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A Review of Maximum Entropy Spectral
Analysis and Applications to Fourier Spectroscopy

1. INTRODUCLTION

This report is based on a talk that was presented on April 6, 1984, at a sem- -
inar called "MESA Workshop'', sponsored by the Optical Physics Division. That B
seminar was organized because it has become apparent that the maximum entropy
technique of spectral analysis can sometimes help in the resolution of spectra in

l Fourier Spectroscopy.

The importance of the Maximum Entropy Method (MEM) comes from the fact
that the resulting power density spectra (PSD's) often exhibit ""super-resolution';
a resolution that far exceeds that of conventional methods, This, in turn, allows
one to obtain high resolution PSD's with much less data.

This report provides background information on this subject, presents some of poos
the salient features of the technique, and illustrates its use in Fourier Spectroscopy o
with an experimental example. The report also reveals some of the peculiarities

of the method, and shows how to distinguish which types of data represent good 1_.:;..4“:

candidates and which represent bad candidates for its use. (There are, it turns :-'."3:.1.-:
Pt out, cases where MEM is worse than conventional methods.) Finally, the ref- ?"‘.f\‘

erences are annotated to guide the reader to the most useful literature. The t“""*:

latter contain the details that are left out here due to space limitations. t-“_.\:‘-:.:

Ry

: —_— sl
g (Received for Publication 28 March 1985) Y




[t will be assumed that the reuder is acquainted with Fourier analysis, the
Convolution Theorem, the Wiener-Khintehine Thecrem, and the conventional
approach of Blackman and Tukeyv. Finally, it should be mentioned that despite
its length, the present report is merely a "broad brush” treatment,

The form of the one sided MEM spectrum is given by:

V) e ey
| m I._’

) iv(kAt)

il - Qe ‘,

k1 '

where At is the sampling interval, w 1s the radial frequency, which can assume
any value within the Nvquist limit, and %m and a, are constants to be determined

from the matrix equation

— - ~ - s
OO 61 e ¢m-1 ¢m 1 o
o1 oy e . ¢m-1 a 0
Ol ¢ Cee 9 éy . .
ém ¢m-l T ¢1 d’O Lam O_J

where the d’i are the autocorrelations. This is in contrast to the form obtained for

the one sided spectrum from the discrete Fourier Transform upproach:

vlo 2R Aty :

where N is the number of discrete values of the signal, and

N-1

iwen
= k
.-\(uk) = E X, e

n-0

where x are the discrete signal values, and w is the discrete ""digital radial

frequency' given by %li . The analog equivalent would be v, = (wk/At).

analog
Time t nat in the continuous domain,
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As can be seen, these two discrete time formulations of the power spectral '
density appear very different. To someone familiar only with the second form, ;
the first form (MEM) will look strange. To give the MEM formalism a clear "'_"-'f_.. -
physical meaning, this report will first present the development of the power - ;:.
spectrum up to the time of Burg. We then consider Jaynes' development of the
main principle behind MEM. This principle is explained 1n its general form and ‘ .-
then used to derive the MEM spectrum. After that, we consider u more detailed o

approach that uses the " Z~transform." This transform is explained in Section 4,
where it is shown that the Lorentzian line shape is due to the nature of the Z-
transform, rather than depending directly on the MEM principle. In Section 5,
the MEM spectrum is derived from autoregression thecry, which gives the v,
physical significance of the MEM spectrum, ‘
The associated matrix equation is derived in Section 6, to give a physically -
clear picture of it. The practical methods to solve it are derived in Section 7,
Another approach is through linear prediction, due to Wiener, This least squares o
approach is used in Section 8 to derive the matrix equation from a completely l }
different approach. Here it is shown that least squares and MEM can lead to the
same results, )
In Section 9 we turn to the question of what types of data are good candidates B
for MEM treatment and which are not. In Section 10, we consider the so-called '
"Burg technique" for determining % and a;. Many advantages of the Burg tech- ¢ -
nique will be pointed out. We then (Section 11) apply MEM to Fourier Spectroscopy R
and show some results, Finally, in Section 12, we consider the interpretation, e
due to Burg, of the power spectrum in terms of 'reflection coefficients,"

An annotated bibliography suggests further reading.

2. DEVELOPMENT OF THE THEORY

In this report, a recent and excellent historical survey of spectrum analysis
by Robinsonl is used. In addition, a very understandable introduction to time
series analysis by Gottman2 was employed.

2.1 From Pythagoras to Fourier

1f one excludes calendars and time-keeping devices, then perhaps the first
use of harmonic or spectral analysis was due to Pythagoras (600BC). He pointed
out that a string of a musical instrument vibrated in a way that could be broken

1 Robinson, Enders A, (1982) A historical perspective of spectrum estimation,
Proc., IEEE 70(No. 9):885.

2, Gottman, J.M. (1981) Time-Series Analysis, Cambridge Univ, Press.




down into "harmonics” as shown in Figure 1. He used such informauation for a

mathem:tical basis of musicul harmony, From this time until the 1700's, there

seems to have been no other application of harmonic analvsis.,

187 2ND ARD

Figure 1. String Hurmonics

The muthematics of spectral anulysis began, in its modern form, in the

eighteenth century. Daniel Bernoulli (1738) was the first to solve the wave equa-

tion,
82 1 72
u Jd u
x5 S5 0, (1)
A% c” At

where u is the vertical displucement of a string, c is the velocity of the wave, x
the horizontid coordinate, und t the time, He did this by use of the now classic
method of separation of vuriubles:

ulx, ) - X)) T . (2)

The boundary conditions are given by

(3)

where the end points are x = 0, 7. This leads to a solution in x that employs sine
(not cosine) waves and since Eq. (1) is linear, one can use superposition to get the

general solution
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where k is un integer, due to Eq. (3). ::._A-J
Here, the cruciual part of hig result is the expression for the initial displace- T '_%
ment of the string [t 0in Eq. (4)]: L i
T
5 B
u(x, 0) - Ay sin kx (5) L . 1
k-0 9

On the left, ulx, 0) is an arbitrary function. It need not be "unalytic". On the

right there is an infinite sum of sines, euch of which is analytic.

oy

. s
0P W W I

Thus, we have a seeming puradox. "How can a non-analytic function (with,
for exumple, discontinuous derivatives), be represented by an infinite sum of
nothing but analvtic functions?' From Euler (1707—-1783) and Lagrange (1736—1813)

we have the well-known relation

T

A = 2; f ul(x, 0) sin nx dx (6)

0

which displays the ""global" nature of Ay . [tturns out that Eg. (6) is useful in
clearing up the apparent paradox.

The first announcement that an almost arbitrary function could be expanded
as in Eq. (5), was made in 1807 by Jean Baptiste Joseph Fourier to the French
Academy. (There are constraints on the function, but analyticity is not one of

them.) The distinguished mathematicians present at his talk rejected his result.

Fourier himself was never able to provide a rigorous proof, although we now

know he was indeed correct., The proof of Fourier'’s assertion made use of the

L_a

"Z—transformation".l The MEM technique of spectral analysis (as well as a . :
very large and increasing literature on the digital processing of data and signals) . ‘
is based conceptually upon the Z-transform, ’ ~‘

The analytic function paradox mentioned above is resolved when the Taylor :{: : ‘.‘
series expansion {which defines analytic functions) is connected to the Fourier S

series expansion by means of the Z-transformation. Consider, in place of u(x, 0)
above, an analytic function, f(Z), of a complex variable Z:
-1

Z= x+ive (FEJO)
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E Expuand f(Z) 1n 1 Tayvlor series about the point z’l-oto obtain whut we define

as the Z-transform

[+ <]
r -
' [{PA S E ag AL 7)
v n-=0 i
. If Z(—Jl is defined as the first singular point from the origin, then the radius -
i of convergence extends from Z-1 =0 to Z-1 - Z-l, or, in other words, the "" -
region of convergence is where |Z| > IZOI . Now, letting Z = 1 exp (-j9) in T
; Eq. (7), we obtain the well known complex form for the Fourier series ' |
. - o
fle™f) - E an[cos ng + j sin(np}} . (8) i"‘?"’“ -
n:0 o
We now consider three cases to explain the paradox. In the first case, Z0 )
is inside the unit circle. In this case, both f(Z) and the series in Eq. (7) are
analyvtic functions and there is no paradox. In the second case, ZO is outside the i et

unit circle. This implies that the series does not converge (as can be seen) and, RSN
again there is no paradox because the series is invalid. The third case is the one R
that resolves the paradox. In this case, Z0 is on the unit circle. When this
happens, the Taylor series will not converge at some or all of the points on the
circle., The Taylo: series defines an analytic function (differentiable to any
order) inside the circle, however. On the circle (the Fourier series in §) we
have 2 non-analytic function. The solution to the paradox is that it is sufficient

to move the singularity from the circle to the inside by a vanishingly small amount
to change the given non-differentiable function of ¢ into one which can be differen-
tiated to any order, that is, an analytic function. The proof of the validity of the
Fourier series mukes use of this fact (a limit is taken). The reader may recall
that similar arguments are used in Fourier transforming the step-function. The
main point here is that the Z-transform was crucial for the proof that Fourier's

approach is correct,

2.2 The Periodogram as Introduced by Sir Arthur Schuster

The next major step in spectral analysis of data came with the introduction
of the concept of the periodogram, P(w), by Sir Arthur Schuster in 1898. This is
defined by Egs. (9) and (10)
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N
X = an eTinw (9)
n=1
and
Pl = & X%, (10)

where the X, represent the individual values of the time series data, n is the

integer giving it the (discrete) time label, w = 27f where f is the frequency, and

N is the total number of data points. The periodogram was conceived for the
purpose of finding ""hidden periodicities' in the data. Implicit in this approach is
a model of the data that consists of two parts. (Here we follow Gottman, 2) One
part is purely deterministic and consists of one or more sine waves. The other

part consists of white noise, e For example ]

¢

X, Acoswtt+Bsinwt +e

t ¢ (11)

This approach, unfortunately, was plagued by a feature which severely limited
its usefulness. As shown by theory and experiment, the variability or standard
deviation of the periodogram is equal to its mean value for a given w. In other
words, the noise fluctuations were as large as the "signal''. Furthermore, this
feature remains, independently of the length of data record or N, (For a proof,
the reader may consult Gottman2 or Claerbout. ?) For this reason the periodo-

gram was considered a failure,

2.3 The Slutzky Effect and the Work of Yule

In the 1920's, the Russian scientist Slutzky made a surprising discovery. He
found that a signal consisting of pure white noise, as shown in Figure 2, could
give rise to a spectrum with a clear peak merely by taking a moving average

prior to the spectral analysis. See Figure 3, based on Gottman.™ In effect, he
found that a moving average can introduce a periodicity, that is, '"create order LT
out of chaos'. Initially, this discovery was alarming to his contemporaries "
because they routinely applied moving averages to their data and they did not
suspect that, in so doing, they were introducing a periodic feature into their
results, Once the "Slutzky Effect' became understood, it changed the way one

modeled the periodicities of nature. In effect, this led to a model that consisted

3. Claerbout, Jon F. (1976) Fundamentals of Geophysical Data_Processing.

.
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Figure 2. Pure Noise of Zero Mean and Unit Variance '.:."—

PSD

FREQUENCY

Figure 3. White Noise Spectrum of Figure 2
is Altered by 4-point Moving Average, It now
has a peak due to this average

of white noise as an input to a filter, and the output (or "filtered" white noise) as
"data of nature'" or "signal to be analyzed'. More details will be given below, but
it should be emphasized that this model is exceedingly different from the one
implied by Eq. (11).

Shortly after the Slutzky Effect was discovered, G. Udney Yule (1927) anal; -ed
sun spot activity. To obtain his results, he originated the idea that Schuster's
model [Eq. (11)] is not of general validity. Instead of this "pure-sine-wave-plus-
noise process'', he suggested the "filtered noise'" model in the following graphic
manner,
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- Imagine a laboratory with a swinging pendulum in it, and suppose that an

experiment is in progress in which a transducer is used to record the pendulum's

-;" angular position as a function of time. Now suppose that a group of young boys ::: '.:
A get into the laboratory and shoot peas with their pea-shooters at the pendulum. - :
-' The impacts would randomly perturb both the amplitude and phase of the pendu- o

. lum, The resulting time series would no longer contain a deterministic compo- ““.;

nent nor would there be an exact period. Instead, the series would become
unpredictable (that is, for long times into the future) and yet it would appear
smooth and fairly periodic. This seemed to be the ideal model for sun spots.
It became clear later that it was of general validity for the science of time series
analysis, {
Next, consider a discrete mathematical treatment of the "peas and pendulum" -
model, The pendulum can be regarded as a narrow band filter, In terms of dis-
crete time series, the behavior of a pendulum can be modeled by a homogeneous

difference equation
b{n) +a; b(n - 1) +a, bn-2)=0 (12)

where n is the time index, a's are constants that are given, and b(n) is the depen-
dent variable. The solution to Eq. (12), easily found in books on difference

r- equations, is

sin(n + l)wo

b(n) = e A , (13)

sin Yo

where X and wg are functions of the constants a; and ay. As can be seen, Eq. (13)
-,t: is the discrete version of a decaying sine wave of the type well known in elemen-
o tary differential equation theory. To add the effect of a random input to Eq. (12),
in this example '"the peas', a term e(n) is inserted on the right hand side as in
Eq. (14).

LI
e oe'a e

x(n) + a, x(n - 1) + a, x(n - 2) = e(n) , (14)

where x(n) is now the dependent variable. The solution of Eq. (14) is given by

o0
x(n) - z bk) e(n - k) | (15)
k=0

2 e 0 1 e
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where b(k) is given by ¥q. (13). The right hand side of Fq. (13} 1= the < oneolu-
tion of the input noise, e(n), and the filter impulse resporse bkY, i v anner
analogous to the continuous theory., kq. (14) has become known s the VRO
autoregressive model for discrete time series, In the gener o ae onn nur -

ber of filter (ai) coefficients can be involve:],

Figure 4 gives the block diugram of the new fitne series et o ooy
from Slutzky and Yule's work. Quite independently, the o then e e
tral analysis of random processes was being developed in "he <o @ o - .

(1920—1930) by Norbert Wiener, This will be considered nexr,

NOISE FILTER > SIGNAL

Figure 4. Block Diagram of the New '"Model"” for the
"Signal"

2.4 The Contribution of Norbert Wiener

In 1923, Wiener developed a model for Brownian movement. This work
extended the work of Einstein (1905) and this Einstein-Wiener theory of Brownian
movement is important to all theoretical studies of spectrum analysis [according
to Robins;cm1 who describes this work in more detail than will be done here]. In
1930, Wiener published his classic paper on Generalized Harmonic Analysis,

Equation (15), and the Fourier transform version,
X(w) = B(w) E(w) (16)

became his model for the random process. In Eq. (18), the capital letters stand
for the Fourier transforms of the lower case quantities in Eq. (15). The con-
volution theorem was used [the Fourier Transform (FT) of a convolution equals
the product of the FT's]. A key point in Wiener's analysis is

(17
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where the bar indicates a suitable average or ""expectation value', * On the left
side we have, by definition, the autocorrelation of a noise process; and on the
right, we have a Kronecker delta function.
L.et us now consider an important observation. In the context of the signal

model of Figure 4, which is used by Wiener, the usual explanation for the

. failure of the periodogram (added noise) is not quite valid. i The true explanation
is the presence of the factor E(w), which is a very noisy function, in Eq. (16).
The FT of a rough function is not necessarily a smooth function. Indeed, Wiener

showed in 1923 that the FT was rough (as Robinson's very useful survey explains), '.: . o
In passing, it is of interest to note that Wiener was very interested not only e
in Brownian Motion, but also in a very general aspect of the mathematical . (
characterization of noisy but semi-ordered patterns. He described in his auto- e
biographical accounts how he was inspired by the sight of the Charles River, as .
seen from MIT, and wondered how one could mathemautically describe the sur-
face of the water with its random waves.
So far as spectral analysis of data is concerned, Wiener's most concrete
contribution was the theorem named after him and Khintchine.x This states that

the autocorrelation, defined by ¢(k) in

1 %
#(k) = N x (n) x(n+ k) (18)
2

is related to the PSD &(w) by
P s
2w = Y oty ek (19)
k=~p

where p is the maximum lag. This implies that the key to the essentially con-
tinuous spectrum of the process in Figure 4 is in the autocorrelation., (See

Y. W, Lee4 for an elementary study of Wiener's approach.) Unfortunately, this
did not lead immediately to practical data analysis. Tukey's breakthrough (to be
described next) was needed for results to be achieved. As will be seen, however,

4, Lee, Y.W. (1960) Statistical Theory of Communication, Wiley.

*
See E, Wolf, JOSA 72, No.3, (1982) (sec, 2) for an interesting contrast between
the treatments of Wiéner and Kolmogorov,

TSee Robinson and Treitel (1980), Appendix 16-1, for a rigorous treatment,
1See Wolf, op cit.

11 :

PO S S

e te "
U I N e |

Lt R S S IR
RN Ce e T e
PSR, T, VA VS 5. WA




AL A

[SCRENCNCACAL N

5. Blackman, R.B., and Tukey, J.W. (1958) The Measurement of Power Spec-

Wienert's work on hinear prediction and the "Wiener Optimum Filter"” based on

least squares also hus a4 crucial role to play in MEM spectral analysis.

2.5 The Blackman and Tukey Approach

The practical approach to the PSD (which according to Robinson1 was mainly
due to Tukey) was described in the famous book by Blackman and Tukey. ° For
further details the reader may consult that reference,

Unlike Wiener, Blackman and Tukey considered the case where the data
record 1s finite. Using their notation, the autocorrelation, Cr' is defined (dis-
crete cuase) as

B 1
Ch 77 E XoXqrr (20)
0

. here xq is the time series, q the time index, and r the lag., One assumes unity
for wie sample interval spacing in Eq. (20), The total number of data points is n,
The PSD, Vr' is obtained from [in Eq., (20) xq is real]:

m-1
V.=47: |Cy+2 Z Cq cos (%;—") + C cosrm . (21)
q=1

Here, AT is the sampling interval, m is the maximum lag, and the cosine arises
from the fact that the original series is real. These authors then introduced ways
to smooth out the PSD to get rid of the noise fluctuations that killed the usefulness
of the periodogram,

They used three smoothing techniques: (a) the truncated autocorrelation,
(b) "window carpentry", and (c¢) direct spectral smoothing. The last two tech-
niques also help with the problem of "spectral leakage' which, as will be ex-
plained, comes from the fact that the data record is not infinitely long.

To truncate the autocorrelation, the maximum lag m in Eq. (21) is limited
to be a small fraction of n, the total number of points, Typically, the maxi-
mum number of lags is taken to be 1/10 of the number of data points., The
resultant smoothing of the PSD is due, as explained by Blackman and
Tukey, 5 to the resulting increase in the number of degrees of freedom in their
spectral model based on the chi-squared statistic (compare this with Gottman's

tra, Dover,
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discussion of the periodogramz). In effect, the smoothing results from the pool-
ing of 10 elementary spectral values for each PSD result based on the 10 percent
truncated autocorrelation. Their book contains confidence intervals in a table to
guide one in the use of truncated autocorrelations. Further discussions of use
will be found in Bendat and Piersol6 and Otnes and Enochson, 7

"Window carpentry”’ (called apodization in optics) uses a weighting factor,
Wn, which is unity for zero lag and smoothly decreases to nearly zero at the
maximum lag. Thus, in Eq. (21), Cq is replaced by Wq Cq. Blackman and
Tukey showed that exactly the same smoothing effects can be obtained by means
of a weiphted average in the frequency domain. For example, the use of a weight

given by Wq = é—(l + cos %) , 'r' < m, is exactly the same thing as using

Vr' - i’ vr—l * %Vr * %Vrﬂ (22)
in the frequency domain, and in either case, it is called "Hanning". (P. 36 of
Blackman and Tukey5 explains end point corrections. )

Another smoothing method, due to Welch, introduced more '"degrees of free-
dom'' in a more direct manner. In this method, the original data record was
chopped into sub-sections. The PSD was obtained for each of these subsections,

and then they were all averaged together [Eq. (23)], resulting in a smooth PSD.

N
P.(w)
i
1

P(y) =21l — (23)

N

""Leakage” is another practical problem solved by Blackman and Tukey. This
problem comes from the fact that a finite segment of data is, in effect, the prod-
uct of an infinite data string multiplied by a rectangular pulse (equal to 1 over the
available data and zero outside). From the convolution theorem it follows that
this is equivalent to convolving the true spec’' rum with a sinc function
[(sin 8)/6], 6 = WNAT. Window carpentry alleviates this problem. One can use
tapered weights to reduce the '"side-lobes' of this spectral window by a factor of
10 (these lobes are the cause of leakage from neighboring frequencies) but, of
course, there is a price. The resolution decreases, for example, by a factor of

2 (from the effect of smoothing) if one were to use a triangular window,

6. Bendat, J.S., and Piersol, A.G. (1971) Random Data: Analysis and Meas-

urement Procedures, Wiley-Interscience.

7. Otnes, R.K., and Enochson, L. (1978) Applied Time Series Analysis, Vol. 1.,
Wiley.
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Another approach to the leakuge problem involves what Bluckman and Tukey

call "pre-whitening'. For exumple, consider Figures 5 and 6. Suppose one
considers the red noise shown in Figure 5. Leakage would bring about an incor-

rect slope from a raw analysis. If, however, the data are "first differenced",

that is,

:
.
.
)

X, X, - X, . (24)

then the resulting spectrum, as thev show, is that shown in Figure 6. This is a
i flut spectrum and, therefore, no leakage is possible. After this is done, the -
I PSD is ""post colored' by means of a spectral version of the inverse transform of MR
Eq. (24).

SLOPE = -2 R

LOG P{w) N

LOG w

Figure 5. PSD of Original Signal Before Prewhitening

[ SLOPE = O

LOG P(w)

LOG w

Figure 6. PSD of Signal After ""F rst-Differencing' or
Prewhitening

14 OO
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Prewhitening has been mentioned here because it has relevance to the MEM
spectrum. The more general form of Eq. (24) is a combination of autoregres-
sion and moving averuges (see Bluckmuan and Tukeys). As such it represents
something very analogous in concept to MEM or, as we shall see, AR analysis.
In effect, prewhitening can be imagined to be an "eyeball" kind of MEM, If one
could produce a perfectly flat PSD by prewhitening, the recolored spectrum would
be the MEM spectrum (or, in the most general case to be explained, the ARMA
spectrum), This remark will be more meaningful to the reader later on when
MENM, AR, and "ARMA" are explained.

Blackman and Tukey seem to have introduced the term '

'aliasing' as depicted
in Figure 7. (See also Goldma\n8 "Information Theory'".) This figure shows how
the process of sampling data at intervals of AT can give rise to the illusion that a
large wavelength is present when in fact it is a short one, There is an analogy*

here with the effect of a stroboscope which can slow down or even stop the motion
of a rotating fan. To avoid such aliasing, one filters out all high frequencies be-
fore sumpling the data. The filter must remove all frequencies above the Nyquist

frequency given by (1/(2 AT)) if there is to be no aliasing.

Figure 7. Actual Signal Is Given by the Full Curve. The dotted
curve represents the aliased signal caused by sampling at the
low frequency given by the dots

8. Goldman, S, (1953) Information Theory, Prentice-Hall, Inc,

*Another analogy has been suggested by G, Vanasse, It is the overlapping orders
in a grating spectrometer. The grating samples the incoming wave front at an
internal corresponding to the grating constant; it is because of this finite sam-
pling interval that spectra of different orders are produced. If the spectral
bandwidth is too large, aliasing (that is overlapping of orders) occurs. In con-
trast, the prism is continuous in its effect on the wavefront and no spectral
orders appear,
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Historically, the next breakthrough was the mvention of the "Fast Fourser
Transform' or FFT. This made the calculation of the PSD practicul from n

O
economic point of view and it is described in great detail in Brigham™ as well as

in many other piaces, Cooley and Tukey published the first algorithm for the
F¥T, Later on it was realized that the general ideu was alrewdy in the litera-
ture; however, cven today few people seem to realize thit Guuss was the very

.

first one to use it,

We have arrived at the point in this account where John Burg muade his con-
tributions, which are the MEM-PSD, and the ussociated methods to obtian it, 1In
his Ph. D. thesis (Stanford), he made two very important observations which set
the stage for what was to follow, First, he noted thut sometimes the PSD which R
wis obtained by the techniques described above could be negative, Theoreticully .
such u result is complete nonsense. It is a result of the fact thut the sine func-
tion nas negative sidelobes. The cure is "window carpentry”, but with loss of
resolution, He also noted that the PSD's obtiined did not agree with the uuto-
correlations of the data. In his words: '""These two affronts to common sense
were the main reasons for the development of maximum entropy spectral
analvsis. ... "

"If one were not blinded by the mathematical elegance of the conventional
approach, making ussumptions as to unmeasured data and changing the data
values that one knows [to be correct] would be totally unacceptable from a com-
mon sense and, hopefully, from a scientific point of view."

These are strong words, but they arc well founded. Since the method he
developed rests on the general principle of maximum entropy, we turn now to a
discussion of the work of Javnes, which is the foundation for the use of this

principle in the present context.

3. MAXIMUM ENTROPY — THE “HIGHER PRINCIPLE"

In 1957, Fdwin T. Javnes started an unusual project in which he derived
statistical mechancis on the busis of information theory., This work has grown
in significance over the vears., The generality is due to the lact that Jaynes has
mude .« fundamental contribution to the corn.ept of probability, The original
approach to "probability"” wus due to Laplace, He regarded it as a reflection of
one's state of knowledge. For example, suppose one is given a coin to flip. The
question of what probability to assign to "heads" and "tails" is decided, by l.aplace,

by the "principle of indifference" or '"the principle of insufficient reason'. If

. Brigham, F.0O. (1974) The Fast Fourier Transform, Prentice Hall, Inc.
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there is no known reason to prefer either ""heads' or 'tails", then one assigns an y
equal probability to them. The die is similar in this respect, If there is no
known reason to suspect that it is '"loaded", then one should ussign an equal

probability to any particular outcome of u "'throw” of a die. In this case the

probability would be 1/6. Unfortunately, if one did know that the die was unfair

. or loaded, the Laplace approach would give no answer. As will be explained |'_
below, Jaynes has shown us how to extend the Laplace principle to the case of N _' o
the loaded die and even to far more general cases (one particular one being the . .
PSD).

Laplace's subjective concept of probability went out of fashion when it wus
found to be very limited in application in the form that he gave us. It was re- |
placed by another definition known as the ''frequency' interpretation given in : o
most books on the subject today. The generalization due to Jaynes, however, S )
came at a time when other scientists such as Cox, Jeffreys, and Good were {.'_ S
reconsidering the subjective approach., For an excellent history of the subject of TR
probability, the reader should consult the paper by Jaynes given at the MIT
symposium on Maximum Fntropy (Levinelo). Jaynes was drawn to this subject
by the following strange observation. Shannon introduced the concept of "infor-
mation'’ to communication engineering, and its mathematical form is essentially

identical to that of entropy in the statistical mechanics of Boltzmann and Gibbs.

" Why should they be the same 7' is the question Jaynes asked himself. He was
later to find the answer, which is that they turn out to be two examples of the
application of the same principle. In deriving this answer, he generalized the
L.aplace method of assigning probabilities. He was also able to obtain results in

non-equilibrium statistical mechanics,

To approach Jaynes' work, this report will use a simple example that illus-

-,-‘1 b R N S O
]

trates the main ideas behind the maximum entropy concept as it applies to sub-

.

jective probability assignment. The particular example used is one given by

Javnes himself in a lecture that he gave at Brandeis in 1963 (see Ref, 11).

3.1 The Brandeis Die

Jaynes' example is that of the loaded die. Over the years it has become
famous as the ''Brandeis die''. It is described as follows. Suppose we first con-
sider a fair die. (F’i = 1/6.) Let each face be numbered according to the number
of spots, so that the average number of spots per throw would be

10. l.evine, R.D., and Tribus, M. (1979) The Maximum Entropy Formalism,
MIT Press, Cambridge, Mass,

11. Rosenkrantz, R.D., (Ed.) (1983) E. T. Jaynes: Papers on Probability,
Statistics and Statistical Physics, Reidel Pub, Co., Boston, MA,
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Z (1) P1 3.5 (25)

which s:vs that the sum of all the probubilities add up to unity or certainty, But
now consider a losded die.  In particulur, suppose that all one Knows is that the

average number of spots is 4.5, thut is

f
2(1) P45 (27)
i1

The question is, what probability should be assigned to Pi given the constraints
Fgs. (26) und (27)? The Luplace type of approach does not help very much.
Certainly it gives no numerical result. l.et us explore some possibilities, Fig-
ure 8, for example, gives the correct answer, for the average, but it is simply
not reasonable. Figure 9 is more honest, but it still jumps to conclusions,
Figure 10 is even worse because it is uneven without reason. Figure 11 is the

best one up to this point, It is based upon:

(12§ -1

i 210 (28)

P
Unfortunately, one cannot employ a linear relation and obtain an average greater
than 5 wathout introducing o negative probability, This shows that the general
curve must not be linear,

The above sequence illustrates that, to be as objective as possible, one must
avoild letting P) reflect more information than is actually given., In effect, we
want Pi to reflect only the known constraints that have been imposed upon it, and
then be us uncommittal as possible with regard to anything else. How then does

one do this” The clue is given by Shannon's definition of information, SI' given

S, - E P, In P, (29)
i
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Figures 8-11. Various Assignments of Probabilities for Die Throws. Figure
11 is the most fair of the four, yet it too is not general enough. Text gives e
explanation e

I o)

Thus, the prescription of Jaynes for the case at hand is to maximize S in Eq. (29)
with the constraints of Egs. (26) and (27),

e

If this procedure is compared to the one which is used in statistical mechanics,

o N

one will see the connection with probabilities based on the frequency interpreta-
tion. The statistical mechanical approach is based on permutations and combina-
tions of states under such constraints as: (a) there is a constant number of par-
ticles, (c) there is a given average energy, and so on. Applying this to a die,
one would consider the number of ways of getting N1 throws of single spots, N2 :;:.A .
double spots, and so on, up to NB throws of six spots out of a total of N throws.

The Bernoulli Formula (so famous in statistical mechanics) is, for this particular

case:

W -

(30)
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When N und Ni are ull sufficiently large one c:un use the well known Stirling

Approximation for the factorial, This gives us

lim 1 .
il ~ . h N./N
N N In W = E (Ni,/\l) In ('\Il,l\) (31)
i

if one maximizes the

Here the quantities (Ni/N) represent ''frequencies''. Now
right side of kq. (31), one is assigning frequencies that occur the greatest num-

ber of wuvs., This is exactly the method for finding the frequency probability

distributions. But this is also exactly what is done by maximizing S in kEq. (29).
Thus, it can be seen that the approach of Jaynes is consistent with the frequency S 1
interpretation. It is more general in that it can be used even in a case where o e

only one "throw' is involved. It is also much simpler, and can be considered to
be . short cut for calculating "greatest number of ways' types of probabilities.
In the following, the Jaynes formalism will be derived and it will be applied
‘o the Brandeis Die problem. As an introduction, however, consider Figure 12,
which represents u summary of the formalism. The constraints consist of any
number of average values that are given, plus the fact that the probabilities must

sum to unityv. By maximizing entropy, it turns out that the probability will always

have the form of an exponential. Another thing to notice is that this formalism is
identical to that found in statistical mechanics, where the quantity Z is called the
"partition function’”. Figure 12 is in essence, the basis of the Jaynes program.

It also underlies the MEM technique for the PSD, as will be seen.

3.2 Derivation of Jaynes’ Formalism

Jaynes' procedure was to maximize S in Eq. (29) with the constraint condi-
tions

E PE(O) = (660  (r=1, ..., n) (32)
i

and

| Z P =1:= Zfo(ei)Pi (33)
T i

where fo = 1 and {fyg) = 1. Note that we used fo = 1 to make the notation uniform.

To maximize entropy (or minimize information) under our constraints, we must

20




PROBLEM:
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Figure 12. The Jaynes Formalism

use Lagrange multipliers, [See Pagelz.] Thus, the variation is taken and set
equal to zero:

8(S; = uglfe) = 2y (f) -...1=0 (34)

The Ho and A; constants are the Lagrange multipliers., Inserting for S and the
2
(fi)'s from Eqs. (29), (32), and (33)

P.InP +u, P+, ((6)P +.,...]1=0
aZ[ In Py +ug Py + 4 £ (8) Py ) (35)
J

The variation is taken with respect to P,, For this reason each square bracket

for a given j must vanish, Consider the jth term., We have

:}_ 12, Page, L. (1935) Introduction to Theoretical Physics, Van Nostrand Co.,
8 N.Y., p. 311,




P,
6P |In Py + P‘}“*“o FALO) + .| =0 (36)
If we now call RO = 1+ Hg, we obtain .
Pj =exp[-)t0 -Al fl(ej) -] (37)
which gives us the form of the probability and explains why it must be exponential, s
The next question is, how does one obtain ko? Equation (37) can be rewritten oL
Ay A E 8 -x,E,(8) -
PjLeoe 1136)’223... , (38)
- ala
and Eq. (33) can be written as E R
- A, 6,6 A, L(6.) S
EPj:1=eAOE e 1173 e 72270 (39)
j v o
L
_x A. -
= e 0 z
where
a6 = f.(6.)
Zsze V1N e 72205 (40)
i
Hence we have
0. % (41) NN
LAY
RAORLN
or AN
xg - In 2 (42) i
: S
or \,. e
0 R
AN




To obtain X, (and )cj in general) we first consider

) i X -Alfl(e.)
&) - Z £y (6P = Z ) e Oe i,
J J

(43)
NEE D IACE RUES
from Eq. (41), hence
-3lln Z)
t,(8)y = —n (44)

that is, one can obtain Eq. (43) from Eq. (44) and therefore they are the same.
At this point, Figure 12 has been explained. Considering the number of uses
it has found, it is quite simple and straightforward. (See the Jaynes' references

in Rosr-:nkrantz11 for an indication of the scope of the applications.)

3.3 Solution of the Brandeis Die Problem

It is very instructive to work out one case in complete numerical detail. We
will solve the Brandeis die problem.
As was shown, P:i is given by

-1, £(6.) -Gr
Pj=lze13=lze 1 (45)

where f(Gj) = j = the number of spots on a face. The Z is given by

A H0) SN -
Z = Z e b= E e (46)
j j=1
_A'l
To simplify calculations define x = e . To reduce the six member sum in Eq.
(46) to a simpler expression, we consider

1 2

m—=1+x+x +... ), (47)
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which cun be obtained from the geometric series expansion. kquation (47) does
m

. . . co . 1 < .
not terminate. We wish to obtain the finite sum given by E x . First consider
i=1

m+1
Sl x ., +x (48)

e
[

This is the same as g, (47) but the term xm+1/(1 - x) is subtracted from it. To

get rid of the number 1 on the right side, we subtract unity from both sides:

1 - m+1
z-—*__ -1 (wherem - 6)
1 -x N
(49) Lo
_x(1 - x%) e
(1 - Xi " .
!
The expression for Z is now manageable, -‘-‘,__}
We are given the fact that the average number of spots is 4.5 instead of 3. 5. - ‘
The latter would be the result of a fair die. Thus the formalism shows that, to
obtain Ay, we may use .,.
6 7 '
-g(;n AR 4.5 - 1 -7x 4 6x6 (50)
1 (1 -x1 -x")

and a hand cualculator can be used to solve Eq. (50) numerically. A more conven-

ient form for Fq. (50) is

3x7 -5x0 +9x -7-0 (51)

-2
The solution is x - 1,449 - e 1, and )\1 = -0,371, Z = 26,66, and since

i
(Pi - "7) (52)

(Pl' P(i) = {(0.054, 0.079, 0.114, 0.165, 0.239, 0.347) (53)

It should be mentioned that when one makes the transition from the discrete
case to the continuous one, the definition of entropy is no longer that given above,
Jaynes pointed this out and has shown how to solve the difficulty (Shannon, it seems,

did not discuss this difficulty), The solution involves continuous transformation
groups. The interested reader may consult Jaynes for further information,

24
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The work of Jaynes remains a matter of some controversy at this time.
Prof. Abner Shimoney et 3113 use a rather elaborate mathematical treatment which,
they assert, proves that the maximum entropy formalism is not universally cor-
rect. In fact, they claim that it works only for a very highly limited set of prob-
lems. Their argument seems, to this writer, mainly directed to the applications
in statistical mechanics. A mathematical proof that MEM procedures, as used to
obtain PSD, are rigorously valid seems to be needed. On the other hand, one can
hardly dispute the success of MEM in PSD analysis; and, there is the likelihood

that the mathematical objections will be resolved in the future, Furthermore, it

will be shown that the manner in which MEM is employed in this report allows it
to be replaced by a ''least square-error' approach, which in turn leads to exactly .
the same answers. In this sense one knows that there is little to fear regarding -
the controversial aspects of the general theory of MEM analysis in the context of
the applications to be discussed. *

3.4 The MEM Spectrum l T

Initially, one is given the autocorrelations, which will be labeled ¢k
(-m < k < + m) where m is the maximum lag. The Wiener-Khintchine Theorem
relates the PSD, &(uw) to the ¢, by

+uw

N

¢ - f o) elWKA 4 (54)
-W

N

where vy = 21rfN = 7/ At is the Nyquist frequency and At is the sampling interval.
Eq. (54) gives us our "constraints", and the next step is to maximize the entropy.
This entropy, or rather the "entropy rate', is related to the PSD by, essentially,
+UN
S = f In (W) dw (55)
-uy

13. Shimony, A., and Dias, P.M. (1981) A critique of Jaynes' maximum entropy
principle, Advances in Applied Math. 2, 172-211.

*A discussion of Maximum Entropy as a special case of Maximum Likelihood will
be found in Ch, 8 of Deconvolution by P.A. Jansson. This chapter was written
by B. Roy Frieden. Perhaps this will limit the objections of Shimony et al.
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Derivations of this equation are in Burgs' thesis17 and in Haykin, 14 These der- -
t

RS ivations assume that the Pi associated with &w) are "multivariate Gaussiun'.

Py
xlal

3 \.Z Jaynes, however, shows that his formalism, 15 (Fig. 12) leads directly to O

Pl
IO
S

P
r ‘2 s
3
3
.

{-Za o, (¥
P(y) - e KK (56) .

Ja .

where v is a vector representing the time series, Thus MEM already implies
that P(y) is multivariate Gaussian. In other words, it was not really necessary

for Burg to assume a "Gaussian random process'. Equation (56) is a Gaussian, R
because the definition of qSk makes the exponent quadratic. .
We now perform the variation to get the MEM PSD. Lagrange Multipliers
will be used, just as in the previous case. .}
- W R
e n m -igat FO
- a/ n o) - Yy Jewe o b ] . (57) .
. -0, k=-m
The variation is taken over ®(w). The result is ;
w
. n 1 i i(.)Atk S
: f o) - E A € 6d{w) =0 (58) ;::"
9 “n kom
Again, since each § (w) for each w is independent, each square brucket must equal >
zero, and this gives T
i S B 1
< ®(w) = - (59)* -
H(waty) -
Ay, € -
z : k '
) k=-m
'-.: * : .
'_‘:~ which is the MEM spectrum. At this point the values of the A are unknown. To N
"' obtain them, one must resort to a technique called Levinson Recursion, which {‘: o
. - B OO
14, Haykin, 5. (Ed.) (1979) Nonlinear Methods of Spectral Analysis, Springer- . 1
. Verlag. r.:]:-_:_::
-::: 15. Jaynes, Edwin T. (1982) On the rationale of maximum-entropy methods, ":"'-s
:_-. Proc. IEEE 70(No. 9):939. The issue is entitled Spectral Estimation. ":-.fa.'_-
. * a—_— "
. The coefficients here are related to the a's given in the MEM equation of the ?:-'\-‘.
- introduction through an autocorrelation, ';\‘;-s?
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depends on Toeplitz matrixes. These will be explained below; however, it is

first necessary to explain the " Z transformation."

4. THE Z-TRANSFORMATION

The following will provide the reader with the minimum background needed
for understanding the remainder of this report. The books by Claerbout,
Oppenheim and Schafer, Bracewell, and Robinson and Treitel are suggested for
further reading. The text below will, for the most part, follow the treatment of
Claerbout. Since the Z-transform forms the basis of the MEM approach to the
PSD, it follows that it also explains the basic shape of a spectral line obtained
from MEM. This shape 1s the ''Lorentzian'" distribution. Since the latter corre-
sponds to the shape found in atomic and molecular radiation, the coincidence
appeared to Jaynes as magical. Of course, there is no magic. This result is an
inherent feature of the Z-transform formalism.

The Lorentzian shape of a spectral line results, as we shall see, from the
location of a ""pole near the unit circle'" (which relates to damped sinusoidal oscil-
lations) as will be explained. This Lorentzian feature also explains another very
important aspect of MEM spectra. Unlike the spectra obtained by conventional
methods where the height of the spectral line is proportional to the power, the
MEM approach (see Lacoss, 16 and Burg's Ph, D. thesis”) results in a line that
must be integrated to obtain a quantity proportional to power. Another interesting
distinction is that, in conventional spectra, the resolution of the spectrum is
determined by the length of the data record whereas in the MEM-PSD formalism

it is determined by pole position.

4.1 Definition of the Z-Transform

Consider a function of time sampled at discrete intervals, At, which we shall
for the sake of convenience take as unity. (See Figure 13.) The Z transform of
this time function is obtained by multiplying each ordinate, a;, of the time series

by successgively higher powers of Z as in

. n
F2Z) - Z a Z (60)

n

16, Lacoss, R.T. (1971) Data Adaptive Spectral Analysis Methods in Ref. 7,
(p. 134), of Main References,

17. Burg, John P, (1975) Maximum Entropy Spectral Analysis, Ph, D. Disser-
tation, Dept of Geophysics, Stanford University,
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where in Figure 13 we have F(tn) = a . Another convention consists of using
negative powers of Z for the expansion, as mentioned earlier when Fourier's
contribution was discussed. The one that will be used here follows that given by
Laplace. The discrete Fourier Transform is obtained from Eq. (60) by making

the substitution Z = e'¥ At e'? (since At = 1 here). In some conventions the
negative exponent is used in the substitution. (Robinson and Treitel, for example,

use this and it will be employed in later sections.)

) M . ‘e
K o
a R
. q 2 . . a7
1 Q4 ‘I
9% 3, ] N 9% 1 > )
o i 2 3T a4 .8 7 8 9

Figure 13. Signal Sampled at Discrete Times, At = 1, thus times
are given by integers

The fact that the coefficients of each power of Z in the expansion [Eq. (60))
give the Inverse Fourier Transformation (when Z = eiu) comes as a surprise to
most people, This is because in ordinary Fourier Analysis, the inverse is ob-
tained by calculating an integral which can be difficult to evaluate, In contrast,
in the present case one merely needs to ""point to a coefficient''. Why does the
formalism operate in such a simple manner ?

To examine the formalism, insert Z = eV in Eq. (60) and call
Fiz = ') = A(w)

AW = Y age)” (61)

n

28
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The inverse is defined as (from Fourier Transform theory)

Alw) e Wt g, (62)

a, = =L
t 27

85=s

Next we employ a key observation, It is

1 - n 1 - in 1, ifn=0
Tdew:Tfewdw= (63)
“’_" i 0, ifn=0

Notice that we now limit our integral to the unit circle. This is because we are
considering discretized functions with implied Nyquist limits. The function sim- o L
ply repeats outside of these limits, The inverse, a,, then becomes w2

m -

. n .
_ 1 1w -t i
3 = 77 f Zan (e ) € dw = a, (64)

=T

T —
3

Thus, this shows us one of the reasons why the Z transform brings about unex-

I3

-\ - .h .

pected simplicities, -_‘..‘-“.'*_,_
ST

Aw) in Eq. (61) can be viewed in an alternative manner which gives it an .:-_.!”_.:
interpretation familiar to people in the field of optics., If A{w) were constructed :_’_-:.t'h:-:

I by successively adding terms in Eq. (61) it would take on more "structure' as

R ¢

each time a sample is added. Such a build up of a spectrum is a synthesis
method used in some optical instruments, according to G, Vanasse, and the gen-

eral concept is discussed at the end of the first chapter in Bracewell, 18

4.2 The Z-Transform Convolution Theorem

We wish to show that, in analogy to the Fourier Transform theory of linear
~ systems (see Lee4 or Hsulg), there is a convolution theorem for the Z-trans-
| formation: 'The product of two Z-transforms is equal to the Z-transform of the e
: convolution'. Figure 14 shows a block diagram for a filter, B, with an input x R

] and output y, Let B{Z) be the Z-transform of the impulse response of the filter

—_— NN,
18. Bracewell, R, (1965) The Fourier Transform and Its Applications, McGraw \'*\‘_-.:,
Hill, Chapter 1. :~_.‘\‘:.:-,.
19. Hsu, H.,P. (1970) Fourier Analysis, Simon and Schuster (Tech Outlines), N
| Al
29
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Figure 14. Input X bknters Filter B, and
Emerges as Output Y

and let Y(2Z) and X(2) be the Z-transforms of output and input respectively. Then,

by analogy to the continuous case, we have

0 N 00

. ~ n n _ n

y(z)-Exnz b, Z Z Lz (65)
n=0 n=0 n=0

Consider a simple case where the filter's maximum length, N, is given as
N = 2 (3 terms). Then

0 2 2

, ) 1 0 1
&(Z)-(xoz +x12 +x22 +...)(boz +blz +b22

) 0 1 2
-xObOZ +(x1b0+x0b1)Z +(x2b0+x1bl+x0b2)Z

+(x3b0+x2b1+x1b2)23+...=E ynZrl (66)

Now identifying the coefficients of powers of Z we obtain
2
Yk ° E Xy -n bn [87(a)]

n=0

or in general

Y : Z X, b [67(b)]
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The product of the coefficients of powers of Z gives one a convolution ia the )
coefficients., This is an interesting fact. The reason is that, for each power of
Z, for ¥p on the right, there must be a sum of products on the left all of which
involve that same exponent, n, of Z, For this to be true, each left member of

the product must have powers that decrease as the right member's power of Z

increases so that their sum of powers is equal to n, This is another reason for

the Z-transform's strange simplicity.

4.3 The Wiener-Khintchine Theorem

The reader may recall that this theorem states that the Fourier Transform - e
of the autocorrelation is the PSD, and vice versa (see Lee4.) We now examine )
the Z-transform version of this since it is part of the MEM procedure. R,

Consider B(Z) above., We wish to obtain the Z-transform version of a PSD. RN
The PSD is 'B(w)|2 thus, using Z = ei“’

o0 '
[Bw|? = B Blw) - Z b, (elw)” ZEn ()" - B@BEzH (58
n=0 n=0

Thus B(Z)B(1/2) is the Z-transform version of the PSD, Notice that here we -
have been allowing bi to be complex for generality., From this point on bi will be ‘ e
considered real. In this case, the PSD becomes B(Z)B(1/Z). We define the

autocorrelation, r,. as

ro = b, bk (69)
n
Next one multiplies out B(Z) B(1/2) above to abtain
N N
B(Z)B(1/Z) - E Nz - Z n (zn+ ZL) (702)
-N n=0 n
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To see why this is true, consider again the three term filter, Then

1 2

I 1 2 - -
B(Z)B(1/2Z) = (by+ by Z +b, Z)by + b 277 + by 27%)
b,b, b.b. +b.b
_ P2% 1°0 © °2°1 0
e el > + (bybg + bib +b,b,)Z (70b)

1 2
+ (bOb1 + blbz)Z + (bObZ)Z
In Eq. (70) one substitutes Z = e’ and makes use of the trigonometric identity

i6 -6

2cos B =e +e . (71)
Thus
N
B(2)B(1/2) - Z r_[2 cos(nw)] (72)
n=0

This is the Wiener Khintchine relation for a real time series (compare the dis-
cussion of the Blackman-Tukey approach where Eq. (72) is used to get the PSD].

Again, there is a surprising simplicity here.

Gwnt
4.4 The 2-Transform of e o

This discussion is designed to serve two purposes: (1) to give one a "feel"
for the Z-transform, and (2) give the essential explanation of the MEM Lorentzian
line shape., The left side of

-lw -2iy ~3iw
1+e OZ+e 022+e 023+,”:—1__,__ (73)
STE
1-Ze
-iwot
represents the Z-transform of e which is turned "on" st = 0 and is sampled
at intervals of At = 1. (Such a sequence is called a "causal" one, since, when the
concept is applied to a filter's impulse response, the filter that results operates
20 The right hand

side is obtained from the Bernoulli or geometric expansion used in reverse (see

only on past, and not future, inputs. See Robinson and Treitel,

20. Robinson, FE.A., and Treitel, S. (1980) Geophysical Signal Analysis.
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1w
the die problem). The root in the denominator, ZO, is given by ZO e 0. This
root is on the unit circle and therefore, the expunsion does not converge. The
reader should compare this to the discussion of the Fourier series and the

Z-transform above. We avoid division by zero by moving Z0 an infinitesimaul

iw
distance g outside of the unit circle [ZO = (1 + ¢) times e 0] . This converts

Fq. (73) into

o 0
. 1 z \" n e
B(Z) - —mF—— = 1+ - =1+ Zz ———, (74)
Z E (ZO) Z (1+ e

{Note, this is essentially the same as moving the singularity to a point just inside
of the unit circle in the Fourier series discussion. A convention, however, was
switched here.) To obtain the PSD

B(1/Z)B(Z) = PSD , (75)

we define, for ease in calculation,

1 Z
A(Z) = = 1 - (78)
B(Z) ( ’Z;,‘)
From Eq. (76) we see
i(w~w0)
., _e
A(Z) = 1 N (77)
where Z = eiw, and
~i{w-wp)
-= e 0 1
AQ/Z) = 1 - =37 : ( '—:_—) (78)
€ ZZ
0
The inverse PSD is then
i(w-wo) -i(w-wo)

A _ e e
AR = |1 -E | | - T : (79)
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Expanding, completing the square, and using 2 cos 6 = U e_ig,

2
A(2) A1/2) - [1 - (1'%?)] + ey (1 - costwug)] . (80)

The last parentheses can be rewritten, by using a trigonometric identity, as

9 (W - wgy) (W - wp)
2 sin” —_— which in turn, is approximately — for small argument.

Using Eq. (76), we get the PSD from

1 1

B(2)B(1/2) - L - . (81)

AZYA(1/2) e 12, a0+e) (“-40)2 .
1+¢ (1+ 8)2 2
Thus,
=, 1+ e)? 1

B(2)B(1/2) - 5 ~ = 5 (82)
2 W - Wy e+ (v - ""0)
e+ 4(1+e) 5 )

where g is taken as very small for the right side of the approximation sign. This
is the Lorentzian shape as promised.

5. A COMPARISON BETWEEN THE AR AND MEM SPECTRA

There are two purposes for this comparison. The first is to give the reader
an intuitive interpretation of the MEM PSD given in Eq. (59). The form of the
latter is always strange to someone who is familiar with the conventional approach
but not with the MEM formalism, The second purpose is to provide background
information to be used below in the discussion of the calculation of the unknown
coefficients, kk’ or their equivalent, in the MEM PSD, In the following part of
120 pp. (401-405), and
pp. (444-446), as well as Robinson?! pp. 235-241 will be employed.

this section, the approaches of Robinson and Treite

First, recall the discussion of Yule's work on auto-regressive (AR) analysis.
From Eq. (14), (using y instead of x and switching to subscripts)

21, Robinson, E.A. (1967) Statistical Communication and Detection, Hafner,
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represented the AR process and &, represented noise with mean equal to zero, and
variance equal to 02. The Z transformation of Eq, (83) is et
m
v(2) (1 + Z a Z'| =e(2) | (84)
1 i
or, with ag = 1, R
e(Z)
Y(2) = _ (85)
R n

- PIEN
m=0
N or

2
. VA
. Y2 =z - (86)

- The PSD is obtained from Y(Z)Y(1/Z) and Z = e_i“’, (where we have changed our
" A
convention)

: 2
- le(2) 2 2
- ly!? - 7 < z s (87
: (a_(2) A, (2) {a_

- (At = 1 here) where use was made of Eq. (17) and the fact that the variance of
N €(2) is 02. Equation (87) is the basic AR PSD, The MEM PSD, rewritten here
::f for comparison, is

_ * . _

.. The change from z = ' toz = eV merely changes the sign of the complex

. exponential in the definition of the Fourier Transform and its inverse, There
is no fixed convention in the literature.
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1

w2 = (88)

m

-iw(kAt)
D Mxe

k=-m

Notice the similarity in form between Eq. (88) and the expansion of Eq. (87)
{see Eq. (85)]. It will be explained below that they are identical. In any case,
the derivation of Eq. (87) given here, gives another, perhaps more intuitively
satisfying, derivation of this form.

6. THE TOEPLITZ EQUATIONS FOR THE MEM PSD “COEFFICIENTS”

The constants, Ak in Egs. (87) or (88) remain to be determined, The dis-
cussions given below and in the next section (Section 7) are devoted exclusively
to this subject, Section 6 derives the main equations (Toeplitz) which relate
the coefficients to the autocorrelations of the data, and Section 7 describes the

ingenious technique for the solution of these equations.

6.1 Derivation of the Toeplitz Equations

According to a theorem by Fejér (which will be discussed more in Section 6.2
and which is discussed at length in Robinson, 2 p. 235, one can write the right
hand side of Eq. (88) (in Z-transform form) as

2
c

- m
¥2 = F7yva (172D (89)*
m m
where

A2 =1+a;Z+.. +a 2T | (90)

and the coefficients, a;, are presumed to be real. Here, Am(Z) is called the
prediction error (P. E.) filter., This is a reasonable term to use since, in

Egs. (84) and (85), €(Z) is the prediction error. Further explanation will be given
below when Wiener's theory of linear prediction is discussed. Returning to

Eq. (89) and the Fejér Theorem, the latter shows that A (2) and Am(l/Z) can

*
In the treatment the convention At = 1 is employed. If it had not been, the
numerator would have been arz'n at,
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put into a form which is called "factored". ''Factored' means that one can
arrange all the roots of A _(Z) and A__(1/Z) in a manner that A (Z) has all of its
roots outside of the unit circle and Am(l/Z) has all of its roots inside. This will
be discussed more in Section 6.2, (The reader will recall the digscussion of the
single MEM spectral line and how important the position of a root can be for sta-
bility.) Unfortunately it is not possible to give a comprehensive discussion of

the concept of "minimum phase' in this report. (For this the reader may consult
p p y

Robinson and Silvia, 22 Robinson and Treite120 and Claerbout. 3) Nevertheless, it
should be mentioned that, when the '"factorization'" is carried out, Am(Z) is called :
"minimum phase'' or "minimum delay" (the two terms are synonymous) and, in e
contrast, Am(l/Z) is called "maximum delay" or "'maximum phase"', -
The next step in the derivation consists of multiplying both sides of Eq. (89)

by A(Z) giving

02
m
Aml Z

(ZYA _(2) - (91) k .
m R

I'he left hand side is the product of the Z transforms of ® and A. It was shown
abrve that this 1s 1dentical to the Z transform of the convolution of & and A,

Now consider the right hand side of Eq, (91), We have a constant afn divided by
A(1 2), which s a polynomial with all of its zeroes inside of the unit circle. As
will be shown in Section 6,2, [A(1/2)] -1 is stable in the expansion of powers of

2°". The next step is to use the Wiener -Khintchine Theorem in its Z-Transform
form
[- ]
n
®(2) - E onZ (92)
~a

where ¢ are the autocorrelations. First, we expand the inverse of A(1/Z) on the
right hand side of Eq. (91) to obtain

o(Z) A(Z) = °r2n[1 + (terms in neg, powers of Z)] (93)

and then use Eq. (92) to replace #(Z) on the left side of Eq. (93), Next we equate
the coefficients of like powers of Z on both side of Eq. (93) remembering that

22. Robinson, E.A., and Silvia, M, T, (1978) Digital Signal Processing and Time
Series Analysis, Holden Day, Inc. t:
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¢n = (b_n for real series, It will not be done here, but it is simple to carry out,
The result is m + 1 simultaneous linear equations that can be written in matrix
form as
¢'0 ¢1 tt Ym-1 m "m
¢y b9 oo $m-1 ay 0
. dal PPN .
- . (94)
%1
$m ®m-1000 9 o 2m 0
— — b — | -

Equation (94) is the fundamental equation that gives the values of a, and °r2n in
the MEM PSD [Eq. (88)]. The matrix on the left side is called a Toeplitz matrix.
A Toeplitz matrix has matrix elements ts that are a function of (i - j}). This rela-
tionship, which makes all the elements with a constant difference between the
indexes identical, gives a Toeplitz matrix a characteristic ""banded" appearance,
because all terms in the upper-left-to-lower-right diagonals are equal.

Because our autocorrelations are even functions, the matrix representation
will be a symmetric matrix, so that this matrix not only has the "banded" appear-
ance characteristic of a Toeplitz matrix, but is also symmetric. Another way to
see it is to realize that the bottom row is the reverse of the top row, and the
second from the bottom is the reverse of the second from the top, and so on. A
Toeplitz matrix gives rise to the "Levinson Recursion' to be described in
Section 7.

There are two names given in the literature for Eq. (94). On one hand they
(except for the top one) are called the "normal equations'. As will be shown,

Fq. (94) can be derived from a least squares approach to prediction; and "least
squares' always has its "normal equations' as is well known, The second name
for Eq. (94) is the "Yule-Walker equations' after the two authors who derived it
for their work in AR.

One other comment should be added regarding the right hand side of Eq. (94)
which consists of nothing but zeroes with the exception of the first member which
is "xzn' This structure arose because there were no positive powers of Z on the
right side of Eq. (93). This is an unusual situation to a person schooled in the
continuous formalism. However, there is a familiar analogue of this, the treat-

ment of causal and anti-causal filters. (For example, see Guillemin. 23) There,

23. Guillemin, E. A. (1949) The Mathematics of Circuit Analysis, Wiley and

Sons; (1963) Theory of Linear Physical Systems, Wiley and Sons.
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the analogue to the above treatment is accomplished by means of contour integra-
tions. These contours either contain singularities or they do not. When they do
not, the integrals vanish, and vice versa, This underlies for example, the theory
. of Hilbert Transforms for causal functions. We have here yet another simplifica-
. tion due to the Z-transform. (The interested reader should also consult Lee's4
treatment of spectral factorization in the continuous domain., Robinson & Treite120

also discuss spectral factorization.

6.2 Comments on Factorization and Minimum Phase

The Fejér Theorem was used to get the essential result [Eq. (94)]. The
reader may want to know a little more of what lies behind it. The key elements
will be described and references will be provided for the full treatment, The
first important fact is that the filter represented by Am(Z) is causal. It starts
at t = 0 and goes into the future. During convolution, it therefore acts exclusively
upon the past inputs., Let us now factor it in the algebraic sense [not in the sense
5 of "factoring" the quantity A(Z) A(1/2Z) used in the previous section]. This gives

us

N
i A2 = D a2 s by + by 2Nyt oy DAy 42D . (95)
n=0

To understand a little more about "minimum phase" and "'maximum phase', let

us take the simplest case of Eq. (95) where only one root is involved. The gen-
eralization from this case will not introduce any new concepts, The first question
that arises is, When is [A(Z)] "1 stable? Using the simple case

A(Z) = (b0 + bIZ) . (96)
we obtain for the inverse

1 1 _ 1 _1
K(’z’ = b0+blZ = bo(l _az) ‘—Ez)_(1+az+(az) +oo-) ’ (973)

where the root Z, = é anda = (-bl/bo). Thus it is obvious that an expansion in
positive powers of Z will be stable whenever ¢ < 1, which means ZO must be out-
side of the unit circle and, by a definition given above, A(Z) is minimum phase,

[l
L

"Invertability" and "minimum delay'" or "minimum phase" are identical in their
22
)

Dt

meaning (p. 157, Robinson and Silvia
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The next question is, when is [A*(1/Z)] 1 Stuble in an expunsion of negative
powers of Z? The asterisk denotes that we take the complex coniugute, The
reason that we have switched to the general, complex case is that all treatments

of the Fejér Theorem (for example, Robinsonzl) use this form. Here one has

D T I h T e e
(b0+b1-z) bo(l - ) by
(97b)
The root Z; = 1/a', a's (-bz/b;‘f); and, the expansion converges only wheneg > 1 e A

or ZS is now inside of the unit circle., The generalization of this was used to : -.‘:: ";.
derive Eq. (94). -

The "factorization" of A(Z) A*(1/2) reduces in essence to the situation shown
in Figure 15. Here the two roots Zi and 1/Z? are shown, one inside and one out-
side of the unit circle. In the general case [Eq. (95)], one can arrange to have
all the roots of lA(Z)l 2 into two categories, namely, those which are inside and
those which are outside of the unit circle. In general, if one is given only
IA(Z)' 2, then there would be numerous ways of assigning the roots of the compo-
nent parts, A(Z), and A*(1/2). Thus, |A(Z)| 2 would remain the same no matter
how these roots are assigned. On the other hand, making A(Z) minimum delay
and A*(1/Z) maximum delay represents a unique assignment with desirable
stability properties, The reader who wishes to study the general treatment may
consult pp. 235-238 of Robinsonzl; however, the above gives the main ideas for
concepts involved.

The concepts of minimum phase and spectral factorization have many impli-
cations in data analysis. Chapter 3 of Claerbout3 explains these concepts in six
different ways. The above represents merely one of them, It is also discussed
22 as well as in Ch, 3 and Ch. 7 of their book.
In Ch. 7, the so-called Payley-Wiener condition is described in the clearest

in Section 8.3 of Robinson and Silvia

manner known to the present author, This condition is not only a key concept
behind the minimum phase property but it is a condition which, when violated,
leads to a '"deterministic'' time series, This last point is mentioned for a very
specific reason here (despite space limitations). The conceptual foundations
behind the MEM PSD rule out deterministic signals. The reader can understand
this when it is pointed out that the model for the signal is the model consisting of
filtered white noise (or the ""peas and the pendulum model"). A signal containing,
for example, a sine wave (along with everything else such as filtered white noise)

will violate our model. It will violate the Payley-Wiener condition. A MEM

spectrum of such a signal could, and should, give us nonsense,
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Figure 15, Illustration of Factorization of
Roots 2 Into Minimum Phase and Maximum
Phase Pairs

In view of this, then, it is somewhat surprising that many of the ""tests" of

the MEM PSD method to be found in the literature use sine waves. If the MEM

method is discredited by such tests, then, one may perhaps regard such tests as
A

invalid, and it seems that they should be ignored. After all, why should this

technique be required to work under the very conditions that violate its assump-
tions ?

7. LEVINSON RECURSION (AS MODIFIED BY ROBINSON AND WIGGINS)

This technique is used to solve the Toeplitz Equations, (94), It was first
developed by Levinson in order to solve Eq. (94) when it appeared in linear pre-
diction, as described in Wieners' bock on time series, 24 Levinson's work is
reprinted in that book in the form of appendixes. Robinson, in his IEEE review
article, has pointed out that these papers of Levinson are masterpieces of
explanation and that they made it possible for the engineering community to
employ Wiener'!s work on time series.

This technique of recursion is a basic part of all computer programs for
calculating MEM PSDfs, It depends, as was mentioned previously, on the
Toeplitz symmetry; and the purpose is to obtain arzn and the ay in Eq. (94). In

*However, this issue is not resolved at this time., The fact that any sine wave is,
. in practice, finite may make the Paley-Wiener condition not relevant. On the
other hand, Gottman says that the deterministic signals must first be removed
in order that there be a valid application of these methods.

24, Wiener, N. (1949) Extrapolation, Interpolation, and Smoothing of Stationary
Time Series, Cambridge, MA, Technology Press of the MIT.
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order to explain the procedure, we shall commence with a 3 X 3 version of

Eq. (94) and then show how to proceed to the 4 X 4 case,

%
°
%2

Here the cg is replaced by P2 for convenience. The superscript 2 on the a,
identify them as being associated with a PE filter with a, as the highest

¢y
%
¢y

coefficient,
One now takes advantage of the symmetry (the bottom row is the reverse of

the top row of the matrix, and so on).

write

!
%
!
%3

= 1, Now consider the 4th order filter in

$s
%y
)

92
%1
%o
¢

$2
%
%0
3

2
83 EZ ¢3-
=0
wherea(Z)
[e]
£
%1 %o
4y 9,
L¢3 ¢

¢
%

%0

$3
$2
¢y

%9

1

2
2

- -
a‘f’
(3)
2
3
a
L3

Py
0 )
4]

(98)

To extend Eq. (98) to a 4 X 4 matrix, we

(99)

(100)

(101)

Next, we use the "trick', based on the symmetry (which allows one to reverse

the vectors without reversing the matrix) to rewrite Eq. (99) as
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As can be seen, it is the Toeplitz symmetry which insures that Eq, (102) and
Eq. (99) are exactly the same equation. Now let us add to Eq. (99) a certain
fraction of Eq. (102), given by C3, and try to reproduce Eq., (101),

-
%o 9, b5 95 fl) F(:)
(2 2
%y %9 4 ¢ 3 |, o | B2
6. o . 22 3 (2)
2 1 % ¢ 2 21
¢, ¢ [ 0 1
3 %2 %1 9 Lt
P, [ 2, P,
0 0 0
=4 | +Cq - . (103)
o 0 0
z
L% I |0

Our unknowns are P3 and C3 on tke right side. To make the bottom element

vanish, we have,

A3+C3 P2:0 s (104)
or
-4
- 3
C3 = ?;— . (105)

To obtain agreement for the top element on the right,

P,=Py+Cy0, . (106)
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2
p.-p, |1-(22)]-p 1-lc, P2 (107)
3 2 p2 T Yo 3 .
' where Eq. (105) was used. It must be recalled that Bg is defined by Eq. (100),
that is,

2
= (2)
i 83 ‘Z $3.5 3 . (108}
j=0

Similarly, using Eq. (101) in connection with Eq. (103) (left side)

\ 1 1 "o
;': a(ls) a(lz) a(zz)
8 ROl @] *C | @ (108)
B 2 a3 ay
- aga) 0 1
' - -
or
-Z: (3) (2 (2) - (i) _
S ag =ag +Cgag o . (s=0,1, 2, 3 , ag =1 (110)
- The above recursion from the 3 X 3 to the 4 X 4 case can be generalized in an
obvious way to
- c. . ON
s NPy,
)
N-1
(N-1)
By a $Non (111)
n=0
. ) 2
3 Py = Py_q{t - legl®
(N) _ _(N-1) (N-1) - (N) _
. ag = ag +CNaN-s , 0,1, ..., N , and ay —CN ,
N-1 _
. ay = 0
)
N 44
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The recursion is initiated by (using a 1 by 1 matrix and the general formulas)

Po = ¢0 ’
- 0y _
Al = ¢1 do ‘¢1 ,
c. -1 4
17 Py RN
(112) T
: 2 R
P = Py1-lc, %, -
M _ 0. . %
31 = ao Cl = Cl = —6? ,

a0 a0y

A treatment is given in Haykin14 (Section 2, 4) that parallels this *‘reatment and )
which the reader may consult. The quantities CN play a crucial -ole in what is
to follow below. They are called '""reflection coefficients',

8. WIENER PREDICTION AND LEAST SQUARES S

The following treatment follows Robinson and Treitel, 20 The original work is
in Wiener's "Time Series", 24 and explanations of the continuous version are

25 2nd in Bendat, 28

given in Lee, 4 Laning and Battin The present treatment will
serve a number of purposes: (1) it will give an alternative way to understand
Eq. (94), that is, the Toeplitz Equations, (2) it will explain better why Am(Z) is
called the "prediction error" (PE) filter, (3) it will illustrate why the MEM PE
filter whitens the gspectrum until, at some order of Am(Z), the PSD is flat,

(4) by showing that both MEM and least squares lead to Eq. (94) one can convince
oneself that the objections of Shimony et al to MEM do not apply to the MEM PSD
as we know it, and (5) it will provide basic information needed in order to under-

stand the so-called "Burg Technique' to be explained in Section 10,

25. Laning, J,H,, and Battin, R.H. (1956) Random Process in Automatic Control,
McGraw-Hill,

26, Bendat, J.S. (1958) Principles and Applications of Random Noise Theory,
Wiley & Sons.
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Figure 16 shows a block diagram that describes the problem to be solved,
The input, X, is given, We wish to obtain predicted values of %, ata time a
later, or, in other words, we want Xyy = % To accomplish this, one has a
filter described in terms of its weighting coefficients, ft. This filter is to be

designed so that its output will be as close as possible to z,.

FILTER
fy
(TO BE DESIGNED)

Figure 16. Prediction Filter

To design the filter, Wiener chose to use a ""least square error' criterion,
and this is the basis of the entire procedure of the present section, The mean

square error is given by J, defined by

2

J = iz, - ¥y (113)

One now applies the convolution theorem to describe the effect of the filter in

Figure 16.

m
Ve T X M E Z fr % - (114)
T-0

where the asterisk indicates convolution. We will use Eq. (114) in Eq. (113) for
¥y, in the following. To obtain the optimum values of fi, one minimizes J by setting

the derivative of J with respect to each fi equal to zero:
==0 . (115)
i

Before carrying this out, we define the cross correlation, ¢xy('f), by

¢xy(‘f) = Xyr ¥y (116)
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If Eq. (115){with Eq. (114) and Eq. (113) substituted for ¥y and J] is carried out
withi = 1, and if one makes use of the definition [ Fq. (116)] for ¢xz(7’), one obtains

m
Dbl - T e, (117)

T=0

Here we used

¢, (D =zx ; and ¢ (1 -7 =x _x , (118)
For the general case of aJ/afi = 0 one obtains

m

Zf, b li-T e, (), G=0 1, ..., m) . (119)

T=0

This equation is the discrete version of the Wiener-Hopf Equation (compare with
Lee4 and Haykin“) and it constitutes the ''normal equations' of the least square

formulation here.

Eq. (119) is also used to give a more convenient expression for J, namely

m
T=4,,000 =D k4,0 . (120)
T=0

[Details of the algebraic manipulations left out above will be found in Robinson and
Trei 20
reitel, “~ p. 147.]

We now specialize to the one step predictor, or

(121)

2y T %41

In other words, we now wish to predict x, one unit of time in the future, that is,

t

X, is the input and we want x as the output of the filter, For this case we have

t+1

b, = 6 G+ 1 (122)
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and the normal equations, Eqgs. (117), become

m
z fr 00 -T -6+ =0 . (123)
T=0

Thus Eq. (123) is the Wiener-Hopf one step predictor equation which, when solved,

gives the optimum coefficients, fi'
At this point we shall change the notation to the "prediction error' notation

for reasons which will become apparent, This is done as follows

-, . '.".“,. .‘

._
1

R an 7RSI NN S )
R AR
.
] .
. 4 . e
-..

where N = (m + 1), that is, we now have an Nth order PE [ilter.

In terms of this notation, Eqs. (123) become

m
Z (raz,q 0yx(i =T - 2g "sxx(j =0 . (125)
T=0

We now define u = T + 1 and multiply Eq. (125) through by (~1) obtaining

In the new notation we have Eq. (120) in the form

N

: crlz\J = E a, é W) (127)
u=0
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If one combines Eq. (127) with Eq. (126) one obtains the previous Egs. (94):

= ] 7] [ o]
¢xx(0) Cee ¢xx(N) ag oN
oD 4 (N-D| | 0
= . (128)
¢ (N) ¢_.(0) a 0
L XX XX N L N- L J

1]

Previously we used q)xx(j) ¢j'

This, Eq. (128), is a very interesting result because we now see that it can
be obtained from least squares analysis without any help from the "higher prin-
ciple" of maximum entropy. This implies that MEM and least squares have a deep
connection. To this writer's knowledge, this connection has not yet received an
explanation.

At this point, let us reconsider the question of why we have been calling the
ay in Eq, (124) the PE filter as contrasted to the Wiener prediction filter. The
latter is given by (one step)

Ve = Xpyy = E I RO (129)
k=1

This is modeled in Figure 17a by the part of the system within the dotted lines.
In contrast, there is the prediction error filter. This is given by

m m
e, =X, -X =X -Z 5 E ayxX_i - (130)
k=1 i=0

This is represented by the whole of Figure 17a or its re-representation in Figure
17b, Equation (130) explains the change of notation given in Eq, (124). The out-
put of the PE filter is the error, and when the error is white, the filter has
embodied all the predictable parts of the input signal. In effect, the predictor
filter represents the inverse of the filter which is used in the signal model as
depicted in Figure 4,
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Figure 17a, Wiener Filter, fi

PEDICTION-ERROR ERROR
FILTER Al [N

Figure 17b. P. E, Filter, a;

Lee4 (p. 410) gave a very useful physical description of the Wiener prediction
filter. (Note that the general form of Wienert!s Optimum Filter did more than
predict, It also did the best job possible, in a sense, to get rid of noise.) Fig-
ure 18 gives this description. At the top of the figure is given the ""model'" for the
signal (or data). It consists of a random pulse generator which serves as input to
a filter or "pulse shape network' (they are the same thing). Note the impulse
responsge drawn on the filter block. Up to this point we have what was in Figure 4,
but with more detail. Next, we consider the Wiener-prediction filter, The signal
first enters the pulse shape inverter, or the inverse of the filter used in the sig-
nal model. The effect of this first filter is to take signal inputted to the inverter
and convert it back into the original pulse noise of the signal model (that is, the
output of the top left block). These pulses are then fed to a new filter or pulse
shape network that differs from the one of the signal model in only one respect,
The initial part of the impulse response is missing, and the amount missing
corresponds to the time elapsed in the predictive time interval which we have been
taking as one time step. Notice that if one were to try to predict too far into the
future, the impulse response might be too small to be of any value. Eventually
it would die, and the predictor would predict the value zero.

The above physical description seems to be quite helpful. The reader should
consult Lee4 to see the proof that the above is correct., What is most remarkable,
in the opinion of the present writer, is the fact that such an ingenious "device"
was automatically "invented" by "least squares'" mathematics. As we have seen,
maximum entropy accomplishes the same thing.
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Figure 18. Y,W, Lee's Diagram of the Prediction Filter. -
prediction is zero for times in the future that exceed the duration of the Tt
impulse response : )

9. GOOD AND BAD CANDIDATES FOR MEM

There are PR

Not all data lend themselves favorably to MEM-PSD analysis.
three main situations which make a specific set of data a bad candidate: (1) The fam
MEM signal model, that is, the AR model, does not correspond to the data source. ;'..: >

(As will be shown, there are two other models,) (2) The data are too noisy.
(MEM-PSD analysis is especially vulnerable to noise.) And (3), the autocorrela-
tion has decayed to the point where no statistically reasonable extension of it will
be above the noise level, Case (2), as will be shown, is closely related to (1),
Case (3) is true because, as Burg has shown, one way to understand how MEM

"works' is to think of it as a way to extend the autocorrelation from the given

values to all the values that lie outside the data range. In other words, the linear
predictor implied in the MEM analysis is, in effect, used lo extend the autocorrela-
tion from - to +te. If such prediction yields nothing new, then nothing will be

gained by MEM analysis over the conventional approach.

9.1 The Various Signal Models

In the following we shall follow Robinson and Treitel, 20 Ch 16.
9.1,1 THE AR MODEL

As we have seen, where x, is input and y, is output, the model is given b
t y

t
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s N
T ytzxt-z 3 Ve-i - (131)
S i=1
\r
The model uses white noise as input, Xy In the PE form, it is -
y "
- N N e
: ¥y + E ai yt-i = E 3.i Vo1 5% (132) .
) i=1 i=0 R
where ag = 1. Taking the Z-transform of Eq. (132) yields
o Y(2Z) A(2) = X(2) (133)
.
where
N .
A(Z) = 2 a, 2 . (134)
i=0
. We used the convolution theorem to get Eq. (133). Now divide both sides of Eq.
(133) by A(2),
o X(2)
Y(2Z) INVA B (135)
. From this one can get the PSD version, along the lines of our previous discussions,
- by means of IA(Z)’2 = A(Z)A* (1/Z) and so forth, and arrive at
2 ~iw, 2
X(Z) Z=e X{w)
|Y(Z)|2=—l-—'—2 (z=e ) '—(—“’—‘7 . (136) :
| Az law) :
k The above is somewhat in the category of "'review' material and we have seen that )
- the poles [or zeroes of A(z)] give us the "'lines" in the spectra. In this connection . [‘-4—
R the reader should recall the discussion of the basic "MEM line" and its Lorentzian e
. property. L::-:':-
~ L YR
. o
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9.1.2 THE MA MODEL

Let us now consider a new model. This is related to the previous discussion
of the Slutzky Effect. It is called the moving average (MA) model which is given

by

Yy = E b, % .n (137)

Here it is the input values that are weight averaged by the filter. (AR corresponds
to ""feedback' and MA to '"feedforward" if one wishes to use engineering termi-
nology). As before, one takes the Z-transform of Eq. (137):

Y(Z) = B(Z) X(2) , (138)
and obtains, going through the same manipulations as above:
W - Bw)? xwi? . (139)

Here it is the shape of |B(w)| 2 that gives the spectrum its form since lX(u)‘ 2 is
"white" or constant., The Blackman and Tukey approach is '"MA'',

8.1,3 THE ARMA MODEL

This model is a combination of the above two models, In this case the model

is given by
N M
Yt © Z bp ¥ton - Z 3 Ye-i - (140)
n=0 i=1

and, for obvious reasons,

Iv(w]? - Bwl? Ix? . (141)

law

Makhoul's tutorial®’ calls this a "pole-zero model" because | B(w)| 2 can supply
zeroes, and the zeroes of |A(w)|2 give poles since A is in the denominator. He
also discusses the AR and MA models,

27, Makhoul, J., "Linear Prediction: A Tutorial Review", Ref. 7 of Main Ref.
p. 99.
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At this point, Robinson and Treitel make a very important observatio:,

First they made computer simulations based on the AR model, the MA model, and
the ARMA model. Then they obtained the PSD's for the three cases based on the
known signal models, Next they used procedures to obtain the PSD's from the
data themselves. The procedures were based, in each case, on the three different
models, that is, MEM for AR, Blackman and Tukey for MA, and a procedure
known as ""Box Jenkins" for ARMA, Figure 19 shows their results, In each case
where the simulation model matched the method of analysis, the match is perfect
or very good. In the other cases, the results could be invalid. In particular, it
should be pointed out that AR gave a narrow line whereas the MA treatment gave
the correct shape in the case where the signal was generated by a MA process.
Thus, we see that AR could give a false "high resolution" in this case.

MEM works best when the AR model fits the data. Fortunately, there is some
relief from this problem. A theorem has been proven in the literature which says
that all the methods converge to the same PSD result provided that sufficiently
high order is used, It may therefore be much more practical to use MEM for
certain types of ARMA case, since the latter is relatively difficult to carry out.

9.2 Noise

As Kay and Max‘plez8 have pointed out most clearly in their excellent review
article, noise is very effective in corrupting MEM spectra because it has the
effect of changing the signal model. To see this, let Yy be a noise corrupted AR
process called X, Then

Y ¥t W, (142)

where L represents the white noise of variance cfv and is uncorrelated. The
PSD of y, called Py(Z) in Z transform notation, is given by

2
- oAt 2
Py(Z) * A(Z) AX1TZ) + L ot o, (143)

This expression should be clear from the previous discussions. The At here
simply gives one a different dimensional form that is sometimes useful, and it is
the form Kay and Marple used. This can be rewritten as

28. Kay, S,M., and Marple, S.L. (1981) Spectrum analysis —a modern perspec-

tive, Proc., 1IEEE 69, pp. 1380-1419,
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A(Z) AX(1/2) :

P (2) = (144)
y

This result is very informative because it tells us that, merely by adding noise,

an AR process can be converted into an ARMA process. Note that it now has both

poles and zeroes!
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Figure 20 (taken from Kay and Marple) shows the result of an experiment
which involves two values of added noise. When the Signal to noise ratio is high,
the lines are very clearly resolved (left side). Lowering the signal to noise ratio
(SNR) from 25 db to 5 db washes out all the good resolution. One concludes that
"noise is very bad for MEM spectral analysis." -

/H\A/

H

25dB = SNR 2 54dB:SNR
{a) CLEAR PEAKS (b) ~ WASHED OUT PEAKS

Hz

Figure 20, Effects of Noise on a MEM Spectrum
(after Kay and Marple28)

15 on this

At this point it is appropriate to quote two passages from Jaynes
subject, He says that MEM is "... a precision, high-performance machine ,,
and can deliver that high performance only when fed high quality fuel''. By this
he means that one must feed it exact autocorrelations, or rather they must be
as noise free as possible. A little noise can push the poles further away from
the unit circle. He goes on to say that MEM ' fails to take noise into account, a
factor that orthodox methods do deal with usefully, and sometimes ever optimally'.
He then called for a ''full Bayesian Solution'" and went on to point the way for one
to proceed.

Abels29 in a review article mentioned an interesting idea. He suggested

maximizing entropy

[ ]
f In P(w) dw , (145)
-

29. Abels, J.G. 81974) Maximum entropy spectral analysis, Reprinted in
Childers. 3

30, Childers, D.G, (1978) Modern Spectrum Analysis, IEEE Press.
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I but with an alteration of the constraint to the following form s

. 2

.. . w

. 1 1 -iwn 2

: x 2:'27f PW@e Mdu-¢ | =0 . (146)

n -

The difference between this form and the conventional one of MEM is that here e
one has 02 instead of zero and the 02 is taken to represent the uncertainty intro- '
duced by the noise. The above makes use of Abel’s continuous notation, however, ) )
the reader is reminded that (a) implementation requires a discrete formulation .,_&_
I and (b) Eq. (145) is not valid in the continuous case as was pointed out by Jaynes L,
and as has already been mentioned. .
Of course, if one must cope with noise, one can always increase the order
of A{Z) to compensate for the change in the signal model brought about by that

- noise.

9.3 The Limiting Cases Test

Finally, we consider case (3) which was first suggested to the present writer
by George Vanasse. Figure 21 jllustrates this case. Qualitatively the argument
I goes as follows. If one is given a ""short'" autocorrelation in the sense that it looks
as if it would ""go on'"' in a similar fashion, then it would appear from Figure 21a
that one has a good candidate for MEM (forgetting for the moment the problems
already discussed in cases (1) and (2). In contrast, suppose one has a case such
ag that given in Figure 21b., The latter represents an autocorrelation that slowly

' "dies'" and which, so far as one can know, looks as if it has permanently decayed.
As has been mentioned, MEM linearly predicts the autocorrelation to cover all
values of time, What sort of prediction would one expect in the predicted exten-
sions of this autocorrelation? From the physics of the linear prediction process
as shown in Figure 18, it is clear that the predictor would predict zeroes. In
other words MEM cannot give something for nothing.

hdli¢
i
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We conclude this section with Figure 22 which shows what happens when one

3
.
-

performs various types of analysis, '"MEM via Burg Algorithm' will be described

in the next section. ''Yule-Walker" or YW refers to obtaining the coefficients :';-;‘..“\‘{
from the autocorrelations in the manner described above. The figure is from E{.‘-:n. ]
Kay and Marple, 28 F" -
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Figure 22, Various PSDs and the True PSD After Kay and Marple

10. THF. BURG TECHNIQUE

The MEM method for obtaining PSD's was of course invented by Burg. How-
ever, he is also the inventor of the "Burg Technique" which is used to obtain the
a coefficients, It is important to make a distinction between these two contribu-
tions of Burg to avoid confusion.

Burg was very interested in the fact that the series of reflection coefficients
(together with the zero lag autocorrelation) represents a new way to embody the
"second order statistics'" of a time series, He thought that it could be more
fundamental than the usual methods, namely the PSD and the autocorrelation, In
addition, his choice of the word "reflection coefficient" for the CN'S rested on the
fact that, in the analysis of seismological signals where acoustic waves pass
through many layers of earth, the resulting CN'S are indeed the reflection coeffi-

cients of these layers, In fact, the "Burg technique" can be regarded as a ''wave
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propagation model" where the forward and backward predictors play the roles of

LI

R

upward and downward going waves (Claerbout, 3 p. 136).
Our motives for presenting the ''Burg technique'" are (1) it is the one most

1 s a

often used in MEM-PSD analysis, and (2} we used it to obtain our experimental
results to be described in Section 11. It should be mentioned that, in the context
of Fourier spectroscopy, the Yule~-Walker method, which relies on the auto-

Oy Iy
. s

i
.
A
N

correlations themselves, would seem to be the ideal method at first sight. This
is of course due to the fact that the autocorrelations themselves are the raw data B
of the instrument. As one will see in Section 11, there are important exceptions

‘ to this rule. In the following we shall use Burg's own description of his method, ';--
but there are many other treatments to be found in the literature (such as

Robinson and Treitel, 20 Claerbout3 and Haykin14), . -'

Before we consider the mathematical details (which can be omitted by the -

reader not interested) it is of interest to list, qualitatively, the most important

features of this method. '

1, The Burg technique obtains the C_/'s (as well as the ai's) directly from

N 2
raw time series data. BRI

2. This method completely avoids the problem which arises when one calcu- -
lates an autocorrelation from a finite piece of data, The reader will recall that RN

the autocorrelation is calculated from

c_ -1t x (147)

if one follows Blackman and Tukey. It is clear from this that when r gets close
to N
problem is particularly acute when one has a short data sample or a collection of

, the overlap becomes small and serious difficulties can be expected. This
such samples. This feature implies that, when one has a number of short pieces
of data, then the MEM-PSD method, together with the Burg technique, is the best
available route to the PSD,

3. This method incorporates the Levinson Recursion in its machinery.

4, The mean square error of both the forward predictor and backward pre-
dictor is minimized, or rather it is the average of both that is minimized.

5. The stability of the PE filter is guaranteed., This is not true for the
Yule-Walker case,

6. Given raw data, this method would provide a much higher resolution for
the PSD than would the Yule-Walker (YW) case.
We now consider the details. The best method to describe this recursive

procedure is to consider the case where one has at the start the N~1th PE filter
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(148)

iN'l) Z+a;N'1) z24 ...+

(N-1) _N-1
an.1 Z

A2 =1+a

and where one seeks AN(Z). We know from Levinson Recursion that

= (N-1) (N-1) (N-1) (N-1)\ ,N+1 N -
Apn(Z) = 1+ (a1 + Cy 2N-1 )z +LLLt (aN_l +Cy 2y )Z +Cy 2 . fop

(149)

where CN is still unknown. It can be obtained from the data in the following way.

Suppose that the data consist of a number of short samples, for example i q
(XO. Xg, "‘10)' (x100' Xip1r cee x110) and so on; and let us assume that one has
a total of M sets of these N+1 tuplets (where N = 10 for the two examples), The

N e 2 .
key calculation is to minimize the mean square error ¢, given by

e - a@x@n? . (150) i‘i

The value of this quantity over all the pieces of data is given by (m refers to
the mth (N+1) -~ tuplet, (x;, m, x5, m, ..., Xy, M) wherem = 1 to M.)

— M
2 (N-~1) (N-1)
g = Z Wm [CN xl,m+ (aN_1 +CN ay ) x2'm+...

m=1
2

. (a‘N'” +c. aN-1)

1 N 2N-1 )xN,m+xN-1,m] ' (151)

where, in Eq. (150), we used the convolution theorem and
M
2 : W_=1,W_ =0
m m
m=1
We now define

m= N-1%2m* s P2 XN Mt XNe,m

14

and

bn = X mta Xy tees tag g XNy - (152)
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where €mn and bm are the forward and backward error values respectively.

Now, it can be seen that Eq. (151) can be written
M
2 _ 2
e = Z w_le +cy b |, (153)

but it is equally valid to estimate ¢” from

M
2 . 2
2 = E w_lb_+cge |2, (154)

and for this reason Burg realized that a better estimator would be obtained if the
average of Egs. (153) and (154) were used in place of either one alone. Thus he

used

2
€

[

M

2 2
Z wm[lem+chm( +|bm+cNeml] ) (155)
m=1

To obtain CN' one minimizes 52 in Eq. (155) by setting its derivative with respect
to CN equal to zero. The result is, simply,

M
-2 Wb e )
- m=1

T M
2 .2
E Y (em ' bm>
m=1

(156)

Cy

As the references show, the denominator will always be greater than the numera-
tor, and it is this fact which guarantees stability (Icl =< 1). As Claerbout, 3

p. 136, asserts, the bm and em vectors play the role of "upward and downward
going waves' in the seismic model.
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11. EXPERIMENTAL RESULTS

From the AFGL Fourier spectrometer, George Vanasse provided some data

in the form of an autocorrelation for an experiment to test the MEM approach
on such data, Neil Grossbard provided the software and suggested the approach

that is used here,

Originally the autocorrelations contained 132, 000 points. We analyzed
8, 200 points and, as will be seen, the results were excellent, On the other hand, ;'_-
we did not analyze the original data, and, in that sense the test is incomplete, -
There is a problem in the application of MEM-PSD analysis to data which contain
many lines. The 132, 000 point autocorrelations represented between 3 to 4 t - 4

v'll

thousand spectral lines, The computer we used had a core memory of about

10, 000 numbers. But, as we have seen, to have a single complex sinuisoid
1wt
¢ °. one pole was needed; and hence, to have a real spectral line, one would

need, as a lower bound, more than two reflection coefficients. This limitation on
MEM is the key factor in its application to optics. At least initially, we wished
to avoid the problem of an exceedingly long computer run (which would be needed
if many more points than could be fit into core were employed).

To circumvent the difficulty, the original data were pre-filtered by
Mark Esplin in a manner which necessitated the use of a conventional Fourier
spectral analysis on the original data as well as an inverse transform. In this
way we were able to generate an interferogram that corresponds to a spectrum of
about 100 lines, however, the test must be considered preliminary until actual
data are used. Because the results of the test were good, we plan to carry out
the procedure on such actual data.

Another problem arose from the fact that the autocorrelations with which we
began were not positive definite (in the sense that their Toeplitz Matrix did not
satisfy that condition). To cope with this problem, we did not use the Yule-
Walker technique on the autocorrelations, but instead did something suggested by
N. Grossbard. We applied the "Burg Technique'" directly upon the symmetrical
autocorrelation. In this manner, the original problem did not give rise to insta-
bility because, as was shown, the Burg Technique guarantees stability.




The PSD was obtained using

P

- M
pBurg(w) = N 5 (157)
Z a e inWAX
n
n-0
and then calculating
PSD(W) - (P, () + /2 ax (158)
w Burg ‘

Equation (157) was obtained using the Burg method, as mentioned, and Eq. (158)
was reported as the ""PSD", The square root was inserted due to the fact that if
one were to use conventional analysis, the Fourier Transform of the autocorrela-
tion of an autocorrelation would be the square of the PSD., Since this is not
exactly true in our application, Eq. (158) is not really proven to be mathematically
correct, * The fact that it gave good results is its only real justification. The
factor Ax in Eq. (158) was inserted for dimensional reasons (recall that Ax or At
is frequently set = 1),

The results are given in Figure 23. While the abscissa is unlabeled, it is
identical to the one in Figure 24 which gives the 132, 000 point result obtained by
conventional means. Notice that in Figure 23, the line pairs in Figure 24 labeled
6, 16, 18 and 19 were not resolved.

Next, in the spectrum of Figure 23, a Newton-~Raphson technique was used to
search for the line peaks. Table 1 gives the wavenumber (cm_l) locations found
in this way and compares these to the locations in Figure 24. Considering the
reduction from 132, 000 points to 8, 200 points, this result is very encouraging in
spite of the previously mentioned prefiltering,

Finally, we estimated a quantity that was proportional to the power of these
lines by integrating under each peak, To do so, we [filled in the PSD estimates
between the half-power points {or local minima) and numerically integrated,
Figure 25 shows a graph of these results. The ordinate's units were arbitrary,
A comparison between Figure 24 and Figure 25 shows that the two families of
lines (large and small peaks) are clearly displayed.

*Probably PSD(w) = (P:B(m)Ax)I/2 is more accurate,
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Figure 23. MEM Analysis of Filtered Data of G. Vanasse., A small
fraction of the data was used,

These results show us that, there is excellent agreement between spectral
line positions calculated by Blackman-Tukey with a large number of points and
MEM applied to a much shorter interferogram. On the other hand, the discrepancy

in line intensities requires more investigation.

Any problem with core memory is a hardware problem. If the PSD in ques-
tion has too many lines (at too high a density to be filtered by analog means) then
the solution is simply to wait until the hardware becomes available, or else make
more efficient use of existing core capacities, On the other hand, if one has an
insufficient number of points to calculate a sufficient number of PE coefficients
(or reflection coefficients) in relation to the number of actual spectral lines
present, then the MEM procedure will fail,
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Table 1, Comparison of Line Positions From Fourier

. Transform and Burg MEM
5 Wave No. of
: No. Fourier Transform Burg
) 2 224, 1830 224, 1773
3 224.9531 224.9395
4 225.1736 225.1774
5 225.5168 225, 5104
6 226, 2935 226.3258
6 226.3266
7 226. 8234 226. 8076
8 227. 4541 227, 4449
9 227.6106 227.6134
10 228. 1040 228, 0849
11 228. 5585 228, 5522
12 228, 9092 228, 8937
13 229, 3574 229, 3486
14 229. 6374 229, 6270
15 230.1739 230, 1893
: 16 230. 5861 230, 6805
S 16 230. 6920
N 17 231,4190 231.4182
. 18 231. 7232 231.17356
18 231, 7877
. 19 232. 6393 232, 7046
19 232. 7301
) - 20 232.9632 232, 9711
. 21 233.7132 233. 7046
22 234.1133 233,902
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12. REFLECTION COEFFICIENTS — THE WAVE OF THE FUTURE

d
e,

Historically, it was the PSD (via the prism or grating) of electromagnetic
waves which eventually led to the creation of Quantum Mechanics. It was the
spectral line of atomic radiation that led to the Bohr Atom. The PSD has also

I"' 2 "l

e played an essential role in time series analysis, more so than its counterpart, the
autocorrelation. The latter, via the Wiener Khintchine Theorem, contains the
same "information’’, but it is mainly used as a way to get the PSD (as we have
seen),

As has already been mentioned, Burg has given us yet another fundamental
way to represent the ""second order statistics' contained in the PSD and auto-
correlation. This new representation consists of ¢0, the zeroth lag autocorre-
lation, plus the reflection coefficients, or (dso, Cl' C2, e CN). The ¢0
corresponds to the scale of the PSD, and the Ci's determine its shape. Further-~
more, Burg has suggested that this new representation may be even more funda-
mental than the PSD, In the opinion of the present author, this idea is worthy of
consideration.

Burg shows that there is a one-to-one correspondence between the autocor-
relation and (¢0, Cl’ . CN). To see this, recall the recursion relations, (111),

N-1
v = 25 $xentn - 159)
n=0

N P ' (160)

Py = Py (1 -cyl® . (161)

Burg showed, incidentally, that whenever 'CNI = 1, the recursion terminates, the
poles jump to the unit circle, and the resulting time series becomes deterministic,

(The last is due to the fact that the prediction error PN becomes zero as shown by
Eq. (161,)

£ Combining Eqs. (159) and (160), we obtain

N-1
- (N-1)
- oy = - 2 dN-n 2 ~CnPynop - (162)
n=1
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Parenthetically, it should be pointed out that Eq. (162) shows how to extend the
autocorrelation; and Burg has proven that the MEM-PSD could be obtained by
conventional means (Wiener-Khintchine Theorem) from these autocorrelations
by using Eq. (162) to extend them to tw, In any case, Eq. (162) shows that it is
possible to put the CN'S into one-to-one correspondence with the given auto-
correlations. The recursion, it may be shown, can be run in both directions in
the parameter N. More details are given in Burg's thesis.

There is a similar one-to-one correspondence between the PSD and the ¢0,
Cl' ceen CN representation, The PSD is

PN At

dw) =
[A(w) Iz

(163)

as is now very familiar, The AN(Z) can be shown to satisfy
Ay, (2) = A2y +C ZNT A (1/2) (164)
N+1 N N N :

Eq. (164) is derived from

N
agy= Y all 2 (165)
n=0

together with the recursion of Levinson

2D 00

aL(1N+1) - a(lN) +Cy ang)
D LW o
a‘g:ll) = Cy aéN) . (166)

(Compare Eq. (111) and see p. 166 of Robinson and Treitel12?.,) Using Z = e~ ¥
in Eq. (164), we obtain

Ape ) = Aglo) + Cy e 2MIAN Ty (167)
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which is the frequency domain representation of Levinson Recursion. This re-
lates the PSD to the (¢0. Cpoves CN) through Eq. (163).

We now come to an interesting question. '""When is the ¢0_ Cl' e CN
representation superior in some way to the PSD or to the autocorrelation?'" One
application is prospecting for oil by analyzing acoustic signals (due for example to
an explosion) which contain information about the location of the layers under the
ground. Figure 26 shows how a signal pulse can give the location of the layers
but how reverberations can make the signal very complex, * The important point
is that, in the present examples, the Ci's contain the physics of the situation in
the most practical manner of speaking. Also, as has been mentioned, it was this
particular field of research that led Burg to his '"technique' as well as to his MEM-
PSD.

There is another place where the reflection coefficients represent the physics
behind the signal. This is in the field of speech compression. For reasons of
economics it is very important to find ways to represent speech signals concisely.
The signal is therefore "parameterized"” and these numbers are transmitted. An
earlier method consisted of sending the pitch (fundamental frequency), together
with linear prediction coefficients. The sounds were regenerated at the other end,
(A "voiced" vs "'non-voiced' parameter was included). Later on it was found that
there were many ''round-off'' problems that could be solved if the linear prediction
coefficients were replaced by reflection coefficients. This was pointed out to the
present author by Caldwell Smith of RADC, The explanation probably has a rela-
tion to the following interesting fact. Figure 27 represents an "acoustic tube'
model for the vocal tract, This model plays a fundamental role in the representa-
tion of speech sounds (see Robinson and Silviazz). In this case, the reflection
coefficients correspond to the size of the cross-sections of the '"pieces of tube" in
the model. Again the CN's have a physical significance,

Let us now consider the question of the future role of the (d)o, Cl‘ ces CN)
representation in Fourier Spectroscopy. The question reduces to the following,.
Since Fourier Speciroscopy is mainly used to identify molecular and atomic
species, does the new representation in some way present us with a more econom-
ical way to do the job? To a fertile mind, such a question may present many ram-

ifications. For example, would it not be interesting if a PSD could be "decon-
volved' in a manner to render species identification more simple ?

*According to Robinson et al, prospecting since the 1960's would not have been
possible without data analysis. This is due to the fact that since that time, the
nature of the locations of the oil were such that it was necessary to apply
""deconvolution' techniques and vast amounts digital signal processing (a trillion
bits a day at present) merely to find the layers.
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If it should turn out that the new representation were to present us with a way
to realize significantly great simplifications, then this in turn would suggest that
the reflection coefficients may have a physical significance in quantum mechanics.
If anything, at least it is an interesting idea.

13. CONCLUSION

The relatively recent method of MEM-PSD analysis promises to aid the

technology of Fourier Spectroscopy. Its main advantage is that under appropriate
conditions, it permits a drastic reduction in the number of points of the initial ..
interferogram without significant loss of resolution. In addition, it may lead to -
still further developments in spectral analysis due to the entirely new conceptual
basis and philosophy which underlies the mathematics of the technique,
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References (Annotated)

This listing includes key references on the subject of MEM and on the back-
ground mathematical information needed for understanding MEM. The works by
Burg (Ref. 17) and Haykin (Ref. 14) can be regarded as two "textbooks" for MEM.,
The Sept. 1982 issue of the Proceedings of the IEE devoted to spectral estimation
(including Refs. 1 and 16), Kay and Marple (Ref., 28), and Childers (Ref, 30)
are the main existing review articles. The bibliographies in Burg, Kay and
Marple, and Childers should cover almost all the literature until a fairly recent
date., The books by Claerbout (Ref. 3), and by Robinson and Treitel (Ref. 20)
may be regarded as the best available sources for the mathematical background to
the subject,

1. Robinson, Enders A. (1982) A historical perspective of spectrum estimation,
Proc, IEEE 70(No. 9):885.

Parts of this article were employed for the first part of the present report,

It contains a large amount of information that was left unmentioned, and the reader
should find it very informative,

This entire issue of the Proceedings of the IEEE, entitled ""Spectral Estima-
tion", is devoted to the subject of spectral analysis. All of the papers can be

regarded as reviews of particular areas.

2. Gottman, J. M. (1981) Time-Series Analysis, Cambridge Univ. Press.

This book is an elementary approach to the subject and the mathematical
level is much lower than most readers would expect; however, the subject matter,
in reality, is advanced, It treats AR, MA, ARMA, the methods, and procedures.
The “istorical discussions were used in the text above. The discussion of noise
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in the periodogram is the clearest I have found. His discussion on the determinis-~

tic part of the time series is unique in that it makes it absolutely clear that ""pure
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sine waves'' are unimportant in modern spectral analysis, He shows how to detect
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them and eliminate them from the data before applying the new methods, If the
researchers who used sine waves to test the MEM -PSD approach had read this

text, thev may have avoided some serious mistakes.

3. Claerbout, Jon F. (1976) Fundamentals of Geophysical Data Processing.

This book was used for the treatment of the Z-transform in the present report,

It is an excellent source for mathematical background material. Ch. 3 contains an
an important discussion on '"spectral factorization' and Ch. 8 explains why the _ ¢
Cy are the actual physical "reflection coefficients' in geophysical exploration. : - :;
This book is very concise, but it is also easy to comprehend. Such a combination

is unique.

) 4. Lee, Y.W. (1960) Statistical Theory of Communication, Wiley. w- - ;

¥ This book gives the clearest available discussion on generalized harmonic

analysis as created by Wiener. The explanation of Wiener's Optimum Filter in

the continuous domain is explained in great detail here. In the text I used his

- physical picture of the Wiener Predictor. This is a very well written book so far
as clarity and attention to detail is concerned. It does for the continuous domain
o what Robinson et al have done for us in the discrete or digital domain; it is another
. masterpiece of exposition,

:;‘ 5. Blackman, R.B., and Tukey, J,W. (1958) The Measurement of Power Spectra,
Dover.

This is the "classic” book on the subject, but it is sometimes difficult to
understand. For example, the reason for the "noise" in the periodogram and PSD
is not really explained here, and one could get the impression that it is caused by
""leakage''. As Gottman's book as well as that of Claerbout explain, it is due to
the statistics of the noise!

6. Bendat, J.S., and Piersol, A.G, (1971) Random Data: Analysis and Meas-
urement Procedures, Wiley-Interscience,

This book gives the background of the conventional approach to the PSD, It
also gives the detailed procedures used in that approach.

7. Otnes, R.K., and Enochson, L. (1978) Applied Time Series Analysis, Vol. 1,

. Wiley.
N This contains many of the details on how to apply the conventional approach
- to the PSD,
.:\
o 8. Goldman, S. (1953) Information Theory, Prentice Hall, Inc.
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9. Brigham, E.O, (1974) The Fast Fourier Transform, Prentice Hall, Inc.
This book is devoted to explaining the "FFT", but in doing so it gives what I
found to be the best explanation of the discrete Fourier Transform to be found in

the literature,

10. Levine, R,D,, and Tribus, M, (1979) The Maximum Entropy Formalism,
MIT Press, Cambridge, Mass. [

11. Rosenkrantz, R.D., (Ed.) (1983) E. T. Jaynes: Papers on Probability,
Statistics and Statistical Physics, Reidel Publ. Co., Boston, MA.

A1l of the publications of E. T. Jaynes on the basic principle of applying max-
imum entropy to probability theory will be found in this collection with two ex-

ceptions. They are the "Mobil-Socony Lectures', which is not available, and .
his work on MEM-PSD analysis which is given as Ref. 15, )
12, Page, L. (1935) Introduction to Theoretical Physics, Van Nostrand Co.,

N.Y., p. 311,

13. Shimony, A., and Dias, P, M. (1981) A Critique of Jaynes' Maximum Entropy :'."1:. ;:'_
Principle, Advances in Applied Math, 3:172-211. [

This report contains the strongest criticism of Jaynes' work,

14, Haykin, S., (Ed.) (1979) Nonlinear Methods of Spectral Analysis, Springer-
Verlag.

15. Jaynes, Edwin T, (1982) On the rationale of maximum -entropy methods,
Proc, IEEE 70(No. 9):939. The issue is entitled Spectral Estimation.

It was most appropriate of the IEEE to include a paper by Jaynes, who, in
effect, made the entire subject of MEM-PSD analysis possible, All of his other
works (see Rosenkrantzll for a collection of them) deal with the general principle
of MEM and its applications to Statistical Mechanics, Probability Theory, and

Decision Theory., This review by Jaynes is the only one by him to date on the
subject of MEM-PSD analysis. Although the present report does not consider the
subject of determining the order of the PE filter, this problem is considered to
be not completely solved. Only ad hoc solutions exist. This problem plus others

are considered by Jaynes, and he points the way for future research. (Noise is

another of the problems that he considers still unsolved by MEM.)

16. Lacoss, R.T. (1971) Data Adaptive Spectral Analysis Methods in Ref, 7,
(p. 134), of Main References,

This reference contrasts various ways to obtain the PSD and points out that
it is necessary to integrate the MEM lines in order to obtain a quantity propor-
tional to power. Table 1 of that report contrasts MEM with two other methods in
this regard.

17. Burg, John P, (1975) Maximum Entropy Spectral Analysis, Ph. D, Disserta-
tion, Dept of Geophysics, Stanford University.
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18. Bracewell, R. (1965) The Fourier Transform and Its Applications, McGraw
Hiil, Chapter 1.

In my opinion, this book is one of the clearest ones devoted to the continuous

Fourier Transform, It also gives useful geometric interpretations.

19, Hsu, H.P. (1970) Fourier Analysis, Simon and Schuster (Tech Outlines).

This "problems and solutions'" book provides a large amount of basic infor-

mation in a concise manner,

20. Robinson, E. A., and Treitel, S. (1980) Geophysical Signal Analysis.
As should be evident from the text, this was the most important background

information source, It is a masterpiece of exposition. The present author has
learned that any textbook with E, A. Robinson as an author or co-author was very

easy to follow and pleasurable to read.

21. Robinson, E. A, (1967) Statistical Communication and Detection, Hafner.

The text made use of the Fejer Theorem as treated in the present report.
There is also raention in this book by Robinson of the connection between the
Paley-Wiener Theorem and the deterministic signal. It is all very well written.

22, Robinson, E.A., and Silvia, M. T, (1978) Digital Signal Processing and Time
Series Analysis, Holden Day, Inc,

This is a well written, clear, and comprehensive treatment. The discussion
on minimum phase and the Paley Wiener Theorem are very helpful.

It is an excellent introduction since it covers all the basic material. It also
gives a good discussion of applications. Their discussions on speech deconvolu-
tion and seismic deconvolution were used in the present report,

23. Guillemin, E. A, (1949) The Mathematics of Circuit Analysis, Wiley and
Sons; (1963) Theory of Linear Physical Systems, Wiley and Sons.

These two books are classics and they explain many of the subtle aspects of
Fourier Analysis that are not to be found elsewhere, The discussions are very
clear. '"Minimum phase" and the ''Payley-Wiener Condition' are well explained,
The discussions make it obvious that the engineering applications of this subject
demand sophistication, The books both deal with the continuous domain,

24, Wiener, N. (1949) Extrapolation, Interpolation, and Smoothing of Stationary
Time Series, Cambridge, MA, Technology Press of the MIT,

Originally classified secret this report was declassified and published in the
open literature in 1949. The report describes the Optimum Filter of Wiener as
it was first conceived. The mathematics was too advanced for the engineering
community. Two appendices by Levinson, originally published elsewhere, are
included. These two papers made this work available to the engineers. The
Levinson Recursion, in slightly different form, first appeared here in this book
{or rather in the reports used for the appendix of this book).
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25. Laning, J.H., and Battin, R,H. (1956) Random Processes in Automatic
Control, McGraw -Hill,

Contains an excellent treatment of the Optimum Wiener Filter and Predictor

in the continuous domain,

26. Bendat, J.S. (1958) Principles and Applications of Random Noise Theory,
Wiley & Sons.

This book contains a good description the Wiener Optimum Filter and

Predictor.

27. Makhoul, J. (1975) Linear Prediction: A Tutorial Review", reprinted in
Ref. 30, p. 99.

This is an important review paper and is well written,

28. Kay, S.M., and Marple, S.L, (1981) Spectrum Analysis —A Modern
Perspective, Proc. IEEE 69, pp. 1380-1419.

This is a comprehensive review article on the present subject. The present
report used one of his figures. This review by Kay and Marple goes quite far
beyond MEM-PSD analysis and it considers all the other methods available. It
is a veritable monograph on the general topic of PSD analysis,

29. Abel§, J.G.361974) Maximum entropy spectral analysis, Reprinted in
Childers.
A good and also concise introduction to the subject.

30. Childers, D.G. (1978) Modern Spectrum Analysis, IEEE Press.
This volume is a collection of reprints of what were the key papers up to the
time of publication., In the text the tutorial review by Abels and one by Makhoul,

as well as a paper by Lacoss have been referenced. This volume edited by
Childers is essential for anyone considering doing serious work in MEM-PSD
estimation.

A paper not directly referenced in the text but important in this field is:
Paley, R.E.A., and Wiener, N, (1934) Fourier Transforms in the Complex

Domain, American Mathematical Society.
This is the reference where their famous theorem first appeared. The
explanation here is in terms of ""quasi-analytic functions'" in the complex domain.

The "physics' is not apparent.
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