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CHAPTER I INTRODUCTION

The computer recognition of roads on remotely sensed imagery

has been one of the fundamental tasks in remote sensing.

Many attempts have been made on satellite images or aerial

photographs but few on radar images. Our goal is to locate

roads (possibly a road network) on radar imagery. The radar

image differs from other remotely sensed images in that it

is formed by an active system while others are formed by

passive systems. As a result, it has different properties

and may need somewhat different image processing techniques

such as noise removal, feature detection, and segmentation.

Here we propose a facet based road detection procedure for

radar imagery.

In this chapter, we overview this report after the short

discussion of a radar system and its characteristics.

1.1 RADAR IMAGE SYSTEM

AN Radar is the acronym for Radio Detection and Ranging. Radar

has been developed for navigation, target detection, and re-

connaissance imagery since the reflection of radio waves from

solid objects was discovered. Radar imagery is acquired by

a complex system. A typical radar system consists of a

Chapter 1 INTRODUCTION 1
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S.

transmitter, a receiver, antennas, and a recoder (see figure
1). 4

The transmitter emits a series of .short pulses of, generally,

a single wavelength through the transmitting antenna. A

portion of the energy incident upon a surface is scattered

back toward the receiving antenna. The receiver takes the

output of the receiving antenna and amplifies its strength.

- The result is sequentially recorded in the recoder or dis-

played as a raw image for the user. To obtain a photo-like

radar image, the recorded backscatters are further compiled

and processed through a complicated imaging system, the study

of which is beyond the scope of this report. A typical radar

image is shown in figure 2.

The backscatter from the terrain to the receiving antenna is

called radar return. The strong radar returns make a image

brighter. The intensity of radar returns in a system is de-

termined by the terrain properties such as complex dielectric

constant and surface roughness. The effect of dielectric

properties on the radar returns are usually not very strong

and are therefore neglected in the radar image interpreta-

tion. The surface roughness of terrain is generally the

dominent factor in determining the return intensity, which

is in turn the gray-tone of the image. Surfaces of terrain

can be grouped into three categories according to the pattern
40

of the radar returns [1]:

Chapter 1 INTRODUCTION 2
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Figure 1. Structure of radar system

A smooth surface - it specularly reflects all of the

a. incident energy in the opposite direction.

A rough surface - it diffusely scatters the incident

energy in all directions.

An intermediate surface - it specularly reflects a

portion of the incident energy and diffusely scatters

a portion.

The classes of surfaces are closely related to radar wave-

length and to the depression angle, which is defined as an

angle between the horizontal line and the incident line. At

a longer wavelength, the reflection of the incident energy

tends to be more specular so that a resolution cell once

classified at a shorter wavelength as a rough surface may

Chapter 1 INTRODUCTION 3
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Figure 2. A typical radar image

have to be reclassified as an intermediate or smooth surface.

The relationship between depression angle and surface

roughness is shown in figure 3.

Rough surfaces produce almost uniformly strong returns at all

depression angles. On the other hand, smooth surfaces produce

little or no returns at most of the depression angles except

at very high angles near vertical, where the returns are very

strong. As a result, smooth surfaces such as still-water

surfaces, dry lake beds, paved roads, and airport runways

usually show up dark in radar images, whereas rough surfaces

Vsuch as coarse gravel show up bright. In addition to rough

surfaces, metalic objects and corner reflectors such as

bridges and buildings also produce strong radar returns.

Chapter 1 INTRODUCTION 4
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return rough surface
intensity

smooth surface

----------- ------------- I ------------ ---
90 60 45 30

depression angle

Figure 3. Return intensity: a function of surface
roughness and depression angle

Other important factors influencing the appearance of radar

images are shadows and highlights which are produced due to

the topography of the terrain and the look direction. For

example, the oblique illumination of a Side Looking Airborne

Radar (SLAR) produces strong returns, called highlights, from

*the sides of ridges facing the antenna, and no returns,

called shadows, from the other sides (see figure 4).

A radar look direction can enhance or subdue linear features

W on a radar image.

In this section, we overviewed a radar system and its char-

%[ acteristics, which would give us the insight of a road ap-

pearance in a radar image. Based on this insight and general

road characteristics, our road detection project has been

Chapter 1 INTRODUCTION 5
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Figure 4. Highlight and shadow

started. The next section overviews the road detection pro-

cedure.

Chapter 1 INTRODUCTION 6
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1.2 OVERVIEW

The ultimate goal of this report is to build an effective

procedure which can locate road networks on radar imagery.

This goal is divided into three subgoals. The first subgoal

is to detect linear features on a radar image since we know

roads appear as linear features in an image. The detected

linear features may include non-road objects such as rivers,

water passages, radar shadows, noise, and various artifacts.

The second subgoal is to screen those non-road linear fea-

tures. The surviving linear features, called road segments,

are not usually connected to each other. The third subgoal

is to connect those road segments.

The first subgoal starts with approximating a discrete dig-

ital image as continuous gray-tone intensity surface, which

is expressed as a linear combination of tensor products of

two set of discrete orthogonal polynomials. Using these con-

tinuous surfaces, we can obtain linear features analytically

by looking for the first directional derivative zero-

crossing.

For the second subgoal, the relation between the properties

of roads appearing in a radar image and the statistics of the

maximally connected linear features, called a component, is

1.2 Overview 7
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analized. The properties of roads are connectivity, local

straightness, contrast,* etc. The statistics derived from a

component are the number of pixels, average contrast, average

angle difference, average gray-tone value etc. Using these

properties and statistics, the road segments are differen-

tiated from other linear features.

The third subgoal employs a dynamic programming algorithm

which finds the minimum cost paths between disconnected road

segments. The cost used here is evaluated for each pixel by

the cost evaluation function which measures how close the

statistics of a pixel are to those of an assumed real road

pixel.

Chapters 2 and 3 deal with the road detection procedure,

which is the main body of the report. Especially chapter 3

elaborates the principle and application of the dynamic pro-

gramming in image processing. Finally, chapter 4 shows the

experimental results on a few SAR (Synthetic Aperture Radar)

images.

1.2 Overview 8
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CHAPTER 2 LINE DETECTION

2.1 INTRODUCTION

To detect linear features we use the modified version of the

ridge-valley algorithm originally suggested by Haralick [2].

In this chapter, the algorithm is discussed from the view

point of road detection on a radar image. The road on a radar

4 image usually appears as a dark line which can be loosely

defined as a connected sequence of pixels having signif-

icantly lower gray-tone intensity than the neighbors. In a

continous gray-tone surface, the dark line would be viewed

as a valley which could be computed analytically; the bottom

of a valley would occur where the first directional deriva-

tive of the surface has a zero-crossing and the second de-

rivative is positive. Such a surface can be obtained from a

discrete image by a facet model generating function which is

discussed in section 1. Then, a facet based line detection

algorithm is discussed in section 2.

"p

2.2 FACET MODEL

The idea of using a fitted continous model in image process-

ing has been proposed [3]. A fitted model for image data is

Chapter 2 Line Detection 9
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called a facet model. A facet model can be produced by a

facet generating functi6n K;

K D(I) x 0 x (B) x (I) -> f (R) (4.2.1)

The D(I) is discretely sampled data function, that is a dig-

ital picture. The 0 is the order of fit. For example, when

using the second order of fit, the resulting facet model will

be a quadratic polynomial. The index set (I) is the domain

* on which the discretely sampled data function D(I) and a set

of basis functions (B) are defined. The (B) is a set of

discrete orthogonal functions. The f (R), a real valued

function, is called a facet model. Here, we discuss how the

function K maps arguments into a facet model when (B) is a

set of discrete Chevyshev polynomials, 0, the third order of

fit, and (I), a two-dimensional integer index set {(r,c)}
where -n 5 r 5 n and -m 5 c 5 m. Since it is the third order

fit and (I) is a two-dimensional index set, it is assumed

that the continous gray-tone intensity surface f, from which

D(I) is discretely sampled, takes the parametric form of a

bicubic polynomial defined in the row-column coordinates.

Generally, the function f is expressed by

f(r,c) = k + k2r + k3 c + k4 r2 +k 5 rc* k6 c
2

+ k r3 + k r2c + k rc2 + k c (4.2.2)

7 8 9 10

Chapter 2 Line Detection 10
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The value f of function K is then obtained by estimating the

coefficients of Eq. (2.2.2). The least square error method

directly applied to Eq. (2.2.2) can give the solution to the

problem of estimating the coefficients. However, the compu-

tation is very complex. An alternative is that after ex-

pressing the function f as another form, a linear combination

of discrete orthogonal polynomials (B), the new form of the

function f is used in the same method. Let (B) be (R0

R 1. Then, the function f is expressed by
n

N-1
f(r,c) = bn Rn (r,c) (4.2.3)

n=0

By least square error method, the coefficients b0 , .. bn

of Eq. (2.2.2) are estimated instead of the coefficients 'l,

ko10 of Eq. (2.2.2). By doing so, we can use the

orthogonality of the basis functions (B), and hence achieve

much less complex computation.

The discrete Chevyshev polynomials defined on the integer

.* index set ((r,c)) are constructed inductively in the follow-

* ing way. Let Pn be the nth order polynomial. Define P0 = 1

and suppose Pl(r) ... , Pni(r) have been constructed. Then

P (r) must be orthogonal to each polynomial Po(r),
n

Pni(r). That is,

Chapter 2 Line Detection 11



E Pk(r) Pn (r) = 0, for all k 5 n-I (4.2.4)
r

"""n n-I
where Pn (r) = r + a n-i r + ... + ar + a0. Solving the

unknowns a0, .... an 1 from the n linear equations, we con-

struct P (r). The set (P0 (r), ... Pn (r)) is a one-nn

dimensional discrete orthogonal polynomial set for the

integer index set {r). A two-dimensional discrete orthogonal

polynomial set for the integer index set {(r,c)) can be eas-

ily constructed by taking the tensor products of two one-

0 dimensional sets, {Po(r), ... P n(r)) and {Q .(c).

-.- Qn (c)). For example, on the two-dimensional index set (-1,

*. . 0, 1} X (-1, 0, 1), the discrete Chevyshev polynomial set can

be defined as the tensor products of (1, r, r' - 2/3) and (I,

c, c' - 2/3), which yields (1, r, c, r' - 2/3, rc, c2 - 2/3,

r(c' - 2/3), c(r' - 2/3), (r2 - 2/3)(c 2 - 2/3)).

Now we go back to the problem of estimating the coeffi-

cients of Eq. (2.2.3). Let D(r,c) be the discretely observed

data function. Then, the square error is expressed by

N-I
e= [D(r,c) - Z b R (r,c)]2  (4.2.5)

(r,c) n=0 n n

The coefficient, b. of the ith order discrete orthogonal-

polynomial R.(rc) can be computed by the partial derivative

of e 2 with respect to b

Chapter 2 Line Detection 12



ae 2 N-1
--= -2 1 [D(r,c) Z b nR n(r,c)] [R.i(r,c)I (4.2.6)
3i (r,c) n=0O

Using the orthogonality of the polynomials R0 (r,c),

RNl(r,c), we know

Z [R.i(r,c) R.(r,c)] = 0, for all j 0 i (4.2.7)
(r,c)1

Thus the Eq. (2.2.6) is reduced to

ae2

- 2 b. iE [R.(r,c)]2 - 2 Z [D(r,c) R.(r,c)I
3bi (r,c) r c(4 2 8

Setting the partial derivative of e' with respect to b to

zero we obtain the estimate bi of the coefficient b..*

b. Z [D(r,c) Ri(r,c)I/ Z [Ri(r,c)]2  (4.2.9)
1(r,c) 1(r,c)1

It should be noted that each coefficient b. (i :5 N-i) is just
1

a linear combination of the data values D(r,c). In other

words, b! is simply obtained by multiplying the data value

D(r,c) by the weight

R.(r,c)/ I [Ri(r,c)]2  (4.2.10)
1 (r,c)1

Chapter 2 Line Detection 13
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for each index (r,c). Once the coefficient bi (i S N-i) have

been computed, the estimate f of the continous function f

is given by

, N-i
f (r,c) = I bn R n(r,c) (4.2.11)

n=O

Eq.(2.2.11) gives the estimates of the coefficients kI ...

k10 of the bicubic polynomial Eq. (2.2.2).

In this section, we discussed one instance of facet models

which can be generated by the facet generating function K.

It is notable that various facet models can be generated by

changing arguments in the function K. Image processing tech-

niques based on a facet model have been developed. Among them

are the directional derivative edge detector [4] and the

ridge-valley finder [2]. In the next section we will see a

line detection algorithm based on a bicubic facet model,

which is the modified version of the ridge-valley finder, and

is used for the detection of lines having a constant width.

2.3 ALGORITHM

The canonical form of the fitted bicubic surface for each

pixel's neighborhood of an input image is

f(r,c) kI + k2 r + k3c + k4r2 + k5rc + k6 c2

Chapter 2 Line Detection 14
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+ k7 r3 + k8 r
2c + k9 rc

2 + k1 0c
3  (4.3.12)

The first directional derivative of a function f in the di-

rection a, fl is defined by

f(r + d sina, c + d cosa) - f(r,c)
f (r,c) = lir----------------------------------

d->O d
af af

= -- (r,c) sina + -- (r,c) cosa (4.3.13)
ar ac

Similarly, the second directional derivative of f is defined

by

,, 2f 8 2 f

f (r,c) -- (r,c) sin 2a + 2 ---- (r,c) sina cosa
ar2  arac

a 2 f
+ --- (r,c) cos 2a (4.3.14)

ac2

The direction a for which f" is an extremum can be determined

by setting the derivative of f" with respect to a to zero.

af" a 2 f a 2 f a2 f
--a =- --- --- ) sin2a + 2 cos2a (4.3.15)

aa ar 2  ac 2  arac

Solving Eq. (2.3.15) we obtain

sin2a = - (-2a 2 f/arac)/D and
+

cos2a = - (a 2 f/ar 2 - a 2f/ac 2 )/d (4.3.16)

where

Chapter 2 Line Detection 15
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-.

D = [ 4 (a2f/arac)2 + (a2f/ar 2 a 
-af/ac2)2]°.5

Substituting Eq. (2.3.12) into Eq. (2.3.16), we can get the

direction a at the center of each pixel, which is the direc-

tion normal to an assumed valley line through the pixel.

a = + 0.5 tan - k5/(k 6 - k (4.3.17)

Using the angle a to constrain a position (r, c), we know

r p sina and c =p cosa

Thus, the cross-section of the surface in the direction

through the origin is given by

f a (p) = Ap3 + Bp 2 + Cp + k (4.3.18)

where

A = k7 sin 3a + k 8 sin'a cosa + k9 cos2 a sina

+ klo cos3 a,

B = k4 sin 2a + K5 sina cosa + k6 cos
2 a, and

SC k2 sina + k3 cosa. (4.3.19)

The typical curve of Eq. (2.3.18) is shown in figure 5.

Chapter 2 Line Detection 16
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if a(P)

I - W ------
GU --- - - - - - - - - - - - - - - -

IiI

I I I line range

GL-----------------------------------------------

I I

L R1 10 R2 U

--------- window size---------

Figure 5. Cross section of surface

In the figure R1 and R2 are the zero-crossings of Eq. (2.3.18

) and L and U are the lower and upper limit of domain which

is determined by a window size. Assume that RI is closer to

the center of pixel than R2. Then we can declare the pixel

as a line pixel if all of the following conditions are sat-

isfied:

1. The first derivative of Eq. (2.3.18) has a zero-

crossing sufficiently near the pixel's center and

the second derivative is positive at the zero-

r crossing point;

d2 f (R1)
.R11 < threshold1  and ---------- > 0 (4.3.20)

Sdp
2

Chapter 2 Line Detection 17
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2. The curvature of the curve is big enough;

I d2f (0) I
> threshold (4.3.21)

I dp 2  I2

3. The gray-tone of the pixel is within a proper line

range;

threshold3 < f (Rl) < threshold4  (4.3.22)

4. The contrast of the pixel with its surrounding is

sufficiently large;

MIN [fa(L), fa(R2)1 - f (RI) > threshold 5  (4.3.23)

(The thresholds are provided by the user)

Once a line pixel is identified, it is assigned four property

values which are shown in figure 1I and defined as follows:

1. Depth, D = f (RI)

2. Strength, S = MIN [f (L), f (R2)] - f (RI)

3. Angle, A =a

4. Width, W = the number of pixels whose gray-tone

values are in the line range.

Chapter 2 Line Detection 18
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These property values can be utilized in further processing.

For example, by setting W to 2 we can detect two pixel wide

lines and then by restricting A we can find two pixel wide

lines at a certain orientation.

In this section we discussed the line pixel detection algo-

rithm on a pixel by pixel base. That is, based on the bicubic

facet model for each pixel, we looked for a zero-crossing

point which satisfies a set of constraints. If such a point

was found within its neighborhood we declared the pixel as a

line pixel.

2.4 EXPERIMENTS

The line detection algorithm was tested on a few SAR images.

The results are dependent on the combination of the thresh-

olds. Figure 6 through figure 8 show the effects of the

thresholds for which a 100 x 100 subimage shown in figure 23

N.4 was used as a test image.

N The threshold1 is called radius. Figure 6 shows how the ra-

* dius affects the results. It is noted that a bigger radius

value gives thicker lines. For our purpose, a radius between

1.2 and 1.5 turned out to be the most effective.

Chapter 2 Line Detection 19

."a J.. _4



The threshold called curvature, has the effect of elimi-

nating the artifacts but also has a tendency to break a line

into shorter pieces, as shown in figure 7. A curvature

around 750 was best for the image with a gray-tone scale of

0 through 65,535.

The threshold3 and threshold4 give the gray-tone bounds

" within which line pixels should lie. Using these thresholds

we obtain lines in our intended gray-tone range. They have

the same effect as the intensity line operator described in

Fischler et al [5]. Their effects on the result are shown

in figure 8.

Threshold5 , called contrast, reflects the human visual re-

cognition of lines. That is, a vivid line in a bright area

may not be as perceptible as it is in a darker area. As a

result, the higher contrast threshold gets rid of relatively

vague lines and tends to loose useful information. For our

next process which requires a lot of information, this

threshold had to be lowered.

The total results of the line detection technique are shown

in figures 9 and 10.

Chapter 2 Line Detection 20



Figure 6. The effect of radius: Upper left (radius
0.75), Upper right (radius = 1.00), Lower left
(radius =1.50), Lower right (radius 2.00)

Chapter 2 Line Detection 21
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Figure 7. The effect of curvature: Upper left (curva-
ture = 100), Upper right (curvature = 500),
Lower left (curvature =750), Lower right
(curvature =1000)
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*Figure 8. The effect of ga-tone range: Upper left(equiv. range = 100- 00,Upper right
(equiv. range =2000 -- 3000), Lower left
(equiv. range =1500 -- 2500), Lower right
(equiv. range =1800 -- 2700)
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a. Original image

b. Line image

Figure 9. Huntsville area: Curvature =750, Radius

-. . . . . .... *:. . . .

1.2, Equv. rang =---- tr 300 onrs

800, Wit" tr
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a. Original image

b. Line image

Figure 10. Elizabeth city area: Curvature =750, Ra-
dius = 1.4, Equiv. range = 1800 thru 2700,
Contrast = 1000, Width 1 thru 4
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CHAPTER 3 ROAD DETECTION AND CONNECTION

3.1 INTRODUCTION

The line detector discussed in the previous chapter gives

plenty of information about a line pixel such as strength,

gray-tone value, angle, and width. However, the information

provided by the detector includes many non-road linear ob-

jects. At the beginning of our research, these non-road lin-

ear objects seemed to be easy to remove by adjusting the

thresholds of the line detector. This resulted in the waste

of time in search of a proper combination of the thresholds.

But we soon learned and developed the idea of screening the

linear features on a connected component by connected compo-

nent base, not on a pixel by pixel base. This screening

technique uses the statistics of each connected component.

To get the neccessary statistics efficiently, the line pixels

are connected first, using 8-connectivity. Each maximally

connected set of pixels is called a component. Each component

is then assigned an integer identifier. The statistics can

be derived from each component. The details are discussed in

section 2.

a
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Other important factors in the screening process are the road

characteristics appearing in radar imagery. Those character-

istics are:

1. The road should be connected.

2. The road should be a linear feature.

3. The road should be sufficiently straight or smoothly

curved.

4. The road should be contrasted with its surroundings.

5. The road should have a sufficiently low gray-tone

intensity.

On the basis of these road characteristics in conjunction

with the statistics, the components are screened.

3.2 ROAD DETECTION

The road detection is closely related to the road connection

which will be discussed in the next section.

If the road connection procedure did not exist and our system

ended with road segments detected from the linear features,

the road detection part would have been greatly different.

Figure 11 illustrates the difference through the example of

a very simple road network (figure la). Figure llb shows the

linear features detected from figure 1la. In the system

without a connection procedure, the road detector would be

Chapter 3 Road Detection and Connection 27
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Figure II. Detection and connection

designed to detect as many road segment as possible even

though the result may include a few non-road linear features

(see figure lic). In the system with a connection part, how-

ever, the result shown in figure llc is not very desirable

because the connection procedure will connect all segments

including falsely marked road segments, which yields a dif-

ferent network (figure lid). To make it worse, it would take

a longer processing time than the result with fewer segments

because the connection procedure would be invoked more fre-

quently. The most desirable result of the road detection in

the system with a connection part is shown in figure lie,
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which requires only one invocation of the connection proce-

dure to reconstruct the original network (figure 11f).

Therefore, the road detection in the system with a connection

procedure should give the smallest number of road segments

that can reconstruct the original network. The road detection

used in this report can be viewed as a thresholding procedure

with a simple combining mechanism. This procedure uses the

statistics to threshold the components, and then combines any

pair of surviving components which are one pixel apart, to

reduce the number of road segments. These statistics are

derived from each component. Those are the number of pixels

in the component (N), the mean line strength (MS), the

1% -'

standard deviation of line strengths (DS), the mean angle

difference (MB), the mean gray-tone value (MG), and the

standard deviation of gray-tones (DG). These statistics are

totally dependent on the set of thresholds used in the pre-

vious line detection. The road detection is based on the re-

lation between these statistics and road characteristics

appearing in radar imagery. The intuitive meaning of each

statistic is discussed next.

(1) The number of line pixels in a component (N): This value

is important for identifying the real road segment. A road

network is completely connected and the things that break the

network into pieces are the noise in the image and the pos-

sible error in our bicubic surface. In any noisy area in a
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-" image, unless the area is completely damaged by the noise, a

road segment would hav6 at least a certain number of con-

nected pixels. Under the assumption that the N value of a

non-road component is relatively small, a component with a

sufficiently large N is considered as a road segment. The

threshold against N should not be too small nor too large

because too small a threshold would mistake non-road compo-

nents as road segments and too large a threshold would fail

to pick up road segments. An appropriate value of the

S Othreshold against N may vary image to image. In our exper-

iments the most effective value is between 8 and 12.

(2) The mean line strength of a component (MS): The MS value

-:' indicates the contrast of a component with its neighboring

region running parallel to the component. The contrast of

*a component for a likely road segment is assumed higher than

that of a non-road component. This assumption is not always

true and so the real road components are thrown away as well

* as non-road components when thresholing against this parame-

ter. However, in many cases, giving up a few real road seg-

ments can get rid of many non-road components. The line

07' pixels in the abandoned road segments are re-used for con-

necting the road segments later in the road connection part.

(3) The standard deviation of line strengths (DS): The line

strength (contrast) of each pixel in a component for a likely

Chapter 3 Road Detection and Connection 30
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road segment is more uniform than that in a noisy component

because the gray-tone intensity of a radar image is locally

homogeneous. Hence, the smaller DS value has a component the

more likely the component is a road segment especially when

the component is not too large to lie on two or more different

regions.

(4) The mean angle difference in a component (MB): The MB

value is a good measurement of the staightness of a compo-

nent. The angle difference of a line pixel is defined in a

component as a difference in angles between adjacent pixels

with the same label as itself. Since a line pixel usually has

more than one adjacent pixel with the same label, the prior-

ity of the adjacent pixels are set up in a way that the angle

difference of two adjacent pixels may not be used twice if

possible. The priority set-up used in our experiment is shown

• .- in figure 12.

" . The pixel with the highest priority (the lowest number) is

chosen as the adjacent pixel of center pixel X if the pixel

and the center pixel are in the same component. Ideally, a

0perfect circle composed of 36 pixels may have 10 MA and a

0straight line has 0 MA. In reality, the MA value does not

reflect the true situation accurately. The inaccuracy is

mainly due to the error involved in the discrete data. In our

experiments, components with MA values less than 150 were

considered as candidates to be real road segments.
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7 4 8

3 X 1

6 2 5

Figure 12. The priorities of the eight adjacent pixels

*(5) The mean gray-tone value of a component (MG): This value

is another important tool for differentiating a component for

a possible road segment from a non-road component. Even if

a component has a relatively high MS value without a suffi-

. cient darkness, the component cannot be a real road segment.

It is because the surface roughness of a road segment does

not vary enough to change the gray-tone, place to place, in

the same image. The MG value of a road component should be

in a certain range of gray-tone. Although this range is de-

pendent upon an image brightness it is usually in between

22,000 and 28,000 in a gray-tone scale of 0 to 65,535 for the

collection of radar images in our library.

. (6) The standard deviation of gray-tone values (DG): This

is a suplementary tool to the mean gray-tone. The gray-tone

values of a non-road component is assumed to have a greater

S- standard deviation than those of a component for a likely

road segment. Re-thresholding the components against the DG

' "values can keep the surviving non-road components from being

* mistaken as road components.
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3.3 ROAD CONNECTION

To complete the road networks all the detected road seg-

ments are connected using the non-road pixels, whether they

are line pixels or not. Among many possible connecting paths

between two road segments, the path with the maximum likeli-

hood (or the minimum cost) is chosen by a dynamic programming

method. To do so all non-road pixels are evaluated by a cost

evaluation function. The technique of dynamic programming

and the strategy of cost evaluation function are the main

subject of this section.

3.3.1 DYNAMIC PROGRAMMING

Dynamic programming is a very useful approach to optimiza-

tion. It is based on the "principle of optimality"; any

subpolicy of an optimum policy must be optimum itself 161.

The optimality principle is applied to finding the minimum

cost path between two road segments. Similarly it holds that

any subpath of the optimum (or the minimum cost) path from

one (starting) segment to another (goal) segment must be op-

timum. The relationship of the subpath to the whole path can

be defined recursively. The technique for solving an optimum

path is generally described and then a tailer-made algorithm

for our purpose is presented.
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As shown in the figure 13, the minimum cost path from S to T

is sought. Let X i (i =1, 2, ... , n) be a set of pixels, one

of which must be part of a possible minimum cost path from S

to T.

Let g(a,b) be the function which gives the minimum cost from

a to b. Now suppose that the minimum cost path between S and

T contains Xk. Then, the minimum cost from S to T is given

by

g(S,T) = g(S, Xk) + g(Xk , T) (5.3.24)

In general, the k of Xk is unknown in advance and the minimum

cost is rewritten by

g(S,T) = MIN [ g(S, Xi) + g(Xi , T) 1 (5.3.25)
i11

Let's consider the special case where X. 's are the eight
1

neighbors of the goal T and g(Xi. T) is the constant, CT for

all X.i's, which is the cost of advancing from each of the X 's

to T (see figure 14)

Then, the minimum cost from S to T can be expressed by

g(S, T) = MIN g(S, Xi) + CT (5.3.26)

Similarly each of g(S, X.)'s is reduced to
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Xl

X2

S T

Xk

Xn

Figure 13. The minimum paths between S and X. and T

g(S, X.)= MIN g(S, Y.) + CX. (5.3.27)

" where Y. (j = 1, 2, .... 8) are the eight neighbors of X. andJ

CX is the cost of advancing from the Y.'s to X. Accordingly

we obtain the minimum cost from S to T by

g(S, T) = MIN ( MIN g(S, Y. + CX.) + CT (5.3.28)

This procedure is repeated recursively until we get

g(S, T) = MIN ( MIN (... MIN g(S, Zn) +
ni j n

+ CX.) + CT (5.3.29)

where Z 's are the eight neighbors of the starting pixel, S

and g(S, Z n)'s are the known values, CZn ', the costs of ad-

vancing from S to Z 's.
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* S X1 X 2 X 3

, . X4 T X5

+:-"X 6  X7  X8

6 7 8

Figure 14. The special arrangement of S, X., and T

This basic idea has been implementated in many application
* --

areas since it was presented by Ford [7]. The F algorithm

used in Fischler et al. [5] is an implementation nicely fit-

ted to the sequential image processing. It is noted that the

.. similar optimization method (e.g. the A algorithm in Duda

.4. and Hart [8]) can be derived from the best first search al-

gorithm. Our implementation can be thought as a extended* 0
version of the F , called F . In our experiments, the F0

algorithm is applied iteratively in the manner of minimum

cost spanning tree. Each road segment (a set of pixels) plays

the role of a vertex in a graph. Each result of the F algo-

rithm applied to each pair of segments plays the role of a

weighted edge between vertices. Our implementation details

are presented here. The prerequisite is a cost image on

which the algorithm is exercised. The cost image is computed

by a cost evaluation function which will be discussEd in -he

next section. For the time being, the algorithm is assumed
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to have it. The sets of starting pixels and goal pixels are

specified by the real rdad segment image in which every road

segment has a unique label. Consider the following procedure;

While the number of road segments is greater than 1

1. Set a segment to the starting segment.

2. Set the others to the goal segments.

3. Find the minimum cost path.

4. Assign the same label to the connected segments.

Each iteration of this procedure involves top-to-bottom (and

bottom-to-top) passes on the cost image, C, and updates the

total cost from the starting segment to each pixel, S(i,j)

according to the left-to-right rule, Eq. (3.3.30), and

right-to-left rule, Eq. (3.3.31);

S(i, j) = MIN [ S(i-1, j-1) + C(i, j),

S(i-1, j) + C(i, j),

S(i-1, J+1) + C(i, j),

| S(i, j-1) + C(i, j),

S(ij) ] (5.3.30)

S(i, j) = MIN [ S(i, j+1) + C(i, j), S(i, j) ] (5.3.31)

C 'R
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All the costs in each row are updated from left to right and

then from right to left using both of the rules. It usually

needs more than one pass until it stops fo. the next iter-

ation of the procedure. The terminating condition of the al-

gorithm is that further passes can not update the total cost

image S(i, j). The following example shows the operation of

the minimum cost path finding algorithm from two sets of

source pixels (subscripted by sl or s2) to two sets of goal

pixels (subscripted by g3 or g4). In the global sense, this

example can be viewed as the first step of the minimum cost

spanning tree through the four vertices (segments subscripted

by sl, s2, g3, or g4) with two designated starting vertices

(segments subscripted by sl and s2). The cost image C(i, j)

is shown in figure 15. The total cost image S(i, j) after

each pass is shown in figure 16 thru figure 18. As shown in

figure 17 and figure 18, there is no updates at the third

pass. Accordingly the algorithm is terminated right after the

third pass. The minimum cost path (the first edge to span)

is found between segments subscripted sl and g3, and its el-

ements are bracketed in figure 18. Those segments including

the path between them become a new segment for the next it-

eration (spanning). It should be noted that the algorithm

can be terminated even after the second pass. It is because

the smallest of the updated values, 5 is greater than the

minimum cost, 4 after the second pass (see the asterisked
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values in figure 17). In our experiments, both of the ter-

minating conditions werd implementated.

-. %-

3.3.2 COST EVALUATION FUNCTION

The cost of a pixel is defined as the expense for advancing

to the pixel from any of its eight neighbors. The basic

strategies of cost evaluation are:

" (1) A non-line pixel is penalized enough not to be

chosen as a part of road network since a network

can be constructed only with line pixels

(2) A line pixel is rewarded according to its

attributes which are the strength (S), angle

difference (B), and gray-tone distance (D).

The strength of a line pixel (S) is defined as the difference

in the values of the stationary points just as defined in the

earlier chapter. The definition of the angle difference of

a line pixel (B) is slightly different from that of angle

difference in a component which was discussed in the previous

section. The angle difference of a line pixel is defined as

follows. First, two neighbors are selected such that they
best coincide with the angle of a pixel. Next, two differ-

ences of angles are taken; between the angle of the pixel and

that of a neighbor, and between the angle of pixel and that

Chapter 3 Road Detection and Connection 39
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3 1 0 0 2 4 3 2
g3 g3

4 3 5 7 0 g3 2  5 7

2 0 1 1 3 2 2 1g4

Figure 15. A sample cost image, C(i, j)

of the other neighbor. The larger difference of the two is

then the angle difference of a line pixel. Suppose that the

zero angle direction is set to the positive column direction

and the angles increase clockwise as shown in figure 19, and

that the line pixel 5 has an angle closer to 450 than to 900.

Then, the two neighbors of pixel 5 become pixel 1 and pixel

9 and the angle difference of pixel 5 is given by

B = MAX [abs (angle of pixel 5 - angle of pixel 1),

abs (angle of pixel 5 - angle of pixel 9)]

(5.3.32)

The gray-tone distance of a line pixel (D) is defined as the

absolute difference in the gray-tone value of the pixel and

an assumed mean gray-tone value of real road segments which
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16 14 9 3 0 2 1 0

8 5 4 5 2 0 s1 7
./Osl

6 7 7 4 1 6 7 6

9 10 6 8 3 6 12 10

8 6 5 4 5 4 6 7

8 5 4 g3 4g3 6  8 7 8

9 7 9 11 4g3 6 11 14

8 6 g4 6  5 7 6 8 9

* Figure 16. Image of total cost, S(i, j): after the
first pass (top to bottom)

can be decided experimentally during the road detection part

discussed in the earlier section.

Since the three attributes of a line pixel are equally im-

_* portant they should have equal parts in the cost evaluation.

-' " However, since they are hardly sensed equally by an actual

program, it is proper that their effects on the cost evalu-

ation be proportional to their sensitivities and accuracies.

For example, in our detection procedure, the angle of a line

pixel is not so accurate as the other attributes. Their pro-

portion in our case turned out to be well described by the

following equation,

S :B :D 10 :2 :5 (5.3.33)
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Figure 17. Image of total cost, S(i, j): after the
second pass (bottom to top)

In other words, when the others are fixed, the variation of

the angle affects the cost at the magnitude of 1 to 2. Simi-

larly the strength and the gray-tone distance solely affect

the cost at the magnitude of 1 to 10 and 1 to 5, respectively.

Based on the above strategies, the cost of a road pixel is

set to zero and the cost of a non-line pixel to 1000. The

cost for a non-road line pixel (i, j) is given by

* (B..j)__h(D. .)
C(i, j)= -- J J (5.3.34)

f(S~1

The functions g, h, f in Eq. (3.3.34) are defined as follows.

C 3a
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6 7 7 4 [1] 6 7 6

8 9 6 8 [3] 6 10 10

7 5 5 [41 5 4 6 7
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l Figure 18. Image of total cost, S(i, j): after the
third pass (top to bottom)

5 B < LB

"f 5*B

g(B) = LB < B < UB
UB- LB
10 B > UB (5.3.35)

where LB and UB are lower and upper limits of angle differ-

ence (see figure 20).

2 D <LD
., 8*D

h(D) = -- - LD D _ UD
UD - LD
10 D > UD (5.3.36)

where LD and UD are lower and upper limits of gray-tone dis-

tance (see figure 21).

.
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Figure 19. The angle direction

* 1 S < LS
9*S

f(S) = LS S S S US
US -LS

10 S > us (5.3.37)

where LS and US are lower and upper limits of line strenth

(see figure 22).
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Figure 20. The angle difference function
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Figure 21. The gray-tone distance function
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CHAPTER 4 FINAL RESULTS.A

A few SAR images were used as test images. Most of our ex-

periments were carried out on 100 x 100-pixel subimages of

them. Figures 23 through 26 show an original subimage and

its intermediate and final results. Figures 27 through 30

show a 512 x 512-pixel image and its intermediate and final

results.

C
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Figure 23. Subimage-1: 100 x 100-pixel image

Chapter 4 Final Results 48

2,. 0.,

- U - -uj



Figure 24. Line image: Radius =1. 0, Curvature =750,

Equiv. range =1800 -- 2700 Width =1 -- 4,
Contrast =100
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Figure 25. Screened road image: N = 15, MS = 1200, MB
= 20, MG = 25,000
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Figure 26. Reconstructed Network image
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Figure 27. Elizabeth City area: 512 x 512-pixel image
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Figure 28. Line image: Radius = 1.3, Curvature = 750,
Window size = 9 x 9, Equi. range = 1800 --
2700, Width = 1 -- 4, Contrast = 50
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Figure 29. Screened road image: N = 16, MS = 1250, MB
= 15, MG = 25,000
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gi Figure 30. Reconstructed road netwoi image: There are

o still missing roads and falsely connected

roads.

o .
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CHAPTER 5 RELATED WORK

There are not many published papers closely related to our

work. Here we summarize a few papers related to the road de-

tection on an image. In general, a road network detection

involves road segment detection and road connection tech-

niques.

Fischler et al. [5] integrated several road segment tech-

niques. Those operators used are classified either into the

type I operator that will hardly mistake artifacts as road

segments but often miss true instances, or into the type II

operator that will measure parameters of all true instances

but may falsely classify and parameterize non-instances. The

combined results of a set of type I operators produce the

skeleton of a road network, which is then completed by an

optimization algorithm, on the basis of a cost array evalu-

ated by the results of type I and type II operators.

Bajcsy and Tavakoli [9] start with the strip detector which

finds the connected road pixels (strip) by thresholding

gray-tone values. The strips are further thresholded by

their contrasts with adjacent regions, and the widths and

lengths of themselves. A road segment (piece) consists of

two or more connected strips. Then road segments are con-
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nected by the directional proximity and distance proximity

which look for the minifal angle difference and minimal dis-

tance between adjacent disconnected road segments.

VanderBrug [101 detects road segments in satellite imagery

without further connection processes during his experiments

of semilinear line detector as a compromise between linear

and non-linear line detectors.

Most of road segment detection techniques including all of

the algorithms mentioned above are based on discrete line or

edge detectors that have to use many directional and discrete

.masks to obtain a pixel information. However, since our road

segment scheme used in this report is based on a facet model,

the required information is computed analytically. This is

the main difference between our technique and others.

S

.4

.4
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CHAPTER 6 CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

We began this report with the analysis of road character-

istics appearing in radar imagery by understanding a radar

*' system and proceeded to build a road network detection pro-

cedure.

In chapter 2, we found that the kernel of a facet model could

be viewed as the functon which can be used to compute a facet4
model according to its arguments such as basis function, the

order of fit, index set, and an input digital image. Using

this fuction, we obtained a bicubic facet model. It was then

found that linear features were analytically detected on the

basis of the bicubic facet model. This analytical detection

technique made it possible that on a given image, most of the

linear features were easily detected and parameterized for

their possible attributes such as line orientations,

strengths, and widths.

We then faced, in chapter 3, the problem of screening the

detected linear features on a pixel by pixel base. The

altanative was screening them on a component by component

base. This method used the statistics of each maximally

connected set of pixels, called a component, and the road

characteristics appearing in radar imagery. Using this
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method, we were able to obtain a relatively small number of

real road segments. We'then saw, in section 3.3, that these

road segments were connected by the dynamic programming al-

gorithm. This algorithm, based on the "principle of opti-

mality", gave a minmum cost path between two sets of road

segments. The costs used in this algorithm were evaluated

by the cost evaluation function which measured a merit for

each pixel. The dynamic programming algorithm was applied

iteratively as many times as the number of the paths required

* to connect all the road segments.

There are a few directions in which the work in this report

could be continued. The most obvious is the method of apply-

ing the connection procedure. The method used in this report

was to apply the procedure to the whole image. This required

a relatively long processing time and hence it had to reduce

the mumber of road segments to connect as possible as it

could. Since we know the locations of the starting road

segments, if the locations of the goal road segments could

be correctly guessed with the global context, we could

greatly reduce the search area and the processing time.

The cost evaluation function described in section 4.3 could

1, be made to reflect the real situation so that the connection

procedure would never mistakenly connect the road segments

with non-existent paths.
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Another possible improvement would be the fitting surface.

The surface used in this report was the bicubic polynomial,

which was too general for our line dection purpose. By using

a biquadratic or a constrained form of a bicubic polynomial,

we may reduce the computatinal complexity. For instance, if

-. the fitted surface was of the form,

f(r,c) - A (rcosa + csina)2 + B (rcosa + csina)2

+ C (rcosa + csina) + D (8.0.38)

e

we would directly obtain the cross-section of the surface

simply by replacing (rcosa + csina) with p, where a would

be the direction normal to an assumed line as discussed in

the section 2.3. It may require deeper mathematical insight

as well as laborious research to find proper basis functions

but the considerably faster computation would be worth it.
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