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ABSTRACT

This report describes an effective method for using

| two-dimensional infinite elements to compute acoustic or

I magnetic fields in the unbounded fluid region surrounding

a submerged vehicle. 1In this method, finite elements

represent the bounded region containing the vehicle and

may also be used to represent a layer of fluid surrounding

the vehicle. 1Infinite elements are used to represent the

- . unbounded exterior region. Since infinite elements are

l not bounded, their shape functions are chosen to contain

decay factors to produce convergent integrals. 1If, from

physical or other considerations, the order of decay of

the solution as the radius increases is known, infinite

. elements should be chosen with the same order of decay.
The results obtained in this study were found to be within

i 2 percent when the decay factor of infinite elements
matched that of the solution. However, for other problems,
the order of decay of the solution may not be known in
advance, and, therefore, it may not be possible to match
the two rates of decay. For such cases, the errors were
found to be as large as 20 percent. 1In such situations,

R a layer of finite fluid elements, two elements thick around
the structure, reduced the errors to less than 3.5 percent
for the modes and decay factors tested.

g ADMINISTRATIVE INFORMATION

N This work was performed at the David W. Taylor Naval Ship Research and
Development Center (DTNSRDC), and was funded by the Naval Sea Systems Command
(SO05R24) under Task Area SROl&inl, Task 15321, and Work Unit 1840-040.

INTRODUCTION

To compute magnetic or acoustic fields about submerged vehicles, the vehicle,

- surrounding water, and interactions between them must be modeled. The field and

- the structure can each be represented by finite elements and the representations
®
- coupled using a method developed by Zienkiewicz and Newton.l* 1If the vehicle is

submerged in the sea, the extent of the water surrounding it is so great that the

region containing the water is best represented as having infinite extent. If

finite elements are used to solve such a problem, one can model the structure and

s

" . a reasonable extent of the finite region of the medium around the structure. This
ﬂ{ leaves the problem of accounting for the infinite region surrounding the finite

2

» R

b' *A complete listing of references is given on page 15.
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region modeled with finite elements. Various methods have been proposed for repre-

senting the surrounding infinite region. Several examples are:

® The surrounding region can be truncated by modeling a large part
of it with finite elements and applying boundary conditions that
approximate the effects of the remainder of the infinite region.
® The solution can be expanded as a series of analytic functions in
the surrounding region with the coefficients introduced as unknowns.
® The effects of the surrounding region can be represented by an
integral equation on the boundary of the region surrounding the
finite elements.
® The surrounding region can be modeled with infinite elements.
Zienkiewicz et al.2 compare these methods and find that each has certain advantages
and disadvantages.

In this report, infinite elements are used to represent the surrounding infi-
nite region. An infinite element represents a sector of the infinite region extend-
ing from the boundary of the finite region. 1In both finite and infinite elements,
the unknown function is approximated by shape functions and a functional involving
the shape functions 1is integrated over the area or volume of the element. To obtain
convergent integrals for infinite elements, one of two schemes is used.3 The first
incorporates decay factors in the shape functions that vary in the direction that
extends to infinity. The other scheme maps the infinite element into a standard
s.tare or cube. This mapping also requires decay factors that compress the infinite
~#l~ment into a finite region. The decay factors may take one of several forms: they
may decrease exponentially with the distance r from a fixed point, or decrease as a
power of r. 1If a solution has a component that decreases as l/r as r tends to infin-
ity, usually that component will dominate for very large values of r. However, com-
ponents that are significant for moderately large r effect the accuracy obtained
w#ith infinite elements. For some problems, the rate of decay of the predominant
component of the solution as r tends to infinity, may be deduced a priori from
physical or other considerations. For such problems, one could choose a decay
factor that matches the behavior of this component as r approaches infinity. It
would bhe expected that this choice would produce the most accurate results. How-
¢ver, the solution may have more significant components than the Infinite element

has decay factors, or it may have significant components that are not known
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a priori. That is, the solution may have significant components that decrease as
1/r® for one or more values of m, where the factors 1/r® are not represented by
the decay factors of an infinite element. Thus, the question arises of how well
an infinite element will approximate a solution that has components that decrease
with orders different from those represented by the decay factors.

This report gives results for the two-dimensional problem of an infinitely

- long cylindrical shell submerged in an infinite acoustic fluid. The ultimate
interest is in three-dimensional problems, but a computational solution using
infinite elements for the two-dimensional problem is easier to develop and an
exact solution is available for comparison. A two-dimensional problem is quite
different in character from a corresponding three-dimensional problem. Rather
than simulating the complete three-dimensional solution from the two-dimensional
solution, this study examines the performance characteristics of two-dimensional
infinite elements and, based on this, conjectures the performance of three-
dimensional infinite elements. This is done for two configurations and several
formulations of the infinite elements. The reported results show that the approx-
imate solutions, produced when only infinite elements are used to model the fluid,
have small errors if the decay factors match the known rate of decay of the exact
solution. Also, the results show that, for cases when decay factors for the solu-
tion and the infinite elements did not match, the computed solutions were found to
be quite accurate if a layer of the fluid surrounding the vehicle was modeled by
finite elements.,

The advantages of using infinite elemeats are: (1) they maintain symmetry
and reasonable bandwidths in the matrices produced, and (2) it is easy to implement
the method using available finite element programs. On the other hand, some formu-
lations of infinite elements introduce more degrees of freedom than do competing
metnods. In some cases extra effort must be made to ensure element shapes that
provide unique mappings. So, for some problems, these characteristics may require

additional effort in producing the numerical model.
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NATURAL FREQUENCIES OF A SUBMERGED CYLINDER T

We considered the problem of an infinitely long cylindrical shell submerged i'iZf
in an acoustic fluid. The problem is to determine the natural frequencies of the
system consisting of the vibrating structure interacting with the surrounding ﬁ{}i
f luid. ' '

The axis of the cylindrical shell is aligned with the z~axis. The m tion of R
the cylinder's surface and the acoustic pressure are assumed to be independent of -
the z-coordinate. Since it 1s assumed that there is no variation of shell dis-
placements or fluid pressure in the z-direction, a two-dimensional problem can be
obtained by projecting the cylinder and the region containing fluid into the

' X, y-plane.

FINITE AND [NFINITE ELEMENT MODEL OF A FLUID-STRUCTURE SYSTEM
Natural frequencies of the fluid-structure system are computed using a NASTRAN
model containing both finite and infinite elements. Equations associated with the
cylindrical shell, the acoustic fluid, and the coupling between them are combined
to obtain a matrix equation for the coupled system. For an assumed time harmonic %T{ﬂ;
solution, the matrix equation becomes the equation for an eigenvalue problem for {}ﬁ'
i determining the natural frequencies of the coupled system. This work extends and
modifies the work of Schroeder and Marcus® by introducing infinite elements and
using the added mass approximation.
In the two-dimensional finite element model, the cylindrical shell is repre-
i sented by a ring of one-dimensional bar elements. The fluid region is the region
of the zx,y-plane outside the ring, and is modeled using two-dimensional membrane
finite elements by an analogy for the Laplace operator and two-dimensional infinite
elements.
Standard finite element modeling procedures produce the structure matrix

equation associated with the ringS
MU + Ku = f

' where M = mass matrix

K = stiffness matrix .
u = displacement vector R
. f o= RN

force vector acting on the ring tf =

T
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The method of analogies uses structural membrane elements to produce a matrix
equation for the acousti: fluid. The method of analogies6 is applied by giving
Young's modulus E the value unity, and the shear modulus G the value 103. The
differential equation for the acoustic pressure P is the wave equation

L2
4P c2¥2p = ¢

- th

where ¢ is the speed of sound in the fluid.

If the acoustic pressure is harmonic in time, that is, P(;,t) = p(;)eiwt

N
where x is a point in the x,y-plane, the wave equation becomes
k2p + v2p = ()

where k = w/c. Using the method of analogies with the finite element approximation

produces the acoustic pressure matrix equation
kZQp + Hp = 0O

i The structure and acoustic pressure matrix equations are coupled by inter-
actions at the fluid-structure interface. The acoustic pressure acting on the
interface produces a force vector (with the convention that forces acting outward

from the surface are positive) so the matrix equation for the structure becomes

Mu + Ku = -Ap

P where A is a matrix whose entries reflect the area of elemeants on the interface.
See Schroeder and Marcus? for details of the analysis of the fluid-structure

: coupling. The matrix A may be given by either a consistent or a lumped formula-
tion. Since the boundary in this problem is an arc of a circle, the consistent

form is used as it 1is easy to compute. The entries in the area matrix are

Aj 5 = (“iNiFde

: S
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where Ny = the shape function associated with the i-th structural degree of f
freedom
S = the fluid-structure interface

nj = the component of the unit normal to S in the direction of the i-th
translational degree of freedom

F; = the shape functlon associated with the j-th fluid degree of freedom

The motion of the structure also affects the acoustic pressure field in the

fluid. The acceleration up of the surface of the structure normal to the inter- -
face between the fluid and the structure is related to the gradient of the

acoustic pressure field by the equation : -:35
dp/on = —Dﬁn

where p is the density of the fluid. This relation is added as a boundary condi-
tion and produces a force-type term in the equation for the acoustic press .re
field. Passing to the finite element matrix equation results in the addition of

an area matrix term
k2qp + Hp =~ -pATu

The matrix A is the same area matrix that appears in the matrix equation for the
structure.

For low frequencies, the added mass approximation can be used. This approxi-
miation accounts for only the inertial effects of the surrounding fluid. 1If the
frequency w is small, then k is small and the first term in the preceding equation
is negligible.

Combining the matrix equations for the structure and the acoustic field

produces the system of equations

MU + Ku + Ap = O
-pATH + Hp = 0 .
6
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[he system of two equations is reduced to one equation by eliminating p
Mii + Ku + pAH™1ATY = 0

In this equation, the term pAHT!AT is a coefficient of the second time derivative
of the displacement of the structure, and thus acts like a mass added to the mass
B of the structure and is called the "added mass.”
Assuming a solution of the form u(x,t) = U(x)el®™ results in a matrix cigen-
value problem that is solved for the natural frequencies of the fluid-structure

svstem

det{w2M + paH~1AT) - ¥] =0

INFINITE ELEMENT FORMULATION
The infinite elements used here are of the decay factor type3; their formula-
tion is an extension of the formulation of finite elements. Each infinite element
represents a sector of the infinite region radiating outward from the boundary of
the region represented by the finite elements. The difference between an infinite
element of this type and a finite element is that the infinite element represents
an infinite region and the shape functions associated with the infinite element

incorporate decay factors, factors that decrease to zero fast enough to produce

convergent integrals over the infinite region.

The formulation of these infinite elements is similar to that of isoparametric
tinite elements. The region represented by one infinite element is mapped onto a
standard infinite strip. Figure 1 shows the mapping and the standard strip. The

functions that map the infinite element into the standard strip are
> > A > A
x = (xp + EnPL0) + (x, + Eng)La(n)

where ﬁ{ are unit vectors normal to the boundary between the finite and infinite

elements at the points ;i (i = 1,2). The pressure field is approximated by

p = piH(E)IL(n) + poH(E)Ly(N)
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Figure 1 - An Infinite Element (a) and its Parent Strip (b)

where

) Li(n) = (1 - n)/2, Lo(n) = (1 +n)/2

Pr

2{ and

o R

- H =

(&) (R R g> n
v;: for R = R(n), the distance from the origin to the point §(0,n) on the boundary of
T;: the infinite element. The thape functions incorporate the decay factor H which

-~ decrease to zero as £ becomes infinite to provide for finite integrals. The

: factor H decreases at the rate 1/r® as r becomes infinite. -
- At £ = 0, the factor H takes the value 1 and tends to 0 as & becomes . "
?ﬂ infinite. These conditions are necessary, but not sufficient, to produce a good f{p}i
.~, ...'..“‘
“ approximation. For example, each of the expressions . riiié
s - A
i P
. A
~ 1/(1 + E)® and r/(R + §M) PR
.:. o‘*:-"o',
-
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also satisfies the two preceding requirements, but produces poor results because Sl
neither is a good approximation of 1/r™ for moderate values of £. The numerical AR
integration procedure computes values of the integrand for moderate to large values '
of £, and the shape function H must provide a good approximation for these values. K
Care must be taken in forming the infinite elements to avoid a mapping that
folds over on itself.3 This may happen if the infinite elements are placed on

- the fluid-structure interface and a segment of the interface is not convex (as

shown in Figure 2).

> ——a.

Figure 2 - Nonunique Mapping for Infinite Elements

As shown in Figure 2, the shaded area will be integrated over three times: once
by each of the integrations for the center infinite element, and for the elements
on either side of the center element. One method of avoiding this nonunique map-
ping is to make the boundary between the finite element region and the infinite
element reglon convex by inserting finite elements as shown in Figure 3. 1In this
case the nonunique mapping could alsc be avoided by changing the direction of the

vectors 31, but the effect of such a change in the formulation on the performance
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Figure 3 -~ Use of Finite Elements to Avoid Nonunique Mapping

The coding for infinite elements follows the same steps as for finite ele-
ments.3 First, the shape functions and their derivatives are computed, then the
Jacobian and the derivatives of the inverse functions are computed, and finally
the gradient of the shape functions is integrated numerically over the standard
infinite strip.

A modified Gaussian quadrature is used for integration in the infinite direc-
tion. The interval 0 < § < ® is transformed to -1 < t < 1 by & = (1+t)/(1-t),

so that

© 1

1+t 2dt
£(£)dE = j f ¥V —
J; /1 1-t (l-t)z

Therefore, for Xj and Wi, the Gauss points and weights for -1 < X < 1, the Gauss

points and weights for 0 ¢ § < ® are .

£, = (14X,)/(1-X;) and w; = 2W, /(1-X;)?
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RESULTS OF THE TEST PROBLEMS
The added mass approximation assumes that the pressure in the acoustic field
satisfies the potential equation. Therefore, the pressure field in terms of polar

- coordinates in the Infinite exterior region is composed of modes of the form
2 p(r,8) = (cos n0)/r"

It would be expected that an infinite element would give the best approximation
for a mode if the rate of decay of the mode matches that of the element. To inves-
tigate how well the method approximates modes whose rates of decay do not match

those of the infinite elements, natural frequencies were computed for modes n = 2,

3, 4, and 5 using infinite elements with decay rates equal to 1/r™ for m = 1, 2,
3, and 4. The frequencies computed were compared with frequencies calculated )
using an analytic solution for the problem.7 Results from these computations are ff“n
given in Figures 4 and 5. l, .

The solution of the problem of computing natural vibration modes and frequen- ol
cies for the submerged cylindrical shell, modeled with finite and infinite elements, o
was implemented using the NASTRAN program. The actual model for the problem repre- lili
sented one quadrant of the plane. Symmetric and antisymmetric boundary conditions
were used to obtain symmetric and antisymmetric vibration modes. To determine how

3 well the solution had converged with refinement of the finite element grid in the

RISy &

- azimuthal direction, the problem was solved using 16 and 32 sectors per quadrant,
For these cases, two rings of finite elements were used between the structural

2 elements and the infinite elements. The relative errors plotted in Figure 4 are

less than 3 percent and decrease with the refinement of the grid, although not

greatly. Since higher modes require greater detail in modeling, the errors become ;{;i,
larger for these modes. The results show that the solution is converged with E;;‘
respect to azimuthal refinement well enough that futher refinement will not signif- .; d
icantly decrease the error. 1t can also be seen that, although the errors are :&45
,E . smallest for the modes whose rate of decay matches the rate of decay of the infinite i:ié
elements, that is if n = m, the errors are not extremely sensitive to the rate of ]
b decay. 5}3:
> bast
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In the previous cases, two rings of fluid finite elements were used between

the structural elements and the infinite elements. The problem can also be solved
using only infinite elements to represent the fluid. It is useful to learn the
effect on the accuracy of the frequencies of the various modes when only infinite
elements are used to model the fluid. For these tests, 16 sectors of elements

were used in the quadrant, The infinite elements were coupled to the structure at
the interface using the same coupling technique that was used with finite elements.
Comparisons of solutions obtained using only infinite elements with solutions
obtained using both finite and infinite elements are shown in Figure 5. The results
show that there is more sensitivity to the rate of decay when only infinite elements
are used. The errors are small for modes whose rate of decay matches the rate of
decay of the infinite element, but become significant for modes whose rate of decay

does not match that of the infinite element.

DISCUSSION OF RESULTS

The results obtained in this study indicate that for fluid-structure interac-
tion problems involving structures submerged in large regions of acoustic fluid,
one can expect that the use of infinite fluid elements will give good results.
Also, if results for a broad band of frequenciee are required, the use of one or
more layers of finite elements between the struciure and the infinite elements will
produce good results; however, additional degrees of freedom will be introduced
for these elements. There is also the possibility of using infinite elements that
have shape functions incorporating several rates of decay. These elements also
introduce additional degrees of freedom. When infinite elements are used in one or
a combination of these configurations, one can expect that solutions with satis-

factory errors will be obtained.
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