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ABSTRACT

Combat active replacement factors, or CARFs, are logis-

tics planning factors currently used by the U.S. military as

estimates of equipment losses in future conflicts. This

thesis employs mean-time-to-1loss (MTTL) estimates for
various equipment types, and several scenario-oriented
models are given for mapping these values into CARFs. The
CARF generation model can be applied for the exponential )
distribution or other types of 1life distributions such as S
Weibull or gamma, or a nonhomogeneous Poisson process. CARF
values for several kinds of scenarios for combat losses were
investigated using the loss processes for a specific life : !{,.J

distribution. Computational results are provided.
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I. INTRODUCTION ",

Combat active replacement factors, or CARFs, are logis-

tics planning factors currently used by the U.S Marine Corps

as estimates of equipment losses in future conflicts. Their 5_-¢5
values have a significant impact on procurement, stock-
piling, and plans for shipping requirements. A replacement

ty

factor is defined as the estimated percentage of equipment
in use that will require replacement during a given period !
due to wear-out beyond repair, enemy action, abandonment,
pilferage, and other causes, except catastrophies” {Ref. 1].
Further, combat active replacement factors are applied for
units during those periods when they are actually in active
combat operacions. A force in contact with the enemy is
considered to be active combat.

There are alternatives to the use of computerized war
games and simulation to obtain values for CARFs. It 1is
possible to produce estimates directly, perhaps using
professional military judgement and experience. In some -
cases CARF values so generated may be preferred to those E{?'
obtained from combat models, since there may be more clarity 1
about what the number was based upon, and what considera-
tions went into its estimation [Ref. 2].

A variation on estimating CARFs directly is to use

professional judgement to estimate a related measure, the
mean time until loss or MTTL. The MTTL is the average time
one would expect an ltem to survive in the combat
environment.

This thesis discusses some ways of generating CARF
values without to resort to war games or to simulation or
direct estimation. Basic to this method is the estimation

of wvalues for MITL, the mean time until 1loss, or the QEE“i
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estimation of the intensity function for a nonhomogeneous
Poisson process, and the method will be most applicable to
situations where the MTTL can be estimated with more confi-
dence than the related CARF can be directly estimated.

There are three major types of life distributions that a
certain item might follow in the real world. These distri-
butions are the exponential, the Weibull, and the gamma.
First, we will look at the loss process characteristics of
life distributions and then derive the CARF expressions for
several kinds of scenarios according to each life distribu-
tion. These scenarios by which losses could occur in combat
are:

1. Cases where all items of that type are vulnerable
initially and throughout the combat period, at the
same MTTL values,

2. Cases where subsets of the items 1in use have
different MTTL values,

3. Cases where the MITL changes at some designated time
during the combat period, and

4. Cases where one item 1is wvulnerable initially and
throughout the combat period at the same MTTL, but
replacements are not vulnerable until put into use.

Regardless of the 1life distribution, we will also
discuss the case where an item's loss process follows a
nonhomogeneous Poisson process at a loss rate that is time
dependent.

In the following chapter, we will discuss loss process
characteristics for each life distribution, and for a nonho-

mogeneous Poisson process.
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I7. LOSS PROCESS CHARACTERISTICS

Differences in the loss process may be portrayed by
several kinds of 1life distributions. The loss rate 1is
constant for the exponential, but for the Weibull and gamma
distributions, changing loss rates can be represented by the
distribution parameters. In this chapter we will look first
at some loss process characteristics for each life distribu-

tion and then for a nonhomogeneous Poisson process.

A. LOSS PROCESS FOR THE EXPONENTIAL

The exponential distribution is 1in several senses the
most fundamental distribution in reliability theory. We
will look at a loss process where the event that an item is
lost is independent of the loss of any other on-line item of
the same kind, and where the chance of a surviving item
being lost on the next day is independent of how many days
it has already been in combat. This means that the indi-
vidual item’'s loss rate may be considered constant over the
period of time we are examining. For constant loss rates
and independent losses, the probability distribution for the
time an item survives in combat will be the exponential
distribution [Ref. 2]. The expected value of this random
variable is the item's MTTL. Let T be the combat survival
time for a specific item, and let R be the scale parameter
for the exponential. (For the exponential distribution, R
is also the loss rate, with units of items per day.) The
density function for the time t until the item is 1lost is
exponential:

) -Rt
f(t) = Re

10
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From this we may immediately obtain the probability that the L

item is lost on or before time t, F(t), as _ {-€
F(t) = p(Tst) = 1 ~ e °° £20

We also have 1 - F(t), the probabilitv that the item is

still surviving just after time t, as

-Rt
1 - F(t) = p(T>t) = e

Since the expected value or average value of an exponen-
tially distributed random variable is the reciprocal of its

parameter, we now have the mean time until loss MTTL as

MTTL = 1/R

Accordingly, the probability that the item 1is not lost
during D days of combat 1is

-D/MTTL (2.1) R

P = e . T

In the following section, we will look at some loss ’a
process - characteristics for the Weibull * and gamma , 1

distributions. o

B. LOSS PROCESS FOR OTHER LIFE DISTRIBUTIONS

Other parametric families of 1life distributions arising
in combat situations may be constructed by assuming a loss
rate as decreasing or increasing rather than being constant.

In each case, the loss rate is considered monotone over
the time. For decreasing or increasing luss rates, useful
probability distributions for the time an item survives in
combat are the Weibull or gamma . We will look first at the
Weibull distribution.

11
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1. Loss Process for the Weibull

The loss rate r{t) for the Weibull distribution with

shape parameter ol and scale parameter R is

o
r(t) = &YR(Rt) , ¢ >0, R20, t>0 ,

and it is increasing forodl>1, decreasing for 0<A<l, and

constant for &= 1 [Ref. 3]. The density function for the

time t until the item is lost is

o
A A-1 -(Rt)
t e

f(t) = AR , £20

From this we may obtain the probability that the item is
lost on or before time t, F(t), as

ol
- (Rt)
F(t) = p(T<st) = 1 - e s t=0
We also have 1 - F(t), the probability that the item 1is

still surviving just after time t, as

-(Rt)aL
1 - F(t) = e

We have the mean time until loss MTTL as [Ref. 4]

MITL = -------=-

oA MTTL

Accordingly, 1f time until loss is distributed according to
the Weibull distribution, the probability that the item is
not lost during D days of combat is

D P (1/e)

ol MTTL (2.2)

LA s Al g od Bl R hol Ak by ghod
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This is equivalent to (2.1) for the exponential when oL is
1, since [ (1) = 1.

2. Loss Process for the Gamma

The loss rate r(t) for the gamma distribution with
shape parameter A and scale parameter R 1is increasing
for &> 1, decreasing for 0 <ol< 1, and constant for o= 1
[Ref. 3]. The density function for the time t until the
item is lost is

R
f(t) P s d>09 Rzoy tzo

The probability that the item is lost on or before time t,
F(t), is

"t & -1 -Rt
\ Rt e
F(t) = p(Tst) = J O--—};E;LS‘-‘ dt , t20
S

When X is a positive integer, F(t) may be written in closed
form as [Ref. 3]

A-1 i
T (Rt) -Rt
- ---- e s £20

i=0 i!

The survival probability that the item is still surviving
just after t, is

%l (Rt:)i -Rt
1 - F(t) = E;O --s- e

i!

We have the mean time until loss MTTL as [Ref. 4]

and from the above formula, the scale parameter, R, can be
derived as

13
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According to this, the probability that the item is not lost

during D days of combat is

A -1 i
5 (L D/MTTL) -(ol /MTTL)D (2.3)
= b | T s m === e .
P 7 %0 il
When KA is 1, this 1is equivalent to (2.1) for the
exponential.

C. NONHOMOGENEOUS POISSON PROCESS OF THE LOSS

In this section we consider the nonhomogeneous, also
called the nonstationary, Poisson process, which is obtained
by allowing the loss rate to be a function of t. As a
prelude to giving a definition of a nonhomogeneous Poisson

process, we shall define the concept of a function f£(.)

being O(h). The function f(.) is said to be O(h) [Ref. 5]
if ’
f(h
lim --5—2- =0
h->0 h
In order for the function f£(.) to be O0(h) it is necessary

that f(h)/h go to zero as h goes to zero. But if h goes to
zero, the only way for f(h)/h to go to zero is for f£(h) to
go to zero faster than h does. That is, for h small, £f(h)
must be small compared to h.

According to the definition of Ross [Ref. 57, the
counting process {(N(t),t20} 1is said to be a nonhomogeneous

Poisson process with intensity function A(t), t20, if

1. N(0) = 0.
2. {N(t),t20} has independent increments.
3. p{N(t*h)-N(t)=22} = 0(h).

14
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4. p{N(t+h)-N(t)=1} = QA(t)h + O(h).

] If we let

t
¢ m(t) = fok(S)ds )
; then it can be shown that '7if
- -(m{t+s)-m(t)) (m(t+s)-m(t))x (2.4) T
P{N(t+s)-N(t)=x}=e =~ 7 77 o-----l.ooll2 , x=0,1,... NG

In other words, N(t+s)-N(t) is Poisson distributed with mean
m(t+s)-m(t). Thus, N(t) 1is Poisson distributed with m(t),
and for this reason m(t) 1is <called the mean value function -
of the process. Note that if x = 0, there are no losses
from t to t*s, and thus p{N(t+s)-N(t)=0} is the probability

that one item survives for this period, and we have

p(item survives from t to t+s, given survival to t)

L -(m(t+s)-m(t)) (2.5)

- = e .

- With these characterizations of the above general loss :jﬁ
( processes established, we will look at various loss

scenarios to derive CARFs for the exponential 1in the

following chapter.
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ITII. CARF GENERATION MODEL FOR THE EXPONENTIAL LIFE
DISTRIBUTION

The case where the life distribution for an item 1is
exponential has been examined by Lindsay [Ref. 2], with
combat active replacement factor expressions developed for
several scenarios.

In this chapter we will summarize his results.

A. CARFS WHEN ITEMS HAVE THE SAME MTTL

We look first at the case where all items are committed
and initially vulnerable at the same MTTL throughout the
D-day period. If n items are the initial in-use amount and
are committed with independent losses, then the number of
items x that would be lost during the D-day period will be
binomially distributed, and the average number (out of n)
lost in D days is simply the mean of the binomial distribu-
tion, or

-D/MTTL
Average number lost = np = n(l - e

From this we may readily obtain a CARF value:

(ave number lost in D days)(100)
CARF = --- .o oo il To._.itifooclls ,
(in-use amount)

or

-D/MTTL (3.1)

CARF (1L - e ) (100)

Another use of (3.1) would ask 1if the existing CARF

value would yield an MTTL that seemed reasonable, using

MITL = -D/1n(l - CARF/100)

16
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The association between CARF and MITL for this case is .ffg]
illustrated by the values in the exponential column of L
Appendix A. e

B. CARFS WHERE NOT ALL ITEMS HAVE THE SAME MTTL

If all items are initially wvulnerable, but with
different MTTL values for the D-day period, then CARF gener-
ation from the MTTL values is an extension of the case where
all items have the same MTTL.

Let proportions pl,p2,...,pk of the in-use amount, n, -
have mean times until loss MTTL1l, MTTL2, ... , MTTLk. The e
average number lost in D days for any subgroup i is

~-D/MTTLi
pn(l - e ) ’
1

and thus

k .
CARF = ( _Zl p. (1 - o D/MITLL S 100y . (3.2)
l:

This is, of course, simply a weighted average of CARF values
from the previous case. An example of the CARF values for

this case is shown in the exponential column of Appendix C.

C. CARFS WHERE THERE IS A CHANGE IN THE MTTL

It may sometimes be of interest to construct a CARF for :
a situation where there is a change in the combat scenario N
during the D-day period. One example of this 1is the case 7jﬁ?§
where the first portion of the D days is an amphibious oper- -
ation, and the MTTL might subsequently change.

For this type of situation, we let "1/MTTL1" be the loss
rate for the first D1l days where xl items are lost, and
"1/MTTL2" be the loss rate for the remaining (D-D1) days
where x2 items are lost. Here, total losses for the D-day
period are xl+x2.

17
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Let ql be the probability that an item would be lost
during the first period Dl and q2 be the probability that an
item would be lost during the remaining D-D1 days. Then

-D1/MITL1
ql 1 - e .

and

-(D-D1)/MTTL2
e

q2 1 -

Both xl1 and x2 are binomially distributed, x1 with parame-
ters (n,ql), and x2 with parameters for the conditional
binomial distribution ((n-x1),q2). Then

n
E[{x1+x2] = E[x1] + %:O(n~xl) q2 p(xl)
x:

ngl + q2 (n - n ql)
(3.3)

n(l - (1 -ql)(1 -q2)] ,

and the CARF would be

-(D1/MTTLY + (D -D1)/MTTL2)

CARF = (1 - e §(100)

The association between CARF and MTTL for this case 1is
illustrated by the wvalues in the exponential column of
Appendix D.

D. CARFS WHERE AN ON-LINE ITEM IS REPLACED BY A PREVIOUSLY
INVULNERABLE ITEM

The expressions for generating CARFs 1in the previous
sections have all been based upon a situation where all
items were initially vulnerable. A different loss process
would place one item on line, and structure its (possibly
repeated) replacement with heretofore invulnerable items.

If the supply of reserve items 1is very large, or large

enough so that the chance of its exhaustion is negligible,

18
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we can structure this case by noting that the loss process
is simply a sequence of exponentially distributed time
I intervals over a D-day period. If we ignore boundary condi-
) tions, the number of such intervals would be a Poisson
distributed random variable with a mean of D/MTTL, and the
CARF [Ref. 2] would be
. D/MTTL (3.5)

CARF = ( TTTT TS )(100)
ln-use amount

Equation (3.5) may be a reasonable approximation for an

i item with a low CARF value. If the chance of running out of
replacements is not negligible, however, then (3.5) will
yield an overstated CARF value. This can be converted (at
the cost of simplicity) as follows. Let n be the injtial

— amount of an item, and x be the losses in D days. Then, with

the Poisson probability distribution we can write
/

x -D/MTTL

(D/MTTL) e

------------------ , x = 0,1,...,n-1
] ?_(x) X!

X =
X (3.6)
x ~D/MTTL
Z (D/MTTL) e
------------------ , X = n ,
‘ X=n x!
\
- as the loss distribution. Taking expected values, this
: vields a CARF expression
. n-1 x -D/MTTL
- 100 < x(D/MTTL) e
= CARF = (---)| da ==c-----seatoooooo-
4 n x=0 x!
‘ n-1 x -D/MITL o
Z (D/MTTL) e (3.7) ARSI
+n (1 - L m-memeeceeomea ) .

. x=0 x!
D
= Examples of CARF values for each case are shown in Table 1.
; Curves associated with Table 1 are displayed in Figure 3.1.
i It can be seen that the approximate and correct CARF values
: are the same when the initial amount of an item, N, is 10.
19
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In the next chapter, we will look at the CARF generation

model ror the Weibull and gamma life distributions.
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IV. CARF GENERATION MODEL FOR OTHER LIFE DISTRIBUTIONS

In this chapter, we will derive CARF expressions for
several scenarios using the Weibull distribution and the

gamma distribution.

A. MODEL FOR THE WEIBULL DISTRIBUTION

We are interested in looking at the Weibull distribution
because it is one of the most commonly wused life distribu-

tions in reliability theory.

1. CARFs When Items Have the Same MTTL

When all items are committed and initially vulner-
able with the same MTTL throughout the D-day period, the

probability that an item is lost during the D days is, from
2.2),
A
C (R )
A MTTL
1 - e .
: Therefore,
(.M N
A MTTL (4.1)
CARF = (1 - e Y(100) .

This is equivalent to (3.1) for the exponential life distri-
bution when <k is 1. Equation (4.1) permits a CARF to be
computed from an MTTL estimate for the case where each item
in the in-use amount is committed initially and at the same
MTTL, and where losses are independent. Equation (4.1) can
also be used to determine if the existing CARF value would
vield an MITL that seemed reasonable. Here we could use

22
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MTTL =  =-m-w--s---a-o =l
ol [-1n(1l- CARF/100)]%4
The association between CARF and MTTL for this case
is 1illustrated numerically by the wvalues in the Weibull
columns of the table in Appendix A and Appendix B when ol is
2 and 3, respectively.

2. CARFs Where Not All Items Have the Same MTTL

If all items are initially wvulnerable, but with
different MTTL values for the D-day period, then CARF gener-
ation from the MTTL values is an extension of the case where

all items have the same MTTL.

For a general formula, let proportions pl,p2,...,pk
of the in-use amount, n, have mean times until loss MTTLL,
MTTL2, ... , MTITLk. The average number lost in D days for

any subgroup i is

_ <_1>_r_5}z=_«z>*
p.n(l - e od. MTTL1 ) ,
1

and we have

D M(1/d)

k PO (A
CARF = ( Z p (1L - e )) (100)
i=1 i
As an example of the use of (4.2), suppose 20 % of
the in-use amount have an MTTL of 100 days, half have an
MTTL of 80 days, and the remaining 30 % have an MTTL of 120
days. Then from (4.2),

] <§9_ff£}{?2>2 < (?9-ffﬁ}{?2>2
2 - 100 2 - 80
CARF = 0.2(1l- e )+ 0.5(1-e

. <-§9_fjf}f?2>2
277120
£ 0.3(1 - e ) (100) = 8.03 % ,

EdRh s Bor e

v




when ol is 2 and the combat period D is 30 days. This is, of
course, simply a weighted average of CARF wvalues from the
previous case. An example of the CARF values for this case
is 1illustrated by the wvalues in the Weibull <column of

. Appendix C.

3. CARFs Where There is a Change in the MTTL

We next look at the scenario where the Wweibull

distribution for time until loss changes at time D1, which

2 4t

we shall represent as a change in the mean for the Weibull
distribution from MTTLL to MTTL2. The structure we will
follow will assume that the loss rate after the mean changes
to MTITLZ2 begins with argument D1, rather than 0. The
survival function of a life length T for the Weibull distri-
bution with shape parameter ol and scale parameter R is
. C(Re)T

i F(t) = p(T>t) = e , ok >0, R>0, t20

Let F; (t) be the probability that an item with loss
rate r‘(t) survives to time t for i = 1,2. From (2.2), the

survival probability ?l(Dl) that an item survives to time D1

. 13

-‘?}_TE}(%E
A MTTL1
; since R = [ (1l/a)/ (L MTTL). The conditional survival prob-
ability for the time period DI to D, given survival to D1,
1S
: F (D) / F_ (D1
X ,(P) [ F, (1)
f &
= -‘?_CE}{?‘E ‘?}-QE}{%E
. oL MTTL2 & MTTL2
= e
.
. 24
n
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Then the probability F(D) that an item survives to D is

F = F (DL) F (D F (D1
(D) l( ) 2( )/ 2( )
: A
-@}_EE}@:;"‘ /D DN Pl P
4 MTTL1 A MTTL? o MTTL2

. EN o
R e AN LY
I\ MITLL T\ & MTTL2 J

Therefore,

)

A 4.3 o
_[@}_r_ﬁ}zes_)"\ (D*-Dﬁ)c_‘_&}z&z)] o 9
A MTTL1 L MTTL2 1
CARF = \1l-e (100). - ]

Wwhen MTTL1l = MTTL2, this is equivalent to (4.1) for the -

scenario when items have the same MTTL, and when o= 1, this h
reduces to the result (3.4) for exponentially distributed
combat lives. The association between CARF and MTTL for

this case is shown in the Weibull column of Appendix D.

B. MODEL FOR THE GAMMA DISTRIBUTION

The next case we shall consider is that when the life of
an item in combat follows the gamma distribution. We will N

look at three combat scenarios.

1. CARFs When Items Have the Same MTTL

This is the case where all items are committed and
initially wvulnerable at the same MTTL throughout the D-day
period. From (2.3), the probability that an item is lost
during the D days 1is

it ity s

i=0 i!

where o is a positive integer. i

25
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Therefore, E;;f

i

i o
: ] 4.4
CarF = (1 - L -LSEPIMTTL) S(LJMTILID) oy (8:%) -i

As with the Weibull distribution, when < = 1 this is equiv-

alent to (3.1) for the exponential distribution.

The association between CARF and MTTL for this case

.. 4
is illustrated numerically by the wvalues in the gamma :f {
columns of Appendix A and Appendix B when ol is 2 and 3,
respectively. L

2. CARFs Where Not All Items Have the Same MTTL " .,’

T

This is the case where not all items have the same
MITL for the D-day combat period. If all items are
initially vulnerable, but with different MTTL values for the
D-day period, then CARF generation from the MTTL values is

an extension of the case where all items have the same MTTL.

For a general formula, 1let proportions pl,p2,...,pk
of the in-use amount, n, have mean times until loss MTTLI1,
MTTL2, ... , MITLk. The average number lost in D days for

any subgroup i is

and we have

k A -1 L ) (4.5)
Y op(1- L (oL D/MTTL) e'(""/MTTLl)D))(LOO).

CARF = (
i=1 1 j=0 j!

This is the same as (3.2) for the exponential when A is 1.

As an example of the use of (4.5), suppose 20 % ofJ
the in-use amount have an MITL of 100 days, half have an
MTTL of 80 days, and the remaining 30 % have an MTTL of 120
days. Then




L Sa oA Al i s et s S o din - e i 0l ol 0 ot Sl i s o e 0 e S ey -
. . - . A A . A A RN , Ml ic i MASLANL AR Wi I b ad ol hadb B R
) j .:_4 ‘-
2+30)/100 -(2/7100)(30 S
CARF = 100 (0.2 ( 1 - X 55__-7-25-_-.2 o (2/100)(30) T
i=0 j! e
L ((2-30)/80)° -(2/80)(30) g
+ 0.5 (1 - z: ------------ e L
j=0 jt
J
2 +30)/120 -(2/120) (30
o - (203012007 (211200 30)
Jj= J!
= 13.81 % , o
when oL is 2 and the combat period D is 30 days. This 1is

simply a weighted average of the CARF values from the
previocus case.
Other examples of CARF values for this case and

these proportions are shown in the gamma column of Appendix

c. N
3. CARFs Where There is a Change in the MTTL ;;,
We will look at the scenario where the gamma distri- ;ﬂi
bution changes at time D1, which we shall represent as a .3{:
change in the mean for the gamma distribution from MTTL1 to Eﬁi:
MTITL2. As before, we will assume that the loss rate for the #9*:
second distribution begins with argument DI1. The survival ka
function of a 1life length T for the gamma distribution with ji
shape parameter A\ and scale parameter R is i
-1 i
I;(t) = p(T>t) = Z EBEE_ e—Rt , ..___

i=0 i!

where & is a positive integer. Let F, (t) be the probability e
that an item with loss rate r; {(t) survives to time t for {5:
i =1,2. From (2.3), the survival probability fl(Dl) that fﬁ:
an item survives to Dl can be obtained as i}ﬁ
o

-

bz
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i=0 i!

since R = ol /MTTL. As with the Weibull disttibution, the
probability that an item survives for the time period D1l to

D, given survival to D1, is

FZ(DVFZ(DI)

(cLD/MTTLZ)i - (A /MTTL2)D )
e

i=0 it

1\1%
’—l

= (

-1 i
/ Z ( AD1/MTTL2) - (A /MTITL2)D1
( L =-=---emmma- e

i=0 i!

and the probability that an item survives to D is

F(D) = Fl(Dl) FZ(D)/FZ(DI)

Then the CARF could be obtained from

CARF = (1 - ( & ~“JxZ2iocczod e

-1 i
< (L (ADLMITLL) -(o/MITL1)DL
=0 i

-1 i
(L, CAPHITIEY ARETRDL Y (g, (40

+ When MTTL1 = MTTLZ2, this is the same CARF expression as
(4.4) for the scenario when items have the same MTTL, and
when A = 1, this recuces to the result (3.4) for exponen-

tially distributed combat lives. The association between

L.
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CARF and MTTL for this case 1is illustrated by the values in

the gamma column of Appendix D. o
In the next chapter, we will look at the CARF gener- -

ation model for a nonhomogeneous Poisson process of an item '

loss. N
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V. CARF GENERATION MODEL FOR A NONHOMOGENEOUS POISSON -
PROCESS

Regardless of the life distribution, another case of

-l

interest is where an item's loss process follows a nonhomo-
geneous (nonstationary) Poisson process. The intensity
function, A (t), related to this nonhomogeneocus Poisson
process is the loss rate as a function of t [Ref. 3]. We
will look at four combat scenarios. N
A. CARFS WHEN ALL ITEMS HAVE THE SAME INTENSITY FUNCTION
We will look first at the combat scenario where all R
items are committed and initially vulnerable at the same s
intensity function of the nonhomogeneous Poisson process i
throughout the D-day combat period. If n items are the
initial in-use amount, and each has a probability q that an ;ij
item would be lost during a D-day period, then the number of .o
items that would be lost will be binomially distributed, and N
the average number lost in D days is the mean of the bino- iff
mial distribution. fiﬁ
From equation (2.5), the probability q that an item .-
would be lost before D days is ,l;
-m(D) (5.1) T
q=1-c¢e . o
Thus, the average number of items being lost during the ..
combat period D is the binomial mean _—
-m(D) L
n( 1 - e ) . L
Therefore, :‘:
-m(D) 5.2 S
CARF = (1 - e y(100) . ( ) o
0N
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Two cases associated with this process will be shown

here according to the shapes of the intensity function. We .
will first look at the linear intensity function, >¥Lﬁ
A(t) = a + bt , a=0, b20, 0<ts<D , S

e '

where "a" is the intercept and "b" is the slope. When b =

0, this scenario could be treated as the same scenario for l#ﬁi
the exponential since the loss rate becomes constant. ey
{
A .
.
A(t) = 1/182 « e
= - S
D(2C days)
1

Figure 5.1 Linear Intensity Function.

For example, as shown in Figure 5.1, if a = 0, b
D = 30 days, then

1/150 and -

A(t) = (1/150)t ,
and

30
m(30) = J[O (1/150)t dt = 3

From this,

CARF = (1 - e )(100) = 95.0 %

This example might be applicable in a combat scenario where
continuous reinforcement forces on the enemy side are
expected.

31
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A quadratic form of the intensity function 1is the case

where the intensity function 1is gradually increasing in

the form of a quadratic as time goes on and then
decreasing as shown in Figure 5.2. This might be appli-
cable in a general combat scenario. In this case, the

intensity function, A(t), can be expressed as
2
A(t) = -a (£ - D/2) + b , a>0, b>0, 0st<D ,
where D = 24/b/a. The mean value function, m(D), could be

obtained as

D 2
m(D) = Jro(-a (t - D/2) + b)dt

Figure 5.2 Quadratic Form of the Intensity Function.

For example, let the quadratic form of the 1ntensity func-

tion be

2
A(t) = -1/2250(t-15) + 0.1
Then

1}

m(30)

Therzfore,

30 2
0 (-1/2250(t-15) « O0.1)dt = 2
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2
CARF = (1 - e )(100) = 86.5 %

! . B. CARFS WHERE NOT ALL ITEMS HAVE THE SAME INTENSITY Et’f
: FUNCTION R
. If all items are initially wvulnerable, but with
' different intensity functions for the D-day period, then the

CARF generation for this scenario is an extension of the

case where all items have the same intensity function.

: Let proportions pl,p2,...,pk of the in-use amount, n, T
I have intensity functions A1l(t),A2(t),..., Ak(t) and mi(t) " s
be a mean value function for subgroup i. Then the average B

number lost in D days for any subgroup i is

: -mi(D) .
pi n(l - e (
Thus, 2;
-mi . Te e
CARF = (2 pi(l - e ))(100) . o
i=1 N
. .:._
C. CARFS WHERE THERE IS A CHANGE IN THE INTENSITY FUNCTION i?;fﬁ
The nonhomogeneous Poisson process approach to CARF Q}_

development offers an opportunity to handle an intensity
function which is piecewise. TFor example, if the loss rate
is linearly first increasing and then decreasing during the
D-day period, the intensity function is o
(e - {a + bt , a20, b>0, 0<tsDl L

"+ b'(t-D1) , a'>0, b'<0, Dl<t<D '

The mean value function can be evaluated as

D1 D e
a bt)dt + a' + b'"(t-Dl))dt . o
f ot ) f oy (£-D1))

+

m(D)




Figure 5.3 Linearly Increasing, then Decreasing
Intensity Function.

For example, if the intensity function is

0.001t , 0 <t 15

A(t) =

IA

0.015 -0.001(t-15) , 15 < ¢t 30 )

IA

as shown in Figure 5.3, then
15 30
m(30) = 0 (0.001t)dt + 15(O.OlS-O.OOl(t-lS))dt = 0.225.
4

From this,

CaRF = (1 - e %% y(100) = 20.1 %

The case where there is a change in the constant loss
rate, as shown 1in Figure 5.4, could also be treated as a
nonhomogeneous Poisson process. However, this simply
provides another way of deriving results given earlier when

time to loss was exponentially distributed.

............................
............................................................
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Figure 5.4 The Constant Loss Rate Changed
During the Combat Period.

| D. CARFS WHERE AN ON-LINE ITEM IS REPLACED BY A PREVIOUSLY
' INVULNERABLE ITEM )

The scenario where an on-line item with an intensity

function A(t) is replaced by heretofore invulnerable but

I . identical items may also be examined when losses are

described as a nonhomogeneous Poisson process. A loss

process would place one item on 1line, and structure its

replacement with previously invulnerable items. In other

I words, when an item is brought in at time t, its initial
loss rate is assumed to be A(0) rather than A(t).

Let n be the initial amount of an item and x be the
losses in D days. If the chance of running out of replace-
ments is not negligible, then with formula (2.4) for the
nonhomogeneous Poisson probability distribution, we can

write

J --osc- , x = 0,1, ,n-1

R X.

: P (%) = o (5.5)
; y _m@_ - mD) o

! X=n x! ’ ’
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where

m(D) =Jrz)(t)dt

In a way similar to that done for the homogenecus
Poisson process discussed in Chapter III, a CARF expression

can be obtained by taking the expected values as

100 [ Rt >  -m(D)
299, E: x m{(D) . m
N

CARF = (---) | 4 =--:2%
x=0 x! (5.6)
“oam® -m)
+n (1 - Z SO )
x=0 x!

If the supply of reserve items 1is very large, or large
enough so that the chance of its exhaustion is negligible,
then the random variable X 1is Poisson distributed with mean
m(D). Therefore,

CarF = ( -----TP0 Y100y (3.7

in-use amount
when the time period is 0 to D.

For this scenario of item replacement, it is useful to
look at CARF expressions for the various forms of intensity
functions introduced earlier in this chapter. As an example
of a linear intensity function, let a = 0, b = 0.04, D = 30
days and n = 25. Then

A(t) = 0.04t
and

30
m(30) = ]ro (0.04t)dt = 18

Therefore, from (5.6)

100 2 le 18 Ee 18x 18

X - -
CARF = (---) Z ---- e + 25(1 - Z ~--- e )
25 x=0 x! x=0 x!

S we
o o0 . s T
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= 72.07%

This value can be approximated by (5.7) which results in
71.5 %. As an example of a quadratic form of the intensity
function, let n = 20 and

A(t) = -1/225 €2 + 2/15 t = -1/225 t(t-30)

Then

30
m(30) =j[0 (-1/225 t* + 2/15 t)dt = 20

Therefore, the CARF = 91.12 % which is obtained from (5.6).
This value could also be approximated as 100 % from (5.7).

Examples of approximate and correct CARF values are
provided in Table 2.

TABLE 2
EXAMPLES SHOWING THE IMPACT ON CARF VALUES OF ASSUMING
INFINITE SPARES FOR A NONHOMOGENEOUS POISSON PROCESS
CARF values(%)
n m(D) approx correct
5 50.00 49.78 -
10 10 100.00 87.49 L
15 150.00 98 .63 T
20 200.00 99.92 R
5 33.33 33.33 T
15 10 66.67 65.98 T
15 100.00 89.76 . -4
20 133.33 98.33




DT

Figure 5.5 suggests that the approximation becomes

better as the ratio m(D)/n becomes small.

(O = 20 ZA:s, 00 CF TTus

00
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Y
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8 12 16
WEAN VALLT

Figure 5.5 The Impact of Assuming
nfinite Spares on CARF Values.

So far, we have investigated ways of finding the CARF
values for various scenarios according to several types of
life distributions and for a nonhomogeneous Poisson process
as an item's loss process. Based on this background, we
will compare CARFs for each 1life distribution and then

suggest some conclusions in the next chapter.
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VI. COMPARISONS AND CONCLUSIONS

A. COMPARISONS OF CARFS FOR EACH LIFE DISTRIBUTION

The purpose of comparisons between CARFs for -each life
distribution is to find the type of life distribution which
can be assumed for each combat scenario when we don't know
the exact life distribution of an item. OQur decision rule
will be that, if we don’'t know the exact life distribution
of an item, we should use the one yielding the maximum CARF
in order to avoid the risk of underestimating the CARF
value. All of the following figures were made by the values

provided in the appendices.

1. CARFs When Items Have the Same MTTL

The first scenario we will examine is that when all
items are on line with the same MTTL.

Figure 6.1 shows CARFs as a function of MTTL wvalues
for the three distributions when all items have the same
MTTL. Note that these curves are simply plots of CARFs
against MTTLs and are not survival functions. The figure
suggests that the CARFs for the exponential are larger than
those for the Weibull and gamma (shape parameter 2.0 and
3.0) when the MTTL is approximately greater than 20.
Therefore, CARF values for the exponential could be used for
MTTL values greater than 25 for this combat scenario. CARFs
for the Weibull distribution could be used for the MTTL
values less than 25.

2. CARFs Where Not All Items Have the Same MTTL

When different subsets of the n items have different

MTTL wvalues, it 1is more difficult to reach general
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K conclusions about which distribution it might be useful to {fﬁi
' assume. Our conclusions relates to the specific example Ny
- ' '-_J
examined earlier where there were three subsets of items, -

N
“
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-
*
Y Y

each with a different MTTL. In Figure 6.2, the average of T

7 the three MTTL values was taken as an MITL point. _;
o From Figure 6.2 for this scenario and example, we :
g also realize that the CARFs for the exponential are the

maximum values over the range of MTTL values greater than
25. On the other hand, CARFs for the Weibull could be used
for the MTTL values less than 25.

- 3. CARFs Where There is a Change in the MTTL _
When all items have the same MTTL which changes once ifﬁi
during the combat period, a partial comparison of distribu- }1.2‘
\ tions may be made using the numerical results developed ;;ﬁf
- ! 1
earlier. 1In Figure 6.3, the average of the two MITL values hE Sy
T .-.'4‘--.."1
- was taken as an MTTL point. ;gg:
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From Figure 6.3 for the particular example of this
scenario, we could see that the CARFs for the exponential
are maximum values with MTTL values greater than 20 and
CARFs for the Weibull are maximum with MTTL values less than
this.

B. CONCLUSIONS

We have derived some mathematical expressions for CARFs
in order to estimate equipment losses in the combat environ-
ment by using the 1life distribution of a certain item.
Furthermore, we discussed the way of finding the CARF value
for the case where an item’'s loss follows a nonhomogeneous
Poisson process.

We also attempted to suggest the kind of life distribu-
tion that would be applied for each combat scenario by
comparing these values when we don't know the exact life
distribution of an item.

CARF values that were drawn by this method could be used
for procurement, stockpiling, and plans for shipping
requirements. However, the MITL or the intensity function
for an item must be estimated or obtained in advance to use
this method.

Consequently, using our conservative decision rule
seeking the larger CARF value, it appears from the computa-
tions done here that the CARFs for the exponential instead
of those for the Weibull or the gamma might be used if we
don't know the exact life distribution of an item in which
we are interested. However, for the smaller values of MTTL,
CARF values for the Weibull appear to be better.

In many cases, the population of n items which are
considered for CARF wvaluation will be spread over variable
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levels of combat intensity ,e.g., some items in the front
and others in the rear while all are in the combat zone. It
may be easier and more accurate to estimate MTTL values for
each combat intensity level than to estimate an MTTL for the
population as a whole. Since the proportion of the n items
at each intensity level may also be well estimated in many
cases, the CARF expressions for the scenario where different
subsets have the different MTTL values may be most useful.
The choice of scenario and life distribution will, of
course, depend primarily on the specific item being studied.
The work on the preceding pages 1is an extension of past
efforts on analytic modelling of CARF values by removing the
need to assume constant loss rates or a homogeneous Poisson
process. It is hoped that these extensions will be useful to
those concerned with the accurate estimation of replacement
factors. ’
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py APPENDIX A
~ CARFS WITH THE SAME MTTL (ALPHA = 2.0)
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APPENDIX B
CARFS WITH THE SAME MTTL (ALPHA = 3.0)

(D = 30 days)

MTTL(days) CARF values (%)

Exponential Weibull Gamma

10.0 95.0 100.0 99.4
20.0 77.7 91.0 82.6
30.0 63.2 50.9 57.7
40.0 52.8 25.9 39.1
50.0 45.1 14.3 26.9
60.0 39.3 8.5 19.1
70.0 34.9 5.5 14.0
80.0 31.3 3.7 10.5
90.0 28.3 2.6 8.0
100.0 25.9 1.9 6.3
110.0 23.9 1.4 5.0
120.0 22.1 1.1 4.1
130.0 20.6 0.9 3.3
140.0 19.3 0.7 2.8
150.0 18.1 0.6 2.3
160.0 17.1 0.5 2.0
170.0 16.2 0.4 1.7
180.0 15.4 0.3 1.4
190.0 14.6 0.3 1.2
200.0 13.9 0.2 1.1
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APPENDIX C -
CARFS WHERE NOT ALL ITEMS HAVE THE SAME MTTL '

(D = 30 days, pl= 0.2, p2= 0.5, p3= 0.3)

MTTL (days) CARF values(%)
MTTL1 MTTL2 MTTL3 Exponential Weibull Gamma
(alpha = 2.0) SR
16.0 8.0 24.0 87.16 89.94
32.0 16.0 48.0 68.44 64.74
64.0 32.0 96.0 45.96 30.31
128.0 64.0 192.0 27.23 9.34
256.0 128.0 384.0 14.91 2.47

16.0 8.0 24.0 87.16 92.35
32.0 16.0 48.0 63.44 63.21
64.0 32.0 96.0 45.96 24.25
128.0 64.0 192.0 27.23 3.80
256.0 128.0 384.0 14 .91 0.49
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APPENDIX D
CARFS WHERE THERE IS A CHANGE IN THE MTTL

(D = 30 days, D1l = 15 days)

MTTL(days) CARF values(%)
MTTL1 MTTL2 Exponential Weibull

Gamma
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