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FOREWORD

This paper is written with the assumption that the reader
understands the basic principles of the Fault Tree Technique,
and is geared toward the System Safety Engineer or Manager.
The reader should feel free to relay comments, questions, and
modifications to:

AD/SES
Eglin Air Force Base FL 32542

or call commercial 904/882-2522, AV 872-2522.

Prepared by:

W. McIntee, Jr., Capt, USAF

System Safety Program Manager

Reviewed by:

William B. Collins
Director, Systems Safety
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ABSTRACT

microprocessors/computers now control many critical functions
such as arming and functioning of fuzes. The Software Fault
Tree (Soft Tree) begins like any Fault Tree, then continues
through the software to the inputs and other electronics. The
Soft Tree provides a means of analyzing the hardware/software
interfaces and software, as well as, hardware and man/machine
interfaces. The technique facilitates the systematic search
for safety critical decision points and nodal points in the
software. The Soft Tree will also highlight areas where a
single bit error can cause a hazardous condition. The Soft
Tree is similar to the Fault Tree in nature; therefore, engi-
neers can use the technique nowl
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DEFINITIONS

Critical - This term describes functions, circuits, activi-
ties, and hardware and software components which control,
reverse, or apply directly to the authorization, prearm, arm,
release, launch, or targeting functions of a weapon system.

Erroneous Bit - A single bit in a register or memory location
that was intended to be a "1" which was interpreted as a "0"
(or vice versa) during software execution.

Firmware - Software that resides in a nonvolatile medium which
is read-only in nature. Firmware is completely write-
protected when functioning in its operational mode.

Flow Diagram - A graphic representation of the processing
order or execution of instructions and subroutines that make
up the software.

Hardware - Physical parts of a system such as mechanical and
electrical components, switches and input/output devices.

Microprocessor - The central electronic device which actually
executes the software. (Usually surrounded by peripheral
devices such as memory, buffers, decDders, etc. which allow
interaction with the rest of the system involved.)

Node - A point where several paths meet.

Soft Tree - A term coined to describe a Fault Tree which is
constructed on a system which includes software interfacing

with hardware. A software Fault Tree.

Software - A series of instructions or statements (including
firmware) designed to cause an electronic computer

(automation) to execute an operation.

Stray Voltage - An unintended voltage existing in any part of
a weapon system.

Volatile Memory - A storage medium that loses information when
power is removed from the system.

vi



ACRONYM LIST

CHG - Charge

DET - Detonator

DLY CLK - Delay Clock

FFCS - Fuze Function Control Set

FREQ - Frequency

GP - General Purpose

I/O - Input/Output

IT - Idle till Timer Overflows Instruction

M( - Indicates memory location in RAM

M( , , ) - Third number indicates bit within the

referenced memory location in RAM

ms - millisecond

OBD - Instruction to output Bd register to D register

OSD - office of the Secretary of Defense

PAF - Piston, Arm and Fire

PC - Program Counter

PF - Primary Failure

PTPADT - Prior to Proper ARM Decision Time

PTPGDT - Prior to Proper GAG Decision Time

RA - Random Access Memory

R'T - Rettir

RETSK - Return Skip

vii
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ROM - Read-Only Memory

RTD - Retard

RTDSET - Retard Set

SCR - Silicone Controlled Rectifier

TM - Telemetry

XTAL - Crystal

P- Microcomputer

- Indicates number is hexadecimal
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I.INTRODUCTION. The development of microprocessors/
computers has grown at a phenomenal rate in the past few
years. Engineers have replaced and simplified complex mecha-
nisms with minimal hardware and microprocessor control.

* . Microprocessors allow for expanded control and added capabi-
lity with less space and weight. However, they complicate the

.1. ~ job of the safety engineer, because there has been no spe-
cialized analytical technique for fault analysis of software.
Safety engineers can close the technology gap by applying
hardware analysis techniques to software analysis. More

* refined techniques might eventually be developed to analyze
software under computer control. This paper addresses an
approach to software analysis using the Fault Tree technique.
To effectively present this approach to software analysis, it
is first necessary to provide a brief background of the
problem and some basic Fault Tree philosophy.

II. BACKGROUND

A. The safety community has been concerned with the
* analysis of microprocessors and their software since they

first came into widespread use. Interest in software con-
tinued to build as microprocessors began to control more
critical functions. In the past, when systems containing
microprocessors required analysis, the system was analyzed up

3. to the microprocessor outputs. Some assumptionL were then
made as to the safety or reliability of the microprocessor
itself. In many cases, the microprocessor was allowed to
control non-critical functions or merely monitor the hardware
that performed the critical functions. Microprocessors have
now begun to control more critical functions such as arming

* and firing of fuzes, weapon release, navigation and control of
* missiles, aircraft, etc.

B. There have been several papers written concerning
software safety. The opinions on failure modes of software
and ways to prevent iailures and mistakes are numerous and
many good points have surfaced that enhance software safety.
An important point is that a majority of the software safety
problems can be avoided or prevented if safety engineers
review requirements documents. This review allows the safety
engineer to add safety requirements and real time cross-checks
based on past experience with similar systems. This is a good
t9§lrh'nique to use early in a system's life cycle to head off
p r_ o kers. Other papers establish areas of importance that
should be checked by the safety engineer such as the hardware/
operator and hardware/software interfaces. More than
one paper has suggested the use of a Preliminary Hazard
Analysis (PH-A), Failure Mode Analysis (FMA), and Failure Modes
and Effects Analysis (FMEA) to assist with the establishment
(it safety requirements. These approaches, all possible and
valL,, can be augmented later in the system lifecycle by a
S( )It. -ware~ Fault Tree, Analysis, which I called Soft Tree

K ~Anu ly sis.

Axe"



III. FAULT TREES, GENERAL. The Fault Tree is an ideal analy-
sis technique where there is a single (or few) undesired event
such as premature arming or functioning of a fuze. The Fault
Tree technique also works best with systems that involve a
"flow" of events. It must also be remembered that a Fault
Tree is a model of the system being analyzed. Just as an
aeronautical engineer uses a scale model to analyze flow in a
wind tunnel, a safety engineer uses the Fault Tree to model a
system and analyze the flow of events. As with the wind tun-
nel models, the more accurately the model represents the
system, the more useful the information acquired. It is of
great importance that Fault Trees accurately model the system
it: question if the Fault Tree is used as a basis for design
changes. An accurate Fault Tree also allows the tree to be
checked for completeness by the customer, management and other
engineers.

IV. THE SOFT TREE TECHNIQUE.

A. The term Soft Tree has been coined to describe a
Fault Tree which includes software interfacing with hardware.
This technique is universally applicable to microprocessor
controlled systems where safety is of concern. The example
and explanation chosen for this paper have been drawn from a
fuze development program.

B. As with any normal Fault Tree, the Soft Tree begins
with the top event, for example, "fuze arms prior to safe
separation after standard release." In order to proceed
further a brief system description is necessary. The example
system uses a single rotor to interrupt the explosive train.
The fuze detonator is housed in the rotor and is shorted and

* grounded when the rotor is in the safe position. The rotor is
locked in the safe position by the gag rod. The gag rod is
removed 100 ms prior to the selected arm time by the piston
actuator. When the piston actuator fires, it moves downward
and the gag rod is pushed to the right by the leaf spring
(figure 1). The rotor is retained by a detent spring until
the bellows motor fires. At arm time, the bellows motor fires
rotating the rotor to the armed position. Schematically the
rotor and electrical interface can be simplified as shown in
figure 2. Now we can begin the Soft Tree (Soft Tree, since we
know it will include software) (see page A-3). We will
investigate removal of the gag rod first, since this must

all occur before the rotor can rotate. Since the gag rod actually
fires 100 ms before arm time, it was necessary to identify
this time as the "proper gag decision time." The fault event
is therefore "prior to the proper gag decision time" or
"PTPGDT." This term is used as we follow the left branch of
the soft tree through gates 2, 6. The gag rod lock is removed

* by the piston actuator. In order to fire the piston actuator
(gate 8), the command fault requires the discharge of the PAF

2
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capacitor (gate 9). The state of the system event at gate 9
requires the PAF capacitor C3 be charged AND Qi SCR conduct.
First, we will investigate the charging of the capacitor

* (transfer I, page A-4). We need power to AND through tran-
sistor Q3 (2N2907A) (gate 11). In order for Q3 to conduct, 01
must conduct to ground. Finally, in order for this transistor

-* *.~,to be commanded to conduct to ground, output port D2 must go
high.

C. At this point the "normal" Fault Tree would stop and
consider a failure of the microprocessor as anything that can
cause a high output at D2. However, since the safety of the
system depends/relies on the software, the adequacy of this
"safety device" must be verified. This is the hardware/
software interface. In order to have a complete system Soft
Tree, we must cross this interface and include the software in
our safety analysis.

D. As a general rule, there are two conditions which

must be met in order for any microprocessor to output data.
There has to be (1) a binary word (data) available to the out-

* put port and (2) an instruction to output the word. This AND
gate begins the software analysis section of the Soft Tree.
From this point on we must look to software to find out what
the minimum immediate necessary and sufficient conditions are
to get (1) the binary word AND, (2) the instruction that

* causes the output. For a 4-bit microprocessor, the binary
word that is needed could be anything from 0000 to 1111
depending on the implementation in the system. The binary
word could come from various places including the accumulator,
the address registers or direct from memory.

E. The instruction must occur "given that the binary
word is available for output." "ihe instruction can be either
inadvertent or commanded by the microprocessor. Normally the
output port is used for several different functions. It is,
therefore, important to examine the various locations (in the
software) that this output instruction occurs. As each is
found, it is necessary to use some engineering judgment as to
whether the instruction can be arrived at with the correct
binary word available for output. For example, let's assume
the word "1000" is required for a specific event "A" to occur;
jrnd the instruction "Load Accumulator Out" transfers the word

aZ~n 0oitput register. Normally "1000" would be a unique word
,a-. is only uised to cause event "A". However, depending on

the microprocessor interfaces, the minimum, immediate
nec.2ssary and sufficient condition fr"'may be that a "I"
is present in the most significant bi~t location. This would
Linpiy that 1000, 11lL, or lxxx could cause event 'A" if the

olitjut instruction is reached. it is, of course, imperative

% .
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have dual clocks that must be cross-checked). Now that we
know the instruction that causes the output we can go to the
software and continue the Soft Tree. Figure 4 shows a small
portion of the software flow diagram. This is a flow diagram
written from the actual machine language program NOT the flow
diagram used to write the program (for added detail see
Appendix B).

H. In order to ensure that the flow diagram correctly
represents the software, it must be very detailed (nearly to
the individual instruction) and the flow diagram should be
made from the software. Even though a flow diagram is made
before the software is written, it will not be detailed enough
and may not match the final software. It is imperative that
the flow diagram match the software exactly or the Soft Tree
model will lose its value. Once done it can be analyzed like
electronics using the same computer programs used on Fault
Trees. To continue with the Soft Tree, we find that the OBD
instruction that charges the PAF capacitor is in the PAF CHG
subroutine. The PAF/CHG subroutine, used for charging the PAF

* capacitor for ungag, is referenced at address $2C8 which
corresponds to the event at transfer II, page A-5. (Note:
$- Indicates number in hexadecimal.) If you recall, the

fault events have been that the fuze arms early or PTPGDT;
therefore, we must investigate how the PAF capacitor could get
charged prior to the proper gag decision time. As you can see
below gate 19, this program could get to $2C8 by direct jump
or it could get to $2C8 by entering from the program step
above $2C8. At this point, we need to break away from the
software instruction itself and look at what can cause the
software to execute instructions in the correct sequence but
too fast. The software could arrive at $2C8 early by fast
program execution due to a fast clock, as shown under gate 20,
or the program could arrive at $2C8 early with a correct
clock but due to some error or fault earlier in the program.

-~ Again we go to the software flow diagram (figure 4) to see
what tbe previous steps in the program were. We now work with
the software flow diagram to trace the software flow in much
the same way as an engineer would use an electrical schematic
to trace the electron flow. Moving back into the software one
step (instruction or subroutin-e) at a tim, we come to a soft-
ware node where three branches of the software come together
above $2C8. This is an OR gate. The program could arrive at
$2C8 by way of the 2.0 second retard verification decision,
(gate 23), the 2.6 second RTD verification (transfer E) OR the

071. wait subroutine after the 4.0 second RTD verification deci-
."%* sion. We will trace the 2.0 second branch (gate 23). The
% next type of software construction we come to is the decision.

Remember the software node (like the electrical node) is an OR
gate; the decision in software is like the electrical switch
(or transistor, valve, solenoid contacts, etc.). The deci-

6 sion, therefore, is handled with an AND qate and like a switch
requires flow to it and a decision parameter satisfied, as
shown at gate 23. Gate 23 requires that the p)rogramn arrive at

fil
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address $262 and the proper flag set. Gates 24 and 26 tollow
the flow required to read the delay switches and set the flag.
Gate 27 brings the Soft Tree back out of the software to the-.
input lines, L4 -L7, which interface with the electrical delay
switches on the front of the fuze. The Soft Tree now can show
(by the double diamond) the interface of the electronics with
the operator gate 28. This completes a branch of the flow
from the undesired event through electronics; to the
hardware/software interface; into the software; back through
the hardware/software interface, and through the electronics
to the hardware/operator interface. In this way, the Soft
Tree approach to system safety analysis can truly analyze the
entire system for single component and single bit errors that
can result in undesired top events.

V. RESULTS OF SOFT TREE ANALYSIS. Upon analysis of this
software system, it was noted that there are relatively few
steps required tc set the critical ARM flags. Furthermore,
the flags were set prior to the decoding of the ARM/DELAY

0 switches and not used until just before fuze arming. Since
the flags were set, this would allow an inadvertent jump to
skip all of the ARM delay decode software and still function
the fuze early depending on the ARM delay word in RAM. The
setting of the four-byte flag is very critical to the safety
of the fuze. Therefore, it was decided that two-bytes of the
ARM flag should be set prior to decoding the ARM/DELAY
switches and the other two-bytes should be set after the ARM
delay word is stored in RAM. If an inadvertent jump occurred
and the ARM delay word was not decoded and stored in RAM, all
of the ARM flags would not be set. The microcomputer would
detect this incorrect program (software) flow and would enter
into the "DUD" subroutine.

VI. SOFTWARE SAFETY REQUIREMENTS. The list below is provided
as a starting point which safety engineers can delete from or
add to depending upon the software/computer hardware implemen-
tation of the particular system they are working on. This
list is based upon experience and lessons learned as I have
worked with computer controlled systems.

A. GENERALLY APPLICABLE REQUIREMEN ES.

1. The contractor shail identify salety critical
"07- software (code, subroutines or modu i es)

2. The software shall d _-vne ve l )opod such that the
s,tfety critical software iecics S au i ,s clIose as possible to
tlie oiitput they protect.

* 3. The software shall e deve loped such that inad-
vertent jumps are detected and protected _iJaiTnst (by restarts,
" -du , reinitialized subrouti.nes, etc.).

N1. ,A
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4. The software shall verify safety critical parame-

ters, or variables before an output is allowed. Parity checks

or other checks, require two decisions before output. This is
similar to the two fault tolerance and places "AND" gates in

the Soft Tree.

B. SPECIFIC APPLICATIONS.

I. If a program is very large:

a. The Soft Tree shall be accomplished based on
the higher order language. The compiler accuracy must be
verified. Carefully scrutinize "optimization compilers".

b. The software (if possible) should be devel-
oped such that the majority of the safety critical decisions
and algorithms are within a single (or few) software develop-
ment modules (to facilitate analysis).

2. If timing is critical: (such as general purpose
fuzes). The computer's oscillator shall be checked against an
independent time base. The reaction of the software to a dif-
ference between the clocks will depend upon the type of system

being utilized.

3. If a "watch dog" type circuit is implemented, the
circuit shall be totally independent of the computer that it
monitors and should begin to monitor the computer as soon as

possible after computer power-up (i.e., the "watch dog" should

not be initialized by the computer).

4. If it is critical that the computer remain on at

all times, (i.e. , for destruct modes, shut down sequences,
etc.):

a. The computer shall be protected against power
interrupts, power surges, stray voltages, and gradual deple-
tion of power supplies.

b. Consideration should be given to connectors
and sockets to insure continuous continuity, especially in
high vibration environments.

VI I SUMMARY.

A. A Soft Tree is a normal Vault Tree that has a sec-
tion constructed froin the software. In order to construct a
F mutt Tree on softwarc?, it is necessary to use a detailed flow
'11i A'r.im mdicAt fro;2 the final software program. It is also
Sti',.,,;i.;ry t, !efcr t o the microprocessor data book for the
i " ,~-~r~' 1 1. 1 n the instruction set for the processor being
"used. The Soft Tree like the Fault Tree may be reduced in
scope Lo get a less detailed analysis for very large systems.
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The simplest way to reduce the scope of the Soft Tree on a
large system would be to use the higher order language as the
basis for the analysis. In this case, special consideration
should be given to verify the accuracy of the compiler and
other development "tools".

B. Decision points are AND gates, and nodal points are
OR gates. We assume the only primary failure that the
microprocessor can be responsible for is the erroneous bit
(which can occur in the program counter, registers or memory).
Th,* final resource that a safety engineer needs to do a sue-
ct, sstuL Soft Tree is a person knowledgeable in microprocessor
applications. As with any Fault Tree, the safety engineer
mnust know the system he has to analyze and make every attempt
to molel the system accurately. The safety engineer must be
cairefuL not to jump ahead; but rather work "backwards" through
the system (including software) step-by-step, component-by-
component, instruction-by-instruction from the top event back
through the system.

0 VIII. APPLICABILITY. The Soft Tree can be used on any system
that incorporates a microprocessor or microcomputer that
interfaces or controls hardware or electronics. The Soft
Tree, like the Fault Tree, is best utilized where few very
critical top events are of concern and are the result of a
"flow" of events.

IX. CONCLUSION. The software Fault Tree is a useful tech-
nique for finding single and combinations of component hard-
ware failures and single software decisions or instructions
that can cause undesired top events. The Soft Tree is enough
like the normal Fault Tree that safety engineers,in conjunc-
tion with electrical (software) engineers, can use the analysis
technique immediately with little trouble. Since every
microprocessor controlled system is different, each safety/

software engineering team must develop a feel for the extent
of detail that should be included in the Soft Tree. The
appendix shows excerpts from the Soft Tree developed for a
Microprocessor Controlled General Purpose Bomb Fuze.

- + - . . .. _ _ "_ :t +: , + 
M

, + ,, , . . . . . . . . . -.• , • • +



APPENDIX A

EXAMPLE SOFT TREE



FUZE ARVS PRIOR TO

RfLtASIE

ROTOR 14LINE PRIOR
TO SAFE SIFERArION

ROO UNLOCKE PRORTOFOLABLELII T

PROPEARL SAOV DEIC ISO TMLAB E 'OAr OO RO

CAVROAI 4 T U ZT PO O I TOPALL 401

SUPIE NOT .E.T

CAPACTOF~~ARO PRIAMAIR O

CAG ~ ~ ~ ~ POE AVILBL T O CEAALSEI ELW OO

ENIOMN TO ROTATE 11 CEAAPAL
*ARO RPOTO RCAPAOCTITOROM RTO

UNLCKE PTAT

cONO.,TI, A-



POWR AVAILAELE
To CHARGE PAl

CAPACITOR
PTPG[Yr

PA HNE0

4k s " 111171

OdO 010;PAC~M OCUS T EMITE ISTICTIO AT CO NDUCT& II~RUTO MTUCIRUO

SHOR CI P110 PI I0P10M

II

1A01. 

15 
"13SS

P01gg OUAS T PUT LI IN
ATGO COLLECTORT

144
TRNFR F IT

al. F0RGSE



MY CMG-

SIJABOUTKNZ ( CKGa
fOe UEGAI) .iy "IICw

NAT sacs PTPGO

19

PROGRAM AUVCS

* AT ADON938 8106M
INADVERTENT 'PPOT

JUMP 1.

SZ20

IA

CT01 CONE ACT XL 
A 

PAST XAOV(HCLOCK

HH CMA SWI CI SF.II'OO6RU
COMD TASPIO OPIH

I2

CC..AD



5113K FROM IS16 SUBROUJTINE
SEFEXENCED AT $260;
H(1,0).4f PTPGD?

RS1RORA ANRRIVESAG

SET GIVENPRGA% ATAADDRESS $240

-. 2. SIC4 ANM 01 LLAG
WOGSSTATADRS

SSIT

120

-FLAGS 4214 ANO RES FLAGS

" SET AFTER SUSIROUTINEC

MON 1CT ) SETCTS ROSAT C4OANACTS

S l SNOR 'LAOS SET GIVE

ITCOU1'ER DUL ROGRATARIVES
ARM DELAYWOT G S25 EL Y OD

RT SNSR



CATGOVE NH R PAP CA A I O OU P TL0 IN

* 01~ ~ ~ D GATE TR GTE TRIOGR:PP 
E

CATHODEPTOD SHOR OUTpU C I rE u IE OM

PCGA ARRIES A

0ATDES ACSl,108 PTPGDTcu

PT00I . ".lof

UP TONTO2C,9(0"A 

N

FLW ................-



0DD INSTRUCTION OCCURS !w DUV SURSOUIrE AT ADDREsSS 188
P A?"ACITOR SNORTED

oEn PRRORA ENTTRP

SUERDUDUN SUBERUNIED

IT CONESMAL

LO H I H INADET CTEINTVENEN
S RT ELY ARMtl DLLA HIGH FALUGRB E A E JU P OPE A A

WORD~jafr DEUD O(1S IAVRTNLSURUIESBOTN

)3A 83

104427 MM 27 .R 3 . . .
Z VE TO BAEBSEr I416 75 0 )SONIU



CAo-POVEIICTO

2'OIO 'TS

PRGAMARIE

1 SI T LI ST LOTM ADDRES LLLL 299MP7G

NIGH INADVERTENT

tIUMon a AoJUPT Smoyn

psisamI SIIUSUIU RIPIRIUAN

911 OADC SCO IC OF

'IR

A- 1YS 9ODOTA DRS

w Oa i pRU0S

NIGHDCT9 ToD ORDELY NCSK ROM sIGINIOOUT



Q2 SCRCONOJCTS

PTPAOT I V EN PAP
CAPACITOR CHARGED

Q2 sc.Q2 GATE TO GGEREG PYPAGY GIVER

AND. TO PAP CAPACITOR CHARGED
CATHODEa SHORT (SO $C OUTPUT LINE HIGN)

AFTER PAP
CAPACITOR

CHARGED

IRO RAM ARRVES AtPROGRAM ARRIVES 

CIRCUITTP OUPTGCH

PRGA RIVSA RGRMAN I

S22W H AS 'A.A 22WT

XTAL FAILURE

RD OUTUT CHECKIIJIN N So
'Rr CLOCK A OLY OSI RSL
CLOCKG ~ ~SAVRER RS R~UOTLA

SE? N ~ ( 0*0 EL.A 'AO IL G'S GO (*40

AI(0.,4,31~ UM TO ADDRESS 'ADI, AI

BE ~ ~ ~ L TWE 20 N

No AL OIM'LwSt

Doe$



SUFFICIfNT ENERGY
AVAILABLE ON PAP

CAPACITOR
PTPAOT

TOPA CHAAERPA
03ATRASISTO

AVAIABL PTPAOT

032NT203;

O3PTRASISOO

POWER 2N2907 CONDUCTS

AVAILBLE TPAD
A CTR 03;AO

PROPER1

............................................... TION.~
ASSUMED..

-....... ....... ..... 03



ODD INSTRUCTION COMMANDED
my pC PTPACT GIVEN

IIN 842

AT S29C (DELAY CLK INADVERTENT JUMP TO ADDRESS

ENBE OCCUN3A ADDRESSRES$35/36;8
G OS .61:ISRUTONA S 3416O

COREC XTAI.O CLOC FREQ< PPAHARG

ORMA IRORN PROGRA FROW) ADDES DIE FICNG
(CHARGHARG FOR CAPACITO FORIJNAG/I

52C8 PTPGDT

* * hICANG ADRESS NC REFLVERCTS THE INORRCTL ORORCURLO

103 ;A0-24,O UP OADES NDDSBRUIEA
232GVN'".lBTEN$ZDADADES$B I A

ad S388 ISRCTO APCTR HRE



I APPENDIX B

DETAILED SOFTWARE DESCRIPTION

-I

1
N

r.

I

I

p~I

I

......- p.....---.... - . - p - .' p -

I. P4



-" In the example chosen, the Electronic Bomb Fuze is controlled
by a microcomputer. A description of the software for the fuze
may be broken down into two areas. The first section provides ain

cvt-rview of the microcomputer architecture and the second section
provides a description of the software flow diagram.

1. Microcomputer Architecture. A block diagram of the
microcomputer is shown in Figure C-i. It illustrates the inter-
connection of the significant blocks within the device.

a. The program memory consists of a 1024-byte read-only
memory (ROM). ROM words may be program instructions, program data
or ROM address pointers. ROM addressing is accomplished by the
10-bit program counter (PC). Its binary value selects one of the

-"'. 1024 8-bit words contained in ROM. During program execution, the
value of this counter is automatically incremented by one prior to
the execution of the current instruction. If the current instruc-
tion is a transfer of control, the PC gets loaded from ROM with
the address of the next executable instruction. Registers SA, SB
and SC provide address storage for a three-level subroutine stack.

b. The data memory consists of a 256-bit random access
0 memory (RAM), organized as four data registers of 16 4-bit digits.

RAM addressing is implemented by the 6-bit B-register whose upper
2-bits (Br) select one of four data registers and lower 4-bits
(BJ) select one of 16 4-bit digits in the selected data register.
The convention for defining any specific RAM bit is given by
M(r,d,x), where r identifies the value of Br, d identifies the
value of Bd, and x identifies the specific bit of the 4-bit data
location pointed to by M(r,d).

c. Following is a brief description of the remaining
rejLsters.

(1) The 4-bit ACC (accumulator) register is the
so)urce and destination for most 1/0 (input and output), logic and
dato memory access operations.

(2) The ALU (arithmetic and logic unit) performs the
a:rithmetic and logic operations.

(3) IN0 -IN 3 are four general purpose high impedance
.1Qit ports which may be loaded directly to the ACC-register.

(4) The D-register provides four general purpose
ut:),it 1ports which are controlled by setting the appropriate bits

the BFf-register and executing the OBD instruction.

(5) The G-register contents are output to the four
jcucir-i purpose bidirectional I/O ports. Data on the G-ports may
t, r-,id kirectly to the ACC-register or transfer of control may be
cxe,_,tted depending on the state of the G-ports.
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(6) The Q-register is an internaL, latched, 8-bit
register, used to hold data loaded to or from ROM and the ACC-
register. Its contents are output to the L I/O ports when the L-
drivers are enabled under program control.

(7) The contents of the eight L-drivers may also be
read directly into ROM and the ACC-registec.

(8) qhe SIO-re .ister is used as a serial input
register to read several data samples o the Sl input port.

(9) The L-ports and the SiO-register are controlied
by the EN-register. When EN = 5, the data in the Q-register is
latched to the L-drivers.

(10) The 10-bit time base counter divides the
instruction cycle frequency by 1024 providing an overfiow con-
dition. This feature generates the time base for providing a real
time count. This counter is used to monitor the internal timing
of the critical functions provided by the microcomputer.

2. Mi-crocoimputer Software.

a. The fuze software may be broken into five major
i areas: program initiation, arm/delay switch sampling and decode,
re_,tatrd verification, arming seqience, and fire delay programming.

(I) An external reset pulse is provided at power-up
to keep the minimum initialization time for the microcomputer
fixed. Upon initialization, the program counter (PC) and several
other registers internal to the microcomputer are cleared to zero.
The flow chart for program initiation is given in Figure C-2. The
port on of RAM used luring program initialization is tested and
cleared prior to storage of data in RAM. The first decision block
(diaimond) in the flow chart checks the turbine release signal to
select between the turbine (Air Force) mode or the FFCS (Navy)
2 t, ie. In the turbine mode, flags M(3,9,0) and M(3,9,2) are left
in the ze2ro state and the arm time is initiated by the execution
() the first instruci. ion. For the FFCS mode the flags M(3,9,0)
.111i M(3,9,2) :,, set to "1", and a loop is entered to detect when
the FFdS signai has released and to synchronize this time with the
I!itec-rdl program ti-mers. After exiting the FFCS release loop the

-mii and polarity data are strobed and stored in memory, for

*~ ~-i (n _rd elay times, prior to rejoining the turbine software
- . The arm and gag switches are then sampled to insure the

:zf. hais not 1)een armed or ungagged. The microcomputer will dud
, ,az i if The swtches indicate ungagged or armed. The RAIM

* it rs ,im ul dICing the remainder of the p-ogram are now tested
.Ii.: i ,reci us:g suabroutine "RAMTST". This RAM test will dud the

it Lt dI tC(ts - IAM bit failure.
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(2) The arm/delay switch sampling is given in
Figures C-3 and C-4. The arm switch decoding is given in Figure
C-3 and the delay switch decoding is given in Figure C-4 of the
flow chart. The arm and delay switches are strobed and stored in
me:r.ry. The arm switch data is stored in redundant memory loca-
tions M(1,12/13) and M(l,14/15), and the delay switch data is
stored in memory location M(2,14/15). Each switch is tested to

- * insure only one switch position is decoded. The microcomputer
will dud the fuze if more than one bit, in the switch data words,
is set indicating a switch failure. The subroutine "RTDSET" is
now executed to flag, in redundant memory locations M(0,10) and
M(0,ll), the selected retarded arm time. The four arm flags
M(0,0) through M(0,3) are set prior to decoding the switch data.
These flags are set to a "1010" binary pattern and are checkeJ
prior to arming to insure this portion of memory was executed.
The next decision block divides the turbine and FFCS flow for
decoding and setting of the arm/gag delay times (Figures C-3) . In
the turbine mode, the redundant arm switch data memory locations
are checked for equality and the microcomputer will dud the fuze
if they are not equal. The arm switch data in M(l,12/13) is
decoded and the proper arm/gag delay times are stored in memory.

* After the delay times are stored in memory, the arm switch data is
verified to insure the proper delay times were set. The FFCS
arm/gag delay times are set and verified from the magnitude and
polarity data in memory. The delay after impact times are then
decoded (Figure C-4) and set in memory.

(3) At this point, the software enters a general
purpose wait (WAITGP) subroutine and waits for 1.75 seconds to
expire while monitoring the retard switches. Through this portion
of software, the retard sensors have been sampled twice every

-~ .~'125 ins. Upon receiving a valid retard sample, a set of redundant
memory (M(0,12) and M(0,13)) locations are incremented and tested
for 16 and/or 14 counts. Memory flag locations M(1,0,1) and
M(1,0,3) are set when 14 counts have been received, and M(1,0,0)
and M(L,0,2) are set when 16 counts have been received. There are
three general paths (Figure C-5) for the retard verification soft-
ware depending on the selected retard time. Retard arm flags
M(0,10) and M(0,1l) determine which path is taken. In each path,
memory location M(1,0) is checked for the proper number of retard
counts. If M(1,0) is equal to "1111" (hexidecimal "F") indicating
the micrtocomputer has received 16 samples of retard switch clo-
sures, the software will set the selected retard arm time in
memory. After the selected retard arm time is set in memory, the
retard arm fLag and retard count are verified before proceeding in
" tware. If M(i,0) is not equal to "1111" the software will

;ump to the "WAITGI'" subroutine until the selected gag delay time
-hus Xpi.red. In the "WAITGP" subroutine, the delay word is com-
par. d to the Idle Timer counters to insure the delay timc has
.!. ,xpirtd prior to exiting the subroutine.

(4) 'ihe arni nj sequence is i nit ia ized when the PAF
capacitor is charged for firiou of the piston actuator (Figure
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C-6). This occurs 125 ms prior to the selected arm time. The
piston actuator is fired 100 ms prior to the selected arm time.
After UNGAG fire, the residual energy on the PAF capacitor is
removed in subroutine "DUMP". The PAF capacitor is charged for
arming 30 ms prior to the selected arm time. The gag shear wire
switch is then checked to verify if the switch is open. Arm flag
memory locations M(0,0) through M(0,3) are then checked for the
appropriate value before proceeding with the arming sequence. The
arm delay time is then checked against the Idle Timer counters to
insure the appropriate time has elapsed. The software then makes
one final test of the impact and proximity sensors before the arm
pulse is generated. After the arm pulse is generated, the soft-
ware verifies the closure of the arm switch before proceeding with
the delay programming for the fire signal.

(5) After verification of fuze arming, the micro-
computer transfers its remaining task to external circuitry. The

*i microcomputer programs an external shift register to the number of
pulses stored in M(1,9/11) (Figure C-6). These counts are
required to realize the various impact delay times. After this
count is stored in the shift register, the delay clock circuit is

* enabled. This allows the input of an impact or proximity signal
to initiate the fire delay signal. The software then enters a
loop which replenishes the charge on the PAF capacitor every 10
seconds. This loop is continued until a fire signal is received.

b. The flow charts for the various subroutines are not
included in this report. Two of the more important subroutines
which were not discussed in the above description are the "DUD"
and "CLKCHK" subroutines.

(1) The "DUD" subroutine is used when the software
detects a failure to dud the fuze. It enables the PAF charge
switch and a short across the PAF capacitor simultaneously to
deplete the energy stored in the primary energy storage capacitor
and the PAF capacitor.

(2) The "CLKCHK" subroutine utilizes the delay clock
to monitor the frequency of the crystal clock. This subroutine
enables the delay clock to clock an external 12-bit binary counter
which is 2ompared to the accumulator carry of the microcomputer.
The accumulator carry is dependent on the crystal oscillator fre-
quency and the binary counter output is dependent on the delay
clock frequency. This subroutine is used throughout the flow
diagram to dud the fuze if the crystal oscillator frequency is out
of tolerance.
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