-A164 748

UNCLRSSIFIED

SOFT TREE: FAULT TREE TECHNIQUE RS ﬂPPLiED T0 SOFfHRRE
REVISIONCU) ARMAMENT DIV (AFSC) EGLIN AFB FL
DIRECTORATE OF SYSTEMS SAFETY J W MCINTEE Bi/gﬁ; gl

N F /

> -
% 5%
‘i‘xn‘:' k

v
a

*
'

J .J
K ‘r&ﬂ"
2 ed 2,

;v

«

LAAESS
.? £ I’

ﬂ.

.-,,,
-
AR

.
A

E
o @V
. e ‘...‘,‘3

b}

PR

RS}

o

i

I
Il

le

\\\\\sz |

o

I
sl

i

o = |

\m__%

MICROCOPY RESOLUTION TEST CHART

DARDS-1963-A

S

Y
VI TR T e ey
TR PTTETETTYTY TS

P R W W W O T T
.p’,"ln L LS TR T RRPT TR PRV SR P, TRy TRV Ny I

TN A SL A TR TR 2

B -G T As o o

A s

-y

s po B R Ta RRE L B U

——

L4
>
3

BB Jun ae sut ame am o g

a—n - z a s y s SRy ST S U SO P WP A T _,._‘_J

SOFT TREE

FAULT TREE

TECHNIQUE AS APPLIED

TO SOFTWARE

This document has been approved for "public release.”
Questions, comments, or request for copies of this
document may be referred to AD/SES, Eglin AFB, FL
32542.

. 1a%. e) LAY B % 0 % % A YN " e e " e S Lol tafh Aal N T " Y
LSRAUATE N SO A R A A ASARMA SASL S LR KA LA LS A KR CACALARIARAY &L A MY Lot carigy du ot i1 iy S

FOREWORD

This paper is written with the assumption that the reader

understands the basic principles of the Fault Tree Technigue,

and is geared toward the System Safety Engineer or Manager. .
The reader should feel free to relay comments, questions, and

modifications to:

AD/SES
Eglin Air Force Base FL 32542

or call commercial 904/882-2522, AV 872-2522,
Prepared by:

%M,z./. Pz (25

James W. McIntee, Jr., Capt, USAF
System Safety Program Manager

Reviewed by:

TN, B0

William B, Collins
Director, Systems Safety

i

Re

.
[N

el

2"

; A 3 (;rr
Y YRR
D v6 Y

D A

W Ty e
.

ol

ii

¥

s

R A, -

ARk aldal ol Jnkh 2nh Sab ol Sal Sl Sk Sk - |
|

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
ified None
28. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Public Release/Unlimited
2o, DECLASSIFICATION/DOWNGRADING SCHEDULE
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
None None
. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITOR-ING ?RGANIZATION
Armament Division (If applicable) Ballisitic Missile Office
System Safety Engineering AD/SES System Safety Engineering (BMO/AWS)
. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)
AD/SES BMO/AWS
Eglin AFB, FL 32542-5000 Norton AFB, CA 92409-6468
P:".: 8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
b ORGANIZATION (1f applicable)
- See 6a See 6b None
- 8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS. |
. PROGRAM PROJECT TASK WORK UNIT
o ELEMENT NO. NO. NO. NO.
e 6¢c
; . 11. TITLE (Inciude Security Classifications SOFT TREE None None None None
N Fault Tree Technique as Applied to Software
12. PERSONAL AUTHOR(S)
Ir.. Captain (USAF), BMO/AWS
13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day)} 15. PAGE COUNT
Tutorial FrRom N/A To _N/A 1983 Oct 01 48

16. SUPPLEMENTARY NOTATION Prepared By: Armament Division

Directorate of System Safety
Eglin AFB, FL 32542

17. COSATI CODES @DNY'D K@B SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB. GR. Soft Tree, Fault Tree, Software, Software Safety, Safety
05 08 _ Analysis, Computer Safety, Microprocessor Safety, System
09 02 _ Safety, Safety, Weapon Safety, Robotic Safety, Robotics

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Microprocessors/computers now control many critical functions such as arming and
functioning of fuzes. The Software Fault Tree (Soft Tree) begins like any Fault Tree,
then continues through the software to the inputs and other electronics. The Soft

Tree provides a means of analyzing the hardware/software interfaces and software, as
well as, hardware and man/machines interfaces. The technique facilitates the systematic

e

.
Lt

‘.‘
WA

) search for safety critical decision points and nodal points in the software. The Soft
- Tree will also highlight areas where a single bit error can cause a hazardous condition.
The Soft Tree is sigxiliar to the Fault Tree in nature; therefore, engineers can use_the
technique now! I o - o ‘ - ’
d gt e . 5‘,;:/; ” ard ol RS AN
: P
¢
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
uncLassiFIED/UNLIMITED XX same as rReT. T oTic users (J Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 226 TELEPHONE NUMBER 22c. OFFICE SYMBOL
tInclude Area Code)
Capt James W, McIntee, Jr. (714) 382-4885 B0 AN e

DO FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE. Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

e L . L ‘.‘;"--"-.".:"\.'.\. "".:'\‘~':r-'-‘~ X
S T PRI« B PLPYRAR A S IS PR LN

XA A

"8
—linclassified
\ SECURITY CLASSIFICATION OF THIS PAGE

N 17. Con't
3 Field Group Sub Gr.

.l 09 03 -
~ 12 01 -
2 13 12 -
\ 16 03 -
18 09 -
19 01 -
) 19 02 - .
X9 19 03 -

. 19 05 -

)
-
g

'

& 18. Con't

W
:

il
QL

)

Non-Nuclear Munition, Non-Nuclear Munition Safety, Fuze Safety, Microprocessor,
Automata Safety

WA
T _a_ L &,

»
'-‘l"l‘

an

- -
TR)
[I

-
[
t

s
1_1

- o

- iy
Pl 1Y

! o

ke

B bt St A
Btk et S Sl s Al

¥
L

CAl e NS

—

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

S R I .._'_..4'.‘. -__.-Q‘."-. ','}'.'.'.'_-.'_. . R B .._»'._-l.' . ..<_..._"-_) _'.»‘:\I-. . - ..'_\._‘, -{‘\. St
A R P P L] R T e T s -

SO

s
»

-

‘~ HOTCCP 2 2

Lens AT ET T T T T ey m——""‘mmmm

ABSTRACT

Microprocessors/computers now control many critical functions
such as arming and functioning of fuzes. The Software Fault
Tree (Soft Tree) begins like any Fault Tree, then continues
through the software to the inputs and other electronics. The
Soft Tree provides a means of analyzing the hardware/software

N interfaces and software, as well as, hardware and man/machine
interfaces. The technique facilitates the systematic search
for safety critical decision points and nodal points in the
software. The Soft Tree will also highlight areas where a
single bit error can cause a hazardous condition. The Soft
Tree is similar to the Fault Tree in nature; therefore, engi-
neers can use the technique now!

. A e e ———

11i

N Te LT Lt s e - .
AT A RN N s . . o -
T N T T e e T Y e S D e B G T o o L T
R ANIFAPIEIP IS IEND A S IE TN TSRS R S L LA S AR L PR R A S T e - -
b P W AP IE AT SO ITIPNE NS IA NN,) ".:f.n"\u' .iLijl‘ .l'}.m{’n" Cw Wt R A

PRUI L R VR P X R A

- - R AL P} ~

L84 A0 adhh pl i ™o B "o e i g .ﬂ'v'\""‘."’".l"f""-""I"'H"YHYHV‘UWU'Y'UWU‘J-t‘\r-l"“l/’vl"'(‘IFUVK.'l""l‘"‘ﬂ‘ﬂ.ﬂr“""""""?-“-n-—w

TABLE OF CONTENTS

PAGE
Title Page i
Foreword ii
Abstract iii k
Table of Contents iv
List of Figures v
Definitions vi
Acronym List vii
Acknowledgement ix
I. Introduction 1
II. Background 1
I1I. Fault Trees, General 2
Iv. The Soft Tree Technique 2
V. Results of Soft Tree Analysis 10
VI. Software Safety Requirements 10
A. Generally Applicable Requirements 10
B. Specific Applications 11
VII. Summary 11
VIIIL. Applicability 12 y
IX. Conclusion 12
Appendix A - Example Soft Tree (Fault Tree) A-1 b
Appendix B - Detailed Software Description B-1

iv

\ilbee A0 2044
8.
[PR

=M

a
P

t ol snuath 8
PR RN
2 T N
v’

3P

£
.
2

Y

7
NN
P

v
.,
A

[y

7
SAMDT

w

Eﬁ:
&
o

L aa L aae oo sy 8o Baa g

LIST OF FIGURES

FIGURE
1. Fuze Cross-Section
2. Simplified Fuze Electrical Interface

3. Example Block Diagram

4. Partial Software Flow Diagram

By e fhn e iy arson e i ot -t audh g ae deie B Al * Sk Bl ainll o el A Tagbun hatid Min A e lemie MRS Aol

PAGE

3
4
7
9

Accesion For

NTIS CRAg]

DIIC TAB 0

Unannounced 0

Justification

RO

By .
Distib.tion T

AvaHabdhy Codes

———— .

Dist Avaif ard{or

Special
A-l

. DEFINITIONS

O Critical - This term describes functions, circuits, activi-
ties, and hardware and software components which control,
reverse, or apply directly to the authorization, prearm, arm,
release, launch, or targeting functions of a weapon system.

! Erroneous Bit - A single bit in a register or memory location
‘o that was intended to be a "1" which was interpreted as a "0O"
(or vice versa) during software execution.

Firmware - Software that resides in a nonvolatile medium which
is read-only in nature. Firmware is completely write-
protected when functioning in its operational mode.

- Flow Diagram - A graphic representation of the processing
order or execution of instructions and subroutines that make
up the software.

- -

Y VARV

3
Hardware -~ Physical parts of a system such as mechanical and

A electrical components, switches and input/output devices.

: Microprocessor - The central electronic device which actually
~ executes the software. (Usually surrounded by peripheral

- devices such as memory, buffers, decoders, etc. which allow
by interaction with the rest of the system involved.)

- Node - A point where several paths meet.
. .

{: Soft Tree - A term coined to describe a Fault Tree which is

- constructed on a system which includes software interfacing
= with hardware. A software Fault Tree.
:} Software ~ A series of instructions or statements (including
-7 firmware) designed to cause an electronic computer

- (automation) to execute an operation.

v Stray Voltage - An unintended voltage existing in any part of
q a weapon system.
' Volatile Memory - A storage medium that loses information when
: power is removed from the system.
b
L)
[}
N
'
s

4

A

- |

" vi

q

s e s
L.,

Al

et ta e e e -
R L T -
b

N

¥,

P
P

A

.

R R O Py
- “'f\" A >
; A1) Aty

! A

A T N Y D O W W W L U o o o g WL ey ey =y -.v—n-rrT

ACRONYM LIST

CHG - Charge

DET - Detonator
DLY CLK - Delay Clock
FFCS ~ Fuze Function Control Set
FREQ ~ Frequency
GP - General Purpose
1/0 - Input/Output
IT - Idle till Timer Overflows Instruction
M(,) - Indicates memory location in RAM
M(, ,) - Third number indicates bit within the
referenced memory location in RAM
ms ~ millisecond
OBD - Instruction to output Bd register to D register
OSD - Office of the Secretary of Defense
PAF - Piston, Arm and Fire
PC - Program Counter
PF - Primary Failure
PTPADT - Prior to Proper ARM Decision Time
PTPGDT - Prior to Proper GAG Decision Time
* RAM - Random Access Memory
RiVT - Return

RETSK - Return Skip

Vil

P N AT L S S e el e . .
- o - - ad - - . - - - - - - . . - . . N - - - - - ~ - . - - -
e N e S e N T e e . . PR [o« e e 3 N . LT e T T e e e e T
"‘ -,. '.‘ - ‘.,‘.'. J "‘ Iﬂ -“ z .-- -- ." '.‘ ..l "'.“. fﬂ 'bh .‘" -.- /- --I '.. "- "- -" --. ,."-- '.‘ ’-- "l— '.1 -.. . ", : »-"' h Dl - « " - AN ~ P
T R W N S A T I I Yo T N I T S R S L P U VI P T e PP TE AP I A ST Oy

W R W W L W R R R e i LB Al i p T et et AW A il el “ S Mal A an e sen) AN TN TR U T T

ROM - Read-Only Memory

RTD - Retard

RTDSET -~ Retard Set

SCR ~ Silicone Controlled Rectifier
TM - Telemetry

XTAL - Crystal

uC - Microcomputer

$ -~ Indicates number is hexadecimal

viii

S T AT e S N T e e e e
IR OIS - e

- R S A
w e N S R . -
e X al L g 1 Ot o B it ik o et B e e i e B e

HERASMEN Ao et iat Bat Rall g gt o8 a0 Bet _ab Ae8 U8 Aud S8 ot s o%g L Sad Sl Bk ik 08 3 "‘L"_i”"’“

ACKNOWLEDGEMENT

A special thanks to Mr. Danny R. Hayles, AD/SES, for his
assistance in developing this software Fault Tree concept into
the first Soft Tree, and for his detailed knowledge of the
microcomputer controlled general purpose bomb fuze system from
which the example Soft Tree was constructed.

Lam anam |
e
Bk

A

1x

14
L]

Py
I
P

L o g I
]
'

e e e e R X N S, s e T T - : - o LR V'h':'-
. e e i b R - St «ta o, - RS . - A Voo - R
JONPR Y (R [V T S I e & S\ e s Lo 2 B A, T Y ra st atie e s el

e
[

ll‘"
NI

«

LRI P
TR BT
LOSAARKR Mt MM

L/
.
e

LAt el bl Sl Lo 0 e gl wa
< PUAL A g (3R oy ? ol i " anda “adih

I. INTRODUCTION. The development of microprocessors/
computers nas grown at a phenomenal rate in the past few
years. Engineers have replaced and simplified complex mecha-
nisms with minimal hardware and microprocessor control.
Microprocessors allow for expanded control and added capabi-
lity with less space and weight. However, they complicate the
job of the safety engineer, because there has been no spe-
cialized analytical technique for fault analysis of software.
Safety engineers can close the technology gap by applying
hardware analysis techniques to software analysis. More
refined techniques might eventually be developed to analyze
software under computer control. This paper addresses an
approach to software analysis using the Fault Tree technique.
To effectively present this approach to software analysis, it
is first necessary to provide a brief background of the
problem and some basic Fault Tree philosophy.

II. BACKGROUND

A. The safety community has been concerned with the
analysis of microprocessors and their software since they
first came into widespread use. Interest in software con-
tinued to build as microprocessors began to control more
critical functions. In the past, when systems containing
microprocessors required analysis, the system was analyzed up
to the microprocessor outputs. Some assumption: were then
made as to the safety or reliability of the microprocessor
itself. 1In many cases, the microprocessor was allowed to
control non-critical functions or merely monitor the hardware
that performed the critical functions. Microprocessors have
now begun to control more critical functions such as arming
and firing of fuzes, weapon release, navigation and control of
missiles, aircraft, etc.

B. There have been several papers written concerning
software safety. The opinions on failure modes of software
and ways to prevent irailures and mistakes are numerous and
many good points have surfaced that enhance software safety.
An important point is that a majority of the software safety
problems can be avoided or prevented if safety engineers
review requirements documents. This review allows the safety
engineer to add safety requirements and real time cross-checks
based on past experience with similar systems. This is a good
t=2chnique to use early in a system'slife cycle to head off
prooiems. Other papers establish areas of importance that
should be checked by the safety engineer such as the hardware/
operator and hardware/software interfaces. More than
one paper has suggested the use of a Preliminary Hazard
Analysis (PHA), Failure Mode Analysis (FMA), and Failure Modes
and Efferts Analysis (FMEA) to assist with the establishment
ot safety requirements. These approaches, all possible and
valid, can be augmented later in the system lifecycle by a
Soltware Fault Tree Analysis, which I called Soft Tree
Analysis. T

S,
3

“;

tY
PR NN

e i
gAML AV A

III. FAULT TREES, GENERAL. The Fault Tree is an ideal analy-
sis technique where there is a single (or few) undesired event
s such as premature arming or functioning of a fuze. The Fault
S Tree technique also works best with systems that involve a
"flow" of events. It must also be remembered that a Fault
Tree is a model of the system being analyzed. Just as an
aeronautical engineer uses a scale model to analyze flow in a
wind tunnel, a safety engineer uses the Fault Tree to model a
) system and analyze the fiow of events. As with the wind tun-
nel models, the more accurately the model represents the

h 3
44 &

]

2
L 4N

[}
¢ﬁ system, the more useful the information acquired. It is of
o great importance that Fault Trees accurately model the system
f:f it question if the Fault Tree is used as a basis for design
h changes. An accurate Fault Tree also allows the tree to be
' checked for completeness by the customer, management and other
oL englineers.
0
W IV. THE SOFT TREE TECHNIQUE.

o
® A. The term Soft Tree has been coined to describe a
ko Fault Tree which includes software interfacing with hardware.

- This technique is universally applicable to microprocessor
Ll controlled systems where safety is of concern. The example
'O and explanation chosen for this paper have been drawn from a
L fuze development program.

. B. As with any normal Fault Tree, the Soft Tree begins
" with the top event, for example, "fuze arms prior to safe
- separation after standard release." In order to proceed
further a brief system description is necessary. The example

w0 system uses a single rotor to interrupt the explosive train.

3 The fuze detonator is housed in the rotor and is shorted and
‘,‘ grounded when the rotor is in the safe position. The rotor is
o locked in the safe position by the gag rod. The gag rod is
-+ removed 100 ms prior to the selected arm time by the piston
. actuator. When the piston actuator fires, it moves downward
bfz and the gag rod is pushed to the right by the leaf spring

S (figure 1). The rotor is retained by a detent spring until

» the bellows motor fires. At arm time, the bellows motor fires
S rotating the rotor to the armed position. Schematically the
A rotor and electrical interface can be simplified as shown in
;x- figure 2. Now we can begin the Soft Tree (Soft Tree, since we
P know it will include software) (see page A-3). We will
oo investigate removal of the gag rod first, since this must
& occur before the rotor can rotate. Since the gag rod actually
5: fires 100 ms before arm time, it was necessary to identify
T this time as the "proper gag decision time." The fault event
ol is therefore "prior to the proper gag decision time" or
Eﬂ- "pPTPGDT." This term is used as we follow the left branch of
O the soft tree through gates 2, 6. The gag rod lock is removed
6. by the piston actuator. In order to fire the piston actuator
e (gate 8), the command fault requires the discharge of the PAF
T

: 2
O '..:_. R «_'_,‘-_A'. . ‘-...-',,'.‘_ . T -;.:._.-:_..‘.“._.....-.'.___A‘_..__- BT AT _:.':'.- L -._-.__.*.'__;\‘_ s

SR N S T T SR . T N ~ e - .
P AP IPNP S S S PN A S Py Y P AP A A s R IR i S
it ol Sl e S o R ot B o L . A o R o B o B N _ N4 = o & e ¥ T M o M oae M o

PP, B, Jae

m= '1‘

jat i Aot Bed el S

o et o ek pe g nd o Ban Sat Ses o Blat S A Bem fhes Bk beo

Al i s ‘et "aile *age =

adan *ud

A" adairial

o A - AAE g oo el « o

PO

.

NOILD3S-SSO¥D 3Znd “I 3¥NOII
JOLONW
ONlygs dO1vNidv SMO1138
4val NOlSId ¥OLO¥ V3S NISNOH
L A'H
—- \ T
— 2 e ®
r‘ '
\ \
dMd ¥0L0¥ 315008
¥OLlVYNOL3d avan

Q0¥ OV gy snoH OSH AV3

J4OLVNOL3Q

SPRING
DETENTS

G2 > —
Q2 ol R
SCR SCR » s
Mo 4 .“...”.r.

e

D2

L?

D3 —»} RESET

SURVIVABLE
E LECTRONICS
TIMER

FIGURE 2, SIMPLIFIED FUZE ELECTRICAL INTERFACE

e A Bur f doe

Sl Nt i L e Ll ki s Caa e Cadiany i s el oAl Ll a el i e g el BLul San gae Sam Aad ab diss 4 Ak hadh Bak-t L el ok Aol L A ‘Gl Ao AN Ave g s, |

capacitor (gate 9). The state of the system event at gate 9

requires the PAF capacitor C3 be charged AND Ql SCR conduct.

First, we will investigate the charging of the capacitor

(transfer I, page A-4). We need power to AND through tran-

sistor Q3 (2N2907A) {gate 11). In order for Q3 to conduct, Ql

must conduct to ground. Finally, in order for this transistor

to be commanded to conduct to ground, output port D2 must go |
high.

C. At this point the "normal" Fault Tree would stop and
consider a failure of the microprocessor as anything that can
cause a high output at D2. However, since the safety of the
system depends/relies on the software, the adequacy of this

"safety device" must be verified. This is the hardware/
software interface. 1In order to have a complete system Soft
Tree, we must cross this interface and include the software in
our safety analysis.

D. As a general rule, there are two conditions which
must be met in order for any microprocessor to output data.
There has to be (1) a binary word (data) available to the out-
put port and (2) an instruction to output the word. This AND
gate begins the software analysis section of the Soft Tree.
From this point on we must look to software to find out what
the minimum immediate necessary and sufficient conditions are
to get (1) the binary word AND, (2) the instruction that
causes the output. For a 4-bit microprocessor, the binary
word that is needed could be anything from 0000 to 1111
depending on the implementation in the system. The binary
word could come from various places including the accumulator,
the address registers or direct from memory.

E. The instruction must occur "given that the binary
word 1is available for output.”" ‘he instruction can be either
inadvertent or commanded by the microprocessor. Normally the
output port is used for several different functions. It is,
therefore, important to examine the various locations (in the
software) that this output instruction occurs. As each is
found, it is necessary to use some engineering judgment as to
whether the instruction can be arrived at with the correct

- binary word available for output. For example, let's assume
the word "“1000" is required for a specific event "A" to occur;
and the instruction "Load Accumulator Out" transfers the word
£ an output register. Normally "1000" would be a unigque word

Zhiat 1s only used to cause event "A". However, depending on

the microprocessor interfaces, the minimum, immediate

necessary and sufficient condition for "A" may be that a "1"

is present in the most significant bit location. This would

Lply that 1000, 1111, or 1XXX could cause event "A" if the

output instruction is reacned. It is, of coursse, imperative

[$2]

i o f o, e e Ve

\" .
Ll A .u,u\..;f
mg SN {

P
r TNt P C . h
- J"- “a. ._.-'/\-' PR) . Ly !"

few™, \.\. \! "-'l\‘ \._‘-_.i
J‘&).AE\ \l\;\‘)‘\-\u YLAHEY _ A TRLN

& b e, s,

T,

- -‘l

, ‘
A CRALN

]
]

L L'v.);‘rﬁ‘ \";

o'

U

!. .
- = a2l

.
NIMN M S Y)

.)
sl S e

AL A
PO TR T

s
s Yt

b
LYY

.
aa s
.. ".

v

z D
REAY THLNLNL AN

-
v
[JAR DN

O

that the person(s) constructing the Soft Tree be very familiar
with implementation of microprocessors or at least have easy
access to an engineer who is familiar with microprocessors and
the system in question.

F. In our system, DO, D1, D2, and D3 are the four
parallel output lines that tie to the D register, therefore,
when we want D2 high,; the software should reflect a "1" output
to D2. To complete the Soft Tree, we need to "look" inside
the microprocessor and find out where the “1" comes from. We
use the block diagram to "look" inside the microprocessor
(figure 3). The D register is pictured in the center, at the
right of the figure. From the diagram (and data book) we find
that all outputs from the D register must be transferred from
the BD register to the D register. The other requirement
is, of course, the availability of the "1" (gate 15). The
transfer command for this particular microprocessor was the
OBD instruction which loads the contents of BD into D (gate
16). At gate 18, we see the OBD instruction occurs seven
times in the software. Five of the seven outputs can only
occur if there is an erroneous bit. An erroneous bit is
defined as one (or more) bit(s) of a register or memory loca-
tion that was intended to be a "1" which was interpreted as a
"0" (or vice versa) during software execution. An erroneous
bit is a hardware failure which manifests itself as incorrect
or unpredictable software execution. It is assumed that this
is the only type of failure that the microprocessor hardware
can be responsible for and that the software program does not
"fail”. The erroneous bit can, however, take on many forms.

G. An erroneous bit in the program counter causes an
inadvertent Jjump in the execution of the software. An erro-
neous bit in the scratch pad memory address register causes
the wrong memory data location to be accessed. An erroneous
bit in memory causes a change in the data/instruction stored
in memory. At this point the problem of finding all the com-
binations of erroneocus bits seems monumental. In fact, it is
not. The Fault Tree technique considers only the failures in
hardware systems which can lead to the undesired event; the
same holds true for Soft Trees. If an erroneous bit can cause -
the specific fault event in question, it is included in the
tree. After considering erroteous bit failures including
inadvertent jumps to the address with the critical instruc-
tion, it is necessary to consult the software flow diagram.

Anywhere that software paths come together at a node, an OR
gate exists and is drawn into the soft tree. Decision points
in the software flow diagram are treated like switches - AND
gates. You need flow to the address location AND satisfaction
of the decision parameters. Cascades of instructions that do
not affect the fault event directly can be lumped together as
"flow through address XXXX to address XXXX." If having an
event occur prematurely is a fault event, then the control of
the clock frequency must be considered. (Some microprocessors

WYYIVIQ A3079 I1dWvX3

0q 19 29 €9 #7157 94 ¢

b 4 4

) 4§

{

‘€ 3un9I4

Op) by 2 By
stls {o1]oc

sifesferfafe e |o s |
BENN Af) _
1S +10%is ‘ois ‘ois fois| ¢ _ RN .
o SHIAIHO Y N
0S - H31S1034 O 1 VI¥3S _ ~— .
L F e
Y e _ - H31SID3 By
v) N] v z W W3
0g -3 *| 43448 , ¥315193d _ o
‘o =7 Gnv L ° s L A
y - o] ¥31S103Y s I g
¥ 4 ° s
o - - ° A STOHINOD D | w—{? et
| 24 2 N3 '
NOViS 13A37 ¢ .
\a ' ' ° os D
NG -— WS - 2 -
o /_ | |aubvs o gs 21001 dixs
s b — —— I0BINOD 300230 ~
ot ys 7 NOHLDINHLSNI
{
c [_ — 01
Q- H H/ ny
T #344ng . > .
a5 aNv .
1g - - vaisioay K| a8 ue v Jv o¢ f..lj
I3 a ']
o j C _/_ »
o]
L] [1
%3 | - sS3600V ¥3aav NI L1NO $53HaQY
[HOiIVHINID 1910 03y . 2901 WOH 8™ i
0% =— *2010 WYH Y - 99 i3s3y AYOWIN WVHDOUd
W3IWN viva
A AHOW3 (ONAS) 0012
NOILONH LSNI
A (¥201 AG 301A10)
¥30IAI0 ¥3ILINNOD —
3Sve 3wl
\ * W T R
aNo I3, 41353y
s, . A
oy . -y - e T AT LT h.lﬂ-‘..') - P - " -2y <y ¥ 3 VIP G 2D . ol PO MW R ORI AL AL - -

]
S
A
vl

1
l.'
f,

!l
VY

-8 & 2

’
s
e

fl
a's

aane A
|

)

!

B

v
v
g

)
A
a s

VA

a2
.,f\‘l

[}
¢

Ll
Y

o

..
AX e,

e
;Y
a
PR S S

have dual clocks that must be cross-checked). Now that we
know the instruction that causes the output we can go to the
software and continue the Soft Tree. Figure 4 shows a small

portion of the software flow diagram. This is a flow diagram
written from the actual machine language program NOT the flow
diagram used to write the program (for added detail see
Appendix B).

H. In order to ensure that the flow diagram correctly
represents the software, it must be very detailed (nearly to
the individual instruction) and the flow diagram should be
made from the software. Even though a flow diagram is made
before the software is written, it will not be detailed enough
and may not match the final software. It is imperative that
the flow diagram match the software exactly or the Soft Tree
model will lose its value. Once done it can be analyzed like
electronics using the same computer programs used on Fault
Trees. To continue with the Soft Tree, we find that the OBD
instruction that charges the PAF capacitor is in the PAF CHG
subroutine. The PAF/CHG subroutine, used for charging the PAF
capacitor for ungag, is referenced at address $2C8 which
corresponds to the event at transfer 1II, page A-5. (Note:
$ - Indicates number in hexadecimal.) If you recall, the
fault events have been that the fuze arms early or PTPGDT;
therefore, we must investigate how the PAF capacitor could get
charged prior to the proper gag decision time. As you can see
below gate 19, this program could get to $2C8 by direct jump
or it could get to $2C8 by entering from the program step
above $2C8. At this polint, we need to break away from the
software instruction itself and look at what can cause the
software to execute instructions in the correct sequence but
too fast. The software could arrive at $2C8 early by fast
program execution due to a fast clock, as shown under gate 20,
or the program could arrive at $2C8 early with a correct
clock but due to some error or fault earlier in the program.
Again we go to the software flow diagram (figure 4) to see
what the previous steps in the program were. We now work with
the software flow diagram to trace the software flow in much
the same way as an engineer would use an electrical schematic
to trace the electron flow. Moving back into the software one
step (instruction or subroutine) at a tim: we come to a soft-
ware node where three branches of the software come together
above $2C8. This is an OR gate. The program could arrive at
$2C8 by way of the 2.0 second retard verification decision,
(gate 23), the 2.6 second RTD verification (transfer E) OR the
wait subroutine after the 4.0 second RTD verification deci-
sion. We will trace the 2.0 second branch {(gate 23). The
next type of software construction we come to is the decision.
Remember the software node (like the electrical node) is an OR
gate; the decision in software is like the electrical switch
(or transistor, valve, solenoid contacts, etc.). The deci-
sion, therefore, is handled with an AND gate and like a switch
requires flow to it and a decision parameter satisfied, as
shown at gate 23. Gate 23 requires that the program arrive at

<]

T T

R It s - " i e e -

v

e arlh b oy

Ll A e

IR Tw ey

S 0 T T R T W R N

|

r

———
dv) 4vd /HD°Q .ﬂ

™

HO10¥ MO0 NN
01 ¥0LVNLOV
NO1Sid 3¥14

I0YYHD 4vd QU&

WVYHOVIAO MOTd FYYMLAOS TVILYVd b 3¥NDIS

13§ OvVd
giy 03s0’¢

915y
G3IAL3IDIY
INNOD QLY 9
AJIA3A

gd¥OM AVI30 WYY
23502 L3S

138 9VI4
gly 03592

d9 1LIVM O1 dNNr

I

SOV14 LIVM
gLy § OVO L3S

915y
dWNF

do LIYMOL dNNF

—

SOVI4 LIVM YV 3D

Sy
Q3A13D3y
a1y 91
J1Y3A

(o))

Q¥OM AVI30 WYY
J2389°2 13§

SOHOM AVT3C
OVO ONV WYV
23S 0°'v 139

dO LIVMOL anNNr

m——

SOVI4 AVIIQ O3C G 1

Q03123735 01y

|

dO LIVM OL dWnni

.

Taa%al T RTATATKTION X I T Mt s v h o ow oo —

LIPS AL

_C..

.
«a~p .
Lo

SANAN A

-
n
¥,

e T
Wt
« w gl
| Sy, N

o
AT

\:;‘J:- :
Aal A

.
.
AN

G

»

e
e
L{L

P AL

"u(':'(‘ -'I

Y I
i e N K R
Ia Xl al ala

e,

L

W e -
'y -
PR Y

o e W T e
. AR OO AL
N)d:'."’a..‘. Co e e

~
4

I o™

N

w L
AR
L

TN
[.’1 .
S address $262 and the proper flag set. Gates 24 and 26 tollow
T the flow required to read the delay switches and set the flag.
*a: Gate 27 brings the Soft Tree back out of the software to the
e}f input lines, L4 -L7, which interface with the electrical delay
. switches on the front of the fuze. The Soft Tree now can show
T (by the double diamond) the interface of the electronics with
SRS the operator gate 28. This completes a branch of the flow
r)_ from the undesired event through electronics; to the
N hardware/software interface; into the software; back through
I the hardware/software interface, and through the electronics
o to the hardware/operator interface. 1In this way, the Soft

o Tree approach to system safety analysis can truly analyze the
ﬂ{q entire system for single component and single bit errors that
; can result in undesired top events.
o
NI V. RESULTS OF SOFT TREE ANALYSIS. Upon analysis of this
o software system, it was noted that there are relatively few
;{; steps required tc set the critical ARM flags. Furthermore,

Cul the flags were set prior to the decoding of the ARM/DELAY
d switches and not used until just before fuze arming. Since

ﬁ{f the flags were set, this would allow an inadvertent jump to
At skip all of the ARM delay decode software and still function
s the fuze early depending on the ARM delay word in RAM. The
E{: setting of the four-byte flag is very critical to the safety
Rt of the fuze. Therefore, it was decided that two-bytes of the
’ ARM flag should be set prior to decoding the ARM/DELAY

‘;¢; switches and the other two-~bytes should be set after the ARM
o delay word is stored in RAM. 1If an inadvertent jump occurred
L and the ARM delay word was not decoded and stored in RAM, all
_f?j of the ARM flags would not be set. The microcomputer would
et detect this incorrect program (software) flow and would enter
C) into the "DUD" subroutine.

N

P

,?{} VI. SOFTWARE SAFETY REQUIREMENTS. The list below is provided
*ébf as a starting point which safety engineers can delete from or
:’q; add to depending upon the software/computer hardware implemen-
pLa s tation of the particular system they are working on. This

e list is based upon experience and lessons learned as 1 have
ziy worked with computer controlled systems.

A. GENERALLY APPLICABLE REQUIREMENTS.

1. The contractor shall identify sately critical
software (code, subroutines or modules).

ol 2. The software shall te developed such that the

S safety critical software decisions are as ¢lose as possible to

e the output they protect.

@ . 3. The software shall be developed such that inad-

PR . ;
:t:; vertent jumps are detected and protected against (by restarts,
B dud, reinitialized subroutines, ©to.).
..
s
[} ‘i"‘--

e 10

e,

. A w

S D G T e e e e D L D e e e e T D ey T

P, ala A e e e B B A B Baon N e i Nonaot o B Nt B e P Bt Mo o B B i T Aaa B 8 o N At e e

IR B = vy g oL gl

Aty e Ty w e

2
.

F]’"r X xomry

Am_n)";t;'.l-‘; e

4. The software shall verify safety critical parame-
ters, or variables before an output is allowed. Parity checks
or other checks, require two decisions before output. This is
similar to the two fault tolerance and places "AND" gates in
the Soft Tree.

B. SPECIFIC APPLICATIONS.
1. If a program is very large:

a. The Soft Tree shall be accomplished based on
the higher order language. The compiler accuracy must be
verified. Carefully scrutinize "optimization compilers"”.

b. The software (if possible) should be devel-
oped such that the majority of the safety critical decisions
and algorithms are within a single (or few) software develop-
ment modules (to facilitate analysis).

2. If timing is critical: (such as general purpose
fuzes). The computer's oscillator shall be checked against an
independent time base. The reaction of the software to a dif-
ference between the clocks will depend upon the type of system
being utilized.

3. If a "watch dog" type circuit is implemented, the
circuit shall be totally independent of the computer that it
monitors and should begin to monitor the computer as soon as
possible after computer power-up {(i.e., the "watch dog" should
not be initialized by the computer).

4. If it is critical that the computer remain on at
all times, (i.e., for destruct modes, shut down sequences,
etc.):

a. The computer shall be protected against power

interrupts, power surges, stray vcltages, and gradual deple-
tion of power supplies.

b. Consideration should be given to connectors

and sockets to insure continuous ~ontinuity, especially in
high vibration environments.

VII. SUMMARY.

A. A Soft Tree is a normal lault Tree that has a sec-—

tion constructed from the software. In order to construct a
Fault Tree on software, it 1s necessary to use a detailed flow
Jdragram made from the final software program. It 1is also
necessary to refer to the microprocessor data book for the
architectnee and the instruction set for the processor being
used. The Soft Tree like the Fault Tree may be reduced in

scope to get a less detailed analysis for very large systems.

11

RN LT A G N e

(I ROV AETRAR IR N U

Lot had i B Sk - gk Segs b dii S S g At s 4 w8 uan £}

i o
l.l‘
.

ol h
. EAPRERS i
4

42
‘ 13

L
.

e ‘e n
s
P
PR

4,.4

.
4
P

s

S

» ‘
e e

v

A B S G p g i aAR e Rl e T ————v

The simplest way to reduce the scope of the Soft Tree on a
large system would be to use the higher order language as the
basis for the analysis. In this case, special consideration
should be given to verify the accuracy of the compiler and
other development "tools".

B. Decision points are AND gates, and nodal points are
OR gates. We assume the only primary failure that the
microprocessor can be responsible for is the erroneous bit
(which can occur in the program counter, reygisters or memory).
Th:.s final resource that a safety engineer needs to do a suc-

cesstul Soft Tree is a person knowledgeable in microprocessor

applications. As with any Fault Tree, the safety engineer
must know the system he has to analyze and make every attempt
to model the system accurately. The safety engineer must be

careful not to jump ahead; but rather work "backwards" through
the system (including software) step-by-step, component-by-
component, instruction-by-instruction from the top event back
through the system.

VIII. APPLICABILITY. The Soft Tree can be used on any system
that incorporates a microprocessor or microcomputer that
interfaces or controls hardware or electronics. The Soft
Tree, like the Fault Tree, is best utilized where few very
critical top events are of concern and are the result of a
"flow" of events.

IX. CONCLUSION. The software Fault Tree is a useful tech-
nique for finding single and combinations of component hard-
ware failures and single software decisions or instructions
that can cause undesired top events. The Soft Tree is enough
like the normal Fault Tree that safety engineers, in conjunc-
tion with electrical (software) engineers, can use the analysis
technique immediately with little trouble. Since every
microprocessor controlled system is different, each safety/
software engineering team must develop a feel _or the extent
of detail that should be included in the Soft Tree. The
appendix shows excerpts from the Soft Tree developed for a
Microprocessor Controlled General Purpose Bomb Fuze.

piodin o

APPENDIX A

&3]
3
7
B4
&
[y
Q
0
€3]
3
m
>
e

FUZE ARWS PRIGR TO
AFE SEPERATION

AF CER STANOARD
RELEASK

ROTOR 14-LINE PRIOR
TO SAFE SEPERATION

| ' 1

] . ROTOR UNLOCKED PRIOR T FORCE AVAILABLE TO {
* 3 PROPER GAG DECISION TIME RQTATEZ ROTOR PRIOR {
‘. !“ (pTPEOT) TO PROPER ARM l
RS DECITION TIME (PTPADT)
ANY GIVEN ROTOR UNLOCKED jl
s
-\‘_‘a' ~
I Z
1 3

GAG ROD RIMOVED
BYPGOT

BELLOWS MOTCR
FORCE AVAILABLE
TO OVERCOME AGTOR
DLTENT SPRING !

PTPAODT

FORCE AVAILABLE FROM
ENVIRONMENT TO ROTATE
ROTOR AYPADT

GAG ROC
ASSEMBLED IN
UNLOCKED
POSITION

GAG ROD LEFY QUY

FORCE AVAILABLE
TO REMOVE GAG
ROD LOCK PTPGDT

/roacz
AVAILABLE "ROM

vaonun i TO HEMIVE
CAC #0D

LICK

CF
AC

PRIMARY
FAILURE

PISTOM ACTUATOR
FORCE AVAILABLE
TO OVERCOME BALL
DETENT PTPGDT

PISTON

TUATOR PTPGOY

i

OISCHARGEOF PAF
CAPACITOR 10 FIRE
F1STON ACTUATOR

r

1
1
|

-"- L T A .

Ty
L

" s .
A A A A e e

CAPACITOR CHARGED

Q1 JCRLONDUCTS
BTRIDT SIVEH PAF

f
| SUFFICIENT ENERSY

AVAILABLE ONn PAF
CAPACITOR

PIPGOT

ROTOR
DETENT

SPRING
LEFT
ouT

ROTATIONAL
FORCE AVAILABLE

DISCHARGEQF PAF
CAPACITOR TO FIRE
BELLOWS MOTOR
PTPADT

PRIMARY
FAILURE

OF BELLOWE,
wOTOR

]
I

]

Q2 SCRCONDUCTS
PTPADT GIVEN PAF '
CAPACITOR CNARO!Dj

SUFFICENT EXERQY
) AVAILABLE 2N PAF
lCA?lCITOR sTPaOT

AN

! cud
N (U
INACTIVE
E 232872224
NOT

'1 CONDUCTING

Ak ol A

| A-3

POWER AVA(LAALE TO|

CHARGE PAF i

CAPACITOR |
ATP3LT

£\

POWER
AILABLE
ATQ3;
PFROPER
OPERATION
ASSUMED

s1To2
FAILS MION

!

F CHARGE Q3
[TRANS! $TOR 2N290TA
CONOUCTS PTPEOT

l

PAF CHARGE
Q1 TRANSISTOR
2N2222A CONDUCTS
PTPEOT

0L 4 COUTPUTLINE
HIGH PTPSOT
1" inmiT20F 0
REGISTER

A

at
COLLECTOR
TO EMITTER
SMORT

TRANSFER OF "1 1HTO

81T 20F D NEGISTER

COMMANDED BY 4 C
PTPAOT

(1]

I

TRANSFER OF 84 TO D

REGISTER COMMANDED

BYLC PTPODT GIVEN
1" Inedz

INAOVERTENT
OB0 INSTRUCTION
OCCURS PTPGOT

O8O0 INOTRUCTION CONMANDED
BY 4 C PTPGDT GIVEN
ALY T3

1

MY D E X1
04 REGLITER

f

44 C TRANSPERS “1°

IMNTO Be 2

INAGVERTENT
1" insee

INAQVERTENT

N JUMP TO ADDRESS
_‘. S2CDOR 32C0; PAFCHE
- SUBRCUTINE(CHANGE FOR
\ ARUING) REFERENCED
AT E2D0PTPGOT

INBTRUCTION
OCCURS AT ADDRESS
$08Y; 906(; $341;
$352GIVENTIT N

080

INADVERTENT
JuMP TO 080
INSTRUCTION AT S2EC
(ENAZLE OLY CLK)
PTPGOT GIVEN

“1° 1IN B2

INADVERTENTY
JUMP TO ADCRESS
BETWECM $2€B AND
$308;080 INSTRUCTION
AT 3308 (CHARGE
FOR QET FIRING)
PTPOOT

INADVERTENT
JUMP TO ADORESS
1323/3326,000
INSTRUCTION AT § 328
(REPLENISH CHARIE

FORDET FIRING)
sTPGOT

—_—

\ FAF CHO
| SUBROUTINE (CHAROE

FOR URGAD) ALZERENCED
AT SICO PTPOOT

|

OBO INSTAUCTION
OCCURND IN OVD
SUBROUTING AT

ADDPESS 3100 w/0
PAF CAPACITON

SHORTED

PAY CNG
SUBROUTING (CHARCE
FOR UNGAG) REFERENCED
AT $2C8 PTPGDT

INAOVERTERT

Junp YO

T

PROSRAM ARRIVES
AT ADDRESS 82CO
PTPODT

ADDRESS
1cs

Al

L i il

AR A -kl ahs il - 2

|

]

PROGRAN ARRIVES
AT S2C8 WITH
CORRRCT XTAL

CLOCK FREQ
PYPSDT

]

2.0 SEC RYD VERIFICATION

DECiSION
PTPSOTY

2.6 STC AYD VERIFICATION RETURN FROM WAITEP
QECI%10M SUBROUTINE
PTPIOY REPENENCED
AT S$2CT{GAG DELAY]
pTRODY

£ A

2.0 SECATD FLAG SET
M(0,10) s 81 GIVEN
PROGRAM ARRIVES
AT ADONESS S262
PYPQOT

PROGRAM ARRIVES
AT S2C8 WiTH
FASY X TAL CLOCK
PYPROT

22

XTAL
OSCILLATOR

CIACUIT JUTPUTS
FAST CLOCK

PROGRAM ARRIVES
AT AJDRESS 5202
PYPOOT

{ 8irLoanen
| 1MT0 M(0,10,0)

2.0 SECATD FLAG
SETINRTOLET
SUBROYTINE

\INAOVERTENTLY

i
81T SET N MiZ, 18}

T

817 Loa0E0
NTO M (2,18)
\InAOVERTENTLY

\

917 LOADED INTO
Ur2,18) FROM
STRODING OF
DELAY SWiTCH

| 27

JELAY
[sTrose a1
(AVAILASLE

(mowen

AVAILABLE)

HiGW OETECTED ON

Le-Ly;0kLaAY
TERMINALS
38 1M CONTACT

PRINARY
FanLune
OF OzLAY
WiTCH
CONTACTS

SWITCHES/
STROBES wInED
INCORAECT

Tt om
(o
"

RETSX FROM RSt8
SUBROUTINE
REPERENCED AT 5260
M{t,O}vsF
pTRGOT

MOOR INADVERTENTLY
SELECTED ON GRCUND
PRION TO FLIGNHT,

AR A S RIS
VA AT A S NIV TS

\
L]
.
-
Y

Al

-\"._

&

:.’g‘ s
N s
oy

o

s
PIELE"

2
&1" 4
o

T g
»
/
2

AV B I ™

,,
> 7
[N

4
;.

) 3
I
AR

»

a
pl

P

7

-

A
'Y r

e
ORI 2 N W

M el AR elds ‘S A Sdr e * Bl JRal s o e .nvﬂ

RETSK FROM RS16 SUBROUTINE
REFPERENCED AT $§260;
M(1,0)=3F PTPGDT

A

ul

PTPIOY

RS1e AND R31G FLAGS
SET GIVEN PROGRAM
ARRIVES AT 3280

S

RSi4 AND R316 FLAGSH
SEY

FLAGS
INADVERTENTLY

|

R34 AND RSIG FLAGS
SET IN RTDCHK

SET ARTER SUBROUTINE
RAM TESTS ;
M(1,0) SET TQ
L 14
—
2.0Q SENSORS
FAIL SMORT RTD SENSORS
DETECT £ 2.0

A

SE 3wITCH
FAIL SHORT

AR

A.".;\‘ ARG G

$6 SWITCH
FAIL SHORT

s8
CONTACTS
1-2 FAIL
SHORY

INAOVERTENT
JUNP TO
$260

AT

|

PROGRAM ARRIVES
AT ADORESS 3260
PTPGOT

]

2.0 SEC ARM DELAY
WORD SKT AT ACDRESS
3230 THROUGH $25F

RETSK FRON ASI6
SUBROUTINE

REFERENCED AT $ 254
PYPGOT

r

RS 4 AND RSIS

FLAGS SET GIVEN
PROGRAM ARRIVES

AT $25A PTPGOT

B

IIIO‘A:ORSTIG PROGRAM ARRIVES
FLAGS SE AT ADDAESS 8234

: rTPGOT

[

RETFROM WALTOP
SUBROUTINE
REFERENCED
AT 5239 INADVE RTENT
{GP DELAY) JUMP TO
FTPGDT $23A

REY FROM WAITGP PTPGDT
{GP DELAY)

iTCOUNTERS €QUAL
ARM OELAY WORD

M{2,10/1t}
LOAQED WITH
SHORT DELAY
WORD

INAOVERTENT

ARM DELAY FLAG

SET ;M(0,i4,3)
e

‘*"u"-.

LOAOED WiTH LOADED WITH AND GAG
SHORT DELAY SHORT DELAY DELAY FLAGS
WORD WORD CLEARED;
L0146, 2/3)

(T CQUNTERS EQUAL

GPOELAY WORD
PTPGOY

1T COUNTERS EQUAL
GAG DELAY WORD

¥i(z2,0/1) ARM

M(2,12/13)

INADVERTENT

GAG DELAY FLAG

SET, M(0,16,2)
T

£aUAL T0”

- y v - . ik DA Vi . AR Ahe AR L A h AR B E S Yl i o S it Sl S A 4 v-T

Q1 SCR CONOUCTS APTPGOT
GIVEM PAF CAPACITOR CHARGED

]

QI SCRGATE TRIGGERZD PTPGOT SIVEN
PAF CAPACITOR CHARGED
(624 C OUTPUT LINE MIGH)

QI3Ch
ANGDE TO
CATHODE SHORT
AFTER PAP
CAPACITOR
CHARGED

Q! GATE TRIGGERED OY 4 C
PTPGOT (020UTPUT LINE
COMMANDED HiGN BY i C)

ERRONECUS
TRIGGER

PROGRAM ARRIVES AT
ACDRESS $2C9 PTPODT

|

RETURN FAOM PAFCNG SUBROUTINE

b " A INADVERTENT REFERENCED AT ADDRESS $2C8
. JuMP 10 $2¢9
{OR ADORESS <
44 $2C9
' tN PROGRAN
) FLOW)
LIS
3
N
o INAOYERTENT
o PROGRAM ARRIVES AT JuNe TO
o AODRESS $2C6 PTPGDT ADDRESS
o s2ce
M gtt
A
R
e
-

) A

4G TRANSFERS "1"
INTO 842

X19 INST,

STI INST.

X0S INST,

LB IN3T CABINST wiTH 8d EQUAL
- WITH 8d EQUAL WITH 84 EQUAL
724 C -
wi ulz'(‘:illhﬂ wn‘n.m.rlg orF A $3-38 $0;83-88 3-380R
T OR $B-3E OR $D~SF s0-3¢

OBD INSTRUCTION OCCURS IN pUD
SUBROUTINE AT ADDRESS $1B8 w/0
PAF CAPACITOR SHORTED

(1

)

DUD SUBROUTINT FAILS TO
SHORT PAF CAPACITOR

PROGRAM ENTERS
DUD SUBROUTINE

OuD CIRCUIT
FAILS TO SNORT
PAF CAPACITOR
GIVEN Ly HIGH

oup
SUBRCUTING
FAILS TO COMMAND

j4CDETECTY

INADVERTENT

Ly WIGN FAILURE AND JUMP TQ
JUMMTO OUD ovup
SUBROUTINE SUBAQUTINE

i3

93

(M6427) bu2l) cRY L2
ENITTER TO BASE TO (IN4148) (7300()) DISCONTINUITY
COLLECTOR COLLECTOR OIODE FAILS FAILS IN WIRING
FALLS FAILS oPEN OPEN

JPEN OPEN

RETURN FROM WAITGP
SUBRQUTINE REFERENCED
AT $2CT(GAG DELAY)
PTPGOT

IT COUNTERS EQUAL
QAS DELAY WORD
PTPGOT 1T COUNTERS EQUAL

GP DELAY WORD

1T COUNTERS EQUAL
ARM OELAY WORD

G40
OELAYFLAG
SET

wiz o/1)
LOADED WITa DEL AY
WORD LONGER TuANI T COUNTER
PLUS {&aT ENTRY TO WA TGP
BUT SHORTER THAN
PROPER GAG DELAY
TIiME

w2,12/t3)
LOADED WiTH
SHORTY Of i AY
-~

M{0,14,2)
"

M(2,10/11}
LOADED WITH
SHORT DELAY
WORD

INADVERTENMT
ARM DELAY FLAG
SET, M(0,14,3}

i

ARM ANDGAG DELAY
FLAGS BOTHM CLEAREL
INADVERTENTLY ¢
u(o,g‘_z/n
DI

H-8

n- "“‘ - ..*‘ : :
PSS AN NN

'(-'- T e e -
i A o Puty

. . o - . w
aua Moman et e e g n e Aos Sen 4 s £10 Gw Bas pad mou .l o '-v""v-w‘j

2.8 8EC RTD VERIFICATION
DECISION PTPEOY

[

| |

2.6 SICATO FLAS 58T PROSRAM ARRIVES
M(0,100s 82 GIVEN AT ADDRESS 9208
PROGRAM ARRIVED AT PYPEOT
ADDRESS § 29C
PYPODY

2 SEC AT MLAS
SET % ATOSET RETIK FROM RSIS SUBROUTING
WOROUTING 817 LOADED REFERENCLD AT S29C PTPQOC
NTO WO, 10,1} w(1,0)08F
INAOVERTENTLY m
BIT SET N WL 8) []
PROGRAN ARRIVES RSi4 AND RSO FLASS
AT ADDNESS 3298 SET GIVEN PROGAAM
PYPOOY ARRIVES AT 320C
L rrreOT
1
. 17 LOAORD INTO
M(2,16) FROM RS14 & RS16 FLAGS SET
817 LOADED STROBING OF Q
w(g,4) DELAY SWITCH
INADVERTENTLY
2.6 SEC AKM DRLAY
WORD SKT AT ADDRESS
I, 2299 THNROVSH 3208
MIGH DETECTED ON I
Lo.Lyi0CLAY ODELAY RETEK FROM RIS SUBROUTING
TERMINALS STROSE oI REPERENCED AT ADORESD
(=4 1N CONTALT AvAILAOLE $296 PTPEOT ; B{1,0)e 8¢
(POWER
lavaiLasLsy (1

| 1

PROSRAN ARRIVES AT RS14 an0 NSIE

AsRRESS S tve FLASS 3ET SIVEN

sTPOOY PROSRAM ARRIVES

m AT 298 PTROOT

J RS14 ANO NS 18
FLASS LT
ALY FROM WAITEP
., o SUBROUTING AEPEATNCED 2\
00C IKAQVERTRATLY oF ogLAY AT 3298 pTPOOT

SWITCH

SELELTED ON SAOVNO
CONTACTS

PMOR TO FLIGNT
TNEN G/4 ARG Tig
REXN NED0

AET FROM WAITOP PTPEST
(0P DELAY)

&

A-9

P . e ar s

o . B IS T R
Xt e e . .
A I

A EPARIARRICRIC AN - wte e WL
PRI M_{-\-s. PR P A SR LN A DRSS,

At e et R

;

-
~

o PR e g

-
AP AN

Q2 SCRCONDUCTS
PTPAOT GIVEN PAF
CAPACITOR CHARGED

Q2 SCR
ANODE TO
CATHODE SHORT
AFPTER PAF
CAPACITOR
CHARGED

Q2 GATE TRIGGERED PYPADT GIVEN
PAF CAPACITOR CHARGLD
(S0 j4C QUTPUT LINE HIBNH)

Q2 SCR GATE TRIGOEZRED BY . C

ERRONEOUS
PYPADT (SOOUTPUT LINE TRIGOER

COMMANOED HIGH BY 4 C)

PROGRAM ARRIVES AT
ADORESS s 202

$TPAOT
PROGRAM ARRIVES AT PROGRAM ARRIVES
S2E2 WiTh FAST XTAL AT S2E2WITH
CLGCK PTPAOT CORRECT XTAL
CLOCK FREQ
PTPAOY
xTaL FAILURE
OSCILLATOR OF RC CLOCK >
CIRCUIT OUTPUTS CHECK
FAST CLOCK
INAOVERTENT
JUMP TO ADDRESS
ALTWEEN 3204 AND
NCRMAL PROGRAM FLOW sze0
FROM AQDRESS $20A
PTPADT

RETURN FROM WAITGP
SUBNCUTING PEFERENCED
AT 3209 (ASM DELAY)
PTPADY

- ——e

-
1T COUNTERS EQUAL IT COUNTERS EQUAL : ‘T COUNTERY EQuAL
ARM OLLAY WORD A3 DELAY WORU | irofLar woRO
—————————
'
Lo
PN SIS
- -
2,2/ % . wiz o
w20/ LOADED W(TH OELAY U~ L7 LOALEC ¢ Tw DELAY
LCACED wiTw WORD LONGIR THAN 1T COUNTER N - WCRD L INGE®R “wam * TOuNTEN .
SHORT DELAY PLUSHATENTAY YO waiTg - S LUS AT twTEY) waTIe
woRO BUT SHORTER ~HAN / NN AUT RO RTEE Tnam
anw TSL_PROPER ARM OELAY ~ snorte smwCELar N
OELAYFLAQ \\ TIME 7 MAOVERTEwNY "o T AWM SN0 GAG LAY
. SET N ¢ cagoELarrLan T, . FLUAGY 80T L LARED
SN.OSET. w0 18 ¢ SAOVIMTENTLY, /
u(O..Il..!i ~_) R o s iiv
- . S s
T S

SUFFICIENT ENERGY
AVAILABLE ON PAF
CAPACITOR

PTPADT

-]

POWER AVAILABLE
TO CHARGE PAF

CAPACITOR
Jub PTPADT
CIRCUIT
INACTIVE ;
Q32N22224
NOT
SONDUCT!NG —_
PAF CHARGE
Q3 TRANSISTOR
POWER 2N 2907A CONOUCTS
AVAILABLE PYPADT
AT 23,
PROBPER
OPERATION
ASSUMED
[
PAF CHARGE

Q1 TRANSISTOR
2N2222 A CONOUCTS
PTPADT

TOEM

P
c2 [C OUTPUT Gt
L.l'tfri’ :II#H COLLECTOR
TO EMITTER
T SHORT

“t“INBIT20F D

Q3
COLLECTOR

SHORT

ITTER

REGISTER
TRANSFER OF "1 " INTO 81T2 CF D
REGISTER COMMANDED BY i C
: / PTPADT
81T D2
| AL S MIGH (\
— | N

F‘RM:::.';‘ROF B84 TOO “I"IN BIT2 OF
RECISTER COMMANDED 84 REGISTER

i
‘ 8Y L C PTPADT SIVEN
l “1"iNBa 2

-

L

©ne TRANSFERS)
INTO 842

r

we NSTRID TION

-mfmosi v n -INADVIRTENT
ST PADT ',..'E‘l 0890 INSTRUCTION
INAdl QCCURS PTRADT

.4 - ..“ o ot
RASLRTO

BP A

INADVERTENT
‘1" INBd2

- . -
DR SR N Y

- -
~ PR
o i ST P e,

-

ABASR LA

IR ST Sl
[PV S L SIS WS~ SRR

2w

Y

x

4

.

. . :".l“n’n

2]

AN A

ST LIS I s it

v
o

-0l

D IS]

08D INSTRUCTION COMMANDED
BY/LC PTPADT GIVEN
“1® In 862

INADVERTENT
JUMP'TO 0BD INST.
AT $2€C (DELAY CLK
ENABLE) PTPADT
GIVEN"1"
INBU2

090
INSTRUCTION
QCCUR3 AT ADORESS
$093;8061; $341,0R
$382GIVENTI" 10
842

PAFCHSG SUBROUTINE
(CHARGE FOR ARM) REFERENCED
AT 3200 PTPADT

A

INAOVERTENT
JUMP TO

AODRESS

INADVERTENT
JUMP TO ADCRESS
$2C8(OR ADDRESS <
$2CBH IN PROGRAM FLOW)
(CHARGE FOR UNCAG)
PTPADT

INADVERTENT
JUMP TO ADDRESS
$325/3326,080
INSTRUCTION AT S 528
(REPLENISH CHARGE
FOR DET FiRING]
PYPACT

INADVERTENT
JUMP TO ADORESS
BETWEEN $2€8 ARD
$308; 08B0 INSTRUCTION

0BD INSTRUCTION OCCURS
IN DUD SUBROUTINE AT
ADDRESS $1B8 W/0 PAF

CAPACITOR SHORTED

AT $308(CHARGE

FORDET FIRING)
PTRPADT

$iv0 PROGRAM ARRIVES AT
ADDRESS $2DO PTPADT

A

PROGRAM ARRIVES AT $2D0 WITH
CORRECT XTAL CLOCK FREQ PTPADT

[

NORMAL PROGRAM FLOW FROM ADDRESS $2C8
(CHARGE PAF CAPACITOR FOR UNGAG/FIRE
OF PISTON ACUATOR) PTPCDT*

1

PROGRAM ARRIVES AT
$2C8 PTPGDT*

JAY

* THIS CHANGE IN REFPERENCE REFLECTS THE NORMAL PROGRAM FLOW

)

A

PROGRAM ARRIVES AT $2D0 WITH
FAST XTAL CLOCK FREQ PTPADT

[

XTAL
OSCILLATOR
CIRCUIT QuTPUTS
FAST CLOCK

FAILURE
OF RC CLOCK
CHECK

"
Lt y 5

0

P -
RIE Vi

2, '.""\“r"t

S

3
4 s+ 2

a's

WO

-

L)
14

PO
. .-‘-‘-‘. ‘e

R XX gt £ o

...x

APPENDIX B

DETAILED SOFTWARE DESCRIPTION

MG A Ak i dus Sha giun 4on Sea Aie i 4 s i ".."‘.":‘v"T

.
-
., ,,.:--r:-‘__.z~_.-,---.-_-~~-.‘ R I T, . . e .
. . . " e e - e N Y N . . " . . N - - - . - . i s e “ - . \
." N RS - A A e e e e e A '_.“_.“f_.'.-'.-‘..-‘-’(J}(
L a? .(.s.s.ﬁ&ian. K AR A I Y T O S R S RENRAS RN AT I ARSI s Y oS

- hd = Ciaidf A el il * i alat dias Aaa o vy

In the example chosen, the Electronic¢ Bomb Fuze is controlled
by a microcomputer. A description of the software for the fuze
may be broken down into two areas. The first section provides an
overview of the microcomputer architecture and the second section
provides a description of the software flow diagram.

L. ﬂlSFPSQTPPEQF_ﬁfkhlﬁﬁgture' A block diagram of the

microcomputer is shown in Figure C-1. It illustrates the inter-
connection of the significant blocks within the device.

a. The program memory consists of a 1024-byte read-only

memory (ROM). ROM words may be program instructions, program data
or ROM address pointers. ROM addressing is accomplished by the
10-bit program counter (PC). Its binary value selects one of the

1024 8-bit words contained in ROM. During program execution, the
value of this counter is automatically incremented by one prior to
the execution of the current instruction. If the current instruc-
tion is a transfer of control, the PC gets loaded from ROM with
the address of the next executable instruction. Registers SA, SB
and SC provide address storage for a three-level subroutine stack.

b. The data memory consists of a 256-~bit random access
memory (RAM), organized as four data registers of 16 4-bit digits.
RAM addressing is implemented by the 6-bit B-register whose upper
2-bits {Br) select one of four data registers and lower 4-bits
(84) select one of 16 4-bit digits in the selected data register.
The convention for defining any specific RAM bit is given by
M(r,d,x), where r identifies the value of Br, d identifies the
value of Bd, and x identifies the specific bit of the 4-bit data
iocation pointed to by M(r,d).

<. Following is a brief description of the remaining
regjisters.

(1) The 4-bit ACC (accumulator) register is the
source and destination for most I/0 (input and output), logic and
data memory access operations.

(2) The ALU (arithmetic and logic unit) performs the
arithmetic and logic operations.

(3) INpg-INj are four general purpose high impedance
tnpat ports which may be loaded directly to the ACC-register.

(4) The D-register provides four general purpose
sutpat ports which are controlled by setting the appropriate bits
oY the Bi-register and executing the OBD instruction.

o

Pf (5) The G-register contents are output to the four
N Jeneral purpose bidirectional I/0 ports. Data on the G-ports may
NG be read directly to the ACC-register or transfer of control may be
Lj- exeouted depending on the state of the G-ports.

(2

i=x i\‘

N

o

G B-3

&

Te

)

AR

mﬂf‘} ';‘\'.p’ " .‘\)\ . "‘."'. N "~.".‘ OSSR e e s
A.;l‘.- A .r“_.(m,du{‘mm L.Afn.‘.&t.:s.u.h,‘:s.b.t\:_-;_,,},A,\ .':..%': T R \ .(.‘31”'..“.-':'."'."

o

Cal

T TN T TR T T

oliegt Sadt 4

TN YL YTy

T —

C Sa i aan i iandin s s ndh Kath by

1M e B S

-

A ki 2 CAA et abus o

Resetr Vcc GND

4 *: «.

3 LEVEL STACK

TIME BASE
— COUNTER DIVIDER
(DIVIDE BY 1024) '
INSTRUCTION
K (SYN *
CLOCK (SYNC) DATA MEMORY ,
PROGRAM MEMORY reser | _| 64 x 4 RAM cLOCK - CKO
1K x 8 ROM LOGIC REG DIGIT GENERATOR| | 3
ADDRESS OUT IN ADDER ADDRESS - CK1
I | '
8 10 «
28
. - » D
8 _/\ﬁ D 27 0
y PC ‘ ACC BR BD U REGISTER 26 0,
ALU BUFFER 25 _p
3
10 4
\ @ T
2
INSTRUCTION SA o
DECODE/CONTROL | |~ — — —'=]
SKIP LOGIC SB 4 CARRY 7 18
b~ ——— o [od - SKL » SK
G SC 4o 1 1 —\
G

EN i, 24
4% /O CONTROLS - +» Gj
: 23
-— - G
e — —————— = REGISTER [> Gy
] 8 22
_ p ! surren | TS
2 REGISTER - » Gg
I _ 8 8 4
REGISTER < -
» _ Y e s0
—t R -
IS ~ v L DRIVERS ‘ SERIAL /0 REGISTER "
ﬁ ﬁ _ a2 |S103 SI0, SIO, SiOg |- st
_ ' 3 ' 4 '} 319
1 5] 8] 7] 8{12]13]1a]1s
2018) 9]19 EEEREEE)
IN3 IN IN{ INg Ly Lg Lg Ly Ly Ly Ly Ly
Figure C-1. Microcomputer Block Diagram.
L R A AP G e T @ e e L T L L PPN > aaan - <
B O WEPROE _ Esss SENNALUIRNENNES R R s xx*.\‘.....z....x..«.....ﬂ....l}..

1 a
s

15
(Y

Pl
et et a el

[MYV

oy

4

LI T B

1

»
'.'.‘- L] -l'l
"

1 I DRI ST LN NESPRENN S e st s
LAV R VR PG LTIV G L VR, LR N

(6) The Q-register is an internal, latched, 8-bit
register, used to hold data loaded to or from ROM and the ACC-
register. Its contents are output to the L 1/0 ports when the L-
drivers are enabled under program control.

(7) The contents of the eight L-drivers may also be
read directly into ROM and the ACC-register.

{8) The SlO-reyister is used as a serial input
register to read several data samples on the S1 1nput port.

{(9) The L-ports and the SlO-register are controllied
by the EN-register. When EN = 5, the data in the Q-regilster is
latched to the L-drivers.

(10) The 10-bit time base counter divides the
instruction cycle frequency by 1024 providing an overfliow con-
dition. This feature generates the time base for providing a real
time count. This counter is used to monitor the internal timing
of the critical functions provided by the microcomputer.

2. Microcomputer Software.

a. The fuze software may e broken into five major
Areas: program initiation, arm/delay switch sampling and decode,
r-tard verification, arming sequence, and fire delay programming.

{l) An externa! resct pulse is provided at power-up
to keep the minimum initialization time for the microcomputer
fixed. Upon initialization, the program counter (PC) and several
other registers internal to the microcowputer are cleared to zero.
The flow chart for program initiation is given in Figure C-2. The
portion of RAM used :during program initialization is tested and
cleared prior to storage of data in RAM. The first decision block
(diamond) in the flow chart checks the turbine release signal to
select between the turbine (Air Force) mode or the FFCS (Navy)
mode. In the turbine mode, flags M(3,9,0) and M(3,9,2) are left
1 the zero state and the arm time is initiated by the execution
o the first instrucrtion. For the FFCS mode the flags M(3,9,0)
and M(3,9,2) are set to "1", and a loop is entered to detect when
the FFUS signal has released and to synchronize this time with the
tnterna. program timers. After exiting tihe FFCS release loop the

a,\htuin and POAlrLLY data are strobed and stored in memory, for
v oavin and delay times, prior to rejoining the turbine software
Siow. The arm and gag switches are then sampled to insure the
tize has not been armed or ungagged. The microcomputer will dud
e faze 1 the swiotches indicate ungagged or armed. The RAM
“itions used chnring the remainder of the program are now tested

and o cleared using subroutine "RAMTST". This RAM test will dud the

taee 1ttt detects a RAM bitr failure.

B-5

. T T . . . IR . . —.“- - '-> -t e Y e R A
. L . R o R T i L TR AN
D e L N I I e, .

PR VR TR PR P8 U W SRR W

. 3274
ZERO TBLE TimER Couartias
40+ m(sm)
L 20 > m(3 D)

e e

b et B gt e e

DISABLE PRoX Lo) @
$~G
1

Jame To RAMTST DiSABLE SK:
w/8 ReéisTEL s 393 SK 13 UTILIRED To
TEST § CLEAR RAM STROME RETARD
LoeATien's M(32) TH SENSORS ; GAG Swrich
m(3,F) avp m(3,0 AND Al'[’\ SWATCH

LoAd> TRB RELEASE
DaTA WiTo A1 TNIL

Jume Te CHKG:
CHECK IN[TIALI2ATIN

Braliae e fae)

o i« e oot e s b uns ol he Jaan g rv.-n-T

30
JumP To RTBCHK

—
L JamP To RAGSTS : STRoBES RETARD,

| Atm aud Gas swmnes; sToees
me Lyo+mB30)) Ly.y—=h

e
ARMED T >y
m(363)~1 2
etyr1)
'No

S FutE
“TUNGAGEED T YES
m(3,0,2) =0

cl

L oF 6 rReersTER
= CKo ~» Al J“b #0
I
SToRE A TN (s 0)
> m(3,0)er A
Ao 3010 —q
SET FFCS FLAGS SET LooP Time For FFCS
£rcs Mmope 1+ m(390) ¥ ARM OFFSET CounT
1> m(39,2) 37 > ()
Bo joi
WAD FFCS RE(EASE
DATA INTo A
I",-IN; - A

ENARE STO AS SERIAL SWiFT
REGSTER To TnpPaT PoLAkiTy
TATA; CARRN 1S RESET 30
SK. OUTAUT 1S 2BRa WHEN
SIO 1% TAANSERED T A

LOAD IDLE Time CounrEeRs
$1 —~ m(33)
31 = m(3)D)

TRANSFER SI0 DATA To Ay)
PISAAIE STo A3 SWIFT REG |

1
SToRE A T M(30)
m{(3,0)e=e R

JumP To waiTs

WK At 4!_&_]

LOAD B REG wiTy |
ADD ALY OF FFCS

ARM OFFSET CoanT

| 35—~13 ‘

VELEY DATA FQuALs -
TeRo PRIOR To STRoBNIG “Farmp 15 N6 AN

POLARITY DATA IWTe LATCM QJCNT 1

E\mP To INCR: TWCREMENTS |
Ry BV 1, NoTe:iBq:=¢g
L UPON EXITING RAMTST

caery

Jumb 15 TITDLEUP.
TOLE Tl Timepr

Jumep Te RTDCHK

Jum?P Yo IDERP

SET ARM 3uhiTeH STROBE

! -
\

ONERFloWS The TrCebmtary
{1-D | IBLE TimEL CommTers
l Jume® Yo FCSDAT : ruPat l m(3,8)- m%s,c\ awd
[READ (- Poars awd sTore ARM | POLARITY AND MAGHITUDE DATA, m(3py- m(3,6)
| SwiTed DATA 1IN RAM . AND SET APPRaPIATE FLAGS D
Lyyg —~ "‘('.D)‘ mGF) m(3A.0 4 M("q'»— Pruanity yES m({} .
Lo MO nbE) | n0, - maemmoe PRI T
N
TRESET ARM Swirfen $TROBE AT;I co L 802
<E7 Coek CHECK FuabE \ RESET (oof (‘nuNT_‘*A
o $2-D L 34—emBF) |

Figure C~-2. Program Initiation Software Flow Chart.

e e e e e v e .-

R . PR Y w P T L e T Y
N, A B R A P C e I T O o . e e At et L . AN Y
W et PR e T I P T I S N K BT A P R [%
FAIIFISID IP AP NENSIE IP I SN P NP PO PR TRV VR R R TR K R T ST Y PR SR NT AP POV LY 72N

ENAGLE DEULY 3unTen STRoBE ,
CLaCK CHECK Tosput Aub Draasie
TOD/ PRow SEMSer. TaiPuT
4B —~c
I

r’

TJume To SWTST Wb REG
EQUAL To 2,F : TBsT DELAN
SITCH DATA Fol oNLY L 8iT seT

]

JumP To TDLEWP: IBDLE TIW
TiMEL OVEAFLoWS THEN TNCREwEST
IDLE TIMER CouNTERS m(3) -

m(3,¢) And m(8,D) - m(s,€)

REA) L-PORTS AWD STORE DELAY
SWITER DATA N Ram
L Log > m(2,F)
[Llae = M(2,E)
iussn DEAY 3wiTCH STRoBE
G

TJump To RTDCHK

JumP T RTDSET: DEGIE ARm/
DELAN SwricHes Pok RETARD DvFo,
AW 3ET RETARD FLAGS M(o,n) ¢
M(5,B) INDICATING RETAZD ARM Timk

Ehlachllashiintall Sl ShlbAak dal el Sl tah ad Sl At Lo b 0l R s tr e s-anan-a]

1

SET ARM FLAGS
$A — mo,0)
$A = m(o,1)
$A = nm(s,1)
$A — m(o0,3)

[

JumP To CLRENRK : CHECES THE SNSTEM
CRNSTAL otk AGAINST THE DECAY
R-C QK Fol A TiminNg REFELANLE

]

RS sido

JumP 10 CREL: VERFY L-PaR1s ARE
EQUAL To 3¢6 ; Dud # 3gg

cs 3ol
JamP To SWATST : VERIFY
ARM swrted DATA M(i,¢)- |
m(1, D) 2 m{1L,8)~m(,F)
ANY ONLY HAS 1 BT SET

ES 31
SEY l.‘sec ARM TAME.
k- m A
"‘“{u - M((l e))
Gol ({E = m(2,¢)
PN - m(2,D)

Ir)t(‘o)(ARM SwiTen :
| LAY B RLG w/AdDRESS
| OF ARM SWICH Asmen
[L38 DATA m{s,c)

[I35 $I14E
JumP To Dud SET 1032C Al TimE
“SAFE PosiTion mm ($F = m{z,A)
i 34 -~ m(2,8)
GAG ($E = m(2,0)
w*‘i $4 ~ M(2)

SET 4 SEC ARM TimE
Al {sr - m{z,8)
PUAN VY| > M(‘l,‘)
GAG {3E ~» m{2,¢)
DEAVIS | ~» m(2,D)

T 3133
SET T SEC ARM TimE
Aln$$1 - M{zA)

Ak
RMMINAL

: Uy 3 e m(z,8) Tegmw AL S
< =1 '
<l»e eae (36> m(z.) : SET 5.5 SEC Alm TomE |
il 3 m(z3) Am{‘ﬁ-‘ﬁ\(A)
A4z = m(z,8)
Kb FILID GAG {N\-m(z.c\ .
SET 14 SEC ARM TimE PEAN (YL - m(2.D) |
’ AR LE - pa(2,A)
T{iemm;f 'Y\'>__< BELAY {5&... M(z,8)
m{1, DL =1 NES caG ¢£-—m(z.c)
DAY 34 = {1, D)
K THe S
. L Lo $1a8 e
T v T SET 20 SEC Arm TimE =
e - ArRm (z2,A WMP To SwITST: VERU
.‘:(‘.. l_»a%nmmm gryes 1’“""{12 ~ ‘;\(l :)] ARM Swired DATA al1ed-
A WSARARE S ' mG,3) 2 MO,EY- MmO §)
RS N GAL (3E ~+ m(2,e)
P - - AND ONLN HAS | Bt SET
Vet ~ DELAY M - (2,3 2
»".-"‘ . e
e A
e b
1
o . .
o, Fiqure C~3. Arm Switch Dccode Software Flow Chart.
ﬁ?rf
o
,J:’r BR-7
wt A
T:ﬁ:.
b

',‘."1-),.l,.-. e e LA -
o e :,cl'imm Lo _f._-m?

T -
et S

=

SRR Y2

[Y
/AN AN

:
R ()

Oy

5, 4

Al

s N Yy e T Ty
ot

3
[R

<
o

AR
'

A Y

el
.‘- o

“ara, 8,
2 P

4
3

.

CHECK FFCS DATA

NS

DELAN ?
QQA'O):'
yEs

Yes

¢

AEemnac 41

DY $10C
SET TWST DEUN TimE
$8+m(1,9)
$A =~ m(1,A)
$C—=m(1,8)

(2.e.3)=1 o WO
[2] ES
Kt ¥ see p $223
SET 10msec DELAY Timb SET 25mste DEAY TimE SET LOMYMC DELAY Time
1 +=m(1,%) 3F—~ m(1,9) -1 $F -+ m{1,4)
$B - m{1,A) $L—= m(LA) $F = m(Ln)
18 = m(,8) $A—> M(1.B) 31> m(i.8) |
\(3} yes NEs
TEtmnAL ST NO No |
m{(z,F0)=1 DuUd E
NO ?
L
F3 $210
SET GP DELAY wodd J
Jum? To wWAITGHP: > -~ m(, o) *—————— - -
WAT foll 115 Se¢ To EXARE 30— m(,)

Figure C-4.

=

Jum® To PRXSET:
SET L‘ 3) Lb

ENABLE PROY
M -6

]

oswTok RETARD onLN;
SEY 6P WAIT FLAG
$2 > m(o®)

$1 = m(o,F)
L
T o8|

[Tame -0 RTDenk |

JumP Te TDLEUP : IDLE TILL
TiME R OVERFLOWS THEN INGREMEST

B-8

TOLE TimER CounTERS M(3.8)-
m(3,c) and Mm(3 DY - m(3E)

Delay Switch Decode Software Flow Chart.

. N T e e e e BRI N

. v - -~ v » - * - . ~ - - - - " -." -
: e R e e T e
FAFERFEIE SN A SNSRI LA B BN

e

S A gk o e a -rr.-"'mm
- & - e) IR A% e SA Sa-Ahe Ahucdie pon |

(2) The arm/delay switch sampling is given in
Figures C-3 and C-4. The arm switch decoding is given in Figure
C-3 and the delay switch decoding is given in Figure C-4 of the
flow chart. The arm and delay switches are strobed and stored in
mexory. The arm switch data is stored in redundant memery 10Ca-
tions M(1,12/13) and M(1,14/15), and the delay switch data is
stored in memory location M(2,14/15). Each switch is tested to
insure only one switch position is decoded. The microcomputer
will dud the fuze if more than one bit, in the switch data words,
ls set indicating a switch failure. The subroutine "RTDSET" is
now executed to flag, in redundant memory locations M{0,10) and
M{0,11), the selected retarded arm time. The four arm flags
M(0,0) through M(0,3) are set prior to decoding the switch data.
These flags are set to a "1010" binary pattern and are checked
prior to arming to insure this portion of memory was executed. |
The next decision block divides the turbine and FFCS flow for
decoding and setting of the arm/gag delay times (Figures C-3). In
the turbine mode, the redundant arm switch data memory locations
are checked for equality and the microcomputer will dud the fuze
if they are not equal. The arm switch data in M(1,12/13) is
decoded and the proper arm/gag delay times are stored in memory.
After the delay times are stored in memory, the arm switch data is
verified to insure the proper delay times were set. The FFCS
arm/gag delay times are set and verified from the magnitude and
polarity data in memory. The delay after impact times are then
decoded (Figure C-4) and set in memory.

(3) At this point, the software enters a general
purpose wait (WAITGP) subroutine and waits for 1.75 seconds to
expire while monitoring the retard switches. Through this portion
of software, the retard sensors have been sampled twice every
125 ms. Upon receiving a valid retard sample, a set of redundant
memory (M(0,12) and M(0,13)) locations are incremented and tested
for 16 and/or 14 counts. Memory flag locations M(1,0,1) and
M(1,0,3) are set when 14 counts have been received, and M(1l,0,0)
and M(1,0,2) are set when 16 counts have been received. There are
three general paths (Figure C~5) for the retard verification soft-
ware depending on the selected retard time. Retard arm flags
M(0,10) and M(0,11) determine which path is taken. 1In each path,
memoly location M(1,0) is checked for the proper number of retard
counts. If M(Ll,0) is equal to "1111" (hexidecimal "F") indicating
the microcomputer has received 16 samples of retard switch clo-
sures, the software will set the selected retard arm time in
memory . After the selected retard arm time is set in memory, the

"‘\ by

Sk
a2
L

LN

}:- retard avrm {lag and retard count are verified before proceeding in
‘i# sottware. If M(1,0) is not equal to "1111", the software will

gl jump to the "WAITGP" subroutine until the selected gag delay time
S has expired. In the "WAITGP" subroutine, the delay word is com-
gnﬁ par:d to the Idle Timer counters to insure the delay time has

;}i- expired prior to exiting the subroutine.

LS

hii (4) The ariming sequence is initialized when the PAF
;E: capacitor 1s charged for firing of the piston actuator (Figure

<5
,'x

B- Y

1975555

" - -y 17 T v - . -, oy T O N o T Y T N T TN T T S s w e e W

xe
‘.‘v-‘
\.,\.
.-
>,
4
l\’
_\E
R
b
T
.
N
s
) RedunpANCY
! ‘1
: {j M{o,8,0)
A
\\
SET DELAY For 2.375 sec
\ SToRt GP DELAY wokd
.. $2 -+ m(2,0)
.:\ $1-sm(z,))
T
- CLEAR GP wAIT FGs] PSET Dy For 1375 sec |
. $0 + Mm(o,€) SToRE GP DE(AY Losds
) $0 -+ m(o,F) $E = m(z0)
. $0 - m(2.)
Jumf To WAITGP -
o -
o CLEAR GP LhIT Frags,
= qesQeed M s 1A $0 ~miae) |
N Dud REDUNDANE Y TARD SELECTE $0 ~+mioF) |
= (o611 M o)
; . o (CRYN - “:z“ JumP Yo WAITEP |
CLEAL GP WA FLAGS Ve
40 -« mo,€) 2.4 SEC ATD uD
o $0 = Mo F) SeLECTED v
, 2 (0,892
. JES
& SET DEWAY R 2.5 SEC
k- SToRE GP DEWAY w0R) e , d218 CLEAR GP WAVT FAGS
$3 = m(z,0) ‘ “&:J" o $o—=mle) SET 2.0 SEc Aam
- TR Z Y ReT ! |:£c::s $ 0 -+ m(s,F) DELAY werd
. 1 3F -~ m(2.A)
[Sump 70 wartor) SET DEAY FIR 2.5 SEC $0 -+ m(z,B)
A <TORE GP DELAY wor)
L 33 -+=m(ze)
,‘:. $ 1= m(2,1)
_;': Jume To WALTGP
» .

RET

()2

P

¥

‘?ET 4.0 s€c Aen/

| GAG DELAY weads SET 2. 3€¢ ArM
$F > m(z,0) PELAY WorD
31 = m(28) 4 -~ miz,A)

41~ m(z8)

DR
r
e,

$€ - m(2,0)
t1 > m(2,>)

1

“-

& .

1 4

Gf MY

PR
o

[
r e

{SET GAG Aw> RETaRY
GP WAIT FlLAGS

| 39 -» mpE)

‘{ $q —» m{oF)

T rl
vl Iy

Arte
L

Jume

.
(->'\

N .

)l

R .

e Figure C-5. Retard Veritifcation Software Flow Chart.
)

- -

", B-10

@

K

3 +
hy)

o - L A T e I TR I T i

R RANSeS el AlaRRIN 2N

N T TR T C T W B L g T T T T TR Tw vy e .
REA - -lr"vv'.r'."-v'-".'.--.'f‘\.."."-T}"_'."TT."—".‘_'."
~6). This occurs 125 ms prior to the selected arm time. The

piston actuator is fired 100 ms prior to the selected arm time.
After UNGAG fire, the residual energy on the PAF capacitor is
removed in subroutine "DUMP". The PAF capacitor is charged for
arming 30 ms prior to the selected arm time. The gag shear wire
switch is then checked to verify if the switch is open. Arm flag
memory locations M(0,0) through M(0,3) are then checked for the
appropriate value btefore proceeding with the arming sequence. The
arm delay time is then checked against the Idle Timer counters to

4 insure the appropriate time has elapsed. The software then makes
one final test of the impact and proximity sensors before the arm
pulse is generated. After the arm pulse is generated, the soft-
ware verifies the closure of the arm switch before proceeding with
the delay programming for the fire signal.

(5) After verification of fuze arming, the micro-
computer transfers its remaining task to external circuitry. The
microcomputer programs an external shift register to the number of
pulses stored in M(1,9/11) (Figure C-6). These counts are
required to realize the various impact delay times. After this
count is stored in the shift register, the delay clock circuit is
enabled. This allows the input of an impact or proximity signal
to initiate the fire delay signal. The software then enters a
loopn which replenishes the charge on the PAF capacitor every 10
seconds. This loop is continued until a fire signal is received.

b. The flow charts for the various subroutines are not
included in this report. Two of the more important subroutines
which were not discussed in the above description are the "DUD"
and "CLKCHK" subroutines.

(1) The "DUD" subroutine is used when the software
detects a failure to dud the fuze. It enables the PAF charge
switch and a short across the PAF capacitor simultaneously to
deplete the energy stored in the primary energy storage capacitor
and the PAF capacitor.

(2) The "CLKCHK" subroutine utilizes the delay clock
to monitor the frequency of the crystal clock. This subroutine
enables the delay clock to clock an external 12-bit binary counter
. which is compared to the accumulator carry of the microcomputer.
The accumulator carry is dependent on the crystal oscillator fre-
guency and the binary counter output is dependent on the delay

.
P

. iy

.! h

.....
K
BN
. 3

i clock frequency. This subroutine is used throughout the flow

= diagyram to dud the fuze if the crystal oscillator frequency is out

-7 of tolerance.
|3

4

<

N |
Ve)
|
A:‘:- “
.-1‘:

“ .
e '
e |
o
| IO
SN
el B-11 :
e |
L |

'l$ i
; ﬁ:- :

e '*‘ oA "W * 1.: --‘."""""' N SECALE . ‘-' 3 'r'.'-." ‘-"

e N e i LA e e L T Tl e G e

s

AR

' .
" » 6
(el iy &

Al
s

LHae

) Vv..,.x.

P

K

.

C P

Pl ol
by % -

A

LA '

i)
v

-
3 .
8-

O] TS
X RS LSS

P

DAANSY JEA

S bt A ien “Sak Sl e o= s aan) -

& wA $307

DISABLE PRoY SIGNAL ENABLE FIRE PuisE DELAN CounTer,
GWAWL $2c3 3a~G r—ﬂ PAF 0APACTToe To CHARGE , AND
TumP To PAFCHG: CHARGE DisABLE Clock CHECK $E-*D
PAF CAPMITOR To FRE PsTons ACTuAfORL J L
ToG6Lt “S0° To FIRE BELoWS e
l MoToR To ARM FURE |3MP To WATS witn Ac: $1
ToGoLt Gy To FIRE PisToN 49> EN THEw
ACTUATOR To UNGAG FURE 41> EN
$S+G Tuen rjur\t’ To WAITS wiTw M(&o\‘j
1 :
l s2¢D TumpP To DUMP: ENABLE Dud J_
CIRCUITRY To DISCHARGE PAF CAL JumP To PRXSET | =1L,
JumP To DumP: ENAALE Dud EMABE DELAN Clock]
»
CiRCu11EY To PracHARGE PAF CAP 2 3261 l
L Jumf To RAGITH: STokEs RETARD, DISAME CHARGING OF PAF
AND GAG DA ™ PA [} A~=D
TumP To Cuxewp: VERFY ARM G D ;ﬁ RAM CAPACITO k
Ls.o = m(3,0) -
FREQUENCY OF SNSTEM CLOCK
l JumP To SETLH - ENABLE
[341 TELAY Ciock 1 -+ Ly
Tum? To PAFCHG: CHARGE PAF
cAPACITOR To Fikg BELtows MaTet
l Imeau\x\ NES
4 oN Ly 7
TumP To RAGSTA : STorEs RETAID, DLyeWT - c*:;'fr (1AL
AZM AND GAG DATA Tu RAM ENRBLE FRE Puust DEIAY CIRCAIT; o |
Ls.0 — M(3,0) ENABLE MC1¥0¥0 COUNTER 1
: 3a+> EnAMLE TROY i
[3~ G
ENABLE XTAL DeAY AUsE
$2->lnyg
ouTt $31p
w3 F $2F) SET GP DELAY kD |
LoAD FIRE DELAY Lwrd L8 $0 = m{0a)) i
Jume 1o TsTARM: TEST ARM F’ m@,9) e A 8~ m(o,A) ; |
FLAG LoCATIaNS M(o,o) - m(o’ 3] (A'c SET 10sec LoeP c“m) |
For APLomiaTE FLAG (ie $A) J
I T4 i 4320 !
— IT JadTaucTion: Toit| | |
i_SE1 ARM WAIT " AND Titk TimER OVERFLaws | |
| RETACD GP WA FLAGS Do
! 45 — m(o,€) CLEAR M{1Q) AWD THNCREMEST | !
l 45 — Mmilo,¢) B ™ 1,A; FRE DELAY WekDd MK | i
TJumP To umTCi] |
| |
Ho izre EnARLE CHARLING OF ‘
‘DnhuzblTA‘L TAF CAPACITeR j
DPEuy Puls)
wi V102 N }e~v I J
o Lug i
T . ENABLE S1061E I i
Tum?P To FFEXIT. warT For Clock Putsts Ty)
I A
P FECS ARM OFFSET Ceund PEAY CounTiy ‘.A.:" Py Jume To WAL f
. o P (1 8) SimoLE wrn A= $¢ i
——— T4 RS puial DR et .
u3 Izbt e T ~Jum? To l
Ra X CARAN PrsABE CHARG (. OF
Tumf To IPTST- Test ke DAL CAPACITar —J
Fup PRESENCE 0F TmPact [Droame L priviss: u-mJ,J NS
TRo¥, AND FFCY RE(EASE

Figure C-6. Arming Sequence and Fire Delay
Programming Software Flow Chart.

a
T Ve Ve
AN IS B

e

PR YA

N .
« ‘.-l""l ‘e

.
o

L)

\

I‘ .
(l
AL RaAa

WAN.S

o

e
Aa

* SR
o .I\: Yy

r

'\‘ff’\,“:' "n"\'

"

A

ARSI P
% A CETNER A

NGy

i e
ARSI BRN

S
b

\d
A,

AR

t

L
"«

b

-..\\...- .n‘

A e B R

P S

-

