fHE SIGN AND ANALYSIS OF A NETMORK INTERFACE FOR THE 1/277

. AD-A164 736
NULTI-LINGUAL DﬂTﬂBnSE SYSTEMCU) NAYAL PBSTIRRDUﬂTE

SCHOOL MONTEREY CA C R WORTHERLY DEC
UNCLASSIFIED F/G 9/2

: —ll .

Iz

22

22

I

FFFEERE

rre
3
Fe

—
 —
—
—
—

.25

 —
—
—
—
———

MICROCOPY RESOLUTION TEST CHART
PATIONAT RURTALL NF CTANDARDS . 1063.A

NAVAL POSTGRADUATE SCHOOL

Monterey, California

0
O
N~
<
{e)
F
A
£ ECTE]
FEB2 81986 _
o B
N
THE DESIGN AND ANALYSIS OF A
NETWORK INTERFACE FOR THE
MULTI-LINGUAL DATABASE SYSTEM
- by
¢ Clemon R. Wortherly "i'.-"'{
o I
L December 1985
il‘t .‘-E'A.'-v',
e
< Thesis Advisor: D. K. Hsiao A
& SN
- Approved for public release; distribution is unlimited AN

R
.1 .
.
)
o
v . ’NO
A N

Ty

‘ . [. 'b,
SECURITY CLASSIFICATI F THIS PA .-1[)»,‘]/(‘ / /‘>
REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
5 gf applicable)

Naval Postgraduate School Naval Postgraduate School

6¢. ADDRESS (City. State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5100 Monterey, CA 93943-5100
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIF:CATION NUMBER
ORGANIZATION (if applicable)
8¢. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO. ACCESSION NO.

11 TITLE (include Security Classification)

THE DESIGN AND ANALYSIS OF A NETWORK INTERFACE FOR THE MULTI-LINGUAL
DATABASE SYSTEM (UNCLASSIFIED)

12 PERSONAL AUTHOR(S)
Clemon R. Wortherly

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
Master's Thesis FROM__T0_______ | 19 December 1985 127

L
‘6 SUPPLEMENTARY NOTATION

7 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FELD GROUP SUB-GROUP Multi-lingual Database System (MLDS), Multi-

backend Database System (MBDS), Attribute-based

‘9 ABSTRACT (Continue on reverse if necessary and identify by block number)

Traditionally, the design and implementation of a conventional database
system begins with the choice of a data model followed by the specification:
of a model-based data language. Thus, the database system is restricted to
a single data model and a specific data language. An alternative to this
traditional approach to database-system development is the multi-lingual
database system (MLDS). This alternative approach affords the user the
ability to access and manage a large collection of databases, via several
data models and their corresponding data languages, without the aforemen-
tioned restriction.

In this thesis, we present a methodology for supporting network (CODASYL)
ditabase management on the MLDS. Specifically, we design an interface
which translates CODASYL-DML statements into ABDL requests. We describe
the data structures, the control mechanisms, and the functions/procedures

Data Model, Attribute- Cont

necessary to implement such a_svstem, ~<~ i . -
20 O'STRISUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
unclassifieounumiTeD (O 5aME As RPT.] OTIC USERS Unclassified
222 NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL
Prof. David K. Hsiao 408-640-2203 S2Hg
AR .
DD FORM 1473, 38 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsclete.

e e e T e e T e e N,
Ol AP . VoAl T W PP, S, IV, . WY

K]

~ - M Rl ~ - ' A - - - - - - - - o \.‘ Cy "
s
N
: SECUMITY CLASSIFICATION OF THIS PAGE (When Dete Enteredd
~ Block # 18 (Continued)
<
._\
{(ABDL), CODASYL Data Model, Network Database Translation
L {
ey
4- o
.- :\"‘s\.
- O
| Accessio. For S
C \ - {. L™
l NTIS GRAXI . I
- : oTIS TAB O \..\;1.:
, U.announced O NN
‘ Jistific tion. et
1. e e i n e e .:,\'&-
; S
- PBYL e] ;_\-:* 5
3 k_ Distrivutton/ | Lo
> | Avallability (odes . ;
r-. ’ #vail and/or
-~ Dist | Spocial ,
. !
< | 1 co
) 1/ { l .
o ‘ L "Gt
.l~ .
- ’
..‘- -" . :
\'. :‘u" ,
< ‘.-
h . 3 4 oM { .
T
2 SECURITY CLASSIFICATION OF THIS PAGE(When Data Enrored) “
e e T e S SN S N A P A A AN .

Approved for Public Release, Distribution Unlimited,

The Desian and Analysis of a
Jetwork Interface for tne
Myultielincual Dataocase System

oy

Clemon R, wortherly
L.ieutenant, United states Navy
B.S.y, University of fexas, 1980

Suomitted In cartial fulfillment of the
requirements tor the degree of

4ASTER CF SCIEWCFE I CGMPUTER SCIENCE
from the

NAVAL POSTGRADUATE 3CHQOI,
Necemper 19R5

//?/4: //.7 . /- ‘/,-
Author: ----.1'..&..24?.?.4.% (L8, Thec oo

("Clemon Re WOrtherly 5/

Aoproved bve ------,(-/l.‘l-éé‘:::’-?-(/.{;-{- f)-\céu A:-------

//nath“j> “siao, [nestis Advisor
- é‘;-_-/-: o~ an — CL L X L 1 L 1 L L T L T L L T 1 21 T YT 1 L 2 J
SWUe_;urj %4 Peader

L 1 1 1 - P . - ay € E) G) @b 4D) G GF 60 P T G ¥ O IS
vincent Lum, Cnalraan,
Departnengy/o¢ Conputer Science

KT W

Kneale T, Kar
rean of Information and ?Po

’
€y Scliences

S - L A R R SO
o« \ - ...-“:n' S 'j-v“ .-. L 'd'_‘-' vod e -".‘". v .":1. .‘~--'- "'-.) .) ('-d‘ "\{'-(. ‘) o e Nyt e > (s YL

) en arg area aee - o i el B bt tedtedh Ak Ael S ae P bl aiaRiel Aty

K
)

.
PAP AR

.
-"

]

'
s fa
I4
.

/
&
,

b

..

;H:E_

. 4§
A

/, ‘."-r". ‘.
& &
“%

»
)
(]
)

Wy

[
f‘:'-

s

o -
. "J .
"\ .

d

RN
st

W

A SANE SR EUE Wl G A AL B ate ot -t a- o o s nsy o . T R TN m—— ey
X Pl sl PR MRS o

ABSTRACT

Traditionally, the desiygn and {(mplementation of a
conventional database system beqgins with the choice of a
data model followed by the specification of a modele=based
data language, Thus, the datapase system is restricted to a
sinale data model and a specific data lanquage, An
alternative to tnhis traditional approach to datahase=«systenm
develorment is the multielingual database system (MLDS),
This alternative approach affords the user the ability to
access and manage a large collection of datapases, via
several data models and tneir corresponding data languages,
“«ithout tne aforementioned restriction,

In this thesis, we present a metnodologqy for supporting
network (COUDASYL) database management on tnhe MLDS,
Specifically, we desian an {interface whicn translates
CIDASYL=DML statements into ABOL regquests, e descrioe the
data structures, the control mechanisms, and the functions/

procedures necessary to implement such a system,

S AR T AR aca ey DAL g DA AL A A A i A avh adh 'R ath atd sl sl N st a/AlChR St AR it
AR s MER G AR SR R AN S A A Al Yy "

»
»
3
A
)
»
»
v

Y

II.

IIr,

1v,

TABLE OF CONTENTS

INTRODUCTION sesvevosnvscasqsostasscsccssecs
A, MOTIVATION seevsneescsessoscansnscncnens
B, THE SYSTEM ORGANIZATION ,qe0e0vescescesose

1, The MultieLingual
Database SYSLeM ceeqeecesvrresscsccece

2, The Multie-sackend
NDatabase SYSTEM ceceosnsssescccnscoes

THE DATA MOLELS ceeeecvecsesosqcctcorecoccqgeccn
A, THE CODASYL DATA MOCEL ,e90c0c00000ccenss

1, A Conceptual
View 0f the Model ,s,ccec0c000es0000ess

2. The Data ™Manipulation
Language (CODASYL=DML) seeeevevescne

R. THE ATTRIBUTE'GASED DATA MODEL XXX NENNEN]

1, A Conceptual
View Of the Mod®l sseeenesacececsnns

2, The Attribute-Based
rata Language (ABDL) sveesvecocanssee

AAPPING NETWORK (CODASYL)
DATA TO AITRIBUTE'aASED NDATA eesaenQoeeeeuess

A, THE REPPESENTATION
OF A CODASYL FECCRD eencesvoescsnncsonsnce

8, THE REPWESENTATION
OF CUDASYL bETS EEENENENEXNNEINNNRNNN NN NN NN

C, A CCHPLETE DATA=HAPPIIG EXAHPLE sveeneee

AAPPING CONASYLeDML
STArE:MF.NrS TO Asn[l REO‘JESTS 000 e QPRSP RNQRESEOETSRDY

4, THE NOTION OF CURRENCY Le00vcoessncnansce

R, DATA STRUCTURES :IECESSARY
FCR ACCURATE TRAHSLATIDN LI IR B R BN BN BB B BE BN BB 4

11
11

12

13

15
19

19

20

21

26

26

289

31

32

34

38

38

39

44

- —w—w

R OO ISP P O O SO A S S0 S AT Bt e e g T ..v...'-". R T T T Y Y Y TV IV Ty Twws
. R P N R ST e

i i
a Ry
X

!

E 1, The Currency Indicator

N Taole (CIT) osy00cc0pc0000sccncssnsnscs 40

I 2. The Request Buffer (RB) .scesccecsen 41

- €, MAPPING THE FIND STATEMENTS ’

- TO THE ABDU RETRIEVES syevevcescescacncs 42

b 1, The FIND ANY Statement ceeoeenvsosss “2 .

2. The FIND CURRENT Statement ,.peeeees 45 e
3, The FIND DUPLICATE -
. WITHIN Statement se,00000000c0000000 46
l 4, The FIND FIKST Statement cevoeeceeeses 43 ; R

Se The FIMND UWNER Statement .cesecccescns 51

6, The FIND WITHIN T
CURRENT Statement s essvecrnvscesves 52 RS

R L F T
-

D, MAPPING THE CONASYL

. GET STATEMENTS (AN NN NN NN NN N NNE NN NN 53 :Z}?
: 1. The GET and i
. GET recordetype STALEMENtS ,eseevese 54 R

2, The GET itemi, ,,, ,ltenn

StAteMeNT ceveoncvespceasesssncasosce 54%

&
e

MAPPING THE DATA=-UPDATING
. STATEMENTS (N N N RN N N R N NN RN N N NN 55

i. The CONNECT Statement evev0eossosere 55
2, The NISCONNECT Statement ,oic0c00000 57

- 3, The MODIFY SLAtemMeNE ceeeetsosensses 5@

4, The STOKE Statements ,eececcescecsoe 59 uﬂf:

A, The STUREe=by=App!ication
Statement .sqeceqos00000c0sernssne o0

b, The STIORE=hywValue

Rha S

R Statement cosevesessessacnssosen 61 .

- €. The STUREepv=3tructural e
. - N,
. Statement ,socevevscvssncosesonccnn 62 A
.-‘ L] \"‘ ..C 't
. YA
> .
A S35
- BN T
- RN
> 6 e,
N A SR
i fhl@
- e

- SN

: i
L o T T e e T T S O G St g o e T

horod

S, The ERASE Statements ,.ecseessscsses 63 S

Ve IMPLEMENTATION CANSIDERATIONS coeeesvscssses 66 e
V...

A, THE KERNEL MAPPING SYSTEM (K¥S)...ec0eee 86 el

1. The KMS Parser/Translator sevecesses o7

2. The K4S Data StrucCtures ,ccecescesss 68

a, The “find.node’
Data Structure ceseesesavesacese 69

pe The ‘get.node’ Lo
Data SLrICtUre® ,eescecesgneescnsse 70 PR

¢, The ’connect.node’
Data SLrUCtUre® ,csecectesnenconss 71

d, The °“disconnrect_node’ DORA

Data Structure 99008 tqos00vacoenoe 71 ég”n;
e, The ‘moditvyanode’ _:::ﬁt

Data SCLrUCTUre® L, eeseevsanocscoss 72

f. The ’store.node’
Data Struc:ure [N ENENNNNNNENINEINS] 72

g« The ‘erase_.node”’
NAta STLrUCtUre ,eccesevccecsersn 73

B, THE MAPPING PRUCESS: AN EXAMPLE ,e¢00e¢ 7%
Ce THE KERNEL CONTROLLER (KC) gevsesscencons 8O
1, The Structure of the KC ,escsscenscns a1

a, Creation of a hLew NALALASE ,.400 52

b, Yanirulation of an
Fxisting Dataoase evevesacsesree K2

(1) The FIND Procedur®s ,eeeevse 33

(2) Thne CONNECT, NISCUwHECT,
and MOUIFY Procedures .eees 86

(3) Tne STORE Procedure ,.cecee 47
(4) The ERASE Procedures ,,esee 90

(9) Tne GET ProCedUre® ceeseeens 91

VI, CONCLUSIONS ,eeas00cesevssoeosscctossacocscsses
APPENDIX = THE KMS PRUGRAM SPECIFICATIONS saesnsee
LIST NF REFERENCES ,cee000cvvconoeesvrcotosonssnssce

INTITIAL JDISTRIBUTION LIST ceseeesosscncssccoceanes

92
94
124

126

ot e A A e At At B it A S e~ ed s el Al e et Aot el el

Fijure

Figure

igure

Figure
Figure
Filgqure

Figure

Figure

Flgure

Fiqure

Fiqure

Figure

Fiqure
Fi{gure
Fiaure
Fiqure
Filgure
Fijure
Fiqure
Fiaure

Tityre

Wt et et et e =T .o
‘Af et atalalmatatatara aranlaa

t3:
142
153
162
17:
152
19:
20

21:

LIST OF FIGURES

The Multi=Linqual
Database System (MILDS) seseessssevRasuns

The Multi=backend
Databese svsﬁem (MBDS) [2K BN BN BN BN BN BN BN BN N B BN N BN I J

Data Structure Diagram of the Sauple
Suppliers-and=Parts Database sesseceenee

A CODASYL Set Occurrence setevssernsernn
An Attribute=Based ReCOrd ,qcceveorsvcses
Sample ARDL REQUESTS saceevvetonsnsnnase

Hierarchical Structure
of a CNDASYI, Record ees o0t engseseseerrn e

Attributee-pased Representation
0f CODASYL Data ItemS sqeecvevssscssanss

An vxample of a
Transftorned COUASY! Record Penseencscers

Schema for the
Suppliers=and=Parts DAt3DASE seescoesoe

Sample Record Occurrences from the
Suppllers=and=Parts 03At3ADAS® ,eeqavvnce

Attribute~gdased f£auivalent of
Record Neccurrences in Fijure 11 seecese

Information Contained in the CIT ,easee
Contents of Buf]l After RETRAIEVE ,qanvee
Contents oOf BUfl ,,eceqsnsceacesrscacscs
Contents of 2ufl After RETRTEVE ceeeves
The ’find.node’ DAta SETUCLUTE cqeesave
The ‘getanode Nata SLTUCLUL® ,sieonessas
The ‘connect.node’ Data SLTuUCtUre ,,.e
The ‘store.node’ DAta SETUCtUTe® ,,.40ses

The ‘erase_noae’
without the ALL Grntion seseesssvsane e

......

16

17

21

30

32

33

35

37

37
40
a4
48
51
69
70
71

73

K]

F{jure
Figure
Figure

#iaure

22
23
23

25

The ‘erase-nOdE’ Aith ALL Ootion cevasce

The KM3 dml.statement Grammar

The KC control Structure t0gstecensene e

Byf1 and B8uf2 After Execution

15

16

93

T T T

I. JIJIBQCUCIIgH

A, MOTIVATION

curing the rast two jecades, the desian and
implementation of datapase systems nas follnwea a rathner
predictaple path, The sequence of events 1In tne tyolcal
aprroach has been to decide on a 3Jata model, specitv a
model=hased langquaqe, and ultimaftely, develop a system for
controlling and executing the transactions written i1n tre
data lanquaae, This approcach to database system develonment
nas resulted in an ahundance Oor homoneneous aatakase
systems eacn of wnich restricts the user to a single waata
model ana a specific nodelebased data manipulation lanquaage,
Some examnles of systems aevelorea usinag this angroach
Include ISM’s Information ‘“anagemnent System (I¥S) wnich
supoorts only the hierarcnical dJata nodel and Data Lannuyage
T (Mt/1), Sperrv Univac’s LMS=1100 wnich supparts jusr the
retvork data mo:del and th2 C NASYL Tata tanioulation
Landuaage, and TnAx®sg SQ@n/Nata Svstem w«hich subvorts solely
tne relational dara rmocel and tre Structured Englisn Tuerv
Lara7uane (S1iL),

an urcorventional abproach ton the oproolem of databhase
manAagemant system davelopment, raeferred to 3as the "yltie
1iacnal Catacase sSvstem (+LN3) Traf,), elininates the

restrictinrs mentinned above, The MLDS wo'lla 1ive The user

11

4

T T A Al on b in i cas

o~
.
-2
|__".
e the ability to access and manage a large collection of
B databases, usinag several data models and tneir corresponding

data langunages, The desian goal of the MLDS oraject is tne
develoonent of a system tnat {s accessibtle via a
nierarcnicals/DL/I interface, a retational/d32L 1{interface, a
networx/CSLASYL inrterface, and an entityerelationship/0Oanliex
inrerface, 3uch a system would function as {f |t were 2
heterogeneous collection of database systems {nstead of a
single model, sinule lanquage system,

Some of the advantaces of a “L0S are the renseability of

. ‘," ';..'...L‘."LL‘.- ,‘ -_.. . - ',‘

datatase transactions dJeveloped on a conventional svstem,
econony and eftectiveness of nNardware ypgrades (since we now
ungrade just oane system 1nsteaa of a numoer of different
systems), and {ts avility to sSupport a varlety nf databases
ouilt around any of the well=known data mnodels, Thus, there
is arple notivation for developing such a system as the

#L0S,

He Thi SYSTEM OKGANIZATION

In order to realize tne above capapili*ties, the wLI:S
miist re supported by an underlyina aatabase system that {s
roth fast, etficient, ard effectjive, If tnese criterion are
rot met, tnen the intertaces being develnped for the hIDS
may he rendereq useless, Hence, it is important that ¢tne

xernel data model and kernel Adata ianguage (the urderlving

Y’

o

s

model anmi lanru”Rge for the system) be suprmorted vy a hiane .

%y

narformance ana hignecanacity dataoase system, Currently,

12

..........

the attribute=pbased data model and attripute=-based data
language are the underlying model and lanquage of a svstem
whicn 1s referred to as the *ulti=backend Database sSystem
(4805), 1In this section, we provide an overviev of pboth tne

) MLDS and tne ¥BDS to enhance the readers understandiny of

the entire “ulti-~Lingual Database Systen,

1. Ias Mulri-Licsual Ratakase Systea
Figure 1 illustrates the complete structure of the R
multi=1linqual database svstem, Tne user interacts with tne
system throulh the languaace interface layer (LIL), using a
chosen user data nodel (UDM) to issue transactinns written ?LQL
in a corresponding model=based user Jata language (JDL),
The LIL routes the user transactions to the kernel manoinag
system (X¥S), The KMS then cerforms one of two cossible U
tasks, It either transforms a DYepased Adatabase definition
to an eauivalent database definition pased on the «cernel

4data model (XKDFM)Y; or, «hen the user snecifies trat a iDL

transaction 1s tc be execCuted, {t translates the UD{,

transaction into an eaquivalent transaction In the xkernel
data languave (KDT,),

The first task {s performen in tre followina way,
The K% forwvaras the KN4 data definitfon to the «ernel
contrnller (KC), The KC then sends the K0OY database
definitinon to the «xernel database system (KDS), w«when the
KNS {s finished with orocessina tihe KD'i datanase definition,
it 1inforrs the ¥C, The KC then notifies t=e user, via tre

T LTL, that the Adatatase definitisn Fras oeen orocessed ana

13

P S S I L.'.-‘{“."_P"f';*_.'_.;‘.‘

r"v-‘"vw.v—“v‘(,'—,."i"r'(v'_v_‘v'j L e A L Aar ot i s Podhan e A e as San fen MRl ol s Jn o S g B Aead gk g
Lo SN . - - A

:

rhat the 1loading of tne database records may begin, The ;ﬁ?
second task is oerformed in a similar fasnion, The Kd§ S
sends the transactions to the KC which in turn, sends the Z§§
transactions to tne KRS for execution, Jnce the execution gﬁé
is comolete, the KDS sends the results in the KD't form bacxk S,
to tne KC. The KC routes the results to the «xernel S
formatting system (KFS). The KFS reformats the results from ;

the KOM form to the thbm form, Tne KFS then 4isplavs tne EAEN

results in the correct UDM form via tre LIL,

]
UDM | KMS (KDM
N \ - :
LIL KC KDS . .!_a_-n
T

UDM : U'ser Data Model

U'DL : User Data Language

LIL : Language Interface Laver

RS : Kernei Mapping Svstem

KC : Kernel Controller

KFS : Rernel Formartting System o~
KDM : Kernei Data Model A
KDL : Kernei Data Language e
KDs : Kernei Database s“ystem Z}.:f:f:

Fiqure 1: The multi=Lingual [Catabase sSystem (¥LDS),

The four modules, LIL, KmS, KC, and KFS, are

cnllectively Known as the ladguasa iplaxiace. Four

14

. D
L A

INOOUNOUN

interfaces with similar modules are required £or the four
interfacing user models and languaqges (i{,e,, relational/sSaL,
hierarcnical/DL/I, network/CODASYLe=DVL, and entitys=
relationshin/Davlex) of the MLDS,

2, Ihs dulti-Backend Databasas Systaa

The multie=backend database system (4BDS) was
designed to overcome tne performancCe problems and uparaade
oroblems assocjiated with the traditional aporoach to
database system desian, This aoal was realized throuqh the
utilization of multiple backends connectea {in a paralle]
tashion, fhe bhackends have jidentical nardware, replicated
softtware, and theilr oaxn disk systems, 1In the wultiebackend
corfigquration, there s a backend controller, wnicn {s
resronsSible £nr supnervisina the execution of datanase
transactions and for Interfacing with the nosts and users,
The ~ackends opertorm the datapase operations witn tne
datavase stored on the disk system of the backends, Tne
controller anrd nackends are connected by a commynications
DuUs, ‘Isars access the svstem througn either the hosts or
the controller directly (see F{gure 2),

Performance gains are realized by 1increasing the
rumher nof oackends, If tne sizZze of the database ani the
size of the resoonses to the transactions remain constant,
then MADS oroduces a reciprocal decrease in the resnonse
times for the user transactions wnen the nunber of backends
is 1increased, On the other nand, i{f the number of backenas

is increased ororortionally with the {ncrease in oanataocase

15

. - o . - L
B L g L YoV

Celelele] B AL SIS

.‘.
- .'
Y ¥

P
(IR
Toeletat.t,

Pl
A

. R
N L%
. PR

v e PR

e e e .,
o0, 8 00 Y
’
o 8
fels)

4
3

v

X

% 0
? size and transaction responses, then the MBDS produces TZl
invariant resoonse times for the same transactions, Far a el

nore detailed aiscussion of MBDS tne reader (s referred to

. .
%%

[REfs. 2 and 3). ::
- - - ‘-‘A“
1 Backend Store 1 .
I :
I! Backend
. { Processor 1
l e
| X -
I Backend Store 2 i
i L
y Backend T
! Processor 2 et
[N o .
. g (Y
’ Backend "
Controller i
N -~
il N
- H .
- ; Backend Store M N
Backend [::j:::
: Processor M Co AN
i t °, '.'j
. I >
Communications ~—— :
Bus
fl tigure 2¢: The Multie-hackend Database System (“Bbrs),
N In this thesis, we {nvestijate the desigr of a
b network (TODASYNL) intertace for the ~Lu3, Banerjee fxef, 1),
N crovided an ini1tjal desian for such Aan interface, we Are
. exterding nis work and Aadaoting {t to suprort tnhe
% requirenents of the VLNS, Irr narticular, we present 2
o specification for the xernel mapping systea (&“S) tnat will
-: be nsed {in the network {nterface, ‘e also nravice an
N
P
“ 16

-

P I ANCAE A PN

inplementation strateay for the kernel controller (¥C), The
other tso modules, the LIL and the KFS are nearly tre sane
in structure as those already implemented for the DL/T and
S5QL intertaces, and thus, they will not be discussed {n

detail 1in this thesis., The reader is referred to [Refs, S

and] for turther details on tne design of these modules,

Throughout this thesis, w~e w{1l] make extensive 1use

of the Suppliers~anrd=Parts samole dataoase used ty ovata o
(Ref, 71 for {llustration of our s~ork., [ne data structure
dlaagram for t-{s nretwork is shown in tigure 3, Thers are
supplier records (S), parts reconrds (P), and snhipments (SP)
recordis, Tne sets ot the database are sungliers=shipments

(S=3F) and partseshibments (P=SP),

K] -]
Poooswneosunansessnd +.-.---.--------§
' suooliers l { parts |
Q------.------\-* 7-.---.------*

(S=5pP) (P=5SP)

SP

Pusovechocsdoansnad

I snipments {

’---......-...--*

Figure 3: NData Striucture Liagram of the Sawnle
Surpliers=ande=rParts iatabase,
In Chaoter 2, we orovice a descrintion nf both the
netvor¥ (CILASYL) data model and the attributeebased model,
as well as, their assoclated darta lanauages, In Chapter 3,

a4 nethodolnyv for mancing A networkX (CIDASYL) <atanase into

17

P et S N

- .
PablS

*

an attributee=based database s presented, Chaoter % 1s
aedicated to explaining the data manipulation lanjuage
translatians, anrd, in Chapter 5, we provide 1i7plementation
condideratisns for both the KMS ang the KC, Finally, 1in

Chapter 6, #e make our conclusions aoout the oproposed

desicn,.

18

Laed ool ol on el and ath SRR MA_she gl g e R Sl S SRA SO 44

S r:' r,.'." I

! IT. IUdE QaI4& SQRELS

The choice of a kernel data model and a c¢orresoonding
. kernel data language is of vital importance {in developing a
; multi=lingual database system, The Kkernel data model and
5 the kernel data language must be capable of supoporting all
the necessary data model transformations and dJdata language

translations required by the ¥L3S langyage {nterfaces,
It {s our intention in this chapter to orovide a summarv
o description of tre data mndels related to the network
(CODASYL) interface, namely the CODASYL data modtel ana the
o attribute=based data model, A conceptual view of paotn
. - models will be presented along with a orie€¢ discussion of

the data =nanipulation lanquages assoclated with each model,

A, Tk CONLASYL DATA ™ODEL

- In general, the network (CODASYL) 4ata model is basedi on
the concept of directed aranns, The nodes of the granns
- usually represent entity ¢tvpas whiech are descrihed oy
records, +hile the arcs of the ararns correspnnd to
relationshin tvpes that Are represented Aas connections
between records, The CODASYL (Conference on Data sSystem
Lannuaages) data model is referred ¢to ov Tsichritzis and

Locnovsky [Ref, 8:pc, 1139=132] as the most comprehensive

scecification of a netwnrk data model that axists, Thns, the

TS 22 A S

MRS B et ba g g n da e i e e e T PR

e m T e
.

reason for choosing the CODASYL -ata model and {ts data
manioulation langquage for tne network jinterface of the “LDS,
1. 4 Concepiual Kisw of tha Xodsl

CNDASYL databases are networks of record types and
set types, where records and sets are the entities which
describe the datapases, A record type in a CODASYL database
is defined 1in [Ref, 4] as a collection of nierarchically
related 3jata item rames or field names, These field names
are specified In a schema declaration (temnplate) for that
record tvoe, A zacakd is any occurrence of a record type and
has specific values assigned to the data ltems named {n tne
schema declarations., 7This {molies that a record tvpe |is
simcly a 3eneric name for all of the recoris tnat are
described by the samne temnlate,

Set types in a CODASYL database indicate
relationsnins hretween record types,. Tney consist of a
sinjle record tyve called the gunef record type, and one or
more Trecord types called the gpgzbaf record tvypes, Thus, a
sat tvpe expresses exclicit associations between different
record tvnes in the datahase., This characteristic makes it
nnssible for a designer to model 3 larde varietv of real
world 4datavcase mapagement problems involving diverse racor-
types, Of soecial {mportance nere (S the fact that ¢thro
owrer record type of a set tvpe 15 pronhipoited from beinn a
renter of the same set tyne,

Set tvpes nhave nccurrences just as record tvpes ao,

Fach occurrence of a8 set tyoe hasS one occurrence of the

¢ R G G SR LG O T G o N Tt T Tl B A A TP D TRt o ATt

RS A A s A4 B s Sen san s B ae

v 2
"
LA

»
‘s

"‘l
> o

TR LT

T

owner recort tvyne and zero or more occurrences of each of

its memper record types, The prohibition here 1is tnat a
record occurrence cannot be oresent in two different

occurrences of the same set type, This Aaualification

emphas{zes the pairwise disjointness of set occurrences of a
given set type, Fiqure 4 agives an example of a set
occurrence for the set type S=SP 0f our samnole idatacase,

AS can be seen from the example, ¢tnhne CCDASYL data :fi:
model makes the design of a database qulte simple, However, %35%
keepina track of all of the relationshios can pe ift;
consideravly involved, Thus, one of oyr orimary concerns in
the desian of a CODASYL language interface for the »LDS is

to preserve these relationships without the complexity,

S (an owner record occurrence)

IS TS L Y R YR R L Y 3 L 22

I 82 | Jores | 10 | faris |

LI LT Y R P PR L X L L X

(a set occurrence)
(S=5P)

(two member record occurrences)
SP SP

#--...----------+ LA L XYY L L XX ¥ X3

I 52 L B1 i 300 | I 82 1+ P2 | 49N |

voeococnaeascvecsens foncovcetEeRgRed

Fijure 42 A CODASYL Sat Neevrrerce,

2. I3e Qata zanigulatiaz Laoguages (CCRASIL-QEL) DR

CNOASYNL,=D4l. is a orocedural data languane, The user S

of a COPASYL datahase writes his oroqrams in a neneral ”;iﬁ'

purcose lanjudae rhat nosts the CODASYLednT,, In general, }fﬁ?
AR

L

21 SN

l‘
s

........

e BRI e P D S P PP Uy v

Bl A Aal i S B A el St Ak S A Ak An &ud

mnst ooerations in a CODASYL database are carried out by
"mavigating” through Set occurrences, The starting ooint
tor this naviugation is usually tne current record of the run
unit, Tnhe zun upit is the aprlication program (transaction)
beirqg executed, A full explanation of currency will be
provided later in the thesis, uJther DML operations can be
tased on the current record occurrence of a set tyne or
record tyoe,

CNNASYL=NYL has several orimary aperations wnich
surport the oprimarv databcase onrerations of retrieval,
insertion, deletion, and modification (uodatina existinn
racords), Nifferent imolementations oroviade varying
collections of these orerations, hut we #{l1! concentrate our
discussion on the basic ones,

Twe cornerstone of the CNDASYL=D4L {s the (prInn
statement, Tnis statement is used to estaolish the currency
¢f tne run unit, and optionally used to estaplish the
ciurrency of the Set type and the recora tyove, The ceneral

garmnat of the FIND staterent 1is

FIUDN recordeselection=expression [1,

«hare tnhe square hrackets contain ootional expressions for
the sunpression of undates to the currency indi{cators. In
ntner worids, W“e may suppress the ugdating or the currency
for a recori tyre, a set tvpe, or both, TIhe recora= .

salectioneexpression has several difterent tornts eacn

22

desianed fro access a particular record in three di{fferent
ways, elither out-ot-the-DIUE without reference to a
previously accessed record; relative to a previously
accessed record; or by repetition, The other DL statements
are somewhat less extravaaant,

The GET statement in CODASYLeDML comnplements the
FIND statement, Once a reacord i{s found, the SET statement
nlaces the recora in the transaction’s working area for
access Doy tne transaction, There are two basic €formats for
the GET starement, They 1include GET record_type, shich
gives the transaction access to the entire record, and GET
items IN recora.tyre, which gyives access to only reaussted
data {tems in the record tyne,

The STORZ statement is used to olécé Ja new reacord
nccurrence into the database. The programmer must bulla up
an image of tne record vcrior to the STUORE request using
assignment statements whicn 4are a part of the nost lanauage
in #which the COBASYLeDML is embedded, 0Once the record image
has heen created, then the proper set occurrence for the
record nust be selected by the Aatahbase management systam,

The set occurrence in wnich the new record {s stored
is determines by the SET SELECTIOMN clause srecified in tne
schema definition for the ooject datapase, The three
ontions available are: BY AFPLTICATIOQN, wnieh means that tne
application nrouaram (transaction) is responsinle for
selecting the correct occurrerce; BY VALHE, wnich reans the

system selects the proper occurrence nased on data iten

23

e T v e ettt e et
F T S S S T U AR L
e e T e T e Y et N s s aena

[MAaiaSat . Aasade At 4

L A T . S e . R S L I IR
e e e N e N .
SRSV IP NP SIURE SSAP PP IPPL NE N A ASA AP

T T T T T T T TR T T N T Ty
- - - A »'“.."‘. . f A - A h P K";“\v'("-""l'" __Y"' P diaflald alui Ak Aak Aol e -

values specific to the owner of the set occurrence desired;
and, bY STRUCT'IRAL, which means that tne systemn selects an
occurrence oy locatina the owner record #»itn a specitic itenm
value equal o the value of that same {tem 1in tne record
being stored, The restriction on tne last two options is
that the data {tems being used must nave been specified witn
D'PLICA[ES 10T ALLOwED in the scnema definition, A detajled
discussion of syntax for the CODASYL=D4L is presented later
in tre thestis,

I the user transaction desires to manually insert
records {nto the datanase, two requirements exist, Flirst,
the schema definition must {nclude tne INSaRTION IS MA~NUAL
clause {in the set desciption for tnis carticular memner
record, Tren the CONNECT statement (s used, instead of tne
STOFE statement, for (insertion of the record 1{into tne
nataoase, The recora to he inserted {s tne current recnrd
of tne rur unit, The set occurrence in ahicn the record is
inserteq {s determnines in the same wav as the SINRS
stateqent,

rhere {s alsn a statement in the COVASYL=DM, wvhich
cerforms the opposite overation, namely, tne manual renoval
0f a recoard occurrence from a set, fhe DISCUNMNFCT statement
perforas this operation, [t disconnects the current record
of the run unit from the occurrence of ¢the s»>ecitied seat
that contains the record, The record occurrence still
resides {n tne database, nut {t is no lonaer a nember of the

soecitie1 set, Tnere {s a aualification involved wxith this

24

A "Bt e T "B R T T2 B YA I AN A S S
MR TG T LR T T T (SN R

statement, no~ever, The record to re disconnected myst have
a RETENTION clause of NPTINNAL {n tne memoer desciption tor
; the set type Aefinition {n the screma,
- In oarder to delete records from a CNDASYL datanase,
. the ERASE :tatement 1s usea, There are four baslic options
. A to this statement; however, two of tnem are very comclex and
marainally useful, so they «will not be Aiscussed in this
thesis, The simplest of the two we will deal witn s tne
ERASE without the ALL ortion, Tnis statement causes the
current recordi of the run unit to be deleted frem tre
datarase if, and only {f, it is agL the o«ner of a non=empty
set, If {t 1s the owner of a nonr=empty set, the arase
falls,
The KRASE ALL option 1s a litrle less usefuyl

according to OQOlle [Ref, 91, This statement causes the

current record ot the run unit to be deleted whether or not
it 1s the nwpner of a non=empty set, Additionally, tnis
.l ontion causes each member record of the set tn ope aerleted,
ani {€f they too are owners of non=emptv sets, tneir menbers

are deleted, 1Inis action continues all the way down tne

rierarcnhy, As one can see, an antire database could be

jestrovyed {f the user i{s not cCareful w«nhen using tnis option,

The final statement to be covered in this thesis 1is

the MODIFY statement, It {s used to modify values of data
{tems {n a record occurrence, This includes modifving all

data {tems ar anv supset of the data {tems in the record

tyre, Tt may a8lso be used to chanaes the mempershio nf 3

;T
. .

v,
v
.

4
"

)

25

AR NS
'l'l
*
[N
Al

’
’

R

'l
o
oy

4,1,
SABE

,..
.
P
Y
B
»

.
W
o

v A a2 s nide- o r i -y ———— - —y -
e AN AN A oA AR SN A A S S0 o A D it et Shoth il St el St 2l gt R B Al Il I e d v e e o e Saen b adesa a0y)

record occurrence £from one set occurrence to another, as
lona as, they are of the same set type, Thus, we nave our

pasic working set of DML statements,

. THE ATTRIBUTE=BASED DATA MUDEL

The attribute=rased data model was ori{ginally described
by Hsiao ([Ref, 10)], It is a4 very simeple but powerful rlata
madel cavable of representing many other data moaels witnhout
loss of information, It is this simplicity and universality
that makes the attribute=hbased model the {deal choice as the
kernel data model for the MLDS, and the attributee=bases datea
language (A3DL) as the xernel language for tne system,

1. 4 Caotcepliual Uiayw oL tha decdal

The attribyte=pbased 4ata model 1is pased on the

notiors of attributes, and values for tnhnese attriontes, an
attrirute and its assoclated valua is therefore referred to
as an atsziiute-ualuse Balr or kegagrd. These attrinutes
value pairs are formed from a Cartesian product of the
attribute names and the <domains of the values for tne

attriputes, Usina this approacnh, any logical concept can ose

representedq by the attrinute-=based model,

A ragard , {n the attribute=pased mndel rerpresents a

loaical cnancept, In orier to sceci{fy tne concent :
thoroughly, keywords must be formed, A record then, 1is é:vi
simplvy A concatenation of the resultant keywords, sucn tnat ' §i$%

R s
no twa keywords in the record have tne same attribute, ﬁlﬁx

Additionallv, the model allows for tne inclusion of textual

26

information, called the ragazd hadyg , in tne f€nrm of a,

possibly empty, string of characters describi{ng the recorAd
or concept, The recordi boay s not used for search
purooses, Figure 5 gives tne format of an attrioutewpased
record,

(<attributel,valuet>, ,,., ,

<artributen,valuen>,
{ text })

Figure S5: An Attribute=Based Fecord

The analed nrackets, <,>, are used tn enclose a3 keywor+
where the attribute 1s first followed by a comma and then
the value of the attribute, The record ovody {s tren seat
anart oy curly bprackets, (,}. The record {irself 1is
identified by enclosure within varentheses, As can be seen
from the above, tnhis is auite a simrle wav of representina
information,

in order to access the database, the attripbuteenased
model amploys an entity called predicates, A kevword
credicate, or simply 2zadicate , is a triple of the form
(attrinhute, relational operator, value). These predicates
are then combined in disjunctive normal form to oproduce a
aLery of tn2 datapase, In order to satisfy a predicate, the
attribute of a keyword in a record must pe {dentical to the
attribrute {n the oredicAate, Also, the relation sovecifjed ov
the relational overator of the oredi{cate nust hold between

the value of the predicate, and the valie 0f tnea kevword, A

217

A are ol ool TS SFA |

W ey

record satisties a query if all predicates of the query are
satisfied bv certain kevwords of the record, A guery of two

rredicates

(TYFE = 5) and (SN0 = S54)

would pe satisfied by any record of IYPE S (supplier tvne)
whose SK7 (supplier numher) 1is S4, and {t would have tne
form,
(<cattributel,vavel>, ,¢¢ »<TYPE,S>, s¢0a
<SNQ,S4>, .. p<attributen,valuend>,{text}),
2, Ius Attribute-basec Lata Lasguaae (A40L)
The ARBDI, as defined by Rarerjee, Hsiao, and Kerr
{Ref, 11] was oriaginally aeveloned for use witnh the Datapase
Compnter (03C), This language is the xernel languaae used
in the MLDS, Tne AEDL supports the five prinarv anatabase
orerations, [HNSERT, DFLFTE, UPDATE, RETRIFVE, and RETRIEVE~
Cn¥MCt, Those of use to us in this portion of the “LDS work
novWwever, are INSERT, QELETE, UPLATE, and RETRIEVE, A user
ot thils lanquage issues eitner a request or a transaction,
A raguast In the ABPL consists of a primary ovperation with a
qualification, The guallficatian srecifles the portion of
the databhase that {s to be operated on, when two or nore
requests are 3jrouped togetner and execnted seguentiallyv, we
have a3 trapsactiageg in tre AADL, There are four tyves of

requests, corresponiing to the four orinary database

28

T

RIS
VIR

oK

operations 1listed above, They are referred ¢to by the
same names,

Records are inserted 1into the datacase with an el
INSERT request, The qualification for this request is a
list of keywords and a record body, Records are removed o
from the database by a DFLETE request, The qualificatior
for this reguest is a query,

when records in the database are to oe modified, tne
UPDATE request {is utilized, There are twso parts tn the el
qualification for this request, They are the query ang
modifier, The aquery specifies the records to be modified
while the modifier specities how tne records are ta oe
moaified,

The ¢inal reauest to bhe mentioned here {s tne
RETPIEVE request, As its name imollies, it retrieves recoras

from the database, The quallification for this request

consists of a query, a tardete=list, and an opntional by=
clause, The query specifies the records to 5e retrieved, e
The targetelist contains the outdout attributes whose values ;}E
are required bv the request, or it may contain an adgaregate ~T&
oneration, 1i,e.,, AVG, COUNT, SU4, mIN, “AX, on one or more jfi
ontvut attribute values, The by=clause is optional ani 1is ;;ﬁ
used to aroue records wnen Aan adagregate operation is
specifled,

As indicarted, ARDI consists of some very simple

database overations, These oprerations, nevertneless, are

cavanle nt supporting comolex ana conorehensive

29

B TR A e Al ad - e
" LR A Y et Y AN e\—v"‘v—'ﬁrv.—-\vr-"thr' Ylquw"v_r—rp,—'——rr-rwrv‘-‘—v' r-.'rv‘-—r—.-"v

transactions, Thus, ABDL meets the requirement of capturina
all of the orimary operations of a database systen, ana {is e
quite wuseful for our purroses, Figure 6 shows examples of o
the four primary ABDL requests, N
o
v A
TMSERT(LTYPF,SP>,<SNC,S52>,<PNQ,P1>,<aTY, 300>, {sample})

DELETEC(TYPE = S) and (SNQ = S4))
UPDATE(C(TYPE = SP) and (PNO = P1))(QTY = QTY + 100)

RETRIEVE((TYPE = P) and (PNAMFE = Nut))

Fiqure 6¢ Sample ABDL Requests.

¢ & !
h x',‘J 3

.
G
»
b

* 1
'1

AN

()
P
R RS

[y
‘l’ l"l"l
¢ttt

o1, l,_l:_l.

PR

I'

e
7, }
2

.
v

NN
s
L4

AL PLIN

A

«
L PP

oy
[
|

R A
PP Y
FYR P A R

. y L
A N

P P TPI
.l
s’

.

o

.
#

Eary

r

S
-
L4
oot a

LAY
1 'l/. P
4 0 "sa"

» e e

43

g ,"1

7 ,' " A'..f :5 "
e P e

30

v
"

”"r'
v

SR ‘-'-__, . O L P
AJ\L-A_J.J."..-~C P -‘. ‘gt !’ (1“-‘.."--' N AP N v v "

RS IR SN .‘..'

1I1. SABRIUG UEIWQBRK (CQLASIL) CAZA IQ AITILIBUIE-SASEL JAll

Using a modification of a procedure oriainally outlined
by Raneriee (Pef, 4], the transformation of network data
into attribute=based data becomes & relatively simple task,
The data must be transtormed into records wnich consist ot a
set of variable=lenath attribute=valilye pairs and a record
body, The attripute=value pairs may reoresent the tyne,
quantity, or characteristic of the value, d4and the record
bodv is as descrited in the previous chapter, Additionally,
all attributes in the attribute«hased records are distinct,
for lnaical reasons,

Tre key aspect of the mapoina process iIs the retention
of the CNDPASYL notions of recsrds and sets (the linkaces
amonqg records), e emphasize that tne COUVASYL notions of
records and sets are 2Qf the same as the attribyute=hased
notions of records and sets, Thus, the mapring algoritnm
oresentad narein uses attribute=pased constructs (or
nntions) to implement tne CNNDASYL notlons, In the followinn
sactiors, we present the various entities wnich must oe
mapced, their correspondina attrinrute=pasea eauyivalent, and
an example of the mapping process using ourl sample datanase,
It should ne clear atter tnis description, that tne CiDASYIL
notions nt records and their relationshiecs are {ndeed

preserved in tne attrinuteeshased system,

31

v—ye—t—— ————— e . A e e n
- - - el . g) Al AR AN 4 e e v bl A A e e A 2l]
A N . A Y

A, THE REPRESENTATION QF A CODASYL RECORD

A CODASYL record type is structured as a hierarchical Fﬁ;;
confiauration of data {tems such as depicted in Figure 7¢a), -
where Rl {s the record name, and A, B8, ¢, 0, E, ana F
represent data item names, Figure 7(p) snows an occurrence

of record Ri, Notice that only the vajlues of the data items

are present {n tre CORASYL record. In the attripute=nased

in — el

system, both the data~item=name ana its value are stored «

the record,

vecord R1 Record ki R
P Y YY L L LY T X ot r e
21 A } atlavalue | 4
01 3 | bdlavalue |
N2 C i ¢02avalue |
n2 D I dC02avalue |
03 E I ed3avalue |
02 A | a02avalue |
0t F | f01avalue |
PR OTARNTRERRSReS
(a) {b)

Figure 7: Hierarchical Structure of a CODASYL Record,

Thus, in nr-der to capture the CIDASYL i1ngormation, Key~sords
myst bpe created for eacr of the elementary data itiems
included in the COCASYL record, These data=item keywvords

should be of the form

< data_item_name,data.itemn,value >

where tne data=item=name is aqualified by data=item=rames at &aﬁﬁ
a nigrer level if {t is not unique, Fjgure 3 shodas the data . Al

item reoresentation for tne CuDASYL record of Figure 7,

A,a_,value >,< B,b.
< C,Cavalue >,< D,d.value >,
. < E,e_value >,< B,A,b.,3avValue >,
< F,fovalue >,,.,)
- Fijure 8; Attriocute=-Based Representation of
Y CODASYL Data Items,

The dots at the beqginning of the record amd the dots at the
end of the record indicate that there are additional
i keywords generated for the record in order to preserve the
2 CNDASYL record Iinformation, These adiitional keyworas are
g exrlained as follows,

tach record occurrence in a COCASY[, database mnust Aalso
belong to a vparticular tvoe, Tnis implies tnat a keyword
indicating record type must also be included ({n the

. attripute=hased record, Its format is
< TYPE,record.typre >

where TYPE {s a literal,

Finally, each record occurrence of a CODASYL datapase
has a dataovase key (or aadress) generated for it, Tnus,
there is a reaquirement for representation of this value as
well in the attribute=pasea record, Tne followina form is

nsed for this xeyword, where NRKEY {s a literal,

< DBKREY,datanase,key >

LAy

.

.y

e
o '8

T T U e P

So, in representing record information, we have the need
for three mandatory keyword types, namely, data.ltem_,name,

with or without qualification, TYPE, and DBKEY, -

B, THE REPRESENTATION OF CODASYL SETS

In order for tre attripute=based record to be complete,
{t must also include information related to CODASYL set
membership, and set ordering, Since occurrences of set
tvees are oalrwise disjoint, then eacn memper record
occurrence helorairg to a set occurrence 1s also identifled
oy 1ts owner record occurrence, This means that we can

express set mnembersnip by inclusion of the keyword

¢ MEABER,set_ type,owneradatarase.kay >

¢nr each set occurrence in which the recora is a member,
rinally, tne logical position of a record occurrence

within a set occurrence is often useful, Thus, orderinag of

memper record occurrences witnhin a set occurrence is

expressed by inclusion of the Kkeyword

< POSITIDH,SettyPe,saguence.nuinber >

{n tre attrioute=nased record tor each set {n wnhien tne
record is a memner record,

Therofore, in reoresentinno set intormation, we FRave tne
need for two Kkevword types, those representing remrer
records, and tnose representina aenrererecord rositions

~“ithin sets,

34

T S T ST S S S T T TR e s 1A, S A STV, S S S

LA Sk S And Ack Ach St sl el Aol ek Aud dod Sedl nall A

e

- e~

.
.-
.
Wt e e

i

34

S e
2 s
‘v"-

s

‘v
[/
.l

~,

20
A'I"o‘"{

Ay &
Qd

A/
=

"‘" n' ‘l'v‘"
LI 3
YA

RPN L £
‘Y .'." i"l
PO S) b
L i‘ ¢

B
e
R
‘l

A ahddt N R afl

Ce A COMPLETE DATA=MAPPING EXAWPLE

As oreviously mentioned, bV ueilizing the above
transformation scheme, we can take an existing CODASYL
datavase and transform {t into an attribute~based datavase
without anvy 1loss of information related to tne CODASYL
records and sets (li,e,, record relationsnips), The
transftormation should therefore result i{n records of the

form shown in Figure 9,

(< TYPE,recordatvpe >,< NPRKFY,database_key >,
< data.item_ramel,data.iten,valuel >,
.

< data_litem_namen,data.item_valuen >,

< 4FMRER,set.tynel,owneradatabase.keyt >,
L]
L]

< UFMRER,set.tyDep,owner,database.k®2yn >,
< PNSITINN,settypel,sequence.nunher >,

< PNSITICN,set tynen,sequencenumber >
{ textual information })

Fi3ure 9: un kExamrle of a Iransftormed
C¢nPasYL RecorAd,

" S A ten 0 A 2 A 8 e B 30 e -k et At A B A St A A il A Sul A A i

-—

ChAe Aae A% M2t 4 v
A T B AN AL At Al e A e A0 8 Ata b and i ng 4 4 N B P o e oW T W TV vy w -

SCHEMA MNAME IS SUPPLIERSLANDLPARTS,
RECORD NAME IS S3

DUPLICATES ARE NOT ALLAWRED FOR SNO,
SN0 ;7 TYPE IS CHARACTER 5,
SNAME ; TYPE IS CHARACTER 20,
STATUS ; TYPE 15 FIXFD 29,
CITY 3 TYPE IS CHARACTEZR 15,

RECORD NAME IS P
DUPLICATES ARE NOT ALLOwED FOR PNO,

eil0 3 TYPE IS CHARACTER 6,

PNAME ; TYPE IS CHARACTER 20,

COLOR 3 TYPE IS CHARACTER 6,

AEIGHT : TYPE IS FIXED 4. -

CITY ; TYPE IS CHARACTER 18, 0
q

RECORD NA&E IS SPj R
OUPLICATFS ARE WOT ALLOWWD FOR SNU, PAN, R

SHO 3 TYPE IS CHARACTER 5,
PNO : TYPE IS CHARACTER 6,
ary ; TYPE IS FIXED S, o
SET YAME IS 5.5P; ‘r-fi
OWVER TS S; L
ORDEK IS SORTFD BY DEFINED KEYS SN
DUPLICATES ARE NUT ALLOWED, LT
4EMBER TS 5P]

I[YSEETIUN IS AUTOMATIC

RETENTION IS FIXED:

KEY IS ASCENDING PNO TN SP;

SET SELECTI3ON I3 R®Y VALUE OF Sw0 IN S,

SET NAAF [S§S PuSP?

UWNER IS P2 .
JRLER IS SORTED BY OFFINED KEYS T
DUPLICATES ARE NGT ALLOWED,

“EM3ER IS SP»

IISERTION IS AUTOMATIC :
RETENTION IS FIXED: N
AZY IS ASCENDIMG SN0 Iu SPp *

SET SELECTINY IS RY VALUS OF PND IN P, =
fiqure 133 Schema for the SunplierseandeParts
vatarase,

In order to demonstrate tne transformatisn nrracess oo
further, Fligure 10 above provides the schema Jefinition for RS
onr sarnle Suvpllers=and-Parts database, Jsint this schema : s

NEcS
RNANES
\:_~.' ~

k) ;g -
X

"f AR

Te
~ o ¢

R B Bl S

definition, the CODASYL record occurrences of Flaoure 11 are

transformed into the attribute=nased records of fFijure 12,

S

vocscccocnaoneTacTRETaRneRE$

{ s2 | Jones | 10 | Paris |

X I I LT AL Y Y A L 2

p

XTI LY Y Y LY LR L Y Y L2 L L X ¥ 2%

I PY1 I Nut | ked | 12 | London |

LA L LD LR LD ALY D L L LY EXS

SP
Poosovcnomenacaand

I 82 + P1 1 300 |

LA AL L L LA L 2 X X X L 1 X J

Flaure 11: Sample kecord Accurrences fram the
Suprliers=and=Parts Database,

(<TYPE,S>,<DBKFY,1>,
<SNN,S52>,<KSHAYE,Jonrs>,
<STATUS,10>,<CITY,Paris>,

{ Sanple supplier record })

(<TYPE,P>,<CHKEY, 2>,
<PLTI,PL>,<PLAME , NutD>,
<COLOR,Red>,<wEIGHT,12>,
<CITY,London>,

{ Sample narts record })

(<TYPE,SP>,<DRKEY, 3>,
<SHNJ,52>,<Pi0,P1>,

<?TY,300>,

CHVENBER ,S.5P, 15,

CHEVYRER PSP, 2>,

<PCSITI0ON,SLSP,1>,
<PISITION,PLS?P,1>,

{ Sdample SP recnrd where the racord

pelorys to two difterent sets })

Figure 12: Attributee=sased tculvalent of KRecord
Jeccurrences {n ¥Figure 11,

.
s

.."- ”I%.-":’ CREREREN
' .
.
A .
' N
. O

RN
Y,

s

.‘ "' ‘.'

B
v % 'y
7,

37

RN
NN
4

“y
;

s
»

R A P)
PRI DA W T D Sl TP S DI S iy S PP

MR S Rt R S b Aot Sodh Rl gt 3o S 2 2 o ey
R Al e T T T n— LSRah it e B o it Sab ant g Ad ek ad aug g g o o g SO SUEL ey

IV, JABRIIG CLOASYL~RUL SIAJSUEUIS I0 A8LL REQUESIS

Having demonstrated how network databases can pe
successfully transformed into attribute=basea datahdases, we
are now ready to exarmine the macping of network data
manipulation statements into ABDI reguests, As nentioned in
Chapter 2, the CODASYL data manjipulation 1lanaquage will be
used for tne MLDS network interface, It Snoula pe noted
rere thoudh, that only a subset of all the availanle LML
statements #ill ope wused {in the “LUS network interface,
Specificallv, the fnllowing fCCASYL statements will be
incorvoratei in this stage of the rroject: FI*D, GET, STORE,
COIMKECT, DISCOMNECT, FRASE, and “N0IfY, 0Of these, only tne
useful formats were considered for the YLNS, 1[It should pe
turther noted that the syntax f£nr theSe varlous statements
was derived from the syntax rresentea py late, Jdlle, and the
original CCNASYL report (Fefs. 7, 9, and 12], respectively,

In this section we discuss each of tne apove statements
and their assoclated mapoina process, #Prior to descricing
tae nmaocinv, ANowWever, e tirst exolain the notion of
currency {n a3 CUDASY! database, and introduce the gata
structures that are necessary to carry out t1he macoin=
process, Tne Appendix, the K+5 (Kernel "apoing Systen)

specificatian, 3ives a detailed 1lonk at tne maooinag crocess

3e

. - ._—\- RS R R

~ . % PR .
TS A T . et
PP W L T oh P R R R

and the specific algorithms applied to accovmplish the

language translAations,

A, THE NOTIOY OF CURRENCY
In general, the aoove data manipulation statements can
. be grouped {nto two categories, data retrieval statements
and data uyplating statements, However, tne common thread
petween the two gqgroups, as well as, tne inaivigual
l functionality of each statement, Aepends gquite heavilv on
| the notion of gUrZeRgy amonag the records and sets of the
3 CODASYL database,
? The concept of currency in a CODASYL Aatabase can be
compared t5 the well known concept of current position in a
f1le, The idea here is that for each application nproaranm
reing run on the system, a table of "cyrrency indicators" is
majintained, 1In aeneral, the currency indicator is an obpject
anose value s A Jdatakase ke¥. It serves as a "cursor”
snich points to efither a record or a set under consideration
oy the apolication proaram, Natabase kevs are vailues
Jeneratad pbv the ratahase management svstem that uniguely
{1entify each indiviaual record in the 4atavase,

The currency indicator tanle ¢or a qiven annlication
nroqram (or run unit) ldentifies the record occurrence "most
recently accessed" by the run unit for each of tre
£nllowing: eacnh tvre of recerd, each tyre of set, "anv tyoe"

of record, ani each tyoe of realm (Realm {is a C3rASYL

concept thrat «ill not he considered in this thesis.,) "Any

g

- . - - PR e e S T s
e e e e T e T N e T S e e e e
Tt TR e T e Tt e e e tatatatat Al

A A e R s S ad il Gulinbiu die A AP) J N g R T N e o~ ¥ ¥~ — —v —w ~ =

-r

type" of record refers to the most recently accessed reacord
occurrence, no matter what its type (s, This record is
appropriately called, the guUrI8RL &L L3& zug 8aiL , and is
the most {mportant currency of all, Additionally, the
cuZnent af the set Lype may be either an owner record or a

memnher record, whichever was accessed most recently,

6., ULATA STRUCTURFS NMECKSSARY FOIR ACCURATF TRANSLATICH
1., Ibe Cuzzency ladicatar Iakle (CII)

A currency indicator tahle (CIT) is created for each
aprlication program tnat {s run using the MLLS netwsork
interface, These taples are dynamic {n nature, They are
instantiatedl upon the tirst call to the datavase system, ana
are uypdated as subseauent COPASYL=[CMUL calls are made to the
datacvase system,

cIT
QUN_UNIT
record_.type

Jatabase.key

record, typre(i)
database.key

set.tyne(i)
hoolean (is record an owner record)
record.tyne
jatabase_key
nemberrecord.tyne
oNner,record,tyoe
ovner.datavase.key

F{aure 13: Information Contained {n the CIT,

"l,'-': 5
XXX
'

The CIT contains an entry for the <current of run

LT,
"
e
v

‘.
I’ "l.
XA

unit, the current of record.type for each record.tyoe in tne

iR
“at

I" '/
[

T
'
- 6 S

N
rLLS
L
YA
[\ MUY S

e
-~

Lresaa]
.
N
.
~
\
, a

DAt o e T T e e e e -i\"\' R S RSy

) NS SACT AT RN TN SRRSO S L"‘[-.’.-.'.\ML-‘;A DRV SRR -

R v By . Bowen & 0 he e S Thite 2000 RIRn S S e i S A A A D T

database, and the current of set.tvpe for each set_type {n

2
|
P.-
e
s

the database, Fach entry in the CIT snould contain at least
the information snown in Figure 13 as suggested by “eyer
(‘?ef. 13].

2. Iha 32aguest 3uffer (RR)

When mapping the CODASYL-DML statements to ARDL Loels
requests, there are one=~to=many corresvonrdences petween tne

two tyres of statements, Thus, for each CONASYL=DH4L

statement, several ABDL requests may nave to pe generated to

assemble the necessary inftormation for accurate execution of

the translated CODASYLeDMIL statement, In otner words, a

series ot ASDL requests may be aenerated for each CODASYL~ b

DML statemnent, Some of the reqguests are initiallyv

incomplete, nowever, and require information retvrned oy .
o
»

previous RETRIEVE reauests which are a part of that

statement’s translation, This implies the need for storaaqe

of intermeciate information for the requests,

ine request buffer (RB) acts as that storaqge

mechanism tor information returned by what we term,

auxiliary retrieve reqguests (ARR’S), There must ce one KN

tor each RETRIEVE request ilssued, The exact rnle that each

hyfter olays is exrlained in the next section of this

chapnter, In neneral though, upon successful execution of an

ARR, all reecnrd occurrences satisfying the reguest are

maintained in the pbuffer, This informatisan is then used for

syhbsequent reauest execnution,

ha e S A e P M A S = (RN Siafte -S40 gan Soa Bun v g W
AR LI BCA MCA e A S SR AR A AN A & Ire A8 4 3 Al it s et e et o AL ALY A S A AN S Sl A And el dals Pt a0 et 4 ot i Bome o s

C, MAPPING THE FID STATEMENTS TO THE ABDL RETRIFVES

The general format of the CNDASYL FIND statement {s M
FIND record.selection.exoression [1, Zfi
A
while the general format of the ABDL RETRIEVE is e
RETRTIEVE Query Targetelist [by Attrioutes], b
As previously stated, there are several for~ats for the FIND i
:_ statement, each with a different functionality, Some of <
b
) these, nowever, are tnought to be consjiderablv mnore uyseful
than others, SO0 we only concern ourselves with the ories of P

most value in the ~»LDS, Before proceeding, tne reader o

should note that in CODASYL statements, upoer-case notation L

A AT
PR R
» -

P ;
W) et
PP

recresents literals, lowere-cadase represents user supolied

variable names, and square brackets indicate optional ;fi

clauses, we now examine the mapping process for each of tne a&;
) COuA3YL statements to be {included 1in the MLUS network éﬁﬁ
- interface, g;:
-:.:'_ 1. Ine EIND &Y Statazent '
. The FIND AMY statement tells tnhe database syste™ to .

locate any record of type, tecord.,typel, whose values for §T;
E iteml throuah itemn match those in tnat record’s template in X
i the user work arei, The syntax for the KFIND ANY {s:? Eii

i FIND ANY recordotyoel USING {teml, ,,. ,itemn
~ I record.tyret,

l, ':..~,"-".- (A g
VIR

To nerform the mapping of this statement, the kernel mapoing o

) o am g o e

R A I AL PR R}
PRI T R LA

system (KMS) must first substitute tne word RETRIEVF for the
words FIND ANY, Then the KMS must form a predicate, (TYPE =
recordatyprel), for inclusion in the final query, The next
step in tne process requires the KMS to daetermine the values
that the search 1s to be based on, [hese values are found
in record.typel’s record template,

After acauiring these values, the KmMS then forms
additional predicates for the data items sneciflea in tnre
original statement, and includes these opraedicates in *ne
query, Since all ot the necessary information i{s availahle
to the K45 for this particular CODASYL statement, tnere is
no need for an auxilliary retrieve request (ARR), however,
an R 1s needed to store the retrieved data once tne reguest
has peen sxecuted,

“ith the aquery now formed, the K4S creatss a
taraget=list to complete the RETRIEVE reguest, The tarnet-
list consists of all attributes of the Trequested record,

Thus, tne translated CONDASYL=DwsI, statenent {s:

RETRIEVE (¢ TY®PHh
(iteni

H and

recorda.tvyPel) and
uservaluel) anA

({temn = user.valuen))

(all attributes) ([by DPBKEY),
This request {s then passed to tne KC of the 1{int rface for
execution, An example ntilizina our samole datarase will

relop to lilustrate the mechanics of tne mnavoing vrocess,

43

PR AP

N4
g The reguirement is to ¢tind any Supplier record, S,

a where that supplier‘s city s ‘Cleveland”’, The CUNASYL i;;
- procedure {s:? f
> MOVE °Cleveland’ TO CITY IN § e

FIND ANY S USING CITY IH § e
(iote: The “OVE statement is an assignment statement found
in the host COBOL lanquage,) The KAS would respond to tnis
series ot code oy performing the following actions: e
: S5tep 1: *Cleveland’ is placed in the 5 tenprlate for the
. attrioute CITY, o
. Step 2: A RETRIFVE request is tormed as sucnh? -
RETRIEVE ((TYPE = S) and
(CITY = ’*Cleveland’))
; (SN0, SMAME, STArus, CITY) T
7 by DHBKEY L e
S
Step 33 The KMS passes the renuest to the kC for) fﬁ:~
execution, R
' e
This opceration results in having All S records satisfving et
the auery ((TYPX = S) and (CITY = ‘Cleveland’)) placed in e
ﬁ: the request buffer and sorted according to tne value of the
datatase keys, Figqure 14 shows the contents of bdufl atter
the RETRIREVE is executed, R
wo
fteoonorasoersneteReoRNeRERNaERea e 2 -:
. . -
I <S6,Mathews,25,Claveland> | o
- | <S#,Jores,30,Cleveland> ! e
‘. { ! '::.':.
1. CEOE SN O RATAGRARNRCTRAVNANRT e ::;:J“
g
Fiaure 14: Contents ot wufl After &KETRIEVE, —_

44 S
f.\

Upon {ssuance of a GET statement by the uyser, tne first
record {n tne RB is returned, provided tne RETRIEVE has been
successftul,
2, Ibha EILD CUBRENI Statamsal

The FIND CURRENT statement is a rather simnle one in
that no direct mapping to an ABDL request is necessary,
This statement [s used to change the curtvtent ot run unit
indicator €from {ts present value tn the value of the
datacase kev of the current record of set.typei, Tnus, the
interface nas the responsihility of updating the current of
run unit indicator (1,e,, CIT.RUH_UNIT,tyDe <== record.tvpet
and CIT,RUNLUNIT,dbkey <=« dpkey nf current of set.tynel),

The syntax for this statement is:

FIND CURRENT recordotypel wITHIN set_ tvpel

As an example of thils process, suppose ve aesire to
start 3 search at the current SP occuyurrence {n set.,tyoe 5=

5P, The CONASYL statement would pe?

FIND CURRENT SP WITHIY Se$P

After encnuntering this statement, the K¥5 nasses trhe uraate
information on to the K¢ for execution, Tna XC then uodates
the currency indicators to reflect tne cnanaes, Tne current
of run unit becomes the current SP reconrd accurrence of the

current S-S5P set occurrence,

45

Lo
L.

..
e

s
<

bt

3. Ike ESIJdD RQURLICAIE 41IHIY Statazsal

The FIND DUPLICATE statement is used for sequential
access withrin a particular set occurrence, It locates tne
first record.typel record w«ithin the current set.tynel
occurrence whose values for itemil through itemn match those
of the current record of set.tynel, The syntax used for
this statement {(s:

FIND DUPLYCATE WITHIN set.tyrel USING
itent, ,,, ,itemn IN record.tyoet

The manping process for this regquest assumes that
the regoris being requested are already {n an 8,
Trnerefore, no RETRIFVE request {s 3Jenerated for tnis
statement, Insteaa, the KM3 forwards the set type, record
tyve, angd the ~ata item name(s), on whien the searcn |{s
hased, to the KC, The KC then takes this infarmation, ana
locates the K5 containinag the set, Tt then compares tne
specified data ftem values for the current recora of tne set
type to each of the other member records until the ¢{rst
duolicate record witnin tne set is found, 1This record is
made avajlapnle for return tn the user, the CIT {s then
ungated to reflect the new currency status, This approach
is anvantagceous, 1in that, all of the recnrds for a
particular set occurrence Aare already availahle in an &y,
el{minatina the need for further accesses to the database in
the event of subseguent reqguests tor dunlicate records, such

as wonld ne tnhne case in a 1noo,

46

......

BA AL AR AR A8 Ah ol Al

flnfdid San ua anp v

DR I e o N

« s A8 s

The following example {llustrates the maopina Sy

[

process; Find the next shipment record tor supolier 51 {in

which the quantity snipped s 100, A possible CODASYL

- procedure for accomplishing this consists of the followina

y statements:

MIVE °S1° TO SNO InN S

#IND ANY S§ YSInG SMOD IMN S

- “OJVE 100 TO GTY IN SP

i FIND SP WITHIHA S=85P CHRRENT USING QTY IN SP

i FIND DUPLICATE WITHIN S=SP USTAG 21Y Th SP)
.)
{ The effect of the first four statements s to locate the

3
' £irst SP occurrence for supolier Si that has a NTY of 100, Sy

The next statement finds the nrext SP recora {n the SeSP set
with the same QTY, namelv, 100,

The interface would resnond to the FING NUPLICATE
request as follows:

Ster t: Execution of the first four statements produces
the results in the R of Figure 15,

Step 2: The KC then gets the value of the data {tem,
QarY, by goina to the RR and finding tne current
record of the S«=SP gset using the record.tyce and
set.type information given,

Step 3: The KC now locates the next record in the set with
GTY = 166 and makes {t ready for raturn TO the
user,

47

B R R A
DA IR AL PR, D T DR WA PN SR e |

R A e Al B A A A RN B A Sl e i Al A Il A A 8 L Ah Bl I AoA Bt Aot Ast B Sua ad o Aoy aa aeg oo o P Wy (Do s B A s Ak Aod o -r

[N A CATAEAFRERRSY SR W

l’} .

A 28 T

- VT
‘
v

L

TR

AP TS I NP,

XL YT L LR LR LY L LY N

|
| <S1,P5,100> |
| <S1,p6,100> |
I <S1,P8,100> \
| <s1,P10,100> |
' I
+ +*

Fiqure 15: Contents of buyfi,

4, Ihe EILD EIRSI Statcmans
The FIND FIRST statement locates the first menber
record of a set occurrence, This statement has Several
other forms: FIhp LAST, FIaD NEXT, and FIND PRIOK, 3ince
they are all mapred jin exactlvy the same way, we only
describe the mappingy orocess for the FIND FIRST, The syntax

for the FIND FIRST is:
FIND FIRST recordatvrel WITHIN sat.tynet

Unon encountering the rThD FIKST, the «KMS must
ensure that recordatvyrey Is a member recnard tyoe of
set,tvypel, This {s necessary, since this particular FIYD s
vased on the currency indicators, and the current of
set.typetl may ne an owner record, a5 noted earlier when
dlscussina currercy of set tyves, Assuming that the current
record of set.tveel {s a member record, tne K4S then forms A
RETRIEVE reauest that will rtetrieve every nember record ot
tre current set,tycel occurrence into {ts i3, The {nterface
would then only have to return the first record in tne set
in order to satisfy the request, If the statement hat been

F1"D LAST, the Jast record in the get wnould be returned,

48

.

e —

The response would he similar €nr the FIND NEXT and
FIND PRIJQR staternents, Assuming that the set occurrence has
already peen retrieved into an &3, the interface would
simoly locate the current record of Set.typel 1in the wré and
return the record after it in the case of FIND YEgXT, or the
recor4 before, it in the case of the FIND PRIOJOKk, The fact
thrat all of the member records of tne set occurrence are
already in an RB, eliminates the need for additional
datapase accesses, Thus, the only AnPlL request that nead pe
formed 1s tnis:
) RETRIEVF ((TYPE = record.typel) and
(MEMRER,set.typel = owner_ibkey.set=tynet))
(all attributes) ([by LCBnEY]

As an example, consider the fojllowiny request: ¥Find
all the nmart numopers (PND’s) for parrs supolied by supolier
S4, A possible COLASYL procedure to acconplisn this would
be:

MOVF °S3° TO SNO IN S
FIMD ANY & USIANG SAD TN S
“ MOVE *50° TS EOF
Z FIJD FIRST SP wITHIN 3=SP
PERFOPM UNTIL EOF = *YE3’
GET 8P
(Aad 2N IN SP to result l1ist)

FIND NEXT SP «ITHINM U=5P
END_FERFORM

The statements of concern here are the FIND FIRST

and the FIaD pNEXT, The reader need only be aware tnat in

CCNASYL only one record at a time is made availanle to the
user, Thus, tre need for tne perform 1000,

19

I s R et 2 e e A A

v e Ty v ey g e
A D2l \4 RIS A N A By t‘ s o b nad la et st A A el Ak A Tl Som A g god 4 v‘ﬂ"l"‘c'{q

In response to the above sequence of statements, the

interface would perform these steps!

Step {: The KMS of the interface would form a RETRIEVE
request to get all members of the $«SP set owned
by supplier S4, Since each record has a predicate
wnich f{dentifies them as mempers of a particular
set occuyrrence, the task is fairly easy, The re=
quest 1is:

RETRIRVE ((TYPE = SP) and

(MEMRER,S=SP = dbkey of S54))
(SM0,PN0,QTY) (by PNOI,

The results of executing this reauest are shown in F{qgure

16, We can see that every member record of the set nras been
fetched from the database and {s available €or return to tne
user., The FIND FIRST causes the first record to be returned
to tne user,

Step 2: Since the CNDASYL orocedure has a FIND NEXT
sratement, the same RE 14 used, In other wnrds,
the KC does not need to execyute a new retrieve ree-
quest, It merely makes availaole the next record
in the RR until all records have preen returnad to
tnhe user as per the loop,

Since we are only looking for P3G values, the interim user
code would specify the attribpute to be returned and tne

interface would respond accordinaly,

..---‘-.-.-----‘--------

| |
' <54,92,200)]
i <54,P4,300> '
| <54,P4,400> |
i !
+ +

Figure 16: Contents of Butl Atter RETRIEVFE,

50

T w W tw o~ St ey =
...... N T - et el et
v FCPCIRE "{JM" A

RLgPl Al o AR AR Sk

5. Iha EILD GUUES Stataaens

The FIND OWNER statement causes the owner of the
current of set,.type occurrence to be returned to the user,

The syntax for this statement is:
FIND OWNER WITHIN set.,typel

The mapping of this statement is relatively straiantforwsard,
The KMS must simply form a PETRIEVE requast pasea on
information avalilarle in the CIT, Tne KMS examines the CIT
entry for set.typel and extracts tne owner’s type and
database key value directly from the table, It {s then an
efasy task to form the reauest?
PETRIFVE ((TYPE = owner of set_.tvypel) and
(DRKEY = owner dbkey of set.typel)})
(all attributes)
As an example, suroose we want to know the STATUS of
the supplier for oart numoer Pé6, Let uS assume that
previnus statements have set up tha current Se«SP set

occurrence to be S2/P6/20, The CODASYL statement is:
N FIED OwWYER WITHIN Se5P,

In resnonse to tnhils request, the intertace takes the

following action:

Stenp 1: The KMS forms the request:?
RETRIEVE ((TYPE = S) and
. (DBKEY = dbhkey of S52))
i (SNO,SMAME,STATIIS,CITY)

51

e I o R O e e e e e~y Y~ — 2=y

Step 2: The KC would cause the execution of the above
request, resulting Iin an R8 containina one recora,
narely, the S$2 record,

Et Based on the {interim user code, the STATUS value {s returned
N to tne user from the RE by the interface,
| 6, Ibe EIUC WITUIN CURRENI Statazeal

This statement cauyses the first record within tne

current occurrence of set.typel whpse values for {tenmi

i through {temn match those In tre UuSel d4QLKX arzee for
recorda.tyretl, The following syntax {s used for this

statement,

CoMe e
fe
»

)
; FIuD record.tyoel WITHIN set_tyoel CHRPENT
NSING lteml, 4.0 oitemn IM recordatypel
This statement is similar to the FIML DPUPLICATE
i excent tnat the search values are ohtained from the user -

vice the current record of set type, frus, only 3 single

- RETRIFVE request is needed, That request takes the form:

-
r .

RETRIEVE ((TPYF = record.typel) and
(YEMREK ,settvoe] = dbkey of owner set.tvnel)
and ({teml = user valuel)

. ana
) and (itamn = user valuen)) -
(all attricutes) [tv DBKEY] + e
s
This requast {s then nassed t? the KC far exscutior, If Sl
> there |s more than one record satisfvino thls guery, tne KR >

- for the reanest contains tnem all, Hhosever, only the first

- record encountered is returned to the usar, O
'h-\ -
A SN
h ' {llustrate the process ot tnhis nmaceing, we raturn {*

: T

- *t9 a orevious example: T« the first snipnwent for supnlier :L‘_
- RLAN
- L% .
* o "
- e,
- 52 ;Qk}.
. ;

R TR R T I I A N L IR N B W=, PR
SR IS I SIT NI IR e S T ST NS SRS I S SRR A B G

St i{n which the auantity s 190, Usina the first four

statewents from the examole in section C,3 we nhave,

wOvk S1 TO SNO IM 3

FIND ANY S USIVG SHO IM S

MOVE 100 TO 3ITY IN SP

FIND SP WITHIN S=SP
CURKENT USING QTY IM SP,

In order to carry out this request, the following steps are

taken oy the interface:!

Step {: The KMS forms the request!

RETRIEVE ((TYPF = 5p) R
and (YENRFR,S=5P = dhkey of §t) oo
and (OTY = 100)) E q
(SY0,PNO,QTY) [bv DaKEY]

Step 2: The KC executes the above reguest and causes tnhe
f{irst record in the w3 to pe made available to tne
user,

O MAEPING THE CODASYL GET STATEMENIS

The GFT statements in the COLASYLeDYL can be considered
as data retrieval statements djust as tne FIJID statements
are, except that the GkT request ¢€an only access records
that have bheen rreviously ildentifiea oy a t1%0 staterent,

[t is tne statement that actually alves the user access to

tve {in4ividqual records, There are three nctions available ;L?WQ

“ith the GFT statement, and we examine eacn 1in turn, " ~ o
RNy

Aevelorina these maopinas, we decided not te directiv map !1 !
' e

the GxT statements to AuWDL RETRIFVE’s, but to sirply Issue DA
QAR

e

Xl

inst 0o tne K *or handlinag then, IARAY
ructions to t cC f 11 e Y 'ﬂ}

R : e T e
e e s N i it

VT T T N N T T L T NN T Y

1., Ihe SET and GET recand.iyns Slatazepta
The GET statement, without the specilfication of a
particular record tyoe, causes the entire current record of
run unit, that is, every data field in the record, to ce
returned tn the user via the User Work Area (iJwsd), In tne
MLDS network interface, recogniton of this statmwent by the
K4S results Iin the following response:

Step 1: The KMS informs the KC that the "pext" available
record in the k48 tnat contains records of
the tyoe CIT,RUN_UNIT,type iS to pe passed tn the
user, tote that the type of the current of run
unit does not matter in this case,

The GET record.tyve statement is identical to the
GET option alone, »ith the exception that the user soecifies
a particular record tyvoe, In this case, the K¥S5 must
determine {t tre types of the current of run unit matches
the record type specified before i{ssuing instructions to the
kC, Also, every data item is returned to the user,

Returnina to our example in section C,4, tne "GET
SP" statement causes the return of the record, <S4,P2,200>,
to the user the first tine the GET {s jssued and eacn of the
other records in sequence as the loop continues,

2, Iha QET itaml, ... ,iLama Statazant

Unlixe the other GET options, this statement causes

specific data {tems to be returned to the user, 1lhe syntax

of the statement {s:

GET {feml, +e¢ ,itemn IN record.tynel,

W W W W W T ey

fatid Ak Gt aa L R AR ES Ad Rl

The KMS must compare the record.type to the current of run

unit and also ensure that the data {tems listed matcn the
data items in tnhe record type specified, Once this is done
and {5 successful, the KMS issues instructions to the rC

just as in the above case, Only this time, specific data

{tems are returned from the records accessed,

As an example, suppose we wanted only the PMO values
from the SP records, The value returned from our last
example would be F2, with subsequent GET statements fiif

returning each Pn0 value In succession,

£, MAPPIMG THE DATA=UPDATIMNG STATEMENTS

In this section, ~#e examine the COMNECT, DISCONNECT,
STCRE, MODIFY, and ERASE statements, At this point, the
reader snould nhave a4 basic Jnderstanding of the maceing
process as previously described, Thus, for the sake of
orevity, the reader is referred to {Refs, 7, 9, and 12] for

detajiled descriptions of the statements and any restrictions

involved with <their use, we therefore, confine our

discussion of these statements to a broad definition, tne o

"
" + 1
4 l' D

mapping process itself, and in most cases, an example, t;;
1. Iba CQULECI Statazens

The CONMECT statement is used ¢or manual insertion

of the current record of run unit {into the current

occurrences of the set type(s) specified, The syntax is:

CONNECT record.tvnel TO set_tyrel, .,,. ,Set_tyoen,

58

o o
E This statement requires that the record.type! record be a fi
e member of the sets specified and also have an insertion :;
clause of MANUAL for those sets, .
The CONVECT statement maps directly to the ABDL ;
- UPDATE request, The UPDATE format is: . ___
HEDATE Query Modifter
In the case of the CONNFCT, the mapping 1{s very simple. Eii

First, the KMS replaces COMNECT by the wora UPLATF, Then,

the type and database key of the record to be {nserted 1s
- taken from the CIT to form the query ((TYPF = record.tvpel) o
and (DBKFY = CIT,RUNLUNIT.dbkey)), Finally, in order to f‘:::_:.
: construct the modifier, the XilS get the database key of tnhe ié;
?, owner of the current occurrence set.typel from tne CIT, The] iE£
‘ K8 then forms the modifier, (MEMRER,set. tyrel = ji
CiT.set.typei,owner.dbkey) for each set tyoe specified, . ;E%
EFach sat type specifled has {ts own complete UPDATE request Sﬁ'
L generated, f’_j_.’-;
2 ne mignt ask, why use an UPNATE instead of an Zaf
INSERT reguest, sell, the dlfference {s that the COINRCT 5;3
statement involves records already in the datapase, Anda, isf
- recause the kevworad, <NE*bBEF,set.type,NULL>, 1s i{n the ;E
:% record whese conpection valne is w~wULL, it pecomes a simrnle §%
matter to just update that particular «eyword, therepy) 3ﬁﬁ
connecting the record, +e recall that in an attrituteepnased EE?
..,\‘.

- dataopAase, vxeywords, not nointers, are used to connect one .

recordi to anoftner, The IWSFRT statement oh the otner nang,

et e -
S

IR i
JLENE hy .,

at)
.
.
(]
et

.
’

56

.
B
Pa"a

PG
%1
% %y

»
b

SIS

.......................

T T S L S L G T S G T SR R G O U LR L G LR 0 T S LT LTy

L oMl Bl o8 Sl S Aol deky b dladh ol
Ll oAl ;

involves records not already in the database, Thus, the
completely translated CONMECT statement is:
UPDATE ((TYPE = record.typel) and
(DBKEY = CIT.RUNLUYIT,dbkey))
(MEMBER,set_typel = CIlT,set_typei,owner.dbkey)
2, Ihe DISCQLNECT Statexact

The DISCONNECT 18 just the opposite of the CUNNFCT
statement, It causes the current record o€ the run unit to
be disconnected from the set listed, The set occurrences
selected are determined by the current of set type
indicators, Since several set types may be listed in the
statement, only one statement |{s needea in order to make
several removals, The records still remain in the database,
They are sinply disconnected from specific sets, The syntax
is:

DISCONNFCT record.typel FRUM
set.typel, .., ,Set.typen,

The DISCONNECT statement renuires that racord.tynel
be a memner of the set types listed, and tnat the record ne
removed from the set occurrences that are cnrrent, Hecauyse
of the way we represent seat mempershio in tne attrionte=
rised record, tnis task {s verv simple, Since we are
disconnacting the current of run unit, and it contains the
datapase keys of the owners of the set occurrences 1{t
vpelonas to, and since eacn record can only pe in one

occurrence of the same set tybe (pairwise disjointness), tne

Aalh A dal S Sl And Andofinll Nall el W Nl Al Al ied Al Goh and Al h s woa

mapping process {s direct, Wwe simply form an UPDATF reqguest
for each set tyve listed, Thus, the keyword,
CMEMBFR,set typel,owner.dbkey>, is modifiea, and becomes the
’keyword, <MEMRER,setatyrei , NULL>, To accomplish this, tne

K4S forms tne request,

UPDATE ((TYPE = recordatypel) and
(OBKEY = CIT.RUM_UNIT,dbKkev))
(MEMBER,Set.tyrel = NULL)
and passes it to the KC for execution,
3, Ibe 4Q01IEY Statezasnt
The MODIFY statement causes the entire current ;Sf

record of the run unit to be modified or specific data items b

in that record to te modified, The syntax is either,

MODIFY record.typel, or LT

“ODIFY itemi, ... ,itemn Ifl record.tvpet, i

T

AN

Tnis statement also, has a rather stralghtforward N

e

o

mappina to the ABDL UPDATE request, The statement assumes .
that the user has supplied the necessary aata item values R
for mo-ditication 1in recordatynei’s record template in the iy
e

LvA, Therefore, the job of the kM5 portion ot tne interface [-

fs to aet this user supplied information ana £orm tne

-

_‘ ',
'tn ,D J. .
s
'

2 5.

.
Y
AR
AP
Bk terer

followingy UPDATE reauest for each data item to he moditied:

e,
et bty ',

uPDATE ((TYPE = record_.tynel) and -
(CHKEY & CIT .RUNQUNIT.dbkev))
(data itemi = user value for 1),

A & Ay 8, 0 0,
. ’l v

-
. Pt
. kO
2 |

5
* .
IR

- ¢ 7 7.7

v
Y

As an example of this process, consider chanfnina tne STATUS

e

NS
.

s

58

&
=

and CITY attributes of supplier S4 from 20 and ‘lLondon’ to
15 and "Chicago’, resopectively, The CODASYL request is:

MOVE S4 TQ SNO IN §

MOVE 15 TO STATUS IN S

MOVE °°Chicaqo’ TO CITY IN S

FIND AMY § USING SNO IN S

MODIFY STATUS,CITY 1M S,
(Vote: The SNO numbers in this example are unigue=,) 0Once
agaln the MOVE statements set up tne S record template for
use by holding the new values for the S4 record, The FTHD
statement estahlishes tne S4 record as tne current record of
the run unit, The KMS then responds to the MUDIFY statement
by torming the following two UPDATE requests and passina
them to the KC for execution,

UPNDATF ((TYPE S) and

(CAKEY dbkey of S54))
(STATUS = 15)

UPDATE ((TYPE = s§) and

(DBKEY = dbkey ot S4))

(CITY = *Chicago”’)
If the entire record was to be change4q, the first ontion
wnuld have been used, reauiring the KMS to form an uPDATF
request for each data item in the S record tyoe,

4, Iha SICEBE Stateaents
The STORE statement 1s nsed {n the CODASYL=DML to

insert a new record into the database, ~Aefore a new record
can he inserted though, it must be congtructed, TInis takes
place in the JwA, The syntax for tne STNFE {s:

S1IOKF recordatvrel

35S

-——

— RN Ghe 28 e ten) ses oa]

.
B

In mapping the STORE statement, care =must be

exercised in determining the prooer set occurrence {r wnich

i

to place a vrecord, {f it Iis a member record, Tnis s
necessary oaonly in the case o0f automatic inserticn, The
intertace »ust have access to tne original datapase
descriotion in order to determine the set selection
criterion for each new record to bhe ({nserted, The three
criterion are: by APPLICATION, by STRUCTURAL, and by vaulg,
€ach of these requires a Slightly different napoing,
f{ Therefore, we examine each individually.

In addition to the Sset seiection criterion, the
intertace must determine if any data items ot the record
being inserted has a NDUPLICATES NOT ALLOWED clause assigned

;; to 1it, In the case that such data {tems exist, tre
{nterface must form™ a RETRIEVE requyest tn determine tre
exlstence of recoras in the datarase that may already nave
items witn tne same value as those in the recnrd that |is
about to he stored, Thus, each STUORE statement consists of
at least one ABDL RETRIEVE and one AcDL INSERT request, - ae
shall see, however, that additional RETRIKVFK’S are necessary
ftar the set selection criterion of STRUCTRAL and VALlUr,
a, TIne STNRE=py=Aprnilication Statement

Tnis mertnhod of set selection Assumeg that the

procer occurrences of sets are jindicated {in the (1T,

L. Therefore, the K5 forms t»0 reauests, tne FRETRIEVE to

A0

M- T LAl Sl Rt B el S i It e

AN N DR

deternine the status nf duplicates, and the INSERT request
which stores the record, The process {s as followss:
H Step 1: The K4S forms the KETRIEVE below with the search
. based onr all data {tems desiagnated to tave
w PUPLICATES MOT ALLOWED, The values for these itens
in the new record are surplied by the uyser via
the UWA record template,
RETRIEVE((TYPE = recordatypet) and
(data itemi = user valuei))
(ORKEY) (by DRKFRY]
Sten 2: The KMS forms the IWSERT redquest
INSERT(KTYPE, recordatyprel> ,<DHKFY, *%x>,
<data itemi,user valuei>,
<MEHMBER,Sset=typel,set tyref ,0aner_cdrkevd>)
and forwards bhoth reaquests to the RC for execution,
Ster 3: The KC {ssues the RETRIEVE reqguest, 1f tne &R
retuyrns witn no DRAKEYs, then the INSERT request is
executed, OJtherwise, the INSERT §s not executed
and an error conuition exists,
D The STORE=byeValue Statement
The byeVALUE set selectior criterion means that
the set occurrence we need has a gata item whose value 1is
equal to the value {n the speclfied UwA record teunlate
which has that data ltem as one 0f its flelds, The reader
is referred to Figure 10 for the syntax of the set selectinn
clause ot sets JS=SP and P=-SP, as examples, This tyne of
STORE reaquires that tre data item {n ~questisan have A
CUFLICATES wUT ALLOWED clause alse, and that tre user
{nitialize the data item in its UWA record temolate oafore
{ssuirag the STORE reygtiest,

The by=VAlLUY criterion tnerefore, nlaces the

additinnal requirement on the Iinterface o¢ locatina tne

A1

F L A A I
P PP S N PRI S Y S Ty WA X SO &

RS S AT LR et e

owner of the prober set occurrence befpre the new record can
te jinserted into the datacase, This is accomplished by the
issuance of a second RETRIEVE reauest by the KC if the first
RETRIEVE, as mentioned above, returns NULL, The steps in
the process are:

Sten 1: The KMS forms the first RETRIEVE as above, Then
for each set tyvpe 1in w#nich the new record is a
member, a RETRIEVK reguest {s ¢tormedi to aet the
o¥ner database Key, The request {s:
FETRIFVE((TYPE = owner tvpe) and

{(search item = user vajlue))
(DBKEY) {by DRKEY],

Step 2: The KMS forms the following INSERT request?
INSERT(LKTYPF,recordatypel>,

<DBKEY,*%x%>,

<data itemi,user valuei>,
<MEMRBRER,setatynel,*xxx))

Steo 3t The KC execuftes the first RETRIFVF to cetermine {¢
duplicates exist, If not, the reraining RETIRIEVESs
are executed in turn to get the databhase keys of
the owners of the set occurrences to wnich tne new
record belongs, Once tnese values are returnad,
the KC tinishes bullding the INSERT reguest, and
executes it,

C. [he STORE=by=Structure Statement
The by=STRUCTURAL set selection criterion ({is
similar tn by=vALUF except that the prober set occurrence is
selected bv concaring a data item value in sne record tyone
to the value of that same data item in anotner record type,
From our samnple database, we could nrave a by«~STRUCTURAL
clause indicating that the Sni value in 3 must equal the SnU

valuve in 59, I'nus, we must searcp for an SP record

62

RIRE B

occurrence with the same SNN value as that {n the S temolate
in the UwA, Once again, this data 1{item must have a
DUPLICATES NOT ALLOWED specification,

The mappinag here is identical to that for the
by=VALUE case except tnat the second through ith RETRIEVEs
are pased on equality of values in seberate recoris, Since
the 1{dea is the same, we will not qive the specifics of the
mapoing here, It is presented {n detajil {n the Aprendix,

S Ibhe ERASE Statezents
The ERASF {5 the €final CNULASYL=D¥L statement we
consider for the MLDS network interface, As implieg, it is
the statement that causes deletion of Trecords £from the
database, There are two options with this statement, as
previouslv discussed in Chapter 2, we beain with the simple

ERASE, The syntax for this FRASE statement is:

ERASE record.tvret

The ERASE without the ALL ootion deletes one record
from the database, namelv, “the current record of the run
unit, Tne only reauirement is that the record 1{s not tne
owner of a noneempty set, This means that in mapning this
statement, we need to issue a RETRIFVE reauest orior to the
deletion request to determine if there are any sets #hose
members are connected to this record, Tneretore, for each
set type In whicnh the current of run unit is an owner, we
have a predicate {n the ReETRIEVE aquery of the forme

(1ErBER,Sot otypel = CIT,rUM_UNTIT,abkey), The request {s:

53

TLEW b a s,
.

had O

I LA e e
[i TR IS TR BN

I W P AL
W NP I N Y N Y

T ey w
- A DA it S ek et e gt Su Sup aningine on gaas hardanr by o

RETRIEVE((MEMBER,set.typel CIT RUNGLUNIT,.dbkey)and

. ana
(MEMBER,set.typen = CIT,RUNLJUNIT,dbkey))
(DBKEY) [by DBKEY),

The next step in the mapping prrocess is to form a

DELETE request that deletes the current of run unit, That

request is:

DELETE((TYPE
(DBKEY

CIT kUM, UNIT,type) and
CIT.RUNLUNIT,dbkev)),

u

So, the KMS in this case issues twvo ABDL requests to the KC
for execution, The XKC would execute tne ReTRIEVFE first, If
it results in a wULL &8, tnhnen the JELETE {s executed,
Ctherwise, tne FRASE falls.,

IThe second ERASFE under consideration is the ERASF

with the ALL option, The ERASE ALL syntax {s:

LRASE ALL record.tynel,

As mentioned in Cnhapter 2, this ortion {s 1like a "vacuum
cleaner” in that It deletes every record in the hierarchy
starting wirtn the current record ot tne ran unit. The
aifference opetseen the wmapping of tnis statement and the
previous ENASE is that, RETRIEVEs muyst be formed to get tne
databvase ~reoys of each member of every set that the current
¢t run unit owns, and then RLIRIEVEAS are formea recursivelwv

thereatter for the memoers of lower level sets until the

54

- . - " - - -~ hY - . DN T »
e e T T e e e e e T e RN RO TN PR RS LATS T
ARV ISR R L. L T AL, A 5 o AR, AN ! D

et e RN e T

s s v
’y ‘;

A
KA

5-
3 ’
‘Qina

A AJ

T —— 9 o M URA S An S ae i e b aen e oe S oml el Gl e B g Ak 2 St S Sendl A gl S ARt i iy St g o dicdieded
SR L e e TN PRt S A bt N M i . A P A A A

leaves of the hierarchy are reached, In addition to tnese
RETRI®VE requests, a DELETE request 1is needed for each
memper of every set connected to the current of run unit and
the current of run unit ictself, As one can see, this coula
become quite complex, Theretore, we »nrie¢ly decribe the
alagorithm, and refer tne reader to the Appendix for tne
detalls,

In mapping the ERASE ALL, the K4S forms a REIRIEVE
request to get each memper of every set owned by the current
of run unit, It then forms a OFLEIF for each of these
members, OCnce it nas taken care of the first level, the kxS
oroceeds to form requests which erase all of the descendents
in tne same fashion by calling a recursive procedure called
*ermase.all", Finally, the KMS forms a DtLETE& recuest to
delete the current record of the run unit as In the orevious
ERASE, This concludes the desciptions of tne mappina

process fromn CONASYL«DML to ABDL,

V, ILRLEYEUIAIICN COQESIRERAZILIQHS

In Chapter 1, we provide a brief description of the four
modules 1included in the CODASYL langquage intertace, nanely,
the lanauage interface layer (LIL), the kernel maoning
system (KmS), tne «kernel controller (¥C), and the xernel
formatting system (KF3), In this chapter, we ©coresent

considerations for the imnlementation of the KMS and the k(C,

A, THE KERNEL MAPPING SYSTEM (KM3)

The K4S 1s the second moqule {n the “LDS CUOASYL
interface, It 1is called from the langquage interface laver
(LIL) when the LIL receiveg COPASYL input requests from the
user, In this section, we discuss the snecification of the
h"S (see Appenaix) for the network (CCDASYVL) iInterface, we
descrive 1{ts operation, nresent a concentual view of 1irs
data structures, arnd agive an example of the K*d5 translation
Crocess, Implermentations of the AMS tor the DL/I an+ 5GL
intertaces can pe fourd In [Reft, Stop, 45=80) and I[tef,
fsbe, 17«63}, resvectively, These implementations rrovi-ed
the pasic framework for the aesiagn of the CIDASYL K&,

The KM5 must oerform the followina functions: (1) oarse
the reguest to validate tne user’s CUYNASYL syntax, and (2)
translate, or map, the requast to eauivalent ARDL reauests,
Cnece the necessary AANL requests have heen formed, tney dre

made availahle to the xernel controller (KC)Y for exscution,

656

MNP R Bl B S S A e Al S e e S ghe mih aad b ol Jatt 08 4

1. Ibe K4S Earsez/Ilzanslaiaz

The grammaredriven parser s the most 1{mportant
aspect of the K45, The Yet=AnothereComoiler Canpiler (YACC)
{Ref, 14] 1s an ideal chofice for the construction of the
parser, YACC is a proaram generator desiymed for syntactic
processind of token streams, YACC functions as follows: It
must he qgiven a specification of the {innut language
structure (a set ot gramwmar rules), the ¢ode trat is to be
invoked when the grammar rules are recognized, and a low=
level input routine that generates tokens £from a4 regular
exporession 1input, Given these 1inputs, TACC generates a
proaram fthat syntactically recoanizes tne input languaage,
and causes specific user code to be invoked, as required,
throughout the recoyniton process, [he user’s corde nere 1is
the cnde that performs the CODASYL=D™{ to AdDL translation,
The Lexical Analyzer Generator (LFX) [Ref, 15] is the lowe
level 1{incut routine that we orooose, LEX is a orngram
agenerator designed for lexical processing of incut character
streams, It takes regular expressgiomns as input, and
generates a proaram that nartitions the inout stream into
tokens, These tokens are then outobut to the parser for
furtner processinag,

The parser produced by YACC consists of a finite=
state automaton with a stack, It performs a tope=down parse,
with leftetoeriaoht scan and one token lookeahead, Control
flow within the parser opeains at the hianestelevel arammar

raile, It tnen Adescends throuanh the aqrawmar, nierarchically,

67

F—— B A A e a2 B dan e b b . " pr——— y g . W
" I AN A i T Al < S i S e R i g 8 T T T e W W W W ¥ o W

S N

calling lower= and lowver=wlevel grammar ryles wnich search
for the appropriate tokens in the input streams, As these
! tokens are recognized, some portions of the

mappina/translation code may be invoxked directly, In other

cases, these tokens are propagated pack Uup the gramnar
_ nierarchy until a higher=level grammar rule is satistied,

Cnce a8 rule {s satisfied, further <cranslation can be ;;:i

accomplished, When all of the necessarv lowe=level arammar E{igi
. rules have bheen satisfied, and control has provagated back
up to tne hiagnestelevel rule, tne parsing ang maoping -
._; rrocess {s complete, In section 8, we provide an example of
the parsing and translation process, Nt

2. Ihae KiS Data Stnucturas

The KMS needs several different data structures, f;{?
However, we confine our discussion nere to the structures '
whien carry the (Information necessary for the proper
execution of tne translated requests, The structures that
fall into tnhis cateagory, are the C(CIT structure, and the
request nodes which are prassed to the KC for execution., A
description of the minirum reguirements for these structures
is aiven below,

The CIT 1s descriped In Chapter 4, This structure
carries all of the currency information for a particular run
unit, and is vital to tne proper transiation and execution
of CUDASYY statemenrts, TIhe LI, of tne interface initializes
the CIT, The K!MS has read access to the CIf at all times,

while all uvdates of the CIT are done by the KC only, 1In

h8

the ¢following sections, we discuss each of the data
structures that are directly related to tne parsina ann
translation process,
a, The *find,node’ Data Structure

The find_.node {s created and used any time that
a CODASYL FIND statement is mapped by the K¥S, Since we are
considering the {implementation of six different FIND
formats, we must ensure that the find.node has at least four
flelds, one identifying the node as a tind.node, a second,
specifyinag the type of FIND statement that must be executed,
i.e,, FIND ANY, FIND CURRENT, FIND OwNER, ana FIND wITHIN,
one field tn indicate the set type {nvolvea, and one field

to tldentify the record type used in the statenent,

find.node

+--.----.---.---.-‘---------.’
| FIND |
| type of FIND |
| set type |
| record type |
f . |
i . l
{ o |
| (
1 !
* +

pointer to ABDL request(s)

Figqure 17: The ‘“find.nhode’ DLata Structure,

In addition to the above Information, eacn
findanode must also have a tield which contains a pointer to
the specific ABDL regquest that resulted £from the mappina
process, #ith regard to the FIND CUKRKENT request ani tne

FEIND DUPLICATF reaueast, no AdDL request s generated,

. 69

Therefore, the pointer would be NULL, Fiqure 17 above
{illustrates the type of structure described, where the dots
represent any additional irplementatione=denencent
information which might need to be included,
t. The “get.node’ Data Structure

The get node carries the information that the KC
needs in order to return the proper Jdata to the user, It
must have a tield ldentifving it as a get node and a field
identifying the type of GET format belng used,
Aaditionally, a fileld 1identifyina tne record type in
guestion must also ©be {ncluded, In the case of the GET
{tem.list fnrmat, the node should include a pointer to a
list of data item values to bhe returned, If the format {s
GET record.tyne, the pointer field would be NILL, and tne KC
#ould return all attributes of the record, TIhe same is true
for the simole GET format, Figqure 14 s an example of <this

type of structure,

geta.node

*-.-----'-.--.---.--------.--+
} GET '
I tyve of GET {
i record type {
’ [] ‘
{ . |
| . |
| I
i pointer to list of data |
i items to be returned I

>

+.--.--..--.--.-.-----‘..---.

Fiqure 1E#: The ‘get.node’ Data Structure,

Balh fad Sl Al Al g A b el Al A ettt uas sk deb and ank palnos 2ot o

%

’l "'

[} l“-l.l‘
strlat et
e "5
P

AR IR

et
o >~

v
;

o

c., The “connect.node’ Data Structure

The connecta.node 18 created ana usedi whenever a
CONNECT statement {s mapred by the XhS, .There are two
orimary fields in this node, The first field identifies the
node as a connect.node, The second field is a pointer to
the list of ABDL UPDATE requests generated by the KMS durinn
its arammaredriven parse, This list may contain one or mnre
requests denending upon the number of sets that the racora
must bte connected to, as described in Chapter 4, inder the
current 1implementation of the ~EBDS, a seperate yPDATF
request must he executed for each attribute in a recora that
is to be changea, Thus, the need for multiple UPDATE
requests, Recall, that the attribute to be changed 1in this
case is the VYEMRLER,set.type attribute, Figure 19 shows the

bpasic structure for tnhis node,

connect.node

+.--------..-.-—--.--.-------.+
CONNECT
[]
[]

pointer to 1list of UPDATE
requests

------.--.----..--..------.-.+

|
|
|
|
!
{
|
+

Fiqure i19: The ‘connect.node’ t'ata Structure,

a, The ‘disconnect.node” Nata Structure
The disconnect_node is created and used whenever
a DISCOMNECT statement {s encountered by the ¥KMS, Tne

tields of tnis note are exactly the same as those of the

71

RN

AN

»

et

.
s

5
o«

,.";'—::r":.,‘:"". A
AR

|3
’I

i; connect.node, In this case however, the value of the }&5
'z attribute MEMBER,set.type is set to HULL, disconnectina tne }é}i
h record from designated set occurrences, 7nce agjain, we have o
an identifier field, and a 1ist ot UPDATE requests, i&;
iji e, The ’modify.node’ Data Strycture _ égg
As with the disconnect.node, the modify.node {s vl
. also very similar to the <connect.node, It 15 created ‘iaf
. »henever a MODIFY statement is encountered by the AMS3, It ;;;
nas two fields, an identifier field, and a oointer to a list)
cf \IPDATE redquests, The UPDATE requesSts in the modify.node :
: are used to alter the value of specitic data ifap attrinutes ii
-~ within a oarticular record, The number of requests on this ;;?
2 list can vary from one to the maximum numher of data items i::
? in the record, deoending on the MODIFY format chosen by the Ef%
s
’ user, L
- t, The ’store_node’ NData Structure . .&&é
. The store.node is the most interestina of the iii?
PRI
data structures oresented so far, Lt must contain at least ;:ﬁy
E four fields, The first is tne identifier tiela, [he second ??:}
field s a pointer to 4 RETRIEVE request, Tnils request is :ﬁl:
7enerated by the Kts In order to deteranine the existence of ira
! ayplicate values for data items declared tn nave DUPLICATES igﬁ;
£OT ALLOWFE {in the database scnera, The tnira field of ;ﬁi
- importance relates to tne set selection criterion for tne g%:
% record being storend, 1t is genarated to retrieve the onwner §§§
3 datanase key(s) of the oreper set occurrence(s) for the new jﬁ%
SR
: TR
72 ﬁﬁs
: F

b

record, This request {s only generated in the cases of the

by=VALUE and bye<STRICTURAL set selection criterions,

store_node
+--.--------.---..---.-.--.--.-.---------+
STOkE
pointer to duplicate RETRIEVF reaquest
pointer to l1ist of set select RETRIEVE
requests

! [
(|
i |
| |
| .)
| . [
(. |
| [
| |
+ +

PN

pointer to INSERT request | S

Figure 20: The °store_noce’ Data Structure,

The final fleld required for the store_node is a
pointer to the INSERT request which will actually cause the
record to pe placed into the database, Figure 20 apove 1is
an {llustration of this data structure, As rentioned
before, the dots 1in the fiqure represent additional
inplementation=devendent information, Should the set
selection criterion be by APPLICATION, tne second RETRIEVE
pointer would be NULL,

Je The ‘erase.node’ Data Structure

The final data structure we discuss {s the

erase.node, This node 1s created wienever an SRASE

startement is mapped by the KMS, If the FExASE without the

ALL option 1is mapped, the erase.naode must contain tne r—"l
T
followina four fields, First, it must contain an identifier NSRS
A
CAGAC]
tield, Second, it must contain a tvpe fileld with a value of Qﬁab

TULL, indicatinag that it does not have the ALI, option, The

A oLe
ol B

73

. e u e e e e - - . ae el my e A s el ml - .._..-'---\'.\
e T N T e e e e e T S T DL T N T S S :{._.

A AN Bt e A I i e dide A AR St I Lt /i B it Ak A it A St M & ST A v JP A SO G-l b B e et o Lt Rt e ae mat satcee nas odh Subdr ol S IR S

third field in this node must be a pojinter to the RFTRIEVE

reguest that will determine if the recora beinj deleted owns

B . »
AL o
RN K
v .
N . .
TR Y
FSEPL e

- a non-=empty set, Should this request return NULL, tne KC Jj;f

- s

- would execute the request stored in the tourth field, Inis EE&:

;; is the field containing a pointer to the DELETE request that §E§§
will delete tne current record of the rudn unit, Fiqure 21 j;f;
aives a representation of tnis structure,

erase,node P
I I P Y TP Y PR L P P R LY L L L L Y Y R
ERASE
type of ERASE
pointer to RETRIEVE request

t |
| |
| {
[/
} |
| . [
| t
) |
- +

) pointer to run_unit DELRETE
r Figure 21: The ‘“erase.node’ withour the ALL COption,

The erase.node created for tne ERASE 3gith the

ALI. option will be considerably more complex than tne

previous case, First, there nust be an ldentifier field anqd

a tynve fleld, Then there must he twxpo pointer flelds, Tne

tirst oointer field will opoint to tne 115t of RETRIEVE

renuests generateo to get all the Adescendents of the record

being deleted, The second pointer field will point to thre

5 1ist ot DELETE reauests generated for each nf the descendent
records, Finallv, the last fleld in the structure snould bpe

a oointer to the OELETE request that deletes the current

e

record ot the rur unit, Filaure 22 {5 AaAn exawole of this

structure,

erase_node
XTI YT Y YR L R L E Y Y L L L L Y LY 23
ERASE
tyoe of ERASE (ALL)
pointer to descendent RETRIEVESs
pointer to descenaent DELETES

| 1
i |
| |
| |
{ . |
{ . {
t . l
! |
| I
+ +

pointer to DELETE

Figure 22: The ‘erase_node’ with ALL Option,

Be THE “APPING PROCESS: AN EXAMPLE

In this section, we present an illustrative examnle of
the parsing and translation processes within tne Kv§,
Recall from the previous chapter, that not all of the
teatures of CODASYL are incorporated in our soecification,
Additinnallv, since we have thoroughly covered the mapnings
in the srevious chapter, we do not discuss these
translations in detall,

As an example of the K4S mapoing process, we use a
simple CNDASYL MODIFY request, ve begin our example by
shosing the dml.statement nortion of the XKkS, Ye then sten
througn the grammnar and demonstrate relevant portions of our
desian in a system specification language (SSL), The reader
should note that tnrouanout the examnle, w«e only Shows tnhe
portions of the SSL that w»ould actually ne executed, The
entire K»S desian is shown in the Appendix, The cortion of

the ~qrammar relevant to this examrle {s shown in Figqure 23,

bl Bl T Tt AN e el it

In Filoure 23, we have included the gramma. rules onlv, and

. R
~ .-
‘-

-

..

not the code to be invoked as eacn rule is satisfled, ‘3;?_

F statement: ddl.statement
> | aml
A:" :
o
dnls: dml.statement
| dml dml.statement
H
drl.statement: set_.flag NS
{ move AT
| get , 7
- | £ind ',
o | store el
N { connect
| disconnect
- } erase ot
| modify -
| oerform.loop ot
| 1f.tnen
H
e nodify: MODIFY i{tem,list TN recordatyve
” I MODIFY recordatype
H
{itemalist: {tem.name
| {temolist CNMMA {tem.name
record.tvne: IDENTIFIER
H
item.name: IDENTIFIER
‘ Figure 23: The KMS dml.statement Grammar,
}- The Snurce CODRASYL orocedure vwe use for our examrle is:
: 4OVE 100 TN QTY 1NV SP
It MODIFY ¢TY IN 8P,
- sSafore 7Tiving tne AADL eaqnuivalent of this regquest, however,
g “e mMust make tnhe assumption that tne record nreing moditied
:-
0 76

e T e T e et e et e e e e e T e e N I P L T R N I T N Y USRS s . v
R R T N WA A A a i ANt .".‘, R A N A I N S "'-‘ e e R T e e P, " RO VRO e o

CEER s et e S -

N0 R

R T S o, W T L 5 D R P S

RS Snd Pt A A s Al Al S L el hedl Seglh Sl Wi il S A A S Sdh Sl A B Al Aol LB s A Sl sall Nal bl bl Aok Sl gt A Bk &

is the current record of the run unit, #e also assume that
the database key for this record {s 310, with these two
assumptions in mind, the ABDL eauivalent of the NODIFY
statement is:
[UPCATE ((TFMPLATE = SP) and (DBKEY = 10))
(QTY = 100)],

For the sake of brevity in our example, we will not ao
through the mapping bprocess for the MOVE statement, The
reader need only be avare that the new value for tne
attribute QTY in the record template for record tvpe SP, has
teen set to the value, 100, oV tne previcus
parse/translation, Now, we may proceed with the mapoiny of
the MODIFY statement,

At tne bpeginning of the manping process, the oparse
descerds tne gqgrammar hierarchy searcnhnina for tokens in the
arammar rules which match those in the input, Nnatice that
the first rule to be tried 1s the ddl.statement rule, As
the parse descends the ddl.statement rule, nierarcnically,
there are no tokens which matcn the examnle inpput stream,
Thus, the ddl.statement rule is not satisfied, andi the parse
beains again at the aml rule,

sren the dml rule is callea, {t immedlately calls the

dml.statement rule,

17

w . -~ St T

.

dml_statement: set_flag
move

get

find

store
connect
aisconnect
erase
modify
perform.loop
ifathen
-

————— = S — o —

The dml.statement rule then calls the set.flag rule, The
set.flag rule is not sati{stied, however, and the move rule
is called, It tco, is not satisfied, So, the process of
checking each successive rule is continued until we reach

the following rule:

modifve #GDIFY
;elect-list = NILL
it;m-list 14 recordatvre
{ /% error checks are made here x/
alloc and init new ‘modify’ noaqe

for (each data.item on select.list)
Aalloc and init new andl.str
/% form LPDATE request */
copy "[UFDATE ((TFMPLATE = "recori.tyoe’)
and (DBKEY = CIT,RuUMUNIT,dbxey))"
to Aabdl.str
aet ‘iftem_value’ from move.list
concat "(’data.item’ = ‘jtem.value’)]
to abdla.str
connect atal.str to "modify’ node
end,for
end.else
}
| MIDIFY rTecord.tvpe
|

The modify rule looks for the token, “ODIFY, In the {nput,

Since it {s oresent, the first portion of the rule matenes,

..............

and the code following the token in the rule

Bl Al S Sl Al Anl dul ol el Aol Ach el Sudotal tu bt sb AR ek ol sl .

invoked,

] This <code simply resets a local 1ist wnich will eventunally

contain tne names of the data {tems w#nhich
modified,

i The next rule called is the ltem.liist rule,

to npe

This rule

searches for a list of identifiers in the input by callinna

the i{item.namne rule, and recursively calline {item_list, as

satisfies the first portion of this rule, namely,

indicated, In our example, the single identifier, uTy,

1tem_na-"ﬂe.

Thus, the item,list rule is satisfieq, I[he syntax fcr the

: itemalist rule is:

itam_1list: i1tem_name
{
arld the item_name
to select.list
)
{tem_list COMMA jtem_name
{
add succesive
itemaname to selec.list
}

The next portion of the modify rule {s the

79

twe parse continues, “{nally, the last oartion

This rule is satisfied by matching the {dentifier,

token, Ib,

This token matches the token, I%%, in the {nput stream, and

9f tne

moalfy rule which must oe satisfled 1s tne gecard.type rule,

se, in

the {input, ~+ith the token, IDENTIFIZP, in the record.tyre

rule, After matching these two, tne entire wndify rule {s

g RN o e e e e e e g e e T T P W Yy

K; satisfied, and the invocation of the remaining mapring and
ii translation code following the rule takes place,

ii The mapoing and translation occurs as follows, First, a
series of cnecks are made to determine {f the record beiny
'i modified is the current record of the run unit, if the new
value(s) have peen placed in the record temnlate, and 1f all

[of the {ters identified in the item 1ist bhelong to the

record 1in question, Then, 3 modify node 1is <created,

Followina this step, an UPDATE request i{s generated for each

of the 4ata items being modified, ¢inally, each of tne

update reguests are connected to the modify node for

execution by the KC, with the mapping ana translation code

executed, the modify rule s completely satisfied, and

control ©rcropagates back up the qrammar nilerarchy to the aml

rule which ¢checks for more inout,

As one can see, quite a sianificant amount of work s

done bty the K4S in breparinag requests for use by the «C, we

fee]l that by adequately providing information to tne KC, we

greatly reduce the amnunt of work that must be done by the

KCe This means less coding for the {rplementor and snhould

lead to less complexity in the K(C,

C. fHE KEKNEL COGNTROLLER (XC)

The KC 1{s the third module {n the HULDS CCNDASYT,

interface, It {s <called ny the lanauage interface laver

(LIL) #hen a new datanase i3 oeing loaded, and is called by

the kermel napoing systemr (KM3) when an existina Hdatabase {s

................

......................
.........................

peing manipulated, The KC is the module which performs the
task of controlling the submission of ABOL transactions to
the multiebackend database system (MANS) for oprocessina,
Implementations of the KC for the 0L/l and SQL interfaces

can be found in [Ref, S:pp, 84=105) and (Ref, b:po, 5HI=293),

respectively,

Tne KC nust perform the following functions: (1) submit
transactions to the MBDS, (2) recejve and store results of ;Q;;
transactions, (3) update the currency indicator tanle, Aancd
(1) cause the oroper data to pe returned to the user, 1£?i

1, Ibe Structure af Lthe L

Recause of the large number of types of transactions
that the KC must nprocess, we suggest that the overall
structure of tne KC oe tased on the "case" control
structure, At tne top of tne control structure {s a mnaster
control procedure which is responsible for {nitialization of
variaoles, pointers, and data structures, as well as,
decidina the type of ARBDL transaction that s being
processed, Recall that there are tan major tyoes of
trarsactions, creation of a rew dataoase, ana manipulation
of an existing datahase, Thus, a two elenent case {s
required4 in the master contrel procedqure, These cases are

thern used to call subsequent proce-iures and functions which

randle tne transactions which tall under the abave

cAategories, N

I»‘l

.
o
S
>

»
»

o

i

11

L s Tt T e
. fd PPN NN

'1‘ 'S "..'. -'_n
t . A

. L
¢
.

3

Y

['.. '..

(I

v

>,

’
-

*
.
v
L
)
s

']
.
.

.,
.
]
.
.

D R T T D o o Y W T W o W o T oy Yoy -

a, Creation of a New Database

The creation of a new datapase is the least
difficult transaction that the KC will nhandle,” 1t involves
loading the CUDASYL schema created by the K4S inte the KuS
(4B08), in {ts attributeepased form, [t is also responsiple
for mass storage of new records during a database creation
transaction, Thus, the KC must also assian datapase kevys to
the new records throuaohout thls process,

Currently, work is being done on the algorithms
necessary to acconplishn the transformations above and tne
mass storage requirement, This work will not »e <completed
in time ¢€or inclusion in this thesis, OSnffice it to say,
however, that once the work 1Is <coapleted, the onlv
requirenent of the KC in this case, (s to call a procednre
to load the database schema, Call a procedure to load the
datapase descriptor €ile, and tnen call a orocedure to load
the new 3Jatapnase, Tnce tnese procedures are executea,
contrnl {s returned to the LIL,

b. Maniruvlation of an Existing Database

Thne manibulation of an existing datanrase can
also e divided into subecases, Tnere are the datsa
retrieval reruests and ¢tne datahase Unaate requests,
However, all ot these can he handled by a single case
structure, RecAall that each time the KC 1is c¢allei, a
reouest node of some tyne is made available t. tne KC,
fnese renyest nodes are ther used to determine wxhich octcion

within tre c¢case structure to execute, fhe structure s

32

..............
....................
» K .

CERWT LT LT e e

TR ATK T s A

R RPN T e e e e
P AL S SAE L P NI IO P PRI

{llustrated in Figure 24, In the following sections, we
present the procedural requirements for each type of data

manipulation transaction,

case op.type of

create,db? call loadaschema
call load.descriptors
call load.dba.recs

s

find: case tyne of
any: call finda.any
current: call findacurrent
duplicate: call find_,duplicate
(first,last,
next,prior): call find.conseqg
owners: call find.owner

end.case;
(connect,
11sconnect,modify): call updateadb

’

store: call store.rec

’
erase: call delete_recs

[
get: call get.rec

°
r

Figure 24: The KC Control Structure,

(1) ZIba Elil Braceduras. There are six bnaslic
types of FIND requests utilized in our system, The first ot
these 1s the FIXD AnY request, Upon encountering a
findanode whose tyve field is AnY, tpne find_any proce-dure {s
called, This wuvrocedure sets up the reguest ouffer to
receive any results that may pe retyrned, It tnen issnues
the request to the KLS, Uoon return from the KOS, tne
tind.any procedure mnust update the CIf, based on the tyre

and database xey of the record that (s the first record ({n

83

. T e B . B o P R N N P L

XN

the request buffer, A pointer {s then set to point to this
record in preparation for returning it to the user, The
record {s not returned though, unless the user issues a GET
request,

If the reauest is a FIND CURRENT request,

the find.current procedure 1S called, Its job is quite

easy, It must simply update the CIT, ov setting the current

of run unit indicator to the tyve and database key of the - Tala

1

current record of the set tyve specified {n the reauest

node,
when the reguest 1{sg a ¥¢€InND DUPLTICATE

request, the find.duplicate procedure 1is called, Inhis

TLTTeT W e

5 Thy te e Tror
L PR Lt
L T Lo

RPN WINLNINOE

procedyre assumes that the records oveint requested are
already In a reaquest buffer, Thus, the only information
required from the findwnode {s the record_.type neina
searched for, the set_.type Of interest, and the data itenm
values on which the search Is based, The procedure locates
tne request buffer, and sets a pointer to point to the first
duplicate record found, TIhis record then becomes the record
returned when the user Issues a GET reaouest, The procedure
also uyndates the CIT accordingly,

The next tvpe of FIND request is the FInD
FTRST, [LAST, NEXT, or PRICR, In these cases, lf the tyne is
tfirst, last, next, or prior, the find.conseq bprocedure 1is
cAlled, It uwases 1its overformance on the type of the
firdanode, 1If the type is next or prior, tne onproceduyre

assumes that tre records are already in 4 request outfer,

14

PP TR Py, YRt T W

B B B Sa0 i s M ie Sae gue e pts Set e et st S hen S s eeiier e e O (R e SRS SN ek Shg Mo and S N SPe a6 A A £ i A Dl S et Ak Sulh Sarh dod AR Sed)

It looks £for the correct request opuffer based on the
; record.tyce specified 1ip the find.node, and sets a pointer
to point to the next or prior record rejative to the current
N | record of the set type this bufter {s hoalding, In other

N words, each record in the buffer is a member ot the current

set type occurrence. and the findaconseq procedure simoly
points to the record hefore or after tne current record for
that set, Jnce again, this Is the recor? returned when the ;f,;;
- user issues a GET request,
- If the type of the ¢I4D {s tirst or last,
the find.conseq procedure does tne following, First, it
checks to see if a request buffer exists for the set type
requestea in the finda.node, If no such ouffer exists, the

procedure creates a regquest buffer and 1ssues the KFETRIEVF

request attached to the find_node, The Tresults of the

reaquest are then placed in the nes request bhutfer, and a
peinter 1s set to point to the "first" or "last" record in
the set for return to the user,

The next type of FIND request is tne FIND
UANER vhen this {s the tvoe of tne tind.noae, the
tind.owner orocedyre is called, It’s tunction s falirly
- strajantforwvard, A request nuffer i{s created to hold the
recorc that is the owner record of the set tyre indicated in
2 the findonode, The find.osner procecure tnen issues the
i RETRIEVE renquest attached to tne findanode, and prepares the

record for return to tne user,

T R T TP e e —— Mt e i e e L caer an e s i B s 0 JNt i ae ohe e e shnre

The final type of FIMD request, axpected by
the KC, 1is the FlidD WITHIN CURRENT request, 1In this case, s
the find.within procedure 1is called. I'he procedure creates

4 request ouffer for the storace of records returned and

issues the RETRIEVE reaquest associated with tne current

findanode, Again, a pointer 1s set to pnint to the first

record in the reauest buffer in order that this record minnt
he returned when a GET reaquest is issued by the user, It satar
should be noted that in each case above, tne CIT iIs updated
unless 4a currency suppression list nas peen attached to tne
fira.node {n guestion,

(2) Ite CQQURELZI, RISCQULELT, aad SJLIEX
2xacedutas. The CONMNECT, DISCOMNECT, and MUDIFY ragquests
are handled by the KC in the same General manner, Anen
either a modify.noae, a connect.node, or a disconnectnode
is encountered by the KC, tne procedyre, update_do, 1s

called, 1If the node {s a modify.node, the KC simoply sunhmits

the attached ARDL UPDATE requests tn the KDS for execution,
After execution, control ls returned to the LIL,

It tne node vassed to nroceddure uprdate,db ;iii
is a connect.node or a disconnect.node, all of the apove

applies, except that cefore giving control to the LIL, the

kKC myust uodate the CIT, "hen A recora is connected to 3 set

T

[A0A

l' .

A'Y "

type, that record bhecnnres the current record ot the set

"
'I “
Iy

LR

"'.'.'-l /A

type, shen a record {s disconnected from a set type, the

Dk ol 2 B}
Ay
[

entry in for that set type in tnhe CIf {s sat to HNULL and

ramains so until arother record of the set tyce Is accessed,

36

R LAY R A A oA el A MM A SO ARl Sl e bt Anfa g St gt e TowTwT.

(3) Ihe SIORE RBracseduzs. wWhen the hC
recognizes a store,node, the procedure store.rec {s called,
The first task performed by store.rec 1is to- execute tne
first RETRIEVE request attached to the node, This request
determines 1f there are records in tne database wnich have
attribute values that are not to pe duolicated, 1If the
request buffer created for this RETRIEVE {s paR=2mgty at the

end of execution, there is an error, It the request buffer

is agpty , then store_rec performs in the following manner,
For each RETRIEVE reaquest on the set select REIRIEZVFE list, a :;;{f
file puffer is created and the RETRIEVE regquest (s 1issued,

These requests return the database Keys of the owners of the

é set occurrences to which the new record pelongs,

After execution of the set seiect RETRIEVE :iﬁx
list, the procedure store.rec then assians a database key to
the new record, and proceeds to complete the INSERT reguest
attached to the store.node, It is very important that the
order in which tne database keys are accessea from tne
request buffer maten -the order of the attrinutes,
4EMRER,setatyYpel, in the INSERT request, The INSERT reauvest
is tren {issued, Now, brecause we pave not accessed this
record oreviously, and it nas become the current of run

unit, store.rec must provide a bhuftfer to holad this record in

case a GET request 1s issued immediately tollowing the STORZ
. request, Ain example of this procesSs {5 warrarted at tnls RS

point, Supoose, we desire tn sgtore the SP oaccurrence,

SS/P6/700, The CODASYL sequence miant be:

NE SR SR A g A LA A Al A ek hulh e e A il e b et -
o . R I e e ACA NLRN A% e Y

MOVE °S5° TO SNO IN Sp
MOVE °*P&° TO PND IN SP
MGVE 700 TO QTY IN SP
MOVE “557 TQ SNO IN §
MOVE *P6° TQ PND IN P
STORE SP

. The first three MOVES initialize the new
record’s data values, The next two MOVE’s are used to aid

in deternining which 5 and P occurrences the new recoraq

belongs to, because its set insertion mode was declared to

bpe automatic, The KrS takes this informatlon and the SIORE
. SP statement, and ©orodquces a Store.node containingy the
following:
(Duplicates RETRIEVE reaquest)
RETRIEVE ((TYPE = SP) and (SMO = Ss) and (PYO = P6))
(LDBKEY)
(List of RETRIFVES to get owner DBKEYS)
) RETRIEVE ((TYPE = S) and (SNGC = S§%5)) (DRKEY)
X RETRIEVE ((TYPE = P) and (PNGC = p6)) (DBKEY)
(INSERT request £or new record)
INSERT (<TYPE,SP>,<DBKEY,*%%>,<5i0,55>,<PNU,P6>,
CMEMBER ,5=SP, #%%X>,CHEMBER , PSP, ¥%4%>)
We assume, for the sake of our example,
that the DRAKEYS for the owner records are 10¢(S) and 12(P),
ana that the NRKEY of tne new record {s ¥R, +Je also assume
tnat there s no duplicate SP record in the datavase, 3o,
wnen store.rec issues the first RETRIEVE, the reguest butfer
returned i{is emoty,
Store,rec then proceeds to execute the 1list

of RETRIEVES that return the owner NHKEYs of tne new record,

It creates a request buffer tor the tirst RETRIEVE on tne
, 88

.‘_’-’.:‘._ _.‘-_.'-_.‘-_. e —_.‘-.'. .’ '-_‘,4'-_{-_.’-',l-_. ‘e v-,, ‘-',.‘-).-., o ’-",'. “ e ~..‘°'. .) L A AP ”, (P .", . _..r e T e *’
» o o = -

>

P P T O Y P U P P o= Y W W o ey

l1ist and 1{ssues the regquest, Once the first request is
executed, a buffer is created for the second request, and

that request {s executed, The issuance 0f these RETRIEVES

produces the results in the request buffers depicted in
Figure 25, The procedure store,.rec now takes the new DBKEY
value, and the information from the request puffers and
completes the INSERT request,

Poomneoem)

} € 10 > |
| {

L L DL L L L 1

Bufl

tooceneand
i <12 > 1
! i

tOoERNEeSom g

Bu€2

Figure 25: Buft and Buf2 After Execution,

The final form of the IMNSERT request is:

IVSERT (<TYPE,SP>,<NBKEY,98>,<5N0,35>,<PNC,06>,
CMEMBEK 8=SF,10>,<MEMBER PSP, 12>)
The [MSFERT request 1{s then issued ¢to the K0S, If no
currency suporession list Is attachred to the stora.node, tne
CIT is un-dated to reflect a change {n the S«=SP Aana P=Sp
currencv as well as, the current of run unit, A request

hyffer 1S also created, and tne record {s stored in the

v huffer, Rs one can see, tne store.rec procedure can be a

very comprenensive one,

....................

R Ry

TR

(4) Ibe ERASE Rracadures, The ERASE request 1is
handled by the procedure, delete,recs, If the type of the
erase_node 1is NiILL, then delet.recs proceegds in the

following manner, First, a request puffer is created, and

the RETRIEVE request attached to the eraseanode {s issued to
the KDS, This request determines 1f the record oeing

deleted 1s an owner 0f a nonw=empty Set, If the request

DGOSR hhaonot * o
.

buffer 1is not empty after execution of the RETRIEVE, then ;;;2
the erase falls, ard we have an error condition, It tne }ff

reguest bopuffer is empty after execution of the RETRIEVE, 92 ;
then delete.recs issues tne DELZTE reduest attacned to tne ;;:4

erase.node, This request deletes tne current record o€ the
run unit, After the deletions, delete.recs uodates the CIT
cy setting the current of run unit indicator to WJLL,

Should the tvpe nf the erase.node be AlLL,
we have a different sequence of events, The deleteerecs
procedure must create request buffers for each REIR{«VE
request on the descendent retrieve list 1ln tne erase_ncde,
It must then issue each of these KETRIEVES storing the
results, returned DYKEZYs, in the prover reaquest ouffer,
After the 1ist of FETRIZVES has been issuea, the Jelete.recs
orocedure then comrletes the DELATE reguests attacned to tne
erase.node and issues each NDELETE regquest to the &D3 for

execution, dnce ayain, the CIT {s undated to reflect tne

chanqae {in currency i,e,, current of set.types become n(iLL as

annropriate,

90

%
~

LN N Y TrTYEW 6T Y Y. T, T U

LARE Al v Al R S Al el e e

(5) Iba GEI Bracadure. The GET request {s
handled bhy the get.rec nrocedure, I'hls procedure has a
relatively easy task, It simply looks at the .type of the
get.node, examines the record.type involved, and retrieves
either the entire record of specific fields of the record
from the request onffer in which the record resides, Tne
GET request operates on the currept of run unit, 30, tne
request buffer {n gquestion should be the request buffer
containing the current record of the run unit, orovided tne
current record of the run unit {s not NLLL, Finally, the
reader snould note that with each of the above orocednres,
aeallocation of regquest btuffers when tney are no longer
required, is alsc an important consideration in this

process,

91

..................

— P P T W T X

VI. CRUCLUSICUS

approach to database gsystem development has resulted in

numerous singlee=model, single=language systems witn 1little,

=
.
3

b

3

b -
ii As mentioned in the introduction, the conventional
A
5
3

3

it any, flexinility or extensioility, In addition, these
L{ systems are slow compared to the 8system pronosed bnv tnis
research effort, Qur system, the multielingual database
system (MLDS), provides an alternative to the development of
seperate stande=alone database systems wnich use single data
models, The YLDS will bringy flexibility, extensionility, ani
efficiency to the world of database management, The MuL[S
will be able to execute transactions written in any of four
well=known and {mportant data lanauages, nanmely, CL/I, SOL,
CODASYL, and Daplex,
In this tnhesis, we have presented a methodology for
;; supporting natwork Jatabase manadement within tne “LDS,
Specifically, we nave provided a data mnodel transformation
- - strategy, and a cata language translation strategy for tne
network Adata model ang tne CCuAsYL data languaqge,

- respectively, we have presented a design sreciticaticn for

the kernel maoping system (KuS) to be ysed {n the CODASYL

’ S
- AN
- intertace, A discussion of the concepts involved and the gﬁéﬁ
o LN
N

ﬁ data structures necessary for the interface to work prooerly Y
hAas also oceen presented, e
.‘:\:_'.:J
: R
& RS
. 92 IS '_.,:.‘_ \
4

(3
*
-
"

G~

-

"'n
4 &’

PR
. A A
e
o Y
-

o o

TP S AW Vo e -~ s W T . RS B . Ny L e Y, e W e W " ! P T .
I 4‘- AL SRR, ‘J’*.'*. M o T N T e L T T e N A A T T T T T e
Al L . L . r b A a A

IO AT A BN e Suie M-S i S S A A A Ml e e S e e e e e Seh il e M Sl An Dl S C e I S B i e

One of the desian goals of this project was to make the
interface as compatible as possible with the designs of the
DL/I and SQL intertaces in order to fully utilize existina
software, The Daplex {nterface 1s not mentioned here,
because it {s being developed in parallel with the COUODASYL
interface, By opursuing this qgoal, +#e also eliminate the
need for changes in the MBDS and the A4DL, Thus, it 1s
recommenden tnpat the {mplementation of the CODASYL interface
follow closely, the inplementations of the OL/I and 3vl
interfaces, The implementor(s) should pay particular
attention to any commonalities btetween funtions and data
structures,

we feel that the work presented herein {s sufficient for
inplementation of the CODASYL interface, All that remains
is for the code to Dbe written, and olaced 1Iin rhe host
computer, ‘ince the CODASYL {ntertace and the vAaplex
interface "nave been completely imblementea, the systen
should be tested as a complete svstem <for oronjected
etfticlency, etfectiveress, and responsiveness to user needs,
It 1s anticipate! that this researcn and agevelovment eftort
#111 ultirmately result in a new era for gatabase management
that #will allow for increased oroductivity and orotitanility

in the marketplace,

93

L AR AL AR AL REEE St Rl |

A

APPENDIX - THE KMS PROGRAM SPECIFICATIONS

Currency Indicator Table
References made in the following specification to CIT refer to the Currency Indicator Table.

. This table consists of structures that hold information identifying the current record of record- s
i type, set-type, and run-unit (run-unit is the application program being run). The following is the N
:‘ proposed structure for this table {Ref. 13]. . -?-
S struct CIT :::.}:.:-
» struct RUN-UNIT *run; :-;._-:.;-
- struct rec-type-node *next-rec-type; YA

struct set-type-node *next-set-type; el

}

struct RUN-UNIT
{

char rec-type[|; -
int dbkey; {

For each record type in schema:
struct rec-type-node
- { S
~ char type| |; =
- int dbkey;
' struct rec-type-node *next-rec-type;

For each set type in schema: ‘

’ struct set-type-node e
- boolean OWNER; L
g char TYPE| |; -
A int dbkey; X
- char member| |; v
char owner| |; E‘ﬁ
int owner-dbkey; ::

struct set-type-node *next-set-type;
yp p

.
M OE SN AR
A 2

)
rm

-y

94

AL A A T Tl A At Attt S Pl Aty Al e St - T T T T VW W W W W ™ ¥~ ¥ T W g ey =y W w

boolean: first-move = TRUE /* flag for MOVE operation */
boolean: first-time /* general purpose flag */

boolean: sys-flag-value /* boolean value of system flags */ A
ptr: curr-temp-rec ;* ptr to last record added to move-list */
ptr: curr-temp-item /* ptr to next item node to be added to
R record-template node of movelist */,

- list: suppression-list /* list of record types and/or set types */

. for which currency updates are suppressed */

PR R A
[]
PR
“r

A
v ¥

Rk A NI

list: select-list /* list of data items used for record section */
list: connect-list /* list of sets to which current of run -
unit is to be connected or disconnected */ C
list: tgt-list /* list of attribute names to be accessed */
list: move-list “* list of record templates used with e
MOVE statement */
list: curr-non-dup-list /* list of data items for which duplicates -
are not allowed in current record-type */
int: level-number /* level of data itemn in record types */
char: member-type /* string variable to hold a name */ .
. %} -
.~ -
v
1S4
LR
o
e
\; .
-
i
- ':.\-
:\: :‘:':
. 95 S
fi}
i
L

A a

THE DESIGN AND ﬂ“ﬂLVSIS OF R IETHORK INTERFACE FOR THE 272
MULTI-LINGUAL DATABASE SYSTEM(U) NAVAL PDSTBRRDI”ITE

SCHOOL MONTEREY CA C R MORTHERLY DEC
UNCLASSIFIED F/G 972

END
Fuugn
one

AD-A164 756

J'\'
»
.
i
,
B
.
4
!
3
&
v
»
.
.
'
.

=

ANt B4

A q
tefats

.. *
.

- .
4 .. 3
1 N
- R .
‘ .
“ h..
. h
% LJ

+ N
v

gy
5o 32

=k
g

[l
12

s
e es

O

I

MICROCOPY RESOLUTION TEST CHART

SAUNNAL RIRCAL NF STANDARNS - 1963-A

A P = N T N N N T T T T e T T T T T Y Ty~ . WY T Y e e e I e — g
S LT NS A A . - D B A . . LN S N R a0

VL N R A o AT
SIS RIS N VR W TS N Y SRR T W A SR A AL AL

Dl

start statement

statement: ddl-statement
- dml

dml: dml-statement
dml dml-statement

s

dd]-statement: schema-defn record-list set-list

schema-defn: SCHEMA NAME IS schema-name SEMI-COLON

locate db-id schema header node

if {db names do not match)) {
print ("Error-given db-name doesn’t Tl

match name in file") o

perform yyerror()
return

end-if

initialize db-key

R

* starting value is 1 */

record-list: record-desc

set db-id node ndn-first-rec ptr

}

_record-list record-desc

{

connect successive record nodes

}

record-desc: record data-item-list

{

curr-non-dup-list = NULL
}

record: RECORD NAME IS
{

allocate and init a new
record node (NREC-NODE)

allocate curr-non-dup-list

db-id-node ndn-num-rec++

}

record-spec

96

AT T e T T AN bf‘}:‘.-:‘\" v -".n;'.il‘.k".p"'.—"."' R T

.. LS

KRAR IS Sha 0 2 i bl h it ek A At ied i AN A AN S e SAR SACIA S N aC e e e e et ettt A e I i R e

record-spec: record-type

if (record-type not defined yet)
copy record-type to current
record node (NREC-NODE)
make this the current record node
end-if
else
print ("Error-"record-type’ record
doubly defined")
perform yyerror()) .
return
end-else

}
SEMI-COLON duplicates-list

9

set-list: empty
set-desc

set db-id node ndn-first-set ptr

set-list set-desc

{

connect successive set node(s)

N

set-desc: set-desig owner-spec member-spec

set-desig: SET NAME IS

allocate and init a new set node (NSET-NODE)
db-id-node ndn-num-set +~+

}

set-type

if (set-type not yet defined)
copy set-type to current set node (nsn-name)
establish curr-set-ptr

end-if

else
print ("Error-'set-type’ set doubly defined in db")
perform yyerror()

end-else

}
SEMI-COLON

'

,.
ey

97

P al ek o
)
- "
[
[l'l’l,).
R A N

[
’
A
, 5,
'l

A

F

AT _l AT Sat e* gt i T g0s g AL g S 7‘-'.'.;

< owner-spec: OWNER IS aa SEMI-COLON

,

aa: record-type
- {
: if (record-type not defined)
print ("Error-'record-type’ record does not exist")
- perform yyerror()

return
- end-if
else
= copy record-type to current set node (nsn-owner-name) R
= locate record-type node =
nsn-owner(ptr) = record-type node]
end-else S
} S
. SYSTEM - P
N PR
; g
R
S
member-spec: MEMBER IS record-type . 3
. R .:_- ‘.:<
. if (record-type not defined) A |

print ("Error-"record-type’ record does not exist")
perform yyerror()
return

end-if

else
copy record-type to current set node (nsn-member-name)
locate record-type node
nsn-member{ptr}) = record-type node

- end-else

SEMI-COLON insert-clause retention-clause

alloc set-select node

}
set-select-clause SEMI-COLON

’

duplicates-list: empty
. dupl SEMI-COLON

dupl: duplicate-spec
- dupl duplicate-spec

ron
2 / R
a
m

RN
.

s
LA
e ®
.

o et

duplicate-spec: DUPLICATES ARE NOT ALLOWED FOR item-spec .

RARER
PRI
PR
‘, 0 "

P

s e
.

.
i3

I R
n,r
’
& %

tl

. "." N
MG

(d

98 <

P RO
.

WA

., v .\ el et elA.._] RSO] :{ i SR R LRI \-\--..- _.-.\-\y_—_‘- .’-‘_.--_.'.‘-\.\t~'-‘ RN
» - . R ”

T T T mrre———" AR S S S S O v G S e S gl e i e gt el e g\ g o |

MMM

s

item-spec: item-name

- alloc new non-dup node

. copy item-name to non-dup node

add non-dup node to curr-non-dup-list

' item-spec COMMA item-name
alloc successive non-dup nodes
copy successive item-names to non-dup nodes
add successive non-dup nodes to curr-non-dup-list

}

data-item-list: item-desc

{

connect new attr-node to record-node

}

" data-item-list item-desc

{

connect successive attr-node(s) to record-node

R

- item-desc: level-num

allocate and init a new attr-node (NATTR-NODE)
NATTR-NODE nan-level-num = level-number
record-node nrn-num-attr—+—+ 7
. } 2
-

data-item-desc

if (nan-level-num = level number of current attribute node}
connect new attr node to current attr node
if (nan-level-number > 1)

N connect nan-parent ptr of new node

. end-if

end-if

- else if {(nan-level-number > level number of current attr node)

connect nan-child ptr of current attr node to new attr node

- connect nan-parent ptr of new attr node to current attr node
' end-else-if

. else

- locate last attr node with same level number

. set that node’s nan-next-attr ptr to the new attr node

f update current attr pointer

end-else

R }

T Ty Ak S

m.‘._._- e et Bk A A S S0 St S o et s e e e (e S e e e T Y T
&L

X

data-item-desc: item-name

{
copy item-name to attr-node (NATTR-NODE)

if (item-name not on curr-non-dup-list)
attr-node nan-dup-flag = 1
end-if

}
SEMI-COLON data-type PERIOD

level-num: empty

{

level-number = 1 /* default value *

i

INTEGER O sen]
{ -4
level-number = INTEGER C
}

data-type: CHARACTER INTEGER
{
attr-node nan-lengthl = INTEGER
attr-node nan-length2 = 0
attr-node nan-type = '¢’

}

FIXED INTEGER
{
attr-node nan-lengthi = INTEGER
attr-node nan-length2 = 0
attr-node nan-type =i

}
- FIXED INTEGER
!

attr-node nan-lengthl

INTEGER

}
INTEGER

{
attr-node nan-length2 = INTEGER

attr-node nan-type = 'f

}

N

[

o~
-2y
.
£

K _l’-l lr.
DT
~ﬁ"‘,
‘-!1.(")

o

. "T?"f
] bt

A

e T~
‘ ST e TN

i

A et A CoAdiahiat fa il Sab Sade Ris oA afetnde i MuChAscaie Ale-shr it A atd Ahe e, alut Al Ave & e Al She Rin S\ St a¥s 0'o S\ SR @3 e b B -a it t Tl Ml Wb fol it Bat Aef et St A’ St

insert-clause: INSERTION IS AUTOMATIC
{

set-node nsn-insert = ’'a’

}
" INSERTION IS MANUAL
{

set-node nsn-insert = 'm’

}

retention-clause: RETENTION IS FIXED
{

set-node nsn-retent = 'f’

}
RETENTION IS MANDATORY
{

set-node nsn-retent = ‘'m’

}
RETENTION IS OPTIONAL
{

set-node nsn-retent = ‘o’

}

set-select-clause: empty

{

set-node nsn-select = ’0’

}
SEMI-COLON SET SELECTION IS BY set-select-spec

3

101

ety

<
"

WI A

set-select-spec: VALUE OF item-name IN record-type

if(valid-attr(item-name.record-type})
copy v’ to set-select node select-mode
copy item-name to set-select node item-name
copy record-type to set-select node recordl
copy BLANK to set-select node record2
end-if
else
print{"Error-'item-name’ not valid for 'record-type’")
perform yyerror()
return
end-else

STRUCTURAL item-name IN record-type

if{valid-attr{item-name,record-type))
copy 's’ to set-select node select-mode
copy item-name to set-select node item-name
copy record-type to set-select node recordl
end-if
else
print("Error-’item-name’ not valid for ‘record-type’")
perform yyerror()
return

}

EQ item-name IN record-type
{
if(previous item-name equals this item-name)
if(valid-attr(item-name,record-type))
copy record-type to set-select node record2
end-if
else
print("Error-’item-name’ is not valid for ’record-type’")
perform yyerror()
return
end-if
else
print{"Error-’item-name’ items do not match")
perform yyerror()
return
end-else

}
APPLICATION
{

copy ‘a’ to set-select node select-mode
copy BLANK to recordl, record2, item-name

}

]

102

ta T

- -y

Adattal Sl b M AR A ARG SR APA S 2 S s g

dml-statement: set-flag

move
get

find

store
connect
disconnect
erase
modify

if-then

1

x

/

set-flag: MOVE f-value TO f-name

f-value: YES
{

sys-flag-value
}

NO
{

sys-flag-value

f-name: EOF
{

TRUE

)

= FALSE

eof = sys-flag-value

}
 NOTFOUND
{

notfound = sys-flag-value

}

perform-loop /* not designed */
not designed */

B R Sl Yl S AN e S A tecAbath da

DA g a NN AN

Dl I I 4 e s T IS s P .t LT

P Ty B & 0 2 T,

.-.' A-.‘.A.' A‘. .

+* The MOVE statement is a COBOL assignment statement that assigns a */
+* value to a particular data field in a record template. We use a *

+* list structure for this purpose. *,
move: MOVE item-value

{
if (first-move = TRUE)
alloc and init move-list
first-move = FALSE
end-if
create new data-item-node
copy ‘item-value’ to value field in data-item-node
establish curr-temp-item pointer
}

TO item-name

{

copy ’'item-name’ to name field in data-item-node

IN record-type
{
if {item-name not in record-type for current schema)
perform error(2)
return
end-if
else if {'record-type’ node on move-list)
connect curr-temp-item tu record-template node
end-else-if
else
create new record-template node
copy ‘record-type’ to name field of record-template node
connect curr-temp-item to record-template noue
add record-template node to move-list
update curr-temp-rec pointer
end-else

/* The GET statement takes the entire current record of the run unit *’

+* or specified data fields of the current record of the run unit *

+* and returns the values to the user. ./

'

get: GET

alloc and init new ‘get’ node
select-list = NULL - * reset select-list */

}

mm

104

: - - T T - - '-. '.- .-l - '_- _~..-A-.... h o.'
N R PRSI AT S SO I A A ATt P P AP 7

NN NI N

mm: item-list IN record-type
{
if {’record-type’ is not equal to CIT.RUN-UNIT.type)
perform error(3)
return
end-if
else
get-type = ITEMS in get node
copy record-type to get node
for (each data-item on item-list)
if ('data-item’ is not defined for record-type)
perform error(2}
return
end-if
else * create pseudo tgt-list */
copy data-item to get node
end-else
end-for
end-else

}

record-type

if ('record-type’ is not equal to CIT.RUN-UNIT .type)
perform error(3})
return
end-if
else
get-type = RETURN-ALL in get node
copy 'record-type’ to get node
end-else
}

empty

get-type = RETURN-ALL in get node
copy CIT.RUN-UNIT.type to get node

. * The FIND statements establish the current of run unit, record type, */
* and set type. */

find: FIND record-selection-expr curr-suppression

R 0d Bk Sl L P P SO 408 Ll AUE SAR i ey s i ol ekt e At RS St Dt Siae et SefRAi ity Sl I A i ch T

i
L]

A

l'l- b‘l

_* The FIND ANY means: find any record of type record-type whose *
* values for item! through itemn match those in that record’s
* template in the user work area. *

V. A e

record-selection-expr: ANY record-type

e

if {‘record-type’ record-template node is not
on move-list)
perform error(t)
return
else
alloc and init new ’'find’ node
find-type = ANY in find node

.z
P

. copy record-type to find node
N alloc and init new abdl-str
alloc and init new tgt-list
I * begin forming a RETRIEVE request */
copy " RETRIEVE ({TEMPLATE = ’record-type’)"
to abdl-str
end-if

select-list = NULL

USING item-hst IN record-type

if ('record-type’ is same as previous 'record-type’}
if (any data item on select-list is not
defined for record-type)
perform error(2)
. return
s end-if
else
. create tgi-list item for all attributes
of ‘record-type’ record
for (each data item on select-list)
. if (*data-item’ not on move-list)
perform error{1}
return

; end-if
else

get ‘item-value’ from move-list

concat "and ('data-item’ = ’item-value’)"

to abdl-str
end-else

end-for
concat ")("tgt-list’) by DBKEY " to abdl-str
connect abdl-str to find node

v end-else
b end-if
s else

perform error(6)

return
- end-else
[]
h. ’-'
o~ "
N g
: o
3 108 rr
; [

* The FIND CURRENT means: Make the current of set-type the current *
* record of the run unit. *

CURRENT record-type WITHIN set-type

if (CIT.set-type. TYPE is not equal to 'record-type’)
perform error(7)
return
end-if
else
/* current of run-unit becomes current of 'set-type’ */
alloc and init new ‘find’ node
find-type = CURRENT in find node
copy record-type to find node
copy set-type to find node
copy CIT set-ty pe.dbkey to find node
end-else

}

* The FIND DUPLICATE means: Find the first record in the current set- *’

*

*

=

T et e TA T T Tt e

I A S I
WD T S RS B USSP

ype occurrence whose value for item] through itemn matches those
for the same items in the current set-type occurrence. not the UWA
record template. This implementation assumes the records being re-
quested are already in a buffer.

R
el

x
* /
*

*

DUPLICATE WITHIN set-type

alloc and init new ‘'find’ node

find-type = DUPLICATE in find node
copy set-type to find node

select-list = NULL * reset select-list */

USING item-list IN record-type
{
if {{record-type is not CIT.set-type. TYPE) or
{record-type is not CIT.set-type.member))
perform error{8})
return
end-if
else
copy record-type to find node
for (cach data-item on select-list)
if (any data-item on select-list 13 not
defined for record-type)
perform error(2)
return
end-if

else * create a peeudo tgt-list
copy data-item to find node
end-else
end-for
end-else

}

.

;* This statement means: Find the FIRST, LAST, NEXT. or PRIOR record- */
-* type record within the current set-type occurrence. The Il token */
/* takes the value FIRST, LAST, NEXT, or PRIOR. */

Il record-type WITHIN set-type

if (‘record-type’ is not a valid member type
for ’set-type’)
perform error(5)
return
end-if
else
copy record-type to find node
copy set-type to find node

;* RETRIEVE all member records of set occurrence */

alloc and init new abdl-str

alloc and init new tgt-list

copy "'RETRIEVE (
(TEMPLATE = CIT set-type.member) and
(MEMBER set-type = CIT.set-type.owner-dbkey))"
to abdl-str

create tgt-list for all attributes of member record

concat "(’tgt-list’) by DBKEY!" to abdl-str

connect abdl-str to find node

end-else

}

* The FIND OWNER means: Find the owner of the current set-type occurrence */
. OWNER WITHIN set-type

alloc and init 'find’ node
find-type = OWNER in find node
copy set-type to find node

alloc and init new abdl-str

alloc and init new tgt-list

/* form RETRIEVE request */

copy " RETRIFVE ((TEMPLATE = CIT set-type.owner)
and (DBKEY = CIT set-type.owner-dbkey))"
to abdl-str

create tgt-list for all attributes of owner record

concat "(’tgt-list’);" to abdl-str

connect abdl-str to find node

}

m_, " asay P " q g - -
' . ST S S A TS AT A LA B > . BN A e RECR A T B CAACh S e S 9

L {
l.’-.~ - .‘
. * This statement means: Find the first record-type record within the */ .
/* current set-type occurrence whose values for iteml through itemn */
* match the values found in the record-type template in the UWA, not */ IR
,* the values in the current of set-type as in the FIND DUPLICATE. */ et
) {

! record-type WITHIN set-type CURRENT

. if ('record-type’ not a member type of 'set-type’)
perform error(5)
return
end-if ¢ {
else IR
alloc and init new find’ node
find-type = WITHIN in find-node
copy record-type to find node
copy set-type to find node
alloc and init new abdl-str _ .
alloc and init new tgt-list - -

/* begin forming RETRIEVE request */

copy " RETRIEVE ((TEMPLATE = ’record-type’) and

. (MEMBER.set-type = CIT set-type.owner-dbkey)" o
i to abdl-str b
create tgt-list for all attributes of 'record-type’ Sl
record

select-list = NULL /* reset select-list */ T

end-else

} e
USING item-list IN record-type b

if (any data-item on select-list is not defined
for ‘record-type’}
perform error(2)
return
end-if
else if (any data-item on select-list
.- not on move-list}
. perform error(1)
return
end-else-if
else
for (each data-item on select-list)
get 'item-value’ from move-list
concat "and ('data-item’ = 'item-value’)
to abdl-str
end-for
concat ")('tgt-list’) by DBKEY " to abdl-str
connect abdl-str to find node
end-else

g R

o
el

'.-\"‘- '/’ L

.
4

1I: FIRST
{
alloc and init new ‘find’ node
find-type = FIRST in find node

}
LAST

alloc and init new 'find’ node
find-type = LAST in find node

}
NEXT

alloc and init new 'find’ node
find-type = NEXT in find node

}
PRIOR
{

alloc and init new 'find’ node
find-type = PRIOR in find node

}

curr-suppression: LSQUARE supp-expr RSQUARE

empty

supp-expr: SUPPRESS UPDATE
. UPDATE type-spec

type-spec: set-type
add set-type to suppression-list

i type-spec COMMA set-type
{

add successive set-types to suppression-list

}

e e e T e T e A e A
DPAT SN AT RP IE AP REIE PO PU I AR PN/

BT N

110

v S ad as e e oo - P 5 P PP Y
. DA) T) o i e et At - 3 o DACMEA AL AL AR A acA -0 SA qOMBUA SIL IEA PO g e S e 448 8 Soa h g t-a A 4 Ak A A A]

; * This statement means: Delete the current record of the run unit, */
/* and all of its descendents regardless of whether they are owners of */
,* other sets. */

erase: ERASE ALL record-type

if ("record-type’ is not CIT.RUN-UNIT.type)
perform error(3)
return
end-if
else
alloc and init new ’erase’ node
erase-type = ALL in erase node
for (each set-type in schema)
if (CIT.set-type.owner-dbkey = CIT.RUN-UNIT .dbkey)
member-type = CIT.set-type.member

/* form RETRIEVE to get member records */

alloc and init new abdl-str

copy"' RETRIEVE(MEMBER set-type = CIT.RUN-UNIT.dbkey)
{ (DBKEY) by DBKEY|" to abdl-str

connect abdl-str to erase node

/* erase member records */

alloc and init new abdl-str

copy"'DELETE((TEMPLATE = member-type’) and
(DBKEY = ***})|" to abdl-str

connect abdl-str to erase node

/* delete all descendants of member records */
prrform erase-all(member-type,erase node)

end-if ..

end-for
/* delete current of RUN-UNIT */ e

alloc and init new abdl-str ‘

copy "'DELETE({TEMPLATE = ’record-type’) and A
(DBKEY = CIT.RUN-UNIT .dbkey))|" to abdl-str e
connect abdl-str to erase node -:‘[fs
end-else SANAN
} ‘:-“'-‘\
Fult

A ACE Ba ata st A s aAlaiet Semd e e e ARt dune Shie Janpc e St i Bnis St Ange Sad S Sl i S T YW WL Y WSS LR VTR N Y N T T ey Te e T

M R e -

,* This statement means: Delete the current record of the run unit if */
,* and only if. it is not the owner of a non-empty set. */

- ERASE record-type

{

if (‘record-type’ is not CIT.RUN-UNIT.type)
perform error(3)
return

end-if

else

TR

»
L

* erase one record - current of RUN-UNIT */
alloc and init new ’erase’ node s
erase-type = NULL in erase node

* form RETRIEVE to see if ’record- type 1s */
* owner of non-empty set */
a.lloc and init new abdl-str
copy " RETREIVE(" to abdl-str
first-time = TRUE
for (each set-type in schema)
if (record-type’ is owner type of set-type)
if (first-time}
concat "(MEMBER.set-type = CIT.RUN-UNIT .dbkey)"
to abdl-str
first-time = FALSE
end-if
. else -
concat "or (MEMBER .set-type = CIT.RUN-UNIT .dbkey)"
to abdl-str N
end-else .
y end-if \
end-for -
concat "}(DBKEY) by DBKEY " to abdl-str F

connect abdl-str to erase node

» 4
13 H
' _b.ll.

o
r_

N

PEAS

L) ¢
w o e

P -{‘

T
SN
PP
3

. W

* for DELETE request */
- alloc and init new abdl-str
: copy " DELETE ((TEMPLATE = CIT.RUN-UNIT.type) and
(DBKEY = CIT.RUN-UNIT .dbkey})" to abdl-str
connect abdl-str to erase node
end-else

}

. 112

PG :_ e _:.»;_._:- ,; R R Iy W LG T O T L L L A

;,“""’ TN T T T T T Y

;

/* The STORE means: Create a new record in the database using values */
/* supplied by the user via MOVE statements, for the data items of */
/* the specified record-type. The is connected to all sets in which */

/* INSERTION IS AUTOMATIC. The appropriate occurrence of the sets */
/* must be selected before the new record can be connected. Thisis */ .

/* done based on the SET SELECTION clause specified in the database */

/* schema definition for the sets in question. */

store: STORE record-type

if ("record-ype’ record template node is not on move-list)
perform error(1)
return
end-if
alloc and init new ’store’ node
alloc and init new abdl-str
copy ".RETRIEVE (" to abdl-str
first-time = TRUE
for (each data-item in schema for 'record-type’)
if (nan-dup-flag is set)
if (data-item in move-list 'record-type’ record template)
get data-item value from move-list
if (first-time = TRUE)
concat"({TEMPLATE = ’record-type’) and

('data-item’ = 'item-value’))" to abdl-str
first-time = FALSE
end-if
. else
concat "or ((TEMPLATE = ’'record-type’) and
('data-item’ = ’item-value’))" to abdl-str
end-else
end-if
end-if
end-for

concat")(DBKEY) by DBKEY}" to abdl-str
connect retrieve request to store node
alloc and init new abdl-str

/* Form an INSERT request */
copy" INSERT (<TEMPLATE, record-type’>,<DBKEY,***>" to abdl-str
for (each 'data-item’ in schema for 'record-type’)
if (‘"data-item’ not on move-list for 'record-type’)
perform error(4)
return
end-if
else
get data-item value from move-list
concat",<’item-name’,’item-value’>" to abdl-str
end-else
end-for

113

- M A g s 2 Al g G Ak ol Sl m s S A A A A Al RIS e Sk S Shd A i e Snd And And aed sadi il Sed Soll el Ak Mok

/* Now determine which set occurrences the new record belongs to */
/* and add proper attribute-value pairs to the INSERT abdl-str to */
/* indicate set membership. The following FOR loop and CASE state-*/
/* ment fill the INSERT abdl-str with the proper pairs. *
for {each set-type in schema irn which 'record-type’ is a member)
case (set selection mode) of

.

A

/* set selection is by applicaton */
a: perform by-application(INSERT abdl-str)

X /* set selection is by value */
' v: perform by-value(INSERT abdl-str)

/* set selection is by structural */
s: perform by-structural(INSERT abdl-str)

/* no set selection criteria was given */

o: perform by-default(INSERT abdl-str})

end-case
end-for
concat "™ to INSERT abdl-str
) connect INSERT abdl-str to store node
- alloc and init suppression-list

}

curr-suppress. .

connect suppression-list to store node

}

114

N

oy

L i i
'} .

wx
*

. 4

e
.1,

At e Bors, Ded Rt Sl St Tt S S

,* The MODIFY means: Modify the entire current record of the run unit */
* or the specified data items in that record. The new values are */
;/* supplied by the user via the UWA. */

modify: MODIFY
select-list = NULL /* reset select-list */

item-list IN record-type
{
if (’record-type’ is not current of run unit)
perform error(3)
return
end-if
if ('record-type’ record-template node is not on move-list)
perform error(1)
return
end-if
if (any data item on select-list not defined for ’record-type’)
perform error(2)
return
end-if
else
alloc and init new 'modify’ node
locate record-template node on move-list for 'record-type’
for (each data-item on select-list)
alloc and init new abdl-str
/* form UPDATE request */
. copy " UPDATE ({TEMPLATE = ’record-type’) and
{DBKEY = CIT.RUN-UNIT.dbkey}}" to abdl-str
get item-value’ from move-list
concat "(’data-item’ = ’item-value’)]" to abdl-str
connect abdl-str to 'modify’ node
end-for
end-else

}

115

R ath Ada s S S Sle g u g

r—Y

At Rt e Ael el tulh Ak Bat Gutl Al Sul A 0 4

| B

L

L R g [L i sl S SRR LI

TNy

S T T T TR T OV WO w I w Wiy

MODIFY record-type
{
select-list = NULL /* reset select-list */
if ('record-type’ not current of run unit)
perform error(3)
return
end-if
if (‘record-type’ record-template node is not on move-list)
perform error(1)
return
end-if
else
alloc and init new 'modify’ node
for (each data-item in record-type)
if (data-item not on move-list for 'record-type’)
perform yyerror(4)
return
end-if
else
alloc and init new abdl-str

"* form an UPDATE request */
copy " UPDATE ((TEMPLATE = ‘record-type’) and
(DBKEY = CIT.RUN-UNIT.dbkey)) to abdl-str
get new ’item-value’ from move-list
concat "('data-item’ = ’item-value’)]" to abdl-str
connect abdl-str to *'modify’ node
end-else
end-for
end-else

}

116

., w - . ---.-0 ‘_'~ e
AT NARINS ST N ST AT I N OIS

.

ARt be Al S Sl Al Al Aot oo} a4

Aaditeatialt dh alh i A g dof

Lt nah 4

Y Y ¥y Ty y ~r ~F Y

/* The CONNECT means: Connect the current record of the run unit to the */
/* current occurrence of the specified set type. There may be several */
/* sets listed in the statement. */

connect: CONNECT record-type TO

if (‘record-type’ is not current of run unit)
perform error(3)
return
end-if
else
alloc and init connect-list
end-else
}
set-type-list
{
alloc and init 'connect’ node
for (each ’set-type’ on connect-list)
if ('record-type’ is not a member type record for ’set-type’)
or (INSERTION is not manual)
perform error(5)
return
end-if
else
alloc and init new abdl-str
copy ""UPDATE ((TEMPLATE = ’record-type’) and
(DBKEY = CIT.RUN-UNIT.dbkey))
(MEMBER set-type = CIT .set-type.owner-dbkey}]"
to abdl-str
connect new abdl-str to ’connect’ node
end-else
end-for
connect-list = NULL ,* reset connect-list */

}

set-type-list: set-type
add ’set-type’ to connect-list
, set-type-list COMMA set-type

add successive 'set-type’(s) to connect-list

}

117

P e S P P O T P T P o T o WP ST T e T WY vy

* The DISCONNECT means: Disconnect the current record of the run unit */

,* from the set type occurrence that contains the record. *,

l disconnect: DISCONNECT record-type FROM

if (‘record-type’ record is not current record of run unit)
perform error(3)
return
- end-if
I else
d alloc and init new connect-list
end-else

}

set-type-list

alloc and init ’disconnect’ node
I for (each set-type on connect-list)
if (’record-type’ is not a member type record for ’set-type’)
perform error(5)

return
end-if
- else
b alloc and init new abdl-str oo
: copy "'UPDATE ((TEMPLATE = ’record-type’) and T]
(DBKEY = CIT.RUN-UNIT.dbkey)) e
(MEMBER set-type = NULL)|"
to abdl-str
connect abdl-str to 'disconnect’ node)
I end-else

end-for
connect-list = NULL /* reset connect-list */

}

perform-loop: PERFORM UNTIL bb EQ cc
* END-PERFORM

)

- bb: EOF

. NOTFOUND

. cc: YES e
‘ NO . -
j : £ .8
. RO
" S
b n._:. -
", ,‘J-,'f'\'
" ‘H’"f .
E) 2o

- (.

3 R
" e

,,
o
.
0

; - ..
K SRR

item-list: item-name

{

put item-name on select-list

. item-list. COMMA item-name

{

put successive item names on select-list

}

schema-name: IDENTIFIER

’

record-type: IDENTIFIER

set-type: IDENTIFIER

)

item-name: IDENTIFIER

item-value: IDENTIFIER
INTEGER

’

119

ST R N A Tt DU N o 0¥ CR L GO E ST A
Nt AN TSI AT I W A S A

Lo

-

-

'..'.'-'-‘-..' MERE R I R T N I

proc error(err-code)

»

This procedure prints error messages, causes data structures to */
be de-allocated. and causes proc yyerror to be executed. */

case err-code of

1: print("Error - must initialize 'record-type’ record-template')
2: print("Error - ’data-item’ not defined in 'record-type’")
3: print("Error - 'record-type’ is not curr~nt record of run unit")
4: print("Error - attempting to modify or store record without
giving value of ’data-item’")
5: print("Error - ’record-type’ record does not belong to ’set-type’")
68: print("Error - record-types specified are not the same")
7: print("Error - ‘record-type’ is not current of ‘set-type™)
8: print{"Error - ‘record-type’ must be a member record of ’set-type™)
end-case

perform cleanup{) . * free data structures *

;

perform yyerror()

re

turn

end-error:

120

A Al aNE 0e Sind S o an SAr gl Sath St et Aat ded s Seuh e eno s g iy TT— . T —— - BRI e S i S e e S S A

proc by-application{abdl-str)
if (set-node nsn-insert ='a’) - * insertion mode is automatic */

- concat", < MEMBER .set-type,CIT set-type.owner-dbkey >" to abdl-str
E end-if

else ,* insertion mode is manual */

= concat" . <MEMBER.set-type, N\ULL>" to INSERT abd!l-str

end-else

i) end-by-application;

proc by-value(abdl-str)

locate data-item node in schema for set-select node item-name 4
. in set-select node recordl . " i
if (nan-dup-flag set) B
> get owner record type of set-type from schema
if (owner record type node not on move-list) or

. [data-1tem not on move-list) R ’

: perform error(4) A
: return Lo 2

% end-if ‘.4

{ else ‘

: if (set node nsn-insert = 'a’) * automatic insertion */) :

>

get data-item value from move-list o
copy" RETRIEVE{(TEMPLATE = owner-record-type) and e
. (item-name = ’'item-value’)) (DBKEY)™" to abdl-str R

-

connect new retrieve request to store node LI !

: concat", <MEMBER .set-type.***>" to INSERT abdl-str DR
b end-if N : '.'_j.

else . * manual insertion * SRR
concat",< MEMBER .set-type NULL>" to INSERT abdl-str
end-else
end-else

end-if '* nan-dup-flag */

end-by-value;

PR .7~_<>_‘C"}."-‘v BRARARARI B AR A TA A s A Aoa i ik St v - Sl e i e Ml ol grb o gt S g A Al A ek Ml ant et cont et |

proc by-structural(abdl-str)

locate data-item nose in schema for set-select node item-name
in set-select node recordl record-type
if (nan-dup-flag set)
get recordl name from set-select node for set-type
if | cecerdl’ record template node not on move-list} or
{data-item not on move-list)
perform error(4)
return
end-if
else
if {set-node nsn-insert = 'a’) ;* automatic insertion */
get data-item value from move-list
get record2 name from set-select node for set-type
copy" . RETRIEVE ((TEMPLATE = record2 name} and
(item-name = item-value}) (DBKEY)}" to abdl-str
connect new retrieve request to store node
concat",< MEMBER set-type,***>" to INSERT abdl-str
end-if
else /* manual insertion */
concat”,< MEMBER set-type. NULL>" to INSERT abdl-str
end-else
end-else
end-if ,* nan-dup-flag */

end-by-structural;

proc by-default(abdl-str)

print{("Warning - Attempting to store a record with no
particular set selection given. Will assume 'BY
APPLICATION™)

if (set-node nsn-insert = ’a’) /* automatic insertion */

concat",< MEMBER .set-type,CIT .set-type.owner-dbkey>" :'}r{' -
‘ to INSERT abdl-str s
l end-if -
- else /* manual insertion */ :
‘ concat",< MEMBER.set-type, NULL>" to INSERT abdl-str ¢
end-else .
|

end-by-default;

L Ll
rew ¢

'- ’
P

LAt
AR
'l

A
2t
Wteta T

122

»

[Y
oty »
W\ e
. L‘:‘-.:"
- . g L . - - e e a® . - . - - ~ - . R LN
'-"-.f‘-' \I“"-{'y' LR :". o -‘.-.' % " o~ b-' T oy = » ‘FK ’e ".ns ~ ‘. " oy 57 ~ 'i' \'\' N i",.- »> w \ W ‘-5(W \.‘ N

et e e i e e o rel e ard e e il S v Ao aedh and aul abih ard StA Sl N S SRR R N anh A9 AL AT 455 R A DA A A A YRR A Sl PR

proc erase-all(record-type,erase node)
string member-type;

for (each set-type in schema)
if (‘record-type’ is owner type of set-type)
member-type = member type of set-type
/* for RETRIEVE to get members of ’set-type’ */
alloc and init new abdl-str
copy " RETRIEVE(MEMBER set-type = ***)(DBKEY) by DBKEY!"
to abdl-str
connect abdl-str to erase node
/* delete member records */
alloc and init new abdl-str
copy " DELETE((TEMPLATE = 'member-type’) and (DBKEY = ***))I"
to abdl-str
connect abdl-str to erase node
;/* erase descendants of member records *
erase-all(member-type,erase node)
end-if
end-for
return{erase node)

!
/

end-erase-all

123

T T————"yw St It 3 . . DAL Y A-e s e S San shan SR e iiie e e dh iR AT AR AR

LIST OF REFERENCES

Demurdtan, S,A, and Hsiao, 0.K,, "New Directions in —_—
Datanase= Systems Research and Development”, in the SN
Erocrediags af tae Yex Rizactiens Lo Camzuliag N
Confaraoce, Trondheim, Norway, BAuyqust, 1985; also in N
Technical Report, HPS=52=85=001, *~aval postgraduate RN
School, Monterey, California, February 19s&5, . e

Hsiao, D.K,, and Menon, M,J,, Lasizgn acd dgalyslis o0& a Sl
sulti-Dackend Ratabase Sgatas £az 2ez&oraanca
lagzoxadant, Eunctionality Expagsian, aad cagagity
SZokth (Bazxt 1), Technical Report, 0SiU«sCISRC=TR=81=7,
The Ohi{o State University, Columbuys, uvhio, July 1981,

Hsi{ao, D,K,, and Menon, "M,J,, B@si3n «ad dnalysis af a O
Multi=~Sackand Satabase Sustas £az Qecforamacca e
luprgueaens, Eunctlianaliiy Ezpapsion, and Cagacity R
GZokts (Zart Il), Technical Report, OSU=CISRC=TRel]i=§, RS
The Nhio State University, Columbus, Ohio, August 1981, -

ool
Banerjee, J, and Hsiao, D.K,, "A ksethodoloay ¢tor

Supnorting Existing CODASYL Catabases with vew (atabase

machines", Braccediangs of National ACY Confersoce e
1978, , S

5, Henson, T, P, and Wwentz, G, L,, Ibza LQeaizn aod v
Iagclazentation of 3 Hiezarchical Intecfaca £ar tke
dalti-Liagual Qatahase Sgsted ,Y,.S, Thesis, vaval
Postgraduate School, Monterev, California, June 1945,

be FKloeopinq, G, Ry, Aand Mack, J, F,, Ibe Lersizgz and
lsglepantatian 6f a &alatlanal Iaoraxface £ar the
dulti-Liagual Latakasa Susies ,".S5. Thesis, “aval
Postgradunate School, vonterey, California, June 1985,

o 7. 0nate, C,J,, &2 lokroduyctlon Lo Latapasa Sy¢stezs ., no, li%
3 3R9=446, Addison iWesley, 1982, N

1, Tsichritzis, D, C, and Locnovsky, F, H,, RQata Yadesls, ;ff
ep, 119=147, Prenticeedall, 1982, el

9, Jlle, T.,¥,, I&e CORASIL AigzzZsach La 3a&a 2asa
“agageza’nt , John ¢d{ley & Sons, Inc,, 1978,

1o, tis{ao, D,K,, anA Haray, F,, "A Formal Systen €or

- Infor~ation Retrieval from Files", Cosmuaicariaas af '
. Lthe «Ld , Vol, 13, Mo, 2, Febryary 19706, Corrigenda,

o, vol, 13, %o, 3, Marcnh 1970,

11, Raneriee, J,, ''siae, DO, K,, anri Kerr, UL, S., DRBC
Saftsane 28qulzazedsss Lo SunRpestiag satigrZk Databases,

TG SN S y

AR TR e At SRl R ARSI o aie SArnh ol Aot ahuc ale AVa Sle ale Al Ao S0 A% Ak oio dhe i 6y i St Bia pie { B ANMA R AR A Bl Bt Ad b RA M AoF B A A/ Reb Agt dob Sob Ao Bt Sl T AL

12,

13.

14,

15,

Technical Report QOSU=CISRC=TRe77=4, The Ohio State
Un{versity, Columbus, 0Ohio, Novemper 1977,

Pata Base Tasx Group of CODASYL Programming Languaqge
Committee Report (April 1971),

Meyer, G, and hacDougal, P,, Aa dttzisute~uilueg
Izracslatian aof CODASIL s Data danisulatiaon Lanai.as
Ohio State University, 1982,

Johnson, S, C,, Z&LLC: Ysi-Lnatiher~Caagiler Coaplilaz
Bell Laboaratories, Murray Hill, New Jersey, July 1978,

Lesk, 4, E, and Schmidt, E,, Lax -~ & Laxical 4apalgzer

Cangzator , Bell Laboratories, Murray Hill, New Jersey,
July 1978,

128

Ty D Teh It S g e et S A P P T P P PP T Vo T o T rrevey LA Al Al Jd Ak Sl Al 2ol Sall Aod

IMITIAL DISTRIBUTION LIST
No, Coples

1, DNefense Technical Informatior Center 2 S
Caweron Station "o
Alexandria, virginia 22304-0145

2. Library, Code 0142 2 T
vaval Postaraduate School . a}&
Monterey, California 93943=5100 —

3, Deoartment Chairman, Coae S2 2 S
Nepartment of Computer Science LT
vaval rostaraduate School o
wonterey, California 93943=51¢0

DR T e o T
DD AR
. L N
»
' .

4. Curricular Officer, Code 37 1 S
Computer Technologv ’
Naval rostgraduate School
sonterey, California 93943=5100

~)
L S
T

S« Professor NDavid k, Hsiao, Code S52Hn
Computer Science Department Mo
Maval Postgraduate School jfgi
donterey, Californfa 93943=5100 e
o Steven A, Demurjian, Code 52 2 f&l
Conouyter Science Department S ki
Naval Postaraauate Schnol =
Monterey, California 93%43-5100 S
7. Clemon P, Wortherly 3 fﬁi
28 "L" Street e
Sunter, South Carolina 29150 EJL
L
S
i . '\‘::'
:‘::.-'.
&
(% :.’

126 o

L i AR i sVl SRR AL o o olig ok “ A e i A lin = ol adiar i iR SR i
. co. . ~ N - b *a et a. ™

N - e T T
e e . A e T e e
B il

