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ABSTRACT

This report describes an effective method for using
two-dimensional infinite elements to compute acoustic or
magnetic fields in the unbounded fluid region surrounding
a submerged vehicle. In this method, finite elements " . N

represent the bounded region containing the vehicle and .',

may also be used to represent a layer of fluid surrounding
the vehicle. Infinite elements are used to represent the
unbounded exterior region. Since infinite elements are
not bounded, their shape functions are chosen to contain
decay factors to produce convergent integrals. If, from
physical or other considerations, the order of decay of
the solution as the radius increases is known, infinite
elements should be chosen with the same order of decay.
The results obtained in this study were found to be within
2 percent when the decay factor of infinite elements
matched that of the solution. However, for other problems,
the order of decay of the solution may not be known in
advance, and, therefore, it may not be possible to match
the two rates of decay. For such cases, the errors were
found to be as large as 20 percent. In such situations,
a layer of finite fluid elements, two elements thick around . -

the structure, reduced the errors to less than 3.5 percent
for the modes and decay factors tested.

ADMINISTRATIVE INFORMATION

This work was performed at the David W. Taylor Naval Ship Research and

Development Center (DTNSRDC), and was funded by the Naval Sea Systems Command

(S05R24) under Task Area SR0140il, Task 15321, and Work Unit 1840-040.

IINTRODUCTION

To compute magnetic or acoustic fields about submerged vehicles, the vehicle,

surrounding water, and interactions between them must be modeled. The field and

the, structure can each be represented by finite elements and the representations

coupled using a method developed by Zienkiewicz and Newton.l* If the vehicle is

submerged in the sea, the extent of the water surrounding it is so great that the

region containing the water is best represented as having infinite extent. If

finite elements are used to solve such a problem, one can model the structure and

a reasonable extent of the finite region of the medium around the structure. This

leaves the problem of accounting for the infinite region surrounding the finite

*A complete listing of references Is given on page 15. "
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region modeled with finite elements. Various methods have been proposed for repre-

senting the surrounding infinite region. Several examples are:

0 The surrounding region can be truncated by modeling a large part

of it with finite elements and applying boundary conditions that

approximate the effects of the remainder of the infinite region.

0 The solution can be expanded as a series of anelytic functions in

the surrounding region with the coefficients introduced as unknowns.

* The effects of the surrounding region can be represented by an

integral equation on the boundary of the region surrounding the

finite elements.

0 The surrounding region can be modeled with infinite elements.

Zienkiewicz et al. 2 compare these methods and find that each has certain advantages

and disadvantages.

In this report, infinite elements are used to represent the surrounding infi-

nite region. An infinite element represents a sector of the infinite region extend-

ing from the boundary of the finite region. In both finite and infinite elements,

the unknown function is approximated by shape functions and a functional involving

the shape functions is integrated over the area or volume of the element. To obtain

convergent integrals for infinite elements, one of two schemes is used. 3 The first

incorporates decay factors in the shape functions that vary in the direction that

extends to infinity. The other scheme maps the infinite element into a standard

*,, iire or cube. This mapping also requires decay factors that compress the infinite

f-l.ment into a finite region. The decay factors may take one of several forms; they

may decrease exponentially with the distance r from a fixed point, or decrease as a

power of r. if a solution has a component that decreases as 1/r as r tends to infin-

ity, usually that component will dominate for very large values of r. However, com-

ponents that are significant for moderately large r effect the accuracy obtained

dith infinite elements. For some problems, the rate of decay of the predominant

component of the solution as r tends to infinity, may be deduced a priori from

physical or other considerations. For such problems, one could choose a decay

factor that matches the behavior of this component as r approaches infinity. It

would hu expected that this choice would produce the most accurate results. How-

e(.'r, the solution may have more significant components than the infinite element

has decay factors, or it may have significant components that are not known

2
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a priori. That is, the solution may have significant components that decreaso "

h/rm for one or more values of m, where the factors I/rm are not represented by

the decay factors of an infinite element. Thus, the question arises of how well

an infinite element will approximate a solution that has components that decrease

with orders different from those represented by the decay factors.

This report gives results for the two-dimensional problem of an infinitely

long cylindrical shell submerged in an infinite acoustic fluid. The ultimate

interest is in three-dimensional problems, but a computational solution using

infinite elements for the two-dimensional problem is easier to develop and an I
exact solution is available for comparison. A two-dimensional problem is quite

different in character from a corresponding three-dimensional problem. Rather

than simulating the complete three-dimensional solution from the two-dimensional

solution, this study examines the performance characteristics of two-dimensional

infinite elements and, based on this, conjectures the performance of three-

dimensional infinite elements. This is done for two configurations and several

formulations of the infinite elements. The reported results show that the approx-

imate solutions, produced when only infinite elements are used to model the fluid,

have small errors if the decay factors match the known rate of decay of the exact

solution. Also, the results show that, for cases when decay factors for the solu-

tion and the infinite elements did not match, the computed solutions were found to .

be quite accurate if a layer of the fluid surrounding the vehicle was modeled by

finite elements.

The advantages of using infinite elements are: (1) they maintain symmetry

and reasonable bandwidths in the matrices produced, and (2) it is easy to implement n

the method using available finite element programs. On the other hand, some formu-

lations of infinite elements introduce more degrees of freedom than do competing

metnods. In some cases extra effort must be made to ensure element shapes that 9.

provide unique mappings. So, for some problems, these characteristics may require ...
additional effort in producing the numerical model. --. "

3

. .-.. '."...



NATURAL FREQUENCIES OF A SUBMERGED CYLINDER

We considered the problem of an infinitely long cylindrical shell submerged

in an acoustic fluid. The problem is to determine the natural frequencies of the

system consisting of the vibrating structure interacting with the surrounding

fluid.

The axis of the cylindrical shell is aligned with the z-axis. The Mr tion of

the cylinder's surface and the acoustic pressure are assumed to be independent of

the z-coordinate. Since it is assumed that there is no variation of shell dis-

placements or fluid pressure in the z-direction, a two-dimensional problem can be

obtained by projecting the cylinder and the region containing fluid into the

x,y-plane.

FINITE AND INFINITE ELEMENT MODEL OF A FLUID-STRUCTURE SYSTEM

Natural frequencies of the fluid-structure system are computed using a NASTRAN

model containing both finite and infinite elements. Equations associated with the

cylindrical shell, the acoustic fluid, and the coupling between them are combined

to obtain a matrix equation for the coupled system. For an assumed time harmonic

solution, the matrix equation becomes the equation for an eigenvalue problem for

determining the natural frequencies of the coupled system. This work extends and

modifies the work of Schroeder and Marcus 4 by introducing infinite elements and

using the added mass approximation.

In the two-dimensional finite element model, the cylindrical shell is repre-

seited by a ring of one-dimensional bar elements. The fluid region is the region

of the x,y-plarie outside the ring, and is modeled using two-dimensional membrane

finite elements by an analogy for the Laplace operator and two-dimensional infinite

elements.

Standard finite element modeling procedures produce the structure matrix

equation associated with the ring
5

Mi + Ku = f

where M mas3 matrix

K stiffness matrix

oi displacement vector

f force vector acting on the ring

4
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The method of analogies uses structural membrane elements to produce a matrix

equation for the acousti. fluid. The method of analogies 6 is applied by giving

Young's modulus E the value unity, and the shear modulus G the value 105 . The

differential equation for the acoustic pressure P is the wave equation

2
P c2 V2 p 0-7:7¢

where c is the speed of sound in the fluid.

If the acoustic pressure is harmonic in time, that is, P(x,t) = p(x)eiwt

where x is a point in the x,y-plane, the wave equation becomes

k2 p + v2p 0

where k =/c. Using the method of analogies with the finite element approximation

produces the acoustic pressure matrix equation

k2 Qp + Hp 0

The structure and acoustic pressure matrix equations are coupled by inter-

actions at the fluid-structure interface. The acoustic pressure acting on the

interface produces a force vector (with the convention that forces acting outward

from the surface are positive) so the matrix equation for the structure becomes

Mi + Ku = -Ap

where A is a matrix whose entries reflect the area of elements on the interface.

See Schroeder and Marcus4 for details of the analysis of the fluid-structure

coupling. The matrix A may be given by either a consistent or a lumped formula-

tion. Since the boundary in this problem is an arc of a circle, the consistent

form is used as it is easy to compute. The entries in the area matrix are

Aij niNiFjdS

'S

5 ....................................................... .° ,-.,
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where Ni  the shape function associated with the i-th structural degree of
freedom

S = the fluid-structure interface

ni = the component of the unit normal to S in the direction of the i-th

translational degree of freedom

Fj = the shape function associated with the j-th fluid degree of freedom

.* The motion of the structure also affects the acoustic pressure field in the

fluid. The acceleration Un of the surface of the structure normal to the inter-

face between the fluid and the structure is related to the gradient of the

acoustic pressure field by the equation

3p/n = -PUn

where p is the density of the fluid. This relation is added as a boundary condi-

tion and produces a force-type term in the equation for the acoustic press .re

field. Passing to the finite element matrix equation results in the addition of

an area matrix term

k2Qp + Hp -PAT-.

The matrix A is the same area matrix that appears in the matrix equation for the

structure. -...'.--

For low frequencies, the added mass approximation can be used. This approxi-

;n,it iun accounts for only the inertial effects of the surrounding fluid. If the

fre iuency w is small, then k is small and the first term in the preceding equation

is negligible.

- Combining the matrix equations for the structure and the acoustic field

produces the system of equations

MU + Ku + Ap = 0

-pATii + Hp = 0

6
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rhe system of two equations is reduced to one equation by eliminating p

M6 + Ku + PAH-IAT = 0

In this equation, the term PAH-1AT is a coefficient of the second time derivative

of the displacement of the structure, and thus acts like a mass added to the mass

of the structure and is called the "added mass."

Assuming a solution of the form u(x,t)= U(x)ei'lt results in a matrix eigen-

value problem that is solved for the natural frequencies of the fluid-structure

se ste~m

det[w2(M + PAItIAT) - K] = 0

INFINITE ELEMENT FORMULATION

The infinite elements used here are of the decay factor type 3 ; their formula-

tion is an extension of the formulation of finite elements. Each infinite element

represents a sector of the infinite region radiating outward from the boundary of

the region represented by the finite elements. The difference between an infinite

element of this type and a finite element is that the infinite element represents

an infinite region and the shape functions associated with the infinite element

incorporate decay factors, factors that decrease to zero fast enough to produce

convergent integrals over the infinite region.

The formulation of these infinite elements is similar to that of isoparametric

tfinite elements. The region represented by one infinite element is mapped onto a

standard infinite strip. Figure 1 shows the mapping and the standard strip. The

f,inctions that map the infinite element into the standard strip are

A A

(x I + n l )L l ( ,) + (x2 + Cn2)L2()

where ni are unit vectors normal to the boundary between the finite and infinite

*elements at the points ' (1 =1,2). The pressure field is approximated by

p = plH(F,)Ll(n) + P2H( )L2(n)

7
4"' l '
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+1

I - .'

+1 . . -",

n 2 (b)

X2

(a)

Figure I - An Infinite Element (a) and its Parent Strip (b) "

where

L(n)= - n)/2, L2(0) = ( + n)/2

and

WE~) (TR
+

for R R(n), the distance from the origin to the point x(O,n) on the boundary of

the infinite element. The ,hape functions incorporate the decay factor H which

decrease to zero as becomes infinite to provide for finite integrals. The '--

factor H decreases at the rate l/rm as r becomes infinite.

At = 0, the factor H takes the value I and tends to 0 as becomes .

infinite. These conditions are necessary, but not sufficient, to produce a goodi.

approximation. For example, each of the expressions f '-

1/(l + C)m and r/(R + m)

8
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also satisfies the two preceding requirements, but produces poor results because

neither is a good approximation of l/rm for moderate values of E. The numerical

integration procedure computes values of the integrand for moderate to large values !

of E, and the shape function H must provide a good approximation for these values.

Care must be taken in forming the infinite elements to avoid a mapping that

folds over on itself. 3 This may happen if the infinite elements are placed on

the fluid-structure interface and a segment of the interface is not convex (as

shown in Figure 2).

I.I

.-

Figure 2 -Nonunique Mapping for Infinite Elements

As shown in Figure 2, the shaded area will be integrated over three times: once

by each of the integrations for the center infinite element, and for the elements

on either side of the center element. one method of avoiding this nonunique map-

ping is to make the boundary between the finite element region and the infinite

element region convex by inserting finite elements as shown in Figure 3. In this

case the nonunique mapping could also be avoided by changing the direction of the

vectors ni but the effect of such a change in the formulation on the performance

of the infinite elements would have to be determined.

9 N
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Figure 3 - Use of Finite Elements to Avoid Nonunique Mapping

The coding for infinite elements follows the same steps as for finite ele-

ments. 3  First, the shape functions and their derivatives are computed, then the

Jacobian and the derivatives of the inverse functions are computed, and finally

the gradient of the shape functions is integrated numerically over the standard

infinite strip.

A modified Gaussian quadrature is used for integration in the infinite direc-

tion. The interval 0 < < is transformed to -1 < t < 1 by C (1+t)/(l-t),

so that -

"'" I"~~ !
I l+t 2dt ""?'

"-" ~~~f (d :''
i j~ d (l-t) 2  -""

Therefore, for Xi and Wi, the Gauss points and weights for -1 < X < 1, the Gauss

points and weights for 0 < < are

=- (1+Xi)/(1-Xi) and wi = 2Wi/(l-Xi) 2  -

10 N.I
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RESULTS OF THE TEST PROBLEMS

The added mass approximation assumes that the pressure in the acoustic field

satisfies the potential equation. Therefore, the pressure field in terms of polar

coordinates in the infinite exterior region is composed of modes of the form

Pn(r,e) = (cos nO)/rn

It would be expected that an infinite element would give the best approximation

for a mode if the rate of decay of the mode matches that of the element. To inves-

tigate how well the method approximates modes whose rates of decay do not match

those of the infinite elements, natural frequencies were computed for modes n = 2,

3, 4, and 5 using infinite elements with decay rates equal to I/rm for m = 1, 2,

3, and 4. The frequencies computed were compared with frequencies calculated

using an analytic solution for the problem.7 Results from these computations are

given in Figures 4 and 5.

The solution of the problem of computing natural vibration modes and frequen-

cies for the submerged cylindrical shell, modeled with finite and infinite elements,

was implemented using the NASTRAN program. The actual model for the problem repre-

sented one quadrant of the plane. Symmetric and antisymmetric boundary conditions

were used to obtain symmetric and antisymmetric vibration modes. To determine how

. well the solution had converged with refinement of the finite element grid in the

azimuthal direction, the problem was solved using 16 and 32 sectors per quadrant.

For these cases, two rings of finite elements were used between the structural

*. elements and the infinite elements. The relative errors plotted in Figure 4 are

less than 3 percent and decrease with the refinement of the grid, although not

greatly. Since higher modes require greater detail in modeling, the errors become

larger for these modes. The results show that the solution is converged with L
respect to azimuthal refinement well enough that futher refinement will not signif-

icantly decrease the error. It can also be seen that, although the errors are

smallest for the modes whose rate of decay matches the rate of decay of the infinite

-. elements, that is if n = m, the errors are not extremely sensitive to the rate of S
decay. *-.

11
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0.30.03 0 -16 SECTORS
0 - 32 SECTORS

n2
n 3

0.02 0.02

0.01 

0.01

12 3 4 1 2 3 4

0.02 0.02

0.01 0.01

12 3 4 1 2 3 4

Figure 4 - Comparison of Relative Errors for 16 and 32 Sectors
per Quadrant, Using Two Rings of Fluid Finite Elements
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0 - ONLY INFINITE ELEMENTS

3 .

0.20 2 0.20

010 0.10

L

1 2 3 4 1 2 3 4

0.30 0.30

n=4n5

0.20 0.20

0.10 0.10

1 2 3 4 1 2 3 4

m m

Figure 5 -Comparison of Relative Errors for Infinite Element, and Finite
and Infinite Element Solutions
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In the previous cases, two rings of fluid finite elements were used between

the structural elements and the infinite elements. The problem can also be solved

using only infinite elements to represent the fluid. It is useful to learn the -

effect on the accuracy of the frequencies of the various modes when only infinite

elements are used to model the fluid. For these tests, 16 sectors of elements

were used in the quadrant. The infinite elements were coupled to the structure at

the interface using the same coupling technique that was used with finite elements.

Comparisons of solutions obtained using only infinite elements with solutions

obtained using both finite and infinite elements are shown in Figure 5. The results

show that there is more sensitivity to the rate of decay when only infinite elements

are used. The errors are small for modes whose rate of decay matches the rate of

decay of the infinite element, but become significant for modes whose rate of decay

does not match that of the infinite element.

DISCUSSION OF RESULTS

The results obtained in this study indicate that for fluid-structure interac-

tion problems involving structures submerged in large regions of acoustic fluid,

one can expect that the use of infinite fluid elements will give good results.

Also, if results for a broad band of frequencie- are required, the use of one or

more layers of finite elements between the structulire and the infinite elements will

. produce good results; however, additional degrees of freedom will be introduced

for these elements. There is also the possibility of using infinite elements that

have shape functions incorporating several rates of decay. These elements also

- introduce additional degrees of freedom. When infinite elements are used in one or

a combination of these configurations, one can expect that solutions with satis-

* factory errors will be obtained.

14
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1012 E. B. O'Neill
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