 at4

Block # 18 (Continued)

(ABDL), CODASYL Data Model, Network Database Translation

.4

AcCeSSto. Fo

NTIS GRA&I
DTIC TAB l

s c- -n--.

IAvallPibility L'oies-
Aalanc/or

Diut Sn

2 SECUNgTV CLASSIFICATION OF THIS PAG8S(Uhmi DIN& Enste)

. .i.7

,- -.-- , - T. - .-7--- : -~--- .- - - -- -..- . :- : -, . . - - -

ADproved for Public Release, Distribution Umlimited.

The Desian and Analysis mf a
'letwork Interface for tne

tfulti-f1inoual Dataoase System

* *..

Clemon R, 4ortherly
1ieutenant, UJnited btates Navy
B.S,, University of Texas, 1980

Submitted in Dartial fulfillment of the

requirements for the degree of

'ASTER CIF SCIEHCF Ito CCMPUTER SCIENCF

from the

NAVAL POSTRADIJArE SCHOOL. .

Oecemoer 19P5

Aut lo, -..---- o

y-Clemon R, wortherly

.siao, rmests Advisor ..-

Ste "e Ur l n- 3e e-Fa

.... l •-.-

Vincent Lam, Cnair.pan,
Denartmen of ,omuter Science

Kneale 7',ar %4
r ean of Infortration and P cy Sciences

.. and PO..'.'

3
.,." * * *-.*.'--

- - - - - - - - --o .. . °.. • .'.:.*

... r" - --- •-- -... -

-V~. '.7% %-]- t

ABSTRACT

Traditionally, the design and Implementation of a

conventional database system beoins itlh the choice of a

data model followed by the specification of a model-based

data language, Thus, the database system is restricted to a
4

sinale data model and a specific data lanquage, An

alternative to this traditional approach to database-system

development is the multi-lingual database system (4LOS).

This alternative approach affords the user the ability t--

access and ianaqe a larqe collection of databases, via

several data models and their corresponding data lanauaqes,

without the aforementioned restriction,

In this thesis, we oresent a metnodology for supportinq

net'vork (COVASY1,) database Tanagement on tne 6LDS,"

Specifically, we desiqn an interface which translates

C,3DASYL-DML statements into ABOf requests* We descrioe the

data structures, the control mechanisms, and the f'nctions/

procedures necessary to imolement such a system,

4V

* .j °-

S. o.

8::::*5

4o

,:2.-:

- -.-.. '.-.,.y..

TABLE OF CONTENTS

I. INTRODUCTION .,,,,,o , .o, . ,,, ,,,, ,,,,,, 11-...

A, MOTIVATION .,..,,,,.,,,,,,,,,,.,, 11.'..-

B, THE SYSTEM URGANIZATION ,...,.,........ 12

1 The Multi-rLnqual
Database System *,.,,,,., ,,,,, 13

2, The Multi-6acKend
Database System o.,,,,,,.........

II. THE DATA MOICELS .,.,,.,.....,,,,,, 19

A. THE CODASYL DATA MCE4 ,. 19

1 A Conceptual
View of the 4odel 2()

2. The Data Vanipulation

Tanquage (CODASYL-DML) O,,,.,,. 21

R, THE ATTRIbUTE-dASED DATA ODEL , 2.-

1, A Conceptual
View of the godel 2. .. , 6i..

2. The Attribute-Based
Data Lanquaqe (ABOL) ,,,,,,,,,,,,,, 29 L -

liT .T4APPINr, NEThORK (COOASYL)
DATA TO ArTRtIUE-ASEj) DATA ,,,.,.,..,,,. 31

A, THE REPPFSENTATIONOF 4 CCDASYL RECORD , , , , ,. . , . , 32."'--"

4, THE PFEPSENTArO N
OF COOASfL SETS ... , ,,,,, oo..... ,o 34

C, A CCMPLETE DATA-r4APPIiJG EXAMPLE *,,,,,, 35

IV. 1APPING COnASYL-DML-
STAFMFNrS TO ARO!, REOUESTS 3_

%. '..

4, THE IOTION OF CURRENCY ,,,,,, ,, a 9 -"39

4, DATA STRUCTURES -IECFSSARY
FCR ACCURATE TRAM?5LATI 1 , 4 0

5

f ...

-.-.. -....-.. -- -. •. -- ". ..- . -. ,. -.-.-. -. -. ,.......,-' . -s ;'r""

1. The Currpncy Indicator
'Taole (CIT) **.**.... 40

I ~2. The Request Buffer (RD3) *....,. 41

~,MAPPT14G THE FI ID STATEMEPJTS
TO THlE A8DL RETRIVES ,....,*,. 42

1, The FIND ANY Statement 9.. 0. ... 0 4*2 .

2, The FIND CURRENT Statement 45

3. The FINfl DUPLICATE
THIN Statement *.,,,,.*, ,,.,,.,, 46

4, The FIND FIDST Statement 68906949606 42

5, The FIND0 UNER Statement ,5,t,,,,,, S2

6, The FIND WITHIN
CURRe StNaereT Statement ,,,,,.,,, 52

D* MAPPING THlE rOflASYL
GET STATEM4ENTS ********,**** 53

1I The GET and
GET record.tyve Statements ,,,,, ,• ., 54

2. The GET itemi, .. Itemn~
Statement *....,..,..... 54

E. MAPPING THE UATA-UP?4TIr4G

1. The COINDECT Statement 55,,,,,,,,•, 5

2. The fISCONNRCT Statement S..... 7

3. The 140DIFY Statement ,, ,, .".

4. The STONlE Statements 59..*...*

at The STOH.-tbY-Anolication
Statement *O*sI**0**S** o

F b, The STRE:-H--Val -e

SttRnStatement ,,. 0 ,.,,,,,, b2

c, The STa.E-bv--tructural
Statement 62,,,,• .,, .. ,,,,,., 6'

TA FM T o , , , , , , , , , , , ,.,, 5 5,.'-

a. . h S R - y- o.. .on....

- - *.-..-,. :.,.:.,

5. The ERASE Statements ,,,,,*, 63

V0 IMPLEMENTATION CONSIDERATIONS *,,. 66

A, THE KERNEL MAPPING SYSTEM (KMS) .,...... 66

1, The KMS Parser/Translator o7**.*

2. The KM4S Data Structures 69,*...

a* The 'find-.node'
Data Structure 6......Q..

0, The lqet..node'
Data St'icture ****,*** 7r,

c, The 'connect-.node'
Data 6tructure *.,.,.., 71

d. The 'disconnect,node,
Data Stricture ... **.,.,. 71

e*The Imodity..node'
Data Structure *,..,... 72

f, The 'store-.node#
flata Structure *,.,...., 72

q, The 'erase..rodel
Data Structure *,,..... 73

S. THE MAPPING PROCE2SS: AN EXArlPLF 75

C, THE KERNEL~ CONrROLLR (C) ,.... S

I@ The Structure of the FC , 1

a, Creation of a Ne rDatibase *j 2

L-) l4anicljration of an

Il Tme FIND Procedures *,,. 83

(2) Tne CflMECT, nICOi.0'ECT,
and MOD0IFY Procedures H05

(3) Tne STORE Procedure ,,,7,

(4) The EPASE Procellures ,,,, 90

CS) Tne G -T Procedure *,.. 91

.7

VI. CONCL~USIONS m.... g************ 92

APPFNlDIX - THE~ KMS PROGRAM SPECIFICATI~bS 94

I4 XST O)F REFEFRENCFS*O*IOebqBS~*OBS 124

Il

LIST OF FIrURPS

F'igure 1: The multi-Linqual
Database System C"AJ)S) 1..~...*. 14

Vigiure 2: The MUlti-haCKerd
Database system CM'4DS) 1.*,,.**. hf

Figure 3: Data Structure Diagraml of the Sanple

Supoliers-and-Parts Database ,.,90 17

Figcure 4: A CODASYL Set Occurrence , 21

F'igure 5: An Attribute-Based Recorl *,.....,.,,,.. 27

Fiquire 6~: Samole ARDL Requests ,,,, 30

Piqure 7: Hierarchical Structure
of a C00ASY, Record ~.,.,., 32

Figjure 8: Attribute-b~ased Reoresentation,
of CUYL Data Items **..,.,*.. 33

F'iaure 9: An t.xample of a
Transfor',ed COCIASYTL Pecord ,.,..*. 35

F'igure in: Schema for the
suppliers-and-Parts Uatabase 3

Viiure It: Sample Record Occurrences from the
Suppliers-and-Parts UataDase *.... sse 37

Figure 12: Attribute-Based1 Eauivalent of
Record Occurrences in Figure 11 37

F'iqure 13: Information Contained in the CIT *e**$ 40

F'i.-ure 14: Contents of Soft After RETRIEVE, 44

F'1.iure lb: Contents of Buft *..,,,.,..,, 48

Fi'iure 16: Contents of 8uft 4fter PETRTE'JE stooges 5t

F1v7ure 17; Tile 'find-.node' Data structure 69,..

Fiiure 18: The *getsnode flata Structure .. ,,,, 7(

F'igure 19: The 'connect-.node' Data Struicture 71

Fiiurp 2n: The Istoreognodl DAta structure *,. 73

!iiure 21: The 'erase.noolL

withot th ALL ptio

Fi~iure 22: The 'erase-node' Aith ALL, Qotion *... 75

Figure 23: The KmS dm1..staterment Gramnmar 76....

Figure 24: Th)e KC Control Structure 0*.,,.......... 1

wiiure 25: Bufl anI Buf2 After Execution 9....

Ito

-- - -. ~-77-7J - -7

A, "OTTVArIOi

i Lir t n the vast two lecades, the deslan and

implementation of database systems l~as tolliwea a rather

nredictmole Path. The sequence of eve pts In, tne tyDIcal

AnroaCn has hteen to decide on a data model, svecify a

model-based lana~uaae, and ultim.tely, devou1op a system for

controlling and execution the transactions written in ttre

datA larquIame. Trois approach to database system ripveloniment

r a s reSultea i n a n abundance o r Ohomomiefeous Oatabase

syStPis each of wnich restricts the user to a sin,7le dlata

model and a specific lodel-basefd dAta mafliptllation lariquaae.

3 ome examoles o f systems aevelocea usina this anm.roach

1" lclIu de U3's Information 'Aanaqeinent Sys tern 1i"S) wmich

suPoorts only t!he hitararcvnical data 'model and Data Lamiuaqe

T (.)t/1) , .3rerrv !nivic's £j!5P1(iiO whicM supports jusr tre

at4r dt a n ol a nd t hi CrjrSYL a t a iAnioul-ition

Lar-iuaean Tl s S 5T/nata System *riich sunoorts solely

c'ne relitionAl data Todel and ti-e Structured nr miisnr -Ther-

An 1irenrVentional anproach to the problem of d~tabase

* manA cem .n t system daveloompnt, referrel to as the 4Ulti-

I 1inrual CItioaso Systei, (L r') rbf. I, elininates t h

*restrictinrs mentinned above. ine I$Lo.S 'jo'ill ii',e t:)p user

.I'...'

the ability to access and manage a larqe collection of

databases, usina several data models and tnelr correspondIna...

data lanoiaqes. The desion goal of the ALtS oroject is tne

develooment of a system tnat is accessible via a

hierarcnical/DL/I interface, a relational/5&1 interface, a

networK/CO;ASYL interface, and an entity-relationship/Oanlex

interface. Such a system would function as if it were a

heterooeneous collection of database systems instead of a

siln,1e model, sinule lanouaoe system.

Some of tne advantanes of a ',LCS are the reuseahility of

* datatase transactions developecd on a conventional system,

economy and eftectiveness of iardware upgrades (since we now

unqrade just one System insteac of a mummer of different.-

systems), and its atility to sunport a variety of databases

oiitlt around any of the well-known dat.a models. Thus, there

* Is ar~ole motivation for develnpinql such a system as the

* *LOS.

F4. TI-E SYSTEM4 flMGANIZATION

Tn orler to realize tne above cAnaoilties, the LI,.

must ce suoorted by an underlvina natahaoe system that is

moth fast, efficient, ard effective. If tnese criterion are

rot met, tnen the Interfaces being developed for the T1,PS

T ay me renderea useless. Hence, it is important that the

Kernel data model and kernel data lanouae (the urderIvinq'

-,odel and lanquace for the system) be sonorted vy a hiin-

norformance ana niqn-caoacitV dataoase systemr. Currently,

12

the attribute-based data molel and attriOute-baseli dt

* 1aniuaqe are the underlyinq model and laniuaoe of a system

I

whicn is referred to as the 4ulti-bacKend Database System

*CABO0S). In this section, we Provide an overviev of Doti tne

MLLS an tne 4B0S to enhance the readers understandin- of

the entire '4ulti-Lingual Dataoase System.

Figure 1 illustrates the complete structure of the

multi-liniual database system, rne user interacts with tne

system tnroln the lanquaae interface layer (LIL), usinq a

chosen 'iser data model (LIDM) to issile transactions written -

in a corresoondinq model-based user data language (JUL).

The LIU routes the user transactions to the Kernel manoina

system (KCV5), The Km.S then cerfor.s one of two CosSibl-

tasks. rt either transforms a 'h)-nase: database de.inition

to an equivalent database definition based on ths Kernel

data model (KnF); or, when the user snecifies that a IJDL

transaction is to be executed, it translates the UN,-.

transaction into an Pouivalent transaction in the Kernel

data lanquaie (Kr,),

the first task is Derformen in te folloWingr wav,

The KS fnrards thle KA data definitton to the Kernel

contrnller (KC). The KC then sends thp O4 database

- definition to the Kernel database system (KOS), Ahen the

.. KnS Is finishel with orocessina the Krji datanasp definition,

it informs the KC, The KC then notifies t"e user, via tr- "

LTL, that the -atatase definition tP-as oeen o oces sd sa nfi

t.3

..........................
- ...-. ...

-. ".... .

th at the loadincq of the datalase records Pay 6einol, The

second task is oerformel in a sitmlar fashion* The KmS

sends the transactions to the KC which in turn, sends the

transactions to tne NDS for execution, ince the exec'ltion

Is comolete, the KDS sends the results in the KD4 form baCK

to the KC, The KC routes the results to the Kernel

tormattina system (KFS), The KFS reformats the results from

the KOM form to the Ut M form, The KF'S then displavs tne

results in the correct UDM form via the Li6.

L 7IL K

KDL SDL -

UDM User Data .Mode-
VDL User Data Language

LIL Language Interface Layer

K.1S Kernei Mapping Systern
KC Kernel Controller

KFS Kernei Formatting System .

KD.% I Kernel Data Model
KDL Kernei Data Language

K DS Kernel Database zystem

rFAViure 1: The multi-Eiflqual r'ntabase system (,'L(nSl.

The four modules, LIt,, Cr4, KCC, anld NFS, arp

collectively known i t e ,aaaa Lt.-ILac., Four

14

.........
,...

.

interfaces with similar Todules are required for the four

interfacina user models and lanquaqes (i.e., relational/S.)L,

hierarchical/DL/I, network/CODASYL-DA, and entity-

relationshio/Oaolex) of the tOS..'

2. ,-s ±-Bacad Qatabasa .*taa

The multi-backend database system ('BDS) was

desiqned to overcome tne performance Problems and 13parade

oroblems associated with the traditional apnroach to

database system desian, This aoal was realized throUqh the

utilization of multiple backends connected in a parallel

fashion, fne backends have identical nariware° replicated

sottware, and their own disk systems, In the multi-bdckend

corfiauration, there is a backend controller, wnicn Is

resronsible for suoervisina the execution of datanase

transactions and for Interfacinq lith the nosts and users.

-"he 'acKenis oertorm the database operacions witn t.ne

database stored on the disk system ot the bqc~ends. Tne

controller and nackends are connected Oy a communications

nus. 'sars access the svstem throuqo eitner the hosts or

the controller directly (see Fioure 2),

Performance qains are re4lized by increasinq the

rumter of oackends. If tne size ot tle databasp an tn-e

size of the responses to the transactions relain constant,

then 4;3S produces a reciprocal decrease in the resnonse

times for the user trinsactions wnen the nu-nber of baccends

Is increased, Pn the other nand, it the niumber of owicinas

is increasel ororortionally with the increase in oataoase

.5 - %I

*---- - . '~ . -. --b- - ---- .- ;-- ;- -

J.# "., '-

size and transaction responses, then the mBDS produces

Invariant resoonse times for the same transactions, F)r a

more detailed aiscussion of M5DS tne reader is referred to

[Refs. 2 antI 3].

Backend Store 1

Backend
IProcessor 1

Backend Store 2
II

SB edBackend

iiProcessor 2

To a Backend
Host Controller

Backend Store I

Backen~d
Processor N1

Communications - r
": ~Bus '-.

Fiqire 2: The 1,ulti-bacKend Database System (Abrs).

In this thesis, we investigate the lesi r if a

network (r'f OASYT) interface for tre ,,Lu,. oinerjee ref 4], .9.

crovided an initJal desin for such an interface. We are

exterding his work and adaotina it to suovort the

reQuirenents of the ,bnS. ' t. .oarticular, we oresent a

specIfication for the Kernel raooinq systei S .) that will

be ,ised in the network interface, 4e also nrovije an
v- ,~..'.

.% 16

2"~

inplementation stratemv for the kernel controller (C), The

other too modules, the LIL and the KFS are nearly tne same
t 4

in structure as those already Implemented for the DL/! and '--.

SOL interfaces, and thus, thev will not be discussed in

detail in this thesis. The reader is referred to [Refs, 5
t1 4

and b] for further details on the design of these modules,

Throughout this thesis, as! will make extensive usp

of the .uppliers-and-Parts samole dataoase used by Oat._
L 4

[Ref. 71 for illustration of our 4orK. rne data structure

diaoram for tl'is network is shown in Figure 3. There are

suoplier records (S), parts r.cnrds (P), and shipnents (sP)

recorls. The sets ot the database are sumpliers-s'Ipments

(S-S) and oarts-shio'ents (P-SP).

suooliers I I parts I

S-SP IP-SP)

sp/

snipmen Ins 1

..... \ /flln

Pi.71ire 3: ata Str'lcture D)iagram of the Sanle
Suppliers-and-Parts Database,

In Chaoter 2, we orovide a descrintion ft hoth the

network (CIDASYL) dta model and the attribute-based model, rY.Z

as well as, their associated data lancuaqes. In Chapter 3,

a "ethodolniv for nnina A network (CIDASYL) -atanase into

17

-- - - - - -- ~ ---- °,-.-:°-.

: -',

an attribute-based database Is presented. Chaoter 4 Is

aedicated to exlailninq the data maniPulation lan-uage

*translations, Arri, in Chaoter 5, we Provide iimolementation

condiderations for both the K'.hiS ana the KC, Finally, in

C aPter 6, we make our conclusions aoout the oroposed

de bin"

~. -q -.'k

* . ~~'~24-$ ~ KN-VT- ;* ,'%

7 - ,' 7- - •

lie ZUE 2AZA 0II&LL16

The choice of a kernel data model and a corresoomdin-

kernel data languaqe is of vital importance in developinq a

multi-linqual database system. The Kernel data model and

the Kernel data language must be capable of supoortini all

the necessary data model transformations And date lanquaae

translations required by the 4L!S lanquage interfaces.

It Is our intention in this chapter to provide a summary

description of tre data models related to the network. b

(COOASYL) interface, namely the CODASY6 data model ana tile

attribUte-based data model, A conceptual view of notn

models will be presented along with a orief discussion of. -..

the data ianioulation languages associated with each molel.

A. '4L nrDSYL DATA "Of)EL

In general, the network (CODASYL) data "odel is basel on

the concept of directed aranns. The nodes of the grAnns

usually represent entity tvpes which are described oy

records, white the arcs of the irarns corresn-nd to

relationsnio types th~t are reoresented as connections

between records, The CODASYL (Conference on Date System

Lannuaaes) lata model is referred to ov Tsichritzis and

Locnovsky (Ref. A:pc, 114-1 3 2] as the most comprehensive

sopcification of a network data model that oxists. Tolls, the

19 L i

-. .• ._ .. .*.- -.v - - -_--, -.-- " -. - '.-- ...-."-. .. -."- ..' -." ". ',. .-/ ". - *'"- *.''- ..v..-..--.-.-," ~ -. ".-.'-§," -. > . :

reason for choosing the CODASY6 data model and its data

manioulation language for the network interface of the 46LS,

CODASYL databases are networks of record typos and

set tyoes, where records and sets are the entities vhich

describe the databases, A record type in a CODASYL database

is defined in [Ref. 4) as a collection of hierarchlcally

related data item names or field names, These field names

are specified In a schema declaration (temnlate) for that

record tvoe. A =a od is any occurrence of a record type and

has specific values assigned to the data items named in the

schema declarations. This implies that a record type is

simoly a ieneric name for all of the records that are

described by tne same template.

Sot types in a CODASYL database indicate

relationsnios hetween record types, They consist of A

sinmle recorl tytne called the azaa&= record type, and one or -

more record types called the Mambar record tvpes, Thus, a

set tvne expresses exclicit associations between ,ifferent

record tv'es in t-e database. This characteristic nmies it

nossible for a designer to motlel a larie varietv of real

world database manaaement Droblems involving diverse recor-i

types. :)f soecial importance nere is the fact that th re

owner record type of a set tvoe is orohloited from being A

a,emter ot the same set tyne.

Set tvves rave occurrences just as record types Mo,

F.Ach occirrence of a set tyoe has one occurrence of the

20

- J. e.

owner recorl tvne and zero or more occurrences of each of

its member record tynes, The prohibition here is that a

record occurrence cannot be oresent in two different

occurrences of the same set types This qualification

emphasizes the pairwise disjointness of set occurrences of a

qiven set type. Fiqure 4 qives an example of a set

occurrence for the set tyoe S-SP of our samole latacase,

As can be seen from tne example, the CCnASYL data

model makes the desiqn of a database quite simple, Howover,

keenino tricK of all of the relationshios can oe

considerably involved. Thus, one of our orimary concerns in

the desion of a CODASYI languaqe interface for the ?,bnDS is

to Preserve these relationships witnout the comolexity,

S (an owner record occurrence)

1 S2 1 Jores 1 it0 PdrisI

(S-SP)

(two member record occurrences)
,SP S P "...., -

I 52 I PI I 300 I I S2 I P2 I 40r) I

Fljure 4: A CODASYL Ss.t Occurrerce,

2. £. -.a%-JQ b= agaa•(C L-

Crr)ASYT,-LT. is a orocedural data lamquame, The user ". '

of a CDnASYL database writes his orograms in a ieneral

nurnose larnt-iac that nosrs the rop syL-nmro In aeneral,

21 I..

.4,, -S%* ', ". -_ .. ".,. .~ .." " "
°

"- , " .• "-
°

• " • ' •

most ooerations in a CODASYL database are carried out bv

"naviqatinq" through set occurrences, the starting ooint

for this naviuation is usually the current record of tne run

unit. The Z gait is the application oroqram (transaction)

beino executed, A full exolanation of currency will be

provided later in the thesis. other D4 operations can be-

based on the current record occurrence of a set tyme or

recor tyne.

C9nASYL-V4L has several orimary operations which

sunnort tie orimarv database onerations of retrieval,

insertion, deletion, and modifiCation (undatina existin'

racors). fifterent imolementations ornvide varyin-.

collections of these operations, hut we *111 concentrate our

discussion on the basic ones.

T'e cornerstone of the C OTSYL-D4 is the FIin."

statement. rnts statement is used to estatlish the currency

of the run unit, and optionally uxed to estaolish the

currency of the set tyoe ano the recoro tyue. The aeneral.

format of the FTAD statement is

rt1J record-selection-exnression C 1

mhre the sauare hrackets contain optional expressions for

tne suonression of undates to the currency indicators. In

mtner worls, we may suppress the updating or the currency

for a record tVne, a set type, or both. rhe record-

solection-expression nas several different torts each

22

I..

desianed to access a particular record in three different

ways, either out-of-the-blue without reference t3 a

previously accessed record; relative to a previously

accessed record; or by repetition. The other D4L statements

are somewhat less extravanant.

The GET statement in CODASY1,-DML comolements thte

FTND statement. Once a record is found, the 'S statement

olaces the recoro in the transaction's workinq area for

access ty the transaction. rhere are two basic formats for

the GE.T statement. rhey include GET record-type, vhiCii

gives the transaction access to the entire record, an. ,IET

items I4 recora-type, which qives access to only reauoested

data items In the record tyne,

The STORF statement is used to place a new record

occurrence into the latabase. The proqrammer must builo u.

an imaQe of tne record Prior to the STORE renuest usin'

assignment statements whicn re a part of the nost lan.uaqe

in 'hicn the CASYTOML is embedded, Once the record imaae

has heen created, then the Proper set occurrence for the

record mist be selected by the databhase mAnaQement system.

the set occurrence in wnhch the new record Is stored

is deter~inei Dy the SET SEtECTTOM> clause srecifi.d in the -.

scnema definition for the oolect datao~se, Te three

ontions available are: BY AFPPTCTTQON, wnicn means that tne

apPlicatimn oroaram (transaction) is responsible for

selectina the correct occurrerce RY VL11E, wnich "eans the

system selects the oroper occurrence %asel on data ite.

23

values snecific to the owner of the Set occurrence desired;

and, bY STRJCT'IRAL, which means that tne systen selects an

occurrence oy locatina the owner record with a specific item

value eilal to the value of that same item in tne record

beinq stored. The restriction on ttie last two options is

that the data items beinq used must nave been soecifjed witn

DIPLICA:5. "107 ALLOwED in the schema definition. A detailed

discussion of syntax for the CODASYL-DAL is presented later

in tP-e tnests.

It the uiser transaction eesires to manutallv insert

records into the datanase, twn reauirements exist. First,

the scnfa -eflnitlon most include tne IsSEPTION I'r ,A 41A JL

clause In tne set mesciotton for this oarticular Temner

rocnrl. Tren the CijWhFCT statement is used, instead of tne

STOFE statement, for insertion of the record into tne

!ataoasp. re recorn to he inserted is tne current recor-ri

of tne run unit. The set occurrence in wnicn the record is

insertel is detprnline,! In t1he Same way as the SrrwRF

statement.

rmere is also a statement in thn C1UA3YL-DMr, phich

oerforms tne opposite oneration, namely, the manual removal

of a recnrd occurrence from a set. Zhe DITdrJMCT statoment

oerfors this nperation. It disconnects the current record

of the run unit from the occurrence ot the soecitied set

that contains the record. The record occurrence still

resides in tne database, out it is no Innaer a .member of the

soecitiel set. Tnere is a ncualification involved witn this

24 ".

* ' -. * -. -,-

statement, novever. The record to he disconnected must have

a RETE'ITTON clause of fPTITNAL In tne memoer descirtion for

the set tyoe definition in the schema.

In order to delete records from a CnOkSYL datamase,

the EPASE 4tatement is usea, Tnere are four basic options

to this statement; however, two of tnem are very complex and

marainally useful, so they ill not be discussed in this

thesis. The simplest of the two we will deal with is tre

EIASE without the ALL, ootion, Tnis statement causes the

current record of the run unit to be deletod fro-P tre.

datavase if, and only if, it is a the owner of a non-emntv

set. If it is the owner of a non-emoty set, the erase

Kfails.

T 'e RASF ALL option is a little less useful

accordin to Olle [Ref. 91. This stateient causes the

current record ot the run unit to be deleted whether or not

it is the owner ot a non-emptV set. Additionally, tnis

ontion causes each member record of the set to oe aoleted,

an,1 if tnev too are owners of non-emotv sets, tneir menbers

are deleted. Tris action continues all the way down tne

rierarcnv. As one can see, an entire latanase could be-.

iestroyed if tne user Is not careful when usinq tnls option.

The final statement to be covered in tlis thesis is

the MODIFY statement. It Is ,ised to modify values of data

items in a record occurrence. rhis includes modifying all

data items or any suoset of the oata items in the rpcord

tyvce. Tt may also be used to chanclo the Temoershlo mf a

25

..*..-..w-...........................-.- .-...--... '...-............-,...... -

d7

record occurrence from one set occurrence ti another, as

lona as, they are of the same set type, TAus, we nave our

basic workinq set of DM statements.

6. THE ATTIBUTE-SASTD r)ATA ,4ODEL "

The attribute-based data "ode. was originally described

by HSiao [Ref, 10], Tt is a very simlle but nowerful ,ata

model caoable of representinq many other data mooels witrout

loss of information, It is this simpliielty and universalitv

t!)at makes the attribute-based iodel the ideal choice as the

kernel data ,model for the MDS, and the attribute-baseo data

lanauaqe (AI3V) as the Kernel language for the system.

I. A ~ a~Laa1. J~aM t . . .J

The attribute-based lata model is oased on the

notions of attributes, and values for these attrioutes. An

attrietute and its associated value is therefore referred to

as an a t. Lua-ualua iaair or Xando These attrinute-

value nairs are formed from a Cartesian product of the

attribute names and the domains of the values for the

attributes. UsIna tnis approacn, any logical concept can oe "

represented by the attrioute-based model,

A a , in the attrihute-based mmdel represents a

Ioolcal cincept. In order to scecify tne concent

thoroughly, keywords must be formed, A record then, is L

simlv a concatenation of the resultant keywords, such tnhat !

no two keywords in the record have toe same attribute,

Additionallv, the model allo'vs for tne inclusion of textual

2b

- -r r w .

information, called the gr_ ngd , in tne for o f a,

possibly empty, string of characters descrikin, t e record

or concept. The record booy is not used for search

*nurcoses. Fiqtire 5 gives tne format of an attrioute-oaseM1

record.

(<attributel,valuel>, egg
<attributen,valuen>,

{ text)

Figure 5: An .ttribute-gased Fecord

The anolei nrackets, <,>, are used to enclose a kevword-

where the attribute is first followed by a comma and then-.

the value of the attribute. The record oody is tren set

apart ny curly brackets, {,}. Tne recori itself is

identifie. by enclosure within parentheses, As can be seen

from the aoove, this is auite a simrle 4av of representi n

information.

in order to access the database, the attribute-nased

mocde emoloys an entity cAllel Predicates, A keyword

credicite, or simply 2zadJ.ate , Is a triple of t.h fnorm

(attri.ute, relational operator, value), rhese oredicates__

are then conbined in lisjunctive normal form to oroduce a

-. uaL of tne database. In orler to satisfy a Drl'icate, the

attribute of a keyworH In a record must oe identical to the

attrihote in the oredicate. Also, the relation specified ov

the relational operator of the oredicete iust hold between

. the value of tMe predicate, and the valie of tnc kevworl. A

27
I... %

. * .** .. *. - .* ..

record satisfies a query if all predicates of the query are

satisfied by certaln 'cevwords of the record. A query of two

predicates

(TY! = S) and (SNO 54)

would be satisfied by any record of rYPE S (suoplier tvne)

whose SNI (supplier number) is S4, and It would nave the

form,

C<attributei,vauei>, <.. ,<TYPK,S>, o ,'

<SNO,S4>, .., ,<attributen,valuen>,ftext}).

2. Itsa~ie ~~ LaCQ~aags U=WL

The ABDt, as defined by ParerJee, 4siao, and Kerr

tRef. III was oricinallv develoned for use with the Database

Comoiter (08C). This lanquage is the kernel lanquage usea

in the mLDS, Tne ALO6 supports the five primary natabaSP

onerations, INSERT, DFLFTE, UPDATE, RErRIFWV, and RkTRIEVE-

Ct !1ON, Those of use to us in this portion of the ULOS worK

nowever, are INSERT, DELETE, UPrk-tE, and PETRIEVE. A user

ot this languaqe issues etner a request or a transaction,

A ragjiast In the API L consists of a primary operation with a

qualification, The a a .±= sPecifies the portion of

the database that IS to be ooerated on, when two or more

reauests are trouped toqether and exec'lted sequentiallv, we

have a tgaa &£lg in the A1,1A, there are four tynes of

requests, corresoonling to the ftour orinary database

28

...................
...... '*.'

S. "

operations listed above, T'ey are referred to by the

same names. -

Records are inserted into the database wit') an

INISERT request. The qualification for this request is a

list of keywords and a record body, Records are remove,

from the database by a DFLETE request, The qualificition

for this request is a query,

when records in the database are to oe modified, the

UPDATE request is utilized. there are tmo parts to the

qualification for this request* They are the uuery an.

modifier. The query snecifles the records to be modified

%Mile the modifier specifies how tne records are to oe

modified.

rhe final request to he mentioned here is tne

RETPIEV' reiuest. As its name imolies, it retrieves recoras

from the database, The qualification for this request

consists of a query, a tariet-list, and an optional by-

clause, The query specifies the records to oce retrieved,

The tarqet-list contains the outout attribiltes whose values

are required by the request, or It may contain an aunregate
LLk

operation, i.e., AVG, COUNJT, SU4, *.I', OAX, on one or more

oitout attribute values. 'he oy-clause is optional ani is

used to crouo records wnen an anyreqate operation is

soeciied.

As indicated, ARDV consists of bone very simnle

database operations. These operations, nevertneless, are

cauanle of supportinq comolex ana co.norehensive

29
r .%

. - 5 . .

*~~ ~ ~~~ ~ ~~~~~ . 17-.- - . ~~u r . r

transactions, Thus, ABOL meets the requireffent of capt'irina

all of the primary operations of a latabase system# and is

quite useful for our PurooseS. Figure 6 snows examples of

trMe tour primary ABDL reouests,

TISRT(<rYPE,SP,Sr4C,S2>,<PNO,P1>,<TY,3lO>,(samole)

DELTE(TYP =S) and (SNO S4))

UPOATE((TYPE = SP) and (PNJO =Pt))LOTY OTY + 100)

R~rRIEVr((TYPE D) and (PNAiF P~ut))

i'iiure 6: Samnle ABOL Reauests.

N

bsinq a Modification of a procedure ori7inally outlined

b° -aneree -Pef. 4], the transformation of network data

,,- ,.

into attribute-based data becomes a relatively simole task.

The data ust be transtormed into records wnich consist oat a

set of variable-lenath attribute-value Pairs and a r-cord

mOdV. The attrioute-value Pairs may reoresent the tyne,

quantity, or characteristic of the value, and the record

bov is as described in the previous chapter Addlitionally, 1""

all attributes in the attribute-based records are distinct,

for loaical reasons.

T e key aspect of the mapoina Process is the retention.

of the CnnASYL notions of records and Sets (the lintaaes

amonq records), we emphasize that tne COOASYL notions of

rpcords and sets are act the same as the ittribute-hased

notions of records and sets, Thus, the maocinq alqoritnm

oresented n.rein uses attribute-based constructs (or

notions) to lipiement the CnDASYL notions. In the tollowinn

sections, 4e present the various entities nich must o

m anoed, thetr corresoondinq attrinute-oasea eaiivaltnt, and

an exAmole of the mapoinq Process usinq our sample datahase.

It shoull he clear after tnis description, that tne Cij 6ASi

notions mt records and their relationships arP immeed

Preservd in tne attrioute-has,1 system.

31.. .'.. "".... "'.."-..Y. ''........ '-r..-. '
-

.','.," ,,.-" .""-..•....- :_- - . _.

A, THE RTPREsENTATION OF A CODASYL RECRD

A CODASYL record tyoe is structured as a hierarchical

confiouration of data items such as depicted in .Figure 7(a),

where Rt is the record name, and A, 9, C, D, E, and F

represent data item names. Fiqure 7(o) snows an occurrence

of record R1, Notice that only the values of the data items

are present in tre CODASYL record. In tne attribute-oased

system, both the data-item-nale ano its value are stored in

the record,

Record RI Record R'

01 A I aOl.value I

01 I bOivalue i

02 C i c02.value I
02 D I dO2.value I

03 E I eJ3.value .

02 A i aO2.value -
01 F I tOl.value 1 .

* - S -- a S " -

) (..b)

Fiqur. 7,* tierarchical Structure of a CODASYL Record.

Thus, in orler to capture tlhe C'JD'AYL Information, Keywords

nust ve created for eacr of the elementary data ttems

included in the CUCIASYL record. These ddta-item KeywI ords ..

sioul, 6be of the form.

. < data-item-name,data.item.value >

where tMP data-item-name is oualitied y data-iteT-rames at

a niqher level if it is net unioue. Fiaure 4 Shos the data

itei reoresentation for tne Ct)ASYL record of riur-. 7.

32

~%° 4** °

P - I I'

° ° " ,

(,,O ,< Aa.value >,< Bb.value >,
< C,c.value >,< D,d..vlue >,
< E,e.value >,< 8,A,oa..value >,

< F,f.value >,,,,)

Fi,4ure 8: Attrirute-Based Reoresentation of
CODASYL Datd Items,

The dots at the beoinninq of the record and the dots at the

end of the record indicate that there are additional

keywords aenerated for the record in order to oreserve the

CODAS'L record information, These adjitional keyworas are

explained as follows,

Each record occurrence in a CODASYb database must also

belonq to a oarticular tyoe, Tnis implies tnat a kevword"

indicatinq record type must also be included in the

attribute-hased record, Its format is

< TYPE,record.type >

where TYPE is a literal.

Finally, each record occurrence of a C.ODASYL database

has a dataoase key (or andress) qenerited for it, Tnus,

there is a requirement for representation of this value as

well in the attribute-oasea record* ne followinq form is . . -

lised for this Keyword, where nBK.Y is a literal, ,--

< DBKEY,database.key >
33. .%"

.%. °.°,,'

... .. •w -, .-°-",°,°'......'°".o-%
,- ~~...-..".-.-.-.....,... ... %. '.'..~." ., ."'.....''- .j"--. -, ,,

So, in representing record Information, we have the need

for three mandatory keyword types, namely, data.item.name,

with or without qualification, TYPE, and DBKEY""

B. THE REPR$ESNTATIUN OF CODASYL SETS

In order for tte attrioute-based record to be complete,

it must also include Information related to COOASYT, set

r emberShip, and set orderina, Since occuirrences of set

tvpes are oairwise disjoint, then each member record

occurrence relorqirg to a set occurrence is also identified

[v its owner record occurrence* This means that we can

express set iembersnip by inclusion of the xeywor.

< OE4BEset.typevowner.database.Key >

for each set occurrence in which the recora is a member,

F'inally, the loqical nosltion of a record occurrence

within a set occurrence is often useful, Thus, orlerina of

merrDer recorl occurrences within a set occurrence is

expressed by inclusion of the keyword

< POSITlInt,,set.typ,,equence.nufber > ao--

in the attrtoute-based record tor eacn set in *rien tne

record is a memner record,

Therefore, in reoresentinn set intormation, we rave tne

need for two kevword types, those representinq Tsmr.-

records, and those reoresentini ,neiier-record rositions

'within sets,

34
1.-..-

C. A CrMPLETE DATA-MAPPING EXAMPLE

As oreviously mentioned, bV utilizilq the ;bove

transformation scheme, we can take an existin CO)ASYL

database ani transform it into an attribute-based database

witnout any loss of information related to tne CODASYT,

records and sets (ie,, record relationsnios), The

transformation should therefore result in records of the

forT shown In Figtire 9.

(< TYPF,record.type >,< AKF.Y,database.Key >,
< data-item.name1,data.item.valuet >,

< data..Item-.namen ,data-.item..valuen >,
< ,F71 Rset.tynel,owner.database.keyI >,

< F'AER.set.tyoeo,ower.datbase.-Ieyo >, 1-
< PISTTION;.set-typelosequence-nu, er >, ..,--

< PnSrTICN.set-tyneo,seqtupnce.numer > I
textual information).

F'iura 9: ihn .xamrle of a Transformed
COPA6YL Recmr-"

3.-...:,

35 ""'

K *... * * .* **** * *.**.* * ***.* :.*.:.*-.. :.

''iii

SCHEMA NAME IS SUPPLIERS.AND.PARTS,
RECORD NAME IS Si

3UPLICATES ARE NOT ALLnW D FOR SNO,
SNO ; TYPE IS CHARACTER 5.
SNAME ; TYPE IS CHARACTER 20,
STATUS ; TYPE IS FIXFO 20,
CITY ; TYPE IS CHARACTER 15,

RECORD NAME IS P;
D01PLICATES ARE NOT ALLOwFD FOR PWO,

Pilo ; TYPE IS CHARACTER 6,
PAME ; TYPE IS CHARACTER 20,
COLEIR • TYPE IS CHARACTER 6.
4EIGHT ; TYPE IS FIXEO 4.
CITY ; TYPE IS CHARACTER tS,

PFCOD NAmE IS SP;
OIPLICATFS ARE NOT AbL()fD FOR SNO, PDfn.

SNfl • TYPE IS CHIRCTER 5,

P,'eO 0 TY q IS CHARIACTEP 6.
arY ; TYPE IS FIXED 5,

SET 'JAmE IS S.SP;
0101ER TS s;

ORDER IS SORTED BY DEFI ,ED KEYS
DUPLICATES ARE !4UT ALTC*ED,

-AEm6EpR IS SP:
1'ISETI UVN 1S AUTOIATIC
RETEYTION IS FIXED;
KEY IS ASCENDING PNIO IN SP;
SET sEIECTr3r IS gY VALUE UF SwO IN S.

SET NA'4F IS PSP;
Uw'ER IS F;

ORVER IS SORTFD BY OFFINED KEYS
DUPLICATES ARET NGT ALLOE),.

4F,'3ER IS SP;
I JIERtIOJ IS AUTn"ATIC
RHETN NTIvt IS FIXED;
KFY IS ASCE\iDIf ", S141) INJ SP-
SrT S:KLECTICI IS , VhLttk Or PN, pI P,

Fliure t: Schems for the Sttoptiprs-and-Parts __v
at arase,

In order to demonstrate tne trinsformatiin rrneess

further, Fiqure 10 above provifles the schema detinition for.

oulr samole Suopllers-and-Parts database. IJSini th is schema

7
3 b %

-W 77Y77'

definition, the CODASYL record occurrences of Ftoure tI Are

transformed into the attribute-hasei records of P'I-ure 12.

I S2 I Jones 1 1') 1 Paris I

SP

1 52 1 PI1I 300 1

Fioure It: Samnple Record Occurrences from the
Supoliers-and-Parts Database.

(TYPF,S>,<DBKFY, 1),
<SN 1,52> ,<Sf4 A" 12 *Jon PS>,
<STATUS, IO),<CI7Y,?ar1,s>,
i Sample supplier record)

(TYPE,P>,<CBKF.Y ,2>,

<C0T,0R,Red>,<,%EICHT, 12>,
<CITY ,London>,
ISarnole oarts record)

<S '40, 52> * <P' 40 , P1 1>,
<-TY, 300>,

<mPvHF~ * P...P, 2>,
<PcI0N*..S-S, 1>,

<P05SITICN.P.-?, 1>,
ISdmole SP record where the record

nelorqis to t'vo different sets)

wiqure U.: Attributea ;asel Eouivalent of IRecord
Occurrences in Ficiure 11.

A -1.:' Al-

I

IV* 14221UG CQA3L-Qi"OL 31Z9X.. X' ZQ A., , .RE.L~S ,..

Having demonstrated how network databases can De

successfully transformed into attribute-basei latabases, we

are now rpady to examine the mapping of networK data

manipulation statements into ABnI reqUests, As n entloned in

Chapter 2, the CODASYL data manipulation lanquaqe will be

used for tne M[,DG network interface. It snoli ne noted

Mere thou'ih, that only a subset of all tho availanle w.,-

statements will ce used In the MLUS network interface.

Specificallv, the following CC :ASYL statements will be

incoruoratei in this stage of the rroject: FIiD, (ET, SroJP,

Cn'i.'P-CT, OISCQNFJCT, FRASF, and InVIFY, (If tnese, only tne

useful formats were considered for t?)e vLDS. It snould be

further noted that the syntax for these various statements

was derived from the syntax Presented by Date, Olle, and the

original CGOAiYL report [Fefs. 7, 9, anJ 12], resvectively,

In this section we discuss each of toe avove statements

rand their associated manoini process. Prior to describini_

tne ;naocini, *owever, .e first exolain the notion of

ctirrency in a CUICASYt, database, And introduce the mata

structures that are necessary to carry out tie maooin7

process. Tne A 'endix, the KAS (Kernel "aoolnq Systen,)

soeciflcatlin, qives a detailed look at tne manoina rrocess

....... . . . --..-- -

- nr~rw w~.. r *~: - .rr r - V- - ..

7 "

and the specific algorithms anplied to acco'Olish the

language translations.

A, THE NOTIO T OF CUFRECY

In general, the above data manipulation statemlents can

be grouped into two categories, data retrieval statenents

and data uplating statements, However, the common thread

between the two qroups, as well as, tne indiviuual

functionality of each statement, teoends quite heavilv orn

the notion of auzam among the records and sets of the

CODASYL database,

The concept of currency in a CODASYL latabase can be

compared to the well known concept of current position in a

f ile, The idea here is that for each applicdtion ororiram

teinq run on the system, a table of "currency indicators" is

maintained, In general, the currency indicator is an object

'hose value is a latabaza 4g;e It serves as a "cursor"

hiich points to either a record or a set under consideration

by the aonlication prooram. Oatab ase kevs are vilues

ienerated Ov the database manaaement systen that unilule"v

t-ientify each indivinual record in the latabase.

Tne currency indicator tatile tor a qiven annlication.

nroqra (or run unit) ilentifies tre recora occurrence "most

recently accessed" by the run unit for eacn of the

followinq: each type of record, each tyne of set, "any tyoe"

of record, anl each tyoe of realm (Peai is a CO[,A1I,

conceot trat will not he considered In this thesis.) "Any

39.

°* . -

• . ~~~~~...-..... .- *-. -. * ...-.......... ,.. *- .

type" of record refers to the most recently accessed record

occurrence, no matter what its type is. This record is
4

aopropriately called, the rur:rB at t a , and is

the most imoortant currency of all, Additionally, the

zuzaat aL tB& r29 may be either an owner record or a

member record, whichever was accessed most recently.

6. OATA STRUCTURPFS NECESSARY FOR ACCURATF TRANSLArI,,

A currency indicator table CCIT) is creited for each

application program tnat is run usinq the r4LtS network

interface. These tavles are dynamic in nature, They are

instantiatei upon the first call to the dataoase system, an.

are undated as subseauent COVASYL-OML Calls are made to the

datavase system,

CT
RUNi~i- (INIT

record• tyoe
idtabase.Key

record.type (i)Iataas e.kev :;

set.tyce(i)
hoolean (is record an owner recor)-
record.tyne
lataoase..key
member.record.tVne
omner.record.tvoe
owner.dataoase.Key

Fiure 13: Information Contained in the CIT.

The CIT contains an entry for the current ot run

unit, the current of record.type for each recorI.tyoe in toe

'.- -.

. -. .

%v

.............. *.. 7'..

database, and the current of set.type for each set.type in

the database. Eacn entry in the CIT should contain at least

the information shown in Fioure 13 as suggested hy meyer

[Pef• 13].

2. a uagza autlax (22)
S 4

When mapping the CODASYL-DML statements to AROL

requests, there are one-to-many corresoondences oetween tne

two types of stateients, Thus, for each CODASYb-DVL

statement, several ABDL requests may nave to ve qeneratel to

assemble the necessary Information for accurate execution of

the translated CO)ASYL-D)ML statement, In otner words, a

series of ABDL requests may be aenerated for each COD4SYL-

MAL statement. Some of tne reouests are initiallv

incomplete, nowever, and require information rettrned oy

previous RETRIEVE renuests which are a part of that

statement's translation. This implies the need for storaoe

of intermediate information for the requests. L
Ine request buffer CRB) acts as that storaoe

mechanism tor information returned by what we term,

auxiliary retrieve requests (ARR'S), rhere must oe one ,14

for each RETRIEVE request issued, rhe exact role that emcn

huffer olays is exrlained in the next section of tnis

chanter. In qeneral though, upon successful execution of an N..

APR, all record occurrences satisfying the request are

maintained in the ouffer, This information is then used for

subsequent reQuest execultion,

41

C, 4APPING THE FIVT) STATEMENTS Tfl THE NBDIL RETRIFVES

The general format of the CODASYL FINO statement is

INfn record.selection.exoression C 1,

while the general format of the ABDL Rj:TRIEVE is

RETRIEVE Ouery Tarqet-list E by AttrIoutes 1.

As Previously stated, there are several forats for the F!ND

statement, each with a different functionality. Soie of

these, nowever, are tnouqht to be considerably more useful

than others, so we only concern ourselves with the ones of

most value in the PLS, 6efore proceedtng, tne reader

should note that in CODASYL statements, upoer-case notation

represents literals, lower-case represents user supoliel

variable names, and square braciets indicate optional

clauses. we now examine the mappinq Process for each of tne

COOASYL, statements to be included in the mLUS network.

interface.

The FIID ANY statement tells the database system to

locate any record ot type, record.tyoet, whose values for

iteml throunh itemn match thosp in tnAt record's template in

the user worK area, The syntax for the F'IND ANY is:

F'INO ANY record-tyoel uSI'r, iteml, ,. ,itemn
It1 record.typel,

To nerform the mrring of this statement, the Kernel maooinq

.12

IN** *-

system (KMS) must first substitute the word RETRIFVF for the

words FlqW ANY, Then the KMS must form a predicate, (TYPE =
r

recordltypel), for Inclusion in the final query. The next

step In tne orocess requires the K14S to determine the values

that the search is to be based on. fhese values are found

in record.typel's record template.

After acouirinq these values, the KMS then forms

additional predicates for the data items srecified in tPe

original statement, and includes these predicates in tne

query. Since all of the necessary information is avaltahle

to the K'4 for this particular COI)ASYL statement, tnere is

no need for an auxilliary retrieve request (AR), however,

an R6 is needed to store the retrieved data once toe request

has been executed.,
I

wItn the query now formed, the K4S creates a

taroet-list to complete toe RET14IEVE reiupst, The target-

list consists of all attributes of the requested record.

Thus, the translated CODASYL-OfTi statement is:

-ETRTEVE (C TYP = record.tyoel) and
(iteml = user.value1) and

and

(iten = user.valuen))
Call attributes , C by nBKEY 1. V.

This request is then oassed to the KC of the int, rtace for

execution, An examole uttilizino our samole latahase will

telo to illustrate the mechanics of the inavoing process.

43 '

li

- . .- .* 2-) %--.

The requirement is to find any Supplier record, S,

where that suoplier's city is 'Cleveland', the CCGASYL

procedure is:

MOlVE 'Cleveland' TO CITY 14 S
FIND ANY S USING CITY IH S

(Note: The mOVE statement is an assiqnment statement found

in the host CnBOL lanouaqe,) The K,4S would respond to tmis

series of code oy performinq the follo*ina actions:

Step 1: 'Cleveland' is placed in the S template for the

attribute CTY,

Step 2: A RETRIFVE reauest is forned as Such:

RETRIEVE ((TYP- = S) and
(CITY = 'Cleveland"))
(SNIO, SNAME, STArUS, CITY)
by Df3KEY

Steb 3: The KMS passes the request to the C for

execution.

This ooeration results in havinq all S records satisfvina

the nuer y ((TYPE, S) and (CITY = 'Clevetand')) plaed in

the request ouffer and sorted according to tne value of the

datak'ase keys. Filure 14 shows the contents Ot 6ufl after

tlhe RFTI-' vE is execute,-

+-- -4',.
.I I '

I <S6,mathews,25,Cleveland> I
I <S,,Jores,30,Cleveland> I

.j. :... ,' "2-.

Fioure 14t Contents ot dutl After REITRIEV..

44

Upion issuance of a GET statement by the user, th~e first

record in tne RB is returned, proviled tne RE2TIREVE has been

successful.

2. 1ha CI'. CLUREMLZ Satamaia

The FINDO CURRENT statement is a rather simple one in

that no direct mapping to an AIBOL request is necessary.

This statement Is used to change the current ot run Unit

Indicator from its Present value to the value of the

eatacase Kev' of the current record4 of set..tvpet. Trnis, th'e

interface has the responsibility of updating the current of

run unit inlicator (i~e., CTT,.P!UNIT~tyoe <-- record..typel

* and CIT,9U1..UNIT.dbkey <-- dokey of current of set..tynel).

The syntax for this statement is:

FIND CUiRRENT record-tynel V!ITOIN set-typei

As an example of this process, suppose we (iesire to

* start a search at the current SP occurrence in set..tyoe 3-

SP. The COflASYL statement would be:

FItND CVTRAF 'T SP W'ITHiIN S-SP

After enco'2nterinq tnis state-lent, the K.mS masses tne uncit

tnfnrnation on to the Kr! for execution, Tno! KC then uoviates

the cuirrency indicators to reflect tne cmanaes, Tne current

of ruin unit becomes the current SP record occurrence of the

current S-SP set occurrence,

45 .

3 . -ri 60.3Q -U2IA UZUv.ZZ A-t-a-,-z',-

I
",..>>

The FIND DUPLICATE statement is used for seotential -.- ,
4

access 'ittin a Particular set occurrence. It locates

first record.typel record within the current set..ty.el

occurrence whose values for iteml through ltemn match those

of the current record of set-tyoel, the syntax used for

this statement is:

FIND DUPLTCATE WITHIN set.typel USTNG -

ite"1, .. ,itemn IN record.tyoe-

The manning process for this request assumes that

the records being requested are already in an B.

Tmerefore, no RETRIFVE request is ienerated for tnis

statement, Instead, the KMS forwards tme set type, record

tVue, and the lata item name(s), on whi.n the searcn is

based to the KC. The KC then takes this information, and

locates the RB containina the set, Tt then compares tne

snecified data item values for the current record of tne set

type to each of the other member records until. the first

duPLicate record witnin tne set is found. This record is

made availaole for return to the user, i'he CIT is then

u0oateo to reflect the new currency status, This approach

is amvantaoeous, in that, all of the recirls for a

oarticular set occurrence are already aviilabie in an , KJ,
eliminatino tne need for further accesses to the database in

tne event of suhsecuent reiuests tor duplicate records, such)
as would oe tne case in a loon,

4 6

..

The followilq example ill'strates the mapirn-

process: Find the next shipment record tor supolier S1 in

which the quantity snipped Is 100. A oossiDle Ct)ASYL

Procedure for accomplishing this consists of the followina

statements:

MOVE 5I' To SNO IN S
I,'lND ANY S USIG SVrO IN S
'11vT too TO GTY IJ SP
FIJD SP WIrHIi S-SP CfIRRE*IT USING QTY I! SP - -

'In DUPLICATE WITHTN $-SP USTIG 1IY T SP.

The effect of the first four statements is to locate the

first SP occurrence for suvolier Si that has a IrY of InO.

The next statement finds the next SP recora in the S-SP set

with the same (;TY, namely, 100,

The interface would resnond to the FIf; DUPLICATE

reouest as follows:

Ster 1: Execution of the first four statements produces
the results in the Rb of Fiqure 15.

Stev 2: The KC then gets the value of the data item,
orY, by qoino tO the RR and findina the current
record of the S-SP set usina the record.tyoe and
set.type information qiven.

Steo 3: The KC now locates the next recnrl in the sp with
UrY = 10C and maies it ready for r.ttlrn to the . -.

user,

47- -- - . =

. --- -.

<S1,PS,100>
I <SI,06,100> I

<Sl,P80100>
<SIPOIO0> 0)

Figure 15: Contents of bull,

The FIND FIRST statement locates the first momher

record of a set occurrence, This statement has Several

other forms: FIhD lASt, FIND NEXT, and FIND PRIIR, Since

they are all mapoed in exactly the same way, we only

oeseribe the riavpini nrocess for the F'ID F!RSr. The syntax

for the FIND F'TRS is:

FIND FIRST record.tvoel 0ITRIN settynel

Uoon encounterinq the FTND FIRST, the K(S must

ensure that record.tyeIl is a member recirl tyop of

set.typel. This is necessary, since this pArticular FI'JO is

based on the currency indicators, and the cuirrent of

set.typel may ne an owner record, as noted earlier when

discussini currency of set tyres, Assurming that the current

recnrl of set-tvpet is a meiber record, tne K5 then forms a

RFrIRFVF reouest that will retrieve every me'her record ot

tte current set.tycel occurrence into its mq. rhe interface

would then only have to return the first record in the set """

in orler to satisfy the request. If the statement ha,1 been

F1" LAST, tOe last record In the set would 6e returned.

48 ,' -'V

'%

The resoonse would be similar tmr the FINn NEXT and

rfin PRIOP statetents, Assuminq that the set occurrence has

already been retrieved into an RA, the interface would

simoly locate the current record of set.tyoei in the Rtk and

return the record after it In the case of FIND '.TEX'r, or tne

recorl before, it in the case of the FIND PRIORF. The fact

that all of tne member recoras of tne set occurrence are

already in an RB, eliminates the need for additional

dataoAse accesses, Thus, the only Ablf[request that need ve

for'med is tnis:

R2TRTEVF. ((TYPE = recorl.typet) and

("4ETPERset-typel = owner.bkey.set-tynet))
(all attributes) (by DSNEy]

As an examole, consider the following request: Find

all the nart nuuers (PNO's) for parts supoliei hy supolier

S4* A Dossible CODASYL Procedure to accomiPlish this would

be: L:_.

:.OVF '$4' Tn SNO IN s
Flini) AtY S 1uSING S?'.f TJ 5
WI]VE ".%()' TC! EO0'F.:-.,=

FIJO FIRST SP wITHIN 3-SP
PERFnPM WI•TIL EOF = "Y-3'

CET SP
(add P4t) IN SP to result list)
FIND ,idEXT SP sITHT," Zi-SP

EN 0-F R FOP M

The statements of concern here are the FIND FIRST

and the FITW) NEXT, The reader need only be aware that in - ,,

CCP.AS'L only one record at a timhe Is Tade available to the

user, Thus, tre need for tne perform loon,

. ,-- - - - - - - - -- - - - - - - - ---- - . .- - -.- . . , ,,
.,-:. -.. . . , - -,,* *,. - , .- . , . ;-.* * * .

.- -o- - , -

In response to the above sequence of statements, the

interface would perform these steps: I

Step 1: The KMS of the interface would form a RETRIEVE
request to get all members of the S-SP set owned
by supplier S4, Since eacn record has a predicate
which identifies them as memoers of a particular

set occurrence, the task is fairly easy, The re-
quest is:

RETRIEVE ((TYPE= SP) and
C4FMERS-SP = dbkey of S4))

(SMO,PmOLUTY) Eby PNO],

The results of executtnq this request are shown in Fiqure

16, 4e can see that every member record of the set has been

fetched from the database and is available for return to the

user. The FIND FIRST causes the first record to be returned

to the user.

Steo 2: Since the CDASYL orocedure has a F'Tf NJEXT .
statement, the same RE ts jspd In other wnrds,

the KC does not need to execute a new retrieve re- N,'
quest, It nerely makes available the next record" %., v

in the RD until all records have ceen returned to
tne user as per the loop.

Since we are only looKitnq for P-,13 values, the interim user

code would specify the attribute to be returned and the

interface would respond accordinaly.

* ------- -- ,----- ---. o--

I <34,P2,200>

I <54,P4,300>
I <S4,P4,400> I
I I ".s'.A-'.',' -. 0 -.... . -,-:->-

Fi ,+re tbZ Contents ot F3ut1 After HKTPI+VP, •+-

50"''"

r,,2.[.
i:2- .-. '-.+-. G... . , '..2". : - +" ..-.- -+'.---". ... - -..-.. , .-. -.-..--.. -. +...-,. ,. ... • '-''-"',

-.- 1 V- jr-rrV§i

The FIND OWNER statement causes the owner of tthe

current of set..type occurrence to be returned to the user,

The syntax for this statement is:

F'IND OVIER WITHIN set.typel

The maPDinq of this statement is relatively straiihtfor~arl.

The KMS must simply form a PETRIUVF request based on

information availat'le in the CIT. Toe KA(S examines the tr1T

entry for set..typel 4nd extracts tne owner's tvve and

database key value directly from the table, It is then an

easy taskc to form the reouest:

PETRIFVE ((TYPE owner of set..typet) and
CORKIEY =owner dblcey of set..tynel))

(all attributes)

As an example, supoose we want to know the STATUS of

the supplier for oart numoer P6, Let us assume that

previous statem~ents have set up the current S-SP set

occurrence to be S2/P6/20, The CODASYL statem~ent is:

In resoonse to tnis request, the intertace takes thfb

following action:

Steo 1: The KMS forms the request:

RFTRIF.VE ((TYPE = 3) and
CD3KKY =dhKey of 52))
(SM0, SPA 4E, STATUIS ,CI TY)

• I

Step 2: The KC would cause the execution of the above
request, resulting In an Rd containina one recora,
namely, the S2 record,

Based on the interim user code, the STATUS value is returned

to tne user from the RB by the interface,

*6. lta EJL P CUR&21~ Aatazaat

This statement causes the first record within the

current occurrence of set.typel whose values for iten

throuqn itemn match those in the uz&a za= aza& for

recori..tyvel. The followinq svntax is used for this

statement.

•a.

FIND record.tyoel WITHTN set.tyoel CUIRPF,4T
IS, , itemi, •• ,Itetn IN record.typel

This statement is similar to the F[M,b njPLTCATE

excent tnat the search values are ohtained from the user

vice the ctrrent record of set type, fhus, only a sinqle

RFrRIF VE request is needed. That request taKes the tor:.

RrTRIEVE ((TPYF = record.typet) anj
(ME4AER•set..tvpel = HbKeY of owner set-tvnel)
and (iteml = user vAluel)
an-and (itomn = user valuen))

(all attrioutes) (tv D6EY]

this request is then nassed to the <C for executior. If.

there is more than one recor,J satisfvino this query, the w'

for rhe rea'iest contains them all. ,o.ever, only th. first

record encountered is retuirned to the user,

1, illustrate the process of this !naooinq, we return

to a orevious examole: &t,.I) the first snipi"ent for sipolier

52

,7.7. ,

k w

St in which the auantitv is 100. Ustna the first four

statenemts from the examole in section C.3 we nave,

uoxF,, SI ro smo 1 3-

FIND AJY S USINJG SP(' IN S
MOVE 100 TO ITY IN SP

FIND SP vITHIV S-SP - -"

CURRENT USING QTY IN SP,

In order to carry out this request, the follo.vinq steps are

taken Dy the interface:

Steo 1: The K4S forms the retuest:

RETRIFVF (CTYPF" SP)

and ('AEPEF R.S-SP dhkey of SI)

and (COTY =100))
(SO,PNO,QTY) [bv D8KEYJ

Sten 2: The KC executes the above request and causes toe
first record in the K3 to oe made available to the
user,

D. -APPtN4G r'HE CODA3YL GFT STATEmFNrS

The GFT statements in the COVASYL-DAL can be consieered ..

as data retrieval statements just as the FI'W statements I.

are, except tIat the GET request can only access records

that hav P been previously identifie y oa YF'J0 statevent.

It is tne statement that actually Qives the user arcess to

te iniivilual records, There are three nptions availahle

4itn the (,FT statement, and ,e examine each in turn. [n

revelorini tnese maorinas, we decided not to directly mdp

the GET statements to AtiL R FRI.V'S, hut to siTply Issue

instructions to the KC for handlina then.

53

.'7" .i''T-

I"f -

.....................................
. . .-"-.. . .. -:.- :-"."- - "" . .

- - - -. -. -. - --. -%- '°.- * V ,

The GET statement, without the specification of a

particular record type, causes the entire current record of

run unit, that is, every data field in the record, to De

returned to the user via the User l.ork Area (,J ,). In tne

mLOS network interface, recoqniton of this statent by the

K74S results in the following response:

Step i: rhe K4S informs the KC that the "next" available
record in the RB that contains records ot :
the type CTT.RUN.U.'IT.tvoe is to ve oassed tn tne

user. iote that the type of the cirrent of run
unit does not matter in this case.

The GET recorl.type statement is ±lentical to the

GFT option alone, with the exception that the user soecifies

a Particular record tyoe. In this case, the KvS must

determine it tte types of the current of run unit matches

the record type specified before issuinq instructions to the

KC. Also, every data Item is returned to the user.

Returnina to our examnle in section C,4, tne ",ET

SP" statement causes the return of the record, <S4,P2,2o0>,

to the user the first tine the G1ET is issued and eacn of the

other records in senuence as the loop continues.

2. lia GEZ It-ml, 1t ,ama Staaza.t '

Unlike the other GET options, this statement causes

specific data items to be returned to the user. 1he sVntax

of the statement Is:

GET iteml, . . itemn IN recorl.tyne!. :,

54."%

The KMS must compare the record.type to the current of run

unit and also ensure that the data items listed matcn the

data items in the record tyoe specified. Once this is done

and is successful, the KMS issues instructions to the KC

just as in the above case. Only this time, specific data

items are returned from the records accessed.

As an example, suppose we wanted only the PNO values

from the SP records. rhe value returned from our last

example would be P2, with subsequent GET statements

returning each PNi value in succession.

E. MAPPIPIG THE DATA-UPDATIPG STATEMENTS

In this section, we examine the COKINECT, DISCONNFCT,

STCPE, MODIFY, and ERASE statements. At this point, the

reader snoull nave a basic Jnderstandinq of the -naooinq

process as previously described, thus, for the sake of

orevity, the reader is referred to (Refs, 7, 9, and 12] for

detailed descriptions of toe statements and any restrictions

involved #ith their use, We therefore, confine our

discussion of these statements to a broad definition, the

n-appinq process itself, and in most cases, an exan.ple.

161.1aa CUEC1 sta~araz

The CNJ ,FCT statement Is used for manuil Insertion

of the current record of run unit into the current

occurrences of the set typeCs) specified. The syntax is:

CONE4CT record.tvel TO set.typel, *,* ,set.tvoen.

55

*~~~~~~~~N QV !A .:..7..:.--~;> *.

This statement requires that the record.type1 record be A

member of the sets specified and also have an insertion

clause of MANUAL for those sets,

The CONiNfECT statement maps directly to the ABDL

UPDATE request, The UPDATE format is:

IPOATE Qtery Modifier

In the case of the COMNFCT, the mapping is very simple.

First, the KMS replaces COQMIECT ny the word 'JP9ATF, Then,

the type and database Key of the record to oe inserter] is

taken from the CIT to form the query ((TYPF record.tYoel)

and (RKFY = CITRUI.UNIT.dbkey))o Finally, in order to

construct the moditier, the KMS ;et the database Key of the

owner of the current occurrence set.typel from toe CIT. The

.L14S then forms the modifier, CMEM4ERset.tyrei =

CIT.set.typei.owner.dhkey) for each set tyoe soecified,

Each set type specified has its own complete UPDAT' request

generated.

tlne miqht ask, !'Mhy use an uPOAT& instead of an

I41SF-RT recuest. *ell, the difference is that the CowiNFCr

statement involves records already in the dataoasp, Ann,

because the kevora, V ; h . s et-t pe,NUrL>, is in the'

record whose connection value is iULL, it oecomes a simnle

,natter to Just update that oarticular Keyword, thereoy

connectini the record, Oe recall that in an attribute-based

database, 'ceywords, not nointers, are used to connect one

recorl to anotner. The INSFRar statement on the otner nmnd,

SSb

,:, r

involves records not already in the database, Thus, the

completely translated CqNJECT statement is:

UPDATE ((TYPE a record.typel) and
(DBKEY = CIT,RUH.U4IT~dbkey))
(MEMBER,set.typei = CIT,set.typei,owner.dbkey)

2. 14A Q3ca cz ~ataZMA&

The DISCONNECT is just the opposite of the roNFCT

statement, It causes the current record of the run unit to

be disconnected from the set listed, The set occurrences

selected are determined by the current of set type

indicators. Since several set types may be listed in tne

statement, only one statement is needeo in order to make

several removals. The records still remain in the datahase.

They are siiply disconnected from specific sets. The syntax

is:

DISCONNFCT record.typel FRU"
set.typel, ,,, ,set-typen-

The DTSCONNFCT statement reluires that record.tyne.

be a member of the set types listed, and that the record be

removed from tne set occurrences that are current, because

of the way we represent set memoershlo in tie attrinrite-

hised recori, tnis task is very simple. Since w e are

disconnectinq the current of ruin unit, and it contains the 1
dataoase keys of the owners of the set occurrences it

oelonas to, amd since eacn record can only ne in one %

occurrence of the same set tyoe (oairwise disJointness), the

57 %

-

. -- -. ,-. --- - o.. - °-", .. .' ' " "''" '.'."L ' L~ ' "", , 2 . -" " '
" " "" " ' ' -..

. • . . . , . . , . , , .. o

mapping process is direct, we simply form an UPDATF request

for each set tyoe listed, Thus, the keyword,

< (M48ER.set.typei,owner-dbkey>, is modified, and becomes the

keyword, <MM1ERset.tyPei,NULL>, To accomolish this, tne ..'-

KAS forms tne renuest,

IJPDATE ((TYPE = record~tynel) and
(DfKEf = CTT,RUk:.vUIT,dbKev))
CMEMBER,set.tynei = ?JUL, b)

and passes it to the KC for execution,

3. Zl IQ,,.Y t.tm r."

The 'ODIFY statement causes the entire current

record of the run unit to be modifiei or specific data items

in that record to be modifiede The syntax is either,

MODIFY record.tyoel, or

"" '~~40nrIFy iteml, .. ,temn If' record.tvpet. .-.-

Tnis statement also, nas a rather straiqhtforward

mappina to the AAOL UPDATE request, The state,,ent assum'es

that the user has suonlied the necessary data itent values

for mo.itication in record-tvnel's record template in the

UvA. Therefore, the job of the KmG Portion ot tne interface

is to qet this user supPlied information ana fori t-ne

follo 1vnq UPDATE request for each data item to he modified;

uPDAteH (('rTYPE a record.tynet) and. ~(OhKEY = Cfr.Ru%;.U',1T~dbkeY)) :':

(data itemi = user value for 1),

As an examnle of this process, Consider chanlinn the STATUS

.....-.. o..

e '

I. U

and CITY attributes of supplier S4 from 20 and 'London' to

15 and "Chicago', resoectively, The CODASYL request Is:

MOVE S4 TO SNO IN S
MOVE 15 TO STATUS IN S
AOVE °Chicaqo' TO CITY IN S
FIND AMY S USING SNO IN S
%ODIFY STATUS,CITY IN S.

(vote: The SNO numbers in this example are unique,) Once

aqain tne MOVE statements set up the S record template for

use by holding the new values for the S4 record. The 'ITNI)

statement establishes tne S4 record as toe current record of

the run unit, The KMS then responds to the MUDIFY statement

by torminq the following two UPDATE requests and passino

them to the KC for execution,

UPr)ATF ((TYPE = S) and
CRKEY = dbkev of S4))
(ST.ATU1S = 15)

UPnATE ((TYPE = s) and

nKEY = dbkey ot S4))
(CITY = 'Chtcaqo')

If the entire record was to be changed, the first ontion

*ould have been used, renuirini the KMS to form An uPDAfF

request for each data item in the S record tyoe,

The STORE statement is used in the C.O)ASYL,-DM to

insert a new record into the database, Aefore a new record

can he inserted though, it must be constructed, rns takes

pldce in the JxA, The syntax for toe STfnI. is:

1aflF" record.tVreI

59

................................-- -" . - .- '.....-....'....- .-.",'; - - -...,'-.-."*"- ." ','r -,' ' ''--:, "-.

In mappinq the STORE statement, care mus t he

exercised in determininq the prooer set occurrence in wnich
I

to place a record, if it is a member record, Tnis is

necessary only in the case of automatic insertion, The

interface Must have access to tae ortgindl dataoase

descriotion in order to determine the set selection

criterion for each new record to be inserted. The three

criterion are: by APPLICATTOIr, by STRUCTUHAL, ind by VAU1IE.

Each of tnese requires a sliqhtly different nmaproinq.

Therefore, we examine each individually.

In addition to tte set selection criterion, the

interface must determine if any data items ot the record

being inserted has a DUPLICATES NOT AL, ,,vE0 clause assiqned

to it, In tne case that such data items exist, tr.e

interface must form a RETRIEVE request to determine trhe

existence of recoras in the datarase that may already nave

items *itn tne same value as those in tne recrd that is

about to be stored. Thus, each STORE statement consists of

at least one ABfL RETRIEVE and one Ao6L INS, .R'r reouest, Ae

shall see, however, that additional RE.TRli.r's are necessary

for the set selection criterion of SIPUCT'TR~u and VALJr,'-.

a, rhe .TORE-oy-Apnlication Statement

TniS method of set selection assuimes that the

proner occurrences of sets are indicated in the CIT.

Therefore, the KMS forms two reiuestS, tne AET7FJVF to

r 0

"°~~~~~~~ .' .° .- •° ' -,°.°"•
°
% "° "

. . .- - -

deternine the status emf duplicates, ani the 14JSERT rejuest

which stores the record. The Process is as follows:

Step 1: The K4S forms the RETRIEVdE below with the search
based or all data Items desianated to thave
DUJPLICATES %OT ALL~OWED, The values for these items
In the new record are supplied by the user via
the IUwA record templatesi.ReTRIEVE((TYPE = record-.typel) and

(data Itemi :: user valuel))
(ORKEY) [by 08KFY]

Sten 2: The KPMS forms the I,4SCRT recuest

1I'SFRT(TYPE,record.typel>,(D.4KF'I,***>,

<data itemi,user valuel),

and forwards both requests to the KC for execlition.

Ster 3: The KC issues the RETRIEVE~ reouest. Tf tme AS
returns witm no DAKEYs, then the TNSFRT request is
executed, Ctherwise, the IN~SRT is not executel
and an error condition exists,

00 The SrORfE-by-Value Statemrent

The by-VALaUE set selection criterion means thit

the set occurrence we need has a data item *nose value is

equal to the value in the specified UwtA record teinnlate

*Mich hps that data item as one of its fields. rhe reader

is referred to Fiqure 10 for the syntax of the set selection

clause of sets 5SP and P-SP, as examples. This tyne of

5371"E requires that the lata j t'-Im in 1UP'sti'~n have A

i;JpiicA Es -40 AILO *F) clause also, ani that trp user

initialize the data item In its IPJA recorl temolate oef ore

issuin the STORE reqtiest.

The by-VA!,t1t criterion tnerefore, niaces the

airlitionml requirement on tne interface of locatIna tne

S o.

. .~ .".-.- .i

S-. . .- ~.*, . _ _._._ _ ._
determinethestatu -fdpicts and the I: JS2RT reques ---. ,

owner of the proper set occurrence before the new recorl can

* be inserted into the database, This is accomplished by the

issuance of a second RETRIEVE reauest bY toe KC if the first -

RETRIEVE, as mentioned above, returns NULL, The steos in

the process are:

Steo 1: The KMS forms the first RFTRIEVE ms above, Then
for each set type in wnich the new record is a
member, a RFTPIEVF reouest is formed to net the

owner database key, The request is:

PFTRIFVE(CTYPE = owner tve) and
Csearch item = user value))
(LII3EY) tby OAKEY],

Step 2: The KmS forms the following INSERT request:

ISERT(<TYPr,record.tyPe1>,

<data itemi,user valuei>,

Stec 3: The Kr executes the first RF'rRIFV9 to determine if
duplicates exist, If not, the retatninq RETREIVEs

are executed in turn to get the database keys of
the owners of the set occurrences to wnich tne new
record belonis, Once these values are returned,
the KC finishes building the INSERT request, and

executes it,

c. he STORE-bv-Structure Statement

The bV-STRUCTURAL set selection criterion is .*-. -

similar to by-VALU except that the prooer set occurrence is

selected by comarinq a data item value in Ine recorr' tye"

to the value of that same data item in another record type,

From our samole database, we could nave a by-STRUCTUAI,.

clause Indlicatina that the 3NO value in S miist equal tne S...

value in 51, IrMus, we must searcn for an SP record ,

62

occurrence with the same SN value as that in the S temolate

in the UWA, Once again, this data item must have a

DUPLICATES 'JOT ALLOWED specification,

The mappino here is identical to that for the

by-VArUE case except tnat the second through ith RFTRrEVFs

are eased on equality of values in senerate recoris, Since

the idea Is the same, we will not qive the specifics of the

mapoinq here, It is oresented in detail in the Apnendix.

5. £Ia L&AZL aaaE

The ERASF is the final CnDASYL-DuL statement we

consider for the MLDS network interface, As ivplipd, it is

the statement that causes deletion of records from the I"

databAse, There are two options With this statement, as

previously discussed in Chapter 2. we beoin with the simnle

EPASE. The syntax for this FRASE statement 1s:

ERS. record.-typel

The ERASE without the ALL ootion deletes one record ,

from the .atabase, namely, the current record of tn~e run

unit. Tne only renuirement is that the record is not tne

owner nf a non-empty set. This means that in mapoinq this

statement, we need to issue a kFTRIF'vF reenuest orior to the

deletion reqtest to determine if there are any sets #hose

members are connected to this record. Tneretore, for each

set type in mhicn the current of run unit is an owner, We

'ave a oredicate in the RutTRIEVE query of the form:

('4 F, ,- ER. s P t-type i = CIT,U .A JTTabKey), The reuuest is:

6i3

• - . . . ,- - -. • . . .- .' ' ,- • '. '. " '. " -" - - " -- - "-" ")"
-. . % % % - % • • , .. • .,_ .

RETRIEV9((MEMB8FRset.tyDeI = CITRUk..IJNIT.dbkey)and

* and

(MEMBERsettypen = CIT,RUN.UNIT,dbkey))

(DBFEY) [by DBKEYJ-

The next step in the mapPin4 orocess is to form a

DELETE request that deletes the current of run unit. That

request is:

IIDE:LETE((TYPE =CIT,[N-UNIT,type) and ---.
(DOFEY CIT•R0NU. UIT,dbkev)), "--..

So, the KMS in this case issues t.vo ABOL requests to the KC

for execution. The KC iould execute tne RETRIEVF first. If

it results in a wULL R8, then the IELETE is executed.

Otherwise, tne FRASE fails,

The second ERASF under consideration is the FRASF

with the ALL option. The ERASE ALL syntax is:

ERASE ALL record.tynel,

AS rentionel in Chapter 2, this ootion is like a "vacliu.

cleaner" in that it deletes every record in the hierarchy -

startinq with the current record of top run unit. Tne

3ifference oetkeen the mappinq of this statement ana the

previous Ek4S. is that, HETRIEVEs must he forned to get tne . -

databaSe Weys of each member of every set that the current .

ct run unit ovns, and then R .RIEVks arp formed recursivel"

tnereafter for the Temters of lower level sets until the

• b4.

leaves of the hierarchy are reached, In addition to tnese

RETPIEVE requests, a DELETE request is needed for each

member of every set connected to the current ot run unit and

the current of run unit itself, As one can see, this coul.

become quite complex, Therefore, we briefly decribe trie

algorithm, and refer the reader to the Appendix for tne

details.

In mappinq the ERASE ALL, the KAS forms a RErRIEV.

request to get each memoer of every set owned bV the current

of run unit. It then forms a OFLEE for each of these

members. Cnce It nas taken care of the t±rst level, the KS.

oroceeds to form requests which erase all of the descenients

in the same fashion by calling a recursive procedure called

"ermse.all", Finally, the KMS forms a O LETE request to

delete the current record of the run unit as in the orevious

ERASE, This concludes the desciptions of tne maopina

process frog COnASYL-nN6 to ABDL,
r::..,?

°°°°

-I' -

"-..,

In Chapter 1, we orovide a brief description of the four

modules included in the COOASYL language interface, nanely,

the language interface layer (LIL), the kernel maino..

system (KhS), tne Kernel controller (KC), and the Kernel

formatting system (KFS), In this chapter, we cresent

consideritions for the imrlementation of tne KM4S and the KC.

A,~E 714F iEN M.APPIN(" SYSTEM CK.45)

The KAS is the second mocule in the LOS CUDASYL

interface, It is called from the lanquage interface laver

(*AL) when the LIL receives COVASYL input requests from the

user, In this section, we discuss the snecitication of the

K::S (see Anoennix) for the network (COUASYL) interfaca. Ae

descrihe its operation, oresent a concentual view of its

data structures, and dive an eyample of the KfrS translation

crocess. Implementations of the K.MiS for the OL/I and SL"-

intertaces can be found In PRef, 5:op. 4'-03 and [Fef.

6: pr, 47-6A), resoectively. These i~olementations rroviied

the basic framework for the eesion of the CIDASYL K."

The KMS mtist oerforn the tolloino functions: Cl) narse

the request to validate the user's COIASir syntax, and (2)

translate, or map, the request to ePuivalet AF3_nL renuests,

Once the necessary ARM!, requests have heen formed., tney are

made availahle to the Kernel controller (KCI for execution.

,A . '.'''

1.. . '..

The grammar-driven parser is the most imoortant

aspect of the KMS, the Yet-Another-Comoiler Compiler (YACC)

[Ref, 14] is an Ideal choice for the construction of the --

parser, YACC is a prooram generator designed for syntactic

processinq of token streams, YACC functions as follows: It

must he given a specification of the innut lanouaue

structure Ca set of grammar rules), the code tnat is to be

invoked when the grammar rules are recognized, and a low-

level input routine that generates tokens froi a reqular

exuression input. %iven these inPuts, 1ACC generates a ."

pro'iram that syntactically recognizes the input languaoe,

and causes soecific user code to be invoked, as required,

throughout the recogniton process, rhe user's code nere is

the code that oerforms the CODASYL-OmL to Ad6L translation.

The Lexical Analyzer lenerator (LEX) tRef. 151 is the low-

level incut routine that we orooose, [,EX is a ornaram

oenorator desiqned for lexical processing Of inout character

streams. It takes regular expressions as innut, and

generates a Prooram that nartitions the inout stream into

toKens. These tokens are then outnut to the parser for

furtr.er vrocessin,

The Parser oroduced by YACC consists of a finite-

state automaton with a stack, It performs a too-down narse,

with left-to-riort scan and one token looK-ahead, Control

Llow within the parser oeoins at tne hianest-level arAmmar ..

riile, It tnen descends througn the qrairar, nierarchtclly,

.o- •

calling lower- and lower-level grammar rules which search

for the appropriate tokens in the input streams, As these

tokens are recognized, some portions of the

mappino/translation code may be invoKed directly, Tn other

cases, these tokens are propagated oaCk UP the grammar

hierarchy until a higher-level irammar rule is satisfied.

Once a rule is satisfied, further translation can be

accomplished. When all of the necessary low-level arammar

rules have been satisfied, and control has prouagated bac'-

uo to tne hionest-level rule, tne parsing ana mapping

rrocess is complete, In section 6, we provide an example of

the parsing and translation process,

The Kf.S needs several different data structures.

However, WR confine our discussion nore to the structures

which carry the information necessary for the proper

execution of the translated requests, The structures that

tall into tnis category, are the CIT structure, and the

request nodes which are vassed to the KC for execution. A --

description of the mininum requirements for these structures

is civen oelow,

The CIT is described in Chapter 4, This structure

carries all of the currency Information for a Particular run

unit, and is vital to tne proper translation and executlon L

* of COr)ASY, st:.tements. the bLT of thne interface initializes

the CIT, The KMS has read access to the cir at all times,

while all uodates of the CIT are done by the KC only. In ...

a""-"-'"

the following sections, we discuss each of the data

structures that are directly related to tne Parsina an"
I

translation Process. --

a, The "find.node" Data Structure

The find.node Is created and used any time that

a CDDASY FINO statement is mapped by the KAS. Since we are

considering the implementation of six different FIND I
formats, we must ensure that the find.node has at least four

fields, one identifying the node as a tind.node, a second,

specifyina the type of FIND statement that must be executed,

, ie,, FIND ANY, FIND CURRENT, FIND OwNEP, ana FIND *ITHINO,

one field to indicate the set type involveD, and one field -.

* to identify the record type used in the statement,

• -. - .

find.node

I FIND I
I type of FIND -
I set type
I record type

I pointer to ABDL reouestCs) I

T 1qure 17:, The "find.node' Datm Structure.

In addition to the above information, each

find.node must also have a tield which contains a pointer to

the specific ABDL request that resulted trom the m.apino

process. with regard to the FIND CURFIRTT reguest and the

FINO DUPLICATF recuest, no A4DL request is ;enerAted, i

69

........ .% . o. %,- •.. • o,. ,,. % , •-. ,.%..............-........-..-.-.•...,...............p -. -.. ° ° -°°°

.7 7 7% xw "L

Therefore, the pointer would be NULL, riqure 17 above

illustrates the type of structure described, where the cots

represent any additional implementation-depenoent

information which might need to be included,

b, The qget.nodel Data Structure

The get node carries the information that the KC

needs In order to return the proper lata to the user, It

must have a field identifying it as a get node and a field

identifying the type of GET format beinq used,

Aditionally, a field identifyina tne record tyoe in

question must also be included. In the case of the GET

item,.list fornat, the node should include a pointer to a

list of data item values to be returned. If the format is

GET recorl.tyne, the pointer field would be NIILT., and tne KC

would return all attributes of the record, rhe same is true

for the sin'ole 'JET format. Figure 1hs is an example of this

type of structure,

qet.node

I GFTI
I type of GET k ""

record type

I pointer to list of data I
I items to be returned ,

4.0 . O~inb n e0- 0 e,

Fifilire 18: The 'qet.node" Data Structure,

70f

. . . . - - - - rr ~ rr ~ Sr .- - .- r ., ..

c. The 'connect.node' Data Structure

The connect.node is created ana usel whenever a

CONNECT statement is mapoed by the KS• .rhere are two

orimary fields in this node, The first field identifies the

node as a connect.node, The second field is a pointer to

the list of ABDL UPDATE requests generated by the KMS durin"

its orammar-driven parse. This list may contain one or more

requests denendinq upon the numoer of sets that the recor.-

must he connected to, as described in Chapter 4, Under the

current implementation of the mbUS, a seperate uPDArF

request must he executed for each attribute in a record that

is to be chanqea, Thus, the need for multiple UPDAT,

requests. Recall, that the attribute to De chanqed in this

case is the AEMBRkset.tyoe attribute. Figure 19 shows the

basic structure for this node,

connect.node

I CnNNECT

I pointer to list of UPDATE I
I requests .

,+ ,~~ ai sass....., a sass...... 5unn5 as 4. .

Friure 14: The 'connect.node' Data Structure.

d, The 'disconnect-node' nata Structure

The disconnect.node Is created and used whenever

a r)ISCDNErT statement is encountered hy the KVS. Tne

tields of tnis mole are exactly the same as those of the

71 .-.
'" C'.-N

- connect.node. In this case however, the value ot the

'." attribute MEBERset.tyne is set to HlULL, disconnectinq the

record from designated set occurrences. Ince aaain, we have

an identifier field, and a list of UPDATE requests.

e. The ",odify.tnode" Data Structure

AS with the disconnectnode, the modify.node is

also very similar to the connect.node. It is created

o*henever a 4UDIFY statement is encountered by the KM5. It

nas two fields, an identifier field, and a oointer to a list

cf IPDA'rF. reouests, The OPOATE requests in the modity.rnode - -

are used to alter the value of specific data t aa attri,3utes

within a Particular record, rhe number of requests on this

list can vary from one to the maximum number of data items

in the record, deoendinq on the MOr)IFY format chosen by the

user.

f, the "store.node' Data Structure

The store.node is the most Interestino of the

data structures rresented so far, it nust contain at least

f our fiels. 'the first is the identifier 1iel3. fhe second

field is a Pointer to a R177RIEVE request, TIs request is

•eferated hy the KL6 in order to deternine the existence of

ouplicate values for data items declared tj nave OL1PrIC4TF.S

"'T ArA"LLOAr. in the database scne.ma. The tnird fiell of

importance relates to tne set selection criterion for the

record beinji storer, it is generated to retrieve the owner

database seY(s) of the oroper set occurrence(s) for toe new

72

...................o~.*.-..

- . ". ".

record, This request Is only generated in the cases of the

by-VALUE and by-STRIICTURAL set selection criterions,

store.node

I STORE I
Pointer to duplicate RETRIEVE request I

I pointer to list of set select REtRIEVE I
requests .

I pointer to INSERT request I k
l.......m ...imm . .w.mmm.......mm mm. mm..., "..

Figure 20: The "store.nooe" Data Structure,

The final field required for the store.node is a ,

pointer to the INSERT request wnich will actually cause the

record to ne placed into the database. Figure 20 aoove is

an illustration of th'is data structure. As Tentioned

before, the dots In the figure represent additional

implementation-detendent information, snould the set

selection criterion be by APPLICATION, the second RETRIK.E

pointer would be NULL,

4. The 'erase.node" Data Structure

The final data structure we discuss Is the

erase.node, This node is created wenever an WRAS

statement is mapped bV the KIS. It the Ei(ASE without the

ALL option is mapped, the erase.node must contain tne

followinq four fields, First, It must contain an identifier

field, Second, it must contain a type field with a value of

IULL, indicatino that it does not have the kls o0tione The

73 ~. '.% .-

-, ..- -... . . - . - - . " . " , " ". *,-. ' .;. "-- -,, - ,, ". "* * -.. "- , ..

-" . •--*.o .-'-. -- -.

third field in this node must be a Pointer to the FT lEVF

request that will determine it the recora beini deleted owns

a non-emoty set, Should this request return UL, tne KC

would execute the request stored in the tourth field. Iis

is the field containinq a pointer to the DLE!TE request that . ___

4
will delete tne current record of the run unit, Fiqure 21

dives a representation of tnis struCtUre-

erase.node

I E14ASL
I type of ERASE
I pointer to RETRIEVE request

I Pointer to run.unit DELPTE I
............................- S ...

Fiqure 21. rhe 'erase.node' without the ALL Option.

rhe erase-node created for tno EFASE g. the

ALI, ontion will be considerably more complex than tne

previous case, First, there must be an identifier fiell ari

a tyoe field. Then there must be two pointer fields. Toe

first Pointer field will point to tne list of T
I

requests qenerateo to qet all the lescendents of the record

being deleted. The second pointer field will point to the

list ot DELPTC requests oenerated for each nt the descendent

records. Fimallv, the last field in the structure snould be

a pointer to the OKLETE request that deletes the current

record ot the rur iinit, Fioure 22 is an exanle of this

strocture.

74 V"-'

erase.node

I ERASE

I tyoe of ERASE CALL)
I pointer to descendent RETRIEVES I
I Pointer to descenoent DELEs

I pointer to DELTE I

Figure 22: Tre 'eraseanode' With ALL Option.

Be THE PAPPING PROCESS: AR .X4MPLE

In this section, we present an illustrative examole of

the oarsini and translation processes within the KuS,

Recall from the previous chapter, that not all of the

teatures of CODASYL are incorporated in our soecification.

Additlonallv, since we have thoroughly covered the Mapoings

in the previous chapter, we do not discuss these

translations in detail.

As an examole of the KAS manoinq process, we use a

simple CnDASYL MOD)IFY request. me begin our example by

sho'*inl the dmlmstatement nortion of the KhS, We then sten

throujrn the qrammar and demonstrate relevant Portions of our

desion in a system srecificatinn lanquage (SSLj. the reader

should note that tnrouanout the examnle, we only Show thle

portions of the SSL that would actually he -xecuted. The

entire KS desion is shown in the Appendix. the cortion of K!
the raimmar relevant to this example is shown in Figure 23.

75'. .

In Fioure 23, we have included the oramma, rules onlY, and

not the code to be invoked as eacn rule is satisfied.

statement: ddl.statement
I dml

dl: dml.statement
I dml dml.statement

dml.statement: set.flaq
I move
I get
I find
I store
I connect
I disconnect
I erase
modify

I oerform.loop
I if-.tnen

modifV: MODIFY item.list Tk' record.tyDe
I MrDIFY record.rype

4 -. -.

item.list: item.name
I item.list COIMMA Item-name

record.twe: TDFNTIFIER

iteT-name: IDENTIFIER P ,.

Piqure 23: The KMS dml.statement Grammar, .

The source CODASY, orocedure we use for our examrle is:""."'

4OVE i(o r((OTY IN SP-r
AfODIFY CTY III SP,

i3fore iivi!i the ARLL equivalent of this request, nowever, " '

we must make the assumption that tne record beinq mooitied

76

.- - - - -

A Z '-"q

is the current record of the run unit. 4e also assume that

the database key for this record is 10. Aith these two.

assumptions in mind, the ABIO, eauivalent of the ,iO0IFY

statement is:

[UPDATE ((TFMPLATE SP) and (DBKEY - o))
(0TY 100)].

For the sake of brevity in our example, we will not o-

throuqh the mampinq nrocess for the MOVE statement. The

reader need only be a'are that the new value for tne

attribute QTY In the record template for record tlDe SP, has

teen set to the value, 10o, by tne previous

parse/translation. Mow, we rav oroceed with the mapoing of

tlie MODIFY statement.

At tne oeqinninq of the manpinQ process, tne oarse

descends tne qrammar hierarchy searenina for tokens in the .'.

arammar ruiles which match those in the input. intice that

the first rule to be tried is the ddl~statement rule. s

the Parse descends the ddl.statement rule, hierarchically,

there are no tokens which matcn the examnle input stream,

thus, the ddl.statement rule is not satisfied, ani the oars,

beoins acain at the arl rule.

%hen the dml rule is called, it imme~iateiy calls the

dml.statement rule, L

." ," ..

77

Hi-

dml.statement: set.flag
I move
I qet
I fInd
I store
connect

I aisconnect
I erase .-

I mOdifV
I Perform.loop
I it.then

5 The dml.statement rule then calls the setflaq rule. The

set.flaq rule is not satisfied, however, and the move rule

is callpd. It too, is not satisfied. So, the Drocess of

checkinq each successive rule is continued until we reach

te tollowtnq rule:

modify: mODIFY

4
select.list = NLL

-- ~~~item-list :IN record.tvne : "'

/* error checks are made here */

alloc and mnit new 'modify' noae

for (each data.item on select.list)
Alloc and init new andl.str
/ form UiPDATE request */

copy "[LIPDATE ((rFMPLAT = ,recorl.tyve °)
and noBKEY = cI'r•RJN.JNIdbxey))"
to abdl.str

Oet "Item.value" from move-list
concat "(*data.item' = "itcm.value')]

to abdl.str
connect abol.str to 'modify' node F

end.tor
end.else

I 'PIDIFY record.type

The modify rule looks for the token, MODIFY, in the input_

Since it is oresent, the first portion of the rule matenes,
7.8: -

". 7-. .. ~ ~. . 8 .- "-----

and the code followino the token in the rule is invoked,

This code simply resets a local list which will eventually F
contain tne names of the data items which are to ne

modified.

The next rule called is the J.&m..J& rule. This riile

searches for a list of identifiers in the input by callini

the item.name rule, and recursively callini item.list, as

Indicated. In our example, the single identifier, UTY,

satisfies the first portion of this rule, namely, Item.ame.

Thus, the item.list rule is satisfiea. The syntax for the

item.list rule is: ..

item.list: item.name

add the item.name -"

to select.list

item.list CUIiMA Item.name

add succesive
item.name to selec.list

The next Portion of the modify rule is the token, 1b.L

rhis token matches the token, I-1, in the input stream, ani

tie Parse continues. Fitnally, the last omrtinn oi tne..

m iodify rule which must oe satisfied is tne rule,

*This rule is satisfied by mAtchinq the identifier, SP, In

the input. -#itb the token, IDK.NT~jiIED, in the record-type

rtule. After matctinq these two, toe entire modify rule is

79

%I

- :.:: -:

[, . I--. - ~ 7 ~ - ~ - - - - ,

satisfied, and the invocation of the remaining mapping and

translation code following the rule takes place,

The mapoing and translation occurs as tollows. First, a

series of cnecks are made to determine If the record beinq

modified is the current record of the run unit, if the new"

value(s) have been placed In the record teivoiate, and If all

of the items identified in the item list belona to the

record in question, Then, a modify node is created,

Followina this step, an UPOATE request is generated for each

of the data items being modified, F'in3lly, each of toe

update requests are connected to the modify node for

execution oy tme KC, with the mapoing and translation cone

executed, the modify rule is completely satisfied, and

control vropaqates back tit the grammar nierarchy to the! dml

rule which cnecks tor more inout.

As one can see, quite a significant amount of worK is

done by the K.S in oreparinq requests for use bV the KC. q-

feel that by aaeouately providing information to tne KC, We

greatly reduce the amnunt of work that MUst be done by the

KC, This means less coding for the 1.rplementor and smould

lead to less complexity in the KC,

C. rHE KF.kNEL CU14TRCILLER (KC)

The KC is the third module in the M-DS CCDASYTj

interface, It is called nV the lanauaq. interface laver

(LITA) hen i ne' datahase is oeinq loaded, and is called oV

the kernel maoving system (KMS) when an existina latabase is

• ° ° °-

I .

beinq manipulated. The KC is the module which Performs the

task of controlling the submission of ASOL transactions to

the multi-backend database system (MWS) for orocessina.

Implementations of the KC for the L/I ana SIL interfaces

can be founI in rRef, S:pp. 84-105) and LRef. 6:pD. 69-83j,

respectively,

Tne KC 'ust oerform the following functions: (1) submit

transactions to the MBDS, (2) receive and store results of

transactions, (3) update the currency indicator taole, and

(4) cause the oroper data to oe returned to the user.

Because of the larqe number of types of transactions

that the KC Must nrocess, we sugaest that the overall.

structure of tnp KC ne based on tne "case" control

structure. At tne top of the control structure is a master

control Procedure which is responsible for initializAtion of

variaoles, pointers, and data structures, as well as,

decidina the type of A~nL transaction that Is b-in.

processed. Recall that there are tao major types of

transactions, creation of a new dataoase, Ann' manipulation

of an existing database. Thus, a two element case is

required in the master control procedure. These cases are.

Viter, used to call subsequent Procedures and functions vnich

Manle the transactions which fall under the above

cateqories .

..__--. , .-. ,-. - ...- .- - . . .- , , , -- '

a. Creation of a New Database

rhe creation of a new dataoase is the least
r

difficult transaction that the KC will nanlle. Tt involves

loading the CGOASY6 schema created by the K!4S into the KOS

(MBUS), in its attribute-oased form. It is also responsible

for mass storaae of new records during a database creation

transaction. Thus, the KC must also assian database kevs to

the new records throuahout this process.

Currently, work is being done on the algorithms

necessary to accorplisn the transformations above and the

mass storage requirement. This work will not oe completed

in time for inclusion in this thesis. 5iiffice it to say,

however, that once the work is completed, the onlV

requiretient of the KC in this case, is to call a procedure

to load the database schema, call a procedure to load the

dataoase descriptor file, and then call a orocedure to load,

the new iatanase. Ince these procedures are Pxecutea,

control is returned to the LTL.

b. manirulation of an Existing Database

The maninulation of an existing latahase can I_-I

also e livided into sun-cases. There are the data

retrieval ren'uests and tne datahase Unloate requests,

However, all ot these can he handled DV a single case

structure. Recall that each time the KC is callel, a

reouest nole of some tyne is made available t, tne KC.

rnese reiuest nodes are then used to oetermine which ootion

within tr, e case structure to execute, rhe structure is

4"2".-.-.

illustrated in Figure 24, In the following sections, we

present the orocedural requirements for each type of data

manipulation transaction,

case oo.type of

create.db: call load.schema
call load.descriptors
call load.ao-recs

find: case tyne of
any: call find.any
current: call find-current
duplicate: call find.duplicate
(first,last,
next,prior): call find.conseq-

owner: call find.owner
end.case;

(connect,
lisconnect,modifv): call UPdate.db

store: call store.rec

erase: call delete.recs

get: call get.rec

% A.%

Figure 24: The KC Control Structure,

(1) z a -I B ,caduaa. Tnere are six hasic

types of F14D requests utilized in our system, The first at

these is the FIND Ae, Y request. Upon enciunterinq A

find.node whose tyne field is ANY, tne find.any procedure is

called. This procedure sets up toe request ouffer to A

receive any results that may De returned. It tnen issues
the request to the KMiS, Uoon return trom the KDS, the

find.any procedure must update the Cir, based on the type

and database key of the record that is toe first record in

? ,X-'<113

the request buffer. A pointer is then set to point to this

record in preparation for returninq it to the user. The

record is not returned though, unless the user issues a GET

request.

If the reouest is a FINJD CURRENT request, 4

the find.current procedure is called. Its job is quite

easy. It must simply update the CIT, oy settinq the current

of run unit indicator to the type and database key of the _

current record of the set tyoe specified in the request

node,

when the request is a FIND DIIPLCAT-"

request, the find.duplicate procedure is called, this

procedure assumes that the records oeini requested are

already in a request buffer, Thus, the only information

required from the find.node is the record.type oetno-

searched for, the set.type of interest, and the data item .

values on which the search is based. The procedure locates

tne request buffer, and sets a pointer to point to the trst

duplicate record found, This record then oecomes the record

returned when the user issues a GET reouest, The procedure'

also uodates the CIT accordinqly.

The next type of FI.4D request is toe FImD

FTRST, LAST, 11EXT, or PRIOR, In these cases, if tne tyoe is

first, last, next, or prior, the find.conseq orocedure is

called. It bases its oerformance on the type of the

fird.node. If the type is next or prior, the orocedure

assurnes that tre records are already in a reiuest outter.

.. 4

* - --- ---

It looks f ,r the correct request ouffer based on the

record.tyoe specified in the find.node, and sets a pointer

to point to the next or prior record relative to the current

record of the set type this buffer is hmldinq, In other

words, each record in the buffer is a member of the current
4

set type occurrence, and the find.conseq procedure simoly

points to the record before or after tne current record for

that set. Once again, this is the record! returned when the

user issues a GET request,

If the type of the 'Ian is first or last,

the find.conseq procedure does tne following, First, it

checks to see if a reiuest buffer exists for the set type

requestei in the find.node, If no such cuffer exists, the

procedure creates a request buffer and issues the FRTFIF

request attached to the find.node, The results of the

re~quest are then placed in the ncr request buffer, and a

pointer is set to point to the "first" or "last" record in

the set for return to the user.

rhe next type of FIJD reouest is the FIN"D

OA11EI, P hen this is the tVe of the tind-noce, the

find.owner procedure is called, It's function is fairly

straiqnttor'ard. A request buffer is created to hold the

record that is the owner record of the set type indicated in

the find-node, The find-oner proceaure then issues the

RETPIEVE request attached to tne find-node, and orepares the

record for return to tne user,

q5

.1

7 ~ ~~ 4v- Z: -7 •

The final tyoe of FIND request, expected by

the KC, is the MIJD WITHIN CURRENT request. Tn this case,

the find.within procedure is called. rhe procedure creates

a request Duffer for the Storaoe of records retirne! and

issues the RETRIEVE reauest associated wtth tne current

find.node. qain, a pointer is set to point to the first

recorl in the reauest buffer in order that this record mi'nt.

he returned when a GET reouest is issued by the user. It

should be noted that in each case above, tne CIT is updated

unless a currency suppression list has peen attached to tne

fino.node in question,

2z:sandua. The CONCT, DISCONNECT, and MODIFY requests

are handled by the KC in the same qeneral manner. 4hen

either a molify.nooe, a connect.node, or a disconnect.node

is encountered by the KC, tne Procedure, updatedo, is

called* If the node is a modify.node, the KC simolv suhmits

the attached AaRDL UPDATE requests to the KDS for execution,

After execution, control is returned to the LIt,.

It the node oassea to oroceddure uodate0.db-

is a connect-node mr a disconnect.node, all of the above

aoplies, except that cefore qivinq control to the LIL,t he

KC must uodate the CIT. ',hen a recorc is connected to a set

type, that record becoses the current record of the set

type. 4hen a record is disconnected from a set tvne, the

entry In for that set type in tne CIf is set to NU1,L and

renains so until another record of the set tyoe is accessea,

6

(3) lba ZlQ RB 2;ocduLik. vheM the KC

recoqnizes a store.node, the procedure store.rec is called.

The first task performed by store.rec is to- execute tne

first RETRIEVE request attached to the node, this request

determines if there are records in the database wnich have
.

attribute values that are not to oe duolicated, If the

request buffer created for this RETRIEVE iS a;a---;4 at the

end of execution, there is an error, If the request niiffer

is arzag , then store.rec performs in the followinq Tanner,

For each RETRIEVE reouest on the set select RETRI£VE list, 'a

file buffer is cr"ated and the RETRIEVE request is issued. -

These requests return the database keys of tne owners of the

set occurrences to wnicn the new record belonqs,

After execution of the set select RETRIEVE.--

list, the Procedure store.rec then assians a database Key to

the new record, and proceeds to complete the IN ERT reituest

attached to the store.node, It is very important that the

order in which tne database keys are accessed fron, tne

request buffer match -the order of the attributes,

'4FIMRER.set.tyPei, in the INSE'T request, the INSERT request

is tr~en issued, NoW, tecause we have not accessed this

record oreviously, and it nas become the current ot run

unit, store.rec must Provide a buffer to hold this record in .

case a (,ET request is issued immediately tollowinq the STORE

request, In examole of this process is warranted at tnIs

point, Supoose, we desire to store the SP occurrence,

SS/P6/70o0, The CUOASYL sequence metint be:

87 .'.

MOVE S5' TO SNO IN SP
MOVE 'P60 TO PNO IN SP
1GVE 700 TO OTY I, SP
MOVE 'S5" TO SNO IN S
MOVE 'P6' TO PNO IN P
SToE SP

The first three MOVEs initialize the new

record's data values, The next two MOVE's are used to aid

in determininq which S and P occurrences the new recoro

belongs to, because its set insertion mode was declared to

be automatic. The KAS takes this information and the STnR.--

SP statement, and oroduces a store-node containini the

following:

(Duolicates RETRIEVE request)
RETRIEVE ((TYPE = SP) and (S10 = S5) and (PJO = P6))

CKE(Y)

(List of RETRIFVEs to get owner DBKEYs)
RETRIEVE ((TYPE = S) and (SNO = S5)) (DAKEY)

RETRIEVE ((TYPE = P) and CPNJQ = P6)) (OBKEY)

(INSERT request for new record)
INSEPT (<TYPESP>,<DBKEY,***>,(SNO,SS>,<PUP6>,

W.e assume, for tne sake of our example,

that the DRKEYs for the owner records are 10(S) and 12C),-

ana that the OPKEY of tne new record is 9. 4 e also assume

thlat there is no duplicate SP record in the database, So,

when store.rec issues the first RE'TRI@vE, the request btitfer

returnel Is er'oty.

Store.rec then proceeds to execute the list

of PETPIEVs that return the owner fldKEYs of tne new record.

It creates a rpauest buffer for the tirst RETRtEVE on toe ,.;-*,. .*

list and issues the request, Once the first request is

executed, a buffer is created for t'he second request, and

that request is executed, The issuance of these RETRIEVES

produces the results in the request buffers depicted in

Figure 25, The procedure store.rec now takes the new DBKEY

value, and the information from the request ouffers and

comoletes the INSERT reouest,

< O > I " -

Buf-

I < 12 > I

I I . ; i .; -

Buf

Figure 25: Bufl nnd Buf2 After Execution,

The final form of the INSERT request Is: ,.,

I"SFRT (<TYPE,SP>,<BKEY,98>,<SNO,55>,<PN0,06>,

The INSFRT request Is then issued to the KDS, If nn

currency suporession list is attached to the stor .node, tne

CIT Is unlated to reflect a c"angq in the S-SP ann P-SP

currency as well as, the current of ru unit. A request

buffer is also created, and tne record is stored in the

buffer, As one can see, tne store.rec procedure can be a

very comprenensive one.

89.

(4) It& ERASE -ZadUZA. The ERASE request is

hindled by the procedure, delete.recs. If the type of the

erase.node is NULL, then delet.recs oroceeds in the

followinq manner. First, a request buffer is created, and

the RETRIKVE request attached to the erase.node is issued to

the KDS, This request determines if the record nein"

deleted is an owner of a non-empty set, If the request

buffer is not empty after execution of tie RETRIEVE, then

the erase fnils, and we have an error con.ition. If tne

request buffer is empty after execution of the RETR IKVE,

then delete.recs issues tne DELETE request ittached to tne
Lerase.node, Tnis request deletes tne current record of the

run unit.,. After tthe deletions, delete-recs uodates the C""

bv settina the current of ruin unit indicator to NULL,

Should the type of the erase-.node be ALL,

we have a different sequence of events, The lelete-recs

procedure must create request buffers for each R FrRI 'IVE

request on the descendent retrieve list in the erasp.nole,

It must then issue each of these RERIEVES storing the

results, returned DThYs, in the prober request ouffer,

After the list ot FETRIEV :S has been issuea, the delete.recs

orocedure then completes the r)EL;rTF requests attacied t3 t'ne

erase.node and issues each nEbtRTE request to the KDS for

execution, Once adain, the CIT is undated to reflect tne

chanqe in currency i,e,, current of set.types become N(iriL as

amnrnprlate.

90

° .Vp

(5) Ua GI E;zaadJuaa. The GET reauest is

handled hv the qet.rec orocedure, rhis procedure has a

relatively easy task, tt simoly looks at the -type of the

get.node, examines the record.type involved, and retrieves

either the entire record of specific fields of the record

from the request ouffer In which the record resides. Toie

GET request ooerates on the currert of run unit. so, tne

reauest buffer in question should be the request buffer
L

containimn the current record of te run unit, orovided tne

current record of the run unit is not NVLJ, Finally, the

reader snould note that with each of the above orocedires,

aeallocation of request buffers when tmey are no lonier

required, is also an important consideration in this

process,

I

Lo-'%

.N: %

,* '.

°-

'u ° , CQLU.'-

As mentioned In the introduction, the conventional

approach to database system development has resulted in

numerous single-model, single-language systems witn little,

if any, flexibility or extensibility, In addition, these

systems are slow compared to the system Pronosed ov this

research effort, Our system, the multi-lingual database

system (LbDS), provides an alternative to the development of

seperate stand-alone database systems wnich use single data

models. The ILDS will brinq flexibility, extensioility, ani

efficiency to the world of database management. The UbfS

will be able to execute transactions written in any of four

well-known and important data lannuaoes, namely, E,[,/I, SL,

CCIDASYL, and Daplex.

In this tnesis, we have presented a MethodoloQy for

supporting network latabase manaaement within toe 'I~i)""

Specifically, we nave provided a data no~el transfort~tion

strategV, and a data language translation strategy for tne

network data model and toe CCvAaYL data language,

respectively. we have presented a design specification for

the kernel naoning system (MKS) to be used in the CODASY .
r

interface. A discussion of the concepts involved and the

data structures necessary for the interface to work prooerly

has also oeen presented.

) 2

One of the desian qoals of this project was to make the

interface as compatible as possible with the desiqns of the

DL/I and SOL interfaces in order to fully utilize existinc

software. The Daplex interface is not mentioned here,

because it is being developed in parallel with the CC3DASYt,

Interface, Ry pursuing thils goal, me also eliminate the

need for chanqes in the F*HDS and the A6L. Thus, it is

recommenden tnat the implementation of the .ODASYL interface

follow closely, the ipmlementations of the Ot,/I and SOL.

interfaces, The Implementor(s) Should pay particular

attention to any commonalities between funtions and data

structures es.

we feel that the work presented herein is sufficient for

imPlementAtion of the CODASYL interface. All that remains

is for the code to be written, and olaced in the host

computer. ne the CODASYL intertace and the omplex

interface have been completely imolementeo, the system

should be tested as a complete system for orojectel

efficiency, effectiveness, and responsiveness to user needs,

It is anticipate! that this researcn and aevetovment effort

"will ultimately result in a new era for oatA base manaaement h.-.

that will allow for increased oroductivity -nd orotitaoility *-.

in the marketplace,

9-. •

U -"-

APPENDIX - THE KMS PROGRAM SPECIFICA TIONS

Currency Indicator Table
References made in the following specification to CIT refer to the Currency Indicator Table.

This table consists of structures that hold information identifying the current record of record-
type, set-type, and run-unit (run-unit is the application program being run). The following is the
proposed structure for this table Ref. 131.

struct CIT

struct RUN-UNIT *run;
struct rec-type-node *next-rec-type;
struct set-type-node *next-set-type;

struct RUN-UNIT

char rec-typei 1;
int dbkey;}"

,

For each record type in schema:
struct rec-type-node

char typei 1;
int dbkey;
struct rec-type-node *next-rec-type;

For each set type in schema: " '
struct set-type-node

boolean OWNER;
char TYPEI 1;
int dbkey;
char member ;
char owneri 1;
int owner-dbkey;
struct set-type-node *next-set-type;

94

boolean: first-move TRUE /* flag for MOVE operation */
boolean: first-time /* general purpose flag */
boolean: sys-flag-value/'* boolean value of system flags */
ptr: curr-temp-rec /* ptr to last record added to move-list */
ptr: curr-temp-item /* ptr to next item node to be added to

record-template node of movelist *-'
list: suppression-list /* list of record types and/or set types */

for which currency updates are suppressed */
list: select-list /* list of data items used for record section */
list: connect-list /* list of sets to which current of run

unit is to be connected or disconnected */
list: tgt-list /* list of attribute names to be accessed */
list: move-list * list of record templates used with

MOVE statement */

list: curr-non-dup-list /* list of data items for which duplicates
are not allowed in current record-type */

int: level-number /* level of data item in record types *,
char: member-type /* string variable to hold a name

95

7-64 56 THE DESIGN AND ANALYSIS OF A NETHORK INTERFACE FOR THE 2
NULTI-LINGUAL DATABASE SYSTEN(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA C R NORTHERLY DEC 95

UNCLASSIFIED F/G 9/2 NL

MENEN EEE

i ...

r. it. ,,

-- IIIIJIL 2-
1.6-.

MICROCP R
-4 1'-IT,4 '

'4

., p -

44

• -, .-: .- .': .' • ..' .., -, .-' --' ." .-.. " ..' , '] / .., . ' i - ' - , "] " -L - , ." , " -." .- L ., " , " -" -, -, " . -." .' ° . -. -. .- " - ' -, ' ., " , " -: . . ', - 4,

"., .. ' .". ..- ", .' ' '.; ' ,r L '. ." - -' ' -'. " - ..w' ,', .; .'. -.,'. .-.-..' .;]. : ; , .11111 -,Cf Z L : .: -] .: ' '

start statement

statement: ddl-statement
dm1

dml: ml-sttemen
dm dm-statement

ddl-statement: schema-defn record-list set-list

schema-defn: SCHEMA NAME IS schema-name SEMI-COLON

locate db-id schema header node
if (db names do not match)

print ("Error-given db-name doesn't
match name in file")

perform yyerror()
ret urn

end-if
initialize db-key starting value is 1I

record-list: record-desc

set db-id node ndn-first-rec ptr

record-list record-desc

connect successive record nodes

record-desc: record data-item-list

curr-non-dIup-list NULL

record: RECORD NAME IS

allocate and mnit a new
record node (NREC-.NODE)

allocate curr-non-dup-list
db-id-node ndln-nuim-rec-- -+ :2i'

record-spec

96

................. ~ -~- -*.*..L
* -*-.. %* .- * -. ~-A-~~.- *:L,.*xa~%x~ ~A.. ~*..*.'L~ ~ X~N'~'. L

record-spec: record-type

if (record-type not defined yet)
copy record-type to current

record node (NREC-NODE)
make this the current record node

end-if
else

print ("Error-'record-type' record
doubly defined")

perform yyerror()
return

end-else

SEMI-COLON duplicates-list

set-list: empty
set-desc

set db-id node ndn-first-set ptr

set-list set-desc

connect successive set node(s)

set-desc: set-desig owner-spec member-spec

set-desig: SET NAME IS

{%
allocate and init a new set node (NSET-NODE) C
db-id-node ndn-num-set-t-..

set-type

if (set-type not yet defined)
copy set-type to current set node (nsn-name)
establish curr-set-ptr

end-if
else

print ("Error-'set-type" set doubly defined in db")

perform yyerror()
end-else

SEMI-COLON

Z z: ,.-'.. -,

" .''"

fl _..K •- . --.-. - - - ; . . ------..V - L -w.v-. .- v . . -w -p]- ., .'

owner-spec: OWNER IS aa SEMI-COLON

aa: record-type
{
if (record-type not defined)

print ("Error-'record-type' record does not exist")
perform yyerror()
ret urn

end-if ,
else

copy record-type to current set node (nsn-owner-name)
locate record-type node
nsn-owner(ptr) = record-type node

end-else

SYSTEM

member-spec: MEMBER IS record-type

" if (record-type not defined)
print ("Error-'record-type' record does not exist")
perform yyerror()
return

end-if
else

copy record-type to current set node (nsn-member-name)
locate record-type node .
nsn-member(ptr) - record-type node

end-else

SEMI-COLON insert-clause retention-clause

alloc set-select nodeI
set-select-clause SEMI-COLON

duplicates-list: empty
dupl SEMI-COLON

dupi: duplicate-spec
dupl duplicate-spec

duplicate-spec: DUPLICATES ARE NOT ALLOWED FOR item-spec

. ~~98".,,,"

!::: . sI....

' ,~

, " q., "

item-spec: item-name{ ,
alloc new non-dup node
copy item-name to non-dup node
add non-dup node to curr-non-dup-list

item-spec COMMA item-name

alloc successive non-dup nodes
copy successive item-names to non-dup nodes
add successive non-dup nodes to curr-non-dup-list 4

data-item-list: item-desc

connect new attr-node to record-node

data-item-list item-desc

connect successive attr-node(s) to record-node

item-desc: level-num

allocate and init a new attr-node (NATTR-NODE)
NATTR-NODE nan-level-num = level-number 4
record-node nrn-num-attr -- -.

data-item-desc % "" "

if (nan-level-num = level number of current attribute node)
connect new attr node to current attr node
if (nan-level-number > 1)

connect nan-parent ptr of new node
end-if t-

end-if
else if (nan-level-number > level number of current attr node)

D connect nan-child ptr of current attr node to new attr node
connect nan-parent ptr of new attr node to current attr node

end-else-if
else

locate last attr node with same level number
set that node's nan-next-attr ptr to the new attr node "
update current attr pointer

Iend-else L

"" ~~99 ,-..-.

.- °

data-item-desc: item-name

copy item-name to attr-node (NATTR-NODE)
i(item-name not on curr-non-dup-Iist)
attr-node nan-dup-flag 1

end-if

SEMI-COLON data-type PERIOD

level-num: empty

level-number 1 ~*default value

INTEGER

level-number INTEGER

data-type: CHARACTER INTEGER

{crnd a-entl NEE
attr-node nan-length2 = 0NEE

attr-node nan-length2 =0
attr-node nan-type T

FIXED INTEGER

attr-node nan-lengthl INTEGER

attr-node nan-Iength2 INTGE
attr-node nan-type '

C._
FIXED INTGE
attr-node~... %a-egh NEE

100

4t t

.insert-clause: INSERTION IS AUTOMATIC

set-node nsn-insert = 'a'N

INSERTION IS MANUAL

set-node nsn-insert =m

retention-clause: RETENTION IS FIXED

set-node nsn-retent T

RETENTION IS MANDATORY

set-node nsn-retellt ='m

RETENTION IS OPTIONAL

set-node nsn-retent V

set-select-clause: empty

set-node nsn-select 'o''

SEMI-COLON SET SELECTION IS BY set-select-spec

101

-A.. *~ . .* -- --.%

set-select-spec: VALUE OF item-name IN record-type

if(valid-attr(item-name.record-type))

copy 'v' to set-select node select-mode
copy item-name to set-select node item-name
copy record-type to set-select node recordl
copy BLANK to set-select node record2

end-if
else

print(V"Error-'item-name' not valid for 'record-type"')
perform yyerroro
return

end-else

STRUCTURAL item-name IN record-type

if(valid-attr(item-n ame,record-type))
copy 's' to set-select node select-mode
copy item-name to set-select node item-name
copy record-type to set-select node record I

end-if
else

print("Error-'item-name' not valid for 'record-type.).
perform yyerror()

return

EQ item-name IN record-type

if(previous item-name equals this item-name)
if(valid-attr(item-name,record-type))

copy record-type to set-select node record2
end-if
else

print("Error-'item-name' is not valid for 'record-type"') "-."-
perform yyerroro
return

end-if
else

print("Error-'item-name' items do not match")
perform yyerror()
return

end-else

APPLICATION

copy a to set-select node select-mode
copy BLANK to recordl, record2. item-name

102

~~ %. -o

. - . - - . -. '-'I.

y..0'

%J" .

dm1-statement: set-flag
[move
get
ind

store V
connect

1disconnect
erase

Imodify
perform-loop ,*not designed ~
if-then /* not designed S

set-flag: MOVE f-value TO f-name

f-value: YES

sys-flag-value TRUE

NO -

sys-flag-value FALSE

f-name: EOF

eof =sys-flag-value

NOTFOUND

notfound =sys-flag-value

103

%1

* The MOVE statement is a COBOL assignment statement that assigns a
value to a particular data field in a record template. We use a
list structure for this purpose.

move: MOVE item-value

if (first-move = TRUE)
alloc and init move-list
first-move = FALSE

end-if
create new data-item-node
copy 'item-value' to value field in data-item-node
establish curr-temp-item pointer

TO item-name
{

copy 'item-name' to name field in data-item-node

IN record-type

if (item-name not in record-type for current schema)
perform error(2)
return

end-if
else if ('record-type' node on move-list)

connect curr-temp-item to record-template node
end-else-if
else

create new record-template node
copy 'record-type' to name field of record-template node
connect curr-temp-item to record-template node
add record-template node to move-list
update curr-temp-rec pointer

end-else

The GET statement takes the entire current record of the run unit
or specified data fields of the current record of the run unit *
and returns the values to the user. ,

get: GET{
alloc and init new 'get' node
select-list NULL * reset select-list *. .

. ..-.

mm " '.,

P

104
I"_2

*':- c. * --.- *-.*
-9o

L

mm: item-list IN record-type

if ('record-type' is not equal to CIT. RUN-UNIT.type)
perform error(3)

return
end-if
else

get-type = ITEMS in get node
copy record-type to get node
for (each data-item on item-list)

if ('data-item' is not defined for record-type)
perform error(2)
return

end-if

else * create pseudo tgt-list * ;
copy data-item to get node

end-else
end-for .

end-else
}

record-type
{
if ('record-type' is not equal to CIT.RUN-UNIT.type)

perform error(3)
return

end-f
else

get-type RETURN-ALL in get node
copy record-type' to get node

end-else L

empty

get-type = RETURN-ALL in get node
copy CITRUN-UNIT.type to get node}r

The FIND statements establish the current of run unit, record type, */
• and set type.

find: FIND record-selection-expr curr-suppression

105

4 °

- The FIND ANY means: find any record of type record-type Ahose
values for iteml through itemn match those in that record's
template in the user work area. *

record-selection-expr: ANY record-type

if ('record-type' record-template node is not
on move-list)

perform error(l)
return

else
alloc and init new 'find' node
find-type = ANY in find node
copy record-type to find node
alloc and init new abdl-str
alloc and init new tgt-list
• begin forming a RETRIEVE request

copy " RETRIEVE ((TEMPLATE 'record-type')"
to abdl-str

end-if
select-list = NULL

USING item-list IN record-type

if ('record-type' is same as previous 'record-type')
if (any data item on select-list is not

defined for record-type)
perform error(2)
ret urn

end-if
else
create tgL-list item for all attributes

of 'record-type' record
for (each data item on select-list)

if ('data-item' not on move-list)
perform error(1)
ret urn

end-if
else

get item-value' from move-list

concat "and ('data-item' = 'item-value')"
to abdl-str

end-else
end-for
concat ")('tgt-list') by DBKEY" to abdl-str
connect abdl-str to find node -"

end-else
end-if [
else

perform error(6)
return e'''''

end-else

10- -

. . - -,,.=5-- - C..

--- --- -- --- -- --- --- :::::

The FIND CURRENT means: Make the current of set-type the current "•

record of the run unit.

CURRENT record-type WITltIN set-type

if (CIT.set-type.TYPE is not equal to 'record-type')
perform error(7)
return

end-if
else
* current of run-unit becomes current of 'set-type' *I

alloc and init new *find' node
find-type = CURRENT in find node
copy record-type to find node
copy set-type to find node

copy CIT.set-t\ pe.dbkey to find node
end-else

The FIND DUPLICATE means: Find the first record in the current set- *

* ype occurrence whose value for item] through itemn matches those

* for the same items in the current set-type occurrence, not the UWA *
* record template. This implementation assumes the records being re- z
. quested are already in a buffer.

DUPLICATE VvITHIN set-type

alloc and int new 'find' node
find-type = DUPLICATE in find node

copy set-type to find node
select-list = NULL * reset select-list ;/

USING item-list IN record-type

if ((record-type is not CIT.set-type.TYPE) or
(record-type is not CIT.set-type.member))

perform error(8)
ret urn

end-if
else

copy record-type to find node
for (each data-item on select-list)

if (any data-item on select-list is not

lefined for record-type)

perf-rm ,rror(2)
ret urn

,irid- if'''...

ise * create a ,'-eido tgt-list

cops tata-item to find node r
end-else

e It-for ". -. ,'-

107

.., .-'.-.-.- -.

/ This statement means: Find the FIRST, LAST, NEXT. or PRIOR record- */
type record within the current set-type occurrence. The II token */
takes the value FIRST, LAST, NEXT, or PRIOR.

II record-type WITHIN set-type

if ('record-type' is not a valid member type
for 'set-type')

perform error(5)
return

end-if
else

copy record-type to find node
copy set-type to find node

, RETRIEVE all member records of set occurrence

alloc and init new abdl-str
alloc and init new tgt-list
copy "WRETRIEVE

(TEMPLATE = CIT.set-type.member) and
(MEMBER.set-type = CIT.set-type.owner-dbkey))"
to abdl-str

create tgt-list for all attributes of member record
concat "('tgt-list') by DBKEY!" to abdl-str
connect abdl-str to find node

end-else} - .

The FIND OWNER means: Find the owner of the current set-type occurrence

OWNER WITHIN set-type

alloc and init 'find' node
find-type = OWNER in find node
copy set-type to find node
alloc and init new abdl-str
alloc and init new tgt-list .-

"* form RETRIEVE request */

copy ",RETRIEVE ((TEMPLATE = CIT.set-type.owner)
and (DBKEY = CIT.set-type.owner-dbkey))"
to abdl-str

create tgt-list for all attributes of owner record
concat "('tgt-list') " to abdl-str
connect abdl-str to find node

108

A.'

r w ~ m ~ -.--.

* This statement means: Find the first record-typo record within the
• current set-type occurrence whose values for itemI through itemn *"

* match the values found in the record-type template in the UWA, not

* the values in the current of set-type as in the FIND DUPLICATE. */

i record-type WITHIN set-type CURRENT

if ('record-type' not a member type of 'set-type')
perform error(5)
return

end-if t
else

alloc and init new 'find' node
find-type = WITHIN in find-node
copy record-type to find node
copy set-type to find node
alloc and init new abdl-str
alloc and init new tgt-list

* begin forming RETRIEVE request */

copy " RETRIEVE ((TEMPLATE = 'record-type') and
(MEMBER.set-type = CIT.set-type.owner-dbkey)"
to abdl-str " i

create tgt-list for all attributes of 'record-type'
record

select-list = NULL /* reset select-list */
end-else

USING item-list IN record-type
I
if (any data-item on select-list is not defined

for 'record-type')
perform error(2)
return

else if (any data-item on select-list
not on move-list)

perform error(l)
return

end-else-if
else

for (each data-item on select-list)
get 'item-value' from move-list
concat "and (data-item' 'item-value')

to abdl-str
end-for
concat ")('tgt-list') by DBKEY" to abdl-str
connect abdl-str to find node

end-else
109

... % og

r::?

I1: FIRST
{ -
alloc and init new 'find' node
find-type = FIRST in find node}

LAST

alloc and init new 'find' node
find-typ, = LAST in find node

NEXT{
alloc and init new 'find' node
find-type = NEXT in find node
}

PRIOR

alloc and init new 'find' node
find-type = PRIOR in find node

curr-suppression: LSQUARE supp-expr RSQUARE
empty

supp-expr: SUPPRESS UPDATE
UPDATE type-spec L

type-spec: set-type

add set-type to suppression-list

type-spec COMMA set-type

add successive set-types to suppression-list

110

'7

This statement means: Delete the current record of the run unit, *
/* and all of its descendents regardless of whether they are owners of */

* other sets. */

erase: ERASE ALL record-type

if ('record-type' is not CIT.RUN- UNIT.type)
perform error(3)
return

end-if
else

alloc and init new 'erase' node
erase-type = ALL in erase node
for (each set-type in schema)

if (CIT.set-type.owner-dbkey = CIT.RUN-UNIT.dbkey)
member-type = ClT.set-type.member

L
/* form RETRIEVE to get member records */

alloc and init new abdl-str
copy"'RETRIEVE(MEMBER.set-type= CIT.RUN-UNIT.dbkey)

(DBKEY) by DBKEYI" to abdl-str
connect abdl-str to erase node

/* erase member records */
alloc and init new abdl-str
copy" DELETE((TEMPLATE = 'member-type') and

(DBKEY = ***)" to abdl-str
connect abdl-str to erase node

/* delete all descendants of member records */
prrform erase-all(member-type,erase node)

end-if
end-for

/* delete current of RUN-UNIT ,/
alloc and init new abdl-str
copy "IDELETE((TEMPLATE = 'record-type') and

(DBKEY = CIT.RUN-UNIT.dbkey))j" to abdl-str
connect abdl-str to erase node

end-else

i".) !

*This statement means: Delete the current record of the run unit if ~
*and only if. it is not the owner of a non-empty set.

ERASE record-type

if ('record-type' is not CIT. RUN- UNIT. type)
perform error(3)
return

end-if
else4

*erase one record-current of RUN-UNIT *

alloc and mnit new 'erase' node

erase-type = NULL in erase node

*form RETRIEVE to see if 'record-type' is/
*owner of non-empty set

alloc and mnit new abdl-str
copy " RETREIVE(" to abdl-str
first-time =TRUE
for (each set-type in schema)

if ('record-type' is owner type of set-type)
if (first-time)

concat "(ME.MBER-set-type =CIT.RUN-UNIT.dbkev)"

to abdl-str
first-time =FALSE

end-if
else

concat "or (MEMBERset-type =CIT.RUN--UNIT.dbkey)"

to abdl-str
end-else

end-if
end-for
concat ")(DBKEY) by DBKEY" to abdl-str

connect abdl-str to erase node

for DELETE request ~
alloc and mnit new abdl-str
copy " DELETE ((TEMPLATE CIT. RUN- UNIT. type) and

(DBKEY =CIT. RUN-UNIT.dbkey)):" to abdl-str
connect abdl-str to erase node[

end-else

y

112

% -e

t. "

/* The STORE means: Create a new record in the database using values '

, supplied by the user via MOVE statements, for the data items of
/* the specified record-type. The is connected to all sets in which */
/* INSERTION IS AUTOMATIC. The appropriate occurrence of the sets * "
/* must be selected before the new record can be connected. This is */
/* done based on the SET SELECTION clause specified in the database /
/* schema definition for the sets in question.

store: STORE record-type
{ i- 4
if ('record-ype' record template node is not on move-list)

perform error(l)
return

end-if
alloc and init new 'store' node
alloc and init new abdl-str
copy "'RETRIEVE (" to abdl-str ..
first-time = TRUE
for (each data-item in schema for 'record-type')

if (nan-dup-flag is set)
if (data-item in move-list 'record-type' record template)

get data-item value from move-list
if (first-time = TRUE)

concat" ((TEMPLATE = 'record-type') and
('data-item' = 'item-value'))" to abdl-str

first-time = FALSE
end-if
else .- "'_ :

concat "or ((TEMPLATE 'record-type') an-i . .
('data-item' 'item-value'))" to abdl-str

end-else
end-if

end-if
end-for
concat")(DBKEY) by DBKEYj" to abdl-str
connect retrieve request to store node
alloc and init new abdl-str

/* Form an INSERT request */

copy"INSERT (<TEMPLATE,'record-type'>,<DBKEY,** >"to abdl-str
for (each 'data-item' in schema for 'record-type')

if ('data-item' not on move-list for 'record-type')
perform error(4)
ret urn

end-if -. '

else
get data-item value from move-list it' l
concat", <'item-name', 'item-value'> to abdl-str

end-else
end-for

113 "

.. ..

* Now determine which set occurrences the new record belongs to /
* and add proper attribute-value pairs to the INSERT abdl-str to /

indicate set membership. The following FOR loop and CASE state-*/

Sment fill the INSERT abdl-str with the proper pairs.
for (each set-type in schema in which 'record-type' is a member) -

case (set selection mode) of " "

/* set selection is by applicaton */
a: perform by-application(INSERT abdl-str)

/* set selection is by value */

v: perform by-value(INSERT abdl-str)

/* set selection is by structural */

s: perform by-structural(INSERT abdl-str)

/* no set selection criteria was given */
o: perform by-default(INSERT abdl-str)

end-case
end-for r
concat "" to INSERT abdl-str
connect INSERT abdl-str to store node
alloc and init suppression-list

curr-suppress. L',

connect suppression-list to store node

I%

114

- - . , . '-", -. '----.- , --. "" -- -.- 2"-. -- -. - -- - r " r r r---- -- v- " . -: - I C '

I

•The MODIFY means: Modify the entire current record of the run unit
or the specified data items in that record. The new values are

supplied by the user via the UWA.

modify: MODIFY

select-list= NULL /* reset select-list */

item-list IN record-type

if ('record-type' is not current of run unit)
perform error(3)
return

end-if
if ('record-type' record-template node is not on move-list)

perform error(l)
return

end-if
if (any data item on select-list not defined for 'record-type')

perform error(2)
ret urn

end-if
else

alloc and init new 'modify' node
locate record-template node on move-list for 'record-type'
for (each data-item on select-list)

alloc and init new abdl-str
/ form UPDATE request */

copy "I UPDATE ((TEMPLATE = 'record-type') and
(DBKEY = CIT.RUN-UNIT.dbkey))" to abdl-str

get 'item-value' from move-list %
concat "t'data-item' = 'item-value')]" to abdl-str

connect abdl-str to 'modify' node - ' - - -

end-for
end-else

11.

L

SoZo,

*1;'-"

e a

-'. %

:..' -,.. ' . '.." . .•...-.'..' ,,. • .. .L:_.- '_ _' Z r,. 'ZL.'' .. 5€ e k' ,.,e .115 .€ .,

S%

MODIFY record-type

select-list = NULL /* reset select-list */
if ('record-type' not current of run unit)

perform error(3)
return

end-if
if ('record-type' record-template node is not on move-list)

perform error(l)
return

end-if
else

alloc and init new 'modify' node
for (each data-item in record-type)

if (data-item not on move-list for 'record-type')
perform yyerror(4)
ret urn

end-if
else

alloc and init new abdl-str

form an UPDATE request *.-
copy "' UPDATE ((TEMPLATE 'record-type') and '

(DBKEY = CIT.RUN-UNIT.dbkey)) to abdl-str
get new 'item-value' from move-list
concat "('data-item' = 'item-value')" to abdl-str
connect abdl-str to 'modify' node

end-else
end-for

end-else

6'I

- % ,.': :

i-S

116 '%.::

d% %,'

The CONNECT means: Connect the current record of the run unit to the */
* current occurrence of the specified set type. There may be several */

/* sets listed in the statement. */

connect: CONNECT record-type TO{.-
if ('record-type' is not current of run unit)

perform error(3)
return

end-if
else

alloc and int connect-list
end-else

set-type-list

alloc and init 'connect' node
for (each 'set-type' on connect-list)

if ('record-type' is not a member type record for 'set-type')
or (INSERTION is not manual)
perform error(5)
return

end-if
else

alloc and init new abdl-str
copy "IUPDATE ((TEMPLATE = 'record-type') and

(DBKEY = CIT.RUN-UNIT.dbkey))
(MEMBER.set-type = CIT.set-type.owner-dbkey)]"
to abdl-str

connect new abdl-str to 'connect' node
end-else

end-for r
connect-list NULL /* reset connect-list */}

set-type-list: set-type

add 'set-type' to connect-list

set-type-list COMMA set-type

add successive 'set-type'(s) to connect-list

I . • .

117
V, ,

.-. - - , ,,, .,- +. .- , -. - ,°. .. ,- -. ,s. -.. -.- . . - " -o .- , ' .

'. . ' - . i.-" .° ' -. • ,;. , K.' - - "_"__-_"___.____)" ', """. " '4 ., '

The DISCONNECT means: Disconnect the current record of the run unit "
from the set type occurrence that contains the record. *

disconnect: DISCONNECT record-type FROM

if ('record-type' record is not current record of run unit)
perform error(3)
return

end-if
else

alloc and init new connect-list .--

end-else

set-type-list

alloc and init 'disconnect' node
for (each set-type on connect-list)

if ('record-type' is not a member type record for 'set-type')
perform error(5)
return

end-if
else

alloc and init new abdl-str
copy "'UPDATE ((TEMPLATE = 'record-type') and

(DBKEY = CIT.RUN-UNIT.dbkey))
(MEMBER.set-type = NULL)]"
to abdl-str

connect abdl-str to 'disconnect' node
end-else

end-for
connect-list = NULL /* reset connect-list */} .,-..

perform-loop: PERFORM UNTIL bb EQ cc
END-PERFORM

bb: EOF
NOTFOUND

cc: YES
NO

148

. ,.- **S -

item-list: item-name

put item-name on select-list

item-list COMMA item-name

put successive item names on select-list

schema-name: IDENTIFIER

record-type: IDENTIFIER

L

set-type: IDENTIFIER

item-name: IDENTIFIER

item-value: IDENTIFIER
INTEGER ,-

e-e-

proc error(err-code)
* This procedure prints error messages, causes data structures to * /
• be de-allocated. and causes proc yyerror to be executed. , /

case err-code of
1: print("Error - must initialize 'record-type' record-template")

2: print("Error - 'data-item' not defined in 'record-type"')
- . •. -•

3: print("Error - 'record-type' is not curr'nt record of run unit")

4: print("Error - attempting to modify or store record without
giving value of 'data-item"')

5: print("Error - 'record-type' record does not belong to 'set-type"')

6: print("Error - record-types specified are not the same")

7: print("Error - 'record-type' is not current of 'set-type"')

8: print("Error - "record-type' must be a member record of 'set-type"')

end-case
perform cleanup() * free data structures

perform vverror()
return

end-error:

'.

120
N..

L

proc by-application(abdl-str)

if (set-node nsn-insert -='a') insertion mode is automatic
concat",<MEMBER-set-type,CIT.set-tvpe.owner-dbkey> "to abdl-str

end-if
else insertion mode is manual

concat" .<MEMBER.set-type,NULL>" to INSERT abdl-str
end-else

end-by-application; a

proc by-v alue(abdl-str)

locate data-item node in schema for set-select node item-name
in set-select node recordi

if (nan-dup-flag set)
get owner record type of set-type from schema
if (owner record type node not on move-list) or

(data-item not on move-list)
perform error(4)
return

end-if

else
if (set node nsn-insert ='a*) *automatic insertion /

get data-item value from move-list
copy" RETRIEVE((TENIPLATE =owner-record-type) andV(item-name = 'item-value')) (DBKEY)"' to abdi-str
connect new retrieve request to store node
concat?,<M\E.\BER.set-tvpe,***>" to INSERT abdl-str

end-if
else *manual insertion-- -

concat"',<.\MEMBERset-typeNULL>"I to INSERT abdl-str
end-else

end-else
r

end-if nan-d up-flag *

end-by-value;

121

. . - IV - -7

proc by-structural(abdl-str)

locate data-itemn nose in schema for set-select node item-nameI

in set-select node record 1 record-type
if (nan-dup-flag set)

get recordi name from set-select node for set-type
- .- if .-ecurdi' record template node not on move-list) or

(data-item not on move-list)
perform error(4)
return

end-if
else

if (set-node nsn-insert = 'a') ,* automatic insertion ,

get data-item value from move-list
get record2 name from set-select node for set-type
copy"'RETRIEVE ((TEMPLATE = record2 name) and

(item-name =itemn-value)) (DBKEY)" to abdl-str
connect new retrieve request to store node
concat", <MEMBER.set-type,* **>"~ to INSERT abdl-str

end-if
else /* manual insertion *

concat",<KMEMBER.set-type.NU LL >" to INSERT abdl-str
end-else 6

end-else
end-if 7*nan-dup-flag ~

end-by-structural;

proc by-default(abdl-str)

print("Warning - Attempting to store a record with no
particular set selection given. Will assume 'BY
APPLICATION"')

if (set-node nsn-insert ='a') /7* automatic insertion ~
concat", < MEMBER.set-type,CIT.set-type.owner-dbkey>"

to INSERT abdl-str
end-if
else /* manual insertion *

Cuncat",K MEMBER.set-type,NULL>"I to INSERT abdl-str
end-else

a

end-by-default;

122 *.

% ' . I2~

-1~. .-- 1 7

t. . .
.. i '

proc erase-all (record-type,erase node) r q

string member-type;

for (each set-type in schema) -

if ('record-type' is owner type of set-type) -

member-type = member type of set-type " J4i

/* for RETRIEVE to get members of 'set-type' */ . 4

alloc and init new abdl-str

copy "'RETRIEVE(MEMBER.set-type = ***)(DBKEY) by DBKEYj"
to abdl-str

connect abdl-str to erase node

/* delete member records */
alloc and init new abdl-str

copy "'DELETE((TEMPLATE = 'member-type') and (DBKEY ***))t" t

to abdl-str
connect abdl-str to erase node

erase descendants of member records *'
erase-all(member-type,erase node)

end-if

end-for "

return(erase node)

end-erase-all

123 -

% 7 ,

L *Aso

LIST 0F REFERENCES

Is Demurlian, S,A, and Hsiao, O.Ke, "Jew Directions in
Database- Systems Research and Development", in the
~LZOGaa.Gs Q1tt USA Q I~BZaLQaS IQ CaC.J.A
CoQtazaaaa, Trondheim, Norwey, Aust, 19qs; also in
Technical Report, 14PS-52-85-OO1, %!aval postqrd'luate
School, 4onterey, California, February 1965,

2. Ssiao, DK,, and PMenon, 4,J., Ca$4.ga ad AoaJ.~Igza Qt a

.aoa~ (Bz 13, Technical Report, 0SUI-CISRC-TR-81-7,
The Ohio State University, Columbus, Cjhio, July 1981,

3, Hsiao, O.K,, and Menon, 14,J,, QS1j2Q dijd Lajgj o a

ZaaaIQ, I~ Exaa.sJ.o, a~d "asaz
G~~t' (&-az 11), TechniCil Report, 05U-CTSRCT-Rq1.6,
The nhio State University, ColUmbus, Ohio, AUqust 1991.

4. Hanerjee, J. and Hsiao, DK,, "A methodolony for V
Supoortinq Existinq COiDASYL ratabases with *qew Ciatabase
machines", 2roradjag at baio AC4 Coalg~aa
1978.

S. Ben son , T* P. and Wentz, G. r, Ita C&IZ Aa

~ ~~a~aa ~am ,S, Thesis, 'javal
Postqradtiate School, Monterey, California, June 194'3

1ZQ1Q2At~tQQ a a aaaca1. late:taaa laxt~
gulti-iau Lataaaaa Sgstaz , Thesis, klaval
Postgraduate School, Monterey, Califormia, Junis '995,

7, flate, C.]. , 12 Xazduta to Qataga.%& SIagaa P
3A9-446, Addison Wesley, 1982.

40 Tsichritzis, D, C. and Locnovsky, F, H,., Lara ""dpas
op, liq-147, Prentice-Hall, 1982,

2aaaan , John 4Jtley 9 Sons, Inc,, 1978,

11), IisiRo, 0,K,, ani Haray, F,., "A F'ormal Systeml for

Infot-ition Retrieval from Files", Caau .~caZ.±aa at
LA&a C2 , Vol. 13, No, 2, Fetruary 107n#, (orriqenda,
Vol, il, No, 3, 'rlarchi 1970l,

lie. fanerlpe, J., 11siao, 0, K,, ani Kerr, Li. S.0 P.&
Sat~aza aeulxa~amts La au&ao;LJ~g 4txo" Databases,

124

,,, .,f-. :

Technical Report OSt-CISRC-TP-77-4, The Ohio State

University, Columbus, Ohlo, November 1Q77,

12. Data Base TasK Group of CODASYL Programminq Lanquaoe
Committee Report (April 1971),

13. Meyer, , and MacDougal, P,, a ALt.r,1uzaul-"u"
zaaa u Q& COCASILs Qaa A Laa*i.-a

* Ohio State University, 1982,

14. Johnson, S. C., XACC: :at-A -C;a;4 1JJ: C a,,.
Bell Laooratories, Murray Hill, New Jersey, July 197,-

15. Lesk, 4,. E. and Schmidt, F., Las - a Lax1a.l A a a z .
G ;;aa;zt , Bell Laboratories, Murray Hill, new Jersey,
July 197R,

-7

125

,q ..

s- ~ _ ~ ~ ~ . d° .

14iITIAL DISTRIBUTION LIST

No, CO30is

1. nefense TeChnical Information Center 2
Cameron Station
Alexandria, Virginia 22304-o145

2. ribrAry, Code 0142 2
,"val Postoraduate School
monterey, California 939,13-5100

3. Deoartment Chairman, Code 52 2
deoartment of Computer Science
4aval Postnraduate School
14onterey, California 93943-510.

4. Curricular officer, Code 37 .
CoPpiter Technoloqs
4aval Postqraduate School
monterey, California 93943-5100

So Protessor Dal- Ko H, sao, Code 52Hq -
Computer Science Denartnent
'aval Postqraduate School
qonterey, California 93943-5100

6o Steven A, Demurjian, Code 52 2
Co.mouter Science Department
NJeval Postorauate School.
Monterey, California 93943-5100

7. Clemon P, Wortherly 3
2S "b" Street
Sumter, South Carolina 29150

L .

I-

1 2 6' " -

.- r .~. - - - -
-. -. - -. ..-- ~- .~ .-. ~ -- - - - -

1.

I.

S

~A.. .4

FILMED
V.

K

DTIc
W~w. -- - - --- - - -- ''

Z7i~ ~iIx~~i.Q~
* ~* -

