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ABSTPACT_-.

Combat active replacement factors, or CARFs, are logis-

tics planning factors currently used by the U.S. military as

estimates of equipment losses in future conflicts. This

thesis employs mean-time-to-loss (MTTL) estimates for

various equipment types, and several scenario-oriented

models are given for mapping these values into CARFs. The _ .

CARF generation model can be applied for the exponential .

distribution or other types of life distributions such as

Weibull or gamma, or a nonhomogeneous Poisson process. CARF

values for several kinds of scenarios for combat losses were

investigated using the loss processes for a specific life

distribution. Computational results are provided.
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I. INTRODUCTION

Combat active replacement factors, or CARFs, are logis-

tics planning factors currently used by the U.S Marine Corps

as estimates of equipment losses in future conflicts. Their

values have a significant impact on procurement, stock-

piling, and plans for shipping requirements. A replacement

factor is defined as " the estimated percentage of equipment

in use that will require replacement during a given period

due to wear-out beyond repair, enemy action, abandonment,

pilferage, and other causes, except catastrophies" [Ref. 1].

Further, combat active replacement factors are applied for

units during those periods when they are actually in active

combat operacions. A force in contact with the enemy is

considered to be active combat.

There are alternatives to the use of computerized war

games and simulation to obtain values for CARFs. It is

possible to produce estimates directly, perhaps using

professional military judgement and experience. In some

cases CARF values so generated may be preferred to those

obtained from combat models, since there may be more clarity

about what the number was based upon, and what considera-

tions went into its estimation [Ref. 2].

A variation on estimating CARFs directly is to use

professional judgement to estimate a related measure, the

mean time until loss or MTTL. The MTTL is the average time

one would expect an item to survive in the combat

environment.

This thesis discusses some ways of generating CARF

values without to resort to war games or to simulation or

direct estimation. Basic to this method is the estimation

of values for MTTL, the mean time until loss, or the

8
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estimation of the intensity function for a nonhomogeneous

Poisson process, and the method will be most applicable to

situations where the MTTL can be estimated with more confi-

dence than the related CARF can be directly estimated.

There are three major types of life distributions that a

certain item might follow in the real world. These distri-

butions are the exponential, the Weibull, and the gamma.

First, we will look at the loss process characteristics of

life distributions and then derive the CARF expressions for

several kinds of scenarios according to each life distribu-

tion. These scenarios by which losses could occur in combat

are:

1. Cases where all items of that type are vulnerable

initially and throughout the combat period, at the

same MTTL values,

2. Cases where subsets of the items in use have

different MTTL values,

3. Cases where the MITL changes at some designated time

during the combat period, and

4. Cases where one item is vulnerable initially and

throughout the combat period at the same MTTL, but

replacements are not vulnerable until put into use.

Regardless of the life distribution, we will also

discuss the case where an item's loss process follows a

nonhomogeneous Poisson process at a loss rate that is time

dependent.

In the following chapter, we will discuss loss process

characteristics for each life distribution, and for a nonho-

mogeneous Poisson process.

9
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II. LOSS PROCESS CHARACTERISTICS

Differences in the loss process may be portrayed by

several kinds of life distributions. The loss rate is

constant for the exponential, but for the Weibull and gamma

distributions, changing loss rates can be represented by the

distribution parameters. In this chapter we will look first

at some loss process characteristics for each life distribu-

tion and then for a nonhomogeneous Poisson process.

A. LOSS PROCESS FOR THE EXPONENTIAL

The exponential distribution is in several senses the

most fundamental distribution in reliability theory. We

will look at a loss process where the event that an item is

lost is independent of the loss of any other on-line item of

the same kind, and where the chance of a surviving item

being lost on the next day is independent of how many days.

it has already been in combat. This means that the indi-

vidual item's loss rate may be considered constant over the

period of time we are examining. For constant loss rates

and independent losses, the probability distribution for the

time an item survives in combat will be the exponential

distribution [Ref. 2]. The expected value of this random

variable is the item's MTTL. Let T be the combat survival

time for a specific item, and let R be the scale parameter

for the exponential. (For the exponential distribution, R

's also the loss rate, with units of items per day.) The

density function for the time t until the item is lost is

exponential:

-Rt
f(t) Re , R2O, t>O

10r. i
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From this we may immediately obtain the probability that the

item is lost on or before time t, F(t), as

-Rt
F(t) = p(T<_t) = I - e t_ >0

We also have 1 - F(t), the probability that the item is

still surviving just after time t, as

-Rt
1 - F(t) = p(T>t) = e

Since the expected value or average value of an exponen-

tially distributed random variable is the reciprocal of its

parameter, we now have the mean time until loss MTTL as

MTTL = fiR

Accordingly, the probability that the item is not lost

during D days of combat is

-D/MTTL (2.1)
p e

in the following section, we will look at some loss

process characteristics for the Weibull and gamma

distributions.

B. LOSS PROCESS FOR OTHER LIFE DISTRIBUTIONS

Other parametric families of life distributions arising

in combat situations may be constructed by assuming a loss

rate as decreasing or increasing rather than being constant.

In each case, the loss rate is considered monotone over

the time. For decreasing or increasing luss rates, useful

probability distributions for the time an item survives in

combat are the Weibull or gamma We will look first at the

Weibull distribution.

7
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1. Loss Process for the Weibull

The loss rate r(t) for the Weibull distribution with

shape parameter cd.and scale parameter R is

r(t) O dR(Rt) 01d >0, R->0, t>0 -..

and it is increasing forc>l, decreasing for 0<OC<l, and

constant foro(= 1 [Ref. 3]. The density function for the

time t until the item is lost is

d. -I -(Rt)

f(t) = cR t e ,t->

From this we may obtain the probability that the item is

lost on or before time t, F(t), as

-(Rt)o
F(t) : p(T-t) = I - e ( t>0"

We also have 1 - F(t), the probability that the item is

still surviving just after time t, as

1 - F(t) e-(Rt)

We have the mean time until loss MTTL as [Ref. 4]

MTTL ---------

The scale parameter R derived from the above formula is

R --------
ak. MTTL "

Accordingly, if time until loss is distributed according to

the Weibull distribution, the probability that the item is

not lost during D days of combat is

D r" (1/ci.) ) ?..:

------------
-( dMTTL (2.2)

p e

12
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This is equivalent to (2.1) for the exponential when cC is

1, since f-(1) = 1.

2. Loss Process for the Gamma

The loss rate r(t) for the gamma distribution with

shape parameter cd. and scale parameter R is increasing

for d.> 1, decreasing for 0 <(.< 1, and constant for CC= 1

[Ref. 3]. The density function for the time t until the

item is lost is

&i -)-l -RtR t e
f(t) R t->O, R_>O, t_>0

The probability that the item is lost on or before time t,

F(t), is
t k. 0£I -R t .
R t e

F(t) = p(T:t) ------------ dt , t>0~J 0 rE(&),.

When d. is a positive integer, F(t) may be written in closed

form as [Ref. 3]

d.-I i
S(Rt) -Rt

1e -et2>0
i=0 i'

The survival probability that the item is still surviving

just after t, is

(R) -Rt
1- F(t) = t e

i=0 i'

We have the mean time until loss MTTL as [Ref. 4]

MTTL =-----"---
R

and from the above formula, the scale parameter, R, can be

derived as

13
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MTTL

According to this, the probability that the item is not lost

during D days of combat is

i :. Ck.- 1 i i '

p (cD/MTTL) e-(cd/MTTL)D (2.3)
i=0 i

When d.. is 1, this is equivalent to (2.1) for the

exponential.

C. NONHOMOGENEOUS POISSON PROCESS OF THE LOSS

In this section we consider the nonhomogeneous, also

called the nonstationary, Poisson process, which is obtained

by allowing the loss rate to be a function of t. As a

prelude to giving a definition of a nonhomogeneous Poisson

process, we shall define the concept of a function f(.)

being O(h). The function f(.) is said to be O(h) [Ref. 5]

if

f(h)lim ------ 0- .
h->0 h

In order for the function f(.) to be O(h) it is necessary

that f(h)/h go to zero as h goes to zero. But if h goes to

zero, the only way for f(h)/h to go to zero is for f(h) to

go to zero faster than h does. That is, for h small, f(h)

must be small compared to h.

According to the definition of Ross [Ref. 5], the

counting process (N(t),t_>0} is said to be a nonhomogeneous

Poisson process with intensity function 2,(t), t2!O, if . .

1. N(O) = 0.

2. (N(t),t->0) has independent increments.

3. p(N(t~h)-N(t) :2} O(h).

14
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4. p{N(t+h)-N(t)=l} =X(t)h 0(h).

If we let

m(t) = 0,(s) ds

then it can be shown that x (2.4) "-

-(m(t+s)-m(t)) (m(t+s)-m(t) ..(2.4)p(N(t s -N t)=x)=ex= , . . '
K!

In other words, N(t+s)-N(t) is Poisson distributed with mean

m(t-s)-m(t). Thus, N(t) is Poisson distributed with m(t),

and for this reason m(t) is called the mean value function

of the process. Note that if x = 0, there are no losses

from t to t-s, and thus p(N(t-s)-N(t)=0' is the probability

that one item survives for this period, and we have

p(item survives from t to t~s, given survival to t)

-(m(t~s)-m(t)) (2.5)
e

With these characterizations of the above general loss

processes established, we will look at viarious loss
scenarios to derive CARFs for the exponential in the

following chapter.

I-77"
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III. CARF GENERATION MODEL FOR THE EXPONENTIAL LIFE

DISTRIBUTION

The case where the life distribution for an item is

exponential has been examined by Lindsay [Ref. 2], with

combat active replacement factor expressions developed for

several scenarios.

In this chapter we will summarize his results.

A. CARFS ]HEN ITEMS HAVE THE SAME MTTL

We look first at the case where all items are committed

and initially vulnerable at the same MTTL throughout the

D-day period. If n items are the initial in-use amount and

are committed with independent losses, then the number of

items x that would be lost during the D-day period will be

binomially distributed, and the average number (out of n)

lost in D days is simply the mean of the binomial distribu-

tion, or

-D/MTTL
Average number lost :np n(l e )

From this we may readily obtain a CARF value:

(ave number lost in D days)(100)CA R F --- -- -- -- -- --- -- -- -- --

(in-use amount)

or

CAR (1 -D/MTTL )(10) (3.1)

Another use of (3.1) would ask if the existing CARF

value would yield an MTTL that seemed reasonable, using

MTTL -D/ln(l CARF/100)

16
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The association between CARF and MTTL for this case is

illustrated by the values in the exponential column of

Appendix A.

B. CARFS WHERE NOT ALL ITEMS HAVE THE SAME MTTL

If all items are initially vulnerable, but with

different MTTL values for the D-day period, then CARF gener- 4
ation from the MTTL values is an extension of the case where

all items have the same MTTL.

Let proportions pl,p2, ... ,pk of the in-use amount, n,

have mean times until loss MTTL1, MTTL2, ... MTTLk. The

average number lost in D days for any subgroup i is

-D/MTTLip.n(l -e) ,

and thus

k

Ap(1 -D/MTTLi (3.2)CARF : l p  (1 e))(100)"'"

This is, of course, simply a weighted average of CARF values

from the previous case. An example of the CARF values for

this case is shown in the exponential column of Appendix C.

C. CARFS WHERE THERE IS A CHANGE IN THE MTTL

It may sometimes be of interest to construct a CARF for
a situation where there is a change in the combat scenario

during the D-day period. One example of this is the case

where the first portion of the D days is an amphibious oper-

ation, and the MTTL might subsequently change.

For this type of situation, we let "I/MTTLl" be the loss

rate for the first DI days where xl items are lost, and
"I/MTTL2" be the loss rate for the remaining (D-DI) days

where x2 items are lost. Here, total losses for the D-day

period are xl~x2.

L
17
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Let q1 be the probability that an item would be lost

during the first period Dl and q2 be the probability that an

item would be lost during the remaining D-Dl days. Then

-DI/MTTL1
q1 1 e

and

- (D-Dl)/MTTL2
q2 1 - e

Both xl and x2 are binomially distributed, xl with parame-

ters (n,ql), and x2 with parameters for the conditional

binomial distribution ((n-xl),q2). Then

n

E[xl-x2] E[xl] Z (n-xl) q2 p(xl)
xl=0O

= n q1 + q2 (n - n ql)

= n[l - (I -ql)(1 -q2)] , (3.3)

and the CARF would be

-(DI/MTTL (D -Dl)/MTTL2) (3.4)
CARF =(1 - e )(100)

The association between CARF and MTTL for this case is

illustrated by the values in the exponential column of

Appendix D.

D. CARES WHERE AN ON-LINE ITEM IS REPLACED BY A PREVIOUSLY

INVULNERABLE ITEM

The expressions for generating CARFs in the previous

sections have all been based upon a situation where all
items were initially vulnerable. A different loss process
would place one item on line, and structure its (possibly

repeated) replacement with heretofore invulnerable items.

If the supply of reserve items is very large, or large

enough so that the chance of its exhaustion is negligible,

18
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we can structure this case by noting that the loss process

is simply a sequence of exponentially distributed time

intervals over a D-day period. If we ignore boundary condi-

tions, the number of such intervals would be a Poisson

distributed random variable with a mean of D/MTTL, and the

CARF [Ref. 2] would be

CARF --- D/MTTL----)(00) (3.5)

in-use amount

Equation (3.5) may be a reasonable approximation for an

item with a low CARF value. If the chance of running out of

replacements is not negligible, however, then (3.5) will

yield an overstated CARF value. This can be converted (at

the cost of simplicity) as follows. Let n be the initial

amount of an item, and x be the losses in D days. Then, with "

the Poisson probability distribution we can write

x -D/MTTL
(D/MTTL) e

P(x) (D/=TTL) x "j D/TLx -D/MTTL .-(.6

x:n X,!- -

as the loss distribution. Taking expected values, this p.

yields a CARF expression

-1 x -D/MTTL
100 7- x(D'MTTL) e

CARF --- - -------------------
n x:0 X!

n-i x -D/MTTL (3.7)
n(D/MTTL) e (3.7)+ n (I .. .... ..... ......)-- --
x=0 x! ".7

Examples of CARF values for each case are shown in Table 1.
Curves associated with Table 1 are displayed in Figure 3.1.

It can be seen that the approximate and correct CARF values *

are the same when the initial amount of an item, N, is 10.

19



TABLE I

EXAMPLES SHOWING THE IMPACT ON CARF VALUES OF ASSUMING
INFINITE SPARES FOR A HOMOGENEOUS POISSON PROCESS

CARF values(%)

n MTTL(days) approx correct

5 200.00 97.27
10 100.00 77.60

3 15 66.67 59.40
20 50.00 47.01
25 40.00 38.56

5 120.00 89.64
10 60.00 57 . 31

5 15 40.00 39.55
20 30.00 29.89
25 24.00 23.96

------------------------------------------------

5 60.00 60.00
10 30.00 30.00

10 15 20.00 20.00
20 15.00 15.00
25 12.00 12.00

In the next chapter, we will look at the CARF generation

model for the Weibull and gamma life distributions.

20
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Figure 3.1 ThesImpact of Assuming
Infinite Spares on CARF Values.
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IV. CARF GENERATION MODEL FOR OTHER LIFE DISTRIBUTIONS

In this chapter, we will derive CARF expressions for

several scenarios using the Weibull distribution and the

gamma distribution.

A. MODEL FOR THE WEIBULL DISTRIBUTION

We are interested in looking at the Weibull distribution

because it is one of the most commonly used life distribu-

tions in reliability theory.

1. CARFs When Items Have the Same MTTL

When all items are committed and initially vulner-

able with the same MTTL throughout the D-day period, the

probability that an item is lost during the D days is, from

dk MTTL2.
le

Therefore,
(D F'(lloo)\ = .

d." MTTL (4.1)
CARF (I - e )(100)

This is equivalent to (3.1) for the exponential life distri-

bution when o. is 1. Equation (4.1) permits a CARF to be

computed from an MTTL estimate for the case where each item

in the in-use amount is committed initially and at the same

MTTL, and where losses are independent. Equation (4.1) can

also be used to determine if the existing CARF value would

yield an MTTL that seemed reasonable. Here we could use

22
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D (I/)
MTTL -

o/ [-ln(l- CARF/100)]L

The association between CARF and MTTL for this case

is illustrated numerically by the values in the Weibull

columns of the table in Appendix A and Appendix B when o. is

2 and 3, respectively.

2. CARFs Where Not All Items Have the Same MTTL

If all items are initially vulnerable, but with

different MTTL values for the D-day period, then CARF gener-

ation from the MTTL values is an extension of the case where

all items have the same MTTL.

For a general formula, let proportions pl,p2,... ,pk

of the in-use amount, n, have mean times until loss MTTLI,

MTTL2, ... , MTTLk. The average number lost in D days for

any subgroup i is

D

p.n(l e ) ,

and we have

k D 1 0(I)

CARF ( : p(l - e MTTLi (100) (4.2

As an example of the use of (4.2), suppose 20 % of

the in-use amount have an MTTL of 100 days, half have an

MTTL of 80 days, and the remaining 30 % have an MTTL of 120

days. Then from (4.2),

S30 (l1 /2)'\2 3o (302)
" 21"0i0 ) 2."80);

CARF 0.2(1- e )+ 0.5(l-e 2)80

(30 F(1/2) 2
- -- - - - -

2 2120
0.3(1 - e ) (100) 8.03 % ,
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when o . is 2 and the combat period D is 30 days. This is, of

course, simply a weighted average of CARF values from the

previous case. An example of the CARF values for this case

is illustrated by the values in the Weibull column of

Appendix C. %7-

3. CARFs Where There is a Change in the MTTL

We next look at the scenario where the Weibull

distribution for time until loss changes at time Dl, which

we shall represent as a change in the mean for the Weibull

distribution from MTTL1 to MTTL2. The structure we will

follow will assume that the loss rate after the mean changes

to MTTL2 begins with argument Dl, rather than 0. The

survival function of a life length T for the Weibull distri-

bution with shape parameter 1. and scale parameter R is

- - ~(Rt) " [i

F(t) p(T>t) e , 01.>0, R>0, t_0

Let F; (t) be the probability that an item with loss

rate r (t) survives to time t for i = 1,2. From (2.2), the

survival probability F (Dl) that an item survives to time DI

is

since R F1 (l/L)/(o.MTTL). The conditional survival prob-

ability for the time period DI to D, given survival to Dl,

is

F (D)/ F2(DI)

SMTTL2 /.MTTL2

24
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Then the probability F(D) that an item survives to D is

F(D) = F (DI) F (D) F (DI )
1 2 2

&€

r (i/) -D 7 (, DI f- -/4

-e MTTL1 MTTL2 Ti1, MTTL2 K . M.,
e e e3)

for - Dl{ /)-J

M T Ll o. MTTL2
=e

_ Therefore, :

ll =MTI + (D - D1l ) 1/TL2

CARF = -e )(100).

When MTTL1 MTTL2, this is equivalent to (4.1) for the

scenario when items have the same MTTL, and when o.= 1, this

reduces to the result (3.4) for exponentially distributed

combat lives. The association between CARF and MTTL for

this case is shown in the Weibull column of Appendix D.

B. MODEL FOR THE GAMNIA DISTRIBUTION

The next case we shall consider is that when the life of

an item in combat follows the gamma distribution. We will

look at three combat scenarios.

1. CARFs When Items Have the Same MTTL

This is the case where all items are committed and

initially vulnerable at the same MTTL throughout the D-day

period. From (2.3), the probability that an item is lost

during the D days is

cL- i i ; .''

1 ~(odD/MTTL) -(,4/MTTL)D------------
i=0 i'

where is a positive integer.
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Therefore,
< -1 i -

CARF~~~ = I D/,MTTL) e(o(/MTTL)D) 1 0 (4.4) .L___

CARF (1 ---- ---- ! )(100) .i=0 i'

As with the Weibull distribution, when os. = 1 this is equiv-

alent to (3.1) for the exponential distribution.

The association between CARF and MTTL for this case

is illustrated numerically by the values in the gamma

columns of Appendix A and Appendix B when :* is 2 and 3,

respectively.

2. CARFs Where Not All Items Have the Same MTTL .

This is the case where not all items have the same

MTTL for the D-day combat period. If all items are

initially vulnerable, but with different MTTL values for the V
D-day period, then CARF generation from the MTTL values is

an extension of the case where all items have the same MTTL.

For a general formula, let proportions pl,p2, ... ,pk

of the in-use amount, n, have mean times until loss MTTLI, -'-

MTTL2, ... , MTTLk. The average number lost in D days for ..j

any subgroup i is

j=O

and we have

CAF~k a.-l--------- (4.5) -
p(I - (,. D/MTTLi)J -( o./MTTLi)D (4.. 4

CARF 2. j=0 -00 ).
i j!.

This is the same as (3.2) for the exponential when o is 1.

As an example of the use of (4.5), suppose 20 % of

the in-use amount have an MTTL of 100 days, half have an

MTTL of 80 days, and the remaining 30 % have an MTTL of 120

days. Then

26
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I j2-

((2' 30)/100) -(2/100)(30)
CARF 100 (0.2 1 e

Po j-

((2" 30)/80) -(2/80)(30)0.5 (1 j=0 -- -- e ), "

1 .
0.3 (1 Z ((2 . 30)/120) -(2/120)(30)

+ ----- (------------- ej=o j!

13.81% ,

when *L is 2 and the combat period D is 30 days. This is

simply a weighted average of the CARF values from the

previous case.

Other examples of CARF values for this case and

these proportions are shown in the gamma column of Appendix

C.

3. CARFs Where There is a Change in the MTTL

We will look at the scenario where the gamma distri-

bution changes at time Dl, which we shall represent as a .d,

change in the mean for the gamma distribution from MTTLl to

MTTL2. As before, we will assume that the loss rate for the

second distribution begins with argument Dl. The survival

function of a life length T for the gamma distribution with

shape parameter ol, and scale parameter R is
• c - i i '"

E (Rt) -Rt
F(t) p(T>t) = Z (t e

i=O i!

where ol-is a positive integer. Let F- (t) be the probability

that an item with loss rate rj (t) survives to time t for

i 1,2. From (2.3), the survival probability F (DI) that

an item survives to Dl can be obtained as

27
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( =LDI/MTTLI) -( o/MTTLI)DI l.-
i=0 i i

since R =O4/MTTL. As with the Weibull distribution, the

probability that an item survives for the time period Dl to

D, given survival to Dl, is

F (D) F (Dl)
2 2

0L- i
- (SD/MTTL2) -(S./MTTL2)D "

- - - - - ei.i
i=0 i'.

and the probability that an item survives to D is

F(D) ~F (Dl) F (D) F (Dl).
1 2 2

V

Then the CARF could be obtained from

i -.

( DI/MTTLI) -(/MTTLI)D (4.6a CARF (1 E --------
"

--
-

- e
i=0 i: -<

•X --- - --- e "?"--

- ( Dl/MTTL2) -(/MTTL2)D ) (

--- --- --- e ( 1.-0 0-

0e

When MTTLI MTTL2, this is the same CARF expression as

(4.4) for the scenario when items have the same MTTL, and

when o(= 1, this reduces to the result (3.4) for exponen-

tially distributed combat lives. The association between

28

...- ..



CARF and MTTL for this case is illustrated by the values in

the gamma column of Appendix D.

In the next chapter, we will look at the CARF gener-

ation model for a nonhomogeneous Poisson proce-ss of an item

loss.

2
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V. CARF GENERATION MODEL FOR A NONHOMOGENEOUS POISSON

PROCESS

Regardless of the life distribution, another case of

interest is where an item's loss process follows a nonhomo-

geneous (nonstationary) Poisson process. The intensity

function, A (t), related to this nonhomogeneous Poisson

process is the loss rate as a function of t [Ref. 3]. We

will look at four combat scenarios.

A. CARFS WHEN ALL ITEMS HAVE THE SAME INTENSITY FUNCTION

We will look first at the combat scenario where all

items are committed and initially vulnerable at the same

intensity function of the nonhomogeneous Poisson process

throughout the D-day combat period. If n items are the

initial in-use amount, and each has a probability q that an

item would be lost during a D-day period, then the number of

items that would be lost will be binomially distributed, and

the average number lost in D days is the mean of the bino-

mial distribution.

From equation (2.5), the probability q that an item

would be lost before D days is

-m(D) (5.1)
q = 1-e

Thus, the average number of items being lost during the

combat period D is the binomial mean

-m(D)
n(i-e )

Therefore,

oM(D) (5.2)
CARF (I - e )(100)
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Two cases associated with this process will be shown

here according to the shapes of the intensity function. We

will first look at the linear intensity function,

Ak(t) a bt , a>O, b>0, 0<t<D

where "a" is the intercept and "b" is the slope. When b

0, this scenario could be treated as the same scenario for

the exponential since the loss rate becomes constant.

.

- D(3C das)

Figure 5.1 Linear intensity Function.

For example, as shown in Figure 5.1, if a 0, b = 1/150 and

D 30 days, then

A (t) (1/150)t
and

r30
m(30) = (l/150)t dt = 3

0 0

From this,

CARF = (1 e )(100) = 95.0 %

This example might be applicable in a combat scenario where

continuous reinforcement forces on the enemy side are

expected.

31
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A quadratic form of the intensity function is the case

where the intensity function is gradually increasing in

the form of a quadratic as time goes on and then

decreasing as shown in Figure 5.2. This might be appli-

cable in a general combat scenario. In this case, the

intensity function, 2.(t), can be expressed as

2
A(t) -a (t - D/2) + b , a>0, b>0, 0<t<D

where D = 2Vba. The mean value function, m(D), could be

obtained as

rD 2
m(D) -- (-a (t D/2) + b)dt

k--a(

Figure 5.2 Quadratic Form of the Intensity Funct-on.

For example, let the quadratic form of the intensity func-

tion be

2
.(t) = -1/2250(t-15) 0.1

Then

30
m(30) (-l,2250(t-15 * 0. )dt '

0
Ther2fore, -. -"

32
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-2
CARF (1 e )(100) 36.5 %

B. CARFS WHERE NOT ALL ITEMS HAVE THE SAME INTENSITY

FUNCTION

If all items are initially vulnerable, but with

different intensity functions for the D-day period, then the

CARF generation for this scenario is an extension of the

case where all items have the same intensity function.

Let proportions pl,p2,... ,pk of the in-use amount, n,

have intensity functions 21(t), 22(t),..., Xk(t) and mi(t)

be a mean value function for subgroup i. Then the average

number lost in D days for any subgroup i is

-mi(D) u
pi n(1 - e )iD

Thus,

k ~-mi (D) (5.3) "- "
CARF pi(1 - e ))(100) '-"--"

1..

C. CARFS WHERE THERE IS A CHANGE IN THE INTENSITY FUNCTION

The nonhomogeneous Poisson process approach to CARF

development offers an opportunity to handle an intensity

function which is piecewise. For example, if the loss rate

is linearly first increasing and then decreasing during the

D-day period, the intensity function is

a.t r -a bt ,a O, b>O, 0O5t5Dl
a b'(t-Dl) , a'>O, b'<O, DI<t<D

The mean value function can be evaluated as

M(D) f (a + bt)dt +f(a' + b'(t-Dl))dt

33
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Figure 5.3 Linearly Increasing, then Decreasing
Intensity Function.

LFor example, if the intensity function is

0.001 0 :5 t :5 15
0.015 -0.001(t-15) , 15 < t :5 30

as shown in Figure 5.3, then

(0.001t)dt (0.015-O. 0,(t-15))dt 0.225.

From this,

-0.225
CARF (1 e )(100) 20.1

The case where there is a change in the constant loss
rate, as shown in Figure 5.4, could also be treated as a

-nonhomogeneous Poisson process. However, this simply

- provides another way of deriving results given earlier when -

time to loss was exponentially distributed.

34- "
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Figure 5.4 The Constant Loss Rate Changed
During the Combat Period.

D. CARFS WHERE AN ON-LINE ITEM IS REPLACED BY A PREVIOUSLY

INVULNERABLE ITEM

The scenario where an on-line item with an intensity

function X.(t) is replaced by heretofore invulnerable but

identical items may also be examined when losses are

described as a nonhomogeneous Poisson process. A loss

process would place one item on line, and structure its

replacement with previously invulnerable items. In other

words, when an item is brought in at time t, its initial

loss rate is assumed to be A(O) rather than M(t).

Let n be the initial amount of an item and x be the

losses in D days. If the chance of running out of replace-

ments is not negligible, then with formula (2.4) for the

nonhomogeneous Poisson probability distribution, we can

write

m(D) -m(D)
e , =O,l,...,n-lx!"

p (x) (5.5)
X 0 . re(D) em(D) """

x=n x!
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where

re(D) f= .t)dt ..

In a way similar to that done for the homogeneous

Poisson process discussed in Chapter III, a CARF expression

can be obtained by taking the expected values as

(n-l x100 x m(D) -m(D)

CARF -(---) e (.n x=O X! (5.6)

n- x
m(D) -m(D)+ n -- -- e.

x:0 x!

If the supply of reserve items is very large, or large

enough so that the chance of its exhaustion is negligible,

then the random variable X is Poisson distributed with mean

m(D). Therefore,

m(D) (5.7)
CARF = (--------- )(100)

in-use amount

when the time period is 0 to D.

For this scenario of item replacement, it is useful to

look at CARF expressions for the various forms of intensity

functions introduced earlier in this chapter. As an example - -

of a linear intensity function, let a 0, b 0.04, D 30

days and n 25. Then

,(t) =0.04t

and
30 "2]. 2

m(30) f (0.04t)dt 18

Therefore, from (5.6)

24 x 24 x
CARF 5 1 e _8+ 25(1 E __18 18

10 x0 X1 x:O x'

36
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- 72.0 %

This value can be approximated by (5.7) which results in

71.5 %. As an example of a quadratic form of the intensity

function, let n 20 and

(t) -1/225 t 2 + 2/15 t -1/225 t(t-30)

Then

m(30) 0 (-1/225 t 2 + 2/15 t)dt = 20

Therefore, the CARF = 91.12 % which is obtained from (5.6).

This value could also be approximated as 100 % from (5.7).

Examples of approximate and correct CARF values are

provided in Table 2.

TABLE 2

EXAMPLES SHOWING THE IMPACT ON CARF VALUES OF ASSUMING
INFINITE SPARES FOR A NONHOMOGENEOUS POISSON PROCESS

CARF values(%)

n m(D) approx correct

5 50.00 49.78
10 10 100.00 87.49

15 150.00 98.63
20 200.00 99.92

5 33.33 33.33
15 10 66.67 65.98

15 100.00 89.76
20 133.33 98.33

5 25.00 25.00
20 10 50.00 49.99

15 75.00 73.94
20 100.00 91.12
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Figure 5.5 suggests that the approximation becomes

better as the ratio m(D)/n becomes small.

(D = 2N2.:£.:: :.3 O5,F iT- .S)• . .
o I- :-

C5

' C
L -E D

8 12 16 20
&LElj VALUES

II

Figure 5.5 The Impact of Assuming
Infinite Spares on CARF Values.

So far, we have investigated ways of finding the CARF

values for various scenarios according to several types of

life distributions and for a nonhomogeneous Poisson process

as an item's loss process. Based on this background, we

will compare CARFs for each life distribution and then

suggest some conclusions in the next chapter.

r
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VI. COMPARISONS AND CONCLUSIONS

A. COMPARISONS OF CARFS FOR EACH LIFE DISTRIBUTION

The purpose of comparisons between CARFs for each life

distribution is to find the type of life distribution which

can be assumed for each combat scenario when we don't know

the exact life distribution of an item. Our decision rule

will be that, if we don't know the exact life distribution

of an item, we should use the one yielding the maximum CARF

in order to avoid the risk of underestimating the CARF

value. All of the following figures were made by the values

provided in the appendices.

1. CARFs When Items Have the Same MTTL

The first scenario we will examine is that when all

items are on line with the same MTTL.

Figure 6.1 shows CARFs as a function of MTTL values

for the three distributions when all items have the same

MTTL. Note that these curves are simply plots of CARFs

against MTTLs and are not survival functions. The figure

suggests that the CARFs for the exponential are larger than

those for the Weibull and gamma (shape parameter 2.0 and

3.0) when the MTTL is approximately greater than 20.

Therefore, CARF values for the exponential could be used for

MTTL values greater than 25 for this combat scenario. CARFs I-A

for the Weibull distribution could be used for the MTTL

values less than 25.

2. CARFs Where Not All Items Have the Same MTTL

When different subsets of the n items have different A

MTTL values, it is more difficult to reach general
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Figure 6.1 The Association Between CARFs and MTTLs
When Items Have the Same MTTL.

conclusions about which distribution it might be useful to

assume. Our conclusions relates to the specific example

examined earlier where there were three subsets of items,

each with a different MTTL. In Figure 6.2, the average of

the three MTTL values was taken as an MTTL point.

From Figure 6.2 for this scenario and example, we

also realize that the CARFs for the exponential are the

maximum values over the range of MTTL values greater than

25. On the other hand, CARFs for the Weibull could be used

for the MTTL values less than 25.

3. CARFs Where There is a Change in the MTTL

When all items have the same MTTL which changes once

during the combat period, a partial comparison of distribu-

tions may be made using the numerical results developed

earlier. In Figure 6.3, the average of the two MTTL values
was taken as an MTTL point.

%
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Figure 6.2 The Association Between CARFs and MTTLs
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From Figure 6.3 for the particular example of this

scenario, we could see that the CARFs for the exponential

are maximum values with MTTL values greater than 20 and

CARFs for the Weibull are maximum with MTTL values less than

this.

B. CONCLUSIONS

We have derived some mathematical expressions for CARFs

in order to estimate equipment losses in the combat environ-

ment by using the life distribution of a certain item.

Furthermore, we discussed the way of finding the CARF value

for the case where an item's loss follows a nonhomogeneous

Poisson process.

We also attempted to suggest the kind of life distribu-

tion that would be applied for each combat scenario by

comparing these values when we don't know the exact life

distribution of an item.

CARF values that were drawn by this method could be used "

for procurement, stockpiling, and plans for shipping

requirements. However, the MTTL or the intensity function

for an item must be estimated or obtained in advance to use

this method.

Consequently, using our conservative decision rule

seeking the larger CARF value, it appears from the computa-

tions done here that the CARFs for the exponential instead

of those for the Weibull or the gamma might be used if we

don't know the exact life distribution of an item in which

we are interested. However, for the smaller values of MTTL,

CARF values for the Weibull appear to be better.

In many cases, the population of n items which are

considered for CARF valuation will be spread over variable
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levels of combat intensity ,e.g., some items in the front

and others in the rear while all are in the combat zone. It

may be easier and more accurate to estimate MTTL values for

each combat intensity level than to estimate an-MTTL for the

population as a whole. Since the proportion of the n items

at each intensity level may also be well estimated in many

cases, the CARF expressions for the scenario where different

subsets have the different MTTL values may be most useful.

The choice of scenario and life distribution will, of

course, depend primarily on the specific item being studied.

The work on the preceding pages is an extension of past

efforts on analytic modelling of CARF values by removing the

need to assume constant loss rates or a homogeneous Poisson

process. It is hoped that these extensions will be useful to

those concerned with the accurate estimation of replacement L

factors.
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APPENDIX A

CARES WITH THE SAME MTTL (ALPHA 2..0)

(D = 30 days) .1

MTTL(days) CARF values(%)

Exponential Weibull Gamma

10.0 95.0 99.9 98.3

20.0 77.7 82.9 80.1

30.0 63.2 54.4 59.4

40.0 52.8 35.7 44.2

50.0 45.1 24.6 33.7

60.0 39.3 17.8 26.4

70.0 34.9 13.4 21.2

80.0 31.3 10.5 17.3

90.0 28.3 8.4 14.4

100.0 25.9 6.8 12.2

110.0 23.9 5.7 10.4

120.0 22.1 4.8 9.0

130.0 20.6 4.1 7.9 _

140.0 19.3 3.5 6.9

150.0 18.1 3.1 6.2

160.0 17.1 2.7 5.5

170.0 16.2 2.4 4.9

180.0 15.4 2.2 4.5

190.0 14.6 1.9 4.1

200.0 13.9 1.8 3.7

- - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - -
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APPENDIX B

CARFS WITH THE SAME MTTL (ALPHA =3.0)

(D = 30 days)

MTTL(days) CARF values (%)

Exponential Weibull. Gamma

10.0 95.0 100.0 99.4

20.0 77.7 91.0 82.6

30.0 63.2 50.9 57.7

40.0 52.8 25.9 39.1

50.0 45.1 14.3 26.9

60.0 39.3 8.5 19.1

70.0 34.9 5.5 14.0

80.0 31.3 3.7 10.5

90.0 28.3 2.6 8.0

100.0 25.9 1.9 6.3

110.0 23.9 1.4 5.0

120.0 22.1 1.1 4.1

130.0 20.6 0.9 3.3L .
140.0 19.3 0.7 2.8

150.0 18.1 0.6 2.3

160.0 17.1 0.5 2.0

170.0 16.2 0.4 1.7

180.0 15.4 0.3 1.4

190.0 14.6 0.3 1.2

200.0 13.9 0.2 1.1

- - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - -

%
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APPENDIX C

CARFS WHERE NOT ALL ITEMS HAVE THE SAME MTTL

(D =30 days, p1= 0.2, p2= 0.5, p3= 0.3)

MTTL(days) CARF values(,.)

MTTL1 MTTL2 MTTL3 Exponential Weibull Gammna

(alpha 2.0)

16.0 8.0 24.0 87.16 89.94 88.91

32.0 16.0 48.0 68.44 64.74 66.26

64.0 32.0 96.0 45.96 30.31 36.69

128.0 64.0 192.0 27.23 9.34 14.87

256.0 128.0 384.0 14.91 2.47 4.84

----------------- --- ---- --- --- ---- --- --- ---

(alpha 3.0)

16.0 8.0 24.0 87.16 92.35 83.51

32.0 16.0 48.0 68.44 63.21 21.56

64.0 32.0 96.0 45.96 24.25 0.00

128.0 64.0 192.0 27.23 3.80 0.00

256.0 128.0 384.0 14.91 0.49 0.00

-------------------------------------------
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APPENDIX D_

CARFS WHERE THERE IS A CHANGE IN THE MTTL

(D = 30 days, D1 15 days)

t

MTTL(days) CARF values(%)

MTTLI MTTL2 Exponential Weibull Gamma

(alpha 2.0)

5.0 10.0 98.89 100.00 99.85

10.0 20.0 89.46 95.46 92.89

20.0 40.0 67.53 53.84 62.36

40.0 80.0 43.02 17.57 27.69

80.0 160.0 24.52 4.72 9.28

160.0 320.0 13.12 1.20 2.68

(alpha 3.0)

5.0 1c.0 98.89 100.00 99.81

10.0 20.0 89.46 98.90 82.57

20.0 40.0 67.53 43.07 58.53

40.0 80.0 43.02 6.80 18.24

80.0 160.0 24.52 0.88 3.59

160.0 320.0 13.12 0.11 0.56
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