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ABSTRACT

j The design of high-speed systems and the automation of the design tasks

involved is the topic of this thesis. In particular, the focus is on the use of

pipelining and general overlapped execution in order to speed up the systems

being implemented.

This thesis contains new techniques for speed-up, and describes the

implementation of these techniques in a set of design automation programs.

The new techniques produce designs which share resources and time in a

manner which is more complex than that used as common practice in working

systems. The manual design of such complex hardware would be virtually

impossible; thus, automated design is a key aspect of the proposed design

methodology.

The specific problem the thesis addresses is the following: the

determination of the point in time each operation in a set of tasks is to be

performed, and the manner in which the operators which execute each

operation are reused from cycle to cycle. /-- ,- '7 -' " ,

The first topic investigated in the thesis istlocking scheme synthesis.

This type of synthesis involves selection of the number of clock phases, the

duration of each phase, the amount of overlap in time between phases, and the

assignment of functions to each clock phase. A theory of clocking is developed

in the thesis, and used as the basis for software which automatically synthesizes

clocking schemes. This program has been shown to improve manual designs by :i
as much as a 60% gain in performance. The potential for application of the

clocking scheme synthesis to more general systems, including systolic arrays, is

also described, and an example given.

.2



Synthesis of pipelined data pathsjis the second topic investigated. This

synthesis task involves the generation of data paths along with a clocking

scheme which overlaps execution of multiple computation tasks. A theory of

general execution overlap is presented, including a description of four different

scheduling techniques. There is a brief description and example of the use of

the pipeline synthesis software.

The third topic covered is'the insertion of delays into pipelined systems

to avoid resource conflicts while increasing performance. The thesis describes a

set of algorithms which perform optimal delay insertion.

The algorithms described in the thesis have been programmed in Franz

LISP, and execute quickly for problems of practical size.
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Chapter 1

Introduction

1.1. The General Digital Design Optimization Problem

The general digital design problem is that of producing a hardware

. - implementation of a system which exhibits a required behavior and satisfies

any constraints imposed on it. Among the most typical design constraints are

minimum required speed and maximum allowed cost and power consumption.

Examples of desired goals are to maximize speed, to maximize speed-to-cost

ratio, and to maximize speed-to-power consumption ratio.

U Unfortunately, these optimization tasks often compete with each other.

For example, the minimum cost implementation will rarely be the maximum

speed implementation. For this reason, desired design goals are often used in

addition to constraints in order to direct the optimization process towards a

certain direction. Whenever there is more than one noninferior design

alternative, the one that best meets the desired goals will be chosen.

The synthesis task can be partitioned into subtasks which will be

repeated as the design proceeds towards a direction guided by constraints and

desired goals, as listed below:

o. o-1. choose an appropriate design style (design style selection),

2. choose potentially optimal sets of functional and storage modules
which can maximize speed and minimize cost and/or power
consumption (module selection),

3. allocate operations and data values to functional and storage

£ . . . .. . . . . . . . . . . 2



2

elements. Partial interconnection may also be carried out (resource
allocation),

4. find an optimal configuration and/or interconnection of modules so
as to maximize performance. Detailed control hardware and/or
microprograms are also synthesized during this phase
(configuration and interconnection), and

5. for a given design which is non-optimal, find a near-optimal
reconfiguration of the design within an allowed cost increase or
speed decrease limit (performance increase or cost reduction by
reconfiguration).

In cases when near-optimal solutions are desired, the complexity of these

tasks is in decreasing order, since the solutions for the earlier phase problems

can only be guaranteed to be optimal after a large number of (in worst case, all

possible) solutions for the later-phase problems are compared. Unfortunately,

finding optimal solutions even for some of the later phase problems is known to

be intractable. For example, the resource allocation problem can be modeled as

a precedence consatrained scheduling problem, which is known to be NP-

Complete [Gary 791. Also, as a subproblem of subtask 4, the microcode

compaction problem has been proven to be NP-Complete [Robertson 79].
Many other problems with exponential complexity in various design phases

have been identified [Breuer 72, Sastry 821. Only several problems of the last

subtask turn out to be polynomial-time solvable [Dervos 83, Leiserson 83).

In practice, synthesis tasks are carried out by estimating and evaluating

cost and speed of feasible hardware implementations of the system at various

stages of the design process. Naturally, in order to carry out these tasks

efficiently and to get a near-optimal design, a good estimation and evaluation

strategy is crucial. Especially, in the last two phases described above, it is

desirable that the speed estimation and evaluation procedures be able to

i 94 suggest possible changes in the given design which can increase the speed.
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1.2. Design Issues

1.2.1. Speeding up digital systems

Although there are many styles and variations of techniques for the

control of high-performance digital systems, they can be classified as following

two basic concepts:

* distributed processing under asynchronous distributed control, and

* overlapped (parallel) processing under centralized control.

The former class includes digital systems with multiple autonomous

control sequencers such as multi-microprocessor systems, and VLSI circuits

with multiple autonomous control modules and interfaces (e.g., a UART with

separate sequencers for receiver and transmitter). The latter class includes

systems or modules with only a single centralized controller. Any system

* belonging to the first class can be partitioned into subsystems and/or modules

each of which can be classified under the latter c. ;s, although there are

several complex control partitioning problems which must be addressed. The

overall speed of such a distributed processing system will be determined as a

function of the speed of each partitioned subsystem and/or module.

Accordingly, we will focus our discussion on the latter case, overlapped

processing under centralized control.

1.2.2. Logic design and clocking

In any sequential circuit, there are two logic components: the

combinational logic blocks which perform the required functions and the -'

storage elements which save the results of the combinational logic blocks. In

the case of simple, sequential circuits, where an instruction or a state transition

requires a part or all of the combinational circuitry and the results are latched

into storage elements all at once, the interaction between the two components

1,

- - . A. . , .. -. .:, ": . " ,
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is simple. The timing characteristics of the combinational circuitry dominates
the determination of the speed of the circuit. However, in the case of complex,
fast systems such as mainframe computer systems, a system is partitioned into

subsystems (or stages as in a pipelined system) and fast multiple-phase clocks
are used. System partitioning is performed for four reasons:

9 due to physical limitations such as size or power consumption,

e to provide modularity and maintainability such as testing and
design changes,

e to support resource sharing, and/or

* to support overlapped execution of different tasks.

In such a partitioned or staged system, the timing characteristics of the
combinational and sequential components interact very closely and affect the
performance of the systems in a different way. A computation task is
partitioned into subtasks and subtasks are carried out in many subsystems or
stages. The results of one or more subsystems may need to be fed to other
subsystems to complete the original task. Then, the subsystems freed up can be
used for other tasks. There are two obvious objectives in designing such

complex systems:

. optimal system partitioning into subsystems, and

9 optimal sequencing control to carry out tasks and subtasks.

Both partitioning and sequencing control require proper buffering and
synchronization of value transfer from subsystem to subsystem, which involves
placement of storage elements in between and/or inside each subsystem, and
the proper timing and sequence for clocking the storage elements.



1.2.3. An example digital circuit design task

In any digital system, cost (sometimes analogous to chip area) and speed

are traded off to get a system which meets particular requirements. How cost

and speed are traded off, however, varies from design to design. The

complexities of the problem are illustrated by a brief multiplier example.

Suppose we have decomposed a 16-bit multiply operation as shown in

Figure 1.2-1, using 8-bit multiply and addition operations. The nodes indicate

operations, and the arcs indicate values. The task is to design an inexpensive,

- fast multiplier from this data flow graph. An obvious solution using four 8-bit

multipliers (M, through M4) and five 8-bit adders (A, through A.) is shown in

Figure 1.2-2. The timing diagram for this multiplier is shown in Figure 1.2-3,

where the delay time of an 8-bit multiplier and an 8-bit adder are 80 and 30

nsec., respectively. The register propagation delay is 10 nsec.

aL-a(7:0) I
bH=b( 15:8)

bL-b( 7 :0)

1 -bit +5 +7

carry

0 140 0H
", •i LH OLL"-

ON" OHL -

Figure 1.2-1: A data flow graph for a 16-bit unsigned integer multiplication.

S
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OLL

-- 8-bit data H~I- 8-bitl multiplier
carry bit Aj- 8-biT adder

Figure 1.2-2: A 16-bit parallel unsigned integer multiplier. ]i
A

~However, since there has been no reuse of resources, the resources are

"- only busy a fraction of the time. There are two possible ways to increase

i !" resource utilization without sacrificing performance.' These are

I1. use less modules and reuse them for different operations as many

• .. * times as necessary, or

- . 2. when multiple tasks are to be executed sequentially, partition each
-;. task into subtasks and execute subtasks of multiple tasks on

" different parts of the circuit simultaneously (overlapped execution
~of multiple tasks).

i 
" I1We could increase resource utiliiation greatly by using only one multiplier ad one adder,

,.).but at a great sacrifice in performance'

b- " - . " " " -

".,- " ' " ' '" .4•""*" - . '.' "M 2- 'A,2 O""L"H"' : '- c , "' 
" '

u ' " ' " "
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Input latch delay

Module / *

+1
Al

M3 *3

A2 4

A3 4

+-4

A4 +

A5 +5

I 1 1time

010 30 90 120 150 180 210 240
(nsec.)

Figure 1.2-3 Timing diagram for the multiplier of Figure 1.2-2

The first method takes a local view of the multiply operation, and

assumes it :s required to be performed only as often as the outputs can be

produced. No other multiply operation would require the hardware until the

present task was. completed. As long as multiplies come along slower than the

speed of the multiplier, this is a valid viewpoint.

j . Sometimes, we cannot consider a single multiply operation in isolation.

In some cases the multiply tasks can be generated at a faster rate than the

total multiply time. In this case, we must begin a second multiply before the

first is completed, utilizing the resources left idle by the first multiply as it goes

into the later stages of its computation. In the extreme case, we can overlap
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enough multiply operations so that the resources are all busy all the time, and -

the multiplies are handled as fast as required. This overlapping in time, in its

simplest form, is sometimes referred to as pipelining.

An implementation of the multiplier with overlaps is shown in Figure

1.2-4. This multiplier uses the same set of functional modules as the multiplier

in Figure 1.2-2. Only some latches have been added. These latches divide the

circuit into two stages and prevent direct flow of values between stages. For

this reason, they are called stage latches.

OLL

A I

b

* '4

Fu A2 A iH wi

-M.<

. 4 ,./--1 clock phase-2 -

, Figure 1.2-4: A multiplier with execution overlap.

With this multiplier, a 16-bit multiply is performed in two steps as.'

follows. (Refer to the data flow graph of Figure 1.2-1.)
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1. The input latches are clocked by clock phase-I and store the inputs.
8-bit multiplications *1 through *4 are performed by 8-bit
multipliers M1 through M4. As soon as the results of *1 and *4 are
available, the +1 operation is performed by adder Al.

2. The stage latches are clocked by clock phase-2 and store the results
pof the previous step, i.e., the outputs of Ml through M4, and Al.

Addition operations +2 through +4 are performed by adders A2

through A5 and the results are output.

The timing diagram for this multiplier is the same as Figure 1.2-3 except

that the operations +2 through +5 are delayed by 10 nsec. due to the

propagation delay of the stage latches. Therefore we cannot perform a

multiply operation faster than before. However, the effective throughput is

greatly increased since we can perform more than one operation in parallel.

As soon as a 16-bit multiply operation moves to the second stage by storing

the results of the first stage in the stage latch, another 16-bit multiply can

start on the first stage. On this multiplier, a new multiply task can be

initiated every 130 nsec. The resource utilization for the 8-bit multipliers has
increased to 61 percent as a result of the overlaps.

Figure 1.2-5 shows the timing of overlapped execution of three multiply
tasks, I, 12, and I3, using an overlapped multi-phase (two-phase) clock which

we will discuss in the following section.

The choice of the two speed-up techniques depends on the design

constraints, the desired optimization goals and the input task stream. If the

computation tasks arrive at a high rate and the designer wants to make the

design as fast as possible, he may choose the latter technique. On the other

hand, if the cost budget (either the total cost or the total area) is very tight, he

would choose the former technique. Depending on the tightness of the

constraints, the desired optimization goals, and the arrival rate of the tasks,

the best choice might be a mixture of both techniques.

)....................................... .

,. .f'... L aA . . . . . . . . -
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Tasks

12 I* S

13 I I

II"" I!

.. • Clock Phase-I

," |,Clock

0 120 250 380 510
130 260 Time (nsec.)

Figure 1.2-5: Overlapped execution on the multiplier of Figure 1.2-4.

1.2.4. Overlapping multi-phase clocks

A multi-phase clock cycle consists of a sequence of clock phases delayed

from a single clock source. Since each phase is delayed from a single clock

source, all the phases have the same pitch, which is called a clock period. The

time interval from the tick of a phase to the tick of its next phase is called the

length of the phase. Each phase can be of different length. An example of a

non-overlapping 3-phase clock is shown in Figure 1.2-6. In case of a non-

*i overlapping multiphase clock, the clock period is the same as the sum of the

lengths of the clock phases.

, An overlapping multiphase example is shown in Figure 1.2-7. In the case

of an overlapping multi-phase clock, the clock period is shorter than the total

sum of the clock phases. A new clock cycle starts before the last clock phase of

1the previous cycle.

•r 7
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.-, 1.2.5. Two sequencing levels of a digital system

In digital systems with two-level control structures, sequencing is carried
out on two levels, the macro and micro levels. An execution instance of a

machine instruction or a major loop of a finite-state-machine (macro task)

corresponds to a macro cycle and an execution instance of a microinstruction

or a state of an finite-state-machine (micro task) corresponds to a micro

p- cycle, which are carried out by a macro engine and a micro engine,
respectively. Most Von Neumann-type computer -CPUs and simple digital

systems have a two-level control structure. In most digital systems whose

control structure has more than two levels, we can also find similar levels of

sequencing corresponding to the macro and micro levels. 2 Figure 1.2-8 shows

* ,an example of a microprogrammed computer CPU.

MACRO ENGINE

MAR PC DATA PATH

. I,/ ,

','*'" ADD A'r~MUIJ" - COND.

LATCH

MAI CONTROL SIGNALS

N'" N XT INSTR I JUMP 11 - C CONTROL P - R - R

' "LOGIC 
STORE -R

"A.

- -. I NSTR REG - -.-.- -.-... . .-.. .. -. . . . .. . .-
- - - - - - - - - MICRO ENGINE

Figure 1.2-8: Sequencing engines of a digital system.

2For a nano-programmed CPU such as the Nanodata QM-1, nanoinstruction cycles can be
• considered to be the micro cycles, and microinstruction cycles and machine instruction cycles

can be merged and considered to be the macro cycles of our classification.

.." "
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Macro cycles consist of sequences of one or more micro cycles.

Overlapping macro cycles are implemented by proper partitioning of macro

cycles into sequences of micro cycles. For example, an operand needed by the

current machine instruction being executed could be fetched by some

n microinstruction of the previous machine instruction and some

microinstruction of the current machine instruction may fetch the next

.' machine instruction in advance.

A micro cycle consists of minor cycles (register-transfers). Each minor

cycle reads from storage elements, transforms and stores data and/or control

values to storage elements which are used to buffer the flow of the values

between functional elements. 3  Such buffering storage elements are called

stage latches. For the micro engine of figure 1.2-8, u-PC, #-DRI, A-DR2 and

"Cond. LatchN can be considered to be stage latches. In general, any storage

element in the system can be a stage latch.

1.2.6. Overlapped execution in micro-level sequencing

At the macro level, various techniques for speeding up digital systems

exist. Examples are instruction look-ahead [Keller 75], stack architectures

[McKeeman 75], and dataflow machines [Dennis 75]. However, the ultimate

performance of these speed-up techniques will depend greatly on good

sequencing control schemes at the micro level, since each macro-level task is

eventually implemented by micro cycles.

At the micro level, execution overlap is achieved by overlapping the

execution of minor cycles of multiple micro cycles. As shown in Figure

1.2-9-(a), simple overlap is often used in small computer CPUs. As data path

31n other words, a minor cycle corresponds to a primitive operation at the register-transfer
level.

.......................................................
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cycles overlap ((b) and (c) of Figure 1.2-9), overlap within functional units can

also be used (e.g., the pipelined multiplier of the IBM 360/91). Possible places

where micro-level overlap can be achieved are

1. between stages of the micro engine,

2. between the micro engine and the data path, and

3. between the data path stages.

Figure 1.2-9 shows timing examples of micro cycles. Case (b) corresponds

to the digital system of Figure 1.2-8, where, for a microinstruction i, the minor
cycles IiI, Ii2, Ii3 and i4 start by clocking p-PC, p-DRI, u-DR2 and "Cond.

Latcho, respectively. As we show later, if there is no conflict in stage usage

- and no branches are executed, the maximum execution speed of a micro engine

is determined by the longest interstage propagation delay (which is the

minimum possible clock period) as in static pipelines without loops. Of course,

the actual interstage propagation times depend on the number and length of

the clock phases.

As shown in Figure 1.2-9, a branch delays fetch of the next micro cycle

until the earliest fetch clock phase after the completion of the branch.

Accordingly, the time delay due to a branch is a function of the execution time

of the branch and the clock period. Thus, the overall performance of the micro

engine also depends on the sequence of micro cycles to be executed.

I.., .

Resource conflict and data dependency (data precedence) are other

factors reducing the advantages of execution overlap. For example, two

Sri microinstructions, Ii and li+1, are executed consecutively and each has three
'",.~i microoperations (data path cycles), as follows:

*1*',4'

-'I



Iij J-tb minor cycle of micro cycle i.

Ill 112

I ------- I -------I
control I (branching) 121 122

flow I -------- --------I

131 132

I-------I --------I
..........................--------------------------... > time
(a) Conventional 2-stage scheme with 2-phase clock

control I 111 112 113 114

flow I ..-.-I---I--- I -
I (branching) 121 122 123 124

131 132 133 134
II-.... ---I--....I- ..I

---------------------------------------------------------------- 
time

(b) 4-stage scheme with 2-stage data path (needs 4-phase clock)

U
control I11 112 113 114 115

flow .

"I (branching) 121 122 123 124 125

U 131 132 133 134 135

- -------------------------------------------------------- time
(c) 5-stage scheme with 3-stage data path (needs 5-phase clock)

Figure 1.2-9: Examples of micro cycle sequencing (Gantt Chart).

- - Ii li+1

li: C <-- MDR NEXT i+1,1: C <-- D*2 NEXT
Ii,2: A <-- B + C NEXT I C <-- C + 2 NEXT
i,3: A -- A*2 'i+1,3: -- C + D

li+,11 has a data-dependency relation with Ii, and li,2 [Dasgupta 76]. It

also has a resource conflict (assuming only one multiplier) with Ii,3. Thus Ii+ll

.. .. ,,, . . . . . . . o. -, .- .. ,- -"
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cannot start execution until all the data path cycles of I complete. These

situations can also be found in pipelines where a stage is used more than onceduring a computation of a single task [Kogge 81). Forbidden latencies of a

pipeline are determined by resource conflicts between tasks and loops are

major contributors to them. These problems slow down the execution speed as

well as increase the complexity of the control circuitry.

The delay of an initiation of a task due to any of these problems is called

resynchronization of the pipeline, and the time overhead due to such a delay

is called resynchronization overhead.

Similar problems arise at various levels of most digital designs

[Ramamoorthy 77, Kartashev 821. The higher the level, the harder the analysis

and the higher the control cost. An example of a higher-level resynchronization

is a page fault in a virtual memory computer system. If the page fault was for ,4
a new instruction, the pipeline must be stopped until the needed page is read in

from the disk, which usually requires quite a long time compared to the speed

of the pipeline.

At the micro-sequencing level, these problems can be analyzed in a

formal way using a graph-theoretic, algebraic methodology, which will be

discussed in this thesis.

1.2.7. Definitions of the speed of digital systems

As mentioned in the previous sections, the system tasks (processes or

4 programs) consist of sequences of macro tasks, each of which consists of one or

more fixed sequences of micro cycles. Therefore, execution times of system

tasks can be determined by the execution sequences of their micro cycles and

the execution time of those sequences. In this sense, the execution speed of the
m'.,i micro engine can represent the execution speed of the system. There are

- . . ..
o

. . . .

9. .... V* * * ~ * . . . . .. . .,.J
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several ways of defining the execution speed of a micro engine of a digital

P system for performance evaluation:

1. maximum possible execution speed,

2. execution speed for certain micro cycles, and

3. execution speed for a (weighted) average mixture of micro cycles.

'4 The first two parameters are not realistic since they do not involve an

actual mixture of the micro cycles. The third parameter, which is an overall

performance measure of the system, can be computed by assuming the average

mixture of micro cycles over a long enough time period. The total estimated

i~t execution time divided by the number of micro cycles executed will be the

average expected execution time of a micro cycle. Appropriate weighting

functions may be used to indicate the average occurrence and/or importance of

each micro cycle.

W-A (I-
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1.3. Research Overview

In this thesis, we consider synthesizing high-performance digital systems

with centralized control at the micro level. The main objective of the research

is to achieve maximum performance with minimum hardware cost and design

effort.

Among the most costly and time consuming tasks at the early stages of

data path design are module selection and allocation, which select functional

and storage elements and assign functions and values to them. Also, during or

after the module selection and allocation phases, control is synthesized,

involving the synthesis of either a microprogrammed or a hardwired sequential

machine. When near optimal design is required, all these tasks are

computationally intractable.

Furthermore, once all these tasks are completed, any non-trivial change

in either control flow or data flow may require almost the same effort as the

initial design. Naturally, we consider the following two fundamental questions:

1. During the module selection and allocation phases of the data path
design (assuming a fixed control sequence), how can we efficiently
estimate and compare the performance of alternative decisions?

2. For a completed design, how can we increase the performance of
the system at minimum hardware cost and minimum design and/or
design change time?

The main goal of this research is to develop a methodology which can

answer these questions at the micro level of digital systems.

We divide the design tasks into two cases depending on the design input

and design constraints as follows:

-'' n

f'.1



1. Case 1: The maximum possible performance is desired with no cost
constraint.

2. Case 2: A cost/performance tradeoff is either forced due to the cost
constraint or desired for cost and speed optimization.

U

1.3.1. Clocking scheme synthesis for maximum execution overlap

In the first case of the design tasks mentioned above, we assume there is

no resource sharing within a micro cycle in order to maximize the performance,

i.e., no micro cycle is using the same module more than once. Let us consider

this case now.

As mentioned in Section 1.1, the module selection and allocation phases

of the design are complicated, timing consuming tasks. Also, whenever there is

any change in either module selection or allocation, both Lhe data and control

flow must be altered to take maximum advantage of the change. Thus, the

task will involve almost the same amount of work as the initial design. For

example, if a new, faster ALU is chosen, it often requires rewriting the

microprogram as well as changing the values allocated to the operand and/or

result registers. This automatically involves changing the interconnections for

both the data flow and control flow.

In order to avoid such costly and time consuming iterations for this task,

we consider adding or reconfiguring only storage elements. This can be done

without altering the basic structure of the original control and data flow and I
thus is considered to be transparent to the data flow and control flow analyzer.

This gives the designer an efficient estimation tool for the comparison of

alternative module selections and allocations.

Assuming that the control sequence of the micro cycles is fixed, we

£consider two basic approaches to the above problem:
.. 1
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1. For a set of allocated functional modules (for both the data path
and the micro engine), add and connect the minimum number of
storage elements necessary to achieve a certain level of
performance.

2. For a completed design, add a certain number of storage elements
to the data path and/or micro engine in such a way that the
performance increase will be maximized by virtue of maximum
execution overlap of the micro cycles.

In either case, we try to maximize execution overlap of the micro cycles

considering the time overhead due to branches, resource conflicts and data

dependency relations. Maximum execution overlap can be achieved by

synthesizing an optimal clocking scheme, which involves the following tasks:

* * optimal assignment, relocation, addition or deletion of the stage
latches,

" choice of an optimal clock period and the number and lengths of
the clock phases, and

e optimal clock signal gating and routing.

In carrying out these tasks, we formulate the problem as a graph

theoretic problem. Digital circuits are modeled by directed graphs which show

the pathways of the data and control flow. By properly weighting the vertices

and the directed edges, we can model the execution sequences of the micro

cycles as tours on the graphs. Also, the time taken by each segment of the

tours can be computed easily. Assigning and/or inserting stage latches can be

modeled as finding multiple-edge cut sets. Once the locations of the stage

latches are determined, then the optimal clock period and clock sequence can

be computed, considering the synchronization overhead discussed before.

Software has been written to perform these tasks.
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1.3.2. Pipeline synthesis

For the second type of design task described above, we must consider

sharing resources, even during a micro cycle, in order to meet certain cost

limits. Due to the control complexity of general execution overlap with

resource sharing,4 we make an assumption that a micro cycle is divided into a

sequence of equal length minor cycles, which reduces the design problem to a

pipeline style.

In pipelining, each unit computation task (corresponding to a micro task)

is partitioned into a sequence of subtasks (corresponding to minor cycles) and

each subtask is assigned to and executed during a phase or a clock cycle. Every

( phase has the same time period. Consecutive tasks are initiated at some fixed

or variable intervals which are integer multiples of a phase and shorter than

the execution time of a unit task. In this fashion, subtasks of consecutive tasks

are to be executed in parallel and, in fact, consecutive tasks are to be executed

£ overlapped in time on different parts of a circuit.

We approach the problem of pipeline synthesis from the behavioral level

of design description. A data flow graph model is used to specify behavior. It

can have both

e multiple disconnected graphs for parallel independent tasks, and

* conditional branches allowing modeling of more than one task in a
* single data flow graph.

The design inputs are the data flow graph, specifying the desired

-" behavior of the pipeline, and design constraints on either cost or speed. We

assume that module selection is done, i.e., we know that which operations or

S 4 This problem is considered to be a combination of resource-constrained scheduling and

predecence constrained scheduling problems, each of which is NP-Complete jGary 79J.
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types of operations are to be executed by which type of modules. The

scheduling task is modeled as a graph partitioning into disconnected subgraphs,

where a partitioned subgraph corresponds to a time step of the pipeline

execution. The distribution of the operations in the subgraphs determines the

number of functional modules and multiplexers needed. The locations of the

edges separating subgraphs determine the number and locations of stage

latches. The critical path of a stage determines the clock cycle of the pipeline.

The number of subgraphs corresponds to the number of clock cycles for a task

to complete.

The goal of the scheduling task is either

1. maximizing the effective performance while satisfying the cost
constraint, or

2. minimizing the total cost while satisfying the minimum
performance constraint.

For a sequence of tasks, the maximum performance of a pipeline is

determined by

1. the minimum possible clock cycle time,

2. the minimum possible initiation interval between consecutive tasks,
and

3. the number of clock cycles required to complete a task.

However, optimization tasks for these three performance parameters

compete with each other. For example, partitioning the data flow graph into a

smaller number of subgraphs will increase the length of the critical path in

each subgraph. Due to resource sharing, longer subgraphs will have more

possibility of resource conflict when they overlap. However, making the

subgraphs short will increase the number of stages in the pipeline, which

increases the number and cost of stage latches, as well as slows down the
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execution time of a task due to the propagation delays of more stage latches.

In either case, scheduling and resource allocation are constrained by either the

cost or the performance constraint.

In this thesis, we present a set of fast scheduling procedures which are

iterated and guided by a good optimization strategy. These procedures carry

out resource allocation at the same time in order to make the schedule as

feasible as possible and to maximize the performance. After scheduling is done,

the actual cost is estimated by adding the cost for latches and multiplexers.

The next scheduling cycle is guided by the performance and cost estimation for

the previous schedule.

These procedures have been programmed and tested. Test results show

that these heuristic procedures produce near-optimal schedules in most cases.

These heuristic procedures have polynomial time complexity (O[n2logn]) and

will be an extremely useful tool for quick design space exploration.

1.3.3. Exhaustive algorithms

ti We also examine the possibility of using an exhaustive algorithm for an

optimal scheduling of the operations while satisfying the cost constraint. This

exhaustive scheduling algorithm takes the best result of polynomial-time

scheduling algorithms as a good lower bound on performance to prune the

search space.

Finally, we discuss another exhaustive algorithm for performance

improvement of an already existing static pipeline,5 by inserting non-

operational delay cycles into some stages into the pipeline.

5A pipeline without any conditional branches.
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1.4. Related Work

Since the task of high-level (functional level) digital design synthesis was

launched more than a decade ago [Friedman 69, Darringer 69], there has been

a vast amount of effort in automating various steps of the digital design

process such as design style selection [Thomas 77, Lawson 78), data path

synthesis [Irani 72, Snow 78, Hafer 81, Hitchcock 83, Kowalski 83, Girczyc

84, Tseng 841, microprogram synthesis [Agerwala 76, Patterson 76, Nagle 80],

and integrated design automation systems [Parker 79, Estrin 78, Zimmermann

79, Foulk 80]. However, there has not been much work in the area of clocking

scheme synthesis except that done for pipeline control [Cotten 65, Davidson

71, Davidson 75, Patel 76, Kogge 81] which can be considered to be a special

case of general clocking scheme synthesis. As we have discussed before, the

clocking scheme synthesis task is important in optimizing the speed of digital

systems and must be carried out together with the data path and control

design. However, it has been either buried under architectural design [Parker

79, Estrin 78, Zimmermann 79, Foulk 80], or assumed a priori, as a part of the

control design [Boulaye 71, Katzan 71, Nagle 80, Andrews 80] or data path

* design [Hafer 81]. In some cases, clocking scheme synthesis alone is carried out

for already completed designs [Davidson 75, Leiserson 82, Leiserson 83]. Among

them, we will briefly discuss several which are most closely related to our

research.

- .. 1.4.1. Clocking scheme synthesis

Leiserson [Leiserson 82, Leiserson 83] proposed a technique which

determines a relocation of the registers in a given systolic-type data path in

order to minimize the clock period. The data path is modeled as an acyclic

directed graph where the vertices represent functional modules and the

directed edges represent interconnections. The locations and the number of

registers are indicated by the edge-weights. The basic assumption of this
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technique is that all the hardware modules are performing useful operations atE s any time and thus all the registers are clocked at the same time by a single

clock source (e.g., a systolic array). The technique moves the registers of the

original design along the direction of the data flow. If the movement is to be

made onto any forked 6 edges, registers are copied to all of the fork-edges in

, Iorder not to change the original data flow. Figure 1.4-1 shows an example of

step-by-step relocation of registers.

0 Operator Latch

Figure 1.4-1: Leiserson's retiming.

" !The optimal relocation of registers is determined as the design in which

the longest propagation delay between any two registers is minimized, which

minimizes the clock period. The major contribution of this work is that it

suggests several formal tools for timing analysis of digital circuits, which are a

graph model of the digital circuit and a problem formulation using linear

and/or mixed-integer linear programming. There are several shortcomings of

this technique to be used in the general case of digital systems speed-up. They

are
" the technique assumes fixed clocking for all the registers at the

same time,

6In this model, all the forks are AND forks since every hardware module is performing

useful operations and thus all the interconnections are carrying useful data values.

k. k ," ' ,' .-. . . ,.-•-.- • .. . . ... . ... , - - - ..- :
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* the technique assumes fixed data flow for all time,

9 control hardware timing is not considered, and

* register propagation delays are ignored.

*Also, this technique does not handle execution overlap between multiple

computation tasks. In Chapter 4, we will show an example of how the clock

period can be reduced further by using execution overlap.

Boulaye [Boulaye 71] discusses speeding up pipelined micro engines by

minimizing the time overhead caused by the conditional branches, which is

accomplished by clocking the condition latch (which contains values that

determine selection of the next microinstruction) as early as possible. This

approach can also be considered as relocation of registers to reduce the critical

path or the critical stage of a pipeline. However, if the propagation delays of

both the data path stages and the stages of the micro engine are not considered

. together, optimal relocation cannot be determined. Also, in an instruction

pipeline, branches cause resynchronization overhead, which also involves the

termination and re-initiation of the data path stages.

*Andrews [Andrews 80] considers using multiphase clocking as one way of

reducing the number of microinstruction fetches from slow microcode storage.

By using a multiphase clock, microinstructions can be horizontally coded and

executed serially in several clock phases without having an expensive data

path. As he mentions, the performance of this technique depends on the coding

efficiency of the horizontal microprogram. If the microinstructions are sparsely

coded, then the resource utilization efficiency will be low. Also, after the

completion of a microinstruction which has only microoperations with short

..execution times, there will be idle time until the fetch cycle of the next

microinstruction. This is true for any microprogram (vertical or horizontal).if

execution overlap is not used. However, if execution overlap is used, this is not

~'
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g always true, since the execution speed of the micro engine depends much more

on the longest microoperation execution time rather than the total execution

time span of each of the microinstructions. Moreover, as we shall show in

Chapter 3, if execution overlap is properly used, vertically coded

q microinstructions can be executed as fast as horizontally coded ones. This saves

a significant amount of design time and avoids the complexity of horizontal

microprogram compaction, which is known to be intractable (Horowitz

78, Robertson 79].

As another approach, Berg (Berg 791 characterized the timing behavior of

a given control and clocking scheme in order to provide a guideline for the

synthesis of a fast and correct microprogram. The timing behavior of a
C. controller at the macro level is modeled as a finite state machine. The model
4. allows multiphase execution of micro-instructions. However, the model is

focused on timing the interactions between main system blocks such as the

CPU, main memory, and 1/0 controller.

1.4.2. Pipeline clocking schemes

* Basic timing requirements and clock skew problems for pipelines were

first analyzed by [Cotten 65), and well explained in [Kogge 81]. If the shortest

path through a stage is shorter than the width of a clock pulse, then the output

of a latch can change the input of the next stage latch while the clock pulse is

active, which is termed a critical race by (Cotten 651. There are four solutions

to the critical race problem:

1. the short paths which might cause critical races must be augmented
by time-delaying and doing-nothing circuits [Cotten 651,

2. the width of the clock pulse must be reduced by using a faster
latch,

3. master-slave flip-flops must be used, or
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4. edge-triggered flip-flops must be used.

A recent work by [Unger 83] at EBM discusses the third and forth

solution approaches. In brief, master-slave and edge-triggered types of

latch es/flip- flops are race-free themselves and therefore can prevent critical

races.

Another problem, called clock skew, must be considered in order to get

the right timing, and cannot be avoided even with master-slave or edge-

triggered flip-flops. In real designs of a pipeline, stages are physically apart

from each other. Different interconnection lines carrying the clock signal have

different lengths and loading effects causing different transmission delays. Also,

clock signal drivers have different delay times depending on the size. Due to all

these factors, the arrival times of the clock signal to different stages are not the

same. This may cause latching wrong results by clocking latches either too

early or too late. The maximum difference of any two clock signal arrival

times is called clock skew. A solution to the critical race problem due to clock

skew has been proposed by (Cotten 651. It uses a chain of clock pulses to clock

the latches in sequence instead of clocking all the latches at the same time with

a single clock source.

All the timing issues we have discussed in this section are critical to

E3 pipeline design at the gate level, where delay times of the latches are

comparable to the stage logic block delays. Although the basic problems
remain the same, however, in the case of pipelined designs at the functional
module (e.g. a 4-bit adder, an ALU, etc.) level or register-transfer level, these

issues have relatively little importance compared to partitioning the circuit into

stages and scheduling computation tasks on the pipeline.
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1.4.3. Pipeline scheduling

The pipeline scheduling problem has been studied by several researchers.

In general, most scheduling problems (e.g. job shop scheduling, flow shop

scheduling, etc.) have been known to be NP-Complete or NP-hard IBaker

74, Horowitz 78, Gary 79]. Ramamoorthy and Li [Ramamoorthy 75] have

shown that the general pipeline scheduling problem is also NP-Complete.

Some engineering solution techniques for pipeline scheduling have been

developed in a series of papers, [Davidson 71, Shar 72, Davidson 75, Patel 76].

We summarize the common characteristics of these techniques.

The basic tool for schedule analysis is the reservation table developed byK4 Davidson [Davidson 71]. A reservation table is a two-dimensional tabular

description of the pattern and sequence of stage usage of a computation task.

Each column corresponds to a time step and each row corresponds to a stage.

Resource conflicts or collisions between any two consecutive computation

tasks can be detected by superposing their reservations. The goal of the

-scheduling task is to find out an optimal sequence of initiation intervals for a

sequence of computation tasks such that the average initiation interval is

S minimized.

"" "" The lower bound on the average initiation interval for a reservation was

computed by Shar [Shar 72], and is equal to the maximum number of marks in

a single row in terms of the number of time steps. However, there is no

guarantee that the lower bound can be achieved, depending on the pattern of

the reservation table. The reason is that the desirable small initiation intervals

may not always be permissible due to collision. Another situation that possibly

makes the average initiation interval longer than the lower bound is when an

already existing pipeline is asked to perform a new type of computation. The

new type of task may have very much different stage usage, which may
.. increase the average initiation interval. In such a case the designer has little

'.-['.'",,, -,"; -. "" ,''"'.-'.- ,'' " . ,'" ' "-." ,,,". "; " " - . -.. .?-?. , . . .-. . ..-. . . ..-.-.--.. ..--. .,,. . . . ,-. .: - . .[.: [, "-:-:-., .•:; .-:-... .'.



s-v. rfl r'r1~r -Lr~ C ~' C - - r - -~ .-. .- -.W

30

control over the reservation table of the new type of task. A solution

technique to these problems has been reported by Patel [Patel 761. The solution
technique selectively delays some of the marks in each row of the reservation

table. The number of marks in each row is not changed. One column delay of a

mark corresponds to a delay of a time step. In brief, the marks in each row is

relocated such that a certain desired sequence of initiation intervals does not

cause any collision.

The actual implementation of a delay step can be either (i) a real empty

stage with only stage latches or (ii) skipping clock phases, depending on

whether buffering (saving) the inputs for the delayed computation is necessary.

In other words, if the latches storing the input values for a delayed

J. computation are not overwritten by some other computation step, there is no

need to pipe the values through any other storage elements.

All the pipeline scheduling techniques we have discussed in this section

assume the following three restrictions:

* Partial sharing of a stage (substaging of a stage) is not allowed.

* The execution time for all stages is fixed and the same.

e No conditional selection of stages is allowed during the execution of
any computation (i.e. the sequence of stage usage of any task is
always fixed).

These restrictions constitute the major differences between the general

execution overlap problem we are studying and the traditional pipelining

problem discussed above. The third restriction, especially, prevents the usage

of these synthesized pipelines in general-purpose digital systems such as a

computer CPU or a digital controller. Also, the first restriction makes the cost-

speed tradeoff of pipeline designs rigid and leaves little freedom. In Chapters 4

and 5, we will discuss how we can remove the first and third restrictions.



m 1.4.4. Other related work

The basic concept of execution overlap at the micro-level under a

centralized control originates from the look-ahead technique (Keller 75] for the

prefetch of instructions and operands. Examples of machines which implement

macro level execution overlap include the CDC6600, and the IBM 360/91, 195

and 370/165. They assume that instruction fetch, decode, and execute cycles,

each consisting of a sequence of micro cycles, take almost equal time, which is

-the basic assumption of general pipelines. Possible execution overlap is

predicted by checking the type and execution status of the current macro task

being executed. Typical checking mechanisms use condition flags and/or

counters which represent the state of associated resources. Naturally, look-

ahead techniques assume flexible execution control mechanisms implemented

by micro-level sequencing primitives [Katzan 711. However, at the micro level,

implementing look-ahead is costly and difficult since the look-ahead mechanism

* must be much faster than the micro cycle time in order to achieve execution

overlap, which, in most cases, requires hardware level primitives.

Nagle [Nagle 80] provides a good insight into the general problems of

* control synthesis at the micro level, although all the problems are not analyzed

in depth. The major contribution of this work is microprogram synthesis under

given constraints, such as the capacity of the microprogram storage, speed

requirements, and the number of control signals that can be activated at the

same time. The control-flow optimization and control distribution techniques

proposed can be used to reduce the number of branches, to shorten conditional

branching time and to reduce the number of micro cycles, which is essential to

increase the performance of the micro engine.

Cook [Cook 701 considered multiphase clocking of PLA's in order to

reduce the power consumption of the PLA. A precharge scheme using a

multiphase clock is used to compensate the turn-on/off time delay. Although

A' ... -
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he does not mention it, his PLA partitioning technique may be very useful for

multistaging a control store using PLA's. For example, we can partition the

AND-plane and OR-plane of a large PLA by inserting a latch to store the

product terms. Then, since it is a sequential machine design, we can overlap

the propagation delays of the AND-plane and the OR-plane.

A technique for performance measurement of static pipelines is proposed

-' by Lang [Lang 791, in which a pipeline is modeled as chains of processing

elements and a table-driven simulation method is used for the performance

estimation.

o
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1.5. Thesis Outline

Chapter 2 describes the theory of maximum execution overlap. The

clocking scheme synthesis task is defined, and the problem of optimal clocking

scheme synthesis for maximum execution overlap is formulated in graph-

theoretic terms. Execution speed analysis is discussed. The problems of

resource conflicts and branching are also addressed. Based on this discussion,

the choice of an optimal clocking scheme is described.

Chapter 3 describes the algorithms which perform clocking scheme

synthesis. An example clocking scheme for the HP-21MX computer is

described, and compared to the manual design. Finally, an extension to the

technique to handle general designs, including systolic arrays, is presented, and

an example given.

The theory of pipeline synthesis is presented in Chapter 4. A data flow

graph model for specifying input to the synthesis procedures is described.

Then, the scheduling and resource allocation tasks with cost and performance

constraints are discussed. Resource sharing across conditional branches is

. ~. addressed, and an algorithm to color the data flow graph nodes to detect the

possibility of resource sharing is preserted.

Chapter 5 describes the pipeline synthesis algorithms based on the theory
,..' - described in Chapter 4. Three types of polynomial-time algorithms are

discussed, along with an exhaustive scheduling algorithm for optimal pipeline

designs.

The insertion of delays into previously designed pipelines is the topic of

Chapter 6. An optimal delay insertion algorithm is presented.

Finally, conclusions and future research are summarized in Chapter 7.

.............................................- 1
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Chapter 2

2Theory of Maximum Execution Overlap

2.1. Introduction

-. The main goal of this chapter is to develop a theory for the analysis and

synthesis ofa maximally-overlapped execution scheme for a digital system at

the micro (register-transfer) level. By maximum overlap, we mean the

following. Each computation task uses a hardware resource no more than

once and the data flow of a computation task moves in one direction as fast

as possible through a circuit. As soon as the current task moves to a later stage

and frees a part of the circuit, the next task is initiated and executed on the

Efree part of the circuit.

The emphasis of the theory to be developed in this chapter will be on

*mazimizing the performance while minimizing the change in the control and

data flow of a given partial or complete design. If a new set of operators were

chosen for a potentially faster design, both the data and control flow must be

altered to get the maximum advantage. Also the number and locations of the

storage elements must be re-determined due to the different timing

:-. ~requirements of the new set of operators. Thus, the task would involve almost

the same amount of work as the initial design task. For example, rewriting the

microprogram or changing the value allocated to the operand and/or result

registers automatically would involve changing the interconnections for both

the data flow and control flow. In order to avoid such costly and time

consuming iterations, in this chapter we consider adding or reconfiguring only

E storage elements, which can be done without altering the basic structure of the

-.
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original control and data flow and thus is considered to be transparent to the

data flow and control flow analyzer. Assuming that the control sequence of the

micro cycles is fixed, we consider two basic approaches to the problem:

1 . For a set of chosen and allocated functional modules (for both the
data path and the micro engine), add and connect the minimum
number of storage elements necessary to achieve a certain level of
performance.

2. For a completed design, add certain number of storage elements to
the data path and/or micro engine in such a way that the
performance increase will be maximized by virtue of maximum
execution overlap of the micro cycles.

In any case, we try to maximize execution overlap of the micro cycles

considering the time overhead due to branches, resource conflicts and data

dependency relations. Maximum execution overlap can be achieved by

synthesizing an optimal clocking scheme, which involves the following tasks:

* optimal assig.-'nent, relocation, addition or deletion of the stage
latches,

0 choice of an optimal clock period and the number and lengths of
the clock phases (refer to Section 1.2.4), and

* optimal clock signal gating and routing.

In carrying out these tasks, we formulate the problem as a graph

theoretic problem. Digital circuits are modeled by directed graphs which show

the pathways of the data and control flow. By properly weighting the vertices

and the directed edges, we can model the execution sequences of the micro

cycles as tours on the graphs. Also, the time taken at each segment of the tours

can be computed easily. Assigning and/or inserting overlap stage latches can

be modeled as finding multiple edge cut sets. Once the locations of the stage

latches are determined, then the optimal clock period and clock sequence can

be computed considering the synchronization overhead discussed before.

-ft~~ft~ft -L -A -1 '. .. t
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2.2. Definition of the Clocking Scheme Synthesis Task for

Is Maximum Execution Overlap

As we have discussed in Chapter 1, the general digital design problem is

known to be computationally intractable. As one way of reducing complexity,

synthesis of digital systems is usually partitioned into data path synthesis

followed by control synthesis (this is true for both automated design systems

[Parker 79, Estrin 78, Zimmermann 79] and human designers). In such design

procedures, clocking scheme synthesis is constrained by both the data path

design and the control design. Clocking scheme synthesis is carried out as one

of the last tasks of control synthesis. For a given data path design and a

control hardware design, the task of clocking scheme synthesis is as follows:

* choose an optimal clock period,

* determine an optimal number and length of the clock phases, and

g * assign clocked control signals to clock phases and route to the data
path.

However, most of the important parameters determining the execution

speed of digital systems are fixed during the data path and control design.

Thus, optimality of the design can be guaranteed only if clocking scheme

synthesis is done concurrently with both the data path design and other parts

of the control design. For example, cheaper data path designs often require

.7 more elaborate clocking schemes and therefore a final solution to the data

paths cannot be chosen until the clocking cost is examined (and indeed, until

the entire cost including control is examined).

In this thesis, we shift the occurrence of clocking scheme synthesis to

somewhat earlier phases of the design procedure in order to synthesize near-

optimal digital systems. We define the task of clocking scheme synthesis as

L follows:
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The inputs are

(i) a partial data path and control design with chosen functional
modules and minimum required storage elements, 7

(ii) types of micro cycles (e.g., microinstruction formats or Node-
Module-Range bindings [Knapp 831, which specify the
direction and propagation time of data values through
functional modules during micro cycles), and

(iii)expected sequences of micro cycles to be executed.

The constraints are

(i) minimum execution speed of the micro engine,

.-- (ii) maximum number (or total bit width) of storage elements,
and

(iii) maximum number of clock phases.

The outputs produced are

(i) sssignment, insertion or deletion and interconnection of
storage elements necessary to obtain a certain execution
speed (or speed to cost ratio),

(ii) minimum and optimal (not necessarily distinct) clock periods
G ito maximize the execution speed,

(iii) the optimal number and length of clock phases, and

(iv) clock signal routing to stage latches.

V7

7 For any data path, the minimum number of storage elements is determined by the
maximum number of live values [Aho 771 at any time. In most cases of computer CPU designs,
the registers (e.g., ACC, MAR, and I/0 buffer) and the main memory which the machine

* language programmer can directly access are the minimum set of storage elements. For control
hardware, it can be either the p-PC or the microinstruction register.

--...% ,. . . .. . . . . . . . . . . . . . . . . . . . . .
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g We consider three cases of partial data path designs. The first case

includes designs which need more storage elements to be allocated and

connected in order to satisfy the machine behavior. The second case includes

designs which have already been completed and only the connections from and

M to the storage elements are partly or completely undone for the purpose of

reconfiguration of the interconnections. The third type includes completed

designs. Even for completed designs, we may need to add or delete storage

modules in order to increase performance at minimum cost or to decrease cost

at minimum sacrifice of speed.

In any case, the objective of the clocking scheme synthesis task is, while

satisfying all the design constraints and desired goals, to maximize the

execution speed of the system by optimally configuring, adding and/or deleting

storage modules and consequently determining an optimal clock period and

number of clock phases.

There is no absolute order in carrying out these tasks. The result of each

task may affect the results of one or more of the others. For example, choice of

U an optimal clock period and determination of the optimal number of clock

phases depend on the result of optimal stage partitioning. Also, the maximum

allowed number of clock phases (due to clock generator cost and/or clock

signal routing complexity) will affect both the choice of an optimal clock period

and optimal stage partitioning. For this reason, a unified technique is

strongly desired in order to examine the attributes of all the design decisions

in parallel.

I.
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2.3. The Problem Formulation

In this section, we first discuss the problem definition and modeling of

the clocking scheme synthesis task for maximum execution overlap. Next we

extract the parameters affecting the performance of the micro-level maximum-

execution-overlap scheme.

2.3.1. Specifying the functioning times of digital circuits

Timing behavior of a circuit can be represented as the sequence of

activations of hardware modules in the circuit and the timing behavior of the

individual modules. For example, the execution time of a computation through

a circuit can be analyzed by tracing and adding up the delay time of the data

and control flow through the modules which are activated during the

computation. In order to analyze the timing behavior of a circuit, we first

need to identify modules as the basic units of a hardware circuit which have

well-defined and independent timing behavior.

Deflinition 2.3.1: A logical module is a set of physical hardware

elements (e.g. resistors, transistors, gates, etc.) which can perform a certain

complete function (either operations or storage) without any resource

. contention with other functions at any time.

An adder chip or a pass gate can be considered to be a logical module. A

bidirectional bus must be considered to be a separate logical module since it

cannot be considered to be a part of any one module connected to it. A set of

r .~interconnection lines which are always used together to transfer a certain value

can also be considered to be a logical module.

Logical modules may be either physically separated or share common
physical hardware modules. A physical hardware module which can perform

more than one function at the same time can be considered to be multiple

A q -
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logical modules. A register can be considered as two logical modules, read and

write modules, if it can be read and written simultaneously without any

conflicts in using its control and data lines. However, a memory chip cannot

be read and written at the same time,8 and thus is considered to be a single

IPlogical module.

In this sense, a logical module can be considered a unit hardware resource

whose timing and functional behavior can be independently, unambiguously

defined. The delay time of a module is defined as follows, considering the race

and clock skew problems we have discussed in Section 1.4.2.

Definition 2.3.2: The module propagation delay of a module is the

maximum propagation delay for all possible pairs of an input and an output

port (i.e. critical path delay) of the module and for all possible values of input

data.

The micro cycle time or minor cycle time, which we have discussed in

Section 1.2.5, can be computed by summing up the propagation delays of the

control and data flow through the modules along the execution paths. Also,

resource contention between executions of the micro cycles can also be

represented in terms of the logical modules. From now on, the term module

* will always imply logical module, unless otherwise specified.

Using the concept of logical modules, we can model a digital circuit as a

weighted, directed graph (circuit graph), where the vertices of the graphI
represent modules and the directed edges represent all the possible pathways

for both the control and data values between the modules in the circuit. The

purpose of the circuit graph is to connect the control and data path hardware

together.

j7
~Two-port memory chips have separate read and write address and data lines and are

considered to be two logical modules.
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Definition 2.3.3: A circuit graph, G = (V,E), is a directed graph

where the set of vertices, V, represents modules, and the set of directed edges,

E, represents the pathways for data and control values between modules. A

directed edge, e(i,j), belongs to E if any output port of module i is connected to

any input port of module j. The vertices are weighted with the propagation

delays of the modules and the edges are weighted with the bitwidths of the

interconnections.

"t.'
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• " ,Figure 2.3-1: A circuit graph of a microprogrammed CPU (HP-21MX).

' " By weighting the vertices with the propagation delays of the modules, the

. , '- ", .upper bound of the propagation delays of data values ad control signals along

- '-7
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any path in the circuit can be computed. The vertices for interconnection lines

with non-negligible propagation delays must be added. The bit'widths of the

data and control flow can be computed easily using the edge weights. In the

case of a partially designed system, the necessary interconnections for the flow

of control and data values specified in the data flow graph and control graph

might be missing. Figure 2.3-1 shows an example of a circuit graph without the

vertex and edge weights.

2.3.2. Modeling sequencing behavior of micro cycles

For the analysis of the sequencing and timing behavior of the micro

cycles, we introduce two directed graphs, the micro-cycle graph and the

chain of minor cycles. They are based on the circuit graph and model the

pattern of resource usage and timing of the micro cycles.

2.3.2.1. The micro-cycle graph

In order to model the pattern of resource usage and the execution time of

the micro cycles, we construct edge-weighted, vertex-weighted, acyclic

digraphs, called micro-cycle graphs. The micro-cycle graphs are subgraphs of

* the circuit graph.

Definition 2.3.4: For a given circuit graph, 9(VI), the micro-cycle

graph for a set of one or more micro cycles, G(V,E), is a rooted subgraph of 9
with no directed cycles. The set of vertices, V C V, and the set of directed

edges, E C C, represent only the modules and interconnections activated by

and necessary to the execution of the micro cycles in the set.9 The vertices

and edges are weighted in the same way as in the circuit graphs.

9Read modules whose outputs are always enabled and write modules which are not written
during the execution of the micro tasks in the set are not included, although the values
contained in them may be needed by the micro cycles.
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The micro-cycle graphs are rooted by common root(s), which represent

the common starting point of every micro cycle. In general, for any
synchronous sequential circuit or finite state machine [Friedman 75], there

.-. must be memory and/or delay elements in order to prevent state-change races

and/or to control the time intervals between state changes. Among the

memory or delay elements, we choose a subset of them as the starting point of

every cycle. For a microprogrammed micro engine, the starting point can be

either the p-PC or the microinstruction register. For a hardwired sequencer,

the starting point can be either the state counter or feedback memory.

Any branch micro cycle (e.g. JMP or SKIP) must be separated from non-

branch micro cycles since it changes the control flow after it is completed and

delays initiation of the next micro cycle until its completion.

In the case of complex digital systems, there can be more than one type

of micro cycle. For example, for a microprogrammed CPU, there can be as

many micro-cycle graphs as the number of microinstruction formats. However,

more than one type of micro cycles can be represented by a single micro-cycle

graph as long as the resulting micro-cycle graph has no internal cycles.

Figure 2.3-2 shows two micro-cycle graphs derived from the circuit graph

of Figure 2.3-1. Both are rooted at the u-PC. Figure 2.3-2-(a) is the micro-

cycle graph for non-branch type microinstructions. The execution sequence of

this type of microinstruction isr: 1. increment the PC (vl),

2. fetch the micro cycle pointed to by the PC (v2),

3. decode the control fields of the fetched micro cycles: opcode (v12),
operand register address (v3), ALU function code (v4), rotate/shift
function code (v5), and result register address (v6),

'K 4. fetch operand from the selected register (v7),

MNt
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An example of tbe execution sequence of a branch micro cycle

corresponding to the micro-cycle graph of Figure 2.3-2-(b) is a-, r-dlows:H 1. increment the PC (vi),

2. fetch the branch micro cycle pointed to by the PC (v2),

3. decode the control fields of the fetched micro cycle: opcode (v12),
* condition select (v3), branch address modification (v4), and branch

type (v5),

4. select a test condition and select the full jump address (v6), and

5. load the PC with the jump address and, at the same time, if it is a
CALL to a subroutine, save the current PC contents in the stack
(v7).

The micro-cycle graph shows the sequence of activation of the modules

during a micro cycle. The micro-cycle graphs can be used to determine the

locations for the stage latches which either have to be added or already exist.

The locations and connections of the stage latches determine the interstage

propagation delays between the stage latches. Also, by weighting the edges

- - with the bitwidths of the corresponding interconnection lines, the bitwidths of

the added stage latches can be computed.

2.3.2.2. The chain of minor cycles

Once the locations and connections for the stage latches are determined,

the interstage propagation delays are also determined and thus the minimum

requirements of clocking and timing for the micro cycles are determined. These

basic timing requirements are modeled by one or more line graphs more

* * precisely, chains (chains of minor cycles) - which show the minimum required

execution time of minor cycles as well as the minimum required clock period.

Figure 2.3-3 shows examples of the chains of minor cycles derived from

the results of stage partitioning of the micro-cycle graphs of Figure 2.3-2. The
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ri.

Di's are the stage propagation delays.

(a)Non-branch micro cycles (b)Branch micro cycles

Figure V.8-3: The chains of minor cycles derived
'.Z from the results of stage partitioning.

. locations of the stage latches are indicated by the edge-cut lines in the micro-
*cycle graphs. In case (a), the stage latches are the p-PC, the latches next to the

- control store (v2) and the opcode decoder (v12), and the register bank (vl0)

* 2 (refer to Figure 2.3-2).

J,-. The chain of minor cycles shown in Figure 2.3-3-(a) shows that each non-

branch micro cycle consists of three minor cycles and needs three clock ticks to

"" complete. The minimum time intervals between clock ticks, DI and D2, are

4'.- determined by the critical path delays between the stage latches. For example,

"0 % DI is equal to the delay time through the modules, vl, v2, and v12, plus the

-: delay time of the stage latches. We will discuss the detailed clocking and
J timing requirements of minor cycles in Section 2.3.3.

4V

2,. ", At the end of the chain, D3 must be added in order to consider the

?',?

... ;completion time of all the effects of an execution of a micro cycle, although it

iI is not explicitly specified in the micro-cycle graph. It is necessary to analyze
S V *S
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the effect (data dependency, resource contention, etc.) of a micro cycle on its

successor. For example, if the next micro cycle reads the result of the current

micro cycle which will be stored in the third stage latch (e.g., v10 of micro-

cycle graph (a) or v7 of micro-cycle graph (b) in Figure 2.3-2), then the next

micro cycle can only read the correct value after the buffer has been clocked

and the stored values propagated to its outputs.

The chain of minor cycles can be used to determine a major clock period

and the number and lengths (phase lag) of the clock phases which clock the

stage latches* and execute the minor cycles. Resource conflicts between the

minor cycles can also be represented by attaching the module names used by

* the minor cycles to corresponding edges of the chain.

2.3.3. The minimum possible length of a clock phase

In any design, minimizing the time interval between the clocking of any

two storage elements is desired in order to increase the speed of the circuit.

However, the time interval between clock pulses must be long enough so the

logic in between any two storage elements can read inputs, complete execution,

and latch results.

The execution time of the logic in between any two latches can be

* -'~computed by computing the length of the critical path between the latches.

We define the necessary clock timing for each case of three most widely used

types of latches.

W Let us first define several timing variables for the clarity of discussion.

Tmin The critical path delay of the logic between a pair of stage
latches. This is the minimum required amount of time for a
stage of combinational logic to complete processing input
and produce all the outputs.



.C:" 48

Tstage The actual amount of time available for a stage to complete

processing and produce all the outputs. Tstage must be

longer than Tmin .

W The width of the clock pulse.

Dss Storage set-up time for edge-triggered type latches [Hafer
831. Inputs to edge-triggered latches must be available
earlier than the clock tick by Dss.

Dsp Storage propagion time. For level-sensitive latches, the clock
pulse width must be longer than Dsp and the input must
remain stable until the clock becomes inactive in order to
latch the input safely. For edge-triggered latches, the new
output is available Dsp units of time after the clock tick.

T The time interval between clocking the input latch and theoutput latch of a stage.

Figure 2.3-4 illustrates clock timing when level-sensitive latches with

active-high clock inputs are used. The latches start propagating inputs to the

outputs whenever the clock goes high. If and only if the clock pulse is longer

than the propagation delay of the latches, the latches hold values on their

outputs the same as the inputs when the clock goes low. Therefore, the clock

pulse width, W, must be longer than the latch propagation delay, Dsp, and Tcy
must be longer than Tmin + Dsp. Thus,

Ty> Tmi + Dsp (2.3.1)

Figure 2.3-5 shows clock timing with edge-triggered latches. For edge-

triggered latches, inputs must be available Dss before clock tick, and new

outputs are available Dsp after the clock tick. Therefore,

Toy 2 Tmin + Dss + Dsp (2.3.2)

L Figure 2.3-6 illustrates clock timing with master-slave latches. Master-

.,,+. ....-., ....- ~~~~~~~~~~~~~~...... . , ... . ..... ,_.-...-........++.........+... . .. .. . .. :: ....... :::::::
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A11 Level-sensitive
Latches

L.ogi

,:L Tstag e

Figure 2.3-4: Clock timing for level-sensitive latches.

Edge-triggered

Clock
Dss

... Tstag e

-.-. " . tcy

Figure 2.-5: Clock timing for edge-triggered latches.

slave latches accept input into the master stage while the clock is active and

start propagating the input to the output when clock goes inactive. Let

Dsp(slave) be the propagation delay through the slave stage. Then, assuming

that the clock pulse width is longer than the propagation delay of the master

stage,

A} . . . -.. . . . :.----: - '-','-','-' : , -,.x,: -,< -.- :"2 " .::/ - .: .:,:: -
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TC > Tmax + W + Dsp(slave) (2.3.3)

Master-sl ave

ClockStg

Figure 2.3-6: Clock timing for master-slave latches.

2.3.4. A static clocking assumption

In the worst case, we may have as many distinct chains of minor cycles

as the number of micro-cycle graphs. For an optimal design, this situation may

require as many distinct clocking sequences with different clock periods and

different numbers and lengths of clock phases. Especially in the cases where

execution overlap is extensively used, all the different clocking sequences may

have to be overlapped and thus as many separate clock generators are

required. A complex initiation and termination control mechanism for the clock

sequences is required in order to prevent conflicts in the usage of both the

hardware resources and the data values between micro cycles using different

clocking sequences.

In actual designs, this is not realistic and seldom happens because of the

cost and control complexity of the clock generator(s) and clock signal gating

io and routing. For this reason, a static clocking scheme -a fixed clocking
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sequence with a fixed number and lengths of clock phases - is usually used in

actual designs. In this thesis, we will focus on synthesizing an optimal static

clocking scheme for all micro-cycle graphs.

2.3.5. Sequencing behavior of overlapped micro cycles

In this section, we analyze the sequencing behavior of the overlapped

micro cycles according to their timing, pattern of resource usage, and

interactions (data dependencies and resource conflicts) between them.

The maximum Initiation rate of micro cycles is defined as the

maximum possible number of initiations of micro cycles during some unit time

0 period when there are neither branch micro cycles nor resource/data conflicts
between micro cycles.

Figure 2.3-7 shows examples of micro cycle sequencing with different 1
sequences of clock phases. We assume a static clocking sequence. (a) does not

use any overlap, hence there is only one stage latch and one stage. The micro

cycle times of (b) through (d) are longer than that of (a) due to the
propagation delays of the stage latches. In any case, the maximum initiation

rate of the micro cycles is the same as the clock rate, tc,* The clock period

must be longer than the longest interstage propagation delay in order to ensure

that no two micro cycles occupy the same stage at the same time. Figure

2.3-7-(b) uses the shortest clock period possible, which is 2.

A branch micro cycle changes the normal sequential execution sequence

and thus delays the fetch of the next micro cycle until the earliest fetch clock

cycle after the completion of the branch. Due to this branch time overhead

the shortest clock period does not guarantee the fastest overall initiation rate.
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I I

(a) NoOverlap. ,=4. 0 2 4 6 8 10 1213

(c) !k branch. t =2.

-" . .. i..i .. ....... ... ... : : .... ...... . ..

: 8. . ...

li~z .. . .. .. f .

0+. 0 24 7.5 12.5

(b) Maximum Overlap. ty=2. (d) It branch. =2.5.

Figure 2.3-7: Examples of micro cycle sequencing and clocking.
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Definition 2.3.5: Any event that delays initiation of a new micro cycle

is called resynchronization. The time delay or overhead due to a

resynchronization is called resynchronization overhead.

Even increasing the clock period may result in a faster ezecution if it

can reduce the resynchronization overhead. As shown in Figure 2.3-7, the

total execution time of (d) is shorter than that of (c) in executing Ik-i through

Ik+1 since, in (c), the instruction can only be initiated every 2 time units,

delaying 'k+l* Thus, the overall initiation rate will also depend on the

frequency of the branch micro cycles. Therefore, determination of the optimal

clock period should consider the resynchronization overhead due to branches.

Resource and data contention between micro cycles are other

causes for delaying initiation of new micro cycles. If there is either data or

resource contention between any two micro cycles, fetching the later micro

cycle must be delayed until its initiation does not cause any contention with its

predecessor. The delay time is dependent on both the clock period and the

pattern of data and/or resource contention between the micro cycles. These
cases are shown in Figure 2.3-8. In case (a), if I k+ is initiated as the dotted

* cycle (lj+j), then there will be a resource conflict or data dependency violation

between the minor cycles using resources R and R23 . Case (b) does not have

any resynchronization overhead. This shows that the resynchronization

overhead can be reduced by choosing a proper clock period.

The time required for resynchronization may depends on the length of

the clock phase even if the same clock period is used. Increasing the

intervals between the clock phases may reduce the number of distinct clock

phases without increasing the clock period. Figure 2.3-9-(b) shows a clocking

sequence which is exactly the same as the chain of minor cycles, which requires

four distinct clock phases. Figure 2.3-9-(c) has only two distinct clock phases

1 ~.".'.-. .. € -,...-...........,, ,,,... ,,, -,. .;- " ,,. '
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(a)tcym3. R14flR23y (b) tcy 4. R14nR23-!*

Resynch. Overhead - 3 No Resynch. Overhead

Figure 2.3-8: Resynchronization overhead due to data/resource contention.

1 with the same initiation rate as (b) regardless of the resynchronization

overhead. However, in (d), the branching overhead is longer than that of (b)

or (c) by one clock period (4 time units) and thus the overall initiation rate is

*i lower. Although there might be some difficulties in gating and routing a single

phase clock to multiple stage latches selectively, reducing the number of clock

phases may reduce the physical routing problem significantly.

I L
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2.4. Synthesis of Clocking Schemes for Maximum Execution

Overlap

This section contains discussion and theoritical results of clocking scheme

synthesis for maximum execution overlap.

We analyze optimal stage assignment and choice of an optimal clock
period. Also, determination of an optimal number of clock phases and their

length is also analyzed. These analy ,es are carried out under two different

goals: (i) to find an absolute optimal solution and (ii) to find an optimal

solution with respect to certain constraints. Simple and efficient algorithms to

determine optimal positions of the stage latches and optimal number of clock

phases are developed in Chapter 3. We believe that we can easily extend these
results to analyze data path cycle with loops and, furthermore, to analyze more

general cases of system timing styles.

2.4.1. Definition of variables 0

L The i-th stage latch of the micro-cycle graph, which is
clocked by the i-th clock phase.

Ci  The control/data path stage in between Li and Li+ .

di  The minimum possible stage time for the i-th stage, Ci (The

minimum possible Tstage defined in Section 2.3.3).

dma max{d1 , d2, ... , din} where m is the number of stages. 11

ds ds = d + d2 + ... + dm

OThe reader is urged to skip this section and refer back to it while reading this chapter.KI 11m is the number of stages of the micro-cycle graph with the largest number of stages. We
call such a system an mr-sta system.

. .. . . . . . . .. .. ... ... . ..- -. ,..- ..-.... ...... -,., . . . ,, , .. , .,, ,
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A micro cycle as an instance of an execution of a micro task
(e.g., an execution of a microinstruction).

'j Clock phase i. Used to latch Li.

j(k) Time when clock phase j latches L. to execute a micro cycle

D. The actual stage time assigned to the i-th stage.

Di - = ,i~lj) - i(j) ! di, 1 i<m.

Dmax max{D 1, D2 ,..., Dm}

Ds Di + D2 + ... + Dm

ty Clock period. t > D

2.4.2. Execution speed analysis

Determination of the Minimum Clock Period

The minimum clock period for a multiple stage system is determined by

the interstage propagation delays. In order to ensure correct sequencing of

micro cycles, the minimum clock period should be longer than the longest

interstage propagation delay [Cotten 65, Ramamoorthy 77, Chen 75].

Lemma 2.4.1: For an m-stage system, A, with the minimum possible

stage times (d,, d2, din), the minimum possible clock period must be longer

than max{di}, or min(tey) - dmax . (Refer to Figures 2.3-7, 2.3-8, and 2.3-9.)

Proof : The clock period must be long enough so that (i) each stage can

have enough time to execute a given subtask and (ii) there is no collision

between micro cycles at any stage at any time.

-;.
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From the definition of Oi(j), O(j+l) -l(j) + ty, V i,j, <i < m

Thus, oi(J+l) = + ty > i(j) + di, V ij, 1 < i < m

Therefore, toy z- di, V i, I < i < M (1)

Also, m() + toy > Om(j) + d,.

Therefore, toy > dm (2)

From (1) and (2), toy di, V i, 1 < i < m. Therefore min(tcy) - dmax .

o0

Execution Time of a Sequence of Micro Cycles

For a sequence of micro cycles, the execution time is defined as the time

from the fetch clock phase for the first micro cycle in the sequence to the

earliest fetch clock phase after the completion of the last micro cycle in the

sequence. For an execution sequence of n micro cycles, if there are no branch

micro cycles and there is no other resynchronization overhead, then the

execution time, T, is computed as the sum of the following:

A - (n-l).tCY for the first (n-1) micro cycles which are initiated every tcy

period.

B -- Itcy, which is the execution time of the last micro cyEle.

I Cyl -. .: :T -- A + B - -( n - 1 + ) t o y( 2 .4 .1 )

K •

L....

L- - - .-. - .-.- , + . -'-',. .-.. ,""",,", "€ """""". .. +," " 'P.,.+"_' . " .".+ " - -. '" . "+,' -,,'•.'".-,-. '" " . ,.", " -



Delay Due To Branchinc

Any branch cycle delays the fetch of the next micro cycle until the first

fetch micro cycle after its completion. The difference between the fetch time of

the next micro cycle after a branch cycle and after a non-branch cycle is

defined as branching overhead.

Lemma 2.4.2: Let M be an m-stage machine with a multiphase

clocking scheme (DI, D2, ... , Dm) and a clock period tcy. For two execution

sequences, S1 and $2, let S2 be the same as S, with some non-branch cycle, 1,I 1

<5 j < n, replaced with a branch cycle, I. The execution time of S2 is longer

than that of S 1 by
'S tc' [ D S -1l)

Proof: (Refer to the figure below.) The only execution interval affected

by the replacement is between 0,(j) and ol(j+I), i.e., 01(j+1) is to be delayed.

Let Ti and T2 be #l(j+l)'s before and after the replacement, respectively.

Then,

Ti - 1(J) + tcy (1)

: Since 1! is a branch, T2 > m(J) + Dm = 01(j) + DS (2)

From (2), we get: T2 = +l[J) + I-Ts  ]-
Therefore, (branching overhead) T2 - TI s -1

0

8 .I-.

,. . . . . . . .. . . . . . . . . . ..--.- ~.-.-. - ., -. *
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j< .--------- Ds -------- >1

12': I------- I ------- I --- I
(when II is not a branch)

12: I------ I -------- I -I
(when 11 is a branch)

I'--tcy-->I.. 2 tcy ---- >1 I I

If there are n b branch micro cycles, then the total branching overhead is

nb DS (2.4.2) J

Thus, the difference ;n execution times for two sequences of micro cycles

is a function of the cycle time and the total interstage times. In actual

systems, there may be several types of branch micro cycles with different

execution times (no more than 4 types in most cases of micro-sequencers).

Typical types of branch micro cycles which may have different execution times

are conditional branch, unconditional branch, decode branch and sense and

skip. In such cases, we can compute the branching overhead for each type of

branch micro cycle. For example, let Dsi be the execution time span of type-i

branch micro cycles over the sequencing chain. Then the branching overhead

of type-i branch micro cycles is ( -1I
Itcy1 y

In fact, any other type of resynchronization overhead can be computed

by replacing Ds with the corresponding time overhead. For this reason, we will

focus on analyzing the effect of branches on the execution time of micro cycles.

All the following analyses can be directly applied to execution sequences with

any type of resynchronization.

Execution Time of an Execution Sequence with Branches

The execution time of an execution sequence of n micro cycles with nb

% %

\L P ~
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branch micro cycles can be calculated as the sum of the execution time of n

non-branch executions and the branching overhead for nb branches.

Theorem 2.4.3: On an m-stage system A with a multiphase clocking

scheme (D1, D, ... , Dm) and clock period tcy , the total execution time of a

sequence of n micro tasks where nb of them require resynchronization is

T=( (n-nb-I ) + t + )

Proof :

1. Every non-branch micro cycle except the last one is fetched and
executed at the clock rate, ty.

O 2. The last micro cycle execution takes r ty

3. By 1 and 2, an execution sequence of length n with all non-branch

executions is executed in time {[tyL + (n-i) }-tCY (1)

4. By Lemma 2.4.2, the time overhead caused by replacing n b non-

branch executions with branch executions is nb.{[ - i}-ty (2)

5. Replacing the last micro cycle, I., with a branch micro cycle does

not change the execution time, since there is no overlapped
execution afterwards anyway.

Therefore, the execution time - (1) + (2), or

.-. .(nbDr +(n1) } +n"-

rD
=((n-nb-) + .(n +1

-".-.': Theorem 2.4.3 shows the relationship between the execution speed, the
ni,. ",.h
number of branches, the clock period and the length of the clock phases.

.,J.-

.- . .
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Modification for Micro Tasks with Different Execution Times

As mentioned before, the system may have several types of branch micro

cycles with different execution time spans. Suppose that there are j different

types of branch micro cycles. Let nbi, I < i < j, be the number of type

branch micro cycles with execution time span D5 out of ntotal branch micro

cycles. Then, we can replace Equation (2.4.2) with

[ E1
-tE nb:{.il - 1 }.f (2.4.3)

i=1 'I'cyI

Also non-branch micro cycles may have different execution time spans.

Assuming that we know the execution time span of each type of micro cycle

and the execution sequence of micro cycles, we can also generalize Equation

(2.4.1). In order to generalize Equation (2.4.1), we only need to consider cases

where the execution of Ip, for some 1, 1 < n, completes later than I.. Since any

branch micro cycle, Ii, 1 < i < n, must complete execution before Ii., starts,

we can exclude branch micro cycles from this special case computation.

Therefore we only need to consider such I I's that there is no branch micro cycle

in between 1I- and I.. Then we can replace Equation (2.4.1) with

(n.1).t +max ll (n-I) ).t" (2.4.4)
Cy cy

where 1 < I < n, and there is no branch micro cycle in between I,_, and

Using Equations (2.4.3) and (2.4.4), we can fully generalize all the

previous analyses to dynamic clocking analysis, where the micro cycles may

have different execution time spans. However, as we can see by Equations

(2.4.3) and (2.4.4), dynamic clocking analysis can simply be considered to be a

general case of static clocking analysis. Exactly the same approach and

L methods can be used for both analyses by simply adjusting several variables

b7
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and/or constants as is done in Equations (2.4.3) and (2.4.4). For this reason, we

will focus on static clocking analysis.

2.4.3. Maximum execution speed analysis

1. the stage propagation delay di's,

2. the clock period toy ,

3. the clocking scheme (Di's), and

4. the given execution sequence, S.

In this section, we analyze the effects of each of these execution speed

parameters.

Determination of an Optimal Clock Period

The following lemma shows that a clock cycle which is an integer

dividend of the execution span, D., results in a local optimal execution speed.

Lemma 2.4.4: Let M be an m-stage digital system with a clocking

scheme (D1 , D Dm). On M, Let Tt(x) be the execution time of a sequence

of n micro cycles with a clock period x. For any execution sequence,

Ds Dr DS
TT) T(-') for any integer k, I- >k>l, and real k', O k'<k.

Proof: Let nb be the number of branch micro cycles out of a total of n

micro cycles to be executed. By Theorem 2.4.3,

-( D)s- ( S Ds Ds +l).{rk'l 'D
T(nnb'I)(Y T') + (nb -El (1)

By evaluating the range of each component in (1), we get:
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.nb (n-1) and n- l-nb  0

2 . nb ! 0, nb+ 1 > 1

Ds Ds
3.0< k' <k, -VT .>0

4. [k']/k' > 1, rk'1. - Ds > 0

Ds D
By Equation (1) and from 1 to 4, Tt(-v Tt( > 0.

Therefore, Tt( ,) _Tt(-) .

0

Lemma 2.4.4 shows that a clock cycle which is an integer dividend of the

execution span of a micro cycle, Ds, always results in equal or shorter

execution lime than any other clock cycle that is longer. Now we shall show

that execution time is a discontinuous function of the clock cycle if there is

any resynchronization overhead. We show this by examining the execution

time with branches with a clock cycle which is just a little bit shorter than

some integer dividend of Ds.

.'-Lemma 2.4.5: Let M be an m-stage digital system with a clocking

scheme (D,, D2, ... , Din). On M, Let T(x) be the execution time of a sequence

of n micro cycles with a clock period x. For any execution sequence with nb >

0 branches,

lim T(F-e)> Tt(-) for any integer k, DS] > k > 1, and real e.

Proof: Let nb be the number of branch micro cycles out of total n micro

cycles to be executed. By Theorem 2.4.3,
T D DS

"n"(e- u(n-nb-1) + rk+e.(nb + and

. .L ..... b. +... ... ..



65

Ds  DS
(F) = {(n'bn1 ) + k'(nb + I)."S"(2)

Fo (),rn Ds D__(3

From (1), lim T- 2 {(n-nb1) + (k+l).(nbe-- ;) -- b03

By subtracting (2) from (3), we get

DS D D D
lim Tt(F--) - T(--) {(k+l) - k}.(nb + 1).kTS (nb + l).-k- > 0.

e-0
DS DS

Therefore, lim Ds D

With Lemmas 2.4.4 and 2.4.5, we can see that the execution time

function in terms of the clock period is not linear and reducing the clock period

does not always reduce the execution time. However, we can determine an

optimal clock period of an m-stage system with a fixed clocking scheme with i
the following lemma:

Lemma 2.4.6: Let .M be an m-stage digital system with a clocking

scheme (D1, D2, ... , Dm). Let Tt(x) be the execution time of a sequence of n

micro cycles with a clock period x. On M, for any execution sequence,

min(Tt) = min{7t(Dm ax), Tt(5) },where p-= [.
U max'1•.D S  <D S

Ds

Accordingly we can partition the range of t into Dmax  toy < ; and

Q ty > --"" Then,

12Due to the discontinuity of the ceiling function, even when ab is zero, Equations (1) and
(2) are not equal.

't' S

%i
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)ID D D ''

(i) By Lemma 2..,min{7,(t,) ty >D s = TS)

(ii) LS< D < s
P ax P-i'

From Theorem 2.4.3,

(- nb -1)-t~~+P~ where DsD

Ii(1) is a linearly increasing function with the slope (n nb - 1)+ (D b +

7I)p>O0.

Ds
Thus, min{7't(tcy) D D x: tcy < }- a,)'

Therefore, according to (i) and (ii),

iimin(7t) =min{Tt(Dmax), 7T(S)}where p UIl

-Using Lemma 2.4.6, we can determine an optimal clock period by

evaluating the execution time of the given execution sequence(s) for only two

clock periods. In practice, execution sequences may be nondeterministic due to

nondeterministic conditional branches (e.g., conditional branches on some

external conditions and exception handling). However, if we can obtain

statistics regarding the average length and composition of the execution

sequence(s), then using Lemma 2.4.6, we can easily estimate an optimal clock

period.
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Theorem 2.4.7: Let .M be an rn-stage digital system with a clocking
- - scheme (D,, D2, . Dm). On -M, for any execution sequence,

Min(7T) = 7(D) if (nb + )(Dm, 1 ) < (n-nb1.L

D
Tt(D) Tt( if (n b + 1).(Dm~-1 (n-nb1.

Tt-)if (nb + 1).(D > (n-nV--L~
Itma-P-

wherep= DS- and I=DS- p- )D

Proof: We prove the theorem by comparing Tt(Dmax) and TLS.From
0-

Theorem 2.4.3, we know that:

T(Da) = (n-nb.1).Dmax + (nb + I)-p-Dm and

D(n-nb- D.S + (nb + .

=(n-nb71).(Dmax + -)+ (nb + ){p-)D + 1

Thus, 7,(Dmax) - Tt( ') (n-nb1. n + 1).(Dma 1 1

Therefore, from ()

1. if (nb + 1).(Dqr 1) < (n-n -1).~ then T(Dmajc) - J()

D
and therefore, T(Dmx<

2. if (n b + 1).(D -1) =(n-nb-i).(I/(p - 1)), then Tt(D) - __

tP-1
3. if otherwise, Tt(Dmajx) (FI).
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Lemma 2.4.6 and Theorem 2.4.7 show that the shortest possible clock
period, Dmax may not be optimal. Next, we will prove that any clocking

scheme other than the original interstage propagation delays with D >
dm (accordingly Ds > ds) will always result in slower execution speed for the
same execution sequence of micro cycles.

Execution

Time
(jAMC.) 3120

3000

2000 1920
1520

'" ~15601.
-°"-, Ds=-24 Wsec.)

1000 =8 - ,00

nb=-29(branches)

0 6 8 12 24 30

Clock Cycle (pec.)

Figure 2.4-1: Execution time vs. clock period.

Figure 2.4-1 shows an example of the relationship between the execution
time of an execution sequence and the chosen clock period. As shown in Figure
2.4-1, if there is branch micro cycle in the execution sequence, then execution
time T is a discontinuous function of the clock period toy. The slope of each

straight-line is determined by the number of branches (nb). If there is no
branch cycle in the execution sequence, then T becomes a straight line, as
shown with a broken line.

."I
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Theorem 2.4.8: For an rn-stage system, M, with interstage
propagation delays (d1, d2  ., dm), let *Pd = (dl, d,.. d,)(aeath

rz original minimum possible stage times) and *D= (DI, D2, . D.) where D.

>di, I1<i <m, be two different clocking schemes. Also let T~ and be

the execution times of a sequence of micro cycles with clocking sequences *D

and *1~d, respectively.

If D max > dmax (then also Ds > ds), then min(T D)> min

Proof:.By Theorem 2.4.3 and Lemma 2.4.4, we know that

D~c (n-nb-1).tc + (I i).F-tY? tc > Dma 1

(n b~ (t cy ("b+) S cy' cy -max (2)

7 t ax]nm D7 ) = *D )whr [DsmnT min{T(Dax), t -eDB4  p - (3)

d rdld) Td~d Td(TI)S()min(7) min{7 tda) S ~ where q=(4)

Then, from (1) and (3),

*~D(Dmax) = n- (Dft .Dmax + (nb+I*D1Da
T nnbl)Da +(b + 1) S D ma

T~d(Dma[Um(x

. (n-n6.).Dma + (ab + ). S ma

P.~~~ b. )D

1).D + (n- d5- D,.

ft... +~.
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"" ' d"d ds

CASE 1: If T (d1 ax)< Tt ( S-) then, obviously from (5) and (6) and

by Lemma 6, t (Dm a) T ; -1

-DT Tan(Dd
From (5), T Dax t mDnax' t'mx n

t; IP D 1P.d S

fro m (6 ), T D ( ) > ar d( ) > TD L(d m )

Thus, min(7rD) > min(V')

CASE 2: If ax)  >_ TT d(--), then from (1) and (2),

dS rD5  ] dd
.." tD(= (n-nb-l 1+ (nb + T-

ds ds

> (n-nb,-l!q-- + (nb + q-1

(n-nb-1).- + (nb + 1).dS

-id ds
> .W

min( t d) is always true.Therefore, if Dmax > d x, min(Tt ) a> tru

" Theorem 2.4.8 shows that, even if the optimal clock period resulting in

.'. the fastest execution speed is chosen to be longer than the longest interstage

propagation delay, increasing the longest stage time (Dmax) will always result

in a slower maximum execution speed. In other words, in Figure 2.4-1, if the

longest stage time is increased, then the length of the clocking sequence (Ds) is

_ .also increased and the execution time curves are shifted upward and to the

right.

4.

,, - '. " .-.. .'...,.- ... .,' .;.,,f',,..¢. , ,.'.....-.,'..' ,'.-..,.-.... .,.. . . . . ..... ... .... .. ,... . . .,,.,.. ...-.. . ... .-.. ..- ,-.. .,.. . . .'. .
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Chapter 3

Synthesis of
Maximum Execution Overlap Designs

3. 1. Introduction

* As we discussed in the previous chapter, if the average execution

sequence of micro cycles is known, the performance of the maximum execution

overlap scheme is determined by the clocking scheme used. However, the

V optimality of the clocking scheme is a function of the stage partitioning since

the stage delays determine the minimum requirements of the clocking scheme.

In order to choose an optimal number of stages and to determine whether to

A use a multistage scheme or not, we need the following:

* 1. a method to partition the rystem into a certain number, k, of stages
which maximizes execution speed,

ii2. a method for performance comparison of a k-stage scheme to a j-
stage scheme, j =#k, with given system specifications and statistics
regarding the execution sequence(s), andIs;3. a technique for cost analysis (including speed/cost tradeoff) of a
multistage system compared to a single stage system.

We first discuss optimal stage partitioning algorithms. Then, we discuss

performance comparison of different stage partitioning results. As an

microprogrammed CPU is given. Finally, we consider an extension of the

technique to more general designs, which is demonstrated with a systolic array

example. All the algorithms we discuss in this chapter have been programmed

in Franz LISP and run on the VAX/750 under Berkeley UNIX 4.2.
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3.2. Optimal Stage Partitioning

The optimal stage partitioning problem consists of three subproblems:

1. Given the maximum stage time limit (or a fixed clock cycle),
partition every micro-cycle graph into a minimum number of stages
so as to maximize performance and minimize latch cost.

2. Given the number of stages, k, partition the system into an optimal
k-stage system to maximize execution speed (i.e., partition every
micro-cycle graph in such a way that the number of stages is k
while minimizing the longest stage time).

3. Determine the optimal number of stages, k, which maximizes the
execution speed.

The third problem is a superset of the second problem, which in turn is a

superset of the first. In order to partition the system into exactly k stages while

minimizing the longest stage time, we need to partition the system with a

number of different stage times and choose the best partition. After

determining an optimal partitioning of the system for all possible cases of k, we,?.

need to compare the performance of a single stage scheme to a multistage

scheme for certain k's. For this reason, we need efficient algorithms which can

determine the optimal stage partitioning of a given design, given either the

maximum stage time limit or the desired number of stages. In this section, we
-. develop two optimal stage partitioning algorithms which run in polynomial

time to the number of nodes in the input micro-cycle graphs.

3.2.1. Stage partitioning with a fixed stage time

The following procedure, KPART, partitions one or more micro-cycle

graphs into the minimum number of partitions, k, necessary when the

maximum stage time is limited to Lm,. (subproblem I above). Time delays
due to the stage latches are also considered. Let 8max be the longest module

l propagation delay. If Lmax 6max + Dss + Dsp (absolute minimum possible
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o stage time), then k found by KPART is the minimum Dumber of partitions to

minimize the length of the longest partition of a given system.

The procedure, KPART, partitions each input micro-cycle graph into

r7stages in such a way that, in every stage, no more nodes can be added without
exceeding the maximum stage time limit while the data precedence of the

original micro-cycle graphs is preserved. The procedure also determines the

Locand sr' moves ar on n[akr8]

l gorithe stage latches such that the data-flow from stage only

to its successor stage. The algorithm also computes the minimum possible

clock period after the stage partitioning.

We first outline the algorithm, KPART, and then explain some

, important steps with an example shown in Figure 3.2-1. A more detailed

description of this algorithm is in Appendix A together with the analysis of

run-time complexity, which is O(sEt) where IEI is the total number of edges in
the input micro-cycle graphs. The source code of an implementation in Franz

LISP and a user's guide are found in [Parker 84.

::i:} "Algorithm: KPART (sta~etime-limit)

" Variable

SF: Searching Fronts. The far-end nodes of the current
.- : partition.

: : ,NSF: Next Searching Fronts. The nodes to be the next SF.

'::' "NH: Next Heads. The starting SF for the next partition.

:.?. partition(i): The set of nodes in i-th partition

~cutset(i): The set of edges for the output latches of the
.. "': :i-tb partition (the (i+1)-th stage latch).

i k:' ~ ~~d(i): The tPropagatinon delay through the critical path of

" , .': . .. the';- . > 2 _- ''" , i" ,, - t partition. " ' " .. - ." - "'. "" - - '- """"" " - " " ""
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BEGIN {*kpart*}

1. Set k (partition index) = 1;

2. Get all the root nodes 13 and put in SF;

3. Add all the nodes in SF to partition(k);

4. FOR every node, i, in SF DO

FOR every child, j, of i DO

IF (every parent of j is in partition(x) for
some x, x < k, i.e. all its inputs are ready)

THEN
SIF (including j does not violate

0 the maximum stage time limit)
THEN put j in NSF;
ELSE put j in NH;

5. IF not (empty NSF)
THEN move all the nodes in NSF to SF and go to 3;

ELSE compute d(k) for partition(k);
go to 6;

6. IF not (empty NH)
THEN

a. get every edge connecting a node in an already
existing partition and a node which is not

b.in any partition yet, and put it in cutset(i);
b. move all the nodes in NH to SF;
c. k := k + 1;
d. go to 3;

ELSE get all the output edges for the output
latch locations (the last stage latches);
compute d(k);
STOP;

END {*kpart*}

13 Nodes with no parents.

-..

",1



77
partition is L . In order to have a smaller k, at least the length of one of the

* max
partitions must be increased and the boundaries be changed. Thus, at least

one pair of v(i) and u(i+l) will be in the same partition, say P(i) (either P(i) or

.-' P(i+l)). Then,
1. If we move u(i+l) into P(i), then u(i) must not remain in P(i) in

order not to increase the maximum length of the partition, Lmax*
J- Also, for the same reason, u(i) cannot be absorbed into P(i-I)

without partitioning P(i-1).

2. Also, for the same reason, going the opposite direction, P(i) can
only contain, at most, up to interval v(i+l).

Thus the number of stages remains, at least, the same. By repeating the

adjustment according to the rules 1 and 2 until u(1) and v(k) are reached, we

can see that the number of partitions cannot be decreased. Therefore, k is

minimal.
o0

3.2.2. Stage partitioning with a fixed number of stages

Given a desired number of stages, K, we need to minimize the longest

stage time, Lm ax The following algorithm, OPART, first calls a procedure

which enumerates the possible stage times of given micro-cycle graphs. It uses
a .ergesorl procedure to choose and sort all the distinct possible stage ti:nes.

The stage partitioning algorithm, KPART, which we have discussed in the

. previous section, is called to check the feasibility of choices of Lmax in a binary
search fashion out of all possible stage times.

,There may be more than one feasible stage time which result in the

desired number of stages. Therefore, even after a feasible Lmax is found, the

binary search continues until the minimum feasible Lmax is found to determine
an optimal K-partition of a system with a given K. For example, suppose that

r.e

l .
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there are nine possible stage times, (tl t2 t8 tQ), sorted in non-decreasing

order from left to right. Let t3 and t4 be the only stage times which partition

the system into the exactly desired number of stages. The binary search

proceeds as depicted below. The numbers in the parentheses represent the

search order.

(2)

." (4)

(6)

Vr 0 0-sO 0 0 0 0 0 0
ti t2 t3 t4 t5 t6 t7 t8 t9

- (3) start

Algorithm OPART(K);

K{* .... Input. Desired number of partitions

{dmax .... Output. Length of the longest partition
{* p(i) .... Output. Locations for the i-th stage latches *)

BEGIN {*OPART*)

{*enumerate all possible stage times*)
{*and sort in non-decreasing order "5

1(1. AN] findiratervals;
m El. .N • Mergesort V l. I);

startpoint :[/21

level I {*depth in the binary search tree*)

{* binary search among all possible stage times *)
WHILE (startpoint 0 lastpoint) DO

'I.
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begin {*while*}

{* compute the number of stages and the actual *}
{* maximum stage propagation delay.

k, dam <-- KPART(MCGs. o[startpoint]. Des, Dep);

{* update status *}
level "= level+1

: step :=rN/(2**level)1;

{* determine the direction of next search *}
".,IF k>K

THEN
. startpoint startpoint + step

even if k = K, continue search *}

LSE
if k = K then lastpoint startpoint;
startpoint := startpoint - step;

W end (*while*}

Report the stage partitioning results with s[lastpoint];

end {*OPART*}

Run Time Analysis Let IVI be the total number of nodes in the input

micro-cycle graphs. The first step, finding all possible stage times, can be done
,q ,,,by computing the longest path between every two connected nodes. The

computation of the longest path from a node to every node in a directed

acyclic graph takes O(JEJ) time steps where IEI is the number of edges in the

graph, using a dynamic programming algorithm [Horowitz 78]. If we repeat

this for every node, the total number of time steps required will be O(IVIIEI).

Next, there can be at maximum I'vC2 pairs of connected nodes, and thus there

are O(,V12) number of possible stage times. The MERGESORT step for

O(1V12) elements takes O(IVj21oglV() time steps. Finally, the main loop is

%" I '
...............................-. .
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iterated O(1og1V12 -ogIVI) times (binary search). At each iteration of the

main loop, the procedure, KPART, is called once, which takes O(JEI) time

steps. Therefore, the total execution time of the main loop is O(IEIlogIVI).

Thus, the time complexity of the algorithm, OPART, is determined by the

Mergesort, and is O(IV121oglVj).

Lemma 9 dm X computed by the algorithm OPART is minimal.

Proof Proof is obvious by the construction of the algorithm and its

procedures. si]'s are the only possible cases of the length of any partition and

the algorithm chooses the minimum possible length from s, using the binary

search as depicted above. Therefore, dmax is minimal.

0

3.3. Performance Comparison - K Stage vs. Single Stage

As the number of branch executions increases, the efficiency of a

multistage system decreases due to the additional delay through the interstage

latches. Also, if the longest interstage propagation delay (Dm,) is too long,

the performance of a multistage system may not be as good as a single stage

system since the amount of overlapped execution time may be very small. :
Using the execution time equations developed in Sections 4.2 and 4.3, we must

compare the average expected execution speeds of the possible configurations

of the system. That is, we must compare

T---- Dd + [t I.nb + 1) ).tY of multistage configurations and

T= a-t' of a non-overlapped configuration.

where t'. is the critical path propagation delay of the micro-cycle graphs.
Ec

21
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In addition, we must consider the cost increase. A multistage

I implementation of a system requires some additional hardware such as

interstage latches and a multiphase clock generator. Routing the multiphase

clock signals may cause problems in the same way that power routing does.

3.4. An Example Maximum Overlap Scheme For a

Microprogrammed CPUK
i -"In this section, we demonstrate the results of static clocking scheme

synthesis through an example of a microprogrammed CPU, the HP-21MX.

This example shows how the proposed technique can be used to complete a

partial design.

The circuit graph of the HP-21MX CPU is shown in Figure 2.3-1 and the

corresponding micro-cycle graphs are shown in Figure 2.3-2.

Three different results of stage partitionings are shown in Figure 3.4-1.

(a) is the original 3-stage configuration used. (b) and (c) show the optimal 3-

-. -stage and 4-stage partitionings determined by the algorithm OPART.

* 1We assume that Dss is 5 nsec. and Dsp is 10 nsec. The 3-stage partition

(b) is obtained when Lmax - 130 nsec. including 15 nsec. total for Dss and Dsp

of the stage latches. The 4-stage partition (c) is obtained when Lm x 110

also including 15 nsec. total for Dss and Dsp.

The timing values determined by the stage partitionings are listed below.

. The lengths of the clock phases have a certain safety margin, as shown.

,%
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(1 ) Anohe 1-Sag Cofguain( x 10ne70

(c) 4-SageContguraionLmax1l~nec.

FiueL41:Saeprttoigo the I-1MXCU

.......................... 5 20.
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()The original S-stage scheme
(b) A now 3-stage scheme
(c) A 4-stage scheme

partition (a) (b) (c)

daZ165 130 105 asec.

D~ (t ) 175 140 110 niec.
a" C,

---------------------------------------------------------------------------------

DI175 130 90 nsec.

S..D 2  175 140 100 ROMc

D3  10 10 110 nsec.

D4 10 Asec.

D360 280 310 neec.

ILII 24 28 58 bits

The corresponding clocking sequences are shown below.

(a) (b) (C)

phase phase phase phase phase phase phase phase phase phase
1 2 3 1 2 3 1 2 3 4

DI ~D2 '3 ~LDI $D2 '3 4 D1 D2' 1 D3 D4

175 175 10 130 140 10 90 100 110 10

For configurations (a) and (b), there is no resynchronization overhead.

For configuration (c), there may be data contention between two minor cycles,

the 'store result (D4)8 of a micro cycle and the Oread operand (D2)0 of the

next micro cycle, which requires delay of the next micro cycle fetch for one
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clock period. The branching overhead of configurations (a) and (c)14 is two

clock periods. For configuration (b), the branching overhead is only one clock

period since [D] _ 1 (Lemma 2.4.2).

We first compare the original design (a) and our 3-stage partitioning (b).

As shown in the circuit graph of Figure 2.3-1, the second stage latch of the

original design is the micro-instruction buffer, which is usually determined in

ad hoc fashion and most widely used in microprogrammed controller designs.

However, as shown in Figure 3.4-2, we increase the performance of the system

significantly by moving the location of the second latch. The cost increase is

only 2 latch bits.

* The performance comparison of the three configurations is plotted in

Figure 3.4-2. For each configuration, the execution times for 100 micro cycles

are computed with different numbers of branch cycles and resynchronizations.

As shown in the figure, the 4-stage configuration shows the best performance in

general. In the worst cases when more than half of the micro cycles either

branch or need resynchronization, the performance of the 4-stage

configuration, (c), is worse than that of (b). However, such cases are unusual.

In such cases, we can re-compute the optimal clock period and corresponding

execution time using Theorem 2.4.7 to determine whether to use the multistage

scheme or not.

14Refer to Figure 3.4-1 and Equation (2.4.3) for the calculation of the branching overheads.
For all the configurations, we assume that the lengths of the clock phases are fixed and no
wait clock periods are added.

• . .. . ~ ~ ~ ~~~. .. . *. .. A',¢, f%
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~1.6

1.4

Normalized 1.2(c)

Initiation 1.0(b)

Rate 0.8
0.6

-' .::,O.O i(a)

0.4
0.2

I I p

0 10 20 30 40 50 60

Number of Branches (%)

- (a) The original 3-stage scheme
(b) A new 3-stage scheme
(c) A 4-stage scheme

*Figure 3.4-2: Performance comparison of the HP-21MX CPU.

-.

~.p
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3.5. Extensions to More General Digital Designs

3.5.1. Execution overlap schemes for completed designs

The synthesis techniques for maximum execution overlap we have

discussed so far can also be applied to some specific designs with an existing

clocking scheme. The technique we will discuss in this section can be applied to

general cases of digital designs which might even have loops (i.e., use the same

module more than once) and have registers to store values which are used by a

sequence of computation tasks.

Figure 3.5-1-(a) indicates a circuit which is completed with a clocking

0 scheme. Suppose that we can partition the circuit into blocks such that there is

no data or control flow in both directions between any two blocks. An example

.- partitioning of the circuit of Figure 3.5-1 into two blocks is shown in Figure

3.5-1-(b). As long as such a partition exists, we can overlap the execution of a

circuit. This is very similar to pipelines with pipelined stages.

Conjecture 3.1: For any circuit that can be partitioned into a chain of

blocks without data or control flow in both directions between any two blocks,

execution overlap is possible between blocks.

Outline of Proof: As long as there is no bidirectional data or control flow

between two blocks, only a predecessor affects the execution of its successor. If

we put a latch and store the data or control values produced by a block which
are needed for its successor, the successor can start execution while the

predecessor either completes the same task or starts execution of a new task.

In a partitioned circuit as such, we can consider the blocks to be the

nodes in the micro-cycle graphs and apply the same techniques we have

w. I discussed for maximum overlap. However, since a block may use clocks during

J.

p .N .t . " . , , . . , , . , . , . - . . . - , . . . , - - . - . . . . . - . • . . , . - - . • . . - , . . . . . • . . . ' . . • .
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Inputs CIRCUIT Outputs

clock
signals LW

:4" clock
1 , Input .---- signals

ock Block

Outputs

' --: clIock~I
signals

Figure 3.6-1: An example of circuit partitioning.

its execution, the delay time of a block must be computed as the total

execution time taken by it. The actual amount of overlap is determined by the

execution time of each block. If the execution time of a block after partitioning

is still the same as the total execution time before partitioning, there will be no

gain in execution speed. An example of this case is when a block has a loop

which is iterated many times to produce output even after the data needed for

the next block is produced and the succeding blocks complete execution.
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3.6.2. A systolic array example

In this example, we show how an already designed systolic array can be

sped-up without changing the original data and control flow.

A systolic array design taken from [Leiserson 83 is shown in Figure 3.5-2,
3which continuously evaluates the function yi = jr a In the original

design, the propagation delays of the registers are assumed to be negligible and

we make the same assumption here. The clock period is 13, which is

determined by the critical path 62 -> 63 -> +1. Each y3 is calculated by

clocking all the registers RI through RS at the same time.

-S:. ( P, Q ) = 0: Ps Q
S  +3 R5 +2 R4 + I:P

P °

R3 Q

Figure 3.6-2: A systolic array evaluating T' 0 (xijaj).

The goal of stage partitioning is to minimize the delay time between any

two registers by inserting latches, i.e., to minimize the processing time in each

block while maintaining the original data flow.

o~l..... .. . . . . . . . .. . . . . . . ..
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Figure 3.5-3 shows the results of stage partitioning. The desired

interstage propagation delay is chosen to be the same as the longest module

propagation delay, which is 7. As shown with the dashed cut line, four latches

.are to be inserted in between R3 and +3, 62 and +2, 63 and +I, and 64 and +1

as the result of the partitioning.

% "Cut Line

%l. ----------------..--.. L
• I=

Figure 3.6-3: Stage partitioning of the systolic array of Fig. 3.5-2.

Figure 3.5-4 shows the modified systolic array after the registers, R6

through R9, are inserted. In this modified design, all the registers from RI

through R9 are clocked at the same time by a single clock source. In Table

3.5-1, the value flow through the registers in the original design and in the

modified design are compared. Note that in the modified design the output is

delayed by one clock cycle than in the original design. This is due to the fact

-" that the inserted registers, R6 through R9, perform the role of the stage latches

for execution overlap which delays the values through them by one clock cycle.

L 1 As shown in Figure 3.5-4, any path without passing through a latch is no

1
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6, +3 R5 +2 R4 R1

6R

o &1 &2,

Figure 3.5-4: Stage partitioning result of the systolic array of Fig. 3.5-2.

longer than 7, thus, the resulting minimum possible clock period is 7. The

systolic array continuously evaluates the same function every cycle and there

are neither branch nor resynchronization overheads. Accordingly, the

throughput rate is inversely proportional to the clock period. Therefore, the

throughput rate is increased by (13-7)/7 = 85.7 (%). This throughput rate

increase is achieved at the cost of the four added overlap stage latches.

.4A

-°,



(a) Value flow in the (b) Value flow in the
original design. modified design.

Clock
cycl 4 ~ I t 1  4 ~ 2  I t1 i ti. 1 I ti+2

R I x 1 + xj..2  xx..i xi+ 2

R3 8(x1,a0 ) (xi+i'aO) 8(xi+ 2,a0 ) (xia 0  8(xi+ 1,a0 ) 8(x4 2,a0 )

R4 6(xi-1 a2) 6(xia 2) bOxi+l,a 2) 8(xi 21a2  8(xi 11 a2 ) 8(xia 2)
+8(x2,a3  +8(x1 ,a3) +8(xi,a3) +6(xi 3 1a3 ) +8(xi 2 ,a3) "8Xi-] lad

+6(xi-,a 2  +8X,1 ,a2 ) +8(xia 2) +(x,- 3,a 2) +8(xi-2,a +8(xi-Ia 2)
+6(xi..3'a3) +q(x- 2 1a3) +8(x).1 ,a3 ) +6Xi-Va3 ) +8X.-3,a3  + 6Xi 2 ,a3

R6 8(x3 1ra 0 ) (x1,a0 ) 8(x1+1,a0 )

SR7 b4x 11,a1) Opx1 al) 4i1

R8-1 6(, 2 ) 8(Xia 2) 8(Xi+IIa 2 )

R xi-2,a3) 8(Xi 1,a3  (Xi'a 3)

output 6(xi-,ao) 8(xia 0  8(xi+ 1 a0 ) 8(xi- 2,a0  8(xi 1,a0 ) 8(xia 0

-. +8(x1 2 ,a1 ) +8(x1 1 ,al) +8(xi,al) +6(x,. 3,al) +6(x, 2 ,a,) +(x,,a 1 )
+6(x i3,a2 ) +8(xi-Ta2  +6(x,, 1 a2) +(x, 4,a2) +8(x)..3 a2  +8X 1 2,a2 )

T_ +8(x, 4,a3 ) +8X, 3,a3 ) +6xi-2,a3) +6(x, 5,a3 ) +8X14,a 3) +8X 3,a 3 )

;e Note: The output value is assumed to be latched to some external latch (or
memory) at the same clock tick clocking the registers RI through R5.

* Table 3.6-1: The value flow in the systolic arrays
4L of Fig. 3.5-2 and Fig. 3.5-4.
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Chapter 4

Theory of Pipeline Synthesis

4.1. Introduction
-

Pipelining has been a good methodology for designing fast digital circuits.

In this chapter, we analyze the characteristics and problems of automated

synthesis of near-optimal (the cheapest and fastest) pipelines from a functional

- (behavioral) design description.

4.1.1. Pipelining

In pipelining, each unit computation task (e.g. a microinstruction) is

partitioned into a sequence of subtasks and each subtask is executed during a

. clock cycle. 16 Every clock cycle is of the same time period. Consecutive tasks

are initiated at some fixed or variable intervals (called latency), which are

* ~ integer multiples of a clock cycle and are shorter than the execution time of a

task. In this fashion, subtasks of consecutive tasks are executed overlapped in

time on different parts of a pipeline circuit as in the maximum overlapped

execution we discussed in Chapter 2.

Figure 4.1-1-(a) shows a data flow graph of a computation task

partitioned into a sequence of five subtasks, F1 through F5. Subgraph Gi

corresponds to the data-flow of Fi.

In pipelining, each subtask is executed during a single clock cycle. Figure

15 A task corresponds to a micro task and a clock cycle corresponds to a minor cycle defined
-,-- in Chapter 2.

......... ........ ......... .. ......... .................- ,'....... . .-........... °----
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Input

G+ F1 F2 F3 F4 F5

} ] lcy 2cy 1cy tcy 5"cy

G2 time

8 (b) Execution timing
0

0

Output

(a) A partitioned
data flow graph

Figure 4.1-1: A partitioned data flow graph and its execution timing.

4.1-1-(b) shows the execution timing of a task. Figure 4.1-2-(a) shows an

example of pipelined execution of a sequence of five tasks, II through 15.

Figure 4.1-2-(b) shows a 5-stage pipeline where the i-th stage executes
subtask Fi. Depending on the timing specification/requirements of the

input/output values, either the inputs or the outputs of each stage are to be

latched internally so that the computation of a subtask neither affects nor is

affected by the computation of any other subtasks.16 In Figure 4.1-2-(b), the-pipeline is filled with the subtasks of tasks I1 through 15. Stage SI is executing

F1 of 15, S2 is executing F2 of 14, and so on.

- 16 The input or output latches perform the same role as the stage latches in maximum

execution overlap.
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Tasks

I i FI F2 F3 F4 F5

12 F1I F2 F3 F4 F5

m 

- -

13 2JF 3  FF5

14 Fl 1 F2 F3 F41 F5

15 F1F1F
" +1 I I I Ii I i

-A t cy_ time

(a)

*Note: Stage SK is executing FK of 16_ K .

-15(FI ) H 14(F2) 1 13(1 12(F4) 1H(F5

S1 S2 S3 S4 S5

(b)

Figure 4.1-2: (a) A pipelining schedule and (b) a pipeline.

', .For the partitioned data flow graph of Figure 4.1-1, the fastest design
would be one as shown in Figure 4.1-2. In this design, there is no resource

. ... sharing between the executions of subtasks, i.e., no subtask of a task needs the

* .same stage more than once. However, if the total cost for the design is limited

and not enough to allocate a different set of resources to each subtask, some

resources must be shared by more than one subtask. Of course, resource
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sharing will sacrifice performance. Figure 4.1-3 shows a slower but cheaper

4pipeline design.

" S11 S2 S3

Note: The pipeline is currently executing I1, 12, and 13.
During the next clock cycle, SI will execute F2 of
13, and S2 will execute F4 of 12.

Figure 4.1-3: A cheaper pipeline design.

In this design, stages S1 and S2 are reused. Stage Si performs subtasks

F1 and F2, and stage S2 performs F3 and F4. Figure 4.1-4 shows the timing

diagram for the execution of consecutive tasks on this pipeline. As shown in

this timing diagram, the initiation interval of this pipeline is doubled compared

to the pipeline design of Figure 4.1-2.

4.1.2. Synthesis of pipelines at the functional level

The task of pipeline synthesis at functional level is that of producing a

register-transfer level implementation of a pipeline from the functional

(behavioral) description of the task. In this thesis, the input functional

description is given as a data flow graph of the computation tasks to be

executed. Design constraints are the total available cost budget and the

minimum required performance. The design tasks include:

1. scheduling - assignment of operations to time steps or clock cycles,
i.e., partitioning of a task into subtasks,

2. resource allocation - allocation of resources (how many of which
types of modules) to subtasks, and

*4
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Tasks

11 FFI F2 F3 F4 F5

12 F 1 F 2 F 3 F4 F513 ~ I F 2 F

C Y time

-- t# cy-..rinitiation interval(latency=2)

o: Figure 4.1-4: An example of pipelining with a fixed latency of 2.

3. register-transfer synthesis - detailed assignment of operations to
operators for each subtask, and placement and interconnection of
storage elements and multiplexers.

An optimal clocking scheme is a result of the execution of these three

* I tasks.

A desired optimization goal is either maximizing performance within the

cost. constraint or minimizing total cost while satisfying the minimum required

performance.

When an optimal design is desired, tasks 1, 2, and 3 cannot be performed

* separately. For example, the shortest schedule does not always guarantee the

fastest performance since it might force the resource allocation in such a way

that the fastest possible initiation rate of the tasks is not feasible due to

resource conflicts between consecutive tasks. Also, an expensive pipeline does

not always guarantee better performance since the scheduling may not be able

.- .. --.:
" ,-..~~../. 5 i ~ .~'s
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to utilize all the available resources. Finally, the feasibility of a resource

allocation within cost constraints can only be known after the register-transfer

synthesis is done.

As we have discussed in Section 1.3, there is no previous work reported

on synthesis of pipelines at the functional level. Most of the previous work

done in this area focused on the usage of already designed pipelines [Shar

72, Davidson 75, Patel 76, Kogge 81]. Some reported synthesis research focused

on timing and control issues for gate-level synthesis of pipelines [Cotten

65, Kogge 81]. There has not been any attempt at automated synthesis at any

level of pipeline design.

In this chapter, we aim for near-optimal automated pipeline synthesis at

the functional level, considering all the cost and performance parameters of the

expected usage of the pipeline. We develop a method for estimating the cost

and performance of the pipeline design even before we actually synthesize the

pipeline. This is important since the decision whether to use a pipeline (how
beneficial it will be, and how well it will fit into the rest of the system) can be

made without actually synthesizing one.

4.1.3. Basic terms

Some of the terms appearing in this chapter have already been defined

and used in Chapter 2. However, for clarity of discussion, we summarize the

basic terms which will be used most frequently in this chapter.

Data flow graph
A directed acyclic graph (DAG), G=(V,E), where the set of
nodes, V, represents the operations on the values and the set
of directed edges, E, represents the value flow (data
precedence) between operations. 17

In fact, since an operation can only start execution when all its input values are ready,

the arcs also represent the execution order or data precedence of the operations.

S.

'*



Stage latch A set of storage elements storing either the inputs or the
outputs of a pipeline stage.

Stage time The minimum required time period for a stage to read input,
complete execution, and latch output.

Op Clock cycle The time interval in which all the stage latches are clocked.
This is the time period allocated to every stage to complete
execution, and must be longer than the longest stage time.

Initiation interval (cycle)
The time interval at which a new task can be shifted into
the pipeline, which is some integer multiple of the clock

4 cycle.

t7Latency (Initiation interval)/(Clock cycle)

Fixed latency Latency which is a fixed constant. A new task can be
initiated every latency clock ticks.

* Variable latency
Latency which is a repeated sequence of integers. Tasks can
be initiated in the time intervals as specified in a sequence,
which is repeated. For example, a variable latency (2 3) can
initiate tasks at the clock ticks of 0, 2, 5, 7, 10, 12, 15,
and so on.

A task A unit computation which requires a pass through the pipe.
This corresponds to a micro task defined in Chapter 2.

A subtask A partition of a task which is executed by a stage in the
pipe. This corresponds to a minor task defined in Chapter 2.

Pipe cycle The time period for a task to be completed, i.e., the time
period a task stays in the pipe (latency of the pipe).

4 N41
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4.1.4. A fixed latency assumption

As we have discussed before, there are two types of latencies used to

initiate consecutive tasks, a fixed latency and a variable latency. For
synthesis, only a minimum possible fixed latency should be considered in

order to optimize both the performance and the control circuitry. As discussed

and explained in the previous pipeline control work [Patel 76, Kogge 81],

- variable latency control requires a complex initiation scheduling mechanism in
order not to cause any resource conflicts between consecutive tasks. In cases

when a pipeline has 10 or more stages, the control mechanism for variable

latency becomes impractical due to the complexity of the control circuitry and

its processing time, which might be comparable to the initiation interval.

In fact, the maximum possible performance does not depend on the type

of latency used but on the pattern of the resource usage, as we have discussed

in Section 1.3. As we will discuss later in this chapter, for a fixed task, a fixed

latency scheme can always achieve the maximum possible performance with

proper scheduling and resource allocation. Therefore, variable latency control

must be considered only when a fixed latency is not feasible due to the

necessity of executing a different set of tasks on an existing pipeline.

For this reason, we only consider a fixed latency initiation of tasks.

'p
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P4.2. A Data Flow Graph Model for Pipeline Synthesis

Prior to discussing the actual synthesis procedure, it is necessary to

develop in some detail the data flow graph model which will be used to

describe the behavior of the pipeline to be synthesized.

The data flow graph model used in this thesis is a modified subset of the

behavioral subspace representation of the Design Data Structure (DDS)

[Knapp 83, Knapp 85] of the USC Advanced Design AutoMation (ADAM)

system [Granacki 85]. It is chosen in order to be compatible with other parts of

the USC ADAM system. The ADAM DDS is designed for the representation of

virtually almost all digital design cases. Since we focus on pipeline synthesis,

we do not require all the general, complex constructs of the DDS in our input

data-flow representation. We limit the types of constructs to be used and put

restrictions on some of the chosen constructs. We first briefly review some

U aspects of the behavioral subspace representation of the ADAM DDS which are

relevant to pipeline synthesis. A detailed description of the behavioral

subspace representation is found in [Knapp 83, Knapp 85]. Next, we discuss the

restrictions and limitations on the behavioral subspace representation for the

construction of a data flow graph as a design description for pipeline synthesis.

4.2.1. A brief review of the behavioral subspace

A behavioral subspace representation of a design is essentially a data flow

graph. However, since it is designed for the representation of digital hardware

design (both design specification and design description), it has subtle

differences from computer program or instruction data-flow descriptions

[Dennis 74, Davis 82]. The main features of the behavioral subspace

representation can be briefly summarized as follows:

Acyclic, single-assiqnment data flow: It is an acyclic graph (without any

,,. .,.'.. . ...... ...., .:,... .... -.... ,... ....... ....-..- .......... .. . .... .... ..'• .. . .,, .....
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loops). In fact, loops are unrolled by indexing input and output values of

iterated operations. In a strict sense, it is not a pure single assignment

representation as far as loops are concerned. An example of an unrolled loop is

shown in Figure 4.2-1.
10 XI. 1 a

T F

{* X has never been *} (1=0) -- SELECT

{*written before *)

For I := 0 to 2 DO
X X . a[i]; .

%X
%xi

Figure 4.2-1: An example of loop unrolling with value indexing.

No control or timing information: It has no control or timing

information such as tokens [Dennis 74] and explicit loop constructs rDavis

82, Snow 78). Control and timing information is stored in the timing subspace

of the ADAM Design Data Structure and can be looked-up through the

bindings between the two subspaces. For the example data flow graph of

Figure 4.2-1, the loop iteration count, 3, is found either' in the control subspace

or on the bindings between the behavioral and timing subspaces.

Implicit conditionals: Conditionals (conditional operations and values

produced by conditional operations) are implicit and can only be explicitly

referenced through the bindings to the timing subspace. In other words, in

* order to check whether a certain operation or value is conditional, either the

whole data flow graph must be examined or the timing subspace must be

=:.4 looked-up. Figure 4.2-2 shows an example of implicit conditionals.

In figure 4.2-2, the subgraph G2 produces both unconditional results (03)

v aVd - .
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Ii12 13

01 02 03

Figure 4.2-2: An example data flow graph with implicit conditionals.

and values which may Dot be needed depending on the condition input to the

select node. In order to determine whether some operation node in 02 produces

definitely needed values, we need to trace every possible execution path from

the node to the output ports (01, 02, and 03). If there is any path reaching to

one of the output ports without going -through any select node, then the

operat ion must be performed regardless of any condition. This is true in most

types of data flow graphs. Conditional selection of already existing values is

explicitly specified by the T/F (true/false) selection node as shown in Figure

4.2-1.
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4.2.2. Merging data flow graphs

In Section 4.1.1, we have seen an example of pipelining a sequence of

identical computation tasks, where the data flow of each task is fixed without

any conditional operations which need to be performed only on certain

conditions. However, in most complex digital systems, there are many

different types of computation tasks. For example, for a microprogrammed

CPU, there may be as many different types of computation tasks as the

number of microinstructions. Also, even a single complex computation task

may involve conditional execution of certain operations and/or conditional

selection of input or output values. There are three different approaches to the

synthesis of a system with many different computation tasks:

1. Use multiple parallel pipelines each of which executes a set of
computation tasks.

2. Use a single dynamically reconfigurable pipeline and reconfigure the
pipeline according to the computation task to execute.

3. Use a single pipeline with multiple execution paths which can be
selected conditionally, and select an execution path according to the
computation task to execute.

The solution technique for the third approach is essential to the first two

approaches. The first approach can be implemented by iterating the solution

technique for the third. The second approach also requires the synthesis and

analysis techniques of the solution technique for the third. Also, in the third

approach, conditional selection of input or output values of operations can be

modeled using the same constructs used for the conditional operations, which

we will discuss in the following sections. For this reason, we discuss only the

- . third approach in this thesis.

However, note that a data flow graph does not have to be a single

6-, connected graph. A number of disconnected graphs automatically imply
V.A.

o4i
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multiple, parallel data flow. With parallel pipelines we assume all the parallel

data flows are synchronized and controlled by a single centralized controller.

4.2.3. Conditional execution paths

If we want to design a single pipeline which will execute more than one

type of computation task, we need to represent the data flow of all the

* . computation tasks as a single data flow graph. In such a data flow graph, the

actual execution path' 8 of each computation task can be represented and

* selected by conditional branches, depending on the type of computation task to

be executed. There are many constructs which can represent conditional

K execution paths in a data flow graph, e.g., the OR-FORK and OR-JOIN

* [Estrin 78], the tokens [Dennis 74], and the SELECT [Snow 78, Davis 82]. As

long as conditional execution paths can be represented in data flow graphs, any

of these constructs can be used. However, in this thesis, we will use the

a distribution -join pair, which we will discuss in detail here, in order to maintain
compatibility with other parts of the USC ADAM system [Granacki 85].

Exrplicit conditional execution paths: A distribution node and a join

node are always used as a pair. Whenever an execution path is to be selected

by some condition, a distribution node must be used to split the values to every

possible execution path. Whenever the execution path is no longer dependent

on the condition, a join node must be used to indicate the termination of

conditional executions. A join node collects all the arcs which carry the values

that might be changed or produced by conditional execution paths. Only the

selected values are passed through a join node.

Figure 4.2-3 shows two example usages of distribution -join pairs. The D

nodes and J nodes in this figure correspond to the distributions and joins,

118 Igeneral, each task will traverse a subgraph of the data flow graph.



IF 0 IF > 0
then b c + d; then b : 4 d;
else bb c * 9; also b :=c + e;

.a>O b d c e bb
a>0 d c e

b d C e bb

+ +

b " J 
J

bI bbl b

Figure 4.2-3: data flow graphs with conditional execution paths.

respectively. In both (a) and (b) of Figure 4.2-3, the IF statements are

embedded in a pair of distribution and join nodes. Depending on the condition,

a > 0, only certain output values of the D node become available, and only the
subgraph reachable from tie output arcs of the D node is traversed or

-executed.

As shown in Figure 4.2-3-(b), as long as conditional execution paths can
be identified, not all the values read during conditional paths need to pass

.* through the distribution node.

Figure 4.2-4 shows an example of nested conditional execution paths. As
* shown in the figure, a conditional execution path or operation can be detected

by traversing the subgraph between a distribution node and its matching join

q.,

| .. ,. & h .. . . . . . .... . ..
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node. In Section 4.5, we will discuss a node coloring technique which shows

gwhether an operation is conditionally performed, and if it is, which uodes it is

mutually exclusive with.

Definition 4.2.1: For any two operations in a data flow graph which

are executed on some condition, if the condition that selects one operation

always falsifies the condition selecting the other, and vice versa, then the two

operations are called mutually exclusive to each other.

(c=O) a b

IF c =0
then -- - DI

z: a b;
else T

x :a-b
IF z < 0 +

then X := + 1;xl

borowg ~D2 + '1

WF T

XJ2

Figure 4.2-4: An example of nested distribute-join pairs.

~~~~. ... . . ... ..... .. ... . - .. ... . .. ,' .'. . . . . " . . ". ,, .'- ,,
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4.2.4. Conditional value selection

The straight forward usage of a select node is to simply select a value

from two or more values, as shown in Figure 4.2-1.

A more complicated usage of the select nodes is simplification or

elimination of the distribute-join pairs. Figure 4.2-5 shows two examples of

such transformations.

a>O d c e b bb a>O

d c e b bb

. II

I + + a + +

I- J LI ELC

-I EET SLC - -

'---------------SLEC - SEECT '-- -- SELECT -- SELECT

b' bb' b' bb'

(a) (b)

Figure 4.2-5: Transformations of the data flow graph of Figure 4.2-3:
(a) simplification and (b) elimination of the distribute-join pair.

In (a), the distribute-join pair of Figure 4.2-3 is simplified by separating out the

values which can be simply selected. As shown in Figure 4.2-5-(a), the data

flow graph shows the conditional execution paths explicitly. However, in (b),

the distribute-join node pair is completely eliminated, and the conditional

" execution paths become implicit. In this thesis, we will treat such implicit

. . - .°.



108

conditional execution paths as parallel execution paths. In other words, by
replacing the distribute-join constructs with select nodes, the user can force
parallel separate evaluations of mutually exclusive operations. This type of
trap-formation can speed up the execution in cases when the condition
selecting which operations to perform is not available before the input values of
the conditional operations are. For the data flow graph in Figure 4.2-5,-(a), tbe
condition, a > 0 must be available before one of the conditional additions

start. However, in Figure 4.2-5-(b), the additions can start whenever their

inputs are ready regardless of the availability of the condition. Then, the
appropriate outputs can be selected when the condition is available.

On the other hand, there is also a way of forcing module sharing using

only select nodes. Figure 4.2-6 shows a further transformation of the data flow
graph of Figure 4.2-5. In this case, conditional execution paths are completely

replaced by conditional selection of values and module sharing is explicitly

* forced.

a d e c b bb

-SELECT

I +

L --- SELECT -- SELECT

bt bb'

Figure 4.2-6: Transformation of the graph of Figure 4.2-5-(b).
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4.2.5. Insertion of no-operation (NOP) nodes

NOP (no operation) nodes are dummy nodes which do not perform any

real operation at all. There are several advantages to introducing NOP nodes:

1. It makes the data flow graph more readable to human designers as

well as easily manageable for automatic procedures.

2. It allows insertion of arbitrary time delays.

An example of the first case is illustrated in Figure 4.2-7 with two

*equivalent data flow graphs.

"'"i I i2 i3 i4

0 i1 i2 i3 i4

DISST

-,',.-.NOP

-NOP

JOIN

0

0

(a) (b)

Figure 4.2-7: An example usage of NOP nodes.

In both (a) and (b) of Figure 4.2-7, there are two conditional execution

paths, one with a + and a - operation in parallel and the other with a

operation. In case (a), for both a human designer and an automatic procedure,

there must be some way of specifying which arcs coming out of distribute
1.* 

4.
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nodes and going into join nodes are parallel and which are conditional.

S However, in the case of (b), NOP nodes are used to split and concatenate

values, and make it easy to distinguish parallel and conditional operations and

values without any special notation. For this reason, we will force using NOP

nodes for parallel execution paths inside conditional execution paths.

A simple example of the second advantage is as follows. In register-

transfer level design, transmission delays due to long interconnection wires and

capacitance of various parts of VLSI layers and interconnections are usually

ignored. Also, the delay times of functional modules may vary depending on

the various conditions of the VLSI diffusion and fabrication process. The

variances of timing values due to these factors can be compensated by inserting

NOP nodes with delay times without actually modifying the timing values of

the hardware modules case by case. Also, inversely, arbitrary timing delays for

synchronization purposes can be specified.

4.2.6. Loop unrolling

No loops are allowed in the input data flow graph for pipeline synthesis

except that the whole data flow graph itself represents an implicit outer loop.

Even the unrolled loop of the Design Data Structure, which we have discussed

in Section 4.2.1, is not allowed. Any loop must be completely unrolled so that

each operation in the data flow graph needs to be performed only once for an

execution of the data flow. This is necessary in order to make the data flow

graph purely acyclic. In general, acyclic graphs are easier to analyze than

cyclic graphs.

Loops with determinate and finite iteration counts can be unrolled easily

by duplicating the loop as many times as the iteration count. Loops with

conditional or indeterminate iteration counts are hard to implement in a

pipeline design style. Since multiple tasks are to be executed simultaneously on

.1"
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a pipeline, indeterminate loops make task scheduling (resource sharing and

4) initiation timing between tasks) difficult.

There are two practical solutions to this problem. Suppose that we have

a number of computation tasks to be executed on a pipeline and each task

forms a subgraph of the data flow graph. Suppose that a subgraph, say G , has

a loop with indeterminate iteration count. The first solution is to separate the

loop and turn it into a new subgraph or a task. In other words, the task of Gi

,* is decomposed into two or more new tasks consisting of a task for the loop and

one or more tasks for the rest of the original task without the loop. For

example, let I be an instruction counting the maximum number of inputs, the

* sum of which does not exceed some constant:

begin
a := 1000;
i := 1;

loop
a a - x[i];
i : i + 1;
if (a > 0) GOTO loop
±i -i

end

Instruction I can be decomposed into instructions Jl, J2, J3, as follows (a

conditional branch instruction is also needed after J2):

J1 :: J2 :: J3
begin begin begin

a: 1000; a: a -x[i]; i := i-1;
i : 1; 1 :1 + 1; end

end end

Any program with instruction I can be rewritten using these decomposed

I2 -%-.2l'B4 .55oS .
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instructions together with a conditional branch instruction. An example is

shown below. In this example, program A with an I instruction is rewritten to

program B without the I instruction.

program A program B

I; Ji;
loop: J2;

IF (aO) JUMP to loop;
J3;

In program B, there is no single instruction with any loop with

indeterminate iteration count in it. In other words, the loop inside instruction I

is removed by having a loop in the program. Therefore, in the data flow graph

representing all the instructions, there will be no loops with indeterminate

iteration count.U
The second solution is to make exceptions. A simple solution is not

initiating the next task until the execution of such a task with an

indeterminate loop completes. This can be implemented by treating such a task

the same as a branch task, with the next task to be executed determined on its

completion.

.1

I
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4.3. Scheduling and Resource Allocation

Scheduling assigns operations to time steps within a maximum stage time

limit. The stage time limit may be either forced by some external clock source

or desired for speed optimization. Resource allocation assigns resources to each

time step within the cost constraint. How many of each type of modules to use
and how to share the modules between subtasks are all resource allocation

problems.

4.3.1. Relation between the scheduling and resource allocation tasks

The results of scheduling affect resource allocation and vice versa. For

example, a schedule forces resource allocation for each subtask, although it

does not fix exactly how to share resources between subtasks. In other words,

each operation assigned to the same time slot must be assigned to a different

module, even though the same module can be reused for other operations in

other time steps. Inversely, scheduling of each stage is affected by the the total

number of available modules.

* Even with the same total cost, the performance of the design may vary

depending on the interaction between these two tasks. For example, even with

a fast (short) schedule, an unbalanced resource allocation may force use of a

module more often than others and results in a long initiation interval due to

the resource conflict between consecutive tasks for that module. For this

reason, these two tasks must be performed together when an optimal design is

desired with either a total cost limit or a minimum performance requirement.

BI
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4.3.2. Basic requirements of scheduling and resource allocation

We briefly summarize the requirements of scheduling and resource

allocation, which we will discuss in detail in the following sections.

Both scheduling and resource allocation must be performed in such a way

--that the result preserves the behavior of the original data flow as well as meets

the design constraints.

Data precedence: The result of partitioning a data flow into time steps

must retain the data precedence between operations in the original data flow -

graph. An operation can start execution only after all its input values are

available. Thus, a node in a data flow graph must be assigned at the earliest

time to the same time step as any of its predecessors in order to preserve data
4.4

precedence.

Cost constraint: Another constraint on scheduling and resource allocation

is the maximum available cost budget or the number of available modules.

There are two types of resource constraints on scheduling and resource

*allocation in order not to have any resource conflicts.

1. The resource requirement of each subtask assigned to a clock cycle
must not exceed the total available set of resources.

2. The sum of the resource requirements of the subtasks of different
tasks which are to be executed during the same clock cycle must
not exceed the total available resources.

Stage time limit: When a pipeline is being designed as a part of a larger

system, the pipeline under design might be forced to use an existing external

clock source whose timing is already fixed. Even when the pipeline is designed

separately, the designer might want to optimize the speed and limit the slowest

clock rate. In other words, the schedule must be done in such a way that each

........................................................... ..- " .........
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subtask can complete within a clock cycle, including the stage latch delays as

we have discussed in Section 2.3.3.

Minimum required performance: When the minimum required

performance is given as a design constraint, the scheduling and resource

allocation should be done in such a way that the effective execution speed of

the pipeline considering resynchronization overhead meets the performance

constraint.

4.3.3. Performance estimation

Performance estimation of pipelines can be done using the performance

* estimation methods we have developed in Chapter 2. The only differences are

that the initiation interval of tasks is a clock cycle times the latency instead of

a clock cycle and the execution time span of a task is P times a clock cycle
instead of Ds, where P is the pipe cycle or the number of clock cycles needed

for a task to complete.

Assuming that each resynchronization event delays the initiation of the

next task until the first initiation clock cycle after the completion of the

current task, we can compute the execution time of a sequence of tasks using

Theorem 4.3.1.

Theorem 4.3.1: On a pipeline with pipe-cycle P and a fixed latency I,

'-- the execution time T of a sequence of n tasks, where n b of them cause

resynchronization, is

T= ((n- nb- i) + [?1.(nb + 1) }.l.ty

The proof of this theorem is the same as that of Theorem 2.4.3 with t

47i substituted by l.tcy and D. by P.tcy.

(1--

o4
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Corollary 4.3.2: The average initiation interval for an infinitely long

sequence of tasks on a pipeline is

{1 + ([p] -1).p}.l.ty where p is the average resynchronization rate.

Proof: From Theorem 4.3.1, the average execution time of a task,

Ttask, can be computed by dividing the total execution time, T, by the number

of tasks executed, n.

'b 1 +P] nb 1.. ' task  _ _T ___ { 1 -- - ) • +

n b ) p n,

lim Mak {(1- - + T }I..tcy
nb

By replacing - with p, we get".? n-.

lirTt k M {(1- p)+ I}..

I {1 + (UP 1).p}./.ty

4.3.4. Cost constrained scheduling and resource allocation

Either with execution overlap or without, the number of modules

required for any task or subtask executed during a clock cycle cannot exceed

the total number of available modules. For pipelining, all the modules

allocated to a subtask are activated during the clock cycle executing that

subtask. Accordingly, the first restriction on scheduling and resource allocation

can be stated as follows:

Let R be the set of resources to be allocated to a subtask, Fi, and Rtotal

be the total set of available modules. Then the resource allocation must satisfy

III Rtota I and URC Rtotal, Vi. (4.3.1)

II

... . .°
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Since subtasks of different tasks are to be executed overlapped, Equation -

(4.3.1) is not a sufficient condition for no resource conflicts. When multiple

subtasks are to be executed at the same time, the sets of resources the subtasks

use must be disjoint in order not to have any resource conflicts.

Theorem 4.3.3: For a schedule of a task partitioned into n subtasks,

F1 through F., a fixed latency of I can be used if and only if the resource

allocation satisfies the following condition:

For every i, 1< i < i,Ri+k {}, V k, 0 < k
k

Proof: If a new task is initiated at every initiation interval, for every i, 1
n-1

< < 1, the subtasks, {Fi+k/}, 0 < k < L--J, of k consecutive tasks are

executed during the same clock cycle. If any initiations of tasks are skipped, a

subset of the subtasks in this set are executed during the same clock cycle.

Therefore, the condition in Theorem 4.3.3 is a necessary and sufficient

condition for no resource conflict. 0

Corollary 4.3.4: For a schedule of a task partitioned into n subtasks,

F1 through F., if a fixed latency of I is used, for any i, I < i < I, any two

subtasks which are not in the same set, {F+kl, 0 < k < can share the

same module without any resource conflicts.

In the scheduling of Figure 4.1-4, there are two sets of subtasks which are

executed at the same time: I -- (Fl, F3, F5} and 12 ={F 2, F4 }. Any two

subtasks in the same set, ), cannot share the same module, since they are

executed during the same clock cycle. Inversely, any two subtasks that are not

in the same set can share the same module since they never are executed in

parallel. In the case when the fixed latency of a pipeline is I as shown in Figure

4.1-2-(a), any two subtasks can be executed in parallel, and therefore, there

* cannot be any resource sharing between any two subtasks.

IZ
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Figure 4.3-1 shows examples of cost constrained scheduling and resource

allocation. (a) shows a data flow graph with 5 addition operations (+1 through

+5) and 2 multiply operations (*1 and *2). Assuming that there are two

adders, Al and A2, and a multiplier, MI, (b) and (c) show two possible

schedules and resource allocations. In case (b), any fixed latency from 1 to 4

will cause resource conflicts. Fixed latencies 1, 3, and 4 will cause resource

conflict between any two consecutive initiations of tasks. In the case when

fixed latency 2 is used, there will be resource conflicts between every other

initiations of tasks, i.e., between F5 of a task and Fl two tasks later, for the

adder, Al. In case (c), the length of pipe cycle is increased by one over (b).

This schedule and resource allocation can be implemented with fixed latency 3
as shown in (d).

4.3.5. Speed constrained scheduling and resource allocation

As we discussed in Section 4.3.3, the speed of a pipeline is determined by

the fixed latency, the clock cycle time, the length of the pipe cycle, and the

rate of resynchronization. Among them, the fixed latency and the clock cycle

time determine the maximum possible initiation rate.

In the case when the minimum required performance is given, we can

compute the possible combinations of latencies and stage times19 which can

meet the minimum performance requirement. Among all the possible

combinations of latencies and stage times, we want to choose one with

minimum resource requirements. Among all the resource requirements, the cost

for the operators is the major contributor to the total cost. In addition, the

number of multiplexers, latches, and wiring space can be estimated from the

number of operators [Sastry 83, Kurdahi 85].

.e
19Noe tht tere re nly ~n2 possible stage times as we have discussed in Chapter 2. .

-I.,':

* .. - . "
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Subtask Operation Resource
+1 +2 +3 +4

Fl +1, +2 Al, A2

F 2 +3, +4 Al, A2

F3 *1 M1xY
F4 *2 Ml

F5 +5 Al
Output

(a) A data flow graph (b) A schedule of five cycles
@. and resource allocation

Subtask Operation Resource Task

Fl +1 Al I FF2F3F4 F5 F6
S S I I

F2 +2, +3 Al, A2 I S S _

2 F F2 F3 F4 F5 F6
F3 +4 A2

I S

F FI F2 F3

F5 *2 Mi

F6 +5 Al Resources A1 IA1 IA1 I time
used I I2I,.V.. MI A2 A2 I

I~ I I
(c) A schedule of six cycles MI I I

and resource allocation

(d) Execution timing of schedule
(c) with fixed latency 3.

Figure 4.3-1: An example of cost constrained scheduling
and resource allocation.
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For these reasons, we want to compute the minimum required number of

operators with a certain fixed latency. This can be done by taking a reverse

approach to the cost constrained scheduling and resource allocation case. In

other words, we can force the scheduling and resource allocation in such a way

that the number of modules can be minimized while satisfying Theorem 4.3.3.

Theorem 4.3.5: Suppose that there are at maximum Ni operation

nodes in a data flow graph which must be performed20 by type-i modules

during an execution of a task. Then the minimum necessary and suficient

S- number of type-i modules for a schedule and resource allocation with a fixed
' N.

latency I is r-l.

Proof: As shown by Corollary 4.3.4, there are I sets of subtasks, J 1

through 7,, where
n-1

jr = {Fi+k}, 0 < k <--J,

£ between any two sets of which module sharing is possible without resource

conflicts. When Ni operations are distributed into I such sets of subtasks, the
N.

smallest possible maximum number of operations in a set is -1T (sufficient

condition). Since all the modules in each such set of subtasks must be active
N.

during the same cycle, [T] is the minimum necessary number of type-i

modules (necessary condition). "

Corollary 4.3.6: When a fixed latency I is used, as long as a module is

not used in any two clock cycles which are I cycles apart, there is no resource

conflict. Accordingly, a module can be used at maximum in I subtasks whose

indices modulo- are distinct and (0, 1, 2, .. , 1-1).

Suppose that we want to design a pipeline with fixed latency 2 for the

% L 2 0 Any number of mutually exclusive operations which use the same module are counted as

one.

&z &Z

........................................................

. . . .. . . . . . . . . . . . .*: ..u

% o . '.' .. {- .- ..." .. '.., , ., .... . . ' " .". '- .. .,...L."., '# ",
'
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data flow graph of Figure 4.3-1-(a). According to Theorem 4.3.5, we need at

least [ "- 3 adders and il -= 1 multiplier.

The schedule and resource allocation for this design with three adders,

Al, A2, and A3, and a multiplier, MI, is shown in Figure 4.3-2 with an

execution timing diagram.

Task

_ __ _1 F2I FE

Subtask Operation Resource 2[.~ tI
F1 +1,+2,+3 A1,A2,A3'

F2 +4, *1 Al, M1 I I~ L.L

* L

Resources: I-I time
F3 *2 Mi use Al : AlI :used A2: A2:

F4 +5 A2 A3,

Figure 4.3-2: A scheduling and resource allocation with fixed latency 2 for
the data flow graph of Figure 4.3- 1.

4.3.6. Patterns of resource allocation

-In Section 4.1.1, we showed examples of two different pipeline

implementations with different costs and speeds. Another cheap design of a

- -. pipeline for the partitioned data flow graph of Figure 4.1-1 is shown in Figure

4.3-3.

ei
~~~~. . . , '"-
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FI=Fa// Flb

Note: During the next clock cycle, S2 and S12 will execute 13(F2)

Figure 4.3-3: Another cheap pipeline design.

In this design, only one stage, S12, is reused. Stages SI and S12 in

parallel perform F1, and stages S2 and S12 in parallel perform F2. In both

cases, for any stage, an entire stage is used or reused to perform a part of or an

entire subtask. The timing diagram for this pipeline is the same as that of

Figure 4.1-4.

Figures 4.1-3 and 4.3-3 show the only two patterns of resource sharing

used in the previous pipeline scheduling work discussed in Section 1.3.

However, in this thesis, we generalize the concept of resource sharing to non-

pipelined design. Figure 4.3-4 shows an example of such generalized resource

allocation with resource sharing.

For the pipeline of Figure 4.3-4, subtasks F1 and F2 are further

decomposed into sequences (Fla - fib - Fic) and (F2a -F2b), respectively. The

shared module, M12, is shared for Fib and F2a, and is not a part of either Si

or S2. Suppose that the rest of the pipeline stages, S3 and S4, are the same as

in the pipelin of Figure 4.3-3. Then this pipeline can also implement the

schedule of Figure 4.1-4. An example of this type of resource sharing is shown
A.in Figure 4.3-5, 'where module A is used in three different stages.
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11 (Flb:" :II I ,- " -

M12

Sla Slb S2

FI=FIa.Flb.FIc

Note: During the next clock cycle, S2 and M12 will execute l(F2)

Figure 4.3-4: A more generalized form of shared resource allocation.

For this type of general resource sharing pattern, the reservation table

method [Davidson 71/, which has been an essential tool for pipeline

scheduling, is no longer valid. This is due to the fact that each row in the

reservation table corresponds to a pipeline stage and no resource in a stage can

be reused in any other stages. In the case of the pipeline in Figure 4.3-5-(b),

module A is sometimes used alone as a single stage and sometimes used in

* different stages together with other modules. For this reason, we need some

other representation methods for resource scheduling, which we will discuss in

later sections.

In this thesis, we allow all three patterns of resource sharing. In fact, the

two resource sharing patterns shown in Figure 4.1-3 and 4.3-3 are special cases

of the resource sharing pattern shown in Figure 4.3-4.

AA
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+ b Ancontrol

-r5.

L O

r2 A

r5, 
r6-W

r+3 A4

r6

p(a) (b)

Figure 4.3-6: An example of generalized resource sharing: (a) a
staged data flow graph and (b) a pipeline implementation.

* - 4.4. Resource Sharing between Mutually Exclusive Operations

Up to this point, we have ignored conditional branches in our analysis.

£ In this section, we discuss how the theory of scheduling and scheduling we

developed in the previous sections can be applied to data flow graphs with

conditional branches.

I:.
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4.4.1. Conditional execution paths and stage construction

Let us first see how the actual stage construction looks when we have
mutually exclusive operations of the same type. The following example will
give us a clear explanation why we counted only the maximum number of the
operations which are actually performed. Figure 4.4-1 shows an example of
such a stage construction. The thick broken lines in Figure 4.4-1-(b) show two

* ,-- possible execution paths for the subtask in Figure 4.4-1-(a).

Condition Input

Condition input

S0-DIST

* T F T FT I

$. Adder fu.+!

I - -

L. JOIN

Output Otu

(a) A subtask with conditional (b) Stage implementation with
execution paths shared modules A and S

Figure 4.4-1: Resource sharing between mutually
exclusive operations within a subtask.

In this fashion, any number of mutually exclusive operations which can
be performed by the same type of module can be assigned to a single module in

I7

.............. .........................................



126

a subtask. However, such sharing might increase the control and wiring

complexity and the execution time due to the multiplexing requirements for the
selection of one conditional execution path.

In order to compute the minimum set of operators with Theorem 4.3.5,

we first need to compute the maximum possible number of operations of each

type actually performed per task. We will discuss a technique for this

computation after we discuss a graph coloring technique for automatic mutual

exclusion testing between conditional operations in the next section.

4.4.2. Conditional and unconditional resource sharing

As we discussed before, there are two different types of resourcing

sharing. They are

1. between operations across non-overlapping time steps, and

* 2. between mutually exclusive operations.

In order to clarify the difference between these two types of resource

sharing, we define the following two terms:

Definition 4.4.1: Unconditional resource sharing shares resources

across non-overlapping time steps and conditional resource sharing shares

resources between mutually exclusive operations.

As we have shown with Corollary 4.3.6, the maximum unconditional

resource sharing is determined by the number of modules and the chosen fixed-

latency. It specifies how many times a module can be used during a

computation of a task.

Conditional resource sharing does not depend on either the latency or the

number of available modules. Instead, it specifies how an instance of usage of a
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module can be shared between mutually exclusive operations. For example,

suppose that a module is assigned to certain time steps according to the

unconditional resource sharing rules. In a time step where such a module is

assigned, the module can be used only once in that time step. However, since

only one of the mutually exclusive operations is actually performed, all the

mutually exclusive operations which can be performed by the module can be

assigned to the module without any resource conflict. However, conditional

resource sharing across time steps is unpredictable and thus not always

possible. We illustrate this with an example.

In the data flow graph of Figure 4.4-2, there are one unconditional

addition and subtraction each and two conditional additions and subtractions

-. each. Thus, at most, two additions and two subtractions are performed during

an execution of the data flow graph. Suppose that we have one adder and one

subtractor. Then, the minimum possible latency is 2. In schedule A, the two

mutually-exclusive subtractions, -1 and -2, are scheduled in the same time step.

The two additions, +2 and +3 are assigned to the same time step, too. As

shown in (c), with schedule A, a fixed latency 2 can be used without any

resource conflict. In schedule B, two mutually-exclusive subtraction

- operations, -1 and -2, are scheduled in time steps I and 3, respectively. With

this schedule, a fixed latency of 2 can cause resource conflicts. The time steps

I and 3 overlap. Therefore, in the timing diagram of (d), if the -2 operation is

selected in II while the operation -1 is selected in 12, there will be resource

conflicts since there is only one subtractor.

It is difficult to detect when resources can be shared under such

circumstances unless exhaustive search is performed. For this reason,

* conditional resource sharing (resource sharing across conditional branches)

" "is allowed only in the same time step of a schedule.
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*Step Se

D1 D

+2 -12+ -
2

-2 +3-2+

4

-3 3 -

*(a) Schedule A (b) Schedule B

(task) (task)

IiI 1 +1 l1+2,+31 -3 1 11 1 +11 +21 -21 -31
1 1-.2 -11 +31 1 1

*-------------4--4--------

*12 1 +1 1+2.+31 -3 1 12 1 +11 +21 -21 -31
1 1-1.-21 1 1 -11 +31 1 1

til t12 t13 t14 t15 t2l t22 t23 t24 t25 t26
(clock cycle) (clock cycle)

(c) Execution overlap of (d) Execution overlap of
schedule-A with latqnswy 2. schedule-B with latency 2.

Figure 4.4-2: Moduling sharing between mutually exclusive operations.
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4.5. Node Coloring for Automatic Testing of Mutual Exclusion

In this section, we discuss a node coloring technique for the automatic

detection of mutually exclusive operations (refer to Definition 4.2.1) in a data

"| flow graph. The node coloring algorithm we present in this section, DJ-

Coloring, assigns a color code consisting of a sequence of one or more integers

to each node such that testing of mutual exclusion between any two nodes can

be done by simply comparing the color codes of the nodes in a constant

number of steps. Note that the node coloring algorithm we present here is not

:- the same as the usual node coloring algorithms used in graph theory,

which assign different colors to adjacent nodes.

, 2 This preprocessing saves time during synthesis. As we will discuss in the

later sections describing synthesis algorithms, whenever we partition tasks into

* -" subtasks, we need to check that there are sufficient modules to execute all the

operations of the subtask. Conversely, if the task partitioning has already been

done, we need to compute the minimum and maximum number of modules for

the pipeline to be synthesized. Also, whenever we assign an operation to a

module, we need to check whether the operation can share an already assigned

-.2 ¢module or needs to be assigned to a different module. All these design tasks

require testing of mutual exclusion between every pair of operations that can
share the same module. Moreover, these task partitioning and module

assignment tasks are to be repeated for many possible pipeline designs.

Therefore, we need a fast algorithm for mutual exclusion testing.

4.5.1. A node coloring algorithm

We first outline the rules of the node coloring. Then we outline the

mutual exclusion testing procedure for any pair of nodes according to the node

coloring rules. A Pascal-like description of the node coloring algorithm, which
A

has been programmed in Franz LISP, is shown in Appendix B.

eli
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In the data flow graph of Figure 4.5-1, the circles represent real operation

nodes and the squares represent distribution or join nodes. Di and Ji are a

matching pair of distribution and join nodes, forming a distribute-join block.

Definition 4.6.1: A distribute-join block, Di-Ji , is a subgraph of a

qp data flow graph consisting of all the edges and nodes that can be reached from

the distribution node, Di, without passing through the join node, Ji.

Definition 4.5.2: An outermost distribute-join block is a maximal

distribute-join block which is not a part of any other larger distribute-join

block.

In other words, an outermost distribute-join block is always entered and

at least one path in it is selected during an execution of any task.
p.

The color code of each node is parenthesized on the right side of the

node. Examples cited in this section automatically refer to Figure 4.5-1, unless

specified otherwise.

4.5.1.1. Node coloring rules

Each node is given a color code which is a sequence of one or more

integers. The length of the color code of a node represents how many levels of

distribute-join blocks the node i6 nested in. A single-digit color code represents

that the node is not in any distribute-join block. Any node in a distribute-join

block has a color code with more than one element. We first summarize the

rules for node coloring as follows:

*' Rule 1: Unconditional operations, including outermost-level distribution

and join nodes, NOP nodes, and SELECT nodes, have a single element code

sequence (e.g. (0) for +2, (1) for D1, and (3) for J4.). Any operation or non-

operation node that is conditionally executed has a color code of length at least

2 (e.g. (1 0) for -2, (1 1) for D3, and (1 0 1) for -5.).

. .

,' .#'.... '.. ",.' .,.-. ..,. ... ..". . . . . . . ..;. . . . . . . ."'"' :' " " 
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!a Figure 4.6-1: A node-colored data nlow graph.
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Rule 2: In an outermost distribute-join block, the first elements in theI. code sequences of all the nodes are the same (e.g. (1) for DI, (1 1) for D3, and

(1 0) for +3).

Rule 3: The common first element of the color codes in an outermost

distribute-join block is different from that of any other outermost distribute-

join block (e.g. (1) for Di and (2) for D4).

Rule 4: For any distribution node with a color code of length n, every

child node except its matching join node has a color code of length n+1 where

the first n elements are the same as the distribution node's and the (n+l)-th

element is a unique integer among the children (e.g. (1 1 0) for +3 and (I 1 1)

for -3).

Rule 5: A join node has the same color as its matching distribute node

S (e.g. (1) for DI and J1, and (3) for D5 and J5).

Rule 6: For any two connected nodes, if both are either conditional or

unconditional and neither of them is a distribution or a join node, they have

the same color code (e.g. (0) for +2 and +7, and (I 1 1) for -3 and +6). Note

that, by this rule, the +5 node inherited its color code from D2 not from +2.

4.5.1.2. A procedure for mutual exclusion testing

Before we present a procedure for mutual exclusion testing, we examine a

special case which might be somewhat debatable. Mutual exclusion testing

* -between two operations in different parallel distribute-join blocks is the case.

In the data flow graph of Figure 4.5-1,

are the -4 operation in the D4J4 block and the -8 operation in the D3-
J3 (or D1-JI) block mutually exclusive?
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The answer is yes or no. If the condition selecting the -3 operation in D3-

J3 block always falsifies the condition selecting the -4 operation in D4-J4 block

-- and vice versa, then the two operations are mutually exclusive. However, such

*a case is exceptional and expected to occur seldom. Even if there is such a case,

such parallel conditional blocks with very tight control dependency would tend

to be merged together. In this thesis, we will always treat such operations as

+3 and -4 not to be mutually exclusive.

The outline of the mutual exclusion testing procedure for any two nodes

in a data flow graph is as follows:

Step 1: IF either of the two nodes have a single element color code

sequence, STOP and report NOT mutually exclusive. (At least a node is not

conditional: Rule 1.)

Step 2: IF the first elements of the color codes are different, STOP and

report NOT mutually exclusive. (The nodes are in different outermost

distribute-join blocks: Rule 2.)

Step 3: IF two color codes are identical, STOP and report NOT mutually

exclusive. (There is a data dependency between the nodes and if one is

executed, the other must be executed too: Rule 6.)

Step 4: IF two color codes are not the same but of the same length,

STOP and report mutually exclusive. (They have a distribution node as

their closest common ancestor, thus they are mutually exclusive: Rule 4.)

Step 5: IF none of the conditions of Stepl through Step 4 is true (i.e.

both color codes have more than one digit with the same first digit but their

lengths are different), then delete the last element from the longer color code

2 ,,- until both color codes have the same length (i.e., trace back from the more

oli

7. ,.2~ ...........................
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deeply nested node, say n, to its closest ancestor that are in the same level as

the other node under comparison. If the closest ancestor of n1 is mutually

exclusive with the other node, then n, is mutually exclusive with the other node

too.)

Step 6: IF the two color codes resulting from Step 5 are identical, STOP

and report NOT mutually exclusive (There is a data dependency between the

nodes: Rule 6). ELSE STOP and report mutually exclusive (Rule 4).

All sets of mutually exclusive nodes of the same function type in the data

flow graph of Figure 4.5-1 are listed below.

* Node(Color) Node(Color) Node(Color) Node(Color) Node(Color)

-2( 0) -2 ( 0) -3 (1 1 1) -5(1 0 1) +5 (1 0 0)
-3 (1 1 1) -6 (1 1) -6 (1 1) -6 (1 1) +3 (1 1 0)

4.5.2. Computation of the maximum number of actually performed

operations

O I As mentioned before, in order to compute the minimum necessary set of

modules, we need to compute the maximum number of operations which are

actually performed during an execution of a task.

Lemma 4.6.3: The maximum possible number of usage of type-M

modules during an execution of a data flow graph, G, is equal to the sum of

I. the number of unconditional operations assigned to type-M module
and

2. for every outermost D-J (distribute-join) block, the maximum

number of conditional operations using type-M modules on a
directed path in it.

The proof of this lemma is obvious. The first item sums up all the

N'P ..
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unconditional operation nodes using type-M modules, which must always be

performed. The second item sums up the maximum possible number of actual

usages of type-M modules in each outermost D-J block. Since no operations

across D-J blocks are mutually exclusive (refer to Section 4.4.1.2), this is the

minimum necessary number of usages of type-M modules.

For an example, we count the maximum possible number of subtraction

operations performed during an execution of a task. There is only one

unconditional subtraction node, -1. In the DI-J block, the maximum number

of subtraction operations is 2 (either -2 and -5, or -3 and -6). Both D4-J4 and

DS-J5 have only one subtraction operation. Therefore, the total count is (1 + 2

+ 1 + 1) = 5. Let us also count the addition operations. +1, +2, and +7 are

unconditional and the count becomes 3. +4 and +8 do not have any addition

operations they are mutually exclusive to; thus, we increment the count to 5.

In DI, +5, +3, and +6 are mutually exclusive to one another. Therefore we

add only one to the count and the total number becomes 6.

The intuitive meaning of the maximum number of actually performed

operations is the following: As we have discussed in Section 4.3.5, if we know
the total number of operations actually performed using a certain type of

module, we can compute the minimum necessary number of modules to achieve

a certain fixed-latency (refer to Theorem 4.3.5). Conversely, if we have M.

modules of a certain type and we know the maximum number of operations

which must actually be performed on those modules, we can compute the

minimum possible latency.

A Pascal-like algorithm description for this counting, which has been

programmed in Franz LISP, is shown in Appendix C.

- ~ .. .
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4.6. Some Remarks on Cost-performance Optimization

The theorems and corollaries in the previous two sections give a good

starting point for the design space exploration. However, the precise

performance and cost of a pipeline design can only be estimated after register-

transfer synthesis.

As we have shown with Theorem 4.3.1 and Corollary 4.3.2, the actual

performance of a pipeline design is a function of not only the latency and stage

time but also the length of the pipe cycle (or schedule), and the

resynchronization overhead. Also, the actual cost of a pipeline design can only

be estimated after all the necessary number of multiplexers and latches are

determined. Reducing the number of operators does not necessarily reduce the

total cost. More sharing of modules will increase the number of multiplexers.

Also, the minimum number of modules computed by Theorem 4.3.5 may force

scheduling to increase the length (the number of subtasks) of schedule in order

to meet the given latency. Shortening the stage time for a faster clock cycle

will increase the number of stage latches.

LF For these reasons, in order to achieve a certain required performance at

minimum cost or to maximize performance at a fixed cost, we need to tune the

scheduling and resource allocation by varying the number of operators, starting

from the estimation we have discussed in this chapter. This requires good

prediction techniques based on previous designs, which can guide the design

process towards a desired direction. In the next chapter, we will discuss such

techniques when we discuss synthesis algorithms and procedures.

4 * . . - - - - - - .

A & rla .A:..j



i:- :

'2

,-4

21

04

I-' -. ,,... '". . . .•-,. . .-.--.. .. ,, . -. ." ' ,.,",.''' .. :;¢": ,:.;, '." :...','." ' . .".. . ? -.- .;,



137

Chapter 5

Synthesis of Pipelines

In this chapter we present some algorithms and procedures for automatic

Usynthesis of pipelines, based on the discussions in the previous chapter. We

first discuss the basic scheduling and resource allocation strategies together

with several scheduling algorithms. Then we demonstrate how these scheduling

' -. algorithms can be used to design an optimal pipeline.

. The main objective of the pipeline synthesis techniques in this chapter is

to provide designers with a precise and efficient tool for quick design space

exploration. While going through a large number of non inferior designs with

various design constraints in a short time, the designer can tune the design

process such that the output design meets all the constraints imposed on it and

is optimal with respect to the designer's intention.

* 5.1. Introduction

5.1.1. Three types of polynomial-time scheduling algorithms

In this section, we will discuss three types of polynomial-time algorithms

for scheduling a data flow graph. They are

- - 1. feasible-scheduling - schedule a data flow graph with a fixed
latency, a maximum stage-time limit (or a given clock cycle), and
constraints on the total cost of the pipeline implementation,

2. maximal-scheduling - schedule a data flow g. iph as short as
possible with only a maximum stage-time limit, assuming there is

*no cost constraint (in this case, the latency is always 1), and

............................................
.J. * %
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3. nonoverlap-scheduling - schedule a data flow graph as short as .7

possible with a maximum stage-time limit and constraints on the
total number of available modules. No execution overlap is
considered.

Schedule produced by the feasible-scheduling, the maximal-scheduling,

and the nonoverlap-scheduling are called feasible schedules, a maximal

schedules, and nonoverlap schedules, respectively.

The feasible-scheduling algorithm is the main pipeline scheduling

algorithm with cost and performance constraints. It performs resource

allocation at the same time in order to achieve maximum performance at a

given cost. We will discuss this algorithm in detail in the next section. The

second type of algorithm is used to estimate the absolute upper bound on

performance and cost. Also, as we will discuss later in this chapter, this

algorithm is used in an exhaustive scheduling routine for an optimal schedule.

The third type of algorithm is used to estimate the maximum performance

when no execution overlap is used. This is necessary to determine whether to

use a pipeline. The last two types of algorithms will be discussed later in this

section after we discuss several basic scheduling strategies.

5.1.2. Urgency measures of operations

The scheduling priority of operations used in the polynomial-time

scheduling algorithms is based on an urgency measure for operations. The

notion of urgency is the following: at any stage of the scheduling process, the

shortest possible length of the schedule is determined by the sum of the time

steps already scheduled and the critical path in the rest of the data flow graph

which is not yet scheduled. Therefore, scheduling the nodes on the critical

path first will always minimize the critical path length in the rest of the data

*l flow graph, which will also minimize the length of the schedule.

4
'
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Definition 6.1.1: In a data flow graph where nodes are weighted with

Ithe delays of the modules assigned to them, the forward urgency of a node is

" the longest path from an input edge of the node to an output edge of the data

) .flow graph. The backward urgency of a node is the longest path from an

input edge of the data flow graph to an output edge of the node.

The forward-urgency measure is used when scheduling starts from the
root nodes and proceeds in the same direction as data flow, and the backward-

urgency measure is used when scheduling starts from the terminal nodes and

proceeds in the opposite direction to the data flow. An example of urgency

measures is illustrated in Figure 5.1-1.

The difference between urgency-based scheduling and critical path

scheduling is that the critical path is not fixed in the case of urgency

scheduling. Instead, for any subgraph left to be scheduled, the path starting

1from the most urgent node is the critical path.

5.1.3. Forward scheduling and backward scheduling

* I The common basic outline of all the polynomial-time scheduling

algorithms we discussed before can be briefly summarized as follows:.

1. Compute urgencies (either forward or backward) of the nodes in the
data flow graph.

2. For every node starting from the most urgent one down to the least
urgent one, if the node does not violate any constraints, then
schedule it in the current time step.

Ai, 3. If there are no more nodes which can be scheduled in the current
time step, then add a new time step and repeat Step 2 and 3 until
there are no more nodes left to be scheduled.

There are two different approaches to each scheduling algorithm we will

-

.
•
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a H a 15:8)

a L -a(7:0)

bH=b( 15: 8) +1

bL=b(7 :0)

- :"1-bit ++

carry

SOLH OLL•OHM OHL

Note: The multiplications *1 through *4 are assigned to
multipliers with 100 nsec. delay and the addition.
+1 through +5 to adders with 50 asec. delay.

node *1 *2 *3 *4 +1 .2 +3 +4 45

Forward
Urgency 350 350 300 200 260 200 160 100 60

Backward
1 Urgency 100 100 100 100 150 200 250 300 350

Figure 5.1-1: An example of urgency measures.

discuss, depending on which direction of urgency measures is used. One

approach starts scheduling from the input side and proceeds toward the output

side of the data flow graph, using the forward-urgency measures (forward

scheduling). The other starts from the output side and proceeds toward the

* input side, using backward urgency measures (backward scheduling).

Si' .
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As we will see with examples, in many cases of scheduling, one approach

will produce a different schedule from the other depending on the input data

flow graph and constraints on the scheduling.

5.1.4. The maximal-scheduling and nonoverlap-scheduling

The maximal-scheduling algorithm schedules, starting from the most

urgent operation, as many operations as possible in each time step as long as

the longest path delay in a time step does not exceed the maximum stage-time

limit. As the result, in the forward maximal schedule, each node is assigned to

the earliest time step it can be assigned to. In the backward schedule, each

node is assigned to the latest time step it can be assigned to. The maximal-

scheduling algorithm assumes that each operation is to be performed on a

different operator so that a fixed latency of 1 is possible. An example of a

forward maximal schedule of the data flow graph of Figure 5.1-1 is shown in

Figure 5.1-2.

Since the maximal-scheduling (either forward or backward) algorithm

schedules as many operations as possible in each time step within the

maximum stage-time limit, it produces the shortest schedule in terms of the

number of time steps (refer to the proof of Lemma 3.2.1 in Chapter 3). Thus,

from a maximal schedule, we can compute the absolute upper bound on the

performance of a pipeline implementation of a data flow graph. The absolute

!P mfastest speed of a pipeline implementation of the data flow graph of Figure
75.1-1, according to the maximal-schedule of Figure 5.1-2, is 10 initiations of

computation tasks per second (1/100 (nsec.)).

The maximal-schedule also gives the upper bound on the cost. If any

other schedule results in a more expensive implementation than the maximal

schedule, we would choose the maximal-schedule instead.

...............................................
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•b H  bL T IME

pg.."a a 7: ),
STEP

a -a15:8)* *
a1-a(7:0)

b = b 15 :8)

bL=b(7:0) 2

data 3

0 0

014 0  L L

Note: 1. Tbe operation-operator assignments and operator
delays are the same as in Figure 5.1-1.

2. The maximum stage-time limit is 100 nsec.
3. Latch delays are assumed to be zero.

Figure 6.1-2: A forward maximal-schedule for the
data flow graph of Figure 5.1-1.

The nonoverlap-scheduling algorithm schedules, also starting from the
-most urgent operation, as many operations as possible as long as the longest

execution time of a time step does not exceed the maximum stage time limit

and the resource requirement of each time step does not exceed the total

available set of modules. Note that resources required can be shared across
* time steps, since time steps are never overlapped. An example of a backward

nonoverlap-schedule of the data flow graph of Figure 5.1-1 is shown in Figure

. .. _ _ _
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ab bL TIME

m.'.~ ~~ -Ha( 15:8) " i "

-'. ~aL-a(7:0) ~ : ':

b.: bc b ( 1 5 :+1.-

bL=b(7:0)

$los +3+ 2 "

"'° ~8-blt m
, " " : data

, 1-bt +5 +I"

carry

S
0  LH OLL.. HH OHL

Note: 1. The operation-operator assignments and operator
delays are the same as in Figure 5.1-1.

2. Two multipliers and three adders are used.
3. The maximum stage-time limit is 150 nsec.
4. Latch delays are assumed to be zero.

Figure 6.1-3: A nonoverlap schedule for the
.. data flow graph of Figure 5.1-1.

According to the nonoverlap schedule of Figure 5.1-3, the speed of a non-

pipelined implementation with two multipliers and three adders is 2,222,222

initiations per second (1/450 (nsec.)).

If a pipeline schedule at the same cost results in a slower speed than the

nonoverlap-schedule, then we must discard the pipeline schedule.

S
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5.2. The Feasible-scheduling Algorithm

The feasible-scheduling algorithm schedules a data flow graph with a

".. fixed clock cycle (or the maximum allowed stage time), a fixed latency, and a

fixed set of modules. This is the main algorithm for pipeline scheduling.

5.2.1. Algorithm outline

The outline of the feasible-scheduling algorithm (for either forward or

backward scheduling) is shown below. We assume that there are either no

mutually exclusive operations or at least no conditional resource sharing.

Scheduling with conditional resource sharing will be discussed later.

Algorithm Feasible-Schedule

1. Compute urgencies of the nodes (either forward
or backward) in the data flow graph;

2. Sort the nodes in non-decreasing order of urgency;

3. timestep := 1;

4. FOR the next most urgent node in the sorted list DO

IF (adding the node to the current time step
does not violate the maximum stage-time limit)

i',y, AND -
(the node can be assigned to some module

without any resource conflicts)

THEN
add the node to the current time step;
delete the node from the sorted list;

5. IF NOT (the last node) THEN go to 4.

6. timestep := timestep + 1;

7. IF NOT (empty sorted list) go to 4.

.4 ° I
. .. . . . . . . . .4.... . . . . . . . . . . . . . . . . . . . .
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Run-time analysis: Let m be the number of nodes in a data flow graph.

The computation of urgencies of nodes require a breadth-first graph traversal,

which takes O(m 2) time steps. Sorting the nodes by urgency measure takes

O(m 2/ogm), using the merge-sort. The actual scheduling loop (Step 4) checks at

most n nodes at each iteration. This loop iterates at most S times where S is

the number of time steps in the schedule, which is always less than n.

Therefore, the run-time of this algorithm is determined by the merge-sort and

is O(m2logm).

We will illustrate this scheduling procedure through an example. At the

same time, we will also show how urgency measures are used in scheduling

together with design constraints.

Suppose that we have chosen two multipliers and three adders for the

scheduling of the data flow graph of Figure 5.1-1. According to Theorem 4.3.5,
4 5

the minimum possible fixed-latency is max{[f], -l) = 2. We want to schedule

the data flow graph with the minimum possible fixed-latency, 2, and a clock

cycle of 150 nsec. We assume that the latch and multiplexer delays are zero.

Figure 5.2-1 shows (a) a forward schedule and (b) a backward schedule. The

procedure of the forward scheduling is as follows:

1. The nodes are sorted in non-increasing order of urgencies, I"" (*1 *2 *3 +1 *4 +2 +3 +4 +5). ,.

2. Get time step I from (*1 *2 *3 +1 *4 +2 +3 +4 +5).

a. *1 and *2 are assigned to time step 1. *3 cannot be assigned
to time step 1 since there are only two multipliers.

b. +1 is added to time step 1. No more nodes can be added to
time step 1 due to either the stage-time limit 150 nsec. or the
number of available operators.

3. Get time step 2 from (*3 *4 +2 +3 +4 +5).

a. *3 and *4 are assigned to time step 2. +2 is also assigned.

S,
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STEP

a -a(7S:0)

bLub(7:O)

data 3

(a) A forward feasible-schedule

STEP

OHi( 15: 8) *
aL=a( 7 :O)

bLb(7:O)2

8-bit
data n

carry

ONH OHIL LO

(b) A backward feasible-schedule

Figure 6.2-1: Examples of feasible-scheduling.
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b. +3 cannot be assigned to time step 2 due to the stage time
limit, i.e., the path delay through *3, +2, and +3 is 200 nsec.
+4 and +5 cannot be assigned for the same reason.

4. Get time step 3 from (+3 +4 +5).

a. +3 and +4 are assigned to time step 3.

b. +5 cannot be added due to a resource conflict. Since the fixed
latency is 2, time steps 1 and 3 are overlapped and the total
number of adders needed in time steps 1 and 3 is already 3
for +1, +3 and +4 (refer to Theorem 4.3.3).

5. +5 is put in time step 4.

As shown in Figure 5.2-1, forward and backward schedules even with

exactly the same design constraints result ii tailferent schedules. In general, no

polynomial-time algorithms can guarantee optimality of the schedule. For this

reason, it is desired that, for any polynomial-time scheduling algorithm, we use

both approaches and choose the better schedule.

5.2.2. Resource allocation table

As we have seen in the previous scheduling example, resource conflict

checking must be done for both a time step and between overlapping time

steps. For scheduling of large data flow graphs, we need an efficient mechanism

for resource conflict checking. The table shown in Figure 5.2-2, which can be

used for both cases of resource conflict checking, is called a resource allocation

table or simply an allocation table.

The number of rows in an allocation table corresponds to the number of

operators. For the allocation table of Figure 5.2-2, there are one type-I module

and two type-2 modules, etc. The number of columns corresponds to the

number of sets of overlapping time steps. As we have seen by Theorem 4.3.3

and Corollary 4.3.4, for a schedule with a fixed latency of I, there are at 7,

-A L - a,
'I.,.J

S.
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4-4-------------------------------------------------- ----------

I time (F {i~kl )
I \steps ----------------------- ----------

Iresource \1 i=1 i=2 Ii=3 I .. i=1 I

Imodulel IOPi 10P5 S .

4------------4---------4-------------------- ----------

I 10~P2 l0P4 I I .. I
Imodule 2 ------------------------ ~-- -----------

I I 10~P61 .

------------- 4---------+-------------------- ----------

* 4-----------------4--------------------------- -----------

Imodule m I10P3 I I I . I I
4--------------------------------------4---------

Figure 5.2-2% The resource allocation table.

maximum I such overlapping sets of time steps, i.e., for a schedule of D time

steps, F1 through Fn? the sets of overlapping time steps for a fixed latency of I

are 7j through 7, where

3 Fi+k,}0<k<[YJ

Each cell in an allocation table represents an instance of usage of the

corresponding type of module. Thus, in each cell, either only one unconditional

operation or a set of mutually-exclusive operations can be assigned. Note that

when there are multiple modules of the same type, the number of filled-in cells

of a type of module represents only how many of them are needed during one

clock cycle, and there is no need to freeze individual module assignment of the

operations yet.

Figure 5.2-3 shows the state changes of the allocation table during the
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I time Fi IFi I time Fi IFi
I \steps I(i=l,3 M=i2.4 I I \Bteps I(i=l.,3 I(i=2,4 I

Ioperator \I5. ..I6 .I Ioperator \I5, .I6..

I I 1 I I I *1 I *3
Imultiplier ----------------- multiplier -----------------

I I *2 II II *2 I *4
+----------4-------------4------------- -------------------------------- e

I 1 + 1 +1 + 2 1

I ader --------------- I de------------------

+-----------4------------4------------- ----------------------------------

L(1) After time step 1 (2) After time step 2
is scheduled is scheduled

4-,-------4-------------4------------- 4--------------------4-------------

S time I Fi I Fi 1 time IFi IFi I
I \steps I(i=1.3 I(i=2,4 I I \steps I(i=1.3 I(i=2.4I
Ioperator \I5 .I6 .l Ioperator \I5. .) .. )

I I 1 I *3 1 *1 I *3
Imultiplier4-----------------I multiplier ---------------

I *21*41 I*21*41
4-----------4---------------------- ---------------------------------

+ 41 +.2 +I +2 1 1 21
I 4-------------------- I-------------------
I adder 1 +3 1 1 adder 1 +3 14+5 1
I 4-------------------- I ------- 4------------4*

I +4 4
4----------4-------------4------------- ------------------ -------------------

(3) After time step 3 (4) After time step 4
is scheduled is scheduled

Figure 5.2-3: An example usage of the allocation table during
the forward scheduling shown in Figure 5.2-1-(a).
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forward scheduling shown in Figure 5.2-1-(a). An example detection of possible

resource conflicts between overlapping time steps can be found in the
allocation table state (3) in Figure 5.2-3. After +4 is added to time step 3 or

F3, the first column of the allocation table is full. Thus, +5 cannot be added to

F3 even though adding it to F3 does not violate the 150 nsec. stage-time limit.

Using this allocation table, we can rewrite Step 4 of the algorithm,

Feasible-Schedule, as follows:

4. FOR the next most urgent node in the sorted list DO

IF (adding the node to current time step does
not violate the maximum stage-time limit)

AND
,- (there is a cell in column[timestep mod latency]

and row[needed module] in the allocation table
which is either empty or filled with nodes all
mutually exclusive with the node to be added)

THEN
add the node to current time step;
delete the node from the sorted list;

5.2.3. Resource sharing between mutually exclusive operations

In this section, we discuss conditional resource sharing between mutually

0 I exclusive operations during the feasible-scheduling. We focus on two aspects of

conditional resource sharing:

* forcing conditional resource sharing due to limitations on the
number of available modules and the fixed latency, and

. determination of when to force conditional resource sharing.

We discuss these aspects through an example of a forward feasible

scheduling of the data flow graph of Figure 4.4-1, as shown iii Figure 5.2-5.

O daL
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*Suppose that all the additions are to be performed by adders with delay time

100 nsec. and subtractions by subtractors with delay time 100 nsec. We want

a schedule with a fixed-latency of 3 and a clock cycle of 100 nsec. (i.e., at

maximum, we can initiate a new computation task every 300 nsec.). According

I to Lemma 4.5.3, the maximum possible numbers of additions and subtractions

actually performed during an execution of a computation task are 6 and 5,
65

respectively. Accordingly, by Theorem 4.3.5, we choose = 2 adders and [3

- 2 subtractors.

As shown in the allocation table of Figure 5.2-4, we can use the adders

and subtractors only six times each, although we have seven subtraction nodes

and eight addition nodes in the data flow graph of Figure 5.2-5. Therefore, at

some point, we have to force conditional resource sharing in order to satisfy

the resource limit with the chosen latency.

Now we illustrate this through a forward feasible-scheduling of the data

flow graph of Figure 5.2-5, with the constraints mentioned above. The forward

urgency measures of the operations is shown below.

Node +1 -3 +2 -1 -2 +3 +8 +4

Forward
Urgency 500 400 300 300 300 300 300 200

Node -4 +5 -5 -6 +7 -7 +8

Forward
Urgency 200 200 200 200 100 100 100

Figure 5.2-4 shows the allocation table for this scheduling. It shows the

status of the resource allocation in the middle of scheduling time step 2.

S.
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[, ---- - -- - -- - -- - -- -- -- - -- - -- - -- - -- - -

I \time I Fi I Fj I Fk I

I \ step_ I(=1,4.7, .. )I(j=2,6,8, .. )I(k=3,6,9, .. )I
I operator \I I I I

i - -. I I - 1 I (-3,-2) I I

I ubtractor -------------------------------------------I I I I I

*---------------------------+-------------------------------------------------

I +1 1 +3 I I
I adder +------ -------------- +-----------------------+
I I +2 I I I
-------------------------------------- 4------------------

Figure 5.2-4: An allocation table with two adders and
two subtractors, and a fixed latency of 2.

First, +1, +2, and -1 are assigned to time step 1 as shown in Figure

5.2-5. The remaining nodes in the order of forward urgency are (-3 -2 +3 +6

+4-4 +5 -5 -6 +7 -7 +8). No more nodes can be added to time step 1 due to

the stage-time limit of 100 nsec.

Next, -3 and -2 are assigned to time step 2. They are mutually exclusive

to each other, thus are put in the same cell. Note that there are only four

subtraction nodes left to be scheduled and there are four empty cells of

subtractors in the allocation table. Therefore, all the subtraction nodes can be

scheduled without any resource conflicts.

The remaining nodes are now (+3 +6 +4 -4 +5 -5 -6 +7 -7 +8). The

next most urgent node is +3. However, if +3 alone is assigned to an empty cell

of adders, there will be only three empty cells of adders left in the allocation

table. The remaining addition nodes are (+6 +4 +5 +7 +8). Even if the

mutually exclusive operations +5 and +6 are assigned to one cell, there must

be at least 4 empty cells of adders. Therefore, assigning +3 alone in an empty

*, cell of adders is not possible. The only feasible allocation is assigning the three

-... "?
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mutually exclusive operations, +3, +6, and +5, all in one cell of adders.

Therefore, we have to force conditional resource sharing for these three

addition nodes. However, assigning +6 to time step 2 will make the stage time

200 nsec. (through -3 and +6). Therefore, +3, +6, and +5 must be assigned to

some later time step all together.

-----------------------------------------------------------

" \time I Fi I Fj I Fk
-I \ steps I(i=1.4.7. ..)I(j=2,5.8. ..)I(k=3.6,9, ..)I

I operator \1 I

-I I -1 I (-3,-2) I -5 I
I subtractor ------------------------
I I -B -4 1-7 I

-------------------------------------------------------

'+I I 1 +4 I (+3. 6.5) I
I adder -------------------------------------------

,J . I I +2 I+7 I+8 I
------------------------------------------------------

Figure 6.2-6: The completed resource allocation.

*Figures 5.2-5 and 5.2-6 show the completed schedule and resource

allocation.

Forcing conditional resource sharing may cause a deadlock in the

algorithm. As an example, we consider scheduling the data flow graph of

Figure 5.2-7-(a).

Suppose that we have chosen one adder and one subtractor both of which

have 100 nsec delay time. In this data flow graph, each conditional execution

path has two subtraction nodes (either -2 and -3, or -1 and -3) and two

addition nodes (either +1 and +2, or +1 and +3). Thus, according to Lemma

4.5.3, we want a schedule with latency 2. Figure 5.2-7-(b) shows an allocation

table for this scheduling. Suppose that we want the stage time to be 100 nsec.

.'.
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D1 ----- ---------

I time IFi IFi I
I \stop. I(=1.3 1Mi=2.4 I

+2I oprator \I 5 )I 6. )I

II adder I +1 I I

*------------------ ------
2 +3 I ubt ractor I I I

------------ ----------------

J(b) Resource allocation table for a

forward feasible-scheduling with
one adder and one subtractor with

-3 a fixed latency of 2.

(a) A data flow graph.

Figure 6.2-7: An example of a deadlock due to
forced conditional resource sharing.

As shown in the data flow graph and the allocation table, only +1 is assigned

to time step I due to the stage-time limit. +2 and -1 are the next most urgent

nodes. In the allocation table, there is only one empty cell for the mutually-

exclusive addition nodes, +2 and +3. For the subtraction nodes -1, -2 and -3,

there are two empty cells. Therefore, for both the addition and subtraction

nodes, conditional resource sharing must be forced (between +2 and +3, and

between -1 and -2). However, due to the stage-time limit, neither of the

mutually-exclusive operation pairs can be added to time step 2. In order for -1

and -2 to be assigned to the same time step, +2 must be assigned to some

earlier or the same time step, which is not possible due to either the resource

%.
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constraint or the stage-time limit. Also, for +2 and +3, -1 must be assigned to

some earlier or the same time step. Therefore, there is a deadlock.

In order to resolve a deadlock, either more modules than the minimum

possible number must be used, and/or the stage-time limit must be increased.

5.3. Scheduling with Speed and Cost Constraints

In this section, we show how the scheduling and resource allocation

techniques we discussed can be used in synthesizing a near-optimal pipeline.

We divide the design tasks into two cases depending on the design constraint:

* design the fastest pipeline within the cost constraint, or

* design the cheapest pipeline that satisfies the minimum required
performance.

'. 5.3.1. Design-space boundaries

Figure 5.3-1 shows the design space boundary for a pipeline design from a

data flow graph. In the figure, the absolute fastest point, A, is determined by

the maximal-scheduling. The absolute cheapest point, B, is determined by the

nonoverlap scheduling with the absolute minimum set of modules (i.e. one for

each type). If the total cost is limited, point C is the optimal design. If the

minimum required performance is given, point D is the cheapest design. The

feasible design space is enclosed in the rectangle of the points C and D. While

the scheduling is repeated with different cost and performance constraints, we

only need to search the feasible space inside the possible design space.

o@
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Speed

(fat) I "
I +-----------------------A

I Feasible C I Possible
I Design I I <-- Design

Minimum I Space I i Space
Required +------------- D ---------------
Performance i I I

II I I"

B B-------------------4
I' I

(slow) I
II .:

- ---------------- Cost
(cheap) Maximum (expensive)

Allowed
*" Cost

A: The absolute fastest design
B: The absolute cheapest design
C: The fastest design within cost constraint
D: The cheapest design satisfying minimum

required performance

Figure 5.3-1: Design space boundaries.

5.3.2. Synthesis with a cost constraint

The feasible-scheduling algorithm we discussed uses a fixed set of

modules for scheduling and resource allocation. Thus, if simply the total cost

of a design is limited, we want to choose an optimal number of each type of

required module within the cost constraint (we assume that the choice of which

types of modules to use is fixed). However, the optimality of module selection

can only be known after a scheduling and resource allocation. If an optimal

design is desired, we need to compare the result of all possible sets of modules

within the cost constraint. To avoid this time-consuming iteration, it is

.- ...

m'.." " --
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desirable that the synthesis procedure analyze the results of scheduling and

predict a better set of modules for the next scheduling.

In this section, we outline such a synthesis procedure. We first define

some variables for the convenience of discussion.

N. The maximal number of type-i operations which must be

performed during an execution of a computation task.

Mi  The number of type-i modules chosen to perform type-i

operations..

C. The cost for a type-i module.

SCt The maximum allowed cost for a design.

" A chosen latency.

Procedure Cost-Constrained-Synthesis

1. Compute the minimum possible latency and the
N.

number of modules such that'i r- rT]'c, - Ctotal

2. FOR every possible stage time,2 1

do forward and backward feasible-scheduling;
put the schedules in the solution set;

3. FOR every schedule in the solution set,
-A. compute the total cost of design by adding the

latch and multiplexer cost to the operator cost;
B. compute the performance of the design

considering the resynchronization rate;

2 1For the computation of all possible stage times, see the run time analysis of the OPART
algorithm in Section 3.2.3.

""'J -,-,. , . .', . .,, ,v . ,, " . "- - - ", ' - "- ,. * - '" " '' - .. "
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4. IF (there are any solutions within the cost constraint)
THEN

A. choose the fastest design2 2 within the cost
constraint;

B. Check if there is any possibility of increasing
the performance of the fastest design by adding
more modules within the cost constraint.

IF (yes)
THEN add more module and go to 2;
ELSE go to 5.

ELSE
{*If there is no solution at all, choose*}
{*a cheaper set of modules and restart *}

increment I and recompute the minimum
necessary number of modules;
go to 2;

5. Report the fastest design within the cost constraint
as the solution;

Choose the cheapest design which is faster than the
solution, and report it as an alternative design;

In Step 4-B, we need to analyze the schedule first and determine whether

there is a chance of improving the schedule by increasing certain modules. In

order to do this, we rewrite the Step 4 of the algorithm Feasible-Schedule

presented in Section 5.2.1 as follows:

_,77
i22A design includes a schedule with resource allocation, latency, clock cycle, stage latch

locations, and total cost and performance estimation.

*c.-V "]
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4. FOR the next most urgent node in the sorted list DO

IF (adding the node to current time step does
not violate the maximum stage-time limit)

AND
(there is a cell in column[timestep mod latency]
and row[needed module] in the allocation table
which is either empty or filled with nodes all

. mutually exclusive with the node to be added)
THEN

add the node to current time step;
delete the node from the sorted list;

ELSE IF (adding the node to current time step does
not violate the maximum stage-time limit)

THEN
increment no module count;

The counter no module indicates how many times the operations

assigned to a certain type of module were delayed to some later time steps only

"' due to the resource limit. Therefore, if we increase the number of modules with

. positive no_ module counts, we might be able to shorten cerLain schedules. If
- -" there is more than one type of module with a positive no module count, we

use the following tie-breaking rules:
*1. choose the largest no_module count, then

2. the cheapest module, and then

3. the module required by the most urgent operation.

This is illustrated in Figure 5.3-2.

During the scheduling of Figure 5.3-2-(a), only the subtraction node -2 is

delayed since there is only one subtractor. The resulting schedule has five time

-"* steps. In (b), two subtractors are used and the resulting schedule has four time

r-- steps. According to Corollary 4.3.2, for a sequence of computation tasks with

any resynchronization overhead, schedule (b) is always faster than schedule (a).

C', 7..

. . . . . . . . . . . . . . . . . . . . . . . . . . .
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SInputs TIME

+3 2

+4 3

4

-7+5

output

(a) Forward feasible schedule with one subtractor

and three adders (latency - 2).

Inputs TIME

STEP

+3 2

3, 3

4 q+4

Output

(a) Forward feasible schedule with two subtractors
and three adders (latency = 2).

Note: Adders and subtractors have the same delay time,
and the stage-time limit is set to one operator delay.

L Figure 5.3-2: Performance improvement by adding more modules.

%*....................-...... . I.......... .-
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5.3.3. Synthesis with performance constraints

If the minimum required performance is given as a design constraint, we

would like to synthesize the cheapest pipeline that meets the performance

constraint. We start scheduling with the maximum possible latency, which

requires the minimum set of modules. If no feasible solution is found, the

latency is decremented. Until a solution is found, the number of modules is

minimum for each chosen latency. Once a solution is found with the minimum

number of modules for a latency, the latency is incremented and the procedure

Cost-Constrained-Synthesis is called once to search for a cheaper solution. This

is necessary since the solution found as such uses the minimum number of

modules for the latency used, say 1, although there may be a cheaper solution

with latency 1+1 but not with the minimum number of modules.

The outline of the Performance-Constrained Synthesis procedure is

shown below. The definitions of the variables are the same as in the Cost-

v.. Constrained-Synthesis procedure.

Procedure Performance-constrained-Synthesis

1. Compute the maximum potentially possible latency such that

1.(minimum possible tage time) < (desired average initiation rate).

2. Compute the minimal set of modules for latency 1.

-. '3. Choose all the feasible stage times such

that .(tage time) <- (desired average initiation rate).

4. FOR every feasible stage time,
do forward and backward feasible-scheduling;
put the schedules in the current solution buffer;

0¢./?

,S' IS
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5. FOR every schedule in the current solution buffer,UA. compute the total cost of design by adding the
latch and multiplexer cost to the operator cost;

B. compute the performance of the design
considering the resynchronization rate;

6. IF (there are any new solutions satisfying the
Pminimum required performance)

THEN
A. append the current solution buffer to

the solution set;
B. increment the latency and go to 2;

{*A solution found. Try cheaper designs*}

ELSE IF (there is no feasible solution yet)
decrement the latency and go to 2;

ELSE {*a solution was found before but
not with current latency*}

go to 7;

7. Choose the cheapest design satisfying the performance
constraint as the candidate for the solution;

B 8. Call Cost-constrained-Synthesis with the cost for the
solution candidate (looking for a cheaper design) and
append the result to the solution set;

g. Report the cheapest design satisfying the performance
constraint as the solution;

5.4. An Exhaustive Algorithm for Pipeline Synthesis

In this section, we examine the possibility of using an exhaustive

algorithm for optimal scheduling and resource allocation of a data flow graph

to be pipelined, while satisfying cost and performance constraints.

For a data flow graph to be scheduled for pipelining, if the maximum

stage-time limit is given, the shortest possible schedule with the smallest

number of times steps is determined by the maximal schedule (either forward

or backward), as discussed in Section 5.1.4. If the the difference in the number

.4i
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of time steps between the maximal schedule and the current best feasible

schedule is large, there is a possibility of existence of a shorter feasible

schedule. (However, note that the maximal-scheduling algorithm assumes

infinite resources. There may not be any better feasible schedule.) We present

an exhaustive algorithm to find such a shorter schedule.

The inputs to the exhaustive algorithm are

* the maximum stage time limit,

e the latency,

* the number of available modules, and

* the current best feasible schedule.

The exhaustive scheduling algorithm takes the best feasible schedule

- produced by the feasible-scheduling algorithm as a good lower bound on

performance to prune the search space. The outputs are the shortest feasible

schedule with resource allocation, the total cost including the stage-latch cost,

and performance estimation.

*We first outline the algorithm, and analyze each step. The outline of the

exhaustive scheduling and resource allocation algorithm is as follows:

1. Do forward and backward maximal-scheduling, and determine the
minimum possible number of time steps, Smi..

2. Set the desired number of time steps, Sd, less than that of the
current best feasible schedule by one.

o3. Compute the earliest and latest possible time steps for every node
in the data flow graph, according to the maximal schedules and Sd.

4. Enumerate all possible time-step assignments for the nodes
(schedules) within the earliest and the latest time-step ranges of the
nodes. For each configuration, check if the stage-time is within the
limit and the resource allocation is feasible.

0..



165

5. If any solution is found, then report it. If still Sd>Smi, then

decrement Sd and go to Step 3.

6. If either no solution is found or Sd = Smin, STOP.

First of all, we show how the earliest and the latest possible time steps

for each node are determined by the maximal schedules and the desired

number of times steps in the schedule. As we discussed in Section 5.1.4, the

time step of each node in the forward maximal schedule is the earliest time

step the node can be scheduled, and the time step of each node in the

backward schedule is the latest time step the node can be scheduled. &&&

Therefore, for a desired number of time steps, Sd, the possible range of time

steps for node i, R(i), with the earliest possible time step, E(i), and the latest

possible time step, L(i), is [E(i) - L(i)+(Sd-Smin)], inclusively. For example, in

Figure 5.4-3, since the Sd is the same as the Smin, which is 6, the time step

range of node i is [E(i) -- L(i)]. If Sd is 7, then the range of every node will be

augmented by 1, e.g., the range for the +1 node will be [1 - 2] and for the

+3 node will be [1 -. 3].

u1 Now we illustrate the algorithm with a 16-point digital FIR filter

example. In this example, we assume that multiplications (*) are performed by

multipliers with delay time 80 nsec., and additions (+) are performed by adders

with delay time 40 nsec. The latch delays are 20 nsec. The maximum stage

- time limit is set to 100 nsec. Figure 5.4-1 shows the maximal schedules of the

data flow graph, and Figure 5.4-2 shows the backward feasible schedule.

As shown in Figure 5.4-2, the backward feasible schedule has one more

time step than the maximal schedules, i.e., 7 time steps. According to

Corollary 4.3.2, the average initiation interval for this feasible schedule is (1

+ 2 p).3 0 0 nsec., where p is the resynchronization rate. If we can reduce the

I. number of time steps by one, the average initiation interval becomes (1 +p).3 0 0

...........................................................J
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InputsTime
InputsStep

+1 +2 +3 +4 +5 +6 +7 +8

*1 $2* 5 06 $7 *8 2

+a +b +C +d +e +f +g 6

(a) The forward maximal schedule.

Time
Inputs Step

2
3

4

5

+1 b + + +e +f +g 6

(b) The backward maximal schedule.

Figure 6.4-1: The maximal schedules for a 16-point FIR digital
filter with stage time limit 100 nsec.
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- "T i m e

Inputs Step

12
34

+1 +2 +3 +4 +5 +6 +7 +8 5

sk

+a +b +C +d +e +f +g

Output

Figure 5.4-2: A backward feasible schedule for the digital
filter with 3 multipliers and 5 adders,

latency 3, and stage-time limit 100 nsec.

nsec., which is shorter than the design with 7 time steps, if there is any

resynchronization overhead.

In Figure 5.4-3, the possible time ranges for each node according to the

• .. maximal schedules are shown. Since the desired number of time steps for a

better feasible schedule is the same as that of a maximal schedule, 6, the time

range for a node is from the earliest to the latest in the maximal schedules.

Using the information in Figure 5.4-3, the exhaustive algorithm
enumerates all possible schedule vectors:

,

,ilii~~~~~~~~~~~~~~~~~~. - ..- .......... . -. ...-..-.. .....-.. ...--... i...-..., . . .- . . - .- 5...-.
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I N(i) I E(i) I L(i) I R(i) I * The desired number of time
.= steps is 6.

,..1 + 1 1 1-, -2 I.1 I+1 1 1 1

+ 3 1 1 2 11- 21
+4 1 1 2 1 - 21 N(i): a node.
+5 1 1 1 3 11 - 31

1- +6 11 13 11 - 31 E(i): the earliest possible
1 +7 1 1 1 4 11 - 41 time step for N(i), derived
1 +8 1 1 1 4 1 1 - 41 from the forward maximal
-. *1 I 2 1 2 1 2 i schedule of Fig. 5.4-1-(a).

*I *2 1 2 1 2 1 2 1
I*3 1 2 1 3 1 2 - 31 L(i): the latest possible
.- *4 1 2 1 3 1 2 - 31 time step for N(i), derived
."*5 2 4 12 - 41 from the backward maximal

* 1 2 1 4 1 2 - 41 schedule of Fig. 5.4-1-(b).
I-*7 1 2 1 5 12 -61
."*8 1 2 1 5 1 2 - 51 R(i): the possible time step

+-'a 1 3 1 3 1 3 1 range for N(i) for feasible
I+b 1 3 1 4 13 - 41 schedules with the same
I c 1 4 1 4 1 4 1 number of time steps as the
+d_ 1 4 1 5 1 4 - SI maximal schedule.
+e 1 5 1 5 1 5
+ f 1 6 16 1 5 al
+g 1 8 6 

Figure 5.4-3: Time step ranges of the nodes
of the FIR filter example.

(I 1 1 11111222222223344556)
(1 1111111222222223344 566)
(11111111222222223345556)

(4.5.)

, ,'- (1 1223344223344553445556)

(11223344223344553445566)

where the n-th element in every vector represents the time step assignment of
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the n-th node. The schedule vector can be considered to be a cascade of

modulo counters, where the i-th stage is a modulo-IR(i)l counter, where IRiI is

the length of the time-step range of node i. For each schedule vector

configuration, we must check the data precedence between nodes, the stage-

time limit and the feasibility of resource allocation.

Feasibility Checking

Data precedence checking can be performed by comparing the time steps

of every node with its children's, which requires at most n comparisons for

C.- each node. Thus, for each configuration, O(n2) comparisons are needed. A

node must be assigned to an earlier than or at least equal time step to any of

its child nodes.

The stage time limit must also be checked. Let m(i) be the delay time of

the module that node i is assigned to. The longest path of a time step can be

computed as follows:
1. For every node, i, set weight(i) :- m(i);

P2. FOR every node, i,
(in non-decreasing order of forward urgency) DO

FOR every child, j, of i In the same time step DO
IF weight(i) + m(j) > weight(j)

THEN weight(j):= weight(i) + m(j);

3. Find the maximum weight(i) and add the latch delay to it;

No child node can be more urgent than its parents, and thus, no child

node is weighted before all its parent nodes are weighted. Therefore, the

weighting process proceeds from the input side of the data flow graph to the

output side. This also takes O(n 2) time steps since there are at most n children

for each node.

............................. ...........................................................- \...
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The feasibility of the resource allocation can be checked by filling in the

S.. allocation table we discussed in the previous chapter, which also takes O(n 2)

time steps.

Skipping Schedule Vectors

We fill in the resource allocation table from the left-most node to the right as

the nodes appear in the schedule vector. Suppose that the i-th node cannot be

scheduled in the time step as specified by the configuration vector due to the

resource limit. Then, as long as the elements on the left side of the i-th element

in the configuration vector, the first through (i-1)-th, are not changed, the i-th
node cannot be assigned. Therefore, we do not need to check any other

configuration with the same values of the elements from the first through (i-l)-

th. We can reset the (i+l)-th through the last elements to the earliest time

steps and increment the configuration vector from the i-th element.

A solution is found when the schedule vector is
(11122233223344453445566)

and is shown in Figure 5.4-4.

0 We analyze the run-time complexity of this algorithm based on an

implementation in Franz LISP. Let n be the number of nodes in a data flow
graph. The longest range of the time steps of a node is O(n), since there can be

at most O(n) number of time steps in a schedule. Therefore, the schedule

vector is incremented at most O(nn) times. For each schedule vector, the

feasibility of the stage time and the resource allocation is checked in O(n2 )

time steps as we have discussed above. Therefore, the run-time complexity of

this algorithm is 0(n'+ 2 ).

However, in practice, the range of possible time steps for a node is much

* ~less than n, as shown in Figure 5.4-3. Also, as we discussed just above, not all

the configurations need to be checked. Also, a solution can possibly be found

• ',, ., , • ,." • .,. -\ ,-,. .. .- •,_.o,, . ,_ . . . , . . -.-.. . -. ,... - .. .. ..-.. ... ,.
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Inputs TimepStep
2

+1 +2 +3 +4 +5 +6 +7 +8 3

4

5

* 6

.: Output

Figure 6.4-4: An optimal feasible schedule for the digital filter.

at an earlier schedule vector. For the example FIR filter shown above, the

* actual run-time of the LISP procedure on the VAX/750 is less than a CPU

hour for most cases of module sets and stage time limits.

5.5. A Synthesis Example

The theory and algorithms for pipeline synthesis we discussed in Chapter

4 and in this chapter are implemented in Franz LISP, and integrated in the

main synthesis procedure, Sehwa. We demonstrate this program with an

example. We use the data flow graph of Figure 5.2-5 as an example task to be

pipelined, which we have seen in Section 5.2.3. A brief description of the

inputs and design goals is followed by the output listing of the program.

As shown in the output listing, the data flow graph is input in a LISP-list

format, consisting of a list of node descriptions and a list of edge descriptions.

A node description is a list consisting of three elements, a name, function, and' I
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the bitwidth of the operation. An edge description is also a list and consists of

five elements, a name, a source node, a sink node, bitwidth, and the name of

the value it is carrying.

Module selection for each type of function is done manually. The module

description format is shown in the output listing. After the module selection is

done and the latch timing information is given, the program outputs design

boundaries, which we discussed in Section 5.3.1.

First, the cost-constrained-synthesis mode is selected and the maximum

design cost is set to 8 unit costs. The expected resynchronization rate is set to

15%. The main procedure called the procedure, Cost-Constrained-Synthesis.

The best solution found by the procedure, Cost-Constrained-Synthesis, has an

effective initiation interval of 414.1 nsec. at the cost of 7.2 unit costs.

Next, we decided to make the effective initiation interval shorter than

400 nsec. Also, we increased the expected resynchronization rate to 20%. The

solution found by the procedure, Performance-Constrained-Synthesis, has an

effective initiation interval of 336.1 nbsec. at the cost of 9.2 unit costs.

On exit, the main procedure called the maximum-scheduling procedure

with the same stage time (clock cycle) limit as the current solution, and

compared the performance of the maximal schedule with that of the current

solution. The main procedure decided that the performance difference is big

and there is a chance of the existence of a better feasible schedule. The

exhausitive-scheduling procedure is called with the same number of modules

and the stage time limit with the current solution, although no better feasible

schedule was found.

d" .

A.57- . . - .- - - . . ..,, . - -.. .
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Output Listing

Note: In the schedule, conditional resource sharing (refer to
Definition 4.4.1 in Section 4.4.2) is indicated by a
pair of triangle brackets, e.g., <2(sub3) 1(sub2)>.

W1 lisp Sehwa.l
Franz Lisp, Opus 38.79
[load Sehwa.lJ
->(Sehwa)

WELCOME TO USC-SEHWA PIPELINE SYNTHESIS PACKAGE!
**USC Design Automation Group *

Nobyung Park

*Input Processing and Data Structure Initialization

Input Data-Flow Graph (File Name)? dfg.cS

S *** Input Data Flow Graph**

Node List: <index (name function bitwidth)>
C0 (subl sub 16) 1 (sub2 sub 16 2 (sub3 sub 16)
3 (sub4 sub 16) 4 (eub5 sub 16) 5 (sub6 sub 16)
6 (sub7 sub 16) 7 (addi add 16) 8 (add2 add 16)
9 (add3 add 16) 10 (add4 add 16) 11 (addS add 16)
12 (add6 add 16) 13 (add7 add 16) 14 (add8 add 16)
15 (Dl diet) 16 (D2 dist) 17 (D3 diet)
18 (D4 dist) 19 (D5 diet) 20 (Ji join)
21 UJ2 join) 22 0J3 join) 23 UJ4 join)
24 065 join))

Edge List: <index (source destination bitwidth value)>
-'(0 (ii root add2 16 ii) 1 Ui21 root add2 16 i2)

2 (i22 root sub2 16 i2) 3 Ui3 root addi 16 M3

4 Ui4 root addi 18 W4 5 (iS root sub3 16 M5
(iU81 root sub4 16 i6) 7 Ui82 root add4 16 M6

8 Ui7 root subl 16 M7 9 (i8 root subi 16 i8)
10 (eel subi D4 16 eel) 11 (se2 sub2 D2 16 se2)
12 (ee3 sub3 add6 16 se3) 13 (se4 sub4 J4 16 se4
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14 (seB uub5 J2 16 se5) 15 (se6 sub6 JI 16 soO)
18 (se7 sub7 J5 16 se7) 17 (aol addi Dl 16 aol)
18 (a921 add2 add7 18 a02) 19 (&922 add2 add5 16 a02)
20 (z93 add3 J3 16 &93) 21 (&e4 add4 J4 16 Z94)
22 (ae5 addS J2 16 aeS) 23 (aeS addS J3 16 ae6)
24 (ae7 add7 outport 16 ae7) 25 (aeS add8 JS 16 age)
26 (dell Dl sub2 16 del) 27 W9el2 Dl D3 16 del)
28 (de2l D2 addS 16 de2) 29 (de22 D2 uub5 16 d92)
30 (de3l D3 add3 16 de3) 31 Wd932 D3 sub3 16 de3)
32 (de4l D4 add4 16 de4) 33 Wd942 D4 sub4 16 de4)
34 (de~i D5 sub7 16 de5) 35 (deS2 D5 add8 16 deS)
36 (jell Ji add7 16 jel) 37 (je12 JI D5 16 jel)
38 (je2 J2 Ji 16 je2) 39 (je3 J3 uub6 16 je3)
40 (je4 J4 D5 16 je4) 41 (je5 J5 outport 16 output))

*WELCOME TO MODULE-SELECTION PHASE*

Do you want instructions (yin)? y

<INSTRUCTION FOR MODULE SELECTION>

This is an interactive and iterative module-selection routine.
Type-in a module-description for each function one by one.

MODULE DESCRIPTION FORMAT:
(module>: :=(<name><operation><bitwidth><cost><delay_t ime>)

Each module name must be unique. The bitwidth and module delay
(niec) are positive integers and the cost is positive real.

Ezl: csadder9 add 8 0.5 30 -- An 9-bit carry-save adder
.94Ez2: T174284 mul 4 2.0 60 -- TI 4-bit binary multiplier

* Type carriage-return (CR) to continue ...

**Function List**

(function (node indices))
(sub (6 5 43 210))
(add (7 8 9 10 11 12 13 14))
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> Function: sub, Total number of nodes: 7
Max. number of possible evaluations: 5
Previous Assignment: None
(New) Module Description? subtractorl sub 16 1.0 100

> Function: add. Total number of nodes: 8
Max. number of possible evaluations: 6
Previous Assignment: None
(New) Module Description? adderl add 16 1.0 100

Module Selection is complete! Do you want any change (y/n)? n

Stage Latch Information:
Des (set-up time in nsec.) ? 10
Dsp (propagation time in niec.) ? 10
Unit cost (per bit) ? 0.005

Design-space boundaries computation started

* Design-Space Boundary Information *

>> Fastest Design:

Nodes-to-stages Assignment:

S1 [,Stage 0: O(subl) 7(addl) 8(add2) 15(DI) 17(D3) 18(D4)
Stage 1: 1 (sub2) 2(sub3) 3(sub4) 9(add3) 10(add4) 16(D2) 23J4)
Stage 2: 4(sub5) 11(add5) 12(add6) 21(02) 22(J3)
Stage 3: 5(sub6) 19(D5) 20(J1)
Stage 4: 5(sub7) 13(add7) 14(add8) 24(J5)

W-2 Initiation Interval (nsec.)" 120
Clock Cycle (nsec.): 120, Latency: I

Effective Initiation Interval: 120
!. -o Resynchronization rate: 0

Total Cost: 17.88
Module cost: 15.0
# of modules: (subtractorl: 7. adderl: 8)

Latch cost : 2.88
Scheduling Algorithm Used: Forward-Maximum-Scheduling

>> Cheapest design:

F. -" . ,. . .. , _ .' . ., '4 . -.. '- . . . -- . - . . . . . - - - . - .
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Nodes-to-stages Ass ignment:
Stage 0: 160D2) (2(uub3) 1(sub2)> 17(03) 15(01) 7(addl)
Stage 1: 180(4) 8 (add2) 0 (subl)
Stage 2: 23(04) 3(sub4) 10(add4)
Stage 3: 190D5) 20(01) 210J2) W4subO5) (sub8)> 22(J)

<11(add5) 9(add3) 12(add6)>
Stage 4: 24(05) 6(sub7) 14(addB)
Stage 5: 13(add7)

Initiation Interval (niec.): 1320
Clock Cycle (neec.): 220. Latency: 8

Effective Initiation Interval: 1320
Resynchronization rate: 0 U1

Total Cost: 5.52
Module cost: 2.0 (* of modules: (subtractorl: 1, adderi: 1))
Latch cost : 3.52

Scheduling Algorithm Used: Forward-Nonoverlap-Scheduling

>> Absolute Boundaries:
Absolute Minimum Cost: 5.52
Absolute Minimum Initiation Interval: 120

* Main Synthesis Loop

Select Optimization Mode (cost/speed/exit)? cost
* >> Cost-Constrained-Synthesis Started!

Maximum Allowable Cost? 8
Expected Resynchronization Rate (in )?15

* * Design in progress with:
Latency: 2. * of modules: (3 3)
Stage times: (120 220 320 420 520)

> Tentative Solutions Found.

Nodes-to-stages Assignment:
Stage 0: 19(04) 0(subl) 8(add2) 17(D3) 150D1) 7(addl)
Stage 1: 23(04) 160(2) 3 (sub4) 10 (add4) (2 (sub3) £ (sub2)>
Stage 2: 21(02) 22(03) 4(subS) <11(add5) 9(add3) 12(addG)>
Stage 3: W9D5) 20(01) 5(sub8)]
Stage 4: 6(sub7)

.,
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Stage 5: 24(05) 14(add8) 13(add7)
Initiation Interval (nsec.): 240

Clock Cycle (neec.) : 120, Latency: 2
Effective Initiation Interval: 312.1128

Resynclironization rate: 15 %
Total Cost: 9.2

Module cost: 6.0 (# of moduleo:(subtractori:3, adderl:3))
Latch cost : 3.2

Scheduling Algorithm Used: Forward-Feasible-Scheduling

Nodes-to-stages Assignment:
Stage 0: 23(34) 10(add4) 3(sub4) 16(D2) 180D4) B(add2)

<(sub3) 1(sub2)> 0(subl) 17(D3) 150D1) 7(addl)
Stage 1: 24035) 14(add8) 6(sub7) 19(D5) 13(add7) 20(01) 21(02)

* (4(subB) 5(sub6)> 22(J3) CI1(add5) 9(add3) 12(add6)>
Initiation Interval (neec.): 440

Clock Cycle (nsec.): 220, Latency: 2
Effective Initiation Interval: 440

Reeynchronization rate: 15 %
* Total Cost: 7.36

Module cost: 6.0 (# of modules: (subtractorl: 3, adderl: 3))
Latch cost : 1.36

Scheduling Algorithm Used: Forward-Feasible-Scheduling

Design in progress with:
Latency: 2. # of modules: (4 3)
Stage times: (120 220 320 420 520)

Design in progress with:
Latency: 3. # of modules: (2 2)
Stage times: (120)

> Tentative Solutions Found.

Nodes-to-stage. Assignment:
Stage 0: 18(D4) 0(subl) B(add2) 17(D3) 15(D1) 7(addl)
Stage 1: 23(04) 16(D2) 3(sub4) 10(add4) <2(sub3) 1(sub2)>
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Stage 2: 210J2) 220J3) 4(sub5) <11(add5) 9(add3) 12(add8)>
Stage 3: 190D5) 2001I) 5(sub6)

VStage 4: 14(add8)
Stage 5: 240(5) 6 (sub7) 13 (add7)

Initiation Interval (nag'.): 360
Clock Cycle (nuec.): 120. Latency: 3

Effective Initiation Interval: 414.1116
* -~ Resynchronization rate: 15 S

-. - Total Cost: 7.2
Module coat: 4.0 (# of modules: (subtractorl: 2, adderi: 2))
Latch cost : 3.2

Scheduling Algorithm Used: Forward-Feasible-Scheduling

Design in progress with:
* Latency: 3. # of modules: (3 2)

Stage times: (120)

**SOLUTION *

Nodes-to-stages Assignment:
Stage 0: 160D4) 0(subl) 8(add2) 17(D3) 150D1) 7(addl)
Stage 1: 230(4) 160(2) 3 (sub4) 10 (add4) <2 (sub3) 1 (sub2)>

Stage 2: 210J2) 220J3) 4(aub6) <11(add5) 9(add3) 12(add6)>
Stage 3: 190D5) 200JI) 6(sub6)
Stage 4: 14(add8)
Stage 5: 24 (J5) 6 (uub7) 13 (add7)

Initiation Interval (niec.): 360
Clock Cycle (neec.): 120, Latency: 3

Effective Initiation Interval: 414.1116
Resynchronization rate: 15 5

Total Cost: 7.2

Module coat: 4.0 (# of modules: (subtractorl: 2. adderl: 2))
Latch cost : 3.2

Scheduling Algorithm Used: Forward-Feasible-Scheduling

*Second Alternative:

Nodes-to-stages Assignment:
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Stage 0: 18(D4) O(subl) 8(add2) 17D3) 15D1) 7(addl)
Stage 1: 23(04) 16(D2) 3(sub4) 10(add4) <2(sub3) 1(sub2)>
Stage 2: 21(02) 22(03) 4(sub5) <11(add5) 9(add3) 12(add6)>
Stage 3: 19(D) 20(J1) 5(sub6)

; Stage 4: 6(sub7)

Stage 5: 24(05) 14(add8) 13(add7)
Initiation Interval (neec.): 240

Clock Cycle (nuec.): 120, Latency: 2
Effective Initiation Interval: 312.1128

Resynchronization rate: 15 S
Total Cost: 9.2

Module cost: 6.0 (# of modules:(subtractorl:3, adderl:3))
Latch cost : 3.2

Scheduling Algorithm Used: Forward-Feasible-Scheduling

Select Optimization Mode (cost/speed/exit)? speed
. .'- >> Performance-Constrained-Synthesis Started!

Maximum Effective Initiation Interval? 400
Expected Resynchronization Rate (in )? 20

Design in progress with:
Latency: 3, # of modules: (2 2)
Stage times: (120)

> Tentative Solutions Found.

--' Nodes-to-stages Assignment:
Stage 0: 18(D4) O(subl) 8(add2) 17(D3) 15(DI) 7(addl)

,! - Stage 1: 23(J4) 16(D2) 3(sub4) 10(add4) <2(sub3) l(sub2)>
Stage 2: 21(J2) 22(3) 4(sub5) <11(addS) 9(add3) 12(add6)>
Stage 3: 19(D5) 20W(J) 5(sub8)
Stage 4: 14(add8)
Stage 5: 24(5) 6 (sub7) 13 (add?)

Initiation Interval (nsec.): 360
Clock Cycle (nsec.): 120. Latency: 3

Effective Initiation Interval: 432.1476
Reuynchronization rate: 20

Total Cost: 7.2
Module cost: 4.0 (# of modules:(subtractorl:2. adderl:2))

Akl
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Latch cost : 3.2

Scheduling Algorithm Used: Forward-Feasible-Scheduling

Design in progress with: -

Latency: 2, # of modules: (3 3)
Stage times: (120)

-.

'> Tentative Solutions Found.

Nodes-to-stages Assignment: -

Stage 0: 18(D4) O(subl) 8(add2) 17(D3) 15(D1) 7(addl)

Stage 1: 23(04) 16(D2) 3(sub4) i0(add4) <2(sub3) 1(sub2)>
Stage 2: 21(J2) 22J3) 4(sub5)

<11(add5) 9(add3) 12(add)>,

-i Stage 3: 19(D5) 20(J1) 5(sub6)
Stage 4: 6(sub7)
Stage 5: 24 (J5) 14 (addS) 13 (add7)

Initiation Interval (nsec.): 240 '-

Clock Cycle (nec.): 120, Latency: 2

Effective Initiation Interval: 336.1488
Resynchronization rate: 20 S

Total Cost: 9.2
Module cost: 6.0 (# of modules:(subtractorl:3. adderl:3))

Latch cost : 3.2
Scheduling Algorithm Used: Forward-Feasible-Scheduling

Design in progress with:

Latency: 3. # of modules: (2 2)
Stage times: (120 220)

Design in progress with:

Latency: 3. of modules: (3 2)
Stage times: (120)

**e SOLUTION **e

4i
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Nodes-to-stages Assignment:
Stage 0: 18(04) O(subi) 8(add2) 170D3) 15(DI) 7(addl)
Stage 1: 23(04) 16(02) 3(sub4) 1O(add4) c2(sub3) l(sub2)>
Stage 2: 21(02) 22(03) 4(sub5)

,'...*-t 11(add5) 9(add3) 12(add6)>
Stage 3: 19065) 20031) 5(sub8)

PStage 4: 6(sub7)
> $Stage 5: 24(05) 14(addg) 13(add7)

Initiation Interval (nuec.): 240
Clock Cycle (neec.): 120, Latency: 2

Effective Initiation Interval: 338.1488

71Re synchronization rate: 20
Total Cost: 9.2

Module cost: 6.0 (# of modules: (subtractori:3, adderl:3))
Latch cost : 3.2

Scheduling Algorithm Used: Forward-Feasible-Scheduling

Select Optimization Mode (cost/speed/exit)? exit

*Solution too far away from optimum!
Do you want to try an Exhausitive Scheduling (yin)? y

Exhauuitive Scheduling in progress

Sorry! There is no better schedule.
Solution List is written out to (sehwa.log>.
t
-> 'D

Goodbye
6; [2J D

Lp
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Chapter 6

Pipeline Delay Insertion

In this chapter, we discuss an exhaustive algorithm for performance

improvement of an already-existing pipeline by inserting non-operational, delay

stages.

6.1. Performance Improvement by Delay Insertion

In this section, we discuss insertion of delay stages (no-operation stages)

in order to increase the performance of a traditional pipeline. By a traditional

- pipeline, we mean that the execution schedule and the execution status of a

pipeline can be represented by a reservation table (developed by Davidson
[Davidson 711). We discussed this in Chapter 3. In brief, any pipeline whose

schedule and execution overlap can be represented with a reservation table has

u physically fixed stages. In each stage, all the modules are activated and used

by only one time step of the schedule at any time. Partial sharing of a stage at
r.. the same time between overlapping time steps of different tasks is not allowed.

An example of a reservation table is shown in Figure 6.1-1.

time step.

stage I Ix I I X I I IlxI I

stage 2 I IXI X I I IXI

stag 3 1 I I XIXXI I I

OL Figure 6.1-1: An example reservation table.

S- .. ~ ~. .
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We assume that a fixed latency is used. In fact, as we discussed in

Chapter 4, since we can achieve the minimal possible average latency by using

a fixed latency scheme, there is no reason to use a variable latency scheme.

Suppose that all the rows of a reservation table are merged and

represented as shown in Figure 6.1-2 -(a). Time steps which use the shared

resource A are shaded. An interval vector which contains the distance

between the time steps using the same shared resource is constructed asshown

in (b). A fixed latency of 5 will cause resource conflicts for the shared

resource, A, as shown in (c). Delays must be inserted into the pipe in order to

avoid such conflicts, as shown in (d).

A A A A A

I--I-I-I----I-I----I-I-I-- I1 (2 3 2 3)

(a) A schedule (b) The interval vector

A A A A A

A A A A A

A A A

-~time

(c) Pipelining the original schedule with fixed latency 5

A D A A D A A

A D A A D A A

D: Delays A D A A D

* - time
Cd) The result of the delay insertion UI (3 3 3 3))

Figure 6.1-2: An example of delay insertion.

e e%. 
.
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6.2. Definition of the Problem

Patel [Patel 76] has shown how the throughput of a pipeline can be

improved by proper insertion of delays. In this section, we suggest a practical

technique which finds an optimal delay insertion configuration for a pipeline.

By 'optimal delay insertion configuration", we mean that the Ofixed latency,

is minimized, and the number of delays to be inserted in order to achieve the

minimal fixed latency is minimized.

Assuming that buffering latches for the stage latches can be added by

inserting delays, we can always make the fixed latency equal to the maximum

number of marks in any single row. We have already proved this with

Theorem 4.3.5 and Corollary 4.3.6.

* Definition 5.2.1: The position vector of a stage, P., is defined as a

vector of column indices which are marked in the corresponding row, s, in the

£ reservation table. The interval vector of a stage, I., is defined as a vector of

the distances between the adjacent marks in the corresponding row, s, in the

reservation table.

For example, the position and interval vectors for the reservation table in

Figure 6.1-lareP = (1 36), P 2 =(2 37), P 3 =(3 45), 11 =(23), 12 =(1

: ~~~ 4), and 13=(1)

Now, let us examine the conditions for a reservation table not to have

* any resource conflict with a certain latency.

Lemma 6.2.2: Let P. = (P1 P2 ... p)be the position vector for some

stage, s. Also let N be the chosen fixed latency which is greater than or equal

to n. If and only if (j- pi) is not divisible by N for every pair of i and j1< i

< j < n, there will be no conflict in using stage s.

7e.........................................
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Proof: The time steps when stage s is used are

pi, pi + N, pi + 2N, ..... .pi + kN, ... (due to pi) and
pj, pj + N, pj + 2N, ..... ,p j + k'N, ... (due to p,).

K For any k and k', (pj + k'N) - (pi + kN) = (k' - k)N + (pj - pi). Therefore if

and only if (pj - pi) is not divisible by N, then (p, + k'N) - (pi + kN) cannot be

zero for any k and k', and hence, (p, + k'N) and (pi + kN) cannot occur

during the same time slot. Thus, if this is true for every possible pair of i and j,

1 i < j < n, then there will be no conflict in using stage s. 0

Lemma.6.2.2 describes the resource-conflic,-free condition in terms of the

position vectors. We can also specify the resource-conflict-free condition in

terms of the interval vectors.

Corollary 6.2.3: Let I -(i 1 i2 i. be the interval vector for some
V

stage, s. If and only if E Z i. iis not divisible by N (N > n-1) for every pair of u

and v, 1 < u < v < n-1, then there will be no conflict in using the stage s.

- Proof: For any pair of u and v, 1 < u < v < n-1,
V

•.U i u u+1 v

-(P+l - PU) + (Pu+2 Pu+l) + + (Pv+1" P)
-- Pv+l - Pu 1

Therefore, the rest of the proof is the same as that of Lemma 6.2.2. 0

According to Lemma 6.2.2, and Corollary 6.2.3, the problem of optimal

delay insertion for each row in the reservation table can be stated as follows.

For a given interval vector, 01 (iI i2 i3 ... i._,), where n is the minimal

possible fixed latency, find any or all delay vectors, K - (kI k2 k3 ... k. 1),

such that

'M
II



SE (ij+ kj mod n 34 0, for any uand v, < u < v < (n-1),
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n1-6

while minimizing kj.

The worst-case complexity of finding all possible such delay vectors is

O(n-l"), since each element of K, ki, can have any value in between 0 and n-I

(modulo n arithmetic) and there are n-i elements in K.

However, the result of the delay insertion in a row affects the delay

insertion in other rows. We illustrate this using the example reservation table

of Figure 6.2-1. In this reservation table, the locations where delays can be

inserted are marked with delay elements, k. (Note that delaying the mark in

row I of column I does not change any interval.)

time steps
stage 1 2 3 4 5 a 7

---- ,------4.-- -. 4.---------4---------4---------

1 I X I Ilk3 X I I IkiO X I I
4.--------- 4.-.------.---------.------------------------

2 I Ik22 X Ik23 X I I I Ik27 X I
----- ------------------..---------.--------- 4.------.

3 I I k33 X k34 X 1k35 X I I I
.----- 4.--------4.--------- . .---------4.---------4.--------4.-----

Figure 6.2-1: A reservation table marked with delay elements.

In a reservation table, data precedence relations between the

computations of different stages and time steps cannot be shown. Therefore,

we must assume that the computations of a time step are data dependent on

every computation in the previous time step [Patel 76].

Let Ij=(ijl ij2) be the interval vector for the j-th row. Then, for the

reservation of Figure 6.2-1, I=(2 3), 12=(1 4), and 13=(1 1). Let kim be the

.- ': number of delay steps to be inserted before the mark in row I and column m. If

.° .
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either W1, k23 or k33 is 1, then the mark in column 4 of row 3 is delayed by

one time step. Therefore, all the marks beyond column 4 must be delayed too.

A modified reservation table after delay insertion with k13=2 and k23=1 is

shown in Figure 6.2-2.

time steps
stage 1 2 3 3a 3b 4 5 a 7

-------------------.,- + 4- . -------. 4--4----

I I x lDl~ I lxi

2 X ~DI X lxi

3 I xi I II I

*Time steps 3a and 3b are inserted as the
result of delay insertion.

*D's represent the delays.

Figure 8.2-2: Delay insertion for the reservation table of Figure 6.2-1.

For the reservation table of Figure 6.2-1, the interval vectors after delay

insertion will be:

II1= [(2 + k22 + k13}
(3 + (max(k13 k23 k33) - k13) + k34 + k35 + k1611

12= [(1 + k23)
{4 + (max(k13 k23 k33) - k23) + k34 + k35 + k16 + k27)1

13 RI[( + max*13 k23) + k34}
(1 + k35)]

and the number of time steps (or columns in the reservation table) is

increased by

{k22 + max(k13 k23 k33) + k34 + k35 + k16 + k27).
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In general, the total number of increased time steps for a reservation

table which originally has n time steps is
ft

" max{kij}.

Based on this discussion, we can state the delay-insertion problem for a

rservation table with multiple rows as

Find a configuration of kij's (called a delay vector) such that

1. the new interval vector Ii after delay insertion, for every i,
satisfies the condition of Corollary 6.2.3 with the minimum

possible latency, 23 and

~n
2. also minimizes n max {kij}.

0.3. An Optimal Delay Insertion Algorithm

mIn this section, we discuss a branch-and-bound algorithm which finds all

delay vectors, K, that satisfy the conditions stated in the problem statement in

the previous section. We only outline the algorithm here. A detailed

description of the algorithm is in [Park 85a].

We first outline the algorithm, and then analyze some important steps of

the algorithm.

Algorithm DINS

{*There are M marks in the reservation table. The minimum*}

N
{*possible latency is 1. Let Dtotai - 1 maxj{kij}.*}

toa

'4
23The minimum possible latency is the same as the maximum number of marks in a single

row, according to Theorem 4.3.5 and Corollary 4.3.6.
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1. Form a cascaded counter of M stages each of which is

a modulo-I counter. 24 Each stage corresponds to an
element, kij, of the delay vector, K;

2. Compute a good upper bound, UB, on the number of increased
time steps, i.e., Dtota , using heuristic procedures;

{*Branch-and-Bound Search for a Solution*}

3. Increment the counter and compute the new interval
vector for each row;

4. IF (Dtotal < UB)

A. THEN

* a. IF (all the interval vectors satisfy
the condition of Corollary 6.2.3)

THEN
F (Dtota! < UB)

THEN
replace current solution set
with this new solution;
UB:= Dtota;

ELSE (* DtotaI = UB *

append this solution to the
solution set;

b. increment the counter;

B. ELSE D{* Dtotai > UB*}
0 skip the count until

new Dtotal < UB;

5. Repeat Step 4 until the counter overflows;

In Step 2, two quick solutions are produced in order to get a good upper

-4As shown with Corollary 6.2.3, the resource conflict checking is done in modulo-I
arithmetic.

O4j
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bound on the number of time steps in the resulting reservation table. The first
quick solution is produced by incrementing the delay elements from left to
right as they appear in the reservation table. Starting from column 2, delay
elements in the current column are incremented until there are no intervals
which can be divided by the chosen latency up to the current time step. An
example of this type of sequential adjustment is illustrated in Figure 6.3-1.
Another quick solution is found by incrementing the delay elements from right
to left. An example of this type of sequential adjustment is shown in Figure

6.3-1.

time steps time steps
A.stage 12 3 4 5 6 7 stage 1 2 34 5 DID2 6 7

321 iX IXl I x 231 XXI X ii IlXi

(a) The original reservation table (b) After adjusting up to time step 6

stagel1 2 3 4 5 Dl D2 6 D3 7
-- - -- -- - - - - -- - - ------ D -- delays inserted

IIX I IX l Ii D I D IX I I

2 1 1xx X I I D IX I inserted due
---- --- --- --- --- ---- --- -- --- --- to delays

3l 1 iXi I I 

(c) Completed reservation table

Figure 6.3-1: Left-to-right sequential adjustment.

These quick solutions are used as upper bounds on the search for the



"' 191

stage 1 2 D3 D2 3 DI 4 5 6 7

I Ix I I I IX ID I I IlX I I

21 IXIDIDI IX I X I

31 I I I Ixixixi I I
"--- .--- .---- ---- ---. - . ..---. ..-'---- ----

Figure 6.3-2: Right-to-left sequential adjustment.

optimal solution, since a more optimal solution would be found with lower

increments on the intervals. In the above example, the upper bound found by

the quick solutions is three delay time steps, as shown in Figures 6.3-1 and

6.3-2.

The delay vector is incremented from right-to-left. Whenever the

increment on a digit becomes latency - 1, the digit is reset to its original value

and the next digit to the left is incremented. In Step 4-B, we skip some counts

which are not necessary to check. Whenever DtotaI reaches the upper bound,

the digit just incremented is reset to zero and the next digit to the left is

incremented (note that when a digit is incremented, all the digits to the right

are already reset to zero), since incrementing the digit any further will always

result in a equal or larger number of delay steps. Then, the next digit to the

left is incremented and the new interval vector is examined.

Figure 6.3-3 shows an optimal delay insertion for the reservation table of

Figure 6.2-1. With this new reservation table, a fixed latency of 3 is possible.

The number of time steps is 9, which is less than the heuristic solutions by one.

The algorithm DINS, described in the previous section, basically checks

6 the feasibility of every possible configuration of the delay vector K, and

,,.
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stage 1 2 3 4 5 6 7 8 9. ,----------------------------
I I X lI I x I I I I I x I I i

2 1 1 X I D I X I I I I I X I
,--,--------- --------- ,------,------,------------,

3 I lxi IXIDIXI I I
"-------------------------------,

Figure 6.3-3: An optimal delay insertion for the reservation
table of Figure 6.2-1 for latency 3.

C'4

"- compares the results. Therefore the algorithm guarantees completeness (finds

all possible sdiutions) and correctness (every solution has the minimal number

of delays).

%'

The run-time complexity of this algorithm is as follows. Let I be the

maximum number of marks in a row and r be the number of rows in the

reservation table. Then, there are at most r.I marks in the reservation table.

Thus, there are at most (r.1)' different configurations of the delay vector. For

each configuration of the delays, we have to check the interval vectors

according to Corollary 6.2.3. For an interval vector of size 1-1,25 there are
"-"1)combinations of intervals which must be checked. Therefore, the run-

2

time complexity of the algorithm is 0(1 2 .(r.1)'). If we consider the number of

rows a constant, the run-time complexity of the algorithm is 0(11+2).

Although the complexity of this search in time is exponential in the worst '
case, the bounded procedure converges very quickly. When r=3 and 1=10, J
which is quite a complex pipe, the Franz LISP procedure converges in a few

minutes of CPU time on a VAX 11/750.

2 5 Note that the size of the interval vector of a row with I marks is l-1.

wi
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Chapter 7

Conclusions and Future Research

In this chapter the main contributions of this thesis are summarized and

directions for future research in this area are discussed.

7.1. Main Contributions

The results of this research have allowed us to draw the following general

conclusions:

e The concepts presented in the dissertation have been validated by
means of theorems and software.

.U * The theoretical results are valuable because they

o provide a method for computing bounds which helps limit the
search space during synthesis, and

o provide a formal basis for the algorithms which implement
the synthesis.

e Good pipelines and execution overlap hardware in general can beproduced automatically.

S"* Exhaustive algorithms can be useful for problems of practical size,
even if the problem is NP-complete, if proper bounding of the
search space is performed.

4The main results of Chapters 2 and 3 provide a formal basis for a theory

of clocking, and verify that the clocking scheme itself plays a major role in

improving performance. It is also shown that there is a possibility of extending

i L the theory to more general designs. In Chapter 3, it is shown that systolic

.4

.. . .. . .. . .. . .. . .. . .. . .
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arrays can be completed or modified to improve performance using techniquesIII described in the thesis.
The theory of scheduling and resource allocation in Chapter 4 provides a

formal basis for pipeline synthesis at the functional level. The data flow graph

model introduced in Chapter 4 allows modeling conditional branches in a

pipeline. This makes it possible to use a pipeline design style in more general

designs such as computer CPUs. In Chapter 5, the allocation table is

introduced. The usage of the allocation table allows concurrent scheduling and

resource allocation with cost and performance constraints. It is shown with
examples that the allocation table is a useful structure for pipeline synthesis,

* comparable to a reservation table in terms of utility. It is also verified that

urgency scheduling is a valid technique for pipeline synthesis.

7.2. Future Research

Future research plans include

*the inclusion of detailed interconnections, multiplexers and buses in
the pipeline synthesis procedure,

*the use of an area estimator in order to make the synthesis process
closer to optimal,

*the automatic design of a large problem, such as the IBM 360 using
the programs described in this thesis,

*automatic synthesis of systolic arrays, andK * the use of an expert system to control execution of the various

packages described in this thesis.

The first two problems need to be solved in order for the current

implementation of the theory to produce designs more closer to optimal.
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We now describe the systolic array problem in more detail. A number of

systolic array designs have been done manually, and there is a growing

consensus that this type of design is useful for a wide range of numeric and

symbolic processing applications. The approach to systolic array synthesis will

be to modify the pipeline synthesis package of routines to accommodate

systolic arrays. The pipeline synthesis package takes as input a data flow

graph with some information about required input and output timing. The

same input will be used for systolic synthesis. The first step will be to detect

how and where the design can be transformed into a systolic design. This is

more complex than identifying pipelining opportunities, but involves the

detection of feedback loops and reused values in the data flow specification.

Then, the existing synthesis algorithms should be extended to include the

systolic style by modifying the key information used in pipeline synthesis, the

allocation table. Finally, the systolic synthesis package should be tested on

example designs to insure that the software is operating properly, and to

demonstrate results of the project.

Another problem to be considered is the integration of the techniques

developed in this thesis into a general synthesis system. In a large system,

there are many subsystems with different cost and performance requirements.

For optimal usage of the techniques developed in this thesis for large designs,

we need procedures that determine

* which parts of the system being implemented are either to be
pipelined or to use maximum execution overlap during system
partitioning and design style selection, and

e in which order the various synthesis procedures are to be executed
for optimal design space exploration.

As we mentioned in Chapter 1, these high-level decision processes are

computationally intractable when optimal results are desired. In order to make

these decisions efficiently, design experience and intelligent reasoning

1,. _
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capabilities are essential. Accordingly, an expert system which is specialized in
high-speed designs would be a natural choice for these tasks.
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Appendix A

A Stage Partitioning Algorithm for
Maximal Execution Overlap

The following algorithm, KPART, is the detailed description of the stage

partitioning algorithm we outlined in Section 3.2.1.

Algorithm KPART (MCGs. Lmax. Des, Dsp);

{* MCGs Input micro-cycle graphs
{* Lmax The maximum stage time limit
{* Des. Dip Stage latch set-up and propagation delays *}

S variable

H Set of the starting nodes (modules) for the current stage
SF Set of the current searching front nodes
EH Set of the candidate edges for stage latches
TEMP Set of the nodes to be added to current H
NH Set. Starting vertices for the next H

w(i) Critical path delay from the previous partition
line to vertex i inclusively

OE(i) Set of all the edges coming out of vertex i
IE(i) Set of all the edges going into vertex i
mark(i): Boolean. True if node i has already been checked

cutet Sets of edges for stage latches

&d Resulting stage propagation delays

K The number of stages determined

q ..

begin{*KPART*}

for all MCGs in parallel do

..

~~gn
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NH {root(s)}; {*wave front starts from root nodes *
EH:=K}:=K1; dmax::=O0;
u~i) for every i ( NH;

{repeat until there is no node left *
repeat {* until empty(NH) *

{get starting nodes in TM for a new partition *
K := K +1; TEMP :=NH; NH:=}

{initialize the propagation delays *
If (k > 1) then

for every i f TEMP~ do w~i W * Dsp;

{* get a stage *
repeat {* until empty(TEMP) C

H :=TEMP; TEMP

{*remove all indirect vertices C

for every i f H do H :=H - descendents iW

{get searching fronts in BF *
SF
for every i c H do

SF :=SF + children(i);

(* get candidate edges for stage latch in EHiC
EH : EHi + OE(i);

for every j c SF do SF SF -descendents(j);

for every j c SF do mark Q) false;

for every i cH do
for every j c children (i) do

If j t SF then
If W~i W + Doe > Luax

then
* {*if including child j exceeds stage *

{time limit, put stage latches on
(Call edges going into child j C

cutst(k) :=IE(j);
*EHi EHi IE~i);

4P



{* update stage propagation delays *}

d(K) := w(i) + Des;
if dK) > dmax then dmax dK);

{* if j is not a leaf, put it in NH *}
if j not a leaf then NH := NH + j;

p
-" {* if j in TEMP already, remove it *}

if mark(j) then TEMP TEMP - j;

*else if j not a leaf then
{* move searching head *}
if not mark(j)

then
mark(j) := true;
TEMP TEMP+ j;
w(j) w(i) + ;
{* update candidate edges for *}
{* stage latches
EH EH- IE(j) + OE(j);

i {* if child jis already in TEMP, *}
{* update its critical path delay *}

else if w(j) < w(i) + 6 then
w(j) := w(i) + ;

until empty(TEMP)

{* No more nodes can be added due to stage time limit.*}
{* Put all the edges still remaining in the cutset. *)
{* These edges go into vertices beyond the current SF.*}
cutest(k) := cuteet(k) + EH;

until empty(NH);

end{*KPART*}

Run Time Analysis

Let tEl be the total number of edges in the input micro-cycle graphs.

. . . . . . . . . . . . . . . . . . . . . . . . . . . .. ...

4,'t.t' ' .
'
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Each node can be in SF only once and in NH at most once. For each node in

either SF or NIH, every output edge is traversed once and a child node is
checked once. Therefore, the run-time complexity of this algorithm is O(IEI).

An Example Trace of the Partitioning Procedure

The following is a step-by-step trace of the stage partitioning of the

micro-cycle graph of Figure 3.2-1.

.7

Algorithm KPART(G, Lmax=85, Dss=5, Dsp=10);

1. Initially, cutset(l) = e0 ,1 (the first stage latch Li), H -Vl},

SF = {v 2}, and EH {el, 2}.

2. v. can be included in the first partition since b1 + b2 + Dss <
Lmax. Thus H is updated and new SF is computed.

a. v2 is put in TEMP and moved to H. TEMP is cleared. -"

b. SF gets {v,, v 4, v5, v6, v 12}.

c. EH becomes {e 2,3 , e2,4, e2 5, e2 6, e2, 12}.

d. Vertices v3 , v4 , v., and v6 are removed from SF since they .

A" are ,lescendents of v 12.

3. v12 in SF cannot be included in the first partition since (b +6 2 +

6 12 + Dss) exceeds Lmax.

a. EH = EH - IE(v 1 2). e2,12 is removed from EH and put in

cutset(2).

b. vl2 is put in NH to become a head for the second stage.

c. d(1) and dmax are updated with (61 +6 2 + Dss) -85.

4. TEMP is empty. Thus, all the edges in EH are also put in cutset(2).

=:

* " . " . . " , -. " . . . ' ' " . " J " . 2 . " ° ," , J r : " " " t - '
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The locatio,s for the second stage latches are e2,3, e2,4, e2,5, e2 6,
and e2,1 2. {the second stage latches(L2)}.

5. v 12 is moved from NI to H and new SF and EH are computed.

a. w(12) - 612 + Dsp = 25, SF - {v3, v4, Vs, v6 }.b. EH ="e23 24

b.H= {e 2 3, e2 ,4, e2 5, e2 ,6} + {e 12 ,3, e12 ,4, e12,5, e12,6}-

6. All the current searching-front vertices in SF can be included in the
second stage. Thus TEMP is updated to contain v3, v4, v5 , and v
The corresponding updating procedures during the initialization
pass of the inner mrepeatm loop are:

a. H = {v 3, v 4, v, v6}, w(3) = w(6) = 45, w(4) = w(5) = 40.

b. E H - {e3 7 , e4 8, e5 9, e ,}.-

c. SF v {v, v v9 , v10 } - descendents(v7 ) - v7 "

7. v7 can be included in the second stage and thus v7 becoines the7 7
next searching head.

a. H={v 7 } (w(7) = 70), EH={e 7,8, e4,8, e5, 9, e6 ,10}, SF = {v8 }.

8. Including v8 violates the maximum stage propagation delay (w(7) +
68 + Dss = 140).

a. NH = {v 8}, cutset(3) = {e 7 8, e, e 9, e6, 10 } {the third
stage latches(L3)}. ,-

b. d(2) = w(7) + Dss 75, EH - EH - IE(vs) {e 5,9 , e6 10}.

.-. 9. H = {vs}, w(8) = b(8) + Dsp - 75, SF = {v9 }.

EHl= EH + {e89}) = 1,5 ,9, e6,10, e8,9}-

10. w(8) + 6 + Dss - 100 > Lmax. Thus _7

cutset(4) = EH - {es,q, e6 ,10, e8,9 } (the fourth stage
latches(L4)}.

NTI - {v9 }, w(g) = 30, SF v {V1 0}. 
-'10).

fry.;

..--.. "
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EH =EH - IE(v,) + OE(vq) = e6 ,10, e9 ,10 ).

11. The remaining vertices, v0 and v 0 becomes the fourth stage and
are terminated by the fifth stage Iatch(L5). d(4) = 40.

*12. Finally, d(5) is determined by the storage propagation delay of L5.
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Appendix B

A Node Coloring Algorithm

The following algorithm, DJ-Coloring, colors the nodes of a data flow

graph as discussed in Section 4.5.

Algorithm DJ-Coloring;

BEGIN {*coloring* }

PHASE I: Initialization

1. Set color code to 0; {*initialize color palette*}

* 2. Get all the root nodes, {roots}. 26

3. FOR EVERY node in {root} DO
set color[node] := color _ code;
increment color_ code;

4. Put all the root nodes in the coloring wave
front, WF, as the starting wave front. I

PHASE H1: Color Wave Propagation

5. {* Propagate color one level *}
FOR EVERY node in WF DO
BEGIN {*node*}

FOR EVERY children of node DO
BEGIN {*child*}

2 6 Nodes without any parents.

Sm
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CASE node OF
BEGIN {*case*}

DISTRIBUTE:
if (child is a join)

then
color[child] := color[node];
{*copy node's color*}

else
color[child] := color[node] + child#;
{*copy node's and add one more digit*)

JOIN:
if (node has a single digit color)

then
{*when return to non-conditional*}{*execution path, change color*}

color[node] := colorcode;
increment color code;

if (child is a join) and (previous color of
child has less # of digits than node)

then
color[child] := color[node] - child#;
{*remove the last digit from node's*}. .': else if (previous color of child has

less # of digits than node's)

color[child] :color[node];

ELSE:
if (child is a join) and (previous color of

child has less # of digits than node)
then

colorichild] := color[node] - child#;
(*remove the last digit from node's*}

else if (previous color of child has
less # of digits than node's)

color[child] := color[node] + child#

END {*case*}

END {*child*}

END {*node*}

.' I.

V. - -'
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6. {*Get new wave front nodes*}
WF :- {All the children of the nodes in WF all of

whose parents are already colored)

7. IF (NOT EMPTY WF) GOTO 5.

END {*coloring*}

Runtime complexity of the algorithm and its implementation in LISP is

O[n 2] for any arbitrary graph, where n is the number of nodes in the graph.

Each node can be in the wave front, WF, only once. For each node in WF,
there can be at most n children, and thus the inner loop iterates at most n

times for each node in WF. One iteration of the inner loop (the CASE block)

takes constant number of steps. Therefore, the time complexity is O[n 2].
However, if we limit the fanout of a node, each node can have only a constant

number of children. This makes the inner loop iterate only a constant number

of times, which makes the time complexity of the algorithm linear or O[n].

I--. .

*1P
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Appendix C

An Algorithm for
Counting Module-usage Frequency

The algorithm shown below, MinModFreq, which is based on the node

coloring technique we discussed in Section 4.6, counts the minimum number of

times a certain type of modules must be used to execute a part or all of the

data flow graph. We assume that we know which type of operations are to be

performed by which type of modules. For example, all the 12-bit additions and

16-bit additions are to be performed by 16-bit carry save adders.

Algorithm MinModFreq (Graph, Module-type)

; Count the minimum required number of times of usage
of Module-type module to execute the graph, Graph.

BEGIN (*MinModFreq* }

{* initialization *)
1. FOR every node in the graph DO

parent_ent(node) 0 ; the # of already checked parents
W count(node) 0 ; current module count up to node

NWF ({ ; next checking wave front nodes
sum:= 0 ; the total module count

({ Check and count nodes of one level *}
2. FOR every node in CWF DO

BEGIN {*loop*}
... o

V...'

*..1

....................................-
. , ,. - . - -
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{*Get the nodes all whose parents are
{checked as the next wave front nodes.*)

FOR every child of node DO
parent _ cnt(child) := parent __cnt(child) +1;
IF (parent_ cnt(child) =# _of_parents(child))

THEN
p NWF: NWF + (child);

{Propagate module counter ~
CASE node OF
BEGIN (*CASE*)

conditional:

FOR every child of node DO
* parent_ cnt(child) := parent_ cnt(child) +1;

IF (parent_cent(child) = #_of_parents(child))
AND (child is not a terminal node)

THEN
NWF := NWF + (child);

FOR every child of node DO
IF (child is a join)

THEN
count(child) := max~count(child), count(node)};

ELSE IF (child uses Module-type)
count(child) :=count(node) +1;

ELSE
count(child) :=count(node);

unconditional:

pick a child (aay_child);

IF (any _child is conditional)
THENT

sum := sum + count(node);
ELSE IF (any_ child uses Module-type) AND

(count(any _child) = 0)
* count(any _child) :=count(node) + 1;

ELSE
count(any _child) :=count(node) + count(any _child);
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END {*CASE*}

END (*loop*}

{* If there is any next searching front nodes, put *}

-. them in the current wave front buffer and loop. *}
3. IF NOT (empty NWF)

THEN
CWF:= NWF;
NWF := {};
GOTO 2;

4. FOR every terminal node with a single digit color code DO
sum :- sum(terminal_node);

5. Group the terminal nodes with multi-digit color codes
according to their first digit (outermost D-J block);

FOR each group of nodes DO
sum := sum + max{count(node e group));

6. RETURN sum;

- - END {*MinModFreq*}

Run time complexity of this algorithm is O[n 2], where n is the number of

nodes in the graph. Step 3 takes a constant number of steps. Steps 1, 4, and 5

takes O[n) times steps since there are n nodes in the graph. A node can be in

CWF only once and therefore the CASE block of Step 2 is iterated at most n

times. Each node has at most n-I children, thus, one iteration of the CASE

block takes O[n] time steps.

'4.

. -.. '
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