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THE SEQUENTIAL GENERATION OF MULTIRESPONSE D-OPTIMAL DESIGNS
WHEN THE VARIANCE-COVARIANCE MATRIX IS NOT KNOWN
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University of Florida

Gainesville, Florida 32611
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ABSTRACT m--

The construction of D-optimal designs for multiresponse

experiments was considered -by Fedorov (1972, Ch. 5).' His-

algorithm required that the variance-covariance matrix, Z, of the

responises be known. This is rarely the case in practice. The

primary objective of this paper is to develop a sequential

procedure for the construction of multiresponse designs when is

not known. Several numerical examples are given to illustrate

this procedure.

1. MODEL AND NOTATION

We consider a situation in which observations are made on

r(>2) responses at N experimental runs (not necessarily all
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distinct) such that the ith response is represented by the linear

model

Y u f ; ( Xu )% +  E u i ', 1 , 2 , ..., r ; u - 1 , 2 , • .• N • ( 1 ) . -: -.

ere Yu is the observation on the ith response at the uth design

setting; Bi (i 1,2,...,r) is a vector of p unknown parameters
associated with the ith response model; eui is a random error in

the ith response value at the uth experimental run; u,

(x ux ....X )' represents the uth design settings of k con-
1 2' k

trollable variables (u-1,2,...,N) within some experimental region,

X, considered to be a compact subset in the k-dimensional

Euclidean space and, f (x) is a PiXl vector whose elements are
,-4

known functions of the controllable variables assumed to be

continuous within X. The set of points x1 ,x2 ... ,xN (not

necessarily distinct) form an N-point design which we denote by

D . Using matrix notation, model (1) can be written as

+ 1i' i - 1,2,...,r, (2)

where Xi is the Nxl vector of observations on the ith response, •

is an NxPi matrix of full column rank whose uth row contains the

elements of fl(x ) (u-1,2,...,N), and gi is an Nxl vector of

random errors associated with the ith response (i-1,2,...,r) with

the assumption that E(ki)-Q and E( e') - aI (i,j-l,2,.r),

where IN is the identity matrix of order NxN. Thus, the variance-

covariance matrix of the Nrxl vector e-(e', ,...,r) is given by

the direct product

v a r ( ) N ,  (3 )", -,

where L-(ci) is the variance-covariance matrix for the r

responses. The r models in (2) can be written as

S D + (4)
N

V. .**%

.ir .'. .* .. . .. . . .. . .. . . ...- \-
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wher e

and F is the block-diagonal matrix diagr(l, E2.... 'Tr Thus,
DN r

the total number of unknown parameters in the system is P- p :

Since each fis of full column rank, ED is also of full column

rank equal to p. The best linear unbiased estimator of is then

given by

N -)DN N N

The variance-covariance matrix of is

16var(f) lf [N 6 N)ED ()

Atapitx =(x 1 ,X2, ... ,xkY' in the experimental region X, the

vector of predicted responses, Y(3E) [y()Y() "Y()1

can be expressed as

where j'(x) -is the block-diagonal matrix da~~)f()..

fx'.The variance-covariance matrix of Y(x) is then of the form

varYx) f(x)~F E NF 1 ( 8
N N

2. DESIGN THEORY

The concept of a design measure as defined below is important

6r to the theory of optimal designs.

Definition 1

A design measure defined on an experimental region X is a

probability measure '(x) which satisfies ;(x) > 0 and d()=1

y



E X (see Wynn, 1970; Fedorov, 1972). Given a design measure

C(x) on X, the set of points xE X at which C(x) > 0 is called the

support or spectrum of (). For example, for x1 ,x2,..x E X,

C(x) may be defined as

0 X u U 1,2,...'s

U 'U 1,,.s
S _

such that Z X -1 with 0 4 X I . This measure is discrete if
i-i uU

Xis a rational number for u - 1,2,...,s, otherwise, if at least

one Xu is an irrational number, then C(jx) is a continuous

measure. In particular, we define the discrete measure DCx) by
N

0 x x x , U

u'1 U

where n(x) is the nubo rediag caatix in (7). p in puatcuar

fo th discrae v design measure Cx) ) decrnd arienr ance-

N- u-

coreialc arx; edfn h oently marxa

M (C f~-1 '~ D]N (10)

1.K....... ~ z



where F is the block-diagonal matrix in (4).

2.1 D-Optimality

Under the assumption of normality of errors and linearity of

the fitted models, a confidence ellipsoid for 3 of a given

confidence coefficient is of the form

constant 3, (13)

where M( ,) is as defined in (10) and is the weighted least

squares estimator of given in (5) (see Silvey, 1980, p. 10 for

the single response case). A more precise estimate for is thus

obtained by making the volume of this ellipsoid as small as pos-

sible. Since this volume is proportional to 2,~p 2  where

denotes the determinant of a matrix, we can achieve this

objective by choosing a design measure which maximizes IM(,). r -

Such a design measure is said to be D-optimal. More formally, if

I is the class of all design measures on X, then * c is D-

optimal with respect to if

* sup IM(,)i• (14)

In addition to improving the precision of 6, continuous D-

optimal design measures have the desirable property of minimizing

the maximum of the variance of the predicted response over the

experimental region X. This latter property is the G-optimality

criterion. The equivalence of the D-optimality and G-optimality

criteria was first proved by Kiefer and Wolfowitz (1960) for the

single-response case. An extension of their theorem to the multi-

response case was proved by Fedorov (1972, p. 212).

3. THE CONSTRUCTION OF D-OPTIMAL DESIGNS WHEN IS NOT KNOWN

In the multiresponse extension of the Kiefer and Wolfowitz

(1960) Equivalence Theorem as given by Fedorov (1972, p. 212), the

following assertions are equivalent:

..-

-- .- - ° 4 -4.



(i) The design measure * is D-optimal.

(ii) The design measure z* is G-optimal, that is, it

minimizes max tr[ E x ) ] , ZE.

(iii) max tr[- V(x,¢*,Z)] = p

where

- ~( (,Z)(x), X, ER, (15)

and where (x) and M(;,E) are the same matrices as in (10), and p

is the total number of parameters in the multiresponse model. It

is to be noted that if (x) is the vector of predicted responses

given in (7), and if the design measure is discrete, then the ma-

trix V(xC, ) is related to var[1()] according to the expression

( , ) -
DN

We, therefore, refer to V(x, ,j) as the prediction variance

matrix. On the basis of this equivalence theorem, Fedorov (1972,

Ch.5) developed an iterative procedure to construct a multireponse

D-optimal design provided that is known. The main steps of his

procedure are as follows rfor convenience, throughout the remain-

der of this paper, we shall write 4N instead of Dto denote a

discrete design measure as in (9)):N

(i) An initial nondegenerate design D t hat is, a design

for which M( NE) is nonsingular, is chosen. The

design measure is defined by assigning the weight
0

I/N0 to each point in DN.

(ii) A design DN+N is constructed from DNoN(N>I) by

,40+NNO+N-



augmenting it with the point ZN +N which satisfies
0

tr-V(Xo+NWoN ,Z) max tr1 x N+N
tr'' -N 0+N''N 0+N-1' y-,

where V is the matrix defined in (15), and the design

r NoN is defined by assigning the weight

measure ONtewih

1/(N 0 +N) to each point in D N+N(N)I).

The stopping point for this procedure is reached when an integer

N';I satisfying

max tr V(x, 0+N-_'T~j - P < .

E I. 0

is found, where 6 is a small positive number chosen a pricri. In

other words, the procedure stops when max tr[1 V(xc , ) is

sufficiently close to p. This is based on Assertion (iii) of the

Equivalence Theorem by Fedorov (1972) and noting that by Assertion

(ii), p is the minimum value of max tr[- V(x,,)] which is

attained when the design measure is D-optimal.

The above procedure, however, requires knowledge of . If

is not known, a consistent estimator of . can be used to construct

a sequence of design measures which converges in probability to a

D-optimal design measure with respect to . A consistent

estimator of Z was proposed by Zellner (1962) and is given by ""

^N N , where

NON Y - i,j - 1,2,...,r, (16)N= j - i "(j- E .. ;;

where Fi is the Nxpi matrix in (2), and i. is the ordinary least

squares estimator F F ;F (i - 1,2,...,r) based on the ith
sI - esi'-i

individual response model in (2). We now define the matrix a as

A - {[diagiag ' Z -(}-[/ (17)

The following theorem (14ijesinha, 1984, Appendix D) implies that a

.- ,.%

-1..



D-optimal design measure with respect to . is equivalent to a D-

optimal design measure with respect to A-1

F

Theorem 1. If M(C,Z) is the moment matrix in (10), then
r )Pi" ""

i I .-

where R is the class of all design measures defined on the region

X. It can be seen from the expression on the right-hand side that

only IM( ,A-)I depends on the design measure . Hence, a design

measure maximizes IM(,A)I if and only if it maximizes M( ,Z)f.

It follows that Fedorov's (1972) sequential procedure to obtain a

D-optimal design measure can be applied with Z replaced by k-1.

When , and hence A, is unknown, we can modify Fedorov's

procedure so that A is replaced by the estimate

AN Ldiag(E N ]-1/2 -1 [diag(i_1]]-1/2 (18)

where is Zellner's (1962) estimate of as given in (16). A

sequential procedure is introduced in Section 3.1 for the
L

construction of a D-optimal design in this case whereby AN is

reevaluated at each stage of the procedure. In Appendix E in

Wijesinha (1984) it is shown that A is a consistent estimator of

The construction of a D-optimal design with respect to -i-

(instead of ;) is more desirable for two reasons

(i) Since the elements of A lie between -1 and 1, it is

expected that AN reaches stability much faster than

thereby giving rise to a rapidly convergent D-optimal

design measure in the sequential procedure.

(ii) Since the diagonal elements of a are equal to unity, the

number of elements of k to be estimated is reduced by r.

3.1 The Sequential Procedure When Is Not Known

(i) Start with an initial design such that M( NI

.. .

-.. ~~L.L A.% ~ .pA. ... *.



is nonsingular,where Ir is the identity matrix of order

rxr.

(ii) Once DN NI N > 1, is obtained,

(a) compute a N- nd AN NIon the basis of the
XN +N- +N-

observations on all r responses measured at the

points of D using (16) and (18),
N0+N-1

(b) construct the design measure ~' N1by assigning
0

the weight 11(N +N-1) to each point in DN+I

(iii) Construct DNN by augmenting NoDNNo+N-1l with the point

X+N, which satisfies

trrA Vx ,,A )-L-N +N-1- 3EN +N N +N-1' -N +N-1
0 0 0

=max tr[ N ~N+N-1' N +N-I
EX 0 0 0

where _V is the prediction variance matrix in (15).

(iv) Continue this procedure until an integer N'(>I) is

reached such that

'-1
axtr{AN _Y(E N <ma 4N--~ +N'-l' AN +N 6

XEX( 0 0O 0
where 5 is a small positive number chosen a priori, and

p is the total number of parameters in the multiresponse

model.

In Wijesinha (1984) it is shown that the above sequential

procedure converges to a D-optimal design. More specifically, let .-

A be the set of all rxr symmetric matrices =(a. ) such that
I.j

a 1 ii ,i 1,2,...,r, and -1 4- a.. 4 1, 1 4 i < j < r. Define

b(A) =(b 1,b2 . ,b ) -, where r' r(r-l)/2. This vector

consists of the elements of A above its diagonal taken in order

1%. from left to right for each row starting with the first. We call

b(A) the r'-dimensional vector associated with A. Note that since

A A is symmetric and all its diagonal elements are eoual to 1, A



I.

can be completely described by the r' elements ajj '."

r. It is clear that 4 and AN defined in (17) and (18),

respectively, belong to A. Since is a consistent estimator of

A (Wijesinha, 1984, Appendix E), then eN converges in probability

to O, where eN is the Euclidean distance between b( N ) and b(A).

It is conjectured that the convergence in probability to 0 of

eN is sufficient for the above sequential procedure to converge.

However, we were only able to prove convergence by assuming a

N.

stronger condition, namely that uZ1e converges in probability to

some random variable e. This can be formally stated as follows:

N.
Theorem_ 2.Spoeta e converges in probability to some

random variable e. Then for a given 6 > 0, there exists an

integer N > 0 such that

max tr[Av(x, , p 6
XE

with probability 1. The proof of this theorem is given in

Wijesinha (1984). It is fairly long and will not be included in

this paper.

EXAMPLES

In this section we present some examples to illustrate the

procedure described in Section 3.1. In each example Z is pre-

determined and the error vector (assumed to be normally distrib-

uted with a zero mean vector an a variance-covariance matrix

given by the direct product of ; with the identity matrix of a

proper order) is computer generated. At the Nth (N ) 1) stage,

the (i,j)th element of the matrix ZN +N-1 described in (16) is

calculated using the formula 0

• - . . . % - ... .% ,

- .;- " , . , " .. . "- .~" - " -" . , - ,.
*~.*, *.. ~.* ~V-



N +N- 1
(N +N-1) Cy E(I-R )'(-R)Ej, 1 i, j r, (19)

where Ri = F F)-t and F, is of order (No+ N-I) x pi

(i - 1,2,...,r). The (i,j)th element of the corresponding

.4 N-1 matrix is determined from (18) after substituting

LN +N-1 for Z N It should be noted that although the matrix , is

0N4
used to generate the error vector e, it is not used in the

sequential generation of the D-optimal design. In an actual ex-

perimental situation, observed response values would be available,_-

,N +N-1
hence, a should be calculated using (16) instead of (19).

ij

In all the examples we have considered, the final value of

max tr A0+NiY(x, N+N AN +NI] met the stopping rule t
EEX 0 0 0

described in Theorem 2 for a value of 6 determined a priori.

Example 1. Consider an experiment involving three responses and

three controllable variables. The experimental region

x - {x - (XiX 2 ,X3 ):Ixil 4 1, i - 1,2,3} and the fitted models are

8 o $1 + 11x1 + 812x2 +e 1

Y2 820 + 82 1 xi + B22x2 + 52 3 x3 + (20)

Y 830 + 83 1x1 + 832x2 +3"

When all the models are linear, trA-V ~x, ,A) for x- , EH,

and E A is a convex function in x, and since x is a convex set, W,- .*

max tr[A-IV(x,c,A- )] will occur on one of the extremal points of

X. Therefore, the search for additional support points of the D-

optimal design was restricted to the vertices of X- Also, all the
"N

_J A. J.



points of the initial design were chosen to be extremal points

(see Table 1). For this example , was chosen as

73.000 .030 1.600~

- .030 .600 .800 .

1.600 .800 3.300]

[ Therefore,

.524 .462 -.366 1 .376 -.602
.42 2.870 -.920 and.7 1 -.647.

-.3 -.920 :703 L-.602 -.647

6i-

TABLE I

THE INITIAL DESIGN (EXAMPLE 1)

X1 2 13

2"=. '

6l 1
-1 -I I '1~

TABLE 2

THE AUGMENTED DESIGN POINTS FOR A D-OPTIMAL DESIGN (EXAMPLE 1)

N +N max ' 1' A + -x .7 x3
0 rrAN +NIVy(3E 1 +-',+-

E X 0 0 0

6 22.1429 -I -1 -1 .. °.

7 14.0000 -1 1 -1

8 15.4000 1 -1 -1

.. :
l. ,



-1.
Table 2 displays the augmented support points and corresponding

max trace values. Using the design consisting of the five initial

design points in Table 1 and the three augmented design points in

Table 2, it was found that max tr[ , ) was equal to

10. The fast drop in the max trace function to its anticipated

value of p-lO in this example is quite noteworthy.

In the following examples the maximization with respect to x

of the trace function at every iteration was carried out using a

computer program based on the controlled random search procedure

introduced by Price (1977). The procedure uses a random search to

locate an optimal point from among a collection of points, the

number of which is determined by the user.

Example 2. In this example we have two responses and two

controllable variables. The experimental region is

x = (x 1 1x ) : X2 + x2 4 2}, and the fitted models are

Yl 0 + 6IIX1 + 8I2 X2 + 8112 XlX 2 + E

(21)

Y2 820 + 82 1xi + 82 2x2 + 52 1 2xlx 2 + 82 1 1xI + B22 2 x2 +C 2

Thus p - 10. The points for the initial design were arbitrarily

chosen and are given in Table 3. The matrix is given the value .L.800 .500

.500 3.00:1
Hence,

F -I . and A ] .

-.233 .372] .323 1

.... -

.-.. -. .-. -. .-."., ... . .- - . -. .. ,. , ..-.. ... -,... ,.. . ., .'. .. .. -.. .. .... - . - .- . . .-. .......-. . , - . .. ., .. . .. . .. . . .. _. . ,. . . - ,.- -.-".
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TABLE 3

THE INITIAL DESIGN (EXAMPLE 2"

i oX2 -"-"-
1.0 1.0

1.0 -1.0

-1.0 1.0

-1.0 -1.0

0.0 0.5

0.5 0.0

0.0 0.0

TABLE 4

THE AUGMENTED DESIGN FOR A D-OPTIMAL DESIGN (EXAMPLE 2)

NQ+N max tr A, --1-', +N-1)N xl X2  X2 + x2
N0+N

8 257.7074 0.0137 -1.414 1.999

9 28.3742 -1.414 -0.095 2.000

10 20.9817 1.409 -0.122 2.000

11 20.0266 -0.025 1.414 2.000

12 13.9047 1.029 0.969 2.000

13 14.4880 -1.009 0.991 2.000

14 14.8490 -1.002 -0.997 1.999

15 15.0983 0.939 -1.057 2.000

16 11.1210 -1.127 0.847 1.987

17 11.8267 0.746 1.201 2.000

18 12.2723 -0.911 -1.081 2.000 -iZ

19 12.6633 1.391 -0.252 1.999

20 12.5054 0.475 -1.332 2.000

21 11.1222 -1.376 -0.327 2.000

22 11.3869 -0.793 1.170 1.999 i
23 11.5757 0.968 1.030 2.000

24 11.0369 1.136 -0.837 1.991

25 10.0579 -0.033 -0.033 0.002

",-,-'V-''. ,' ' -' ' '- - " " -" -" ," -,-- • • . . . . '.".
: • "% -" '-° w""% %"%"",'. "- *'-"-"-" " " '--" " -- " "" 

TM

-' ","• J .w % -" - - " .. .. ... " .",
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As shown in Table 4, max tr[A V(x A1 )] satisfies the
24-' 424' -24

stopping rule in Theorem 2 with 6- .06. We conclude that the

design points in Table 4 together with the initial design points

form a nearly D-optimal design. In Table 5 we can see the change
'-1

in the values of the elements of the , £ , and A matrices.

TABLE 5
-1

THE ESTIMATES FOR E, Z , and A (EXAMPLE 2)

i "2 211 212 22 2N0+N-1 011 a 12  022 -o0a 2

7 .258 .030 .078 4.061 1.551 13.477 .210 .

8 .275 .080 .385 3.872 0.807 2.767 .247 %

9 .266 .131 .418 4.447 1.396 2.832 .393

10 .519 -.052 .532 1.945 -0.189 1.899 .098

11 .577 .162 1.213 1.801 0.240 0.857 .193 6 .

12 .772 -.024 1.215 1.296 -0.026 0.823 .025

13 .713 -.028 1.197 1.404 -0.032 0.836 .030

14 .669 .125 2.352 1.510 0.081 0.430 .100

15 .622 .091 2.305 1.617 0.064 0.436 .076

16 .757 .125 2.164 1.333 0.077 0.467 .097

17 .710 .128 2.096 1.425 0.087 0.482 .105

18 .828 .494 2.903 1.338 0.223 0.382 .312

19 .831 .720 3.514 1.462 0.299 0.346 .421

20 .816 .660 3.343 1.459 0.288 0.356 .400

21 .525 .414 3.005 2.137 0.295 0.374 .330

22 .753 .515 3.270 1.489 0.235 0.343 .328

23 .808 .485 3.368 1.353 0.195 0.325 .280

24 .760 .459 3.210 1.440 0.206 0.341 .294

Example 3. Here the responses and the controllable variables are *

the same as in Example 2. The experimental region is

x " {x(Xltx 2) :-v'2 x lX 2 ,; €2} and.,.

2-f4 146

%/.¢ <



1.000 .90

S.900 3 .000]

Thus,

1.370 -0.411 1 52C7

I- t  and A . .. ... 0,

-0.411 .457 -.520

The fitted models areL-52

Y- 10 + 8llX1 + 1l2X2 + 61 12 xlx 2 +
(22)

Y2 20 + 82xli + 822x2 + 82 12X 1x2 + $2 11x: + 8222x2 + e2 "

The initial design for this example was chosen arbitrarily and is

given in Table 6.

TABLE 6

THE INITIAL DESIGN (EXAMPLE 3)

1 ---

xi x2

0 -1.414

1.414 0

0 0

A nearly D-optimal design for this example consists of the

augmented design points given in Table 7 and the initial design

points given in Table 6. At the 15th iteration (No + N = 22 in

Table 7) the stopping rule is satisfied with 6 - .07. The ele- ,. .

ments of and at these iterations are given in Table 8.

9 t .t .%j,



TABLE 7

THE AUGMENTED DESIGN POINTS FOR A D-OPTIMAL DESIGN (EXAMPLE 3)

L, 0o+N max tr[AN A(,¢oNI 0N 1 ]  xt x2 -
x +N-ly3E 'N +N-l' -N+N-1

8 39.0014 -1.414 1.414

9 45.5963 -1.414 -1.414

10 41.6899 1.414 -1.414

11 33.3881 1.414 1.414

12 15.1616 -1.414 -1.414

13 15.9091 1.414 -1.414

14 17.1823 -1.414 1.414

15 14.8294 0.059 -1.414

16 17.6392 1.414 1.414

17 14.1912 -1.414 0.002

18 12.4739 -1.414 -1.414

19 13.0994 -1.414 1.414

20 13.7740 1.414 1.414

2( 14.3783 1.414 -1.414

22 10.0685 -1.405 1.384

.
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TABLE 8

-1"
THE ESTIMATES FOR Z, Z , AND A (EXAMPLE 3)

N N- 11 _12 ;22N0 +N- 11 I 12  a2 2  -a1 2

7 .347 .821 2.390 15.457 5.311 2.243 .902

8 .314 .745 2.111 19.429 6.857 2.893 .914

9 .366 .656 1.888 7.218 2.507 1.400 .789

10 .743 .373 1.863 1.496 0.300 0.597 .317

11 .694 .405 1.753 1.666 0.385 0.659 .367

12 .701 .277 1.705 1.525 0.248 0.627 .254

13 .643 .280 1.577 1.685 0.299 0.687 .278 .

14 .671 .563 2.884 1.781 0.347 0.414 .404

15 .634 .553 2.716 1.917 0.390 0.448 .421

16 .738 .506 2.526 1.571 0.314 0.459 .370

17 .977 .856 3.166 1.342 0.363 0.414 .487

18 .815 .855 3.607 1.634 0.387 0.369 .499

19 .816 .950 3.906 1.708 0.415 0.357 .532

20 .791 .880 3.714 1.717 0.407 0.366 .513 "":'""

21 .759 .823 3.546 1.762 0.409 0.377 .502

4.1 Choice of the Initial Design.

It is interesting to note that in the above examples, most of

the augmented support points of the D-optimal designs are boundary

points of the experimental region. This suggests that the

boundary of the experimental region may be an optimal location for

the support points of a D-optimal design. Therefore, boundary

points of X can be appropriately chosen as initial design points.

In order to investigate this possibility, Example 3 was again

considered with in initial design consisting of boundary points of

X. The results given in Example 4 below indicate that the use of
the new initial designs can reduce the number of iterations

required for the convergence of the procedure.

Z %
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Example 4. The models, the experimental region, and the value of

Z for this example are as in Example 3. The initial design is

given in Table 9.

TABLE 9

THE INITIAL DESIGN (EXAMPLE 4)

1.414 1.414

1.414 -1.414

-1.414 1.414

-1.414 -1.414

0.000 1.414

1.414 0.000

0.000 -1.414 r
This example shows that the use of an initial design con-

sisting of boundary points of X reduces the number of iterations

required to stop the procedure. The stopping rule was first

satisfied with 6 - .02 at the 2nd iteration (No + N-9 in Table

10). However, the value of the max trace function at this itera-

tion was not stable enough as can be seen from Table 10. This is

also reflected by the lack of stability in the values of the ele-

ments of Z , -, and A (see Table 11). The sequential procedure

was, therefore, continued until the 11th iteration (N0+N 18 in

Table 10) at which the stopping rule was satisfied with 6 , .06. "

-'I
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TABLE 10

THE AUGMENTED DESIGN FOR A D-OPTIMtAL DESIGN (EXAMPLE 4) . "

No+N max trLA, +N-1i- ANNN_1,  0 )] x x2 .

0 !x 0 V(x CN 000 -0.001+N1

8 16.8823 -1.414 0.000

9 10.0199 0.000 -0.001

10 13.5012 -1.414 1.414 4

11 14.8885 1.414 -1.414

12 16.2449 1.414 1.414

'3 17.5928 -1.414 -1.414

14 10.9800 -1.414 1.414 q

15 11.8062 1.414 -1.414

16 12.6181 1.414 1.414

17 13.4383 -1.414 -1.414

18 10.0505 1.414 1.414

TABLE 11

THE ESTIMATES FOR E, Z- , AND A (EXAMPLE 4)

1 +Nlal 11 ^12 ;22-N0 N- I l12 022 a - 2 -a1 2

7 0.309 0.137 0.304 4.039 1.821 4.111 .447

8 0.294 0.399 0.752 12.255 6.506 4.784 .848

9 0.257 0.478 1.26 '3.020 4.913 2.644 .837

10 0.454 0.199 1.522 2.334 0.306 0.697 .239

11 0.419 0.210 1.651 2.552 0.3.5 0.647 .252

12 1.067 0.777 2.508 1.210 0.375 0.515 .475

13 1.751 0.861 2.090 0.716 0.295 0.600 .450

14 1.499 1.081 3.105 0.890 0.310 0.430 .501 '.-

15 1.919 1.249 3.065 0.709 0.289 0.444 .515

16 1.577 1.032 2.781 0.838 0.311 0.475 .493

17 1.569 1.000 2.653 0.838 0.316 0.496 .490

;.r. .. ,

.? -

':""- - , J -i:' "-"" - -''4'1:- • - -€i #-..'2'- ,.'.:'-Ac> VT, .- ..-



5. CONCLUDING REMARKS

The main advantage of the sequential procedure we have

proposed is that ; (the variance-covariance matrix of the

responses) is not required to be known. The basic idea used in

the sequential procedure is to choose the point xN0+N whichNo~~~~~~~ +N+NN N 0 NI;I
0*

maximizes the trace function, that is,

tr[A , , 4
0 0 0.

m -N +N- I
(-E' N +N-11 'N +N-1

max 0 0 0

where N0 is the number of points in the initial design. The

procedure is continued until max tr AN0+N-lv(x N +N-1

- )is sufficiently close to p.
*0

The examples described earlier show that our procedure has a

fast rate of convergence in that the quantity

max tr N +N-lV(K' 'N +N-1' A -1
XEX 0 0 0+N_-

reduces to its anticipated limit, namely p quite rapidly. In

addition, a comparison of the estimated values of Z and-N +N-1
0

N +1l1demonstrate that A N +N-1 stabilizes much faster. This
0 0

supports the idea of using AN+N-1 in the procedure in place

of N + NN -
*00

The examples also indicate that the use of initial designs .

consisting of boundary points of X does reduce the number of

iterations required to meet the stopping rule. Therefore, the

boundary of the experimental region can be an appropriate choice

for the selection of the initial design points. It should be ,

noted, however, that this is a conjecture based only on the above .

examples and has no theoretical justification. We feel that this

is a topic which should be investigated in future research.
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