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ABSTRACT

The construction of D-optimal designs for multiresponse
experiments ﬁag‘considered-by Fedorov (1972, Ch. 5).” His
algorithm required that the variance-covariance matrix, £, of the
responses be known. This is rarely the case in practice. The
primagy objective of this paper is to develop a sequential
procegure for the construction of multiresponse designs when~L is
not known. Several numerical examples are given to illustrate

this procedure.

1. MODEL AND NOTATION

We consider a situation in which observations are made on

r(>2) responses at N experimental runs (not necessarily all

- .l
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.




A e

_ where I=(o

...........

T . L T I S N L e e "w . Te . L TR N T U U,
et N TN ‘.‘.‘." Y 'l.'.\"-_"-.'..‘-" TSN .'\.'_ DA -\_-\‘o\_-".-." LT S NN A

DR NN

ot it e S S

T Sy

distinct) such that the ith response is represented by the linear

model

Vi = {;(gu)ﬁi + €41’ i =1,2,e00,r;3 u=1,2,...,N. (1)

Here Yol is the observation on the ith response at the uth design

setting; Ei (1t =1,2,...,r) is a vector of pi unknown parameters

associated with the ith response model; € 4 is a random error in
the ith response value at the uth experimental run; £, =

(x ,x TERRE N )” represents the uth design settings of k con-

u u
1 2 k So
trollable variables (u=1,2,...,N) within some experimental region, R
X, considered to be a compact subset in the k-dimensional fo;;g

Euclidean space and, §1(§) is a piXI vector whose elements are

known functions of the controllable variables assumed to be

continuous within yx. The set of points 51’52"°"§N (not
necessarily distinct) form an N-point design which we denote by

D Using matrix notation, model (1) can be written as

N*

Y= BB +g, L=1,2,...,r, (2)

where Y, is the Nx1 vector of observations on the ith response, Ei
is an Nxp, matrix of full column rank whose uth row contains the
elements of g;(E“) (u=1,2,...,N), and g4 is an Nxl vector of
random errors associated with the ith response (i=1,2,...,r) with
the assumption that E(g;)=Q and E(Eifj) = aijIN (1,j=1,2,...1),
where Iy is the identity matrix of order NxN. Thus, the variance-

covariance matrix of the Nrxl vector 5-(5{,52,...,5;)‘ is given by

the direct product
var(g) = L 8 EN’ (3)

ij) is the variance-covariance matrix for the r

responses. The r models in (2) can be written as

Y=E, B+s, (4)
N
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and F is the block-diagonal matrix diag(El, Ez,...,fr\. Thus,

s N .

o

e the total number of unknown parameters in the system is p= I Py-
’ i=1

{4

Since each Ei is of full column rank, EDV is also of full column

rank equal to p. The best linear unbiased estimator of 8 is then

given by

YRR AR A

N - -1 -1_.. -1
8= [Fp (Z @ IN>EDV] B (B8 EX (5)

1

A

The variance~covariance matrix of B is

- . -1 1-1
var(g) = [E; (2~ 8 LOF, | (6)
N N

At a point x = (xl,xz,...,xk)‘ in the experimental region x, the

A ~ -~

vector of predicted responses, Y(x) = [yl(g),y2(§),...,yr(§)]

can be expressed as
1) = 2708, (7

where ¢“(x) is the block-diagonal matrix diagf51(§),§‘(§),...,

g;(E)\. The variance-covariance matrix of Y(x) is then of the form

var (Y(x) ] = 9‘<§){§6“<§'1 8 EN)EDN}-IQ(§)' (8)
A

2. DESIGN THEORY

The concept of a design measure as defined below is important

- "to the theory of optimal designs.

;?

-

- Definition |

A design measure defined on an experimental region x is a

LN

SN

probability measure 3(x) which satisfies 3(x) » 0 and f dz(x) =1,
X

A N
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X € X (see Wynn, 1970; Fedorov, 1972). Given a design measure
g(x) on x, the set of points x € x at which g(x) > 0 is called the

support or spectrum of §(x). For example, for xl,xz,...,xse Xs

5(x) may be defined as

0 X # X u=1,2,...,s8
g(x) =
Au X=x o= 1,2,...,8
s
_ such that I Au = 1 with 0 < Au < 1. This measure is discrete if
I i=]

Xu is a rational number for u = 1,2,...,8, otherwise, if at least
one Xu is an irrational number, then Z(x) 1is a continuous

measure. In particular, we define the discrete measure CD (x) by

- . N
! O X * x N u = 1,2,-.-,3
-~ Au
gy () = n (9)
N u
¥ X" u=1,2...,s,
l where n, is the number of replications at the point %, and
s

) Zn = N. For a given design measure g(x) and a given variance-
- u=l]

covariance matrix %, we define the moment matrix M(3,L) as
M(z,5) = [ 9(0I e txdalx), (10)
X

where $(x) is the block -diagonal matrix in (7). In particular,
) for the discrete design measure CD (x) described earlier,
) N

-

s
1 -1 -
Mgy, =g Inoo(x)) I 97(x ), (11)
N u=]
i
or equivalently,
-1
MGz, LI = [EZ (2 8 1 )F /N, (12)
DN DN N DN
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where ED is the block-diagonal matrix in (4&4).
N

' 2.1 D-Optimality
Under the assumption of normality of errors and linearity of

the fitted models, a confidence ellipsoid for 8 of a given

confidence coefficient is of the form
. {g:(g-g)‘g(c,g)(g—g) < constant }, (13)

where M(Z,Z) is as defined in (10) and f is the weighted least
squares estimator of § given in (5) (see Silvey, 1980, p. 10 for

l the single response case). A more precise estimate for £ is thus
obtained by making the volume of this ellipsoid as smaﬁ& as pos-—
sible. Since this volume is proportional to lg(:,g)l- /2, where

[

- objective by choosing a design measure which maximizes ,g(c,;)'.

denotes the determinant of a matrix, we can achileve this

Such a design measure is said to be D-optimal. More formally, if

H 1is the class of all design measures on ¥, then g*: H is D-

i optimal with respect to I if
' [MCe*, D] = sup M2, D). (14)
celd

In addition to improving the precision of B, continuous D-

Fanl EREAPRIREREES
. . N

~

o
.

' optimal design measures have the desirable property of minimizing
the maximum of the variance of the predicted response over the
experimental region x. This latter property is the G-optimality
criterion. The equivalence of the D-optimality and G-optimalicty
criteria was first proved by Kiefer and Wolfowitz (1960) for the
single~response cdse. An extension of their theorem to the multi-

response case was prdved by Fedorov (1972, p. 212).

) 3. THE CONSTRUCTION OF D-OPTIMAL DESIGNS WHEN [ IS NOT KNOWN

In the multiresponse extension of the Kiefer and Wolfowitz

(1960) Equivalence Theorem as given by Fedorov (1972, p. 212), the

following assertions are equivalent:
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(1) The design measure ¢* 1s D-optimal.

(11) The design measure g* is G-optimal, that is, it

minimizes max tr[E-ly(z.C.E)]. ceB.
XeX

(iii) max tr[z_ly(z,;*,g)] =p
Xex

where

V(x,6,0) = $°COM (2, D9(x), xex Ge<H, (15)

~

PR NG

and where ¢(x) and M(%,f) are the same matrices as in (10), and p
is the total number of parameters in the multiresponse model. It ;Eiifﬁ
is to be noted that if Y(x) is the vector of predicted responses

given in (7), and if the design measure is discrete, then the ma-

trix V(x,%,Z) is related to var[z(x)} according to the expression

V(5,8 o) = ¥ var[1(p)].

DN’
We, therefore, refer to V(x,%,I) as the prediction variance
matrix., On the basis of this equivalence theorem, Fedorov (1972,
Ch.5) developed an iterative procedure to construct a multireponse
D-optimal design provided that % is known. The main steps of his
procedure are as follows [for convenience, throughout the remain-
der of this paper, we shall write gy instead of gp. to denote a

N
discrete design measure as in (9)):

(1) An initfal nondegenerate design DNO, that is, a design
for which Q(CNO,E) is nonsingular, is chosen. The
design measure CNO is defined by assigning the weight
1/Ny to each point in DNO.

(11) A design DNO+N is constructed from D 1 (N21) by

NO +N-
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augmenting it with the point 5NO+N which satisfies

re=l r .
‘ = L TV(x,g ),
tril Y()'ENO*'N’;NO"'N‘VZ) ] max trik (x ) |

where V is the matrix defined in (15), and the design

measure CN0+N is defined by assigning the weight
1/(N0+N) to each point in DNO+N(N>1).

The stopping point for this procedure is reached when an integer
N“»?] satisfying
-1 T .
max tr(Z V(x5 +N,_1,§)J p <6

XEX 0
is found, where 8 is a small positive number chosen a pricri. In
other words, the procedure stops when max cr[f—ly(z,cv +N-l’§)j is
XeY ~0

sufficiently close to p. This is based on Assertion (iii) of the
Equivalence Theorem by Fedorov (1972) and noting that by Assertion

(ii), p is the minimum value of max tr[z_ly(§,c,§)] which is
X€X

attained when the design measure is D-optimal.

The above procedure, however, requires knowledge df L. If [
is not known, a consistent estimator of [ can be used to construct
a sequence of design measures which converges in probability to a
D-optimal design measure with respect to L. A consistent

estimator of [ was proposed by Zellner (1962) and is given by

Ly = (d)y), where

-
-~

Yoary, - (Y.~ F.8,) | =
Ncij {Xi Eigi (ZJ Ejgj ’ irJ 1!2"")1-’ (16)

where Ei is the NXpi matrix in (2), and Ei is the ordinary least
squares estimator (E{Ei)-lgizi ({ = 1,2,¢4.,r) based on the ith

individual response model in (2). We now define the matrix A as

1/2 1/2

A = [dataglT ] 25  anagiz )] (17)

The following theorem (Wijesinha, 1984, Appendix D) implies that a

..........




D-optimal design measure with respect to [ is equivalent to a D=

optimal design measure with respect to é-

Theorem 1. If M(Z,Z) is the moment matrix in (10}, then

~1

-.1)') ;EB’E = (g

ij

T .3 P
lmcz, | = 1ot Huce,a ),

i=}
where H is the class of all design measures defined on the region
Xs It can be seen from the expression on the right~hand side that
only lg(c,é—l)‘ depends on the design measure g. Hence, a design
measure maximizes !g(;,§_1)| if and only if it maximizes |§(;,§)(.
It follows that Fedorov's (1972) sequential procedure to obtain a
D-optimal design measure can be applied with £ replaced by A'l.
When %, and hence A, is unknown, we can modify Fedorov's

procedure so that A is replaced by the estimate

by - (1ag(EDT 72 5 [aragl T Y2 (18)
where iN 1s Zellner's (1962) estimate of [ as given in (l6). A
sequential procedure is introduced in Section 3.l for the
construction of a D-optimal design in this case whereby AN is
reevaluated at each stage of the procedure. In Appendix E in
Wijesinha (1984) it i{s shown that éN is a consistent estimator of
A. ‘
The construction of a D~optimal design with respect to A-I
(instead of f) is more desirable for two reasons
(1) Since the elements of A lie between ~1 and 1, it is
expected that éN reaches stability much faster than i;l
thereby giving rise to a rapidly convergent D-optimal
design measure in the sequential procedure.
(i1) Since the diagonal elements of A are equal to unity, the

number of elements of A to be estimated is reduced by r.

3.1 The Sequential Procedure When § Is Not Known

~r

(i) Start with an initial design Ry such that .‘1(«:\I , 1)
\o ~ 'O

R R "7.'.-'..'. RTINS
,_.,-A:_A;.-‘-_.-_._.:.;;r_.z"-"_‘_.h,.
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is nonsingular,where . is the identitv matrix of order

CxXT.

(ii) Once DNO+N-1’ N > 1, is obtained,

f th
(a) compute ;N(+N—1 and éN(+N~1 on the basis of the
observations on all r responses measured at the
points of DNO+N-I using (16) and (18),
(b) construct the design measure SN +N-1 bv assigning
0
the weight 1/(NO+N-1) to each point in DNO+N_1.

(iii) Construct DNO+N by augmenting DNO+N—1 with the point

§N N which satisfies
0
rrla V(x 4 Al )]
L~ -1~ AN _+N’ N.+N-17 =N_+N-
NO+N 1 VO N 0 1 LO 1
= [A V(x AA—l )1\
max tr éN N-1208 CN #N=1° 2N 4n-1710
XeX 0 0 Q

where Y is the prediction variance matrix in (15).
(iv) Continue this procedure until an integer N“(>1) is

reached such that

- -1 ]
max tk[éN +N'-ly(§’ Sy +n--1" Ay +N,_1)J p <
Xex 0 0 0

O

where § is a small positive number chosen a priori, and
p 1ls the total number of parameters in the multiresponse
model.

In Wijesinha (1984) it is shown that the above sequential
procedure converges to a D—-optimal design. More specificallv, let
A be the set of all rxr symmetric matrices A = (aij) such that
a;y = 1, i = 1,2,...,r, and -1 < aij <1, 1 «£i1i << j <r. Define
b(A) = (bl’bZ""’br‘)" where r° = r(r~1)/2. This vector
consists of the elements of A above its diagonal taken in order

from left to right for each row starting with the first. We call

p(é) the r’-dimensional vector associated with A. Note that since

~

A:A is symmetric and all its diagonal elements are equal to 1, A

MR A Sl el S sl bek b aad o o
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N can be completely described by the r” elements aij’ 1 €1 < 3§ <
N t°. It is clear that 4 and 4, defined in (17) and (18),

respectively, belong to A. Since Ay is a consistent estimator of

A (Wijesinha, 1984, Appendix E), then ey converges in probability

to 0, where eN is the Euclidean distance between p(éu) and p(é).
i It is conjectured that the convergence in probability to 0 of

~

ey is sufficient for the above sequential procedure to converge.

R

However, we were only able to prove convergence by assuming a

N . ;;;._i
! stronger condition, namely that uzleu converges in probability to (.

some random variable e. This can be formally stated as follows:

N ~
Theorem 2. Suppose that uéleu converges in probability to some

random variable e. Then for a given § > 0, there exists an

integer N > 0 such that
max tr[éNy(g, Sy é&l)] -p<é
Xex

with probability 1. The proof of this theorem is given in
Wijesinha (1984). 1t 1s fairly long and will not be included in
this paper.

-« EXAMPLES

In this section we present some examples to illustrate the

L
, .
v
e

procedure described in Section 3.1. 1In each example [ is pre-
determined and the error vector (assumed to be normally distrib-
uted with a zero mean vector an a variance-covariance matrix

given by the direct product of [ with the identity matrix of a

proper order) is computer genetated. At the Nth (N > 1) stage,

the (1,j)th element of the matrix EN +N=1 described in (16) is
Ef calculated using the formula 0

~
0O
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. AN +N-1

0
(V0+N‘1) a

< i < 9
1 Je., 1 i, j r, (19)

i°%3

g_)-lfi and F, is of order (Ny+ N-1) x Pi

i

Ny (i =1,2,...,r). The (i,j)th element of the corresponding
AN +N=1 matrix is determined from (18) after substituting
"0

z
&N +N-
0 1

used to generate the error vector g, it is not used in the

for QN. It should be noted that although the matrix [ is

sequential generation of the D-optimal design. In an actual ex-
perimental situation, observed response values would be available,

N _+N-1
hence, oi? should be calculated using (16) instead of (19).

In all the examples we have considered, the final value of

r“ A-I
max trLANO+N-ly(§’ CNO+N_1, éNO

XeX
described in Theorem 2 for a value of § determined a priori.

-l

L4l ORI

+N-1)] met the stopping rule

Example 1. Consider an experiment 1lnvolving three responses and
three controllable variables. The experimental region

X = {§ = (xl,xz,x3):lxi’ <1, 1i=1,2,3} and the fitted models are
Y1 = Big * BriXp * Byoxp * g
Y2 = Bag * BayXp + Bppxy *+ Byyxy + €y (20)

y3 = B3g * Byyxy * B3pxy + €4,

1

When all the models are linear, tr[é- y(5,c,é-l)] for x < x, ¢ <H,

and A<A is a convex function in X, and since x is a convex set,

max tr[ﬁ Y(z,c,é-l)] will occur on one of the extremal points of

x€x

Xe Therefore, the search for additional support points of the D-

l/...."l.l'l‘l :

optimal design was restricted to the vertices of x. Also, all the

v
+
4
4
4
o
"J
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points of the initial design were chosen to be extremal points ?i;J

(see Table 1). For this example [ was chosen as },{:

ST

3.000  .030  1.600 v

1= .030  .600 .800 | . -‘_;‘.;:;Z:‘.

- 1.600  .800  3.300 R

DAY

Therefore, KA

S

. .524 462 -.366 1 .376  -.602 e
g 771w | 462 2.870 -.920 {and p =] .376 1 -.647]. -
b B -.366  ~.920 .703 -.602 ~-.647 1

- -k- o
b .

] TABLE 1

THE INITIAL DESIGN (EXAMPLE 1)

x| X2 : X3

1 1 1

1 1 -1

1 -1 1

-1 1 1

-1 -1 1
TABLE 2

THE AUGMENTED DESIGN POINTS FOR A D-OPTIMAL DESIGN (EXAMPLE 1)

~

‘ ~~] ;

. N.+N max tr[ Vix, Z A ) X x x
K 0 -~ -lata? \ -1? = - J 2

F[-; Tex AN0+N 1 N1t AN -l 1 2 3
L 6 22,1429 -1 -1 -1
9 7 14,0000 -1 1 -l
% 8 15.4000 1 -1 -1
i

=

-

>
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Table 2 displays the augmented support points and corresponding 3f¥'

max trace values. Using the design consisting of the five initial f;f

design points in Table 1 and the three augmented design points in Iﬁﬁ

[y

Table 2, it was found that max cr[ggly(§, Cgs égl)] was equal to e

Xex -

10. The fast drop in the max trace function to its anticipated

value of p=10 in this example is quite noteworthy.
In the following examples the maximization with respect to x - -

of the trace function at every iteration was carried out using a o

computer program based on the controlled random search procedure

introduced by Price (1977). The procedure uses a random search to ;ﬂ:;

locate an optimal point from among a collection of points, the

number of which is determined by the user.

Example 2. 1In this example we have two responses and two ot o
controllable variables. The experimental region is

X = {5 = (xlgxz): x% + x% < 2}, and the fitted models are

Y1 = By * Bp1Xp * BygXy *+ ByjoX1Xp * € O
(21)

- » 2 2

Yp = Byg * Bgy®p * Bygxy * ByypxyXp + BopX{ * Bppo%xi * &5
Thus p = 10. The points for the initial design were arbitrarily

chosen and are given in Table 3. The matrix [ is given the value

.500 .500
L= ;
B | +500 3.000 _ if'P
Hence, ’ -
1,395 -.233 1 -.323
2—1 = and A = . R
) -.233 .372 -.323 1| e
3
-
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TABLE 3
THE INITIAL DESIGN (EXAMPLE 2)

X1 X2
1.0 1.0
1.0 -1.0
-1.0 1.0
-1.0 -1.0 .
0.0 0.5 o
0.5 0.0 L
0.0 0.0
-
| TABLE 4 .
: THE AUGMENTED DESIGN FOR A D-OPTIMAL DESIGN (EXAMPLE 2)
E Ny+N  max t:r[_éw =1 J(X 8y +N-1"£1T11+N-1)] 3 Xy xf + x% ' .J-L.L
: Xe X 0 0 0 | W
Eé 8 257.7074 0.0137 =1.414  1.999
g 9 28.3742 -1.414 =0.095  2.000
b 10 20.9817 1.409 -0.122  2.000 PR
: 1 20.0266 ~0.025 1.416  2.000 Lodd
E 12 13.9047 1.029  0.969  2.000 R
g 13 14.4880 ~1.009  0.991  2.000 ;;5::5;:;‘
C 14 14.8490 -1.002 -0.997  1.999 [;i‘-i‘-'
15 15.0983 0.939 =1.057  2.000 =
16 11.1210 ~1.127  0.847  1.987 =
17 11.8267 0.746  1.201  2.000
18 12,2723 -0.911 ~-1.081  2.000
19 12,6633 1.391 -0.252  1.999
20 12.5056 0.475 -1.332  2.000
21 11.1222 -1.376 -0.327  2.000
22 11.3869 -0.793  1.170  1.999 e
23 11.5757 0.968 1.030  2.000 RN’
24 11.0369 1.136 -0.837  1.991 N
25 10.0579 -0.033 =-0.033  0.002 SN
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As shown

stopping rule
design points
form a nearly

in the values

-~

in Table 4, max tr[ézAY(K, Co4r égi)} satisfies the
Xex

in Theorem 2 with &= ,06. We conclude that the
in Table 4 together with the initial design points
D-optimal design. 1In Table 5 we can see the change

~ -~

of the elements of the L, 2-1, and A matrices.

TABLE 5

THE ESTIMATES FOR L, I ', and A (EXAMPLE 2)

L S - S
7 +258 .030 .078 4,061 1.551 13.477 .210
8 «275 .080 .385 3.872 0.807 2.767 2247
9 +266 131 418 4,447 1.396 2.832 .393

10 .519 -.052 .532 1.945 -0.189 1.899 .098
11 . 577 .162 1.213 1.801 0.240 0.857 .193
12 772 -.024 1.215 1.296 -0.026 0.823 .025
13 713 -.028 1.197 1.404 -0.032 0.836 .030
14 .669 .125 2.352 1.510 0.081 0.430 .100
15 .622 .091 2,305 1.617 0.064 0.436 .076
16 .757 .125 2.164 1.333 0.077 0.467 097
17 710 .128 2.096 1.425 0.087 0.482 .105
18 .828 494 2.903 1.338 0.223 0.382 312
19 .831 720 3.514 1.462 0.299 0.346 421
20 .816 660 3.343 1.459 0.288 0.356 +400
21 «525 414 3.005 2.137 0.295 0.374 <330
22 .753 .515 3.270 1.489 0.235 0,343 .328
23 .808 .485 3.368 1.353 ° 0.195 0.325 .280
24 .760 +459 3.210 1.440 0.206 0.341 .294

Example 3. Here the responses and the controllable variables are

the same as in Example 2. The experimental region is

x = [x=(x%)) + ~/7 < x ,x, < v2} and
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1.000 +900

.900 3.000

r

Thus,
1.370  =-0.411 1 ~.520
Z-I = and
h -0.411 457 -.520 1

»
]

e

The fitted models are
Y1 = Blo * ByyXp * ByaXp * BypaX Xy * €
(22)
2 2
Yo = Bgg * BapXy + Bgxy * ByjoXy Xy + Boy X[ * BypoX) + €5

The initial design for this example was chosen arbitrarily and is
given in Table 6.

TABLE 6
THE INITIAL DESIGN (EXAMPLE 3)

Xy X2

QO = O = = =
—
L]
p=3
—
&

A nearly D-optimal design for this example consists of the
augmented design points given in Table 7 and the initial design
points given in Table 6. At the 15th iteration (Ng + N = 22 in
Table 7) the stopping rule is satisfied with 8§ = ,07. The ele-

ments of f, é-l

, and A at these iterations are given in Table 8.
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TABLE 7
THE AUGMENTED DESIGN POINTS FOR A" D-OPTIMAL DESIGN (EXAMPLE 3)
Yo max ex[ay R I a’lom *2
Xe X 0 0
8 39.0014 -1.416 1.414
9 45.5963 -1.414  -1.414
10 41.6899 1,616 =1.414 -
1 33.3881 1,414 1.414 -
12 15.1616 “1.416 =1.414 s
13 15.9091 1616 -1.414 i
14 17.1823 -1.414 1.414 . 4
15 14.8294 0.059  -1.414
16 17.6392 1.416 1.414 ]
17 14.1912 -1.414 0.002 [i’
18 12,4739 -1.414 -1.414 R
19 13.0994 _ -1.414 1,414
20 13.7740 1.416 1.414 N
21 14.3783 1414 =1.414 S g
22 10.0685 -1.405 1.384 o
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TABLE 8 e
THE ESTIMATES FOR I, I ., AND A (EXAMPLE 3) S
I Ng*N-1 oy, 315 dns ol -gl2 22 -ap,
7 . 347 .821 2.390 15.457 5.311 2,243 <902
314 745 2.111 19.429 6.857 2.893 914
l 9 .366 .656 1.888 7.218 2.507 1.400 .789 »
” 10 743 .373 1.863 1.496  0.300  0.597  .317 ?
11 . 694 .405 1.753 1.666 0.385 0.659 <367 ,;f?j
12 701 .277  1.705 1.525  0.248  0.627  .254 Dl
l 13 .643 .280 1.577 1.685 0,299 0.687 278 —
14 .671 .563 2.884 1.781 0.347 0.414 404
15 .634 .553 2.716 1.917 0.390 0.448 421
. 16 .738 . 506 2.526 1.571 0.314 0.459 .370
' 17 .977 .856 3.166 1.342 0.363 0.414 487
18 .815 .855 3.607 1.634 0.387 0.369 .499
19 .816 .950 3.906 1.708 0.415 0.357 «532
20 .791 .880 3.714 1.717 0.407 0.366 513
l 21 .759 .823 3.546 1.762 0.409 0.377 +502
i 4.1 Choice of the Initial Design.
N It 13 interesting to note that in the above examples, most of
iy the augmented support points of the D-optimal designs are boundary
; points of the experimental region. This suggests that the
; boundary of the experimental region may be an optimal location for
the support points of a D~optimal design. Therefore, boundary
polnts of x can be appropriately chosen as initial design points.
In order to investigate this possibility, Example 3 was again
)y considered with in initlal design consisting of boundary points of
: X+ The results given in Example 4 below indicate that the use of
. the new initial designs can reduce the number of iterations
E. required for the convergence of the procedure.
)

(8
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Example 4, The models, the experimental region, and the value of
T for this example are as in Example 3. The initial design is

o
~

given in Table 9.

TABLE 9
THE INITIAL DESIGN (EXAMPLE 4)

X1 X2
l.414 1.414
1.5414 -1.414
~1.414 1.414 ..4*
-1.414 -1.414 8
0.000 1.414 D
1.414 0.000 R
0.000 -1.414 e

This example shows that the use of an initial design con-

sisting of boundary points of x reduces the number of iterations

required to stop the procedure. The stopping rule was firsc ;;15;
satisfied with § = .02 at the 2nd iteration (Nj; + N=9 in Table
10). However, the value of the max trace function at this {tera-
tion was not stable enough as can be seen from Table 10. This is
also reflected by the lack of stability in the values of the ele-
ments of i ,g-l, and é (see Table 11). The sequential procedure
was, therefore, continued until the llth iteration (N0+N = 18 in

Table 10) at which the stopping rule was satisfied with § = .06,

(9
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TABLE 10
THE AUGMENTED DESIGN FOR A D-OPTIMAL DESIGN (EXAMPLE &)
No+N  max tr['éN +N-1‘Y(?~(’ N eN~1" ﬁ;ll-t-N-l)} Xy )
xex 0 0 0
8 16.8823 -1.414  0.000
9 10.0199 0.000  =-0.001
10 13.5012 Sl.4ls 1.416
1 14.8885 1416 -1.414
12 16,2449 L.4le 1.416
'3 17.5928 S1.416 -1.416
14 10.9800 Sl.416 1,416
15 11.8062 1,616 -1.414
16 12.6181 1,416 1.4l14
17 13.4383 -1.614  -1.414
18 10.0505 1.4l6  1.41
TABLE 11
THE ESTIMATES FOR I, L ., AND A (EXAMPLE 4)
Ng*N=1 oy, o919 - oll -gl2 o?¥ g,
7 0.309  0.137  0.306  4.039  1.821  4.111  .447
0.296  0.399  0.752 12.255  6.506  4.784  .848
0.257  0.478  1.26  !3.020  4.913  2.644  .837
10 0.456  0.199  1.522  2.33  0.306  0.697  .239
Il 0.419  0.210  1.651  2.552  0.3.5  0.647  .252
12 1.067  0.777  2.508  1.210  0.375  0.515  .475
13 1.751  0.861  2.090  0.716  0.295  0.600  .450
14  1.499  1.081  3.105  0.890  0.310  0.430 .50l
15 1.919  1.249  3.065  0.709  0.289  0.444  .515
16 1.577  1.032  2.781  0.838  0.311  0.475  .493
17 1.569  1.000  2.653  0.838  0.316  0.496  .490
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5. CONCLUDING REMARKS

The main advantage of the sequential procedure we have
proposed is that I (the variance-covariance matrix of the
responses) is not required to be known. The basic idea used in

the sequential procedure is to choose the point XN +N which

o™
maximizes the trace function, that is,

tr[év w-1YEy o By en-1 5;1¥N—1)] - .

LO:. .0 AO. .O __

A v( Al ) | n

max T AN +N-11"%7 Oy an-17 AN +N-17 o

XX 0 0 0 SRR

E

where Ny is the number of points in the initial design. The . _‘ﬁ

procedure is continued until max tr[éu +N-ly(§’ CV N-1" : ]
Xex 70 "0 ]

o-1 h
Ay syop) | is sufficieatly close to p.

Ng+)
The examples described earlier show that our procedure has a

e
: ]

fast rate of convergence in that the quantity

-~ A-l

, .
max tr[{;N +N_IY(2E: CN +N-1° éN +N_1)J _
XeX 0 0 0 .

- . .
. ""'.v ’
. N Lot

caadl RPNy

reduces to its anticipated limit, namely p quite rapidly. In

addition, a comparison of the estimated values of £;1+N-l and f}ﬁrf
O. DR

-

§N0+N_ldemonscrate that QNO+N_1 stabilizes much faster. This

supports the idea of using 5;1
0

of ;NO+N_1.

The examples also indicate that the use of initial designs

+N-1 in the procedure in place

consisting of boundary points of x does reduce the number of
iterations required to meet the stopping rule. Therefore, the
boundary of the experimental ;egion can be an appropriate choice
for the selection of the initial design points. It should be
noted, however, that this 1s a conjecture based only on the ahove
examples and has no theoretical justification. We feel that this

is a topic which should be investigated in future research.
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